Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
 
  12#include <linux/sched/coredump.h>
  13#include <linux/sched/numa_balancing.h>
  14#include <linux/highmem.h>
  15#include <linux/hugetlb.h>
  16#include <linux/mmu_notifier.h>
  17#include <linux/rmap.h>
  18#include <linux/swap.h>
  19#include <linux/shrinker.h>
  20#include <linux/mm_inline.h>
  21#include <linux/swapops.h>
 
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
 
 
 
 
 
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
 
 
 
 
  40
  41/*
  42 * By default, transparent hugepage support is disabled in order to avoid
  43 * risking an increased memory footprint for applications that are not
  44 * guaranteed to benefit from it. When transparent hugepage support is
  45 * enabled, it is for all mappings, and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
  60static struct shrinker deferred_split_shrinker;
 
 
 
 
  61
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65static struct page *get_huge_zero_page(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66{
  67	struct page *zero_page;
  68retry:
  69	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  70		return READ_ONCE(huge_zero_page);
  71
  72	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  73			HPAGE_PMD_ORDER);
  74	if (!zero_page) {
  75		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  76		return NULL;
  77	}
  78	count_vm_event(THP_ZERO_PAGE_ALLOC);
  79	preempt_disable();
  80	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  81		preempt_enable();
  82		__free_pages(zero_page, compound_order(zero_page));
  83		goto retry;
  84	}
 
  85
  86	/* We take additional reference here. It will be put back by shrinker */
  87	atomic_set(&huge_zero_refcount, 2);
  88	preempt_enable();
  89	return READ_ONCE(huge_zero_page);
 
  90}
  91
  92static void put_huge_zero_page(void)
  93{
  94	/*
  95	 * Counter should never go to zero here. Only shrinker can put
  96	 * last reference.
  97	 */
  98	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  99}
 100
 101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 102{
 103	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 104		return READ_ONCE(huge_zero_page);
 105
 106	if (!get_huge_zero_page())
 107		return NULL;
 108
 109	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 110		put_huge_zero_page();
 111
 112	return READ_ONCE(huge_zero_page);
 113}
 114
 115void mm_put_huge_zero_page(struct mm_struct *mm)
 116{
 117	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 118		put_huge_zero_page();
 119}
 120
 121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 122					struct shrink_control *sc)
 123{
 124	/* we can free zero page only if last reference remains */
 125	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 126}
 127
 128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 129				       struct shrink_control *sc)
 130{
 131	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 132		struct page *zero_page = xchg(&huge_zero_page, NULL);
 133		BUG_ON(zero_page == NULL);
 
 134		__free_pages(zero_page, compound_order(zero_page));
 135		return HPAGE_PMD_NR;
 136	}
 137
 138	return 0;
 139}
 140
 141static struct shrinker huge_zero_page_shrinker = {
 142	.count_objects = shrink_huge_zero_page_count,
 143	.scan_objects = shrink_huge_zero_page_scan,
 144	.seeks = DEFAULT_SEEKS,
 145};
 146
 147#ifdef CONFIG_SYSFS
 148static ssize_t enabled_show(struct kobject *kobj,
 149			    struct kobj_attribute *attr, char *buf)
 150{
 
 
 151	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 152		return sprintf(buf, "[always] madvise never\n");
 153	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 154		return sprintf(buf, "always [madvise] never\n");
 
 155	else
 156		return sprintf(buf, "always madvise [never]\n");
 
 
 157}
 158
 159static ssize_t enabled_store(struct kobject *kobj,
 160			     struct kobj_attribute *attr,
 161			     const char *buf, size_t count)
 162{
 163	ssize_t ret = count;
 164
 165	if (!memcmp("always", buf,
 166		    min(sizeof("always")-1, count))) {
 167		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 168		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 169	} else if (!memcmp("madvise", buf,
 170			   min(sizeof("madvise")-1, count))) {
 171		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 172		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 173	} else if (!memcmp("never", buf,
 174			   min(sizeof("never")-1, count))) {
 175		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 176		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 177	} else
 178		ret = -EINVAL;
 179
 180	if (ret > 0) {
 181		int err = start_stop_khugepaged();
 182		if (err)
 183			ret = err;
 184	}
 185	return ret;
 186}
 187static struct kobj_attribute enabled_attr =
 188	__ATTR(enabled, 0644, enabled_show, enabled_store);
 189
 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
 191				struct kobj_attribute *attr, char *buf,
 192				enum transparent_hugepage_flag flag)
 193{
 194	return sprintf(buf, "%d\n",
 195		       !!test_bit(flag, &transparent_hugepage_flags));
 196}
 197
 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
 199				 struct kobj_attribute *attr,
 200				 const char *buf, size_t count,
 201				 enum transparent_hugepage_flag flag)
 202{
 203	unsigned long value;
 204	int ret;
 205
 206	ret = kstrtoul(buf, 10, &value);
 207	if (ret < 0)
 208		return ret;
 209	if (value > 1)
 210		return -EINVAL;
 211
 212	if (value)
 213		set_bit(flag, &transparent_hugepage_flags);
 214	else
 215		clear_bit(flag, &transparent_hugepage_flags);
 216
 217	return count;
 218}
 219
 220static ssize_t defrag_show(struct kobject *kobj,
 221			   struct kobj_attribute *attr, char *buf)
 222{
 223	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 224		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 225	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 226		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 227	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 228		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 229	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 230		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 231	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 
 
 
 
 
 
 
 
 
 232}
 233
 234static ssize_t defrag_store(struct kobject *kobj,
 235			    struct kobj_attribute *attr,
 236			    const char *buf, size_t count)
 237{
 238	if (!memcmp("always", buf,
 239		    min(sizeof("always")-1, count))) {
 240		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 241		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 242		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 243		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 244	} else if (!memcmp("defer+madvise", buf,
 245		    min(sizeof("defer+madvise")-1, count))) {
 246		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 247		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 248		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 249		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 250	} else if (!memcmp("defer", buf,
 251		    min(sizeof("defer")-1, count))) {
 252		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 253		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 254		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 255		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 256	} else if (!memcmp("madvise", buf,
 257			   min(sizeof("madvise")-1, count))) {
 258		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 259		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 260		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 261		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262	} else if (!memcmp("never", buf,
 263			   min(sizeof("never")-1, count))) {
 264		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 265		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 266		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 267		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 268	} else
 269		return -EINVAL;
 270
 271	return count;
 272}
 273static struct kobj_attribute defrag_attr =
 274	__ATTR(defrag, 0644, defrag_show, defrag_store);
 275
 276static ssize_t use_zero_page_show(struct kobject *kobj,
 277		struct kobj_attribute *attr, char *buf)
 278{
 279	return single_hugepage_flag_show(kobj, attr, buf,
 280				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 281}
 282static ssize_t use_zero_page_store(struct kobject *kobj,
 283		struct kobj_attribute *attr, const char *buf, size_t count)
 284{
 285	return single_hugepage_flag_store(kobj, attr, buf, count,
 286				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 287}
 288static struct kobj_attribute use_zero_page_attr =
 289	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 290
 291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 292		struct kobj_attribute *attr, char *buf)
 293{
 294	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 295}
 296static struct kobj_attribute hpage_pmd_size_attr =
 297	__ATTR_RO(hpage_pmd_size);
 298
 299#ifdef CONFIG_DEBUG_VM
 300static ssize_t debug_cow_show(struct kobject *kobj,
 301				struct kobj_attribute *attr, char *buf)
 302{
 303	return single_hugepage_flag_show(kobj, attr, buf,
 304				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 305}
 306static ssize_t debug_cow_store(struct kobject *kobj,
 307			       struct kobj_attribute *attr,
 308			       const char *buf, size_t count)
 309{
 310	return single_hugepage_flag_store(kobj, attr, buf, count,
 311				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 312}
 313static struct kobj_attribute debug_cow_attr =
 314	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 315#endif /* CONFIG_DEBUG_VM */
 316
 317static struct attribute *hugepage_attr[] = {
 318	&enabled_attr.attr,
 319	&defrag_attr.attr,
 320	&use_zero_page_attr.attr,
 321	&hpage_pmd_size_attr.attr,
 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 323	&shmem_enabled_attr.attr,
 324#endif
 325#ifdef CONFIG_DEBUG_VM
 326	&debug_cow_attr.attr,
 327#endif
 328	NULL,
 329};
 330
 331static const struct attribute_group hugepage_attr_group = {
 332	.attrs = hugepage_attr,
 333};
 334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 336{
 337	int err;
 
 
 
 
 
 
 
 
 
 
 338
 339	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 340	if (unlikely(!*hugepage_kobj)) {
 341		pr_err("failed to create transparent hugepage kobject\n");
 342		return -ENOMEM;
 343	}
 344
 345	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 346	if (err) {
 347		pr_err("failed to register transparent hugepage group\n");
 348		goto delete_obj;
 349	}
 350
 351	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 352	if (err) {
 353		pr_err("failed to register transparent hugepage group\n");
 354		goto remove_hp_group;
 355	}
 356
 
 
 
 
 
 
 
 
 
 
 
 
 
 357	return 0;
 358
 
 
 
 359remove_hp_group:
 360	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 361delete_obj:
 362	kobject_put(*hugepage_kobj);
 363	return err;
 364}
 365
 366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 367{
 
 
 
 
 
 
 
