Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/sched/coredump.h>
  13#include <linux/sched/numa_balancing.h>
  14#include <linux/highmem.h>
  15#include <linux/hugetlb.h>
  16#include <linux/mmu_notifier.h>
  17#include <linux/rmap.h>
  18#include <linux/swap.h>
  19#include <linux/shrinker.h>
  20#include <linux/mm_inline.h>
  21#include <linux/swapops.h>
  22#include <linux/dax.h>
 
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
  40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41/*
  42 * By default, transparent hugepage support is disabled in order to avoid
  43 * risking an increased memory footprint for applications that are not
  44 * guaranteed to benefit from it. When transparent hugepage support is
  45 * enabled, it is for all mappings, and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60static struct shrinker deferred_split_shrinker;
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
  64
  65static struct page *get_huge_zero_page(void)
  66{
  67	struct page *zero_page;
  68retry:
  69	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  70		return READ_ONCE(huge_zero_page);
  71
  72	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  73			HPAGE_PMD_ORDER);
  74	if (!zero_page) {
  75		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  76		return NULL;
  77	}
  78	count_vm_event(THP_ZERO_PAGE_ALLOC);
  79	preempt_disable();
  80	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  81		preempt_enable();
  82		__free_pages(zero_page, compound_order(zero_page));
  83		goto retry;
  84	}
  85
  86	/* We take additional reference here. It will be put back by shrinker */
  87	atomic_set(&huge_zero_refcount, 2);
  88	preempt_enable();
  89	return READ_ONCE(huge_zero_page);
  90}
  91
  92static void put_huge_zero_page(void)
  93{
  94	/*
  95	 * Counter should never go to zero here. Only shrinker can put
  96	 * last reference.
  97	 */
  98	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  99}
 100
 101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 102{
 103	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 104		return READ_ONCE(huge_zero_page);
 105
 106	if (!get_huge_zero_page())
 107		return NULL;
 108
 109	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 110		put_huge_zero_page();
 111
 112	return READ_ONCE(huge_zero_page);
 113}
 114
 115void mm_put_huge_zero_page(struct mm_struct *mm)
 116{
 117	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 118		put_huge_zero_page();
 119}
 120
 121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 122					struct shrink_control *sc)
 123{
 124	/* we can free zero page only if last reference remains */
 125	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 126}
 127
 128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 129				       struct shrink_control *sc)
 130{
 131	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 132		struct page *zero_page = xchg(&huge_zero_page, NULL);
 133		BUG_ON(zero_page == NULL);
 134		__free_pages(zero_page, compound_order(zero_page));
 135		return HPAGE_PMD_NR;
 136	}
 137
 138	return 0;
 139}
 140
 141static struct shrinker huge_zero_page_shrinker = {
 142	.count_objects = shrink_huge_zero_page_count,
 143	.scan_objects = shrink_huge_zero_page_scan,
 144	.seeks = DEFAULT_SEEKS,
 145};
 146
 147#ifdef CONFIG_SYSFS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148static ssize_t enabled_show(struct kobject *kobj,
 149			    struct kobj_attribute *attr, char *buf)
 150{
 151	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 152		return sprintf(buf, "[always] madvise never\n");
 153	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 154		return sprintf(buf, "always [madvise] never\n");
 155	else
 156		return sprintf(buf, "always madvise [never]\n");
 157}
 158
 159static ssize_t enabled_store(struct kobject *kobj,
 160			     struct kobj_attribute *attr,
 161			     const char *buf, size_t count)
 162{
 163	ssize_t ret = count;
 164
 165	if (!memcmp("always", buf,
 166		    min(sizeof("always")-1, count))) {
 167		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 168		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 169	} else if (!memcmp("madvise", buf,
 170			   min(sizeof("madvise")-1, count))) {
 171		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 172		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 173	} else if (!memcmp("never", buf,
 174			   min(sizeof("never")-1, count))) {
 175		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 176		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 177	} else
 178		ret = -EINVAL;
 179
 180	if (ret > 0) {
 181		int err = start_stop_khugepaged();
 
 
 
 
 
 182		if (err)
 183			ret = err;
 184	}
 
 185	return ret;
 186}
 187static struct kobj_attribute enabled_attr =
 188	__ATTR(enabled, 0644, enabled_show, enabled_store);
 189
 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
 191				struct kobj_attribute *attr, char *buf,
 192				enum transparent_hugepage_flag flag)
 193{
 194	return sprintf(buf, "%d\n",
 195		       !!test_bit(flag, &transparent_hugepage_flags));
 196}
 197
 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
 199				 struct kobj_attribute *attr,
 200				 const char *buf, size_t count,
 201				 enum transparent_hugepage_flag flag)
 202{
 203	unsigned long value;
 204	int ret;
 205
 206	ret = kstrtoul(buf, 10, &value);
 207	if (ret < 0)
 208		return ret;
 209	if (value > 1)
 210		return -EINVAL;
 211
 212	if (value)
 213		set_bit(flag, &transparent_hugepage_flags);
 214	else
 215		clear_bit(flag, &transparent_hugepage_flags);
 216
 217	return count;
 218}
 219
 
 
 
 
 
 220static ssize_t defrag_show(struct kobject *kobj,
 221			   struct kobj_attribute *attr, char *buf)
 222{
 223	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 224		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 225	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 226		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 227	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 228		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 229	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 230		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 231	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 232}
 233
 
 234static ssize_t defrag_store(struct kobject *kobj,
 235			    struct kobj_attribute *attr,
 236			    const char *buf, size_t count)
 237{
 238	if (!memcmp("always", buf,
 239		    min(sizeof("always")-1, count))) {
 240		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 241		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 242		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 243		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 244	} else if (!memcmp("defer+madvise", buf,
 245		    min(sizeof("defer+madvise")-1, count))) {
 246		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 247		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 248		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 249		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 250	} else if (!memcmp("defer", buf,
 251		    min(sizeof("defer")-1, count))) {
 252		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 253		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 254		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 255		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 256	} else if (!memcmp("madvise", buf,
 257			   min(sizeof("madvise")-1, count))) {
 258		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 259		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 260		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 261		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262	} else if (!memcmp("never", buf,
 263			   min(sizeof("never")-1, count))) {
 264		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 265		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 266		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 267		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 268	} else
 269		return -EINVAL;
 270
 271	return count;
 272}
 273static struct kobj_attribute defrag_attr =
 274	__ATTR(defrag, 0644, defrag_show, defrag_store);
 275
 276static ssize_t use_zero_page_show(struct kobject *kobj,
 277		struct kobj_attribute *attr, char *buf)
 278{
 279	return single_hugepage_flag_show(kobj, attr, buf,
 280				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 281}
 282static ssize_t use_zero_page_store(struct kobject *kobj,
 283		struct kobj_attribute *attr, const char *buf, size_t count)
 284{
 285	return single_hugepage_flag_store(kobj, attr, buf, count,
 286				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 287}
 288static struct kobj_attribute use_zero_page_attr =
 289	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 290
 291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 292		struct kobj_attribute *attr, char *buf)
 293{
 294	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 295}
 296static struct kobj_attribute hpage_pmd_size_attr =
 297	__ATTR_RO(hpage_pmd_size);
 298
 299#ifdef CONFIG_DEBUG_VM
 300static ssize_t debug_cow_show(struct kobject *kobj,
 301				struct kobj_attribute *attr, char *buf)
 302{
 303	return single_hugepage_flag_show(kobj, attr, buf,
 304				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 305}
 306static ssize_t debug_cow_store(struct kobject *kobj,
 307			       struct kobj_attribute *attr,
 308			       const char *buf, size_t count)
 309{
 310	return single_hugepage_flag_store(kobj, attr, buf, count,
 311				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 312}
 313static struct kobj_attribute debug_cow_attr =
 314	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 315#endif /* CONFIG_DEBUG_VM */
 316
 317static struct attribute *hugepage_attr[] = {
 318	&enabled_attr.attr,
 319	&defrag_attr.attr,
 320	&use_zero_page_attr.attr,
 321	&hpage_pmd_size_attr.attr,
 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 323	&shmem_enabled_attr.attr,
 324#endif
 325#ifdef CONFIG_DEBUG_VM
 326	&debug_cow_attr.attr,
 327#endif
 328	NULL,
 329};
 330
 331static const struct attribute_group hugepage_attr_group = {
 332	.attrs = hugepage_attr,
 333};
 334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 336{
 337	int err;
 338
 339	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 340	if (unlikely(!*hugepage_kobj)) {
 341		pr_err("failed to create transparent hugepage kobject\n");
 342		return -ENOMEM;
 343	}
 344
 345	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 346	if (err) {
 347		pr_err("failed to register transparent hugepage group\n");
 348		goto delete_obj;
 349	}
 350
 351	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 352	if (err) {
 353		pr_err("failed to register transparent hugepage group\n");
 354		goto remove_hp_group;
 355	}
 356
 357	return 0;
 358
 359remove_hp_group:
 360	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 361delete_obj:
 362	kobject_put(*hugepage_kobj);
 363	return err;
 364}
 365
 366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 367{
 368	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 369	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 370	kobject_put(hugepage_kobj);
 371}
 372#else
 373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 374{
 375	return 0;
 376}
 377
 378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 379{
 380}
 381#endif /* CONFIG_SYSFS */
 382
 383static int __init hugepage_init(void)
 384{
 385	int err;
 386	struct kobject *hugepage_kobj;
 387
 388	if (!has_transparent_hugepage()) {
 389		transparent_hugepage_flags = 0;
 390		return -EINVAL;
 391	}
 392
 
 
 393	/*
 394	 * hugepages can't be allocated by the buddy allocator
 395	 */
 396	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 397	/*
 398	 * we use page->mapping and page->index in second tail page
 399	 * as list_head: assuming THP order >= 2
 400	 */
 401	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 402
 403	err = hugepage_init_sysfs(&hugepage_kobj);
 404	if (err)
 405		goto err_sysfs;
 406
 407	err = khugepaged_init();
 408	if (err)
 409		goto err_slab;
 410
 411	err = register_shrinker(&huge_zero_page_shrinker);
 412	if (err)
 413		goto err_hzp_shrinker;
 414	err = register_shrinker(&deferred_split_shrinker);
 415	if (err)
 416		goto err_split_shrinker;
 417
 418	/*
 419	 * By default disable transparent hugepages on smaller systems,
 420	 * where the extra memory used could hurt more than TLB overhead
 421	 * is likely to save.  The admin can still enable it through /sys.
 422	 */
 423	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 424		transparent_hugepage_flags = 0;
 425		return 0;
 426	}
 427
 428	err = start_stop_khugepaged();
 429	if (err)
 430		goto err_khugepaged;
 431
 432	return 0;
 433err_khugepaged:
 434	unregister_shrinker(&deferred_split_shrinker);
 435err_split_shrinker:
 436	unregister_shrinker(&huge_zero_page_shrinker);
 437err_hzp_shrinker:
 438	khugepaged_destroy();
 439err_slab:
 440	hugepage_exit_sysfs(hugepage_kobj);
 441err_sysfs:
 442	return err;
 443}
 444subsys_initcall(hugepage_init);
 445
 446static int __init setup_transparent_hugepage(char *str)
 447{
 448	int ret = 0;
 449	if (!str)
 450		goto out;
 451	if (!strcmp(str, "always")) {
 452		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 453			&transparent_hugepage_flags);
 454		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 455			  &transparent_hugepage_flags);
 456		ret = 1;
 457	} else if (!strcmp(str, "madvise")) {
 458		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 459			  &transparent_hugepage_flags);
 460		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 461			&transparent_hugepage_flags);
 462		ret = 1;
 463	} else if (!strcmp(str, "never")) {
 464		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 465			  &transparent_hugepage_flags);
 466		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 467			  &transparent_hugepage_flags);
 468		ret = 1;
 469	}
 470out:
 471	if (!ret)
 472		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 473	return ret;
 474}
 475__setup("transparent_hugepage=", setup_transparent_hugepage);
 476
 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 478{
 479	if (likely(vma->vm_flags & VM_WRITE))
 480		pmd = pmd_mkwrite(pmd);
 481	return pmd;
 482}
 483
 
 
 
 
 
 
 
 
 484static inline struct list_head *page_deferred_list(struct page *page)
 485{
 486	/*
 487	 * ->lru in the tail pages is occupied by compound_head.
 488	 * Let's use ->mapping + ->index in the second tail page as list_head.
 489	 */
 490	return (struct list_head *)&page[2].mapping;
 491}
 492
 493void prep_transhuge_page(struct page *page)
 494{
 495	/*
 496	 * we use page->mapping and page->indexlru in second tail page
 497	 * as list_head: assuming THP order >= 2
 498	 */
 499
 500	INIT_LIST_HEAD(page_deferred_list(page));
 501	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 502}
 503
 504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 505		loff_t off, unsigned long flags, unsigned long size)
 506{
 507	unsigned long addr;
 508	loff_t off_end = off + len;
 509	loff_t off_align = round_up(off, size);
 510	unsigned long len_pad;
 511
 512	if (off_end <= off_align || (off_end - off_align) < size)
 513		return 0;
 514
 515	len_pad = len + size;
 516	if (len_pad < len || (off + len_pad) < off)
 517		return 0;
 518
 519	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 520					      off >> PAGE_SHIFT, flags);
 521	if (IS_ERR_VALUE(addr))
 522		return 0;
 523
 524	addr += (off - addr) & (size - 1);
 525	return addr;
 526}
 527
 528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 529		unsigned long len, unsigned long pgoff, unsigned long flags)
 530{
 531	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 532
 533	if (addr)
 534		goto out;
 535	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 536		goto out;
 537
 538	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 539	if (addr)
 540		return addr;
 541
 542 out:
 543	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 544}
 545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 546
 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
 548		gfp_t gfp)
 549{
 550	struct vm_area_struct *vma = vmf->vma;
 551	struct mem_cgroup *memcg;
 552	pgtable_t pgtable;
 553	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 554	int ret = 0;
 555
 556	VM_BUG_ON_PAGE(!PageCompound(page), page);
 557
 558	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 559		put_page(page);
 560		count_vm_event(THP_FAULT_FALLBACK);
 561		return VM_FAULT_FALLBACK;
 562	}
 563
 564	pgtable = pte_alloc_one(vma->vm_mm, haddr);
 565	if (unlikely(!pgtable)) {
 566		ret = VM_FAULT_OOM;
 567		goto release;
 
 568	}
 569
 570	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 571	/*
 572	 * The memory barrier inside __SetPageUptodate makes sure that
 573	 * clear_huge_page writes become visible before the set_pmd_at()
 574	 * write.
 575	 */
 576	__SetPageUptodate(page);
 577
 578	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 579	if (unlikely(!pmd_none(*vmf->pmd))) {
 580		goto unlock_release;
 
 
 
 581	} else {
 582		pmd_t entry;
 583
 584		ret = check_stable_address_space(vma->vm_mm);
 585		if (ret)
 586			goto unlock_release;
 587
 588		/* Deliver the page fault to userland */
 589		if (userfaultfd_missing(vma)) {
 590			int ret;
 591
 592			spin_unlock(vmf->ptl);
 593			mem_cgroup_cancel_charge(page, memcg, true);
 594			put_page(page);
 595			pte_free(vma->vm_mm, pgtable);
 596			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 
 597			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 598			return ret;
 599		}
 600
 601		entry = mk_huge_pmd(page, vma->vm_page_prot);
 602		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 603		page_add_new_anon_rmap(page, vma, haddr, true);
 604		mem_cgroup_commit_charge(page, memcg, false, true);
 605		lru_cache_add_active_or_unevictable(page, vma);
 606		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 607		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 608		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 609		mm_inc_nr_ptes(vma->vm_mm);
 610		spin_unlock(vmf->ptl);
 611		count_vm_event(THP_FAULT_ALLOC);
 612	}
 613
 614	return 0;
 615unlock_release:
 616	spin_unlock(vmf->ptl);
 617release:
 618	if (pgtable)
 619		pte_free(vma->vm_mm, pgtable);
 620	mem_cgroup_cancel_charge(page, memcg, true);
 621	put_page(page);
 622	return ret;
 623
 624}
 625
 626/*
 627 * always: directly stall for all thp allocations
 628 * defer: wake kswapd and fail if not immediately available
 629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 630 *		  fail if not immediately available
 631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 632 *	    available
 633 * never: never stall for any thp allocation
 634 */
 635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 636{
 637	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 638
 639	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 640		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 641	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 642		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 643	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 644		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 645							     __GFP_KSWAPD_RECLAIM);
 646	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 647		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 648							     0);
 649	return GFP_TRANSHUGE_LIGHT;
 
 
 
 
 650}
 651
 652/* Caller must hold page table lock. */
 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 654		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 655		struct page *zero_page)
 656{
 657	pmd_t entry;
 658	if (!pmd_none(*pmd))
 659		return false;
 660	entry = mk_pmd(zero_page, vma->vm_page_prot);
 661	entry = pmd_mkhuge(entry);
 662	if (pgtable)
 663		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 664	set_pmd_at(mm, haddr, pmd, entry);
 665	mm_inc_nr_ptes(mm);
 666	return true;
 667}
 668
 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 
 
 670{
 671	struct vm_area_struct *vma = vmf->vma;
 672	gfp_t gfp;
 673	struct page *page;
 674	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 675
 676	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 677		return VM_FAULT_FALLBACK;
 678	if (unlikely(anon_vma_prepare(vma)))
 679		return VM_FAULT_OOM;
 680	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 681		return VM_FAULT_OOM;
 682	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 683			!mm_forbids_zeropage(vma->vm_mm) &&
 684			transparent_hugepage_use_zero_page()) {
 
 685		pgtable_t pgtable;
 686		struct page *zero_page;
 687		bool set;
 688		int ret;
 689		pgtable = pte_alloc_one(vma->vm_mm, haddr);
 690		if (unlikely(!pgtable))
 691			return VM_FAULT_OOM;
 692		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 693		if (unlikely(!zero_page)) {
 694			pte_free(vma->vm_mm, pgtable);
 695			count_vm_event(THP_FAULT_FALLBACK);
 696			return VM_FAULT_FALLBACK;
 697		}
 698		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 699		ret = 0;
 700		set = false;
 701		if (pmd_none(*vmf->pmd)) {
 702			ret = check_stable_address_space(vma->vm_mm);
 703			if (ret) {
 704				spin_unlock(vmf->ptl);
 705			} else if (userfaultfd_missing(vma)) {
 706				spin_unlock(vmf->ptl);
 707				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 708				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 709			} else {
 710				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 711						   haddr, vmf->pmd, zero_page);
 712				spin_unlock(vmf->ptl);
 
 713				set = true;
 714			}
 715		} else
 716			spin_unlock(vmf->ptl);
 717		if (!set)
 718			pte_free(vma->vm_mm, pgtable);
 
 
 719		return ret;
 720	}
 721	gfp = alloc_hugepage_direct_gfpmask(vma);
 722	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 723	if (unlikely(!page)) {
 724		count_vm_event(THP_FAULT_FALLBACK);
 725		return VM_FAULT_FALLBACK;
 726	}
 727	prep_transhuge_page(page);
 728	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 
 729}
 730
 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 732		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 733		pgtable_t pgtable)
 734{
 735	struct mm_struct *mm = vma->vm_mm;
 736	pmd_t entry;
 737	spinlock_t *ptl;
 738
 739	ptl = pmd_lock(mm, pmd);
 740	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 741	if (pfn_t_devmap(pfn))
 742		entry = pmd_mkdevmap(entry);
 743	if (write) {
 744		entry = pmd_mkyoung(pmd_mkdirty(entry));
 745		entry = maybe_pmd_mkwrite(entry, vma);
 746	}
 747
 748	if (pgtable) {
 749		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 750		mm_inc_nr_ptes(mm);
 751	}
 752
 753	set_pmd_at(mm, addr, pmd, entry);
 754	update_mmu_cache_pmd(vma, addr, pmd);
 755	spin_unlock(ptl);
 756}
 757
 758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 759			pmd_t *pmd, pfn_t pfn, bool write)
 760{
 761	pgprot_t pgprot = vma->vm_page_prot;
 762	pgtable_t pgtable = NULL;
 763	/*
 764	 * If we had pmd_special, we could avoid all these restrictions,
 765	 * but we need to be consistent with PTEs and architectures that
 766	 * can't support a 'special' bit.
 767	 */
 768	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 769	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 770						(VM_PFNMAP|VM_MIXEDMAP));
 771	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 772	BUG_ON(!pfn_t_devmap(pfn));
 773
 774	if (addr < vma->vm_start || addr >= vma->vm_end)
 775		return VM_FAULT_SIGBUS;
 776
 777	if (arch_needs_pgtable_deposit()) {
 778		pgtable = pte_alloc_one(vma->vm_mm, addr);
 779		if (!pgtable)
 780			return VM_FAULT_OOM;
 781	}
 782
 783	track_pfn_insert(vma, &pgprot, pfn);
 784
 785	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
 786	return VM_FAULT_NOPAGE;
 787}
 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 789
 790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 792{
 793	if (likely(vma->vm_flags & VM_WRITE))
 794		pud = pud_mkwrite(pud);
 795	return pud;
 796}
 797
 798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 799		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 800{
 801	struct mm_struct *mm = vma->vm_mm;
 802	pud_t entry;
 803	spinlock_t *ptl;
 804
 805	ptl = pud_lock(mm, pud);
 806	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 807	if (pfn_t_devmap(pfn))
 808		entry = pud_mkdevmap(entry);
 809	if (write) {
 810		entry = pud_mkyoung(pud_mkdirty(entry));
 811		entry = maybe_pud_mkwrite(entry, vma);
 812	}
 813	set_pud_at(mm, addr, pud, entry);
 814	update_mmu_cache_pud(vma, addr, pud);
 815	spin_unlock(ptl);
 816}
 817
 818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 819			pud_t *pud, pfn_t pfn, bool write)
 820{
 821	pgprot_t pgprot = vma->vm_page_prot;
 822	/*
 823	 * If we had pud_special, we could avoid all these restrictions,
 824	 * but we need to be consistent with PTEs and architectures that
 825	 * can't support a 'special' bit.
 826	 */
 827	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 828	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 829						(VM_PFNMAP|VM_MIXEDMAP));
 830	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 831	BUG_ON(!pfn_t_devmap(pfn));
 832
 833	if (addr < vma->vm_start || addr >= vma->vm_end)
 834		return VM_FAULT_SIGBUS;
 835
 836	track_pfn_insert(vma, &pgprot, pfn);
 837
 838	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
 839	return VM_FAULT_NOPAGE;
 840}
 841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 843
 844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 845		pmd_t *pmd, int flags)
 846{
 847	pmd_t _pmd;
 848
 849	_pmd = pmd_mkyoung(*pmd);
 850	if (flags & FOLL_WRITE)
 851		_pmd = pmd_mkdirty(_pmd);
 
 
 
 
 
 852	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 853				pmd, _pmd, flags & FOLL_WRITE))
 854		update_mmu_cache_pmd(vma, addr, pmd);
 855}
 856
 857struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 858		pmd_t *pmd, int flags)
 859{
 860	unsigned long pfn = pmd_pfn(*pmd);
 861	struct mm_struct *mm = vma->vm_mm;
 862	struct dev_pagemap *pgmap;
 863	struct page *page;
 864
 865	assert_spin_locked(pmd_lockptr(mm, pmd));
 866
 867	/*
 868	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 869	 * not be in this function with `flags & FOLL_COW` set.
 870	 */
 871	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 872
 873	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 874		return NULL;
 875
 876	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 877		/* pass */;
 878	else
 879		return NULL;
 880
 881	if (flags & FOLL_TOUCH)
 882		touch_pmd(vma, addr, pmd, flags);
 883
 884	/*
 885	 * device mapped pages can only be returned if the
 886	 * caller will manage the page reference count.
 887	 */
 888	if (!(flags & FOLL_GET))
 889		return ERR_PTR(-EEXIST);
 890
 891	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 892	pgmap = get_dev_pagemap(pfn, NULL);
 893	if (!pgmap)
 894		return ERR_PTR(-EFAULT);
 895	page = pfn_to_page(pfn);
 896	get_page(page);
 897	put_dev_pagemap(pgmap);
 898
 899	return page;
 900}
 901
 902int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 903		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 904		  struct vm_area_struct *vma)
 905{
 906	spinlock_t *dst_ptl, *src_ptl;
 907	struct page *src_page;
 908	pmd_t pmd;
 909	pgtable_t pgtable = NULL;
 910	int ret = -ENOMEM;
 911
 912	/* Skip if can be re-fill on fault */
 913	if (!vma_is_anonymous(vma))
 914		return 0;
 915
 916	pgtable = pte_alloc_one(dst_mm, addr);
 917	if (unlikely(!pgtable))
 918		goto out;
 
 
 
