Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
 
  12#include <linux/sched/coredump.h>
  13#include <linux/sched/numa_balancing.h>
  14#include <linux/highmem.h>
  15#include <linux/hugetlb.h>
  16#include <linux/mmu_notifier.h>
  17#include <linux/rmap.h>
  18#include <linux/swap.h>
  19#include <linux/shrinker.h>
  20#include <linux/mm_inline.h>
  21#include <linux/swapops.h>
 
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
 
 
 
 
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
 
 
 
 
  40
  41/*
  42 * By default, transparent hugepage support is disabled in order to avoid
  43 * risking an increased memory footprint for applications that are not
  44 * guaranteed to benefit from it. When transparent hugepage support is
  45 * enabled, it is for all mappings, and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
  60static struct shrinker deferred_split_shrinker;
  61
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65static struct page *get_huge_zero_page(void)
 
 
 
  66{
  67	struct page *zero_page;
  68retry:
  69	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  70		return READ_ONCE(huge_zero_page);
  71
  72	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  73			HPAGE_PMD_ORDER);
  74	if (!zero_page) {
  75		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  76		return NULL;
  77	}
  78	count_vm_event(THP_ZERO_PAGE_ALLOC);
  79	preempt_disable();
  80	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  81		preempt_enable();
  82		__free_pages(zero_page, compound_order(zero_page));
  83		goto retry;
  84	}
 
  85
  86	/* We take additional reference here. It will be put back by shrinker */
  87	atomic_set(&huge_zero_refcount, 2);
  88	preempt_enable();
  89	return READ_ONCE(huge_zero_page);
 
  90}
  91
  92static void put_huge_zero_page(void)
  93{
  94	/*
  95	 * Counter should never go to zero here. Only shrinker can put
  96	 * last reference.
  97	 */
  98	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  99}
 100
 101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 102{
 103	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 104		return READ_ONCE(huge_zero_page);
 105
 106	if (!get_huge_zero_page())
 107		return NULL;
 108
 109	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 110		put_huge_zero_page();
 111
 112	return READ_ONCE(huge_zero_page);
 113}
 114
 115void mm_put_huge_zero_page(struct mm_struct *mm)
 116{
 117	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 118		put_huge_zero_page();
 119}
 120
 121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 122					struct shrink_control *sc)
 123{
 124	/* we can free zero page only if last reference remains */
 125	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 126}
 127
 128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 129				       struct shrink_control *sc)
 130{
 131	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 132		struct page *zero_page = xchg(&huge_zero_page, NULL);
 133		BUG_ON(zero_page == NULL);
 
 134		__free_pages(zero_page, compound_order(zero_page));
 135		return HPAGE_PMD_NR;
 136	}
 137
 138	return 0;
 139}
 140
 141static struct shrinker huge_zero_page_shrinker = {
 142	.count_objects = shrink_huge_zero_page_count,
 143	.scan_objects = shrink_huge_zero_page_scan,
 144	.seeks = DEFAULT_SEEKS,
 145};
 146
 147#ifdef CONFIG_SYSFS
 148static ssize_t enabled_show(struct kobject *kobj,
 149			    struct kobj_attribute *attr, char *buf)
 150{
 
 
 151	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 152		return sprintf(buf, "[always] madvise never\n");
 153	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 154		return sprintf(buf, "always [madvise] never\n");
 
 155	else
 156		return sprintf(buf, "always madvise [never]\n");
 
 
 157}
 158
 159static ssize_t enabled_store(struct kobject *kobj,
 160			     struct kobj_attribute *attr,
 161			     const char *buf, size_t count)
 162{
 163	ssize_t ret = count;
 164
 165	if (!memcmp("always", buf,
 166		    min(sizeof("always")-1, count))) {
 167		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 168		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 169	} else if (!memcmp("madvise", buf,
 170			   min(sizeof("madvise")-1, count))) {
 171		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 172		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 173	} else if (!memcmp("never", buf,
 174			   min(sizeof("never")-1, count))) {
 175		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 176		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 177	} else
 178		ret = -EINVAL;
 179
 180	if (ret > 0) {
 181		int err = start_stop_khugepaged();
 182		if (err)
 183			ret = err;
 184	}
 185	return ret;
 186}
 187static struct kobj_attribute enabled_attr =
 188	__ATTR(enabled, 0644, enabled_show, enabled_store);
 189
 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
 191				struct kobj_attribute *attr, char *buf,
 192				enum transparent_hugepage_flag flag)
 193{
 194	return sprintf(buf, "%d\n",
 195		       !!test_bit(flag, &transparent_hugepage_flags));
 196}
 197
 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
 199				 struct kobj_attribute *attr,
 200				 const char *buf, size_t count,
 201				 enum transparent_hugepage_flag flag)
 202{
 203	unsigned long value;
 204	int ret;
 205
 206	ret = kstrtoul(buf, 10, &value);
 207	if (ret < 0)
 208		return ret;
 209	if (value > 1)
 210		return -EINVAL;
 211
 212	if (value)
 213		set_bit(flag, &transparent_hugepage_flags);
 214	else
 215		clear_bit(flag, &transparent_hugepage_flags);
 216
 217	return count;
 218}
 219
 220static ssize_t defrag_show(struct kobject *kobj,
 221			   struct kobj_attribute *attr, char *buf)
 222{
 223	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 224		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 225	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 226		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 227	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 228		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 229	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 230		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 231	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 
 
 
 
 
 
 
 
 
 232}
 233
 234static ssize_t defrag_store(struct kobject *kobj,
 235			    struct kobj_attribute *attr,
 236			    const char *buf, size_t count)
 237{
 238	if (!memcmp("always", buf,
 239		    min(sizeof("always")-1, count))) {
 240		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 241		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 242		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 243		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 244	} else if (!memcmp("defer+madvise", buf,
 245		    min(sizeof("defer+madvise")-1, count))) {
 246		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 247		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 248		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 249		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 250	} else if (!memcmp("defer", buf,
 251		    min(sizeof("defer")-1, count))) {
 252		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 253		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 254		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 255		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 256	} else if (!memcmp("madvise", buf,
 257			   min(sizeof("madvise")-1, count))) {
 258		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 259		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 260		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 261		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262	} else if (!memcmp("never", buf,
 263			   min(sizeof("never")-1, count))) {
 264		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 265		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 266		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 267		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 268	} else
 269		return -EINVAL;
 270
 271	return count;
 272}
 273static struct kobj_attribute defrag_attr =
 274	__ATTR(defrag, 0644, defrag_show, defrag_store);
 275
 276static ssize_t use_zero_page_show(struct kobject *kobj,
 277		struct kobj_attribute *attr, char *buf)
 278{
 279	return single_hugepage_flag_show(kobj, attr, buf,
 280				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 281}
 282static ssize_t use_zero_page_store(struct kobject *kobj,
 283		struct kobj_attribute *attr, const char *buf, size_t count)
 284{
 285	return single_hugepage_flag_store(kobj, attr, buf, count,
 286				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 287}
 288static struct kobj_attribute use_zero_page_attr =
 289	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 290
 291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 292		struct kobj_attribute *attr, char *buf)
 293{
 294	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 295}
 296static struct kobj_attribute hpage_pmd_size_attr =
 297	__ATTR_RO(hpage_pmd_size);
 298
 299#ifdef CONFIG_DEBUG_VM
 300static ssize_t debug_cow_show(struct kobject *kobj,
 301				struct kobj_attribute *attr, char *buf)
 302{
 303	return single_hugepage_flag_show(kobj, attr, buf,
 304				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 305}
 306static ssize_t debug_cow_store(struct kobject *kobj,
 307			       struct kobj_attribute *attr,
 308			       const char *buf, size_t count)
 309{
 310	return single_hugepage_flag_store(kobj, attr, buf, count,
 311				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 312}
 313static struct kobj_attribute debug_cow_attr =
 314	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 315#endif /* CONFIG_DEBUG_VM */
 316
 317static struct attribute *hugepage_attr[] = {
 318	&enabled_attr.attr,
 319	&defrag_attr.attr,
 320	&use_zero_page_attr.attr,
 321	&hpage_pmd_size_attr.attr,
 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 323	&shmem_enabled_attr.attr,
 324#endif
 325#ifdef CONFIG_DEBUG_VM
 326	&debug_cow_attr.attr,
 327#endif
 328	NULL,
 329};
 330
 331static const struct attribute_group hugepage_attr_group = {
 332	.attrs = hugepage_attr,
 333};
 334
 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 336{
 337	int err;
 338
 339	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 340	if (unlikely(!*hugepage_kobj)) {
 341		pr_err("failed to create transparent hugepage kobject\n");
 342		return -ENOMEM;
 343	}
 344
 345	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 346	if (err) {
 347		pr_err("failed to register transparent hugepage group\n");
 348		goto delete_obj;
 349	}
 350
 351	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 352	if (err) {
 353		pr_err("failed to register transparent hugepage group\n");
 354		goto remove_hp_group;
 355	}
 356
 357	return 0;
 358
 359remove_hp_group:
 360	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 361delete_obj:
 362	kobject_put(*hugepage_kobj);
 363	return err;
 364}
 365
 366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 367{
 368	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 369	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 370	kobject_put(hugepage_kobj);
 371}
 372#else
 373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 374{
 375	return 0;
 376}
 377
 378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 379{
 380}
 381#endif /* CONFIG_SYSFS */
 382
 383static int __init hugepage_init(void)
 384{
 385	int err;
 386	struct kobject *hugepage_kobj;
 387
 388	if (!has_transparent_hugepage()) {
 389		transparent_hugepage_flags = 0;
 
 
 
 
 390		return -EINVAL;
 391	}
 392
 393	/*
 394	 * hugepages can't be allocated by the buddy allocator
 395	 */
 396	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 397	/*
 398	 * we use page->mapping and page->index in second tail page
 399	 * as list_head: assuming THP order >= 2
 400	 */
 401	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 402
 403	err = hugepage_init_sysfs(&hugepage_kobj);
 404	if (err)
 405		goto err_sysfs;
 406
 407	err = khugepaged_init();
 408	if (err)
 409		goto err_slab;
 410
 411	err = register_shrinker(&huge_zero_page_shrinker);
 412	if (err)
 413		goto err_hzp_shrinker;
 414	err = register_shrinker(&deferred_split_shrinker);
 415	if (err)
 416		goto err_split_shrinker;
 417
 418	/*
 419	 * By default disable transparent hugepages on smaller systems,
 420	 * where the extra memory used could hurt more than TLB overhead
 421	 * is likely to save.  The admin can still enable it through /sys.
 422	 */
 423	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 424		transparent_hugepage_flags = 0;
 425		return 0;
 426	}
 427
 428	err = start_stop_khugepaged();
 429	if (err)
 430		goto err_khugepaged;
 431
 432	return 0;
 433err_khugepaged:
 434	unregister_shrinker(&deferred_split_shrinker);
 435err_split_shrinker:
 436	unregister_shrinker(&huge_zero_page_shrinker);
 437err_hzp_shrinker:
 438	khugepaged_destroy();
 439err_slab:
 440	hugepage_exit_sysfs(hugepage_kobj);
 441err_sysfs:
 442	return err;
 443}
 444subsys_initcall(hugepage_init);
 445
 446static int __init setup_transparent_hugepage(char *str)
 447{
 448	int ret = 0;
 449	if (!str)
 450		goto out;
 451	if (!strcmp(str, "always")) {
 452		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 453			&transparent_hugepage_flags);
 454		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 455			  &transparent_hugepage_flags);
 456		ret = 1;
 457	} else if (!strcmp(str, "madvise")) {
 458		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 459			  &transparent_hugepage_flags);
 460		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 461			&transparent_hugepage_flags);
 462		ret = 1;
 463	} else if (!strcmp(str, "never")) {
 464		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 465			  &transparent_hugepage_flags);
 466		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 467			  &transparent_hugepage_flags);
 468		ret = 1;
 469	}
 470out:
 471	if (!ret)
 472		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 473	return ret;
 474}
 475__setup("transparent_hugepage=", setup_transparent_hugepage);
 476
 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 478{
 479	if (likely(vma->vm_flags & VM_WRITE))
 480		pmd = pmd_mkwrite(pmd);
 481	return pmd;
 482}
 483
 484static inline struct list_head *page_deferred_list(struct page *page)
 
 485{
 486	/*
 487	 * ->lru in the tail pages is occupied by compound_head.
 488	 * Let's use ->mapping + ->index in the second tail page as list_head.
 489	 */
 490	return (struct list_head *)&page[2].mapping;
 
 
 491}
 
 
 
 
 
 
 
 
 492
 493void prep_transhuge_page(struct page *page)
 494{
 495	/*
 496	 * we use page->mapping and page->indexlru in second tail page
 497	 * as list_head: assuming THP order >= 2
 498	 */
 499
 500	INIT_LIST_HEAD(page_deferred_list(page));
 501	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 502}
 503
 504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 
 
 
 
 
 
 
 
 
 
 
 505		loff_t off, unsigned long flags, unsigned long size)
 506{
 507	unsigned long addr;
 508	loff_t off_end = off + len;
 509	loff_t off_align = round_up(off, size);
 510	unsigned long len_pad;
 511
 512	if (off_end <= off_align || (off_end - off_align) < size)
 513		return 0;
 514
 515	len_pad = len + size;
 516	if (len_pad < len || (off + len_pad) < off)
 517		return 0;
 518
 519	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 520					      off >> PAGE_SHIFT, flags);
 521	if (IS_ERR_VALUE(addr))
 
 
 
 
 
 522		return 0;
 523
 524	addr += (off - addr) & (size - 1);
 525	return addr;
 
 
 
 
 
 
 
 526}
 527
 528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 529		unsigned long len, unsigned long pgoff, unsigned long flags)
 530{
 
 531	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 532
 533	if (addr)
 534		goto out;
 535	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 536		goto out;
 537
 538	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 539	if (addr)
 540		return addr;
 541
 542 out:
 543	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 544}
 545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 546
 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
 548		gfp_t gfp)
 549{
 550	struct vm_area_struct *vma = vmf->vma;
 551	struct mem_cgroup *memcg;
 552	pgtable_t pgtable;
 553	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 554	int ret = 0;
 555
 556	VM_BUG_ON_PAGE(!PageCompound(page), page);
 557
 558	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 559		put_page(page);
 560		count_vm_event(THP_FAULT_FALLBACK);
 
 561		return VM_FAULT_FALLBACK;
 562	}
 
 563
 564	pgtable = pte_alloc_one(vma->vm_mm, haddr);
 565	if (unlikely(!pgtable)) {
 566		ret = VM_FAULT_OOM;
 567		goto release;
 568	}
 569
 570	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 571	/*
 572	 * The memory barrier inside __SetPageUptodate makes sure that
 573	 * clear_huge_page writes become visible before the set_pmd_at()
 574	 * write.
 575	 */
 576	__SetPageUptodate(page);
 577
 578	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 579	if (unlikely(!pmd_none(*vmf->pmd))) {
 580		goto unlock_release;
 581	} else {
 582		pmd_t entry;
 583
 584		ret = check_stable_address_space(vma->vm_mm);
 585		if (ret)
 586			goto unlock_release;
 587
 588		/* Deliver the page fault to userland */
 589		if (userfaultfd_missing(vma)) {
 590			int ret;
 591
 592			spin_unlock(vmf->ptl);
 593			mem_cgroup_cancel_charge(page, memcg, true);
 594			put_page(page);
 595			pte_free(vma->vm_mm, pgtable);
 596			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 597			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 598			return ret;
 599		}
 600
 601		entry = mk_huge_pmd(page, vma->vm_page_prot);
 602		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 603		page_add_new_anon_rmap(page, vma, haddr, true);
 604		mem_cgroup_commit_charge(page, memcg, false, true);
 605		lru_cache_add_active_or_unevictable(page, vma);
 606		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 607		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 
 608		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 609		mm_inc_nr_ptes(vma->vm_mm);
 610		spin_unlock(vmf->ptl);
 611		count_vm_event(THP_FAULT_ALLOC);
 
 612	}
 613
 614	return 0;
 615unlock_release:
 616	spin_unlock(vmf->ptl);
 617release:
 618	if (pgtable)
 619		pte_free(vma->vm_mm, pgtable);
 620	mem_cgroup_cancel_charge(page, memcg, true);
 621	put_page(page);
 622	return ret;
 623
 624}
 625
 626/*
 627 * always: directly stall for all thp allocations
 628 * defer: wake kswapd and fail if not immediately available
 629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 630 *		  fail if not immediately available
 631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 632 *	    available
 633 * never: never stall for any thp allocation
 634 */
 635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 636{
 637	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 638
 
 639	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 640		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 
 
 641	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 642		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 
 
 643	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 644		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 645							     __GFP_KSWAPD_RECLAIM);
 
 
 
 646	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 647		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 648							     0);
 
 649	return GFP_TRANSHUGE_LIGHT;
 650}
 651
 652/* Caller must hold page table lock. */
 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 654		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 655		struct page *zero_page)
 656{
 657	pmd_t entry;
 658	if (!pmd_none(*pmd))
 659		return false;
 660	entry = mk_pmd(zero_page, vma->vm_page_prot);
 661	entry = pmd_mkhuge(entry);
 662	if (pgtable)
 663		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 664	set_pmd_at(mm, haddr, pmd, entry);
 665	mm_inc_nr_ptes(mm);
 666	return true;
 667}
 668
 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 670{
 671	struct vm_area_struct *vma = vmf->vma;
 672	gfp_t gfp;
 673	struct page *page;
 674	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 675
 676	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 677		return VM_FAULT_FALLBACK;
 678	if (unlikely(anon_vma_prepare(vma)))
 679		return VM_FAULT_OOM;
 680	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 681		return VM_FAULT_OOM;
 682	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 683			!mm_forbids_zeropage(vma->vm_mm) &&
 684			transparent_hugepage_use_zero_page()) {
 685		pgtable_t pgtable;
 686		struct page *zero_page;
 687		bool set;
 688		int ret;
 689		pgtable = pte_alloc_one(vma->vm_mm, haddr);
 690		if (unlikely(!pgtable))
 691			return VM_FAULT_OOM;
 692		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 693		if (unlikely(!zero_page)) {
 694			pte_free(vma->vm_mm, pgtable);
 695			count_vm_event(THP_FAULT_FALLBACK);
 696			return VM_FAULT_FALLBACK;
 697		}
 698		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 699		ret = 0;
 700		set = false;
 701		if (pmd_none(*vmf->pmd)) {
 702			ret = check_stable_address_space(vma->vm_mm);
 703			if (ret) {
 704				spin_unlock(vmf->ptl);
 
 705			} else if (userfaultfd_missing(vma)) {
 706				spin_unlock(vmf->ptl);
 
 707				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 708				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 709			} else {
 710				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 711						   haddr, vmf->pmd, zero_page);
 
 712				spin_unlock(vmf->ptl);
 713				set = true;
 714			}
 715		} else
 716			spin_unlock(vmf->ptl);
 717		if (!set)
 718			pte_free(vma->vm_mm, pgtable);
 
 719		return ret;
 720	}
 721	gfp = alloc_hugepage_direct_gfpmask(vma);
 722	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 723	if (unlikely(!page)) {
 724		count_vm_event(THP_FAULT_FALLBACK);
 725		return VM_FAULT_FALLBACK;
 726	}
 727	prep_transhuge_page(page);
 728	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 729}
 730
 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 732		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 733		pgtable_t pgtable)
 734{
 735	struct mm_struct *mm = vma->vm_mm;
 736	pmd_t entry;
 737	spinlock_t *ptl;
 738
 739	ptl = pmd_lock(mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 741	if (pfn_t_devmap(pfn))
 742		entry = pmd_mkdevmap(entry);
 743	if (write) {
 744		entry = pmd_mkyoung(pmd_mkdirty(entry));
 745		entry = maybe_pmd_mkwrite(entry, vma);
 746	}
 747
 748	if (pgtable) {
 749		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 750		mm_inc_nr_ptes(mm);
 
 751	}
 752
 753	set_pmd_at(mm, addr, pmd, entry);
 754	update_mmu_cache_pmd(vma, addr, pmd);
 
 
 755	spin_unlock(ptl);
 
 
 756}
 757
 758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 759			pmd_t *pmd, pfn_t pfn, bool write)
 
 
 
 
 
 
 
 
 
 
 
 
 
 760{
 761	pgprot_t pgprot = vma->vm_page_prot;
 
 762	pgtable_t pgtable = NULL;
 
 763	/*
 764	 * If we had pmd_special, we could avoid all these restrictions,
 765	 * but we need to be consistent with PTEs and architectures that
 766	 * can't support a 'special' bit.
 767	 */
 768	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 
 769	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 770						(VM_PFNMAP|VM_MIXEDMAP));
 771	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 772	BUG_ON(!pfn_t_devmap(pfn));
 773
 774	if (addr < vma->vm_start || addr >= vma->vm_end)
 775		return VM_FAULT_SIGBUS;
 776
 777	if (arch_needs_pgtable_deposit()) {
 778		pgtable = pte_alloc_one(vma->vm_mm, addr);
 779		if (!pgtable)
 780			return VM_FAULT_OOM;
 781	}
 782
 783	track_pfn_insert(vma, &pgprot, pfn);
 784
 785	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
 786	return VM_FAULT_NOPAGE;
 787}
 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 789
 790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 792{
 793	if (likely(vma->vm_flags & VM_WRITE))
 794		pud = pud_mkwrite(pud);
 795	return pud;
 796}
 797
 798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 799		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 800{
 801	struct mm_struct *mm = vma->vm_mm;
 802	pud_t entry;
 803	spinlock_t *ptl;
 804
 805	ptl = pud_lock(mm, pud);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 807	if (pfn_t_devmap(pfn))
 808		entry = pud_mkdevmap(entry);
 809	if (write) {
 810		entry = pud_mkyoung(pud_mkdirty(entry));
 811		entry = maybe_pud_mkwrite(entry, vma);
 812	}
 813	set_pud_at(mm, addr, pud, entry);
 814	update_mmu_cache_pud(vma, addr, pud);
 
 
 815	spin_unlock(ptl);
 816}
 817
 818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 819			pud_t *pud, pfn_t pfn, bool write)
 
 
 
 
 
 
 
 
 
 
 
 
 
 820{
 821	pgprot_t pgprot = vma->vm_page_prot;
 
 
 822	/*
 823	 * If we had pud_special, we could avoid all these restrictions,
 824	 * but we need to be consistent with PTEs and architectures that
 825	 * can't support a 'special' bit.
 826	 */
 827	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 
 828	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 829						(VM_PFNMAP|VM_MIXEDMAP));
 830	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 831	BUG_ON(!pfn_t_devmap(pfn));
 832
 833	if (addr < vma->vm_start || addr >= vma->vm_end)
 834		return VM_FAULT_SIGBUS;
 835
 836	track_pfn_insert(vma, &pgprot, pfn);
 837
 838	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
 839	return VM_FAULT_NOPAGE;
 840}
 841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 843
 844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 845		pmd_t *pmd, int flags)
 846{
 847	pmd_t _pmd;
 848
 849	_pmd = pmd_mkyoung(*pmd);
 850	if (flags & FOLL_WRITE)
 851		_pmd = pmd_mkdirty(_pmd);
 852	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 853				pmd, _pmd, flags & FOLL_WRITE))
 854		update_mmu_cache_pmd(vma, addr, pmd);
 855}
 856
 857struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 858		pmd_t *pmd, int flags)
 859{
 860	unsigned long pfn = pmd_pfn(*pmd);
 861	struct mm_struct *mm = vma->vm_mm;
 862	struct dev_pagemap *pgmap;
 863	struct page *page;
 
