Linux Audio

Check our new training course

Loading...
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
  15#include <linux/mm_inline.h>
  16#include <linux/kthread.h>
  17#include <linux/khugepaged.h>
  18#include <linux/freezer.h>
  19#include <linux/mman.h>
  20#include <asm/tlb.h>
  21#include <asm/pgalloc.h>
  22#include "internal.h"
  23
  24/*
  25 * By default transparent hugepage support is enabled for all mappings
  26 * and khugepaged scans all mappings. Defrag is only invoked by
  27 * khugepaged hugepage allocations and by page faults inside
  28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29 * allocations.
  30 */
  31unsigned long transparent_hugepage_flags __read_mostly =
  32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34#endif
  35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37#endif
  38	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  40
  41/* default scan 8*512 pte (or vmas) every 30 second */
  42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  43static unsigned int khugepaged_pages_collapsed;
  44static unsigned int khugepaged_full_scans;
  45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  46/* during fragmentation poll the hugepage allocator once every minute */
  47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  48static struct task_struct *khugepaged_thread __read_mostly;
  49static DEFINE_MUTEX(khugepaged_mutex);
  50static DEFINE_SPINLOCK(khugepaged_mm_lock);
  51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  52/*
  53 * default collapse hugepages if there is at least one pte mapped like
  54 * it would have happened if the vma was large enough during page
  55 * fault.
  56 */
  57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  58
  59static int khugepaged(void *none);
  60static int mm_slots_hash_init(void);
  61static int khugepaged_slab_init(void);
  62static void khugepaged_slab_free(void);
  63
  64#define MM_SLOTS_HASH_HEADS 1024
  65static struct hlist_head *mm_slots_hash __read_mostly;
  66static struct kmem_cache *mm_slot_cache __read_mostly;
  67
  68/**
  69 * struct mm_slot - hash lookup from mm to mm_slot
  70 * @hash: hash collision list
  71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72 * @mm: the mm that this information is valid for
  73 */
  74struct mm_slot {
  75	struct hlist_node hash;
  76	struct list_head mm_node;
  77	struct mm_struct *mm;
  78};
  79
  80/**
  81 * struct khugepaged_scan - cursor for scanning
  82 * @mm_head: the head of the mm list to scan
  83 * @mm_slot: the current mm_slot we are scanning
  84 * @address: the next address inside that to be scanned
  85 *
  86 * There is only the one khugepaged_scan instance of this cursor structure.
  87 */
  88struct khugepaged_scan {
  89	struct list_head mm_head;
  90	struct mm_slot *mm_slot;
  91	unsigned long address;
  92};
  93static struct khugepaged_scan khugepaged_scan = {
  94	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  95};
  96
  97
  98static int set_recommended_min_free_kbytes(void)
  99{
 100	struct zone *zone;
 101	int nr_zones = 0;
 102	unsigned long recommended_min;
 103	extern int min_free_kbytes;
 104
 105	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 106		      &transparent_hugepage_flags) &&
 107	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 108		      &transparent_hugepage_flags))
 109		return 0;
 110
 111	for_each_populated_zone(zone)
 112		nr_zones++;
 113
 114	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 115	recommended_min = pageblock_nr_pages * nr_zones * 2;
 116
 117	/*
 118	 * Make sure that on average at least two pageblocks are almost free
 119	 * of another type, one for a migratetype to fall back to and a
 120	 * second to avoid subsequent fallbacks of other types There are 3
 121	 * MIGRATE_TYPES we care about.
 122	 */
 123	recommended_min += pageblock_nr_pages * nr_zones *
 124			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 125
 126	/* don't ever allow to reserve more than 5% of the lowmem */
 127	recommended_min = min(recommended_min,
 128			      (unsigned long) nr_free_buffer_pages() / 20);
 129	recommended_min <<= (PAGE_SHIFT-10);
 130
 131	if (recommended_min > min_free_kbytes)
 132		min_free_kbytes = recommended_min;
 133	setup_per_zone_wmarks();
 134	return 0;
 135}
 136late_initcall(set_recommended_min_free_kbytes);
 137
 138static int start_khugepaged(void)
 139{
 140	int err = 0;
 141	if (khugepaged_enabled()) {
 142		int wakeup;
 143		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
 144			err = -ENOMEM;
 145			goto out;
 146		}
 147		mutex_lock(&khugepaged_mutex);
 148		if (!khugepaged_thread)
 149			khugepaged_thread = kthread_run(khugepaged, NULL,
 150							"khugepaged");
 151		if (unlikely(IS_ERR(khugepaged_thread))) {
 152			printk(KERN_ERR
 153			       "khugepaged: kthread_run(khugepaged) failed\n");
 154			err = PTR_ERR(khugepaged_thread);
 155			khugepaged_thread = NULL;
 156		}
 157		wakeup = !list_empty(&khugepaged_scan.mm_head);
 158		mutex_unlock(&khugepaged_mutex);
 159		if (wakeup)
 160			wake_up_interruptible(&khugepaged_wait);
 161
 162		set_recommended_min_free_kbytes();
 163	} else
 164		/* wakeup to exit */
 165		wake_up_interruptible(&khugepaged_wait);
 166out:
 167	return err;
 168}
 169
 170#ifdef CONFIG_SYSFS
 171
 172static ssize_t double_flag_show(struct kobject *kobj,
 173				struct kobj_attribute *attr, char *buf,
 174				enum transparent_hugepage_flag enabled,
 175				enum transparent_hugepage_flag req_madv)
 176{
 177	if (test_bit(enabled, &transparent_hugepage_flags)) {
 178		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 179		return sprintf(buf, "[always] madvise never\n");
 180	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 181		return sprintf(buf, "always [madvise] never\n");
 182	else
 183		return sprintf(buf, "always madvise [never]\n");
 184}
 185static ssize_t double_flag_store(struct kobject *kobj,
 186				 struct kobj_attribute *attr,
 187				 const char *buf, size_t count,
 188				 enum transparent_hugepage_flag enabled,
 189				 enum transparent_hugepage_flag req_madv)
 190{
 191	if (!memcmp("always", buf,
 192		    min(sizeof("always")-1, count))) {
 193		set_bit(enabled, &transparent_hugepage_flags);
 194		clear_bit(req_madv, &transparent_hugepage_flags);
 195	} else if (!memcmp("madvise", buf,
 196			   min(sizeof("madvise")-1, count))) {
 197		clear_bit(enabled, &transparent_hugepage_flags);
 198		set_bit(req_madv, &transparent_hugepage_flags);
 199	} else if (!memcmp("never", buf,
 200			   min(sizeof("never")-1, count))) {
 201		clear_bit(enabled, &transparent_hugepage_flags);
 202		clear_bit(req_madv, &transparent_hugepage_flags);
 203	} else
 204		return -EINVAL;
 205
 206	return count;
 207}
 208
 209static ssize_t enabled_show(struct kobject *kobj,
 210			    struct kobj_attribute *attr, char *buf)
 211{
 212	return double_flag_show(kobj, attr, buf,
 213				TRANSPARENT_HUGEPAGE_FLAG,
 214				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 215}
 216static ssize_t enabled_store(struct kobject *kobj,
 217			     struct kobj_attribute *attr,
 218			     const char *buf, size_t count)
 219{
 220	ssize_t ret;
 221
 222	ret = double_flag_store(kobj, attr, buf, count,
 223				TRANSPARENT_HUGEPAGE_FLAG,
 224				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 225
 226	if (ret > 0) {
 227		int err = start_khugepaged();
 228		if (err)
 229			ret = err;
 230	}
 231
 232	if (ret > 0 &&
 233	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 234		      &transparent_hugepage_flags) ||
 235	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 236		      &transparent_hugepage_flags)))
 237		set_recommended_min_free_kbytes();
 238
 239	return ret;
 240}
 241static struct kobj_attribute enabled_attr =
 242	__ATTR(enabled, 0644, enabled_show, enabled_store);
 243
 244static ssize_t single_flag_show(struct kobject *kobj,
 245				struct kobj_attribute *attr, char *buf,
 246				enum transparent_hugepage_flag flag)
 247{
 248	return sprintf(buf, "%d\n",
 249		       !!test_bit(flag, &transparent_hugepage_flags));
 250}
 251
 252static ssize_t single_flag_store(struct kobject *kobj,
 253				 struct kobj_attribute *attr,
 254				 const char *buf, size_t count,
 255				 enum transparent_hugepage_flag flag)
 256{
 257	unsigned long value;
 258	int ret;
 259
 260	ret = kstrtoul(buf, 10, &value);
 261	if (ret < 0)
 262		return ret;
 263	if (value > 1)
 264		return -EINVAL;
 265
 266	if (value)
 267		set_bit(flag, &transparent_hugepage_flags);
 268	else
 269		clear_bit(flag, &transparent_hugepage_flags);
 270
 271	return count;
 272}
 273
 274/*
 275 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 276 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 277 * memory just to allocate one more hugepage.
