Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/sched/coredump.h>
  13#include <linux/sched/numa_balancing.h>
  14#include <linux/highmem.h>
  15#include <linux/hugetlb.h>
  16#include <linux/mmu_notifier.h>
  17#include <linux/rmap.h>
  18#include <linux/swap.h>
  19#include <linux/shrinker.h>
  20#include <linux/mm_inline.h>
  21#include <linux/swapops.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
  40
  41/*
  42 * By default, transparent hugepage support is disabled in order to avoid
  43 * risking an increased memory footprint for applications that are not
  44 * guaranteed to benefit from it. When transparent hugepage support is
  45 * enabled, it is for all mappings, and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
  60static struct shrinker deferred_split_shrinker;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
 
 
 
 
 
 
 
 
 
 
  64
  65static struct page *get_huge_zero_page(void)
  66{
  67	struct page *zero_page;
  68retry:
  69	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  70		return READ_ONCE(huge_zero_page);
  71
  72	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  73			HPAGE_PMD_ORDER);
  74	if (!zero_page) {
  75		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  76		return NULL;
  77	}
  78	count_vm_event(THP_ZERO_PAGE_ALLOC);
  79	preempt_disable();
  80	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  81		preempt_enable();
  82		__free_pages(zero_page, compound_order(zero_page));
  83		goto retry;
  84	}
  85
  86	/* We take additional reference here. It will be put back by shrinker */
  87	atomic_set(&huge_zero_refcount, 2);
  88	preempt_enable();
  89	return READ_ONCE(huge_zero_page);
  90}
  91
  92static void put_huge_zero_page(void)
  93{
  94	/*
  95	 * Counter should never go to zero here. Only shrinker can put
  96	 * last reference.
  97	 */
  98	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  99}
 100
 101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 102{
 103	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 104		return READ_ONCE(huge_zero_page);
 105
 106	if (!get_huge_zero_page())
 107		return NULL;
 108
 109	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 110		put_huge_zero_page();
 111
 112	return READ_ONCE(huge_zero_page);
 113}
 114
 115void mm_put_huge_zero_page(struct mm_struct *mm)
 116{
 117	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 118		put_huge_zero_page();
 119}
 120
 121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 122					struct shrink_control *sc)
 123{
 124	/* we can free zero page only if last reference remains */
 125	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 126}
 127
 128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 129				       struct shrink_control *sc)
 130{
 131	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 132		struct page *zero_page = xchg(&huge_zero_page, NULL);
 133		BUG_ON(zero_page == NULL);
 134		__free_pages(zero_page, compound_order(zero_page));
 135		return HPAGE_PMD_NR;
 136	}
 137
 138	return 0;
 139}
 140
 141static struct shrinker huge_zero_page_shrinker = {
 142	.count_objects = shrink_huge_zero_page_count,
 143	.scan_objects = shrink_huge_zero_page_scan,
 144	.seeks = DEFAULT_SEEKS,
 145};
 146
 147#ifdef CONFIG_SYSFS
 148static ssize_t enabled_show(struct kobject *kobj,
 149			    struct kobj_attribute *attr, char *buf)
 
 
 
 150{
 151	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 
 152		return sprintf(buf, "[always] madvise never\n");
 153	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 154		return sprintf(buf, "always [madvise] never\n");
 155	else
 156		return sprintf(buf, "always madvise [never]\n");
 157}
 158
 159static ssize_t enabled_store(struct kobject *kobj,
 160			     struct kobj_attribute *attr,
 161			     const char *buf, size_t count)
 
 162{
 163	ssize_t ret = count;
 164
 165	if (!memcmp("always", buf,
 166		    min(sizeof("always")-1, count))) {
 167		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 168		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 169	} else if (!memcmp("madvise", buf,
 170			   min(sizeof("madvise")-1, count))) {
 171		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 172		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 173	} else if (!memcmp("never", buf,
 174			   min(sizeof("never")-1, count))) {
 175		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 176		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 177	} else
 178		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180	if (ret > 0) {
 181		int err = start_stop_khugepaged();
 
 
 
 
 
 182		if (err)
 183			ret = err;
 184	}
 
 185	return ret;
 186}
 187static struct kobj_attribute enabled_attr =
 188	__ATTR(enabled, 0644, enabled_show, enabled_store);
 189
 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
 191				struct kobj_attribute *attr, char *buf,
 192				enum transparent_hugepage_flag flag)
 193{
 194	return sprintf(buf, "%d\n",
 195		       !!test_bit(flag, &transparent_hugepage_flags));
 196}
 197
 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
 199				 struct kobj_attribute *attr,
 200				 const char *buf, size_t count,
 201				 enum transparent_hugepage_flag flag)
 202{
 203	unsigned long value;
 204	int ret;
 205
 206	ret = kstrtoul(buf, 10, &value);
 207	if (ret < 0)
 208		return ret;
 209	if (value > 1)
 210		return -EINVAL;
 211
 212	if (value)
 213		set_bit(flag, &transparent_hugepage_flags);
 214	else
 215		clear_bit(flag, &transparent_hugepage_flags);
 216
 217	return count;
 218}
 219
 
 
 
 
 
 220static ssize_t defrag_show(struct kobject *kobj,
 221			   struct kobj_attribute *attr, char *buf)
 222{
 223	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 224		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 225	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 226		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 227	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 228		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 229	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 230		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 231	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 232}
 233
 234static ssize_t defrag_store(struct kobject *kobj,
 235			    struct kobj_attribute *attr,
 236			    const char *buf, size_t count)
 237{
 238	if (!memcmp("always", buf,
 239		    min(sizeof("always")-1, count))) {
 240		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 241		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 242		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 243		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 244	} else if (!memcmp("defer+madvise", buf,
 245		    min(sizeof("defer+madvise")-1, count))) {
 246		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 247		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 248		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 249		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 250	} else if (!memcmp("defer", buf,
 251		    min(sizeof("defer")-1, count))) {
 252		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 253		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 254		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 255		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 256	} else if (!memcmp("madvise", buf,
 257			   min(sizeof("madvise")-1, count))) {
 258		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 259		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 260		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 261		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262	} else if (!memcmp("never", buf,
 263			   min(sizeof("never")-1, count))) {
 264		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 265		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 266		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 267		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 268	} else
 269		return -EINVAL;
 270
 271	return count;
 272}
 273static struct kobj_attribute defrag_attr =
 274	__ATTR(defrag, 0644, defrag_show, defrag_store);
 275
 276static ssize_t use_zero_page_show(struct kobject *kobj,
 277		struct kobj_attribute *attr, char *buf)
 278{
 279	return single_hugepage_flag_show(kobj, attr, buf,
 280				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 281}
 282static ssize_t use_zero_page_store(struct kobject *kobj,
 283		struct kobj_attribute *attr, const char *buf, size_t count)
 284{
 285	return single_hugepage_flag_store(kobj, attr, buf, count,
 286				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 287}
 288static struct kobj_attribute use_zero_page_attr =
 289	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 290
 291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 292		struct kobj_attribute *attr, char *buf)
 293{
 294	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 295}
 296static struct kobj_attribute hpage_pmd_size_attr =
 297	__ATTR_RO(hpage_pmd_size);
 298
 299#ifdef CONFIG_DEBUG_VM
 300static ssize_t debug_cow_show(struct kobject *kobj,
 301				struct kobj_attribute *attr, char *buf)
 302{
 303	return single_hugepage_flag_show(kobj, attr, buf,
 304				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 305}
 306static ssize_t debug_cow_store(struct kobject *kobj,
 307			       struct kobj_attribute *attr,
 308			       const char *buf, size_t count)
 309{
 310	return single_hugepage_flag_store(kobj, attr, buf, count,
 311				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 312}
 313static struct kobj_attribute debug_cow_attr =
 314	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 315#endif /* CONFIG_DEBUG_VM */
 316
 317static struct attribute *hugepage_attr[] = {
 318	&enabled_attr.attr,
 319	&defrag_attr.attr,
 320	&use_zero_page_attr.attr,
 321	&hpage_pmd_size_attr.attr,
 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 323	&shmem_enabled_attr.attr,
 324#endif
 325#ifdef CONFIG_DEBUG_VM
 326	&debug_cow_attr.attr,
 327#endif
 328	NULL,
 329};
 330
 331static const struct attribute_group hugepage_attr_group = {
 332	.attrs = hugepage_attr,
 333};
 334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 336{
 337	int err;
 338
 339	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 340	if (unlikely(!*hugepage_kobj)) {
 341		pr_err("failed to create transparent hugepage kobject\n");
 342		return -ENOMEM;
 343	}
 344
 345	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 346	if (err) {
 347		pr_err("failed to register transparent hugepage group\n");
 348		goto delete_obj;
 349	}
 350
 351	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 352	if (err) {
 353		pr_err("failed to register transparent hugepage group\n");
 354		goto remove_hp_group;
 355	}
 356
 357	return 0;
 358
 359remove_hp_group:
 360	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 361delete_obj:
 362	kobject_put(*hugepage_kobj);
 363	return err;
 364}
 365
 366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 367{
 368	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 369	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 370	kobject_put(hugepage_kobj);
 371}
 372#else
 373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 374{
 375	return 0;
 376}
 377
 378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 379{
 380}
 381#endif /* CONFIG_SYSFS */
 382
 383static int __init hugepage_init(void)
 384{
 385	int err;
 386	struct kobject *hugepage_kobj;
 387
 388	if (!has_transparent_hugepage()) {
 389		transparent_hugepage_flags = 0;
 390		return -EINVAL;
 391	}
 392
 393	/*
 394	 * hugepages can't be allocated by the buddy allocator
 395	 */
 396	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 397	/*
 398	 * we use page->mapping and page->index in second tail page
 399	 * as list_head: assuming THP order >= 2
 400	 */
 401	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 402
 403	err = hugepage_init_sysfs(&hugepage_kobj);
 404	if (err)
 405		goto err_sysfs;
 406
 407	err = khugepaged_init();
 408	if (err)
 409		goto err_slab;
 410
 411	err = register_shrinker(&huge_zero_page_shrinker);
 412	if (err)
 413		goto err_hzp_shrinker;
 414	err = register_shrinker(&deferred_split_shrinker);
 415	if (err)
 416		goto err_split_shrinker;
 417
 418	/*
 419	 * By default disable transparent hugepages on smaller systems,
 420	 * where the extra memory used could hurt more than TLB overhead
 421	 * is likely to save.  The admin can still enable it through /sys.
 422	 */
 423	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 424		transparent_hugepage_flags = 0;
 425		return 0;
 426	}
 427
 428	err = start_stop_khugepaged();
 429	if (err)
 430		goto err_khugepaged;
 431
 432	return 0;
 433err_khugepaged:
 434	unregister_shrinker(&deferred_split_shrinker);
 435err_split_shrinker:
 436	unregister_shrinker(&huge_zero_page_shrinker);
 437err_hzp_shrinker:
 438	khugepaged_destroy();
 439err_slab:
 440	hugepage_exit_sysfs(hugepage_kobj);
 441err_sysfs:
 442	return err;
 443}
 444subsys_initcall(hugepage_init);
 445
 446static int __init setup_transparent_hugepage(char *str)
 447{
 448	int ret = 0;
 449	if (!str)
 450		goto out;
 451	if (!strcmp(str, "always")) {
 452		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 453			&transparent_hugepage_flags);
 454		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 455			  &transparent_hugepage_flags);
 456		ret = 1;
 457	} else if (!strcmp(str, "madvise")) {
 458		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 459			  &transparent_hugepage_flags);
 460		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 461			&transparent_hugepage_flags);
 462		ret = 1;
 463	} else if (!strcmp(str, "never")) {
 464		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 465			  &transparent_hugepage_flags);
 466		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 467			  &transparent_hugepage_flags);
 468		ret = 1;
 469	}
 470out:
 471	if (!ret)
 472		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 
 473	return ret;
 474}
 475__setup("transparent_hugepage=", setup_transparent_hugepage);
 476
 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 478{
 479	if (likely(vma->vm_flags & VM_WRITE))
 480		pmd = pmd_mkwrite(pmd);
 481	return pmd;
 482}
 483
 484static inline struct list_head *page_deferred_list(struct page *page)
 485{
 486	/*
 487	 * ->lru in the tail pages is occupied by compound_head.
 488	 * Let's use ->mapping + ->index in the second tail page as list_head.
 489	 */
 490	return (struct list_head *)&page[2].mapping;
 491}
 492
 493void prep_transhuge_page(struct page *page)
 494{
 495	/*
 496	 * we use page->mapping and page->indexlru in second tail page
 497	 * as list_head: assuming THP order >= 2
 498	 */
 499
 500	INIT_LIST_HEAD(page_deferred_list(page));
 501	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 502}
 503
 504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 505		loff_t off, unsigned long flags, unsigned long size)
 506{
 507	unsigned long addr;
 508	loff_t off_end = off + len;
 509	loff_t off_align = round_up(off, size);
 510	unsigned long len_pad;
 511
 512	if (off_end <= off_align || (off_end - off_align) < size)
 513		return 0;
 514
 515	len_pad = len + size;
 516	if (len_pad < len || (off + len_pad) < off)
 517		return 0;
 518
 519	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 520					      off >> PAGE_SHIFT, flags);
 521	if (IS_ERR_VALUE(addr))
 522		return 0;
 523
 524	addr += (off - addr) & (size - 1);
 525	return addr;
 526}
 527
 528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 529		unsigned long len, unsigned long pgoff, unsigned long flags)
 530{
 531	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 532
 533	if (addr)
 534		goto out;
 535	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 536		goto out;
 537
 538	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 539	if (addr)
 540		return addr;
 541
 542 out:
 543	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 544}
 545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 546
 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
 548		gfp_t gfp)
 
 
 549{
 550	struct vm_area_struct *vma = vmf->vma;
 551	struct mem_cgroup *memcg;
 552	pgtable_t pgtable;
 553	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 554	int ret = 0;
 555
 556	VM_BUG_ON_PAGE(!PageCompound(page), page);
 
 
 
 557
 558	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 559		put_page(page);
 560		count_vm_event(THP_FAULT_FALLBACK);
 561		return VM_FAULT_FALLBACK;
 562	}
 563
 564	pgtable = pte_alloc_one(vma->vm_mm, haddr);
 565	if (unlikely(!pgtable)) {
 566		ret = VM_FAULT_OOM;
 567		goto release;
 568	}
 569
 570	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 571	/*
 572	 * The memory barrier inside __SetPageUptodate makes sure that
 573	 * clear_huge_page writes become visible before the set_pmd_at()
 574	 * write.
 575	 */
 576	__SetPageUptodate(page);
 577
 578	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 579	if (unlikely(!pmd_none(*vmf->pmd))) {
 580		goto unlock_release;
 
 
 
 581	} else {
 582		pmd_t entry;
 583
 584		ret = check_stable_address_space(vma->vm_mm);
 585		if (ret)
 586			goto unlock_release;
 587
 588		/* Deliver the page fault to userland */
 589		if (userfaultfd_missing(vma)) {
 590			int ret;
 591
 592			spin_unlock(vmf->ptl);
 593			mem_cgroup_cancel_charge(page, memcg, true);
 594			put_page(page);
 595			pte_free(vma->vm_mm, pgtable);
 596			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 597			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 598			return ret;
 599		}
 600
 601		entry = mk_huge_pmd(page, vma->vm_page_prot);
 602		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 603		page_add_new_anon_rmap(page, vma, haddr, true);
 604		mem_cgroup_commit_charge(page, memcg, false, true);
 605		lru_cache_add_active_or_unevictable(page, vma);
 606		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 607		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 608		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 609		mm_inc_nr_ptes(vma->vm_mm);
 610		spin_unlock(vmf->ptl);
 611		count_vm_event(THP_FAULT_ALLOC);
 612	}
 613
 614	return 0;
 615unlock_release:
 616	spin_unlock(vmf->ptl);
 617release:
 618	if (pgtable)
 619		pte_free(vma->vm_mm, pgtable);
 620	mem_cgroup_cancel_charge(page, memcg, true);
 621	put_page(page);
 622	return ret;
 623
 624}
 625
 626/*
 627 * always: directly stall for all thp allocations
 628 * defer: wake kswapd and fail if not immediately available
 629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 630 *		  fail if not immediately available
 631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 632 *	    available
 633 * never: never stall for any thp allocation
 634 */
 635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 636{
 637	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 
 638
 639	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 640		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 641	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 642		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 643	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 644		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 645							     __GFP_KSWAPD_RECLAIM);
 646	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 647		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 648							     0);
 649	return GFP_TRANSHUGE_LIGHT;
 650}
 651
 652/* Caller must hold page table lock. */
 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 654		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 655		struct page *zero_page)
 656{
 657	pmd_t entry;
 658	if (!pmd_none(*pmd))
 659		return false;
 660	entry = mk_pmd(zero_page, vma->vm_page_prot);
 
 661	entry = pmd_mkhuge(entry);
 662	if (pgtable)
 663		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 664	set_pmd_at(mm, haddr, pmd, entry);
 665	mm_inc_nr_ptes(mm);
 666	return true;
 667}
 668
 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 
 
 670{
 671	struct vm_area_struct *vma = vmf->vma;
 672	gfp_t gfp;
 673	struct page *page;
 674	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 675
 676	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 677		return VM_FAULT_FALLBACK;
 678	if (unlikely(anon_vma_prepare(vma)))
 679		return VM_FAULT_OOM;
 680	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 681		return VM_FAULT_OOM;
 682	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 683			!mm_forbids_zeropage(vma->vm_mm) &&
 684			transparent_hugepage_use_zero_page()) {
 
 685		pgtable_t pgtable;
 686		struct page *zero_page;
 687		bool set;
 688		int ret;
 689		pgtable = pte_alloc_one(vma->vm_mm, haddr);
 690		if (unlikely(!pgtable))
 691			return VM_FAULT_OOM;
 692		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 693		if (unlikely(!zero_page)) {
 694			pte_free(vma->vm_mm, pgtable);
 695			count_vm_event(THP_FAULT_FALLBACK);
 696			return VM_FAULT_FALLBACK;
 697		}
 698		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 699		ret = 0;
 700		set = false;
 701		if (pmd_none(*vmf->pmd)) {
 702			ret = check_stable_address_space(vma->vm_mm);
 703			if (ret) {
 704				spin_unlock(vmf->ptl);
 705			} else if (userfaultfd_missing(vma)) {
 706				spin_unlock(vmf->ptl);
 707				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 708				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 709			} else {
 710				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 711						   haddr, vmf->pmd, zero_page);
 712				spin_unlock(vmf->ptl);
 713				set = true;
 714			}
 715		} else
 716			spin_unlock(vmf->ptl);
 717		if (!set)
 718			pte_free(vma->vm_mm, pgtable);
 719		return ret;
 720	}
 721	gfp = alloc_hugepage_direct_gfpmask(vma);
 722	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 723	if (unlikely(!page)) {
 724		count_vm_event(THP_FAULT_FALLBACK);
 725		return VM_FAULT_FALLBACK;
 726	}
 727	prep_transhuge_page(page);
 728	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 729}
 730
 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 732		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 733		pgtable_t pgtable)
 734{
 735	struct mm_struct *mm = vma->vm_mm;
 736	pmd_t entry;
 737	spinlock_t *ptl;
 738
 739	ptl = pmd_lock(mm, pmd);
 740	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 741	if (pfn_t_devmap(pfn))
 742		entry = pmd_mkdevmap(entry);
 743	if (write) {
 744		entry = pmd_mkyoung(pmd_mkdirty(entry));
 745		entry = maybe_pmd_mkwrite(entry, vma);
 746	}
 747
 748	if (pgtable) {
 749		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 750		mm_inc_nr_ptes(mm);
 751	}
 752
 753	set_pmd_at(mm, addr, pmd, entry);
 754	update_mmu_cache_pmd(vma, addr, pmd);
 755	spin_unlock(ptl);
 756}
 757
 758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 759			pmd_t *pmd, pfn_t pfn, bool write)
 760{
 761	pgprot_t pgprot = vma->vm_page_prot;
 762	pgtable_t pgtable = NULL;
 763	/*
 764	 * If we had pmd_special, we could avoid all these restrictions,
 765	 * but we need to be consistent with PTEs and architectures that
 766	 * can't support a 'special' bit.
 767	 */
 768	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 769	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 770						(VM_PFNMAP|VM_MIXEDMAP));
 771	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 772	BUG_ON(!pfn_t_devmap(pfn));
 773
 774	if (addr < vma->vm_start || addr >= vma->vm_end)
 775		return VM_FAULT_SIGBUS;
 776
 777	if (arch_needs_pgtable_deposit()) {
 778		pgtable = pte_alloc_one(vma->vm_mm, addr);
 779		if (!pgtable)
 780			return VM_FAULT_OOM;
 781	}
 782
 783	track_pfn_insert(vma, &pgprot, pfn);
 784
 785	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
 786	return VM_FAULT_NOPAGE;
 787}
 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 789
 790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 792{
 793	if (likely(vma->vm_flags & VM_WRITE))
 794		pud = pud_mkwrite(pud);
 795	return pud;
 796}
 797
 798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 799		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 800{
 801	struct mm_struct *mm = vma->vm_mm;
 802	pud_t entry;
 803	spinlock_t *ptl;
 804
 805	ptl = pud_lock(mm, pud);
 806	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 807	if (pfn_t_devmap(pfn))
 808		entry = pud_mkdevmap(entry);
 809	if (write) {
 810		entry = pud_mkyoung(pud_mkdirty(entry));
 811		entry = maybe_pud_mkwrite(entry, vma);
 812	}
 813	set_pud_at(mm, addr, pud, entry);
 814	update_mmu_cache_pud(vma, addr, pud);
 815	spin_unlock(ptl);
 816}
 817
 818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 819			pud_t *pud, pfn_t pfn, bool write)
 820{
 821	pgprot_t pgprot = vma->vm_page_prot;
 822	/*
 823	 * If we had pud_special, we could avoid all these restrictions,
 824	 * but we need to be consistent with PTEs and architectures that
 825	 * can't support a 'special' bit.
 826	 */
 827	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 828	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 829						(VM_PFNMAP|VM_MIXEDMAP));
 830	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 831	BUG_ON(!pfn_t_devmap(pfn));
 832
 833	if (addr < vma->vm_start || addr >= vma->vm_end)
 834		return VM_FAULT_SIGBUS;
 835
 836	track_pfn_insert(vma, &pgprot, pfn);
 837
 838	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
 839	return VM_FAULT_NOPAGE;
 840}
 841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 843
 844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 845		pmd_t *pmd, int flags)
 846{
 847	pmd_t _pmd;
 848
 849	_pmd = pmd_mkyoung(*pmd);
 850	if (flags & FOLL_WRITE)
 851		_pmd = pmd_mkdirty(_pmd);
 852	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 853				pmd, _pmd, flags & FOLL_WRITE))
 854		update_mmu_cache_pmd(vma, addr, pmd);
 855}
 856
 857struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 858		pmd_t *pmd, int flags)
 859{
 860	unsigned long pfn = pmd_pfn(*pmd);
 861	struct mm_struct *mm = vma->vm_mm;
 862	struct dev_pagemap *pgmap;
 863	struct page *page;
 864
 865	assert_spin_locked(pmd_lockptr(mm, pmd));
 866
 867	/*
 868	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 869	 * not be in this function with `flags & FOLL_COW` set.
 870	 */
 871	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 872
 873	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 874		return NULL;
 875
 876	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 877		/* pass */;
 878	else
 879		return NULL;
 880
 881	if (flags & FOLL_TOUCH)
 882		touch_pmd(vma, addr, pmd, flags);
 883
 884	/*
 885	 * device mapped pages can only be returned if the
 886	 * caller will manage the page reference count.
 887	 */
 888	if (!(flags & FOLL_GET))
 889		return ERR_PTR(-EEXIST);
 890
 891	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 892	pgmap = get_dev_pagemap(pfn, NULL);
 893	if (!pgmap)
 894		return ERR_PTR(-EFAULT);
 895	page = pfn_to_page(pfn);
 896	get_page(page);
 897	put_dev_pagemap(pgmap);
 898
 899	return page;
 900}
 901
 902int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 903		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 904		  struct vm_area_struct *vma)
 905{
 906	spinlock_t *dst_ptl, *src_ptl;
 907	struct page *src_page;
 908	pmd_t pmd;
 909	pgtable_t pgtable = NULL;
 910	int ret = -ENOMEM;
 911
 912	/* Skip if can be re-fill on fault */
 913	if (!vma_is_anonymous(vma))
 914		return 0;
 915
 