 919
 920	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 921	src_ptl = pmd_lockptr(src_mm, src_pmd);
 922	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 923
 924	ret = -EAGAIN;
 925	pmd = *src_pmd;
 926
 927#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 928	if (unlikely(is_swap_pmd(pmd))) {
 929		swp_entry_t entry = pmd_to_swp_entry(pmd);
 930
 931		VM_BUG_ON(!is_pmd_migration_entry(pmd));
 932		if (is_write_migration_entry(entry)) {
 933			make_migration_entry_read(&entry);
 934			pmd = swp_entry_to_pmd(entry);
 935			if (pmd_swp_soft_dirty(*src_pmd))
 936				pmd = pmd_swp_mksoft_dirty(pmd);
 937			set_pmd_at(src_mm, addr, src_pmd, pmd);
 938		}
 939		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 940		mm_inc_nr_ptes(dst_mm);
 941		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 942		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 943		ret = 0;
 944		goto out_unlock;
 945	}
 946#endif
 947
 948	if (unlikely(!pmd_trans_huge(pmd))) {
 949		pte_free(dst_mm, pgtable);
 950		goto out_unlock;
 951	}
 952	/*
 953	 * When page table lock is held, the huge zero pmd should not be
 954	 * under splitting since we don't split the page itself, only pmd to
 955	 * a page table.
 956	 */
 957	if (is_huge_zero_pmd(pmd)) {
 958		struct page *zero_page;
 959		/*
 960		 * get_huge_zero_page() will never allocate a new page here,
 961		 * since we already have a zero page to copy. It just takes a
 962		 * reference.
 963		 */
 964		zero_page = mm_get_huge_zero_page(dst_mm);
 965		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 966				zero_page);
 967		ret = 0;
 968		goto out_unlock;
 969	}
 970
 971	src_page = pmd_page(pmd);
 972	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 973	get_page(src_page);
 974	page_dup_rmap(src_page, true);
 975	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 976	mm_inc_nr_ptes(dst_mm);
 977	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 
 
 
 978
 979	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 980	pmd = pmd_mkold(pmd_wrprotect(pmd));
 981	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 982
 983	ret = 0;
 984out_unlock:
 985	spin_unlock(src_ptl);
 986	spin_unlock(dst_ptl);
 987out:
 988	return ret;
 989}
 990
 991#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 992static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 993		pud_t *pud, int flags)
 994{
 995	pud_t _pud;
 996
 997	_pud = pud_mkyoung(*pud);
 998	if (flags & FOLL_WRITE)
 999		_pud = pud_mkdirty(_pud);
1000	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1001				pud, _pud, flags & FOLL_WRITE))
1002		update_mmu_cache_pud(vma, addr, pud);
1003}
1004
1005struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1006		pud_t *pud, int flags)
1007{
1008	unsigned long pfn = pud_pfn(*pud);
1009	struct mm_struct *mm = vma->vm_mm;
1010	struct dev_pagemap *pgmap;
1011	struct page *page;
1012
1013	assert_spin_locked(pud_lockptr(mm, pud));
1014
1015	if (flags & FOLL_WRITE && !pud_write(*pud))
1016		return NULL;
1017
1018	if (pud_present(*pud) && pud_devmap(*pud))
1019		/* pass */;
1020	else
1021		return NULL;
1022
1023	if (flags & FOLL_TOUCH)
1024		touch_pud(vma, addr, pud, flags);
1025
1026	/*
1027	 * device mapped pages can only be returned if the
1028	 * caller will manage the page reference count.
1029	 */
1030	if (!(flags & FOLL_GET))
1031		return ERR_PTR(-EEXIST);
1032
1033	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1034	pgmap = get_dev_pagemap(pfn, NULL);
1035	if (!pgmap)
1036		return ERR_PTR(-EFAULT);
1037	page = pfn_to_page(pfn);
1038	get_page(page);
1039	put_dev_pagemap(pgmap);
1040
1041	return page;
1042}
1043
1044int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1046		  struct vm_area_struct *vma)
1047{
1048	spinlock_t *dst_ptl, *src_ptl;
1049	pud_t pud;
1050	int ret;
1051
1052	dst_ptl = pud_lock(dst_mm, dst_pud);
1053	src_ptl = pud_lockptr(src_mm, src_pud);
1054	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1055
1056	ret = -EAGAIN;
1057	pud = *src_pud;
1058	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1059		goto out_unlock;
1060
1061	/*
1062	 * When page table lock is held, the huge zero pud should not be
1063	 * under splitting since we don't split the page itself, only pud to
1064	 * a page table.
1065	 */
1066	if (is_huge_zero_pud(pud)) {
1067		/* No huge zero pud yet */
1068	}
1069
1070	pudp_set_wrprotect(src_mm, addr, src_pud);
1071	pud = pud_mkold(pud_wrprotect(pud));
1072	set_pud_at(dst_mm, addr, dst_pud, pud);
1073
1074	ret = 0;
1075out_unlock:
1076	spin_unlock(src_ptl);
1077	spin_unlock(dst_ptl);
1078	return ret;
1079}
1080
1081void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1082{
1083	pud_t entry;
1084	unsigned long haddr;
1085	bool write = vmf->flags & FAULT_FLAG_WRITE;
1086
1087	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1088	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1089		goto unlock;
1090
1091	entry = pud_mkyoung(orig_pud);
1092	if (write)
1093		entry = pud_mkdirty(entry);
1094	haddr = vmf->address & HPAGE_PUD_MASK;
1095	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1096		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1097
1098unlock:
1099	spin_unlock(vmf->ptl);
1100}
1101#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1102
1103void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1104{
 
1105	pmd_t entry;
1106	unsigned long haddr;
1107	bool write = vmf->flags & FAULT_FLAG_WRITE;
1108
1109	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1110	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1111		goto unlock;
1112
1113	entry = pmd_mkyoung(orig_pmd);
1114	if (write)
1115		entry = pmd_mkdirty(entry);
1116	haddr = vmf->address & HPAGE_PMD_MASK;
1117	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1118		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1119
1120unlock:
1121	spin_unlock(vmf->ptl);
1122}
1123
1124static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1125		struct page *page)
 
 
 
 
1126{
1127	struct vm_area_struct *vma = vmf->vma;
1128	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1129	struct mem_cgroup *memcg;
 
1130	pgtable_t pgtable;
1131	pmd_t _pmd;
1132	int ret = 0, i;
1133	struct page **pages;
1134	unsigned long mmun_start;	/* For mmu_notifiers */
1135	unsigned long mmun_end;		/* For mmu_notifiers */
1136
1137	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1138			GFP_KERNEL);
1139	if (unlikely(!pages)) {
1140		ret |= VM_FAULT_OOM;
1141		goto out;
1142	}
1143
1144	for (i = 0; i < HPAGE_PMD_NR; i++) {
1145		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1146					       vmf->address, page_to_nid(page));
 
1147		if (unlikely(!pages[i] ||
1148			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1149				     GFP_KERNEL, &memcg, false))) {
1150			if (pages[i])
1151				put_page(pages[i]);
1152			while (--i >= 0) {
1153				memcg = (void *)page_private(pages[i]);
1154				set_page_private(pages[i], 0);
1155				mem_cgroup_cancel_charge(pages[i], memcg,
1156						false);
1157				put_page(pages[i]);
1158			}
1159			kfree(pages);
1160			ret |= VM_FAULT_OOM;
1161			goto out;
1162		}
1163		set_page_private(pages[i], (unsigned long)memcg);
1164	}
1165
1166	for (i = 0; i < HPAGE_PMD_NR; i++) {
1167		copy_user_highpage(pages[i], page + i,
1168				   haddr + PAGE_SIZE * i, vma);
1169		__SetPageUptodate(pages[i]);
1170		cond_resched();
1171	}
1172
1173	mmun_start = haddr;
1174	mmun_end   = haddr + HPAGE_PMD_SIZE;
1175	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1176
1177	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1178	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179		goto out_free_pages;
1180	VM_BUG_ON_PAGE(!PageHead(page), page);
1181
1182	/*
1183	 * Leave pmd empty until pte is filled note we must notify here as
1184	 * concurrent CPU thread might write to new page before the call to
1185	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1186	 * device seeing memory write in different order than CPU.
1187	 *
1188	 * See Documentation/vm/mmu_notifier.txt
1189	 */
1190	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1191
1192	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1193	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1194
1195	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1196		pte_t entry;
1197		entry = mk_pte(pages[i], vma->vm_page_prot);
1198		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1199		memcg = (void *)page_private(pages[i]);
1200		set_page_private(pages[i], 0);
1201		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1202		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1203		lru_cache_add_active_or_unevictable(pages[i], vma);
1204		vmf->pte = pte_offset_map(&_pmd, haddr);
1205		VM_BUG_ON(!pte_none(*vmf->pte));
1206		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1207		pte_unmap(vmf->pte);
1208	}
1209	kfree(pages);
1210
1211	smp_wmb(); /* make pte visible before pmd */
1212	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1213	page_remove_rmap(page, true);
1214	spin_unlock(vmf->ptl);
1215
1216	/*
1217	 * No need to double call mmu_notifier->invalidate_range() callback as
1218	 * the above pmdp_huge_clear_flush_notify() did already call it.
1219	 */
1220	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1221						mmun_end);
1222
1223	ret |= VM_FAULT_WRITE;
1224	put_page(page);
1225
1226out:
1227	return ret;
1228
1229out_free_pages:
1230	spin_unlock(vmf->ptl);
1231	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1232	for (i = 0; i < HPAGE_PMD_NR; i++) {
1233		memcg = (void *)page_private(pages[i]);
1234		set_page_private(pages[i], 0);
1235		mem_cgroup_cancel_charge(pages[i], memcg, false);
1236		put_page(pages[i]);
1237	}
1238	kfree(pages);
1239	goto out;
1240}
1241
1242int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
 
1243{
1244	struct vm_area_struct *vma = vmf->vma;
 
1245	struct page *page = NULL, *new_page;
1246	struct mem_cgroup *memcg;
1247	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1248	unsigned long mmun_start;	/* For mmu_notifiers */
1249	unsigned long mmun_end;		/* For mmu_notifiers */
1250	gfp_t huge_gfp;			/* for allocation and charge */
1251	int ret = 0;
1252
1253	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1254	VM_BUG_ON_VMA(!vma->anon_vma, vma);
 
1255	if (is_huge_zero_pmd(orig_pmd))
1256		goto alloc;
1257	spin_lock(vmf->ptl);
1258	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1259		goto out_unlock;
1260
1261	page = pmd_page(orig_pmd);
1262	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1263	/*
1264	 * We can only reuse the page if nobody else maps the huge page or it's
1265	 * part.
1266	 */
1267	if (!trylock_page(page)) {
1268		get_page(page);
1269		spin_unlock(vmf->ptl);
1270		lock_page(page);
1271		spin_lock(vmf->ptl);
1272		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1273			unlock_page(page);
1274			put_page(page);
1275			goto out_unlock;
1276		}
1277		put_page(page);
1278	}
1279	if (reuse_swap_page(page, NULL)) {
1280		pmd_t entry;
1281		entry = pmd_mkyoung(orig_pmd);
1282		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1283		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1284			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1285		ret |= VM_FAULT_WRITE;
1286		unlock_page(page);
1287		goto out_unlock;
1288	}
1289	unlock_page(page);
1290	get_page(page);
1291	spin_unlock(vmf->ptl);
1292alloc:
1293	if (transparent_hugepage_enabled(vma) &&
1294	    !transparent_hugepage_debug_cow()) {
1295		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1296		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1297	} else
1298		new_page = NULL;
1299
1300	if (likely(new_page)) {
1301		prep_transhuge_page(new_page);
1302	} else {
1303		if (!page) {
1304			split_huge_pmd(vma, vmf->pmd, vmf->address);
1305			ret |= VM_FAULT_FALLBACK;
1306		} else {
1307			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
 
1308			if (ret & VM_FAULT_OOM) {
1309				split_huge_pmd(vma, vmf->pmd, vmf->address);
1310				ret |= VM_FAULT_FALLBACK;
1311			}
1312			put_page(page);
1313		}
1314		count_vm_event(THP_FAULT_FALLBACK);
1315		goto out;
1316	}
1317
1318	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1319					huge_gfp, &memcg, true))) {
1320		put_page(new_page);
1321		split_huge_pmd(vma, vmf->pmd, vmf->address);
1322		if (page)
1323			put_page(page);
 
 
1324		ret |= VM_FAULT_FALLBACK;
1325		count_vm_event(THP_FAULT_FALLBACK);
1326		goto out;
1327	}
1328
1329	count_vm_event(THP_FAULT_ALLOC);
1330
1331	if (!page)
1332		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1333	else
1334		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1335	__SetPageUptodate(new_page);
1336
1337	mmun_start = haddr;
1338	mmun_end   = haddr + HPAGE_PMD_SIZE;
1339	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1340
1341	spin_lock(vmf->ptl);
1342	if (page)
1343		put_page(page);
1344	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345		spin_unlock(vmf->ptl);
1346		mem_cgroup_cancel_charge(new_page, memcg, true);
1347		put_page(new_page);
1348		goto out_mn;
1349	} else {
1350		pmd_t entry;
1351		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1352		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1353		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1354		page_add_new_anon_rmap(new_page, vma, haddr, true);
1355		mem_cgroup_commit_charge(new_page, memcg, false, true);
1356		lru_cache_add_active_or_unevictable(new_page, vma);
1357		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1358		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359		if (!page) {
1360			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 
1361		} else {
1362			VM_BUG_ON_PAGE(!PageHead(page), page);
1363			page_remove_rmap(page, true);
1364			put_page(page);
1365		}
1366		ret |= VM_FAULT_WRITE;
1367	}
1368	spin_unlock(vmf->ptl);
1369out_mn:
1370	/*
1371	 * No need to double call mmu_notifier->invalidate_range() callback as
1372	 * the above pmdp_huge_clear_flush_notify() did already call it.
1373	 */
1374	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1375					       mmun_end);
1376out:
1377	return ret;
1378out_unlock:
1379	spin_unlock(vmf->ptl);
1380	return ret;
1381}
1382
1383/*
1384 * FOLL_FORCE can write to even unwritable pmd's, but only
1385 * after we've gone through a COW cycle and they are dirty.
1386 */
1387static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1388{
1389	return pmd_write(pmd) ||
1390	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1391}
1392
1393struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1394				   unsigned long addr,
1395				   pmd_t *pmd,
1396				   unsigned int flags)
1397{
1398	struct mm_struct *mm = vma->vm_mm;
1399	struct page *page = NULL;
1400
1401	assert_spin_locked(pmd_lockptr(mm, pmd));
1402
1403	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1404		goto out;
1405
1406	/* Avoid dumping huge zero page */
1407	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1408		return ERR_PTR(-EFAULT);
1409
1410	/* Full NUMA hinting faults to serialise migration in fault paths */
1411	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1412		goto out;
1413
1414	page = pmd_page(*pmd);
1415	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1416	if (flags & FOLL_TOUCH)
1417		touch_pmd(vma, addr, pmd, flags);
1418	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1419		/*
1420		 * We don't mlock() pte-mapped THPs. This way we can avoid
1421		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1422		 *
1423		 * For anon THP:
1424		 *
1425		 * In most cases the pmd is the only mapping of the page as we
1426		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1427		 * writable private mappings in populate_vma_page_range().
1428		 *
1429		 * The only scenario when we have the page shared here is if we
1430		 * mlocking read-only mapping shared over fork(). We skip
1431		 * mlocking such pages.
1432		 *
1433		 * For file THP:
1434		 *
1435		 * We can expect PageDoubleMap() to be stable under page lock:
1436		 * for file pages we set it in page_add_file_rmap(), which
1437		 * requires page to be locked.
1438		 */
1439
1440		if (PageAnon(page) && compound_mapcount(page) != 1)
1441			goto skip_mlock;
1442		if (PageDoubleMap(page) || !page->mapping)
1443			goto skip_mlock;
1444		if (!trylock_page(page))
1445			goto skip_mlock;
1446		lru_add_drain();
1447		if (page->mapping && !PageDoubleMap(page))
1448			mlock_vma_page(page);
1449		unlock_page(page);
1450	}
1451skip_mlock:
1452	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1453	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1454	if (flags & FOLL_GET)
1455		get_page(page);
1456
1457out:
1458	return page;
1459}
1460
1461/* NUMA hinting page fault entry point for trans huge pmds */
1462int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
 
1463{
1464	struct vm_area_struct *vma = vmf->vma;
1465	struct anon_vma *anon_vma = NULL;
1466	struct page *page;
1467	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1468	int page_nid = -1, this_nid = numa_node_id();
1469	int target_nid, last_cpupid = -1;
1470	bool page_locked;
1471	bool migrated = false;
1472	bool was_writable;
1473	int flags = 0;
1474
1475	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1476	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
 
 
 
1477		goto out_unlock;
1478
1479	/*
1480	 * If there are potential migrations, wait for completion and retry
1481	 * without disrupting NUMA hinting information. Do not relock and
1482	 * check_same as the page may no longer be mapped.
1483	 */
1484	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1485		page = pmd_page(*vmf->pmd);
1486		if (!get_page_unless_zero(page))
1487			goto out_unlock;
1488		spin_unlock(vmf->ptl);
1489		wait_on_page_locked(page);
1490		put_page(page);
1491		goto out;
1492	}
1493
1494	page = pmd_page(pmd);
1495	BUG_ON(is_huge_zero_page(page));
1496	page_nid = page_to_nid(page);
1497	last_cpupid = page_cpupid_last(page);
1498	count_vm_numa_event(NUMA_HINT_FAULTS);
1499	if (page_nid == this_nid) {
1500		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501		flags |= TNF_FAULT_LOCAL;
1502	}
1503
1504	/* See similar comment in do_numa_page for explanation */
1505	if (!pmd_savedwrite(pmd))
1506		flags |= TNF_NO_GROUP;
1507
1508	/*
1509	 * Acquire the page lock to serialise THP migrations but avoid dropping
1510	 * page_table_lock if at all possible
1511	 */
1512	page_locked = trylock_page(page);
1513	target_nid = mpol_misplaced(page, vma, haddr);
1514	if (target_nid == -1) {
1515		/* If the page was locked, there are no parallel migrations */
1516		if (page_locked)
1517			goto clear_pmdnuma;
1518	}
1519
1520	/* Migration could have started since the pmd_trans_migrating check */
1521	if (!page_locked) {
1522		page_nid = -1;
1523		if (!get_page_unless_zero(page))
1524			goto out_unlock;
1525		spin_unlock(vmf->ptl);
1526		wait_on_page_locked(page);
1527		put_page(page);
1528		goto out;
1529	}
1530
1531	/*
1532	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1533	 * to serialises splits
1534	 */
1535	get_page(page);
1536	spin_unlock(vmf->ptl);
1537	anon_vma = page_lock_anon_vma_read(page);
1538
1539	/* Confirm the PMD did not change while page_table_lock was released */
1540	spin_lock(vmf->ptl);
1541	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1542		unlock_page(page);
1543		put_page(page);
1544		page_nid = -1;
1545		goto out_unlock;
1546	}
1547
1548	/* Bail if we fail to protect against THP splits for any reason */
1549	if (unlikely(!anon_vma)) {
1550		put_page(page);
1551		page_nid = -1;
1552		goto clear_pmdnuma;
1553	}
1554
1555	/*
1556	 * Since we took the NUMA fault, we must have observed the !accessible
1557	 * bit. Make sure all other CPUs agree with that, to avoid them
1558	 * modifying the page we're about to migrate.
1559	 *
1560	 * Must be done under PTL such that we'll observe the relevant
1561	 * inc_tlb_flush_pending().
1562	 *
1563	 * We are not sure a pending tlb flush here is for a huge page
1564	 * mapping or not. Hence use the tlb range variant
1565	 */
1566	if (mm_tlb_flush_pending(vma->vm_mm))
1567		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1568
1569	/*
1570	 * Migrate the THP to the requested node, returns with page unlocked
1571	 * and access rights restored.
1572	 */
1573	spin_unlock(vmf->ptl);
1574
1575	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1576				vmf->pmd, pmd, vmf->address, page, target_nid);
1577	if (migrated) {
1578		flags |= TNF_MIGRATED;
1579		page_nid = target_nid;
1580	} else
1581		flags |= TNF_MIGRATE_FAIL;
1582
1583	goto out;
1584clear_pmdnuma:
1585	BUG_ON(!PageLocked(page));
1586	was_writable = pmd_savedwrite(pmd);
1587	pmd = pmd_modify(pmd, vma->vm_page_prot);
1588	pmd = pmd_mkyoung(pmd);
1589	if (was_writable)
1590		pmd = pmd_mkwrite(pmd);
1591	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593	unlock_page(page);
1594out_unlock:
1595	spin_unlock(vmf->ptl);
1596
1597out:
1598	if (anon_vma)
1599		page_unlock_anon_vma_read(anon_vma);
1600
1601	if (page_nid != -1)
1602		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1603				flags);
1604
1605	return 0;
1606}
1607
1608/*
1609 * Return true if we do MADV_FREE successfully on entire pmd page.
1610 * Otherwise, return false.
1611 */
1612bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1613		pmd_t *pmd, unsigned long addr, unsigned long next)
 
1614{
1615	spinlock_t *ptl;
1616	pmd_t orig_pmd;
1617	struct page *page;
1618	struct mm_struct *mm = tlb->mm;
1619	bool ret = false;
1620
1621	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1622
1623	ptl = pmd_trans_huge_lock(pmd, vma);
1624	if (!ptl)
1625		goto out_unlocked;
1626
1627	orig_pmd = *pmd;
1628	if (is_huge_zero_pmd(orig_pmd))
1629		goto out;
1630
1631	if (unlikely(!pmd_present(orig_pmd))) {
1632		VM_BUG_ON(thp_migration_supported() &&
1633				  !is_pmd_migration_entry(orig_pmd));
1634		goto out;
1635	}
1636
1637	page = pmd_page(orig_pmd);
1638	/*
1639	 * If other processes are mapping this page, we couldn't discard
1640	 * the page unless they all do MADV_FREE so let's skip the page.
1641	 */
1642	if (page_mapcount(page) != 1)
1643		goto out;
1644
1645	if (!trylock_page(page))
1646		goto out;
1647
1648	/*
1649	 * If user want to discard part-pages of THP, split it so MADV_FREE
1650	 * will deactivate only them.
1651	 */
1652	if (next - addr != HPAGE_PMD_SIZE) {
1653		get_page(page);
1654		spin_unlock(ptl);
1655		split_huge_page(page);
1656		unlock_page(page);
 
 
 
1657		put_page(page);
 
 
1658		goto out_unlocked;
1659	}
1660
1661	if (PageDirty(page))
1662		ClearPageDirty(page);
1663	unlock_page(page);
1664
 
 
 
1665	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1666		pmdp_invalidate(vma, addr, pmd);
 
1667		orig_pmd = pmd_mkold(orig_pmd);
1668		orig_pmd = pmd_mkclean(orig_pmd);
1669
1670		set_pmd_at(mm, addr, pmd, orig_pmd);
1671		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1672	}
1673
1674	mark_page_lazyfree(page);
1675	ret = true;
1676out:
1677	spin_unlock(ptl);
1678out_unlocked:
1679	return ret;
1680}
1681
1682static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1683{
1684	pgtable_t pgtable;
1685
1686	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1687	pte_free(mm, pgtable);
1688	mm_dec_nr_ptes(mm);
1689}
1690
1691int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1692		 pmd_t *pmd, unsigned long addr)
1693{
1694	pmd_t orig_pmd;
1695	spinlock_t *ptl;
1696
1697	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1698
1699	ptl = __pmd_trans_huge_lock(pmd, vma);
1700	if (!ptl)
1701		return 0;
1702	/*
1703	 * For architectures like ppc64 we look at deposited pgtable
1704	 * when calling pmdp_huge_get_and_clear. So do the
1705	 * pgtable_trans_huge_withdraw after finishing pmdp related
1706	 * operations.
1707	 */
1708	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1709			tlb->fullmm);
1710	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1711	if (vma_is_dax(vma)) {
1712		if (arch_needs_pgtable_deposit())
1713			zap_deposited_table(tlb->mm, pmd);
1714		spin_unlock(ptl);
1715		if (is_huge_zero_pmd(orig_pmd))
1716			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1717	} else if (is_huge_zero_pmd(orig_pmd)) {
1718		zap_deposited_table(tlb->mm, pmd);
 