 278 */
 279static ssize_t defrag_show(struct kobject *kobj,
 280			   struct kobj_attribute *attr, char *buf)
 281{
 282	return double_flag_show(kobj, attr, buf,
 283				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 284				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 285}
 286static ssize_t defrag_store(struct kobject *kobj,
 287			    struct kobj_attribute *attr,
 288			    const char *buf, size_t count)
 289{
 290	return double_flag_store(kobj, attr, buf, count,
 291				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 292				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 293}
 294static struct kobj_attribute defrag_attr =
 295	__ATTR(defrag, 0644, defrag_show, defrag_store);
 296
 297#ifdef CONFIG_DEBUG_VM
 298static ssize_t debug_cow_show(struct kobject *kobj,
 299				struct kobj_attribute *attr, char *buf)
 300{
 301	return single_flag_show(kobj, attr, buf,
 302				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 303}
 304static ssize_t debug_cow_store(struct kobject *kobj,
 305			       struct kobj_attribute *attr,
 306			       const char *buf, size_t count)
 307{
 308	return single_flag_store(kobj, attr, buf, count,
 309				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 310}
 311static struct kobj_attribute debug_cow_attr =
 312	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 313#endif /* CONFIG_DEBUG_VM */
 314
 315static struct attribute *hugepage_attr[] = {
 316	&enabled_attr.attr,
 317	&defrag_attr.attr,
 318#ifdef CONFIG_DEBUG_VM
 319	&debug_cow_attr.attr,
 320#endif
 321	NULL,
 322};
 323
 324static struct attribute_group hugepage_attr_group = {
 325	.attrs = hugepage_attr,
 326};
 327
 328static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 329					 struct kobj_attribute *attr,
 330					 char *buf)
 331{
 332	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 333}
 334
 335static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 336					  struct kobj_attribute *attr,
 337					  const char *buf, size_t count)
 338{
 339	unsigned long msecs;
 340	int err;
 341
 342	err = strict_strtoul(buf, 10, &msecs);
 343	if (err || msecs > UINT_MAX)
 344		return -EINVAL;
 345
 346	khugepaged_scan_sleep_millisecs = msecs;
 347	wake_up_interruptible(&khugepaged_wait);
 348
 349	return count;
 350}
 351static struct kobj_attribute scan_sleep_millisecs_attr =
 352	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 353	       scan_sleep_millisecs_store);
 354
 355static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 356					  struct kobj_attribute *attr,
 357					  char *buf)
 358{
 359	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 360}
 361
 362static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 363					   struct kobj_attribute *attr,
 364					   const char *buf, size_t count)
 365{
 366	unsigned long msecs;
 367	int err;
 368
 369	err = strict_strtoul(buf, 10, &msecs);
 370	if (err || msecs > UINT_MAX)
 371		return -EINVAL;
 372
 373	khugepaged_alloc_sleep_millisecs = msecs;
 374	wake_up_interruptible(&khugepaged_wait);
 375
 376	return count;
 377}
 378static struct kobj_attribute alloc_sleep_millisecs_attr =
 379	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 380	       alloc_sleep_millisecs_store);
 381
 382static ssize_t pages_to_scan_show(struct kobject *kobj,
 383				  struct kobj_attribute *attr,
 384				  char *buf)
 385{
 386	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 387}
 388static ssize_t pages_to_scan_store(struct kobject *kobj,
 389				   struct kobj_attribute *attr,
 390				   const char *buf, size_t count)
 391{
 392	int err;
 393	unsigned long pages;
 394
 395	err = strict_strtoul(buf, 10, &pages);
 396	if (err || !pages || pages > UINT_MAX)
 397		return -EINVAL;
 398
 399	khugepaged_pages_to_scan = pages;
 400
 401	return count;
 402}
 403static struct kobj_attribute pages_to_scan_attr =
 404	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 405	       pages_to_scan_store);
 406
 407static ssize_t pages_collapsed_show(struct kobject *kobj,
 408				    struct kobj_attribute *attr,
 409				    char *buf)
 410{
 411	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 412}
 413static struct kobj_attribute pages_collapsed_attr =
 414	__ATTR_RO(pages_collapsed);
 415
 416static ssize_t full_scans_show(struct kobject *kobj,
 417			       struct kobj_attribute *attr,
 418			       char *buf)
 419{
 420	return sprintf(buf, "%u\n", khugepaged_full_scans);
 421}
 422static struct kobj_attribute full_scans_attr =
 423	__ATTR_RO(full_scans);
 424
 425static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 426				      struct kobj_attribute *attr, char *buf)
 427{
 428	return single_flag_show(kobj, attr, buf,
 429				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 430}
 431static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 432				       struct kobj_attribute *attr,
 433				       const char *buf, size_t count)
 434{
 435	return single_flag_store(kobj, attr, buf, count,
 436				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 437}
 438static struct kobj_attribute khugepaged_defrag_attr =
 439	__ATTR(defrag, 0644, khugepaged_defrag_show,
 440	       khugepaged_defrag_store);
 441
 442/*
 443 * max_ptes_none controls if khugepaged should collapse hugepages over
 444 * any unmapped ptes in turn potentially increasing the memory
 445 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 446 * reduce the available free memory in the system as it
 447 * runs. Increasing max_ptes_none will instead potentially reduce the
 448 * free memory in the system during the khugepaged scan.
 449 */
 450static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 451					     struct kobj_attribute *attr,
 452					     char *buf)
 453{
 454	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 455}
 456static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 457					      struct kobj_attribute *attr,
 458					      const char *buf, size_t count)
 459{
 460	int err;
 461	unsigned long max_ptes_none;
 462
 463	err = strict_strtoul(buf, 10, &max_ptes_none);
 464	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 465		return -EINVAL;
 466
 467	khugepaged_max_ptes_none = max_ptes_none;
 468
 469	return count;
 470}
 471static struct kobj_attribute khugepaged_max_ptes_none_attr =
 472	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 473	       khugepaged_max_ptes_none_store);
 474
 475static struct attribute *khugepaged_attr[] = {
 476	&khugepaged_defrag_attr.attr,
 477	&khugepaged_max_ptes_none_attr.attr,
 478	&pages_to_scan_attr.attr,
 479	&pages_collapsed_attr.attr,
 480	&full_scans_attr.attr,
 481	&scan_sleep_millisecs_attr.attr,
 482	&alloc_sleep_millisecs_attr.attr,
 483	NULL,
 484};
 485
 486static struct attribute_group khugepaged_attr_group = {
 487	.attrs = khugepaged_attr,
 488	.name = "khugepaged",
 489};
 490
 491static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 492{
 493	int err;
 494
 495	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 496	if (unlikely(!*hugepage_kobj)) {
 497		printk(KERN_ERR "hugepage: failed kobject create\n");
 498		return -ENOMEM;
 499	}
 500
 501	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 502	if (err) {
 503		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 504		goto delete_obj;
 505	}
 506
 507	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 508	if (err) {
 509		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 510		goto remove_hp_group;
 511	}
 512
 513	return 0;
 514
 515remove_hp_group:
 516	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 517delete_obj:
 518	kobject_put(*hugepage_kobj);
 519	return err;
 520}
 521
 522static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 523{
 524	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 525	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 526	kobject_put(hugepage_kobj);
 527}
 528#else
 529static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 530{
 531	return 0;
 532}
 533
 534static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 535{
 536}
 537#endif /* CONFIG_SYSFS */
 538
 539static int __init hugepage_init(void)
 540{
 541	int err;
 542	struct kobject *hugepage_kobj;
 543
 544	if (!has_transparent_hugepage()) {
 545		transparent_hugepage_flags = 0;
 546		return -EINVAL;
 547	}
 548
 549	err = hugepage_init_sysfs(&hugepage_kobj);
 550	if (err)
 551		return err;
 552
 553	err = khugepaged_slab_init();
 554	if (err)
 555		goto out;
 556
 557	err = mm_slots_hash_init();
 558	if (err) {
 559		khugepaged_slab_free();
 560		goto out;
 561	}
 562
 563	/*
 564	 * By default disable transparent hugepages on smaller systems,
 565	 * where the extra memory used could hurt more than TLB overhead
 566	 * is likely to save.  The admin can still enable it through /sys.
 567	 */
 568	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 569		transparent_hugepage_flags = 0;
 570
 571	start_khugepaged();
 572
 573	set_recommended_min_free_kbytes();
 574
 575	return 0;
 576out:
 577	hugepage_exit_sysfs(hugepage_kobj);
 578	return err;
 579}
 580module_init(hugepage_init)
 581
 582static int __init setup_transparent_hugepage(char *str)
 583{
 584	int ret = 0;
 585	if (!str)
 586		goto out;
 587	if (!strcmp(str, "always")) {
 588		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 589			&transparent_hugepage_flags);
 590		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 591			  &transparent_hugepage_flags);
 592		ret = 1;
 593	} else if (!strcmp(str, "madvise")) {
 594		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 595			  &transparent_hugepage_flags);
 596		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 597			&transparent_hugepage_flags);
 598		ret = 1;
 599	} else if (!strcmp(str, "never")) {
 600		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 601			  &transparent_hugepage_flags);
 602		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 603			  &transparent_hugepage_flags);
 604		ret = 1;
 605	}
 606out:
 607	if (!ret)
 608		printk(KERN_WARNING
 609		       "transparent_hugepage= cannot parse, ignored\n");
 610	return ret;
 611}
 612__setup("transparent_hugepage=", setup_transparent_hugepage);
 613
 614static void prepare_pmd_huge_pte(pgtable_t pgtable,
 615				 struct mm_struct *mm)
 616{
 617	assert_spin_locked(&mm->page_table_lock);
 618
 619	/* FIFO */
 620	if (!mm->pmd_huge_pte)
 621		INIT_LIST_HEAD(&pgtable->lru);
 622	else
 623		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
 624	mm->pmd_huge_pte = pgtable;
 625}
 626
 627static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 628{
 629	if (likely(vma->vm_flags & VM_WRITE))
 630		pmd = pmd_mkwrite(pmd);
 631	return pmd;
 632}
 633
 634static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 635					struct vm_area_struct *vma,
 636					unsigned long haddr, pmd_t *pmd,
 637					struct page *page)
 638{
 639	pgtable_t pgtable;
 640
 641	VM_BUG_ON(!PageCompound(page));
 642	pgtable = pte_alloc_one(mm, haddr);
 643	if (unlikely(!pgtable))
 644		return VM_FAULT_OOM;
 645
 646	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 647	__SetPageUptodate(page);
 648
 649	spin_lock(&mm->page_table_lock);
 650	if (unlikely(!pmd_none(*pmd))) {
 651		spin_unlock(&mm->page_table_lock);
 652		mem_cgroup_uncharge_page(page);
 653		put_page(page);
 654		pte_free(mm, pgtable);
 655	} else {
 656		pmd_t entry;
 657		entry = mk_pmd(page, vma->vm_page_prot);
 658		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 659		entry = pmd_mkhuge(entry);
 660		/*
 661		 * The spinlocking to take the lru_lock inside
 662		 * page_add_new_anon_rmap() acts as a full memory
 663		 * barrier to be sure clear_huge_page writes become
 664		 * visible after the set_pmd_at() write.