 368	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 369	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 370	kobject_put(hugepage_kobj);
 371}
 372#else
 373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 374{
 375	return 0;
 376}
 377
 378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 379{
 380}
 381#endif /* CONFIG_SYSFS */
 382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383static int __init hugepage_init(void)
 384{
 385	int err;
 386	struct kobject *hugepage_kobj;
 387
 388	if (!has_transparent_hugepage()) {
 389		transparent_hugepage_flags = 0;
 390		return -EINVAL;
 391	}
 392
 393	/*
 394	 * hugepages can't be allocated by the buddy allocator
 395	 */
 396	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 397	/*
 398	 * we use page->mapping and page->index in second tail page
 399	 * as list_head: assuming THP order >= 2
 400	 */
 401	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 402
 403	err = hugepage_init_sysfs(&hugepage_kobj);
 404	if (err)
 405		goto err_sysfs;
 406
 407	err = khugepaged_init();
 408	if (err)
 409		goto err_slab;
 410
 411	err = register_shrinker(&huge_zero_page_shrinker);
 412	if (err)
 413		goto err_hzp_shrinker;
 414	err = register_shrinker(&deferred_split_shrinker);
 415	if (err)
 416		goto err_split_shrinker;
 417
 418	/*
 419	 * By default disable transparent hugepages on smaller systems,
 420	 * where the extra memory used could hurt more than TLB overhead
 421	 * is likely to save.  The admin can still enable it through /sys.
 422	 */
 423	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 424		transparent_hugepage_flags = 0;
 425		return 0;
 426	}
 427
 428	err = start_stop_khugepaged();
 429	if (err)
 430		goto err_khugepaged;
 431
 432	return 0;
 433err_khugepaged:
 434	unregister_shrinker(&deferred_split_shrinker);
 435err_split_shrinker:
 436	unregister_shrinker(&huge_zero_page_shrinker);
 437err_hzp_shrinker:
 438	khugepaged_destroy();
 439err_slab:
 440	hugepage_exit_sysfs(hugepage_kobj);
 441err_sysfs:
 442	return err;
 443}
 444subsys_initcall(hugepage_init);
 445
 446static int __init setup_transparent_hugepage(char *str)
 447{
 448	int ret = 0;
 449	if (!str)
 450		goto out;
 451	if (!strcmp(str, "always")) {
 452		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 453			&transparent_hugepage_flags);
 454		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 455			  &transparent_hugepage_flags);
 456		ret = 1;
 457	} else if (!strcmp(str, "madvise")) {
 458		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 459			  &transparent_hugepage_flags);
 460		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 461			&transparent_hugepage_flags);
 462		ret = 1;
 463	} else if (!strcmp(str, "never")) {
 464		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 465			  &transparent_hugepage_flags);
 466		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 467			  &transparent_hugepage_flags);
 468		ret = 1;
 469	}
 470out:
 471	if (!ret)
 472		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 473	return ret;
 474}
 475__setup("transparent_hugepage=", setup_transparent_hugepage);
 476
 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 478{
 479	if (likely(vma->vm_flags & VM_WRITE))
 480		pmd = pmd_mkwrite(pmd);
 481	return pmd;
 482}
 483
 484static inline struct list_head *page_deferred_list(struct page *page)
 
 
 485{
 486	/*
 487	 * ->lru in the tail pages is occupied by compound_head.
 488	 * Let's use ->mapping + ->index in the second tail page as list_head.
 489	 */
 490	return (struct list_head *)&page[2].mapping;
 
 
 491}
 
 
 
 
 
 
 
 
 
 492
 493void prep_transhuge_page(struct page *page)
 494{
 495	/*
 496	 * we use page->mapping and page->indexlru in second tail page
 497	 * as list_head: assuming THP order >= 2
 498	 */
 
 
 
 
 
 499
 500	INIT_LIST_HEAD(page_deferred_list(page));
 501	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 502}
 503
 504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 
 505		loff_t off, unsigned long flags, unsigned long size)
 506{
 507	unsigned long addr;
 508	loff_t off_end = off + len;
 509	loff_t off_align = round_up(off, size);
 510	unsigned long len_pad;
 
 
 
 511
 512	if (off_end <= off_align || (off_end - off_align) < size)
 513		return 0;
 514
 515	len_pad = len + size;
 516	if (len_pad < len || (off + len_pad) < off)
 517		return 0;
 518
 519	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 520					      off >> PAGE_SHIFT, flags);
 521	if (IS_ERR_VALUE(addr))
 
 
 
 
 
 522		return 0;
 523
 524	addr += (off - addr) & (size - 1);
 525	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 526}
 527
 528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 529		unsigned long len, unsigned long pgoff, unsigned long flags)
 530{
 
 531	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 532
 533	if (addr)
 534		goto out;
 535	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 536		goto out;
 537
 538	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 539	if (addr)
 540		return addr;
 541
 542 out:
 543	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 544}
 545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 546
 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
 548		gfp_t gfp)
 549{
 550	struct vm_area_struct *vma = vmf->vma;
 551	struct mem_cgroup *memcg;
 552	pgtable_t pgtable;
 553	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 554	int ret = 0;
 555
 556	VM_BUG_ON_PAGE(!PageCompound(page), page);
 557
 558	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 559		put_page(page);
 560		count_vm_event(THP_FAULT_FALLBACK);
 
 561		return VM_FAULT_FALLBACK;
 562	}
 
 563
 564	pgtable = pte_alloc_one(vma->vm_mm, haddr);
 565	if (unlikely(!pgtable)) {
 566		ret = VM_FAULT_OOM;
 567		goto release;
 568	}
 569
 570	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 571	/*
 572	 * The memory barrier inside __SetPageUptodate makes sure that
 573	 * clear_huge_page writes become visible before the set_pmd_at()
 574	 * write.
 575	 */
 576	__SetPageUptodate(page);
 577
 578	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 579	if (unlikely(!pmd_none(*vmf->pmd))) {
 580		goto unlock_release;
 581	} else {
 582		pmd_t entry;
 583
 584		ret = check_stable_address_space(vma->vm_mm);
 585		if (ret)
 586			goto unlock_release;
 587
 588		/* Deliver the page fault to userland */
 589		if (userfaultfd_missing(vma)) {
 590			int ret;
 591
 592			spin_unlock(vmf->ptl);
 593			mem_cgroup_cancel_charge(page, memcg, true);
 594			put_page(page);
 595			pte_free(vma->vm_mm, pgtable);
 596			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 597			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 598			return ret;
 599		}
 600
 601		entry = mk_huge_pmd(page, vma->vm_page_prot);
 602		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 603		page_add_new_anon_rmap(page, vma, haddr, true);
 604		mem_cgroup_commit_charge(page, memcg, false, true);
 605		lru_cache_add_active_or_unevictable(page, vma);
 606		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 607		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 
 608		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 609		mm_inc_nr_ptes(vma->vm_mm);
 610		spin_unlock(vmf->ptl);
 611		count_vm_event(THP_FAULT_ALLOC);
 
 612	}
 613
 614	return 0;
 615unlock_release:
 616	spin_unlock(vmf->ptl);
 617release:
 618	if (pgtable)
 619		pte_free(vma->vm_mm, pgtable);
 620	mem_cgroup_cancel_charge(page, memcg, true);
 621	put_page(page);
 622	return ret;
 623
 624}
 625
 626/*
 627 * always: directly stall for all thp allocations
 628 * defer: wake kswapd and fail if not immediately available
 629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 630 *		  fail if not immediately available
 631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 632 *	    available
 633 * never: never stall for any thp allocation
 634 */
 635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 636{
 637	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 638
 
 639	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 640		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 
 
 641	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 642		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 
 
 643	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 644		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 645							     __GFP_KSWAPD_RECLAIM);
 
 
 
 646	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 647		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 648							     0);
 
 649	return GFP_TRANSHUGE_LIGHT;
 650}
 651
 652/* Caller must hold page table lock. */
 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 654		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 655		struct page *zero_page)
 656{
 657	pmd_t entry;
 658	if (!pmd_none(*pmd))
 659		return false;
 660	entry = mk_pmd(zero_page, vma->vm_page_prot);
 661	entry = pmd_mkhuge(entry);
 662	if (pgtable)
 663		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 664	set_pmd_at(mm, haddr, pmd, entry);
 665	mm_inc_nr_ptes(mm);
 666	return true;
 667}
 668
 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 670{
 671	struct vm_area_struct *vma = vmf->vma;
 672	gfp_t gfp;
 673	struct page *page;
 674	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 675
 676	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 677		return VM_FAULT_FALLBACK;
 678	if (unlikely(anon_vma_prepare(vma)))
 679		return VM_FAULT_OOM;
 680	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 681		return VM_FAULT_OOM;
 682	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 683			!mm_forbids_zeropage(vma->vm_mm) &&
 684			transparent_hugepage_use_zero_page()) {
 685		pgtable_t pgtable;
 686		struct page *zero_page;
 687		bool set;
 688		int ret;
 689		pgtable = pte_alloc_one(vma->vm_mm, haddr);
 690		if (unlikely(!pgtable))
 691			return VM_FAULT_OOM;
 692		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 693		if (unlikely(!zero_page)) {
 694			pte_free(vma->vm_mm, pgtable);
 695			count_vm_event(THP_FAULT_FALLBACK);
 696			return VM_FAULT_FALLBACK;
 697		}
 698		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 699		ret = 0;
 700		set = false;
 701		if (pmd_none(*vmf->pmd)) {
 702			ret = check_stable_address_space(vma->vm_mm);
 703			if (ret) {
 704				spin_unlock(vmf->ptl);
 
 705			} else if (userfaultfd_missing(vma)) {
 706				spin_unlock(vmf->ptl);
 
 707				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 708				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 709			} else {
 710				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 711						   haddr, vmf->pmd, zero_page);
 
 712				spin_unlock(vmf->ptl);
 713				set = true;
 714			}
 715		} else
 716			spin_unlock(vmf->ptl);
 717		if (!set)
 718			pte_free(vma->vm_mm, pgtable);
 
 719		return ret;
 720	}
 721	gfp = alloc_hugepage_direct_gfpmask(vma);
 722	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 723	if (unlikely(!page)) {
 724		count_vm_event(THP_FAULT_FALLBACK);
 725		return VM_FAULT_FALLBACK;
 726	}
 727	prep_transhuge_page(page);
 728	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 729}
 730
 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 732		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 733		pgtable_t pgtable)
 734{
 735	struct mm_struct *mm = vma->vm_mm;
 736	pmd_t entry;
 737	spinlock_t *ptl;
 738
 739	ptl = pmd_lock(mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 741	if (pfn_t_devmap(pfn))
 742		entry = pmd_mkdevmap(entry);
 743	if (write) {
 744		entry = pmd_mkyoung(pmd_mkdirty(entry));
 745		entry = maybe_pmd_mkwrite(entry, vma);
 746	}
 747
 748	if (pgtable) {
 749		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 750		mm_inc_nr_ptes(mm);
 