 916	pgtable = pte_alloc_one(dst_mm, addr);
 917	if (unlikely(!pgtable))
 918		goto out;
 919
 920	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 921	src_ptl = pmd_lockptr(src_mm, src_pmd);
 922	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 923
 924	ret = -EAGAIN;
 925	pmd = *src_pmd;
 926
 927#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 928	if (unlikely(is_swap_pmd(pmd))) {
 929		swp_entry_t entry = pmd_to_swp_entry(pmd);
 930
 931		VM_BUG_ON(!is_pmd_migration_entry(pmd));
 932		if (is_write_migration_entry(entry)) {
 933			make_migration_entry_read(&entry);
 934			pmd = swp_entry_to_pmd(entry);
 935			if (pmd_swp_soft_dirty(*src_pmd))
 936				pmd = pmd_swp_mksoft_dirty(pmd);
 937			set_pmd_at(src_mm, addr, src_pmd, pmd);
 938		}
 939		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 940		mm_inc_nr_ptes(dst_mm);
 941		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 942		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 943		ret = 0;
 944		goto out_unlock;
 945	}
 946#endif
 947
 948	if (unlikely(!pmd_trans_huge(pmd))) {
 949		pte_free(dst_mm, pgtable);
 950		goto out_unlock;
 951	}
 952	/*
 953	 * When page table lock is held, the huge zero pmd should not be
 954	 * under splitting since we don't split the page itself, only pmd to
 955	 * a page table.
 956	 */
 957	if (is_huge_zero_pmd(pmd)) {
 958		struct page *zero_page;
 
 959		/*
 960		 * get_huge_zero_page() will never allocate a new page here,
 961		 * since we already have a zero page to copy. It just takes a
 962		 * reference.
 963		 */
 964		zero_page = mm_get_huge_zero_page(dst_mm);
 965		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 966				zero_page);
 
 967		ret = 0;
 968		goto out_unlock;
 969	}
 970
 
 
 
 
 
 
 
 
 
 971	src_page = pmd_page(pmd);
 972	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 973	get_page(src_page);
 974	page_dup_rmap(src_page, true);
 975	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 976	mm_inc_nr_ptes(dst_mm);
 977	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 978
 979	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 980	pmd = pmd_mkold(pmd_wrprotect(pmd));
 
 981	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 
 982
 983	ret = 0;
 984out_unlock:
 985	spin_unlock(src_ptl);
 986	spin_unlock(dst_ptl);
 987out:
 988	return ret;
 989}
 990
 991#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 992static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 993		pud_t *pud, int flags)
 994{
 995	pud_t _pud;
 996
 997	_pud = pud_mkyoung(*pud);
 998	if (flags & FOLL_WRITE)
 999		_pud = pud_mkdirty(_pud);
1000	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1001				pud, _pud, flags & FOLL_WRITE))
1002		update_mmu_cache_pud(vma, addr, pud);
1003}
1004
1005struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1006		pud_t *pud, int flags)
1007{
1008	unsigned long pfn = pud_pfn(*pud);
1009	struct mm_struct *mm = vma->vm_mm;
1010	struct dev_pagemap *pgmap;
1011	struct page *page;
1012
1013	assert_spin_locked(pud_lockptr(mm, pud));
1014
1015	if (flags & FOLL_WRITE && !pud_write(*pud))
1016		return NULL;
1017
1018	if (pud_present(*pud) && pud_devmap(*pud))
1019		/* pass */;
1020	else
1021		return NULL;
1022
1023	if (flags & FOLL_TOUCH)
1024		touch_pud(vma, addr, pud, flags);
1025
1026	/*
1027	 * device mapped pages can only be returned if the
1028	 * caller will manage the page reference count.
1029	 */
1030	if (!(flags & FOLL_GET))
1031		return ERR_PTR(-EEXIST);
1032
1033	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1034	pgmap = get_dev_pagemap(pfn, NULL);
1035	if (!pgmap)
1036		return ERR_PTR(-EFAULT);
1037	page = pfn_to_page(pfn);
1038	get_page(page);
1039	put_dev_pagemap(pgmap);
1040
1041	return page;
1042}
1043
1044int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1046		  struct vm_area_struct *vma)
1047{
1048	spinlock_t *dst_ptl, *src_ptl;
1049	pud_t pud;
1050	int ret;
1051
1052	dst_ptl = pud_lock(dst_mm, dst_pud);
1053	src_ptl = pud_lockptr(src_mm, src_pud);
1054	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1055
1056	ret = -EAGAIN;
1057	pud = *src_pud;
1058	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1059		goto out_unlock;
1060
1061	/*
1062	 * When page table lock is held, the huge zero pud should not be
1063	 * under splitting since we don't split the page itself, only pud to
1064	 * a page table.
1065	 */
1066	if (is_huge_zero_pud(pud)) {
1067		/* No huge zero pud yet */
1068	}
1069
1070	pudp_set_wrprotect(src_mm, addr, src_pud);
1071	pud = pud_mkold(pud_wrprotect(pud));
1072	set_pud_at(dst_mm, addr, dst_pud, pud);
1073
1074	ret = 0;
1075out_unlock:
1076	spin_unlock(src_ptl);
1077	spin_unlock(dst_ptl);
1078	return ret;
1079}
1080
1081void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1082{
1083	pud_t entry;
1084	unsigned long haddr;
1085	bool write = vmf->flags & FAULT_FLAG_WRITE;
1086
1087	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1088	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1089		goto unlock;
1090
1091	entry = pud_mkyoung(orig_pud);
1092	if (write)
1093		entry = pud_mkdirty(entry);
1094	haddr = vmf->address & HPAGE_PUD_MASK;
1095	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1096		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1097
1098unlock:
1099	spin_unlock(vmf->ptl);
1100}
1101#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1102
1103void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1104{
 
1105	pmd_t entry;
1106	unsigned long haddr;
1107	bool write = vmf->flags & FAULT_FLAG_WRITE;
1108
1109	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1110	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1111		goto unlock;
1112
1113	entry = pmd_mkyoung(orig_pmd);
1114	if (write)
1115		entry = pmd_mkdirty(entry);
1116	haddr = vmf->address & HPAGE_PMD_MASK;
1117	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1118		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1119
1120unlock:
1121	spin_unlock(vmf->ptl);
1122}
1123
1124static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1125		struct page *page)
 
 
 
 
1126{
1127	struct vm_area_struct *vma = vmf->vma;
1128	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1129	struct mem_cgroup *memcg;
1130	pgtable_t pgtable;
1131	pmd_t _pmd;
1132	int ret = 0, i;
1133	struct page **pages;
1134	unsigned long mmun_start;	/* For mmu_notifiers */
1135	unsigned long mmun_end;		/* For mmu_notifiers */
1136
1137	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1138			GFP_KERNEL);
1139	if (unlikely(!pages)) {
1140		ret |= VM_FAULT_OOM;
1141		goto out;
1142	}
1143
1144	for (i = 0; i < HPAGE_PMD_NR; i++) {
1145		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1146					       vmf->address, page_to_nid(page));
 
1147		if (unlikely(!pages[i] ||
1148			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1149				     GFP_KERNEL, &memcg, false))) {
1150			if (pages[i])
1151				put_page(pages[i]);
 
1152			while (--i >= 0) {
1153				memcg = (void *)page_private(pages[i]);
1154				set_page_private(pages[i], 0);
1155				mem_cgroup_cancel_charge(pages[i], memcg,
1156						false);
1157				put_page(pages[i]);
1158			}
 
1159			kfree(pages);
1160			ret |= VM_FAULT_OOM;
1161			goto out;
1162		}
1163		set_page_private(pages[i], (unsigned long)memcg);
1164	}
1165
1166	for (i = 0; i < HPAGE_PMD_NR; i++) {
1167		copy_user_highpage(pages[i], page + i,
1168				   haddr + PAGE_SIZE * i, vma);
1169		__SetPageUptodate(pages[i]);
1170		cond_resched();
1171	}
1172
1173	mmun_start = haddr;
1174	mmun_end   = haddr + HPAGE_PMD_SIZE;
1175	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1176
1177	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1178	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179		goto out_free_pages;
1180	VM_BUG_ON_PAGE(!PageHead(page), page);
1181
1182	/*
1183	 * Leave pmd empty until pte is filled note we must notify here as
1184	 * concurrent CPU thread might write to new page before the call to
1185	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1186	 * device seeing memory write in different order than CPU.
1187	 *
1188	 * See Documentation/vm/mmu_notifier.txt
1189	 */
1190	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1191
1192	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1193	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1194
1195	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1196		pte_t entry;
1197		entry = mk_pte(pages[i], vma->vm_page_prot);
1198		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1199		memcg = (void *)page_private(pages[i]);
1200		set_page_private(pages[i], 0);
1201		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1202		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1203		lru_cache_add_active_or_unevictable(pages[i], vma);
1204		vmf->pte = pte_offset_map(&_pmd, haddr);
1205		VM_BUG_ON(!pte_none(*vmf->pte));
1206		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1207		pte_unmap(vmf->pte);
1208	}
1209	kfree(pages);
1210
1211	smp_wmb(); /* make pte visible before pmd */
1212	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1213	page_remove_rmap(page, true);
1214	spin_unlock(vmf->ptl);
1215
1216	/*
1217	 * No need to double call mmu_notifier->invalidate_range() callback as
1218	 * the above pmdp_huge_clear_flush_notify() did already call it.
1219	 */
1220	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1221						mmun_end);
1222
1223	ret |= VM_FAULT_WRITE;
1224	put_page(page);
1225
1226out:
1227	return ret;
1228
1229out_free_pages:
1230	spin_unlock(vmf->ptl);
1231	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
 
1232	for (i = 0; i < HPAGE_PMD_NR; i++) {
1233		memcg = (void *)page_private(pages[i]);
1234		set_page_private(pages[i], 0);
1235		mem_cgroup_cancel_charge(pages[i], memcg, false);
1236		put_page(pages[i]);
1237	}
 
1238	kfree(pages);
1239	goto out;
1240}
1241
1242int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
 
1243{
1244	struct vm_area_struct *vma = vmf->vma;
 
1245	struct page *page = NULL, *new_page;
1246	struct mem_cgroup *memcg;
1247	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1248	unsigned long mmun_start;	/* For mmu_notifiers */
1249	unsigned long mmun_end;		/* For mmu_notifiers */
1250	gfp_t huge_gfp;			/* for allocation and charge */
1251	int ret = 0;
1252
1253	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1254	VM_BUG_ON_VMA(!vma->anon_vma, vma);
 
1255	if (is_huge_zero_pmd(orig_pmd))
1256		goto alloc;
1257	spin_lock(vmf->ptl);
1258	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1259		goto out_unlock;
1260
1261	page = pmd_page(orig_pmd);
1262	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1263	/*
1264	 * We can only reuse the page if nobody else maps the huge page or it's
1265	 * part.
1266	 */
1267	if (!trylock_page(page)) {
1268		get_page(page);
1269		spin_unlock(vmf->ptl);
1270		lock_page(page);
1271		spin_lock(vmf->ptl);
1272		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1273			unlock_page(page);
1274			put_page(page);
1275			goto out_unlock;
1276		}
1277		put_page(page);
1278	}
1279	if (reuse_swap_page(page, NULL)) {
1280		pmd_t entry;
1281		entry = pmd_mkyoung(orig_pmd);
1282		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1283		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1284			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1285		ret |= VM_FAULT_WRITE;
1286		unlock_page(page);
1287		goto out_unlock;
1288	}
1289	unlock_page(page);
1290	get_page(page);
1291	spin_unlock(vmf->ptl);
1292alloc:
1293	if (transparent_hugepage_enabled(vma) &&
1294	    !transparent_hugepage_debug_cow()) {
1295		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1296		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1297	} else
1298		new_page = NULL;
1299
1300	if (likely(new_page)) {
1301		prep_transhuge_page(new_page);
1302	} else {
1303		if (!page) {
1304			split_huge_pmd(vma, vmf->pmd, vmf->address);
1305			ret |= VM_FAULT_FALLBACK;
1306		} else {
1307			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
 
1308			if (ret & VM_FAULT_OOM) {
1309				split_huge_pmd(vma, vmf->pmd, vmf->address);
1310				ret |= VM_FAULT_FALLBACK;
1311			}
1312			put_page(page);
1313		}
1314		count_vm_event(THP_FAULT_FALLBACK);
1315		goto out;
1316	}
1317
1318	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1319					huge_gfp, &memcg, true))) {
1320		put_page(new_page);
1321		split_huge_pmd(vma, vmf->pmd, vmf->address);
1322		if (page)
1323			put_page(page);
 
 
1324		ret |= VM_FAULT_FALLBACK;
1325		count_vm_event(THP_FAULT_FALLBACK);
1326		goto out;
1327	}
1328
1329	count_vm_event(THP_FAULT_ALLOC);
1330
1331	if (!page)
1332		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1333	else
1334		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1335	__SetPageUptodate(new_page);
1336
1337	mmun_start = haddr;
1338	mmun_end   = haddr + HPAGE_PMD_SIZE;
1339	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1340
1341	spin_lock(vmf->ptl);
1342	if (page)
1343		put_page(page);
1344	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345		spin_unlock(vmf->ptl);
1346		mem_cgroup_cancel_charge(new_page, memcg, true);
1347		put_page(new_page);
1348		goto out_mn;
1349	} else {
1350		pmd_t entry;
1351		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1352		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1353		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1354		page_add_new_anon_rmap(new_page, vma, haddr, true);
1355		mem_cgroup_commit_charge(new_page, memcg, false, true);
1356		lru_cache_add_active_or_unevictable(new_page, vma);
1357		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1358		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359		if (!page) {
1360			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 
1361		} else {
1362			VM_BUG_ON_PAGE(!PageHead(page), page);
1363			page_remove_rmap(page, true);
1364			put_page(page);
1365		}
1366		ret |= VM_FAULT_WRITE;
1367	}
1368	spin_unlock(vmf->ptl);
1369out_mn:
1370	/*
1371	 * No need to double call mmu_notifier->invalidate_range() callback as
1372	 * the above pmdp_huge_clear_flush_notify() did already call it.
1373	 */
1374	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1375					       mmun_end);
1376out:
1377	return ret;
1378out_unlock:
1379	spin_unlock(vmf->ptl);
1380	return ret;
1381}
1382
1383/*
1384 * FOLL_FORCE can write to even unwritable pmd's, but only
1385 * after we've gone through a COW cycle and they are dirty.
1386 */
1387static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1388{
1389	return pmd_write(pmd) ||
1390	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1391}
1392
1393struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1394				   unsigned long addr,
1395				   pmd_t *pmd,
1396				   unsigned int flags)
1397{
1398	struct mm_struct *mm = vma->vm_mm;
1399	struct page *page = NULL;
1400
1401	assert_spin_locked(pmd_lockptr(mm, pmd));
1402
1403	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1404		goto out;
1405
1406	/* Avoid dumping huge zero page */
1407	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1408		return ERR_PTR(-EFAULT);
1409
1410	/* Full NUMA hinting faults to serialise migration in fault paths */
1411	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1412		goto out;
1413
1414	page = pmd_page(*pmd);
1415	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1416	if (flags & FOLL_TOUCH)
1417		touch_pmd(vma, addr, pmd, flags);
1418	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1419		/*
1420		 * We don't mlock() pte-mapped THPs. This way we can avoid
1421		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1422		 *
1423		 * For anon THP:
1424		 *
1425		 * In most cases the pmd is the only mapping of the page as we
1426		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1427		 * writable private mappings in populate_vma_page_range().
1428		 *
1429		 * The only scenario when we have the page shared here is if we
1430		 * mlocking read-only mapping shared over fork(). We skip
1431		 * mlocking such pages.
1432		 *
1433		 * For file THP:
1434		 *
1435		 * We can expect PageDoubleMap() to be stable under page lock:
1436		 * for file pages we set it in page_add_file_rmap(), which
1437		 * requires page to be locked.
1438		 */
1439
1440		if (PageAnon(page) && compound_mapcount(page) != 1)
1441			goto skip_mlock;
1442		if (PageDoubleMap(page) || !page->mapping)
1443			goto skip_mlock;
1444		if (!trylock_page(page))
1445			goto skip_mlock;
1446		lru_add_drain();
1447		if (page->mapping && !PageDoubleMap(page))
1448			mlock_vma_page(page);
1449		unlock_page(page);
 
1450	}
1451skip_mlock:
1452	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1453	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1454	if (flags & FOLL_GET)
1455		get_page(page);
1456
1457out:
1458	return page;
1459}
1460
1461/* NUMA hinting page fault entry point for trans huge pmds */
1462int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
 
1463{
1464	struct vm_area_struct *vma = vmf->vma;
1465	struct anon_vma *anon_vma = NULL;
1466	struct page *page;
1467	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1468	int page_nid = -1, this_nid = numa_node_id();
1469	int target_nid, last_cpupid = -1;
1470	bool page_locked;
1471	bool migrated = false;
1472	bool was_writable;
1473	int flags = 0;
1474
1475	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1476	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1477		goto out_unlock;
1478
1479	/*
1480	 * If there are potential migrations, wait for completion and retry
1481	 * without disrupting NUMA hinting information. Do not relock and
1482	 * check_same as the page may no longer be mapped.
1483	 */
1484	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1485		page = pmd_page(*vmf->pmd);
1486		if (!get_page_unless_zero(page))
1487			goto out_unlock;
1488		spin_unlock(vmf->ptl);
1489		wait_on_page_locked(page);
1490		put_page(page);
1491		goto out;
1492	}
1493
1494	page = pmd_page(pmd);
1495	BUG_ON(is_huge_zero_page(page));
1496	page_nid = page_to_nid(page);
1497	last_cpupid = page_cpupid_last(page);
1498	count_vm_numa_event(NUMA_HINT_FAULTS);
1499	if (page_nid == this_nid) {
1500		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501		flags |= TNF_FAULT_LOCAL;
1502	}
1503
1504	/* See similar comment in do_numa_page for explanation */
1505	if (!pmd_savedwrite(pmd))
 
 
 