 665		 */
 666		page_add_new_anon_rmap(page, vma, haddr);
 667		set_pmd_at(mm, haddr, pmd, entry);
 668		prepare_pmd_huge_pte(pgtable, mm);
 669		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 670		mm->nr_ptes++;
 671		spin_unlock(&mm->page_table_lock);
 672	}
 673
 674	return 0;
 675}
 676
 677static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 678{
 679	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 680}
 681
 682static inline struct page *alloc_hugepage_vma(int defrag,
 683					      struct vm_area_struct *vma,
 684					      unsigned long haddr, int nd,
 685					      gfp_t extra_gfp)
 686{
 687	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 688			       HPAGE_PMD_ORDER, vma, haddr, nd);
 689}
 690
 691#ifndef CONFIG_NUMA
 692static inline struct page *alloc_hugepage(int defrag)
 693{
 694	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
 695			   HPAGE_PMD_ORDER);
 696}
 697#endif
 698
 699int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 700			       unsigned long address, pmd_t *pmd,
 701			       unsigned int flags)
 702{
 703	struct page *page;
 704	unsigned long haddr = address & HPAGE_PMD_MASK;
 705	pte_t *pte;
 706
 707	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
 708		if (unlikely(anon_vma_prepare(vma)))
 709			return VM_FAULT_OOM;
 710		if (unlikely(khugepaged_enter(vma)))
 711			return VM_FAULT_OOM;
 712		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 713					  vma, haddr, numa_node_id(), 0);
 714		if (unlikely(!page)) {
 715			count_vm_event(THP_FAULT_FALLBACK);
 716			goto out;
 717		}
 718		count_vm_event(THP_FAULT_ALLOC);
 719		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
 720			put_page(page);
 721			goto out;
 722		}
 723		if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
 724							  page))) {
 725			mem_cgroup_uncharge_page(page);
 726			put_page(page);
 727			goto out;
 728		}
 729
 730		return 0;
 731	}
 732out:
 733	/*
 734	 * Use __pte_alloc instead of pte_alloc_map, because we can't
 735	 * run pte_offset_map on the pmd, if an huge pmd could
 736	 * materialize from under us from a different thread.
 737	 */
 738	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
 739		return VM_FAULT_OOM;
 740	/* if an huge pmd materialized from under us just retry later */
 741	if (unlikely(pmd_trans_huge(*pmd)))
 742		return 0;
 743	/*
 744	 * A regular pmd is established and it can't morph into a huge pmd
 745	 * from under us anymore at this point because we hold the mmap_sem
 746	 * read mode and khugepaged takes it in write mode. So now it's
 747	 * safe to run pte_offset_map().
 748	 */
 749	pte = pte_offset_map(pmd, address);
 750	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 751}
 752
 753int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 754		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 755		  struct vm_area_struct *vma)
 756{
 757	struct page *src_page;
 758	pmd_t pmd;
 759	pgtable_t pgtable;
 760	int ret;
 761
 762	ret = -ENOMEM;
 763	pgtable = pte_alloc_one(dst_mm, addr);
 764	if (unlikely(!pgtable))
 765		goto out;
 766
 767	spin_lock(&dst_mm->page_table_lock);
 768	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
 769
 770	ret = -EAGAIN;
 771	pmd = *src_pmd;
 772	if (unlikely(!pmd_trans_huge(pmd))) {
 773		pte_free(dst_mm, pgtable);
 774		goto out_unlock;
 775	}
 776	if (unlikely(pmd_trans_splitting(pmd))) {
 777		/* split huge page running from under us */
 778		spin_unlock(&src_mm->page_table_lock);
 779		spin_unlock(&dst_mm->page_table_lock);
 780		pte_free(dst_mm, pgtable);
 781
 782		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 783		goto out;
 784	}
 785	src_page = pmd_page(pmd);
 786	VM_BUG_ON(!PageHead(src_page));
 787	get_page(src_page);
 788	page_dup_rmap(src_page);
 789	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 790
 791	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 792	pmd = pmd_mkold(pmd_wrprotect(pmd));
 793	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 794	prepare_pmd_huge_pte(pgtable, dst_mm);
 795	dst_mm->nr_ptes++;
 796
 797	ret = 0;
 798out_unlock:
 799	spin_unlock(&src_mm->page_table_lock);
 800	spin_unlock(&dst_mm->page_table_lock);
 801out:
 802	return ret;
 803}
 804
 805/* no "address" argument so destroys page coloring of some arch */
 806pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
 807{
 808	pgtable_t pgtable;
 809
 810	assert_spin_locked(&mm->page_table_lock);
 811
 812	/* FIFO */
 813	pgtable = mm->pmd_huge_pte;
 814	if (list_empty(&pgtable->lru))
 815		mm->pmd_huge_pte = NULL;
 816	else {
 817		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
 818					      struct page, lru);
 819		list_del(&pgtable->lru);
 820	}
 821	return pgtable;
 822}
 823
 824static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 825					struct vm_area_struct *vma,
 826					unsigned long address,
 827					pmd_t *pmd, pmd_t orig_pmd,
 828					struct page *page,
 829					unsigned long haddr)
 830{
 831	pgtable_t pgtable;
 832	pmd_t _pmd;
 833	int ret = 0, i;
 834	struct page **pages;
 835
 836	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 837			GFP_KERNEL);
 838	if (unlikely(!pages)) {
 839		ret |= VM_FAULT_OOM;
 840		goto out;
 841	}
 842
 843	for (i = 0; i < HPAGE_PMD_NR; i++) {
 844		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 845					       __GFP_OTHER_NODE,
 846					       vma, address, page_to_nid(page));
 847		if (unlikely(!pages[i] ||
 848			     mem_cgroup_newpage_charge(pages[i], mm,
 849						       GFP_KERNEL))) {
 850			if (pages[i])
 851				put_page(pages[i]);
 852			mem_cgroup_uncharge_start();
 853			while (--i >= 0) {
 854				mem_cgroup_uncharge_page(pages[i]);
 855				put_page(pages[i]);
 856			}
 857			mem_cgroup_uncharge_end();
 858			kfree(pages);
 859			ret |= VM_FAULT_OOM;
 860			goto out;
 861		}
 862	}
 863
 864	for (i = 0; i < HPAGE_PMD_NR; i++) {
 865		copy_user_highpage(pages[i], page + i,
 866				   haddr + PAGE_SIZE * i, vma);
 867		__SetPageUptodate(pages[i]);
 868		cond_resched();
 869	}
 870
 871	spin_lock(&mm->page_table_lock);
 872	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 873		goto out_free_pages;
 874	VM_BUG_ON(!PageHead(page));
 875
 876	pmdp_clear_flush_notify(vma, haddr, pmd);
 877	/* leave pmd empty until pte is filled */
 878
 879	pgtable = get_pmd_huge_pte(mm);
 880	pmd_populate(mm, &_pmd, pgtable);
 881
 882	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 883		pte_t *pte, entry;
 884		entry = mk_pte(pages[i], vma->vm_page_prot);
 885		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 886		page_add_new_anon_rmap(pages[i], vma, haddr);
 887		pte = pte_offset_map(&_pmd, haddr);
 888		VM_BUG_ON(!pte_none(*pte));
 889		set_pte_at(mm, haddr, pte, entry);
 890		pte_unmap(pte);
 891	}
 892	kfree(pages);
 893
 894	smp_wmb(); /* make pte visible before pmd */
 895	pmd_populate(mm, pmd, pgtable);
 896	page_remove_rmap(page);
 897	spin_unlock(&mm->page_table_lock);
 898
 899	ret |= VM_FAULT_WRITE;
 900	put_page(page);
 901
 902out:
 903	return ret;
 904
 905out_free_pages:
 906	spin_unlock(&mm->page_table_lock);
 907	mem_cgroup_uncharge_start();
 908	for (i = 0; i < HPAGE_PMD_NR; i++) {
 909		mem_cgroup_uncharge_page(pages[i]);
 910		put_page(pages[i]);
 911	}
 912	mem_cgroup_uncharge_end();
 913	kfree(pages);
 914	goto out;
 915}
 916
 917int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 918			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
 919{
 920	int ret = 0;
 921	struct page *page, *new_page;
 922	unsigned long haddr;
 923
 924	VM_BUG_ON(!vma->anon_vma);
 925	spin_lock(&mm->page_table_lock);
 926	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 927		goto out_unlock;
 928
 929	page = pmd_page(orig_pmd);
 930	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
 931	haddr = address & HPAGE_PMD_MASK;
 932	if (page_mapcount(page) == 1) {
 933		pmd_t entry;
 934		entry = pmd_mkyoung(orig_pmd);
 935		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 936		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
 937			update_mmu_cache(vma, address, entry);
 938		ret |= VM_FAULT_WRITE;
 939		goto out_unlock;
 940	}
 941	get_page(page);
 942	spin_unlock(&mm->page_table_lock);
 943
 944	if (transparent_hugepage_enabled(vma) &&
 945	    !transparent_hugepage_debug_cow())
 946		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 947					      vma, haddr, numa_node_id(), 0);
 948	else
 949		new_page = NULL;
 950
 951	if (unlikely(!new_page)) {
 952		count_vm_event(THP_FAULT_FALLBACK);
 953		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
 954						   pmd, orig_pmd, page, haddr);
 955		if (ret & VM_FAULT_OOM)
 956			split_huge_page(page);
 957		put_page(page);
 958		goto out;
 959	}
 960	count_vm_event(THP_FAULT_ALLOC);
 961
 962	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
 963		put_page(new_page);
 964		split_huge_page(page);
 965		put_page(page);
 966		ret |= VM_FAULT_OOM;
 967		goto out;
 968	}
 969
 970	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 971	__SetPageUptodate(new_page);
 972
 973	spin_lock(&mm->page_table_lock);
 974	put_page(page);
 975	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
 976		spin_unlock(&mm->page_table_lock);
 977		mem_cgroup_uncharge_page(new_page);
 978		put_page(new_page);
 979		goto out;
 980	} else {
 981		pmd_t entry;
 982		VM_BUG_ON(!PageHead(page));
 983		entry = mk_pmd(new_page, vma->vm_page_prot);
 984		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 985		entry = pmd_mkhuge(entry);
 986		pmdp_clear_flush_notify(vma, haddr, pmd);
 987		page_add_new_anon_rmap(new_page, vma, haddr);
 988		set_pmd_at(mm, haddr, pmd, entry);
 989		update_mmu_cache(vma, address, entry);
 990		page_remove_rmap(page);
 991		put_page(page);
 992		ret |= VM_FAULT_WRITE;
 993	}
 994out_unlock:
 995	spin_unlock(&mm->page_table_lock);
 996out:
 997	return ret;
 998}
 999
1000struct page *follow_trans_huge_pmd(struct mm_struct *mm,
1001				   unsigned long addr,
1002				   pmd_t *pmd,
1003				   unsigned int flags)
1004{
1005	struct page *page = NULL;
1006
1007	assert_spin_locked(&mm->page_table_lock);
1008
1009	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1010		goto out;
1011
1012	page = pmd_page(*pmd);
1013	VM_BUG_ON(!PageHead(page));
1014	if (flags & FOLL_TOUCH) {
1015		pmd_t _pmd;
1016		/*
1017		 * We should set the dirty bit only for FOLL_WRITE but
1018		 * for now the dirty bit in the pmd is meaningless.
