Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
 
  12#include <linux/sched/coredump.h>
  13#include <linux/sched/numa_balancing.h>
  14#include <linux/highmem.h>
  15#include <linux/hugetlb.h>
  16#include <linux/mmu_notifier.h>
  17#include <linux/rmap.h>
  18#include <linux/swap.h>
  19#include <linux/shrinker.h>
  20#include <linux/mm_inline.h>
  21#include <linux/swapops.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
 
 
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
  40
  41/*
  42 * By default, transparent hugepage support is disabled in order to avoid
  43 * risking an increased memory footprint for applications that are not
  44 * guaranteed to benefit from it. When transparent hugepage support is
  45 * enabled, it is for all mappings, and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
  60static struct shrinker deferred_split_shrinker;
  61
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65static struct page *get_huge_zero_page(void)
  66{
  67	struct page *zero_page;
  68retry:
  69	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  70		return READ_ONCE(huge_zero_page);
  71
  72	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  73			HPAGE_PMD_ORDER);
  74	if (!zero_page) {
  75		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  76		return NULL;
  77	}
  78	count_vm_event(THP_ZERO_PAGE_ALLOC);
  79	preempt_disable();
  80	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  81		preempt_enable();
  82		__free_pages(zero_page, compound_order(zero_page));
  83		goto retry;
  84	}
 
  85
  86	/* We take additional reference here. It will be put back by shrinker */
  87	atomic_set(&huge_zero_refcount, 2);
  88	preempt_enable();
  89	return READ_ONCE(huge_zero_page);
  90}
  91
  92static void put_huge_zero_page(void)
  93{
  94	/*
  95	 * Counter should never go to zero here. Only shrinker can put
  96	 * last reference.
  97	 */
  98	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  99}
 100
 101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 102{
 103	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 104		return READ_ONCE(huge_zero_page);
 105
 106	if (!get_huge_zero_page())
 107		return NULL;
 108
 109	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 110		put_huge_zero_page();
 111
 112	return READ_ONCE(huge_zero_page);
 113}
 114
 115void mm_put_huge_zero_page(struct mm_struct *mm)
 116{
 117	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 118		put_huge_zero_page();
 119}
 120
 121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 122					struct shrink_control *sc)
 123{
 124	/* we can free zero page only if last reference remains */
 125	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 126}
 127
 128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 129				       struct shrink_control *sc)
 130{
 131	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 132		struct page *zero_page = xchg(&huge_zero_page, NULL);
 133		BUG_ON(zero_page == NULL);
 
 134		__free_pages(zero_page, compound_order(zero_page));
 135		return HPAGE_PMD_NR;
 136	}
 137
 138	return 0;
 139}
 140
 141static struct shrinker huge_zero_page_shrinker = {
 142	.count_objects = shrink_huge_zero_page_count,
 143	.scan_objects = shrink_huge_zero_page_scan,
 144	.seeks = DEFAULT_SEEKS,
 145};
 146
 147#ifdef CONFIG_SYSFS
 148static ssize_t enabled_show(struct kobject *kobj,
 149			    struct kobj_attribute *attr, char *buf)
 150{
 
 
 151	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 152		return sprintf(buf, "[always] madvise never\n");
 153	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 154		return sprintf(buf, "always [madvise] never\n");
 
 155	else
 156		return sprintf(buf, "always madvise [never]\n");
 
 
 157}
 158
 159static ssize_t enabled_store(struct kobject *kobj,
 160			     struct kobj_attribute *attr,
 161			     const char *buf, size_t count)
 162{
 163	ssize_t ret = count;
 164
 165	if (!memcmp("always", buf,
 166		    min(sizeof("always")-1, count))) {
 167		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 168		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 169	} else if (!memcmp("madvise", buf,
 170			   min(sizeof("madvise")-1, count))) {
 171		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 172		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 173	} else if (!memcmp("never", buf,
 174			   min(sizeof("never")-1, count))) {
 175		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 176		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 177	} else
 178		ret = -EINVAL;
 179
 180	if (ret > 0) {
 181		int err = start_stop_khugepaged();
 182		if (err)
 183			ret = err;
 184	}
 185	return ret;
 186}
 187static struct kobj_attribute enabled_attr =
 188	__ATTR(enabled, 0644, enabled_show, enabled_store);
 189
 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
 191				struct kobj_attribute *attr, char *buf,
 192				enum transparent_hugepage_flag flag)
 193{
 194	return sprintf(buf, "%d\n",
 195		       !!test_bit(flag, &transparent_hugepage_flags));
 196}
 197
 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
 199				 struct kobj_attribute *attr,
 200				 const char *buf, size_t count,
 201				 enum transparent_hugepage_flag flag)
 202{
 203	unsigned long value;
 204	int ret;
 205
 206	ret = kstrtoul(buf, 10, &value);
 207	if (ret < 0)
 208		return ret;
 209	if (value > 1)
 210		return -EINVAL;
 211
 212	if (value)
 213		set_bit(flag, &transparent_hugepage_flags);
 214	else
 215		clear_bit(flag, &transparent_hugepage_flags);
 216
 217	return count;
 218}
 219
 220static ssize_t defrag_show(struct kobject *kobj,
 221			   struct kobj_attribute *attr, char *buf)
 222{
 223	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 224		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 225	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 226		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 227	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 228		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 229	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 230		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 231	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 
 
 
 
 
 
 
 
 
 232}
 233
 234static ssize_t defrag_store(struct kobject *kobj,
 235			    struct kobj_attribute *attr,
 236			    const char *buf, size_t count)
 237{
 238	if (!memcmp("always", buf,
 239		    min(sizeof("always")-1, count))) {
 240		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 241		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 242		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 243		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 244	} else if (!memcmp("defer+madvise", buf,
 245		    min(sizeof("defer+madvise")-1, count))) {
 246		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 247		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 248		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 249		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 250	} else if (!memcmp("defer", buf,
 251		    min(sizeof("defer")-1, count))) {
 252		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 253		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 254		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 255		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 256	} else if (!memcmp("madvise", buf,
 257			   min(sizeof("madvise")-1, count))) {
 258		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 259		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 260		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 261		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262	} else if (!memcmp("never", buf,
 263			   min(sizeof("never")-1, count))) {
 264		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 265		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 266		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 267		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 268	} else
 269		return -EINVAL;
 270
 271	return count;
 272}
 273static struct kobj_attribute defrag_attr =
 274	__ATTR(defrag, 0644, defrag_show, defrag_store);
 275
 276static ssize_t use_zero_page_show(struct kobject *kobj,
 277		struct kobj_attribute *attr, char *buf)
 278{
 279	return single_hugepage_flag_show(kobj, attr, buf,
 280				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 281}
 282static ssize_t use_zero_page_store(struct kobject *kobj,
 283		struct kobj_attribute *attr, const char *buf, size_t count)
 284{
 285	return single_hugepage_flag_store(kobj, attr, buf, count,
 286				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 287}
 288static struct kobj_attribute use_zero_page_attr =
 289	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 290
 291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 292		struct kobj_attribute *attr, char *buf)
 293{
 294	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 295}
 296static struct kobj_attribute hpage_pmd_size_attr =
 297	__ATTR_RO(hpage_pmd_size);
 298
 299#ifdef CONFIG_DEBUG_VM
 300static ssize_t debug_cow_show(struct kobject *kobj,
 301				struct kobj_attribute *attr, char *buf)
 302{
 303	return single_hugepage_flag_show(kobj, attr, buf,
 304				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 305}
 306static ssize_t debug_cow_store(struct kobject *kobj,
 307			       struct kobj_attribute *attr,
 308			       const char *buf, size_t count)
 309{
 310	return single_hugepage_flag_store(kobj, attr, buf, count,
 311				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 312}
 313static struct kobj_attribute debug_cow_attr =
 314	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 315#endif /* CONFIG_DEBUG_VM */
 316
 317static struct attribute *hugepage_attr[] = {
 318	&enabled_attr.attr,
 319	&defrag_attr.attr,
 320	&use_zero_page_attr.attr,
 321	&hpage_pmd_size_attr.attr,
 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 323	&shmem_enabled_attr.attr,
 324#endif
 325#ifdef CONFIG_DEBUG_VM
 326	&debug_cow_attr.attr,
 327#endif
 328	NULL,
 329};
 330
 331static const struct attribute_group hugepage_attr_group = {
 332	.attrs = hugepage_attr,
 333};
 334
 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 336{
 337	int err;
 338
 339	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 340	if (unlikely(!*hugepage_kobj)) {
 341		pr_err("failed to create transparent hugepage kobject\n");
 342		return -ENOMEM;
 343	}
 344
 345	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 346	if (err) {
 347		pr_err("failed to register transparent hugepage group\n");
 348		goto delete_obj;
 349	}
 350
 351	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 352	if (err) {
 353		pr_err("failed to register transparent hugepage group\n");
 354		goto remove_hp_group;
 355	}
 356
 357	return 0;
 358
 359remove_hp_group:
 360	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 361delete_obj:
 362	kobject_put(*hugepage_kobj);
 363	return err;
 364}
 365
 366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 367{
 368	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 369	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 370	kobject_put(hugepage_kobj);
 371}
 372#else
 373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 374{
 375	return 0;
 376}
 377
 378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 379{
 380}
 381#endif /* CONFIG_SYSFS */
 382
 383static int __init hugepage_init(void)
 384{
 385	int err;
 386	struct kobject *hugepage_kobj;
 387
 388	if (!has_transparent_hugepage()) {
 389		transparent_hugepage_flags = 0;
 
 
 
 
 390		return -EINVAL;
 391	}
 392
 393	/*
 394	 * hugepages can't be allocated by the buddy allocator
 395	 */
 396	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 397	/*
 398	 * we use page->mapping and page->index in second tail page
 399	 * as list_head: assuming THP order >= 2
 400	 */
 401	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 402
 403	err = hugepage_init_sysfs(&hugepage_kobj);
 404	if (err)
 405		goto err_sysfs;
 406
 407	err = khugepaged_init();
 408	if (err)
 409		goto err_slab;
 410
 411	err = register_shrinker(&huge_zero_page_shrinker);
 412	if (err)
 413		goto err_hzp_shrinker;
 414	err = register_shrinker(&deferred_split_shrinker);
 415	if (err)
 416		goto err_split_shrinker;
 417
 418	/*
 419	 * By default disable transparent hugepages on smaller systems,
 420	 * where the extra memory used could hurt more than TLB overhead
 421	 * is likely to save.  The admin can still enable it through /sys.
 422	 */
 423	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 424		transparent_hugepage_flags = 0;
 425		return 0;
 426	}
 427
 428	err = start_stop_khugepaged();
 429	if (err)
 430		goto err_khugepaged;
 431
 432	return 0;
 433err_khugepaged:
 434	unregister_shrinker(&deferred_split_shrinker);
 435err_split_shrinker:
 436	unregister_shrinker(&huge_zero_page_shrinker);
 437err_hzp_shrinker:
 438	khugepaged_destroy();
 439err_slab:
 440	hugepage_exit_sysfs(hugepage_kobj);
 441err_sysfs:
 442	return err;
 443}
 444subsys_initcall(hugepage_init);
 445
 446static int __init setup_transparent_hugepage(char *str)
 447{
 448	int ret = 0;
 449	if (!str)
 450		goto out;
 451	if (!strcmp(str, "always")) {
 452		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 453			&transparent_hugepage_flags);
 454		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 455			  &transparent_hugepage_flags);
 456		ret = 1;
 457	} else if (!strcmp(str, "madvise")) {
 458		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 459			  &transparent_hugepage_flags);
 460		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 461			&transparent_hugepage_flags);
 462		ret = 1;
 463	} else if (!strcmp(str, "never")) {
 464		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 465			  &transparent_hugepage_flags);
 466		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 467			  &transparent_hugepage_flags);
 468		ret = 1;
 469	}
 470out:
 471	if (!ret)
 472		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 473	return ret;
 474}
 475__setup("transparent_hugepage=", setup_transparent_hugepage);
 476
 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 478{
 479	if (likely(vma->vm_flags & VM_WRITE))
 480		pmd = pmd_mkwrite(pmd);
 481	return pmd;
 482}
 483
 484static inline struct list_head *page_deferred_list(struct page *page)
 
 485{
 486	/*
 487	 * ->lru in the tail pages is occupied by compound_head.
 488	 * Let's use ->mapping + ->index in the second tail page as list_head.
 489	 */
 490	return (struct list_head *)&page[2].mapping;
 
 
 
 
 
 
 
 
 
 491}
 
 492
 493void prep_transhuge_page(struct page *page)
 494{
 495	/*
 496	 * we use page->mapping and page->indexlru in second tail page
 497	 * as list_head: assuming THP order >= 2
 498	 */
 499
 500	INIT_LIST_HEAD(page_deferred_list(page));
 501	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 502}
 503
 504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 
 
 
 
 
 
 
 
 
 
 
 
 505		loff_t off, unsigned long flags, unsigned long size)
 506{
 507	unsigned long addr;
 508	loff_t off_end = off + len;
 509	loff_t off_align = round_up(off, size);
 510	unsigned long len_pad;
 511
 512	if (off_end <= off_align || (off_end - off_align) < size)
 513		return 0;
 514
 515	len_pad = len + size;
 516	if (len_pad < len || (off + len_pad) < off)
 517		return 0;
 518
 519	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 520					      off >> PAGE_SHIFT, flags);
 521	if (IS_ERR_VALUE(addr))
 
 
 
 
 
 522		return 0;
 523
 524	addr += (off - addr) & (size - 1);
 525	return addr;
 
 
 
 
 
 
 
 526}
 527
 528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 529		unsigned long len, unsigned long pgoff, unsigned long flags)
 530{
 
 531	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 532
 533	if (addr)
 534		goto out;
 535	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 536		goto out;
 537
 538	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 539	if (addr)
 540		return addr;
 541
 542 out:
 543	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 544}
 545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 546
 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
 548		gfp_t gfp)
 549{
 550	struct vm_area_struct *vma = vmf->vma;
 551	struct mem_cgroup *memcg;
 552	pgtable_t pgtable;
 553	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 554	int ret = 0;
 555
 556	VM_BUG_ON_PAGE(!PageCompound(page), page);
 557
 558	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 559		put_page(page);
 560		count_vm_event(THP_FAULT_FALLBACK);
 
 561		return VM_FAULT_FALLBACK;
 562	}
 
 563
 564	pgtable = pte_alloc_one(vma->vm_mm, haddr);
 565	if (unlikely(!pgtable)) {
 566		ret = VM_FAULT_OOM;
 567		goto release;
 568	}
 569
 570	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 571	/*
 572	 * The memory barrier inside __SetPageUptodate makes sure that
 573	 * clear_huge_page writes become visible before the set_pmd_at()
 574	 * write.
 575	 */
 576	__SetPageUptodate(page);
 577
 578	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 579	if (unlikely(!pmd_none(*vmf->pmd))) {
 580		goto unlock_release;
 581	} else {
 582		pmd_t entry;
 583
 584		ret = check_stable_address_space(vma->vm_mm);
 585		if (ret)
 586			goto unlock_release;
 587
 588		/* Deliver the page fault to userland */
 589		if (userfaultfd_missing(vma)) {
 590			int ret;
 591
 592			spin_unlock(vmf->ptl);
 593			mem_cgroup_cancel_charge(page, memcg, true);
 594			put_page(page);
 595			pte_free(vma->vm_mm, pgtable);
 596			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 597			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 598			return ret;
 599		}
 600
 601		entry = mk_huge_pmd(page, vma->vm_page_prot);
 602		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 603		page_add_new_anon_rmap(page, vma, haddr, true);
 604		mem_cgroup_commit_charge(page, memcg, false, true);
 605		lru_cache_add_active_or_unevictable(page, vma);
 606		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 607		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 
 608		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 609		mm_inc_nr_ptes(vma->vm_mm);
 610		spin_unlock(vmf->ptl);
 611		count_vm_event(THP_FAULT_ALLOC);
 
 612	}
 613
 614	return 0;
 615unlock_release:
 616	spin_unlock(vmf->ptl);
 617release:
 618	if (pgtable)
 619		pte_free(vma->vm_mm, pgtable);
 620	mem_cgroup_cancel_charge(page, memcg, true);
 621	put_page(page);
 622	return ret;
 623
 624}
 625
 626/*
 627 * always: directly stall for all thp allocations
 628 * defer: wake kswapd and fail if not immediately available
 629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 630 *		  fail if not immediately available
 631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 632 *	    available
 633 * never: never stall for any thp allocation
 634 */
 635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 636{
 637	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 638
 
 639	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 640		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 
 
 641	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 642		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 
 
 643	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 644		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 645							     __GFP_KSWAPD_RECLAIM);
 
 
 
 646	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 647		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 648							     0);
 
 649	return GFP_TRANSHUGE_LIGHT;
 650}
 651
 652/* Caller must hold page table lock. */
 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 654		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 655		struct page *zero_page)
 656{
 657	pmd_t entry;
 658	if (!pmd_none(*pmd))
 659		return false;
 660	entry = mk_pmd(zero_page, vma->vm_page_prot);
 661	entry = pmd_mkhuge(entry);
 662	if (pgtable)
 663		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 664	set_pmd_at(mm, haddr, pmd, entry);
 665	mm_inc_nr_ptes(mm);
 666	return true;
 667}
 668
 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 670{
 671	struct vm_area_struct *vma = vmf->vma;
 672	gfp_t gfp;
 673	struct page *page;
 674	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 675
 676	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 677		return VM_FAULT_FALLBACK;
 678	if (unlikely(anon_vma_prepare(vma)))
 679		return VM_FAULT_OOM;
 680	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 681		return VM_FAULT_OOM;
 682	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 683			!mm_forbids_zeropage(vma->vm_mm) &&
 684			transparent_hugepage_use_zero_page()) {
 685		pgtable_t pgtable;
 686		struct page *zero_page;
 687		bool set;
 688		int ret;
 689		pgtable = pte_alloc_one(vma->vm_mm, haddr);
 690		if (unlikely(!pgtable))
 691			return VM_FAULT_OOM;
 692		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 693		if (unlikely(!zero_page)) {
 694			pte_free(vma->vm_mm, pgtable);
 695			count_vm_event(THP_FAULT_FALLBACK);
 696			return VM_FAULT_FALLBACK;
 697		}
 698		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 699		ret = 0;
 700		set = false;
 701		if (pmd_none(*vmf->pmd)) {
 702			ret = check_stable_address_space(vma->vm_mm);
 703			if (ret) {
 704				spin_unlock(vmf->ptl);
 
 705			} else if (userfaultfd_missing(vma)) {
 706				spin_unlock(vmf->ptl);
 
 707				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 708				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 709			} else {
 710				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 711						   haddr, vmf->pmd, zero_page);
 
 712				spin_unlock(vmf->ptl);
 713				set = true;
 714			}
 715		} else
 716			spin_unlock(vmf->ptl);
 717		if (!set)
 718			pte_free(vma->vm_mm, pgtable);
 
 719		return ret;
 720	}
 721	gfp = alloc_hugepage_direct_gfpmask(vma);
 722	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 723	if (unlikely(!page)) {
 724		count_vm_event(THP_FAULT_FALLBACK);
 725		return VM_FAULT_FALLBACK;
 726	}
 727	prep_transhuge_page(page);
 728	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 729}
 730
 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 732		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 733		pgtable_t pgtable)
 734{
 735	struct mm_struct *mm = vma->vm_mm;
 736	pmd_t entry;
 737	spinlock_t *ptl;
 738
 739	ptl = pmd_lock(mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 741	if (pfn_t_devmap(pfn))
 742		entry = pmd_mkdevmap(entry);
 743	if (write) {
 744		entry = pmd_mkyoung(pmd_mkdirty(entry));
 745		entry = maybe_pmd_mkwrite(entry, vma);
 746	}
 747
 748	if (pgtable) {
 749		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 750		mm_inc_nr_ptes(mm);
 
 751	}
 752
 753	set_pmd_at(mm, addr, pmd, entry);
 754	update_mmu_cache_pmd(vma, addr, pmd);
 
 
 755	spin_unlock(ptl);
 
 
 756}
 757
 758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 759			pmd_t *pmd, pfn_t pfn, bool write)
 
 
 
 
 
 
 
 
 
 
 
 
 
 760{
 761	pgprot_t pgprot = vma->vm_page_prot;
 
 762	pgtable_t pgtable = NULL;
 
 763	/*
 764	 * If we had pmd_special, we could avoid all these restrictions,
 765	 * but we need to be consistent with PTEs and architectures that
 766	 * can't support a 'special' bit.
 767	 */
 768	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 
 769	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 770						(VM_PFNMAP|VM_MIXEDMAP));
 771	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 772	BUG_ON(!pfn_t_devmap(pfn));
 773
 774	if (addr < vma->vm_start || addr >= vma->vm_end)
 775		return VM_FAULT_SIGBUS;
 776
 777	if (arch_needs_pgtable_deposit()) {
 778		pgtable = pte_alloc_one(vma->vm_mm, addr);
 779		if (!pgtable)
 780			return VM_FAULT_OOM;
 781	}
 782
 783	track_pfn_insert(vma, &pgprot, pfn);
 784
 785	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
 786	return VM_FAULT_NOPAGE;
 787}
 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 789
 790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 792{
 793	if (likely(vma->vm_flags & VM_WRITE))
 794		pud = pud_mkwrite(pud);
 795	return pud;
 796}
 797
 798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 799		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 800{
 801	struct mm_struct *mm = vma->vm_mm;
 802	pud_t entry;
 803	spinlock_t *ptl;
 804
 805	ptl = pud_lock(mm, pud);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 807	if (pfn_t_devmap(pfn))
 808		entry = pud_mkdevmap(entry);
 809	if (write) {
 810		entry = pud_mkyoung(pud_mkdirty(entry));
 811		entry = maybe_pud_mkwrite(entry, vma);
 812	}
 813	set_pud_at(mm, addr, pud, entry);
 814	update_mmu_cache_pud(vma, addr, pud);
 
 
 815	spin_unlock(ptl);
 816}
 817
 818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 819			pud_t *pud, pfn_t pfn, bool write)
 
 
 
 
 
 
 
 
 
 
 
 
 
 820{
 821	pgprot_t pgprot = vma->vm_page_prot;
 
 
 822	/*
 823	 * If we had pud_special, we could avoid all these restrictions,
 824	 * but we need to be consistent with PTEs and architectures that
 825	 * can't support a 'special' bit.
 826	 */
 827	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 
 828	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 829						(VM_PFNMAP|VM_MIXEDMAP));
 830	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 831	BUG_ON(!pfn_t_devmap(pfn));
 832
 833	if (addr < vma->vm_start || addr >= vma->vm_end)
 834		return VM_FAULT_SIGBUS;
 835
 836	track_pfn_insert(vma, &pgprot, pfn);
 837
 838	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
 839	return VM_FAULT_NOPAGE;
 840}
 841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 843
 844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 845		pmd_t *pmd, int flags)
 846{
 847	pmd_t _pmd;
 848
 849	_pmd = pmd_mkyoung(*pmd);
 850	if (flags & FOLL_WRITE)
 851		_pmd = pmd_mkdirty(_pmd);
 852	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 853				pmd, _pmd, flags & FOLL_WRITE))
 854		update_mmu_cache_pmd(vma, addr, pmd);
 855}
 856
 857struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 858		pmd_t *pmd, int flags)
 859{
 860	unsigned long pfn = pmd_pfn(*pmd);
 861	struct mm_struct *mm = vma->vm_mm;
 862	struct dev_pagemap *pgmap;
 863	struct page *page;
 864
 865	assert_spin_locked(pmd_lockptr(mm, pmd));
 866
 867	/*
 868	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 869	 * not be in this function with `flags & FOLL_COW` set.
 870	 */
 871	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 872
 