 751	}
 752
 753	set_pmd_at(mm, addr, pmd, entry);
 754	update_mmu_cache_pmd(vma, addr, pmd);
 
 
 755	spin_unlock(ptl);
 
 
 756}
 757
 758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 759			pmd_t *pmd, pfn_t pfn, bool write)
 
 
 
 
 
 
 
 
 
 760{
 
 
 761	pgprot_t pgprot = vma->vm_page_prot;
 762	pgtable_t pgtable = NULL;
 
 763	/*
 764	 * If we had pmd_special, we could avoid all these restrictions,
 765	 * but we need to be consistent with PTEs and architectures that
 766	 * can't support a 'special' bit.
 767	 */
 768	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 
 769	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 770						(VM_PFNMAP|VM_MIXEDMAP));
 771	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 772	BUG_ON(!pfn_t_devmap(pfn));
 773
 774	if (addr < vma->vm_start || addr >= vma->vm_end)
 775		return VM_FAULT_SIGBUS;
 776
 777	if (arch_needs_pgtable_deposit()) {
 778		pgtable = pte_alloc_one(vma->vm_mm, addr);
 779		if (!pgtable)
 780			return VM_FAULT_OOM;
 781	}
 782
 783	track_pfn_insert(vma, &pgprot, pfn);
 784
 785	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
 786	return VM_FAULT_NOPAGE;
 787}
 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 789
 790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 792{
 793	if (likely(vma->vm_flags & VM_WRITE))
 794		pud = pud_mkwrite(pud);
 795	return pud;
 796}
 797
 798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 799		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 800{
 801	struct mm_struct *mm = vma->vm_mm;
 
 802	pud_t entry;
 803	spinlock_t *ptl;
 804
 805	ptl = pud_lock(mm, pud);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 807	if (pfn_t_devmap(pfn))
 808		entry = pud_mkdevmap(entry);
 809	if (write) {
 810		entry = pud_mkyoung(pud_mkdirty(entry));
 811		entry = maybe_pud_mkwrite(entry, vma);
 812	}
 813	set_pud_at(mm, addr, pud, entry);
 814	update_mmu_cache_pud(vma, addr, pud);
 
 
 815	spin_unlock(ptl);
 816}
 817
 818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 819			pud_t *pud, pfn_t pfn, bool write)
 
 
 
 
 
 
 
 
 
 820{
 
 
 821	pgprot_t pgprot = vma->vm_page_prot;
 
 822	/*
 823	 * If we had pud_special, we could avoid all these restrictions,
 824	 * but we need to be consistent with PTEs and architectures that
 825	 * can't support a 'special' bit.
 826	 */
 827	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 
 828	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 829						(VM_PFNMAP|VM_MIXEDMAP));
 830	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 831	BUG_ON(!pfn_t_devmap(pfn));
 832
 833	if (addr < vma->vm_start || addr >= vma->vm_end)
 834		return VM_FAULT_SIGBUS;
 835
 836	track_pfn_insert(vma, &pgprot, pfn);
 837
 838	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
 839	return VM_FAULT_NOPAGE;
 840}
 841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 843
 844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 845		pmd_t *pmd, int flags)
 846{
 847	pmd_t _pmd;
 848
 849	_pmd = pmd_mkyoung(*pmd);
 850	if (flags & FOLL_WRITE)
 851		_pmd = pmd_mkdirty(_pmd);
 852	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 853				pmd, _pmd, flags & FOLL_WRITE))
 854		update_mmu_cache_pmd(vma, addr, pmd);
 855}
 856
 857struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 858		pmd_t *pmd, int flags)
 859{
 860	unsigned long pfn = pmd_pfn(*pmd);
 861	struct mm_struct *mm = vma->vm_mm;
 862	struct dev_pagemap *pgmap;
 863	struct page *page;
 
 864
 865	assert_spin_locked(pmd_lockptr(mm, pmd));
 866
 867	/*
 868	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 869	 * not be in this function with `flags & FOLL_COW` set.
 870	 */
 871	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 872
 873	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 874		return NULL;
 875
 876	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 877		/* pass */;
 878	else
 879		return NULL;
 880
 881	if (flags & FOLL_TOUCH)
 882		touch_pmd(vma, addr, pmd, flags);
 883
 884	/*
 885	 * device mapped pages can only be returned if the
 886	 * caller will manage the page reference count.
 887	 */
 888	if (!(flags & FOLL_GET))
 889		return ERR_PTR(-EEXIST);
 890
 891	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 892	pgmap = get_dev_pagemap(pfn, NULL);
 893	if (!pgmap)
 894		return ERR_PTR(-EFAULT);
 895	page = pfn_to_page(pfn);
 896	get_page(page);
 897	put_dev_pagemap(pgmap);
 
 898
 899	return page;
 900}
 901
 902int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 903		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 904		  struct vm_area_struct *vma)
 905{
 906	spinlock_t *dst_ptl, *src_ptl;
 907	struct page *src_page;
 
 908	pmd_t pmd;
 909	pgtable_t pgtable = NULL;
 910	int ret = -ENOMEM;
 911
 912	/* Skip if can be re-fill on fault */
 913	if (!vma_is_anonymous(vma))
 914		return 0;
 915
 916	pgtable = pte_alloc_one(dst_mm, addr);
 917	if (unlikely(!pgtable))
 918		goto out;
 919
 920	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 921	src_ptl = pmd_lockptr(src_mm, src_pmd);
 922	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 923
 924	ret = -EAGAIN;
 925	pmd = *src_pmd;
 926
 927#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 928	if (unlikely(is_swap_pmd(pmd))) {
 929		swp_entry_t entry = pmd_to_swp_entry(pmd);
 930
 931		VM_BUG_ON(!is_pmd_migration_entry(pmd));
 932		if (is_write_migration_entry(entry)) {
 933			make_migration_entry_read(&entry);
 
 934			pmd = swp_entry_to_pmd(entry);
 935			if (pmd_swp_soft_dirty(*src_pmd))
 936				pmd = pmd_swp_mksoft_dirty(pmd);
 
 
 937			set_pmd_at(src_mm, addr, src_pmd, pmd);
 938		}
 939		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 940		mm_inc_nr_ptes(dst_mm);
 941		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 
 
 942		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 943		ret = 0;
 944		goto out_unlock;
 945	}
 946#endif
 947
 948	if (unlikely(!pmd_trans_huge(pmd))) {
 949		pte_free(dst_mm, pgtable);
 950		goto out_unlock;
 951	}
 952	/*
 953	 * When page table lock is held, the huge zero pmd should not be
 954	 * under splitting since we don't split the page itself, only pmd to
 955	 * a page table.
 956	 */
 957	if (is_huge_zero_pmd(pmd)) {
 958		struct page *zero_page;
 959		/*
 960		 * get_huge_zero_page() will never allocate a new page here,
 961		 * since we already have a zero page to copy. It just takes a
 962		 * reference.
 963		 */
 964		zero_page = mm_get_huge_zero_page(dst_mm);
 965		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 966				zero_page);
 967		ret = 0;
 968		goto out_unlock;
 969	}
 970
 971	src_page = pmd_page(pmd);
 972	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 973	get_page(src_page);
 974	page_dup_rmap(src_page, true);
 
 
 
 
 
 
 
 
 
 
 975	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 
 976	mm_inc_nr_ptes(dst_mm);
 977	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 978
 979	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 
 
 980	pmd = pmd_mkold(pmd_wrprotect(pmd));
 981	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 982
 983	ret = 0;
 984out_unlock:
 985	spin_unlock(src_ptl);
 986	spin_unlock(dst_ptl);
 987out:
 988	return ret;
 989}
 990
 991#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 992static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 993		pud_t *pud, int flags)
 994{
 995	pud_t _pud;
 996
 997	_pud = pud_mkyoung(*pud);
 998	if (flags & FOLL_WRITE)
 999		_pud = pud_mkdirty(_pud);
1000	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1001				pud, _pud, flags & FOLL_WRITE))
1002		update_mmu_cache_pud(vma, addr, pud);
1003}
1004
1005struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1006		pud_t *pud, int flags)
1007{
1008	unsigned long pfn = pud_pfn(*pud);
1009	struct mm_struct *mm = vma->vm_mm;
1010	struct dev_pagemap *pgmap;
1011	struct page *page;
 
1012
1013	assert_spin_locked(pud_lockptr(mm, pud));
1014
1015	if (flags & FOLL_WRITE && !pud_write(*pud))
1016		return NULL;
1017
1018	if (pud_present(*pud) && pud_devmap(*pud))
1019		/* pass */;
1020	else
1021		return NULL;
1022
1023	if (flags & FOLL_TOUCH)
1024		touch_pud(vma, addr, pud, flags);
1025
1026	/*
1027	 * device mapped pages can only be returned if the
1028	 * caller will manage the page reference count.
 