 
1506		flags |= TNF_NO_GROUP;
1507
1508	/*
1509	 * Acquire the page lock to serialise THP migrations but avoid dropping
1510	 * page_table_lock if at all possible
1511	 */
1512	page_locked = trylock_page(page);
1513	target_nid = mpol_misplaced(page, vma, haddr);
1514	if (target_nid == -1) {
1515		/* If the page was locked, there are no parallel migrations */
1516		if (page_locked)
1517			goto clear_pmdnuma;
1518	}
1519
1520	/* Migration could have started since the pmd_trans_migrating check */
1521	if (!page_locked) {
1522		page_nid = -1;
1523		if (!get_page_unless_zero(page))
1524			goto out_unlock;
1525		spin_unlock(vmf->ptl);
1526		wait_on_page_locked(page);
1527		put_page(page);
1528		goto out;
1529	}
1530
1531	/*
1532	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1533	 * to serialises splits
1534	 */
1535	get_page(page);
1536	spin_unlock(vmf->ptl);
1537	anon_vma = page_lock_anon_vma_read(page);
1538
1539	/* Confirm the PMD did not change while page_table_lock was released */
1540	spin_lock(vmf->ptl);
1541	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1542		unlock_page(page);
1543		put_page(page);
1544		page_nid = -1;
1545		goto out_unlock;
1546	}
1547
1548	/* Bail if we fail to protect against THP splits for any reason */
1549	if (unlikely(!anon_vma)) {
1550		put_page(page);
1551		page_nid = -1;
1552		goto clear_pmdnuma;
1553	}
1554
1555	/*
1556	 * Since we took the NUMA fault, we must have observed the !accessible
1557	 * bit. Make sure all other CPUs agree with that, to avoid them
1558	 * modifying the page we're about to migrate.
1559	 *
1560	 * Must be done under PTL such that we'll observe the relevant
1561	 * inc_tlb_flush_pending().
1562	 *
1563	 * We are not sure a pending tlb flush here is for a huge page
1564	 * mapping or not. Hence use the tlb range variant
1565	 */
1566	if (mm_tlb_flush_pending(vma->vm_mm))
1567		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1568
1569	/*
1570	 * Migrate the THP to the requested node, returns with page unlocked
1571	 * and access rights restored.
1572	 */
1573	spin_unlock(vmf->ptl);
1574
1575	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1576				vmf->pmd, pmd, vmf->address, page, target_nid);
1577	if (migrated) {
1578		flags |= TNF_MIGRATED;
1579		page_nid = target_nid;
1580	} else
1581		flags |= TNF_MIGRATE_FAIL;
1582
1583	goto out;
1584clear_pmdnuma:
1585	BUG_ON(!PageLocked(page));
1586	was_writable = pmd_savedwrite(pmd);
1587	pmd = pmd_modify(pmd, vma->vm_page_prot);
1588	pmd = pmd_mkyoung(pmd);
1589	if (was_writable)
1590		pmd = pmd_mkwrite(pmd);
1591	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593	unlock_page(page);
1594out_unlock:
1595	spin_unlock(vmf->ptl);
1596
1597out:
1598	if (anon_vma)
1599		page_unlock_anon_vma_read(anon_vma);
1600
1601	if (page_nid != -1)
1602		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1603				flags);
1604
1605	return 0;
1606}
1607
1608/*
1609 * Return true if we do MADV_FREE successfully on entire pmd page.
1610 * Otherwise, return false.
1611 */
1612bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1613		pmd_t *pmd, unsigned long addr, unsigned long next)
1614{
1615	spinlock_t *ptl;
1616	pmd_t orig_pmd;
1617	struct page *page;
1618	struct mm_struct *mm = tlb->mm;
1619	bool ret = false;
1620
1621	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1622
1623	ptl = pmd_trans_huge_lock(pmd, vma);
1624	if (!ptl)
1625		goto out_unlocked;
1626
1627	orig_pmd = *pmd;
1628	if (is_huge_zero_pmd(orig_pmd))
1629		goto out;
1630
1631	if (unlikely(!pmd_present(orig_pmd))) {
1632		VM_BUG_ON(thp_migration_supported() &&
1633				  !is_pmd_migration_entry(orig_pmd));
1634		goto out;
1635	}
1636
1637	page = pmd_page(orig_pmd);
1638	/*
1639	 * If other processes are mapping this page, we couldn't discard
1640	 * the page unless they all do MADV_FREE so let's skip the page.
1641	 */
1642	if (page_mapcount(page) != 1)
1643		goto out;
1644
1645	if (!trylock_page(page))
1646		goto out;
1647
1648	/*
1649	 * If user want to discard part-pages of THP, split it so MADV_FREE
1650	 * will deactivate only them.
1651	 */
1652	if (next - addr != HPAGE_PMD_SIZE) {
1653		get_page(page);
1654		spin_unlock(ptl);
1655		split_huge_page(page);
1656		unlock_page(page);
1657		put_page(page);
1658		goto out_unlocked;
1659	}
1660
1661	if (PageDirty(page))
1662		ClearPageDirty(page);
1663	unlock_page(page);
1664
1665	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1666		pmdp_invalidate(vma, addr, pmd);
1667		orig_pmd = pmd_mkold(orig_pmd);
1668		orig_pmd = pmd_mkclean(orig_pmd);
1669
1670		set_pmd_at(mm, addr, pmd, orig_pmd);
1671		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1672	}
1673
1674	mark_page_lazyfree(page);
1675	ret = true;
1676out:
1677	spin_unlock(ptl);
1678out_unlocked:
1679	return ret;
1680}
1681
1682static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1683{
1684	pgtable_t pgtable;
1685
1686	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1687	pte_free(mm, pgtable);
1688	mm_dec_nr_ptes(mm);
1689}
1690
1691int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1692		 pmd_t *pmd, unsigned long addr)
1693{
1694	pmd_t orig_pmd;
1695	spinlock_t *ptl;
 
1696
1697	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1698
1699	ptl = __pmd_trans_huge_lock(pmd, vma);
1700	if (!ptl)
1701		return 0;
1702	/*
1703	 * For architectures like ppc64 we look at deposited pgtable
1704	 * when calling pmdp_huge_get_and_clear. So do the
1705	 * pgtable_trans_huge_withdraw after finishing pmdp related
1706	 * operations.
1707	 */
1708	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1709			tlb->fullmm);
1710	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1711	if (vma_is_dax(vma)) {
1712		if (arch_needs_pgtable_deposit())
1713			zap_deposited_table(tlb->mm, pmd);
1714		spin_unlock(ptl);
1715		if (is_huge_zero_pmd(orig_pmd))
1716			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1717	} else if (is_huge_zero_pmd(orig_pmd)) {
1718		zap_deposited_table(tlb->mm, pmd);
1719		spin_unlock(ptl);
1720		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1721	} else {
1722		struct page *page = NULL;
1723		int flush_needed = 1;
1724
1725		if (pmd_present(orig_pmd)) {
1726			page = pmd_page(orig_pmd);
1727			page_remove_rmap(page, true);
1728			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1729			VM_BUG_ON_PAGE(!PageHead(page), page);
1730		} else if (thp_migration_supported()) {
1731			swp_entry_t entry;
1732
1733			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1734			entry = pmd_to_swp_entry(orig_pmd);
1735			page = pfn_to_page(swp_offset(entry));
1736			flush_needed = 0;
1737		} else
1738			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1739
1740		if (PageAnon(page)) {
1741			zap_deposited_table(tlb->mm, pmd);
1742			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1743		} else {
1744			if (arch_needs_pgtable_deposit())
1745				zap_deposited_table(tlb->mm, pmd);
1746			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1747		}
1748
1749		spin_unlock(ptl);
1750		if (flush_needed)
1751			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1752	}
1753	return 1;
1754}
1755
1756#ifndef pmd_move_must_withdraw
1757static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1758					 spinlock_t *old_pmd_ptl,
1759					 struct vm_area_struct *vma)
1760{
1761	/*
1762	 * With split pmd lock we also need to move preallocated
1763	 * PTE page table if new_pmd is on different PMD page table.
1764	 *
1765	 * We also don't deposit and withdraw tables for file pages.
1766	 */
1767	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1768}
1769#endif
1770
1771static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1772{
1773#ifdef CONFIG_MEM_SOFT_DIRTY
1774	if (unlikely(is_pmd_migration_entry(pmd)))
1775		pmd = pmd_swp_mksoft_dirty(pmd);
1776	else if (pmd_present(pmd))
1777		pmd = pmd_mksoft_dirty(pmd);
1778#endif
1779	return pmd;
 
 
1780}
1781
1782bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
 
1783		  unsigned long new_addr, unsigned long old_end,
1784		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1785{
1786	spinlock_t *old_ptl, *new_ptl;
 
1787	pmd_t pmd;
 
1788	struct mm_struct *mm = vma->vm_mm;
1789	bool force_flush = false;
1790
1791	if ((old_addr & ~HPAGE_PMD_MASK) ||
1792	    (new_addr & ~HPAGE_PMD_MASK) ||
1793	    old_end - old_addr < HPAGE_PMD_SIZE)
1794		return false;
 
1795
1796	/*
1797	 * The destination pmd shouldn't be established, free_pgtables()
1798	 * should have release it.
1799	 */
1800	if (WARN_ON(!pmd_none(*new_pmd))) {
1801		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1802		return false;
1803	}
1804
1805	/*
1806	 * We don't have to worry about the ordering of src and dst
1807	 * ptlocks because exclusive mmap_sem prevents deadlock.
1808	 */
1809	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1810	if (old_ptl) {
1811		new_ptl = pmd_lockptr(mm, new_pmd);
1812		if (new_ptl != old_ptl)
1813			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1814		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1815		if (pmd_present(pmd) && pmd_dirty(pmd))
1816			force_flush = true;
1817		VM_BUG_ON(!pmd_none(*new_pmd));
1818
1819		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1820			pgtable_t pgtable;
1821			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1822			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1823		}
1824		pmd = move_soft_dirty_pmd(pmd);
1825		set_pmd_at(mm, new_addr, new_pmd, pmd);
1826		if (new_ptl != old_ptl)
1827			spin_unlock(new_ptl);
1828		if (force_flush)
1829			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1830		else
1831			*need_flush = true;
1832		spin_unlock(old_ptl);
1833		return true;
1834	}
1835	return false;
 
1836}
1837
1838/*
1839 * Returns
1840 *  - 0 if PMD could not be locked
1841 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1842 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1843 */
1844int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1845		unsigned long addr, pgprot_t newprot, int prot_numa)
1846{
1847	struct mm_struct *mm = vma->vm_mm;
1848	spinlock_t *ptl;
1849	pmd_t entry;
1850	bool preserve_write;
1851	int ret;
1852
1853	ptl = __pmd_trans_huge_lock(pmd, vma);
1854	if (!ptl)
1855		return 0;
1856
1857	preserve_write = prot_numa && pmd_write(*pmd);
1858	ret = 1;
 
 
 
 
 
 
 
 
 
 
 
1859
1860#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861	if (is_swap_pmd(*pmd)) {
1862		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1863
1864		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1865		if (is_write_migration_entry(entry)) {
1866			pmd_t newpmd;
1867			/*
1868			 * A protection check is difficult so
1869			 * just be safe and disable write
 
 
1870			 */
1871			make_migration_entry_read(&entry);
1872			newpmd = swp_entry_to_pmd(entry);
1873			if (pmd_swp_soft_dirty(*pmd))
1874				newpmd = pmd_swp_mksoft_dirty(newpmd);
1875			set_pmd_at(mm, addr, pmd, newpmd);
1876		}
1877		goto unlock;
1878	}
1879#endif
1880
1881	/*
1882	 * Avoid trapping faults against the zero page. The read-only
1883	 * data is likely to be read-cached on the local CPU and
1884	 * local/remote hits to the zero page are not interesting.
1885	 */
1886	if (prot_numa && is_huge_zero_pmd(*pmd))
1887		goto unlock;
1888
1889	if (prot_numa && pmd_protnone(*pmd))
1890		goto unlock;
1891
1892	/*
1893	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1894	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895	 * which is also under down_read(mmap_sem):
1896	 *
1897	 *	CPU0:				CPU1:
1898	 *				change_huge_pmd(prot_numa=1)
1899	 *				 pmdp_huge_get_and_clear_notify()
1900	 * madvise_dontneed()
1901	 *  zap_pmd_range()
1902	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1903	 *   // skip the pmd
1904	 *				 set_pmd_at();
1905	 *				 // pmd is re-established
1906	 *
1907	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908	 * which may break userspace.
1909	 *
1910	 * pmdp_invalidate() is required to make sure we don't miss
1911	 * dirty/young flags set by hardware.
1912	 */
1913	entry = pmdp_invalidate(vma, addr, pmd);
1914
1915	entry = pmd_modify(entry, newprot);
1916	if (preserve_write)
1917		entry = pmd_mk_savedwrite(entry);
1918	ret = HPAGE_PMD_NR;
1919	set_pmd_at(mm, addr, pmd, entry);
1920	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1921unlock:
1922	spin_unlock(ptl);
1923	return ret;
1924}
1925
1926/*
1927 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
 
1928 *
1929 * Note that if it returns page table lock pointer, this routine returns without
1930 * unlocking page table lock. So callers must unlock it.
1931 */
1932spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
 
1933{
1934	spinlock_t *ptl;
1935	ptl = pmd_lock(vma->vm_mm, pmd);
1936	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1937			pmd_devmap(*pmd)))
1938		return ptl;
1939	spin_unlock(ptl);
1940	return NULL;
 
 
 
 
 
 
 
1941}
1942
1943/*
1944 * Returns true if a given pud maps a thp, false otherwise.
 
1945 *
1946 * Note that if it returns true, this routine returns without unlocking page
1947 * table lock. So callers must unlock it.
 
1948 */
1949spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
 
 
 
 
1950{
1951	spinlock_t *ptl;
 
 
1952
1953	ptl = pud_lock(vma->vm_mm, pud);
1954	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1955		return ptl;
1956	spin_unlock(ptl);
1957	return NULL;
1958}
1959
1960#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1961int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1962		 pud_t *pud, unsigned long addr)
1963{
1964	pud_t orig_pud;
1965	spinlock_t *ptl;
 
1966
1967	ptl = __pud_trans_huge_lock(pud, vma);
1968	if (!ptl)
1969		return 0;
 
 
1970	/*
1971	 * For architectures like ppc64 we look at deposited pgtable
1972	 * when calling pudp_huge_get_and_clear. So do the
1973	 * pgtable_trans_huge_withdraw after finishing pudp related
1974	 * operations.
1975	 */
1976	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1977			tlb->fullmm);
1978	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1979	if (vma_is_dax(vma)) {
1980		spin_unlock(ptl);
1981		/* No zero page support yet */
1982	} else {
1983		/* No support for anonymous PUD pages yet */
1984		BUG();
1985	}
1986	return 1;
1987}
1988
1989static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1990		unsigned long haddr)
1991{
1992	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1993	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1994	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1995	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1996
1997	count_vm_event(THP_SPLIT_PUD);
1998
1999	pudp_huge_clear_flush_notify(vma, haddr, pud);
2000}
2001
2002void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2003		unsigned long address)
 
2004{
2005	spinlock_t *ptl;
2006	struct mm_struct *mm = vma->vm_mm;
2007	unsigned long haddr = address & HPAGE_PUD_MASK;
2008
2009	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2010	ptl = pud_lock(mm, pud);
2011	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2012		goto out;
2013	__split_huge_pud_locked(vma, pud, haddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014
2015out:
2016	spin_unlock(ptl);
2017	/*
2018	 * No need to double call mmu_notifier->invalidate_range() callback as
2019	 * the above pudp_huge_clear_flush_notify() did already call it.
2020	 */
2021	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2022					       HPAGE_PUD_SIZE);
2023}
2024#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2025
2026static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2027		unsigned long haddr, pmd_t *pmd)
2028{
2029	struct mm_struct *mm = vma->vm_mm;
2030	pgtable_t pgtable;
2031	pmd_t _pmd;
2032	int i;
 
 
 
2033
2034	/*
2035	 * Leave pmd empty until pte is filled note that it is fine to delay
2036	 * notification until mmu_notifier_invalidate_range_end() as we are
2037	 * replacing a zero pmd write protected page with a zero pte write
2038	 * protected page.
2039	 *
2040	 * See Documentation/vm/mmu_notifier.txt
2041	 */
2042	pmdp_huge_clear_flush(vma, haddr, pmd);
2043
2044	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2045	pmd_populate(mm, &_pmd, pgtable);
2046
2047	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2048		pte_t *pte, entry;
2049		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2050		entry = pte_mkspecial(entry);
2051		pte = pte_offset_map(&_pmd, haddr);
2052		VM_BUG_ON(!pte_none(*pte));
2053		set_pte_at(mm, haddr, pte, entry);
2054		pte_unmap(pte);
2055	}
2056	smp_wmb(); /* make pte visible before pmd */
2057	pmd_populate(mm, pmd, pgtable);
2058}
2059
2060static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2061		unsigned long haddr, bool freeze)
2062{
2063	struct mm_struct *mm = vma->vm_mm;
2064	struct page *page;
2065	pgtable_t pgtable;
2066	pmd_t old_pmd, _pmd;
2067	bool young, write, soft_dirty, pmd_migration = false;
2068	unsigned long addr;
2069	int i;
2070
2071	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2072	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2073	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2074	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2075				&& !pmd_devmap(*pmd));
2076
2077	count_vm_event(THP_SPLIT_PMD);
2078
2079	if (!vma_is_anonymous(vma)) {
2080		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2081		/*
2082		 * We are going to unmap this huge page. So
2083		 * just go ahead and zap it
2084		 */
2085		if (arch_needs_pgtable_deposit())
2086			zap_deposited_table(mm, pmd);
2087		if (vma_is_dax(vma))
2088			return;
2089		page = pmd_page(_pmd);
2090		if (!PageReferenced(page) && pmd_young(_pmd))
2091			SetPageReferenced(page);
2092		page_remove_rmap(page, true);
2093		put_page(page);
2094		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2095		return;
2096	} else if (is_huge_zero_pmd(*pmd)) {
2097		/*
2098		 * FIXME: Do we want to invalidate secondary mmu by calling
2099		 * mmu_notifier_invalidate_range() see comments below inside
2100		 * __split_huge_pmd() ?
2101		 *
2102		 * We are going from a zero huge page write protected to zero
2103		 * small page also write protected so it does not seems useful
2104		 * to invalidate secondary mmu at this time.
2105		 */
2106		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2107	}
 
 
 
 
2108
2109	/*
2110	 * Up to this point the pmd is present and huge and userland has the
2111	 * whole access to the hugepage during the split (which happens in
2112	 * place). If we overwrite the pmd with the not-huge version pointing
2113	 * to the pte here (which of course we could if all CPUs were bug
2114	 * free), userland could trigger a small page size TLB miss on the
2115	 * small sized TLB while the hugepage TLB entry is still established in
2116	 * the huge TLB. Some CPU doesn't like that.
2117	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2118	 * 383 on page 93. Intel should be safe but is also warns that it's
2119	 * only safe if the permission and cache attributes of the two entries
2120	 * loaded in the two TLB is identical (which should be the case here).
2121	 * But it is generally safer to never allow small and huge TLB entries
2122	 * for the same virtual address to be loaded simultaneously. So instead
2123	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2124	 * current pmd notpresent (atomically because here the pmd_trans_huge
2125	 * must remain set at all times on the pmd until the split is complete
2126	 * for this pmd), then we flush the SMP TLB and finally we write the
2127	 * non-huge version of the pmd entry with pmd_populate.
2128	 */
2129	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2130
2131#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2132	pmd_migration = is_pmd_migration_entry(old_pmd);
2133	if (pmd_migration) {
2134		swp_entry_t entry;
2135
2136		entry = pmd_to_swp_entry(old_pmd);
2137		page = pfn_to_page(swp_offset(entry));
2138	} else
2139#endif
2140		page = pmd_page(old_pmd);
2141	VM_BUG_ON_PAGE(!page_count(page), page);
2142	page_ref_add(page, HPAGE_PMD_NR - 1);
2143	if (pmd_dirty(old_pmd))
2144		SetPageDirty(page);
2145	write = pmd_write(old_pmd);
2146	young = pmd_young(old_pmd);
2147	soft_dirty = pmd_soft_dirty(old_pmd);
 
 
2148
2149	/*
2150	 * Withdraw the table only after we mark the pmd entry invalid.
2151	 * This's critical for some architectures (Power).
2152	 */
2153	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2154	pmd_populate(mm, &_pmd, pgtable);
2155
2156	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2157		pte_t entry, *pte;
2158		/*
2159		 * Note that NUMA hinting access restrictions are not
2160		 * transferred to avoid any possibility of altering
2161		 * permissions across VMAs.
2162		 */
2163		if (freeze || pmd_migration) {
2164			swp_entry_t swp_entry;
2165			swp_entry = make_migration_entry(page + i, write);
2166			entry = swp_entry_to_pte(swp_entry);
2167			if (soft_dirty)
2168				entry = pte_swp_mksoft_dirty(entry);
2169		} else {
2170			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2171			entry = maybe_mkwrite(entry, vma);
2172			if (!write)
2173				entry = pte_wrprotect(entry);
2174			if (!young)
2175				entry = pte_mkold(entry);
2176			if (soft_dirty)
2177				entry = pte_mksoft_dirty(entry);
2178		}
2179		pte = pte_offset_map(&_pmd, addr);
2180		BUG_ON(!pte_none(*pte));
2181		set_pte_at(mm, addr, pte, entry);
2182		atomic_inc(&page[i]._mapcount);
2183		pte_unmap(pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2184	}
2185
2186	/*
2187	 * Set PG_double_map before dropping compound_mapcount to avoid
2188	 * false-negative page_mapped().
2189	 */
2190	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2191		for (i = 0; i < HPAGE_PMD_NR; i++)
2192			atomic_inc(&page[i]._mapcount);
2193	}
2194
2195	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2196		/* Last compound_mapcount is gone. */
2197		__dec_node_page_state(page, NR_ANON_THPS);
2198		if (TestClearPageDoubleMap(page)) {
2199			/* No need in mapcount reference anymore */
2200			for (i = 0; i < HPAGE_PMD_NR; i++)
2201				atomic_dec(&page[i]._mapcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203	}
2204
2205	smp_wmb(); /* make pte visible before pmd */
2206	pmd_populate(mm, pmd, pgtable);
2207
2208	if (freeze) {
2209		for (i = 0; i < HPAGE_PMD_NR; i++) {
2210			page_remove_rmap(page + i, false);
2211			put_page(page + i);
2212		}
2213	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2214}
2215
2216void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2217		unsigned long address, bool freeze, struct page *page)
 
 
 
 
 
 
2218{
2219	spinlock_t *ptl;
2220	struct mm_struct *mm = vma->vm_mm;
2221	unsigned long haddr = address & HPAGE_PMD_MASK;
2222
2223	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2224	ptl = pmd_lock(mm, pmd);
2225
2226	/*
2227	 * If caller asks to setup a migration entries, we need a page to check
2228	 * pmd against. Otherwise we can end up replacing wrong page.
 