 864
 865	assert_spin_locked(pmd_lockptr(mm, pmd));
 866
 867	/*
 868	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 869	 * not be in this function with `flags & FOLL_COW` set.
 870	 */
 871	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 872
 873	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 874		return NULL;
 875
 876	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 877		/* pass */;
 878	else
 879		return NULL;
 880
 881	if (flags & FOLL_TOUCH)
 882		touch_pmd(vma, addr, pmd, flags);
 883
 884	/*
 885	 * device mapped pages can only be returned if the
 886	 * caller will manage the page reference count.
 887	 */
 888	if (!(flags & FOLL_GET))
 889		return ERR_PTR(-EEXIST);
 890
 891	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 892	pgmap = get_dev_pagemap(pfn, NULL);
 893	if (!pgmap)
 894		return ERR_PTR(-EFAULT);
 895	page = pfn_to_page(pfn);
 896	get_page(page);
 897	put_dev_pagemap(pgmap);
 
 898
 899	return page;
 900}
 901
 902int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 903		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 904		  struct vm_area_struct *vma)
 905{
 906	spinlock_t *dst_ptl, *src_ptl;
 907	struct page *src_page;
 908	pmd_t pmd;
 909	pgtable_t pgtable = NULL;
 910	int ret = -ENOMEM;
 911
 912	/* Skip if can be re-fill on fault */
 913	if (!vma_is_anonymous(vma))
 914		return 0;
 915
 916	pgtable = pte_alloc_one(dst_mm, addr);
 917	if (unlikely(!pgtable))
 918		goto out;
 919
 920	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 921	src_ptl = pmd_lockptr(src_mm, src_pmd);
 922	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 923
 924	ret = -EAGAIN;
 925	pmd = *src_pmd;
 926
 927#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 928	if (unlikely(is_swap_pmd(pmd))) {
 929		swp_entry_t entry = pmd_to_swp_entry(pmd);
 930
 931		VM_BUG_ON(!is_pmd_migration_entry(pmd));
 932		if (is_write_migration_entry(entry)) {
 933			make_migration_entry_read(&entry);
 
 934			pmd = swp_entry_to_pmd(entry);
 935			if (pmd_swp_soft_dirty(*src_pmd))
 936				pmd = pmd_swp_mksoft_dirty(pmd);
 
 
 937			set_pmd_at(src_mm, addr, src_pmd, pmd);
 938		}
 939		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 940		mm_inc_nr_ptes(dst_mm);
 941		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 
 
 942		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 943		ret = 0;
 944		goto out_unlock;
 945	}
 946#endif
 947
 948	if (unlikely(!pmd_trans_huge(pmd))) {
 949		pte_free(dst_mm, pgtable);
 950		goto out_unlock;
 951	}
 952	/*
 953	 * When page table lock is held, the huge zero pmd should not be
 954	 * under splitting since we don't split the page itself, only pmd to
 955	 * a page table.
 956	 */
 957	if (is_huge_zero_pmd(pmd)) {
 958		struct page *zero_page;
 959		/*
 960		 * get_huge_zero_page() will never allocate a new page here,
 961		 * since we already have a zero page to copy. It just takes a
 962		 * reference.
 963		 */
 964		zero_page = mm_get_huge_zero_page(dst_mm);
 965		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 966				zero_page);
 967		ret = 0;
 968		goto out_unlock;
 969	}
 970
 971	src_page = pmd_page(pmd);
 972	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 
 973	get_page(src_page);
 974	page_dup_rmap(src_page, true);
 
 
 
 
 
 
 
 
 975	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 
 976	mm_inc_nr_ptes(dst_mm);
 977	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 978
 979	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 
 
 980	pmd = pmd_mkold(pmd_wrprotect(pmd));
 981	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 982
 983	ret = 0;
 984out_unlock:
 985	spin_unlock(src_ptl);
 986	spin_unlock(dst_ptl);
 987out:
 988	return ret;
 989}
 990
 991#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 992static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 993		pud_t *pud, int flags)
 994{
 995	pud_t _pud;
 996
 997	_pud = pud_mkyoung(*pud);
 998	if (flags & FOLL_WRITE)
 999		_pud = pud_mkdirty(_pud);
1000	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1001				pud, _pud, flags & FOLL_WRITE))
1002		update_mmu_cache_pud(vma, addr, pud);
1003}
1004
1005struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1006		pud_t *pud, int flags)
1007{
1008	unsigned long pfn = pud_pfn(*pud);
1009	struct mm_struct *mm = vma->vm_mm;
1010	struct dev_pagemap *pgmap;
1011	struct page *page;
 
1012
1013	assert_spin_locked(pud_lockptr(mm, pud));
1014
1015	if (flags & FOLL_WRITE && !pud_write(*pud))
1016		return NULL;
1017
 
 
 
 
 
1018	if (pud_present(*pud) && pud_devmap(*pud))
1019		/* pass */;
1020	else
1021		return NULL;
1022
1023	if (flags & FOLL_TOUCH)
1024		touch_pud(vma, addr, pud, flags);
1025
1026	/*
1027	 * device mapped pages can only be returned if the
1028	 * caller will manage the page reference count.
 
 
1029	 */
1030	if (!(flags & FOLL_GET))
1031		return ERR_PTR(-EEXIST);
1032
1033	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1034	pgmap = get_dev_pagemap(pfn, NULL);
1035	if (!pgmap)
1036		return ERR_PTR(-EFAULT);
1037	page = pfn_to_page(pfn);
1038	get_page(page);
1039	put_dev_pagemap(pgmap);
 
 
1040
1041	return page;
1042}
1043
1044int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1046		  struct vm_area_struct *vma)
1047{
1048	spinlock_t *dst_ptl, *src_ptl;
1049	pud_t pud;
1050	int ret;
1051
1052	dst_ptl = pud_lock(dst_mm, dst_pud);
1053	src_ptl = pud_lockptr(src_mm, src_pud);
1054	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1055
1056	ret = -EAGAIN;
1057	pud = *src_pud;
1058	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1059		goto out_unlock;
1060
1061	/*
1062	 * When page table lock is held, the huge zero pud should not be
1063	 * under splitting since we don't split the page itself, only pud to
1064	 * a page table.
1065	 */
1066	if (is_huge_zero_pud(pud)) {
1067		/* No huge zero pud yet */
1068	}
1069
 
 
 
 
1070	pudp_set_wrprotect(src_mm, addr, src_pud);
1071	pud = pud_mkold(pud_wrprotect(pud));
1072	set_pud_at(dst_mm, addr, dst_pud, pud);
1073
1074	ret = 0;
1075out_unlock:
1076	spin_unlock(src_ptl);
1077	spin_unlock(dst_ptl);
1078	return ret;
1079}
1080
1081void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1082{
1083	pud_t entry;
1084	unsigned long haddr;
1085	bool write = vmf->flags & FAULT_FLAG_WRITE;
1086
1087	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1088	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1089		goto unlock;
1090
1091	entry = pud_mkyoung(orig_pud);
1092	if (write)
1093		entry = pud_mkdirty(entry);
1094	haddr = vmf->address & HPAGE_PUD_MASK;
1095	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1096		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1097
1098unlock:
1099	spin_unlock(vmf->ptl);
1100}
1101#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1102
1103void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1104{
1105	pmd_t entry;
1106	unsigned long haddr;
1107	bool write = vmf->flags & FAULT_FLAG_WRITE;
1108
1109	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1110	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1111		goto unlock;
1112
1113	entry = pmd_mkyoung(orig_pmd);
1114	if (write)
1115		entry = pmd_mkdirty(entry);
1116	haddr = vmf->address & HPAGE_PMD_MASK;
1117	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1118		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1119
1120unlock:
1121	spin_unlock(vmf->ptl);
1122}
1123
1124static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1125		struct page *page)
1126{
 
1127	struct vm_area_struct *vma = vmf->vma;
 
 
1128	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1129	struct mem_cgroup *memcg;
1130	pgtable_t pgtable;
1131	pmd_t _pmd;
1132	int ret = 0, i;
1133	struct page **pages;
1134	unsigned long mmun_start;	/* For mmu_notifiers */
1135	unsigned long mmun_end;		/* For mmu_notifiers */
1136
1137	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1138			GFP_KERNEL);
1139	if (unlikely(!pages)) {
1140		ret |= VM_FAULT_OOM;
1141		goto out;
1142	}
1143
1144	for (i = 0; i < HPAGE_PMD_NR; i++) {
1145		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1146					       vmf->address, page_to_nid(page));
1147		if (unlikely(!pages[i] ||
1148			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1149				     GFP_KERNEL, &memcg, false))) {
1150			if (pages[i])
1151				put_page(pages[i]);
1152			while (--i >= 0) {
1153				memcg = (void *)page_private(pages[i]);
1154				set_page_private(pages[i], 0);
1155				mem_cgroup_cancel_charge(pages[i], memcg,
1156						false);
1157				put_page(pages[i]);
1158			}
1159			kfree(pages);
1160			ret |= VM_FAULT_OOM;
1161			goto out;
1162		}
1163		set_page_private(pages[i], (unsigned long)memcg);
1164	}
1165
1166	for (i = 0; i < HPAGE_PMD_NR; i++) {
1167		copy_user_highpage(pages[i], page + i,
1168				   haddr + PAGE_SIZE * i, vma);
1169		__SetPageUptodate(pages[i]);
1170		cond_resched();
1171	}
1172
1173	mmun_start = haddr;
1174	mmun_end   = haddr + HPAGE_PMD_SIZE;
1175	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1176
1177	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1178	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179		goto out_free_pages;
1180	VM_BUG_ON_PAGE(!PageHead(page), page);
1181
1182	/*
1183	 * Leave pmd empty until pte is filled note we must notify here as
1184	 * concurrent CPU thread might write to new page before the call to
1185	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1186	 * device seeing memory write in different order than CPU.
1187	 *
1188	 * See Documentation/vm/mmu_notifier.txt
1189	 */
1190	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1191
1192	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1193	pmd_populate(vma->vm_mm, &_pmd, pgtable);
 
1194
1195	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1196		pte_t entry;
1197		entry = mk_pte(pages[i], vma->vm_page_prot);
1198		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1199		memcg = (void *)page_private(pages[i]);
1200		set_page_private(pages[i], 0);
1201		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1202		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1203		lru_cache_add_active_or_unevictable(pages[i], vma);
1204		vmf->pte = pte_offset_map(&_pmd, haddr);
1205		VM_BUG_ON(!pte_none(*vmf->pte));
1206		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1207		pte_unmap(vmf->pte);
1208	}
1209	kfree(pages);
1210
1211	smp_wmb(); /* make pte visible before pmd */
1212	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1213	page_remove_rmap(page, true);
1214	spin_unlock(vmf->ptl);
 
1215
1216	/*
1217	 * No need to double call mmu_notifier->invalidate_range() callback as
1218	 * the above pmdp_huge_clear_flush_notify() did already call it.
 
1219	 */
1220	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1221						mmun_end);
1222
1223	ret |= VM_FAULT_WRITE;
1224	put_page(page);
 
 
1225
1226out:
1227	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1228
1229out_free_pages:
 
1230	spin_unlock(vmf->ptl);
1231	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1232	for (i = 0; i < HPAGE_PMD_NR; i++) {
1233		memcg = (void *)page_private(pages[i]);
1234		set_page_private(pages[i], 0);
1235		mem_cgroup_cancel_charge(pages[i], memcg, false);
1236		put_page(pages[i]);
1237	}
1238	kfree(pages);
1239	goto out;
1240}
1241
1242int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
 
1243{
1244	struct vm_area_struct *vma = vmf->vma;
1245	struct page *page = NULL, *new_page;
1246	struct mem_cgroup *memcg;
1247	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1248	unsigned long mmun_start;	/* For mmu_notifiers */
1249	unsigned long mmun_end;		/* For mmu_notifiers */
1250	gfp_t huge_gfp;			/* for allocation and charge */
1251	int ret = 0;
1252
1253	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1254	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1255	if (is_huge_zero_pmd(orig_pmd))
1256		goto alloc;
1257	spin_lock(vmf->ptl);
1258	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1259		goto out_unlock;
1260
1261	page = pmd_page(orig_pmd);
1262	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1263	/*
1264	 * We can only reuse the page if nobody else maps the huge page or it's
1265	 * part.
1266	 */
1267	if (!trylock_page(page)) {
1268		get_page(page);
1269		spin_unlock(vmf->ptl);
1270		lock_page(page);
1271		spin_lock(vmf->ptl);
1272		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1273			unlock_page(page);
1274			put_page(page);
1275			goto out_unlock;
1276		}
1277		put_page(page);
1278	}
1279	if (reuse_swap_page(page, NULL)) {
1280		pmd_t entry;
1281		entry = pmd_mkyoung(orig_pmd);
1282		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1283		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1284			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1285		ret |= VM_FAULT_WRITE;
1286		unlock_page(page);
1287		goto out_unlock;
1288	}
1289	unlock_page(page);
1290	get_page(page);
1291	spin_unlock(vmf->ptl);
1292alloc:
1293	if (transparent_hugepage_enabled(vma) &&
1294	    !transparent_hugepage_debug_cow()) {
1295		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1296		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1297	} else
1298		new_page = NULL;
1299
1300	if (likely(new_page)) {
1301		prep_transhuge_page(new_page);
1302	} else {
1303		if (!page) {
1304			split_huge_pmd(vma, vmf->pmd, vmf->address);
1305			ret |= VM_FAULT_FALLBACK;
1306		} else {
1307			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1308			if (ret & VM_FAULT_OOM) {
1309				split_huge_pmd(vma, vmf->pmd, vmf->address);
1310				ret |= VM_FAULT_FALLBACK;
1311			}
1312			put_page(page);
1313		}
1314		count_vm_event(THP_FAULT_FALLBACK);
1315		goto out;
1316	}
1317
1318	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1319					huge_gfp, &memcg, true))) {
1320		put_page(new_page);
1321		split_huge_pmd(vma, vmf->pmd, vmf->address);
1322		if (page)
1323			put_page(page);
1324		ret |= VM_FAULT_FALLBACK;
1325		count_vm_event(THP_FAULT_FALLBACK);
1326		goto out;
1327	}
1328
1329	count_vm_event(THP_FAULT_ALLOC);
 
 
1330
1331	if (!page)
1332		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1333	else
1334		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1335	__SetPageUptodate(new_page);
 
 
 
1336
1337	mmun_start = haddr;
1338	mmun_end   = haddr + HPAGE_PMD_SIZE;
1339	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
 
 
 
 
 
 
 
 
 
 
 
 
1340
1341	spin_lock(vmf->ptl);
1342	if (page)
1343		put_page(page);
1344	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345		spin_unlock(vmf->ptl);
1346		mem_cgroup_cancel_charge(new_page, memcg, true);
1347		put_page(new_page);
1348		goto out_mn;
1349	} else {
1350		pmd_t entry;
1351		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1352		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1353		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1354		page_add_new_anon_rmap(new_page, vma, haddr, true);
1355		mem_cgroup_commit_charge(new_page, memcg, false, true);
1356		lru_cache_add_active_or_unevictable(new_page, vma);
1357		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1358		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359		if (!page) {
1360			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1361		} else {
1362			VM_BUG_ON_PAGE(!PageHead(page), page);
1363			page_remove_rmap(page, true);
1364			put_page(page);
1365		}
1366		ret |= VM_FAULT_WRITE;
1367	}
1368	spin_unlock(vmf->ptl);
1369out_mn:
1370	/*
1371	 * No need to double call mmu_notifier->invalidate_range() callback as
1372	 * the above pmdp_huge_clear_flush_notify() did already call it.
1373	 */
1374	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1375					       mmun_end);
1376out:
1377	return ret;
1378out_unlock:
1379	spin_unlock(vmf->ptl);
1380	return ret;
1381}
1382
1383/*
1384 * FOLL_FORCE can write to even unwritable pmd's, but only
1385 * after we've gone through a COW cycle and they are dirty.
1386 */
1387static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1388{
1389	return pmd_write(pmd) ||
1390	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1391}
1392
1393struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1394				   unsigned long addr,
1395				   pmd_t *pmd,
1396				   unsigned int flags)
1397{
1398	struct mm_struct *mm = vma->vm_mm;
1399	struct page *page = NULL;
 
1400
1401	assert_spin_locked(pmd_lockptr(mm, pmd));
1402
1403	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1404		goto out;
 
 
 
 
1405
1406	/* Avoid dumping huge zero page */
1407	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1408		return ERR_PTR(-EFAULT);
1409
1410	/* Full NUMA hinting faults to serialise migration in fault paths */
1411	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1412		goto out;
 
 
 
 
 
 
 
 
 
 
1413
1414	page = pmd_page(*pmd);
1415	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1416	if (flags & FOLL_TOUCH)
1417		touch_pmd(vma, addr, pmd, flags);
1418	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1419		/*
1420		 * We don't mlock() pte-mapped THPs. This way we can avoid
1421		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1422		 *
1423		 * For anon THP:
1424		 *
1425		 * In most cases the pmd is the only mapping of the page as we
1426		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1427		 * writable private mappings in populate_vma_page_range().
1428		 *
1429		 * The only scenario when we have the page shared here is if we
1430		 * mlocking read-only mapping shared over fork(). We skip
1431		 * mlocking such pages.
1432		 *
1433		 * For file THP:
1434		 *
1435		 * We can expect PageDoubleMap() to be stable under page lock:
1436		 * for file pages we set it in page_add_file_rmap(), which
1437		 * requires page to be locked.
1438		 */
1439
1440		if (PageAnon(page) && compound_mapcount(page) != 1)
1441			goto skip_mlock;
1442		if (PageDoubleMap(page) || !page->mapping)
1443			goto skip_mlock;
1444		if (!trylock_page(page))
1445			goto skip_mlock;
1446		lru_add_drain();
1447		if (page->mapping && !PageDoubleMap(page))
1448			mlock_vma_page(page);
1449		unlock_page(page);
1450	}
1451skip_mlock:
1452	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1453	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1454	if (flags & FOLL_GET)
1455		get_page(page);
1456
1457out:
1458	return page;
1459}
1460
1461/* NUMA hinting page fault entry point for trans huge pmds */
1462int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1463{
1464	struct vm_area_struct *vma = vmf->vma;
1465	struct anon_vma *anon_vma = NULL;
 
1466	struct page *page;
1467	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1468	int page_nid = -1, this_nid = numa_node_id();
1469	int target_nid, last_cpupid = -1;
1470	bool page_locked;
1471	bool migrated = false;
1472	bool was_writable;
1473	int flags = 0;
1474
1475	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1476	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1477		goto out_unlock;
1478
1479	/*
1480	 * If there are potential migrations, wait for completion and retry
1481	 * without disrupting NUMA hinting information. Do not relock and
1482	 * check_same as the page may no longer be mapped.
1483	 */
1484	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1485		page = pmd_page(*vmf->pmd);
1486		if (!get_page_unless_zero(page))
1487			goto out_unlock;
1488		spin_unlock(vmf->ptl);
1489		wait_on_page_locked(page);
1490		put_page(page);
1491		goto out;
1492	}
1493
1494	page = pmd_page(pmd);
1495	BUG_ON(is_huge_zero_page(page));
1496	page_nid = page_to_nid(page);
1497	last_cpupid = page_cpupid_last(page);
1498	count_vm_numa_event(NUMA_HINT_FAULTS);
1499	if (page_nid == this_nid) {
1500		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501		flags |= TNF_FAULT_LOCAL;
1502	}
1503
1504	/* See similar comment in do_numa_page for explanation */
1505	if (!pmd_savedwrite(pmd))
1506		flags |= TNF_NO_GROUP;
1507
1508	/*
1509	 * Acquire the page lock to serialise THP migrations but avoid dropping
1510	 * page_table_lock if at all possible
1511	 */
1512	page_locked = trylock_page(page);
1513	target_nid = mpol_misplaced(page, vma, haddr);
1514	if (target_nid == -1) {
1515		/* If the page was locked, there are no parallel migrations */
1516		if (page_locked)
1517			goto clear_pmdnuma;
1518	}
1519
1520	/* Migration could have started since the pmd_trans_migrating check */
1521	if (!page_locked) {
1522		page_nid = -1;
1523		if (!get_page_unless_zero(page))
1524			goto out_unlock;
1525		spin_unlock(vmf->ptl);
1526		wait_on_page_locked(page);
1527		put_page(page);
1528		goto out;
1529	}
1530
 
1531	/*
1532	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1533	 * to serialises splits
1534	 */
1535	get_page(page);
1536	spin_unlock(vmf->ptl);
1537	anon_vma = page_lock_anon_vma_read(page);
 
1538
1539	/* Confirm the PMD did not change while page_table_lock was released */
1540	spin_lock(vmf->ptl);
1541	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1542		unlock_page(page);
1543		put_page(page);
1544		page_nid = -1;
1545		goto out_unlock;
1546	}
1547
1548	/* Bail if we fail to protect against THP splits for any reason */
1549	if (unlikely(!anon_vma)) {
1550		put_page(page);
1551		page_nid = -1;
1552		goto clear_pmdnuma;
1553	}
1554
1555	/*
1556	 * Since we took the NUMA fault, we must have observed the !accessible
1557	 * bit. Make sure all other CPUs agree with that, to avoid them
1558	 * modifying the page we're about to migrate.
1559	 *
1560	 * Must be done under PTL such that we'll observe the relevant
1561	 * inc_tlb_flush_pending().
1562	 *
1563	 * We are not sure a pending tlb flush here is for a huge page
1564	 * mapping or not. Hence use the tlb range variant
1565	 */
1566	if (mm_tlb_flush_pending(vma->vm_mm))
1567		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1568
1569	/*
1570	 * Migrate the THP to the requested node, returns with page unlocked
1571	 * and access rights restored.
1572	 */
1573	spin_unlock(vmf->ptl);
 
1574
1575	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1576				vmf->pmd, pmd, vmf->address, page, target_nid);
1577	if (migrated) {
1578		flags |= TNF_MIGRATED;
1579		page_nid = target_nid;
1580	} else
1581		flags |= TNF_MIGRATE_FAIL;
1582
1583	goto out;
1584clear_pmdnuma:
1585	BUG_ON(!PageLocked(page));
1586	was_writable = pmd_savedwrite(pmd);
1587	pmd = pmd_modify(pmd, vma->vm_page_prot);
1588	pmd = pmd_mkyoung(pmd);
1589	if (was_writable)
1590		pmd = pmd_mkwrite(pmd);
1591	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593	unlock_page(page);
1594out_unlock:
1595	spin_unlock(vmf->ptl);
1596
1597out:
1598	if (anon_vma)
1599		page_unlock_anon_vma_read(anon_vma);
1600
1601	if (page_nid != -1)
1602		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1603				flags);
1604
1605	return 0;
 
 
 
 
 
 
 
 
 
 
 