1019		 * And if the dirty bit will become meaningful and
1020		 * we'll only set it with FOLL_WRITE, an atomic
1021		 * set_bit will be required on the pmd to set the
1022		 * young bit, instead of the current set_pmd_at.
1023		 */
1024		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1025		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1026	}
1027	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1028	VM_BUG_ON(!PageCompound(page));
1029	if (flags & FOLL_GET)
1030		get_page_foll(page);
1031
1032out:
1033	return page;
1034}
1035
1036int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1037		 pmd_t *pmd, unsigned long addr)
1038{
1039	int ret = 0;
1040
1041	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1042		struct page *page;
1043		pgtable_t pgtable;
1044		pgtable = get_pmd_huge_pte(tlb->mm);
1045		page = pmd_page(*pmd);
1046		pmd_clear(pmd);
1047		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1048		page_remove_rmap(page);
1049		VM_BUG_ON(page_mapcount(page) < 0);
1050		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1051		VM_BUG_ON(!PageHead(page));
1052		tlb->mm->nr_ptes--;
1053		spin_unlock(&tlb->mm->page_table_lock);
1054		tlb_remove_page(tlb, page);
1055		pte_free(tlb->mm, pgtable);
1056		ret = 1;
1057	}
1058	return ret;
1059}
1060
1061int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1062		unsigned long addr, unsigned long end,
1063		unsigned char *vec)
1064{
1065	int ret = 0;
1066
1067	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1068		/*
1069		 * All logical pages in the range are present
1070		 * if backed by a huge page.
1071		 */
1072		spin_unlock(&vma->vm_mm->page_table_lock);
1073		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1074		ret = 1;
1075	}
1076
1077	return ret;
1078}
1079
1080int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1081		  unsigned long old_addr,
1082		  unsigned long new_addr, unsigned long old_end,
1083		  pmd_t *old_pmd, pmd_t *new_pmd)
1084{
1085	int ret = 0;
1086	pmd_t pmd;
1087
1088	struct mm_struct *mm = vma->vm_mm;
1089
1090	if ((old_addr & ~HPAGE_PMD_MASK) ||
1091	    (new_addr & ~HPAGE_PMD_MASK) ||
1092	    old_end - old_addr < HPAGE_PMD_SIZE ||
1093	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1094		goto out;
1095
1096	/*
1097	 * The destination pmd shouldn't be established, free_pgtables()
1098	 * should have release it.
1099	 */
1100	if (WARN_ON(!pmd_none(*new_pmd))) {
1101		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1102		goto out;
1103	}
1104
1105	ret = __pmd_trans_huge_lock(old_pmd, vma);
1106	if (ret == 1) {
1107		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1108		VM_BUG_ON(!pmd_none(*new_pmd));
1109		set_pmd_at(mm, new_addr, new_pmd, pmd);
1110		spin_unlock(&mm->page_table_lock);
1111	}
1112out:
1113	return ret;
1114}
1115
1116int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1117		unsigned long addr, pgprot_t newprot)
1118{
1119	struct mm_struct *mm = vma->vm_mm;
1120	int ret = 0;
1121
1122	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1123		pmd_t entry;
1124		entry = pmdp_get_and_clear(mm, addr, pmd);
1125		entry = pmd_modify(entry, newprot);
1126		set_pmd_at(mm, addr, pmd, entry);
1127		spin_unlock(&vma->vm_mm->page_table_lock);
1128		ret = 1;
1129	}
1130
1131	return ret;
1132}
1133
1134/*
1135 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1136 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1137 *
1138 * Note that if it returns 1, this routine returns without unlocking page
1139 * table locks. So callers must unlock them.
1140 */
1141int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1142{
1143	spin_lock(&vma->vm_mm->page_table_lock);
1144	if (likely(pmd_trans_huge(*pmd))) {
1145		if (unlikely(pmd_trans_splitting(*pmd))) {
1146			spin_unlock(&vma->vm_mm->page_table_lock);
1147			wait_split_huge_page(vma->anon_vma, pmd);
1148			return -1;
1149		} else {
1150			/* Thp mapped by 'pmd' is stable, so we can
1151			 * handle it as it is. */
1152			return 1;
1153		}
1154	}
1155	spin_unlock(&vma->vm_mm->page_table_lock);
1156	return 0;
1157}
1158
1159pmd_t *page_check_address_pmd(struct page *page,
1160			      struct mm_struct *mm,
1161			      unsigned long address,
1162			      enum page_check_address_pmd_flag flag)
1163{
1164	pgd_t *pgd;
1165	pud_t *pud;
1166	pmd_t *pmd, *ret = NULL;
1167
1168	if (address & ~HPAGE_PMD_MASK)
1169		goto out;
1170
1171	pgd = pgd_offset(mm, address);
1172	if (!pgd_present(*pgd))
1173		goto out;
1174
1175	pud = pud_offset(pgd, address);
1176	if (!pud_present(*pud))
1177		goto out;
1178
1179	pmd = pmd_offset(pud, address);
1180	if (pmd_none(*pmd))
1181		goto out;
1182	if (pmd_page(*pmd) != page)
1183		goto out;
1184	/*
1185	 * split_vma() may create temporary aliased mappings. There is
1186	 * no risk as long as all huge pmd are found and have their
1187	 * splitting bit set before __split_huge_page_refcount
1188	 * runs. Finding the same huge pmd more than once during the
1189	 * same rmap walk is not a problem.
1190	 */
1191	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1192	    pmd_trans_splitting(*pmd))
1193		goto out;
1194	if (pmd_trans_huge(*pmd)) {
1195		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1196			  !pmd_trans_splitting(*pmd));
1197		ret = pmd;
1198	}
1199out:
1200	return ret;
1201}
1202
1203static int __split_huge_page_splitting(struct page *page,
1204				       struct vm_area_struct *vma,
1205				       unsigned long address)
1206{
1207	struct mm_struct *mm = vma->vm_mm;
1208	pmd_t *pmd;
1209	int ret = 0;
1210
1211	spin_lock(&mm->page_table_lock);
1212	pmd = page_check_address_pmd(page, mm, address,
1213				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1214	if (pmd) {
1215		/*
1216		 * We can't temporarily set the pmd to null in order
1217		 * to split it, the pmd must remain marked huge at all
1218		 * times or the VM won't take the pmd_trans_huge paths
1219		 * and it won't wait on the anon_vma->root->mutex to
1220		 * serialize against split_huge_page*.
1221		 */
1222		pmdp_splitting_flush_notify(vma, address, pmd);
1223		ret = 1;
1224	}
1225	spin_unlock(&mm->page_table_lock);
1226
1227	return ret;
1228}
1229
1230static void __split_huge_page_refcount(struct page *page)
1231{
1232	int i;
1233	struct zone *zone = page_zone(page);
1234	struct lruvec *lruvec;
1235	int tail_count = 0;
1236
1237	/* prevent PageLRU to go away from under us, and freeze lru stats */
1238	spin_lock_irq(&zone->lru_lock);
1239	lruvec = mem_cgroup_page_lruvec(page, zone);
1240
1241	compound_lock(page);
1242	/* complete memcg works before add pages to LRU */
1243	mem_cgroup_split_huge_fixup(page);
1244
1245	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1246		struct page *page_tail = page + i;
1247
1248		/* tail_page->_mapcount cannot change */
1249		BUG_ON(page_mapcount(page_tail) < 0);
1250		tail_count += page_mapcount(page_tail);
1251		/* check for overflow */
1252		BUG_ON(tail_count < 0);
1253		BUG_ON(atomic_read(&page_tail->_count) != 0);
1254		/*
1255		 * tail_page->_count is zero and not changing from
1256		 * under us. But get_page_unless_zero() may be running
1257		 * from under us on the tail_page. If we used
1258		 * atomic_set() below instead of atomic_add(), we
1259		 * would then run atomic_set() concurrently with
1260		 * get_page_unless_zero(), and atomic_set() is
1261		 * implemented in C not using locked ops. spin_unlock
1262		 * on x86 sometime uses locked ops because of PPro
1263		 * errata 66, 92, so unless somebody can guarantee
1264		 * atomic_set() here would be safe on all archs (and
1265		 * not only on x86), it's safer to use atomic_add().