 
 
2229	 */
2230	VM_BUG_ON(freeze && !page);
2231	if (page && page != pmd_page(*pmd))
2232	        goto out;
2233
2234	if (pmd_trans_huge(*pmd)) {
2235		page = pmd_page(*pmd);
2236		if (PageMlocked(page))
2237			clear_page_mlock(page);
2238	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2239		goto out;
2240	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2241out:
2242	spin_unlock(ptl);
2243	/*
2244	 * No need to double call mmu_notifier->invalidate_range() callback.
2245	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2246	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2247	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2248	 *    fault will trigger a flush_notify before pointing to a new page
2249	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2250	 *    page in the meantime)
2251	 *  3) Split a huge pmd into pte pointing to the same page. No need
2252	 *     to invalidate secondary tlb entry they are all still valid.
2253	 *     any further changes to individual pte will notify. So no need
2254	 *     to call mmu_notifier->invalidate_range()
2255	 */
2256	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2257					       HPAGE_PMD_SIZE);
2258}
2259
2260void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2261		bool freeze, struct page *page)
2262{
2263	pgd_t *pgd;
2264	p4d_t *p4d;
2265	pud_t *pud;
2266	pmd_t *pmd;
2267
2268	pgd = pgd_offset(vma->vm_mm, address);
2269	if (!pgd_present(*pgd))
2270		return;
2271
2272	p4d = p4d_offset(pgd, address);
2273	if (!p4d_present(*p4d))
2274		return;
 
 
 
 
2275
2276	pud = pud_offset(p4d, address);
2277	if (!pud_present(*pud))
2278		return;
2279
2280	pmd = pmd_offset(pud, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2281
2282	__split_huge_pmd(vma, pmd, address, freeze, page);
2283}
2284
2285void vma_adjust_trans_huge(struct vm_area_struct *vma,
2286			     unsigned long start,
2287			     unsigned long end,
2288			     long adjust_next)
2289{
2290	/*
2291	 * If the new start address isn't hpage aligned and it could
2292	 * previously contain an hugepage: check if we need to split
2293	 * an huge pmd.
2294	 */
2295	if (start & ~HPAGE_PMD_MASK &&
2296	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2297	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2298		split_huge_pmd_address(vma, start, false, NULL);
2299
2300	/*
2301	 * If the new end address isn't hpage aligned and it could
2302	 * previously contain an hugepage: check if we need to split
2303	 * an huge pmd.
2304	 */
2305	if (end & ~HPAGE_PMD_MASK &&
2306	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2307	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2308		split_huge_pmd_address(vma, end, false, NULL);
2309
2310	/*
2311	 * If we're also updating the vma->vm_next->vm_start, if the new
2312	 * vm_next->vm_start isn't page aligned and it could previously
2313	 * contain an hugepage: check if we need to split an huge pmd.
2314	 */
2315	if (adjust_next > 0) {
2316		struct vm_area_struct *next = vma->vm_next;
2317		unsigned long nstart = next->vm_start;
2318		nstart += adjust_next << PAGE_SHIFT;
2319		if (nstart & ~HPAGE_PMD_MASK &&
2320		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2321		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2322			split_huge_pmd_address(next, nstart, false, NULL);
2323	}
2324}
2325
2326static void freeze_page(struct page *page)
2327{
2328	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2329		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2330	bool unmap_success;
2331
2332	VM_BUG_ON_PAGE(!PageHead(page), page);
 
 
2333
2334	if (PageAnon(page))
2335		ttu_flags |= TTU_SPLIT_FREEZE;
 
2336
2337	unmap_success = try_to_unmap(page, ttu_flags);
2338	VM_BUG_ON_PAGE(!unmap_success, page);
2339}
2340
2341static void unfreeze_page(struct page *page)
 
2342{
2343	int i;
2344	if (PageTransHuge(page)) {
2345		remove_migration_ptes(page, page, true);
2346	} else {
2347		for (i = 0; i < HPAGE_PMD_NR; i++)
2348			remove_migration_ptes(page + i, page + i, true);
2349	}
2350}
2351
2352static void __split_huge_page_tail(struct page *head, int tail,
2353		struct lruvec *lruvec, struct list_head *list)
2354{
2355	struct page *page_tail = head + tail;
 
2356
2357	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
 
 
 
2358
2359	/*
2360	 * Clone page flags before unfreezing refcount.
2361	 *
2362	 * After successful get_page_unless_zero() might follow flags change,
2363	 * for exmaple lock_page() which set PG_waiters.
2364	 */
2365	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2366	page_tail->flags |= (head->flags &
2367			((1L << PG_referenced) |
2368			 (1L << PG_swapbacked) |
2369			 (1L << PG_swapcache) |
2370			 (1L << PG_mlocked) |
2371			 (1L << PG_uptodate) |
2372			 (1L << PG_active) |
2373			 (1L << PG_locked) |
2374			 (1L << PG_unevictable) |
2375			 (1L << PG_dirty)));
2376
2377	/* Page flags must be visible before we make the page non-compound. */
2378	smp_wmb();
 
 
 
 
2379
 
 
2380	/*
2381	 * Clear PageTail before unfreezing page refcount.
2382	 *
2383	 * After successful get_page_unless_zero() might follow put_page()
2384	 * which needs correct compound_head().
2385	 */
2386	clear_compound_head(page_tail);
2387
2388	/* Finally unfreeze refcount. Additional reference from page cache. */
2389	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2390					  PageSwapCache(head)));
 
 
2391
2392	if (page_is_young(head))
2393		set_page_young(page_tail);
2394	if (page_is_idle(head))
2395		set_page_idle(page_tail);
2396
2397	/* ->mapping in first tail page is compound_mapcount */
2398	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2399			page_tail);
2400	page_tail->mapping = head->mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2401
2402	page_tail->index = head->index + tail;
2403	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
 
 
2404
2405	/*
2406	 * always add to the tail because some iterators expect new
2407	 * pages to show after the currently processed elements - e.g.
2408	 * migrate_pages
2409	 */
2410	lru_add_page_tail(head, page_tail, lruvec, list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411}
2412
2413static void __split_huge_page(struct page *page, struct list_head *list,
2414		unsigned long flags)
2415{
2416	struct page *head = compound_head(page);
2417	struct zone *zone = page_zone(head);
2418	struct lruvec *lruvec;
2419	pgoff_t end = -1;
2420	int i;
2421
2422	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
 
 
 
 
 
 
 
2423
2424	/* complete memcg works before add pages to LRU */
2425	mem_cgroup_split_huge_fixup(head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2426
2427	if (!PageAnon(page))
2428		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
 
2429
2430	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2431		__split_huge_page_tail(head, i, lruvec, list);
2432		/* Some pages can be beyond i_size: drop them from page cache */
2433		if (head[i].index >= end) {
2434			ClearPageDirty(head + i);
2435			__delete_from_page_cache(head + i, NULL);
2436			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2437				shmem_uncharge(head->mapping->host, 1);
2438			put_page(head + i);
 
 
 
 
 
 
 
 
 
2439		}
 
 
 
 
 
 
 
 
 
2440	}
 
 
 
 
 
 
2441
2442	ClearPageCompound(head);
2443	/* See comment in __split_huge_page_tail() */
2444	if (PageAnon(head)) {
2445		/* Additional pin to radix tree of swap cache */
2446		if (PageSwapCache(head))
2447			page_ref_add(head, 2);
2448		else
2449			page_ref_inc(head);
2450	} else {
2451		/* Additional pin to radix tree */
2452		page_ref_add(head, 2);
2453		xa_unlock(&head->mapping->i_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2454	}
 
2455
2456	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
 
 
 
 
2457
2458	unfreeze_page(head);
2459
2460	for (i = 0; i < HPAGE_PMD_NR; i++) {
2461		struct page *subpage = head + i;
2462		if (subpage == page)
2463			continue;
2464		unlock_page(subpage);
2465
2466		/*
2467		 * Subpages may be freed if there wasn't any mapping
2468		 * like if add_to_swap() is running on a lru page that
2469		 * had its mapping zapped. And freeing these pages
2470		 * requires taking the lru_lock so we do the put_page
2471		 * of the tail pages after the split is complete.
2472		 */
2473		put_page(subpage);
2474	}
 
 
 
 
 
 
 
 
 
2475}
2476
2477int total_mapcount(struct page *page)
2478{
2479	int i, compound, ret;
 
 
 
 
 
 
 
 
 
 
2480
2481	VM_BUG_ON_PAGE(PageTail(page), page);
 
2482
2483	if (likely(!PageCompound(page)))
2484		return atomic_read(&page->_mapcount) + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2485
2486	compound = compound_mapcount(page);
2487	if (PageHuge(page))
2488		return compound;
2489	ret = compound;
2490	for (i = 0; i < HPAGE_PMD_NR; i++)
2491		ret += atomic_read(&page[i]._mapcount) + 1;
2492	/* File pages has compound_mapcount included in _mapcount */
2493	if (!PageAnon(page))
2494		return ret - compound * HPAGE_PMD_NR;
2495	if (PageDoubleMap(page))
2496		ret -= HPAGE_PMD_NR;
2497	return ret;
2498}
2499
2500/*
2501 * This calculates accurately how many mappings a transparent hugepage
2502 * has (unlike page_mapcount() which isn't fully accurate). This full
2503 * accuracy is primarily needed to know if copy-on-write faults can
2504 * reuse the page and change the mapping to read-write instead of
2505 * copying them. At the same time this returns the total_mapcount too.
2506 *
2507 * The function returns the highest mapcount any one of the subpages
2508 * has. If the return value is one, even if different processes are
2509 * mapping different subpages of the transparent hugepage, they can
2510 * all reuse it, because each process is reusing a different subpage.
2511 *
2512 * The total_mapcount is instead counting all virtual mappings of the
2513 * subpages. If the total_mapcount is equal to "one", it tells the
2514 * caller all mappings belong to the same "mm" and in turn the
2515 * anon_vma of the transparent hugepage can become the vma->anon_vma
2516 * local one as no other process may be mapping any of the subpages.
2517 *
2518 * It would be more accurate to replace page_mapcount() with
2519 * page_trans_huge_mapcount(), however we only use
2520 * page_trans_huge_mapcount() in the copy-on-write faults where we
2521 * need full accuracy to avoid breaking page pinning, because
2522 * page_trans_huge_mapcount() is slower than page_mapcount().
2523 */
2524int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2525{
2526	int i, ret, _total_mapcount, mapcount;
 
 
2527
2528	/* hugetlbfs shouldn't call it */
2529	VM_BUG_ON_PAGE(PageHuge(page), page);
 
2530
2531	if (likely(!PageTransCompound(page))) {
2532		mapcount = atomic_read(&page->_mapcount) + 1;
2533		if (total_mapcount)
2534			*total_mapcount = mapcount;
2535		return mapcount;
2536	}
2537
2538	page = compound_head(page);
 
 
 
 
2539
2540	_total_mapcount = ret = 0;
2541	for (i = 0; i < HPAGE_PMD_NR; i++) {
2542		mapcount = atomic_read(&page[i]._mapcount) + 1;
2543		ret = max(ret, mapcount);
2544		_total_mapcount += mapcount;
2545	}
2546	if (PageDoubleMap(page)) {
2547		ret -= 1;
2548		_total_mapcount -= HPAGE_PMD_NR;
2549	}
2550	mapcount = compound_mapcount(page);
2551	ret += mapcount;
2552	_total_mapcount += mapcount;
2553	if (total_mapcount)
2554		*total_mapcount = _total_mapcount;
2555	return ret;
2556}
2557
2558/* Racy check whether the huge page can be split */
2559bool can_split_huge_page(struct page *page, int *pextra_pins)
2560{
2561	int extra_pins;
 
2562
2563	/* Additional pins from radix tree */
2564	if (PageAnon(page))
2565		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2566	else
2567		extra_pins = HPAGE_PMD_NR;
2568	if (pextra_pins)
2569		*pextra_pins = extra_pins;
2570	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2571}
2572
2573/*
2574 * This function splits huge page into normal pages. @page can point to any
2575 * subpage of huge page to split. Split doesn't change the position of @page.
2576 *
2577 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2578 * The huge page must be locked.
2579 *
2580 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2581 *
2582 * Both head page and tail pages will inherit mapping, flags, and so on from
2583 * the hugepage.
2584 *
2585 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2586 * they are not mapped.
2587 *
2588 * Returns 0 if the hugepage is split successfully.
2589 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2590 * us.
2591 */
2592int split_huge_page_to_list(struct page *page, struct list_head *list)
2593{
2594	struct page *head = compound_head(page);
2595	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2596	struct anon_vma *anon_vma = NULL;
2597	struct address_space *mapping = NULL;
2598	int count, mapcount, extra_pins, ret;
2599	bool mlocked;
2600	unsigned long flags;
2601
2602	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2603	VM_BUG_ON_PAGE(!PageLocked(page), page);
2604	VM_BUG_ON_PAGE(!PageCompound(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2605
2606	if (PageWriteback(page))
2607		return -EBUSY;
2608
2609	if (PageAnon(head)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610		/*
2611		 * The caller does not necessarily hold an mmap_sem that would
2612		 * prevent the anon_vma disappearing so we first we take a
2613		 * reference to it and then lock the anon_vma for write. This
2614		 * is similar to page_lock_anon_vma_read except the write lock
2615		 * is taken to serialise against parallel split or collapse
2616		 * operations.
2617		 */
2618		anon_vma = page_get_anon_vma(head);
2619		if (!anon_vma) {
2620			ret = -EBUSY;
2621			goto out;
2622		}
2623		mapping = NULL;
2624		anon_vma_lock_write(anon_vma);
2625	} else {
2626		mapping = head->mapping;
2627
2628		/* Truncated ? */
2629		if (!mapping) {
2630			ret = -EBUSY;
2631			goto out;
2632		}
2633
2634		anon_vma = NULL;
2635		i_mmap_lock_read(mapping);
2636	}
 
 
 
 
2637
2638	/*
2639	 * Racy check if we can split the page, before freeze_page() will
2640	 * split PMDs
 
2641	 */
2642	if (!can_split_huge_page(head, &extra_pins)) {
2643		ret = -EBUSY;
2644		goto out_unlock;
2645	}
2646
2647	mlocked = PageMlocked(page);
2648	freeze_page(head);
2649	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2650
2651	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2652	if (mlocked)
2653		lru_add_drain();
 
 
 
 
 
 
 
2654
2655	/* prevent PageLRU to go away from under us, and freeze lru stats */
2656	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
 
 
2657
2658	if (mapping) {
2659		void **pslot;
 
 
 
 
 
 
 
 
 
 
2660
2661		xa_lock(&mapping->i_pages);
2662		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2663				page_index(head));
2664		/*
2665		 * Check if the head page is present in radix tree.
2666		 * We assume all tail are present too, if head is there.
2667		 */
2668		if (radix_tree_deref_slot_protected(pslot,
2669					&mapping->i_pages.xa_lock) != head)
2670			goto fail;
2671	}
2672
2673	/* Prevent deferred_split_scan() touching ->_refcount */
2674	spin_lock(&pgdata->split_queue_lock);
2675	count = page_count(head);
2676	mapcount = total_mapcount(head);
2677	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2678		if (!list_empty(page_deferred_list(head))) {
2679			pgdata->split_queue_len--;
2680			list_del(page_deferred_list(head));
2681		}
2682		if (mapping)
2683			__dec_node_page_state(page, NR_SHMEM_THPS);
2684		spin_unlock(&pgdata->split_queue_lock);
2685		__split_huge_page(page, list, flags);
2686		if (PageSwapCache(head)) {
2687			swp_entry_t entry = { .val = page_private(head) };
2688
2689			ret = split_swap_cluster(entry);
2690		} else
2691			ret = 0;
2692	} else {
2693		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2694			pr_alert("total_mapcount: %u, page_count(): %u\n",
2695					mapcount, count);
2696			if (PageTail(page))
2697				dump_page(head, NULL);
2698			dump_page(page, "total_mapcount(head) > 0");
2699			BUG();
2700		}
2701		spin_unlock(&pgdata->split_queue_lock);
2702fail:		if (mapping)
2703			xa_unlock(&mapping->i_pages);
2704		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2705		unfreeze_page(head);
2706		ret = -EBUSY;
2707	}
2708
2709out_unlock:
2710	if (anon_vma) {
2711		anon_vma_unlock_write(anon_vma);
2712		put_anon_vma(anon_vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2713	}
2714	if (mapping)
2715		i_mmap_unlock_read(mapping);
2716out:
2717	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2718	return ret;
2719}
2720
2721void free_transhuge_page(struct page *page)
2722{
2723	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2724	unsigned long flags;
 
2725
2726	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2727	if (!list_empty(page_deferred_list(page))) {
2728		pgdata->split_queue_len--;
2729		list_del(page_deferred_list(page));
 
 
 
 
 
 
 
 
 
 
2730	}
2731	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2732	free_compound_page(page);
2733}
2734
2735void deferred_split_huge_page(struct page *page)
2736{
2737	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2738	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2739
2740	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 
 
2741
2742	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2743	if (list_empty(page_deferred_list(page))) {
2744		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2745		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2746		pgdata->split_queue_len++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2747	}
2748	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 
2749}
2750
2751static unsigned long deferred_split_count(struct shrinker *shrink,
2752		struct shrink_control *sc)
2753{
2754	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2755	return READ_ONCE(pgdata->split_queue_len);
2756}
2757
2758static unsigned long deferred_split_scan(struct shrinker *shrink,
2759		struct shrink_control *sc)
2760{
2761	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2762	unsigned long flags;
2763	LIST_HEAD(list), *pos, *next;
2764	struct page *page;
2765	int split = 0;
2766
2767	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2768	/* Take pin on all head pages to avoid freeing them under us */
2769	list_for_each_safe(pos, next, &pgdata->split_queue) {
2770		page = list_entry((void *)pos, struct page, mapping);
2771		page = compound_head(page);
2772		if (get_page_unless_zero(page)) {
2773			list_move(page_deferred_list(page), &list);
2774		} else {
2775			/* We lost race with put_compound_page() */
2776			list_del_init(page_deferred_list(page));
2777			pgdata->split_queue_len--;
2778		}
2779		if (!--sc->nr_to_scan)
2780			break;
2781	}
2782	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2783
2784	list_for_each_safe(pos, next, &list) {
2785		page = list_entry((void *)pos, struct page, mapping);
2786		if (!trylock_page(page))
2787			goto next;
2788		/* split_huge_page() removes page from list on success */
2789		if (!split_huge_page(page))
2790			split++;
2791		unlock_page(page);
2792next:
2793		put_page(page);
2794	}
2795
2796	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2797	list_splice_tail(&list, &pgdata->split_queue);
2798	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2799
2800	/*
2801	 * Stop shrinker if we didn't split any page, but the queue is empty.
2802	 * This can happen if pages were freed under us.
2803	 */
2804	if (!split && list_empty(&pgdata->split_queue))
2805		return SHRINK_STOP;
2806	return split;
2807}
 
 
 
2808
2809static struct shrinker deferred_split_shrinker = {
2810	.count_objects = deferred_split_count,
2811	.scan_objects = deferred_split_scan,
2812	.seeks = DEFAULT_SEEKS,
2813	.flags = SHRINKER_NUMA_AWARE,
2814};
2815
2816#ifdef CONFIG_DEBUG_FS
2817static int split_huge_pages_set(void *data, u64 val)
2818{
2819	struct zone *zone;
2820	struct page *page;
2821	unsigned long pfn, max_zone_pfn;
2822	unsigned long total = 0, split = 0;
2823
2824	if (val != 1)
2825		return -EINVAL;
 
2826
2827	for_each_populated_zone(zone) {
2828		max_zone_pfn = zone_end_pfn(zone);
2829		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2830			if (!pfn_valid(pfn))
2831				continue;
2832
2833			page = pfn_to_page(pfn);
2834			if (!get_page_unless_zero(page))
2835				continue;
2836
2837			if (zone != page_zone(page))
2838				goto next;
 
2839
2840			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2841				goto next;
2842
2843			total++;
2844			lock_page(page);
2845			if (!split_huge_page(page))
2846				split++;
2847			unlock_page(page);
2848next:
2849			put_page(page);
2850		}
2851	}
2852
2853	pr_info("%lu of %lu THP split\n", split, total);
2854
 
 
 
 
2855	return 0;
2856}
2857DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2858		"%llu\n");
2859
2860static int __init split_huge_pages_debugfs(void)
 
2861{
2862	void *ret;
 
 
 
2863
2864	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2865			&split_huge_pages_fops);
2866	if (!ret)
2867		pr_warn("Failed to create split_huge_pages in debugfs");
2868	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2869}
2870late_initcall(split_huge_pages_debugfs);
2871#endif
2872
2873#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2874void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2875		struct page *page)
2876{
2877	struct vm_area_struct *vma = pvmw->vma;
 
2878	struct mm_struct *mm = vma->vm_mm;
2879	unsigned long address = pvmw->address;
2880	pmd_t pmdval;
2881	swp_entry_t entry;
2882	pmd_t pmdswp;
2883
2884	if (!(pvmw->pmd && !pvmw->pte))
 
 
 
 
 
 
 
 
 
2885		return;
 
 
 
 
 
 
 
 
 
 
 
 
2886
2887	mmu_notifier_invalidate_range_start(mm, address,
2888			address + HPAGE_PMD_SIZE);
2889
2890	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2891	pmdval = *pvmw->pmd;
2892	pmdp_invalidate(vma, address, pvmw->pmd);
2893	if (pmd_dirty(pmdval))
2894		set_page_dirty(page);
2895	entry = make_migration_entry(page, pmd_write(pmdval));
2896	pmdswp = swp_entry_to_pmd(entry);
2897	if (pmd_soft_dirty(pmdval))
2898		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2899	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2900	page_remove_rmap(page, true);
2901	put_page(page);
2902
2903	mmu_notifier_invalidate_range_end(mm, address,
2904			address + HPAGE_PMD_SIZE);
 
 
 
 
 
2905}
2906
2907void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
 
2908{
2909	struct vm_area_struct *vma = pvmw->vma;
2910	struct mm_struct *mm = vma->vm_mm;
2911	unsigned long address = pvmw->address;
2912	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2913	pmd_t pmde;
2914	swp_entry_t entry;
2915
2916	if (!(pvmw->pmd && !pvmw->pte))
 
 
 
 
 
 
 
 
2917		return;
 
 
 
 
 
 
2918
2919	entry = pmd_to_swp_entry(*pvmw->pmd);
2920	get_page(new);
2921	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2922	if (pmd_swp_soft_dirty(*pvmw->pmd))
2923		pmde = pmd_mksoft_dirty(pmde);
2924	if (is_write_migration_entry(entry))
2925		pmde = maybe_pmd_mkwrite(pmde, vma);
2926
2927	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2928	if (PageAnon(new))
2929		page_add_anon_rmap(new, vma, mmun_start, true);
2930	else
2931		page_add_file_rmap(new, true);
2932	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2933	if (vma->vm_flags & VM_LOCKED)
2934		mlock_vma_page(new);
2935	update_mmu_cache_pmd(vma, address, pvmw->pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2936}
2937#endif
v3.15
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
 
 
   8#include <linux/mm.h>
   9#include <linux/sched.h>
 
 
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
  15#include <linux/shrinker.h>
  16#include <linux/mm_inline.h>
  17#include <linux/kthread.h>
 
  18#include <linux/khugepaged.h>
  19#include <linux/freezer.h>
 
  20#include <linux/mman.h>
 
  21#include <linux/pagemap.h>
 
  22#include <linux/migrate.h>
  23#include <linux/hashtable.h>
 
 
 