1719		spin_unlock(ptl);
1720		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1721	} else {
1722		struct page *page = NULL;
1723		int flush_needed = 1;
1724
1725		if (pmd_present(orig_pmd)) {
1726			page = pmd_page(orig_pmd);
1727			page_remove_rmap(page, true);
1728			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1729			VM_BUG_ON_PAGE(!PageHead(page), page);
1730		} else if (thp_migration_supported()) {
1731			swp_entry_t entry;
1732
1733			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1734			entry = pmd_to_swp_entry(orig_pmd);
1735			page = pfn_to_page(swp_offset(entry));
1736			flush_needed = 0;
1737		} else
1738			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1739
1740		if (PageAnon(page)) {
1741			zap_deposited_table(tlb->mm, pmd);
1742			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1743		} else {
1744			if (arch_needs_pgtable_deposit())
1745				zap_deposited_table(tlb->mm, pmd);
1746			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1747		}
1748
1749		spin_unlock(ptl);
1750		if (flush_needed)
1751			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1752	}
1753	return 1;
1754}
1755
1756#ifndef pmd_move_must_withdraw
1757static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1758					 spinlock_t *old_pmd_ptl,
1759					 struct vm_area_struct *vma)
1760{
1761	/*
1762	 * With split pmd lock we also need to move preallocated
1763	 * PTE page table if new_pmd is on different PMD page table.
1764	 *
1765	 * We also don't deposit and withdraw tables for file pages.
1766	 */
1767	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1768}
1769#endif
1770
1771static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1772{
1773#ifdef CONFIG_MEM_SOFT_DIRTY
1774	if (unlikely(is_pmd_migration_entry(pmd)))
1775		pmd = pmd_swp_mksoft_dirty(pmd);
1776	else if (pmd_present(pmd))
1777		pmd = pmd_mksoft_dirty(pmd);
1778#endif
1779	return pmd;
1780}
1781
1782bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1783		  unsigned long new_addr, unsigned long old_end,
1784		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1785{
1786	spinlock_t *old_ptl, *new_ptl;
1787	pmd_t pmd;
 
1788	struct mm_struct *mm = vma->vm_mm;
1789	bool force_flush = false;
1790
1791	if ((old_addr & ~HPAGE_PMD_MASK) ||
1792	    (new_addr & ~HPAGE_PMD_MASK) ||
1793	    old_end - old_addr < HPAGE_PMD_SIZE)
 
1794		return false;
1795
1796	/*
1797	 * The destination pmd shouldn't be established, free_pgtables()
1798	 * should have release it.
1799	 */
1800	if (WARN_ON(!pmd_none(*new_pmd))) {
1801		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1802		return false;
1803	}
1804
1805	/*
1806	 * We don't have to worry about the ordering of src and dst
1807	 * ptlocks because exclusive mmap_sem prevents deadlock.
1808	 */
1809	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1810	if (old_ptl) {
1811		new_ptl = pmd_lockptr(mm, new_pmd);
1812		if (new_ptl != old_ptl)
1813			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1814		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1815		if (pmd_present(pmd) && pmd_dirty(pmd))
1816			force_flush = true;
1817		VM_BUG_ON(!pmd_none(*new_pmd));
1818
1819		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
 
1820			pgtable_t pgtable;
1821			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1822			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1823		}
1824		pmd = move_soft_dirty_pmd(pmd);
1825		set_pmd_at(mm, new_addr, new_pmd, pmd);
1826		if (new_ptl != old_ptl)
1827			spin_unlock(new_ptl);
1828		if (force_flush)
1829			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1830		else
1831			*need_flush = true;
1832		spin_unlock(old_ptl);
1833		return true;
1834	}
1835	return false;
1836}
1837
1838/*
1839 * Returns
1840 *  - 0 if PMD could not be locked
1841 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1842 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1843 */
1844int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1845		unsigned long addr, pgprot_t newprot, int prot_numa)
1846{
1847	struct mm_struct *mm = vma->vm_mm;
1848	spinlock_t *ptl;
1849	pmd_t entry;
1850	bool preserve_write;
1851	int ret;
1852
1853	ptl = __pmd_trans_huge_lock(pmd, vma);
1854	if (!ptl)
1855		return 0;
 
 
1856
1857	preserve_write = prot_numa && pmd_write(*pmd);
1858	ret = 1;
 
 
 
 
 
 
 
1859
1860#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861	if (is_swap_pmd(*pmd)) {
1862		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1863
1864		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1865		if (is_write_migration_entry(entry)) {
1866			pmd_t newpmd;
1867			/*
1868			 * A protection check is difficult so
1869			 * just be safe and disable write
1870			 */
1871			make_migration_entry_read(&entry);
1872			newpmd = swp_entry_to_pmd(entry);
1873			if (pmd_swp_soft_dirty(*pmd))
1874				newpmd = pmd_swp_mksoft_dirty(newpmd);
1875			set_pmd_at(mm, addr, pmd, newpmd);
1876		}
1877		goto unlock;
1878	}
1879#endif
1880
1881	/*
1882	 * Avoid trapping faults against the zero page. The read-only
1883	 * data is likely to be read-cached on the local CPU and
1884	 * local/remote hits to the zero page are not interesting.
1885	 */
1886	if (prot_numa && is_huge_zero_pmd(*pmd))
1887		goto unlock;
1888
1889	if (prot_numa && pmd_protnone(*pmd))
1890		goto unlock;
1891
1892	/*
1893	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1894	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895	 * which is also under down_read(mmap_sem):
1896	 *
1897	 *	CPU0:				CPU1:
1898	 *				change_huge_pmd(prot_numa=1)
1899	 *				 pmdp_huge_get_and_clear_notify()
1900	 * madvise_dontneed()
1901	 *  zap_pmd_range()
1902	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1903	 *   // skip the pmd
1904	 *				 set_pmd_at();
1905	 *				 // pmd is re-established
1906	 *
1907	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908	 * which may break userspace.
1909	 *
1910	 * pmdp_invalidate() is required to make sure we don't miss
1911	 * dirty/young flags set by hardware.
1912	 */
1913	entry = pmdp_invalidate(vma, addr, pmd);
1914
1915	entry = pmd_modify(entry, newprot);
1916	if (preserve_write)
1917		entry = pmd_mk_savedwrite(entry);
1918	ret = HPAGE_PMD_NR;
1919	set_pmd_at(mm, addr, pmd, entry);
1920	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1921unlock:
1922	spin_unlock(ptl);
1923	return ret;
1924}
1925
1926/*
1927 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1928 *
1929 * Note that if it returns page table lock pointer, this routine returns without
1930 * unlocking page table lock. So callers must unlock it.
1931 */
1932spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1933{
1934	spinlock_t *ptl;
1935	ptl = pmd_lock(vma->vm_mm, pmd);
1936	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1937			pmd_devmap(*pmd)))
1938		return ptl;
1939	spin_unlock(ptl);
1940	return NULL;
1941}
1942
1943/*
1944 * Returns true if a given pud maps a thp, false otherwise.
1945 *
1946 * Note that if it returns true, this routine returns without unlocking page
1947 * table lock. So callers must unlock it.
1948 */
1949spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1950{
1951	spinlock_t *ptl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952
1953	ptl = pud_lock(vma->vm_mm, pud);
1954	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1955		return ptl;
1956	spin_unlock(ptl);
1957	return NULL;
1958}
1959
1960#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1961int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1962		 pud_t *pud, unsigned long addr)
1963{
1964	pud_t orig_pud;
1965	spinlock_t *ptl;
 
1966
1967	ptl = __pud_trans_huge_lock(pud, vma);
1968	if (!ptl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1969		return 0;
 
 
 
 
1970	/*
1971	 * For architectures like ppc64 we look at deposited pgtable
1972	 * when calling pudp_huge_get_and_clear. So do the
1973	 * pgtable_trans_huge_withdraw after finishing pudp related
1974	 * operations.
1975	 */
1976	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1977			tlb->fullmm);
1978	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1979	if (vma_is_dax(vma)) {
1980		spin_unlock(ptl);
1981		/* No zero page support yet */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1982	} else {
1983		/* No support for anonymous PUD pages yet */
1984		BUG();
1985	}
1986	return 1;
 
 
 
 
 
1987}
1988
1989static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1990		unsigned long haddr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991{
1992	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1993	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1994	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1995	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1996
1997	count_vm_event(THP_SPLIT_PUD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1998
1999	pudp_huge_clear_flush_notify(vma, haddr, pud);
2000}
2001
2002void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2003		unsigned long address)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2004{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2005	spinlock_t *ptl;
2006	struct mm_struct *mm = vma->vm_mm;
2007	unsigned long haddr = address & HPAGE_PUD_MASK;
 
 
2008
2009	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2010	ptl = pud_lock(mm, pud);
2011	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2012		goto out;
2013	__split_huge_pud_locked(vma, pud, haddr);
2014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2015out:
2016	spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017	/*
2018	 * No need to double call mmu_notifier->invalidate_range() callback as
2019	 * the above pudp_huge_clear_flush_notify() did already call it.
2020	 */
2021	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2022					       HPAGE_PUD_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2023}
2024#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2025
2026static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2027		unsigned long haddr, pmd_t *pmd)
2028{
2029	struct mm_struct *mm = vma->vm_mm;
2030	pgtable_t pgtable;
2031	pmd_t _pmd;
2032	int i;
2033
2034	/*
2035	 * Leave pmd empty until pte is filled note that it is fine to delay
2036	 * notification until mmu_notifier_invalidate_range_end() as we are
2037	 * replacing a zero pmd write protected page with a zero pte write
2038	 * protected page.
2039	 *
2040	 * See Documentation/vm/mmu_notifier.txt
2041	 */
2042	pmdp_huge_clear_flush(vma, haddr, pmd);
2043
2044	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2045	pmd_populate(mm, &_pmd, pgtable);
2046
2047	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2048		pte_t *pte, entry;
2049		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2050		entry = pte_mkspecial(entry);
2051		pte = pte_offset_map(&_pmd, haddr);
2052		VM_BUG_ON(!pte_none(*pte));
2053		set_pte_at(mm, haddr, pte, entry);
2054		pte_unmap(pte);
2055	}
2056	smp_wmb(); /* make pte visible before pmd */
2057	pmd_populate(mm, pmd, pgtable);
 
2058}
2059
2060static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2061		unsigned long haddr, bool freeze)
2062{
2063	struct mm_struct *mm = vma->vm_mm;
2064	struct page *page;
2065	pgtable_t pgtable;
2066	pmd_t old_pmd, _pmd;
2067	bool young, write, soft_dirty, pmd_migration = false;
2068	unsigned long addr;
2069	int i;
2070
2071	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2072	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2073	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2074	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2075				&& !pmd_devmap(*pmd));
2076
2077	count_vm_event(THP_SPLIT_PMD);
2078
2079	if (!vma_is_anonymous(vma)) {
2080		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2081		/*
2082		 * We are going to unmap this huge page. So
2083		 * just go ahead and zap it
2084		 */
2085		if (arch_needs_pgtable_deposit())
2086			zap_deposited_table(mm, pmd);
2087		if (vma_is_dax(vma))
2088			return;
2089		page = pmd_page(_pmd);
2090		if (!PageReferenced(page) && pmd_young(_pmd))
2091			SetPageReferenced(page);
2092		page_remove_rmap(page, true);
2093		put_page(page);
2094		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2095		return;
2096	} else if (is_huge_zero_pmd(*pmd)) {
2097		/*
2098		 * FIXME: Do we want to invalidate secondary mmu by calling
2099		 * mmu_notifier_invalidate_range() see comments below inside
2100		 * __split_huge_pmd() ?
2101		 *
2102		 * We are going from a zero huge page write protected to zero
2103		 * small page also write protected so it does not seems useful
2104		 * to invalidate secondary mmu at this time.
2105		 */
2106		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2107	}
2108
2109	/*
2110	 * Up to this point the pmd is present and huge and userland has the
2111	 * whole access to the hugepage during the split (which happens in
2112	 * place). If we overwrite the pmd with the not-huge version pointing
2113	 * to the pte here (which of course we could if all CPUs were bug
2114	 * free), userland could trigger a small page size TLB miss on the
2115	 * small sized TLB while the hugepage TLB entry is still established in
2116	 * the huge TLB. Some CPU doesn't like that.
2117	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2118	 * 383 on page 93. Intel should be safe but is also warns that it's
2119	 * only safe if the permission and cache attributes of the two entries
2120	 * loaded in the two TLB is identical (which should be the case here).
2121	 * But it is generally safer to never allow small and huge TLB entries
2122	 * for the same virtual address to be loaded simultaneously. So instead
2123	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2124	 * current pmd notpresent (atomically because here the pmd_trans_huge
2125	 * must remain set at all times on the pmd until the split is complete
2126	 * for this pmd), then we flush the SMP TLB and finally we write the
2127	 * non-huge version of the pmd entry with pmd_populate.
2128	 */
2129	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2130
2131#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2132	pmd_migration = is_pmd_migration_entry(old_pmd);
2133	if (pmd_migration) {
2134		swp_entry_t entry;
2135
2136		entry = pmd_to_swp_entry(old_pmd);
2137		page = pfn_to_page(swp_offset(entry));
2138	} else
2139#endif
2140		page = pmd_page(old_pmd);
2141	VM_BUG_ON_PAGE(!page_count(page), page);
2142	page_ref_add(page, HPAGE_PMD_NR - 1);
2143	if (pmd_dirty(old_pmd))
2144		SetPageDirty(page);
2145	write = pmd_write(old_pmd);
2146	young = pmd_young(old_pmd);
2147	soft_dirty = pmd_soft_dirty(old_pmd);
2148
2149	/*
2150	 * Withdraw the table only after we mark the pmd entry invalid.
2151	 * This's critical for some architectures (Power).
2152	 */
2153	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2154	pmd_populate(mm, &_pmd, pgtable);
2155
2156	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2157		pte_t entry, *pte;
2158		/*
2159		 * Note that NUMA hinting access restrictions are not
2160		 * transferred to avoid any possibility of altering
2161		 * permissions across VMAs.
2162		 */
2163		if (freeze || pmd_migration) {
2164			swp_entry_t swp_entry;
2165			swp_entry = make_migration_entry(page + i, write);
2166			entry = swp_entry_to_pte(swp_entry);
2167			if (soft_dirty)
2168				entry = pte_swp_mksoft_dirty(entry);
2169		} else {
2170			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2171			entry = maybe_mkwrite(entry, vma);
2172			if (!write)
2173				entry = pte_wrprotect(entry);
2174			if (!young)
2175				entry = pte_mkold(entry);
2176			if (soft_dirty)
2177				entry = pte_mksoft_dirty(entry);
2178		}
 
 
2179		pte = pte_offset_map(&_pmd, addr);
2180		BUG_ON(!pte_none(*pte));
2181		set_pte_at(mm, addr, pte, entry);
2182		atomic_inc(&page[i]._mapcount);
2183		pte_unmap(pte);
2184	}
2185
2186	/*
2187	 * Set PG_double_map before dropping compound_mapcount to avoid
2188	 * false-negative page_mapped().
2189	 */
2190	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2191		for (i = 0; i < HPAGE_PMD_NR; i++)
2192			atomic_inc(&page[i]._mapcount);
2193	}
2194
2195	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2196		/* Last compound_mapcount is gone. */
2197		__dec_node_page_state(page, NR_ANON_THPS);
2198		if (TestClearPageDoubleMap(page)) {
2199			/* No need in mapcount reference anymore */
2200			for (i = 0; i < HPAGE_PMD_NR; i++)
2201				atomic_dec(&page[i]._mapcount);
2202		}
2203	}
2204
2205	smp_wmb(); /* make pte visible before pmd */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2206	pmd_populate(mm, pmd, pgtable);
2207
2208	if (freeze) {
2209		for (i = 0; i < HPAGE_PMD_NR; i++) {
2210			page_remove_rmap(page + i, false);
2211			put_page(page + i);
2212		}
2213	}
2214}
2215
2216void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2217		unsigned long address, bool freeze, struct page *page)
2218{
2219	spinlock_t *ptl;
2220	struct mm_struct *mm = vma->vm_mm;
2221	unsigned long haddr = address & HPAGE_PMD_MASK;
2222
2223	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2224	ptl = pmd_lock(mm, pmd);
2225
2226	/*
2227	 * If caller asks to setup a migration entries, we need a page to check
2228	 * pmd against. Otherwise we can end up replacing wrong page.
2229	 */
2230	VM_BUG_ON(freeze && !page);
2231	if (page && page != pmd_page(*pmd))
2232	        goto out;
2233
2234	if (pmd_trans_huge(*pmd)) {
2235		page = pmd_page(*pmd);
2236		if (PageMlocked(page))
2237			clear_page_mlock(page);
2238	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2239		goto out;
2240	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2241out:
2242	spin_unlock(ptl);
2243	/*
2244	 * No need to double call mmu_notifier->invalidate_range() callback.
2245	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2246	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2247	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2248	 *    fault will trigger a flush_notify before pointing to a new page
2249	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2250	 *    page in the meantime)
2251	 *  3) Split a huge pmd into pte pointing to the same page. No need
2252	 *     to invalidate secondary tlb entry they are all still valid.
2253	 *     any further changes to individual pte will notify. So no need
2254	 *     to call mmu_notifier->invalidate_range()
2255	 */
2256	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2257					       HPAGE_PMD_SIZE);
2258}
2259
2260void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2261		bool freeze, struct page *page)
2262{
2263	pgd_t *pgd;
2264	p4d_t *p4d;
2265	pud_t *pud;
2266	pmd_t *pmd;
2267
2268	pgd = pgd_offset(vma->vm_mm, address);
2269	if (!pgd_present(*pgd))
2270		return;
2271
2272	p4d = p4d_offset(pgd, address);
2273	if (!p4d_present(*p4d))
2274		return;
2275
2276	pud = pud_offset(p4d, address);
2277	if (!pud_present(*pud))
2278		return;
2279
2280	pmd = pmd_offset(pud, address);
 
 
 
 
 
 
 
 
 
 
2281
2282	__split_huge_pmd(vma, pmd, address, freeze, page);
 
 
 
 
2283}
2284
2285void vma_adjust_trans_huge(struct vm_area_struct *vma,
2286			     unsigned long start,
2287			     unsigned long end,
2288			     long adjust_next)
2289{
2290	/*
2291	 * If the new start address isn't hpage aligned and it could
2292	 * previously contain an hugepage: check if we need to split
2293	 * an huge pmd.
2294	 */
2295	if (start & ~HPAGE_PMD_MASK &&
2296	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2297	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2298		split_huge_pmd_address(vma, start, false, NULL);
2299
2300	/*
2301	 * If the new end address isn't hpage aligned and it could
2302	 * previously contain an hugepage: check if we need to split
2303	 * an huge pmd.
2304	 */
2305	if (end & ~HPAGE_PMD_MASK &&
2306	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2307	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2308		split_huge_pmd_address(vma, end, false, NULL);
2309
2310	/*
2311	 * If we're also updating the vma->vm_next->vm_start, if the new
2312	 * vm_next->vm_start isn't page aligned and it could previously
2313	 * contain an hugepage: check if we need to split an huge pmd.
2314	 */
2315	if (adjust_next > 0) {
2316		struct vm_area_struct *next = vma->vm_next;
2317		unsigned long nstart = next->vm_start;
2318		nstart += adjust_next << PAGE_SHIFT;
2319		if (nstart & ~HPAGE_PMD_MASK &&
2320		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2321		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2322			split_huge_pmd_address(next, nstart, false, NULL);
2323	}
2324}
2325
2326static void freeze_page(struct page *page)
2327{
2328	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2329		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2330	bool unmap_success;
2331
2332	VM_BUG_ON_PAGE(!PageHead(page), page);
2333
2334	if (PageAnon(page))
2335		ttu_flags |= TTU_SPLIT_FREEZE;
 
 
 
 
2336
2337	unmap_success = try_to_unmap(page, ttu_flags);
2338	VM_BUG_ON_PAGE(!unmap_success, page);
 
2339}
2340
2341static void unfreeze_page(struct page *page)
2342{
2343	int i;
2344	if (PageTransHuge(page)) {
2345		remove_migration_ptes(page, page, true);
2346	} else {
2347		for (i = 0; i < HPAGE_PMD_NR; i++)
2348			remove_migration_ptes(page + i, page + i, true);
2349	}
2350}
2351
2352static void __split_huge_page_tail(struct page *head, int tail,
2353		struct lruvec *lruvec, struct list_head *list)
2354{
2355	struct page *page_tail = head + tail;
2356
2357	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
 
2358
2359	/*
2360	 * Clone page flags before unfreezing refcount.
2361	 *
2362	 * After successful get_page_unless_zero() might follow flags change,
2363	 * for exmaple lock_page() which set PG_waiters.
 
 
 
 
 
2364	 */
 
 
2365	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2366	page_tail->flags |= (head->flags &
2367			((1L << PG_referenced) |
2368			 (1L << PG_swapbacked) |
2369			 (1L << PG_swapcache) |
2370			 (1L << PG_mlocked) |
2371			 (1L << PG_uptodate) |
2372			 (1L << PG_active) |
2373			 (1L << PG_locked) |
2374			 (1L << PG_unevictable) |
2375			 (1L << PG_dirty)));
2376
2377	/* Page flags must be visible before we make the page non-compound. */
2378	smp_wmb();
2379
2380	/*
2381	 * Clear PageTail before unfreezing page refcount.
2382	 *
2383	 * After successful get_page_unless_zero() might follow put_page()
2384	 * which needs correct compound_head().
2385	 */
2386	clear_compound_head(page_tail);
2387
2388	/* Finally unfreeze refcount. Additional reference from page cache. */
2389	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2390					  PageSwapCache(head)));
2391
2392	if (page_is_young(head))
2393		set_page_young(page_tail);
2394	if (page_is_idle(head))
2395		set_page_idle(page_tail);
2396
2397	/* ->mapping in first tail page is compound_mapcount */
2398	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2399			page_tail);
2400	page_tail->mapping = head->mapping;
2401
2402	page_tail->index = head->index + tail;
2403	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2404
2405	/*
2406	 * always add to the tail because some iterators expect new
2407	 * pages to show after the currently processed elements - e.g.
2408	 * migrate_pages
2409	 */
2410	lru_add_page_tail(head, page_tail, lruvec, list);
2411}
2412
2413static void __split_huge_page(struct page *page, struct list_head *list,
2414		unsigned long flags)
2415{
2416	struct page *head = compound_head(page);
2417	struct zone *zone = page_zone(head);
2418	struct lruvec *lruvec;
2419	pgoff_t end = -1;
2420	int i;
2421
2422	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
 