 
 
 
 
 873	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 874		return NULL;
 875
 876	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 877		/* pass */;
 878	else
 879		return NULL;
 880
 881	if (flags & FOLL_TOUCH)
 882		touch_pmd(vma, addr, pmd, flags);
 883
 884	/*
 885	 * device mapped pages can only be returned if the
 886	 * caller will manage the page reference count.
 887	 */
 888	if (!(flags & FOLL_GET))
 889		return ERR_PTR(-EEXIST);
 890
 891	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 892	pgmap = get_dev_pagemap(pfn, NULL);
 893	if (!pgmap)
 894		return ERR_PTR(-EFAULT);
 895	page = pfn_to_page(pfn);
 896	get_page(page);
 897	put_dev_pagemap(pgmap);
 898
 899	return page;
 900}
 901
 902int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 903		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 904		  struct vm_area_struct *vma)
 905{
 906	spinlock_t *dst_ptl, *src_ptl;
 907	struct page *src_page;
 908	pmd_t pmd;
 909	pgtable_t pgtable = NULL;
 910	int ret = -ENOMEM;
 911
 912	/* Skip if can be re-fill on fault */
 913	if (!vma_is_anonymous(vma))
 914		return 0;
 915
 916	pgtable = pte_alloc_one(dst_mm, addr);
 917	if (unlikely(!pgtable))
 918		goto out;
 919
 920	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 921	src_ptl = pmd_lockptr(src_mm, src_pmd);
 922	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 923
 924	ret = -EAGAIN;
 925	pmd = *src_pmd;
 926
 927#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 928	if (unlikely(is_swap_pmd(pmd))) {
 929		swp_entry_t entry = pmd_to_swp_entry(pmd);
 930
 931		VM_BUG_ON(!is_pmd_migration_entry(pmd));
 932		if (is_write_migration_entry(entry)) {
 933			make_migration_entry_read(&entry);
 
 934			pmd = swp_entry_to_pmd(entry);
 935			if (pmd_swp_soft_dirty(*src_pmd))
 936				pmd = pmd_swp_mksoft_dirty(pmd);
 
 
 937			set_pmd_at(src_mm, addr, src_pmd, pmd);
 938		}
 939		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 940		mm_inc_nr_ptes(dst_mm);
 941		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 
 
 942		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 943		ret = 0;
 944		goto out_unlock;
 945	}
 946#endif
 947
 948	if (unlikely(!pmd_trans_huge(pmd))) {
 949		pte_free(dst_mm, pgtable);
 950		goto out_unlock;
 951	}
 952	/*
 953	 * When page table lock is held, the huge zero pmd should not be
 954	 * under splitting since we don't split the page itself, only pmd to
 955	 * a page table.
 956	 */
 957	if (is_huge_zero_pmd(pmd)) {
 958		struct page *zero_page;
 959		/*
 960		 * get_huge_zero_page() will never allocate a new page here,
 961		 * since we already have a zero page to copy. It just takes a
 962		 * reference.
 963		 */
 964		zero_page = mm_get_huge_zero_page(dst_mm);
 965		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 966				zero_page);
 967		ret = 0;
 968		goto out_unlock;
 969	}
 970
 971	src_page = pmd_page(pmd);
 972	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973	get_page(src_page);
 974	page_dup_rmap(src_page, true);
 975	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 
 976	mm_inc_nr_ptes(dst_mm);
 977	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 978
 979	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 
 
 980	pmd = pmd_mkold(pmd_wrprotect(pmd));
 981	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 982
 983	ret = 0;
 984out_unlock:
 985	spin_unlock(src_ptl);
 986	spin_unlock(dst_ptl);
 987out:
 988	return ret;
 989}
 990
 991#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 992static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 993		pud_t *pud, int flags)
 994{
 995	pud_t _pud;
 996
 997	_pud = pud_mkyoung(*pud);
 998	if (flags & FOLL_WRITE)
 999		_pud = pud_mkdirty(_pud);
1000	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1001				pud, _pud, flags & FOLL_WRITE))
1002		update_mmu_cache_pud(vma, addr, pud);
1003}
1004
1005struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1006		pud_t *pud, int flags)
1007{
1008	unsigned long pfn = pud_pfn(*pud);
1009	struct mm_struct *mm = vma->vm_mm;
1010	struct dev_pagemap *pgmap;
1011	struct page *page;
1012
1013	assert_spin_locked(pud_lockptr(mm, pud));
1014
1015	if (flags & FOLL_WRITE && !pud_write(*pud))
1016		return NULL;
1017
 
 
 
 
 
1018	if (pud_present(*pud) && pud_devmap(*pud))
1019		/* pass */;
1020	else
1021		return NULL;
1022
1023	if (flags & FOLL_TOUCH)
1024		touch_pud(vma, addr, pud, flags);
1025
1026	/*
1027	 * device mapped pages can only be returned if the
1028	 * caller will manage the page reference count.
 
 
1029	 */
1030	if (!(flags & FOLL_GET))
1031		return ERR_PTR(-EEXIST);
1032
1033	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1034	pgmap = get_dev_pagemap(pfn, NULL);
1035	if (!pgmap)
1036		return ERR_PTR(-EFAULT);
1037	page = pfn_to_page(pfn);
1038	get_page(page);
1039	put_dev_pagemap(pgmap);
1040
1041	return page;
1042}
1043
1044int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1046		  struct vm_area_struct *vma)
1047{
1048	spinlock_t *dst_ptl, *src_ptl;
1049	pud_t pud;
1050	int ret;
1051
1052	dst_ptl = pud_lock(dst_mm, dst_pud);
1053	src_ptl = pud_lockptr(src_mm, src_pud);
1054	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1055
1056	ret = -EAGAIN;
1057	pud = *src_pud;
1058	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1059		goto out_unlock;
1060
1061	/*
1062	 * When page table lock is held, the huge zero pud should not be
1063	 * under splitting since we don't split the page itself, only pud to
1064	 * a page table.
1065	 */
1066	if (is_huge_zero_pud(pud)) {
1067		/* No huge zero pud yet */
1068	}
1069
 
 
 
 
 
 
 
 
1070	pudp_set_wrprotect(src_mm, addr, src_pud);
1071	pud = pud_mkold(pud_wrprotect(pud));
1072	set_pud_at(dst_mm, addr, dst_pud, pud);
1073
1074	ret = 0;
1075out_unlock:
1076	spin_unlock(src_ptl);
1077	spin_unlock(dst_ptl);
1078	return ret;
1079}
1080
1081void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1082{
1083	pud_t entry;
1084	unsigned long haddr;
1085	bool write = vmf->flags & FAULT_FLAG_WRITE;
1086
1087	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1088	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1089		goto unlock;
1090
1091	entry = pud_mkyoung(orig_pud);
1092	if (write)
1093		entry = pud_mkdirty(entry);
1094	haddr = vmf->address & HPAGE_PUD_MASK;
1095	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1096		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1097
1098unlock:
1099	spin_unlock(vmf->ptl);
1100}
1101#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1102
1103void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1104{
1105	pmd_t entry;
1106	unsigned long haddr;
1107	bool write = vmf->flags & FAULT_FLAG_WRITE;
 
1108
1109	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1110	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1111		goto unlock;
1112
1113	entry = pmd_mkyoung(orig_pmd);
1114	if (write)
1115		entry = pmd_mkdirty(entry);
1116	haddr = vmf->address & HPAGE_PMD_MASK;
1117	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1118		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1119
1120unlock:
1121	spin_unlock(vmf->ptl);
1122}
1123
1124static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1125		struct page *page)
1126{
1127	struct vm_area_struct *vma = vmf->vma;
 
1128	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1129	struct mem_cgroup *memcg;
1130	pgtable_t pgtable;
1131	pmd_t _pmd;
1132	int ret = 0, i;
1133	struct page **pages;
1134	unsigned long mmun_start;	/* For mmu_notifiers */
1135	unsigned long mmun_end;		/* For mmu_notifiers */
1136
1137	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1138			GFP_KERNEL);
1139	if (unlikely(!pages)) {
1140		ret |= VM_FAULT_OOM;
1141		goto out;
1142	}
1143
1144	for (i = 0; i < HPAGE_PMD_NR; i++) {
1145		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1146					       vmf->address, page_to_nid(page));
1147		if (unlikely(!pages[i] ||
1148			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1149				     GFP_KERNEL, &memcg, false))) {
1150			if (pages[i])
1151				put_page(pages[i]);
1152			while (--i >= 0) {
1153				memcg = (void *)page_private(pages[i]);
1154				set_page_private(pages[i], 0);
1155				mem_cgroup_cancel_charge(pages[i], memcg,
1156						false);
1157				put_page(pages[i]);
1158			}
1159			kfree(pages);
1160			ret |= VM_FAULT_OOM;
1161			goto out;
1162		}
1163		set_page_private(pages[i], (unsigned long)memcg);
1164	}
1165
1166	for (i = 0; i < HPAGE_PMD_NR; i++) {
1167		copy_user_highpage(pages[i], page + i,
1168				   haddr + PAGE_SIZE * i, vma);
1169		__SetPageUptodate(pages[i]);
1170		cond_resched();
1171	}
1172
1173	mmun_start = haddr;
1174	mmun_end   = haddr + HPAGE_PMD_SIZE;
1175	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1176
1177	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1178	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179		goto out_free_pages;
1180	VM_BUG_ON_PAGE(!PageHead(page), page);
1181
1182	/*
1183	 * Leave pmd empty until pte is filled note we must notify here as
1184	 * concurrent CPU thread might write to new page before the call to
1185	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1186	 * device seeing memory write in different order than CPU.
1187	 *
1188	 * See Documentation/vm/mmu_notifier.txt
1189	 */
1190	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1191
1192	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1193	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1194
1195	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1196		pte_t entry;
1197		entry = mk_pte(pages[i], vma->vm_page_prot);
1198		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1199		memcg = (void *)page_private(pages[i]);
1200		set_page_private(pages[i], 0);
1201		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1202		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1203		lru_cache_add_active_or_unevictable(pages[i], vma);
1204		vmf->pte = pte_offset_map(&_pmd, haddr);
1205		VM_BUG_ON(!pte_none(*vmf->pte));
1206		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1207		pte_unmap(vmf->pte);
1208	}
1209	kfree(pages);
1210
1211	smp_wmb(); /* make pte visible before pmd */
1212	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1213	page_remove_rmap(page, true);
1214	spin_unlock(vmf->ptl);
1215
1216	/*
1217	 * No need to double call mmu_notifier->invalidate_range() callback as
1218	 * the above pmdp_huge_clear_flush_notify() did already call it.
1219	 */
1220	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1221						mmun_end);
1222
1223	ret |= VM_FAULT_WRITE;
1224	put_page(page);
1225
1226out:
1227	return ret;
1228
1229out_free_pages:
1230	spin_unlock(vmf->ptl);
1231	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1232	for (i = 0; i < HPAGE_PMD_NR; i++) {
1233		memcg = (void *)page_private(pages[i]);
1234		set_page_private(pages[i], 0);
1235		mem_cgroup_cancel_charge(pages[i], memcg, false);
1236		put_page(pages[i]);
1237	}
1238	kfree(pages);
1239	goto out;
1240}
1241
1242int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1243{
1244	struct vm_area_struct *vma = vmf->vma;
1245	struct page *page = NULL, *new_page;
1246	struct mem_cgroup *memcg;
1247	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1248	unsigned long mmun_start;	/* For mmu_notifiers */
1249	unsigned long mmun_end;		/* For mmu_notifiers */
1250	gfp_t huge_gfp;			/* for allocation and charge */
1251	int ret = 0;
1252
1253	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1254	VM_BUG_ON_VMA(!vma->anon_vma, vma);
 
1255	if (is_huge_zero_pmd(orig_pmd))
1256		goto alloc;
 
1257	spin_lock(vmf->ptl);
1258	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1259		goto out_unlock;
 
 
 
1260
1261	page = pmd_page(orig_pmd);
1262	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1263	/*
1264	 * We can only reuse the page if nobody else maps the huge page or it's
1265	 * part.
1266	 */
1267	if (!trylock_page(page)) {
1268		get_page(page);
1269		spin_unlock(vmf->ptl);
1270		lock_page(page);
1271		spin_lock(vmf->ptl);
1272		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
 
1273			unlock_page(page);
1274			put_page(page);
1275			goto out_unlock;
1276		}
1277		put_page(page);
1278	}
 
 
 
 
 
1279	if (reuse_swap_page(page, NULL)) {
1280		pmd_t entry;
1281		entry = pmd_mkyoung(orig_pmd);
1282		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1283		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1284			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1285		ret |= VM_FAULT_WRITE;
1286		unlock_page(page);
1287		goto out_unlock;
1288	}
1289	unlock_page(page);
1290	get_page(page);
1291	spin_unlock(vmf->ptl);
1292alloc:
1293	if (transparent_hugepage_enabled(vma) &&
1294	    !transparent_hugepage_debug_cow()) {
1295		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1296		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1297	} else
1298		new_page = NULL;
1299
1300	if (likely(new_page)) {
1301		prep_transhuge_page(new_page);
1302	} else {
1303		if (!page) {
1304			split_huge_pmd(vma, vmf->pmd, vmf->address);
1305			ret |= VM_FAULT_FALLBACK;
1306		} else {
1307			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1308			if (ret & VM_FAULT_OOM) {
1309				split_huge_pmd(vma, vmf->pmd, vmf->address);
1310				ret |= VM_FAULT_FALLBACK;
1311			}
1312			put_page(page);
1313		}
1314		count_vm_event(THP_FAULT_FALLBACK);
1315		goto out;
1316	}
1317
1318	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1319					huge_gfp, &memcg, true))) {
1320		put_page(new_page);
1321		split_huge_pmd(vma, vmf->pmd, vmf->address);
1322		if (page)
1323			put_page(page);
1324		ret |= VM_FAULT_FALLBACK;
1325		count_vm_event(THP_FAULT_FALLBACK);
1326		goto out;
1327	}
1328
1329	count_vm_event(THP_FAULT_ALLOC);
1330
1331	if (!page)
1332		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1333	else
1334		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1335	__SetPageUptodate(new_page);
1336
1337	mmun_start = haddr;
1338	mmun_end   = haddr + HPAGE_PMD_SIZE;
1339	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1340
1341	spin_lock(vmf->ptl);
1342	if (page)
1343		put_page(page);
1344	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345		spin_unlock(vmf->ptl);
1346		mem_cgroup_cancel_charge(new_page, memcg, true);
1347		put_page(new_page);
1348		goto out_mn;
1349	} else {
1350		pmd_t entry;
1351		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1352		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1353		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1354		page_add_new_anon_rmap(new_page, vma, haddr, true);
1355		mem_cgroup_commit_charge(new_page, memcg, false, true);
1356		lru_cache_add_active_or_unevictable(new_page, vma);
1357		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1358		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359		if (!page) {
1360			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1361		} else {
1362			VM_BUG_ON_PAGE(!PageHead(page), page);
1363			page_remove_rmap(page, true);
1364			put_page(page);
1365		}
1366		ret |= VM_FAULT_WRITE;
1367	}
 
 
1368	spin_unlock(vmf->ptl);
1369out_mn:
1370	/*
1371	 * No need to double call mmu_notifier->invalidate_range() callback as
1372	 * the above pmdp_huge_clear_flush_notify() did already call it.
1373	 */
1374	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1375					       mmun_end);
1376out:
1377	return ret;
1378out_unlock:
1379	spin_unlock(vmf->ptl);
1380	return ret;
1381}
1382
1383/*
1384 * FOLL_FORCE can write to even unwritable pmd's, but only
1385 * after we've gone through a COW cycle and they are dirty.
1386 */
1387static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1388{
1389	return pmd_write(pmd) ||
1390	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1391}
1392
1393struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1394				   unsigned long addr,
1395				   pmd_t *pmd,
1396				   unsigned int flags)
1397{
1398	struct mm_struct *mm = vma->vm_mm;
1399	struct page *page = NULL;
1400
1401	assert_spin_locked(pmd_lockptr(mm, pmd));
1402
1403	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1404		goto out;
1405
1406	/* Avoid dumping huge zero page */
1407	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1408		return ERR_PTR(-EFAULT);
1409
1410	/* Full NUMA hinting faults to serialise migration in fault paths */
1411	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1412		goto out;
1413
1414	page = pmd_page(*pmd);
1415	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
 
 
 
 
1416	if (flags & FOLL_TOUCH)
1417		touch_pmd(vma, addr, pmd, flags);
 
1418	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1419		/*
1420		 * We don't mlock() pte-mapped THPs. This way we can avoid
1421		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1422		 *
1423		 * For anon THP:
1424		 *
1425		 * In most cases the pmd is the only mapping of the page as we
1426		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1427		 * writable private mappings in populate_vma_page_range().
1428		 *
1429		 * The only scenario when we have the page shared here is if we
1430		 * mlocking read-only mapping shared over fork(). We skip
1431		 * mlocking such pages.
1432		 *
1433		 * For file THP:
1434		 *
1435		 * We can expect PageDoubleMap() to be stable under page lock:
1436		 * for file pages we set it in page_add_file_rmap(), which
1437		 * requires page to be locked.
1438		 */
1439
1440		if (PageAnon(page) && compound_mapcount(page) != 1)
1441			goto skip_mlock;
1442		if (PageDoubleMap(page) || !page->mapping)
1443			goto skip_mlock;
1444		if (!trylock_page(page))
1445			goto skip_mlock;
1446		lru_add_drain();
1447		if (page->mapping && !PageDoubleMap(page))
1448			mlock_vma_page(page);
1449		unlock_page(page);
1450	}
1451skip_mlock:
1452	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1453	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1454	if (flags & FOLL_GET)
1455		get_page(page);
1456
1457out:
1458	return page;
1459}
1460
1461/* NUMA hinting page fault entry point for trans huge pmds */
1462int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1463{
1464	struct vm_area_struct *vma = vmf->vma;
1465	struct anon_vma *anon_vma = NULL;
 
1466	struct page *page;
1467	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1468	int page_nid = -1, this_nid = numa_node_id();
1469	int target_nid, last_cpupid = -1;
1470	bool page_locked;
1471	bool migrated = false;
1472	bool was_writable;
1473	int flags = 0;
1474
1475	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1476	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1477		goto out_unlock;
1478
1479	/*
1480	 * If there are potential migrations, wait for completion and retry
1481	 * without disrupting NUMA hinting information. Do not relock and
1482	 * check_same as the page may no longer be mapped.
1483	 */
1484	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1485		page = pmd_page(*vmf->pmd);
1486		if (!get_page_unless_zero(page))
1487			goto out_unlock;
1488		spin_unlock(vmf->ptl);
1489		wait_on_page_locked(page);
1490		put_page(page);
1491		goto out;
1492	}
1493
1494	page = pmd_page(pmd);
1495	BUG_ON(is_huge_zero_page(page));
1496	page_nid = page_to_nid(page);
1497	last_cpupid = page_cpupid_last(page);
1498	count_vm_numa_event(NUMA_HINT_FAULTS);
1499	if (page_nid == this_nid) {
1500		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501		flags |= TNF_FAULT_LOCAL;
1502	}
1503
1504	/* See similar comment in do_numa_page for explanation */
1505	if (!pmd_savedwrite(pmd))
1506		flags |= TNF_NO_GROUP;
1507
1508	/*
1509	 * Acquire the page lock to serialise THP migrations but avoid dropping
1510	 * page_table_lock if at all possible
1511	 */
1512	page_locked = trylock_page(page);
1513	target_nid = mpol_misplaced(page, vma, haddr);
1514	if (target_nid == -1) {
1515		/* If the page was locked, there are no parallel migrations */
1516		if (page_locked)
1517			goto clear_pmdnuma;
1518	}
1519
1520	/* Migration could have started since the pmd_trans_migrating check */
1521	if (!page_locked) {
1522		page_nid = -1;
1523		if (!get_page_unless_zero(page))
1524			goto out_unlock;
1525		spin_unlock(vmf->ptl);
1526		wait_on_page_locked(page);
1527		put_page(page);
1528		goto out;
1529	}
1530
1531	/*
1532	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1533	 * to serialises splits
1534	 */
1535	get_page(page);
1536	spin_unlock(vmf->ptl);
1537	anon_vma = page_lock_anon_vma_read(page);
1538
1539	/* Confirm the PMD did not change while page_table_lock was released */
1540	spin_lock(vmf->ptl);
1541	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1542		unlock_page(page);
1543		put_page(page);
1544		page_nid = -1;
1545		goto out_unlock;
1546	}
1547
1548	/* Bail if we fail to protect against THP splits for any reason */
1549	if (unlikely(!anon_vma)) {
1550		put_page(page);
1551		page_nid = -1;
1552		goto clear_pmdnuma;
1553	}
1554
1555	/*
1556	 * Since we took the NUMA fault, we must have observed the !accessible
1557	 * bit. Make sure all other CPUs agree with that, to avoid them
1558	 * modifying the page we're about to migrate.
1559	 *
1560	 * Must be done under PTL such that we'll observe the relevant
1561	 * inc_tlb_flush_pending().
1562	 *
1563	 * We are not sure a pending tlb flush here is for a huge page
1564	 * mapping or not. Hence use the tlb range variant
1565	 */
1566	if (mm_tlb_flush_pending(vma->vm_mm))
1567		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568
1569	/*
1570	 * Migrate the THP to the requested node, returns with page unlocked
1571	 * and access rights restored.
1572	 */
1573	spin_unlock(vmf->ptl);
1574
1575	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1576				vmf->pmd, pmd, vmf->address, page, target_nid);
1577	if (migrated) {
1578		flags |= TNF_MIGRATED;
1579		page_nid = target_nid;
1580	} else
1581		flags |= TNF_MIGRATE_FAIL;
 
 
 
 
 
 
 
1582
1583	goto out;
1584clear_pmdnuma:
1585	BUG_ON(!PageLocked(page));
1586	was_writable = pmd_savedwrite(pmd);
1587	pmd = pmd_modify(pmd, vma->vm_page_prot);
 
 
 
 
 