 
  24
  25#include <asm/tlb.h>
  26#include <asm/pgalloc.h>
  27#include "internal.h"
  28
  29/*
  30 * By default transparent hugepage support is disabled in order that avoid
  31 * to risk increase the memory footprint of applications without a guaranteed
  32 * benefit. When transparent hugepage support is enabled, is for all mappings,
  33 * and khugepaged scans all mappings.
  34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  35 * for all hugepage allocations.
  36 */
  37unsigned long transparent_hugepage_flags __read_mostly =
  38#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  39	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  40#endif
  41#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  42	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  43#endif
  44	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  45	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  46	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  47
  48/* default scan 8*512 pte (or vmas) every 30 second */
  49static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  50static unsigned int khugepaged_pages_collapsed;
  51static unsigned int khugepaged_full_scans;
  52static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  53/* during fragmentation poll the hugepage allocator once every minute */
  54static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  55static struct task_struct *khugepaged_thread __read_mostly;
  56static DEFINE_MUTEX(khugepaged_mutex);
  57static DEFINE_SPINLOCK(khugepaged_mm_lock);
  58static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  59/*
  60 * default collapse hugepages if there is at least one pte mapped like
  61 * it would have happened if the vma was large enough during page
  62 * fault.
  63 */
  64static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  65
  66static int khugepaged(void *none);
  67static int khugepaged_slab_init(void);
  68
  69#define MM_SLOTS_HASH_BITS 10
  70static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  71
  72static struct kmem_cache *mm_slot_cache __read_mostly;
  73
  74/**
  75 * struct mm_slot - hash lookup from mm to mm_slot
  76 * @hash: hash collision list
  77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  78 * @mm: the mm that this information is valid for
  79 */
  80struct mm_slot {
  81	struct hlist_node hash;
  82	struct list_head mm_node;
  83	struct mm_struct *mm;
  84};
  85
  86/**
  87 * struct khugepaged_scan - cursor for scanning
  88 * @mm_head: the head of the mm list to scan
  89 * @mm_slot: the current mm_slot we are scanning
  90 * @address: the next address inside that to be scanned
  91 *
  92 * There is only the one khugepaged_scan instance of this cursor structure.
  93 */
  94struct khugepaged_scan {
  95	struct list_head mm_head;
  96	struct mm_slot *mm_slot;
  97	unsigned long address;
  98};
  99static struct khugepaged_scan khugepaged_scan = {
 100	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 101};
 102
 103
 104static int set_recommended_min_free_kbytes(void)
 105{
 106	struct zone *zone;
 107	int nr_zones = 0;
 108	unsigned long recommended_min;
 109
 110	if (!khugepaged_enabled())
 111		return 0;
 112
 113	for_each_populated_zone(zone)
 114		nr_zones++;
 115
 116	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 117	recommended_min = pageblock_nr_pages * nr_zones * 2;
 118
 119	/*
 120	 * Make sure that on average at least two pageblocks are almost free
 121	 * of another type, one for a migratetype to fall back to and a
 122	 * second to avoid subsequent fallbacks of other types There are 3
 123	 * MIGRATE_TYPES we care about.
 124	 */
 125	recommended_min += pageblock_nr_pages * nr_zones *
 126			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 127
 128	/* don't ever allow to reserve more than 5% of the lowmem */
 129	recommended_min = min(recommended_min,
 130			      (unsigned long) nr_free_buffer_pages() / 20);
 131	recommended_min <<= (PAGE_SHIFT-10);
 132
 133	if (recommended_min > min_free_kbytes) {
 134		if (user_min_free_kbytes >= 0)
 135			pr_info("raising min_free_kbytes from %d to %lu "
 136				"to help transparent hugepage allocations\n",
 137				min_free_kbytes, recommended_min);
 138
 139		min_free_kbytes = recommended_min;
 140	}
 141	setup_per_zone_wmarks();
 142	return 0;
 143}
 144late_initcall(set_recommended_min_free_kbytes);
 145
 146static int start_khugepaged(void)
 147{
 148	int err = 0;
 149	if (khugepaged_enabled()) {
 150		if (!khugepaged_thread)
 151			khugepaged_thread = kthread_run(khugepaged, NULL,
 152							"khugepaged");
 153		if (unlikely(IS_ERR(khugepaged_thread))) {
 154			printk(KERN_ERR
 155			       "khugepaged: kthread_run(khugepaged) failed\n");
 156			err = PTR_ERR(khugepaged_thread);
 157			khugepaged_thread = NULL;
 158		}
 159
 160		if (!list_empty(&khugepaged_scan.mm_head))
 161			wake_up_interruptible(&khugepaged_wait);
 162
 163		set_recommended_min_free_kbytes();
 164	} else if (khugepaged_thread) {
 165		kthread_stop(khugepaged_thread);
 166		khugepaged_thread = NULL;
 167	}
 168
 169	return err;
 170}
 171
 172static atomic_t huge_zero_refcount;
 173static struct page *huge_zero_page __read_mostly;
 174
 175static inline bool is_huge_zero_page(struct page *page)
 176{
 177	return ACCESS_ONCE(huge_zero_page) == page;
 178}
 179
 180static inline bool is_huge_zero_pmd(pmd_t pmd)
 181{
 182	return is_huge_zero_page(pmd_page(pmd));
 183}
 184
 185static struct page *get_huge_zero_page(void)
 186{
 187	struct page *zero_page;
 188retry:
 189	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 190		return ACCESS_ONCE(huge_zero_page);
 191
 192	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 193			HPAGE_PMD_ORDER);
 194	if (!zero_page) {
 195		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 196		return NULL;
 197	}
 198	count_vm_event(THP_ZERO_PAGE_ALLOC);
 199	preempt_disable();
 200	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 201		preempt_enable();
 202		__free_page(zero_page);
 203		goto retry;
 204	}
 205
 206	/* We take additional reference here. It will be put back by shrinker */
 207	atomic_set(&huge_zero_refcount, 2);
 208	preempt_enable();
 209	return ACCESS_ONCE(huge_zero_page);
 210}
 211
 212static void put_huge_zero_page(void)
 213{
 214	/*
 215	 * Counter should never go to zero here. Only shrinker can put
 216	 * last reference.
 217	 */
 218	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 219}
 220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 221static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 222					struct shrink_control *sc)
 223{
 224	/* we can free zero page only if last reference remains */
 225	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 226}
 227
 228static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 229				       struct shrink_control *sc)
 230{
 231	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 232		struct page *zero_page = xchg(&huge_zero_page, NULL);
 233		BUG_ON(zero_page == NULL);
 234		__free_page(zero_page);
 235		return HPAGE_PMD_NR;
 236	}
 237
 238	return 0;
 239}
 240
 241static struct shrinker huge_zero_page_shrinker = {
 242	.count_objects = shrink_huge_zero_page_count,
 243	.scan_objects = shrink_huge_zero_page_scan,
 244	.seeks = DEFAULT_SEEKS,
 245};
 246
 247#ifdef CONFIG_SYSFS
 248
 249static ssize_t double_flag_show(struct kobject *kobj,
 250				struct kobj_attribute *attr, char *buf,
 251				enum transparent_hugepage_flag enabled,
 252				enum transparent_hugepage_flag req_madv)
 253{
 254	if (test_bit(enabled, &transparent_hugepage_flags)) {
 255		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 256		return sprintf(buf, "[always] madvise never\n");
 257	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 258		return sprintf(buf, "always [madvise] never\n");
 259	else
 260		return sprintf(buf, "always madvise [never]\n");
 261}
 262static ssize_t double_flag_store(struct kobject *kobj,
 263				 struct kobj_attribute *attr,
 264				 const char *buf, size_t count,
 265				 enum transparent_hugepage_flag enabled,
 266				 enum transparent_hugepage_flag req_madv)
 267{
 
 
 268	if (!memcmp("always", buf,
 269		    min(sizeof("always")-1, count))) {
 270		set_bit(enabled, &transparent_hugepage_flags);
 271		clear_bit(req_madv, &transparent_hugepage_flags);
 272	} else if (!memcmp("madvise", buf,
 273			   min(sizeof("madvise")-1, count))) {
 274		clear_bit(enabled, &transparent_hugepage_flags);
 275		set_bit(req_madv, &transparent_hugepage_flags);
 276	} else if (!memcmp("never", buf,
 277			   min(sizeof("never")-1, count))) {
 278		clear_bit(enabled, &transparent_hugepage_flags);
 279		clear_bit(req_madv, &transparent_hugepage_flags);
 280	} else
 281		return -EINVAL;
 282
 283	return count;
 284}
 285
 286static ssize_t enabled_show(struct kobject *kobj,
 287			    struct kobj_attribute *attr, char *buf)
 288{
 289	return double_flag_show(kobj, attr, buf,
 290				TRANSPARENT_HUGEPAGE_FLAG,
 291				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 292}
 293static ssize_t enabled_store(struct kobject *kobj,
 294			     struct kobj_attribute *attr,
 295			     const char *buf, size_t count)
 296{
 297	ssize_t ret;
 298
 299	ret = double_flag_store(kobj, attr, buf, count,
 300				TRANSPARENT_HUGEPAGE_FLAG,
 301				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 302
 303	if (ret > 0) {
 304		int err;
 305
 306		mutex_lock(&khugepaged_mutex);
 307		err = start_khugepaged();
 308		mutex_unlock(&khugepaged_mutex);
 309
 310		if (err)
 311			ret = err;
 312	}
 313
 314	return ret;
 315}
 316static struct kobj_attribute enabled_attr =
 317	__ATTR(enabled, 0644, enabled_show, enabled_store);
 318
 319static ssize_t single_flag_show(struct kobject *kobj,
 320				struct kobj_attribute *attr, char *buf,
 321				enum transparent_hugepage_flag flag)
 322{
 323	return sprintf(buf, "%d\n",
 324		       !!test_bit(flag, &transparent_hugepage_flags));
 325}
 326
 327static ssize_t single_flag_store(struct kobject *kobj,
 328				 struct kobj_attribute *attr,
 329				 const char *buf, size_t count,
 330				 enum transparent_hugepage_flag flag)
 331{
 332	unsigned long value;
 333	int ret;
 334
 335	ret = kstrtoul(buf, 10, &value);
 336	if (ret < 0)
 337		return ret;
 338	if (value > 1)
 339		return -EINVAL;
 340
 341	if (value)
 342		set_bit(flag, &transparent_hugepage_flags);
 343	else
 344		clear_bit(flag, &transparent_hugepage_flags);
 345
 346	return count;
 347}
 348
 349/*
 350 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 351 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 352 * memory just to allocate one more hugepage.
 353 */
 354static ssize_t defrag_show(struct kobject *kobj,
 355			   struct kobj_attribute *attr, char *buf)
 356{
 357	return double_flag_show(kobj, attr, buf,
 358				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 359				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 360}
 
 361static ssize_t defrag_store(struct kobject *kobj,
 362			    struct kobj_attribute *attr,
 363			    const char *buf, size_t count)
 364{
 365	return double_flag_store(kobj, attr, buf, count,
 366				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 367				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368}
 369static struct kobj_attribute defrag_attr =
 370	__ATTR(defrag, 0644, defrag_show, defrag_store);
 371
 372static ssize_t use_zero_page_show(struct kobject *kobj,
 373		struct kobj_attribute *attr, char *buf)
 374{
 375	return single_flag_show(kobj, attr, buf,
 376				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 377}
 378static ssize_t use_zero_page_store(struct kobject *kobj,
 379		struct kobj_attribute *attr, const char *buf, size_t count)
 380{
 381	return single_flag_store(kobj, attr, buf, count,
 382				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 383}
 384static struct kobj_attribute use_zero_page_attr =
 385	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 
 
 
 
 
 
 
 
 
 386#ifdef CONFIG_DEBUG_VM
 387static ssize_t debug_cow_show(struct kobject *kobj,
 388				struct kobj_attribute *attr, char *buf)
 389{
 390	return single_flag_show(kobj, attr, buf,
 391				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 392}
 393static ssize_t debug_cow_store(struct kobject *kobj,
 394			       struct kobj_attribute *attr,
 395			       const char *buf, size_t count)
 396{
 397	return single_flag_store(kobj, attr, buf, count,
 398				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 399}
 400static struct kobj_attribute debug_cow_attr =
 401	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 402#endif /* CONFIG_DEBUG_VM */
 403
 404static struct attribute *hugepage_attr[] = {
 405	&enabled_attr.attr,
 406	&defrag_attr.attr,
 407	&use_zero_page_attr.attr,
 
 
 
 
 408#ifdef CONFIG_DEBUG_VM
 409	&debug_cow_attr.attr,
 410#endif
 411	NULL,
 412};
 413
 414static struct attribute_group hugepage_attr_group = {
 415	.attrs = hugepage_attr,
 416};
 417
 418static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 419					 struct kobj_attribute *attr,
 420					 char *buf)
 421{
 422	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 423}
 424
 425static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 426					  struct kobj_attribute *attr,
 427					  const char *buf, size_t count)
 428{
 429	unsigned long msecs;
 430	int err;
 431
 432	err = kstrtoul(buf, 10, &msecs);
 433	if (err || msecs > UINT_MAX)
 434		return -EINVAL;
 435
 436	khugepaged_scan_sleep_millisecs = msecs;
 437	wake_up_interruptible(&khugepaged_wait);
 438
 439	return count;
 440}
 441static struct kobj_attribute scan_sleep_millisecs_attr =
 442	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 443	       scan_sleep_millisecs_store);
 444
 445static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 446					  struct kobj_attribute *attr,
 447					  char *buf)
 448{
 449	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 450}
 451
 452static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 453					   struct kobj_attribute *attr,
 454					   const char *buf, size_t count)
 455{
 456	unsigned long msecs;
 457	int err;
 458
 459	err = kstrtoul(buf, 10, &msecs);
 460	if (err || msecs > UINT_MAX)
 461		return -EINVAL;
 462
 463	khugepaged_alloc_sleep_millisecs = msecs;
 464	wake_up_interruptible(&khugepaged_wait);
 465
 466	return count;
 467}
 468static struct kobj_attribute alloc_sleep_millisecs_attr =
 469	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 470	       alloc_sleep_millisecs_store);
 471
 472static ssize_t pages_to_scan_show(struct kobject *kobj,
 473				  struct kobj_attribute *attr,
 474				  char *buf)
 475{
 476	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 477}
 478static ssize_t pages_to_scan_store(struct kobject *kobj,
 479				   struct kobj_attribute *attr,
 480				   const char *buf, size_t count)
 481{
 482	int err;
 483	unsigned long pages;
 484
 485	err = kstrtoul(buf, 10, &pages);
 486	if (err || !pages || pages > UINT_MAX)
 487		return -EINVAL;
 488
 489	khugepaged_pages_to_scan = pages;
 490
 491	return count;
 492}
 493static struct kobj_attribute pages_to_scan_attr =
 494	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 495	       pages_to_scan_store);
 496
 497static ssize_t pages_collapsed_show(struct kobject *kobj,
 498				    struct kobj_attribute *attr,
 499				    char *buf)
 500{
 501	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 502}
 503static struct kobj_attribute pages_collapsed_attr =
 504	__ATTR_RO(pages_collapsed);
 505
 506static ssize_t full_scans_show(struct kobject *kobj,
 507			       struct kobj_attribute *attr,
 508			       char *buf)
 509{
 510	return sprintf(buf, "%u\n", khugepaged_full_scans);
 511}
 512static struct kobj_attribute full_scans_attr =
 513	__ATTR_RO(full_scans);
 514
 515static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 516				      struct kobj_attribute *attr, char *buf)
 517{
 518	return single_flag_show(kobj, attr, buf,
 519				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 520}
 521static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 522				       struct kobj_attribute *attr,
 523				       const char *buf, size_t count)
 524{
 525	return single_flag_store(kobj, attr, buf, count,
 526				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 527}
 528static struct kobj_attribute khugepaged_defrag_attr =
 529	__ATTR(defrag, 0644, khugepaged_defrag_show,
 530	       khugepaged_defrag_store);
 531
 532/*
 533 * max_ptes_none controls if khugepaged should collapse hugepages over
 534 * any unmapped ptes in turn potentially increasing the memory
 535 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 536 * reduce the available free memory in the system as it
 537 * runs. Increasing max_ptes_none will instead potentially reduce the
 538 * free memory in the system during the khugepaged scan.
 539 */
 540static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 541					     struct kobj_attribute *attr,
 542					     char *buf)
 543{
 544	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 545}
 546static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 547					      struct kobj_attribute *attr,
 548					      const char *buf, size_t count)
 549{
 550	int err;
 551	unsigned long max_ptes_none;
 552
 553	err = kstrtoul(buf, 10, &max_ptes_none);
 554	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 555		return -EINVAL;
 556
 557	khugepaged_max_ptes_none = max_ptes_none;
 558
 559	return count;
 560}
 561static struct kobj_attribute khugepaged_max_ptes_none_attr =
 562	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 563	       khugepaged_max_ptes_none_store);
 564
 565static struct attribute *khugepaged_attr[] = {
 566	&khugepaged_defrag_attr.attr,
 567	&khugepaged_max_ptes_none_attr.attr,
 568	&pages_to_scan_attr.attr,
 569	&pages_collapsed_attr.attr,
 570	&full_scans_attr.attr,
 571	&scan_sleep_millisecs_attr.attr,
 572	&alloc_sleep_millisecs_attr.attr,
 573	NULL,
 574};
 575
 576static struct attribute_group khugepaged_attr_group = {
 577	.attrs = khugepaged_attr,
 578	.name = "khugepaged",
 579};
 580
 581static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 582{
 583	int err;
 584
 585	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 586	if (unlikely(!*hugepage_kobj)) {
 587		printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
 588		return -ENOMEM;
 589	}
 590
 591	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 592	if (err) {
 593		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
 594		goto delete_obj;
 595	}
 596
 597	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 598	if (err) {
 599		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
 600		goto remove_hp_group;
 601	}
 602
 603	return 0;
 604
 605remove_hp_group:
 606	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 607delete_obj:
 608	kobject_put(*hugepage_kobj);
 609	return err;
 610}
 611
 612static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 613{
 614	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 615	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 616	kobject_put(hugepage_kobj);
 617}
 618#else
 619static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 620{
 621	return 0;
 622}
 623
 624static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 625{
 626}
 627#endif /* CONFIG_SYSFS */
 628
 629static int __init hugepage_init(void)
 630{
 631	int err;
 632	struct kobject *hugepage_kobj;
 633
 634	if (!has_transparent_hugepage()) {
 635		transparent_hugepage_flags = 0;
 636		return -EINVAL;
 637	}
 638
 
 
 
 
 
 
 
 
 
 
 639	err = hugepage_init_sysfs(&hugepage_kobj);
 640	if (err)
 641		return err;
 642
 643	err = khugepaged_slab_init();
 644	if (err)
 645		goto out;
 646
 647	register_shrinker(&huge_zero_page_shrinker);
 
 
 
 
 
 648
 649	/*
 650	 * By default disable transparent hugepages on smaller systems,
 651	 * where the extra memory used could hurt more than TLB overhead
 652	 * is likely to save.  The admin can still enable it through /sys.
 653	 */
 654	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 655		transparent_hugepage_flags = 0;
 
 
 656
 657	start_khugepaged();
 
 
 658
 659	return 0;
 660out:
 
 
 
 
 
 
 661	hugepage_exit_sysfs(hugepage_kobj);
 
 662	return err;
 663}
 664subsys_initcall(hugepage_init);
 665
 666static int __init setup_transparent_hugepage(char *str)
 667{
 668	int ret = 0;
 669	if (!str)
 670		goto out;
 671	if (!strcmp(str, "always")) {
 672		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 673			&transparent_hugepage_flags);
 674		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 675			  &transparent_hugepage_flags);
 676		ret = 1;
 677	} else if (!strcmp(str, "madvise")) {
 678		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 679			  &transparent_hugepage_flags);
 680		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 681			&transparent_hugepage_flags);
 682		ret = 1;
 683	} else if (!strcmp(str, "never")) {
 684		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 685			  &transparent_hugepage_flags);
 686		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 687			  &transparent_hugepage_flags);
 688		ret = 1;
 689	}
 690out:
 691	if (!ret)
 692		printk(KERN_WARNING
 693		       "transparent_hugepage= cannot parse, ignored\n");
 694	return ret;
 695}
 696__setup("transparent_hugepage=", setup_transparent_hugepage);
 697
 698pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 699{
 700	if (likely(vma->vm_flags & VM_WRITE))
 701		pmd = pmd_mkwrite(pmd);
 702	return pmd;
 703}
 704
 705static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
 
 
 
 
 
 
 
 
 
 706{
 707	pmd_t entry;
 708	entry = mk_pmd(page, prot);
 709	entry = pmd_mkhuge(entry);
 710	return entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711}
 
 712
 713static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 714					struct vm_area_struct *vma,
 715					unsigned long haddr, pmd_t *pmd,
 716					struct page *page)
 717{
 
 
 718	pgtable_t pgtable;
 719	spinlock_t *ptl;
 
 720
 721	VM_BUG_ON_PAGE(!PageCompound(page), page);
 722	pgtable = pte_alloc_one(mm, haddr);
 723	if (unlikely(!pgtable))
 724		return VM_FAULT_OOM;
 725
 726	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 
 
 
 
 
 
 
 
 
 
 
 
 727	/*
 728	 * The memory barrier inside __SetPageUptodate makes sure that
 729	 * clear_huge_page writes become visible before the set_pmd_at()
 730	 * write.
 731	 */
 732	__SetPageUptodate(page);
 733
 734	ptl = pmd_lock(mm, pmd);
 735	if (unlikely(!pmd_none(*pmd))) {
 736		spin_unlock(ptl);
 737		mem_cgroup_uncharge_page(page);
 738		put_page(page);
 739		pte_free(mm, pgtable);
 740	} else {
 741		pmd_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742		entry = mk_huge_pmd(page, vma->vm_page_prot);
 743		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 744		page_add_new_anon_rmap(page, vma, haddr);
 745		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 746		set_pmd_at(mm, haddr, pmd, entry);
 747		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 748		atomic_long_inc(&mm->nr_ptes);
 749		spin_unlock(ptl);
 
 
 
 750	}
 751
 752	return 0;
 
 
 
 
 
 
 
 
 
 753}
 754
 755static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 
 
 
 
 
 
 
 
 
 756{
 757	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 758}
 759
 760static inline struct page *alloc_hugepage_vma(int defrag,
 761					      struct vm_area_struct *vma,
 762					      unsigned long haddr, int nd,
 763					      gfp_t extra_gfp)
 764{
 765	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 766			       HPAGE_PMD_ORDER, vma, haddr, nd);
 
 
 
 
 767}
 768
 769/* Caller must hold page table lock. */
 770static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 771		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 772		struct page *zero_page)
 773{
 774	pmd_t entry;
 775	if (!pmd_none(*pmd))
 776		return false;
 777	entry = mk_pmd(zero_page, vma->vm_page_prot);
 778	entry = pmd_wrprotect(entry);
 779	entry = pmd_mkhuge(entry);
 780	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 
 781	set_pmd_at(mm, haddr, pmd, entry);
 782	atomic_long_inc(&mm->nr_ptes);
 783	return true;
 784}
 785
 786int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 787			       unsigned long address, pmd_t *pmd,
 788			       unsigned int flags)
 789{
 
 
 790	struct page *page;
 791	unsigned long haddr = address & HPAGE_PMD_MASK;
 792
 793	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 794		return VM_FAULT_FALLBACK;
 795	if (unlikely(anon_vma_prepare(vma)))
 796		return VM_FAULT_OOM;
 797	if (unlikely(khugepaged_enter(vma)))
 798		return VM_FAULT_OOM;
 799	if (!(flags & FAULT_FLAG_WRITE) &&
 
 800			transparent_hugepage_use_zero_page()) {
 801		spinlock_t *ptl;
 802		pgtable_t pgtable;
 803		struct page *zero_page;
 804		bool set;
 805		pgtable = pte_alloc_one(mm, haddr);
 