 
2423
2424	/* complete memcg works before add pages to LRU */
2425	mem_cgroup_split_huge_fixup(head);
2426
2427	if (!PageAnon(page))
2428		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2429
2430	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2431		__split_huge_page_tail(head, i, lruvec, list);
2432		/* Some pages can be beyond i_size: drop them from page cache */
2433		if (head[i].index >= end) {
2434			ClearPageDirty(head + i);
2435			__delete_from_page_cache(head + i, NULL);
2436			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2437				shmem_uncharge(head->mapping->host, 1);
2438			put_page(head + i);
2439		}
2440	}
2441
2442	ClearPageCompound(head);
2443	/* See comment in __split_huge_page_tail() */
2444	if (PageAnon(head)) {
2445		/* Additional pin to radix tree of swap cache */
2446		if (PageSwapCache(head))
2447			page_ref_add(head, 2);
2448		else
2449			page_ref_inc(head);
2450	} else {
2451		/* Additional pin to radix tree */
2452		page_ref_add(head, 2);
2453		xa_unlock(&head->mapping->i_pages);
2454	}
2455
2456	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2457
2458	unfreeze_page(head);
2459
2460	for (i = 0; i < HPAGE_PMD_NR; i++) {
2461		struct page *subpage = head + i;
2462		if (subpage == page)
2463			continue;
2464		unlock_page(subpage);
2465
2466		/*
2467		 * Subpages may be freed if there wasn't any mapping
2468		 * like if add_to_swap() is running on a lru page that
2469		 * had its mapping zapped. And freeing these pages
2470		 * requires taking the lru_lock so we do the put_page
2471		 * of the tail pages after the split is complete.
2472		 */
2473		put_page(subpage);
2474	}
2475}
2476
2477int total_mapcount(struct page *page)
2478{
2479	int i, compound, ret;
2480
2481	VM_BUG_ON_PAGE(PageTail(page), page);
2482
2483	if (likely(!PageCompound(page)))
2484		return atomic_read(&page->_mapcount) + 1;
2485
2486	compound = compound_mapcount(page);
2487	if (PageHuge(page))
2488		return compound;
2489	ret = compound;
2490	for (i = 0; i < HPAGE_PMD_NR; i++)
2491		ret += atomic_read(&page[i]._mapcount) + 1;
2492	/* File pages has compound_mapcount included in _mapcount */
2493	if (!PageAnon(page))
2494		return ret - compound * HPAGE_PMD_NR;
2495	if (PageDoubleMap(page))
2496		ret -= HPAGE_PMD_NR;
2497	return ret;
2498}
2499
2500/*
2501 * This calculates accurately how many mappings a transparent hugepage
2502 * has (unlike page_mapcount() which isn't fully accurate). This full
2503 * accuracy is primarily needed to know if copy-on-write faults can
2504 * reuse the page and change the mapping to read-write instead of
2505 * copying them. At the same time this returns the total_mapcount too.
2506 *
2507 * The function returns the highest mapcount any one of the subpages
2508 * has. If the return value is one, even if different processes are
2509 * mapping different subpages of the transparent hugepage, they can
2510 * all reuse it, because each process is reusing a different subpage.
2511 *
2512 * The total_mapcount is instead counting all virtual mappings of the
2513 * subpages. If the total_mapcount is equal to "one", it tells the
2514 * caller all mappings belong to the same "mm" and in turn the
2515 * anon_vma of the transparent hugepage can become the vma->anon_vma
2516 * local one as no other process may be mapping any of the subpages.
2517 *
2518 * It would be more accurate to replace page_mapcount() with
2519 * page_trans_huge_mapcount(), however we only use
2520 * page_trans_huge_mapcount() in the copy-on-write faults where we
2521 * need full accuracy to avoid breaking page pinning, because
2522 * page_trans_huge_mapcount() is slower than page_mapcount().
2523 */
2524int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2525{
2526	int i, ret, _total_mapcount, mapcount;
2527
2528	/* hugetlbfs shouldn't call it */
2529	VM_BUG_ON_PAGE(PageHuge(page), page);
2530
2531	if (likely(!PageTransCompound(page))) {
2532		mapcount = atomic_read(&page->_mapcount) + 1;
2533		if (total_mapcount)
2534			*total_mapcount = mapcount;
2535		return mapcount;
2536	}
2537
2538	page = compound_head(page);
2539
2540	_total_mapcount = ret = 0;
2541	for (i = 0; i < HPAGE_PMD_NR; i++) {
2542		mapcount = atomic_read(&page[i]._mapcount) + 1;
2543		ret = max(ret, mapcount);
2544		_total_mapcount += mapcount;
2545	}
2546	if (PageDoubleMap(page)) {
2547		ret -= 1;
2548		_total_mapcount -= HPAGE_PMD_NR;
2549	}
2550	mapcount = compound_mapcount(page);
2551	ret += mapcount;
2552	_total_mapcount += mapcount;
2553	if (total_mapcount)
2554		*total_mapcount = _total_mapcount;
2555	return ret;
2556}
2557
2558/* Racy check whether the huge page can be split */
2559bool can_split_huge_page(struct page *page, int *pextra_pins)
2560{
2561	int extra_pins;
2562
2563	/* Additional pins from radix tree */
2564	if (PageAnon(page))
2565		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2566	else
2567		extra_pins = HPAGE_PMD_NR;
2568	if (pextra_pins)
2569		*pextra_pins = extra_pins;
2570	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2571}
2572
2573/*
2574 * This function splits huge page into normal pages. @page can point to any
2575 * subpage of huge page to split. Split doesn't change the position of @page.
2576 *
2577 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2578 * The huge page must be locked.
2579 *
2580 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2581 *
2582 * Both head page and tail pages will inherit mapping, flags, and so on from
2583 * the hugepage.
2584 *
2585 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2586 * they are not mapped.
2587 *
2588 * Returns 0 if the hugepage is split successfully.
2589 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2590 * us.
2591 */
2592int split_huge_page_to_list(struct page *page, struct list_head *list)
2593{
2594	struct page *head = compound_head(page);
2595	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2596	struct anon_vma *anon_vma = NULL;
2597	struct address_space *mapping = NULL;
2598	int count, mapcount, extra_pins, ret;
2599	bool mlocked;
2600	unsigned long flags;
2601
2602	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
 
2603	VM_BUG_ON_PAGE(!PageLocked(page), page);
 
2604	VM_BUG_ON_PAGE(!PageCompound(page), page);
2605
2606	if (PageWriteback(page))
2607		return -EBUSY;
2608
2609	if (PageAnon(head)) {
2610		/*
2611		 * The caller does not necessarily hold an mmap_sem that would
2612		 * prevent the anon_vma disappearing so we first we take a
2613		 * reference to it and then lock the anon_vma for write. This
2614		 * is similar to page_lock_anon_vma_read except the write lock
2615		 * is taken to serialise against parallel split or collapse
2616		 * operations.
2617		 */
2618		anon_vma = page_get_anon_vma(head);
2619		if (!anon_vma) {
2620			ret = -EBUSY;
2621			goto out;
2622		}
2623		mapping = NULL;
2624		anon_vma_lock_write(anon_vma);
2625	} else {
2626		mapping = head->mapping;
2627
2628		/* Truncated ? */
2629		if (!mapping) {
2630			ret = -EBUSY;
2631			goto out;
2632		}
2633
2634		anon_vma = NULL;
2635		i_mmap_lock_read(mapping);
2636	}
 
2637
2638	/*
2639	 * Racy check if we can split the page, before freeze_page() will
2640	 * split PMDs
2641	 */
2642	if (!can_split_huge_page(head, &extra_pins)) {
2643		ret = -EBUSY;
2644		goto out_unlock;
2645	}
2646
2647	mlocked = PageMlocked(page);
2648	freeze_page(head);
2649	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2650
2651	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2652	if (mlocked)
2653		lru_add_drain();
2654
2655	/* prevent PageLRU to go away from under us, and freeze lru stats */
2656	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2657
2658	if (mapping) {
2659		void **pslot;
2660
2661		xa_lock(&mapping->i_pages);
2662		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2663				page_index(head));
2664		/*
2665		 * Check if the head page is present in radix tree.
2666		 * We assume all tail are present too, if head is there.
2667		 */
2668		if (radix_tree_deref_slot_protected(pslot,
2669					&mapping->i_pages.xa_lock) != head)
2670			goto fail;
2671	}
2672
2673	/* Prevent deferred_split_scan() touching ->_refcount */
2674	spin_lock(&pgdata->split_queue_lock);
2675	count = page_count(head);
2676	mapcount = total_mapcount(head);
2677	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2678		if (!list_empty(page_deferred_list(head))) {
2679			pgdata->split_queue_len--;
2680			list_del(page_deferred_list(head));
2681		}
2682		if (mapping)
2683			__dec_node_page_state(page, NR_SHMEM_THPS);
2684		spin_unlock(&pgdata->split_queue_lock);
2685		__split_huge_page(page, list, flags);
2686		if (PageSwapCache(head)) {
2687			swp_entry_t entry = { .val = page_private(head) };
2688
2689			ret = split_swap_cluster(entry);
2690		} else
2691			ret = 0;
 
2692	} else {
2693		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2694			pr_alert("total_mapcount: %u, page_count(): %u\n",
2695					mapcount, count);
2696			if (PageTail(page))
2697				dump_page(head, NULL);
2698			dump_page(page, "total_mapcount(head) > 0");
2699			BUG();
2700		}
2701		spin_unlock(&pgdata->split_queue_lock);
2702fail:		if (mapping)
2703			xa_unlock(&mapping->i_pages);
2704		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2705		unfreeze_page(head);
2706		ret = -EBUSY;
2707	}
2708
2709out_unlock:
2710	if (anon_vma) {
2711		anon_vma_unlock_write(anon_vma);
2712		put_anon_vma(anon_vma);
2713	}
2714	if (mapping)
2715		i_mmap_unlock_read(mapping);
2716out:
2717	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2718	return ret;
2719}
2720
2721void free_transhuge_page(struct page *page)
2722{
2723	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2724	unsigned long flags;
2725
2726	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2727	if (!list_empty(page_deferred_list(page))) {
2728		pgdata->split_queue_len--;
2729		list_del(page_deferred_list(page));
2730	}
2731	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2732	free_compound_page(page);
2733}
2734
2735void deferred_split_huge_page(struct page *page)
2736{
2737	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2738	unsigned long flags;
2739
2740	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2741
2742	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2743	if (list_empty(page_deferred_list(page))) {
2744		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2745		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2746		pgdata->split_queue_len++;
2747	}
2748	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2749}
2750
2751static unsigned long deferred_split_count(struct shrinker *shrink,
2752		struct shrink_control *sc)
2753{
2754	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2755	return READ_ONCE(pgdata->split_queue_len);
2756}
2757
2758static unsigned long deferred_split_scan(struct shrinker *shrink,
2759		struct shrink_control *sc)
2760{
2761	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2762	unsigned long flags;
2763	LIST_HEAD(list), *pos, *next;
2764	struct page *page;
2765	int split = 0;
2766
2767	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2768	/* Take pin on all head pages to avoid freeing them under us */
2769	list_for_each_safe(pos, next, &pgdata->split_queue) {
2770		page = list_entry((void *)pos, struct page, mapping);
2771		page = compound_head(page);
2772		if (get_page_unless_zero(page)) {
2773			list_move(page_deferred_list(page), &list);
2774		} else {
2775			/* We lost race with put_compound_page() */
2776			list_del_init(page_deferred_list(page));
2777			pgdata->split_queue_len--;
2778		}
2779		if (!--sc->nr_to_scan)
2780			break;
2781	}
2782	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2783
2784	list_for_each_safe(pos, next, &list) {
2785		page = list_entry((void *)pos, struct page, mapping);
2786		if (!trylock_page(page))
2787			goto next;
2788		/* split_huge_page() removes page from list on success */
2789		if (!split_huge_page(page))
2790			split++;
2791		unlock_page(page);
2792next:
2793		put_page(page);
2794	}
2795
2796	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2797	list_splice_tail(&list, &pgdata->split_queue);
2798	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2799
2800	/*
2801	 * Stop shrinker if we didn't split any page, but the queue is empty.
2802	 * This can happen if pages were freed under us.
2803	 */
2804	if (!split && list_empty(&pgdata->split_queue))
2805		return SHRINK_STOP;
2806	return split;
2807}
2808
2809static struct shrinker deferred_split_shrinker = {
2810	.count_objects = deferred_split_count,
2811	.scan_objects = deferred_split_scan,
2812	.seeks = DEFAULT_SEEKS,
2813	.flags = SHRINKER_NUMA_AWARE,
2814};
2815
2816#ifdef CONFIG_DEBUG_FS
2817static int split_huge_pages_set(void *data, u64 val)
2818{
2819	struct zone *zone;
2820	struct page *page;
2821	unsigned long pfn, max_zone_pfn;
2822	unsigned long total = 0, split = 0;
2823
2824	if (val != 1)
2825		return -EINVAL;
2826
2827	for_each_populated_zone(zone) {
2828		max_zone_pfn = zone_end_pfn(zone);
2829		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2830			if (!pfn_valid(pfn))
2831				continue;
2832
2833			page = pfn_to_page(pfn);
2834			if (!get_page_unless_zero(page))
2835				continue;
2836
2837			if (zone != page_zone(page))
2838				goto next;
2839
2840			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
 
2841				goto next;
2842
2843			total++;
2844			lock_page(page);
2845			if (!split_huge_page(page))
2846				split++;
2847			unlock_page(page);
2848next:
2849			put_page(page);
2850		}
2851	}
2852
2853	pr_info("%lu of %lu THP split\n", split, total);
2854
2855	return 0;
2856}
2857DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2858		"%llu\n");
2859
2860static int __init split_huge_pages_debugfs(void)
2861{
2862	void *ret;
2863
2864	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2865			&split_huge_pages_fops);
2866	if (!ret)
2867		pr_warn("Failed to create split_huge_pages in debugfs");
2868	return 0;
2869}
2870late_initcall(split_huge_pages_debugfs);
2871#endif
2872
2873#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2874void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2875		struct page *page)
2876{
2877	struct vm_area_struct *vma = pvmw->vma;
2878	struct mm_struct *mm = vma->vm_mm;
2879	unsigned long address = pvmw->address;
2880	pmd_t pmdval;
2881	swp_entry_t entry;
2882	pmd_t pmdswp;
2883
2884	if (!(pvmw->pmd && !pvmw->pte))
2885		return;
2886
2887	mmu_notifier_invalidate_range_start(mm, address,
2888			address + HPAGE_PMD_SIZE);
2889
2890	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2891	pmdval = *pvmw->pmd;
2892	pmdp_invalidate(vma, address, pvmw->pmd);
2893	if (pmd_dirty(pmdval))
2894		set_page_dirty(page);
2895	entry = make_migration_entry(page, pmd_write(pmdval));
2896	pmdswp = swp_entry_to_pmd(entry);
2897	if (pmd_soft_dirty(pmdval))
2898		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2899	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2900	page_remove_rmap(page, true);
2901	put_page(page);
2902
2903	mmu_notifier_invalidate_range_end(mm, address,
2904			address + HPAGE_PMD_SIZE);
2905}
2906
2907void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2908{
2909	struct vm_area_struct *vma = pvmw->vma;
2910	struct mm_struct *mm = vma->vm_mm;
2911	unsigned long address = pvmw->address;
2912	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2913	pmd_t pmde;
2914	swp_entry_t entry;
2915
2916	if (!(pvmw->pmd && !pvmw->pte))
2917		return;
2918
2919	entry = pmd_to_swp_entry(*pvmw->pmd);
2920	get_page(new);
2921	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2922	if (pmd_swp_soft_dirty(*pvmw->pmd))
2923		pmde = pmd_mksoft_dirty(pmde);
2924	if (is_write_migration_entry(entry))
2925		pmde = maybe_pmd_mkwrite(pmde, vma);
2926
2927	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2928	if (PageAnon(new))
2929		page_add_anon_rmap(new, vma, mmun_start, true);
2930	else
2931		page_add_file_rmap(new, true);
2932	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2933	if (vma->vm_flags & VM_LOCKED)
2934		mlock_vma_page(new);
2935	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2936}
2937#endif
v4.6
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
 
 
  12#include <linux/highmem.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mmu_notifier.h>
  15#include <linux/rmap.h>
  16#include <linux/swap.h>
  17#include <linux/shrinker.h>
  18#include <linux/mm_inline.h>
  19#include <linux/swapops.h>
  20#include <linux/dax.h>
  21#include <linux/kthread.h>
  22#include <linux/khugepaged.h>
  23#include <linux/freezer.h>
  24#include <linux/pfn_t.h>
  25#include <linux/mman.h>
  26#include <linux/memremap.h>
  27#include <linux/pagemap.h>
  28#include <linux/debugfs.h>
  29#include <linux/migrate.h>
  30#include <linux/hashtable.h>
  31#include <linux/userfaultfd_k.h>
  32#include <linux/page_idle.h>
 
 
  33
  34#include <asm/tlb.h>
  35#include <asm/pgalloc.h>
  36#include "internal.h"
  37
  38enum scan_result {
  39	SCAN_FAIL,
  40	SCAN_SUCCEED,
  41	SCAN_PMD_NULL,
  42	SCAN_EXCEED_NONE_PTE,
  43	SCAN_PTE_NON_PRESENT,
  44	SCAN_PAGE_RO,
  45	SCAN_NO_REFERENCED_PAGE,
  46	SCAN_PAGE_NULL,
  47	SCAN_SCAN_ABORT,
  48	SCAN_PAGE_COUNT,
  49	SCAN_PAGE_LRU,
  50	SCAN_PAGE_LOCK,
  51	SCAN_PAGE_ANON,
  52	SCAN_PAGE_COMPOUND,
  53	SCAN_ANY_PROCESS,
  54	SCAN_VMA_NULL,
  55	SCAN_VMA_CHECK,
  56	SCAN_ADDRESS_RANGE,
  57	SCAN_SWAP_CACHE_PAGE,
  58	SCAN_DEL_PAGE_LRU,
  59	SCAN_ALLOC_HUGE_PAGE_FAIL,
  60	SCAN_CGROUP_CHARGE_FAIL
  61};
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/huge_memory.h>
  65
  66/*
  67 * By default transparent hugepage support is disabled in order that avoid
  68 * to risk increase the memory footprint of applications without a guaranteed
  69 * benefit. When transparent hugepage support is enabled, is for all mappings,
  70 * and khugepaged scans all mappings.
  71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  72 * for all hugepage allocations.
  73 */
  74unsigned long transparent_hugepage_flags __read_mostly =
  75#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  76	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  77#endif
  78#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  79	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  80#endif
  81	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  82	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  83	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  84
  85/* default scan 8*512 pte (or vmas) every 30 second */
  86static unsigned int khugepaged_pages_to_scan __read_mostly;
  87static unsigned int khugepaged_pages_collapsed;
  88static unsigned int khugepaged_full_scans;
  89static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  90/* during fragmentation poll the hugepage allocator once every minute */
  91static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  92static struct task_struct *khugepaged_thread __read_mostly;
  93static DEFINE_MUTEX(khugepaged_mutex);
  94static DEFINE_SPINLOCK(khugepaged_mm_lock);
  95static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  96/*
  97 * default collapse hugepages if there is at least one pte mapped like
  98 * it would have happened if the vma was large enough during page
  99 * fault.
 100 */
 101static unsigned int khugepaged_max_ptes_none __read_mostly;
 102
 103static int khugepaged(void *none);
 104static int khugepaged_slab_init(void);
 105static void khugepaged_slab_exit(void);
 106
 107#define MM_SLOTS_HASH_BITS 10
 108static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 109
 110static struct kmem_cache *mm_slot_cache __read_mostly;
 111
 112/**
 113 * struct mm_slot - hash lookup from mm to mm_slot
 114 * @hash: hash collision list
 115 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
 116 * @mm: the mm that this information is valid for
 117 */
 118struct mm_slot {
 119	struct hlist_node hash;
 120	struct list_head mm_node;
 121	struct mm_struct *mm;
 122};
 123
 124/**
 125 * struct khugepaged_scan - cursor for scanning
 126 * @mm_head: the head of the mm list to scan
 127 * @mm_slot: the current mm_slot we are scanning
 128 * @address: the next address inside that to be scanned
 129 *
 130 * There is only the one khugepaged_scan instance of this cursor structure.
 131 */
 132struct khugepaged_scan {
 133	struct list_head mm_head;
 134	struct mm_slot *mm_slot;
 135	unsigned long address;
 136};
 137static struct khugepaged_scan khugepaged_scan = {
 138	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 139};
 140
 141static struct shrinker deferred_split_shrinker;
 142
 143static void set_recommended_min_free_kbytes(void)
 144{
 145	struct zone *zone;
 146	int nr_zones = 0;
 147	unsigned long recommended_min;
 148
 149	for_each_populated_zone(zone)
 150		nr_zones++;
 151
 152	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
 153	recommended_min = pageblock_nr_pages * nr_zones * 2;
 154
 155	/*
 156	 * Make sure that on average at least two pageblocks are almost free
 157	 * of another type, one for a migratetype to fall back to and a
 158	 * second to avoid subsequent fallbacks of other types There are 3
 159	 * MIGRATE_TYPES we care about.
 160	 */
 161	recommended_min += pageblock_nr_pages * nr_zones *
 162			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 163
 164	/* don't ever allow to reserve more than 5% of the lowmem */
 165	recommended_min = min(recommended_min,
 166			      (unsigned long) nr_free_buffer_pages() / 20);
 167	recommended_min <<= (PAGE_SHIFT-10);
 168
 169	if (recommended_min > min_free_kbytes) {
 170		if (user_min_free_kbytes >= 0)
 171			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
 172				min_free_kbytes, recommended_min);
 173
 174		min_free_kbytes = recommended_min;
 175	}
 176	setup_per_zone_wmarks();
 177}
 178
 179static int start_stop_khugepaged(void)
 180{
 181	int err = 0;
 182	if (khugepaged_enabled()) {
 183		if (!khugepaged_thread)
 184			khugepaged_thread = kthread_run(khugepaged, NULL,
 185							"khugepaged");
 186		if (IS_ERR(khugepaged_thread)) {
 187			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
 188			err = PTR_ERR(khugepaged_thread);
 189			khugepaged_thread = NULL;
 190			goto fail;
 191		}
 192
 193		if (!list_empty(&khugepaged_scan.mm_head))
 194			wake_up_interruptible(&khugepaged_wait);
 195
 196		set_recommended_min_free_kbytes();
 197	} else if (khugepaged_thread) {
 198		kthread_stop(khugepaged_thread);
 199		khugepaged_thread = NULL;
 200	}
 201fail:
 202	return err;
 203}
 204
 205static atomic_t huge_zero_refcount;
 206struct page *huge_zero_page __read_mostly;
 207
 208struct page *get_huge_zero_page(void)
 209{
 210	struct page *zero_page;
 211retry:
 212	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 213		return READ_ONCE(huge_zero_page);
 214
 215	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 216			HPAGE_PMD_ORDER);
 217	if (!zero_page) {
 218		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 219		return NULL;
 220	}
 221	count_vm_event(THP_ZERO_PAGE_ALLOC);
 222	preempt_disable();
 223	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 224		preempt_enable();
 225		__free_pages(zero_page, compound_order(zero_page));
 226		goto retry;
 227	}
 228
 229	/* We take additional reference here. It will be put back by shrinker */
 230	atomic_set(&huge_zero_refcount, 2);
 231	preempt_enable();
 232	return READ_ONCE(huge_zero_page);
 233}
 234
 235void put_huge_zero_page(void)
 236{
 237	/*
 238	 * Counter should never go to zero here. Only shrinker can put
 239	 * last reference.
 240	 */
 241	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 242}
 243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 245					struct shrink_control *sc)
 246{
 247	/* we can free zero page only if last reference remains */
 248	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 249}
 250
 251static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 252				       struct shrink_control *sc)
 253{
 254	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 255		struct page *zero_page = xchg(&huge_zero_page, NULL);
 256		BUG_ON(zero_page == NULL);
 257		__free_pages(zero_page, compound_order(zero_page));
 258		return HPAGE_PMD_NR;
 259	}
 260
 261	return 0;
 262}
 263
 264static struct shrinker huge_zero_page_shrinker = {
 265	.count_objects = shrink_huge_zero_page_count,
 266	.scan_objects = shrink_huge_zero_page_scan,
 267	.seeks = DEFAULT_SEEKS,
 268};
 269
 270#ifdef CONFIG_SYSFS
 271
 272static ssize_t triple_flag_store(struct kobject *kobj,
 273				 struct kobj_attribute *attr,
 274				 const char *buf, size_t count,
 275				 enum transparent_hugepage_flag enabled,
 276				 enum transparent_hugepage_flag deferred,
 277				 enum transparent_hugepage_flag req_madv)
 278{
 279	if (!memcmp("defer", buf,
 280		    min(sizeof("defer")-1, count))) {
 281		if (enabled == deferred)
 282			return -EINVAL;
 283		clear_bit(enabled, &transparent_hugepage_flags);
 284		clear_bit(req_madv, &transparent_hugepage_flags);
 285		set_bit(deferred, &transparent_hugepage_flags);
 286	} else if (!memcmp("always", buf,
 287		    min(sizeof("always")-1, count))) {
 288		clear_bit(deferred, &transparent_hugepage_flags);
 289		clear_bit(req_madv, &transparent_hugepage_flags);
 290		set_bit(enabled, &transparent_hugepage_flags);
 291	} else if (!memcmp("madvise", buf,
 292			   min(sizeof("madvise")-1, count))) {
 293		clear_bit(enabled, &transparent_hugepage_flags);
 294		clear_bit(deferred, &transparent_hugepage_flags);
 295		set_bit(req_madv, &transparent_hugepage_flags);
 296	} else if (!memcmp("never", buf,
 297			   min(sizeof("never")-1, count))) {
 298		clear_bit(enabled, &transparent_hugepage_flags);
 299		clear_bit(req_madv, &transparent_hugepage_flags);
 300		clear_bit(deferred, &transparent_hugepage_flags);
 301	} else
 302		return -EINVAL;
 303
 304	return count;
 305}
 306
 307static ssize_t enabled_show(struct kobject *kobj,
 308			    struct kobj_attribute *attr, char *buf)
 309{
 310	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 311		return sprintf(buf, "[always] madvise never\n");
 312	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 313		return sprintf(buf, "always [madvise] never\n");
 314	else
 315		return sprintf(buf, "always madvise [never]\n");
 316}
 317
 318static ssize_t enabled_store(struct kobject *kobj,
 319			     struct kobj_attribute *attr,
 320			     const char *buf, size_t count)
 321{
 322	ssize_t ret;
 323
 324	ret = triple_flag_store(kobj, attr, buf, count,
 325				TRANSPARENT_HUGEPAGE_FLAG,
 326				TRANSPARENT_HUGEPAGE_FLAG,
 327				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 
 