1588	pmd = pmd_mkyoung(pmd);
1589	if (was_writable)
1590		pmd = pmd_mkwrite(pmd);
1591	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593	unlock_page(page);
1594out_unlock:
1595	spin_unlock(vmf->ptl);
1596
1597out:
1598	if (anon_vma)
1599		page_unlock_anon_vma_read(anon_vma);
1600
1601	if (page_nid != -1)
1602		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1603				flags);
1604
1605	return 0;
1606}
1607
1608/*
1609 * Return true if we do MADV_FREE successfully on entire pmd page.
1610 * Otherwise, return false.
1611 */
1612bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1613		pmd_t *pmd, unsigned long addr, unsigned long next)
1614{
1615	spinlock_t *ptl;
1616	pmd_t orig_pmd;
1617	struct page *page;
1618	struct mm_struct *mm = tlb->mm;
1619	bool ret = false;
1620
1621	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1622
1623	ptl = pmd_trans_huge_lock(pmd, vma);
1624	if (!ptl)
1625		goto out_unlocked;
1626
1627	orig_pmd = *pmd;
1628	if (is_huge_zero_pmd(orig_pmd))
1629		goto out;
1630
1631	if (unlikely(!pmd_present(orig_pmd))) {
1632		VM_BUG_ON(thp_migration_supported() &&
1633				  !is_pmd_migration_entry(orig_pmd));
1634		goto out;
1635	}
1636
1637	page = pmd_page(orig_pmd);
1638	/*
1639	 * If other processes are mapping this page, we couldn't discard
1640	 * the page unless they all do MADV_FREE so let's skip the page.
1641	 */
1642	if (page_mapcount(page) != 1)
1643		goto out;
1644
1645	if (!trylock_page(page))
1646		goto out;
1647
1648	/*
1649	 * If user want to discard part-pages of THP, split it so MADV_FREE
1650	 * will deactivate only them.
1651	 */
1652	if (next - addr != HPAGE_PMD_SIZE) {
1653		get_page(page);
1654		spin_unlock(ptl);
1655		split_huge_page(page);
1656		unlock_page(page);
1657		put_page(page);
1658		goto out_unlocked;
1659	}
1660
1661	if (PageDirty(page))
1662		ClearPageDirty(page);
1663	unlock_page(page);
1664
1665	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1666		pmdp_invalidate(vma, addr, pmd);
1667		orig_pmd = pmd_mkold(orig_pmd);
1668		orig_pmd = pmd_mkclean(orig_pmd);
1669
1670		set_pmd_at(mm, addr, pmd, orig_pmd);
1671		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1672	}
1673
1674	mark_page_lazyfree(page);
1675	ret = true;
1676out:
1677	spin_unlock(ptl);
1678out_unlocked:
1679	return ret;
1680}
1681
1682static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1683{
1684	pgtable_t pgtable;
1685
1686	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1687	pte_free(mm, pgtable);
1688	mm_dec_nr_ptes(mm);
1689}
1690
1691int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1692		 pmd_t *pmd, unsigned long addr)
1693{
1694	pmd_t orig_pmd;
1695	spinlock_t *ptl;
1696
1697	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1698
1699	ptl = __pmd_trans_huge_lock(pmd, vma);
1700	if (!ptl)
1701		return 0;
1702	/*
1703	 * For architectures like ppc64 we look at deposited pgtable
1704	 * when calling pmdp_huge_get_and_clear. So do the
1705	 * pgtable_trans_huge_withdraw after finishing pmdp related
1706	 * operations.
1707	 */
1708	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1709			tlb->fullmm);
1710	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1711	if (vma_is_dax(vma)) {
1712		if (arch_needs_pgtable_deposit())
1713			zap_deposited_table(tlb->mm, pmd);
1714		spin_unlock(ptl);
1715		if (is_huge_zero_pmd(orig_pmd))
1716			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1717	} else if (is_huge_zero_pmd(orig_pmd)) {
1718		zap_deposited_table(tlb->mm, pmd);
1719		spin_unlock(ptl);
1720		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1721	} else {
1722		struct page *page = NULL;
1723		int flush_needed = 1;
1724
1725		if (pmd_present(orig_pmd)) {
1726			page = pmd_page(orig_pmd);
1727			page_remove_rmap(page, true);
1728			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1729			VM_BUG_ON_PAGE(!PageHead(page), page);
1730		} else if (thp_migration_supported()) {
1731			swp_entry_t entry;
1732
1733			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1734			entry = pmd_to_swp_entry(orig_pmd);
1735			page = pfn_to_page(swp_offset(entry));
1736			flush_needed = 0;
1737		} else
1738			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1739
1740		if (PageAnon(page)) {
1741			zap_deposited_table(tlb->mm, pmd);
1742			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1743		} else {
1744			if (arch_needs_pgtable_deposit())
1745				zap_deposited_table(tlb->mm, pmd);
1746			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1747		}
1748
1749		spin_unlock(ptl);
1750		if (flush_needed)
1751			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1752	}
1753	return 1;
1754}
1755
1756#ifndef pmd_move_must_withdraw
1757static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1758					 spinlock_t *old_pmd_ptl,
1759					 struct vm_area_struct *vma)
1760{
1761	/*
1762	 * With split pmd lock we also need to move preallocated
1763	 * PTE page table if new_pmd is on different PMD page table.
1764	 *
1765	 * We also don't deposit and withdraw tables for file pages.
1766	 */
1767	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1768}
1769#endif
1770
1771static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1772{
1773#ifdef CONFIG_MEM_SOFT_DIRTY
1774	if (unlikely(is_pmd_migration_entry(pmd)))
1775		pmd = pmd_swp_mksoft_dirty(pmd);
1776	else if (pmd_present(pmd))
1777		pmd = pmd_mksoft_dirty(pmd);
1778#endif
1779	return pmd;
1780}
1781
1782bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1783		  unsigned long new_addr, unsigned long old_end,
1784		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1785{
1786	spinlock_t *old_ptl, *new_ptl;
1787	pmd_t pmd;
1788	struct mm_struct *mm = vma->vm_mm;
1789	bool force_flush = false;
1790
1791	if ((old_addr & ~HPAGE_PMD_MASK) ||
1792	    (new_addr & ~HPAGE_PMD_MASK) ||
1793	    old_end - old_addr < HPAGE_PMD_SIZE)
1794		return false;
1795
1796	/*
1797	 * The destination pmd shouldn't be established, free_pgtables()
1798	 * should have release it.
1799	 */
1800	if (WARN_ON(!pmd_none(*new_pmd))) {
1801		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1802		return false;
1803	}
1804
1805	/*
1806	 * We don't have to worry about the ordering of src and dst
1807	 * ptlocks because exclusive mmap_sem prevents deadlock.
1808	 */
1809	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1810	if (old_ptl) {
1811		new_ptl = pmd_lockptr(mm, new_pmd);
1812		if (new_ptl != old_ptl)
1813			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1814		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1815		if (pmd_present(pmd) && pmd_dirty(pmd))
1816			force_flush = true;
1817		VM_BUG_ON(!pmd_none(*new_pmd));
1818
1819		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1820			pgtable_t pgtable;
1821			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1822			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1823		}
1824		pmd = move_soft_dirty_pmd(pmd);
1825		set_pmd_at(mm, new_addr, new_pmd, pmd);
1826		if (new_ptl != old_ptl)
1827			spin_unlock(new_ptl);
1828		if (force_flush)
1829			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1830		else
1831			*need_flush = true;
1832		spin_unlock(old_ptl);
1833		return true;
1834	}
1835	return false;
1836}
1837
1838/*
1839 * Returns
1840 *  - 0 if PMD could not be locked
1841 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1842 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 
1843 */
1844int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1845		unsigned long addr, pgprot_t newprot, int prot_numa)
1846{
1847	struct mm_struct *mm = vma->vm_mm;
1848	spinlock_t *ptl;
1849	pmd_t entry;
1850	bool preserve_write;
1851	int ret;
 
 
 
 
 
 
1852
1853	ptl = __pmd_trans_huge_lock(pmd, vma);
1854	if (!ptl)
1855		return 0;
1856
1857	preserve_write = prot_numa && pmd_write(*pmd);
1858	ret = 1;
1859
1860#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861	if (is_swap_pmd(*pmd)) {
1862		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1863
1864		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1865		if (is_write_migration_entry(entry)) {
1866			pmd_t newpmd;
1867			/*
1868			 * A protection check is difficult so
1869			 * just be safe and disable write
1870			 */
1871			make_migration_entry_read(&entry);
 
1872			newpmd = swp_entry_to_pmd(entry);
1873			if (pmd_swp_soft_dirty(*pmd))
1874				newpmd = pmd_swp_mksoft_dirty(newpmd);
 
 
1875			set_pmd_at(mm, addr, pmd, newpmd);
1876		}
1877		goto unlock;
1878	}
1879#endif
1880
1881	/*
1882	 * Avoid trapping faults against the zero page. The read-only
1883	 * data is likely to be read-cached on the local CPU and
1884	 * local/remote hits to the zero page are not interesting.
1885	 */
1886	if (prot_numa && is_huge_zero_pmd(*pmd))
1887		goto unlock;
1888
1889	if (prot_numa && pmd_protnone(*pmd))
1890		goto unlock;
1891
1892	/*
1893	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1894	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895	 * which is also under down_read(mmap_sem):
1896	 *
1897	 *	CPU0:				CPU1:
1898	 *				change_huge_pmd(prot_numa=1)
1899	 *				 pmdp_huge_get_and_clear_notify()
1900	 * madvise_dontneed()
1901	 *  zap_pmd_range()
1902	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1903	 *   // skip the pmd
1904	 *				 set_pmd_at();
1905	 *				 // pmd is re-established
1906	 *
1907	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908	 * which may break userspace.
1909	 *
1910	 * pmdp_invalidate() is required to make sure we don't miss
1911	 * dirty/young flags set by hardware.
1912	 */
1913	entry = pmdp_invalidate(vma, addr, pmd);
1914
1915	entry = pmd_modify(entry, newprot);
1916	if (preserve_write)
1917		entry = pmd_mk_savedwrite(entry);
 
 
 
 
 
 
 
 
 
 
 
1918	ret = HPAGE_PMD_NR;
1919	set_pmd_at(mm, addr, pmd, entry);
1920	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1921unlock:
1922	spin_unlock(ptl);
1923	return ret;
1924}
1925
1926/*
1927 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1928 *
1929 * Note that if it returns page table lock pointer, this routine returns without
1930 * unlocking page table lock. So callers must unlock it.
1931 */
1932spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1933{
1934	spinlock_t *ptl;
1935	ptl = pmd_lock(vma->vm_mm, pmd);
1936	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1937			pmd_devmap(*pmd)))
1938		return ptl;
1939	spin_unlock(ptl);
1940	return NULL;
1941}
1942
1943/*
1944 * Returns true if a given pud maps a thp, false otherwise.
1945 *
1946 * Note that if it returns true, this routine returns without unlocking page
1947 * table lock. So callers must unlock it.
1948 */
1949spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1950{
1951	spinlock_t *ptl;
1952
1953	ptl = pud_lock(vma->vm_mm, pud);
1954	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1955		return ptl;
1956	spin_unlock(ptl);
1957	return NULL;
1958}
1959
1960#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1961int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1962		 pud_t *pud, unsigned long addr)
1963{
1964	pud_t orig_pud;
1965	spinlock_t *ptl;
1966
1967	ptl = __pud_trans_huge_lock(pud, vma);
1968	if (!ptl)
1969		return 0;
1970	/*
1971	 * For architectures like ppc64 we look at deposited pgtable
1972	 * when calling pudp_huge_get_and_clear. So do the
1973	 * pgtable_trans_huge_withdraw after finishing pudp related
1974	 * operations.
1975	 */
1976	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1977			tlb->fullmm);
1978	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1979	if (vma_is_dax(vma)) {
1980		spin_unlock(ptl);
1981		/* No zero page support yet */
1982	} else {
1983		/* No support for anonymous PUD pages yet */
1984		BUG();
1985	}
1986	return 1;
1987}
1988
1989static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1990		unsigned long haddr)
1991{
1992	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1993	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1994	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1995	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1996
1997	count_vm_event(THP_SPLIT_PUD);
1998
1999	pudp_huge_clear_flush_notify(vma, haddr, pud);
2000}
2001
2002void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2003		unsigned long address)
2004{
2005	spinlock_t *ptl;
2006	struct mm_struct *mm = vma->vm_mm;
2007	unsigned long haddr = address & HPAGE_PUD_MASK;
2008
2009	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2010	ptl = pud_lock(mm, pud);
 
 
 
2011	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2012		goto out;
2013	__split_huge_pud_locked(vma, pud, haddr);
2014
2015out:
2016	spin_unlock(ptl);
2017	/*
2018	 * No need to double call mmu_notifier->invalidate_range() callback as
2019	 * the above pudp_huge_clear_flush_notify() did already call it.
2020	 */
2021	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2022					       HPAGE_PUD_SIZE);
2023}
2024#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2025
2026static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2027		unsigned long haddr, pmd_t *pmd)
2028{
2029	struct mm_struct *mm = vma->vm_mm;
2030	pgtable_t pgtable;
2031	pmd_t _pmd;
2032	int i;
2033
2034	/*
2035	 * Leave pmd empty until pte is filled note that it is fine to delay
2036	 * notification until mmu_notifier_invalidate_range_end() as we are
2037	 * replacing a zero pmd write protected page with a zero pte write
2038	 * protected page.
2039	 *
2040	 * See Documentation/vm/mmu_notifier.txt
2041	 */
2042	pmdp_huge_clear_flush(vma, haddr, pmd);
2043
2044	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2045	pmd_populate(mm, &_pmd, pgtable);
2046
2047	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2048		pte_t *pte, entry;
2049		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2050		entry = pte_mkspecial(entry);
2051		pte = pte_offset_map(&_pmd, haddr);
2052		VM_BUG_ON(!pte_none(*pte));
2053		set_pte_at(mm, haddr, pte, entry);
2054		pte_unmap(pte);
2055	}
2056	smp_wmb(); /* make pte visible before pmd */
2057	pmd_populate(mm, pmd, pgtable);
2058}
2059
2060static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2061		unsigned long haddr, bool freeze)
2062{
2063	struct mm_struct *mm = vma->vm_mm;
2064	struct page *page;
2065	pgtable_t pgtable;
2066	pmd_t old_pmd, _pmd;
2067	bool young, write, soft_dirty, pmd_migration = false;
2068	unsigned long addr;
2069	int i;
2070
2071	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2072	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2073	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2074	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2075				&& !pmd_devmap(*pmd));
2076
2077	count_vm_event(THP_SPLIT_PMD);
2078
2079	if (!vma_is_anonymous(vma)) {
2080		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2081		/*
2082		 * We are going to unmap this huge page. So
2083		 * just go ahead and zap it
2084		 */
2085		if (arch_needs_pgtable_deposit())
2086			zap_deposited_table(mm, pmd);
2087		if (vma_is_dax(vma))
2088			return;
2089		page = pmd_page(_pmd);
2090		if (!PageReferenced(page) && pmd_young(_pmd))
2091			SetPageReferenced(page);
2092		page_remove_rmap(page, true);
2093		put_page(page);
2094		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
 
 
 
 
 
 
 
 
 
2095		return;
2096	} else if (is_huge_zero_pmd(*pmd)) {
 
 
2097		/*
2098		 * FIXME: Do we want to invalidate secondary mmu by calling
2099		 * mmu_notifier_invalidate_range() see comments below inside
2100		 * __split_huge_pmd() ?
2101		 *
2102		 * We are going from a zero huge page write protected to zero
2103		 * small page also write protected so it does not seems useful
2104		 * to invalidate secondary mmu at this time.
2105		 */
2106		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2107	}
2108
2109	/*
2110	 * Up to this point the pmd is present and huge and userland has the
2111	 * whole access to the hugepage during the split (which happens in
2112	 * place). If we overwrite the pmd with the not-huge version pointing
2113	 * to the pte here (which of course we could if all CPUs were bug
2114	 * free), userland could trigger a small page size TLB miss on the
2115	 * small sized TLB while the hugepage TLB entry is still established in
2116	 * the huge TLB. Some CPU doesn't like that.
2117	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2118	 * 383 on page 93. Intel should be safe but is also warns that it's
2119	 * only safe if the permission and cache attributes of the two entries
2120	 * loaded in the two TLB is identical (which should be the case here).
2121	 * But it is generally safer to never allow small and huge TLB entries
2122	 * for the same virtual address to be loaded simultaneously. So instead
2123	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2124	 * current pmd notpresent (atomically because here the pmd_trans_huge
2125	 * must remain set at all times on the pmd until the split is complete
2126	 * for this pmd), then we flush the SMP TLB and finally we write the
2127	 * non-huge version of the pmd entry with pmd_populate.
2128	 */
2129	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2130
2131#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2132	pmd_migration = is_pmd_migration_entry(old_pmd);
2133	if (pmd_migration) {
2134		swp_entry_t entry;
2135
2136		entry = pmd_to_swp_entry(old_pmd);
2137		page = pfn_to_page(swp_offset(entry));
2138	} else
2139#endif
 
 
 
2140		page = pmd_page(old_pmd);
 
 
 
 
 
 
 
2141	VM_BUG_ON_PAGE(!page_count(page), page);
2142	page_ref_add(page, HPAGE_PMD_NR - 1);
2143	if (pmd_dirty(old_pmd))
2144		SetPageDirty(page);
2145	write = pmd_write(old_pmd);
2146	young = pmd_young(old_pmd);
2147	soft_dirty = pmd_soft_dirty(old_pmd);
2148
2149	/*
2150	 * Withdraw the table only after we mark the pmd entry invalid.
2151	 * This's critical for some architectures (Power).
2152	 */
2153	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2154	pmd_populate(mm, &_pmd, pgtable);
2155
2156	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2157		pte_t entry, *pte;
2158		/*
2159		 * Note that NUMA hinting access restrictions are not
2160		 * transferred to avoid any possibility of altering
2161		 * permissions across VMAs.
2162		 */
2163		if (freeze || pmd_migration) {
2164			swp_entry_t swp_entry;
2165			swp_entry = make_migration_entry(page + i, write);
 
 
 
 
 
2166			entry = swp_entry_to_pte(swp_entry);
2167			if (soft_dirty)
2168				entry = pte_swp_mksoft_dirty(entry);
 
 
2169		} else {
2170			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2171			entry = maybe_mkwrite(entry, vma);
2172			if (!write)
2173				entry = pte_wrprotect(entry);
2174			if (!young)
2175				entry = pte_mkold(entry);
2176			if (soft_dirty)
2177				entry = pte_mksoft_dirty(entry);
 
 
2178		}
2179		pte = pte_offset_map(&_pmd, addr);
2180		BUG_ON(!pte_none(*pte));
2181		set_pte_at(mm, addr, pte, entry);
2182		atomic_inc(&page[i]._mapcount);
2183		pte_unmap(pte);
2184	}
2185
2186	/*
2187	 * Set PG_double_map before dropping compound_mapcount to avoid
2188	 * false-negative page_mapped().
2189	 */
2190	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2191		for (i = 0; i < HPAGE_PMD_NR; i++)
2192			atomic_inc(&page[i]._mapcount);
 
2193	}
2194
2195	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2196		/* Last compound_mapcount is gone. */
2197		__dec_node_page_state(page, NR_ANON_THPS);
2198		if (TestClearPageDoubleMap(page)) {
2199			/* No need in mapcount reference anymore */
 
 
2200			for (i = 0; i < HPAGE_PMD_NR; i++)
2201				atomic_dec(&page[i]._mapcount);
2202		}
 
 
 
 
 
 
 
 
 
 
 
 
 
2203	}
2204
2205	smp_wmb(); /* make pte visible before pmd */
2206	pmd_populate(mm, pmd, pgtable);
2207
2208	if (freeze) {
2209		for (i = 0; i < HPAGE_PMD_NR; i++) {
2210			page_remove_rmap(page + i, false);
2211			put_page(page + i);
2212		}
2213	}
2214}
2215
2216void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2217		unsigned long address, bool freeze, struct page *page)
2218{
2219	spinlock_t *ptl;
2220	struct mm_struct *mm = vma->vm_mm;
2221	unsigned long haddr = address & HPAGE_PMD_MASK;
 
2222
2223	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2224	ptl = pmd_lock(mm, pmd);
 
 
 
2225
2226	/*
2227	 * If caller asks to setup a migration entries, we need a page to check
2228	 * pmd against. Otherwise we can end up replacing wrong page.
2229	 */
2230	VM_BUG_ON(freeze && !page);
2231	if (page && page != pmd_page(*pmd))
2232	        goto out;
 
 
 
2233
 
2234	if (pmd_trans_huge(*pmd)) {
2235		page = pmd_page(*pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236		if (PageMlocked(page))
2237			clear_page_mlock(page);
2238	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2239		goto out;
2240	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2241out:
2242	spin_unlock(ptl);
 
 
2243	/*
2244	 * No need to double call mmu_notifier->invalidate_range() callback.
2245	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2246	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2247	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2248	 *    fault will trigger a flush_notify before pointing to a new page
2249	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2250	 *    page in the meantime)
2251	 *  3) Split a huge pmd into pte pointing to the same page. No need
2252	 *     to invalidate secondary tlb entry they are all still valid.
2253	 *     any further changes to individual pte will notify. So no need
2254	 *     to call mmu_notifier->invalidate_range()
2255	 */
2256	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2257					       HPAGE_PMD_SIZE);
2258}
2259
2260void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2261		bool freeze, struct page *page)
2262{
2263	pgd_t *pgd;
2264	p4d_t *p4d;
2265	pud_t *pud;
2266	pmd_t *pmd;
2267
2268	pgd = pgd_offset(vma->vm_mm, address);
2269	if (!pgd_present(*pgd))
2270		return;
2271
2272	p4d = p4d_offset(pgd, address);
2273	if (!p4d_present(*p4d))
2274		return;
2275
2276	pud = pud_offset(p4d, address);
2277	if (!pud_present(*pud))
2278		return;
2279
2280	pmd = pmd_offset(pud, address);
2281
2282	__split_huge_pmd(vma, pmd, address, freeze, page);
2283}
2284
 
 
 
 
 
 
 
 
 
 
 
 
2285void vma_adjust_trans_huge(struct vm_area_struct *vma,
2286			     unsigned long start,
2287			     unsigned long end,
2288			     long adjust_next)
2289{
2290	/*
2291	 * If the new start address isn't hpage aligned and it could
2292	 * previously contain an hugepage: check if we need to split
2293	 * an huge pmd.
2294	 */
2295	if (start & ~HPAGE_PMD_MASK &&
2296	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2297	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2298		split_huge_pmd_address(vma, start, false, NULL);
2299
2300	/*
2301	 * If the new end address isn't hpage aligned and it could
2302	 * previously contain an hugepage: check if we need to split
2303	 * an huge pmd.
2304	 */
2305	if (end & ~HPAGE_PMD_MASK &&
2306	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2307	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2308		split_huge_pmd_address(vma, end, false, NULL);
2309
2310	/*
2311	 * If we're also updating the vma->vm_next->vm_start, if the new
2312	 * vm_next->vm_start isn't page aligned and it could previously
2313	 * contain an hugepage: check if we need to split an huge pmd.
2314	 */
2315	if (adjust_next > 0) {
2316		struct vm_area_struct *next = vma->vm_next;
2317		unsigned long nstart = next->vm_start;
2318		nstart += adjust_next << PAGE_SHIFT;
2319		if (nstart & ~HPAGE_PMD_MASK &&
2320		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2321		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2322			split_huge_pmd_address(next, nstart, false, NULL);
2323	}
2324}
2325
2326static void freeze_page(struct page *page)
2327{
2328	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2329		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2330	bool unmap_success;
2331
2332	VM_BUG_ON_PAGE(!PageHead(page), page);
2333
 
 
 
 
 
2334	if (PageAnon(page))
2335		ttu_flags |= TTU_SPLIT_FREEZE;
 