1606}
1607
1608/*
1609 * Return true if we do MADV_FREE successfully on entire pmd page.
1610 * Otherwise, return false.
1611 */
1612bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1613		pmd_t *pmd, unsigned long addr, unsigned long next)
1614{
1615	spinlock_t *ptl;
1616	pmd_t orig_pmd;
1617	struct page *page;
1618	struct mm_struct *mm = tlb->mm;
1619	bool ret = false;
1620
1621	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1622
1623	ptl = pmd_trans_huge_lock(pmd, vma);
1624	if (!ptl)
1625		goto out_unlocked;
1626
1627	orig_pmd = *pmd;
1628	if (is_huge_zero_pmd(orig_pmd))
1629		goto out;
1630
1631	if (unlikely(!pmd_present(orig_pmd))) {
1632		VM_BUG_ON(thp_migration_supported() &&
1633				  !is_pmd_migration_entry(orig_pmd));
1634		goto out;
1635	}
1636
1637	page = pmd_page(orig_pmd);
1638	/*
1639	 * If other processes are mapping this page, we couldn't discard
1640	 * the page unless they all do MADV_FREE so let's skip the page.
1641	 */
1642	if (page_mapcount(page) != 1)
1643		goto out;
1644
1645	if (!trylock_page(page))
1646		goto out;
1647
1648	/*
1649	 * If user want to discard part-pages of THP, split it so MADV_FREE
1650	 * will deactivate only them.
1651	 */
1652	if (next - addr != HPAGE_PMD_SIZE) {
1653		get_page(page);
1654		spin_unlock(ptl);
1655		split_huge_page(page);
1656		unlock_page(page);
1657		put_page(page);
1658		goto out_unlocked;
1659	}
1660
1661	if (PageDirty(page))
1662		ClearPageDirty(page);
1663	unlock_page(page);
1664
1665	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1666		pmdp_invalidate(vma, addr, pmd);
1667		orig_pmd = pmd_mkold(orig_pmd);
1668		orig_pmd = pmd_mkclean(orig_pmd);
1669
1670		set_pmd_at(mm, addr, pmd, orig_pmd);
1671		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1672	}
1673
1674	mark_page_lazyfree(page);
1675	ret = true;
1676out:
1677	spin_unlock(ptl);
1678out_unlocked:
1679	return ret;
1680}
1681
1682static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1683{
1684	pgtable_t pgtable;
1685
1686	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1687	pte_free(mm, pgtable);
1688	mm_dec_nr_ptes(mm);
1689}
1690
1691int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1692		 pmd_t *pmd, unsigned long addr)
1693{
1694	pmd_t orig_pmd;
1695	spinlock_t *ptl;
1696
1697	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1698
1699	ptl = __pmd_trans_huge_lock(pmd, vma);
1700	if (!ptl)
1701		return 0;
1702	/*
1703	 * For architectures like ppc64 we look at deposited pgtable
1704	 * when calling pmdp_huge_get_and_clear. So do the
1705	 * pgtable_trans_huge_withdraw after finishing pmdp related
1706	 * operations.
1707	 */
1708	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1709			tlb->fullmm);
1710	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1711	if (vma_is_dax(vma)) {
1712		if (arch_needs_pgtable_deposit())
1713			zap_deposited_table(tlb->mm, pmd);
1714		spin_unlock(ptl);
1715		if (is_huge_zero_pmd(orig_pmd))
1716			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1717	} else if (is_huge_zero_pmd(orig_pmd)) {
1718		zap_deposited_table(tlb->mm, pmd);
1719		spin_unlock(ptl);
1720		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1721	} else {
1722		struct page *page = NULL;
1723		int flush_needed = 1;
1724
1725		if (pmd_present(orig_pmd)) {
1726			page = pmd_page(orig_pmd);
1727			page_remove_rmap(page, true);
1728			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1729			VM_BUG_ON_PAGE(!PageHead(page), page);
1730		} else if (thp_migration_supported()) {
1731			swp_entry_t entry;
1732
1733			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1734			entry = pmd_to_swp_entry(orig_pmd);
1735			page = pfn_to_page(swp_offset(entry));
1736			flush_needed = 0;
1737		} else
1738			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1739
1740		if (PageAnon(page)) {
1741			zap_deposited_table(tlb->mm, pmd);
1742			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1743		} else {
1744			if (arch_needs_pgtable_deposit())
1745				zap_deposited_table(tlb->mm, pmd);
1746			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1747		}
1748
1749		spin_unlock(ptl);
1750		if (flush_needed)
1751			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1752	}
1753	return 1;
1754}
1755
1756#ifndef pmd_move_must_withdraw
1757static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1758					 spinlock_t *old_pmd_ptl,
1759					 struct vm_area_struct *vma)
1760{
1761	/*
1762	 * With split pmd lock we also need to move preallocated
1763	 * PTE page table if new_pmd is on different PMD page table.
1764	 *
1765	 * We also don't deposit and withdraw tables for file pages.
1766	 */
1767	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1768}
1769#endif
1770
1771static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1772{
1773#ifdef CONFIG_MEM_SOFT_DIRTY
1774	if (unlikely(is_pmd_migration_entry(pmd)))
1775		pmd = pmd_swp_mksoft_dirty(pmd);
1776	else if (pmd_present(pmd))
1777		pmd = pmd_mksoft_dirty(pmd);
1778#endif
1779	return pmd;
1780}
1781
1782bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1783		  unsigned long new_addr, unsigned long old_end,
1784		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1785{
1786	spinlock_t *old_ptl, *new_ptl;
1787	pmd_t pmd;
1788	struct mm_struct *mm = vma->vm_mm;
1789	bool force_flush = false;
1790
1791	if ((old_addr & ~HPAGE_PMD_MASK) ||
1792	    (new_addr & ~HPAGE_PMD_MASK) ||
1793	    old_end - old_addr < HPAGE_PMD_SIZE)
1794		return false;
1795
1796	/*
1797	 * The destination pmd shouldn't be established, free_pgtables()
1798	 * should have release it.
1799	 */
1800	if (WARN_ON(!pmd_none(*new_pmd))) {
1801		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1802		return false;
1803	}
1804
1805	/*
1806	 * We don't have to worry about the ordering of src and dst
1807	 * ptlocks because exclusive mmap_sem prevents deadlock.
1808	 */
1809	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1810	if (old_ptl) {
1811		new_ptl = pmd_lockptr(mm, new_pmd);
1812		if (new_ptl != old_ptl)
1813			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1814		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1815		if (pmd_present(pmd) && pmd_dirty(pmd))
1816			force_flush = true;
1817		VM_BUG_ON(!pmd_none(*new_pmd));
1818
1819		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1820			pgtable_t pgtable;
1821			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1822			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1823		}
1824		pmd = move_soft_dirty_pmd(pmd);
1825		set_pmd_at(mm, new_addr, new_pmd, pmd);
 
 
1826		if (new_ptl != old_ptl)
1827			spin_unlock(new_ptl);
1828		if (force_flush)
1829			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1830		else
1831			*need_flush = true;
1832		spin_unlock(old_ptl);
1833		return true;
1834	}
1835	return false;
1836}
1837
1838/*
1839 * Returns
1840 *  - 0 if PMD could not be locked
1841 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1842 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 
1843 */
1844int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1845		unsigned long addr, pgprot_t newprot, int prot_numa)
 
1846{
1847	struct mm_struct *mm = vma->vm_mm;
1848	spinlock_t *ptl;
1849	pmd_t entry;
1850	bool preserve_write;
1851	int ret;
 
 
 
 
 
 
 
1852
1853	ptl = __pmd_trans_huge_lock(pmd, vma);
1854	if (!ptl)
1855		return 0;
1856
1857	preserve_write = prot_numa && pmd_write(*pmd);
1858	ret = 1;
1859
1860#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861	if (is_swap_pmd(*pmd)) {
1862		swp_entry_t entry = pmd_to_swp_entry(*pmd);
 
1863
1864		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1865		if (is_write_migration_entry(entry)) {
1866			pmd_t newpmd;
1867			/*
1868			 * A protection check is difficult so
1869			 * just be safe and disable write
1870			 */
1871			make_migration_entry_read(&entry);
 
 
 
1872			newpmd = swp_entry_to_pmd(entry);
1873			if (pmd_swp_soft_dirty(*pmd))
1874				newpmd = pmd_swp_mksoft_dirty(newpmd);
 
 
1875			set_pmd_at(mm, addr, pmd, newpmd);
1876		}
1877		goto unlock;
1878	}
1879#endif
1880
1881	/*
1882	 * Avoid trapping faults against the zero page. The read-only
1883	 * data is likely to be read-cached on the local CPU and
1884	 * local/remote hits to the zero page are not interesting.
1885	 */
1886	if (prot_numa && is_huge_zero_pmd(*pmd))
1887		goto unlock;
 
 
 
1888
1889	if (prot_numa && pmd_protnone(*pmd))
1890		goto unlock;
1891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892	/*
1893	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1894	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895	 * which is also under down_read(mmap_sem):
1896	 *
1897	 *	CPU0:				CPU1:
1898	 *				change_huge_pmd(prot_numa=1)
1899	 *				 pmdp_huge_get_and_clear_notify()
1900	 * madvise_dontneed()
1901	 *  zap_pmd_range()
1902	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1903	 *   // skip the pmd
1904	 *				 set_pmd_at();
1905	 *				 // pmd is re-established
1906	 *
1907	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908	 * which may break userspace.
1909	 *
1910	 * pmdp_invalidate() is required to make sure we don't miss
1911	 * dirty/young flags set by hardware.
1912	 */
1913	entry = pmdp_invalidate(vma, addr, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1914
1915	entry = pmd_modify(entry, newprot);
1916	if (preserve_write)
1917		entry = pmd_mk_savedwrite(entry);
1918	ret = HPAGE_PMD_NR;
1919	set_pmd_at(mm, addr, pmd, entry);
1920	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
 
 
1921unlock:
1922	spin_unlock(ptl);
1923	return ret;
1924}
1925
1926/*
1927 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1928 *
1929 * Note that if it returns page table lock pointer, this routine returns without
1930 * unlocking page table lock. So callers must unlock it.
1931 */
1932spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1933{
1934	spinlock_t *ptl;
1935	ptl = pmd_lock(vma->vm_mm, pmd);
1936	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1937			pmd_devmap(*pmd)))
1938		return ptl;
1939	spin_unlock(ptl);
1940	return NULL;
1941}
1942
1943/*
1944 * Returns true if a given pud maps a thp, false otherwise.
1945 *
1946 * Note that if it returns true, this routine returns without unlocking page
1947 * table lock. So callers must unlock it.
1948 */
1949spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1950{
1951	spinlock_t *ptl;
1952
1953	ptl = pud_lock(vma->vm_mm, pud);
1954	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1955		return ptl;
1956	spin_unlock(ptl);
1957	return NULL;
1958}
1959
1960#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1961int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1962		 pud_t *pud, unsigned long addr)
1963{
1964	pud_t orig_pud;
1965	spinlock_t *ptl;
1966
1967	ptl = __pud_trans_huge_lock(pud, vma);
1968	if (!ptl)
1969		return 0;
1970	/*
1971	 * For architectures like ppc64 we look at deposited pgtable
1972	 * when calling pudp_huge_get_and_clear. So do the
1973	 * pgtable_trans_huge_withdraw after finishing pudp related
1974	 * operations.
1975	 */
1976	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1977			tlb->fullmm);
1978	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1979	if (vma_is_dax(vma)) {
1980		spin_unlock(ptl);
1981		/* No zero page support yet */
1982	} else {
1983		/* No support for anonymous PUD pages yet */
1984		BUG();
1985	}
1986	return 1;
1987}
1988
1989static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1990		unsigned long haddr)
1991{
1992	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1993	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1994	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1995	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1996
1997	count_vm_event(THP_SPLIT_PUD);
1998
1999	pudp_huge_clear_flush_notify(vma, haddr, pud);
2000}
2001
2002void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2003		unsigned long address)
2004{
2005	spinlock_t *ptl;
2006	struct mm_struct *mm = vma->vm_mm;
2007	unsigned long haddr = address & HPAGE_PUD_MASK;
2008
2009	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2010	ptl = pud_lock(mm, pud);
 
 
 
2011	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2012		goto out;
2013	__split_huge_pud_locked(vma, pud, haddr);
2014
2015out:
2016	spin_unlock(ptl);
2017	/*
2018	 * No need to double call mmu_notifier->invalidate_range() callback as
2019	 * the above pudp_huge_clear_flush_notify() did already call it.
2020	 */
2021	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2022					       HPAGE_PUD_SIZE);
2023}
2024#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2025
2026static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2027		unsigned long haddr, pmd_t *pmd)
2028{
2029	struct mm_struct *mm = vma->vm_mm;
2030	pgtable_t pgtable;
2031	pmd_t _pmd;
2032	int i;
2033
2034	/*
2035	 * Leave pmd empty until pte is filled note that it is fine to delay
2036	 * notification until mmu_notifier_invalidate_range_end() as we are
2037	 * replacing a zero pmd write protected page with a zero pte write
2038	 * protected page.
2039	 *
2040	 * See Documentation/vm/mmu_notifier.txt
2041	 */
2042	pmdp_huge_clear_flush(vma, haddr, pmd);
2043
2044	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2045	pmd_populate(mm, &_pmd, pgtable);
2046
2047	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2048		pte_t *pte, entry;
2049		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2050		entry = pte_mkspecial(entry);
2051		pte = pte_offset_map(&_pmd, haddr);
2052		VM_BUG_ON(!pte_none(*pte));
2053		set_pte_at(mm, haddr, pte, entry);
2054		pte_unmap(pte);
2055	}
2056	smp_wmb(); /* make pte visible before pmd */
2057	pmd_populate(mm, pmd, pgtable);
2058}
2059
2060static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2061		unsigned long haddr, bool freeze)
2062{
2063	struct mm_struct *mm = vma->vm_mm;
2064	struct page *page;
2065	pgtable_t pgtable;
2066	pmd_t old_pmd, _pmd;
2067	bool young, write, soft_dirty, pmd_migration = false;
 
2068	unsigned long addr;
2069	int i;
2070
2071	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2072	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2073	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2074	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2075				&& !pmd_devmap(*pmd));
2076
2077	count_vm_event(THP_SPLIT_PMD);
2078
2079	if (!vma_is_anonymous(vma)) {
2080		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2081		/*
2082		 * We are going to unmap this huge page. So
2083		 * just go ahead and zap it
2084		 */
2085		if (arch_needs_pgtable_deposit())
2086			zap_deposited_table(mm, pmd);
2087		if (vma_is_dax(vma))
2088			return;
2089		page = pmd_page(_pmd);
2090		if (!PageReferenced(page) && pmd_young(_pmd))
2091			SetPageReferenced(page);
2092		page_remove_rmap(page, true);
2093		put_page(page);
2094		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
 
 
 
 
 
 
 
 
 
2095		return;
2096	} else if (is_huge_zero_pmd(*pmd)) {
 
 
2097		/*
2098		 * FIXME: Do we want to invalidate secondary mmu by calling
2099		 * mmu_notifier_invalidate_range() see comments below inside
2100		 * __split_huge_pmd() ?
2101		 *
2102		 * We are going from a zero huge page write protected to zero
2103		 * small page also write protected so it does not seems useful
2104		 * to invalidate secondary mmu at this time.
2105		 */
2106		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2107	}
2108
2109	/*
2110	 * Up to this point the pmd is present and huge and userland has the
2111	 * whole access to the hugepage during the split (which happens in
2112	 * place). If we overwrite the pmd with the not-huge version pointing
2113	 * to the pte here (which of course we could if all CPUs were bug
2114	 * free), userland could trigger a small page size TLB miss on the
2115	 * small sized TLB while the hugepage TLB entry is still established in
2116	 * the huge TLB. Some CPU doesn't like that.
2117	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2118	 * 383 on page 93. Intel should be safe but is also warns that it's
2119	 * only safe if the permission and cache attributes of the two entries
2120	 * loaded in the two TLB is identical (which should be the case here).
2121	 * But it is generally safer to never allow small and huge TLB entries
2122	 * for the same virtual address to be loaded simultaneously. So instead
2123	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2124	 * current pmd notpresent (atomically because here the pmd_trans_huge
2125	 * must remain set at all times on the pmd until the split is complete
2126	 * for this pmd), then we flush the SMP TLB and finally we write the
2127	 * non-huge version of the pmd entry with pmd_populate.
2128	 */
2129	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2130
2131#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2132	pmd_migration = is_pmd_migration_entry(old_pmd);
2133	if (pmd_migration) {
2134		swp_entry_t entry;
2135
2136		entry = pmd_to_swp_entry(old_pmd);
2137		page = pfn_to_page(swp_offset(entry));
2138	} else
2139#endif
 
 
 
 
 
 
2140		page = pmd_page(old_pmd);
2141	VM_BUG_ON_PAGE(!page_count(page), page);
2142	page_ref_add(page, HPAGE_PMD_NR - 1);
2143	if (pmd_dirty(old_pmd))
2144		SetPageDirty(page);
2145	write = pmd_write(old_pmd);
2146	young = pmd_young(old_pmd);
2147	soft_dirty = pmd_soft_dirty(old_pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2148
2149	/*
2150	 * Withdraw the table only after we mark the pmd entry invalid.
2151	 * This's critical for some architectures (Power).
2152	 */
2153	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2154	pmd_populate(mm, &_pmd, pgtable);
2155
2156	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2157		pte_t entry, *pte;
2158		/*
2159		 * Note that NUMA hinting access restrictions are not
2160		 * transferred to avoid any possibility of altering
2161		 * permissions across VMAs.
2162		 */
2163		if (freeze || pmd_migration) {
2164			swp_entry_t swp_entry;
2165			swp_entry = make_migration_entry(page + i, write);
 
 
 
 
 
 
 
 
 
 
 
 
2166			entry = swp_entry_to_pte(swp_entry);
2167			if (soft_dirty)
2168				entry = pte_swp_mksoft_dirty(entry);
 
 
2169		} else {
2170			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2171			entry = maybe_mkwrite(entry, vma);
2172			if (!write)
2173				entry = pte_wrprotect(entry);
2174			if (!young)
2175				entry = pte_mkold(entry);
 
 
 
 
 
 
 
 
 
 
2176			if (soft_dirty)
2177				entry = pte_mksoft_dirty(entry);
 
 
 
2178		}
2179		pte = pte_offset_map(&_pmd, addr);
2180		BUG_ON(!pte_none(*pte));
2181		set_pte_at(mm, addr, pte, entry);
2182		atomic_inc(&page[i]._mapcount);
2183		pte_unmap(pte);
2184	}
2185
2186	/*
2187	 * Set PG_double_map before dropping compound_mapcount to avoid
2188	 * false-negative page_mapped().
2189	 */
2190	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2191		for (i = 0; i < HPAGE_PMD_NR; i++)
2192			atomic_inc(&page[i]._mapcount);
2193	}
2194
2195	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2196		/* Last compound_mapcount is gone. */
2197		__dec_node_page_state(page, NR_ANON_THPS);
2198		if (TestClearPageDoubleMap(page)) {
2199			/* No need in mapcount reference anymore */
2200			for (i = 0; i < HPAGE_PMD_NR; i++)
2201				atomic_dec(&page[i]._mapcount);
2202		}
2203	}
2204
2205	smp_wmb(); /* make pte visible before pmd */
2206	pmd_populate(mm, pmd, pgtable);
2207
2208	if (freeze) {
2209		for (i = 0; i < HPAGE_PMD_NR; i++) {
2210			page_remove_rmap(page + i, false);
2211			put_page(page + i);
2212		}
2213	}
2214}
2215
2216void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2217		unsigned long address, bool freeze, struct page *page)
2218{
2219	spinlock_t *ptl;
2220	struct mm_struct *mm = vma->vm_mm;
2221	unsigned long haddr = address & HPAGE_PMD_MASK;
2222
2223	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2224	ptl = pmd_lock(mm, pmd);
 
 
 
2225
2226	/*
2227	 * If caller asks to setup a migration entries, we need a page to check
2228	 * pmd against. Otherwise we can end up replacing wrong page.
2229	 */
2230	VM_BUG_ON(freeze && !page);
2231	if (page && page != pmd_page(*pmd))
2232	        goto out;
 
 
 
 
 
 
 
 
 
 
2233
2234	if (pmd_trans_huge(*pmd)) {
2235		page = pmd_page(*pmd);
2236		if (PageMlocked(page))
2237			clear_page_mlock(page);
2238	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2239		goto out;
2240	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2241out:
2242	spin_unlock(ptl);
2243	/*
2244	 * No need to double call mmu_notifier->invalidate_range() callback.
2245	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2246	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2247	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2248	 *    fault will trigger a flush_notify before pointing to a new page
2249	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2250	 *    page in the meantime)
2251	 *  3) Split a huge pmd into pte pointing to the same page. No need
2252	 *     to invalidate secondary tlb entry they are all still valid.
2253	 *     any further changes to individual pte will notify. So no need
2254	 *     to call mmu_notifier->invalidate_range()
2255	 */
2256	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2257					       HPAGE_PMD_SIZE);
2258}
2259
2260void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2261		bool freeze, struct page *page)
2262{
2263	pgd_t *pgd;
2264	p4d_t *p4d;
2265	pud_t *pud;
2266	pmd_t *pmd;
2267
2268	pgd = pgd_offset(vma->vm_mm, address);
2269	if (!pgd_present(*pgd))
2270		return;
2271
2272	p4d = p4d_offset(pgd, address);
2273	if (!p4d_present(*p4d))
2274		return;
2275
2276	pud = pud_offset(p4d, address);
2277	if (!pud_present(*pud))
2278		return;
2279
2280	pmd = pmd_offset(pud, address);
 
2281
2282	__split_huge_pmd(vma, pmd, address, freeze, page);
 
 
 
 
 
 
 
 
 
2283}
2284
2285void vma_adjust_trans_huge(struct vm_area_struct *vma,
2286			     unsigned long start,
2287			     unsigned long end,
2288			     long adjust_next)
2289{
2290	/*
2291	 * If the new start address isn't hpage aligned and it could
2292	 * previously contain an hugepage: check if we need to split
2293	 * an huge pmd.
2294	 */
2295	if (start & ~HPAGE_PMD_MASK &&
2296	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2297	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2298		split_huge_pmd_address(vma, start, false, NULL);
2299
2300	/*
2301	 * If the new end address isn't hpage aligned and it could
2302	 * previously contain an hugepage: check if we need to split
2303	 * an huge pmd.
2304	 */
2305	if (end & ~HPAGE_PMD_MASK &&
2306	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2307	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2308		split_huge_pmd_address(vma, end, false, NULL);
2309
2310	/*
2311	 * If we're also updating the vma->vm_next->vm_start, if the new
2312	 * vm_next->vm_start isn't page aligned and it could previously
2313	 * contain an hugepage: check if we need to split an huge pmd.
2314	 */
2315	if (adjust_next > 0) {
2316		struct vm_area_struct *next = vma->vm_next;
2317		unsigned long nstart = next->vm_start;
2318		nstart += adjust_next << PAGE_SHIFT;
2319		if (nstart & ~HPAGE_PMD_MASK &&
2320		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2321		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2322			split_huge_pmd_address(next, nstart, false, NULL);
2323	}
2324}
2325
2326static void freeze_page(struct page *page)
2327{
2328	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2329		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2330	bool unmap_success;
2331
2332	VM_BUG_ON_PAGE(!PageHead(page), page);
2333
2334	if (PageAnon(page))
2335		ttu_flags |= TTU_SPLIT_FREEZE;
 
 
 
 
 
 
 
 
2336
2337	unmap_success = try_to_unmap(page, ttu_flags);
2338	VM_BUG_ON_PAGE(!unmap_success, page);
 
 
 
 
 
 
 
 
 
 
 
 
2339}
2340
2341static void unfreeze_page(struct page *page)
 
2342{
2343	int i;
2344	if (PageTransHuge(page)) {
2345		remove_migration_ptes(page, page, true);
 
 
 
 
 
 
 
2346	} else {
2347		for (i = 0; i < HPAGE_PMD_NR; i++)
2348			remove_migration_ptes(page + i, page + i, true);
 
 
 
 
 
2349	}
2350}
2351
2352static void __split_huge_page_tail(struct page *head, int tail,
2353		struct lruvec *lruvec, struct list_head *list)
2354{
2355	struct page *page_tail = head + tail;
2356
2357	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2358
2359	/*
2360	 * Clone page flags before unfreezing refcount.
2361	 *
2362	 * After successful get_page_unless_zero() might follow flags change,
2363	 * for exmaple lock_page() which set PG_waiters.
 