 806		if (unlikely(!pgtable))
 807			return VM_FAULT_OOM;
 808		zero_page = get_huge_zero_page();
 809		if (unlikely(!zero_page)) {
 810			pte_free(mm, pgtable);
 811			count_vm_event(THP_FAULT_FALLBACK);
 812			return VM_FAULT_FALLBACK;
 813		}
 814		ptl = pmd_lock(mm, pmd);
 815		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
 816				zero_page);
 817		spin_unlock(ptl);
 818		if (!set) {
 819			pte_free(mm, pgtable);
 820			put_huge_zero_page();
 821		}
 822		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 823	}
 824	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 825			vma, haddr, numa_node_id(), 0);
 826	if (unlikely(!page)) {
 827		count_vm_event(THP_FAULT_FALLBACK);
 828		return VM_FAULT_FALLBACK;
 829	}
 830	if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
 831		put_page(page);
 832		count_vm_event(THP_FAULT_FALLBACK);
 833		return VM_FAULT_FALLBACK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834	}
 835	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
 836		mem_cgroup_uncharge_page(page);
 837		put_page(page);
 838		count_vm_event(THP_FAULT_FALLBACK);
 839		return VM_FAULT_FALLBACK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841
 842	count_vm_event(THP_FAULT_ALLOC);
 843	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844}
 845
 846int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 847		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 848		  struct vm_area_struct *vma)
 849{
 850	spinlock_t *dst_ptl, *src_ptl;
 851	struct page *src_page;
 852	pmd_t pmd;
 853	pgtable_t pgtable;
 854	int ret;
 
 
 
 
 855
 856	ret = -ENOMEM;
 857	pgtable = pte_alloc_one(dst_mm, addr);
 858	if (unlikely(!pgtable))
 859		goto out;
 860
 861	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 862	src_ptl = pmd_lockptr(src_mm, src_pmd);
 863	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 864
 865	ret = -EAGAIN;
 866	pmd = *src_pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867	if (unlikely(!pmd_trans_huge(pmd))) {
 868		pte_free(dst_mm, pgtable);
 869		goto out_unlock;
 870	}
 871	/*
 872	 * When page table lock is held, the huge zero pmd should not be
 873	 * under splitting since we don't split the page itself, only pmd to
 874	 * a page table.
 875	 */
 876	if (is_huge_zero_pmd(pmd)) {
 877		struct page *zero_page;
 878		bool set;
 879		/*
 880		 * get_huge_zero_page() will never allocate a new page here,
 881		 * since we already have a zero page to copy. It just takes a
 882		 * reference.
 883		 */
 884		zero_page = get_huge_zero_page();
 885		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 886				zero_page);
 887		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
 888		ret = 0;
 889		goto out_unlock;
 890	}
 891
 892	if (unlikely(pmd_trans_splitting(pmd))) {
 893		/* split huge page running from under us */
 894		spin_unlock(src_ptl);
 895		spin_unlock(dst_ptl);
 896		pte_free(dst_mm, pgtable);
 897
 898		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 899		goto out;
 900	}
 901	src_page = pmd_page(pmd);
 902	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 903	get_page(src_page);
 904	page_dup_rmap(src_page);
 905	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 
 
 906
 907	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 908	pmd = pmd_mkold(pmd_wrprotect(pmd));
 909	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 910	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 911	atomic_long_inc(&dst_mm->nr_ptes);
 912
 913	ret = 0;
 914out_unlock:
 915	spin_unlock(src_ptl);
 916	spin_unlock(dst_ptl);
 917out:
 918	return ret;
 919}
 920
 921void huge_pmd_set_accessed(struct mm_struct *mm,
 922			   struct vm_area_struct *vma,
 923			   unsigned long address,
 924			   pmd_t *pmd, pmd_t orig_pmd,
 925			   int dirty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926{
 927	spinlock_t *ptl;
 928	pmd_t entry;
 929	unsigned long haddr;
 
 930
 931	ptl = pmd_lock(mm, pmd);
 932	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 933		goto unlock;
 934
 935	entry = pmd_mkyoung(orig_pmd);
 936	haddr = address & HPAGE_PMD_MASK;
 937	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
 938		update_mmu_cache_pmd(vma, address, pmd);
 
 
 939
 940unlock:
 941	spin_unlock(ptl);
 942}
 943
 944static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 945					struct vm_area_struct *vma,
 946					unsigned long address,
 947					pmd_t *pmd, pmd_t orig_pmd,
 948					struct page *page,
 949					unsigned long haddr)
 950{
 951	spinlock_t *ptl;
 
 
 952	pgtable_t pgtable;
 953	pmd_t _pmd;
 954	int ret = 0, i;
 955	struct page **pages;
 956	unsigned long mmun_start;	/* For mmu_notifiers */
 957	unsigned long mmun_end;		/* For mmu_notifiers */
 958
 959	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 960			GFP_KERNEL);
 961	if (unlikely(!pages)) {
 962		ret |= VM_FAULT_OOM;
 963		goto out;
 964	}
 965
 966	for (i = 0; i < HPAGE_PMD_NR; i++) {
 967		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 968					       __GFP_OTHER_NODE,
 969					       vma, address, page_to_nid(page));
 970		if (unlikely(!pages[i] ||
 971			     mem_cgroup_charge_anon(pages[i], mm,
 972						       GFP_KERNEL))) {
 973			if (pages[i])
 974				put_page(pages[i]);
 975			mem_cgroup_uncharge_start();
 976			while (--i >= 0) {
 977				mem_cgroup_uncharge_page(pages[i]);
 
 
 
 978				put_page(pages[i]);
 979			}
 980			mem_cgroup_uncharge_end();
 981			kfree(pages);
 982			ret |= VM_FAULT_OOM;
 983			goto out;
 984		}
 
 985	}
 986
 987	for (i = 0; i < HPAGE_PMD_NR; i++) {
 988		copy_user_highpage(pages[i], page + i,
 989				   haddr + PAGE_SIZE * i, vma);
 990		__SetPageUptodate(pages[i]);
 991		cond_resched();
 992	}
 993
 994	mmun_start = haddr;
 995	mmun_end   = haddr + HPAGE_PMD_SIZE;
 996	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 997
 998	ptl = pmd_lock(mm, pmd);
 999	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000		goto out_free_pages;
1001	VM_BUG_ON_PAGE(!PageHead(page), page);
1002
1003	pmdp_clear_flush(vma, haddr, pmd);
1004	/* leave pmd empty until pte is filled */
 
 
 
 
 
 
 
1005
1006	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1007	pmd_populate(mm, &_pmd, pgtable);
1008
1009	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1010		pte_t *pte, entry;
1011		entry = mk_pte(pages[i], vma->vm_page_prot);
1012		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1013		page_add_new_anon_rmap(pages[i], vma, haddr);
1014		pte = pte_offset_map(&_pmd, haddr);
1015		VM_BUG_ON(!pte_none(*pte));
1016		set_pte_at(mm, haddr, pte, entry);
1017		pte_unmap(pte);
 
 
 
 
1018	}
1019	kfree(pages);
1020
1021	smp_wmb(); /* make pte visible before pmd */
1022	pmd_populate(mm, pmd, pgtable);
1023	page_remove_rmap(page);
1024	spin_unlock(ptl);
1025
1026	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 
 
 
 
 
1027
1028	ret |= VM_FAULT_WRITE;
1029	put_page(page);
1030
1031out:
1032	return ret;
1033
1034out_free_pages:
1035	spin_unlock(ptl);
1036	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1037	mem_cgroup_uncharge_start();
1038	for (i = 0; i < HPAGE_PMD_NR; i++) {
1039		mem_cgroup_uncharge_page(pages[i]);
 
 
1040		put_page(pages[i]);
1041	}
1042	mem_cgroup_uncharge_end();
1043	kfree(pages);
1044	goto out;
1045}
1046
1047int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1048			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1049{
1050	spinlock_t *ptl;
1051	int ret = 0;
1052	struct page *page = NULL, *new_page;
1053	unsigned long haddr;
 
1054	unsigned long mmun_start;	/* For mmu_notifiers */
1055	unsigned long mmun_end;		/* For mmu_notifiers */
 
 
1056
1057	ptl = pmd_lockptr(mm, pmd);
1058	VM_BUG_ON(!vma->anon_vma);
1059	haddr = address & HPAGE_PMD_MASK;
1060	if (is_huge_zero_pmd(orig_pmd))
1061		goto alloc;
1062	spin_lock(ptl);
1063	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1064		goto out_unlock;
1065
1066	page = pmd_page(orig_pmd);
1067	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1068	if (page_mapcount(page) == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069		pmd_t entry;
1070		entry = pmd_mkyoung(orig_pmd);
1071		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1073			update_mmu_cache_pmd(vma, address, pmd);
1074		ret |= VM_FAULT_WRITE;
 
1075		goto out_unlock;
1076	}
 
1077	get_page(page);
1078	spin_unlock(ptl);
1079alloc:
1080	if (transparent_hugepage_enabled(vma) &&
1081	    !transparent_hugepage_debug_cow())
1082		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1083					      vma, haddr, numa_node_id(), 0);
1084	else
1085		new_page = NULL;
1086
1087	if (unlikely(!new_page)) {
 
 
1088		if (!page) {
1089			split_huge_page_pmd(vma, address, pmd);
1090			ret |= VM_FAULT_FALLBACK;
1091		} else {
1092			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1093					pmd, orig_pmd, page, haddr);
1094			if (ret & VM_FAULT_OOM) {
1095				split_huge_page(page);
1096				ret |= VM_FAULT_FALLBACK;
1097			}
1098			put_page(page);
1099		}
1100		count_vm_event(THP_FAULT_FALLBACK);
1101		goto out;
1102	}
1103
1104	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
 
1105		put_page(new_page);
1106		if (page) {
1107			split_huge_page(page);
1108			put_page(page);
1109		} else
1110			split_huge_page_pmd(vma, address, pmd);
1111		ret |= VM_FAULT_FALLBACK;
1112		count_vm_event(THP_FAULT_FALLBACK);
1113		goto out;
1114	}
1115
1116	count_vm_event(THP_FAULT_ALLOC);
1117
1118	if (!page)
1119		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1120	else
1121		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1122	__SetPageUptodate(new_page);
1123
1124	mmun_start = haddr;
1125	mmun_end   = haddr + HPAGE_PMD_SIZE;
1126	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1127
1128	spin_lock(ptl);
1129	if (page)
1130		put_page(page);
1131	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1132		spin_unlock(ptl);
1133		mem_cgroup_uncharge_page(new_page);
1134		put_page(new_page);
1135		goto out_mn;
1136	} else {
1137		pmd_t entry;
1138		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1139		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140		pmdp_clear_flush(vma, haddr, pmd);
1141		page_add_new_anon_rmap(new_page, vma, haddr);
1142		set_pmd_at(mm, haddr, pmd, entry);
1143		update_mmu_cache_pmd(vma, address, pmd);
 
 
1144		if (!page) {
1145			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146			put_huge_zero_page();
1147		} else {
1148			VM_BUG_ON_PAGE(!PageHead(page), page);
1149			page_remove_rmap(page);
1150			put_page(page);
1151		}
1152		ret |= VM_FAULT_WRITE;
1153	}
1154	spin_unlock(ptl);
1155out_mn:
1156	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 
 
 
 
 
1157out:
1158	return ret;
1159out_unlock:
1160	spin_unlock(ptl);
1161	return ret;
1162}
1163
 
 
 
 
 
 
 
 
 
 
1164struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1165				   unsigned long addr,
1166				   pmd_t *pmd,
1167				   unsigned int flags)
1168{
1169	struct mm_struct *mm = vma->vm_mm;
1170	struct page *page = NULL;
1171
1172	assert_spin_locked(pmd_lockptr(mm, pmd));
1173
1174	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1175		goto out;
1176
1177	/* Avoid dumping huge zero page */
1178	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1179		return ERR_PTR(-EFAULT);
1180
1181	/* Full NUMA hinting faults to serialise migration in fault paths */
1182	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1183		goto out;
1184
1185	page = pmd_page(*pmd);
1186	VM_BUG_ON_PAGE(!PageHead(page), page);
1187	if (flags & FOLL_TOUCH) {
1188		pmd_t _pmd;
 
1189		/*
1190		 * We should set the dirty bit only for FOLL_WRITE but
1191		 * for now the dirty bit in the pmd is meaningless.
1192		 * And if the dirty bit will become meaningful and
1193		 * we'll only set it with FOLL_WRITE, an atomic
1194		 * set_bit will be required on the pmd to set the
1195		 * young bit, instead of the current set_pmd_at.
 
 
 
 
 
 
 
 
 
 
 
 
1196		 */
1197		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1198		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1199					  pmd, _pmd,  1))
1200			update_mmu_cache_pmd(vma, addr, pmd);
1201	}
1202	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1203		if (page->mapping && trylock_page(page)) {
1204			lru_add_drain();
1205			if (page->mapping)
1206				mlock_vma_page(page);
1207			unlock_page(page);
1208		}
1209	}
 
1210	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1211	VM_BUG_ON_PAGE(!PageCompound(page), page);
1212	if (flags & FOLL_GET)
1213		get_page_foll(page);
1214
1215out:
1216	return page;
1217}
1218
1219/* NUMA hinting page fault entry point for trans huge pmds */
1220int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1221				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1222{
1223	spinlock_t *ptl;
1224	struct anon_vma *anon_vma = NULL;
1225	struct page *page;
1226	unsigned long haddr = addr & HPAGE_PMD_MASK;
1227	int page_nid = -1, this_nid = numa_node_id();
1228	int target_nid, last_cpupid = -1;
1229	bool page_locked;
1230	bool migrated = false;
 
1231	int flags = 0;
1232
1233	ptl = pmd_lock(mm, pmdp);
1234	if (unlikely(!pmd_same(pmd, *pmdp)))
1235		goto out_unlock;
1236
1237	/*
1238	 * If there are potential migrations, wait for completion and retry
1239	 * without disrupting NUMA hinting information. Do not relock and
1240	 * check_same as the page may no longer be mapped.
1241	 */
1242	if (unlikely(pmd_trans_migrating(*pmdp))) {
1243		spin_unlock(ptl);
1244		wait_migrate_huge_page(vma->anon_vma, pmdp);
 
 
 
 
1245		goto out;
1246	}
1247
1248	page = pmd_page(pmd);
1249	BUG_ON(is_huge_zero_page(page));
1250	page_nid = page_to_nid(page);
1251	last_cpupid = page_cpupid_last(page);
1252	count_vm_numa_event(NUMA_HINT_FAULTS);
1253	if (page_nid == this_nid) {
1254		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1255		flags |= TNF_FAULT_LOCAL;
1256	}
1257
1258	/*
1259	 * Avoid grouping on DSO/COW pages in specific and RO pages
1260	 * in general, RO pages shouldn't hurt as much anyway since
1261	 * they can be in shared cache state.
1262	 */
1263	if (!pmd_write(pmd))
1264		flags |= TNF_NO_GROUP;
1265
1266	/*
1267	 * Acquire the page lock to serialise THP migrations but avoid dropping
1268	 * page_table_lock if at all possible
1269	 */
1270	page_locked = trylock_page(page);
1271	target_nid = mpol_misplaced(page, vma, haddr);
1272	if (target_nid == -1) {
1273		/* If the page was locked, there are no parallel migrations */
1274		if (page_locked)
1275			goto clear_pmdnuma;
1276	}
1277
1278	/* Migration could have started since the pmd_trans_migrating check */
1279	if (!page_locked) {
1280		spin_unlock(ptl);
 
 
 
1281		wait_on_page_locked(page);
1282		page_nid = -1;
1283		goto out;
1284	}
1285
1286	/*
1287	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1288	 * to serialises splits
1289	 */
1290	get_page(page);
1291	spin_unlock(ptl);
1292	anon_vma = page_lock_anon_vma_read(page);
1293
1294	/* Confirm the PMD did not change while page_table_lock was released */
1295	spin_lock(ptl);
1296	if (unlikely(!pmd_same(pmd, *pmdp))) {
1297		unlock_page(page);
1298		put_page(page);
1299		page_nid = -1;
1300		goto out_unlock;
1301	}
1302
1303	/* Bail if we fail to protect against THP splits for any reason */
1304	if (unlikely(!anon_vma)) {
1305		put_page(page);
1306		page_nid = -1;
1307		goto clear_pmdnuma;
1308	}
1309
1310	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311	 * Migrate the THP to the requested node, returns with page unlocked
1312	 * and pmd_numa cleared.
1313	 */
1314	spin_unlock(ptl);
1315	migrated = migrate_misplaced_transhuge_page(mm, vma,
1316				pmdp, pmd, addr, page, target_nid);
 
1317	if (migrated) {
1318		flags |= TNF_MIGRATED;
1319		page_nid = target_nid;
1320	}
 
1321
1322	goto out;
1323clear_pmdnuma:
1324	BUG_ON(!PageLocked(page));
1325	pmd = pmd_mknonnuma(pmd);
1326	set_pmd_at(mm, haddr, pmdp, pmd);
1327	VM_BUG_ON(pmd_numa(*pmdp));
1328	update_mmu_cache_pmd(vma, addr, pmdp);
 
 
 
1329	unlock_page(page);
1330out_unlock:
1331	spin_unlock(ptl);
1332
1333out:
1334	if (anon_vma)
1335		page_unlock_anon_vma_read(anon_vma);
1336
1337	if (page_nid != -1)
1338		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
 
1339
1340	return 0;
1341}
1342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1343int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1344		 pmd_t *pmd, unsigned long addr)
1345{
 
1346	spinlock_t *ptl;
1347	int ret = 0;
1348
1349	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1350		struct page *page;
1351		pgtable_t pgtable;
1352		pmd_t orig_pmd;
1353		/*
1354		 * For architectures like ppc64 we look at deposited pgtable
1355		 * when calling pmdp_get_and_clear. So do the
1356		 * pgtable_trans_huge_withdraw after finishing pmdp related
1357		 * operations.
1358		 */
1359		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1360		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1361		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1362		if (is_huge_zero_pmd(orig_pmd)) {
1363			atomic_long_dec(&tlb->mm->nr_ptes);
1364			spin_unlock(ptl);
1365			put_huge_zero_page();
1366		} else {
 
 
 
 
 
 
 
 
 
 
 
1367			page = pmd_page(orig_pmd);
1368			page_remove_rmap(page);
1369			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
1370			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1371			VM_BUG_ON_PAGE(!PageHead(page), page);
1372			atomic_long_dec(&tlb->mm->nr_ptes);
1373			spin_unlock(ptl);
1374			tlb_remove_page(tlb, page);
1375		}
1376		pte_free(tlb->mm, pgtable);
1377		ret = 1;
 
 
1378	}
1379	return ret;
1380}
1381
1382int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1383		unsigned long addr, unsigned long end,
1384		unsigned char *vec)
 
1385{
1386	spinlock_t *ptl;
1387	int ret = 0;
 
 
 
 
 
 
 
1388
1389	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1390		/*
1391		 * All logical pages in the range are present
1392		 * if backed by a huge page.
1393		 */
1394		spin_unlock(ptl);
1395		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1396		ret = 1;
1397	}
1398
1399	return ret;
1400}
1401
1402int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1403		  unsigned long old_addr,
1404		  unsigned long new_addr, unsigned long old_end,
1405		  pmd_t *old_pmd, pmd_t *new_pmd)
1406{
1407	spinlock_t *old_ptl, *new_ptl;
1408	int ret = 0;
1409	pmd_t pmd;
1410
1411	struct mm_struct *mm = vma->vm_mm;
 
1412
1413	if ((old_addr & ~HPAGE_PMD_MASK) ||
1414	    (new_addr & ~HPAGE_PMD_MASK) ||
1415	    old_end - old_addr < HPAGE_PMD_SIZE ||
1416	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1417		goto out;
1418
1419	/*
1420	 * The destination pmd shouldn't be established, free_pgtables()
1421	 * should have release it.
1422	 */
1423	if (WARN_ON(!pmd_none(*new_pmd))) {
1424		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1425		goto out;
1426	}
1427
1428	/*
1429	 * We don't have to worry about the ordering of src and dst
1430	 * ptlocks because exclusive mmap_sem prevents deadlock.
1431	 */
1432	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1433	if (ret == 1) {
1434		new_ptl = pmd_lockptr(mm, new_pmd);
1435		if (new_ptl != old_ptl)
1436			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1437		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
 
 
1438		VM_BUG_ON(!pmd_none(*new_pmd));
1439
1440		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1441			pgtable_t pgtable;
1442			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1443			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1444		}
1445		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
 
1446		if (new_ptl != old_ptl)
1447			spin_unlock(new_ptl);
 
 
 
 
1448		spin_unlock(old_ptl);
 
1449	}
1450out:
1451	return ret;
1452}
1453
1454/*
1455 * Returns
1456 *  - 0 if PMD could not be locked
1457 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1458 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1459 */
1460int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1461		unsigned long addr, pgprot_t newprot, int prot_numa)
1462{
1463	struct mm_struct *mm = vma->vm_mm;
1464	spinlock_t *ptl;
1465	int ret = 0;
 
 
 
 
 
 
1466
1467	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1468		pmd_t entry;
1469		ret = 1;
1470		if (!prot_numa) {
1471			entry = pmdp_get_and_clear(mm, addr, pmd);
1472			if (pmd_numa(entry))
1473				entry = pmd_mknonnuma(entry);
1474			entry = pmd_modify(entry, newprot);
1475			ret = HPAGE_PMD_NR;
1476			set_pmd_at(mm, addr, pmd, entry);
1477			BUG_ON(pmd_write(entry));
1478		} else {
1479			struct page *page = pmd_page(*pmd);
1480
 
 
 
 
 
 
 
1481			/*
1482			 * Do not trap faults against the zero page. The
1483			 * read-only data is likely to be read-cached on the
1484			 * local CPU cache and it is less useful to know about
1485			 * local vs remote hits on the zero page.
1486			 */
1487			if (!is_huge_zero_page(page) &&
1488			    !pmd_numa(*pmd)) {
1489				pmdp_set_numa(mm, addr, pmd);
1490				ret = HPAGE_PMD_NR;
1491			}
1492		}
1493		spin_unlock(ptl);
1494	}
 