 
2336
2337	unmap_success = try_to_unmap(page, ttu_flags);
2338	VM_BUG_ON_PAGE(!unmap_success, page);
2339}
2340
2341static void unfreeze_page(struct page *page)
2342{
2343	int i;
 
 
 
 
2344	if (PageTransHuge(page)) {
2345		remove_migration_ptes(page, page, true);
2346	} else {
2347		for (i = 0; i < HPAGE_PMD_NR; i++)
2348			remove_migration_ptes(page + i, page + i, true);
2349	}
2350}
2351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2352static void __split_huge_page_tail(struct page *head, int tail,
2353		struct lruvec *lruvec, struct list_head *list)
2354{
2355	struct page *page_tail = head + tail;
2356
2357	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2358
2359	/*
2360	 * Clone page flags before unfreezing refcount.
2361	 *
2362	 * After successful get_page_unless_zero() might follow flags change,
2363	 * for exmaple lock_page() which set PG_waiters.
2364	 */
2365	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2366	page_tail->flags |= (head->flags &
2367			((1L << PG_referenced) |
2368			 (1L << PG_swapbacked) |
2369			 (1L << PG_swapcache) |
2370			 (1L << PG_mlocked) |
2371			 (1L << PG_uptodate) |
2372			 (1L << PG_active) |
 
2373			 (1L << PG_locked) |
2374			 (1L << PG_unevictable) |
 
 
 
2375			 (1L << PG_dirty)));
2376
 
 
 
 
 
 
2377	/* Page flags must be visible before we make the page non-compound. */
2378	smp_wmb();
2379
2380	/*
2381	 * Clear PageTail before unfreezing page refcount.
2382	 *
2383	 * After successful get_page_unless_zero() might follow put_page()
2384	 * which needs correct compound_head().
2385	 */
2386	clear_compound_head(page_tail);
2387
2388	/* Finally unfreeze refcount. Additional reference from page cache. */
2389	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2390					  PageSwapCache(head)));
2391
2392	if (page_is_young(head))
2393		set_page_young(page_tail);
2394	if (page_is_idle(head))
2395		set_page_idle(page_tail);
2396
2397	/* ->mapping in first tail page is compound_mapcount */
2398	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2399			page_tail);
2400	page_tail->mapping = head->mapping;
2401
2402	page_tail->index = head->index + tail;
2403	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2404
2405	/*
2406	 * always add to the tail because some iterators expect new
2407	 * pages to show after the currently processed elements - e.g.
2408	 * migrate_pages
2409	 */
2410	lru_add_page_tail(head, page_tail, lruvec, list);
2411}
2412
2413static void __split_huge_page(struct page *page, struct list_head *list,
2414		unsigned long flags)
2415{
2416	struct page *head = compound_head(page);
2417	struct zone *zone = page_zone(head);
2418	struct lruvec *lruvec;
2419	pgoff_t end = -1;
 
 
2420	int i;
2421
2422	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2423
2424	/* complete memcg works before add pages to LRU */
2425	mem_cgroup_split_huge_fixup(head);
2426
2427	if (!PageAnon(page))
2428		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
 
 
 
 
 
2429
2430	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
 
 
 
2431		__split_huge_page_tail(head, i, lruvec, list);
2432		/* Some pages can be beyond i_size: drop them from page cache */
2433		if (head[i].index >= end) {
2434			ClearPageDirty(head + i);
2435			__delete_from_page_cache(head + i, NULL);
2436			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2437				shmem_uncharge(head->mapping->host, 1);
2438			put_page(head + i);
 
 
 
 
 
 
2439		}
2440	}
2441
2442	ClearPageCompound(head);
 
 
 
 
 
2443	/* See comment in __split_huge_page_tail() */
2444	if (PageAnon(head)) {
2445		/* Additional pin to radix tree of swap cache */
2446		if (PageSwapCache(head))
2447			page_ref_add(head, 2);
2448		else
 
2449			page_ref_inc(head);
 
2450	} else {
2451		/* Additional pin to radix tree */
2452		page_ref_add(head, 2);
2453		xa_unlock(&head->mapping->i_pages);
2454	}
 
2455
2456	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2457
2458	unfreeze_page(head);
 
 
 
 
2459
2460	for (i = 0; i < HPAGE_PMD_NR; i++) {
2461		struct page *subpage = head + i;
2462		if (subpage == page)
2463			continue;
2464		unlock_page(subpage);
2465
2466		/*
2467		 * Subpages may be freed if there wasn't any mapping
2468		 * like if add_to_swap() is running on a lru page that
2469		 * had its mapping zapped. And freeing these pages
2470		 * requires taking the lru_lock so we do the put_page
2471		 * of the tail pages after the split is complete.
2472		 */
2473		put_page(subpage);
2474	}
2475}
2476
2477int total_mapcount(struct page *page)
2478{
2479	int i, compound, ret;
2480
2481	VM_BUG_ON_PAGE(PageTail(page), page);
2482
2483	if (likely(!PageCompound(page)))
2484		return atomic_read(&page->_mapcount) + 1;
2485
2486	compound = compound_mapcount(page);
 
2487	if (PageHuge(page))
2488		return compound;
2489	ret = compound;
2490	for (i = 0; i < HPAGE_PMD_NR; i++)
2491		ret += atomic_read(&page[i]._mapcount) + 1;
2492	/* File pages has compound_mapcount included in _mapcount */
2493	if (!PageAnon(page))
2494		return ret - compound * HPAGE_PMD_NR;
2495	if (PageDoubleMap(page))
2496		ret -= HPAGE_PMD_NR;
2497	return ret;
2498}
2499
2500/*
2501 * This calculates accurately how many mappings a transparent hugepage
2502 * has (unlike page_mapcount() which isn't fully accurate). This full
2503 * accuracy is primarily needed to know if copy-on-write faults can
2504 * reuse the page and change the mapping to read-write instead of
2505 * copying them. At the same time this returns the total_mapcount too.
2506 *
2507 * The function returns the highest mapcount any one of the subpages
2508 * has. If the return value is one, even if different processes are
2509 * mapping different subpages of the transparent hugepage, they can
2510 * all reuse it, because each process is reusing a different subpage.
2511 *
2512 * The total_mapcount is instead counting all virtual mappings of the
2513 * subpages. If the total_mapcount is equal to "one", it tells the
2514 * caller all mappings belong to the same "mm" and in turn the
2515 * anon_vma of the transparent hugepage can become the vma->anon_vma
2516 * local one as no other process may be mapping any of the subpages.
2517 *
2518 * It would be more accurate to replace page_mapcount() with
2519 * page_trans_huge_mapcount(), however we only use
2520 * page_trans_huge_mapcount() in the copy-on-write faults where we
2521 * need full accuracy to avoid breaking page pinning, because
2522 * page_trans_huge_mapcount() is slower than page_mapcount().
2523 */
2524int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2525{
2526	int i, ret, _total_mapcount, mapcount;
2527
2528	/* hugetlbfs shouldn't call it */
2529	VM_BUG_ON_PAGE(PageHuge(page), page);
2530
2531	if (likely(!PageTransCompound(page))) {
2532		mapcount = atomic_read(&page->_mapcount) + 1;
2533		if (total_mapcount)
2534			*total_mapcount = mapcount;
2535		return mapcount;
2536	}
2537
2538	page = compound_head(page);
2539
2540	_total_mapcount = ret = 0;
2541	for (i = 0; i < HPAGE_PMD_NR; i++) {
2542		mapcount = atomic_read(&page[i]._mapcount) + 1;
2543		ret = max(ret, mapcount);
2544		_total_mapcount += mapcount;
2545	}
2546	if (PageDoubleMap(page)) {
2547		ret -= 1;
2548		_total_mapcount -= HPAGE_PMD_NR;
2549	}
2550	mapcount = compound_mapcount(page);
2551	ret += mapcount;
2552	_total_mapcount += mapcount;
2553	if (total_mapcount)
2554		*total_mapcount = _total_mapcount;
2555	return ret;
2556}
2557
2558/* Racy check whether the huge page can be split */
2559bool can_split_huge_page(struct page *page, int *pextra_pins)
2560{
2561	int extra_pins;
2562
2563	/* Additional pins from radix tree */
2564	if (PageAnon(page))
2565		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2566	else
2567		extra_pins = HPAGE_PMD_NR;
2568	if (pextra_pins)
2569		*pextra_pins = extra_pins;
2570	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2571}
2572
2573/*
2574 * This function splits huge page into normal pages. @page can point to any
2575 * subpage of huge page to split. Split doesn't change the position of @page.
2576 *
2577 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2578 * The huge page must be locked.
2579 *
2580 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2581 *
2582 * Both head page and tail pages will inherit mapping, flags, and so on from
2583 * the hugepage.
2584 *
2585 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2586 * they are not mapped.
2587 *
2588 * Returns 0 if the hugepage is split successfully.
2589 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2590 * us.
2591 */
2592int split_huge_page_to_list(struct page *page, struct list_head *list)
2593{
2594	struct page *head = compound_head(page);
2595	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2596	struct anon_vma *anon_vma = NULL;
2597	struct address_space *mapping = NULL;
2598	int count, mapcount, extra_pins, ret;
2599	bool mlocked;
2600	unsigned long flags;
2601
2602	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2603	VM_BUG_ON_PAGE(!PageLocked(page), page);
2604	VM_BUG_ON_PAGE(!PageCompound(page), page);
2605
2606	if (PageWriteback(page))
2607		return -EBUSY;
2608
2609	if (PageAnon(head)) {
2610		/*
2611		 * The caller does not necessarily hold an mmap_sem that would
2612		 * prevent the anon_vma disappearing so we first we take a
2613		 * reference to it and then lock the anon_vma for write. This
2614		 * is similar to page_lock_anon_vma_read except the write lock
2615		 * is taken to serialise against parallel split or collapse
2616		 * operations.
2617		 */
2618		anon_vma = page_get_anon_vma(head);
2619		if (!anon_vma) {
2620			ret = -EBUSY;
2621			goto out;
2622		}
 
2623		mapping = NULL;
2624		anon_vma_lock_write(anon_vma);
2625	} else {
2626		mapping = head->mapping;
2627
2628		/* Truncated ? */
2629		if (!mapping) {
2630			ret = -EBUSY;
2631			goto out;
2632		}
2633
2634		anon_vma = NULL;
2635		i_mmap_lock_read(mapping);
 
 
 
 
 
 
 
 
 
2636	}
2637
2638	/*
2639	 * Racy check if we can split the page, before freeze_page() will
2640	 * split PMDs
2641	 */
2642	if (!can_split_huge_page(head, &extra_pins)) {
2643		ret = -EBUSY;
2644		goto out_unlock;
2645	}
2646
2647	mlocked = PageMlocked(page);
2648	freeze_page(head);
2649	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2650
2651	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2652	if (mlocked)
2653		lru_add_drain();
2654
2655	/* prevent PageLRU to go away from under us, and freeze lru stats */
2656	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2657
 
 
2658	if (mapping) {
2659		void **pslot;
2660
2661		xa_lock(&mapping->i_pages);
2662		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2663				page_index(head));
2664		/*
2665		 * Check if the head page is present in radix tree.
2666		 * We assume all tail are present too, if head is there.
2667		 */
2668		if (radix_tree_deref_slot_protected(pslot,
2669					&mapping->i_pages.xa_lock) != head)
2670			goto fail;
2671	}
2672
2673	/* Prevent deferred_split_scan() touching ->_refcount */
2674	spin_lock(&pgdata->split_queue_lock);
2675	count = page_count(head);
2676	mapcount = total_mapcount(head);
2677	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2678		if (!list_empty(page_deferred_list(head))) {
2679			pgdata->split_queue_len--;
2680			list_del(page_deferred_list(head));
2681		}
2682		if (mapping)
2683			__dec_node_page_state(page, NR_SHMEM_THPS);
2684		spin_unlock(&pgdata->split_queue_lock);
2685		__split_huge_page(page, list, flags);
2686		if (PageSwapCache(head)) {
2687			swp_entry_t entry = { .val = page_private(head) };
 
 
 
 
 
 
 
2688
2689			ret = split_swap_cluster(entry);
2690		} else
2691			ret = 0;
2692	} else {
2693		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2694			pr_alert("total_mapcount: %u, page_count(): %u\n",
2695					mapcount, count);
2696			if (PageTail(page))
2697				dump_page(head, NULL);
2698			dump_page(page, "total_mapcount(head) > 0");
2699			BUG();
2700		}
2701		spin_unlock(&pgdata->split_queue_lock);
2702fail:		if (mapping)
2703			xa_unlock(&mapping->i_pages);
2704		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2705		unfreeze_page(head);
2706		ret = -EBUSY;
2707	}
2708
2709out_unlock:
2710	if (anon_vma) {
2711		anon_vma_unlock_write(anon_vma);
2712		put_anon_vma(anon_vma);
2713	}
2714	if (mapping)
2715		i_mmap_unlock_read(mapping);
2716out:
2717	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2718	return ret;
2719}
2720
2721void free_transhuge_page(struct page *page)
2722{
2723	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2724	unsigned long flags;
2725
2726	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2727	if (!list_empty(page_deferred_list(page))) {
2728		pgdata->split_queue_len--;
2729		list_del(page_deferred_list(page));
2730	}
2731	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2732	free_compound_page(page);
2733}
2734
2735void deferred_split_huge_page(struct page *page)
2736{
2737	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
 
 
 
2738	unsigned long flags;
2739
2740	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2741
2742	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
2743	if (list_empty(page_deferred_list(page))) {
2744		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2745		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2746		pgdata->split_queue_len++;
 
 
 
 
 
2747	}
2748	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2749}
2750
2751static unsigned long deferred_split_count(struct shrinker *shrink,
2752		struct shrink_control *sc)
2753{
2754	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2755	return READ_ONCE(pgdata->split_queue_len);
 
 
 
 
 
 
2756}
2757
2758static unsigned long deferred_split_scan(struct shrinker *shrink,
2759		struct shrink_control *sc)
2760{
2761	struct pglist_data *pgdata = NODE_DATA(sc->nid);
 
2762	unsigned long flags;
2763	LIST_HEAD(list), *pos, *next;
2764	struct page *page;
2765	int split = 0;
2766
2767	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 
 
 
 
 
2768	/* Take pin on all head pages to avoid freeing them under us */
2769	list_for_each_safe(pos, next, &pgdata->split_queue) {
2770		page = list_entry((void *)pos, struct page, mapping);
2771		page = compound_head(page);
2772		if (get_page_unless_zero(page)) {
2773			list_move(page_deferred_list(page), &list);
2774		} else {
2775			/* We lost race with put_compound_page() */
2776			list_del_init(page_deferred_list(page));
2777			pgdata->split_queue_len--;
2778		}
2779		if (!--sc->nr_to_scan)
2780			break;
2781	}
2782	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2783
2784	list_for_each_safe(pos, next, &list) {
2785		page = list_entry((void *)pos, struct page, mapping);
2786		if (!trylock_page(page))
2787			goto next;
2788		/* split_huge_page() removes page from list on success */
2789		if (!split_huge_page(page))
2790			split++;
2791		unlock_page(page);
2792next:
2793		put_page(page);
2794	}
2795
2796	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2797	list_splice_tail(&list, &pgdata->split_queue);
2798	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2799
2800	/*
2801	 * Stop shrinker if we didn't split any page, but the queue is empty.
2802	 * This can happen if pages were freed under us.
2803	 */
2804	if (!split && list_empty(&pgdata->split_queue))
2805		return SHRINK_STOP;
2806	return split;
2807}
2808
2809static struct shrinker deferred_split_shrinker = {
2810	.count_objects = deferred_split_count,
2811	.scan_objects = deferred_split_scan,
2812	.seeks = DEFAULT_SEEKS,
2813	.flags = SHRINKER_NUMA_AWARE,
 
2814};
2815
2816#ifdef CONFIG_DEBUG_FS
2817static int split_huge_pages_set(void *data, u64 val)
2818{
2819	struct zone *zone;
2820	struct page *page;
2821	unsigned long pfn, max_zone_pfn;
2822	unsigned long total = 0, split = 0;
2823
2824	if (val != 1)
2825		return -EINVAL;
2826
2827	for_each_populated_zone(zone) {
2828		max_zone_pfn = zone_end_pfn(zone);
2829		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2830			if (!pfn_valid(pfn))
2831				continue;
2832
2833			page = pfn_to_page(pfn);
2834			if (!get_page_unless_zero(page))
2835				continue;
2836
2837			if (zone != page_zone(page))
2838				goto next;
2839
2840			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2841				goto next;
2842
2843			total++;
2844			lock_page(page);
2845			if (!split_huge_page(page))
2846				split++;
2847			unlock_page(page);
2848next:
2849			put_page(page);
 
2850		}
2851	}
2852
2853	pr_info("%lu of %lu THP split\n", split, total);
 
2854
2855	return 0;
 
 
 
2856}
2857DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2858		"%llu\n");
2859
2860static int __init split_huge_pages_debugfs(void)
 
2861{
2862	void *ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863
2864	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2865			&split_huge_pages_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2866	if (!ret)
2867		pr_warn("Failed to create split_huge_pages in debugfs");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2868	return 0;
2869}
2870late_initcall(split_huge_pages_debugfs);
2871#endif
2872
2873#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2874void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2875		struct page *page)
2876{
2877	struct vm_area_struct *vma = pvmw->vma;
2878	struct mm_struct *mm = vma->vm_mm;
2879	unsigned long address = pvmw->address;
2880	pmd_t pmdval;
2881	swp_entry_t entry;
2882	pmd_t pmdswp;
2883
2884	if (!(pvmw->pmd && !pvmw->pte))
2885		return;
2886
2887	mmu_notifier_invalidate_range_start(mm, address,
2888			address + HPAGE_PMD_SIZE);
2889
2890	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2891	pmdval = *pvmw->pmd;
2892	pmdp_invalidate(vma, address, pvmw->pmd);
2893	if (pmd_dirty(pmdval))
2894		set_page_dirty(page);
2895	entry = make_migration_entry(page, pmd_write(pmdval));
 
 
 
2896	pmdswp = swp_entry_to_pmd(entry);
2897	if (pmd_soft_dirty(pmdval))
2898		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2899	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2900	page_remove_rmap(page, true);
2901	put_page(page);
2902
2903	mmu_notifier_invalidate_range_end(mm, address,
2904			address + HPAGE_PMD_SIZE);
2905}
2906
2907void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2908{
2909	struct vm_area_struct *vma = pvmw->vma;
2910	struct mm_struct *mm = vma->vm_mm;
2911	unsigned long address = pvmw->address;
2912	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2913	pmd_t pmde;
2914	swp_entry_t entry;
2915
2916	if (!(pvmw->pmd && !pvmw->pte))
2917		return;
2918
2919	entry = pmd_to_swp_entry(*pvmw->pmd);
2920	get_page(new);
2921	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2922	if (pmd_swp_soft_dirty(*pvmw->pmd))
2923		pmde = pmd_mksoft_dirty(pmde);
2924	if (is_write_migration_entry(entry))
2925		pmde = maybe_pmd_mkwrite(pmde, vma);
 
 
2926
2927	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2928	if (PageAnon(new))
2929		page_add_anon_rmap(new, vma, mmun_start, true);
2930	else
2931		page_add_file_rmap(new, true);
2932	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2933	if (vma->vm_flags & VM_LOCKED)
2934		mlock_vma_page(new);
2935	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2936}
2937#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2009  Red Hat, Inc.
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/coredump.h>
  12#include <linux/sched/numa_balancing.h>
  13#include <linux/highmem.h>
  14#include <linux/hugetlb.h>
  15#include <linux/mmu_notifier.h>
  16#include <linux/rmap.h>
  17#include <linux/swap.h>
  18#include <linux/shrinker.h>
  19#include <linux/mm_inline.h>
  20#include <linux/swapops.h>
  21#include <linux/dax.h>
  22#include <linux/khugepaged.h>
  23#include <linux/freezer.h>
  24#include <linux/pfn_t.h>
  25#include <linux/mman.h>
  26#include <linux/memremap.h>
  27#include <linux/pagemap.h>
  28#include <linux/debugfs.h>
  29#include <linux/migrate.h>
  30#include <linux/hashtable.h>
  31#include <linux/userfaultfd_k.h>
  32#include <linux/page_idle.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/oom.h>
  35#include <linux/numa.h>
  36#include <linux/page_owner.h>
  37
  38#include <asm/tlb.h>
  39#include <asm/pgalloc.h>
  40#include "internal.h"
  41
  42/*
  43 * By default, transparent hugepage support is disabled in order to avoid
  44 * risking an increased memory footprint for applications that are not
  45 * guaranteed to benefit from it. When transparent hugepage support is
  46 * enabled, it is for all mappings, and khugepaged scans all mappings.
  47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  48 * for all hugepage allocations.
  49 */
  50unsigned long transparent_hugepage_flags __read_mostly =
  51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  52	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  53#endif
  54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  55	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  56#endif
  57	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  58	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  59	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  60
  61static struct shrinker deferred_split_shrinker;
  62
  63static atomic_t huge_zero_refcount;
  64struct page *huge_zero_page __read_mostly;
  65unsigned long huge_zero_pfn __read_mostly = ~0UL;
  66
  67static inline bool file_thp_enabled(struct vm_area_struct *vma)
  68{
  69	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
  70	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
  71	       (vma->vm_flags & VM_EXEC);
  72}
  73
  74bool transparent_hugepage_active(struct vm_area_struct *vma)
  75{
  76	/* The addr is used to check if the vma size fits */
  77	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
  78
  79	if (!transhuge_vma_suitable(vma, addr))
  80		return false;
  81	if (vma_is_anonymous(vma))
  82		return __transparent_hugepage_enabled(vma);
  83	if (vma_is_shmem(vma))
  84		return shmem_huge_enabled(vma);
  85	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
  86		return file_thp_enabled(vma);
  87
  88	return false;
  89}
  90
  91static bool get_huge_zero_page(void)
  92{
  93	struct page *zero_page;
  94retry:
  95	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  96		return true;
  97
  98	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  99			HPAGE_PMD_ORDER);
 100	if (!zero_page) {
 101		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 102		return false;
 103	}
 104	count_vm_event(THP_ZERO_PAGE_ALLOC);
 105	preempt_disable();
 106	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 107		preempt_enable();
 108		__free_pages(zero_page, compound_order(zero_page));
 109		goto retry;
 110	}
 111	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
 112
 113	/* We take additional reference here. It will be put back by shrinker */
 114	atomic_set(&huge_zero_refcount, 2);
 115	preempt_enable();
 116	return true;
 117}
 118
 119static void put_huge_zero_page(void)
 120{
 121	/*
 122	 * Counter should never go to zero here. Only shrinker can put
 123	 * last reference.
 124	 */
 125	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 126}
 127
 128struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 129{
 130	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 131		return READ_ONCE(huge_zero_page);
 132
 133	if (!get_huge_zero_page())
 134		return NULL;
 135
 136	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 137		put_huge_zero_page();
 138
 139	return READ_ONCE(huge_zero_page);
 140}
 141
 142void mm_put_huge_zero_page(struct mm_struct *mm)
 143{
 144	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 145		put_huge_zero_page();
 146}
 147
 148static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 149					struct shrink_control *sc)
 150{
 151	/* we can free zero page only if last reference remains */
 152	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 153}
 154
 155static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 156				       struct shrink_control *sc)
 157{
 158	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 159		struct page *zero_page = xchg(&huge_zero_page, NULL);
 160		BUG_ON(zero_page == NULL);
 161		WRITE_ONCE(huge_zero_pfn, ~0UL);
 162		__free_pages(zero_page, compound_order(zero_page));
 163		return HPAGE_PMD_NR;
 164	}
 165
 166	return 0;
 167}
 168
 169static struct shrinker huge_zero_page_shrinker = {
 170	.count_objects = shrink_huge_zero_page_count,
 171	.scan_objects = shrink_huge_zero_page_scan,
 172	.seeks = DEFAULT_SEEKS,
 173};
 174
 175#ifdef CONFIG_SYSFS
 176static ssize_t enabled_show(struct kobject *kobj,
 177			    struct kobj_attribute *attr, char *buf)
 178{
 179	const char *output;
 180
 181	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 182		output = "[always] madvise never";
 183	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 184			  &transparent_hugepage_flags))
 185		output = "always [madvise] never";
 186	else
 187		output = "always madvise [never]";
 188
 189	return sysfs_emit(buf, "%s\n", output);
 190}
 191
 192static ssize_t enabled_store(struct kobject *kobj,
 193			     struct kobj_attribute *attr,
 194			     const char *buf, size_t count)
 195{
 196	ssize_t ret = count;
 197
 198	if (sysfs_streq(buf, "always")) {
 