 
 
 
 
 
 
2364	 */
2365	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2366	page_tail->flags |= (head->flags &
2367			((1L << PG_referenced) |
2368			 (1L << PG_swapbacked) |
2369			 (1L << PG_swapcache) |
2370			 (1L << PG_mlocked) |
2371			 (1L << PG_uptodate) |
2372			 (1L << PG_active) |
 
2373			 (1L << PG_locked) |
2374			 (1L << PG_unevictable) |
2375			 (1L << PG_dirty)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2376
2377	/* Page flags must be visible before we make the page non-compound. */
2378	smp_wmb();
2379
2380	/*
2381	 * Clear PageTail before unfreezing page refcount.
2382	 *
2383	 * After successful get_page_unless_zero() might follow put_page()
2384	 * which needs correct compound_head().
2385	 */
2386	clear_compound_head(page_tail);
2387
2388	/* Finally unfreeze refcount. Additional reference from page cache. */
2389	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2390					  PageSwapCache(head)));
2391
2392	if (page_is_young(head))
2393		set_page_young(page_tail);
2394	if (page_is_idle(head))
2395		set_page_idle(page_tail);
2396
2397	/* ->mapping in first tail page is compound_mapcount */
2398	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2399			page_tail);
2400	page_tail->mapping = head->mapping;
2401
2402	page_tail->index = head->index + tail;
2403	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2404
2405	/*
2406	 * always add to the tail because some iterators expect new
2407	 * pages to show after the currently processed elements - e.g.
2408	 * migrate_pages
2409	 */
2410	lru_add_page_tail(head, page_tail, lruvec, list);
2411}
2412
2413static void __split_huge_page(struct page *page, struct list_head *list,
2414		unsigned long flags)
2415{
2416	struct page *head = compound_head(page);
2417	struct zone *zone = page_zone(head);
2418	struct lruvec *lruvec;
2419	pgoff_t end = -1;
 
 
2420	int i;
2421
2422	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2423
2424	/* complete memcg works before add pages to LRU */
2425	mem_cgroup_split_huge_fixup(head);
 
 
 
 
 
 
 
 
2426
2427	if (!PageAnon(page))
2428		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2429
2430	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
 
 
2431		__split_huge_page_tail(head, i, lruvec, list);
2432		/* Some pages can be beyond i_size: drop them from page cache */
2433		if (head[i].index >= end) {
2434			ClearPageDirty(head + i);
2435			__delete_from_page_cache(head + i, NULL);
2436			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2437				shmem_uncharge(head->mapping->host, 1);
2438			put_page(head + i);
 
 
 
 
 
 
 
 
 
 
2439		}
2440	}
2441
2442	ClearPageCompound(head);
 
 
 
 
 
2443	/* See comment in __split_huge_page_tail() */
2444	if (PageAnon(head)) {
2445		/* Additional pin to radix tree of swap cache */
2446		if (PageSwapCache(head))
2447			page_ref_add(head, 2);
2448		else
 
2449			page_ref_inc(head);
 
2450	} else {
2451		/* Additional pin to radix tree */
2452		page_ref_add(head, 2);
2453		xa_unlock(&head->mapping->i_pages);
2454	}
 
2455
2456	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2457
2458	unfreeze_page(head);
 
2459
2460	for (i = 0; i < HPAGE_PMD_NR; i++) {
 
 
 
2461		struct page *subpage = head + i;
2462		if (subpage == page)
2463			continue;
2464		unlock_page(subpage);
2465
2466		/*
2467		 * Subpages may be freed if there wasn't any mapping
2468		 * like if add_to_swap() is running on a lru page that
2469		 * had its mapping zapped. And freeing these pages
2470		 * requires taking the lru_lock so we do the put_page
2471		 * of the tail pages after the split is complete.
2472		 */
2473		put_page(subpage);
2474	}
2475}
2476
2477int total_mapcount(struct page *page)
2478{
2479	int i, compound, ret;
2480
2481	VM_BUG_ON_PAGE(PageTail(page), page);
2482
2483	if (likely(!PageCompound(page)))
2484		return atomic_read(&page->_mapcount) + 1;
2485
2486	compound = compound_mapcount(page);
2487	if (PageHuge(page))
2488		return compound;
2489	ret = compound;
2490	for (i = 0; i < HPAGE_PMD_NR; i++)
2491		ret += atomic_read(&page[i]._mapcount) + 1;
2492	/* File pages has compound_mapcount included in _mapcount */
2493	if (!PageAnon(page))
2494		return ret - compound * HPAGE_PMD_NR;
2495	if (PageDoubleMap(page))
2496		ret -= HPAGE_PMD_NR;
2497	return ret;
2498}
2499
2500/*
2501 * This calculates accurately how many mappings a transparent hugepage
2502 * has (unlike page_mapcount() which isn't fully accurate). This full
2503 * accuracy is primarily needed to know if copy-on-write faults can
2504 * reuse the page and change the mapping to read-write instead of
2505 * copying them. At the same time this returns the total_mapcount too.
2506 *
2507 * The function returns the highest mapcount any one of the subpages
2508 * has. If the return value is one, even if different processes are
2509 * mapping different subpages of the transparent hugepage, they can
2510 * all reuse it, because each process is reusing a different subpage.
2511 *
2512 * The total_mapcount is instead counting all virtual mappings of the
2513 * subpages. If the total_mapcount is equal to "one", it tells the
2514 * caller all mappings belong to the same "mm" and in turn the
2515 * anon_vma of the transparent hugepage can become the vma->anon_vma
2516 * local one as no other process may be mapping any of the subpages.
2517 *
2518 * It would be more accurate to replace page_mapcount() with
2519 * page_trans_huge_mapcount(), however we only use
2520 * page_trans_huge_mapcount() in the copy-on-write faults where we
2521 * need full accuracy to avoid breaking page pinning, because
2522 * page_trans_huge_mapcount() is slower than page_mapcount().
2523 */
2524int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2525{
2526	int i, ret, _total_mapcount, mapcount;
2527
2528	/* hugetlbfs shouldn't call it */
2529	VM_BUG_ON_PAGE(PageHuge(page), page);
2530
2531	if (likely(!PageTransCompound(page))) {
2532		mapcount = atomic_read(&page->_mapcount) + 1;
2533		if (total_mapcount)
2534			*total_mapcount = mapcount;
2535		return mapcount;
2536	}
2537
2538	page = compound_head(page);
2539
2540	_total_mapcount = ret = 0;
2541	for (i = 0; i < HPAGE_PMD_NR; i++) {
2542		mapcount = atomic_read(&page[i]._mapcount) + 1;
2543		ret = max(ret, mapcount);
2544		_total_mapcount += mapcount;
2545	}
2546	if (PageDoubleMap(page)) {
2547		ret -= 1;
2548		_total_mapcount -= HPAGE_PMD_NR;
2549	}
2550	mapcount = compound_mapcount(page);
2551	ret += mapcount;
2552	_total_mapcount += mapcount;
2553	if (total_mapcount)
2554		*total_mapcount = _total_mapcount;
2555	return ret;
2556}
2557
2558/* Racy check whether the huge page can be split */
2559bool can_split_huge_page(struct page *page, int *pextra_pins)
2560{
2561	int extra_pins;
2562
2563	/* Additional pins from radix tree */
2564	if (PageAnon(page))
2565		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
 
2566	else
2567		extra_pins = HPAGE_PMD_NR;
2568	if (pextra_pins)
2569		*pextra_pins = extra_pins;
2570	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2571}
2572
2573/*
2574 * This function splits huge page into normal pages. @page can point to any
2575 * subpage of huge page to split. Split doesn't change the position of @page.
2576 *
2577 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2578 * The huge page must be locked.
2579 *
2580 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2581 *
2582 * Both head page and tail pages will inherit mapping, flags, and so on from
2583 * the hugepage.
2584 *
2585 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2586 * they are not mapped.
2587 *
2588 * Returns 0 if the hugepage is split successfully.
2589 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2590 * us.
2591 */
2592int split_huge_page_to_list(struct page *page, struct list_head *list)
2593{
2594	struct page *head = compound_head(page);
2595	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
 
2596	struct anon_vma *anon_vma = NULL;
2597	struct address_space *mapping = NULL;
2598	int count, mapcount, extra_pins, ret;
2599	bool mlocked;
2600	unsigned long flags;
2601
2602	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2603	VM_BUG_ON_PAGE(!PageLocked(page), page);
2604	VM_BUG_ON_PAGE(!PageCompound(page), page);
 
 
 
 
2605
2606	if (PageWriteback(page))
2607		return -EBUSY;
2608
2609	if (PageAnon(head)) {
2610		/*
2611		 * The caller does not necessarily hold an mmap_sem that would
2612		 * prevent the anon_vma disappearing so we first we take a
2613		 * reference to it and then lock the anon_vma for write. This
2614		 * is similar to page_lock_anon_vma_read except the write lock
2615		 * is taken to serialise against parallel split or collapse
2616		 * operations.
2617		 */
2618		anon_vma = page_get_anon_vma(head);
2619		if (!anon_vma) {
2620			ret = -EBUSY;
2621			goto out;
2622		}
 
2623		mapping = NULL;
2624		anon_vma_lock_write(anon_vma);
2625	} else {
2626		mapping = head->mapping;
 
 
2627
2628		/* Truncated ? */
2629		if (!mapping) {
2630			ret = -EBUSY;
2631			goto out;
2632		}
2633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634		anon_vma = NULL;
2635		i_mmap_lock_read(mapping);
 
 
 
 
 
 
 
 
 
 
 
2636	}
2637
2638	/*
2639	 * Racy check if we can split the page, before freeze_page() will
2640	 * split PMDs
2641	 */
2642	if (!can_split_huge_page(head, &extra_pins)) {
2643		ret = -EBUSY;
2644		goto out_unlock;
2645	}
2646
2647	mlocked = PageMlocked(page);
2648	freeze_page(head);
2649	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2650
2651	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2652	if (mlocked)
2653		lru_add_drain();
2654
2655	/* prevent PageLRU to go away from under us, and freeze lru stats */
2656	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2657
 
 
2658	if (mapping) {
2659		void **pslot;
2660
2661		xa_lock(&mapping->i_pages);
2662		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2663				page_index(head));
2664		/*
2665		 * Check if the head page is present in radix tree.
2666		 * We assume all tail are present too, if head is there.
2667		 */
2668		if (radix_tree_deref_slot_protected(pslot,
2669					&mapping->i_pages.xa_lock) != head)
 
2670			goto fail;
2671	}
2672
2673	/* Prevent deferred_split_scan() touching ->_refcount */
2674	spin_lock(&pgdata->split_queue_lock);
2675	count = page_count(head);
2676	mapcount = total_mapcount(head);
2677	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2678		if (!list_empty(page_deferred_list(head))) {
2679			pgdata->split_queue_len--;
2680			list_del(page_deferred_list(head));
 
 
 
 
 
 
 
 
 
 
 
 
2681		}
2682		if (mapping)
2683			__dec_node_page_state(page, NR_SHMEM_THPS);
2684		spin_unlock(&pgdata->split_queue_lock);
2685		__split_huge_page(page, list, flags);
2686		if (PageSwapCache(head)) {
2687			swp_entry_t entry = { .val = page_private(head) };
2688
2689			ret = split_swap_cluster(entry);
2690		} else
2691			ret = 0;
2692	} else {
2693		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2694			pr_alert("total_mapcount: %u, page_count(): %u\n",
2695					mapcount, count);
2696			if (PageTail(page))
2697				dump_page(head, NULL);
2698			dump_page(page, "total_mapcount(head) > 0");
2699			BUG();
2700		}
2701		spin_unlock(&pgdata->split_queue_lock);
2702fail:		if (mapping)
2703			xa_unlock(&mapping->i_pages);
2704		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2705		unfreeze_page(head);
2706		ret = -EBUSY;
2707	}
2708
2709out_unlock:
2710	if (anon_vma) {
2711		anon_vma_unlock_write(anon_vma);
2712		put_anon_vma(anon_vma);
2713	}
2714	if (mapping)
2715		i_mmap_unlock_read(mapping);
2716out:
 
2717	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2718	return ret;
2719}
2720
2721void free_transhuge_page(struct page *page)
2722{
2723	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2724	unsigned long flags;
2725
2726	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2727	if (!list_empty(page_deferred_list(page))) {
2728		pgdata->split_queue_len--;
2729		list_del(page_deferred_list(page));
2730	}
2731	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2732	free_compound_page(page);
2733}
2734
2735void deferred_split_huge_page(struct page *page)
2736{
2737	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
 
 
 
2738	unsigned long flags;
2739
2740	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2741
2742	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
2743	if (list_empty(page_deferred_list(page))) {
2744		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2745		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2746		pgdata->split_queue_len++;
 
 
 
 
 
2747	}
2748	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2749}
2750
2751static unsigned long deferred_split_count(struct shrinker *shrink,
2752		struct shrink_control *sc)
2753{
2754	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2755	return READ_ONCE(pgdata->split_queue_len);
 
 
 
 
 
 
2756}
2757
2758static unsigned long deferred_split_scan(struct shrinker *shrink,
2759		struct shrink_control *sc)
2760{
2761	struct pglist_data *pgdata = NODE_DATA(sc->nid);
 
2762	unsigned long flags;
2763	LIST_HEAD(list), *pos, *next;
2764	struct page *page;
2765	int split = 0;
2766
2767	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 
 
 
 
 
2768	/* Take pin on all head pages to avoid freeing them under us */
2769	list_for_each_safe(pos, next, &pgdata->split_queue) {
2770		page = list_entry((void *)pos, struct page, mapping);
2771		page = compound_head(page);
2772		if (get_page_unless_zero(page)) {
2773			list_move(page_deferred_list(page), &list);
2774		} else {
2775			/* We lost race with put_compound_page() */
2776			list_del_init(page_deferred_list(page));
2777			pgdata->split_queue_len--;
2778		}
2779		if (!--sc->nr_to_scan)
2780			break;
2781	}
2782	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2783
2784	list_for_each_safe(pos, next, &list) {
2785		page = list_entry((void *)pos, struct page, mapping);
2786		if (!trylock_page(page))
2787			goto next;
2788		/* split_huge_page() removes page from list on success */
2789		if (!split_huge_page(page))
2790			split++;
2791		unlock_page(page);
2792next:
2793		put_page(page);
2794	}
2795
2796	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2797	list_splice_tail(&list, &pgdata->split_queue);
2798	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2799
2800	/*
2801	 * Stop shrinker if we didn't split any page, but the queue is empty.
2802	 * This can happen if pages were freed under us.
2803	 */
2804	if (!split && list_empty(&pgdata->split_queue))
2805		return SHRINK_STOP;
2806	return split;
2807}
2808
2809static struct shrinker deferred_split_shrinker = {
2810	.count_objects = deferred_split_count,
2811	.scan_objects = deferred_split_scan,
2812	.seeks = DEFAULT_SEEKS,
2813	.flags = SHRINKER_NUMA_AWARE,
 
2814};
2815
2816#ifdef CONFIG_DEBUG_FS
2817static int split_huge_pages_set(void *data, u64 val)
2818{
2819	struct zone *zone;
2820	struct page *page;
2821	unsigned long pfn, max_zone_pfn;
2822	unsigned long total = 0, split = 0;
2823
2824	if (val != 1)
2825		return -EINVAL;
2826
2827	for_each_populated_zone(zone) {
2828		max_zone_pfn = zone_end_pfn(zone);
2829		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2830			if (!pfn_valid(pfn))
2831				continue;
2832
2833			page = pfn_to_page(pfn);
2834			if (!get_page_unless_zero(page))
2835				continue;
2836
2837			if (zone != page_zone(page))
2838				goto next;
2839
2840			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2841				goto next;
2842
2843			total++;
2844			lock_page(page);
 
2845			if (!split_huge_page(page))
2846				split++;
 
2847			unlock_page(page);
2848next:
2849			put_page(page);
 
2850		}
2851	}
2852
2853	pr_info("%lu of %lu THP split\n", split, total);
 
2854
2855	return 0;
 
 
 
2856}
2857DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2858		"%llu\n");
2859
2860static int __init split_huge_pages_debugfs(void)
 
2861{
2862	void *ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863
2864	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2865			&split_huge_pages_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2866	if (!ret)
2867		pr_warn("Failed to create split_huge_pages in debugfs");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2868	return 0;
2869}
2870late_initcall(split_huge_pages_debugfs);
2871#endif
2872
2873#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2874void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2875		struct page *page)
2876{
2877	struct vm_area_struct *vma = pvmw->vma;
2878	struct mm_struct *mm = vma->vm_mm;
2879	unsigned long address = pvmw->address;
 
2880	pmd_t pmdval;
2881	swp_entry_t entry;
2882	pmd_t pmdswp;
2883
2884	if (!(pvmw->pmd && !pvmw->pte))
2885		return;
2886
2887	mmu_notifier_invalidate_range_start(mm, address,
2888			address + HPAGE_PMD_SIZE);
2889
2890	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2891	pmdval = *pvmw->pmd;
2892	pmdp_invalidate(vma, address, pvmw->pmd);
 
 
 
 
 
 
 
2893	if (pmd_dirty(pmdval))
2894		set_page_dirty(page);
2895	entry = make_migration_entry(page, pmd_write(pmdval));
 
 
 
 
 
 
 
 
 
2896	pmdswp = swp_entry_to_pmd(entry);
2897	if (pmd_soft_dirty(pmdval))
2898		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2899	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2900	page_remove_rmap(page, true);
2901	put_page(page);
 
2902
2903	mmu_notifier_invalidate_range_end(mm, address,
2904			address + HPAGE_PMD_SIZE);
2905}
2906
2907void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2908{
2909	struct vm_area_struct *vma = pvmw->vma;
2910	struct mm_struct *mm = vma->vm_mm;
2911	unsigned long address = pvmw->address;
2912	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2913	pmd_t pmde;
2914	swp_entry_t entry;
2915
2916	if (!(pvmw->pmd && !pvmw->pte))
2917		return;
2918
2919	entry = pmd_to_swp_entry(*pvmw->pmd);
2920	get_page(new);
2921	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2922	if (pmd_swp_soft_dirty(*pvmw->pmd))
2923		pmde = pmd_mksoft_dirty(pmde);
2924	if (is_write_migration_entry(entry))
 
 
 
 
 
 
 
2925		pmde = maybe_pmd_mkwrite(pmde, vma);
2926
2927	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2928	if (PageAnon(new))
2929		page_add_anon_rmap(new, vma, mmun_start, true);
2930	else
2931		page_add_file_rmap(new, true);
2932	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2933	if (vma->vm_flags & VM_LOCKED)
2934		mlock_vma_page(new);
 
 
 
 
 
 
 
 
 
 
 
 
2935	update_mmu_cache_pmd(vma, address, pvmw->pmd);
 
2936}
2937#endif
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2009  Red Hat, Inc.
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/coredump.h>
  12#include <linux/sched/numa_balancing.h>
  13#include <linux/highmem.h>
  14#include <linux/hugetlb.h>
  15#include <linux/mmu_notifier.h>
  16#include <linux/rmap.h>
  17#include <linux/swap.h>
  18#include <linux/shrinker.h>
  19#include <linux/mm_inline.h>
  20#include <linux/swapops.h>
  21#include <linux/backing-dev.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36#include <linux/numa.h>
  37#include <linux/page_owner.h>
  38#include <linux/sched/sysctl.h>
  39#include <linux/memory-tiers.h>
  40
  41#include <asm/tlb.h>
  42#include <asm/pgalloc.h>
  43#include "internal.h"
  44#include "swap.h"
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/thp.h>
  48
  49/*
  50 * By default, transparent hugepage support is disabled in order to avoid
  51 * risking an increased memory footprint for applications that are not
  52 * guaranteed to benefit from it. When transparent hugepage support is
  53 * enabled, it is for all mappings, and khugepaged scans all mappings.
  54 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  55 * for all hugepage allocations.
  56 */
  57unsigned long transparent_hugepage_flags __read_mostly =
  58#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  59	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  60#endif
  61#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  62	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  63#endif
  64	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  65	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  66	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  67
  68static struct shrinker deferred_split_shrinker;
  69
  70static atomic_t huge_zero_refcount;
  71struct page *huge_zero_page __read_mostly;
  72unsigned long huge_zero_pfn __read_mostly = ~0UL;
  73
  74bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
  75			bool smaps, bool in_pf, bool enforce_sysfs)
  76{
  77	if (!vma->vm_mm)		/* vdso */
  78		return false;
  79
  80	/*
  81	 * Explicitly disabled through madvise or prctl, or some
  82	 * architectures may disable THP for some mappings, for
  83	 * example, s390 kvm.
  84	 * */
  85	if ((vm_flags & VM_NOHUGEPAGE) ||
  86	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
  87		return false;
  88	/*
  89	 * If the hardware/firmware marked hugepage support disabled.
  90	 */
  91	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
  92		return false;
  93
  94	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
  95	if (vma_is_dax(vma))
  96		return in_pf;
  97
  98	/*
  99	 * Special VMA and hugetlb VMA.
 100	 * Must be checked after dax since some dax mappings may have
 101	 * VM_MIXEDMAP set.
 102	 */
 103	if (vm_flags & VM_NO_KHUGEPAGED)
 104		return false;
 105
 106	/*
 107	 * Check alignment for file vma and size for both file and anon vma.
 108	 *
 109	 * Skip the check for page fault. Huge fault does the check in fault
 110	 * handlers. And this check is not suitable for huge PUD fault.
 111	 */
 112	if (!in_pf &&
 113	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
 114		return false;
 115
 116	/*
 117	 * Enabled via shmem mount options or sysfs settings.
 118	 * Must be done before hugepage flags check since shmem has its
 119	 * own flags.
 120	 */
 121	if (!in_pf && shmem_file(vma->vm_file))
 122		return shmem_huge_enabled(vma, !enforce_sysfs);
 123
 124	/* Enforce sysfs THP requirements as necessary */
 125	if (enforce_sysfs &&
 126	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
 127					   !hugepage_flags_always())))
 128		return false;
 129
 130	/* Only regular file is valid */
 131	if (!in_pf && file_thp_enabled(vma))
 132		return true;
 133
 134	if (!vma_is_anonymous(vma))
 135		return false;
 136
 137	if (vma_is_temporary_stack(vma))
 138		return false;
 139
 140	/*
 141	 * THPeligible bit of smaps should show 1 for proper VMAs even
 142	 * though anon_vma is not initialized yet.
 143	 *
 144	 * Allow page fault since anon_vma may be not initialized until
 145	 * the first page fault.
 146	 */
 147	if (!vma->anon_vma)
 148		return (smaps || in_pf);
 149
 150	return true;
 151}
 152
 153static bool get_huge_zero_page(void)
 154{
 155	struct page *zero_page;
 156retry:
 157	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 158		return true;
 159
 160	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 161			HPAGE_PMD_ORDER);
 162	if (!zero_page) {
 163		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 164		return false;
 165	}
 