 
1029	 */
1030	if (!(flags & FOLL_GET))
1031		return ERR_PTR(-EEXIST);
1032
1033	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1034	pgmap = get_dev_pagemap(pfn, NULL);
1035	if (!pgmap)
1036		return ERR_PTR(-EFAULT);
1037	page = pfn_to_page(pfn);
1038	get_page(page);
1039	put_dev_pagemap(pgmap);
 
 
1040
1041	return page;
1042}
1043
1044int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1046		  struct vm_area_struct *vma)
1047{
1048	spinlock_t *dst_ptl, *src_ptl;
1049	pud_t pud;
1050	int ret;
1051
1052	dst_ptl = pud_lock(dst_mm, dst_pud);
1053	src_ptl = pud_lockptr(src_mm, src_pud);
1054	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1055
1056	ret = -EAGAIN;
1057	pud = *src_pud;
1058	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1059		goto out_unlock;
1060
1061	/*
1062	 * When page table lock is held, the huge zero pud should not be
1063	 * under splitting since we don't split the page itself, only pud to
1064	 * a page table.
1065	 */
1066	if (is_huge_zero_pud(pud)) {
1067		/* No huge zero pud yet */
1068	}
1069
 
 
 
 
1070	pudp_set_wrprotect(src_mm, addr, src_pud);
1071	pud = pud_mkold(pud_wrprotect(pud));
1072	set_pud_at(dst_mm, addr, dst_pud, pud);
1073
1074	ret = 0;
1075out_unlock:
1076	spin_unlock(src_ptl);
1077	spin_unlock(dst_ptl);
1078	return ret;
1079}
1080
1081void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1082{
1083	pud_t entry;
1084	unsigned long haddr;
1085	bool write = vmf->flags & FAULT_FLAG_WRITE;
1086
1087	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1088	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1089		goto unlock;
1090
1091	entry = pud_mkyoung(orig_pud);
1092	if (write)
1093		entry = pud_mkdirty(entry);
1094	haddr = vmf->address & HPAGE_PUD_MASK;
1095	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1096		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1097
1098unlock:
1099	spin_unlock(vmf->ptl);
1100}
1101#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1102
1103void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1104{
1105	pmd_t entry;
1106	unsigned long haddr;
1107	bool write = vmf->flags & FAULT_FLAG_WRITE;
1108
1109	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1110	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1111		goto unlock;
1112
1113	entry = pmd_mkyoung(orig_pmd);
1114	if (write)
1115		entry = pmd_mkdirty(entry);
1116	haddr = vmf->address & HPAGE_PMD_MASK;
1117	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1118		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1119
1120unlock:
1121	spin_unlock(vmf->ptl);
1122}
1123
1124static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1125		struct page *page)
1126{
 
1127	struct vm_area_struct *vma = vmf->vma;
 
 
1128	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1129	struct mem_cgroup *memcg;
1130	pgtable_t pgtable;
1131	pmd_t _pmd;
1132	int ret = 0, i;
1133	struct page **pages;
1134	unsigned long mmun_start;	/* For mmu_notifiers */
1135	unsigned long mmun_end;		/* For mmu_notifiers */
1136
1137	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1138			GFP_KERNEL);
1139	if (unlikely(!pages)) {
1140		ret |= VM_FAULT_OOM;
1141		goto out;
1142	}
1143
1144	for (i = 0; i < HPAGE_PMD_NR; i++) {
1145		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1146					       vmf->address, page_to_nid(page));
1147		if (unlikely(!pages[i] ||
1148			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1149				     GFP_KERNEL, &memcg, false))) {
1150			if (pages[i])
1151				put_page(pages[i]);
1152			while (--i >= 0) {
1153				memcg = (void *)page_private(pages[i]);
1154				set_page_private(pages[i], 0);
1155				mem_cgroup_cancel_charge(pages[i], memcg,
1156						false);
1157				put_page(pages[i]);
1158			}
1159			kfree(pages);
1160			ret |= VM_FAULT_OOM;
1161			goto out;
1162		}
1163		set_page_private(pages[i], (unsigned long)memcg);
1164	}
1165
1166	for (i = 0; i < HPAGE_PMD_NR; i++) {
1167		copy_user_highpage(pages[i], page + i,
1168				   haddr + PAGE_SIZE * i, vma);
1169		__SetPageUptodate(pages[i]);
1170		cond_resched();
1171	}
1172
1173	mmun_start = haddr;
1174	mmun_end   = haddr + HPAGE_PMD_SIZE;
1175	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1176
1177	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1178	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179		goto out_free_pages;
1180	VM_BUG_ON_PAGE(!PageHead(page), page);
1181
1182	/*
1183	 * Leave pmd empty until pte is filled note we must notify here as
1184	 * concurrent CPU thread might write to new page before the call to
1185	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1186	 * device seeing memory write in different order than CPU.
1187	 *
1188	 * See Documentation/vm/mmu_notifier.txt
1189	 */
1190	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1191
1192	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1193	pmd_populate(vma->vm_mm, &_pmd, pgtable);
 
1194
1195	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1196		pte_t entry;
1197		entry = mk_pte(pages[i], vma->vm_page_prot);
1198		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1199		memcg = (void *)page_private(pages[i]);
1200		set_page_private(pages[i], 0);
1201		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1202		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1203		lru_cache_add_active_or_unevictable(pages[i], vma);
1204		vmf->pte = pte_offset_map(&_pmd, haddr);
1205		VM_BUG_ON(!pte_none(*vmf->pte));
1206		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1207		pte_unmap(vmf->pte);
1208	}
1209	kfree(pages);
1210
1211	smp_wmb(); /* make pte visible before pmd */
1212	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1213	page_remove_rmap(page, true);
1214	spin_unlock(vmf->ptl);
 
1215
1216	/*
1217	 * No need to double call mmu_notifier->invalidate_range() callback as
1218	 * the above pmdp_huge_clear_flush_notify() did already call it.
 
1219	 */
1220	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1221						mmun_end);
1222
1223	ret |= VM_FAULT_WRITE;
1224	put_page(page);
 
 
1225
1226out:
1227	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1228
1229out_free_pages:
 
1230	spin_unlock(vmf->ptl);
1231	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1232	for (i = 0; i < HPAGE_PMD_NR; i++) {
1233		memcg = (void *)page_private(pages[i]);
1234		set_page_private(pages[i], 0);
1235		mem_cgroup_cancel_charge(pages[i], memcg, false);
1236		put_page(pages[i]);
1237	}
1238	kfree(pages);
1239	goto out;
1240}
1241
1242int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
 
1243{
1244	struct vm_area_struct *vma = vmf->vma;
1245	struct page *page = NULL, *new_page;
1246	struct mem_cgroup *memcg;
1247	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1248	unsigned long mmun_start;	/* For mmu_notifiers */
1249	unsigned long mmun_end;		/* For mmu_notifiers */
1250	gfp_t huge_gfp;			/* for allocation and charge */
1251	int ret = 0;
1252
1253	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1254	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1255	if (is_huge_zero_pmd(orig_pmd))
1256		goto alloc;
1257	spin_lock(vmf->ptl);
1258	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1259		goto out_unlock;
1260
1261	page = pmd_page(orig_pmd);
1262	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1263	/*
1264	 * We can only reuse the page if nobody else maps the huge page or it's
1265	 * part.
1266	 */
1267	if (!trylock_page(page)) {
1268		get_page(page);
1269		spin_unlock(vmf->ptl);
1270		lock_page(page);
1271		spin_lock(vmf->ptl);
1272		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1273			unlock_page(page);
1274			put_page(page);
1275			goto out_unlock;
1276		}
1277		put_page(page);
1278	}
1279	if (reuse_swap_page(page, NULL)) {
1280		pmd_t entry;
1281		entry = pmd_mkyoung(orig_pmd);
1282		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1283		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1284			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1285		ret |= VM_FAULT_WRITE;
1286		unlock_page(page);
1287		goto out_unlock;
1288	}
1289	unlock_page(page);
1290	get_page(page);
1291	spin_unlock(vmf->ptl);
1292alloc:
1293	if (transparent_hugepage_enabled(vma) &&
1294	    !transparent_hugepage_debug_cow()) {
1295		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1296		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1297	} else
1298		new_page = NULL;
1299
1300	if (likely(new_page)) {
1301		prep_transhuge_page(new_page);
1302	} else {
1303		if (!page) {
1304			split_huge_pmd(vma, vmf->pmd, vmf->address);
1305			ret |= VM_FAULT_FALLBACK;
1306		} else {
1307			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1308			if (ret & VM_FAULT_OOM) {
1309				split_huge_pmd(vma, vmf->pmd, vmf->address);
1310				ret |= VM_FAULT_FALLBACK;
1311			}
1312			put_page(page);
1313		}
1314		count_vm_event(THP_FAULT_FALLBACK);
1315		goto out;
1316	}
1317
1318	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1319					huge_gfp, &memcg, true))) {
1320		put_page(new_page);
1321		split_huge_pmd(vma, vmf->pmd, vmf->address);
1322		if (page)
1323			put_page(page);
1324		ret |= VM_FAULT_FALLBACK;
1325		count_vm_event(THP_FAULT_FALLBACK);
1326		goto out;
1327	}
1328
1329	count_vm_event(THP_FAULT_ALLOC);
 
 
1330
1331	if (!page)
1332		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1333	else
1334		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1335	__SetPageUptodate(new_page);
 
 
 
1336
1337	mmun_start = haddr;
1338	mmun_end   = haddr + HPAGE_PMD_SIZE;
1339	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
 
 
 
 
 
 
 
 
 
 
 
 
1340
1341	spin_lock(vmf->ptl);
1342	if (page)
1343		put_page(page);
1344	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345		spin_unlock(vmf->ptl);
1346		mem_cgroup_cancel_charge(new_page, memcg, true);
1347		put_page(new_page);
1348		goto out_mn;
1349	} else {
1350		pmd_t entry;
1351		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1352		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1353		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1354		page_add_new_anon_rmap(new_page, vma, haddr, true);
1355		mem_cgroup_commit_charge(new_page, memcg, false, true);
1356		lru_cache_add_active_or_unevictable(new_page, vma);
1357		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1358		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359		if (!page) {
1360			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1361		} else {
1362			VM_BUG_ON_PAGE(!PageHead(page), page);
1363			page_remove_rmap(page, true);
1364			put_page(page);
1365		}
1366		ret |= VM_FAULT_WRITE;
1367	}
1368	spin_unlock(vmf->ptl);
1369out_mn:
1370	/*
1371	 * No need to double call mmu_notifier->invalidate_range() callback as
1372	 * the above pmdp_huge_clear_flush_notify() did already call it.
1373	 */
1374	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1375					       mmun_end);
1376out:
1377	return ret;
1378out_unlock:
1379	spin_unlock(vmf->ptl);
1380	return ret;
1381}
1382
1383/*
1384 * FOLL_FORCE can write to even unwritable pmd's, but only
1385 * after we've gone through a COW cycle and they are dirty.
1386 */
1387static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1388{
1389	return pmd_write(pmd) ||
1390	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1391}
1392
1393struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1394				   unsigned long addr,
1395				   pmd_t *pmd,
1396				   unsigned int flags)
1397{
1398	struct mm_struct *mm = vma->vm_mm;
1399	struct page *page = NULL;
 