 199		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 200		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 201	} else if (sysfs_streq(buf, "madvise")) {
 
 202		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 203		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 204	} else if (sysfs_streq(buf, "never")) {
 
 205		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 206		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 207	} else
 208		ret = -EINVAL;
 209
 210	if (ret > 0) {
 211		int err = start_stop_khugepaged();
 212		if (err)
 213			ret = err;
 214	}
 215	return ret;
 216}
 217static struct kobj_attribute enabled_attr =
 218	__ATTR(enabled, 0644, enabled_show, enabled_store);
 219
 220ssize_t single_hugepage_flag_show(struct kobject *kobj,
 221				  struct kobj_attribute *attr, char *buf,
 222				  enum transparent_hugepage_flag flag)
 223{
 224	return sysfs_emit(buf, "%d\n",
 225			  !!test_bit(flag, &transparent_hugepage_flags));
 226}
 227
 228ssize_t single_hugepage_flag_store(struct kobject *kobj,
 229				 struct kobj_attribute *attr,
 230				 const char *buf, size_t count,
 231				 enum transparent_hugepage_flag flag)
 232{
 233	unsigned long value;
 234	int ret;
 235
 236	ret = kstrtoul(buf, 10, &value);
 237	if (ret < 0)
 238		return ret;
 239	if (value > 1)
 240		return -EINVAL;
 241
 242	if (value)
 243		set_bit(flag, &transparent_hugepage_flags);
 244	else
 245		clear_bit(flag, &transparent_hugepage_flags);
 246
 247	return count;
 248}
 249
 250static ssize_t defrag_show(struct kobject *kobj,
 251			   struct kobj_attribute *attr, char *buf)
 252{
 253	const char *output;
 254
 255	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 256		     &transparent_hugepage_flags))
 257		output = "[always] defer defer+madvise madvise never";
 258	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 259			  &transparent_hugepage_flags))
 260		output = "always [defer] defer+madvise madvise never";
 261	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
 262			  &transparent_hugepage_flags))
 263		output = "always defer [defer+madvise] madvise never";
 264	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 265			  &transparent_hugepage_flags))
 266		output = "always defer defer+madvise [madvise] never";
 267	else
 268		output = "always defer defer+madvise madvise [never]";
 269
 270	return sysfs_emit(buf, "%s\n", output);
 271}
 272
 273static ssize_t defrag_store(struct kobject *kobj,
 274			    struct kobj_attribute *attr,
 275			    const char *buf, size_t count)
 276{
 277	if (sysfs_streq(buf, "always")) {
 
 278		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 279		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 280		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 281		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 282	} else if (sysfs_streq(buf, "defer+madvise")) {
 
 283		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 284		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 285		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 286		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 287	} else if (sysfs_streq(buf, "defer")) {
 
 288		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 289		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 290		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 291		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 292	} else if (sysfs_streq(buf, "madvise")) {
 
 293		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 294		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 295		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 296		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 297	} else if (sysfs_streq(buf, "never")) {
 
 298		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 299		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 300		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 301		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 302	} else
 303		return -EINVAL;
 304
 305	return count;
 306}
 307static struct kobj_attribute defrag_attr =
 308	__ATTR(defrag, 0644, defrag_show, defrag_store);
 309
 310static ssize_t use_zero_page_show(struct kobject *kobj,
 311				  struct kobj_attribute *attr, char *buf)
 312{
 313	return single_hugepage_flag_show(kobj, attr, buf,
 314					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 315}
 316static ssize_t use_zero_page_store(struct kobject *kobj,
 317		struct kobj_attribute *attr, const char *buf, size_t count)
 318{
 319	return single_hugepage_flag_store(kobj, attr, buf, count,
 320				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 321}
 322static struct kobj_attribute use_zero_page_attr =
 323	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 324
 325static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 326				   struct kobj_attribute *attr, char *buf)
 327{
 328	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
 329}
 330static struct kobj_attribute hpage_pmd_size_attr =
 331	__ATTR_RO(hpage_pmd_size);
 332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333static struct attribute *hugepage_attr[] = {
 334	&enabled_attr.attr,
 335	&defrag_attr.attr,
 336	&use_zero_page_attr.attr,
 337	&hpage_pmd_size_attr.attr,
 338#ifdef CONFIG_SHMEM
 339	&shmem_enabled_attr.attr,
 340#endif
 
 
 
 341	NULL,
 342};
 343
 344static const struct attribute_group hugepage_attr_group = {
 345	.attrs = hugepage_attr,
 346};
 347
 348static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 349{
 350	int err;
 351
 352	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 353	if (unlikely(!*hugepage_kobj)) {
 354		pr_err("failed to create transparent hugepage kobject\n");
 355		return -ENOMEM;
 356	}
 357
 358	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 359	if (err) {
 360		pr_err("failed to register transparent hugepage group\n");
 361		goto delete_obj;
 362	}
 363
 364	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 365	if (err) {
 366		pr_err("failed to register transparent hugepage group\n");
 367		goto remove_hp_group;
 368	}
 369
 370	return 0;
 371
 372remove_hp_group:
 373	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 374delete_obj:
 375	kobject_put(*hugepage_kobj);
 376	return err;
 377}
 378
 379static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 380{
 381	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 382	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 383	kobject_put(hugepage_kobj);
 384}
 385#else
 386static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 387{
 388	return 0;
 389}
 390
 391static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 392{
 393}
 394#endif /* CONFIG_SYSFS */
 395
 396static int __init hugepage_init(void)
 397{
 398	int err;
 399	struct kobject *hugepage_kobj;
 400
 401	if (!has_transparent_hugepage()) {
 402		/*
 403		 * Hardware doesn't support hugepages, hence disable
 404		 * DAX PMD support.
 405		 */
 406		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
 407		return -EINVAL;
 408	}
 409
 410	/*
 411	 * hugepages can't be allocated by the buddy allocator
 412	 */
 413	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 414	/*
 415	 * we use page->mapping and page->index in second tail page
 416	 * as list_head: assuming THP order >= 2
 417	 */
 418	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 419
 420	err = hugepage_init_sysfs(&hugepage_kobj);
 421	if (err)
 422		goto err_sysfs;
 423
 424	err = khugepaged_init();
 425	if (err)
 426		goto err_slab;
 427
 428	err = register_shrinker(&huge_zero_page_shrinker);
 429	if (err)
 430		goto err_hzp_shrinker;
 431	err = register_shrinker(&deferred_split_shrinker);
 432	if (err)
 433		goto err_split_shrinker;
 434
 435	/*
 436	 * By default disable transparent hugepages on smaller systems,
 437	 * where the extra memory used could hurt more than TLB overhead
 438	 * is likely to save.  The admin can still enable it through /sys.
 439	 */
 440	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
 441		transparent_hugepage_flags = 0;
 442		return 0;
 443	}
 444
 445	err = start_stop_khugepaged();
 446	if (err)
 447		goto err_khugepaged;
 448
 449	return 0;
 450err_khugepaged:
 451	unregister_shrinker(&deferred_split_shrinker);
 452err_split_shrinker:
 453	unregister_shrinker(&huge_zero_page_shrinker);
 454err_hzp_shrinker:
 455	khugepaged_destroy();
 456err_slab:
 457	hugepage_exit_sysfs(hugepage_kobj);
 458err_sysfs:
 459	return err;
 460}
 461subsys_initcall(hugepage_init);
 462
 463static int __init setup_transparent_hugepage(char *str)
 464{
 465	int ret = 0;
 466	if (!str)
 467		goto out;
 468	if (!strcmp(str, "always")) {
 469		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 470			&transparent_hugepage_flags);
 471		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 472			  &transparent_hugepage_flags);
 473		ret = 1;
 474	} else if (!strcmp(str, "madvise")) {
 475		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 476			  &transparent_hugepage_flags);
 477		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 478			&transparent_hugepage_flags);
 479		ret = 1;
 480	} else if (!strcmp(str, "never")) {
 481		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 482			  &transparent_hugepage_flags);
 483		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 484			  &transparent_hugepage_flags);
 485		ret = 1;
 486	}
 487out:
 488	if (!ret)
 489		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 490	return ret;
 491}
 492__setup("transparent_hugepage=", setup_transparent_hugepage);
 493
 494pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 495{
 496	if (likely(vma->vm_flags & VM_WRITE))
 497		pmd = pmd_mkwrite(pmd);
 498	return pmd;
 499}
 500
 501#ifdef CONFIG_MEMCG
 502static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 503{
 504	struct mem_cgroup *memcg = page_memcg(compound_head(page));
 505	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 506
 507	if (memcg)
 508		return &memcg->deferred_split_queue;
 509	else
 510		return &pgdat->deferred_split_queue;
 511}
 512#else
 513static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 514{
 515	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 516
 517	return &pgdat->deferred_split_queue;
 518}
 519#endif
 520
 521void prep_transhuge_page(struct page *page)
 522{
 523	/*
 524	 * we use page->mapping and page->indexlru in second tail page
 525	 * as list_head: assuming THP order >= 2
 526	 */
 527
 528	INIT_LIST_HEAD(page_deferred_list(page));
 529	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 530}
 531
 532bool is_transparent_hugepage(struct page *page)
 533{
 534	if (!PageCompound(page))
 535		return false;
 536
 537	page = compound_head(page);
 538	return is_huge_zero_page(page) ||
 539	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
 540}
 541EXPORT_SYMBOL_GPL(is_transparent_hugepage);
 542
 543static unsigned long __thp_get_unmapped_area(struct file *filp,
 544		unsigned long addr, unsigned long len,
 545		loff_t off, unsigned long flags, unsigned long size)
 546{
 
 547	loff_t off_end = off + len;
 548	loff_t off_align = round_up(off, size);
 549	unsigned long len_pad, ret;
 550
 551	if (off_end <= off_align || (off_end - off_align) < size)
 552		return 0;
 553
 554	len_pad = len + size;
 555	if (len_pad < len || (off + len_pad) < off)
 556		return 0;
 557
 558	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
 559					      off >> PAGE_SHIFT, flags);
 560
 561	/*
 562	 * The failure might be due to length padding. The caller will retry
 563	 * without the padding.
 564	 */
 565	if (IS_ERR_VALUE(ret))
 566		return 0;
 567
 568	/*
 569	 * Do not try to align to THP boundary if allocation at the address
 570	 * hint succeeds.
 571	 */
 572	if (ret == addr)
 573		return addr;
 574
 575	ret += (off - ret) & (size - 1);
 576	return ret;
 577}
 578
 579unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 580		unsigned long len, unsigned long pgoff, unsigned long flags)
 581{
 582	unsigned long ret;
 583	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 584
 
 
 585	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 586		goto out;
 587
 588	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
 589	if (ret)
 590		return ret;
 591out:
 
 592	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 593}
 594EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 595
 596static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
 597			struct page *page, gfp_t gfp)
 598{
 599	struct vm_area_struct *vma = vmf->vma;
 
 600	pgtable_t pgtable;
 601	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 602	vm_fault_t ret = 0;
 603
 604	VM_BUG_ON_PAGE(!PageCompound(page), page);
 605
 606	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
 607		put_page(page);
 608		count_vm_event(THP_FAULT_FALLBACK);
 609		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
 610		return VM_FAULT_FALLBACK;
 611	}
 612	cgroup_throttle_swaprate(page, gfp);
 613
 614	pgtable = pte_alloc_one(vma->vm_mm);
 615	if (unlikely(!pgtable)) {
 616		ret = VM_FAULT_OOM;
 617		goto release;
 618	}
 619
 620	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 621	/*
 622	 * The memory barrier inside __SetPageUptodate makes sure that
 623	 * clear_huge_page writes become visible before the set_pmd_at()
 624	 * write.
 625	 */
 626	__SetPageUptodate(page);
 627
 628	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 629	if (unlikely(!pmd_none(*vmf->pmd))) {
 630		goto unlock_release;
 631	} else {
 632		pmd_t entry;
 633
 634		ret = check_stable_address_space(vma->vm_mm);
 635		if (ret)
 636			goto unlock_release;
 637
 638		/* Deliver the page fault to userland */
 639		if (userfaultfd_missing(vma)) {
 
 
 640			spin_unlock(vmf->ptl);
 
 641			put_page(page);
 642			pte_free(vma->vm_mm, pgtable);
 643			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 644			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 645			return ret;
 646		}
 647
 648		entry = mk_huge_pmd(page, vma->vm_page_prot);
 649		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 650		page_add_new_anon_rmap(page, vma, haddr, true);
 651		lru_cache_add_inactive_or_unevictable(page, vma);
 
 652		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 653		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 654		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 655		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 656		mm_inc_nr_ptes(vma->vm_mm);
 657		spin_unlock(vmf->ptl);
 658		count_vm_event(THP_FAULT_ALLOC);
 659		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
 660	}
 661
 662	return 0;
 663unlock_release:
 664	spin_unlock(vmf->ptl);
 665release:
 666	if (pgtable)
 667		pte_free(vma->vm_mm, pgtable);
 
 668	put_page(page);
 669	return ret;
 670
 671}
 672
 673/*
 674 * always: directly stall for all thp allocations
 675 * defer: wake kswapd and fail if not immediately available
 676 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 677 *		  fail if not immediately available
 678 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 679 *	    available
 680 * never: never stall for any thp allocation
 681 */
 682gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
 683{
 684	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
 685
 686	/* Always do synchronous compaction */
 687	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 688		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 689
 690	/* Kick kcompactd and fail quickly */
 691	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 692		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 693
 694	/* Synchronous compaction if madvised, otherwise kick kcompactd */
 695	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 696		return GFP_TRANSHUGE_LIGHT |
 697			(vma_madvised ? __GFP_DIRECT_RECLAIM :
 698					__GFP_KSWAPD_RECLAIM);
 699
 700	/* Only do synchronous compaction if madvised */
 701	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 702		return GFP_TRANSHUGE_LIGHT |
 703		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
 704
 705	return GFP_TRANSHUGE_LIGHT;
 706}
 707
 708/* Caller must hold page table lock. */
 709static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 710		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 711		struct page *zero_page)
 712{
 713	pmd_t entry;
 714	if (!pmd_none(*pmd))
 715		return;
 716	entry = mk_pmd(zero_page, vma->vm_page_prot);
 717	entry = pmd_mkhuge(entry);
 718	if (pgtable)
 719		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 720	set_pmd_at(mm, haddr, pmd, entry);
 721	mm_inc_nr_ptes(mm);
 
 722}
 723
 724vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 725{
 726	struct vm_area_struct *vma = vmf->vma;
 727	gfp_t gfp;
 728	struct page *page;
 729	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 730
 731	if (!transhuge_vma_suitable(vma, haddr))
 732		return VM_FAULT_FALLBACK;
 733	if (unlikely(anon_vma_prepare(vma)))
 734		return VM_FAULT_OOM;
 735	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 736		return VM_FAULT_OOM;
 737	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 738			!mm_forbids_zeropage(vma->vm_mm) &&
 739			transparent_hugepage_use_zero_page()) {
 740		pgtable_t pgtable;
 741		struct page *zero_page;
 742		vm_fault_t ret;
 743		pgtable = pte_alloc_one(vma->vm_mm);
 
 744		if (unlikely(!pgtable))
 745			return VM_FAULT_OOM;
 746		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 747		if (unlikely(!zero_page)) {
 748			pte_free(vma->vm_mm, pgtable);
 749			count_vm_event(THP_FAULT_FALLBACK);
 750			return VM_FAULT_FALLBACK;
 751		}
 752		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 753		ret = 0;
 
 754		if (pmd_none(*vmf->pmd)) {
 755			ret = check_stable_address_space(vma->vm_mm);
 756			if (ret) {
 757				spin_unlock(vmf->ptl);
 758				pte_free(vma->vm_mm, pgtable);
 759			} else if (userfaultfd_missing(vma)) {
 760				spin_unlock(vmf->ptl);
 761				pte_free(vma->vm_mm, pgtable);
 762				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 763				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 764			} else {
 765				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 766						   haddr, vmf->pmd, zero_page);
 767				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 768				spin_unlock(vmf->ptl);
 
 769			}
 770		} else {
 771			spin_unlock(vmf->ptl);
 
 772			pte_free(vma->vm_mm, pgtable);
 773		}
 774		return ret;
 775	}
 776	gfp = vma_thp_gfp_mask(vma);
 777	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 778	if (unlikely(!page)) {
 779		count_vm_event(THP_FAULT_FALLBACK);
 780		return VM_FAULT_FALLBACK;
 781	}
 782	prep_transhuge_page(page);
 783	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 784}
 785
 786static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 787		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 788		pgtable_t pgtable)
 789{
 790	struct mm_struct *mm = vma->vm_mm;
 791	pmd_t entry;
 792	spinlock_t *ptl;
 793
 794	ptl = pmd_lock(mm, pmd);
 795	if (!pmd_none(*pmd)) {
 796		if (write) {
 797			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
 798				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
 799				goto out_unlock;
 800			}
 801			entry = pmd_mkyoung(*pmd);
 802			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 803			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
 804				update_mmu_cache_pmd(vma, addr, pmd);
 805		}
 806
 807		goto out_unlock;
 808	}
 809
 810	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 811	if (pfn_t_devmap(pfn))
 812		entry = pmd_mkdevmap(entry);
 813	if (write) {
 814		entry = pmd_mkyoung(pmd_mkdirty(entry));
 815		entry = maybe_pmd_mkwrite(entry, vma);
 816	}
 817
 818	if (pgtable) {
 819		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 820		mm_inc_nr_ptes(mm);
 821		pgtable = NULL;
 822	}
 823
 824	set_pmd_at(mm, addr, pmd, entry);
 825	update_mmu_cache_pmd(vma, addr, pmd);
 826
 827out_unlock:
 828	spin_unlock(ptl);
 829	if (pgtable)
 830		pte_free(mm, pgtable);
 831}
 832
 833/**
 834 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 835 * @vmf: Structure describing the fault
 836 * @pfn: pfn to insert
 837 * @pgprot: page protection to use
 838 * @write: whether it's a write fault
 839 *
 840 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 841 * also consult the vmf_insert_mixed_prot() documentation when
 842 * @pgprot != @vmf->vma->vm_page_prot.
 843 *
 844 * Return: vm_fault_t value.
 845 */
 846vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
 847				   pgprot_t pgprot, bool write)
 848{
 849	unsigned long addr = vmf->address & PMD_MASK;
 850	struct vm_area_struct *vma = vmf->vma;
 851	pgtable_t pgtable = NULL;
 852
 853	/*
 854	 * If we had pmd_special, we could avoid all these restrictions,
 855	 * but we need to be consistent with PTEs and architectures that
 856	 * can't support a 'special' bit.
 857	 */
 858	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 859			!pfn_t_devmap(pfn));
 860	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 861						(VM_PFNMAP|VM_MIXEDMAP));
 862	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 
 863
 864	if (addr < vma->vm_start || addr >= vma->vm_end)
 865		return VM_FAULT_SIGBUS;
 866
 867	if (arch_needs_pgtable_deposit()) {
 868		pgtable = pte_alloc_one(vma->vm_mm);
 869		if (!pgtable)
 870			return VM_FAULT_OOM;
 871	}
 872
 873	track_pfn_insert(vma, &pgprot, pfn);
 874
 875	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
 876	return VM_FAULT_NOPAGE;
 877}
 878EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
 879
 880#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 881static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 882{
 883	if (likely(vma->vm_flags & VM_WRITE))
 884		pud = pud_mkwrite(pud);
 885	return pud;
 886}
 887
 888static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 889		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 890{
 891	struct mm_struct *mm = vma->vm_mm;
 892	pud_t entry;
 893	spinlock_t *ptl;
 894
 895	ptl = pud_lock(mm, pud);
 896	if (!pud_none(*pud)) {
 897		if (write) {
 898			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
 899				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
 900				goto out_unlock;
 901			}
 902			entry = pud_mkyoung(*pud);
 903			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
 904			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
 905				update_mmu_cache_pud(vma, addr, pud);
 906		}
 907		goto out_unlock;
 908	}
 909
 910	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 911	if (pfn_t_devmap(pfn))
 912		entry = pud_mkdevmap(entry);
 913	if (write) {
 914		entry = pud_mkyoung(pud_mkdirty(entry));
 915		entry = maybe_pud_mkwrite(entry, vma);
 916	}
 917	set_pud_at(mm, addr, pud, entry);
 918	update_mmu_cache_pud(vma, addr, pud);
 919
 920out_unlock:
 921	spin_unlock(ptl);
 922}
 923
 924/**
 925 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 926 * @vmf: Structure describing the fault
 927 * @pfn: pfn to insert
 928 * @pgprot: page protection to use
 929 * @write: whether it's a write fault
 930 *
 931 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 932 * also consult the vmf_insert_mixed_prot() documentation when
 933 * @pgprot != @vmf->vma->vm_page_prot.
 934 *
 935 * Return: vm_fault_t value.
 936 */
 937vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
 938				   pgprot_t pgprot, bool write)
 939{
 940	unsigned long addr = vmf->address & PUD_MASK;
 941	struct vm_area_struct *vma = vmf->vma;
 942
 943	/*
 944	 * If we had pud_special, we could avoid all these restrictions,
 945	 * but we need to be consistent with PTEs and architectures that
 946	 * can't support a 'special' bit.
 947	 */
 948	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 949			!pfn_t_devmap(pfn));
 950	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 951						(VM_PFNMAP|VM_MIXEDMAP));
 952	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 
 953
 954	if (addr < vma->vm_start || addr >= vma->vm_end)
 955		return VM_FAULT_SIGBUS;
 956
 957	track_pfn_insert(vma, &pgprot, pfn);
 958
 959	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
 960	return VM_FAULT_NOPAGE;
 961}
 962EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
 963#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 964
 965static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 966		pmd_t *pmd, int flags)
 967{
 968	pmd_t _pmd;
 969
 970	_pmd = pmd_mkyoung(*pmd);
 971	if (flags & FOLL_WRITE)
 972		_pmd = pmd_mkdirty(_pmd);
 973	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 974				pmd, _pmd, flags & FOLL_WRITE))
 975		update_mmu_cache_pmd(vma, addr, pmd);
 976}
 977
 978struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 979		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
 980{
 981	unsigned long pfn = pmd_pfn(*pmd);
 982	struct mm_struct *mm = vma->vm_mm;
 