 328
 329	if (ret > 0) {
 330		int err;
 331
 332		mutex_lock(&khugepaged_mutex);
 333		err = start_stop_khugepaged();
 334		mutex_unlock(&khugepaged_mutex);
 335
 336		if (err)
 337			ret = err;
 338	}
 339
 340	return ret;
 341}
 342static struct kobj_attribute enabled_attr =
 343	__ATTR(enabled, 0644, enabled_show, enabled_store);
 344
 345static ssize_t single_flag_show(struct kobject *kobj,
 346				struct kobj_attribute *attr, char *buf,
 347				enum transparent_hugepage_flag flag)
 348{
 349	return sprintf(buf, "%d\n",
 350		       !!test_bit(flag, &transparent_hugepage_flags));
 351}
 352
 353static ssize_t single_flag_store(struct kobject *kobj,
 354				 struct kobj_attribute *attr,
 355				 const char *buf, size_t count,
 356				 enum transparent_hugepage_flag flag)
 357{
 358	unsigned long value;
 359	int ret;
 360
 361	ret = kstrtoul(buf, 10, &value);
 362	if (ret < 0)
 363		return ret;
 364	if (value > 1)
 365		return -EINVAL;
 366
 367	if (value)
 368		set_bit(flag, &transparent_hugepage_flags);
 369	else
 370		clear_bit(flag, &transparent_hugepage_flags);
 371
 372	return count;
 373}
 374
 375/*
 376 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 377 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 378 * memory just to allocate one more hugepage.
 379 */
 380static ssize_t defrag_show(struct kobject *kobj,
 381			   struct kobj_attribute *attr, char *buf)
 382{
 383	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 384		return sprintf(buf, "[always] defer madvise never\n");
 385	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 386		return sprintf(buf, "always [defer] madvise never\n");
 387	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 388		return sprintf(buf, "always defer [madvise] never\n");
 389	else
 390		return sprintf(buf, "always defer madvise [never]\n");
 
 
 391
 392}
 393static ssize_t defrag_store(struct kobject *kobj,
 394			    struct kobj_attribute *attr,
 395			    const char *buf, size_t count)
 396{
 397	return triple_flag_store(kobj, attr, buf, count,
 398				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 399				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 400				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 401}
 402static struct kobj_attribute defrag_attr =
 403	__ATTR(defrag, 0644, defrag_show, defrag_store);
 404
 405static ssize_t use_zero_page_show(struct kobject *kobj,
 406		struct kobj_attribute *attr, char *buf)
 407{
 408	return single_flag_show(kobj, attr, buf,
 409				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 410}
 411static ssize_t use_zero_page_store(struct kobject *kobj,
 412		struct kobj_attribute *attr, const char *buf, size_t count)
 413{
 414	return single_flag_store(kobj, attr, buf, count,
 415				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 416}
 417static struct kobj_attribute use_zero_page_attr =
 418	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 
 
 
 
 
 
 
 
 
 419#ifdef CONFIG_DEBUG_VM
 420static ssize_t debug_cow_show(struct kobject *kobj,
 421				struct kobj_attribute *attr, char *buf)
 422{
 423	return single_flag_show(kobj, attr, buf,
 424				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 425}
 426static ssize_t debug_cow_store(struct kobject *kobj,
 427			       struct kobj_attribute *attr,
 428			       const char *buf, size_t count)
 429{
 430	return single_flag_store(kobj, attr, buf, count,
 431				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 432}
 433static struct kobj_attribute debug_cow_attr =
 434	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 435#endif /* CONFIG_DEBUG_VM */
 436
 437static struct attribute *hugepage_attr[] = {
 438	&enabled_attr.attr,
 439	&defrag_attr.attr,
 440	&use_zero_page_attr.attr,
 
 
 
 
 441#ifdef CONFIG_DEBUG_VM
 442	&debug_cow_attr.attr,
 443#endif
 444	NULL,
 445};
 446
 447static struct attribute_group hugepage_attr_group = {
 448	.attrs = hugepage_attr,
 449};
 450
 451static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 452					 struct kobj_attribute *attr,
 453					 char *buf)
 454{
 455	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 456}
 457
 458static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 459					  struct kobj_attribute *attr,
 460					  const char *buf, size_t count)
 461{
 462	unsigned long msecs;
 463	int err;
 464
 465	err = kstrtoul(buf, 10, &msecs);
 466	if (err || msecs > UINT_MAX)
 467		return -EINVAL;
 468
 469	khugepaged_scan_sleep_millisecs = msecs;
 470	wake_up_interruptible(&khugepaged_wait);
 471
 472	return count;
 473}
 474static struct kobj_attribute scan_sleep_millisecs_attr =
 475	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 476	       scan_sleep_millisecs_store);
 477
 478static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 479					  struct kobj_attribute *attr,
 480					  char *buf)
 481{
 482	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 483}
 484
 485static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 486					   struct kobj_attribute *attr,
 487					   const char *buf, size_t count)
 488{
 489	unsigned long msecs;
 490	int err;
 491
 492	err = kstrtoul(buf, 10, &msecs);
 493	if (err || msecs > UINT_MAX)
 494		return -EINVAL;
 495
 496	khugepaged_alloc_sleep_millisecs = msecs;
 497	wake_up_interruptible(&khugepaged_wait);
 498
 499	return count;
 500}
 501static struct kobj_attribute alloc_sleep_millisecs_attr =
 502	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 503	       alloc_sleep_millisecs_store);
 504
 505static ssize_t pages_to_scan_show(struct kobject *kobj,
 506				  struct kobj_attribute *attr,
 507				  char *buf)
 508{
 509	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 510}
 511static ssize_t pages_to_scan_store(struct kobject *kobj,
 512				   struct kobj_attribute *attr,
 513				   const char *buf, size_t count)
 514{
 515	int err;
 516	unsigned long pages;
 517
 518	err = kstrtoul(buf, 10, &pages);
 519	if (err || !pages || pages > UINT_MAX)
 520		return -EINVAL;
 521
 522	khugepaged_pages_to_scan = pages;
 523
 524	return count;
 525}
 526static struct kobj_attribute pages_to_scan_attr =
 527	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 528	       pages_to_scan_store);
 529
 530static ssize_t pages_collapsed_show(struct kobject *kobj,
 531				    struct kobj_attribute *attr,
 532				    char *buf)
 533{
 534	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 535}
 536static struct kobj_attribute pages_collapsed_attr =
 537	__ATTR_RO(pages_collapsed);
 538
 539static ssize_t full_scans_show(struct kobject *kobj,
 540			       struct kobj_attribute *attr,
 541			       char *buf)
 542{
 543	return sprintf(buf, "%u\n", khugepaged_full_scans);
 544}
 545static struct kobj_attribute full_scans_attr =
 546	__ATTR_RO(full_scans);
 547
 548static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 549				      struct kobj_attribute *attr, char *buf)
 550{
 551	return single_flag_show(kobj, attr, buf,
 552				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 553}
 554static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 555				       struct kobj_attribute *attr,
 556				       const char *buf, size_t count)
 557{
 558	return single_flag_store(kobj, attr, buf, count,
 559				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 560}
 561static struct kobj_attribute khugepaged_defrag_attr =
 562	__ATTR(defrag, 0644, khugepaged_defrag_show,
 563	       khugepaged_defrag_store);
 564
 565/*
 566 * max_ptes_none controls if khugepaged should collapse hugepages over
 567 * any unmapped ptes in turn potentially increasing the memory
 568 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 569 * reduce the available free memory in the system as it
 570 * runs. Increasing max_ptes_none will instead potentially reduce the
 571 * free memory in the system during the khugepaged scan.
 572 */
 573static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 574					     struct kobj_attribute *attr,
 575					     char *buf)
 576{
 577	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 578}
 579static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 580					      struct kobj_attribute *attr,
 581					      const char *buf, size_t count)
 582{
 583	int err;
 584	unsigned long max_ptes_none;
 585
 586	err = kstrtoul(buf, 10, &max_ptes_none);
 587	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 588		return -EINVAL;
 589
 590	khugepaged_max_ptes_none = max_ptes_none;
 591
 592	return count;
 593}
 594static struct kobj_attribute khugepaged_max_ptes_none_attr =
 595	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 596	       khugepaged_max_ptes_none_store);
 597
 598static struct attribute *khugepaged_attr[] = {
 599	&khugepaged_defrag_attr.attr,
 600	&khugepaged_max_ptes_none_attr.attr,
 601	&pages_to_scan_attr.attr,
 602	&pages_collapsed_attr.attr,
 603	&full_scans_attr.attr,
 604	&scan_sleep_millisecs_attr.attr,
 605	&alloc_sleep_millisecs_attr.attr,
 606	NULL,
 607};
 608
 609static struct attribute_group khugepaged_attr_group = {
 610	.attrs = khugepaged_attr,
 611	.name = "khugepaged",
 612};
 613
 614static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 615{
 616	int err;
 617
 618	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 619	if (unlikely(!*hugepage_kobj)) {
 620		pr_err("failed to create transparent hugepage kobject\n");
 621		return -ENOMEM;
 622	}
 623
 624	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 625	if (err) {
 626		pr_err("failed to register transparent hugepage group\n");
 627		goto delete_obj;
 628	}
 629
 630	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 631	if (err) {
 632		pr_err("failed to register transparent hugepage group\n");
 633		goto remove_hp_group;
 634	}
 635
 636	return 0;
 637
 638remove_hp_group:
 639	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 640delete_obj:
 641	kobject_put(*hugepage_kobj);
 642	return err;
 643}
 644
 645static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 646{
 647	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 648	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 649	kobject_put(hugepage_kobj);
 650}
 651#else
 652static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 653{
 654	return 0;
 655}
 656
 657static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 658{
 659}
 660#endif /* CONFIG_SYSFS */
 661
 662static int __init hugepage_init(void)
 663{
 664	int err;
 665	struct kobject *hugepage_kobj;
 666
 667	if (!has_transparent_hugepage()) {
 668		transparent_hugepage_flags = 0;
 669		return -EINVAL;
 670	}
 671
 672	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
 673	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
 674	/*
 675	 * hugepages can't be allocated by the buddy allocator
 676	 */
 677	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 678	/*
 679	 * we use page->mapping and page->index in second tail page
 680	 * as list_head: assuming THP order >= 2
 681	 */
 682	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 683
 684	err = hugepage_init_sysfs(&hugepage_kobj);
 685	if (err)
 686		goto err_sysfs;
 687
 688	err = khugepaged_slab_init();
 689	if (err)
 690		goto err_slab;
 691
 692	err = register_shrinker(&huge_zero_page_shrinker);
 693	if (err)
 694		goto err_hzp_shrinker;
 695	err = register_shrinker(&deferred_split_shrinker);
 696	if (err)
 697		goto err_split_shrinker;
 698
 699	/*
 700	 * By default disable transparent hugepages on smaller systems,
 701	 * where the extra memory used could hurt more than TLB overhead
 702	 * is likely to save.  The admin can still enable it through /sys.
 703	 */
 704	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 705		transparent_hugepage_flags = 0;
 706		return 0;
 707	}
 708
 709	err = start_stop_khugepaged();
 710	if (err)
 711		goto err_khugepaged;
 712
 713	return 0;
 714err_khugepaged:
 715	unregister_shrinker(&deferred_split_shrinker);
 716err_split_shrinker:
 717	unregister_shrinker(&huge_zero_page_shrinker);
 718err_hzp_shrinker:
 719	khugepaged_slab_exit();
 720err_slab:
 721	hugepage_exit_sysfs(hugepage_kobj);
 722err_sysfs:
 723	return err;
 724}
 725subsys_initcall(hugepage_init);
 726
 727static int __init setup_transparent_hugepage(char *str)
 728{
 729	int ret = 0;
 730	if (!str)
 731		goto out;
 732	if (!strcmp(str, "always")) {
 733		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 734			&transparent_hugepage_flags);
 735		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 736			  &transparent_hugepage_flags);
 737		ret = 1;
 738	} else if (!strcmp(str, "madvise")) {
 739		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 740			  &transparent_hugepage_flags);
 741		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 742			&transparent_hugepage_flags);
 743		ret = 1;
 744	} else if (!strcmp(str, "never")) {
 745		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 746			  &transparent_hugepage_flags);
 747		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 748			  &transparent_hugepage_flags);
 749		ret = 1;
 750	}
 751out:
 752	if (!ret)
 753		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 754	return ret;
 755}
 756__setup("transparent_hugepage=", setup_transparent_hugepage);
 757
 758pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 759{
 760	if (likely(vma->vm_flags & VM_WRITE))
 761		pmd = pmd_mkwrite(pmd);
 762	return pmd;
 763}
 764
 765static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
 766{
 767	pmd_t entry;
 768	entry = mk_pmd(page, prot);
 769	entry = pmd_mkhuge(entry);
 770	return entry;
 771}
 772
 773static inline struct list_head *page_deferred_list(struct page *page)
 774{
 775	/*
 776	 * ->lru in the tail pages is occupied by compound_head.
 777	 * Let's use ->mapping + ->index in the second tail page as list_head.
 778	 */
 779	return (struct list_head *)&page[2].mapping;
 780}
 781
 782void prep_transhuge_page(struct page *page)
 783{
 784	/*
 785	 * we use page->mapping and page->indexlru in second tail page
 786	 * as list_head: assuming THP order >= 2
 787	 */
 788
 789	INIT_LIST_HEAD(page_deferred_list(page));
 790	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 791}
 792
 793static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 794					struct vm_area_struct *vma,
 795					unsigned long address, pmd_t *pmd,
 796					struct page *page, gfp_t gfp,
 797					unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 799	struct mem_cgroup *memcg;
 800	pgtable_t pgtable;
 801	spinlock_t *ptl;
 802	unsigned long haddr = address & HPAGE_PMD_MASK;
 803
 804	VM_BUG_ON_PAGE(!PageCompound(page), page);
 805
 806	if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
 807		put_page(page);
 808		count_vm_event(THP_FAULT_FALLBACK);
 809		return VM_FAULT_FALLBACK;
 810	}
 811
 812	pgtable = pte_alloc_one(mm, haddr);
 813	if (unlikely(!pgtable)) {
 814		mem_cgroup_cancel_charge(page, memcg, true);
 815		put_page(page);
 816		return VM_FAULT_OOM;
 817	}
 818
 819	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 820	/*
 821	 * The memory barrier inside __SetPageUptodate makes sure that
 822	 * clear_huge_page writes become visible before the set_pmd_at()
 823	 * write.
 824	 */
 825	__SetPageUptodate(page);
 826
 827	ptl = pmd_lock(mm, pmd);
 828	if (unlikely(!pmd_none(*pmd))) {
 829		spin_unlock(ptl);
 830		mem_cgroup_cancel_charge(page, memcg, true);
 831		put_page(page);
 832		pte_free(mm, pgtable);
 833	} else {
 834		pmd_t entry;
 835
 
 
 
 
 836		/* Deliver the page fault to userland */
 837		if (userfaultfd_missing(vma)) {
 838			int ret;
 839
 840			spin_unlock(ptl);
 841			mem_cgroup_cancel_charge(page, memcg, true);
 842			put_page(page);
 843			pte_free(mm, pgtable);
 844			ret = handle_userfault(vma, address, flags,
 845					       VM_UFFD_MISSING);
 846			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 847			return ret;
 848		}
 849
 850		entry = mk_huge_pmd(page, vma->vm_page_prot);
 851		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 852		page_add_new_anon_rmap(page, vma, haddr, true);
 853		mem_cgroup_commit_charge(page, memcg, false, true);
 854		lru_cache_add_active_or_unevictable(page, vma);
 855		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 856		set_pmd_at(mm, haddr, pmd, entry);
 857		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 858		atomic_long_inc(&mm->nr_ptes);
 859		spin_unlock(ptl);
 860		count_vm_event(THP_FAULT_ALLOC);
 861	}
 862
 863	return 0;
 
 
 
 
 
 
 
 
 
 864}
 865
 866/*
 867 * If THP is set to always then directly reclaim/compact as necessary
 868 * If set to defer then do no reclaim and defer to khugepaged
 869 * If set to madvise and the VMA is flagged then directly reclaim/compact
 
 
 
 
 870 */
 871static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 872{
 873	gfp_t reclaim_flags = 0;
 874
 875	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
 876	    (vma->vm_flags & VM_HUGEPAGE))
 877		reclaim_flags = __GFP_DIRECT_RECLAIM;
 878	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 879		reclaim_flags = __GFP_KSWAPD_RECLAIM;
 880	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 881		reclaim_flags = __GFP_DIRECT_RECLAIM;
 882
 883	return GFP_TRANSHUGE | reclaim_flags;
 884}
 885
 886/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
 887static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
 888{
 889	return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
 890}
 891
 892/* Caller must hold page table lock. */
 893static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 894		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 895		struct page *zero_page)
 896{
 897	pmd_t entry;
 898	if (!pmd_none(*pmd))
 899		return false;
 900	entry = mk_pmd(zero_page, vma->vm_page_prot);
 901	entry = pmd_mkhuge(entry);
 902	if (pgtable)
 903		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 904	set_pmd_at(mm, haddr, pmd, entry);
 905	atomic_long_inc(&mm->nr_ptes);
 906	return true;
 907}
 908
 909int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 910			       unsigned long address, pmd_t *pmd,
 911			       unsigned int flags)
 912{
 
 913	gfp_t gfp;
 914	struct page *page;
 915	unsigned long haddr = address & HPAGE_PMD_MASK;
 916
 917	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 918		return VM_FAULT_FALLBACK;
 919	if (unlikely(anon_vma_prepare(vma)))
 920		return VM_FAULT_OOM;
 921	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 922		return VM_FAULT_OOM;
 923	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
 
 924			transparent_hugepage_use_zero_page()) {
 925		spinlock_t *ptl;
 926		pgtable_t pgtable;
 927		struct page *zero_page;
 928		bool set;
 929		int ret;
 930		pgtable = pte_alloc_one(mm, haddr);
 931		if (unlikely(!pgtable))
 932			return VM_FAULT_OOM;
 933		zero_page = get_huge_zero_page();
 934		if (unlikely(!zero_page)) {
 935			pte_free(mm, pgtable);
 936			count_vm_event(THP_FAULT_FALLBACK);
 937			return VM_FAULT_FALLBACK;
 938		}
 939		ptl = pmd_lock(mm, pmd);
 940		ret = 0;
 941		set = false;
 942		if (pmd_none(*pmd)) {
 943			if (userfaultfd_missing(vma)) {
 944				spin_unlock(ptl);
 945				ret = handle_userfault(vma, address, flags,
 946						       VM_UFFD_MISSING);
 
 
 947				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 948			} else {
 949				set_huge_zero_page(pgtable, mm, vma,
 950						   haddr, pmd,
 951						   zero_page);
 952				spin_unlock(ptl);
 953				set = true;
 954			}
 955		} else
 956			spin_unlock(ptl);
 957		if (!set) {
 958			pte_free(mm, pgtable);
 959			put_huge_zero_page();
 960		}
 961		return ret;
 962	}
 963	gfp = alloc_hugepage_direct_gfpmask(vma);
 964	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 965	if (unlikely(!page)) {
 966		count_vm_event(THP_FAULT_FALLBACK);
 967		return VM_FAULT_FALLBACK;
 968	}
 969	prep_transhuge_page(page);
 970	return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
 971					    flags);
 972}
 973
 974static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 975		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
 
 976{
 977	struct mm_struct *mm = vma->vm_mm;
 978	pmd_t entry;
 979	spinlock_t *ptl;
 980
 981	ptl = pmd_lock(mm, pmd);
 982	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 983	if (pfn_t_devmap(pfn))
 984		entry = pmd_mkdevmap(entry);
 985	if (write) {
 986		entry = pmd_mkyoung(pmd_mkdirty(entry));
 987		entry = maybe_pmd_mkwrite(entry, vma);
 988	}
 
 
 
 
 
 
 989	set_pmd_at(mm, addr, pmd, entry);
 990	update_mmu_cache_pmd(vma, addr, pmd);
 991	spin_unlock(ptl);
 992}
 993
 994int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 995			pmd_t *pmd, pfn_t pfn, bool write)
 996{
 997	pgprot_t pgprot = vma->vm_page_prot;
 
 998	/*
 999	 * If we had pmd_special, we could avoid all these restrictions,
1000	 * but we need to be consistent with PTEs and architectures that
1001	 * can't support a 'special' bit.
1002	 */
1003	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1004	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005						(VM_PFNMAP|VM_MIXEDMAP));
1006	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007	BUG_ON(!pfn_t_devmap(pfn));
1008
1009	if (addr < vma->vm_start || addr >= vma->vm_end)
1010		return VM_FAULT_SIGBUS;
1011	if (track_pfn_insert(vma, &pgprot, pfn))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012		return VM_FAULT_SIGBUS;
1013	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
 
 
 
1014	return VM_FAULT_NOPAGE;
1015}
 
 
1016
1017static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1018		pmd_t *pmd)
1019{
1020	pmd_t _pmd;
1021
1022	/*
1023	 * We should set the dirty bit only for FOLL_WRITE but for now
1024	 * the dirty bit in the pmd is meaningless.  And if the dirty
1025	 * bit will become meaningful and we'll only set it with
1026	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1027	 * set the young bit, instead of the current set_pmd_at.
1028	 */
1029	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1030	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1031				pmd, _pmd,  1))
1032		update_mmu_cache_pmd(vma, addr, pmd);
1033}
1034
1035struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1036		pmd_t *pmd, int flags)
1037{
1038	unsigned long pfn = pmd_pfn(*pmd);
1039	struct mm_struct *mm = vma->vm_mm;
1040	struct dev_pagemap *pgmap;
1041	struct page *page;
1042
1043	assert_spin_locked(pmd_lockptr(mm, pmd));
1044
 
 
 
 
 
 
1045	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1046		return NULL;
1047
1048	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1049		/* pass */;
1050	else
1051		return NULL;
1052
1053	if (flags & FOLL_TOUCH)
1054		touch_pmd(vma, addr, pmd);
1055
1056	/*
1057	 * device mapped pages can only be returned if the
1058	 * caller will manage the page reference count.
1059	 */
1060	if (!(flags & FOLL_GET))
1061		return ERR_PTR(-EEXIST);
1062
1063	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1064	pgmap = get_dev_pagemap(pfn, NULL);
1065	if (!pgmap)
1066		return ERR_PTR(-EFAULT);
1067	page = pfn_to_page(pfn);
1068	get_page(page);
1069	put_dev_pagemap(pgmap);
1070
1071	return page;
1072}
1073
1074int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1075		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1076		  struct vm_area_struct *vma)
1077{
1078	spinlock_t *dst_ptl, *src_ptl;
1079	struct page *src_page;
1080	pmd_t pmd;
1081	pgtable_t pgtable = NULL;
1082	int ret;
 
 
 
 
1083
1084	if (!vma_is_dax(vma)) {
1085		ret = -ENOMEM;
1086		pgtable = pte_alloc_one(dst_mm, addr);
1087		if (unlikely(!pgtable))
1088			goto out;
1089	}
1090
1091	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1092	src_ptl = pmd_lockptr(src_mm, src_pmd);
1093	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1094
1095	ret = -EAGAIN;
1096	pmd = *src_pmd;
1097	if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098		pte_free(dst_mm, pgtable);
1099		goto out_unlock;
1100	}
1101	/*
1102	 * When page table lock is held, the huge zero pmd should not be
1103	 * under splitting since we don't split the page itself, only pmd to
1104	 * a page table.
1105	 */
1106	if (is_huge_zero_pmd(pmd)) {
1107		struct page *zero_page;
1108		/*
1109		 * get_huge_zero_page() will never allocate a new page here,
1110		 * since we already have a zero page to copy. It just takes a
1111		 * reference.
1112		 */
1113		zero_page = get_huge_zero_page();
1114		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1115				zero_page);
1116		ret = 0;
1117		goto out_unlock;
1118	}
1119
1120	if (!vma_is_dax(vma)) {
1121		/* thp accounting separate from pmd_devmap accounting */
1122		src_page = pmd_page(pmd);
1123		VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1124		get_page(src_page);
1125		page_dup_rmap(src_page, true);
1126		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1127		atomic_long_inc(&dst_mm->nr_ptes);
1128		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1129	}
1130
1131	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1132	pmd = pmd_mkold(pmd_wrprotect(pmd));
1133	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1134
1135	ret = 0;
1136out_unlock:
1137	spin_unlock(src_ptl);
1138	spin_unlock(dst_ptl);
1139out:
1140	return ret;
1141}
1142
1143void huge_pmd_set_accessed(struct mm_struct *mm,
1144			   struct vm_area_struct *vma,
1145			   unsigned long address,
1146			   pmd_t *pmd, pmd_t orig_pmd,
1147			   int dirty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148{
1149	spinlock_t *ptl;
1150	pmd_t entry;
1151	unsigned long haddr;
 
1152
1153	ptl = pmd_lock(mm, pmd);
1154	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1155		goto unlock;
1156
1157	entry = pmd_mkyoung(orig_pmd);
1158	haddr = address & HPAGE_PMD_MASK;
1159	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1160		update_mmu_cache_pmd(vma, address, pmd);
 
 
1161
1162unlock:
1163	spin_unlock(ptl);
1164}
1165
1166static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1167					struct vm_area_struct *vma,
1168					unsigned long address,
1169					pmd_t *pmd, pmd_t orig_pmd,
1170					struct page *page,
1171					unsigned long haddr)
1172{
 