 166	preempt_disable();
 167	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 168		preempt_enable();
 169		__free_pages(zero_page, compound_order(zero_page));
 170		goto retry;
 171	}
 172	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
 173
 174	/* We take additional reference here. It will be put back by shrinker */
 175	atomic_set(&huge_zero_refcount, 2);
 176	preempt_enable();
 177	count_vm_event(THP_ZERO_PAGE_ALLOC);
 178	return true;
 179}
 180
 181static void put_huge_zero_page(void)
 182{
 183	/*
 184	 * Counter should never go to zero here. Only shrinker can put
 185	 * last reference.
 186	 */
 187	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 188}
 189
 190struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 191{
 192	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 193		return READ_ONCE(huge_zero_page);
 194
 195	if (!get_huge_zero_page())
 196		return NULL;
 197
 198	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 199		put_huge_zero_page();
 200
 201	return READ_ONCE(huge_zero_page);
 202}
 203
 204void mm_put_huge_zero_page(struct mm_struct *mm)
 205{
 206	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 207		put_huge_zero_page();
 208}
 209
 210static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 211					struct shrink_control *sc)
 212{
 213	/* we can free zero page only if last reference remains */
 214	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 215}
 216
 217static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 218				       struct shrink_control *sc)
 219{
 220	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 221		struct page *zero_page = xchg(&huge_zero_page, NULL);
 222		BUG_ON(zero_page == NULL);
 223		WRITE_ONCE(huge_zero_pfn, ~0UL);
 224		__free_pages(zero_page, compound_order(zero_page));
 225		return HPAGE_PMD_NR;
 226	}
 227
 228	return 0;
 229}
 230
 231static struct shrinker huge_zero_page_shrinker = {
 232	.count_objects = shrink_huge_zero_page_count,
 233	.scan_objects = shrink_huge_zero_page_scan,
 234	.seeks = DEFAULT_SEEKS,
 235};
 236
 237#ifdef CONFIG_SYSFS
 238static ssize_t enabled_show(struct kobject *kobj,
 239			    struct kobj_attribute *attr, char *buf)
 240{
 241	const char *output;
 242
 243	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 244		output = "[always] madvise never";
 245	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 246			  &transparent_hugepage_flags))
 247		output = "always [madvise] never";
 248	else
 249		output = "always madvise [never]";
 250
 251	return sysfs_emit(buf, "%s\n", output);
 252}
 253
 254static ssize_t enabled_store(struct kobject *kobj,
 255			     struct kobj_attribute *attr,
 256			     const char *buf, size_t count)
 257{
 258	ssize_t ret = count;
 259
 260	if (sysfs_streq(buf, "always")) {
 
 261		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 263	} else if (sysfs_streq(buf, "madvise")) {
 
 264		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 265		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 266	} else if (sysfs_streq(buf, "never")) {
 
 267		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 268		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 269	} else
 270		ret = -EINVAL;
 271
 272	if (ret > 0) {
 273		int err = start_stop_khugepaged();
 274		if (err)
 275			ret = err;
 276	}
 277	return ret;
 278}
 279
 280static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
 281
 282ssize_t single_hugepage_flag_show(struct kobject *kobj,
 283				  struct kobj_attribute *attr, char *buf,
 284				  enum transparent_hugepage_flag flag)
 285{
 286	return sysfs_emit(buf, "%d\n",
 287			  !!test_bit(flag, &transparent_hugepage_flags));
 288}
 289
 290ssize_t single_hugepage_flag_store(struct kobject *kobj,
 291				 struct kobj_attribute *attr,
 292				 const char *buf, size_t count,
 293				 enum transparent_hugepage_flag flag)
 294{
 295	unsigned long value;
 296	int ret;
 297
 298	ret = kstrtoul(buf, 10, &value);
 299	if (ret < 0)
 300		return ret;
 301	if (value > 1)
 302		return -EINVAL;
 303
 304	if (value)
 305		set_bit(flag, &transparent_hugepage_flags);
 306	else
 307		clear_bit(flag, &transparent_hugepage_flags);
 308
 309	return count;
 310}
 311
 312static ssize_t defrag_show(struct kobject *kobj,
 313			   struct kobj_attribute *attr, char *buf)
 314{
 315	const char *output;
 316
 317	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 318		     &transparent_hugepage_flags))
 319		output = "[always] defer defer+madvise madvise never";
 320	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 321			  &transparent_hugepage_flags))
 322		output = "always [defer] defer+madvise madvise never";
 323	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
 324			  &transparent_hugepage_flags))
 325		output = "always defer [defer+madvise] madvise never";
 326	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 327			  &transparent_hugepage_flags))
 328		output = "always defer defer+madvise [madvise] never";
 329	else
 330		output = "always defer defer+madvise madvise [never]";
 331
 332	return sysfs_emit(buf, "%s\n", output);
 333}
 334
 335static ssize_t defrag_store(struct kobject *kobj,
 336			    struct kobj_attribute *attr,
 337			    const char *buf, size_t count)
 338{
 339	if (sysfs_streq(buf, "always")) {
 
 340		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 341		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 342		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 343		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 344	} else if (sysfs_streq(buf, "defer+madvise")) {
 
 345		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 346		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 347		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 348		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 349	} else if (sysfs_streq(buf, "defer")) {
 
 350		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 351		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 352		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 353		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 354	} else if (sysfs_streq(buf, "madvise")) {
 
 355		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 356		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 357		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 358		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 359	} else if (sysfs_streq(buf, "never")) {
 
 360		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 361		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 362		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 363		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 364	} else
 365		return -EINVAL;
 366
 367	return count;
 368}
 369static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
 
 370
 371static ssize_t use_zero_page_show(struct kobject *kobj,
 372				  struct kobj_attribute *attr, char *buf)
 373{
 374	return single_hugepage_flag_show(kobj, attr, buf,
 375					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 376}
 377static ssize_t use_zero_page_store(struct kobject *kobj,
 378		struct kobj_attribute *attr, const char *buf, size_t count)
 379{
 380	return single_hugepage_flag_store(kobj, attr, buf, count,
 381				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 382}
 383static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
 
 384
 385static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 386				   struct kobj_attribute *attr, char *buf)
 387{
 388	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
 389}
 390static struct kobj_attribute hpage_pmd_size_attr =
 391	__ATTR_RO(hpage_pmd_size);
 392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 393static struct attribute *hugepage_attr[] = {
 394	&enabled_attr.attr,
 395	&defrag_attr.attr,
 396	&use_zero_page_attr.attr,
 397	&hpage_pmd_size_attr.attr,
 398#ifdef CONFIG_SHMEM
 399	&shmem_enabled_attr.attr,
 400#endif
 
 
 
 401	NULL,
 402};
 403
 404static const struct attribute_group hugepage_attr_group = {
 405	.attrs = hugepage_attr,
 406};
 407
 408static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 409{
 410	int err;
 411
 412	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 413	if (unlikely(!*hugepage_kobj)) {
 414		pr_err("failed to create transparent hugepage kobject\n");
 415		return -ENOMEM;
 416	}
 417
 418	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 419	if (err) {
 420		pr_err("failed to register transparent hugepage group\n");
 421		goto delete_obj;
 422	}
 423
 424	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 425	if (err) {
 426		pr_err("failed to register transparent hugepage group\n");
 427		goto remove_hp_group;
 428	}
 429
 430	return 0;
 431
 432remove_hp_group:
 433	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 434delete_obj:
 435	kobject_put(*hugepage_kobj);
 436	return err;
 437}
 438
 439static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 440{
 441	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 442	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 443	kobject_put(hugepage_kobj);
 444}
 445#else
 446static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 447{
 448	return 0;
 449}
 450
 451static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 452{
 453}
 454#endif /* CONFIG_SYSFS */
 455
 456static int __init hugepage_init(void)
 457{
 458	int err;
 459	struct kobject *hugepage_kobj;
 460
 461	if (!has_transparent_hugepage()) {
 462		/*
 463		 * Hardware doesn't support hugepages, hence disable
 464		 * DAX PMD support.
 465		 */
 466		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
 467		return -EINVAL;
 468	}
 469
 470	/*
 471	 * hugepages can't be allocated by the buddy allocator
 472	 */
 473	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 474	/*
 475	 * we use page->mapping and page->index in second tail page
 476	 * as list_head: assuming THP order >= 2
 477	 */
 478	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 479
 480	err = hugepage_init_sysfs(&hugepage_kobj);
 481	if (err)
 482		goto err_sysfs;
 483
 484	err = khugepaged_init();
 485	if (err)
 486		goto err_slab;
 487
 488	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
 489	if (err)
 490		goto err_hzp_shrinker;
 491	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
 492	if (err)
 493		goto err_split_shrinker;
 494
 495	/*
 496	 * By default disable transparent hugepages on smaller systems,
 497	 * where the extra memory used could hurt more than TLB overhead
 498	 * is likely to save.  The admin can still enable it through /sys.
 499	 */
 500	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
 501		transparent_hugepage_flags = 0;
 502		return 0;
 503	}
 504
 505	err = start_stop_khugepaged();
 506	if (err)
 507		goto err_khugepaged;
 508
 509	return 0;
 510err_khugepaged:
 511	unregister_shrinker(&deferred_split_shrinker);
 512err_split_shrinker:
 513	unregister_shrinker(&huge_zero_page_shrinker);
 514err_hzp_shrinker:
 515	khugepaged_destroy();
 516err_slab:
 517	hugepage_exit_sysfs(hugepage_kobj);
 518err_sysfs:
 519	return err;
 520}
 521subsys_initcall(hugepage_init);
 522
 523static int __init setup_transparent_hugepage(char *str)
 524{
 525	int ret = 0;
 526	if (!str)
 527		goto out;
 528	if (!strcmp(str, "always")) {
 529		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 530			&transparent_hugepage_flags);
 531		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 532			  &transparent_hugepage_flags);
 533		ret = 1;
 534	} else if (!strcmp(str, "madvise")) {
 535		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 536			  &transparent_hugepage_flags);
 537		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 538			&transparent_hugepage_flags);
 539		ret = 1;
 540	} else if (!strcmp(str, "never")) {
 541		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 542			  &transparent_hugepage_flags);
 543		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 544			  &transparent_hugepage_flags);
 545		ret = 1;
 546	}
 547out:
 548	if (!ret)
 549		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 550	return ret;
 551}
 552__setup("transparent_hugepage=", setup_transparent_hugepage);
 553
 554pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 555{
 556	if (likely(vma->vm_flags & VM_WRITE))
 557		pmd = pmd_mkwrite(pmd);
 558	return pmd;
 559}
 560
 561#ifdef CONFIG_MEMCG
 562static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 563{
 564	struct mem_cgroup *memcg = page_memcg(compound_head(page));
 565	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 566
 567	if (memcg)
 568		return &memcg->deferred_split_queue;
 569	else
 570		return &pgdat->deferred_split_queue;
 571}
 572#else
 573static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 574{
 575	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 576
 577	return &pgdat->deferred_split_queue;
 578}
 579#endif
 580
 581void prep_transhuge_page(struct page *page)
 582{
 583	/*
 584	 * we use page->mapping and page->index in second tail page
 585	 * as list_head: assuming THP order >= 2
 586	 */
 587
 588	INIT_LIST_HEAD(page_deferred_list(page));
 589	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 590}
 591
 592static inline bool is_transparent_hugepage(struct page *page)
 593{
 594	if (!PageCompound(page))
 595		return false;
 596
 597	page = compound_head(page);
 598	return is_huge_zero_page(page) ||
 599	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
 600}
 601
 602static unsigned long __thp_get_unmapped_area(struct file *filp,
 603		unsigned long addr, unsigned long len,
 604		loff_t off, unsigned long flags, unsigned long size)
 605{
 
 606	loff_t off_end = off + len;
 607	loff_t off_align = round_up(off, size);
 608	unsigned long len_pad, ret;
 609
 610	if (off_end <= off_align || (off_end - off_align) < size)
 611		return 0;
 612
 613	len_pad = len + size;
 614	if (len_pad < len || (off + len_pad) < off)
 615		return 0;
 616
 617	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
 618					      off >> PAGE_SHIFT, flags);
 619
 620	/*
 621	 * The failure might be due to length padding. The caller will retry
 622	 * without the padding.
 623	 */
 624	if (IS_ERR_VALUE(ret))
 625		return 0;
 626
 627	/*
 628	 * Do not try to align to THP boundary if allocation at the address
 629	 * hint succeeds.
 630	 */
 631	if (ret == addr)
 632		return addr;
 633
 634	ret += (off - ret) & (size - 1);
 635	return ret;
 636}
 637
 638unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 639		unsigned long len, unsigned long pgoff, unsigned long flags)
 640{
 641	unsigned long ret;
 642	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 643
 644	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
 645	if (ret)
 646		return ret;
 
 
 
 
 
 647
 
 648	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 649}
 650EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 651
 652static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
 653			struct page *page, gfp_t gfp)
 654{
 655	struct vm_area_struct *vma = vmf->vma;
 
 656	pgtable_t pgtable;
 657	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 658	vm_fault_t ret = 0;
 659
 660	VM_BUG_ON_PAGE(!PageCompound(page), page);
 661
 662	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
 663		put_page(page);
 664		count_vm_event(THP_FAULT_FALLBACK);
 665		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
 666		return VM_FAULT_FALLBACK;
 667	}
 668	cgroup_throttle_swaprate(page, gfp);
 669
 670	pgtable = pte_alloc_one(vma->vm_mm);
 671	if (unlikely(!pgtable)) {
 672		ret = VM_FAULT_OOM;
 673		goto release;
 674	}
 675
 676	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 677	/*
 678	 * The memory barrier inside __SetPageUptodate makes sure that
 679	 * clear_huge_page writes become visible before the set_pmd_at()
 680	 * write.
 681	 */
 682	__SetPageUptodate(page);
 683
 684	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 685	if (unlikely(!pmd_none(*vmf->pmd))) {
 686		goto unlock_release;
 687	} else {
 688		pmd_t entry;
 689
 690		ret = check_stable_address_space(vma->vm_mm);
 691		if (ret)
 692			goto unlock_release;
 693
 694		/* Deliver the page fault to userland */
 695		if (userfaultfd_missing(vma)) {
 
 
 696			spin_unlock(vmf->ptl);
 
 697			put_page(page);
 698			pte_free(vma->vm_mm, pgtable);
 699			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 700			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 701			return ret;
 702		}
 703
 704		entry = mk_huge_pmd(page, vma->vm_page_prot);
 705		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 706		page_add_new_anon_rmap(page, vma, haddr);
 707		lru_cache_add_inactive_or_unevictable(page, vma);
 
 708		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 709		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 710		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 711		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 712		mm_inc_nr_ptes(vma->vm_mm);
 713		spin_unlock(vmf->ptl);
 714		count_vm_event(THP_FAULT_ALLOC);
 715		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
 716	}
 717
 718	return 0;
 719unlock_release:
 720	spin_unlock(vmf->ptl);
 721release:
 722	if (pgtable)
 723		pte_free(vma->vm_mm, pgtable);
 
 724	put_page(page);
 725	return ret;
 726
 727}
 728
 729/*
 730 * always: directly stall for all thp allocations
 731 * defer: wake kswapd and fail if not immediately available
 732 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 733 *		  fail if not immediately available
 734 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 735 *	    available
 736 * never: never stall for any thp allocation
 737 */
 738gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
 739{
 740	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
 741
 742	/* Always do synchronous compaction */
 743	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 744		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 745
 746	/* Kick kcompactd and fail quickly */
 747	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 748		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 749
 750	/* Synchronous compaction if madvised, otherwise kick kcompactd */
 751	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 752		return GFP_TRANSHUGE_LIGHT |
 753			(vma_madvised ? __GFP_DIRECT_RECLAIM :
 754					__GFP_KSWAPD_RECLAIM);
 755
 756	/* Only do synchronous compaction if madvised */
 757	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 758		return GFP_TRANSHUGE_LIGHT |
 759		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
 760
 761	return GFP_TRANSHUGE_LIGHT;
 762}
 763
 764/* Caller must hold page table lock. */
 765static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 766		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 767		struct page *zero_page)
 768{
 769	pmd_t entry;
 770	if (!pmd_none(*pmd))
 771		return;
 772	entry = mk_pmd(zero_page, vma->vm_page_prot);
 773	entry = pmd_mkhuge(entry);
 774	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 
 775	set_pmd_at(mm, haddr, pmd, entry);
 776	mm_inc_nr_ptes(mm);
 
 777}
 778
 779vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 780{
 781	struct vm_area_struct *vma = vmf->vma;
 782	gfp_t gfp;
 783	struct folio *folio;
 784	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 785
 786	if (!transhuge_vma_suitable(vma, haddr))
 787		return VM_FAULT_FALLBACK;
 788	if (unlikely(anon_vma_prepare(vma)))
 789		return VM_FAULT_OOM;
 790	khugepaged_enter_vma(vma, vma->vm_flags);
 791
 792	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 793			!mm_forbids_zeropage(vma->vm_mm) &&
 794			transparent_hugepage_use_zero_page()) {
 795		pgtable_t pgtable;
 796		struct page *zero_page;
 797		vm_fault_t ret;
 798		pgtable = pte_alloc_one(vma->vm_mm);
 
 799		if (unlikely(!pgtable))
 800			return VM_FAULT_OOM;
 801		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 802		if (unlikely(!zero_page)) {
 803			pte_free(vma->vm_mm, pgtable);
 804			count_vm_event(THP_FAULT_FALLBACK);
 805			return VM_FAULT_FALLBACK;
 806		}
 807		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 808		ret = 0;
 
 809		if (pmd_none(*vmf->pmd)) {
 810			ret = check_stable_address_space(vma->vm_mm);
 811			if (ret) {
 812				spin_unlock(vmf->ptl);
 813				pte_free(vma->vm_mm, pgtable);
 814			} else if (userfaultfd_missing(vma)) {
 815				spin_unlock(vmf->ptl);
 816				pte_free(vma->vm_mm, pgtable);
 817				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 818				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 819			} else {
 820				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 821						   haddr, vmf->pmd, zero_page);
 822				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 823				spin_unlock(vmf->ptl);
 
 824			}
 825		} else {
 826			spin_unlock(vmf->ptl);
 
 827			pte_free(vma->vm_mm, pgtable);
 828		}
 829		return ret;
 830	}
 831	gfp = vma_thp_gfp_mask(vma);
 832	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
 833	if (unlikely(!folio)) {
 834		count_vm_event(THP_FAULT_FALLBACK);
 835		return VM_FAULT_FALLBACK;
 836	}
 837	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
 
 838}
 839
 840static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 841		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 842		pgtable_t pgtable)
 843{
 844	struct mm_struct *mm = vma->vm_mm;
 845	pmd_t entry;
 846	spinlock_t *ptl;
 847
 848	ptl = pmd_lock(mm, pmd);
 849	if (!pmd_none(*pmd)) {
 850		if (write) {
 851			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
 852				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
 853				goto out_unlock;
 854			}
 855			entry = pmd_mkyoung(*pmd);
 856			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 857			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
 858				update_mmu_cache_pmd(vma, addr, pmd);
 859		}
 860
 861		goto out_unlock;
 862	}
 863
 864	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 865	if (pfn_t_devmap(pfn))
 866		entry = pmd_mkdevmap(entry);
 867	if (write) {
 868		entry = pmd_mkyoung(pmd_mkdirty(entry));
 869		entry = maybe_pmd_mkwrite(entry, vma);
 870	}
 871
 872	if (pgtable) {
 873		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 874		mm_inc_nr_ptes(mm);
 875		pgtable = NULL;
 876	}
 877
 878	set_pmd_at(mm, addr, pmd, entry);
 879	update_mmu_cache_pmd(vma, addr, pmd);
 880
 881out_unlock:
 882	spin_unlock(ptl);
 883	if (pgtable)
 884		pte_free(mm, pgtable);
 885}
 886
 887/**
 888 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 889 * @vmf: Structure describing the fault
 890 * @pfn: pfn to insert
 891 * @pgprot: page protection to use
 892 * @write: whether it's a write fault
 893 *
 894 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 895 * also consult the vmf_insert_mixed_prot() documentation when
 896 * @pgprot != @vmf->vma->vm_page_prot.
 897 *
 898 * Return: vm_fault_t value.
 899 */
 900vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
 901				   pgprot_t pgprot, bool write)
 902{
 903	unsigned long addr = vmf->address & PMD_MASK;
 904	struct vm_area_struct *vma = vmf->vma;
 905	pgtable_t pgtable = NULL;
 906
 907	/*
 908	 * If we had pmd_special, we could avoid all these restrictions,
 909	 * but we need to be consistent with PTEs and architectures that
 910	 * can't support a 'special' bit.
 911	 */
 912	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 913			!pfn_t_devmap(pfn));
 914	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 915						(VM_PFNMAP|VM_MIXEDMAP));
 916	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 
 917
 918	if (addr < vma->vm_start || addr >= vma->vm_end)
 919		return VM_FAULT_SIGBUS;
 920
 921	if (arch_needs_pgtable_deposit()) {
 922		pgtable = pte_alloc_one(vma->vm_mm);
 923		if (!pgtable)
 924			return VM_FAULT_OOM;
 925	}
 926
 927	track_pfn_insert(vma, &pgprot, pfn);
 928
 929	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
 930	return VM_FAULT_NOPAGE;
 931}
 932EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
 933
 934#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 935static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 936{
 937	if (likely(vma->vm_flags & VM_WRITE))
 938		pud = pud_mkwrite(pud);
 939	return pud;
 940}
 941
 942static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 943		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 944{
 945	struct mm_struct *mm = vma->vm_mm;
 946	pud_t entry;
 947	spinlock_t *ptl;
 948
 949	ptl = pud_lock(mm, pud);
 950	if (!pud_none(*pud)) {
 951		if (write) {
 952			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
 953				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
 954				goto out_unlock;
 955			}
 956			entry = pud_mkyoung(*pud);
 957			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
 958			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
 959				update_mmu_cache_pud(vma, addr, pud);
 960		}
 961		goto out_unlock;
 962	}
 963
 964	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 965	if (pfn_t_devmap(pfn))
 966		entry = pud_mkdevmap(entry);
 967	if (write) {
 968		entry = pud_mkyoung(pud_mkdirty(entry));
 969		entry = maybe_pud_mkwrite(entry, vma);
 970	}
 971	set_pud_at(mm, addr, pud, entry);
 972	update_mmu_cache_pud(vma, addr, pud);
 973
 974out_unlock:
 975	spin_unlock(ptl);
 976}
 977
 978/**
 979 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 980 * @vmf: Structure describing the fault
 981 * @pfn: pfn to insert
 982 * @pgprot: page protection to use
 983 * @write: whether it's a write fault
 984 *
 985 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 986 * also consult the vmf_insert_mixed_prot() documentation when
 987 * @pgprot != @vmf->vma->vm_page_prot.
 988 *
 989 * Return: vm_fault_t value.
 990 */
 991vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
 992				   pgprot_t pgprot, bool write)
 993{
 994	unsigned long addr = vmf->address & PUD_MASK;
 995	struct vm_area_struct *vma = vmf->vma;
 996
 997	/*
 998	 * If we had pud_special, we could avoid all these restrictions,
 999	 * but we need to be consistent with PTEs and architectures that
1000	 * can't support a 'special' bit.
1001	 */
1002	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1003			!pfn_t_devmap(pfn));
1004	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005						(VM_PFNMAP|VM_MIXEDMAP));
1006	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 
1007
1008	if (addr < vma->vm_start || addr >= vma->vm_end)
1009		return VM_FAULT_SIGBUS;
1010
1011	track_pfn_insert(vma, &pgprot, pfn);
1012
1013	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1014	return VM_FAULT_NOPAGE;
1015}
1016EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1017#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1018
1019static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1020		      pmd_t *pmd, bool write)
1021{
1022	pmd_t _pmd;
1023
1024	_pmd = pmd_mkyoung(*pmd);
1025	if (write)
1026		_pmd = pmd_mkdirty(_pmd);
1027	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1028				  pmd, _pmd, write))
1029		update_mmu_cache_pmd(vma, addr, pmd);
1030}
1031
1032struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1033		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1034{
1035	unsigned long pfn = pmd_pfn(*pmd);
1036	struct mm_struct *mm = vma->vm_mm;
 