1400
1401	assert_spin_locked(pmd_lockptr(mm, pmd));
1402
1403	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1404		goto out;
 
 
 
 
1405
1406	/* Avoid dumping huge zero page */
1407	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1408		return ERR_PTR(-EFAULT);
1409
1410	/* Full NUMA hinting faults to serialise migration in fault paths */
1411	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1412		goto out;
 
 
 
 
 
 
 
 
 
1413
1414	page = pmd_page(*pmd);
1415	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1416	if (flags & FOLL_TOUCH)
1417		touch_pmd(vma, addr, pmd, flags);
1418	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1419		/*
1420		 * We don't mlock() pte-mapped THPs. This way we can avoid
1421		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1422		 *
1423		 * For anon THP:
1424		 *
1425		 * In most cases the pmd is the only mapping of the page as we
1426		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1427		 * writable private mappings in populate_vma_page_range().
1428		 *
1429		 * The only scenario when we have the page shared here is if we
1430		 * mlocking read-only mapping shared over fork(). We skip
1431		 * mlocking such pages.
1432		 *
1433		 * For file THP:
1434		 *
1435		 * We can expect PageDoubleMap() to be stable under page lock:
1436		 * for file pages we set it in page_add_file_rmap(), which
1437		 * requires page to be locked.
1438		 */
1439
1440		if (PageAnon(page) && compound_mapcount(page) != 1)
1441			goto skip_mlock;
1442		if (PageDoubleMap(page) || !page->mapping)
1443			goto skip_mlock;
1444		if (!trylock_page(page))
1445			goto skip_mlock;
1446		lru_add_drain();
1447		if (page->mapping && !PageDoubleMap(page))
1448			mlock_vma_page(page);
1449		unlock_page(page);
1450	}
1451skip_mlock:
1452	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1453	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1454	if (flags & FOLL_GET)
1455		get_page(page);
1456
1457out:
1458	return page;
1459}
1460
1461/* NUMA hinting page fault entry point for trans huge pmds */
1462int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1463{
1464	struct vm_area_struct *vma = vmf->vma;
1465	struct anon_vma *anon_vma = NULL;
1466	struct page *page;
 
1467	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1468	int page_nid = -1, this_nid = numa_node_id();
1469	int target_nid, last_cpupid = -1;
1470	bool page_locked;
1471	bool migrated = false;
1472	bool was_writable;
1473	int flags = 0;
1474
1475	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1476	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1477		goto out_unlock;
1478
1479	/*
1480	 * If there are potential migrations, wait for completion and retry
1481	 * without disrupting NUMA hinting information. Do not relock and
1482	 * check_same as the page may no longer be mapped.
1483	 */
1484	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1485		page = pmd_page(*vmf->pmd);
1486		if (!get_page_unless_zero(page))
1487			goto out_unlock;
1488		spin_unlock(vmf->ptl);
1489		wait_on_page_locked(page);
1490		put_page(page);
1491		goto out;
1492	}
1493
1494	page = pmd_page(pmd);
1495	BUG_ON(is_huge_zero_page(page));
1496	page_nid = page_to_nid(page);
1497	last_cpupid = page_cpupid_last(page);
1498	count_vm_numa_event(NUMA_HINT_FAULTS);
1499	if (page_nid == this_nid) {
1500		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501		flags |= TNF_FAULT_LOCAL;
1502	}
1503
1504	/* See similar comment in do_numa_page for explanation */
1505	if (!pmd_savedwrite(pmd))
1506		flags |= TNF_NO_GROUP;
1507
1508	/*
1509	 * Acquire the page lock to serialise THP migrations but avoid dropping
1510	 * page_table_lock if at all possible
1511	 */
1512	page_locked = trylock_page(page);
1513	target_nid = mpol_misplaced(page, vma, haddr);
1514	if (target_nid == -1) {
1515		/* If the page was locked, there are no parallel migrations */
1516		if (page_locked)
1517			goto clear_pmdnuma;
1518	}
1519
1520	/* Migration could have started since the pmd_trans_migrating check */
1521	if (!page_locked) {
1522		page_nid = -1;
1523		if (!get_page_unless_zero(page))
1524			goto out_unlock;
1525		spin_unlock(vmf->ptl);
1526		wait_on_page_locked(page);
1527		put_page(page);
1528		goto out;
1529	}
1530
1531	/*
1532	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1533	 * to serialises splits
1534	 */
1535	get_page(page);
1536	spin_unlock(vmf->ptl);
1537	anon_vma = page_lock_anon_vma_read(page);
1538
1539	/* Confirm the PMD did not change while page_table_lock was released */
1540	spin_lock(vmf->ptl);
1541	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1542		unlock_page(page);
1543		put_page(page);
1544		page_nid = -1;
1545		goto out_unlock;
1546	}
1547
1548	/* Bail if we fail to protect against THP splits for any reason */
1549	if (unlikely(!anon_vma)) {
1550		put_page(page);
1551		page_nid = -1;
1552		goto clear_pmdnuma;
1553	}
1554
 
1555	/*
1556	 * Since we took the NUMA fault, we must have observed the !accessible
1557	 * bit. Make sure all other CPUs agree with that, to avoid them
1558	 * modifying the page we're about to migrate.
1559	 *
1560	 * Must be done under PTL such that we'll observe the relevant
1561	 * inc_tlb_flush_pending().
1562	 *
1563	 * We are not sure a pending tlb flush here is for a huge page
1564	 * mapping or not. Hence use the tlb range variant
1565	 */
1566	if (mm_tlb_flush_pending(vma->vm_mm))
1567		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
 
 
 
 
 
1568
1569	/*
1570	 * Migrate the THP to the requested node, returns with page unlocked
1571	 * and access rights restored.
1572	 */
1573	spin_unlock(vmf->ptl);
 
1574
1575	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1576				vmf->pmd, pmd, vmf->address, page, target_nid);
1577	if (migrated) {
1578		flags |= TNF_MIGRATED;
1579		page_nid = target_nid;
1580	} else
1581		flags |= TNF_MIGRATE_FAIL;
 
 
 
 
 
 
 
1582
1583	goto out;
1584clear_pmdnuma:
1585	BUG_ON(!PageLocked(page));
1586	was_writable = pmd_savedwrite(pmd);
1587	pmd = pmd_modify(pmd, vma->vm_page_prot);
 
 
 
 
1588	pmd = pmd_mkyoung(pmd);
1589	if (was_writable)
1590		pmd = pmd_mkwrite(pmd);
1591	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593	unlock_page(page);
1594out_unlock:
1595	spin_unlock(vmf->ptl);
1596
1597out:
1598	if (anon_vma)
1599		page_unlock_anon_vma_read(anon_vma);
1600
1601	if (page_nid != -1)
1602		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1603				flags);
1604
1605	return 0;
1606}
1607
1608/*
1609 * Return true if we do MADV_FREE successfully on entire pmd page.
1610 * Otherwise, return false.
1611 */
1612bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1613		pmd_t *pmd, unsigned long addr, unsigned long next)
1614{
1615	spinlock_t *ptl;
1616	pmd_t orig_pmd;
1617	struct page *page;
1618	struct mm_struct *mm = tlb->mm;
1619	bool ret = false;
1620
1621	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1622
1623	ptl = pmd_trans_huge_lock(pmd, vma);
1624	if (!ptl)
1625		goto out_unlocked;
1626
1627	orig_pmd = *pmd;
1628	if (is_huge_zero_pmd(orig_pmd))
1629		goto out;
1630
1631	if (unlikely(!pmd_present(orig_pmd))) {
1632		VM_BUG_ON(thp_migration_supported() &&
1633				  !is_pmd_migration_entry(orig_pmd));
1634		goto out;
1635	}
1636
1637	page = pmd_page(orig_pmd);
1638	/*
1639	 * If other processes are mapping this page, we couldn't discard
1640	 * the page unless they all do MADV_FREE so let's skip the page.
1641	 */
1642	if (page_mapcount(page) != 1)
1643		goto out;
1644
1645	if (!trylock_page(page))
1646		goto out;
1647
1648	/*
1649	 * If user want to discard part-pages of THP, split it so MADV_FREE
1650	 * will deactivate only them.
1651	 */
1652	if (next - addr != HPAGE_PMD_SIZE) {
1653		get_page(page);
1654		spin_unlock(ptl);
1655		split_huge_page(page);
1656		unlock_page(page);
1657		put_page(page);
1658		goto out_unlocked;
1659	}
1660
1661	if (PageDirty(page))
1662		ClearPageDirty(page);
1663	unlock_page(page);
1664
1665	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1666		pmdp_invalidate(vma, addr, pmd);
1667		orig_pmd = pmd_mkold(orig_pmd);
1668		orig_pmd = pmd_mkclean(orig_pmd);
1669
1670		set_pmd_at(mm, addr, pmd, orig_pmd);
1671		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1672	}
1673
1674	mark_page_lazyfree(page);
1675	ret = true;
1676out:
1677	spin_unlock(ptl);
1678out_unlocked:
1679	return ret;
1680}
1681
1682static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1683{
1684	pgtable_t pgtable;
1685
1686	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1687	pte_free(mm, pgtable);
1688	mm_dec_nr_ptes(mm);
1689}
1690
1691int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1692		 pmd_t *pmd, unsigned long addr)
1693{
1694	pmd_t orig_pmd;
1695	spinlock_t *ptl;
1696
1697	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1698
1699	ptl = __pmd_trans_huge_lock(pmd, vma);
1700	if (!ptl)
1701		return 0;
1702	/*
1703	 * For architectures like ppc64 we look at deposited pgtable
1704	 * when calling pmdp_huge_get_and_clear. So do the
1705	 * pgtable_trans_huge_withdraw after finishing pmdp related
1706	 * operations.
1707	 */
1708	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1709			tlb->fullmm);
 