 
1173	struct mem_cgroup *memcg;
1174	spinlock_t *ptl;
1175	pgtable_t pgtable;
1176	pmd_t _pmd;
1177	int ret = 0, i;
1178	struct page **pages;
1179	unsigned long mmun_start;	/* For mmu_notifiers */
1180	unsigned long mmun_end;		/* For mmu_notifiers */
1181
1182	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1183			GFP_KERNEL);
1184	if (unlikely(!pages)) {
1185		ret |= VM_FAULT_OOM;
1186		goto out;
1187	}
1188
1189	for (i = 0; i < HPAGE_PMD_NR; i++) {
1190		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1191					       __GFP_OTHER_NODE,
1192					       vma, address, page_to_nid(page));
1193		if (unlikely(!pages[i] ||
1194			     mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1195						   &memcg, false))) {
1196			if (pages[i])
1197				put_page(pages[i]);
1198			while (--i >= 0) {
1199				memcg = (void *)page_private(pages[i]);
1200				set_page_private(pages[i], 0);
1201				mem_cgroup_cancel_charge(pages[i], memcg,
1202						false);
1203				put_page(pages[i]);
1204			}
1205			kfree(pages);
1206			ret |= VM_FAULT_OOM;
1207			goto out;
1208		}
1209		set_page_private(pages[i], (unsigned long)memcg);
1210	}
1211
1212	for (i = 0; i < HPAGE_PMD_NR; i++) {
1213		copy_user_highpage(pages[i], page + i,
1214				   haddr + PAGE_SIZE * i, vma);
1215		__SetPageUptodate(pages[i]);
1216		cond_resched();
1217	}
1218
1219	mmun_start = haddr;
1220	mmun_end   = haddr + HPAGE_PMD_SIZE;
1221	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1222
1223	ptl = pmd_lock(mm, pmd);
1224	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1225		goto out_free_pages;
1226	VM_BUG_ON_PAGE(!PageHead(page), page);
1227
1228	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1229	/* leave pmd empty until pte is filled */
 
 
 
 
 
 
 
1230
1231	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1232	pmd_populate(mm, &_pmd, pgtable);
1233
1234	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1235		pte_t *pte, entry;
1236		entry = mk_pte(pages[i], vma->vm_page_prot);
1237		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1238		memcg = (void *)page_private(pages[i]);
1239		set_page_private(pages[i], 0);
1240		page_add_new_anon_rmap(pages[i], vma, haddr, false);
1241		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1242		lru_cache_add_active_or_unevictable(pages[i], vma);
1243		pte = pte_offset_map(&_pmd, haddr);
1244		VM_BUG_ON(!pte_none(*pte));
1245		set_pte_at(mm, haddr, pte, entry);
1246		pte_unmap(pte);
1247	}
1248	kfree(pages);
1249
1250	smp_wmb(); /* make pte visible before pmd */
1251	pmd_populate(mm, pmd, pgtable);
1252	page_remove_rmap(page, true);
1253	spin_unlock(ptl);
1254
1255	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 
 
 
 
 
1256
1257	ret |= VM_FAULT_WRITE;
1258	put_page(page);
1259
1260out:
1261	return ret;
1262
1263out_free_pages:
1264	spin_unlock(ptl);
1265	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1266	for (i = 0; i < HPAGE_PMD_NR; i++) {
1267		memcg = (void *)page_private(pages[i]);
1268		set_page_private(pages[i], 0);
1269		mem_cgroup_cancel_charge(pages[i], memcg, false);
1270		put_page(pages[i]);
1271	}
1272	kfree(pages);
1273	goto out;
1274}
1275
1276int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1277			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1278{
1279	spinlock_t *ptl;
1280	int ret = 0;
1281	struct page *page = NULL, *new_page;
1282	struct mem_cgroup *memcg;
1283	unsigned long haddr;
1284	unsigned long mmun_start;	/* For mmu_notifiers */
1285	unsigned long mmun_end;		/* For mmu_notifiers */
1286	gfp_t huge_gfp;			/* for allocation and charge */
 
1287
1288	ptl = pmd_lockptr(mm, pmd);
1289	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1290	haddr = address & HPAGE_PMD_MASK;
1291	if (is_huge_zero_pmd(orig_pmd))
1292		goto alloc;
1293	spin_lock(ptl);
1294	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1295		goto out_unlock;
1296
1297	page = pmd_page(orig_pmd);
1298	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1299	/*
1300	 * We can only reuse the page if nobody else maps the huge page or it's
1301	 * part.
1302	 */
1303	if (page_trans_huge_mapcount(page, NULL) == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
1304		pmd_t entry;
1305		entry = pmd_mkyoung(orig_pmd);
1306		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1307		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1308			update_mmu_cache_pmd(vma, address, pmd);
1309		ret |= VM_FAULT_WRITE;
 
1310		goto out_unlock;
1311	}
 
1312	get_page(page);
1313	spin_unlock(ptl);
1314alloc:
1315	if (transparent_hugepage_enabled(vma) &&
1316	    !transparent_hugepage_debug_cow()) {
1317		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1318		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1319	} else
1320		new_page = NULL;
1321
1322	if (likely(new_page)) {
1323		prep_transhuge_page(new_page);
1324	} else {
1325		if (!page) {
1326			split_huge_pmd(vma, pmd, address);
1327			ret |= VM_FAULT_FALLBACK;
1328		} else {
1329			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1330					pmd, orig_pmd, page, haddr);
1331			if (ret & VM_FAULT_OOM) {
1332				split_huge_pmd(vma, pmd, address);
1333				ret |= VM_FAULT_FALLBACK;
1334			}
1335			put_page(page);
1336		}
1337		count_vm_event(THP_FAULT_FALLBACK);
1338		goto out;
1339	}
1340
1341	if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1342					   true))) {
1343		put_page(new_page);
1344		if (page) {
1345			split_huge_pmd(vma, pmd, address);
1346			put_page(page);
1347		} else
1348			split_huge_pmd(vma, pmd, address);
1349		ret |= VM_FAULT_FALLBACK;
1350		count_vm_event(THP_FAULT_FALLBACK);
1351		goto out;
1352	}
1353
1354	count_vm_event(THP_FAULT_ALLOC);
1355
1356	if (!page)
1357		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1358	else
1359		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1360	__SetPageUptodate(new_page);
1361
1362	mmun_start = haddr;
1363	mmun_end   = haddr + HPAGE_PMD_SIZE;
1364	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1365
1366	spin_lock(ptl);
1367	if (page)
1368		put_page(page);
1369	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1370		spin_unlock(ptl);
1371		mem_cgroup_cancel_charge(new_page, memcg, true);
1372		put_page(new_page);
1373		goto out_mn;
1374	} else {
1375		pmd_t entry;
1376		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1377		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1378		pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1379		page_add_new_anon_rmap(new_page, vma, haddr, true);
1380		mem_cgroup_commit_charge(new_page, memcg, false, true);
1381		lru_cache_add_active_or_unevictable(new_page, vma);
1382		set_pmd_at(mm, haddr, pmd, entry);
1383		update_mmu_cache_pmd(vma, address, pmd);
1384		if (!page) {
1385			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1386			put_huge_zero_page();
1387		} else {
1388			VM_BUG_ON_PAGE(!PageHead(page), page);
1389			page_remove_rmap(page, true);
1390			put_page(page);
1391		}
1392		ret |= VM_FAULT_WRITE;
1393	}
1394	spin_unlock(ptl);
1395out_mn:
1396	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 
 
 
 
 
1397out:
1398	return ret;
1399out_unlock:
1400	spin_unlock(ptl);
1401	return ret;
1402}
1403
 
 
 
 
 
 
 
 
 
 
1404struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1405				   unsigned long addr,
1406				   pmd_t *pmd,
1407				   unsigned int flags)
1408{
1409	struct mm_struct *mm = vma->vm_mm;
1410	struct page *page = NULL;
1411
1412	assert_spin_locked(pmd_lockptr(mm, pmd));
1413
1414	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1415		goto out;
1416
1417	/* Avoid dumping huge zero page */
1418	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1419		return ERR_PTR(-EFAULT);
1420
1421	/* Full NUMA hinting faults to serialise migration in fault paths */
1422	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1423		goto out;
1424
1425	page = pmd_page(*pmd);
1426	VM_BUG_ON_PAGE(!PageHead(page), page);
1427	if (flags & FOLL_TOUCH)
1428		touch_pmd(vma, addr, pmd);
1429	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1430		/*
1431		 * We don't mlock() pte-mapped THPs. This way we can avoid
1432		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1433		 *
 
 
1434		 * In most cases the pmd is the only mapping of the page as we
1435		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1436		 * writable private mappings in populate_vma_page_range().
1437		 *
1438		 * The only scenario when we have the page shared here is if we
1439		 * mlocking read-only mapping shared over fork(). We skip
1440		 * mlocking such pages.
 
 
 
 
 
 
1441		 */
1442		if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1443				page->mapping && trylock_page(page)) {
1444			lru_add_drain();
1445			if (page->mapping)
1446				mlock_vma_page(page);
1447			unlock_page(page);
1448		}
 
 
 
 
1449	}
 
1450	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1451	VM_BUG_ON_PAGE(!PageCompound(page), page);
1452	if (flags & FOLL_GET)
1453		get_page(page);
1454
1455out:
1456	return page;
1457}
1458
1459/* NUMA hinting page fault entry point for trans huge pmds */
1460int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1461				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1462{
1463	spinlock_t *ptl;
1464	struct anon_vma *anon_vma = NULL;
1465	struct page *page;
1466	unsigned long haddr = addr & HPAGE_PMD_MASK;
1467	int page_nid = -1, this_nid = numa_node_id();
1468	int target_nid, last_cpupid = -1;
1469	bool page_locked;
1470	bool migrated = false;
1471	bool was_writable;
1472	int flags = 0;
1473
1474	/* A PROT_NONE fault should not end up here */
1475	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1476
1477	ptl = pmd_lock(mm, pmdp);
1478	if (unlikely(!pmd_same(pmd, *pmdp)))
1479		goto out_unlock;
1480
1481	/*
1482	 * If there are potential migrations, wait for completion and retry
1483	 * without disrupting NUMA hinting information. Do not relock and
1484	 * check_same as the page may no longer be mapped.
1485	 */
1486	if (unlikely(pmd_trans_migrating(*pmdp))) {
1487		page = pmd_page(*pmdp);
1488		spin_unlock(ptl);
 
 
1489		wait_on_page_locked(page);
 
1490		goto out;
1491	}
1492
1493	page = pmd_page(pmd);
1494	BUG_ON(is_huge_zero_page(page));
1495	page_nid = page_to_nid(page);
1496	last_cpupid = page_cpupid_last(page);
1497	count_vm_numa_event(NUMA_HINT_FAULTS);
1498	if (page_nid == this_nid) {
1499		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1500		flags |= TNF_FAULT_LOCAL;
1501	}
1502
1503	/* See similar comment in do_numa_page for explanation */
1504	if (!(vma->vm_flags & VM_WRITE))
1505		flags |= TNF_NO_GROUP;
1506
1507	/*
1508	 * Acquire the page lock to serialise THP migrations but avoid dropping
1509	 * page_table_lock if at all possible
1510	 */
1511	page_locked = trylock_page(page);
1512	target_nid = mpol_misplaced(page, vma, haddr);
1513	if (target_nid == -1) {
1514		/* If the page was locked, there are no parallel migrations */
1515		if (page_locked)
1516			goto clear_pmdnuma;
1517	}
1518
1519	/* Migration could have started since the pmd_trans_migrating check */
1520	if (!page_locked) {
1521		spin_unlock(ptl);
 
 
 
1522		wait_on_page_locked(page);
1523		page_nid = -1;
1524		goto out;
1525	}
1526
1527	/*
1528	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1529	 * to serialises splits
1530	 */
1531	get_page(page);
1532	spin_unlock(ptl);
1533	anon_vma = page_lock_anon_vma_read(page);
1534
1535	/* Confirm the PMD did not change while page_table_lock was released */
1536	spin_lock(ptl);
1537	if (unlikely(!pmd_same(pmd, *pmdp))) {
1538		unlock_page(page);
1539		put_page(page);
1540		page_nid = -1;
1541		goto out_unlock;
1542	}
1543
1544	/* Bail if we fail to protect against THP splits for any reason */
1545	if (unlikely(!anon_vma)) {
1546		put_page(page);
1547		page_nid = -1;
1548		goto clear_pmdnuma;
1549	}
1550
1551	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552	 * Migrate the THP to the requested node, returns with page unlocked
1553	 * and access rights restored.
1554	 */
1555	spin_unlock(ptl);
1556	migrated = migrate_misplaced_transhuge_page(mm, vma,
1557				pmdp, pmd, addr, page, target_nid);
 
1558	if (migrated) {
1559		flags |= TNF_MIGRATED;
1560		page_nid = target_nid;
1561	} else
1562		flags |= TNF_MIGRATE_FAIL;
1563
1564	goto out;
1565clear_pmdnuma:
1566	BUG_ON(!PageLocked(page));
1567	was_writable = pmd_write(pmd);
1568	pmd = pmd_modify(pmd, vma->vm_page_prot);
1569	pmd = pmd_mkyoung(pmd);
1570	if (was_writable)
1571		pmd = pmd_mkwrite(pmd);
1572	set_pmd_at(mm, haddr, pmdp, pmd);
1573	update_mmu_cache_pmd(vma, addr, pmdp);
1574	unlock_page(page);
1575out_unlock:
1576	spin_unlock(ptl);
1577
1578out:
1579	if (anon_vma)
1580		page_unlock_anon_vma_read(anon_vma);
1581
1582	if (page_nid != -1)
1583		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
 
1584
1585	return 0;
1586}
1587
1588int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 
 
 
 
1589		pmd_t *pmd, unsigned long addr, unsigned long next)
1590
1591{
1592	spinlock_t *ptl;
1593	pmd_t orig_pmd;
1594	struct page *page;
1595	struct mm_struct *mm = tlb->mm;
1596	int ret = 0;
 
 
1597
1598	ptl = pmd_trans_huge_lock(pmd, vma);
1599	if (!ptl)
1600		goto out_unlocked;
1601
1602	orig_pmd = *pmd;
1603	if (is_huge_zero_pmd(orig_pmd)) {
1604		ret = 1;
 
 
 
 
1605		goto out;
1606	}
1607
1608	page = pmd_page(orig_pmd);
1609	/*
1610	 * If other processes are mapping this page, we couldn't discard
1611	 * the page unless they all do MADV_FREE so let's skip the page.
1612	 */
1613	if (page_mapcount(page) != 1)
1614		goto out;
1615
1616	if (!trylock_page(page))
1617		goto out;
1618
1619	/*
1620	 * If user want to discard part-pages of THP, split it so MADV_FREE
1621	 * will deactivate only them.
1622	 */
1623	if (next - addr != HPAGE_PMD_SIZE) {
1624		get_page(page);
1625		spin_unlock(ptl);
1626		if (split_huge_page(page)) {
1627			put_page(page);
1628			unlock_page(page);
1629			goto out_unlocked;
1630		}
1631		put_page(page);
1632		unlock_page(page);
1633		ret = 1;
1634		goto out_unlocked;
1635	}
1636
1637	if (PageDirty(page))
1638		ClearPageDirty(page);
1639	unlock_page(page);
1640
1641	if (PageActive(page))
1642		deactivate_page(page);
1643
1644	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1645		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1646			tlb->fullmm);
1647		orig_pmd = pmd_mkold(orig_pmd);
1648		orig_pmd = pmd_mkclean(orig_pmd);
1649
1650		set_pmd_at(mm, addr, pmd, orig_pmd);
1651		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1652	}
1653	ret = 1;
 
 
1654out:
1655	spin_unlock(ptl);
1656out_unlocked:
1657	return ret;
1658}
1659
 
 
 
 
 
 
 
 
 
1660int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1661		 pmd_t *pmd, unsigned long addr)
1662{
1663	pmd_t orig_pmd;
1664	spinlock_t *ptl;
1665
 
 
1666	ptl = __pmd_trans_huge_lock(pmd, vma);
1667	if (!ptl)
1668		return 0;
1669	/*
1670	 * For architectures like ppc64 we look at deposited pgtable
1671	 * when calling pmdp_huge_get_and_clear. So do the
1672	 * pgtable_trans_huge_withdraw after finishing pmdp related
1673	 * operations.
1674	 */
1675	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1676			tlb->fullmm);
1677	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1678	if (vma_is_dax(vma)) {
 
 
1679		spin_unlock(ptl);
1680		if (is_huge_zero_pmd(orig_pmd))
1681			tlb_remove_page(tlb, pmd_page(orig_pmd));
1682	} else if (is_huge_zero_pmd(orig_pmd)) {
1683		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1684		atomic_long_dec(&tlb->mm->nr_ptes);
1685		spin_unlock(ptl);
1686		tlb_remove_page(tlb, pmd_page(orig_pmd));
1687	} else {
1688		struct page *page = pmd_page(orig_pmd);
1689		page_remove_rmap(page, true);
1690		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1691		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1692		VM_BUG_ON_PAGE(!PageHead(page), page);
1693		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1694		atomic_long_dec(&tlb->mm->nr_ptes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1695		spin_unlock(ptl);
1696		tlb_remove_page(tlb, page);
 
1697	}
1698	return 1;
1699}
1700
1701bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1702		  unsigned long old_addr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703		  unsigned long new_addr, unsigned long old_end,
1704		  pmd_t *old_pmd, pmd_t *new_pmd)
1705{
1706	spinlock_t *old_ptl, *new_ptl;
1707	pmd_t pmd;
1708
1709	struct mm_struct *mm = vma->vm_mm;
 
1710
1711	if ((old_addr & ~HPAGE_PMD_MASK) ||
1712	    (new_addr & ~HPAGE_PMD_MASK) ||
1713	    old_end - old_addr < HPAGE_PMD_SIZE ||
1714	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1715		return false;
1716
1717	/*
1718	 * The destination pmd shouldn't be established, free_pgtables()
1719	 * should have release it.
1720	 */
1721	if (WARN_ON(!pmd_none(*new_pmd))) {
1722		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1723		return false;
1724	}
1725
1726	/*
1727	 * We don't have to worry about the ordering of src and dst
1728	 * ptlocks because exclusive mmap_sem prevents deadlock.
1729	 */
1730	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1731	if (old_ptl) {
1732		new_ptl = pmd_lockptr(mm, new_pmd);
1733		if (new_ptl != old_ptl)
1734			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1735		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
 
 
1736		VM_BUG_ON(!pmd_none(*new_pmd));
1737
1738		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1739				vma_is_anonymous(vma)) {
1740			pgtable_t pgtable;
1741			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1742			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1743		}
1744		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
 
1745		if (new_ptl != old_ptl)
1746			spin_unlock(new_ptl);
 
 
 
 
1747		spin_unlock(old_ptl);
1748		return true;
1749	}
1750	return false;
1751}
1752
1753/*
1754 * Returns
1755 *  - 0 if PMD could not be locked
1756 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1757 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1758 */
1759int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1760		unsigned long addr, pgprot_t newprot, int prot_numa)
1761{
1762	struct mm_struct *mm = vma->vm_mm;
1763	spinlock_t *ptl;
1764	int ret = 0;
 
 
1765
1766	ptl = __pmd_trans_huge_lock(pmd, vma);
1767	if (ptl) {
1768		pmd_t entry;
1769		bool preserve_write = prot_numa && pmd_write(*pmd);
1770		ret = 1;
1771
1772		/*
1773		 * Avoid trapping faults against the zero page. The read-only
1774		 * data is likely to be read-cached on the local CPU and
1775		 * local/remote hits to the zero page are not interesting.
1776		 */
1777		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1778			spin_unlock(ptl);
1779			return ret;
1780		}
1781
1782		if (!prot_numa || !pmd_protnone(*pmd)) {
1783			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1784			entry = pmd_modify(entry, newprot);
1785			if (preserve_write)
1786				entry = pmd_mkwrite(entry);
1787			ret = HPAGE_PMD_NR;
1788			set_pmd_at(mm, addr, pmd, entry);
1789			BUG_ON(!preserve_write && pmd_write(entry));
 
 
 
 
 
 
 
 
1790		}
1791		spin_unlock(ptl);
1792	}
 
 
 
 
 
 
 
 
 
 
 
 
1793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1794	return ret;
1795}
1796
1797/*
1798 * Returns true if a given pmd maps a thp, false otherwise.
1799 *
1800 * Note that if it returns true, this routine returns without unlocking page
1801 * table lock. So callers must unlock it.
1802 */
1803spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1804{
1805	spinlock_t *ptl;
1806	ptl = pmd_lock(vma->vm_mm, pmd);
1807	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
 
1808		return ptl;
1809	spin_unlock(ptl);
1810	return NULL;
1811}
1812
1813#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1814
1815int hugepage_madvise(struct vm_area_struct *vma,
1816		     unsigned long *vm_flags, int advice)
 
 
 
1817{
1818	switch (advice) {
1819	case MADV_HUGEPAGE:
1820#ifdef CONFIG_S390
1821		/*
1822		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1823		 * can't handle this properly after s390_enable_sie, so we simply
1824		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1825		 */
1826		if (mm_has_pgste(vma->vm_mm))
1827			return 0;
1828#endif
1829		/*
1830		 * Be somewhat over-protective like KSM for now!
1831		 */
1832		if (*vm_flags & VM_NO_THP)
1833			return -EINVAL;
1834		*vm_flags &= ~VM_NOHUGEPAGE;
1835		*vm_flags |= VM_HUGEPAGE;
1836		/*
1837		 * If the vma become good for khugepaged to scan,
1838		 * register it here without waiting a page fault that
1839		 * may not happen any time soon.
1840		 */
1841		if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1842			return -ENOMEM;
1843		break;
1844	case MADV_NOHUGEPAGE:
1845		/*
1846		 * Be somewhat over-protective like KSM for now!
1847		 */
1848		if (*vm_flags & VM_NO_THP)
1849			return -EINVAL;
1850		*vm_flags &= ~VM_HUGEPAGE;
1851		*vm_flags |= VM_NOHUGEPAGE;
1852		/*
1853		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1854		 * this vma even if we leave the mm registered in khugepaged if
1855		 * it got registered before VM_NOHUGEPAGE was set.
1856		 */
1857		break;
1858	}
1859
1860	return 0;
1861}
1862
1863static int __init khugepaged_slab_init(void)
1864{
1865	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1866					  sizeof(struct mm_slot),
1867					  __alignof__(struct mm_slot), 0, NULL);
1868	if (!mm_slot_cache)
1869		return -ENOMEM;
1870
1871	return 0;
1872}
1873
1874static void __init khugepaged_slab_exit(void)
1875{
1876	kmem_cache_destroy(mm_slot_cache);
1877}
1878
1879static inline struct mm_slot *alloc_mm_slot(void)
1880{
1881	if (!mm_slot_cache)	/* initialization failed */
1882		return NULL;
1883	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1884}
1885
1886static inline void free_mm_slot(struct mm_slot *mm_slot)
1887{
1888	kmem_cache_free(mm_slot_cache, mm_slot);
1889}
1890
1891static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1892{
1893	struct mm_slot *mm_slot;
1894
1895	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1896		if (mm == mm_slot->mm)
1897			return mm_slot;
1898
 
 
 
 
1899	return NULL;
1900}
1901
1902static void insert_to_mm_slots_hash(struct mm_struct *mm,
1903				    struct mm_slot *mm_slot)
 
1904{
1905	mm_slot->mm = mm;
1906	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1907}
1908
1909static inline int khugepaged_test_exit(struct mm_struct *mm)
1910{
1911	return atomic_read(&mm->mm_users) == 0;
1912}
1913
1914int __khugepaged_enter(struct mm_struct *mm)
1915{
1916	struct mm_slot *mm_slot;
1917	int wakeup;
1918
1919	mm_slot = alloc_mm_slot();
1920	if (!mm_slot)
1921		return -ENOMEM;
1922
1923	/* __khugepaged_exit() must not run from under us */
1924	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1925	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1926		free_mm_slot(mm_slot);
1927		return 0;
1928	}
1929
1930	spin_lock(&khugepaged_mm_lock);
1931	insert_to_mm_slots_hash(mm, mm_slot);
1932	/*
1933	 * Insert just behind the scanning cursor, to let the area settle
1934	 * down a little.
 