1266		 */
1267		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1268			   &page_tail->_count);
1269
1270		/* after clearing PageTail the gup refcount can be released */
1271		smp_mb();
1272
1273		/*
1274		 * retain hwpoison flag of the poisoned tail page:
1275		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1276		 *   by the memory-failure.
1277		 */
1278		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1279		page_tail->flags |= (page->flags &
1280				     ((1L << PG_referenced) |
1281				      (1L << PG_swapbacked) |
1282				      (1L << PG_mlocked) |
1283				      (1L << PG_uptodate)));
1284		page_tail->flags |= (1L << PG_dirty);
1285
1286		/* clear PageTail before overwriting first_page */
1287		smp_wmb();
1288
1289		/*
1290		 * __split_huge_page_splitting() already set the
1291		 * splitting bit in all pmd that could map this
1292		 * hugepage, that will ensure no CPU can alter the
1293		 * mapcount on the head page. The mapcount is only
1294		 * accounted in the head page and it has to be
1295		 * transferred to all tail pages in the below code. So
1296		 * for this code to be safe, the split the mapcount
1297		 * can't change. But that doesn't mean userland can't
1298		 * keep changing and reading the page contents while
1299		 * we transfer the mapcount, so the pmd splitting
1300		 * status is achieved setting a reserved bit in the
1301		 * pmd, not by clearing the present bit.
1302		*/
1303		page_tail->_mapcount = page->_mapcount;
1304
1305		BUG_ON(page_tail->mapping);
1306		page_tail->mapping = page->mapping;
1307
1308		page_tail->index = page->index + i;
1309
1310		BUG_ON(!PageAnon(page_tail));
1311		BUG_ON(!PageUptodate(page_tail));
1312		BUG_ON(!PageDirty(page_tail));
1313		BUG_ON(!PageSwapBacked(page_tail));
1314
1315		lru_add_page_tail(page, page_tail, lruvec);
1316	}
1317	atomic_sub(tail_count, &page->_count);
1318	BUG_ON(atomic_read(&page->_count) <= 0);
1319
1320	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1321	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1322
1323	ClearPageCompound(page);
1324	compound_unlock(page);
1325	spin_unlock_irq(&zone->lru_lock);
1326
1327	for (i = 1; i < HPAGE_PMD_NR; i++) {
1328		struct page *page_tail = page + i;
1329		BUG_ON(page_count(page_tail) <= 0);
1330		/*
1331		 * Tail pages may be freed if there wasn't any mapping
1332		 * like if add_to_swap() is running on a lru page that
1333		 * had its mapping zapped. And freeing these pages
1334		 * requires taking the lru_lock so we do the put_page
1335		 * of the tail pages after the split is complete.
1336		 */
1337		put_page(page_tail);
1338	}
1339
1340	/*
1341	 * Only the head page (now become a regular page) is required
1342	 * to be pinned by the caller.
1343	 */
1344	BUG_ON(page_count(page) <= 0);
1345}
1346
1347static int __split_huge_page_map(struct page *page,
1348				 struct vm_area_struct *vma,
1349				 unsigned long address)
1350{
1351	struct mm_struct *mm = vma->vm_mm;
1352	pmd_t *pmd, _pmd;
1353	int ret = 0, i;
1354	pgtable_t pgtable;
1355	unsigned long haddr;
1356
1357	spin_lock(&mm->page_table_lock);
1358	pmd = page_check_address_pmd(page, mm, address,
1359				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1360	if (pmd) {
1361		pgtable = get_pmd_huge_pte(mm);
1362		pmd_populate(mm, &_pmd, pgtable);
1363
1364		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1365		     i++, haddr += PAGE_SIZE) {
1366			pte_t *pte, entry;
1367			BUG_ON(PageCompound(page+i));
1368			entry = mk_pte(page + i, vma->vm_page_prot);
1369			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1370			if (!pmd_write(*pmd))
1371				entry = pte_wrprotect(entry);
1372			else
1373				BUG_ON(page_mapcount(page) != 1);
1374			if (!pmd_young(*pmd))
1375				entry = pte_mkold(entry);
1376			pte = pte_offset_map(&_pmd, haddr);
1377			BUG_ON(!pte_none(*pte));
1378			set_pte_at(mm, haddr, pte, entry);
1379			pte_unmap(pte);
1380		}
1381
1382		smp_wmb(); /* make pte visible before pmd */
1383		/*
1384		 * Up to this point the pmd is present and huge and
1385		 * userland has the whole access to the hugepage
1386		 * during the split (which happens in place). If we
1387		 * overwrite the pmd with the not-huge version
1388		 * pointing to the pte here (which of course we could
1389		 * if all CPUs were bug free), userland could trigger
1390		 * a small page size TLB miss on the small sized TLB
1391		 * while the hugepage TLB entry is still established
1392		 * in the huge TLB. Some CPU doesn't like that. See
1393		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1394		 * Erratum 383 on page 93. Intel should be safe but is
1395		 * also warns that it's only safe if the permission
1396		 * and cache attributes of the two entries loaded in
1397		 * the two TLB is identical (which should be the case
1398		 * here). But it is generally safer to never allow
1399		 * small and huge TLB entries for the same virtual
1400		 * address to be loaded simultaneously. So instead of
1401		 * doing "pmd_populate(); flush_tlb_range();" we first
1402		 * mark the current pmd notpresent (atomically because
1403		 * here the pmd_trans_huge and pmd_trans_splitting
1404		 * must remain set at all times on the pmd until the
1405		 * split is complete for this pmd), then we flush the
1406		 * SMP TLB and finally we write the non-huge version
1407		 * of the pmd entry with pmd_populate.
1408		 */
1409		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1410		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1411		pmd_populate(mm, pmd, pgtable);
1412		ret = 1;
1413	}
1414	spin_unlock(&mm->page_table_lock);
1415
1416	return ret;
1417}
1418
1419/* must be called with anon_vma->root->mutex hold */
1420static void __split_huge_page(struct page *page,
1421			      struct anon_vma *anon_vma)
1422{
1423	int mapcount, mapcount2;
1424	struct anon_vma_chain *avc;
1425
1426	BUG_ON(!PageHead(page));
1427	BUG_ON(PageTail(page));
1428
1429	mapcount = 0;
1430	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1431		struct vm_area_struct *vma = avc->vma;
1432		unsigned long addr = vma_address(page, vma);
1433		BUG_ON(is_vma_temporary_stack(vma));
1434		if (addr == -EFAULT)
1435			continue;
1436		mapcount += __split_huge_page_splitting(page, vma, addr);
1437	}
1438	/*
1439	 * It is critical that new vmas are added to the tail of the
1440	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1441	 * and establishes a child pmd before
1442	 * __split_huge_page_splitting() freezes the parent pmd (so if
1443	 * we fail to prevent copy_huge_pmd() from running until the
1444	 * whole __split_huge_page() is complete), we will still see
1445	 * the newly established pmd of the child later during the
1446	 * walk, to be able to set it as pmd_trans_splitting too.
1447	 */
1448	if (mapcount != page_mapcount(page))
1449		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1450		       mapcount, page_mapcount(page));
1451	BUG_ON(mapcount != page_mapcount(page));
1452
1453	__split_huge_page_refcount(page);
1454
1455	mapcount2 = 0;
1456	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1457		struct vm_area_struct *vma = avc->vma;
1458		unsigned long addr = vma_address(page, vma);
1459		BUG_ON(is_vma_temporary_stack(vma));
1460		if (addr == -EFAULT)
1461			continue;
1462		mapcount2 += __split_huge_page_map(page, vma, addr);
1463	}
1464	if (mapcount != mapcount2)
1465		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1466		       mapcount, mapcount2, page_mapcount(page));
1467	BUG_ON(mapcount != mapcount2);
1468}
1469
1470int split_huge_page(struct page *page)
1471{
1472	struct anon_vma *anon_vma;
1473	int ret = 1;
1474
1475	BUG_ON(!PageAnon(page));
1476	anon_vma = page_lock_anon_vma(page);
1477	if (!anon_vma)
1478		goto out;
1479	ret = 0;
1480	if (!PageCompound(page))
1481		goto out_unlock;
1482
1483	BUG_ON(!PageSwapBacked(page));
1484	__split_huge_page(page, anon_vma);
1485	count_vm_event(THP_SPLIT);
1486
1487	BUG_ON(PageCompound(page));
1488out_unlock:
1489	page_unlock_anon_vma(anon_vma);
1490out:
1491	return ret;
1492}
1493
1494#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1495		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1496
1497int hugepage_madvise(struct vm_area_struct *vma,
1498		     unsigned long *vm_flags, int advice)
1499{
1500	switch (advice) {
1501	case MADV_HUGEPAGE:
1502		/*
1503		 * Be somewhat over-protective like KSM for now!
1504		 */
1505		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1506			return -EINVAL;
1507		*vm_flags &= ~VM_NOHUGEPAGE;
1508		*vm_flags |= VM_HUGEPAGE;
1509		/*
1510		 * If the vma become good for khugepaged to scan,
1511		 * register it here without waiting a page fault that
1512		 * may not happen any time soon.
1513		 */
1514		if (unlikely(khugepaged_enter_vma_merge(vma)))
1515			return -ENOMEM;
1516		break;
1517	case MADV_NOHUGEPAGE:
1518		/*
1519		 * Be somewhat over-protective like KSM for now!