1495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496	return ret;
1497}
1498
1499/*
1500 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1501 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1502 *
1503 * Note that if it returns 1, this routine returns without unlocking page
1504 * table locks. So callers must unlock them.
1505 */
1506int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1507		spinlock_t **ptl)
1508{
1509	*ptl = pmd_lock(vma->vm_mm, pmd);
1510	if (likely(pmd_trans_huge(*pmd))) {
1511		if (unlikely(pmd_trans_splitting(*pmd))) {
1512			spin_unlock(*ptl);
1513			wait_split_huge_page(vma->anon_vma, pmd);
1514			return -1;
1515		} else {
1516			/* Thp mapped by 'pmd' is stable, so we can
1517			 * handle it as it is. */
1518			return 1;
1519		}
1520	}
1521	spin_unlock(*ptl);
1522	return 0;
1523}
1524
1525/*
1526 * This function returns whether a given @page is mapped onto the @address
1527 * in the virtual space of @mm.
1528 *
1529 * When it's true, this function returns *pmd with holding the page table lock
1530 * and passing it back to the caller via @ptl.
1531 * If it's false, returns NULL without holding the page table lock.
1532 */
1533pmd_t *page_check_address_pmd(struct page *page,
1534			      struct mm_struct *mm,
1535			      unsigned long address,
1536			      enum page_check_address_pmd_flag flag,
1537			      spinlock_t **ptl)
1538{
1539	pgd_t *pgd;
1540	pud_t *pud;
1541	pmd_t *pmd;
1542
1543	if (address & ~HPAGE_PMD_MASK)
1544		return NULL;
 
 
 
 
1545
1546	pgd = pgd_offset(mm, address);
1547	if (!pgd_present(*pgd))
1548		return NULL;
1549	pud = pud_offset(pgd, address);
1550	if (!pud_present(*pud))
1551		return NULL;
1552	pmd = pmd_offset(pud, address);
1553
1554	*ptl = pmd_lock(mm, pmd);
1555	if (!pmd_present(*pmd))
1556		goto unlock;
1557	if (pmd_page(*pmd) != page)
1558		goto unlock;
1559	/*
1560	 * split_vma() may create temporary aliased mappings. There is
1561	 * no risk as long as all huge pmd are found and have their
1562	 * splitting bit set before __split_huge_page_refcount
1563	 * runs. Finding the same huge pmd more than once during the
1564	 * same rmap walk is not a problem.
1565	 */
1566	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1567	    pmd_trans_splitting(*pmd))
1568		goto unlock;
1569	if (pmd_trans_huge(*pmd)) {
1570		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1571			  !pmd_trans_splitting(*pmd));
1572		return pmd;
 
1573	}
1574unlock:
1575	spin_unlock(*ptl);
1576	return NULL;
 
 
 
 
 
 
 
 
 
 
 
1577}
1578
1579static int __split_huge_page_splitting(struct page *page,
1580				       struct vm_area_struct *vma,
1581				       unsigned long address)
1582{
 
1583	struct mm_struct *mm = vma->vm_mm;
1584	spinlock_t *ptl;
1585	pmd_t *pmd;
1586	int ret = 0;
1587	/* For mmu_notifiers */
1588	const unsigned long mmun_start = address;
1589	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1590
1591	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1592	pmd = page_check_address_pmd(page, mm, address,
1593			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1594	if (pmd) {
1595		/*
1596		 * We can't temporarily set the pmd to null in order
1597		 * to split it, the pmd must remain marked huge at all
1598		 * times or the VM won't take the pmd_trans_huge paths
1599		 * and it won't wait on the anon_vma->root->rwsem to
1600		 * serialize against split_huge_page*.
1601		 */
1602		pmdp_splitting_flush(vma, address, pmd);
1603		ret = 1;
1604		spin_unlock(ptl);
1605	}
1606	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1607
1608	return ret;
 
 
 
 
 
 
 
1609}
 
1610
1611static void __split_huge_page_refcount(struct page *page,
1612				       struct list_head *list)
1613{
 
 
 
1614	int i;
1615	struct zone *zone = page_zone(page);
1616	struct lruvec *lruvec;
1617	int tail_count = 0;
1618
1619	/* prevent PageLRU to go away from under us, and freeze lru stats */
1620	spin_lock_irq(&zone->lru_lock);
1621	lruvec = mem_cgroup_page_lruvec(page, zone);
 
 
 
 
 
 
 
 
 
1622
1623	compound_lock(page);
1624	/* complete memcg works before add pages to LRU */
1625	mem_cgroup_split_huge_fixup(page);
 
 
 
 
 
 
 
 
 
1626
1627	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1628		struct page *page_tail = page + i;
 
 
 
 
 
 
 
 
1629
1630		/* tail_page->_mapcount cannot change */
1631		BUG_ON(page_mapcount(page_tail) < 0);
1632		tail_count += page_mapcount(page_tail);
1633		/* check for overflow */
1634		BUG_ON(tail_count < 0);
1635		BUG_ON(atomic_read(&page_tail->_count) != 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636		/*
1637		 * tail_page->_count is zero and not changing from
1638		 * under us. But get_page_unless_zero() may be running
1639		 * from under us on the tail_page. If we used
1640		 * atomic_set() below instead of atomic_add(), we
1641		 * would then run atomic_set() concurrently with
1642		 * get_page_unless_zero(), and atomic_set() is
1643		 * implemented in C not using locked ops. spin_unlock
1644		 * on x86 sometime uses locked ops because of PPro
1645		 * errata 66, 92, so unless somebody can guarantee
1646		 * atomic_set() here would be safe on all archs (and
1647		 * not only on x86), it's safer to use atomic_add().
1648		 */
1649		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1650			   &page_tail->_count);
1651
1652		/* after clearing PageTail the gup refcount can be released */
1653		smp_mb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654
1655		/*
1656		 * retain hwpoison flag of the poisoned tail page:
1657		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1658		 *   by the memory-failure.
1659		 */
1660		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1661		page_tail->flags |= (page->flags &
1662				     ((1L << PG_referenced) |
1663				      (1L << PG_swapbacked) |
1664				      (1L << PG_mlocked) |
1665				      (1L << PG_uptodate) |
1666				      (1L << PG_active) |
1667				      (1L << PG_unevictable)));
1668		page_tail->flags |= (1L << PG_dirty);
1669
1670		/* clear PageTail before overwriting first_page */
1671		smp_wmb();
 
 
 
 
1672
 
 
1673		/*
1674		 * __split_huge_page_splitting() already set the
1675		 * splitting bit in all pmd that could map this
1676		 * hugepage, that will ensure no CPU can alter the
1677		 * mapcount on the head page. The mapcount is only
1678		 * accounted in the head page and it has to be
1679		 * transferred to all tail pages in the below code. So
1680		 * for this code to be safe, the split the mapcount
1681		 * can't change. But that doesn't mean userland can't
1682		 * keep changing and reading the page contents while
1683		 * we transfer the mapcount, so the pmd splitting
1684		 * status is achieved setting a reserved bit in the
1685		 * pmd, not by clearing the present bit.
1686		*/
1687		page_tail->_mapcount = page->_mapcount;
1688
1689		BUG_ON(page_tail->mapping);
1690		page_tail->mapping = page->mapping;
1691
1692		page_tail->index = page->index + i;
1693		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1694
1695		BUG_ON(!PageAnon(page_tail));
1696		BUG_ON(!PageUptodate(page_tail));
1697		BUG_ON(!PageDirty(page_tail));
1698		BUG_ON(!PageSwapBacked(page_tail));
1699
1700		lru_add_page_tail(page, page_tail, lruvec, list);
1701	}
1702	atomic_sub(tail_count, &page->_count);
1703	BUG_ON(atomic_read(&page->_count) <= 0);
1704
1705	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1706
1707	ClearPageCompound(page);
1708	compound_unlock(page);
1709	spin_unlock_irq(&zone->lru_lock);
1710
1711	for (i = 1; i < HPAGE_PMD_NR; i++) {
1712		struct page *page_tail = page + i;
1713		BUG_ON(page_count(page_tail) <= 0);
1714		/*
1715		 * Tail pages may be freed if there wasn't any mapping
1716		 * like if add_to_swap() is running on a lru page that
1717		 * had its mapping zapped. And freeing these pages
1718		 * requires taking the lru_lock so we do the put_page
1719		 * of the tail pages after the split is complete.
1720		 */
1721		put_page(page_tail);
1722	}
1723
1724	/*
1725	 * Only the head page (now become a regular page) is required
1726	 * to be pinned by the caller.
1727	 */
1728	BUG_ON(page_count(page) <= 0);
1729}
 
 
1730
1731static int __split_huge_page_map(struct page *page,
1732				 struct vm_area_struct *vma,
1733				 unsigned long address)
1734{
1735	struct mm_struct *mm = vma->vm_mm;
1736	spinlock_t *ptl;
1737	pmd_t *pmd, _pmd;
1738	int ret = 0, i;
1739	pgtable_t pgtable;
1740	unsigned long haddr;
1741
1742	pmd = page_check_address_pmd(page, mm, address,
1743			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1744	if (pmd) {
1745		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1746		pmd_populate(mm, &_pmd, pgtable);
1747
1748		haddr = address;
1749		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1750			pte_t *pte, entry;
1751			BUG_ON(PageCompound(page+i));
1752			entry = mk_pte(page + i, vma->vm_page_prot);
1753			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1754			if (!pmd_write(*pmd))
1755				entry = pte_wrprotect(entry);
1756			else
1757				BUG_ON(page_mapcount(page) != 1);
1758			if (!pmd_young(*pmd))
1759				entry = pte_mkold(entry);
1760			if (pmd_numa(*pmd))
1761				entry = pte_mknuma(entry);
1762			pte = pte_offset_map(&_pmd, haddr);
1763			BUG_ON(!pte_none(*pte));
1764			set_pte_at(mm, haddr, pte, entry);
1765			pte_unmap(pte);
1766		}
1767
1768		smp_wmb(); /* make pte visible before pmd */
1769		/*
1770		 * Up to this point the pmd is present and huge and
1771		 * userland has the whole access to the hugepage
1772		 * during the split (which happens in place). If we
1773		 * overwrite the pmd with the not-huge version
1774		 * pointing to the pte here (which of course we could
1775		 * if all CPUs were bug free), userland could trigger
1776		 * a small page size TLB miss on the small sized TLB
1777		 * while the hugepage TLB entry is still established
1778		 * in the huge TLB. Some CPU doesn't like that. See
1779		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1780		 * Erratum 383 on page 93. Intel should be safe but is
1781		 * also warns that it's only safe if the permission
1782		 * and cache attributes of the two entries loaded in
1783		 * the two TLB is identical (which should be the case
1784		 * here). But it is generally safer to never allow
1785		 * small and huge TLB entries for the same virtual
1786		 * address to be loaded simultaneously. So instead of
1787		 * doing "pmd_populate(); flush_tlb_range();" we first
1788		 * mark the current pmd notpresent (atomically because
1789		 * here the pmd_trans_huge and pmd_trans_splitting
1790		 * must remain set at all times on the pmd until the
1791		 * split is complete for this pmd), then we flush the
1792		 * SMP TLB and finally we write the non-huge version
1793		 * of the pmd entry with pmd_populate.
1794		 */
1795		pmdp_invalidate(vma, address, pmd);
1796		pmd_populate(mm, pmd, pgtable);
1797		ret = 1;
1798		spin_unlock(ptl);
1799	}
1800
1801	return ret;
1802}
1803
1804/* must be called with anon_vma->root->rwsem held */
1805static void __split_huge_page(struct page *page,
1806			      struct anon_vma *anon_vma,
1807			      struct list_head *list)
1808{
1809	int mapcount, mapcount2;
1810	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1811	struct anon_vma_chain *avc;
1812
1813	BUG_ON(!PageHead(page));
1814	BUG_ON(PageTail(page));
1815
1816	mapcount = 0;
1817	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1818		struct vm_area_struct *vma = avc->vma;
1819		unsigned long addr = vma_address(page, vma);
1820		BUG_ON(is_vma_temporary_stack(vma));
1821		mapcount += __split_huge_page_splitting(page, vma, addr);
1822	}
1823	/*
1824	 * It is critical that new vmas are added to the tail of the
1825	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1826	 * and establishes a child pmd before
1827	 * __split_huge_page_splitting() freezes the parent pmd (so if
1828	 * we fail to prevent copy_huge_pmd() from running until the
1829	 * whole __split_huge_page() is complete), we will still see
1830	 * the newly established pmd of the child later during the
1831	 * walk, to be able to set it as pmd_trans_splitting too.
1832	 */
1833	if (mapcount != page_mapcount(page))
1834		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1835		       mapcount, page_mapcount(page));
1836	BUG_ON(mapcount != page_mapcount(page));
1837
1838	__split_huge_page_refcount(page, list);
1839
1840	mapcount2 = 0;
1841	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1842		struct vm_area_struct *vma = avc->vma;
1843		unsigned long addr = vma_address(page, vma);
1844		BUG_ON(is_vma_temporary_stack(vma));
1845		mapcount2 += __split_huge_page_map(page, vma, addr);
1846	}
1847	if (mapcount != mapcount2)
1848		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1849		       mapcount, mapcount2, page_mapcount(page));
1850	BUG_ON(mapcount != mapcount2);
1851}
1852
1853/*
1854 * Split a hugepage into normal pages. This doesn't change the position of head
1855 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1856 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1857 * from the hugepage.
1858 * Return 0 if the hugepage is split successfully otherwise return 1.
1859 */
1860int split_huge_page_to_list(struct page *page, struct list_head *list)
1861{
1862	struct anon_vma *anon_vma;
1863	int ret = 1;
 
1864
1865	BUG_ON(is_huge_zero_page(page));
1866	BUG_ON(!PageAnon(page));
1867
1868	/*
1869	 * The caller does not necessarily hold an mmap_sem that would prevent
1870	 * the anon_vma disappearing so we first we take a reference to it
1871	 * and then lock the anon_vma for write. This is similar to
1872	 * page_lock_anon_vma_read except the write lock is taken to serialise
1873	 * against parallel split or collapse operations.
1874	 */
1875	anon_vma = page_get_anon_vma(page);
1876	if (!anon_vma)
 
 
 
 
 
 
 
1877		goto out;
1878	anon_vma_lock_write(anon_vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1879
1880	ret = 0;
1881	if (!PageCompound(page))
1882		goto out_unlock;
 
 
 
 
1883
1884	BUG_ON(!PageSwapBacked(page));
1885	__split_huge_page(page, anon_vma, list);
1886	count_vm_event(THP_SPLIT);
1887
1888	BUG_ON(PageCompound(page));
1889out_unlock:
1890	anon_vma_unlock_write(anon_vma);
1891	put_anon_vma(anon_vma);
1892out:
1893	return ret;
1894}
1895
1896#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
 
 
1897
1898int hugepage_madvise(struct vm_area_struct *vma,
1899		     unsigned long *vm_flags, int advice)
1900{
1901	switch (advice) {
1902	case MADV_HUGEPAGE:
1903#ifdef CONFIG_S390
1904		/*
1905		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1906		 * can't handle this properly after s390_enable_sie, so we simply
1907		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1908		 */
1909		if (mm_has_pgste(vma->vm_mm))
1910			return 0;
1911#endif
1912		/*
1913		 * Be somewhat over-protective like KSM for now!
1914		 */
1915		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1916			return -EINVAL;
1917		*vm_flags &= ~VM_NOHUGEPAGE;
1918		*vm_flags |= VM_HUGEPAGE;
1919		/*
1920		 * If the vma become good for khugepaged to scan,
1921		 * register it here without waiting a page fault that
1922		 * may not happen any time soon.
1923		 */
1924		if (unlikely(khugepaged_enter_vma_merge(vma)))
1925			return -ENOMEM;
1926		break;
1927	case MADV_NOHUGEPAGE:
1928		/*
1929		 * Be somewhat over-protective like KSM for now!
1930		 */
1931		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1932			return -EINVAL;
1933		*vm_flags &= ~VM_HUGEPAGE;
1934		*vm_flags |= VM_NOHUGEPAGE;
1935		/*
1936		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1937		 * this vma even if we leave the mm registered in khugepaged if
1938		 * it got registered before VM_NOHUGEPAGE was set.
1939		 */
1940		break;
1941	}
1942
1943	return 0;
1944}
1945
1946static int __init khugepaged_slab_init(void)
 
 
 
1947{
1948	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1949					  sizeof(struct mm_slot),
1950					  __alignof__(struct mm_slot), 0, NULL);
1951	if (!mm_slot_cache)
1952		return -ENOMEM;
 
 
 
 
1953
1954	return 0;
1955}
 
 
 
 
 
 
 
1956
1957static inline struct mm_slot *alloc_mm_slot(void)
1958{
1959	if (!mm_slot_cache)	/* initialization failed */
1960		return NULL;
1961	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
1962}
1963
1964static inline void free_mm_slot(struct mm_slot *mm_slot)
1965{
1966	kmem_cache_free(mm_slot_cache, mm_slot);
1967}
 
1968
1969static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1970{
1971	struct mm_slot *mm_slot;
1972
1973	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1974		if (mm == mm_slot->mm)
1975			return mm_slot;
1976
1977	return NULL;
 
1978}
1979
1980static void insert_to_mm_slots_hash(struct mm_struct *mm,
1981				    struct mm_slot *mm_slot)
1982{
1983	mm_slot->mm = mm;
1984	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
 
 
 
 
 
1985}
1986
1987static inline int khugepaged_test_exit(struct mm_struct *mm)
 
1988{
1989	return atomic_read(&mm->mm_users) == 0;
1990}
1991
1992int __khugepaged_enter(struct mm_struct *mm)
1993{
1994	struct mm_slot *mm_slot;
1995	int wakeup;
1996
1997	mm_slot = alloc_mm_slot();
1998	if (!mm_slot)
1999		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2000
2001	/* __khugepaged_exit() must not run from under us */
2002	VM_BUG_ON(khugepaged_test_exit(mm));
2003	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2004		free_mm_slot(mm_slot);
2005		return 0;
2006	}
2007
2008	spin_lock(&khugepaged_mm_lock);
2009	insert_to_mm_slots_hash(mm, mm_slot);
2010	/*
2011	 * Insert just behind the scanning cursor, to let the area settle
2012	 * down a little.
 
 
2013	 */
2014	wakeup = list_empty(&khugepaged_scan.mm_head);
2015	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2016	spin_unlock(&khugepaged_mm_lock);
2017
2018	atomic_inc(&mm->mm_count);
2019	if (wakeup)
2020		wake_up_interruptible(&khugepaged_wait);
2021
2022	return 0;
2023}
 
 
2024
2025int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2026{
2027	unsigned long hstart, hend;
2028	if (!vma->anon_vma)
2029		/*
2030		 * Not yet faulted in so we will register later in the
2031		 * page fault if needed.
2032		 */
2033		return 0;
2034	if (vma->vm_ops)
2035		/* khugepaged not yet working on file or special mappings */
2036		return 0;
2037	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2038	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2039	hend = vma->vm_end & HPAGE_PMD_MASK;
2040	if (hstart < hend)
2041		return khugepaged_enter(vma);
2042	return 0;
2043}
2044
2045void __khugepaged_exit(struct mm_struct *mm)
2046{
2047	struct mm_slot *mm_slot;
2048	int free = 0;
2049
2050	spin_lock(&khugepaged_mm_lock);
2051	mm_slot = get_mm_slot(mm);
2052	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2053		hash_del(&mm_slot->hash);
2054		list_del(&mm_slot->mm_node);
2055		free = 1;
2056	}
2057	spin_unlock(&khugepaged_mm_lock);
2058
2059	if (free) {
2060		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2061		free_mm_slot(mm_slot);
2062		mmdrop(mm);
2063	} else if (mm_slot) {
2064		/*
2065		 * This is required to serialize against
2066		 * khugepaged_test_exit() (which is guaranteed to run
2067		 * under mmap sem read mode). Stop here (after we
2068		 * return all pagetables will be destroyed) until
2069		 * khugepaged has finished working on the pagetables
2070		 * under the mmap_sem.
2071		 */
2072		down_write(&mm->mmap_sem);
2073		up_write(&mm->mmap_sem);
2074	}
2075}
2076
2077static void release_pte_page(struct page *page)
 