 
1935	 */
1936	wakeup = list_empty(&khugepaged_scan.mm_head);
1937	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1938	spin_unlock(&khugepaged_mm_lock);
1939
1940	atomic_inc(&mm->mm_count);
1941	if (wakeup)
1942		wake_up_interruptible(&khugepaged_wait);
1943
1944	return 0;
1945}
1946
1947int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1948			       unsigned long vm_flags)
1949{
1950	unsigned long hstart, hend;
1951	if (!vma->anon_vma)
1952		/*
1953		 * Not yet faulted in so we will register later in the
1954		 * page fault if needed.
1955		 */
1956		return 0;
1957	if (vma->vm_ops || (vm_flags & VM_NO_THP))
1958		/* khugepaged not yet working on file or special mappings */
1959		return 0;
1960	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1961	hend = vma->vm_end & HPAGE_PMD_MASK;
1962	if (hstart < hend)
1963		return khugepaged_enter(vma, vm_flags);
1964	return 0;
1965}
1966
1967void __khugepaged_exit(struct mm_struct *mm)
1968{
1969	struct mm_slot *mm_slot;
1970	int free = 0;
1971
1972	spin_lock(&khugepaged_mm_lock);
1973	mm_slot = get_mm_slot(mm);
1974	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1975		hash_del(&mm_slot->hash);
1976		list_del(&mm_slot->mm_node);
1977		free = 1;
1978	}
1979	spin_unlock(&khugepaged_mm_lock);
1980
1981	if (free) {
1982		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1983		free_mm_slot(mm_slot);
1984		mmdrop(mm);
1985	} else if (mm_slot) {
1986		/*
1987		 * This is required to serialize against
1988		 * khugepaged_test_exit() (which is guaranteed to run
1989		 * under mmap sem read mode). Stop here (after we
1990		 * return all pagetables will be destroyed) until
1991		 * khugepaged has finished working on the pagetables
1992		 * under the mmap_sem.
1993		 */
1994		down_write(&mm->mmap_sem);
1995		up_write(&mm->mmap_sem);
1996	}
1997}
1998
1999static void release_pte_page(struct page *page)
2000{
2001	/* 0 stands for page_is_file_cache(page) == false */
2002	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2003	unlock_page(page);
2004	putback_lru_page(page);
2005}
2006
2007static void release_pte_pages(pte_t *pte, pte_t *_pte)
2008{
2009	while (--_pte >= pte) {
2010		pte_t pteval = *_pte;
2011		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2012			release_pte_page(pte_page(pteval));
2013	}
2014}
2015
2016static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2017					unsigned long address,
2018					pte_t *pte)
2019{
2020	struct page *page = NULL;
2021	pte_t *_pte;
2022	int none_or_zero = 0, result = 0;
2023	bool referenced = false, writable = false;
2024
2025	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2026	     _pte++, address += PAGE_SIZE) {
2027		pte_t pteval = *_pte;
2028		if (pte_none(pteval) || (pte_present(pteval) &&
2029				is_zero_pfn(pte_pfn(pteval)))) {
2030			if (!userfaultfd_armed(vma) &&
2031			    ++none_or_zero <= khugepaged_max_ptes_none) {
2032				continue;
2033			} else {
2034				result = SCAN_EXCEED_NONE_PTE;
2035				goto out;
2036			}
2037		}
2038		if (!pte_present(pteval)) {
2039			result = SCAN_PTE_NON_PRESENT;
2040			goto out;
2041		}
2042		page = vm_normal_page(vma, address, pteval);
2043		if (unlikely(!page)) {
2044			result = SCAN_PAGE_NULL;
2045			goto out;
2046		}
2047
2048		VM_BUG_ON_PAGE(PageCompound(page), page);
2049		VM_BUG_ON_PAGE(!PageAnon(page), page);
2050		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2051
2052		/*
2053		 * We can do it before isolate_lru_page because the
2054		 * page can't be freed from under us. NOTE: PG_lock
2055		 * is needed to serialize against split_huge_page
2056		 * when invoked from the VM.
2057		 */
2058		if (!trylock_page(page)) {
2059			result = SCAN_PAGE_LOCK;
2060			goto out;
2061		}
2062
2063		/*
2064		 * cannot use mapcount: can't collapse if there's a gup pin.
2065		 * The page must only be referenced by the scanned process
2066		 * and page swap cache.
2067		 */
2068		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2069			unlock_page(page);
2070			result = SCAN_PAGE_COUNT;
2071			goto out;
2072		}
2073		if (pte_write(pteval)) {
2074			writable = true;
2075		} else {
2076			if (PageSwapCache(page) &&
2077			    !reuse_swap_page(page, NULL)) {
2078				unlock_page(page);
2079				result = SCAN_SWAP_CACHE_PAGE;
2080				goto out;
2081			}
2082			/*
2083			 * Page is not in the swap cache. It can be collapsed
2084			 * into a THP.
2085			 */
2086		}
2087
2088		/*
2089		 * Isolate the page to avoid collapsing an hugepage
2090		 * currently in use by the VM.
2091		 */
2092		if (isolate_lru_page(page)) {
2093			unlock_page(page);
2094			result = SCAN_DEL_PAGE_LRU;
2095			goto out;
2096		}
2097		/* 0 stands for page_is_file_cache(page) == false */
2098		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2099		VM_BUG_ON_PAGE(!PageLocked(page), page);
2100		VM_BUG_ON_PAGE(PageLRU(page), page);
2101
2102		/* If there is no mapped pte young don't collapse the page */
2103		if (pte_young(pteval) ||
2104		    page_is_young(page) || PageReferenced(page) ||
2105		    mmu_notifier_test_young(vma->vm_mm, address))
2106			referenced = true;
2107	}
2108	if (likely(writable)) {
2109		if (likely(referenced)) {
2110			result = SCAN_SUCCEED;
2111			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2112							    referenced, writable, result);
2113			return 1;
2114		}
2115	} else {
2116		result = SCAN_PAGE_RO;
 
2117	}
2118
2119out:
2120	release_pte_pages(pte, _pte);
2121	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2122					    referenced, writable, result);
2123	return 0;
2124}
2125
2126static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2127				      struct vm_area_struct *vma,
2128				      unsigned long address,
2129				      spinlock_t *ptl)
2130{
2131	pte_t *_pte;
2132	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2133		pte_t pteval = *_pte;
2134		struct page *src_page;
2135
2136		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2137			clear_user_highpage(page, address);
2138			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2139			if (is_zero_pfn(pte_pfn(pteval))) {
2140				/*
2141				 * ptl mostly unnecessary.
2142				 */
2143				spin_lock(ptl);
2144				/*
2145				 * paravirt calls inside pte_clear here are
2146				 * superfluous.
2147				 */
2148				pte_clear(vma->vm_mm, address, _pte);
2149				spin_unlock(ptl);
2150			}
2151		} else {
2152			src_page = pte_page(pteval);
2153			copy_user_highpage(page, src_page, address, vma);
2154			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2155			release_pte_page(src_page);
2156			/*
2157			 * ptl mostly unnecessary, but preempt has to
2158			 * be disabled to update the per-cpu stats
2159			 * inside page_remove_rmap().
2160			 */
2161			spin_lock(ptl);
2162			/*
2163			 * paravirt calls inside pte_clear here are
2164			 * superfluous.
2165			 */
2166			pte_clear(vma->vm_mm, address, _pte);
2167			page_remove_rmap(src_page, false);
2168			spin_unlock(ptl);
2169			free_page_and_swap_cache(src_page);
2170		}
2171
2172		address += PAGE_SIZE;
2173		page++;
2174	}
2175}
2176
2177static void khugepaged_alloc_sleep(void)
2178{
2179	DEFINE_WAIT(wait);
2180
2181	add_wait_queue(&khugepaged_wait, &wait);
2182	freezable_schedule_timeout_interruptible(
2183		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2184	remove_wait_queue(&khugepaged_wait, &wait);
2185}
2186
2187static int khugepaged_node_load[MAX_NUMNODES];
2188
2189static bool khugepaged_scan_abort(int nid)
2190{
2191	int i;
2192
2193	/*
2194	 * If zone_reclaim_mode is disabled, then no extra effort is made to
2195	 * allocate memory locally.
2196	 */
2197	if (!zone_reclaim_mode)
2198		return false;
2199
2200	/* If there is a count for this node already, it must be acceptable */
2201	if (khugepaged_node_load[nid])
2202		return false;
2203
2204	for (i = 0; i < MAX_NUMNODES; i++) {
2205		if (!khugepaged_node_load[i])
2206			continue;
2207		if (node_distance(nid, i) > RECLAIM_DISTANCE)
2208			return true;
2209	}
2210	return false;
2211}
2212
2213#ifdef CONFIG_NUMA
2214static int khugepaged_find_target_node(void)
2215{
2216	static int last_khugepaged_target_node = NUMA_NO_NODE;
2217	int nid, target_node = 0, max_value = 0;
2218
2219	/* find first node with max normal pages hit */
2220	for (nid = 0; nid < MAX_NUMNODES; nid++)
2221		if (khugepaged_node_load[nid] > max_value) {
2222			max_value = khugepaged_node_load[nid];
2223			target_node = nid;
2224		}
2225
2226	/* do some balance if several nodes have the same hit record */
2227	if (target_node <= last_khugepaged_target_node)
2228		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2229				nid++)
2230			if (max_value == khugepaged_node_load[nid]) {
2231				target_node = nid;
2232				break;
2233			}
2234
2235	last_khugepaged_target_node = target_node;
2236	return target_node;
2237}
2238
2239static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2240{
2241	if (IS_ERR(*hpage)) {
2242		if (!*wait)
2243			return false;
2244
2245		*wait = false;
2246		*hpage = NULL;
2247		khugepaged_alloc_sleep();
2248	} else if (*hpage) {
2249		put_page(*hpage);
2250		*hpage = NULL;
2251	}
2252
2253	return true;
2254}
2255
2256static struct page *
2257khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2258		       unsigned long address, int node)
2259{
2260	VM_BUG_ON_PAGE(*hpage, *hpage);
2261
2262	/*
2263	 * Before allocating the hugepage, release the mmap_sem read lock.
2264	 * The allocation can take potentially a long time if it involves
2265	 * sync compaction, and we do not need to hold the mmap_sem during
2266	 * that. We will recheck the vma after taking it again in write mode.
2267	 */
2268	up_read(&mm->mmap_sem);
2269
2270	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2271	if (unlikely(!*hpage)) {
2272		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2273		*hpage = ERR_PTR(-ENOMEM);
2274		return NULL;
2275	}
2276
2277	prep_transhuge_page(*hpage);
2278	count_vm_event(THP_COLLAPSE_ALLOC);
2279	return *hpage;
2280}
2281#else
2282static int khugepaged_find_target_node(void)
2283{
2284	return 0;
2285}
2286
2287static inline struct page *alloc_khugepaged_hugepage(void)
2288{
2289	struct page *page;
2290
2291	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2292			   HPAGE_PMD_ORDER);
2293	if (page)
2294		prep_transhuge_page(page);
2295	return page;
2296}
2297
2298static struct page *khugepaged_alloc_hugepage(bool *wait)
2299{
2300	struct page *hpage;
2301
2302	do {
2303		hpage = alloc_khugepaged_hugepage();
2304		if (!hpage) {
2305			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2306			if (!*wait)
2307				return NULL;
2308
2309			*wait = false;
2310			khugepaged_alloc_sleep();
2311		} else
2312			count_vm_event(THP_COLLAPSE_ALLOC);
2313	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2314
2315	return hpage;
2316}
2317
2318static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2319{
2320	if (!*hpage)
2321		*hpage = khugepaged_alloc_hugepage(wait);
2322
2323	if (unlikely(!*hpage))
2324		return false;
2325
2326	return true;
2327}
2328
2329static struct page *
2330khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2331		       unsigned long address, int node)
2332{
2333	up_read(&mm->mmap_sem);
2334	VM_BUG_ON(!*hpage);
2335
2336	return  *hpage;
2337}
2338#endif
2339
2340static bool hugepage_vma_check(struct vm_area_struct *vma)
2341{
2342	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2343	    (vma->vm_flags & VM_NOHUGEPAGE))
2344		return false;
2345	if (!vma->anon_vma || vma->vm_ops)
2346		return false;
2347	if (is_vma_temporary_stack(vma))
2348		return false;
2349	return !(vma->vm_flags & VM_NO_THP);
2350}
2351
2352static void collapse_huge_page(struct mm_struct *mm,
2353				   unsigned long address,
2354				   struct page **hpage,
2355				   struct vm_area_struct *vma,
2356				   int node)
2357{
2358	pmd_t *pmd, _pmd;
2359	pte_t *pte;
2360	pgtable_t pgtable;
2361	struct page *new_page;
2362	spinlock_t *pmd_ptl, *pte_ptl;
2363	int isolated = 0, result = 0;
2364	unsigned long hstart, hend;
2365	struct mem_cgroup *memcg;
2366	unsigned long mmun_start;	/* For mmu_notifiers */
2367	unsigned long mmun_end;		/* For mmu_notifiers */
2368	gfp_t gfp;
2369
2370	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2371
2372	/* Only allocate from the target node */
2373	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2374
2375	/* release the mmap_sem read lock. */
2376	new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2377	if (!new_page) {
2378		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2379		goto out_nolock;
2380	}
2381
2382	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2383		result = SCAN_CGROUP_CHARGE_FAIL;
2384		goto out_nolock;
2385	}
2386
2387	/*
2388	 * Prevent all access to pagetables with the exception of
2389	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2390	 * handled by the anon_vma lock + PG_lock.
2391	 */
2392	down_write(&mm->mmap_sem);
2393	if (unlikely(khugepaged_test_exit(mm))) {
2394		result = SCAN_ANY_PROCESS;
2395		goto out;
2396	}
2397
2398	vma = find_vma(mm, address);
2399	if (!vma) {
2400		result = SCAN_VMA_NULL;
2401		goto out;
2402	}
2403	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2404	hend = vma->vm_end & HPAGE_PMD_MASK;
2405	if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2406		result = SCAN_ADDRESS_RANGE;
2407		goto out;
2408	}
2409	if (!hugepage_vma_check(vma)) {
2410		result = SCAN_VMA_CHECK;
2411		goto out;
2412	}
2413	pmd = mm_find_pmd(mm, address);
2414	if (!pmd) {
2415		result = SCAN_PMD_NULL;
2416		goto out;
2417	}
2418
2419	anon_vma_lock_write(vma->anon_vma);
2420
2421	pte = pte_offset_map(pmd, address);
2422	pte_ptl = pte_lockptr(mm, pmd);
2423
2424	mmun_start = address;
2425	mmun_end   = address + HPAGE_PMD_SIZE;
2426	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2427	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2428	/*
2429	 * After this gup_fast can't run anymore. This also removes
2430	 * any huge TLB entry from the CPU so we won't allow
2431	 * huge and small TLB entries for the same virtual address
2432	 * to avoid the risk of CPU bugs in that area.
2433	 */
2434	_pmd = pmdp_collapse_flush(vma, address, pmd);
2435	spin_unlock(pmd_ptl);
2436	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2437
2438	spin_lock(pte_ptl);
2439	isolated = __collapse_huge_page_isolate(vma, address, pte);
2440	spin_unlock(pte_ptl);
2441
2442	if (unlikely(!isolated)) {
2443		pte_unmap(pte);
2444		spin_lock(pmd_ptl);
2445		BUG_ON(!pmd_none(*pmd));
2446		/*
2447		 * We can only use set_pmd_at when establishing
2448		 * hugepmds and never for establishing regular pmds that
2449		 * points to regular pagetables. Use pmd_populate for that
2450		 */
2451		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2452		spin_unlock(pmd_ptl);
2453		anon_vma_unlock_write(vma->anon_vma);
2454		result = SCAN_FAIL;
2455		goto out;
2456	}
2457
2458	/*
2459	 * All pages are isolated and locked so anon_vma rmap
2460	 * can't run anymore.
2461	 */
2462	anon_vma_unlock_write(vma->anon_vma);
2463
2464	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2465	pte_unmap(pte);
2466	__SetPageUptodate(new_page);
2467	pgtable = pmd_pgtable(_pmd);
2468
2469	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2470	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2471
2472	/*
2473	 * spin_lock() below is not the equivalent of smp_wmb(), so
2474	 * this is needed to avoid the copy_huge_page writes to become
2475	 * visible after the set_pmd_at() write.
2476	 */
2477	smp_wmb();
2478
2479	spin_lock(pmd_ptl);
2480	BUG_ON(!pmd_none(*pmd));
2481	page_add_new_anon_rmap(new_page, vma, address, true);
2482	mem_cgroup_commit_charge(new_page, memcg, false, true);
2483	lru_cache_add_active_or_unevictable(new_page, vma);
2484	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2485	set_pmd_at(mm, address, pmd, _pmd);
2486	update_mmu_cache_pmd(vma, address, pmd);
2487	spin_unlock(pmd_ptl);
2488
2489	*hpage = NULL;
2490
2491	khugepaged_pages_collapsed++;
2492	result = SCAN_SUCCEED;
2493out_up_write:
2494	up_write(&mm->mmap_sem);
2495	trace_mm_collapse_huge_page(mm, isolated, result);
2496	return;
2497
2498out_nolock:
2499	trace_mm_collapse_huge_page(mm, isolated, result);
2500	return;
2501out:
2502	mem_cgroup_cancel_charge(new_page, memcg, true);
2503	goto out_up_write;
2504}
2505
2506static int khugepaged_scan_pmd(struct mm_struct *mm,
2507			       struct vm_area_struct *vma,
2508			       unsigned long address,
2509			       struct page **hpage)
2510{
2511	pmd_t *pmd;
2512	pte_t *pte, *_pte;
2513	int ret = 0, none_or_zero = 0, result = 0;
2514	struct page *page = NULL;
2515	unsigned long _address;
2516	spinlock_t *ptl;
2517	int node = NUMA_NO_NODE;
2518	bool writable = false, referenced = false;
2519
2520	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2521
2522	pmd = mm_find_pmd(mm, address);
2523	if (!pmd) {
2524		result = SCAN_PMD_NULL;
2525		goto out;
2526	}
2527
2528	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2529	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2530	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2531	     _pte++, _address += PAGE_SIZE) {
2532		pte_t pteval = *_pte;
2533		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2534			if (!userfaultfd_armed(vma) &&
2535			    ++none_or_zero <= khugepaged_max_ptes_none) {
2536				continue;
2537			} else {
2538				result = SCAN_EXCEED_NONE_PTE;
2539				goto out_unmap;
2540			}
2541		}
2542		if (!pte_present(pteval)) {
2543			result = SCAN_PTE_NON_PRESENT;
2544			goto out_unmap;
2545		}
2546		if (pte_write(pteval))
2547			writable = true;
2548
2549		page = vm_normal_page(vma, _address, pteval);
2550		if (unlikely(!page)) {
2551			result = SCAN_PAGE_NULL;
2552			goto out_unmap;
2553		}
2554
2555		/* TODO: teach khugepaged to collapse THP mapped with pte */
2556		if (PageCompound(page)) {
2557			result = SCAN_PAGE_COMPOUND;
2558			goto out_unmap;
2559		}
2560
2561		/*
2562		 * Record which node the original page is from and save this
2563		 * information to khugepaged_node_load[].
2564		 * Khupaged will allocate hugepage from the node has the max
2565		 * hit record.
2566		 */
2567		node = page_to_nid(page);
2568		if (khugepaged_scan_abort(node)) {
2569			result = SCAN_SCAN_ABORT;
2570			goto out_unmap;
2571		}
2572		khugepaged_node_load[node]++;
2573		if (!PageLRU(page)) {
2574			result = SCAN_PAGE_LRU;
2575			goto out_unmap;
2576		}
2577		if (PageLocked(page)) {
2578			result = SCAN_PAGE_LOCK;
2579			goto out_unmap;
2580		}
2581		if (!PageAnon(page)) {
2582			result = SCAN_PAGE_ANON;
2583			goto out_unmap;
2584		}
2585
2586		/*
2587		 * cannot use mapcount: can't collapse if there's a gup pin.
2588		 * The page must only be referenced by the scanned process
2589		 * and page swap cache.
2590		 */
2591		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2592			result = SCAN_PAGE_COUNT;
2593			goto out_unmap;
2594		}
2595		if (pte_young(pteval) ||
2596		    page_is_young(page) || PageReferenced(page) ||
2597		    mmu_notifier_test_young(vma->vm_mm, address))
2598			referenced = true;
2599	}
2600	if (writable) {
2601		if (referenced) {
2602			result = SCAN_SUCCEED;
2603			ret = 1;
2604		} else {
2605			result = SCAN_NO_REFERENCED_PAGE;
2606		}
2607	} else {
2608		result = SCAN_PAGE_RO;
2609	}
2610out_unmap:
2611	pte_unmap_unlock(pte, ptl);
2612	if (ret) {
2613		node = khugepaged_find_target_node();
2614		/* collapse_huge_page will return with the mmap_sem released */
2615		collapse_huge_page(mm, address, hpage, vma, node);
2616	}
2617out:
2618	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2619				     none_or_zero, result);
2620	return ret;
2621}
2622
2623static void collect_mm_slot(struct mm_slot *mm_slot)
2624{
2625	struct mm_struct *mm = mm_slot->mm;
2626
2627	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2628
2629	if (khugepaged_test_exit(mm)) {
2630		/* free mm_slot */
2631		hash_del(&mm_slot->hash);
2632		list_del(&mm_slot->mm_node);
2633
2634		/*
2635		 * Not strictly needed because the mm exited already.
2636		 *
2637		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2638		 */
2639
2640		/* khugepaged_mm_lock actually not necessary for the below */
2641		free_mm_slot(mm_slot);
2642		mmdrop(mm);
2643	}
2644}
2645
2646static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2647					    struct page **hpage)
2648	__releases(&khugepaged_mm_lock)
2649	__acquires(&khugepaged_mm_lock)
2650{
2651	struct mm_slot *mm_slot;
2652	struct mm_struct *mm;
2653	struct vm_area_struct *vma;
2654	int progress = 0;
2655
2656	VM_BUG_ON(!pages);
2657	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2658
2659	if (khugepaged_scan.mm_slot)
2660		mm_slot = khugepaged_scan.mm_slot;
2661	else {
2662		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2663				     struct mm_slot, mm_node);
2664		khugepaged_scan.address = 0;
2665		khugepaged_scan.mm_slot = mm_slot;
2666	}
2667	spin_unlock(&khugepaged_mm_lock);
2668
2669	mm = mm_slot->mm;
2670	down_read(&mm->mmap_sem);
2671	if (unlikely(khugepaged_test_exit(mm)))
2672		vma = NULL;
2673	else
2674		vma = find_vma(mm, khugepaged_scan.address);
2675
2676	progress++;
2677	for (; vma; vma = vma->vm_next) {
2678		unsigned long hstart, hend;
2679
2680		cond_resched();
2681		if (unlikely(khugepaged_test_exit(mm))) {
2682			progress++;
2683			break;
2684		}
2685		if (!hugepage_vma_check(vma)) {
2686skip:
2687			progress++;
2688			continue;
2689		}
2690		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2691		hend = vma->vm_end & HPAGE_PMD_MASK;
2692		if (hstart >= hend)
2693			goto skip;
2694		if (khugepaged_scan.address > hend)
2695			goto skip;
2696		if (khugepaged_scan.address < hstart)
2697			khugepaged_scan.address = hstart;
2698		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2699
2700		while (khugepaged_scan.address < hend) {
2701			int ret;
2702			cond_resched();
2703			if (unlikely(khugepaged_test_exit(mm)))
2704				goto breakouterloop;
2705
2706			VM_BUG_ON(khugepaged_scan.address < hstart ||
2707				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2708				  hend);
2709			ret = khugepaged_scan_pmd(mm, vma,
2710						  khugepaged_scan.address,
2711						  hpage);
2712			/* move to next address */
2713			khugepaged_scan.address += HPAGE_PMD_SIZE;
2714			progress += HPAGE_PMD_NR;
2715			if (ret)
2716				/* we released mmap_sem so break loop */
2717				goto breakouterloop_mmap_sem;
2718			if (progress >= pages)
2719				goto breakouterloop;
2720		}
2721	}
2722breakouterloop:
2723	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2724breakouterloop_mmap_sem:
2725
2726	spin_lock(&khugepaged_mm_lock);
2727	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2728	/*
2729	 * Release the current mm_slot if this mm is about to die, or
2730	 * if we scanned all vmas of this mm.
2731	 */
2732	if (khugepaged_test_exit(mm) || !vma) {
2733		/*
2734		 * Make sure that if mm_users is reaching zero while
2735		 * khugepaged runs here, khugepaged_exit will find
2736		 * mm_slot not pointing to the exiting mm.
2737		 */
2738		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2739			khugepaged_scan.mm_slot = list_entry(
2740				mm_slot->mm_node.next,
2741				struct mm_slot, mm_node);
2742			khugepaged_scan.address = 0;
2743		} else {
2744			khugepaged_scan.mm_slot = NULL;
2745			khugepaged_full_scans++;
2746		}
2747
2748		collect_mm_slot(mm_slot);
2749	}
2750
2751	return progress;
2752}
2753
2754static int khugepaged_has_work(void)
2755{
2756	return !list_empty(&khugepaged_scan.mm_head) &&
2757		khugepaged_enabled();
2758}
2759
2760static int khugepaged_wait_event(void)
2761{
2762	return !list_empty(&khugepaged_scan.mm_head) ||
2763		kthread_should_stop();
2764}
2765
2766static void khugepaged_do_scan(void)
2767{
2768	struct page *hpage = NULL;
2769	unsigned int progress = 0, pass_through_head = 0;
2770	unsigned int pages = khugepaged_pages_to_scan;
2771	bool wait = true;
2772
2773	barrier(); /* write khugepaged_pages_to_scan to local stack */
2774
2775	while (progress < pages) {
2776		if (!khugepaged_prealloc_page(&hpage, &wait))
2777			break;
2778
2779		cond_resched();
2780
2781		if (unlikely(kthread_should_stop() || try_to_freeze()))
2782			break;
2783
2784		spin_lock(&khugepaged_mm_lock);
2785		if (!khugepaged_scan.mm_slot)
2786			pass_through_head++;
2787		if (khugepaged_has_work() &&
2788		    pass_through_head < 2)
2789			progress += khugepaged_scan_mm_slot(pages - progress,
2790							    &hpage);
2791		else
2792			progress = pages;
2793		spin_unlock(&khugepaged_mm_lock);
2794	}
2795
2796	if (!IS_ERR_OR_NULL(hpage))
2797		put_page(hpage);
2798}
2799
2800static void khugepaged_wait_work(void)
2801{
2802	if (khugepaged_has_work()) {
2803		if (!khugepaged_scan_sleep_millisecs)
2804			return;
2805
2806		wait_event_freezable_timeout(khugepaged_wait,
2807					     kthread_should_stop(),
2808			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2809		return;
2810	}
2811
2812	if (khugepaged_enabled())
2813		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2814}
2815
2816static int khugepaged(void *none)
2817{
2818	struct mm_slot *mm_slot;
2819
2820	set_freezable();
2821	set_user_nice(current, MAX_NICE);
2822
2823	while (!kthread_should_stop()) {
2824		khugepaged_do_scan();
2825		khugepaged_wait_work();
2826	}
2827
2828	spin_lock(&khugepaged_mm_lock);
2829	mm_slot = khugepaged_scan.mm_slot;
2830	khugepaged_scan.mm_slot = NULL;
2831	if (mm_slot)
2832		collect_mm_slot(mm_slot);
2833	spin_unlock(&khugepaged_mm_lock);
2834	return 0;
2835}
 