1037	struct page *page;
1038	int ret;
1039
1040	assert_spin_locked(pmd_lockptr(mm, pmd));
1041
1042	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1043	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1044			 (FOLL_PIN | FOLL_GET)))
1045		return NULL;
 
1046
1047	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1048		return NULL;
1049
1050	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1051		/* pass */;
1052	else
1053		return NULL;
1054
1055	if (flags & FOLL_TOUCH)
1056		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1057
1058	/*
1059	 * device mapped pages can only be returned if the
1060	 * caller will manage the page reference count.
1061	 */
1062	if (!(flags & (FOLL_GET | FOLL_PIN)))
1063		return ERR_PTR(-EEXIST);
1064
1065	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1066	*pgmap = get_dev_pagemap(pfn, *pgmap);
1067	if (!*pgmap)
1068		return ERR_PTR(-EFAULT);
1069	page = pfn_to_page(pfn);
1070	ret = try_grab_page(page, flags);
1071	if (ret)
1072		page = ERR_PTR(ret);
1073
1074	return page;
1075}
1076
1077int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1078		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1080{
1081	spinlock_t *dst_ptl, *src_ptl;
1082	struct page *src_page;
1083	pmd_t pmd;
1084	pgtable_t pgtable = NULL;
1085	int ret = -ENOMEM;
1086
1087	/* Skip if can be re-fill on fault */
1088	if (!vma_is_anonymous(dst_vma))
1089		return 0;
1090
1091	pgtable = pte_alloc_one(dst_mm);
1092	if (unlikely(!pgtable))
1093		goto out;
1094
1095	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1096	src_ptl = pmd_lockptr(src_mm, src_pmd);
1097	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1098
1099	ret = -EAGAIN;
1100	pmd = *src_pmd;
1101
1102#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1103	if (unlikely(is_swap_pmd(pmd))) {
1104		swp_entry_t entry = pmd_to_swp_entry(pmd);
1105
1106		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1107		if (!is_readable_migration_entry(entry)) {
1108			entry = make_readable_migration_entry(
1109							swp_offset(entry));
1110			pmd = swp_entry_to_pmd(entry);
1111			if (pmd_swp_soft_dirty(*src_pmd))
1112				pmd = pmd_swp_mksoft_dirty(pmd);
1113			if (pmd_swp_uffd_wp(*src_pmd))
1114				pmd = pmd_swp_mkuffd_wp(pmd);
1115			set_pmd_at(src_mm, addr, src_pmd, pmd);
1116		}
1117		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118		mm_inc_nr_ptes(dst_mm);
1119		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1120		if (!userfaultfd_wp(dst_vma))
1121			pmd = pmd_swp_clear_uffd_wp(pmd);
1122		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1123		ret = 0;
1124		goto out_unlock;
1125	}
1126#endif
1127
1128	if (unlikely(!pmd_trans_huge(pmd))) {
1129		pte_free(dst_mm, pgtable);
1130		goto out_unlock;
1131	}
1132	/*
1133	 * When page table lock is held, the huge zero pmd should not be
1134	 * under splitting since we don't split the page itself, only pmd to
1135	 * a page table.
1136	 */
1137	if (is_huge_zero_pmd(pmd)) {
 
1138		/*
1139		 * get_huge_zero_page() will never allocate a new page here,
1140		 * since we already have a zero page to copy. It just takes a
1141		 * reference.
1142		 */
1143		mm_get_huge_zero_page(dst_mm);
1144		goto out_zero_page;
 
 
 
1145	}
1146
1147	src_page = pmd_page(pmd);
1148	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1149
1150	get_page(src_page);
1151	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1152		/* Page maybe pinned: split and retry the fault on PTEs. */
1153		put_page(src_page);
1154		pte_free(dst_mm, pgtable);
1155		spin_unlock(src_ptl);
1156		spin_unlock(dst_ptl);
1157		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1158		return -EAGAIN;
1159	}
1160	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1161out_zero_page:
1162	mm_inc_nr_ptes(dst_mm);
1163	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 
1164	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1165	if (!userfaultfd_wp(dst_vma))
1166		pmd = pmd_clear_uffd_wp(pmd);
1167	pmd = pmd_mkold(pmd_wrprotect(pmd));
1168	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1169
1170	ret = 0;
1171out_unlock:
1172	spin_unlock(src_ptl);
1173	spin_unlock(dst_ptl);
1174out:
1175	return ret;
1176}
1177
1178#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1179static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1180		      pud_t *pud, bool write)
1181{
1182	pud_t _pud;
1183
1184	_pud = pud_mkyoung(*pud);
1185	if (write)
1186		_pud = pud_mkdirty(_pud);
1187	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1188				  pud, _pud, write))
1189		update_mmu_cache_pud(vma, addr, pud);
1190}
1191
1192struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1193		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1194{
1195	unsigned long pfn = pud_pfn(*pud);
1196	struct mm_struct *mm = vma->vm_mm;
 
1197	struct page *page;
1198	int ret;
1199
1200	assert_spin_locked(pud_lockptr(mm, pud));
1201
1202	if (flags & FOLL_WRITE && !pud_write(*pud))
1203		return NULL;
1204
1205	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1206	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1207			 (FOLL_PIN | FOLL_GET)))
1208		return NULL;
1209
1210	if (pud_present(*pud) && pud_devmap(*pud))
1211		/* pass */;
1212	else
1213		return NULL;
1214
1215	if (flags & FOLL_TOUCH)
1216		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1217
1218	/*
1219	 * device mapped pages can only be returned if the
1220	 * caller will manage the page reference count.
1221	 *
1222	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1223	 */
1224	if (!(flags & (FOLL_GET | FOLL_PIN)))
1225		return ERR_PTR(-EEXIST);
1226
1227	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1228	*pgmap = get_dev_pagemap(pfn, *pgmap);
1229	if (!*pgmap)
1230		return ERR_PTR(-EFAULT);
1231	page = pfn_to_page(pfn);
1232
1233	ret = try_grab_page(page, flags);
1234	if (ret)
1235		page = ERR_PTR(ret);
1236
1237	return page;
1238}
1239
1240int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1241		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1242		  struct vm_area_struct *vma)
1243{
1244	spinlock_t *dst_ptl, *src_ptl;
1245	pud_t pud;
1246	int ret;
1247
1248	dst_ptl = pud_lock(dst_mm, dst_pud);
1249	src_ptl = pud_lockptr(src_mm, src_pud);
1250	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1251
1252	ret = -EAGAIN;
1253	pud = *src_pud;
1254	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1255		goto out_unlock;
1256
1257	/*
1258	 * When page table lock is held, the huge zero pud should not be
1259	 * under splitting since we don't split the page itself, only pud to
1260	 * a page table.
1261	 */
1262	if (is_huge_zero_pud(pud)) {
1263		/* No huge zero pud yet */
1264	}
1265
1266	/*
1267	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1268	 * and split if duplicating fails.
1269	 */
1270	pudp_set_wrprotect(src_mm, addr, src_pud);
1271	pud = pud_mkold(pud_wrprotect(pud));
1272	set_pud_at(dst_mm, addr, dst_pud, pud);
1273
1274	ret = 0;
1275out_unlock:
1276	spin_unlock(src_ptl);
1277	spin_unlock(dst_ptl);
1278	return ret;
1279}
1280
1281void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1282{
 
 
1283	bool write = vmf->flags & FAULT_FLAG_WRITE;
1284
1285	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1286	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1287		goto unlock;
1288
1289	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
 
 
 
 
 
 
1290unlock:
1291	spin_unlock(vmf->ptl);
1292}
1293#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1294
1295void huge_pmd_set_accessed(struct vm_fault *vmf)
1296{
 
 
1297	bool write = vmf->flags & FAULT_FLAG_WRITE;
1298
1299	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1300	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1301		goto unlock;
1302
1303	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
 
 
 
 
 
1304
1305unlock:
1306	spin_unlock(vmf->ptl);
1307}
1308
1309vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
 
1310{
1311	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1312	struct vm_area_struct *vma = vmf->vma;
1313	struct folio *folio;
1314	struct page *page;
1315	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1316	pmd_t orig_pmd = vmf->orig_pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
1317
1318	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1319	VM_BUG_ON_VMA(!vma->anon_vma, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320
1321	if (is_huge_zero_pmd(orig_pmd))
1322		goto fallback;
 
 
 
 
1323
1324	spin_lock(vmf->ptl);
 
 
1325
1326	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1327		spin_unlock(vmf->ptl);
1328		return 0;
1329	}
1330
1331	page = pmd_page(orig_pmd);
1332	folio = page_folio(page);
1333	VM_BUG_ON_PAGE(!PageHead(page), page);
 
 
 
 
 
 
1334
1335	/* Early check when only holding the PT lock. */
1336	if (PageAnonExclusive(page))
1337		goto reuse;
1338
1339	if (!folio_trylock(folio)) {
1340		folio_get(folio);
1341		spin_unlock(vmf->ptl);
1342		folio_lock(folio);
1343		spin_lock(vmf->ptl);
1344		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345			spin_unlock(vmf->ptl);
1346			folio_unlock(folio);
1347			folio_put(folio);
1348			return 0;
1349		}
1350		folio_put(folio);
 
1351	}
 
1352
1353	/* Recheck after temporarily dropping the PT lock. */
1354	if (PageAnonExclusive(page)) {
1355		folio_unlock(folio);
1356		goto reuse;
1357	}
1358
1359	/*
1360	 * See do_wp_page(): we can only reuse the folio exclusively if
1361	 * there are no additional references. Note that we always drain
1362	 * the LRU pagevecs immediately after adding a THP.
1363	 */
1364	if (folio_ref_count(folio) >
1365			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1366		goto unlock_fallback;
1367	if (folio_test_swapcache(folio))
1368		folio_free_swap(folio);
1369	if (folio_ref_count(folio) == 1) {
1370		pmd_t entry;
1371
1372		page_move_anon_rmap(page, vma);
1373		folio_unlock(folio);
1374reuse:
1375		if (unlikely(unshare)) {
1376			spin_unlock(vmf->ptl);
1377			return 0;
1378		}
1379		entry = pmd_mkyoung(orig_pmd);
1380		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1381		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1382			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1383		spin_unlock(vmf->ptl);
1384		return 0;
1385	}
1386
1387unlock_fallback:
1388	folio_unlock(folio);
1389	spin_unlock(vmf->ptl);
1390fallback:
1391	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1392	return VM_FAULT_FALLBACK;
 
 
 
 
 
 
1393}
1394
1395static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1396					   unsigned long addr, pmd_t pmd)
1397{
1398	struct page *page;
 
 
 
 
 
 
 
1399
1400	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1401		return false;
 
 
 
 
 
1402
1403	/* Don't touch entries that are not even readable (NUMA hinting). */
1404	if (pmd_protnone(pmd))
1405		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406
1407	/* Do we need write faults for softdirty tracking? */
1408	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1409		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410
1411	/* Do we need write faults for uffd-wp tracking? */
1412	if (userfaultfd_huge_pmd_wp(vma, pmd))
1413		return false;
1414
1415	if (!(vma->vm_flags & VM_SHARED)) {
1416		/* See can_change_pte_writable(). */
1417		page = vm_normal_page_pmd(vma, addr, pmd);
1418		return page && PageAnon(page) && PageAnonExclusive(page);
 
1419	}
1420
1421	/* See can_change_pte_writable(). */
1422	return pmd_dirty(pmd);
1423}
1424
1425/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1426static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1427					struct vm_area_struct *vma,
1428					unsigned int flags)
1429{
1430	/* If the pmd is writable, we can write to the page. */
1431	if (pmd_write(pmd))
1432		return true;
1433
1434	/* Maybe FOLL_FORCE is set to override it? */
1435	if (!(flags & FOLL_FORCE))
1436		return false;
1437
1438	/* But FOLL_FORCE has no effect on shared mappings */
1439	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1440		return false;
1441
1442	/* ... or read-only private ones */
1443	if (!(vma->vm_flags & VM_MAYWRITE))
1444		return false;
1445
1446	/* ... or already writable ones that just need to take a write fault */
1447	if (vma->vm_flags & VM_WRITE)
1448		return false;
1449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450	/*
1451	 * See can_change_pte_writable(): we broke COW and could map the page
1452	 * writable if we have an exclusive anonymous page ...
1453	 */
1454	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1455		return false;
 
 
 
 
 
 
1456
1457	/* ... and a write-fault isn't required for other reasons. */
1458	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1459		return false;
1460	return !userfaultfd_huge_pmd_wp(vma, pmd);
 
 
 
 
1461}
1462
1463struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1464				   unsigned long addr,
1465				   pmd_t *pmd,
1466				   unsigned int flags)
1467{
1468	struct mm_struct *mm = vma->vm_mm;
1469	struct page *page;
1470	int ret;
1471
1472	assert_spin_locked(pmd_lockptr(mm, pmd));
1473
1474	page = pmd_page(*pmd);
1475	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1476
1477	if ((flags & FOLL_WRITE) &&
1478	    !can_follow_write_pmd(*pmd, page, vma, flags))
1479		return NULL;
1480
1481	/* Avoid dumping huge zero page */
1482	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1483		return ERR_PTR(-EFAULT);
1484
1485	/* Full NUMA hinting faults to serialise migration in fault paths */
1486	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1487		return NULL;
1488
1489	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1490		return ERR_PTR(-EMLINK);
1491
1492	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1493			!PageAnonExclusive(page), page);
1494
1495	ret = try_grab_page(page, flags);
1496	if (ret)
1497		return ERR_PTR(ret);
1498
 
 
1499	if (flags & FOLL_TOUCH)
1500		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1501
 
 
 
 
 
 
 
 
 
 
 
 
1502	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1503	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
 
 
1504
 
1505	return page;
1506}
1507
1508/* NUMA hinting page fault entry point for trans huge pmds */
1509vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1510{
1511	struct vm_area_struct *vma = vmf->vma;
1512	pmd_t oldpmd = vmf->orig_pmd;
1513	pmd_t pmd;
1514	struct page *page;
1515	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1516	int page_nid = NUMA_NO_NODE;
1517	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1518	bool migrated = false, writable = false;
 
 
1519	int flags = 0;
1520
1521	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1522	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
 
 
 
 
 
 
 
 
 
 
 
1523		spin_unlock(vmf->ptl);
 
 
1524		goto out;
1525	}
1526
1527	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
1528
1529	/*
1530	 * Detect now whether the PMD could be writable; this information
1531	 * is only valid while holding the PT lock.
1532	 */
1533	writable = pmd_write(pmd);
1534	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1535	    can_change_pmd_writable(vma, vmf->address, pmd))
1536		writable = true;
1537
1538	page = vm_normal_page_pmd(vma, haddr, pmd);
1539	if (!page)
1540		goto out_map;
1541
1542	/* See similar comment in do_numa_page for explanation */
1543	if (!writable)
1544		flags |= TNF_NO_GROUP;
 
 
 
 
 
 
1545
1546	page_nid = page_to_nid(page);
1547	/*
1548	 * For memory tiering mode, cpupid of slow memory page is used
1549	 * to record page access time.  So use default value.
1550	 */
1551	if (node_is_toptier(page_nid))
1552		last_cpupid = page_cpupid_last(page);
1553	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1554				       &flags);
1555
1556	if (target_nid == NUMA_NO_NODE) {
 
 
 
1557		put_page(page);
1558		goto out_map;
 
1559	}
1560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561	spin_unlock(vmf->ptl);
1562	writable = false;
1563
1564	migrated = migrate_misplaced_page(page, vma, target_nid);
 
1565	if (migrated) {
1566		flags |= TNF_MIGRATED;
1567		page_nid = target_nid;
1568	} else {
1569		flags |= TNF_MIGRATE_FAIL;
1570		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1571		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1572			spin_unlock(vmf->ptl);
1573			goto out;
1574		}
1575		goto out_map;
1576	}
 
 
 
 
 
 
 
1577
1578out:
1579	if (page_nid != NUMA_NO_NODE)
 
 
 
1580		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1581				flags);
1582
1583	return 0;
1584
1585out_map:
1586	/* Restore the PMD */
1587	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1588	pmd = pmd_mkyoung(pmd);
1589	if (writable)
1590		pmd = pmd_mkwrite(pmd);
1591	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593	spin_unlock(vmf->ptl);
1594	goto out;
1595}
1596
1597/*
1598 * Return true if we do MADV_FREE successfully on entire pmd page.
1599 * Otherwise, return false.
1600 */
1601bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1602		pmd_t *pmd, unsigned long addr, unsigned long next)
1603{
1604	spinlock_t *ptl;
1605	pmd_t orig_pmd;
1606	struct page *page;
1607	struct mm_struct *mm = tlb->mm;
1608	bool ret = false;
1609
1610	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1611
1612	ptl = pmd_trans_huge_lock(pmd, vma);
1613	if (!ptl)
1614		goto out_unlocked;
1615
1616	orig_pmd = *pmd;
1617	if (is_huge_zero_pmd(orig_pmd))
1618		goto out;
1619
1620	if (unlikely(!pmd_present(orig_pmd))) {
1621		VM_BUG_ON(thp_migration_supported() &&
1622				  !is_pmd_migration_entry(orig_pmd));
1623		goto out;
1624	}
1625
1626	page = pmd_page(orig_pmd);
1627	/*
1628	 * If other processes are mapping this page, we couldn't discard
1629	 * the page unless they all do MADV_FREE so let's skip the page.
1630	 */
1631	if (total_mapcount(page) != 1)
1632		goto out;
1633
1634	if (!trylock_page(page))
1635		goto out;
1636
1637	/*
1638	 * If user want to discard part-pages of THP, split it so MADV_FREE
1639	 * will deactivate only them.
1640	 */
1641	if (next - addr != HPAGE_PMD_SIZE) {
1642		get_page(page);
1643		spin_unlock(ptl);
1644		split_huge_page(page);
1645		unlock_page(page);
1646		put_page(page);
1647		goto out_unlocked;
1648	}
1649
1650	if (PageDirty(page))
1651		ClearPageDirty(page);
1652	unlock_page(page);
1653
1654	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1655		pmdp_invalidate(vma, addr, pmd);
1656		orig_pmd = pmd_mkold(orig_pmd);
1657		orig_pmd = pmd_mkclean(orig_pmd);
1658
1659		set_pmd_at(mm, addr, pmd, orig_pmd);
1660		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1661	}
1662
1663	mark_page_lazyfree(page);
1664	ret = true;
1665out:
1666	spin_unlock(ptl);
1667out_unlocked:
1668	return ret;
1669}
1670
1671static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1672{
1673	pgtable_t pgtable;
1674
1675	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1676	pte_free(mm, pgtable);
1677	mm_dec_nr_ptes(mm);
1678}
1679
1680int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1681		 pmd_t *pmd, unsigned long addr)
1682{
1683	pmd_t orig_pmd;
1684	spinlock_t *ptl;
1685
1686	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1687
1688	ptl = __pmd_trans_huge_lock(pmd, vma);
1689	if (!ptl)
1690		return 0;
1691	/*
1692	 * For architectures like ppc64 we look at deposited pgtable
1693	 * when calling pmdp_huge_get_and_clear. So do the
1694	 * pgtable_trans_huge_withdraw after finishing pmdp related
1695	 * operations.
1696	 */
1697	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1698						tlb->fullmm);
1699	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1700	if (vma_is_special_huge(vma)) {
1701		if (arch_needs_pgtable_deposit())
1702			zap_deposited_table(tlb->mm, pmd);
1703		spin_unlock(ptl);
 
 
1704	} else if (is_huge_zero_pmd(orig_pmd)) {
1705		zap_deposited_table(tlb->mm, pmd);
1706		spin_unlock(ptl);
 
1707	} else {
1708		struct page *page = NULL;
1709		int flush_needed = 1;
1710
1711		if (pmd_present(orig_pmd)) {
1712			page = pmd_page(orig_pmd);
1713			page_remove_rmap(page, vma, true);
1714			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1715			VM_BUG_ON_PAGE(!PageHead(page), page);
1716		} else if (thp_migration_supported()) {
1717			swp_entry_t entry;
1718
1719			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1720			entry = pmd_to_swp_entry(orig_pmd);
1721			page = pfn_swap_entry_to_page(entry);
1722			flush_needed = 0;
1723		} else
1724			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1725
1726		if (PageAnon(page)) {
1727			zap_deposited_table(tlb->mm, pmd);
1728			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1729		} else {
1730			if (arch_needs_pgtable_deposit())
1731				zap_deposited_table(tlb->mm, pmd);
1732			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1733		}
1734
1735		spin_unlock(ptl);
1736		if (flush_needed)
1737			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1738	}
1739	return 1;
1740}
1741
1742#ifndef pmd_move_must_withdraw
1743static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1744					 spinlock_t *old_pmd_ptl,
1745					 struct vm_area_struct *vma)
1746{
1747	/*
1748	 * With split pmd lock we also need to move preallocated
1749	 * PTE page table if new_pmd is on different PMD page table.
1750	 *
1751	 * We also don't deposit and withdraw tables for file pages.
1752	 */
1753	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1754}
1755#endif
1756
1757static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1758{
1759#ifdef CONFIG_MEM_SOFT_DIRTY
1760	if (unlikely(is_pmd_migration_entry(pmd)))
1761		pmd = pmd_swp_mksoft_dirty(pmd);
1762	else if (pmd_present(pmd))
1763		pmd = pmd_mksoft_dirty(pmd);
1764#endif
1765	return pmd;
1766}
1767
1768bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1769		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
 
1770{
1771	spinlock_t *old_ptl, *new_ptl;
1772	pmd_t pmd;
1773	struct mm_struct *mm = vma->vm_mm;
1774	bool force_flush = false;
1775
 
 
 
 
 
1776	/*
1777	 * The destination pmd shouldn't be established, free_pgtables()
1778	 * should have release it.
1779	 */
1780	if (WARN_ON(!pmd_none(*new_pmd))) {
1781		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1782		return false;
1783	}
1784
1785	/*
1786	 * We don't have to worry about the ordering of src and dst
1787	 * ptlocks because exclusive mmap_lock prevents deadlock.
1788	 */
1789	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1790	if (old_ptl) {
1791		new_ptl = pmd_lockptr(mm, new_pmd);
1792		if (new_ptl != old_ptl)
1793			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1794		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1795		if (pmd_present(pmd))
1796			force_flush = true;
1797		VM_BUG_ON(!pmd_none(*new_pmd));
1798
1799		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1800			pgtable_t pgtable;
1801			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1802			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1803		}
1804		pmd = move_soft_dirty_pmd(pmd);
1805		set_pmd_at(mm, new_addr, new_pmd, pmd);
1806		if (force_flush)
1807			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1808		if (new_ptl != old_ptl)
1809			spin_unlock(new_ptl);
 