2078{
2079	/* 0 stands for page_is_file_cache(page) == false */
2080	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2081	unlock_page(page);
2082	putback_lru_page(page);
2083}
2084
2085static void release_pte_pages(pte_t *pte, pte_t *_pte)
2086{
2087	while (--_pte >= pte) {
2088		pte_t pteval = *_pte;
2089		if (!pte_none(pteval))
2090			release_pte_page(pte_page(pteval));
2091	}
2092}
2093
2094static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2095					unsigned long address,
2096					pte_t *pte)
2097{
2098	struct page *page;
2099	pte_t *_pte;
2100	int referenced = 0, none = 0;
2101	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2102	     _pte++, address += PAGE_SIZE) {
2103		pte_t pteval = *_pte;
2104		if (pte_none(pteval)) {
2105			if (++none <= khugepaged_max_ptes_none)
2106				continue;
2107			else
2108				goto out;
2109		}
2110		if (!pte_present(pteval) || !pte_write(pteval))
2111			goto out;
2112		page = vm_normal_page(vma, address, pteval);
2113		if (unlikely(!page))
2114			goto out;
2115
2116		VM_BUG_ON_PAGE(PageCompound(page), page);
2117		VM_BUG_ON_PAGE(!PageAnon(page), page);
2118		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2119
2120		/* cannot use mapcount: can't collapse if there's a gup pin */
2121		if (page_count(page) != 1)
2122			goto out;
2123		/*
2124		 * We can do it before isolate_lru_page because the
2125		 * page can't be freed from under us. NOTE: PG_lock
2126		 * is needed to serialize against split_huge_page
2127		 * when invoked from the VM.
2128		 */
2129		if (!trylock_page(page))
2130			goto out;
2131		/*
2132		 * Isolate the page to avoid collapsing an hugepage
2133		 * currently in use by the VM.
2134		 */
2135		if (isolate_lru_page(page)) {
2136			unlock_page(page);
2137			goto out;
2138		}
2139		/* 0 stands for page_is_file_cache(page) == false */
2140		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2141		VM_BUG_ON_PAGE(!PageLocked(page), page);
2142		VM_BUG_ON_PAGE(PageLRU(page), page);
2143
2144		/* If there is no mapped pte young don't collapse the page */
2145		if (pte_young(pteval) || PageReferenced(page) ||
2146		    mmu_notifier_test_young(vma->vm_mm, address))
2147			referenced = 1;
2148	}
2149	if (likely(referenced))
2150		return 1;
2151out:
2152	release_pte_pages(pte, _pte);
2153	return 0;
2154}
2155
2156static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2157				      struct vm_area_struct *vma,
2158				      unsigned long address,
2159				      spinlock_t *ptl)
2160{
2161	pte_t *_pte;
2162	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2163		pte_t pteval = *_pte;
2164		struct page *src_page;
2165
2166		if (pte_none(pteval)) {
2167			clear_user_highpage(page, address);
2168			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2169		} else {
2170			src_page = pte_page(pteval);
2171			copy_user_highpage(page, src_page, address, vma);
2172			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2173			release_pte_page(src_page);
2174			/*
2175			 * ptl mostly unnecessary, but preempt has to
2176			 * be disabled to update the per-cpu stats
2177			 * inside page_remove_rmap().
2178			 */
2179			spin_lock(ptl);
2180			/*
2181			 * paravirt calls inside pte_clear here are
2182			 * superfluous.
2183			 */
2184			pte_clear(vma->vm_mm, address, _pte);
2185			page_remove_rmap(src_page);
2186			spin_unlock(ptl);
2187			free_page_and_swap_cache(src_page);
2188		}
2189
2190		address += PAGE_SIZE;
2191		page++;
2192	}
2193}
2194
2195static void khugepaged_alloc_sleep(void)
2196{
2197	wait_event_freezable_timeout(khugepaged_wait, false,
2198			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2199}
2200
2201static int khugepaged_node_load[MAX_NUMNODES];
2202
2203#ifdef CONFIG_NUMA
2204static int khugepaged_find_target_node(void)
2205{
2206	static int last_khugepaged_target_node = NUMA_NO_NODE;
2207	int nid, target_node = 0, max_value = 0;
2208
2209	/* find first node with max normal pages hit */
2210	for (nid = 0; nid < MAX_NUMNODES; nid++)
2211		if (khugepaged_node_load[nid] > max_value) {
2212			max_value = khugepaged_node_load[nid];
2213			target_node = nid;
2214		}
2215
2216	/* do some balance if several nodes have the same hit record */
2217	if (target_node <= last_khugepaged_target_node)
2218		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2219				nid++)
2220			if (max_value == khugepaged_node_load[nid]) {
2221				target_node = nid;
2222				break;
2223			}
2224
2225	last_khugepaged_target_node = target_node;
2226	return target_node;
2227}
2228
2229static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2230{
2231	if (IS_ERR(*hpage)) {
2232		if (!*wait)
2233			return false;
2234
2235		*wait = false;
2236		*hpage = NULL;
2237		khugepaged_alloc_sleep();
2238	} else if (*hpage) {
2239		put_page(*hpage);
2240		*hpage = NULL;
2241	}
2242
2243	return true;
2244}
2245
2246static struct page
2247*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2248		       struct vm_area_struct *vma, unsigned long address,
2249		       int node)
2250{
2251	VM_BUG_ON_PAGE(*hpage, *hpage);
2252	/*
2253	 * Allocate the page while the vma is still valid and under
2254	 * the mmap_sem read mode so there is no memory allocation
2255	 * later when we take the mmap_sem in write mode. This is more
2256	 * friendly behavior (OTOH it may actually hide bugs) to
2257	 * filesystems in userland with daemons allocating memory in
2258	 * the userland I/O paths.  Allocating memory with the
2259	 * mmap_sem in read mode is good idea also to allow greater
2260	 * scalability.
2261	 */
2262	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2263		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2264	/*
2265	 * After allocating the hugepage, release the mmap_sem read lock in
2266	 * preparation for taking it in write mode.
2267	 */
2268	up_read(&mm->mmap_sem);
2269	if (unlikely(!*hpage)) {
2270		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2271		*hpage = ERR_PTR(-ENOMEM);
2272		return NULL;
2273	}
2274
2275	count_vm_event(THP_COLLAPSE_ALLOC);
2276	return *hpage;
2277}
2278#else
2279static int khugepaged_find_target_node(void)
2280{
2281	return 0;
 
 
 
 
 
2282}
2283
2284static inline struct page *alloc_hugepage(int defrag)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2285{
2286	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2287			   HPAGE_PMD_ORDER);
2288}
2289
2290static struct page *khugepaged_alloc_hugepage(bool *wait)
2291{
2292	struct page *hpage;
2293
2294	do {
2295		hpage = alloc_hugepage(khugepaged_defrag());
2296		if (!hpage) {
2297			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2298			if (!*wait)
2299				return NULL;
2300
2301			*wait = false;
2302			khugepaged_alloc_sleep();
2303		} else
2304			count_vm_event(THP_COLLAPSE_ALLOC);
2305	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2306
2307	return hpage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2308}
2309
2310static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 
2311{
2312	if (!*hpage)
2313		*hpage = khugepaged_alloc_hugepage(wait);
2314
2315	if (unlikely(!*hpage))
2316		return false;
2317
2318	return true;
 
 
 
 
2319}
2320
2321static struct page
2322*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2323		       struct vm_area_struct *vma, unsigned long address,
2324		       int node)
2325{
2326	up_read(&mm->mmap_sem);
2327	VM_BUG_ON(!*hpage);
2328	return  *hpage;
2329}
2330#endif
2331
2332static bool hugepage_vma_check(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
2333{
2334	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2335	    (vma->vm_flags & VM_NOHUGEPAGE))
2336		return false;
 
 
 
 
2337
2338	if (!vma->anon_vma || vma->vm_ops)
2339		return false;
2340	if (is_vma_temporary_stack(vma))
2341		return false;
2342	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2343	return true;
2344}
2345
2346static void collapse_huge_page(struct mm_struct *mm,
2347				   unsigned long address,
2348				   struct page **hpage,
2349				   struct vm_area_struct *vma,
2350				   int node)
2351{
2352	pmd_t *pmd, _pmd;
2353	pte_t *pte;
2354	pgtable_t pgtable;
2355	struct page *new_page;
2356	spinlock_t *pmd_ptl, *pte_ptl;
2357	int isolated;
2358	unsigned long hstart, hend;
2359	unsigned long mmun_start;	/* For mmu_notifiers */
2360	unsigned long mmun_end;		/* For mmu_notifiers */
2361
2362	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2363
2364	/* release the mmap_sem read lock. */
2365	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2366	if (!new_page)
2367		return;
2368
2369	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
2370		return;
2371
2372	/*
2373	 * Prevent all access to pagetables with the exception of
2374	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2375	 * handled by the anon_vma lock + PG_lock.
2376	 */
2377	down_write(&mm->mmap_sem);
2378	if (unlikely(khugepaged_test_exit(mm)))
2379		goto out;
2380
2381	vma = find_vma(mm, address);
2382	if (!vma)
2383		goto out;
2384	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2385	hend = vma->vm_end & HPAGE_PMD_MASK;
2386	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2387		goto out;
2388	if (!hugepage_vma_check(vma))
2389		goto out;
2390	pmd = mm_find_pmd(mm, address);
2391	if (!pmd)
2392		goto out;
2393	if (pmd_trans_huge(*pmd))
2394		goto out;
2395
2396	anon_vma_lock_write(vma->anon_vma);
2397
2398	pte = pte_offset_map(pmd, address);
2399	pte_ptl = pte_lockptr(mm, pmd);
2400
2401	mmun_start = address;
2402	mmun_end   = address + HPAGE_PMD_SIZE;
2403	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2404	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2405	/*
2406	 * After this gup_fast can't run anymore. This also removes
2407	 * any huge TLB entry from the CPU so we won't allow
2408	 * huge and small TLB entries for the same virtual address
2409	 * to avoid the risk of CPU bugs in that area.
2410	 */
2411	_pmd = pmdp_clear_flush(vma, address, pmd);
2412	spin_unlock(pmd_ptl);
2413	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2414
2415	spin_lock(pte_ptl);
2416	isolated = __collapse_huge_page_isolate(vma, address, pte);
2417	spin_unlock(pte_ptl);
2418
2419	if (unlikely(!isolated)) {
2420		pte_unmap(pte);
2421		spin_lock(pmd_ptl);
2422		BUG_ON(!pmd_none(*pmd));
2423		/*
2424		 * We can only use set_pmd_at when establishing
2425		 * hugepmds and never for establishing regular pmds that
2426		 * points to regular pagetables. Use pmd_populate for that
 
 
 
2427		 */
2428		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2429		spin_unlock(pmd_ptl);
2430		anon_vma_unlock_write(vma->anon_vma);
2431		goto out;
2432	}
 
 
 
 
2433
2434	/*
2435	 * All pages are isolated and locked so anon_vma rmap
2436	 * can't run anymore.
2437	 */
2438	anon_vma_unlock_write(vma->anon_vma);
2439
2440	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2441	pte_unmap(pte);
2442	__SetPageUptodate(new_page);
2443	pgtable = pmd_pgtable(_pmd);
2444
2445	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2446	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2447
2448	/*
2449	 * spin_lock() below is not the equivalent of smp_wmb(), so
2450	 * this is needed to avoid the copy_huge_page writes to become
2451	 * visible after the set_pmd_at() write.
2452	 */
2453	smp_wmb();
 
 
 
2454
2455	spin_lock(pmd_ptl);
2456	BUG_ON(!pmd_none(*pmd));
2457	page_add_new_anon_rmap(new_page, vma, address);
2458	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2459	set_pmd_at(mm, address, pmd, _pmd);
2460	update_mmu_cache_pmd(vma, address, pmd);
2461	spin_unlock(pmd_ptl);
2462
2463	*hpage = NULL;
2464
2465	khugepaged_pages_collapsed++;
2466out_up_write:
2467	up_write(&mm->mmap_sem);
2468	return;
2469
2470out:
2471	mem_cgroup_uncharge_page(new_page);
2472	goto out_up_write;
2473}
2474
2475static int khugepaged_scan_pmd(struct mm_struct *mm,
2476			       struct vm_area_struct *vma,
2477			       unsigned long address,
2478			       struct page **hpage)
2479{
2480	pmd_t *pmd;
2481	pte_t *pte, *_pte;
2482	int ret = 0, referenced = 0, none = 0;
2483	struct page *page;
2484	unsigned long _address;
2485	spinlock_t *ptl;
2486	int node = NUMA_NO_NODE;
2487
2488	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2489
2490	pmd = mm_find_pmd(mm, address);
2491	if (!pmd)
2492		goto out;
2493	if (pmd_trans_huge(*pmd))
2494		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2495
2496	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2497	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2498	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2499	     _pte++, _address += PAGE_SIZE) {
2500		pte_t pteval = *_pte;
2501		if (pte_none(pteval)) {
2502			if (++none <= khugepaged_max_ptes_none)
2503				continue;
2504			else
2505				goto out_unmap;
2506		}
2507		if (!pte_present(pteval) || !pte_write(pteval))
2508			goto out_unmap;
2509		page = vm_normal_page(vma, _address, pteval);
2510		if (unlikely(!page))
2511			goto out_unmap;
2512		/*
2513		 * Record which node the original page is from and save this
2514		 * information to khugepaged_node_load[].
2515		 * Khupaged will allocate hugepage from the node has the max
2516		 * hit record.
2517		 */
2518		node = page_to_nid(page);
2519		khugepaged_node_load[node]++;
2520		VM_BUG_ON_PAGE(PageCompound(page), page);
2521		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2522			goto out_unmap;
2523		/* cannot use mapcount: can't collapse if there's a gup pin */
2524		if (page_count(page) != 1)
2525			goto out_unmap;
2526		if (pte_young(pteval) || PageReferenced(page) ||
2527		    mmu_notifier_test_young(vma->vm_mm, address))
2528			referenced = 1;
2529	}
2530	if (referenced)
2531		ret = 1;
2532out_unmap:
2533	pte_unmap_unlock(pte, ptl);
2534	if (ret) {
2535		node = khugepaged_find_target_node();
2536		/* collapse_huge_page will return with the mmap_sem released */
2537		collapse_huge_page(mm, address, hpage, vma, node);
2538	}
 
 
2539out:
 
2540	return ret;
2541}
2542
2543static void collect_mm_slot(struct mm_slot *mm_slot)
2544{
2545	struct mm_struct *mm = mm_slot->mm;
2546
2547	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2548
2549	if (khugepaged_test_exit(mm)) {
2550		/* free mm_slot */
2551		hash_del(&mm_slot->hash);
2552		list_del(&mm_slot->mm_node);
2553
2554		/*
2555		 * Not strictly needed because the mm exited already.
2556		 *
2557		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2558		 */
2559
2560		/* khugepaged_mm_lock actually not necessary for the below */
2561		free_mm_slot(mm_slot);
2562		mmdrop(mm);
2563	}
 
 
2564}
2565
2566static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2567					    struct page **hpage)
2568	__releases(&khugepaged_mm_lock)
2569	__acquires(&khugepaged_mm_lock)
2570{
2571	struct mm_slot *mm_slot;
2572	struct mm_struct *mm;
2573	struct vm_area_struct *vma;
2574	int progress = 0;
2575
2576	VM_BUG_ON(!pages);
2577	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2578
2579	if (khugepaged_scan.mm_slot)
2580		mm_slot = khugepaged_scan.mm_slot;
2581	else {
2582		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2583				     struct mm_slot, mm_node);
2584		khugepaged_scan.address = 0;
2585		khugepaged_scan.mm_slot = mm_slot;
2586	}
2587	spin_unlock(&khugepaged_mm_lock);
2588
2589	mm = mm_slot->mm;
2590	down_read(&mm->mmap_sem);
2591	if (unlikely(khugepaged_test_exit(mm)))
2592		vma = NULL;
2593	else
2594		vma = find_vma(mm, khugepaged_scan.address);
2595
2596	progress++;
2597	for (; vma; vma = vma->vm_next) {
2598		unsigned long hstart, hend;
2599
2600		cond_resched();
2601		if (unlikely(khugepaged_test_exit(mm))) {
2602			progress++;
2603			break;
2604		}
2605		if (!hugepage_vma_check(vma)) {
2606skip:
2607			progress++;
2608			continue;
2609		}
2610		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2611		hend = vma->vm_end & HPAGE_PMD_MASK;
2612		if (hstart >= hend)
2613			goto skip;
2614		if (khugepaged_scan.address > hend)
2615			goto skip;
2616		if (khugepaged_scan.address < hstart)
2617			khugepaged_scan.address = hstart;
2618		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2619
2620		while (khugepaged_scan.address < hend) {
2621			int ret;
2622			cond_resched();
2623			if (unlikely(khugepaged_test_exit(mm)))
2624				goto breakouterloop;
2625
2626			VM_BUG_ON(khugepaged_scan.address < hstart ||
2627				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2628				  hend);
2629			ret = khugepaged_scan_pmd(mm, vma,
2630						  khugepaged_scan.address,
2631						  hpage);
2632			/* move to next address */
2633			khugepaged_scan.address += HPAGE_PMD_SIZE;
2634			progress += HPAGE_PMD_NR;
2635			if (ret)
2636				/* we released mmap_sem so break loop */
2637				goto breakouterloop_mmap_sem;
2638			if (progress >= pages)
2639				goto breakouterloop;
2640		}
2641	}
2642breakouterloop:
2643	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2644breakouterloop_mmap_sem:
2645
2646	spin_lock(&khugepaged_mm_lock);
2647	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2648	/*
2649	 * Release the current mm_slot if this mm is about to die, or
2650	 * if we scanned all vmas of this mm.
2651	 */
2652	if (khugepaged_test_exit(mm) || !vma) {
2653		/*
2654		 * Make sure that if mm_users is reaching zero while
2655		 * khugepaged runs here, khugepaged_exit will find
2656		 * mm_slot not pointing to the exiting mm.
2657		 */
2658		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2659			khugepaged_scan.mm_slot = list_entry(
2660				mm_slot->mm_node.next,
2661				struct mm_slot, mm_node);
2662			khugepaged_scan.address = 0;
2663		} else {
2664			khugepaged_scan.mm_slot = NULL;
2665			khugepaged_full_scans++;
2666		}
2667
2668		collect_mm_slot(mm_slot);
2669	}
2670
2671	return progress;
2672}
2673
2674static int khugepaged_has_work(void)
 
2675{
2676	return !list_empty(&khugepaged_scan.mm_head) &&
2677		khugepaged_enabled();
2678}
2679
2680static int khugepaged_wait_event(void)
 
2681{
2682	return !list_empty(&khugepaged_scan.mm_head) ||
2683		kthread_should_stop();
2684}
 
 
2685
2686static void khugepaged_do_scan(void)
2687{
2688	struct page *hpage = NULL;
2689	unsigned int progress = 0, pass_through_head = 0;
2690	unsigned int pages = khugepaged_pages_to_scan;
2691	bool wait = true;
2692
2693	barrier(); /* write khugepaged_pages_to_scan to local stack */
2694
2695	while (progress < pages) {
2696		if (!khugepaged_prealloc_page(&hpage, &wait))
 
 
2697			break;
 
 
2698
2699		cond_resched();
 
 
 
 
 
 
 
 
 
 
2700
2701		if (unlikely(kthread_should_stop() || freezing(current)))
2702			break;
 
2703
2704		spin_lock(&khugepaged_mm_lock);
2705		if (!khugepaged_scan.mm_slot)
2706			pass_through_head++;
2707		if (khugepaged_has_work() &&
2708		    pass_through_head < 2)
2709			progress += khugepaged_scan_mm_slot(pages - progress,
2710							    &hpage);
2711		else
2712			progress = pages;
2713		spin_unlock(&khugepaged_mm_lock);
2714	}
2715
2716	if (!IS_ERR_OR_NULL(hpage))
2717		put_page(hpage);
2718}
 
 
 
2719
2720static void khugepaged_wait_work(void)
 
2721{
2722	try_to_freeze();
 
 
 
2723
2724	if (khugepaged_has_work()) {
2725		if (!khugepaged_scan_sleep_millisecs)
2726			return;
2727
2728		wait_event_freezable_timeout(khugepaged_wait,
2729					     kthread_should_stop(),
2730			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2731		return;
2732	}
2733
2734	if (khugepaged_enabled())
2735		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2736}
2737
2738static int khugepaged(void *none)
2739{
2740	struct mm_slot *mm_slot;
2741
2742	set_freezable();
2743	set_user_nice(current, 19);
2744
2745	while (!kthread_should_stop()) {
2746		khugepaged_do_scan();
2747		khugepaged_wait_work();
 
 
 
 
 
2748	}
2749
2750	spin_lock(&khugepaged_mm_lock);
2751	mm_slot = khugepaged_scan.mm_slot;
2752	khugepaged_scan.mm_slot = NULL;
2753	if (mm_slot)
2754		collect_mm_slot(mm_slot);
2755	spin_unlock(&khugepaged_mm_lock);
2756	return 0;
2757}
 
 
2758
2759static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2760		unsigned long haddr, pmd_t *pmd)
2761{
2762	struct mm_struct *mm = vma->vm_mm;
2763	pgtable_t pgtable;
2764	pmd_t _pmd;
2765	int i;
2766
2767	pmdp_clear_flush(vma, haddr, pmd);
2768	/* leave pmd empty until pte is filled */
2769
2770	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2771	pmd_populate(mm, &_pmd, pgtable);
2772
2773	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2774		pte_t *pte, entry;
2775		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2776		entry = pte_mkspecial(entry);
2777		pte = pte_offset_map(&_pmd, haddr);
2778		VM_BUG_ON(!pte_none(*pte));
2779		set_pte_at(mm, haddr, pte, entry);
2780		pte_unmap(pte);
2781	}
2782	smp_wmb(); /* make pte visible before pmd */
2783	pmd_populate(mm, pmd, pgtable);
2784	put_huge_zero_page();
2785}
 
 
2786
2787void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2788		pmd_t *pmd)
 
2789{
2790	spinlock_t *ptl;
2791	struct page *page;
2792	struct mm_struct *mm = vma->vm_mm;
2793	unsigned long haddr = address & HPAGE_PMD_MASK;
2794	unsigned long mmun_start;	/* For mmu_notifiers */
2795	unsigned long mmun_end;		/* For mmu_notifiers */
 
2796
2797	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2798
2799	mmun_start = haddr;
2800	mmun_end   = haddr + HPAGE_PMD_SIZE;
2801again:
2802	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2803	ptl = pmd_lock(mm, pmd);
2804	if (unlikely(!pmd_trans_huge(*pmd))) {
2805		spin_unlock(ptl);
2806		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2807		return;
2808	}
2809	if (is_huge_zero_pmd(*pmd)) {
2810		__split_huge_zero_page_pmd(vma, haddr, pmd);
2811		spin_unlock(ptl);
2812		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2813		return;
2814	}
2815	page = pmd_page(*pmd);
2816	VM_BUG_ON_PAGE(!page_count(page), page);
2817	get_page(page);
2818	spin_unlock(ptl);
2819	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2820
2821	split_huge_page(page);
 
2822
 
 
 
 
 
 
 
 
 
 
 
2823	put_page(page);
2824
2825	/*
2826	 * We don't always have down_write of mmap_sem here: a racing
2827	 * do_huge_pmd_wp_page() might have copied-on-write to another
2828	 * huge page before our split_huge_page() got the anon_vma lock.
2829	 */
2830	if (unlikely(pmd_trans_huge(*pmd)))
2831		goto again;
2832}
2833
2834void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2835		pmd_t *pmd)
2836{
2837	struct vm_area_struct *vma;
2838
2839	vma = find_vma(mm, address);
2840	BUG_ON(vma == NULL);
2841	split_huge_page_pmd(vma, address, pmd);
2842}
2843
2844static void split_huge_page_address(struct mm_struct *mm,
2845				    unsigned long address)
2846{
2847	pmd_t *pmd;
2848
2849	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2850
2851	pmd = mm_find_pmd(mm, address);
2852	if (!pmd)
2853		return;
2854	/*
2855	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2856	 * materialize from under us.
2857	 */
2858	split_huge_page_pmd_mm(mm, address, pmd);
2859}
2860
2861void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2862			     unsigned long start,
2863			     unsigned long end,
2864			     long adjust_next)
2865{
2866	/*
2867	 * If the new start address isn't hpage aligned and it could
2868	 * previously contain an hugepage: check if we need to split
2869	 * an huge pmd.
2870	 */
2871	if (start & ~HPAGE_PMD_MASK &&
2872	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2873	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2874		split_huge_page_address(vma->vm_mm, start);
2875
2876	/*
2877	 * If the new end address isn't hpage aligned and it could
2878	 * previously contain an hugepage: check if we need to split
2879	 * an huge pmd.
2880	 */
2881	if (end & ~HPAGE_PMD_MASK &&
2882	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2883	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2884		split_huge_page_address(vma->vm_mm, end);
2885
2886	/*
2887	 * If we're also updating the vma->vm_next->vm_start, if the new
2888	 * vm_next->vm_start isn't page aligned and it could previously
2889	 * contain an hugepage: check if we need to split an huge pmd.
2890	 */
2891	if (adjust_next > 0) {
2892		struct vm_area_struct *next = vma->vm_next;
2893		unsigned long nstart = next->vm_start;
2894		nstart += adjust_next << PAGE_SHIFT;
2895		if (nstart & ~HPAGE_PMD_MASK &&
2896		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2897		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2898			split_huge_page_address(next->vm_mm, nstart);
2899	}
2900}