1710	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1711	if (vma_is_dax(vma)) {
1712		if (arch_needs_pgtable_deposit())
1713			zap_deposited_table(tlb->mm, pmd);
1714		spin_unlock(ptl);
1715		if (is_huge_zero_pmd(orig_pmd))
1716			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1717	} else if (is_huge_zero_pmd(orig_pmd)) {
1718		zap_deposited_table(tlb->mm, pmd);
1719		spin_unlock(ptl);
1720		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1721	} else {
1722		struct page *page = NULL;
1723		int flush_needed = 1;
1724
1725		if (pmd_present(orig_pmd)) {
1726			page = pmd_page(orig_pmd);
1727			page_remove_rmap(page, true);
1728			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1729			VM_BUG_ON_PAGE(!PageHead(page), page);
1730		} else if (thp_migration_supported()) {
1731			swp_entry_t entry;
1732
1733			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1734			entry = pmd_to_swp_entry(orig_pmd);
1735			page = pfn_to_page(swp_offset(entry));
1736			flush_needed = 0;
1737		} else
1738			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1739
1740		if (PageAnon(page)) {
1741			zap_deposited_table(tlb->mm, pmd);
1742			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1743		} else {
1744			if (arch_needs_pgtable_deposit())
1745				zap_deposited_table(tlb->mm, pmd);
1746			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1747		}
1748
1749		spin_unlock(ptl);
1750		if (flush_needed)
1751			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1752	}
1753	return 1;
1754}
1755
1756#ifndef pmd_move_must_withdraw
1757static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1758					 spinlock_t *old_pmd_ptl,
1759					 struct vm_area_struct *vma)
1760{
1761	/*
1762	 * With split pmd lock we also need to move preallocated
1763	 * PTE page table if new_pmd is on different PMD page table.
1764	 *
1765	 * We also don't deposit and withdraw tables for file pages.
1766	 */
1767	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1768}
1769#endif
1770
1771static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1772{
1773#ifdef CONFIG_MEM_SOFT_DIRTY
1774	if (unlikely(is_pmd_migration_entry(pmd)))
1775		pmd = pmd_swp_mksoft_dirty(pmd);
1776	else if (pmd_present(pmd))
1777		pmd = pmd_mksoft_dirty(pmd);
1778#endif
1779	return pmd;
1780}
1781
1782bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1783		  unsigned long new_addr, unsigned long old_end,
1784		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1785{
1786	spinlock_t *old_ptl, *new_ptl;
1787	pmd_t pmd;
1788	struct mm_struct *mm = vma->vm_mm;
1789	bool force_flush = false;
1790
1791	if ((old_addr & ~HPAGE_PMD_MASK) ||
1792	    (new_addr & ~HPAGE_PMD_MASK) ||
1793	    old_end - old_addr < HPAGE_PMD_SIZE)
1794		return false;
1795
1796	/*
1797	 * The destination pmd shouldn't be established, free_pgtables()
1798	 * should have release it.
 
1799	 */
1800	if (WARN_ON(!pmd_none(*new_pmd))) {
1801		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1802		return false;
1803	}
1804
1805	/*
1806	 * We don't have to worry about the ordering of src and dst
1807	 * ptlocks because exclusive mmap_sem prevents deadlock.
1808	 */
1809	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1810	if (old_ptl) {
1811		new_ptl = pmd_lockptr(mm, new_pmd);
1812		if (new_ptl != old_ptl)
1813			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1814		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1815		if (pmd_present(pmd) && pmd_dirty(pmd))
1816			force_flush = true;
1817		VM_BUG_ON(!pmd_none(*new_pmd));
1818
1819		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1820			pgtable_t pgtable;
1821			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1822			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1823		}
1824		pmd = move_soft_dirty_pmd(pmd);
1825		set_pmd_at(mm, new_addr, new_pmd, pmd);
 
 
1826		if (new_ptl != old_ptl)
1827			spin_unlock(new_ptl);
1828		if (force_flush)
1829			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1830		else
1831			*need_flush = true;
1832		spin_unlock(old_ptl);
1833		return true;
1834	}
1835	return false;
1836}
1837
1838/*
1839 * Returns
1840 *  - 0 if PMD could not be locked
1841 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1842 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 
1843 */
1844int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1845		unsigned long addr, pgprot_t newprot, int prot_numa)
 
1846{
1847	struct mm_struct *mm = vma->vm_mm;
1848	spinlock_t *ptl;
1849	pmd_t entry;
1850	bool preserve_write;
1851	int ret;
 
 
 
 
 
 
 
1852
1853	ptl = __pmd_trans_huge_lock(pmd, vma);
1854	if (!ptl)
1855		return 0;
1856
1857	preserve_write = prot_numa && pmd_write(*pmd);
1858	ret = 1;
1859
1860#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861	if (is_swap_pmd(*pmd)) {
1862		swp_entry_t entry = pmd_to_swp_entry(*pmd);
 
 
1863
1864		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1865		if (is_write_migration_entry(entry)) {
1866			pmd_t newpmd;
1867			/*
1868			 * A protection check is difficult so
1869			 * just be safe and disable write
1870			 */
1871			make_migration_entry_read(&entry);
 
 
 
1872			newpmd = swp_entry_to_pmd(entry);
1873			if (pmd_swp_soft_dirty(*pmd))
1874				newpmd = pmd_swp_mksoft_dirty(newpmd);
1875			set_pmd_at(mm, addr, pmd, newpmd);
 
1876		}
 
 
 
 
 
 
 
1877		goto unlock;
1878	}
1879#endif
1880
1881	/*
1882	 * Avoid trapping faults against the zero page. The read-only
1883	 * data is likely to be read-cached on the local CPU and
1884	 * local/remote hits to the zero page are not interesting.
1885	 */
1886	if (prot_numa && is_huge_zero_pmd(*pmd))
1887		goto unlock;
 
 
 
1888
1889	if (prot_numa && pmd_protnone(*pmd))
1890		goto unlock;
1891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892	/*
1893	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1894	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895	 * which is also under down_read(mmap_sem):
1896	 *
1897	 *	CPU0:				CPU1:
1898	 *				change_huge_pmd(prot_numa=1)
1899	 *				 pmdp_huge_get_and_clear_notify()
1900	 * madvise_dontneed()
1901	 *  zap_pmd_range()
1902	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1903	 *   // skip the pmd
1904	 *				 set_pmd_at();
1905	 *				 // pmd is re-established
1906	 *
1907	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908	 * which may break userspace.
1909	 *
1910	 * pmdp_invalidate() is required to make sure we don't miss
1911	 * dirty/young flags set by hardware.
1912	 */
1913	entry = pmdp_invalidate(vma, addr, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1914
1915	entry = pmd_modify(entry, newprot);
1916	if (preserve_write)
1917		entry = pmd_mk_savedwrite(entry);
1918	ret = HPAGE_PMD_NR;
1919	set_pmd_at(mm, addr, pmd, entry);
1920	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
 
 
1921unlock:
1922	spin_unlock(ptl);
1923	return ret;
1924}
1925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926/*
1927 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1928 *
1929 * Note that if it returns page table lock pointer, this routine returns without
1930 * unlocking page table lock. So callers must unlock it.
1931 */
1932spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1933{
1934	spinlock_t *ptl;
1935	ptl = pmd_lock(vma->vm_mm, pmd);
1936	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1937			pmd_devmap(*pmd)))
1938		return ptl;
1939	spin_unlock(ptl);
1940	return NULL;
1941}
1942
1943/*
1944 * Returns true if a given pud maps a thp, false otherwise.
1945 *
1946 * Note that if it returns true, this routine returns without unlocking page
1947 * table lock. So callers must unlock it.
1948 */
1949spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1950{
1951	spinlock_t *ptl;
1952
1953	ptl = pud_lock(vma->vm_mm, pud);
1954	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1955		return ptl;
1956	spin_unlock(ptl);
1957	return NULL;
1958}
1959
1960#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1961int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1962		 pud_t *pud, unsigned long addr)
1963{
1964	pud_t orig_pud;
1965	spinlock_t *ptl;
1966
1967	ptl = __pud_trans_huge_lock(pud, vma);
1968	if (!ptl)
1969		return 0;
1970	/*
1971	 * For architectures like ppc64 we look at deposited pgtable
1972	 * when calling pudp_huge_get_and_clear. So do the
1973	 * pgtable_trans_huge_withdraw after finishing pudp related
1974	 * operations.
1975	 */
1976	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1977			tlb->fullmm);
1978	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1979	if (vma_is_dax(vma)) {
1980		spin_unlock(ptl);
1981		/* No zero page support yet */
1982	} else {
1983		/* No support for anonymous PUD pages yet */
1984		BUG();
1985	}
1986	return 1;
1987}
1988
1989static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1990		unsigned long haddr)
1991{
1992	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1993	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1994	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1995	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1996
1997	count_vm_event(THP_SPLIT_PUD);
1998
1999	pudp_huge_clear_flush_notify(vma, haddr, pud);
2000}
2001
2002void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2003		unsigned long address)
2004{
2005	spinlock_t *ptl;
2006	struct mm_struct *mm = vma->vm_mm;
2007	unsigned long haddr = address & HPAGE_PUD_MASK;
2008
2009	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2010	ptl = pud_lock(mm, pud);
 
 
 
2011	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2012		goto out;
2013	__split_huge_pud_locked(vma, pud, haddr);
2014
2015out:
2016	spin_unlock(ptl);
2017	/*
2018	 * No need to double call mmu_notifier->invalidate_range() callback as
2019	 * the above pudp_huge_clear_flush_notify() did already call it.
2020	 */
2021	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2022					       HPAGE_PUD_SIZE);
2023}
2024#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2025
2026static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2027		unsigned long haddr, pmd_t *pmd)
2028{
2029	struct mm_struct *mm = vma->vm_mm;
2030	pgtable_t pgtable;
2031	pmd_t _pmd;
 
 
2032	int i;
2033
2034	/*
2035	 * Leave pmd empty until pte is filled note that it is fine to delay
2036	 * notification until mmu_notifier_invalidate_range_end() as we are
2037	 * replacing a zero pmd write protected page with a zero pte write
2038	 * protected page.
2039	 *
2040	 * See Documentation/vm/mmu_notifier.txt
2041	 */
2042	pmdp_huge_clear_flush(vma, haddr, pmd);
2043
2044	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2045	pmd_populate(mm, &_pmd, pgtable);
2046
2047	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2048		pte_t *pte, entry;
2049		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
 