 
 
 
1810		spin_unlock(old_ptl);
1811		return true;
1812	}
1813	return false;
1814}
1815
1816/*
1817 * Returns
1818 *  - 0 if PMD could not be locked
1819 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1820 *      or if prot_numa but THP migration is not supported
1821 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1822 */
1823int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1824		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1825		    unsigned long cp_flags)
1826{
1827	struct mm_struct *mm = vma->vm_mm;
1828	spinlock_t *ptl;
1829	pmd_t oldpmd, entry;
1830	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1831	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1832	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1833	int ret = 1;
1834
1835	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1836
1837	if (prot_numa && !thp_migration_supported())
1838		return 1;
1839
1840	ptl = __pmd_trans_huge_lock(pmd, vma);
1841	if (!ptl)
1842		return 0;
1843
 
 
 
1844#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1845	if (is_swap_pmd(*pmd)) {
1846		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1847		struct page *page = pfn_swap_entry_to_page(entry);
1848
1849		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1850		if (is_writable_migration_entry(entry)) {
1851			pmd_t newpmd;
1852			/*
1853			 * A protection check is difficult so
1854			 * just be safe and disable write
1855			 */
1856			if (PageAnon(page))
1857				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1858			else
1859				entry = make_readable_migration_entry(swp_offset(entry));
1860			newpmd = swp_entry_to_pmd(entry);
1861			if (pmd_swp_soft_dirty(*pmd))
1862				newpmd = pmd_swp_mksoft_dirty(newpmd);
1863			if (pmd_swp_uffd_wp(*pmd))
1864				newpmd = pmd_swp_mkuffd_wp(newpmd);
1865			set_pmd_at(mm, addr, pmd, newpmd);
1866		}
1867		goto unlock;
1868	}
1869#endif
1870
1871	if (prot_numa) {
1872		struct page *page;
1873		bool toptier;
1874		/*
1875		 * Avoid trapping faults against the zero page. The read-only
1876		 * data is likely to be read-cached on the local CPU and
1877		 * local/remote hits to the zero page are not interesting.
1878		 */
1879		if (is_huge_zero_pmd(*pmd))
1880			goto unlock;
1881
1882		if (pmd_protnone(*pmd))
1883			goto unlock;
1884
1885		page = pmd_page(*pmd);
1886		toptier = node_is_toptier(page_to_nid(page));
1887		/*
1888		 * Skip scanning top tier node if normal numa
1889		 * balancing is disabled
1890		 */
1891		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1892		    toptier)
1893			goto unlock;
1894
1895		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1896		    !toptier)
1897			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1898	}
1899	/*
1900	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1901	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1902	 * which is also under mmap_read_lock(mm):
1903	 *
1904	 *	CPU0:				CPU1:
1905	 *				change_huge_pmd(prot_numa=1)
1906	 *				 pmdp_huge_get_and_clear_notify()
1907	 * madvise_dontneed()
1908	 *  zap_pmd_range()
1909	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1910	 *   // skip the pmd
1911	 *				 set_pmd_at();
1912	 *				 // pmd is re-established
1913	 *
1914	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1915	 * which may break userspace.
1916	 *
1917	 * pmdp_invalidate_ad() is required to make sure we don't miss
1918	 * dirty/young flags set by hardware.
1919	 */
1920	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1921
1922	entry = pmd_modify(oldpmd, newprot);
1923	if (uffd_wp) {
1924		entry = pmd_wrprotect(entry);
1925		entry = pmd_mkuffd_wp(entry);
1926	} else if (uffd_wp_resolve) {
1927		/*
1928		 * Leave the write bit to be handled by PF interrupt
1929		 * handler, then things like COW could be properly
1930		 * handled.
1931		 */
1932		entry = pmd_clear_uffd_wp(entry);
1933	}
1934
1935	/* See change_pte_range(). */
1936	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1937	    can_change_pmd_writable(vma, addr, entry))
1938		entry = pmd_mkwrite(entry);
1939
 
 
 
1940	ret = HPAGE_PMD_NR;
1941	set_pmd_at(mm, addr, pmd, entry);
1942
1943	if (huge_pmd_needs_flush(oldpmd, entry))
1944		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1945unlock:
1946	spin_unlock(ptl);
1947	return ret;
1948}
1949
1950/*
1951 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1952 *
1953 * Note that if it returns page table lock pointer, this routine returns without
1954 * unlocking page table lock. So callers must unlock it.
1955 */
1956spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1957{
1958	spinlock_t *ptl;
1959	ptl = pmd_lock(vma->vm_mm, pmd);
1960	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1961			pmd_devmap(*pmd)))
1962		return ptl;
1963	spin_unlock(ptl);
1964	return NULL;
1965}
1966
1967/*
1968 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1969 *
1970 * Note that if it returns page table lock pointer, this routine returns without
1971 * unlocking page table lock. So callers must unlock it.
1972 */
1973spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1974{
1975	spinlock_t *ptl;
1976
1977	ptl = pud_lock(vma->vm_mm, pud);
1978	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1979		return ptl;
1980	spin_unlock(ptl);
1981	return NULL;
1982}
1983
1984#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1985int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1986		 pud_t *pud, unsigned long addr)
1987{
 
1988	spinlock_t *ptl;
1989
1990	ptl = __pud_trans_huge_lock(pud, vma);
1991	if (!ptl)
1992		return 0;
1993
1994	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
 
 
 
 
 
 
1995	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1996	if (vma_is_special_huge(vma)) {
1997		spin_unlock(ptl);
1998		/* No zero page support yet */
1999	} else {
2000		/* No support for anonymous PUD pages yet */
2001		BUG();
2002	}
2003	return 1;
2004}
2005
2006static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2007		unsigned long haddr)
2008{
2009	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2010	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2011	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2012	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2013
2014	count_vm_event(THP_SPLIT_PUD);
2015
2016	pudp_huge_clear_flush_notify(vma, haddr, pud);
2017}
2018
2019void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2020		unsigned long address)
2021{
2022	spinlock_t *ptl;
2023	struct mmu_notifier_range range;
 
2024
2025	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2026				address & HPAGE_PUD_MASK,
2027				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2028	mmu_notifier_invalidate_range_start(&range);
2029	ptl = pud_lock(vma->vm_mm, pud);
2030	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2031		goto out;
2032	__split_huge_pud_locked(vma, pud, range.start);
2033
2034out:
2035	spin_unlock(ptl);
2036	/*
2037	 * No need to double call mmu_notifier->invalidate_range() callback as
2038	 * the above pudp_huge_clear_flush_notify() did already call it.
2039	 */
2040	mmu_notifier_invalidate_range_only_end(&range);
 
2041}
2042#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2043
2044static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2045		unsigned long haddr, pmd_t *pmd)
2046{
2047	struct mm_struct *mm = vma->vm_mm;
2048	pgtable_t pgtable;
2049	pmd_t _pmd;
2050	int i;
2051
2052	/*
2053	 * Leave pmd empty until pte is filled note that it is fine to delay
2054	 * notification until mmu_notifier_invalidate_range_end() as we are
2055	 * replacing a zero pmd write protected page with a zero pte write
2056	 * protected page.
2057	 *
2058	 * See Documentation/mm/mmu_notifier.rst
2059	 */
2060	pmdp_huge_clear_flush(vma, haddr, pmd);
2061
2062	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2063	pmd_populate(mm, &_pmd, pgtable);
2064
2065	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2066		pte_t *pte, entry;
2067		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2068		entry = pte_mkspecial(entry);
2069		pte = pte_offset_map(&_pmd, haddr);
2070		VM_BUG_ON(!pte_none(*pte));
2071		set_pte_at(mm, haddr, pte, entry);
2072		pte_unmap(pte);
2073	}
2074	smp_wmb(); /* make pte visible before pmd */
2075	pmd_populate(mm, pmd, pgtable);
2076}
2077
2078static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2079		unsigned long haddr, bool freeze)
2080{
2081	struct mm_struct *mm = vma->vm_mm;
2082	struct page *page;
2083	pgtable_t pgtable;
2084	pmd_t old_pmd, _pmd;
2085	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2086	bool anon_exclusive = false, dirty = false;
2087	unsigned long addr;
2088	int i;
2089
2090	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2091	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2092	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2093	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2094				&& !pmd_devmap(*pmd));
2095
2096	count_vm_event(THP_SPLIT_PMD);
2097
2098	if (!vma_is_anonymous(vma)) {
2099		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2100		/*
2101		 * We are going to unmap this huge page. So
2102		 * just go ahead and zap it
2103		 */
2104		if (arch_needs_pgtable_deposit())
2105			zap_deposited_table(mm, pmd);
2106		if (vma_is_special_huge(vma))
2107			return;
2108		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2109			swp_entry_t entry;
2110
2111			entry = pmd_to_swp_entry(old_pmd);
2112			page = pfn_swap_entry_to_page(entry);
2113		} else {
2114			page = pmd_page(old_pmd);
2115			if (!PageDirty(page) && pmd_dirty(old_pmd))
2116				set_page_dirty(page);
2117			if (!PageReferenced(page) && pmd_young(old_pmd))
2118				SetPageReferenced(page);
2119			page_remove_rmap(page, vma, true);
2120			put_page(page);
2121		}
2122		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2123		return;
2124	}
2125
2126	if (is_huge_zero_pmd(*pmd)) {
2127		/*
2128		 * FIXME: Do we want to invalidate secondary mmu by calling
2129		 * mmu_notifier_invalidate_range() see comments below inside
2130		 * __split_huge_pmd() ?
2131		 *
2132		 * We are going from a zero huge page write protected to zero
2133		 * small page also write protected so it does not seems useful
2134		 * to invalidate secondary mmu at this time.
2135		 */
2136		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2137	}
2138
2139	/*
2140	 * Up to this point the pmd is present and huge and userland has the
2141	 * whole access to the hugepage during the split (which happens in
2142	 * place). If we overwrite the pmd with the not-huge version pointing
2143	 * to the pte here (which of course we could if all CPUs were bug
2144	 * free), userland could trigger a small page size TLB miss on the
2145	 * small sized TLB while the hugepage TLB entry is still established in
2146	 * the huge TLB. Some CPU doesn't like that.
2147	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2148	 * 383 on page 105. Intel should be safe but is also warns that it's
2149	 * only safe if the permission and cache attributes of the two entries
2150	 * loaded in the two TLB is identical (which should be the case here).
2151	 * But it is generally safer to never allow small and huge TLB entries
2152	 * for the same virtual address to be loaded simultaneously. So instead
2153	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2154	 * current pmd notpresent (atomically because here the pmd_trans_huge
2155	 * must remain set at all times on the pmd until the split is complete
2156	 * for this pmd), then we flush the SMP TLB and finally we write the
2157	 * non-huge version of the pmd entry with pmd_populate.
2158	 */
2159	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2160
 
2161	pmd_migration = is_pmd_migration_entry(old_pmd);
2162	if (unlikely(pmd_migration)) {
2163		swp_entry_t entry;
2164
2165		entry = pmd_to_swp_entry(old_pmd);
2166		page = pfn_swap_entry_to_page(entry);
2167		write = is_writable_migration_entry(entry);
2168		if (PageAnon(page))
2169			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2170		young = is_migration_entry_young(entry);
2171		dirty = is_migration_entry_dirty(entry);
2172		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2173		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2174	} else {
2175		page = pmd_page(old_pmd);
2176		if (pmd_dirty(old_pmd)) {
2177			dirty = true;
2178			SetPageDirty(page);
2179		}
2180		write = pmd_write(old_pmd);
2181		young = pmd_young(old_pmd);
2182		soft_dirty = pmd_soft_dirty(old_pmd);
2183		uffd_wp = pmd_uffd_wp(old_pmd);
2184
2185		VM_BUG_ON_PAGE(!page_count(page), page);
2186
2187		/*
2188		 * Without "freeze", we'll simply split the PMD, propagating the
2189		 * PageAnonExclusive() flag for each PTE by setting it for
2190		 * each subpage -- no need to (temporarily) clear.
2191		 *
2192		 * With "freeze" we want to replace mapped pages by
2193		 * migration entries right away. This is only possible if we
2194		 * managed to clear PageAnonExclusive() -- see
2195		 * set_pmd_migration_entry().
2196		 *
2197		 * In case we cannot clear PageAnonExclusive(), split the PMD
2198		 * only and let try_to_migrate_one() fail later.
2199		 *
2200		 * See page_try_share_anon_rmap(): invalidate PMD first.
2201		 */
2202		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2203		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2204			freeze = false;
2205		if (!freeze)
2206			page_ref_add(page, HPAGE_PMD_NR - 1);
2207	}
2208
2209	/*
2210	 * Withdraw the table only after we mark the pmd entry invalid.
2211	 * This's critical for some architectures (Power).
2212	 */
2213	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2214	pmd_populate(mm, &_pmd, pgtable);
2215
2216	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2217		pte_t entry, *pte;
2218		/*
2219		 * Note that NUMA hinting access restrictions are not
2220		 * transferred to avoid any possibility of altering
2221		 * permissions across VMAs.
2222		 */
2223		if (freeze || pmd_migration) {
2224			swp_entry_t swp_entry;
2225			if (write)
2226				swp_entry = make_writable_migration_entry(
2227							page_to_pfn(page + i));
2228			else if (anon_exclusive)
2229				swp_entry = make_readable_exclusive_migration_entry(
2230							page_to_pfn(page + i));
2231			else
2232				swp_entry = make_readable_migration_entry(
2233							page_to_pfn(page + i));
2234			if (young)
2235				swp_entry = make_migration_entry_young(swp_entry);
2236			if (dirty)
2237				swp_entry = make_migration_entry_dirty(swp_entry);
2238			entry = swp_entry_to_pte(swp_entry);
2239			if (soft_dirty)
2240				entry = pte_swp_mksoft_dirty(entry);
2241			if (uffd_wp)
2242				entry = pte_swp_mkuffd_wp(entry);
2243		} else {
2244			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2245			entry = maybe_mkwrite(entry, vma);
2246			if (anon_exclusive)
2247				SetPageAnonExclusive(page + i);
2248			if (!young)
2249				entry = pte_mkold(entry);
2250			/* NOTE: this may set soft-dirty too on some archs */
2251			if (dirty)
2252				entry = pte_mkdirty(entry);
2253			/*
2254			 * NOTE: this needs to happen after pte_mkdirty,
2255			 * because some archs (sparc64, loongarch) could
2256			 * set hw write bit when mkdirty.
2257			 */
2258			if (!write)
2259				entry = pte_wrprotect(entry);
2260			if (soft_dirty)
2261				entry = pte_mksoft_dirty(entry);
2262			if (uffd_wp)
2263				entry = pte_mkuffd_wp(entry);
2264			page_add_anon_rmap(page + i, vma, addr, false);
2265		}
2266		pte = pte_offset_map(&_pmd, addr);
2267		BUG_ON(!pte_none(*pte));
2268		set_pte_at(mm, addr, pte, entry);
 
2269		pte_unmap(pte);
2270	}
2271
2272	if (!pmd_migration)
2273		page_remove_rmap(page, vma, true);
2274	if (freeze)
2275		put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2276
2277	smp_wmb(); /* make pte visible before pmd */
2278	pmd_populate(mm, pmd, pgtable);
 
 
 
 
 
 
 
2279}
2280
2281void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2282		unsigned long address, bool freeze, struct folio *folio)
2283{
2284	spinlock_t *ptl;
2285	struct mmu_notifier_range range;
 
2286
2287	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2288				address & HPAGE_PMD_MASK,
2289				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2290	mmu_notifier_invalidate_range_start(&range);
2291	ptl = pmd_lock(vma->vm_mm, pmd);
2292
2293	/*
2294	 * If caller asks to setup a migration entry, we need a folio to check
2295	 * pmd against. Otherwise we can end up replacing wrong folio.
2296	 */
2297	VM_BUG_ON(freeze && !folio);
2298	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2299
2300	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2301	    is_pmd_migration_entry(*pmd)) {
2302		/*
2303		 * It's safe to call pmd_page when folio is set because it's
2304		 * guaranteed that pmd is present.
2305		 */
2306		if (folio && folio != page_folio(pmd_page(*pmd)))
2307			goto out;
2308		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2309	}
2310
 
 
 
 
 
 
 
2311out:
2312	spin_unlock(ptl);
2313	/*
2314	 * No need to double call mmu_notifier->invalidate_range() callback.
2315	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2316	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2317	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2318	 *    fault will trigger a flush_notify before pointing to a new page
2319	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2320	 *    page in the meantime)
2321	 *  3) Split a huge pmd into pte pointing to the same page. No need
2322	 *     to invalidate secondary tlb entry they are all still valid.
2323	 *     any further changes to individual pte will notify. So no need
2324	 *     to call mmu_notifier->invalidate_range()
2325	 */
2326	mmu_notifier_invalidate_range_only_end(&range);
 
2327}
2328
2329void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2330		bool freeze, struct folio *folio)
2331{
2332	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
 
 
 
 
 
 
 
 
 
 
 
2333
2334	if (!pmd)
 
2335		return;
2336
2337	__split_huge_pmd(vma, pmd, address, freeze, folio);
2338}
2339
2340static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2341{
2342	/*
2343	 * If the new address isn't hpage aligned and it could previously
2344	 * contain an hugepage: check if we need to split an huge pmd.
2345	 */
2346	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2347	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2348			 ALIGN(address, HPAGE_PMD_SIZE)))
2349		split_huge_pmd_address(vma, address, false, NULL);
2350}
2351
2352void vma_adjust_trans_huge(struct vm_area_struct *vma,
2353			     unsigned long start,
2354			     unsigned long end,
2355			     long adjust_next)
2356{
2357	/* Check if we need to split start first. */
2358	split_huge_pmd_if_needed(vma, start);
 
 
 
 
 
 
 
2359
2360	/* Check if we need to split end next. */
2361	split_huge_pmd_if_needed(vma, end);
 
 
 
 
 
 
 
2362
2363	/*
2364	 * If we're also updating the next vma vm_start,
2365	 * check if we need to split it.
 
2366	 */
2367	if (adjust_next > 0) {
2368		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2369		unsigned long nstart = next->vm_start;
2370		nstart += adjust_next;
2371		split_huge_pmd_if_needed(next, nstart);
 
 
 
2372	}
2373}
2374
2375static void unmap_folio(struct folio *folio)
2376{
2377	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2378		TTU_SYNC;
 
2379
2380	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2381
2382	/*
2383	 * Anon pages need migration entries to preserve them, but file
2384	 * pages can simply be left unmapped, then faulted back on demand.
2385	 * If that is ever changed (perhaps for mlock), update remap_page().
2386	 */
2387	if (folio_test_anon(folio))
2388		try_to_migrate(folio, ttu_flags);
2389	else
2390		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2391}
2392
2393static void remap_page(struct folio *folio, unsigned long nr)
2394{
2395	int i = 0;
2396
2397	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2398	if (!folio_test_anon(folio))
2399		return;
2400	for (;;) {
2401		remove_migration_ptes(folio, folio, true);
2402		i += folio_nr_pages(folio);
2403		if (i >= nr)
2404			break;
2405		folio = folio_next(folio);
2406	}
2407}
2408
2409static void lru_add_page_tail(struct page *head, struct page *tail,
2410		struct lruvec *lruvec, struct list_head *list)
2411{
2412	VM_BUG_ON_PAGE(!PageHead(head), head);
2413	VM_BUG_ON_PAGE(PageCompound(tail), head);
2414	VM_BUG_ON_PAGE(PageLRU(tail), head);
2415	lockdep_assert_held(&lruvec->lru_lock);
2416
2417	if (list) {
2418		/* page reclaim is reclaiming a huge page */
2419		VM_WARN_ON(PageLRU(head));
2420		get_page(tail);
2421		list_add_tail(&tail->lru, list);
2422	} else {
2423		/* head is still on lru (and we have it frozen) */
2424		VM_WARN_ON(!PageLRU(head));
2425		if (PageUnevictable(tail))
2426			tail->mlock_count = 0;
2427		else
2428			list_add_tail(&tail->lru, &head->lru);
2429		SetPageLRU(tail);
2430	}
2431}
2432
2433static void __split_huge_page_tail(struct page *head, int tail,
2434		struct lruvec *lruvec, struct list_head *list)
2435{
2436	struct page *page_tail = head + tail;
2437
2438	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2439
2440	/*
2441	 * Clone page flags before unfreezing refcount.
2442	 *
2443	 * After successful get_page_unless_zero() might follow flags change,
2444	 * for example lock_page() which set PG_waiters.
2445	 *
2446	 * Note that for mapped sub-pages of an anonymous THP,
2447	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2448	 * the migration entry instead from where remap_page() will restore it.
2449	 * We can still have PG_anon_exclusive set on effectively unmapped and
2450	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2451	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2452	 */
2453	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2454	page_tail->flags |= (head->flags &
2455			((1L << PG_referenced) |
2456			 (1L << PG_swapbacked) |
2457			 (1L << PG_swapcache) |
2458			 (1L << PG_mlocked) |
2459			 (1L << PG_uptodate) |
2460			 (1L << PG_active) |
2461			 (1L << PG_workingset) |
2462			 (1L << PG_locked) |
2463			 (1L << PG_unevictable) |
2464#ifdef CONFIG_ARCH_USES_PG_ARCH_X
2465			 (1L << PG_arch_2) |
2466			 (1L << PG_arch_3) |
2467#endif
2468			 (1L << PG_dirty) |
2469			 LRU_GEN_MASK | LRU_REFS_MASK));
2470
2471	/* ->mapping in first and second tail page is replaced by other uses */
2472	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2473			page_tail);
2474	page_tail->mapping = head->mapping;
2475	page_tail->index = head->index + tail;
2476
2477	/*
2478	 * page->private should not be set in tail pages with the exception
2479	 * of swap cache pages that store the swp_entry_t in tail pages.
2480	 * Fix up and warn once if private is unexpectedly set.
2481	 *
2482	 * What of 32-bit systems, on which head[1].compound_pincount overlays
2483	 * head[1].private?  No problem: THP_SWAP is not enabled on 32-bit, and
2484	 * compound_pincount must be 0 for folio_ref_freeze() to have succeeded.
2485	 */
2486	if (!folio_test_swapcache(page_folio(head))) {
2487		VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2488		page_tail->private = 0;
2489	}
2490
2491	/* Page flags must be visible before we make the page non-compound. */
2492	smp_wmb();
2493
2494	/*
2495	 * Clear PageTail before unfreezing page refcount.
2496	 *
2497	 * After successful get_page_unless_zero() might follow put_page()
2498	 * which needs correct compound_head().
2499	 */
2500	clear_compound_head(page_tail);
2501
2502	/* Finally unfreeze refcount. Additional reference from page cache. */
2503	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2504					  PageSwapCache(head)));
2505
2506	if (page_is_young(head))
2507		set_page_young(page_tail);
2508	if (page_is_idle(head))
2509		set_page_idle(page_tail);
2510
 
 
 
 
 