 983	struct page *page;
 984
 985	assert_spin_locked(pmd_lockptr(mm, pmd));
 986
 987	/*
 988	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 989	 * not be in this function with `flags & FOLL_COW` set.
 990	 */
 991	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 992
 993	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
 994	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
 995			 (FOLL_PIN | FOLL_GET)))
 996		return NULL;
 997
 998	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 999		return NULL;
1000
1001	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1002		/* pass */;
1003	else
1004		return NULL;
1005
1006	if (flags & FOLL_TOUCH)
1007		touch_pmd(vma, addr, pmd, flags);
1008
1009	/*
1010	 * device mapped pages can only be returned if the
1011	 * caller will manage the page reference count.
1012	 */
1013	if (!(flags & (FOLL_GET | FOLL_PIN)))
1014		return ERR_PTR(-EEXIST);
1015
1016	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017	*pgmap = get_dev_pagemap(pfn, *pgmap);
1018	if (!*pgmap)
1019		return ERR_PTR(-EFAULT);
1020	page = pfn_to_page(pfn);
1021	if (!try_grab_page(page, flags))
1022		page = ERR_PTR(-ENOMEM);
1023
1024	return page;
1025}
1026
1027int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1030{
1031	spinlock_t *dst_ptl, *src_ptl;
1032	struct page *src_page;
1033	pmd_t pmd;
1034	pgtable_t pgtable = NULL;
1035	int ret = -ENOMEM;
1036
1037	/* Skip if can be re-fill on fault */
1038	if (!vma_is_anonymous(dst_vma))
1039		return 0;
1040
1041	pgtable = pte_alloc_one(dst_mm);
1042	if (unlikely(!pgtable))
1043		goto out;
1044
1045	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1046	src_ptl = pmd_lockptr(src_mm, src_pmd);
1047	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048
1049	ret = -EAGAIN;
1050	pmd = *src_pmd;
1051
1052#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053	if (unlikely(is_swap_pmd(pmd))) {
1054		swp_entry_t entry = pmd_to_swp_entry(pmd);
1055
1056		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057		if (is_writable_migration_entry(entry)) {
1058			entry = make_readable_migration_entry(
1059							swp_offset(entry));
1060			pmd = swp_entry_to_pmd(entry);
1061			if (pmd_swp_soft_dirty(*src_pmd))
1062				pmd = pmd_swp_mksoft_dirty(pmd);
1063			if (pmd_swp_uffd_wp(*src_pmd))
1064				pmd = pmd_swp_mkuffd_wp(pmd);
1065			set_pmd_at(src_mm, addr, src_pmd, pmd);
1066		}
1067		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1068		mm_inc_nr_ptes(dst_mm);
1069		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1070		if (!userfaultfd_wp(dst_vma))
1071			pmd = pmd_swp_clear_uffd_wp(pmd);
1072		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1073		ret = 0;
1074		goto out_unlock;
1075	}
1076#endif
1077
1078	if (unlikely(!pmd_trans_huge(pmd))) {
1079		pte_free(dst_mm, pgtable);
1080		goto out_unlock;
1081	}
1082	/*
1083	 * When page table lock is held, the huge zero pmd should not be
1084	 * under splitting since we don't split the page itself, only pmd to
1085	 * a page table.
1086	 */
1087	if (is_huge_zero_pmd(pmd)) {
 
1088		/*
1089		 * get_huge_zero_page() will never allocate a new page here,
1090		 * since we already have a zero page to copy. It just takes a
1091		 * reference.
1092		 */
1093		mm_get_huge_zero_page(dst_mm);
1094		goto out_zero_page;
 
 
 
1095	}
1096
1097	src_page = pmd_page(pmd);
1098	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1099
1100	/*
1101	 * If this page is a potentially pinned page, split and retry the fault
1102	 * with smaller page size.  Normally this should not happen because the
1103	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1104	 * best effort that the pinned pages won't be replaced by another
1105	 * random page during the coming copy-on-write.
1106	 */
1107	if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1108		pte_free(dst_mm, pgtable);
1109		spin_unlock(src_ptl);
1110		spin_unlock(dst_ptl);
1111		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1112		return -EAGAIN;
1113	}
1114
1115	get_page(src_page);
1116	page_dup_rmap(src_page, true);
1117	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118out_zero_page:
1119	mm_inc_nr_ptes(dst_mm);
1120	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 
1121	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122	if (!userfaultfd_wp(dst_vma))
1123		pmd = pmd_clear_uffd_wp(pmd);
1124	pmd = pmd_mkold(pmd_wrprotect(pmd));
1125	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1126
1127	ret = 0;
1128out_unlock:
1129	spin_unlock(src_ptl);
1130	spin_unlock(dst_ptl);
1131out:
1132	return ret;
1133}
1134
1135#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1136static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1137		pud_t *pud, int flags)
1138{
1139	pud_t _pud;
1140
1141	_pud = pud_mkyoung(*pud);
1142	if (flags & FOLL_WRITE)
1143		_pud = pud_mkdirty(_pud);
1144	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1145				pud, _pud, flags & FOLL_WRITE))
1146		update_mmu_cache_pud(vma, addr, pud);
1147}
1148
1149struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1150		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1151{
1152	unsigned long pfn = pud_pfn(*pud);
1153	struct mm_struct *mm = vma->vm_mm;
 
1154	struct page *page;
1155
1156	assert_spin_locked(pud_lockptr(mm, pud));
1157
1158	if (flags & FOLL_WRITE && !pud_write(*pud))
1159		return NULL;
1160
1161	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1162	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1163			 (FOLL_PIN | FOLL_GET)))
1164		return NULL;
1165
1166	if (pud_present(*pud) && pud_devmap(*pud))
1167		/* pass */;
1168	else
1169		return NULL;
1170
1171	if (flags & FOLL_TOUCH)
1172		touch_pud(vma, addr, pud, flags);
1173
1174	/*
1175	 * device mapped pages can only be returned if the
1176	 * caller will manage the page reference count.
1177	 *
1178	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1179	 */
1180	if (!(flags & (FOLL_GET | FOLL_PIN)))
1181		return ERR_PTR(-EEXIST);
1182
1183	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1184	*pgmap = get_dev_pagemap(pfn, *pgmap);
1185	if (!*pgmap)
1186		return ERR_PTR(-EFAULT);
1187	page = pfn_to_page(pfn);
1188	if (!try_grab_page(page, flags))
1189		page = ERR_PTR(-ENOMEM);
1190
1191	return page;
1192}
1193
1194int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1195		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1196		  struct vm_area_struct *vma)
1197{
1198	spinlock_t *dst_ptl, *src_ptl;
1199	pud_t pud;
1200	int ret;
1201
1202	dst_ptl = pud_lock(dst_mm, dst_pud);
1203	src_ptl = pud_lockptr(src_mm, src_pud);
1204	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1205
1206	ret = -EAGAIN;
1207	pud = *src_pud;
1208	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1209		goto out_unlock;
1210
1211	/*
1212	 * When page table lock is held, the huge zero pud should not be
1213	 * under splitting since we don't split the page itself, only pud to
1214	 * a page table.
1215	 */
1216	if (is_huge_zero_pud(pud)) {
1217		/* No huge zero pud yet */
1218	}
1219
1220	/* Please refer to comments in copy_huge_pmd() */
1221	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1222		spin_unlock(src_ptl);
1223		spin_unlock(dst_ptl);
1224		__split_huge_pud(vma, src_pud, addr);
1225		return -EAGAIN;
1226	}
1227
1228	pudp_set_wrprotect(src_mm, addr, src_pud);
1229	pud = pud_mkold(pud_wrprotect(pud));
1230	set_pud_at(dst_mm, addr, dst_pud, pud);
1231
1232	ret = 0;
1233out_unlock:
1234	spin_unlock(src_ptl);
1235	spin_unlock(dst_ptl);
1236	return ret;
1237}
1238
1239void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1240{
1241	pud_t entry;
1242	unsigned long haddr;
1243	bool write = vmf->flags & FAULT_FLAG_WRITE;
1244
1245	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1246	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1247		goto unlock;
1248
1249	entry = pud_mkyoung(orig_pud);
1250	if (write)
1251		entry = pud_mkdirty(entry);
1252	haddr = vmf->address & HPAGE_PUD_MASK;
1253	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1254		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1255
1256unlock:
1257	spin_unlock(vmf->ptl);
1258}
1259#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1260
1261void huge_pmd_set_accessed(struct vm_fault *vmf)
1262{
1263	pmd_t entry;
1264	unsigned long haddr;
1265	bool write = vmf->flags & FAULT_FLAG_WRITE;
1266	pmd_t orig_pmd = vmf->orig_pmd;
1267
1268	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1269	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1270		goto unlock;
1271
1272	entry = pmd_mkyoung(orig_pmd);
1273	if (write)
1274		entry = pmd_mkdirty(entry);
1275	haddr = vmf->address & HPAGE_PMD_MASK;
1276	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1277		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1278
1279unlock:
1280	spin_unlock(vmf->ptl);
1281}
1282
1283vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
 
1284{
1285	struct vm_area_struct *vma = vmf->vma;
1286	struct page *page;
1287	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1288	pmd_t orig_pmd = vmf->orig_pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289
1290	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1291	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1292
1293	if (is_huge_zero_pmd(orig_pmd))
1294		goto fallback;
1295
1296	spin_lock(vmf->ptl);
1297
1298	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1299		spin_unlock(vmf->ptl);
1300		return 0;
1301	}
1302
1303	page = pmd_page(orig_pmd);
1304	VM_BUG_ON_PAGE(!PageHead(page), page);
1305
1306	/* Lock page for reuse_swap_page() */
 
 
1307	if (!trylock_page(page)) {
1308		get_page(page);
1309		spin_unlock(vmf->ptl);
1310		lock_page(page);
1311		spin_lock(vmf->ptl);
1312		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1313			spin_unlock(vmf->ptl);
1314			unlock_page(page);
1315			put_page(page);
1316			return 0;
1317		}
1318		put_page(page);
1319	}
1320
1321	/*
1322	 * We can only reuse the page if nobody else maps the huge page or it's
1323	 * part.
1324	 */
1325	if (reuse_swap_page(page, NULL)) {
1326		pmd_t entry;
1327		entry = pmd_mkyoung(orig_pmd);
1328		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1329		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1330			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 
1331		unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1332		spin_unlock(vmf->ptl);
1333		return VM_FAULT_WRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334	}
1335
1336	unlock_page(page);
1337	spin_unlock(vmf->ptl);
1338fallback:
1339	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1340	return VM_FAULT_FALLBACK;
 
 
 
 
 
 
 
 
 
1341}
1342
1343/*
1344 * FOLL_FORCE can write to even unwritable pmd's, but only
1345 * after we've gone through a COW cycle and they are dirty.
1346 */
1347static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1348{
1349	return pmd_write(pmd) ||
1350	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1351}
1352
1353struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1354				   unsigned long addr,
1355				   pmd_t *pmd,
1356				   unsigned int flags)
1357{
1358	struct mm_struct *mm = vma->vm_mm;
1359	struct page *page = NULL;
1360
1361	assert_spin_locked(pmd_lockptr(mm, pmd));
1362
1363	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1364		goto out;
1365
1366	/* Avoid dumping huge zero page */
1367	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1368		return ERR_PTR(-EFAULT);
1369
1370	/* Full NUMA hinting faults to serialise migration in fault paths */
1371	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1372		goto out;
1373
1374	page = pmd_page(*pmd);
1375	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1376
1377	if (!try_grab_page(page, flags))
1378		return ERR_PTR(-ENOMEM);
1379
1380	if (flags & FOLL_TOUCH)
1381		touch_pmd(vma, addr, pmd, flags);
1382
1383	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1384		/*
1385		 * We don't mlock() pte-mapped THPs. This way we can avoid
1386		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1387		 *
1388		 * For anon THP:
1389		 *
1390		 * In most cases the pmd is the only mapping of the page as we
1391		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1392		 * writable private mappings in populate_vma_page_range().
1393		 *
1394		 * The only scenario when we have the page shared here is if we
1395		 * mlocking read-only mapping shared over fork(). We skip
1396		 * mlocking such pages.
1397		 *
1398		 * For file THP:
1399		 *
1400		 * We can expect PageDoubleMap() to be stable under page lock:
1401		 * for file pages we set it in page_add_file_rmap(), which
1402		 * requires page to be locked.
1403		 */
1404
1405		if (PageAnon(page) && compound_mapcount(page) != 1)
1406			goto skip_mlock;
1407		if (PageDoubleMap(page) || !page->mapping)
1408			goto skip_mlock;
1409		if (!trylock_page(page))
1410			goto skip_mlock;
 
1411		if (page->mapping && !PageDoubleMap(page))
1412			mlock_vma_page(page);
1413		unlock_page(page);
1414	}
1415skip_mlock:
1416	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1417	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
 
 
1418
1419out:
1420	return page;
1421}
1422
1423/* NUMA hinting page fault entry point for trans huge pmds */
1424vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1425{
1426	struct vm_area_struct *vma = vmf->vma;
1427	pmd_t oldpmd = vmf->orig_pmd;
1428	pmd_t pmd;
1429	struct page *page;
1430	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1431	int page_nid = NUMA_NO_NODE;
1432	int target_nid, last_cpupid = -1;
 
1433	bool migrated = false;
1434	bool was_writable = pmd_savedwrite(oldpmd);
1435	int flags = 0;
1436
1437	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1438	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
 
 
 
 
 
 
 
 
 
 
 
1439		spin_unlock(vmf->ptl);
 
 
1440		goto out;
1441	}
1442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1443	/*
1444	 * Since we took the NUMA fault, we must have observed the !accessible
1445	 * bit. Make sure all other CPUs agree with that, to avoid them
1446	 * modifying the page we're about to migrate.
1447	 *
1448	 * Must be done under PTL such that we'll observe the relevant
1449	 * inc_tlb_flush_pending().
1450	 *
1451	 * We are not sure a pending tlb flush here is for a huge page
1452	 * mapping or not. Hence use the tlb range variant
1453	 */
1454	if (mm_tlb_flush_pending(vma->vm_mm)) {
1455		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1456		/*
1457		 * change_huge_pmd() released the pmd lock before
1458		 * invalidating the secondary MMUs sharing the primary
1459		 * MMU pagetables (with ->invalidate_range()). The
1460		 * mmu_notifier_invalidate_range_end() (which
1461		 * internally calls ->invalidate_range()) in
1462		 * change_pmd_range() will run after us, so we can't
1463		 * rely on it here and we need an explicit invalidate.
1464		 */
1465		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1466					      haddr + HPAGE_PMD_SIZE);
1467	}
1468
1469	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1470	page = vm_normal_page_pmd(vma, haddr, pmd);
1471	if (!page)
1472		goto out_map;
1473
1474	/* See similar comment in do_numa_page for explanation */
1475	if (!was_writable)
1476		flags |= TNF_NO_GROUP;
1477
1478	page_nid = page_to_nid(page);
1479	last_cpupid = page_cpupid_last(page);
1480	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1481				       &flags);
1482
1483	if (target_nid == NUMA_NO_NODE) {
1484		put_page(page);
1485		goto out_map;
1486	}
1487
 
 
 
 
1488	spin_unlock(vmf->ptl);
1489
1490	migrated = migrate_misplaced_page(page, vma, target_nid);
 
1491	if (migrated) {
1492		flags |= TNF_MIGRATED;
1493		page_nid = target_nid;
1494	} else {
1495		flags |= TNF_MIGRATE_FAIL;
1496		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1497		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1498			spin_unlock(vmf->ptl);
1499			goto out;
1500		}
1501		goto out_map;
1502	}
1503
1504out:
1505	if (page_nid != NUMA_NO_NODE)
1506		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1507				flags);
1508
1509	return 0;
1510
1511out_map:
1512	/* Restore the PMD */
1513	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1514	pmd = pmd_mkyoung(pmd);
1515	if (was_writable)
1516		pmd = pmd_mkwrite(pmd);
1517	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1518	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 
 
1519	spin_unlock(vmf->ptl);
1520	goto out;
 
 
 
 
 
 
 
 
 
1521}
1522
1523/*
1524 * Return true if we do MADV_FREE successfully on entire pmd page.
1525 * Otherwise, return false.
1526 */
1527bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1528		pmd_t *pmd, unsigned long addr, unsigned long next)
1529{
1530	spinlock_t *ptl;
1531	pmd_t orig_pmd;
1532	struct page *page;
1533	struct mm_struct *mm = tlb->mm;
1534	bool ret = false;
1535
1536	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1537
1538	ptl = pmd_trans_huge_lock(pmd, vma);
1539	if (!ptl)
1540		goto out_unlocked;
1541
1542	orig_pmd = *pmd;
1543	if (is_huge_zero_pmd(orig_pmd))
1544		goto out;
1545
1546	if (unlikely(!pmd_present(orig_pmd))) {
1547		VM_BUG_ON(thp_migration_supported() &&
1548				  !is_pmd_migration_entry(orig_pmd));
1549		goto out;
1550	}
1551
1552	page = pmd_page(orig_pmd);
1553	/*
1554	 * If other processes are mapping this page, we couldn't discard
1555	 * the page unless they all do MADV_FREE so let's skip the page.
1556	 */
1557	if (total_mapcount(page) != 1)
1558		goto out;
1559
1560	if (!trylock_page(page))
1561		goto out;
1562
1563	/*
1564	 * If user want to discard part-pages of THP, split it so MADV_FREE
1565	 * will deactivate only them.
1566	 */
1567	if (next - addr != HPAGE_PMD_SIZE) {
1568		get_page(page);
1569		spin_unlock(ptl);
1570		split_huge_page(page);
1571		unlock_page(page);
1572		put_page(page);
1573		goto out_unlocked;
1574	}
1575
1576	if (PageDirty(page))
1577		ClearPageDirty(page);
1578	unlock_page(page);
1579
1580	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1581		pmdp_invalidate(vma, addr, pmd);
1582		orig_pmd = pmd_mkold(orig_pmd);
1583		orig_pmd = pmd_mkclean(orig_pmd);
1584
1585		set_pmd_at(mm, addr, pmd, orig_pmd);
1586		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1587	}
1588
1589	mark_page_lazyfree(page);
1590	ret = true;
1591out:
1592	spin_unlock(ptl);
1593out_unlocked:
1594	return ret;
1595}
1596
1597static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1598{
1599	pgtable_t pgtable;
1600
1601	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1602	pte_free(mm, pgtable);
1603	mm_dec_nr_ptes(mm);
1604}
1605
1606int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1607		 pmd_t *pmd, unsigned long addr)
1608{
1609	pmd_t orig_pmd;
1610	spinlock_t *ptl;
1611
1612	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1613
1614	ptl = __pmd_trans_huge_lock(pmd, vma);
1615	if (!ptl)
1616		return 0;
1617	/*
1618	 * For architectures like ppc64 we look at deposited pgtable
1619	 * when calling pmdp_huge_get_and_clear. So do the
1620	 * pgtable_trans_huge_withdraw after finishing pmdp related
1621	 * operations.
1622	 */
1623	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1624						tlb->fullmm);
1625	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1626	if (vma_is_special_huge(vma)) {
1627		if (arch_needs_pgtable_deposit())
1628			zap_deposited_table(tlb->mm, pmd);
1629		spin_unlock(ptl);
 
 
1630	} else if (is_huge_zero_pmd(orig_pmd)) {
1631		zap_deposited_table(tlb->mm, pmd);
1632		spin_unlock(ptl);
 
1633	} else {
1634		struct page *page = NULL;
1635		int flush_needed = 1;
1636
1637		if (pmd_present(orig_pmd)) {
1638			page = pmd_page(orig_pmd);
1639			page_remove_rmap(page, true);
1640			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1641			VM_BUG_ON_PAGE(!PageHead(page), page);
1642		} else if (thp_migration_supported()) {
1643			swp_entry_t entry;
1644
1645			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1646			entry = pmd_to_swp_entry(orig_pmd);
1647			page = pfn_swap_entry_to_page(entry);
1648			flush_needed = 0;
1649		} else
1650			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1651
1652		if (PageAnon(page)) {
1653			zap_deposited_table(tlb->mm, pmd);
1654			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1655		} else {
1656			if (arch_needs_pgtable_deposit())
1657				zap_deposited_table(tlb->mm, pmd);
1658			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1659		}
1660
1661		spin_unlock(ptl);
1662		if (flush_needed)
1663			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1664	}
1665	return 1;
1666}
1667
1668#ifndef pmd_move_must_withdraw
1669static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1670					 spinlock_t *old_pmd_ptl,
1671					 struct vm_area_struct *vma)
1672{
1673	/*
1674	 * With split pmd lock we also need to move preallocated
1675	 * PTE page table if new_pmd is on different PMD page table.
1676	 *
1677	 * We also don't deposit and withdraw tables for file pages.
1678	 */
1679	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1680}
1681#endif
1682
1683static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1684{
1685#ifdef CONFIG_MEM_SOFT_DIRTY
1686	if (unlikely(is_pmd_migration_entry(pmd)))
1687		pmd = pmd_swp_mksoft_dirty(pmd);
1688	else if (pmd_present(pmd))
1689		pmd = pmd_mksoft_dirty(pmd);
1690#endif
1691	return pmd;
1692}
1693
1694bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1695		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
 
1696{
1697	spinlock_t *old_ptl, *new_ptl;
1698	pmd_t pmd;
1699	struct mm_struct *mm = vma->vm_mm;
1700	bool force_flush = false;
1701
 
 
 
 
 
1702	/*
1703	 * The destination pmd shouldn't be established, free_pgtables()
1704	 * should have release it.
1705	 */
1706	if (WARN_ON(!pmd_none(*new_pmd))) {
1707		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1708		return false;
1709	}
1710
1711	/*
1712	 * We don't have to worry about the ordering of src and dst
1713	 * ptlocks because exclusive mmap_lock prevents deadlock.
1714	 */
1715	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1716	if (old_ptl) {
1717		new_ptl = pmd_lockptr(mm, new_pmd);
1718		if (new_ptl != old_ptl)
1719			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1720		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1721		if (pmd_present(pmd))
1722			force_flush = true;
1723		VM_BUG_ON(!pmd_none(*new_pmd));
1724
1725		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1726			pgtable_t pgtable;
1727			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1728			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1729		}
1730		pmd = move_soft_dirty_pmd(pmd);
1731		set_pmd_at(mm, new_addr, new_pmd, pmd);
 