1520		 */
1521		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1522			return -EINVAL;
1523		*vm_flags &= ~VM_HUGEPAGE;
1524		*vm_flags |= VM_NOHUGEPAGE;
1525		/*
1526		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1527		 * this vma even if we leave the mm registered in khugepaged if
1528		 * it got registered before VM_NOHUGEPAGE was set.
1529		 */
1530		break;
1531	}
1532
1533	return 0;
1534}
1535
1536static int __init khugepaged_slab_init(void)
1537{
1538	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1539					  sizeof(struct mm_slot),
1540					  __alignof__(struct mm_slot), 0, NULL);
1541	if (!mm_slot_cache)
1542		return -ENOMEM;
1543
1544	return 0;
1545}
1546
1547static void __init khugepaged_slab_free(void)
1548{
1549	kmem_cache_destroy(mm_slot_cache);
1550	mm_slot_cache = NULL;
1551}
1552
1553static inline struct mm_slot *alloc_mm_slot(void)
1554{
1555	if (!mm_slot_cache)	/* initialization failed */
1556		return NULL;
1557	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1558}
1559
1560static inline void free_mm_slot(struct mm_slot *mm_slot)
1561{
1562	kmem_cache_free(mm_slot_cache, mm_slot);
1563}
1564
1565static int __init mm_slots_hash_init(void)
1566{
1567	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1568				GFP_KERNEL);
1569	if (!mm_slots_hash)
1570		return -ENOMEM;
1571	return 0;
1572}
1573
1574#if 0
1575static void __init mm_slots_hash_free(void)
1576{
1577	kfree(mm_slots_hash);
1578	mm_slots_hash = NULL;
1579}
1580#endif
1581
1582static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1583{
1584	struct mm_slot *mm_slot;
1585	struct hlist_head *bucket;
1586	struct hlist_node *node;
1587
1588	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1589				% MM_SLOTS_HASH_HEADS];
1590	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1591		if (mm == mm_slot->mm)
1592			return mm_slot;
1593	}
1594	return NULL;
1595}
1596
1597static void insert_to_mm_slots_hash(struct mm_struct *mm,
1598				    struct mm_slot *mm_slot)
1599{
1600	struct hlist_head *bucket;
1601
1602	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1603				% MM_SLOTS_HASH_HEADS];
1604	mm_slot->mm = mm;
1605	hlist_add_head(&mm_slot->hash, bucket);
1606}
1607
1608static inline int khugepaged_test_exit(struct mm_struct *mm)
1609{
1610	return atomic_read(&mm->mm_users) == 0;
1611}
1612
1613int __khugepaged_enter(struct mm_struct *mm)
1614{
1615	struct mm_slot *mm_slot;
1616	int wakeup;
1617
1618	mm_slot = alloc_mm_slot();
1619	if (!mm_slot)
1620		return -ENOMEM;
1621
1622	/* __khugepaged_exit() must not run from under us */
1623	VM_BUG_ON(khugepaged_test_exit(mm));
1624	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1625		free_mm_slot(mm_slot);
1626		return 0;
1627	}
1628
1629	spin_lock(&khugepaged_mm_lock);
1630	insert_to_mm_slots_hash(mm, mm_slot);
1631	/*
1632	 * Insert just behind the scanning cursor, to let the area settle
1633	 * down a little.
1634	 */
1635	wakeup = list_empty(&khugepaged_scan.mm_head);
1636	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1637	spin_unlock(&khugepaged_mm_lock);
1638
1639	atomic_inc(&mm->mm_count);
1640	if (wakeup)
1641		wake_up_interruptible(&khugepaged_wait);
1642
1643	return 0;
1644}
1645
1646int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1647{
1648	unsigned long hstart, hend;
1649	if (!vma->anon_vma)
1650		/*
1651		 * Not yet faulted in so we will register later in the
1652		 * page fault if needed.
1653		 */
1654		return 0;
1655	if (vma->vm_ops)
1656		/* khugepaged not yet working on file or special mappings */
1657		return 0;
1658	/*
1659	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1660	 * true too, verify it here.
1661	 */
1662	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1663	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1664	hend = vma->vm_end & HPAGE_PMD_MASK;
1665	if (hstart < hend)
1666		return khugepaged_enter(vma);
1667	return 0;
1668}
1669
1670void __khugepaged_exit(struct mm_struct *mm)
1671{
1672	struct mm_slot *mm_slot;
1673	int free = 0;
1674
1675	spin_lock(&khugepaged_mm_lock);
1676	mm_slot = get_mm_slot(mm);
1677	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1678		hlist_del(&mm_slot->hash);
1679		list_del(&mm_slot->mm_node);
1680		free = 1;
1681	}
1682	spin_unlock(&khugepaged_mm_lock);
1683
1684	if (free) {
1685		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1686		free_mm_slot(mm_slot);
1687		mmdrop(mm);
1688	} else if (mm_slot) {
1689		/*
1690		 * This is required to serialize against
1691		 * khugepaged_test_exit() (which is guaranteed to run
1692		 * under mmap sem read mode). Stop here (after we
1693		 * return all pagetables will be destroyed) until
1694		 * khugepaged has finished working on the pagetables
1695		 * under the mmap_sem.
1696		 */
1697		down_write(&mm->mmap_sem);
1698		up_write(&mm->mmap_sem);
1699	}
1700}
1701
1702static void release_pte_page(struct page *page)
1703{
1704	/* 0 stands for page_is_file_cache(page) == false */
1705	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1706	unlock_page(page);
1707	putback_lru_page(page);
1708}
1709
1710static void release_pte_pages(pte_t *pte, pte_t *_pte)
1711{
1712	while (--_pte >= pte) {
1713		pte_t pteval = *_pte;
1714		if (!pte_none(pteval))
1715			release_pte_page(pte_page(pteval));
1716	}
1717}
1718
1719static void release_all_pte_pages(pte_t *pte)
1720{
1721	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1722}
1723
1724static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1725					unsigned long address,
1726					pte_t *pte)
1727{
1728	struct page *page;
1729	pte_t *_pte;
1730	int referenced = 0, isolated = 0, none = 0;
1731	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1732	     _pte++, address += PAGE_SIZE) {
1733		pte_t pteval = *_pte;
1734		if (pte_none(pteval)) {
1735			if (++none <= khugepaged_max_ptes_none)
1736				continue;
1737			else {
1738				release_pte_pages(pte, _pte);
1739				goto out;
1740			}
1741		}
1742		if (!pte_present(pteval) || !pte_write(pteval)) {
1743			release_pte_pages(pte, _pte);
1744			goto out;
1745		}
1746		page = vm_normal_page(vma, address, pteval);
1747		if (unlikely(!page)) {
1748			release_pte_pages(pte, _pte);
1749			goto out;
1750		}
1751		VM_BUG_ON(PageCompound(page));
1752		BUG_ON(!PageAnon(page));
1753		VM_BUG_ON(!PageSwapBacked(page));
1754
1755		/* cannot use mapcount: can't collapse if there's a gup pin */
1756		if (page_count(page) != 1) {
1757			release_pte_pages(pte, _pte);
1758			goto out;
1759		}
1760		/*
1761		 * We can do it before isolate_lru_page because the
1762		 * page can't be freed from under us. NOTE: PG_lock
1763		 * is needed to serialize against split_huge_page
1764		 * when invoked from the VM.
1765		 */
1766		if (!trylock_page(page)) {
1767			release_pte_pages(pte, _pte);
1768			goto out;
1769		}
1770		/*
1771		 * Isolate the page to avoid collapsing an hugepage
1772		 * currently in use by the VM.
1773		 */
1774		if (isolate_lru_page(page)) {
1775			unlock_page(page);
1776			release_pte_pages(pte, _pte);
1777			goto out;
1778		}
1779		/* 0 stands for page_is_file_cache(page) == false */
1780		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1781		VM_BUG_ON(!PageLocked(page));
1782		VM_BUG_ON(PageLRU(page));
1783
1784		/* If there is no mapped pte young don't collapse the page */
1785		if (pte_young(pteval) || PageReferenced(page) ||
1786		    mmu_notifier_test_young(vma->vm_mm, address))
1787			referenced = 1;
1788	}
1789	if (unlikely(!referenced))
1790		release_all_pte_pages(pte);
1791	else
1792		isolated = 1;
1793out:
1794	return isolated;
1795}
1796
1797static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1798				      struct vm_area_struct *vma,
1799				      unsigned long address,
1800				      spinlock_t *ptl)
1801{
1802	pte_t *_pte;
1803	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1804		pte_t pteval = *_pte;
1805		struct page *src_page;
1806
1807		if (pte_none(pteval)) {
1808			clear_user_highpage(page, address);
1809			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1810		} else {
1811			src_page = pte_page(pteval);
1812			copy_user_highpage(page, src_page, address, vma);
1813			VM_BUG_ON(page_mapcount(src_page) != 1);
1814			VM_BUG_ON(page_count(src_page) != 2);
1815			release_pte_page(src_page);
1816			/*
1817			 * ptl mostly unnecessary, but preempt has to
1818			 * be disabled to update the per-cpu stats
1819			 * inside page_remove_rmap().
1820			 */
1821			spin_lock(ptl);
1822			/*
1823			 * paravirt calls inside pte_clear here are
1824			 * superfluous.