 
 
2050		entry = pte_mkspecial(entry);
2051		pte = pte_offset_map(&_pmd, haddr);
2052		VM_BUG_ON(!pte_none(*pte));
2053		set_pte_at(mm, haddr, pte, entry);
2054		pte_unmap(pte);
 
2055	}
 
2056	smp_wmb(); /* make pte visible before pmd */
2057	pmd_populate(mm, pmd, pgtable);
2058}
2059
2060static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2061		unsigned long haddr, bool freeze)
2062{
2063	struct mm_struct *mm = vma->vm_mm;
 
2064	struct page *page;
2065	pgtable_t pgtable;
2066	pmd_t old_pmd, _pmd;
2067	bool young, write, soft_dirty, pmd_migration = false;
 
2068	unsigned long addr;
 
2069	int i;
2070
2071	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2072	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2073	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2074	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2075				&& !pmd_devmap(*pmd));
2076
2077	count_vm_event(THP_SPLIT_PMD);
2078
2079	if (!vma_is_anonymous(vma)) {
2080		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2081		/*
2082		 * We are going to unmap this huge page. So
2083		 * just go ahead and zap it
2084		 */
2085		if (arch_needs_pgtable_deposit())
2086			zap_deposited_table(mm, pmd);
2087		if (vma_is_dax(vma))
2088			return;
2089		page = pmd_page(_pmd);
2090		if (!PageReferenced(page) && pmd_young(_pmd))
2091			SetPageReferenced(page);
2092		page_remove_rmap(page, true);
2093		put_page(page);
2094		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
 
 
 
 
 
 
 
 
 
 
2095		return;
2096	} else if (is_huge_zero_pmd(*pmd)) {
 
 
2097		/*
2098		 * FIXME: Do we want to invalidate secondary mmu by calling
2099		 * mmu_notifier_invalidate_range() see comments below inside
2100		 * __split_huge_pmd() ?
2101		 *
2102		 * We are going from a zero huge page write protected to zero
2103		 * small page also write protected so it does not seems useful
2104		 * to invalidate secondary mmu at this time.
2105		 */
2106		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2107	}
2108
2109	/*
2110	 * Up to this point the pmd is present and huge and userland has the
2111	 * whole access to the hugepage during the split (which happens in
2112	 * place). If we overwrite the pmd with the not-huge version pointing
2113	 * to the pte here (which of course we could if all CPUs were bug
2114	 * free), userland could trigger a small page size TLB miss on the
2115	 * small sized TLB while the hugepage TLB entry is still established in
2116	 * the huge TLB. Some CPU doesn't like that.
2117	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2118	 * 383 on page 93. Intel should be safe but is also warns that it's
2119	 * only safe if the permission and cache attributes of the two entries
2120	 * loaded in the two TLB is identical (which should be the case here).
2121	 * But it is generally safer to never allow small and huge TLB entries
2122	 * for the same virtual address to be loaded simultaneously. So instead
2123	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2124	 * current pmd notpresent (atomically because here the pmd_trans_huge
2125	 * must remain set at all times on the pmd until the split is complete
2126	 * for this pmd), then we flush the SMP TLB and finally we write the
2127	 * non-huge version of the pmd entry with pmd_populate.
2128	 */
2129	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2130
2131#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2132	pmd_migration = is_pmd_migration_entry(old_pmd);
2133	if (pmd_migration) {
2134		swp_entry_t entry;
2135
2136		entry = pmd_to_swp_entry(old_pmd);
2137		page = pfn_to_page(swp_offset(entry));
2138	} else
2139#endif
 
 
 
 
 
 
2140		page = pmd_page(old_pmd);
2141	VM_BUG_ON_PAGE(!page_count(page), page);
2142	page_ref_add(page, HPAGE_PMD_NR - 1);
2143	if (pmd_dirty(old_pmd))
2144		SetPageDirty(page);
2145	write = pmd_write(old_pmd);
2146	young = pmd_young(old_pmd);
2147	soft_dirty = pmd_soft_dirty(old_pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2148
2149	/*
2150	 * Withdraw the table only after we mark the pmd entry invalid.
2151	 * This's critical for some architectures (Power).
2152	 */
2153	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2154	pmd_populate(mm, &_pmd, pgtable);
2155
 
 
2156	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2157		pte_t entry, *pte;
2158		/*
2159		 * Note that NUMA hinting access restrictions are not
2160		 * transferred to avoid any possibility of altering
2161		 * permissions across VMAs.
2162		 */
2163		if (freeze || pmd_migration) {
2164			swp_entry_t swp_entry;
2165			swp_entry = make_migration_entry(page + i, write);
 
 
 
 
 
 
 
 
 
 
 
 
2166			entry = swp_entry_to_pte(swp_entry);
2167			if (soft_dirty)
2168				entry = pte_swp_mksoft_dirty(entry);
 
 
2169		} else {
2170			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2171			entry = maybe_mkwrite(entry, vma);
2172			if (!write)
2173				entry = pte_wrprotect(entry);
2174			if (!young)
2175				entry = pte_mkold(entry);
 
 
 
2176			if (soft_dirty)
2177				entry = pte_mksoft_dirty(entry);
 
 
2178		}
2179		pte = pte_offset_map(&_pmd, addr);
2180		BUG_ON(!pte_none(*pte));
2181		set_pte_at(mm, addr, pte, entry);
2182		atomic_inc(&page[i]._mapcount);
2183		pte_unmap(pte);
2184	}
2185
2186	/*
2187	 * Set PG_double_map before dropping compound_mapcount to avoid
2188	 * false-negative page_mapped().
2189	 */
2190	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2191		for (i = 0; i < HPAGE_PMD_NR; i++)
2192			atomic_inc(&page[i]._mapcount);
2193	}
 
2194
2195	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2196		/* Last compound_mapcount is gone. */
2197		__dec_node_page_state(page, NR_ANON_THPS);
2198		if (TestClearPageDoubleMap(page)) {
2199			/* No need in mapcount reference anymore */
2200			for (i = 0; i < HPAGE_PMD_NR; i++)
2201				atomic_dec(&page[i]._mapcount);
2202		}
2203	}
2204
2205	smp_wmb(); /* make pte visible before pmd */
2206	pmd_populate(mm, pmd, pgtable);
2207
2208	if (freeze) {
2209		for (i = 0; i < HPAGE_PMD_NR; i++) {
2210			page_remove_rmap(page + i, false);
2211			put_page(page + i);
2212		}
2213	}
2214}
2215
2216void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2217		unsigned long address, bool freeze, struct page *page)
2218{
2219	spinlock_t *ptl;
2220	struct mm_struct *mm = vma->vm_mm;
2221	unsigned long haddr = address & HPAGE_PMD_MASK;
2222
2223	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2224	ptl = pmd_lock(mm, pmd);
 
 
 
2225
2226	/*
2227	 * If caller asks to setup a migration entries, we need a page to check
2228	 * pmd against. Otherwise we can end up replacing wrong page.
2229	 */
2230	VM_BUG_ON(freeze && !page);
2231	if (page && page != pmd_page(*pmd))
2232	        goto out;
2233
2234	if (pmd_trans_huge(*pmd)) {
2235		page = pmd_page(*pmd);
2236		if (PageMlocked(page))
2237			clear_page_mlock(page);
2238	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2239		goto out;
2240	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
 
 
 
2241out:
2242	spin_unlock(ptl);
2243	/*
2244	 * No need to double call mmu_notifier->invalidate_range() callback.
2245	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2246	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2247	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2248	 *    fault will trigger a flush_notify before pointing to a new page
2249	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2250	 *    page in the meantime)
2251	 *  3) Split a huge pmd into pte pointing to the same page. No need
2252	 *     to invalidate secondary tlb entry they are all still valid.
2253	 *     any further changes to individual pte will notify. So no need
2254	 *     to call mmu_notifier->invalidate_range()
2255	 */
2256	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2257					       HPAGE_PMD_SIZE);
2258}
2259
2260void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2261		bool freeze, struct page *page)
2262{
2263	pgd_t *pgd;
2264	p4d_t *p4d;
2265	pud_t *pud;
2266	pmd_t *pmd;
2267
2268	pgd = pgd_offset(vma->vm_mm, address);
2269	if (!pgd_present(*pgd))
2270		return;
2271
2272	p4d = p4d_offset(pgd, address);
2273	if (!p4d_present(*p4d))
2274		return;
2275
2276	pud = pud_offset(p4d, address);
2277	if (!pud_present(*pud))
2278		return;
2279
2280	pmd = pmd_offset(pud, address);
 
2281
2282	__split_huge_pmd(vma, pmd, address, freeze, page);
 
 
 
 
 
 
 
 
 
2283}
2284
2285void vma_adjust_trans_huge(struct vm_area_struct *vma,
2286			     unsigned long start,
2287			     unsigned long end,
2288			     long adjust_next)
2289{
2290	/*
2291	 * If the new start address isn't hpage aligned and it could
2292	 * previously contain an hugepage: check if we need to split
2293	 * an huge pmd.
2294	 */
2295	if (start & ~HPAGE_PMD_MASK &&
2296	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2297	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2298		split_huge_pmd_address(vma, start, false, NULL);
2299
2300	/*
2301	 * If the new end address isn't hpage aligned and it could
2302	 * previously contain an hugepage: check if we need to split
2303	 * an huge pmd.
2304	 */
2305	if (end & ~HPAGE_PMD_MASK &&
2306	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2307	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2308		split_huge_pmd_address(vma, end, false, NULL);
2309
2310	/*
2311	 * If we're also updating the vma->vm_next->vm_start, if the new
2312	 * vm_next->vm_start isn't page aligned and it could previously
2313	 * contain an hugepage: check if we need to split an huge pmd.
2314	 */
2315	if (adjust_next > 0) {
2316		struct vm_area_struct *next = vma->vm_next;
2317		unsigned long nstart = next->vm_start;
2318		nstart += adjust_next << PAGE_SHIFT;
2319		if (nstart & ~HPAGE_PMD_MASK &&
2320		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2321		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2322			split_huge_pmd_address(next, nstart, false, NULL);
2323	}
2324}
2325
2326static void freeze_page(struct page *page)
2327{
2328	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2329		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2330	bool unmap_success;
2331
2332	VM_BUG_ON_PAGE(!PageHead(page), page);
2333
2334	if (PageAnon(page))
2335		ttu_flags |= TTU_SPLIT_FREEZE;
 
 
 
 
 
 
 
2336
2337	unmap_success = try_to_unmap(page, ttu_flags);
2338	VM_BUG_ON_PAGE(!unmap_success, page);
2339}
2340
2341static void unfreeze_page(struct page *page)
2342{
2343	int i;
2344	if (PageTransHuge(page)) {
2345		remove_migration_ptes(page, page, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2346	} else {
2347		for (i = 0; i < HPAGE_PMD_NR; i++)
2348			remove_migration_ptes(page + i, page + i, true);
 
 
 
 
 
2349	}
2350}
2351
2352static void __split_huge_page_tail(struct page *head, int tail,
2353		struct lruvec *lruvec, struct list_head *list)
2354{
 
2355	struct page *page_tail = head + tail;
 
 
 
 
 
2356
2357	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2358
2359	/*
2360	 * Clone page flags before unfreezing refcount.
2361	 *
2362	 * After successful get_page_unless_zero() might follow flags change,
2363	 * for exmaple lock_page() which set PG_waiters.
 