 
1732		if (force_flush)
1733			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1734		if (new_ptl != old_ptl)
1735			spin_unlock(new_ptl);
1736		spin_unlock(old_ptl);
1737		return true;
1738	}
1739	return false;
1740}
1741
1742/*
1743 * Returns
1744 *  - 0 if PMD could not be locked
1745 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1746 *      or if prot_numa but THP migration is not supported
1747 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1748 */
1749int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1750		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1751{
1752	struct mm_struct *mm = vma->vm_mm;
1753	spinlock_t *ptl;
1754	pmd_t entry;
1755	bool preserve_write;
1756	int ret;
1757	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1758	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1759	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1760
1761	if (prot_numa && !thp_migration_supported())
1762		return 1;
1763
1764	ptl = __pmd_trans_huge_lock(pmd, vma);
1765	if (!ptl)
1766		return 0;
1767
1768	preserve_write = prot_numa && pmd_write(*pmd);
1769	ret = 1;
1770
1771#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1772	if (is_swap_pmd(*pmd)) {
1773		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1774
1775		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1776		if (is_writable_migration_entry(entry)) {
1777			pmd_t newpmd;
1778			/*
1779			 * A protection check is difficult so
1780			 * just be safe and disable write
1781			 */
1782			entry = make_readable_migration_entry(
1783							swp_offset(entry));
1784			newpmd = swp_entry_to_pmd(entry);
1785			if (pmd_swp_soft_dirty(*pmd))
1786				newpmd = pmd_swp_mksoft_dirty(newpmd);
1787			if (pmd_swp_uffd_wp(*pmd))
1788				newpmd = pmd_swp_mkuffd_wp(newpmd);
1789			set_pmd_at(mm, addr, pmd, newpmd);
1790		}
1791		goto unlock;
1792	}
1793#endif
1794
1795	/*
1796	 * Avoid trapping faults against the zero page. The read-only
1797	 * data is likely to be read-cached on the local CPU and
1798	 * local/remote hits to the zero page are not interesting.
1799	 */
1800	if (prot_numa && is_huge_zero_pmd(*pmd))
1801		goto unlock;
1802
1803	if (prot_numa && pmd_protnone(*pmd))
1804		goto unlock;
1805
1806	/*
1807	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1808	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1809	 * which is also under mmap_read_lock(mm):
1810	 *
1811	 *	CPU0:				CPU1:
1812	 *				change_huge_pmd(prot_numa=1)
1813	 *				 pmdp_huge_get_and_clear_notify()
1814	 * madvise_dontneed()
1815	 *  zap_pmd_range()
1816	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1817	 *   // skip the pmd
1818	 *				 set_pmd_at();
1819	 *				 // pmd is re-established
1820	 *
1821	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1822	 * which may break userspace.
1823	 *
1824	 * pmdp_invalidate() is required to make sure we don't miss
1825	 * dirty/young flags set by hardware.
1826	 */
1827	entry = pmdp_invalidate(vma, addr, pmd);
1828
1829	entry = pmd_modify(entry, newprot);
1830	if (preserve_write)
1831		entry = pmd_mk_savedwrite(entry);
1832	if (uffd_wp) {
1833		entry = pmd_wrprotect(entry);
1834		entry = pmd_mkuffd_wp(entry);
1835	} else if (uffd_wp_resolve) {
1836		/*
1837		 * Leave the write bit to be handled by PF interrupt
1838		 * handler, then things like COW could be properly
1839		 * handled.
1840		 */
1841		entry = pmd_clear_uffd_wp(entry);
1842	}
1843	ret = HPAGE_PMD_NR;
1844	set_pmd_at(mm, addr, pmd, entry);
1845	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1846unlock:
1847	spin_unlock(ptl);
1848	return ret;
1849}
1850
1851/*
1852 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1853 *
1854 * Note that if it returns page table lock pointer, this routine returns without
1855 * unlocking page table lock. So callers must unlock it.
1856 */
1857spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1858{
1859	spinlock_t *ptl;
1860	ptl = pmd_lock(vma->vm_mm, pmd);
1861	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1862			pmd_devmap(*pmd)))
1863		return ptl;
1864	spin_unlock(ptl);
1865	return NULL;
1866}
1867
1868/*
1869 * Returns true if a given pud maps a thp, false otherwise.
1870 *
1871 * Note that if it returns true, this routine returns without unlocking page
1872 * table lock. So callers must unlock it.
1873 */
1874spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1875{
1876	spinlock_t *ptl;
1877
1878	ptl = pud_lock(vma->vm_mm, pud);
1879	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1880		return ptl;
1881	spin_unlock(ptl);
1882	return NULL;
1883}
1884
1885#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1886int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1887		 pud_t *pud, unsigned long addr)
1888{
 
1889	spinlock_t *ptl;
1890
1891	ptl = __pud_trans_huge_lock(pud, vma);
1892	if (!ptl)
1893		return 0;
1894	/*
1895	 * For architectures like ppc64 we look at deposited pgtable
1896	 * when calling pudp_huge_get_and_clear. So do the
1897	 * pgtable_trans_huge_withdraw after finishing pudp related
1898	 * operations.
1899	 */
1900	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
 
1901	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1902	if (vma_is_special_huge(vma)) {
1903		spin_unlock(ptl);
1904		/* No zero page support yet */
1905	} else {
1906		/* No support for anonymous PUD pages yet */
1907		BUG();
1908	}
1909	return 1;
1910}
1911
1912static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1913		unsigned long haddr)
1914{
1915	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1916	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1917	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1918	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1919
1920	count_vm_event(THP_SPLIT_PUD);
1921
1922	pudp_huge_clear_flush_notify(vma, haddr, pud);
1923}
1924
1925void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1926		unsigned long address)
1927{
1928	spinlock_t *ptl;
1929	struct mmu_notifier_range range;
 
1930
1931	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1932				address & HPAGE_PUD_MASK,
1933				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1934	mmu_notifier_invalidate_range_start(&range);
1935	ptl = pud_lock(vma->vm_mm, pud);
1936	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1937		goto out;
1938	__split_huge_pud_locked(vma, pud, range.start);
1939
1940out:
1941	spin_unlock(ptl);
1942	/*
1943	 * No need to double call mmu_notifier->invalidate_range() callback as
1944	 * the above pudp_huge_clear_flush_notify() did already call it.
1945	 */
1946	mmu_notifier_invalidate_range_only_end(&range);
 
1947}
1948#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1949
1950static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1951		unsigned long haddr, pmd_t *pmd)
1952{
1953	struct mm_struct *mm = vma->vm_mm;
1954	pgtable_t pgtable;
1955	pmd_t _pmd;
1956	int i;
1957
1958	/*
1959	 * Leave pmd empty until pte is filled note that it is fine to delay
1960	 * notification until mmu_notifier_invalidate_range_end() as we are
1961	 * replacing a zero pmd write protected page with a zero pte write
1962	 * protected page.
1963	 *
1964	 * See Documentation/vm/mmu_notifier.rst
1965	 */
1966	pmdp_huge_clear_flush(vma, haddr, pmd);
1967
1968	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1969	pmd_populate(mm, &_pmd, pgtable);
1970
1971	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1972		pte_t *pte, entry;
1973		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1974		entry = pte_mkspecial(entry);
1975		pte = pte_offset_map(&_pmd, haddr);
1976		VM_BUG_ON(!pte_none(*pte));
1977		set_pte_at(mm, haddr, pte, entry);
1978		pte_unmap(pte);
1979	}
1980	smp_wmb(); /* make pte visible before pmd */
1981	pmd_populate(mm, pmd, pgtable);
1982}
1983
1984static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1985		unsigned long haddr, bool freeze)
1986{
1987	struct mm_struct *mm = vma->vm_mm;
1988	struct page *page;
1989	pgtable_t pgtable;
1990	pmd_t old_pmd, _pmd;
1991	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1992	unsigned long addr;
1993	int i;
1994
1995	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1996	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1997	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1998	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1999				&& !pmd_devmap(*pmd));
2000
2001	count_vm_event(THP_SPLIT_PMD);
2002
2003	if (!vma_is_anonymous(vma)) {
2004		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2005		/*
2006		 * We are going to unmap this huge page. So
2007		 * just go ahead and zap it
2008		 */
2009		if (arch_needs_pgtable_deposit())
2010			zap_deposited_table(mm, pmd);
2011		if (vma_is_special_huge(vma))
2012			return;
2013		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2014			swp_entry_t entry;
2015
2016			entry = pmd_to_swp_entry(old_pmd);
2017			page = pfn_swap_entry_to_page(entry);
2018		} else {
2019			page = pmd_page(old_pmd);
2020			if (!PageDirty(page) && pmd_dirty(old_pmd))
2021				set_page_dirty(page);
2022			if (!PageReferenced(page) && pmd_young(old_pmd))
2023				SetPageReferenced(page);
2024			page_remove_rmap(page, true);
2025			put_page(page);
2026		}
2027		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2028		return;
2029	}
2030
2031	if (is_huge_zero_pmd(*pmd)) {
2032		/*
2033		 * FIXME: Do we want to invalidate secondary mmu by calling
2034		 * mmu_notifier_invalidate_range() see comments below inside
2035		 * __split_huge_pmd() ?
2036		 *
2037		 * We are going from a zero huge page write protected to zero
2038		 * small page also write protected so it does not seems useful
2039		 * to invalidate secondary mmu at this time.
2040		 */
2041		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2042	}
2043
2044	/*
2045	 * Up to this point the pmd is present and huge and userland has the
2046	 * whole access to the hugepage during the split (which happens in
2047	 * place). If we overwrite the pmd with the not-huge version pointing
2048	 * to the pte here (which of course we could if all CPUs were bug
2049	 * free), userland could trigger a small page size TLB miss on the
2050	 * small sized TLB while the hugepage TLB entry is still established in
2051	 * the huge TLB. Some CPU doesn't like that.
2052	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2053	 * 383 on page 105. Intel should be safe but is also warns that it's
2054	 * only safe if the permission and cache attributes of the two entries
2055	 * loaded in the two TLB is identical (which should be the case here).
2056	 * But it is generally safer to never allow small and huge TLB entries
2057	 * for the same virtual address to be loaded simultaneously. So instead
2058	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2059	 * current pmd notpresent (atomically because here the pmd_trans_huge
2060	 * must remain set at all times on the pmd until the split is complete
2061	 * for this pmd), then we flush the SMP TLB and finally we write the
2062	 * non-huge version of the pmd entry with pmd_populate.
2063	 */
2064	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2065
 
2066	pmd_migration = is_pmd_migration_entry(old_pmd);
2067	if (unlikely(pmd_migration)) {
2068		swp_entry_t entry;
2069
2070		entry = pmd_to_swp_entry(old_pmd);
2071		page = pfn_swap_entry_to_page(entry);
2072		write = is_writable_migration_entry(entry);
2073		young = false;
2074		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2075		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2076	} else {
2077		page = pmd_page(old_pmd);
2078		if (pmd_dirty(old_pmd))
2079			SetPageDirty(page);
2080		write = pmd_write(old_pmd);
2081		young = pmd_young(old_pmd);
2082		soft_dirty = pmd_soft_dirty(old_pmd);
2083		uffd_wp = pmd_uffd_wp(old_pmd);
2084	}
2085	VM_BUG_ON_PAGE(!page_count(page), page);
2086	page_ref_add(page, HPAGE_PMD_NR - 1);
 
 
 
 
 
2087
2088	/*
2089	 * Withdraw the table only after we mark the pmd entry invalid.
2090	 * This's critical for some architectures (Power).
2091	 */
2092	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2093	pmd_populate(mm, &_pmd, pgtable);
2094
2095	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2096		pte_t entry, *pte;
2097		/*
2098		 * Note that NUMA hinting access restrictions are not
2099		 * transferred to avoid any possibility of altering
2100		 * permissions across VMAs.
2101		 */
2102		if (freeze || pmd_migration) {
2103			swp_entry_t swp_entry;
2104			if (write)
2105				swp_entry = make_writable_migration_entry(
2106							page_to_pfn(page + i));
2107			else
2108				swp_entry = make_readable_migration_entry(
2109							page_to_pfn(page + i));
2110			entry = swp_entry_to_pte(swp_entry);
2111			if (soft_dirty)
2112				entry = pte_swp_mksoft_dirty(entry);
2113			if (uffd_wp)
2114				entry = pte_swp_mkuffd_wp(entry);
2115		} else {
2116			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2117			entry = maybe_mkwrite(entry, vma);
2118			if (!write)
2119				entry = pte_wrprotect(entry);
2120			if (!young)
2121				entry = pte_mkold(entry);
2122			if (soft_dirty)
2123				entry = pte_mksoft_dirty(entry);
2124			if (uffd_wp)
2125				entry = pte_mkuffd_wp(entry);
2126		}
2127		pte = pte_offset_map(&_pmd, addr);
2128		BUG_ON(!pte_none(*pte));
2129		set_pte_at(mm, addr, pte, entry);
2130		if (!pmd_migration)
 
 
 
 
 
 
 
 
 
2131			atomic_inc(&page[i]._mapcount);
2132		pte_unmap(pte);
2133	}
2134
2135	if (!pmd_migration) {
2136		/*
2137		 * Set PG_double_map before dropping compound_mapcount to avoid
2138		 * false-negative page_mapped().
2139		 */
2140		if (compound_mapcount(page) > 1 &&
2141		    !TestSetPageDoubleMap(page)) {
2142			for (i = 0; i < HPAGE_PMD_NR; i++)
2143				atomic_inc(&page[i]._mapcount);
2144		}
2145
2146		lock_page_memcg(page);
2147		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2148			/* Last compound_mapcount is gone. */
2149			__mod_lruvec_page_state(page, NR_ANON_THPS,
2150						-HPAGE_PMD_NR);
2151			if (TestClearPageDoubleMap(page)) {
2152				/* No need in mapcount reference anymore */
2153				for (i = 0; i < HPAGE_PMD_NR; i++)
2154					atomic_dec(&page[i]._mapcount);
2155			}
2156		}
2157		unlock_page_memcg(page);
2158	}
2159
2160	smp_wmb(); /* make pte visible before pmd */
2161	pmd_populate(mm, pmd, pgtable);
2162
2163	if (freeze) {
2164		for (i = 0; i < HPAGE_PMD_NR; i++) {
2165			page_remove_rmap(page + i, false);
2166			put_page(page + i);
2167		}
2168	}
2169}
2170
2171void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2172		unsigned long address, bool freeze, struct page *page)
2173{
2174	spinlock_t *ptl;
2175	struct mmu_notifier_range range;
2176	bool do_unlock_page = false;
2177	pmd_t _pmd;
2178
2179	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2180				address & HPAGE_PMD_MASK,
2181				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2182	mmu_notifier_invalidate_range_start(&range);
2183	ptl = pmd_lock(vma->vm_mm, pmd);
2184
2185	/*
2186	 * If caller asks to setup a migration entries, we need a page to check
2187	 * pmd against. Otherwise we can end up replacing wrong page.
2188	 */
2189	VM_BUG_ON(freeze && !page);
2190	if (page) {
2191		VM_WARN_ON_ONCE(!PageLocked(page));
2192		if (page != pmd_page(*pmd))
2193			goto out;
2194	}
2195
2196repeat:
2197	if (pmd_trans_huge(*pmd)) {
2198		if (!page) {
2199			page = pmd_page(*pmd);
2200			/*
2201			 * An anonymous page must be locked, to ensure that a
2202			 * concurrent reuse_swap_page() sees stable mapcount;
2203			 * but reuse_swap_page() is not used on shmem or file,
2204			 * and page lock must not be taken when zap_pmd_range()
2205			 * calls __split_huge_pmd() while i_mmap_lock is held.
2206			 */
2207			if (PageAnon(page)) {
2208				if (unlikely(!trylock_page(page))) {
2209					get_page(page);
2210					_pmd = *pmd;
2211					spin_unlock(ptl);
2212					lock_page(page);
2213					spin_lock(ptl);
2214					if (unlikely(!pmd_same(*pmd, _pmd))) {
2215						unlock_page(page);
2216						put_page(page);
2217						page = NULL;
2218						goto repeat;
2219					}
2220					put_page(page);
2221				}
2222				do_unlock_page = true;
2223			}
2224		}
2225		if (PageMlocked(page))
2226			clear_page_mlock(page);
2227	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2228		goto out;
2229	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2230out:
2231	spin_unlock(ptl);
2232	if (do_unlock_page)
2233		unlock_page(page);
2234	/*
2235	 * No need to double call mmu_notifier->invalidate_range() callback.
2236	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2237	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2238	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2239	 *    fault will trigger a flush_notify before pointing to a new page
2240	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2241	 *    page in the meantime)
2242	 *  3) Split a huge pmd into pte pointing to the same page. No need
2243	 *     to invalidate secondary tlb entry they are all still valid.
2244	 *     any further changes to individual pte will notify. So no need
2245	 *     to call mmu_notifier->invalidate_range()
2246	 */
2247	mmu_notifier_invalidate_range_only_end(&range);
 
2248}
2249
2250void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2251		bool freeze, struct page *page)
2252{
2253	pgd_t *pgd;
2254	p4d_t *p4d;
2255	pud_t *pud;
2256	pmd_t *pmd;
2257
2258	pgd = pgd_offset(vma->vm_mm, address);
2259	if (!pgd_present(*pgd))
2260		return;
2261
2262	p4d = p4d_offset(pgd, address);
2263	if (!p4d_present(*p4d))
2264		return;
2265
2266	pud = pud_offset(p4d, address);
2267	if (!pud_present(*pud))
2268		return;
2269
2270	pmd = pmd_offset(pud, address);
2271
2272	__split_huge_pmd(vma, pmd, address, freeze, page);
2273}
2274
2275static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2276{
2277	/*
2278	 * If the new address isn't hpage aligned and it could previously
2279	 * contain an hugepage: check if we need to split an huge pmd.
2280	 */
2281	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2282	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2283			 ALIGN(address, HPAGE_PMD_SIZE)))
2284		split_huge_pmd_address(vma, address, false, NULL);
2285}
2286
2287void vma_adjust_trans_huge(struct vm_area_struct *vma,
2288			     unsigned long start,
2289			     unsigned long end,
2290			     long adjust_next)
2291{
2292	/* Check if we need to split start first. */
2293	split_huge_pmd_if_needed(vma, start);
 
 
 
 
 
 
 
2294
2295	/* Check if we need to split end next. */
2296	split_huge_pmd_if_needed(vma, end);
 
 
 
 
 
 
 
2297
2298	/*
2299	 * If we're also updating the vma->vm_next->vm_start,
2300	 * check if we need to split it.
 
2301	 */
2302	if (adjust_next > 0) {
2303		struct vm_area_struct *next = vma->vm_next;
2304		unsigned long nstart = next->vm_start;
2305		nstart += adjust_next;
2306		split_huge_pmd_if_needed(next, nstart);
 
 
 
2307	}
2308}
2309
2310static void unmap_page(struct page *page)
2311{
2312	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2313		TTU_SYNC;
 
2314
2315	VM_BUG_ON_PAGE(!PageHead(page), page);
2316
2317	/*
2318	 * Anon pages need migration entries to preserve them, but file
2319	 * pages can simply be left unmapped, then faulted back on demand.
2320	 * If that is ever changed (perhaps for mlock), update remap_page().
2321	 */
2322	if (PageAnon(page))
2323		try_to_migrate(page, ttu_flags);
2324	else
2325		try_to_unmap(page, ttu_flags | TTU_IGNORE_MLOCK);
2326
2327	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
 
2328}
2329
2330static void remap_page(struct page *page, unsigned int nr)
2331{
2332	int i;
2333
2334	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2335	if (!PageAnon(page))
2336		return;
2337	if (PageTransHuge(page)) {
2338		remove_migration_ptes(page, page, true);
2339	} else {
2340		for (i = 0; i < nr; i++)
2341			remove_migration_ptes(page + i, page + i, true);
2342	}
2343}
2344
2345static void lru_add_page_tail(struct page *head, struct page *tail,
2346		struct lruvec *lruvec, struct list_head *list)
2347{
2348	VM_BUG_ON_PAGE(!PageHead(head), head);
2349	VM_BUG_ON_PAGE(PageCompound(tail), head);
2350	VM_BUG_ON_PAGE(PageLRU(tail), head);
2351	lockdep_assert_held(&lruvec->lru_lock);
2352
2353	if (list) {
2354		/* page reclaim is reclaiming a huge page */
2355		VM_WARN_ON(PageLRU(head));
2356		get_page(tail);
2357		list_add_tail(&tail->lru, list);
2358	} else {
2359		/* head is still on lru (and we have it frozen) */
2360		VM_WARN_ON(!PageLRU(head));
2361		SetPageLRU(tail);
2362		list_add_tail(&tail->lru, &head->lru);
2363	}
2364}
2365
2366static void __split_huge_page_tail(struct page *head, int tail,
2367		struct lruvec *lruvec, struct list_head *list)
2368{
2369	struct page *page_tail = head + tail;
2370
2371	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2372
2373	/*
2374	 * Clone page flags before unfreezing refcount.
2375	 *
2376	 * After successful get_page_unless_zero() might follow flags change,
2377	 * for example lock_page() which set PG_waiters.
2378	 */
2379	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2380	page_tail->flags |= (head->flags &
2381			((1L << PG_referenced) |
2382			 (1L << PG_swapbacked) |
2383			 (1L << PG_swapcache) |
2384			 (1L << PG_mlocked) |
2385			 (1L << PG_uptodate) |
2386			 (1L << PG_active) |
2387			 (1L << PG_workingset) |
2388			 (1L << PG_locked) |
2389			 (1L << PG_unevictable) |
2390#ifdef CONFIG_64BIT
2391			 (1L << PG_arch_2) |
2392#endif
2393			 (1L << PG_dirty)));
2394
2395	/* ->mapping in first tail page is compound_mapcount */
2396	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2397			page_tail);
2398	page_tail->mapping = head->mapping;
2399	page_tail->index = head->index + tail;
2400
2401	/* Page flags must be visible before we make the page non-compound. */
2402	smp_wmb();
2403
2404	/*
2405	 * Clear PageTail before unfreezing page refcount.
2406	 *
2407	 * After successful get_page_unless_zero() might follow put_page()
2408	 * which needs correct compound_head().
2409	 */
2410	clear_compound_head(page_tail);
2411
2412	/* Finally unfreeze refcount. Additional reference from page cache. */
2413	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2414					  PageSwapCache(head)));
2415
2416	if (page_is_young(head))
2417		set_page_young(page_tail);
2418	if (page_is_idle(head))
2419		set_page_idle(page_tail);
2420
 
 
 
 
 
 
2421	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2422
2423	/*
2424	 * always add to the tail because some iterators expect new
2425	 * pages to show after the currently processed elements - e.g.
2426	 * migrate_pages
2427	 */
2428	lru_add_page_tail(head, page_tail, lruvec, list);
2429}
2430
2431static void __split_huge_page(struct page *page, struct list_head *list,
2432		pgoff_t end)
2433{
2434	struct page *head = compound_head(page);
 
2435	struct lruvec *lruvec;
2436	struct address_space *swap_cache = NULL;
2437	unsigned long offset = 0;
2438	unsigned int nr = thp_nr_pages(head);
2439	int i;
2440
 