1825			 */
1826			pte_clear(vma->vm_mm, address, _pte);
1827			page_remove_rmap(src_page);
1828			spin_unlock(ptl);
1829			free_page_and_swap_cache(src_page);
1830		}
1831
1832		address += PAGE_SIZE;
1833		page++;
1834	}
1835}
1836
1837static void collapse_huge_page(struct mm_struct *mm,
1838			       unsigned long address,
1839			       struct page **hpage,
1840			       struct vm_area_struct *vma,
1841			       int node)
1842{
1843	pgd_t *pgd;
1844	pud_t *pud;
1845	pmd_t *pmd, _pmd;
1846	pte_t *pte;
1847	pgtable_t pgtable;
1848	struct page *new_page;
1849	spinlock_t *ptl;
1850	int isolated;
1851	unsigned long hstart, hend;
1852
1853	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1854#ifndef CONFIG_NUMA
1855	up_read(&mm->mmap_sem);
1856	VM_BUG_ON(!*hpage);
1857	new_page = *hpage;
1858#else
1859	VM_BUG_ON(*hpage);
1860	/*
1861	 * Allocate the page while the vma is still valid and under
1862	 * the mmap_sem read mode so there is no memory allocation
1863	 * later when we take the mmap_sem in write mode. This is more
1864	 * friendly behavior (OTOH it may actually hide bugs) to
1865	 * filesystems in userland with daemons allocating memory in
1866	 * the userland I/O paths.  Allocating memory with the
1867	 * mmap_sem in read mode is good idea also to allow greater
1868	 * scalability.
1869	 */
1870	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1871				      node, __GFP_OTHER_NODE);
1872
1873	/*
1874	 * After allocating the hugepage, release the mmap_sem read lock in
1875	 * preparation for taking it in write mode.
1876	 */
1877	up_read(&mm->mmap_sem);
1878	if (unlikely(!new_page)) {
1879		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1880		*hpage = ERR_PTR(-ENOMEM);
1881		return;
1882	}
1883#endif
1884
1885	count_vm_event(THP_COLLAPSE_ALLOC);
1886	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1887#ifdef CONFIG_NUMA
1888		put_page(new_page);
1889#endif
1890		return;
1891	}
1892
1893	/*
1894	 * Prevent all access to pagetables with the exception of
1895	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1896	 * handled by the anon_vma lock + PG_lock.
1897	 */
1898	down_write(&mm->mmap_sem);
1899	if (unlikely(khugepaged_test_exit(mm)))
1900		goto out;
1901
1902	vma = find_vma(mm, address);
1903	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1904	hend = vma->vm_end & HPAGE_PMD_MASK;
1905	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1906		goto out;
1907
1908	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1909	    (vma->vm_flags & VM_NOHUGEPAGE))
1910		goto out;
1911
1912	if (!vma->anon_vma || vma->vm_ops)
1913		goto out;
1914	if (is_vma_temporary_stack(vma))
1915		goto out;
1916	/*
1917	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1918	 * true too, verify it here.
1919	 */
1920	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1921
1922	pgd = pgd_offset(mm, address);
1923	if (!pgd_present(*pgd))
1924		goto out;
1925
1926	pud = pud_offset(pgd, address);
1927	if (!pud_present(*pud))
1928		goto out;
1929
1930	pmd = pmd_offset(pud, address);
1931	/* pmd can't go away or become huge under us */
1932	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1933		goto out;
1934
1935	anon_vma_lock(vma->anon_vma);
1936
1937	pte = pte_offset_map(pmd, address);
1938	ptl = pte_lockptr(mm, pmd);
1939
1940	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1941	/*
1942	 * After this gup_fast can't run anymore. This also removes
1943	 * any huge TLB entry from the CPU so we won't allow
1944	 * huge and small TLB entries for the same virtual address
1945	 * to avoid the risk of CPU bugs in that area.
1946	 */
1947	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1948	spin_unlock(&mm->page_table_lock);
1949
1950	spin_lock(ptl);
1951	isolated = __collapse_huge_page_isolate(vma, address, pte);
1952	spin_unlock(ptl);
1953
1954	if (unlikely(!isolated)) {
1955		pte_unmap(pte);
1956		spin_lock(&mm->page_table_lock);
1957		BUG_ON(!pmd_none(*pmd));
1958		set_pmd_at(mm, address, pmd, _pmd);
1959		spin_unlock(&mm->page_table_lock);
1960		anon_vma_unlock(vma->anon_vma);
1961		goto out;
1962	}
1963
1964	/*
1965	 * All pages are isolated and locked so anon_vma rmap
1966	 * can't run anymore.
1967	 */
1968	anon_vma_unlock(vma->anon_vma);
1969
1970	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1971	pte_unmap(pte);
1972	__SetPageUptodate(new_page);
1973	pgtable = pmd_pgtable(_pmd);
1974	VM_BUG_ON(page_count(pgtable) != 1);
1975	VM_BUG_ON(page_mapcount(pgtable) != 0);
1976
1977	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1978	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1979	_pmd = pmd_mkhuge(_pmd);
1980
1981	/*
1982	 * spin_lock() below is not the equivalent of smp_wmb(), so
1983	 * this is needed to avoid the copy_huge_page writes to become
1984	 * visible after the set_pmd_at() write.
1985	 */
1986	smp_wmb();
1987
1988	spin_lock(&mm->page_table_lock);
1989	BUG_ON(!pmd_none(*pmd));
1990	page_add_new_anon_rmap(new_page, vma, address);
1991	set_pmd_at(mm, address, pmd, _pmd);
1992	update_mmu_cache(vma, address, _pmd);
1993	prepare_pmd_huge_pte(pgtable, mm);
1994	spin_unlock(&mm->page_table_lock);
1995
1996#ifndef CONFIG_NUMA
1997	*hpage = NULL;
1998#endif
1999	khugepaged_pages_collapsed++;
2000out_up_write:
2001	up_write(&mm->mmap_sem);
2002	return;
2003
2004out:
2005	mem_cgroup_uncharge_page(new_page);
2006#ifdef CONFIG_NUMA
2007	put_page(new_page);
2008#endif
2009	goto out_up_write;
2010}
2011
2012static int khugepaged_scan_pmd(struct mm_struct *mm,
2013			       struct vm_area_struct *vma,
2014			       unsigned long address,
2015			       struct page **hpage)
2016{
2017	pgd_t *pgd;
2018	pud_t *pud;
2019	pmd_t *pmd;
2020	pte_t *pte, *_pte;
2021	int ret = 0, referenced = 0, none = 0;
2022	struct page *page;
2023	unsigned long _address;
2024	spinlock_t *ptl;
2025	int node = -1;
2026
2027	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2028
2029	pgd = pgd_offset(mm, address);
2030	if (!pgd_present(*pgd))
2031		goto out;
2032
2033	pud = pud_offset(pgd, address);
2034	if (!pud_present(*pud))
2035		goto out;
2036
2037	pmd = pmd_offset(pud, address);
2038	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2039		goto out;
2040
2041	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2042	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2043	     _pte++, _address += PAGE_SIZE) {
2044		pte_t pteval = *_pte;
2045		if (pte_none(pteval)) {
2046			if (++none <= khugepaged_max_ptes_none)
2047				continue;
2048			else
2049				goto out_unmap;
2050		}
2051		if (!pte_present(pteval) || !pte_write(pteval))
2052			goto out_unmap;
2053		page = vm_normal_page(vma, _address, pteval);
2054		if (unlikely(!page))
2055			goto out_unmap;
2056		/*
2057		 * Chose the node of the first page. This could
2058		 * be more sophisticated and look at more pages,
2059		 * but isn't for now.
2060		 */
2061		if (node == -1)
2062			node = page_to_nid(page);
2063		VM_BUG_ON(PageCompound(page));
2064		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2065			goto out_unmap;
2066		/* cannot use mapcount: can't collapse if there's a gup pin */
2067		if (page_count(page) != 1)
2068			goto out_unmap;
2069		if (pte_young(pteval) || PageReferenced(page) ||
2070		    mmu_notifier_test_young(vma->vm_mm, address))
2071			referenced = 1;
2072	}
2073	if (referenced)
2074		ret = 1;
2075out_unmap:
2076	pte_unmap_unlock(pte, ptl);
2077	if (ret)
2078		/* collapse_huge_page will return with the mmap_sem released */
2079		collapse_huge_page(mm, address, hpage, vma, node);
2080out:
2081	return ret;
2082}
2083
2084static void collect_mm_slot(struct mm_slot *mm_slot)
2085{
2086	struct mm_struct *mm = mm_slot->mm;
2087
2088	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2089
2090	if (khugepaged_test_exit(mm)) {
2091		/* free mm_slot */
2092		hlist_del(&mm_slot->hash);
2093		list_del(&mm_slot->mm_node);
2094
2095		/*
2096		 * Not strictly needed because the mm exited already.
2097		 *
2098		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2099		 */
2100
2101		/* khugepaged_mm_lock actually not necessary for the below */
2102		free_mm_slot(mm_slot);
2103		mmdrop(mm);
2104	}
2105}
2106
2107static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2108					    struct page **hpage)
2109	__releases(&khugepaged_mm_lock)
2110	__acquires(&khugepaged_mm_lock)
2111{
2112	struct mm_slot *mm_slot;
2113	struct mm_struct *mm;
2114	struct vm_area_struct *vma;
2115	int progress = 0;
2116
2117	VM_BUG_ON(!pages);
2118	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2119
2120	if (khugepaged_scan.mm_slot)
2121		mm_slot = khugepaged_scan.mm_slot;
2122	else {
2123		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2124				     struct mm_slot, mm_node);
2125		khugepaged_scan.address = 0;
2126		khugepaged_scan.mm_slot = mm_slot;
2127	}
2128	spin_unlock(&khugepaged_mm_lock);
2129
2130	mm = mm_slot->mm;
2131	down_read(&mm->mmap_sem);
2132	if (unlikely(khugepaged_test_exit(mm)))
2133		vma = NULL;
2134	else
2135		vma = find_vma(mm, khugepaged_scan.address);
2136
2137	progress++;
2138	for (; vma; vma = vma->vm_next) {
2139		unsigned long hstart, hend;
2140
2141		cond_resched();
2142		if (unlikely(khugepaged_test_exit(mm))) {
2143			progress++;
2144			break;
2145		}
2146
2147		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2148		     !khugepaged_always()) ||
2149		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2150		skip:
2151			progress++;
2152			continue;
2153		}
2154		if (!vma->anon_vma || vma->vm_ops)
2155			goto skip;
2156		if (is_vma_temporary_stack(vma))
2157			goto skip;
2158		/*
2159		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2160		 * must be true too, verify it here.