 
2511	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2512
2513	/*
2514	 * always add to the tail because some iterators expect new
2515	 * pages to show after the currently processed elements - e.g.
2516	 * migrate_pages
2517	 */
2518	lru_add_page_tail(head, page_tail, lruvec, list);
2519}
2520
2521static void __split_huge_page(struct page *page, struct list_head *list,
2522		pgoff_t end)
2523{
2524	struct folio *folio = page_folio(page);
2525	struct page *head = &folio->page;
2526	struct lruvec *lruvec;
2527	struct address_space *swap_cache = NULL;
2528	unsigned long offset = 0;
2529	unsigned int nr = thp_nr_pages(head);
2530	int i;
2531
 
 
2532	/* complete memcg works before add pages to LRU */
2533	split_page_memcg(head, nr);
2534
2535	if (PageAnon(head) && PageSwapCache(head)) {
2536		swp_entry_t entry = { .val = page_private(head) };
2537
2538		offset = swp_offset(entry);
2539		swap_cache = swap_address_space(entry);
2540		xa_lock(&swap_cache->i_pages);
2541	}
2542
2543	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2544	lruvec = folio_lruvec_lock(folio);
2545
2546	ClearPageHasHWPoisoned(head);
2547
2548	for (i = nr - 1; i >= 1; i--) {
2549		__split_huge_page_tail(head, i, lruvec, list);
2550		/* Some pages can be beyond EOF: drop them from page cache */
2551		if (head[i].index >= end) {
2552			struct folio *tail = page_folio(head + i);
2553
2554			if (shmem_mapping(head->mapping))
2555				shmem_uncharge(head->mapping->host, 1);
2556			else if (folio_test_clear_dirty(tail))
2557				folio_account_cleaned(tail,
2558					inode_to_wb(folio->mapping->host));
2559			__filemap_remove_folio(tail, NULL);
2560			folio_put(tail);
2561		} else if (!PageAnon(page)) {
2562			__xa_store(&head->mapping->i_pages, head[i].index,
2563					head + i, 0);
2564		} else if (swap_cache) {
2565			__xa_store(&swap_cache->i_pages, offset + i,
2566					head + i, 0);
2567		}
2568	}
2569
2570	ClearPageCompound(head);
2571	unlock_page_lruvec(lruvec);
2572	/* Caller disabled irqs, so they are still disabled here */
2573
2574	split_page_owner(head, nr);
2575
2576	/* See comment in __split_huge_page_tail() */
2577	if (PageAnon(head)) {
2578		/* Additional pin to swap cache */
2579		if (PageSwapCache(head)) {
2580			page_ref_add(head, 2);
2581			xa_unlock(&swap_cache->i_pages);
2582		} else {
2583			page_ref_inc(head);
2584		}
2585	} else {
2586		/* Additional pin to page cache */
2587		page_ref_add(head, 2);
2588		xa_unlock(&head->mapping->i_pages);
2589	}
2590	local_irq_enable();
2591
2592	remap_page(folio, nr);
2593
2594	if (PageSwapCache(head)) {
2595		swp_entry_t entry = { .val = page_private(head) };
2596
2597		split_swap_cluster(entry);
2598	}
2599
2600	for (i = 0; i < nr; i++) {
2601		struct page *subpage = head + i;
2602		if (subpage == page)
2603			continue;
2604		unlock_page(subpage);
2605
2606		/*
2607		 * Subpages may be freed if there wasn't any mapping
2608		 * like if add_to_swap() is running on a lru page that
2609		 * had its mapping zapped. And freeing these pages
2610		 * requires taking the lru_lock so we do the put_page
2611		 * of the tail pages after the split is complete.
2612		 */
2613		free_page_and_swap_cache(subpage);
2614	}
2615}
2616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2617/* Racy check whether the huge page can be split */
2618bool can_split_folio(struct folio *folio, int *pextra_pins)
2619{
2620	int extra_pins;
2621
2622	/* Additional pins from page cache */
2623	if (folio_test_anon(folio))
2624		extra_pins = folio_test_swapcache(folio) ?
2625				folio_nr_pages(folio) : 0;
2626	else
2627		extra_pins = folio_nr_pages(folio);
2628	if (pextra_pins)
2629		*pextra_pins = extra_pins;
2630	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2631}
2632
2633/*
2634 * This function splits huge page into normal pages. @page can point to any
2635 * subpage of huge page to split. Split doesn't change the position of @page.
2636 *
2637 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2638 * The huge page must be locked.
2639 *
2640 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2641 *
2642 * Both head page and tail pages will inherit mapping, flags, and so on from
2643 * the hugepage.
2644 *
2645 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2646 * they are not mapped.
2647 *
2648 * Returns 0 if the hugepage is split successfully.
2649 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2650 * us.
2651 */
2652int split_huge_page_to_list(struct page *page, struct list_head *list)
2653{
2654	struct folio *folio = page_folio(page);
2655	struct deferred_split *ds_queue = get_deferred_split_queue(&folio->page);
2656	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2657	struct anon_vma *anon_vma = NULL;
2658	struct address_space *mapping = NULL;
2659	int extra_pins, ret;
2660	pgoff_t end;
2661	bool is_hzp;
2662
2663	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2664	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2665
2666	is_hzp = is_huge_zero_page(&folio->page);
2667	VM_WARN_ON_ONCE_FOLIO(is_hzp, folio);
2668	if (is_hzp)
2669		return -EBUSY;
2670
2671	if (folio_test_writeback(folio))
2672		return -EBUSY;
2673
2674	if (folio_test_anon(folio)) {
2675		/*
2676		 * The caller does not necessarily hold an mmap_lock that would
2677		 * prevent the anon_vma disappearing so we first we take a
2678		 * reference to it and then lock the anon_vma for write. This
2679		 * is similar to folio_lock_anon_vma_read except the write lock
2680		 * is taken to serialise against parallel split or collapse
2681		 * operations.
2682		 */
2683		anon_vma = folio_get_anon_vma(folio);
2684		if (!anon_vma) {
2685			ret = -EBUSY;
2686			goto out;
2687		}
2688		end = -1;
2689		mapping = NULL;
2690		anon_vma_lock_write(anon_vma);
2691	} else {
2692		gfp_t gfp;
2693
2694		mapping = folio->mapping;
2695
2696		/* Truncated ? */
2697		if (!mapping) {
2698			ret = -EBUSY;
2699			goto out;
2700		}
2701
2702		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2703							GFP_RECLAIM_MASK);
2704
2705		if (folio_test_private(folio) &&
2706				!filemap_release_folio(folio, gfp)) {
2707			ret = -EBUSY;
2708			goto out;
2709		}
2710
2711		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2712		if (xas_error(&xas)) {
2713			ret = xas_error(&xas);
2714			goto out;
2715		}
2716
2717		anon_vma = NULL;
2718		i_mmap_lock_read(mapping);
2719
2720		/*
2721		 *__split_huge_page() may need to trim off pages beyond EOF:
2722		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2723		 * which cannot be nested inside the page tree lock. So note
2724		 * end now: i_size itself may be changed at any moment, but
2725		 * folio lock is good enough to serialize the trimming.
2726		 */
2727		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2728		if (shmem_mapping(mapping))
2729			end = shmem_fallocend(mapping->host, end);
2730	}
2731
2732	/*
2733	 * Racy check if we can split the page, before unmap_folio() will
2734	 * split PMDs
2735	 */
2736	if (!can_split_folio(folio, &extra_pins)) {
2737		ret = -EAGAIN;
2738		goto out_unlock;
2739	}
2740
2741	unmap_folio(folio);
 
 
 
 
 
 
 
 
 
2742
2743	/* block interrupt reentry in xa_lock and spinlock */
2744	local_irq_disable();
2745	if (mapping) {
 
 
 
 
 
2746		/*
2747		 * Check if the folio is present in page cache.
2748		 * We assume all tail are present too, if folio is there.
2749		 */
2750		xas_lock(&xas);
2751		xas_reset(&xas);
2752		if (xas_load(&xas) != folio)
2753			goto fail;
2754	}
2755
2756	/* Prevent deferred_split_scan() touching ->_refcount */
2757	spin_lock(&ds_queue->split_queue_lock);
2758	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2759		if (!list_empty(page_deferred_list(&folio->page))) {
2760			ds_queue->split_queue_len--;
2761			list_del(page_deferred_list(&folio->page));
2762		}
2763		spin_unlock(&ds_queue->split_queue_lock);
2764		if (mapping) {
2765			int nr = folio_nr_pages(folio);
2766
2767			xas_split(&xas, folio, folio_order(folio));
2768			if (folio_test_swapbacked(folio)) {
2769				__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2770							-nr);
2771			} else {
2772				__lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2773							-nr);
2774				filemap_nr_thps_dec(mapping);
2775			}
2776		}
 
 
 
 
 
 
2777
2778		__split_huge_page(page, list, end);
2779		ret = 0;
 
2780	} else {
2781		spin_unlock(&ds_queue->split_queue_lock);
2782fail:
2783		if (mapping)
2784			xas_unlock(&xas);
2785		local_irq_enable();
2786		remap_page(folio, folio_nr_pages(folio));
2787		ret = -EAGAIN;
 
 
 
 
 
 
 
2788	}
2789
2790out_unlock:
2791	if (anon_vma) {
2792		anon_vma_unlock_write(anon_vma);
2793		put_anon_vma(anon_vma);
2794	}
2795	if (mapping)
2796		i_mmap_unlock_read(mapping);
2797out:
2798	xas_destroy(&xas);
2799	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2800	return ret;
2801}
2802
2803void free_transhuge_page(struct page *page)
2804{
2805	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2806	unsigned long flags;
2807
2808	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2809	if (!list_empty(page_deferred_list(page))) {
2810		ds_queue->split_queue_len--;
2811		list_del(page_deferred_list(page));
2812	}
2813	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2814	free_compound_page(page);
2815}
2816
2817void deferred_split_huge_page(struct page *page)
2818{
2819	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2820#ifdef CONFIG_MEMCG
2821	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2822#endif
2823	unsigned long flags;
2824
2825	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2826
2827	/*
2828	 * The try_to_unmap() in page reclaim path might reach here too,
2829	 * this may cause a race condition to corrupt deferred split queue.
2830	 * And, if page reclaim is already handling the same page, it is
2831	 * unnecessary to handle it again in shrinker.
2832	 *
2833	 * Check PageSwapCache to determine if the page is being
2834	 * handled by page reclaim since THP swap would add the page into
2835	 * swap cache before calling try_to_unmap().
2836	 */
2837	if (PageSwapCache(page))
2838		return;
2839
2840	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2841	if (list_empty(page_deferred_list(page))) {
2842		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2843		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2844		ds_queue->split_queue_len++;
2845#ifdef CONFIG_MEMCG
2846		if (memcg)
2847			set_shrinker_bit(memcg, page_to_nid(page),
2848					 deferred_split_shrinker.id);
2849#endif
2850	}
2851	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2852}
2853
2854static unsigned long deferred_split_count(struct shrinker *shrink,
2855		struct shrink_control *sc)
2856{
2857	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2858	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2859
2860#ifdef CONFIG_MEMCG
2861	if (sc->memcg)
2862		ds_queue = &sc->memcg->deferred_split_queue;
2863#endif
2864	return READ_ONCE(ds_queue->split_queue_len);
2865}
2866
2867static unsigned long deferred_split_scan(struct shrinker *shrink,
2868		struct shrink_control *sc)
2869{
2870	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2871	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2872	unsigned long flags;
2873	LIST_HEAD(list), *pos, *next;
2874	struct page *page;
2875	int split = 0;
2876
2877#ifdef CONFIG_MEMCG
2878	if (sc->memcg)
2879		ds_queue = &sc->memcg->deferred_split_queue;
2880#endif
2881
2882	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2883	/* Take pin on all head pages to avoid freeing them under us */
2884	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2885		page = list_entry((void *)pos, struct page, deferred_list);
2886		page = compound_head(page);
2887		if (get_page_unless_zero(page)) {
2888			list_move(page_deferred_list(page), &list);
2889		} else {
2890			/* We lost race with put_compound_page() */
2891			list_del_init(page_deferred_list(page));
2892			ds_queue->split_queue_len--;
2893		}
2894		if (!--sc->nr_to_scan)
2895			break;
2896	}
2897	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2898
2899	list_for_each_safe(pos, next, &list) {
2900		page = list_entry((void *)pos, struct page, deferred_list);
2901		if (!trylock_page(page))
2902			goto next;
2903		/* split_huge_page() removes page from list on success */
2904		if (!split_huge_page(page))
2905			split++;
2906		unlock_page(page);
2907next:
2908		put_page(page);
2909	}
2910
2911	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2912	list_splice_tail(&list, &ds_queue->split_queue);
2913	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2914
2915	/*
2916	 * Stop shrinker if we didn't split any page, but the queue is empty.
2917	 * This can happen if pages were freed under us.
2918	 */
2919	if (!split && list_empty(&ds_queue->split_queue))
2920		return SHRINK_STOP;
2921	return split;
2922}
2923
2924static struct shrinker deferred_split_shrinker = {
2925	.count_objects = deferred_split_count,
2926	.scan_objects = deferred_split_scan,
2927	.seeks = DEFAULT_SEEKS,
2928	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2929		 SHRINKER_NONSLAB,
2930};
2931
2932#ifdef CONFIG_DEBUG_FS
2933static void split_huge_pages_all(void)
2934{
2935	struct zone *zone;
2936	struct page *page;
2937	unsigned long pfn, max_zone_pfn;
2938	unsigned long total = 0, split = 0;
2939
2940	pr_debug("Split all THPs\n");
2941	for_each_zone(zone) {
2942		if (!managed_zone(zone))
2943			continue;
2944		max_zone_pfn = zone_end_pfn(zone);
2945		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2946			int nr_pages;
 
2947
2948			page = pfn_to_online_page(pfn);
2949			if (!page || !get_page_unless_zero(page))
2950				continue;
2951
2952			if (zone != page_zone(page))
2953				goto next;
2954
2955			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2956				goto next;
2957
2958			total++;
2959			lock_page(page);
2960			nr_pages = thp_nr_pages(page);
2961			if (!split_huge_page(page))
2962				split++;
2963			pfn += nr_pages - 1;
2964			unlock_page(page);
2965next:
2966			put_page(page);
2967			cond_resched();
2968		}
2969	}
2970
2971	pr_debug("%lu of %lu THP split\n", split, total);
2972}
2973
2974static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2975{
2976	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2977		    is_vm_hugetlb_page(vma);
2978}
 
 
2979
2980static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2981				unsigned long vaddr_end)
2982{
2983	int ret = 0;
2984	struct task_struct *task;
2985	struct mm_struct *mm;
2986	unsigned long total = 0, split = 0;
2987	unsigned long addr;
2988
2989	vaddr_start &= PAGE_MASK;
2990	vaddr_end &= PAGE_MASK;
2991
2992	/* Find the task_struct from pid */
2993	rcu_read_lock();
2994	task = find_task_by_vpid(pid);
2995	if (!task) {
2996		rcu_read_unlock();
2997		ret = -ESRCH;
2998		goto out;
2999	}
3000	get_task_struct(task);
3001	rcu_read_unlock();
3002
3003	/* Find the mm_struct */
3004	mm = get_task_mm(task);
3005	put_task_struct(task);
3006
3007	if (!mm) {
3008		ret = -EINVAL;
3009		goto out;
3010	}
3011
3012	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3013		 pid, vaddr_start, vaddr_end);
3014
3015	mmap_read_lock(mm);
3016	/*
3017	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3018	 * table filled with PTE-mapped THPs, each of which is distinct.
3019	 */
3020	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3021		struct vm_area_struct *vma = vma_lookup(mm, addr);
3022		struct page *page;
3023
3024		if (!vma)
3025			break;
3026
3027		/* skip special VMA and hugetlb VMA */
3028		if (vma_not_suitable_for_thp_split(vma)) {
3029			addr = vma->vm_end;
3030			continue;
3031		}
3032
3033		/* FOLL_DUMP to ignore special (like zero) pages */
3034		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3035
3036		if (IS_ERR_OR_NULL(page))
3037			continue;
3038
3039		if (!is_transparent_hugepage(page))
3040			goto next;
3041
3042		total++;
3043		if (!can_split_folio(page_folio(page), NULL))
3044			goto next;
3045
3046		if (!trylock_page(page))
3047			goto next;
3048
3049		if (!split_huge_page(page))
3050			split++;
3051
3052		unlock_page(page);
3053next:
3054		put_page(page);
3055		cond_resched();
3056	}
3057	mmap_read_unlock(mm);
3058	mmput(mm);
3059
3060	pr_debug("%lu of %lu THP split\n", split, total);
3061
3062out:
3063	return ret;
3064}
3065
3066static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3067				pgoff_t off_end)
3068{
3069	struct filename *file;
3070	struct file *candidate;
3071	struct address_space *mapping;
3072	int ret = -EINVAL;
3073	pgoff_t index;
3074	int nr_pages = 1;
3075	unsigned long total = 0, split = 0;
3076
3077	file = getname_kernel(file_path);
3078	if (IS_ERR(file))
3079		return ret;
3080
3081	candidate = file_open_name(file, O_RDONLY, 0);
3082	if (IS_ERR(candidate))
3083		goto out;
3084
3085	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3086		 file_path, off_start, off_end);
3087
3088	mapping = candidate->f_mapping;
3089
3090	for (index = off_start; index < off_end; index += nr_pages) {
3091		struct folio *folio = __filemap_get_folio(mapping, index,
3092						FGP_ENTRY, 0);
3093
3094		nr_pages = 1;
3095		if (xa_is_value(folio) || !folio)
3096			continue;
3097
3098		if (!folio_test_large(folio))
3099			goto next;
3100
3101		total++;
3102		nr_pages = folio_nr_pages(folio);
3103
3104		if (!folio_trylock(folio))
3105			goto next;
3106
3107		if (!split_folio(folio))
3108			split++;
3109
3110		folio_unlock(folio);
3111next:
3112		folio_put(folio);
3113		cond_resched();
3114	}
3115
3116	filp_close(candidate, NULL);
3117	ret = 0;
3118
3119	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3120out:
3121	putname(file);
3122	return ret;
3123}
3124
3125#define MAX_INPUT_BUF_SZ 255
3126
3127static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3128				size_t count, loff_t *ppops)
3129{
3130	static DEFINE_MUTEX(split_debug_mutex);
3131	ssize_t ret;
3132	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3133	char input_buf[MAX_INPUT_BUF_SZ];
3134	int pid;
3135	unsigned long vaddr_start, vaddr_end;
3136
3137	ret = mutex_lock_interruptible(&split_debug_mutex);
3138	if (ret)
3139		return ret;
3140
3141	ret = -EFAULT;
3142
3143	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3144	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3145		goto out;
3146
3147	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3148
3149	if (input_buf[0] == '/') {
3150		char *tok;
3151		char *buf = input_buf;
3152		char file_path[MAX_INPUT_BUF_SZ];
3153		pgoff_t off_start = 0, off_end = 0;
3154		size_t input_len = strlen(input_buf);
3155
3156		tok = strsep(&buf, ",");
3157		if (tok) {
3158			strcpy(file_path, tok);
3159		} else {
3160			ret = -EINVAL;
3161			goto out;
3162		}
3163
3164		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3165		if (ret != 2) {
3166			ret = -EINVAL;
3167			goto out;
3168		}
3169		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3170		if (!ret)
3171			ret = input_len;
3172
3173		goto out;
3174	}
3175
3176	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3177	if (ret == 1 && pid == 1) {
3178		split_huge_pages_all();
3179		ret = strlen(input_buf);
3180		goto out;
3181	} else if (ret != 3) {
3182		ret = -EINVAL;
3183		goto out;
3184	}
3185
3186	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3187	if (!ret)
3188		ret = strlen(input_buf);
3189out:
3190	mutex_unlock(&split_debug_mutex);
3191	return ret;
3192
3193}
3194
3195static const struct file_operations split_huge_pages_fops = {
3196	.owner	 = THIS_MODULE,
3197	.write	 = split_huge_pages_write,
3198	.llseek  = no_llseek,
3199};
3200
3201static int __init split_huge_pages_debugfs(void)
3202{
3203	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3204			    &split_huge_pages_fops);
3205	return 0;
3206}
3207late_initcall(split_huge_pages_debugfs);
3208#endif
3209
3210#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3211int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3212		struct page *page)
3213{
3214	struct vm_area_struct *vma = pvmw->vma;
3215	struct mm_struct *mm = vma->vm_mm;
3216	unsigned long address = pvmw->address;
3217	bool anon_exclusive;
3218	pmd_t pmdval;
3219	swp_entry_t entry;
3220	pmd_t pmdswp;
3221
3222	if (!(pvmw->pmd && !pvmw->pte))
3223		return 0;
 
 
 
3224
3225	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3226	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3227
3228	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3229	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3230	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3231		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3232		return -EBUSY;
3233	}
3234
3235	if (pmd_dirty(pmdval))
3236		set_page_dirty(page);
3237	if (pmd_write(pmdval))
3238		entry = make_writable_migration_entry(page_to_pfn(page));
3239	else if (anon_exclusive)
3240		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3241	else
3242		entry = make_readable_migration_entry(page_to_pfn(page));
3243	if (pmd_young(pmdval))
3244		entry = make_migration_entry_young(entry);
3245	if (pmd_dirty(pmdval))
3246		entry = make_migration_entry_dirty(entry);
3247	pmdswp = swp_entry_to_pmd(entry);
3248	if (pmd_soft_dirty(pmdval))
3249		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3250	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3251	page_remove_rmap(page, vma, true);
3252	put_page(page);
3253	trace_set_migration_pmd(address, pmd_val(pmdswp));
3254
3255	return 0;
 
3256}
3257
3258void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3259{
3260	struct vm_area_struct *vma = pvmw->vma;
3261	struct mm_struct *mm = vma->vm_mm;
3262	unsigned long address = pvmw->address;
3263	unsigned long haddr = address & HPAGE_PMD_MASK;
3264	pmd_t pmde;
3265	swp_entry_t entry;
3266
3267	if (!(pvmw->pmd && !pvmw->pte))
3268		return;
3269
3270	entry = pmd_to_swp_entry(*pvmw->pmd);
3271	get_page(new);
3272	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3273	if (pmd_swp_soft_dirty(*pvmw->pmd))
3274		pmde = pmd_mksoft_dirty(pmde);
3275	if (pmd_swp_uffd_wp(*pvmw->pmd))
3276		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3277	if (!is_migration_entry_young(entry))
3278		pmde = pmd_mkold(pmde);
3279	/* NOTE: this may contain setting soft-dirty on some archs */
3280	if (PageDirty(new) && is_migration_entry_dirty(entry))
3281		pmde = pmd_mkdirty(pmde);
3282	if (is_writable_migration_entry(entry))
3283		pmde = maybe_pmd_mkwrite(pmde, vma);
 
 
 
 
3284	else
3285		pmde = pmd_wrprotect(pmde);
3286
3287	if (PageAnon(new)) {
3288		rmap_t rmap_flags = RMAP_COMPOUND;
3289
3290		if (!is_readable_migration_entry(entry))
3291			rmap_flags |= RMAP_EXCLUSIVE;
3292
3293		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3294	} else {
3295		page_add_file_rmap(new, vma, true);
3296	}
3297	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3298	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3299
3300	/* No need to invalidate - it was non-present before */
3301	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3302	trace_remove_migration_pmd(address, pmd_val(pmde));
3303}
3304#endif