 
2441	/* complete memcg works before add pages to LRU */
2442	split_page_memcg(head, nr);
2443
2444	if (PageAnon(head) && PageSwapCache(head)) {
2445		swp_entry_t entry = { .val = page_private(head) };
2446
2447		offset = swp_offset(entry);
2448		swap_cache = swap_address_space(entry);
2449		xa_lock(&swap_cache->i_pages);
2450	}
2451
2452	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2453	lruvec = lock_page_lruvec(head);
2454
2455	for (i = nr - 1; i >= 1; i--) {
2456		__split_huge_page_tail(head, i, lruvec, list);
2457		/* Some pages can be beyond i_size: drop them from page cache */
2458		if (head[i].index >= end) {
2459			ClearPageDirty(head + i);
2460			__delete_from_page_cache(head + i, NULL);
2461			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2462				shmem_uncharge(head->mapping->host, 1);
2463			put_page(head + i);
2464		} else if (!PageAnon(page)) {
2465			__xa_store(&head->mapping->i_pages, head[i].index,
2466					head + i, 0);
2467		} else if (swap_cache) {
2468			__xa_store(&swap_cache->i_pages, offset + i,
2469					head + i, 0);
2470		}
2471	}
2472
2473	ClearPageCompound(head);
2474	unlock_page_lruvec(lruvec);
2475	/* Caller disabled irqs, so they are still disabled here */
2476
2477	split_page_owner(head, nr);
2478
2479	/* See comment in __split_huge_page_tail() */
2480	if (PageAnon(head)) {
2481		/* Additional pin to swap cache */
2482		if (PageSwapCache(head)) {
2483			page_ref_add(head, 2);
2484			xa_unlock(&swap_cache->i_pages);
2485		} else {
2486			page_ref_inc(head);
2487		}
2488	} else {
2489		/* Additional pin to page cache */
2490		page_ref_add(head, 2);
2491		xa_unlock(&head->mapping->i_pages);
2492	}
2493	local_irq_enable();
2494
2495	remap_page(head, nr);
2496
2497	if (PageSwapCache(head)) {
2498		swp_entry_t entry = { .val = page_private(head) };
2499
2500		split_swap_cluster(entry);
2501	}
2502
2503	for (i = 0; i < nr; i++) {
2504		struct page *subpage = head + i;
2505		if (subpage == page)
2506			continue;
2507		unlock_page(subpage);
2508
2509		/*
2510		 * Subpages may be freed if there wasn't any mapping
2511		 * like if add_to_swap() is running on a lru page that
2512		 * had its mapping zapped. And freeing these pages
2513		 * requires taking the lru_lock so we do the put_page
2514		 * of the tail pages after the split is complete.
2515		 */
2516		put_page(subpage);
2517	}
2518}
2519
2520int total_mapcount(struct page *page)
2521{
2522	int i, compound, nr, ret;
2523
2524	VM_BUG_ON_PAGE(PageTail(page), page);
2525
2526	if (likely(!PageCompound(page)))
2527		return atomic_read(&page->_mapcount) + 1;
2528
2529	compound = compound_mapcount(page);
2530	nr = compound_nr(page);
2531	if (PageHuge(page))
2532		return compound;
2533	ret = compound;
2534	for (i = 0; i < nr; i++)
2535		ret += atomic_read(&page[i]._mapcount) + 1;
2536	/* File pages has compound_mapcount included in _mapcount */
2537	if (!PageAnon(page))
2538		return ret - compound * nr;
2539	if (PageDoubleMap(page))
2540		ret -= nr;
2541	return ret;
2542}
2543
2544/*
2545 * This calculates accurately how many mappings a transparent hugepage
2546 * has (unlike page_mapcount() which isn't fully accurate). This full
2547 * accuracy is primarily needed to know if copy-on-write faults can
2548 * reuse the page and change the mapping to read-write instead of
2549 * copying them. At the same time this returns the total_mapcount too.
2550 *
2551 * The function returns the highest mapcount any one of the subpages
2552 * has. If the return value is one, even if different processes are
2553 * mapping different subpages of the transparent hugepage, they can
2554 * all reuse it, because each process is reusing a different subpage.
2555 *
2556 * The total_mapcount is instead counting all virtual mappings of the
2557 * subpages. If the total_mapcount is equal to "one", it tells the
2558 * caller all mappings belong to the same "mm" and in turn the
2559 * anon_vma of the transparent hugepage can become the vma->anon_vma
2560 * local one as no other process may be mapping any of the subpages.
2561 *
2562 * It would be more accurate to replace page_mapcount() with
2563 * page_trans_huge_mapcount(), however we only use
2564 * page_trans_huge_mapcount() in the copy-on-write faults where we
2565 * need full accuracy to avoid breaking page pinning, because
2566 * page_trans_huge_mapcount() is slower than page_mapcount().
2567 */
2568int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2569{
2570	int i, ret, _total_mapcount, mapcount;
2571
2572	/* hugetlbfs shouldn't call it */
2573	VM_BUG_ON_PAGE(PageHuge(page), page);
2574
2575	if (likely(!PageTransCompound(page))) {
2576		mapcount = atomic_read(&page->_mapcount) + 1;
2577		if (total_mapcount)
2578			*total_mapcount = mapcount;
2579		return mapcount;
2580	}
2581
2582	page = compound_head(page);
2583
2584	_total_mapcount = ret = 0;
2585	for (i = 0; i < thp_nr_pages(page); i++) {
2586		mapcount = atomic_read(&page[i]._mapcount) + 1;
2587		ret = max(ret, mapcount);
2588		_total_mapcount += mapcount;
2589	}
2590	if (PageDoubleMap(page)) {
2591		ret -= 1;
2592		_total_mapcount -= thp_nr_pages(page);
2593	}
2594	mapcount = compound_mapcount(page);
2595	ret += mapcount;
2596	_total_mapcount += mapcount;
2597	if (total_mapcount)
2598		*total_mapcount = _total_mapcount;
2599	return ret;
2600}
2601
2602/* Racy check whether the huge page can be split */
2603bool can_split_huge_page(struct page *page, int *pextra_pins)
2604{
2605	int extra_pins;
2606
2607	/* Additional pins from page cache */
2608	if (PageAnon(page))
2609		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2610	else
2611		extra_pins = thp_nr_pages(page);
2612	if (pextra_pins)
2613		*pextra_pins = extra_pins;
2614	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2615}
2616
2617/*
2618 * This function splits huge page into normal pages. @page can point to any
2619 * subpage of huge page to split. Split doesn't change the position of @page.
2620 *
2621 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2622 * The huge page must be locked.
2623 *
2624 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2625 *
2626 * Both head page and tail pages will inherit mapping, flags, and so on from
2627 * the hugepage.
2628 *
2629 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2630 * they are not mapped.
2631 *
2632 * Returns 0 if the hugepage is split successfully.
2633 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2634 * us.
2635 */
2636int split_huge_page_to_list(struct page *page, struct list_head *list)
2637{
2638	struct page *head = compound_head(page);
2639	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2640	struct anon_vma *anon_vma = NULL;
2641	struct address_space *mapping = NULL;
2642	int extra_pins, ret;
2643	pgoff_t end;
 
2644
2645	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2646	VM_BUG_ON_PAGE(!PageLocked(head), head);
2647	VM_BUG_ON_PAGE(!PageCompound(head), head);
2648
2649	if (PageWriteback(head))
2650		return -EBUSY;
2651
2652	if (PageAnon(head)) {
2653		/*
2654		 * The caller does not necessarily hold an mmap_lock that would
2655		 * prevent the anon_vma disappearing so we first we take a
2656		 * reference to it and then lock the anon_vma for write. This
2657		 * is similar to page_lock_anon_vma_read except the write lock
2658		 * is taken to serialise against parallel split or collapse
2659		 * operations.
2660		 */
2661		anon_vma = page_get_anon_vma(head);
2662		if (!anon_vma) {
2663			ret = -EBUSY;
2664			goto out;
2665		}
2666		end = -1;
2667		mapping = NULL;
2668		anon_vma_lock_write(anon_vma);
2669	} else {
2670		mapping = head->mapping;
2671
2672		/* Truncated ? */
2673		if (!mapping) {
2674			ret = -EBUSY;
2675			goto out;
2676		}
2677
2678		anon_vma = NULL;
2679		i_mmap_lock_read(mapping);
2680
2681		/*
2682		 *__split_huge_page() may need to trim off pages beyond EOF:
2683		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2684		 * which cannot be nested inside the page tree lock. So note
2685		 * end now: i_size itself may be changed at any moment, but
2686		 * head page lock is good enough to serialize the trimming.
2687		 */
2688		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2689	}
2690
2691	/*
2692	 * Racy check if we can split the page, before unmap_page() will
2693	 * split PMDs
2694	 */
2695	if (!can_split_huge_page(head, &extra_pins)) {
2696		ret = -EBUSY;
2697		goto out_unlock;
2698	}
2699
2700	unmap_page(head);
 
 
 
 
 
 
 
 
 
2701
2702	/* block interrupt reentry in xa_lock and spinlock */
2703	local_irq_disable();
2704	if (mapping) {
2705		XA_STATE(xas, &mapping->i_pages, page_index(head));
2706
 
 
 
2707		/*
2708		 * Check if the head page is present in page cache.
2709		 * We assume all tail are present too, if head is there.
2710		 */
2711		xa_lock(&mapping->i_pages);
2712		if (xas_load(&xas) != head)
2713			goto fail;
2714	}
2715
2716	/* Prevent deferred_split_scan() touching ->_refcount */
2717	spin_lock(&ds_queue->split_queue_lock);
2718	if (page_ref_freeze(head, 1 + extra_pins)) {
 
 
2719		if (!list_empty(page_deferred_list(head))) {
2720			ds_queue->split_queue_len--;
2721			list_del(page_deferred_list(head));
2722		}
2723		spin_unlock(&ds_queue->split_queue_lock);
2724		if (mapping) {
2725			int nr = thp_nr_pages(head);
2726
2727			if (PageSwapBacked(head)) {
2728				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2729							-nr);
2730			} else {
2731				__mod_lruvec_page_state(head, NR_FILE_THPS,
2732							-nr);
2733				filemap_nr_thps_dec(mapping);
2734			}
2735		}
2736
2737		__split_huge_page(page, list, end);
2738		ret = 0;
 
2739	} else {
2740		spin_unlock(&ds_queue->split_queue_lock);
2741fail:
2742		if (mapping)
 
 
 
 
 
 
 
2743			xa_unlock(&mapping->i_pages);
2744		local_irq_enable();
2745		remap_page(head, thp_nr_pages(head));
2746		ret = -EBUSY;
2747	}
2748
2749out_unlock:
2750	if (anon_vma) {
2751		anon_vma_unlock_write(anon_vma);
2752		put_anon_vma(anon_vma);
2753	}
2754	if (mapping)
2755		i_mmap_unlock_read(mapping);
2756out:
2757	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2758	return ret;
2759}
2760
2761void free_transhuge_page(struct page *page)
2762{
2763	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2764	unsigned long flags;
2765
2766	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2767	if (!list_empty(page_deferred_list(page))) {
2768		ds_queue->split_queue_len--;
2769		list_del(page_deferred_list(page));
2770	}
2771	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2772	free_compound_page(page);
2773}
2774
2775void deferred_split_huge_page(struct page *page)
2776{
2777	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2778#ifdef CONFIG_MEMCG
2779	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2780#endif
2781	unsigned long flags;
2782
2783	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2784
2785	/*
2786	 * The try_to_unmap() in page reclaim path might reach here too,
2787	 * this may cause a race condition to corrupt deferred split queue.
2788	 * And, if page reclaim is already handling the same page, it is
2789	 * unnecessary to handle it again in shrinker.
2790	 *
2791	 * Check PageSwapCache to determine if the page is being
2792	 * handled by page reclaim since THP swap would add the page into
2793	 * swap cache before calling try_to_unmap().
2794	 */
2795	if (PageSwapCache(page))
2796		return;
2797
2798	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2799	if (list_empty(page_deferred_list(page))) {
2800		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2801		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2802		ds_queue->split_queue_len++;
2803#ifdef CONFIG_MEMCG
2804		if (memcg)
2805			set_shrinker_bit(memcg, page_to_nid(page),
2806					 deferred_split_shrinker.id);
2807#endif
2808	}
2809	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2810}
2811
2812static unsigned long deferred_split_count(struct shrinker *shrink,
2813		struct shrink_control *sc)
2814{
2815	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2816	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2817
2818#ifdef CONFIG_MEMCG
2819	if (sc->memcg)
2820		ds_queue = &sc->memcg->deferred_split_queue;
2821#endif
2822	return READ_ONCE(ds_queue->split_queue_len);
2823}
2824
2825static unsigned long deferred_split_scan(struct shrinker *shrink,
2826		struct shrink_control *sc)
2827{
2828	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2829	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2830	unsigned long flags;
2831	LIST_HEAD(list), *pos, *next;
2832	struct page *page;
2833	int split = 0;
2834
2835#ifdef CONFIG_MEMCG
2836	if (sc->memcg)
2837		ds_queue = &sc->memcg->deferred_split_queue;
2838#endif
2839
2840	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2841	/* Take pin on all head pages to avoid freeing them under us */
2842	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2843		page = list_entry((void *)pos, struct page, deferred_list);
2844		page = compound_head(page);
2845		if (get_page_unless_zero(page)) {
2846			list_move(page_deferred_list(page), &list);
2847		} else {
2848			/* We lost race with put_compound_page() */
2849			list_del_init(page_deferred_list(page));
2850			ds_queue->split_queue_len--;
2851		}
2852		if (!--sc->nr_to_scan)
2853			break;
2854	}
2855	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2856
2857	list_for_each_safe(pos, next, &list) {
2858		page = list_entry((void *)pos, struct page, deferred_list);
2859		if (!trylock_page(page))
2860			goto next;
2861		/* split_huge_page() removes page from list on success */
2862		if (!split_huge_page(page))
2863			split++;
2864		unlock_page(page);
2865next:
2866		put_page(page);
2867	}
2868
2869	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2870	list_splice_tail(&list, &ds_queue->split_queue);
2871	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2872
2873	/*
2874	 * Stop shrinker if we didn't split any page, but the queue is empty.
2875	 * This can happen if pages were freed under us.
2876	 */
2877	if (!split && list_empty(&ds_queue->split_queue))
2878		return SHRINK_STOP;
2879	return split;
2880}
2881
2882static struct shrinker deferred_split_shrinker = {
2883	.count_objects = deferred_split_count,
2884	.scan_objects = deferred_split_scan,
2885	.seeks = DEFAULT_SEEKS,
2886	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2887		 SHRINKER_NONSLAB,
2888};
2889
2890#ifdef CONFIG_DEBUG_FS
2891static void split_huge_pages_all(void)
2892{
2893	struct zone *zone;
2894	struct page *page;
2895	unsigned long pfn, max_zone_pfn;
2896	unsigned long total = 0, split = 0;
2897
2898	pr_debug("Split all THPs\n");
 
 
2899	for_each_populated_zone(zone) {
2900		max_zone_pfn = zone_end_pfn(zone);
2901		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2902			if (!pfn_valid(pfn))
2903				continue;
2904
2905			page = pfn_to_page(pfn);
2906			if (!get_page_unless_zero(page))
2907				continue;
2908
2909			if (zone != page_zone(page))
2910				goto next;
2911
2912			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2913				goto next;
2914
2915			total++;
2916			lock_page(page);
2917			if (!split_huge_page(page))
2918				split++;
2919			unlock_page(page);
2920next:
2921			put_page(page);
2922			cond_resched();
2923		}
2924	}
2925
2926	pr_debug("%lu of %lu THP split\n", split, total);
2927}
2928
2929static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2930{
2931	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2932		    is_vm_hugetlb_page(vma);
2933}
 
 
2934
2935static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2936				unsigned long vaddr_end)
2937{
2938	int ret = 0;
2939	struct task_struct *task;
2940	struct mm_struct *mm;
2941	unsigned long total = 0, split = 0;
2942	unsigned long addr;
2943
2944	vaddr_start &= PAGE_MASK;
2945	vaddr_end &= PAGE_MASK;
2946
2947	/* Find the task_struct from pid */
2948	rcu_read_lock();
2949	task = find_task_by_vpid(pid);
2950	if (!task) {
2951		rcu_read_unlock();
2952		ret = -ESRCH;
2953		goto out;
2954	}
2955	get_task_struct(task);
2956	rcu_read_unlock();
2957
2958	/* Find the mm_struct */
2959	mm = get_task_mm(task);
2960	put_task_struct(task);
2961
2962	if (!mm) {
2963		ret = -EINVAL;
2964		goto out;
2965	}
2966
2967	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2968		 pid, vaddr_start, vaddr_end);
2969
2970	mmap_read_lock(mm);
2971	/*
2972	 * always increase addr by PAGE_SIZE, since we could have a PTE page
2973	 * table filled with PTE-mapped THPs, each of which is distinct.
2974	 */
2975	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2976		struct vm_area_struct *vma = find_vma(mm, addr);
2977		unsigned int follflags;
2978		struct page *page;
2979
2980		if (!vma || addr < vma->vm_start)
2981			break;
2982
2983		/* skip special VMA and hugetlb VMA */
2984		if (vma_not_suitable_for_thp_split(vma)) {
2985			addr = vma->vm_end;
2986			continue;
2987		}
2988
2989		/* FOLL_DUMP to ignore special (like zero) pages */
2990		follflags = FOLL_GET | FOLL_DUMP;
2991		page = follow_page(vma, addr, follflags);
2992
2993		if (IS_ERR(page))
2994			continue;
2995		if (!page)
2996			continue;
2997
2998		if (!is_transparent_hugepage(page))
2999			goto next;
3000
3001		total++;
3002		if (!can_split_huge_page(compound_head(page), NULL))
3003			goto next;
3004
3005		if (!trylock_page(page))
3006			goto next;
3007
3008		if (!split_huge_page(page))
3009			split++;
3010
3011		unlock_page(page);
3012next:
3013		put_page(page);
3014		cond_resched();
3015	}
3016	mmap_read_unlock(mm);
3017	mmput(mm);
3018
3019	pr_debug("%lu of %lu THP split\n", split, total);
3020
3021out:
3022	return ret;
3023}
3024
3025static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3026				pgoff_t off_end)
3027{
3028	struct filename *file;
3029	struct file *candidate;
3030	struct address_space *mapping;
3031	int ret = -EINVAL;
3032	pgoff_t index;
3033	int nr_pages = 1;
3034	unsigned long total = 0, split = 0;
3035
3036	file = getname_kernel(file_path);
3037	if (IS_ERR(file))
3038		return ret;
3039
3040	candidate = file_open_name(file, O_RDONLY, 0);
3041	if (IS_ERR(candidate))
3042		goto out;
3043
3044	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3045		 file_path, off_start, off_end);
3046
3047	mapping = candidate->f_mapping;
3048
3049	for (index = off_start; index < off_end; index += nr_pages) {
3050		struct page *fpage = pagecache_get_page(mapping, index,
3051						FGP_ENTRY | FGP_HEAD, 0);
3052
3053		nr_pages = 1;
3054		if (xa_is_value(fpage) || !fpage)
3055			continue;
3056
3057		if (!is_transparent_hugepage(fpage))
3058			goto next;
3059
3060		total++;
3061		nr_pages = thp_nr_pages(fpage);
3062
3063		if (!trylock_page(fpage))
3064			goto next;
3065
3066		if (!split_huge_page(fpage))
3067			split++;
3068
3069		unlock_page(fpage);
3070next:
3071		put_page(fpage);
3072		cond_resched();
3073	}
3074
3075	filp_close(candidate, NULL);
3076	ret = 0;
3077
3078	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3079out:
3080	putname(file);
3081	return ret;
3082}
3083
3084#define MAX_INPUT_BUF_SZ 255
3085
3086static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3087				size_t count, loff_t *ppops)
3088{
3089	static DEFINE_MUTEX(split_debug_mutex);
3090	ssize_t ret;
3091	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3092	char input_buf[MAX_INPUT_BUF_SZ];
3093	int pid;
3094	unsigned long vaddr_start, vaddr_end;
3095
3096	ret = mutex_lock_interruptible(&split_debug_mutex);
3097	if (ret)
3098		return ret;
3099
3100	ret = -EFAULT;
3101
3102	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3103	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3104		goto out;
3105
3106	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3107
3108	if (input_buf[0] == '/') {
3109		char *tok;
3110		char *buf = input_buf;
3111		char file_path[MAX_INPUT_BUF_SZ];
3112		pgoff_t off_start = 0, off_end = 0;
3113		size_t input_len = strlen(input_buf);
3114
3115		tok = strsep(&buf, ",");
3116		if (tok) {
3117			strcpy(file_path, tok);
3118		} else {
3119			ret = -EINVAL;
3120			goto out;
3121		}
3122
3123		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3124		if (ret != 2) {
3125			ret = -EINVAL;
3126			goto out;
3127		}
3128		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3129		if (!ret)
3130			ret = input_len;
3131
3132		goto out;
3133	}
3134
3135	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3136	if (ret == 1 && pid == 1) {
3137		split_huge_pages_all();
3138		ret = strlen(input_buf);
3139		goto out;
3140	} else if (ret != 3) {
3141		ret = -EINVAL;
3142		goto out;
3143	}
3144
3145	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3146	if (!ret)
3147		ret = strlen(input_buf);
3148out:
3149	mutex_unlock(&split_debug_mutex);
3150	return ret;
3151
3152}
3153
3154static const struct file_operations split_huge_pages_fops = {
3155	.owner	 = THIS_MODULE,
3156	.write	 = split_huge_pages_write,
3157	.llseek  = no_llseek,
3158};
3159
3160static int __init split_huge_pages_debugfs(void)
3161{
3162	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3163			    &split_huge_pages_fops);
3164	return 0;
3165}
3166late_initcall(split_huge_pages_debugfs);
3167#endif
3168
3169#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3170void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3171		struct page *page)
3172{
3173	struct vm_area_struct *vma = pvmw->vma;
3174	struct mm_struct *mm = vma->vm_mm;
3175	unsigned long address = pvmw->address;
3176	pmd_t pmdval;
3177	swp_entry_t entry;
3178	pmd_t pmdswp;
3179
3180	if (!(pvmw->pmd && !pvmw->pte))
3181		return;
3182
 
 
 
3183	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3184	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
 
3185	if (pmd_dirty(pmdval))
3186		set_page_dirty(page);
3187	if (pmd_write(pmdval))
3188		entry = make_writable_migration_entry(page_to_pfn(page));
3189	else
3190		entry = make_readable_migration_entry(page_to_pfn(page));
3191	pmdswp = swp_entry_to_pmd(entry);
3192	if (pmd_soft_dirty(pmdval))
3193		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3194	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3195	page_remove_rmap(page, true);
3196	put_page(page);
 
 
 
3197}
3198
3199void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3200{
3201	struct vm_area_struct *vma = pvmw->vma;
3202	struct mm_struct *mm = vma->vm_mm;
3203	unsigned long address = pvmw->address;
3204	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3205	pmd_t pmde;
3206	swp_entry_t entry;
3207
3208	if (!(pvmw->pmd && !pvmw->pte))
3209		return;
3210
3211	entry = pmd_to_swp_entry(*pvmw->pmd);
3212	get_page(new);
3213	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3214	if (pmd_swp_soft_dirty(*pvmw->pmd))
3215		pmde = pmd_mksoft_dirty(pmde);
3216	if (is_writable_migration_entry(entry))
3217		pmde = maybe_pmd_mkwrite(pmde, vma);
3218	if (pmd_swp_uffd_wp(*pvmw->pmd))
3219		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3220
3221	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3222	if (PageAnon(new))
3223		page_add_anon_rmap(new, vma, mmun_start, true);
3224	else
3225		page_add_file_rmap(new, true);
3226	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3227	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3228		mlock_vma_page(new);
3229	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3230}
3231#endif