2161		 */
2162		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2163			  vma->vm_flags & VM_NO_THP);
2164
2165		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2166		hend = vma->vm_end & HPAGE_PMD_MASK;
2167		if (hstart >= hend)
2168			goto skip;
2169		if (khugepaged_scan.address > hend)
2170			goto skip;
2171		if (khugepaged_scan.address < hstart)
2172			khugepaged_scan.address = hstart;
2173		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2174
2175		while (khugepaged_scan.address < hend) {
2176			int ret;
2177			cond_resched();
2178			if (unlikely(khugepaged_test_exit(mm)))
2179				goto breakouterloop;
2180
2181			VM_BUG_ON(khugepaged_scan.address < hstart ||
2182				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2183				  hend);
2184			ret = khugepaged_scan_pmd(mm, vma,
2185						  khugepaged_scan.address,
2186						  hpage);
2187			/* move to next address */
2188			khugepaged_scan.address += HPAGE_PMD_SIZE;
2189			progress += HPAGE_PMD_NR;
2190			if (ret)
2191				/* we released mmap_sem so break loop */
2192				goto breakouterloop_mmap_sem;
2193			if (progress >= pages)
2194				goto breakouterloop;
2195		}
2196	}
2197breakouterloop:
2198	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2199breakouterloop_mmap_sem:
2200
2201	spin_lock(&khugepaged_mm_lock);
2202	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2203	/*
2204	 * Release the current mm_slot if this mm is about to die, or
2205	 * if we scanned all vmas of this mm.
2206	 */
2207	if (khugepaged_test_exit(mm) || !vma) {
2208		/*
2209		 * Make sure that if mm_users is reaching zero while
2210		 * khugepaged runs here, khugepaged_exit will find
2211		 * mm_slot not pointing to the exiting mm.
2212		 */
2213		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2214			khugepaged_scan.mm_slot = list_entry(
2215				mm_slot->mm_node.next,
2216				struct mm_slot, mm_node);
2217			khugepaged_scan.address = 0;
2218		} else {
2219			khugepaged_scan.mm_slot = NULL;
2220			khugepaged_full_scans++;
2221		}
2222
2223		collect_mm_slot(mm_slot);
2224	}
2225
2226	return progress;
2227}
2228
2229static int khugepaged_has_work(void)
2230{
2231	return !list_empty(&khugepaged_scan.mm_head) &&
2232		khugepaged_enabled();
2233}
2234
2235static int khugepaged_wait_event(void)
2236{
2237	return !list_empty(&khugepaged_scan.mm_head) ||
2238		!khugepaged_enabled();
2239}
2240
2241static void khugepaged_do_scan(struct page **hpage)
2242{
2243	unsigned int progress = 0, pass_through_head = 0;
2244	unsigned int pages = khugepaged_pages_to_scan;
2245
2246	barrier(); /* write khugepaged_pages_to_scan to local stack */
2247
2248	while (progress < pages) {
2249		cond_resched();
2250
2251#ifndef CONFIG_NUMA
2252		if (!*hpage) {
2253			*hpage = alloc_hugepage(khugepaged_defrag());
2254			if (unlikely(!*hpage)) {
2255				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2256				break;
2257			}
2258			count_vm_event(THP_COLLAPSE_ALLOC);
2259		}
2260#else
2261		if (IS_ERR(*hpage))
2262			break;
2263#endif
2264
2265		if (unlikely(kthread_should_stop() || freezing(current)))
2266			break;
2267
2268		spin_lock(&khugepaged_mm_lock);
2269		if (!khugepaged_scan.mm_slot)
2270			pass_through_head++;
2271		if (khugepaged_has_work() &&
2272		    pass_through_head < 2)
2273			progress += khugepaged_scan_mm_slot(pages - progress,
2274							    hpage);
2275		else
2276			progress = pages;
2277		spin_unlock(&khugepaged_mm_lock);
2278	}
2279}
2280
2281static void khugepaged_alloc_sleep(void)
2282{
2283	wait_event_freezable_timeout(khugepaged_wait, false,
2284			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2285}
2286
2287#ifndef CONFIG_NUMA
2288static struct page *khugepaged_alloc_hugepage(void)
2289{
2290	struct page *hpage;
2291
2292	do {
2293		hpage = alloc_hugepage(khugepaged_defrag());
2294		if (!hpage) {
2295			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2296			khugepaged_alloc_sleep();
2297		} else
2298			count_vm_event(THP_COLLAPSE_ALLOC);
2299	} while (unlikely(!hpage) &&
2300		 likely(khugepaged_enabled()));
2301	return hpage;
2302}
2303#endif
2304
2305static void khugepaged_loop(void)
2306{
2307	struct page *hpage;
2308
2309#ifdef CONFIG_NUMA
2310	hpage = NULL;
2311#endif
2312	while (likely(khugepaged_enabled())) {
2313#ifndef CONFIG_NUMA
2314		hpage = khugepaged_alloc_hugepage();
2315		if (unlikely(!hpage))
2316			break;
2317#else
2318		if (IS_ERR(hpage)) {
2319			khugepaged_alloc_sleep();
2320			hpage = NULL;
2321		}
2322#endif
2323
2324		khugepaged_do_scan(&hpage);
2325#ifndef CONFIG_NUMA
2326		if (hpage)
2327			put_page(hpage);
2328#endif
2329		try_to_freeze();
2330		if (unlikely(kthread_should_stop()))
2331			break;
2332		if (khugepaged_has_work()) {
2333			if (!khugepaged_scan_sleep_millisecs)
2334				continue;
2335			wait_event_freezable_timeout(khugepaged_wait, false,
2336			    msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2337		} else if (khugepaged_enabled())
2338			wait_event_freezable(khugepaged_wait,
2339					     khugepaged_wait_event());
2340	}
2341}
2342
2343static int khugepaged(void *none)
2344{
2345	struct mm_slot *mm_slot;
2346
2347	set_freezable();
2348	set_user_nice(current, 19);
2349
2350	/* serialize with start_khugepaged() */
2351	mutex_lock(&khugepaged_mutex);
2352
2353	for (;;) {
2354		mutex_unlock(&khugepaged_mutex);
2355		VM_BUG_ON(khugepaged_thread != current);
2356		khugepaged_loop();
2357		VM_BUG_ON(khugepaged_thread != current);
2358
2359		mutex_lock(&khugepaged_mutex);
2360		if (!khugepaged_enabled())
2361			break;
2362		if (unlikely(kthread_should_stop()))
2363			break;
2364	}
2365
2366	spin_lock(&khugepaged_mm_lock);
2367	mm_slot = khugepaged_scan.mm_slot;
2368	khugepaged_scan.mm_slot = NULL;
2369	if (mm_slot)
2370		collect_mm_slot(mm_slot);
2371	spin_unlock(&khugepaged_mm_lock);
2372
2373	khugepaged_thread = NULL;
2374	mutex_unlock(&khugepaged_mutex);
2375
2376	return 0;
2377}
2378
2379void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2380{
2381	struct page *page;
2382
2383	spin_lock(&mm->page_table_lock);
2384	if (unlikely(!pmd_trans_huge(*pmd))) {
2385		spin_unlock(&mm->page_table_lock);
2386		return;
2387	}
2388	page = pmd_page(*pmd);
2389	VM_BUG_ON(!page_count(page));
2390	get_page(page);
2391	spin_unlock(&mm->page_table_lock);
2392
2393	split_huge_page(page);
2394
2395	put_page(page);
2396	BUG_ON(pmd_trans_huge(*pmd));
2397}
2398
2399static void split_huge_page_address(struct mm_struct *mm,
2400				    unsigned long address)
2401{
2402	pgd_t *pgd;
2403	pud_t *pud;
2404	pmd_t *pmd;
2405
2406	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2407
2408	pgd = pgd_offset(mm, address);
2409	if (!pgd_present(*pgd))
2410		return;
2411
2412	pud = pud_offset(pgd, address);
2413	if (!pud_present(*pud))
2414		return;
2415
2416	pmd = pmd_offset(pud, address);
2417	if (!pmd_present(*pmd))
2418		return;
2419	/*
2420	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2421	 * materialize from under us.
2422	 */
2423	split_huge_page_pmd(mm, pmd);
2424}
2425
2426void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2427			     unsigned long start,
2428			     unsigned long end,
2429			     long adjust_next)
2430{
2431	/*
2432	 * If the new start address isn't hpage aligned and it could
2433	 * previously contain an hugepage: check if we need to split
2434	 * an huge pmd.
2435	 */
2436	if (start & ~HPAGE_PMD_MASK &&
2437	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2438	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2439		split_huge_page_address(vma->vm_mm, start);
2440
2441	/*
2442	 * If the new end address isn't hpage aligned and it could
2443	 * previously contain an hugepage: check if we need to split
2444	 * an huge pmd.
2445	 */
2446	if (end & ~HPAGE_PMD_MASK &&
2447	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2448	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2449		split_huge_page_address(vma->vm_mm, end);
2450
2451	/*
2452	 * If we're also updating the vma->vm_next->vm_start, if the new
2453	 * vm_next->vm_start isn't page aligned and it could previously
2454	 * contain an hugepage: check if we need to split an huge pmd.
2455	 */
2456	if (adjust_next > 0) {
2457		struct vm_area_struct *next = vma->vm_next;
2458		unsigned long nstart = next->vm_start;
2459		nstart += adjust_next << PAGE_SHIFT;
2460		if (nstart & ~HPAGE_PMD_MASK &&
2461		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2462		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2463			split_huge_page_address(next->vm_mm, nstart);
2464	}
2465}