2836
2837static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2838		unsigned long haddr, pmd_t *pmd)
2839{
2840	struct mm_struct *mm = vma->vm_mm;
2841	pgtable_t pgtable;
2842	pmd_t _pmd;
2843	int i;
2844
2845	/* leave pmd empty until pte is filled */
2846	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
 
 
 
 
 
 
 
2847
2848	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2849	pmd_populate(mm, &_pmd, pgtable);
2850
2851	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2852		pte_t *pte, entry;
2853		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2854		entry = pte_mkspecial(entry);
2855		pte = pte_offset_map(&_pmd, haddr);
2856		VM_BUG_ON(!pte_none(*pte));
2857		set_pte_at(mm, haddr, pte, entry);
2858		pte_unmap(pte);
2859	}
2860	smp_wmb(); /* make pte visible before pmd */
2861	pmd_populate(mm, pmd, pgtable);
2862	put_huge_zero_page();
2863}
2864
2865static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2866		unsigned long haddr, bool freeze)
2867{
2868	struct mm_struct *mm = vma->vm_mm;
2869	struct page *page;
2870	pgtable_t pgtable;
2871	pmd_t _pmd;
2872	bool young, write, dirty;
2873	unsigned long addr;
2874	int i;
2875
2876	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2877	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2878	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2879	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
 
2880
2881	count_vm_event(THP_SPLIT_PMD);
2882
2883	if (vma_is_dax(vma)) {
2884		pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2885		if (is_huge_zero_pmd(_pmd))
2886			put_huge_zero_page();
 
 
 
 
 
 
 
 
 
 
 
 
2887		return;
2888	} else if (is_huge_zero_pmd(*pmd)) {
 
 
 
 
 
 
 
 
 
2889		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2890	}
2891
2892	page = pmd_page(*pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2893	VM_BUG_ON_PAGE(!page_count(page), page);
2894	page_ref_add(page, HPAGE_PMD_NR - 1);
2895	write = pmd_write(*pmd);
2896	young = pmd_young(*pmd);
2897	dirty = pmd_dirty(*pmd);
 
 
2898
2899	pmdp_huge_split_prepare(vma, haddr, pmd);
 
 
 
2900	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2901	pmd_populate(mm, &_pmd, pgtable);
2902
2903	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2904		pte_t entry, *pte;
2905		/*
2906		 * Note that NUMA hinting access restrictions are not
2907		 * transferred to avoid any possibility of altering
2908		 * permissions across VMAs.
2909		 */
2910		if (freeze) {
2911			swp_entry_t swp_entry;
2912			swp_entry = make_migration_entry(page + i, write);
2913			entry = swp_entry_to_pte(swp_entry);
 
 
2914		} else {
2915			entry = mk_pte(page + i, vma->vm_page_prot);
2916			entry = maybe_mkwrite(entry, vma);
2917			if (!write)
2918				entry = pte_wrprotect(entry);
2919			if (!young)
2920				entry = pte_mkold(entry);
 
 
2921		}
2922		if (dirty)
2923			SetPageDirty(page + i);
2924		pte = pte_offset_map(&_pmd, addr);
2925		BUG_ON(!pte_none(*pte));
2926		set_pte_at(mm, addr, pte, entry);
2927		atomic_inc(&page[i]._mapcount);
2928		pte_unmap(pte);
2929	}
2930
2931	/*
2932	 * Set PG_double_map before dropping compound_mapcount to avoid
2933	 * false-negative page_mapped().
2934	 */
2935	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2936		for (i = 0; i < HPAGE_PMD_NR; i++)
2937			atomic_inc(&page[i]._mapcount);
2938	}
2939
2940	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2941		/* Last compound_mapcount is gone. */
2942		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2943		if (TestClearPageDoubleMap(page)) {
2944			/* No need in mapcount reference anymore */
2945			for (i = 0; i < HPAGE_PMD_NR; i++)
2946				atomic_dec(&page[i]._mapcount);
2947		}
2948	}
2949
2950	smp_wmb(); /* make pte visible before pmd */
2951	/*
2952	 * Up to this point the pmd is present and huge and userland has the
2953	 * whole access to the hugepage during the split (which happens in
2954	 * place). If we overwrite the pmd with the not-huge version pointing
2955	 * to the pte here (which of course we could if all CPUs were bug
2956	 * free), userland could trigger a small page size TLB miss on the
2957	 * small sized TLB while the hugepage TLB entry is still established in
2958	 * the huge TLB. Some CPU doesn't like that.
2959	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2960	 * 383 on page 93. Intel should be safe but is also warns that it's
2961	 * only safe if the permission and cache attributes of the two entries
2962	 * loaded in the two TLB is identical (which should be the case here).
2963	 * But it is generally safer to never allow small and huge TLB entries
2964	 * for the same virtual address to be loaded simultaneously. So instead
2965	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2966	 * current pmd notpresent (atomically because here the pmd_trans_huge
2967	 * and pmd_trans_splitting must remain set at all times on the pmd
2968	 * until the split is complete for this pmd), then we flush the SMP TLB
2969	 * and finally we write the non-huge version of the pmd entry with
2970	 * pmd_populate.
2971	 */
2972	pmdp_invalidate(vma, haddr, pmd);
2973	pmd_populate(mm, pmd, pgtable);
2974
2975	if (freeze) {
2976		for (i = 0; i < HPAGE_PMD_NR; i++) {
2977			page_remove_rmap(page + i, false);
2978			put_page(page + i);
2979		}
2980	}
2981}
2982
2983void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2984		unsigned long address, bool freeze)
2985{
2986	spinlock_t *ptl;
2987	struct mm_struct *mm = vma->vm_mm;
2988	unsigned long haddr = address & HPAGE_PMD_MASK;
2989
2990	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2991	ptl = pmd_lock(mm, pmd);
 
 
 
 
 
 
 
 
 
2992	if (pmd_trans_huge(*pmd)) {
2993		struct page *page = pmd_page(*pmd);
2994		if (PageMlocked(page))
2995			clear_page_mlock(page);
2996	} else if (!pmd_devmap(*pmd))
2997		goto out;
2998	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2999out:
3000	spin_unlock(ptl);
3001	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3002}
3003
3004void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3005		bool freeze, struct page *page)
3006{
3007	pgd_t *pgd;
 
3008	pud_t *pud;
3009	pmd_t *pmd;
3010
3011	pgd = pgd_offset(vma->vm_mm, address);
3012	if (!pgd_present(*pgd))
3013		return;
3014
3015	pud = pud_offset(pgd, address);
 
 
 
 
3016	if (!pud_present(*pud))
3017		return;
3018
3019	pmd = pmd_offset(pud, address);
3020	if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
3021		return;
3022
3023	/*
3024	 * If caller asks to setup a migration entries, we need a page to check
3025	 * pmd against. Otherwise we can end up replacing wrong page.
3026	 */
3027	VM_BUG_ON(freeze && !page);
3028	if (page && page != pmd_page(*pmd))
3029		return;
3030
3031	/*
3032	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3033	 * materialize from under us.
3034	 */
3035	__split_huge_pmd(vma, pmd, address, freeze);
3036}
3037
3038void vma_adjust_trans_huge(struct vm_area_struct *vma,
3039			     unsigned long start,
3040			     unsigned long end,
3041			     long adjust_next)
3042{
3043	/*
3044	 * If the new start address isn't hpage aligned and it could
3045	 * previously contain an hugepage: check if we need to split
3046	 * an huge pmd.
3047	 */
3048	if (start & ~HPAGE_PMD_MASK &&
3049	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3050	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3051		split_huge_pmd_address(vma, start, false, NULL);
3052
3053	/*
3054	 * If the new end address isn't hpage aligned and it could
3055	 * previously contain an hugepage: check if we need to split
3056	 * an huge pmd.
3057	 */
3058	if (end & ~HPAGE_PMD_MASK &&
3059	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3060	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3061		split_huge_pmd_address(vma, end, false, NULL);
3062
3063	/*
3064	 * If we're also updating the vma->vm_next->vm_start, if the new
3065	 * vm_next->vm_start isn't page aligned and it could previously
3066	 * contain an hugepage: check if we need to split an huge pmd.
3067	 */
3068	if (adjust_next > 0) {
3069		struct vm_area_struct *next = vma->vm_next;
3070		unsigned long nstart = next->vm_start;
3071		nstart += adjust_next << PAGE_SHIFT;
3072		if (nstart & ~HPAGE_PMD_MASK &&
3073		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3074		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3075			split_huge_pmd_address(next, nstart, false, NULL);
3076	}
3077}
3078
3079static void freeze_page(struct page *page)
3080{
3081	enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3082		TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3083	int i, ret;
3084
3085	VM_BUG_ON_PAGE(!PageHead(page), page);
3086
3087	/* We only need TTU_SPLIT_HUGE_PMD once */
3088	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3089	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3090		/* Cut short if the page is unmapped */
3091		if (page_count(page) == 1)
3092			return;
3093
3094		ret = try_to_unmap(page + i, ttu_flags);
3095	}
3096	VM_BUG_ON(ret);
3097}
3098
3099static void unfreeze_page(struct page *page)
3100{
3101	int i;
3102
3103	for (i = 0; i < HPAGE_PMD_NR; i++)
3104		remove_migration_ptes(page + i, page + i, true);
 
 
 
3105}
3106
3107static void __split_huge_page_tail(struct page *head, int tail,
3108		struct lruvec *lruvec, struct list_head *list)
3109{
3110	struct page *page_tail = head + tail;
3111
3112	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3113	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3114
3115	/*
3116	 * tail_page->_count is zero and not changing from under us. But
3117	 * get_page_unless_zero() may be running from under us on the
3118	 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3119	 * would then run atomic_set() concurrently with
3120	 * get_page_unless_zero(), and atomic_set() is implemented in C not
3121	 * using locked ops. spin_unlock on x86 sometime uses locked ops
3122	 * because of PPro errata 66, 92, so unless somebody can guarantee
3123	 * atomic_set() here would be safe on all archs (and not only on x86),
3124	 * it's safer to use atomic_inc().
3125	 */
3126	page_ref_inc(page_tail);
3127
3128	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3129	page_tail->flags |= (head->flags &
3130			((1L << PG_referenced) |
3131			 (1L << PG_swapbacked) |
 
3132			 (1L << PG_mlocked) |
3133			 (1L << PG_uptodate) |
3134			 (1L << PG_active) |
3135			 (1L << PG_locked) |
3136			 (1L << PG_unevictable) |
3137			 (1L << PG_dirty)));
3138
 
 
 
3139	/*
3140	 * After clearing PageTail the gup refcount can be released.
3141	 * Page flags also must be visible before we make the page non-compound.
 
 
3142	 */
3143	smp_wmb();
3144
3145	clear_compound_head(page_tail);
 
 
3146
3147	if (page_is_young(head))
3148		set_page_young(page_tail);
3149	if (page_is_idle(head))
3150		set_page_idle(page_tail);
3151
3152	/* ->mapping in first tail page is compound_mapcount */
3153	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3154			page_tail);
3155	page_tail->mapping = head->mapping;
3156
3157	page_tail->index = head->index + tail;
3158	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
 
 
 
 
 
 
3159	lru_add_page_tail(head, page_tail, lruvec, list);
3160}
3161
3162static void __split_huge_page(struct page *page, struct list_head *list)
 
3163{
3164	struct page *head = compound_head(page);
3165	struct zone *zone = page_zone(head);
3166	struct lruvec *lruvec;
 
3167	int i;
3168
3169	/* prevent PageLRU to go away from under us, and freeze lru stats */
3170	spin_lock_irq(&zone->lru_lock);
3171	lruvec = mem_cgroup_page_lruvec(head, zone);
3172
3173	/* complete memcg works before add pages to LRU */
3174	mem_cgroup_split_huge_fixup(head);
3175
3176	for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
 
 
 
3177		__split_huge_page_tail(head, i, lruvec, list);
 
 
 
 
 
 
 
 
 
3178
3179	ClearPageCompound(head);
3180	spin_unlock_irq(&zone->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
3181
3182	unfreeze_page(head);
3183
3184	for (i = 0; i < HPAGE_PMD_NR; i++) {
3185		struct page *subpage = head + i;
3186		if (subpage == page)
3187			continue;
3188		unlock_page(subpage);
3189
3190		/*
3191		 * Subpages may be freed if there wasn't any mapping
3192		 * like if add_to_swap() is running on a lru page that
3193		 * had its mapping zapped. And freeing these pages
3194		 * requires taking the lru_lock so we do the put_page
3195		 * of the tail pages after the split is complete.
3196		 */
3197		put_page(subpage);
3198	}
3199}
3200
3201int total_mapcount(struct page *page)
3202{
3203	int i, ret;
3204
3205	VM_BUG_ON_PAGE(PageTail(page), page);
3206
3207	if (likely(!PageCompound(page)))
3208		return atomic_read(&page->_mapcount) + 1;
3209
3210	ret = compound_mapcount(page);
3211	if (PageHuge(page))
3212		return ret;
 
3213	for (i = 0; i < HPAGE_PMD_NR; i++)
3214		ret += atomic_read(&page[i]._mapcount) + 1;
 
 
 
3215	if (PageDoubleMap(page))
3216		ret -= HPAGE_PMD_NR;
3217	return ret;
3218}
3219
3220/*
3221 * This calculates accurately how many mappings a transparent hugepage
3222 * has (unlike page_mapcount() which isn't fully accurate). This full
3223 * accuracy is primarily needed to know if copy-on-write faults can
3224 * reuse the page and change the mapping to read-write instead of
3225 * copying them. At the same time this returns the total_mapcount too.
3226 *
3227 * The function returns the highest mapcount any one of the subpages
3228 * has. If the return value is one, even if different processes are
3229 * mapping different subpages of the transparent hugepage, they can
3230 * all reuse it, because each process is reusing a different subpage.
3231 *
3232 * The total_mapcount is instead counting all virtual mappings of the
3233 * subpages. If the total_mapcount is equal to "one", it tells the
3234 * caller all mappings belong to the same "mm" and in turn the
3235 * anon_vma of the transparent hugepage can become the vma->anon_vma
3236 * local one as no other process may be mapping any of the subpages.
3237 *
3238 * It would be more accurate to replace page_mapcount() with
3239 * page_trans_huge_mapcount(), however we only use
3240 * page_trans_huge_mapcount() in the copy-on-write faults where we
3241 * need full accuracy to avoid breaking page pinning, because
3242 * page_trans_huge_mapcount() is slower than page_mapcount().
3243 */
3244int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3245{
3246	int i, ret, _total_mapcount, mapcount;
3247
3248	/* hugetlbfs shouldn't call it */
3249	VM_BUG_ON_PAGE(PageHuge(page), page);
3250
3251	if (likely(!PageTransCompound(page))) {
3252		mapcount = atomic_read(&page->_mapcount) + 1;
3253		if (total_mapcount)
3254			*total_mapcount = mapcount;
3255		return mapcount;
3256	}
3257
3258	page = compound_head(page);
3259
3260	_total_mapcount = ret = 0;
3261	for (i = 0; i < HPAGE_PMD_NR; i++) {
3262		mapcount = atomic_read(&page[i]._mapcount) + 1;
3263		ret = max(ret, mapcount);
3264		_total_mapcount += mapcount;
3265	}
3266	if (PageDoubleMap(page)) {
3267		ret -= 1;
3268		_total_mapcount -= HPAGE_PMD_NR;
3269	}
3270	mapcount = compound_mapcount(page);
3271	ret += mapcount;
3272	_total_mapcount += mapcount;
3273	if (total_mapcount)
3274		*total_mapcount = _total_mapcount;
3275	return ret;
3276}
3277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3278/*
3279 * This function splits huge page into normal pages. @page can point to any
3280 * subpage of huge page to split. Split doesn't change the position of @page.
3281 *
3282 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3283 * The huge page must be locked.
3284 *
3285 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3286 *
3287 * Both head page and tail pages will inherit mapping, flags, and so on from
3288 * the hugepage.
3289 *
3290 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3291 * they are not mapped.
3292 *
3293 * Returns 0 if the hugepage is split successfully.
3294 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3295 * us.
3296 */
3297int split_huge_page_to_list(struct page *page, struct list_head *list)
3298{
3299	struct page *head = compound_head(page);
3300	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3301	struct anon_vma *anon_vma;
3302	int count, mapcount, ret;
 
3303	bool mlocked;
3304	unsigned long flags;
3305
3306	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3307	VM_BUG_ON_PAGE(!PageAnon(page), page);
3308	VM_BUG_ON_PAGE(!PageLocked(page), page);
3309	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3310	VM_BUG_ON_PAGE(!PageCompound(page), page);
3311
3312	/*
3313	 * The caller does not necessarily hold an mmap_sem that would prevent
3314	 * the anon_vma disappearing so we first we take a reference to it
3315	 * and then lock the anon_vma for write. This is similar to
3316	 * page_lock_anon_vma_read except the write lock is taken to serialise
3317	 * against parallel split or collapse operations.
3318	 */
3319	anon_vma = page_get_anon_vma(head);
3320	if (!anon_vma) {
3321		ret = -EBUSY;
3322		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3323	}
3324	anon_vma_lock_write(anon_vma);
3325
3326	/*
3327	 * Racy check if we can split the page, before freeze_page() will
3328	 * split PMDs
3329	 */
3330	if (total_mapcount(head) != page_count(head) - 1) {
3331		ret = -EBUSY;
3332		goto out_unlock;
3333	}
3334
3335	mlocked = PageMlocked(page);
3336	freeze_page(head);
3337	VM_BUG_ON_PAGE(compound_mapcount(head), head);
3338
3339	/* Make sure the page is not on per-CPU pagevec as it takes pin */
3340	if (mlocked)
3341		lru_add_drain();
3342
3343	/* Prevent deferred_split_scan() touching ->_count */
3344	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3345	count = page_count(head);
3346	mapcount = total_mapcount(head);
3347	if (!mapcount && count == 1) {
3348		if (!list_empty(page_deferred_list(head))) {
3349			pgdata->split_queue_len--;
3350			list_del(page_deferred_list(head));
3351		}
3352		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3353		__split_huge_page(page, list);
3354		ret = 0;
3355	} else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3356		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3357		pr_alert("total_mapcount: %u, page_count(): %u\n",
3358				mapcount, count);
3359		if (PageTail(page))
3360			dump_page(head, NULL);
3361		dump_page(page, "total_mapcount(head) > 0");
3362		BUG();
3363	} else {
3364		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
3365		unfreeze_page(head);
3366		ret = -EBUSY;
3367	}
3368
3369out_unlock:
3370	anon_vma_unlock_write(anon_vma);
3371	put_anon_vma(anon_vma);
 
 
 
 
3372out:
3373	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3374	return ret;
3375}
3376
3377void free_transhuge_page(struct page *page)
3378{
3379	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3380	unsigned long flags;
3381
3382	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3383	if (!list_empty(page_deferred_list(page))) {
3384		pgdata->split_queue_len--;
3385		list_del(page_deferred_list(page));
3386	}
3387	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3388	free_compound_page(page);
3389}
3390
3391void deferred_split_huge_page(struct page *page)
3392{
3393	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3394	unsigned long flags;
3395
3396	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3397
3398	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3399	if (list_empty(page_deferred_list(page))) {
3400		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3401		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3402		pgdata->split_queue_len++;
3403	}
3404	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3405}
3406
3407static unsigned long deferred_split_count(struct shrinker *shrink,
3408		struct shrink_control *sc)
3409{
3410	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3411	return ACCESS_ONCE(pgdata->split_queue_len);
3412}
3413
3414static unsigned long deferred_split_scan(struct shrinker *shrink,
3415		struct shrink_control *sc)
3416{
3417	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3418	unsigned long flags;
3419	LIST_HEAD(list), *pos, *next;
3420	struct page *page;
3421	int split = 0;
3422
3423	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3424	/* Take pin on all head pages to avoid freeing them under us */
3425	list_for_each_safe(pos, next, &pgdata->split_queue) {
3426		page = list_entry((void *)pos, struct page, mapping);
3427		page = compound_head(page);
3428		if (get_page_unless_zero(page)) {
3429			list_move(page_deferred_list(page), &list);
3430		} else {
3431			/* We lost race with put_compound_page() */
3432			list_del_init(page_deferred_list(page));
3433			pgdata->split_queue_len--;
3434		}
3435		if (!--sc->nr_to_scan)
3436			break;
3437	}
3438	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3439
3440	list_for_each_safe(pos, next, &list) {
3441		page = list_entry((void *)pos, struct page, mapping);
3442		lock_page(page);
 
3443		/* split_huge_page() removes page from list on success */
3444		if (!split_huge_page(page))
3445			split++;
3446		unlock_page(page);
 
3447		put_page(page);
3448	}
3449
3450	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3451	list_splice_tail(&list, &pgdata->split_queue);
3452	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3453
3454	/*
3455	 * Stop shrinker if we didn't split any page, but the queue is empty.
3456	 * This can happen if pages were freed under us.
3457	 */
3458	if (!split && list_empty(&pgdata->split_queue))
3459		return SHRINK_STOP;
3460	return split;
3461}
3462
3463static struct shrinker deferred_split_shrinker = {
3464	.count_objects = deferred_split_count,
3465	.scan_objects = deferred_split_scan,
3466	.seeks = DEFAULT_SEEKS,
3467	.flags = SHRINKER_NUMA_AWARE,
3468};
3469
3470#ifdef CONFIG_DEBUG_FS
3471static int split_huge_pages_set(void *data, u64 val)
3472{
3473	struct zone *zone;
3474	struct page *page;
3475	unsigned long pfn, max_zone_pfn;
3476	unsigned long total = 0, split = 0;
3477
3478	if (val != 1)
3479		return -EINVAL;
3480
3481	for_each_populated_zone(zone) {
3482		max_zone_pfn = zone_end_pfn(zone);
3483		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3484			if (!pfn_valid(pfn))
3485				continue;
3486
3487			page = pfn_to_page(pfn);
3488			if (!get_page_unless_zero(page))
3489				continue;
3490
3491			if (zone != page_zone(page))
3492				goto next;
3493
3494			if (!PageHead(page) || !PageAnon(page) ||
3495					PageHuge(page))
3496				goto next;
3497
3498			total++;
3499			lock_page(page);
3500			if (!split_huge_page(page))
3501				split++;
3502			unlock_page(page);
3503next:
3504			put_page(page);
3505		}
3506	}
3507
3508	pr_info("%lu of %lu THP split\n", split, total);
3509
3510	return 0;
3511}
3512DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3513		"%llu\n");
3514
3515static int __init split_huge_pages_debugfs(void)
3516{
3517	void *ret;
3518
3519	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3520			&split_huge_pages_fops);
3521	if (!ret)
3522		pr_warn("Failed to create split_huge_pages in debugfs");
3523	return 0;
3524}
3525late_initcall(split_huge_pages_debugfs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3526#endif