 
 
 
 
 
 
2364	 */
2365	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2366	page_tail->flags |= (head->flags &
2367			((1L << PG_referenced) |
2368			 (1L << PG_swapbacked) |
2369			 (1L << PG_swapcache) |
2370			 (1L << PG_mlocked) |
2371			 (1L << PG_uptodate) |
2372			 (1L << PG_active) |
 
2373			 (1L << PG_locked) |
2374			 (1L << PG_unevictable) |
2375			 (1L << PG_dirty)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2376
2377	/* Page flags must be visible before we make the page non-compound. */
2378	smp_wmb();
2379
2380	/*
2381	 * Clear PageTail before unfreezing page refcount.
2382	 *
2383	 * After successful get_page_unless_zero() might follow put_page()
2384	 * which needs correct compound_head().
2385	 */
2386	clear_compound_head(page_tail);
2387
2388	/* Finally unfreeze refcount. Additional reference from page cache. */
2389	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2390					  PageSwapCache(head)));
2391
2392	if (page_is_young(head))
2393		set_page_young(page_tail);
2394	if (page_is_idle(head))
2395		set_page_idle(page_tail);
2396
2397	/* ->mapping in first tail page is compound_mapcount */
2398	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2399			page_tail);
2400	page_tail->mapping = head->mapping;
2401
2402	page_tail->index = head->index + tail;
2403	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2404
2405	/*
2406	 * always add to the tail because some iterators expect new
2407	 * pages to show after the currently processed elements - e.g.
2408	 * migrate_pages
2409	 */
2410	lru_add_page_tail(head, page_tail, lruvec, list);
2411}
2412
2413static void __split_huge_page(struct page *page, struct list_head *list,
2414		unsigned long flags)
2415{
2416	struct page *head = compound_head(page);
2417	struct zone *zone = page_zone(head);
2418	struct lruvec *lruvec;
2419	pgoff_t end = -1;
2420	int i;
2421
2422	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2423
2424	/* complete memcg works before add pages to LRU */
2425	mem_cgroup_split_huge_fixup(head);
 
 
 
 
 
 
 
 
 
2426
2427	if (!PageAnon(page))
2428		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2429
2430	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2431		__split_huge_page_tail(head, i, lruvec, list);
2432		/* Some pages can be beyond i_size: drop them from page cache */
2433		if (head[i].index >= end) {
2434			ClearPageDirty(head + i);
2435			__delete_from_page_cache(head + i, NULL);
2436			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2437				shmem_uncharge(head->mapping->host, 1);
2438			put_page(head + i);
 
 
 
 
 
 
 
 
 
 
2439		}
2440	}
2441
2442	ClearPageCompound(head);
 
 
 
 
 
2443	/* See comment in __split_huge_page_tail() */
2444	if (PageAnon(head)) {
2445		/* Additional pin to radix tree of swap cache */
2446		if (PageSwapCache(head))
2447			page_ref_add(head, 2);
2448		else
 
2449			page_ref_inc(head);
 
2450	} else {
2451		/* Additional pin to radix tree */
2452		page_ref_add(head, 2);
2453		xa_unlock(&head->mapping->i_pages);
2454	}
 
2455
2456	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
 
 
2457
2458	unfreeze_page(head);
 
2459
2460	for (i = 0; i < HPAGE_PMD_NR; i++) {
2461		struct page *subpage = head + i;
2462		if (subpage == page)
2463			continue;
2464		unlock_page(subpage);
2465
2466		/*
2467		 * Subpages may be freed if there wasn't any mapping
2468		 * like if add_to_swap() is running on a lru page that
2469		 * had its mapping zapped. And freeing these pages
2470		 * requires taking the lru_lock so we do the put_page
2471		 * of the tail pages after the split is complete.
2472		 */
2473		put_page(subpage);
2474	}
2475}
2476
2477int total_mapcount(struct page *page)
2478{
2479	int i, compound, ret;
2480
2481	VM_BUG_ON_PAGE(PageTail(page), page);
2482
2483	if (likely(!PageCompound(page)))
2484		return atomic_read(&page->_mapcount) + 1;
2485
2486	compound = compound_mapcount(page);
2487	if (PageHuge(page))
2488		return compound;
2489	ret = compound;
2490	for (i = 0; i < HPAGE_PMD_NR; i++)
2491		ret += atomic_read(&page[i]._mapcount) + 1;
2492	/* File pages has compound_mapcount included in _mapcount */
2493	if (!PageAnon(page))
2494		return ret - compound * HPAGE_PMD_NR;
2495	if (PageDoubleMap(page))
2496		ret -= HPAGE_PMD_NR;
2497	return ret;
2498}
2499
2500/*
2501 * This calculates accurately how many mappings a transparent hugepage
2502 * has (unlike page_mapcount() which isn't fully accurate). This full
2503 * accuracy is primarily needed to know if copy-on-write faults can
2504 * reuse the page and change the mapping to read-write instead of
2505 * copying them. At the same time this returns the total_mapcount too.
2506 *
2507 * The function returns the highest mapcount any one of the subpages
2508 * has. If the return value is one, even if different processes are
2509 * mapping different subpages of the transparent hugepage, they can
2510 * all reuse it, because each process is reusing a different subpage.
2511 *
2512 * The total_mapcount is instead counting all virtual mappings of the
2513 * subpages. If the total_mapcount is equal to "one", it tells the
2514 * caller all mappings belong to the same "mm" and in turn the
2515 * anon_vma of the transparent hugepage can become the vma->anon_vma
2516 * local one as no other process may be mapping any of the subpages.
2517 *
2518 * It would be more accurate to replace page_mapcount() with
2519 * page_trans_huge_mapcount(), however we only use
2520 * page_trans_huge_mapcount() in the copy-on-write faults where we
2521 * need full accuracy to avoid breaking page pinning, because
2522 * page_trans_huge_mapcount() is slower than page_mapcount().
2523 */
2524int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2525{
2526	int i, ret, _total_mapcount, mapcount;
2527
2528	/* hugetlbfs shouldn't call it */
2529	VM_BUG_ON_PAGE(PageHuge(page), page);
2530
2531	if (likely(!PageTransCompound(page))) {
2532		mapcount = atomic_read(&page->_mapcount) + 1;
2533		if (total_mapcount)
2534			*total_mapcount = mapcount;
2535		return mapcount;
2536	}
2537
2538	page = compound_head(page);
2539
2540	_total_mapcount = ret = 0;
2541	for (i = 0; i < HPAGE_PMD_NR; i++) {
2542		mapcount = atomic_read(&page[i]._mapcount) + 1;
2543		ret = max(ret, mapcount);
2544		_total_mapcount += mapcount;
2545	}
2546	if (PageDoubleMap(page)) {
2547		ret -= 1;
2548		_total_mapcount -= HPAGE_PMD_NR;
2549	}
2550	mapcount = compound_mapcount(page);
2551	ret += mapcount;
2552	_total_mapcount += mapcount;
2553	if (total_mapcount)
2554		*total_mapcount = _total_mapcount;
2555	return ret;
2556}
2557
2558/* Racy check whether the huge page can be split */
2559bool can_split_huge_page(struct page *page, int *pextra_pins)
2560{
2561	int extra_pins;
2562
2563	/* Additional pins from radix tree */
2564	if (PageAnon(page))
2565		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
 
2566	else
2567		extra_pins = HPAGE_PMD_NR;
2568	if (pextra_pins)
2569		*pextra_pins = extra_pins;
2570	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2571}
2572
2573/*
2574 * This function splits huge page into normal pages. @page can point to any
2575 * subpage of huge page to split. Split doesn't change the position of @page.
2576 *
2577 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2578 * The huge page must be locked.
2579 *
2580 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2581 *
2582 * Both head page and tail pages will inherit mapping, flags, and so on from
2583 * the hugepage.
2584 *
2585 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2586 * they are not mapped.
2587 *
2588 * Returns 0 if the hugepage is split successfully.
2589 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2590 * us.
2591 */
2592int split_huge_page_to_list(struct page *page, struct list_head *list)
2593{
2594	struct page *head = compound_head(page);
2595	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
 
2596	struct anon_vma *anon_vma = NULL;
2597	struct address_space *mapping = NULL;
2598	int count, mapcount, extra_pins, ret;
2599	bool mlocked;
2600	unsigned long flags;
2601
2602	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2603	VM_BUG_ON_PAGE(!PageLocked(page), page);
2604	VM_BUG_ON_PAGE(!PageCompound(page), page);
 
 
 
 
 
2605
2606	if (PageWriteback(page))
2607		return -EBUSY;
2608
2609	if (PageAnon(head)) {
2610		/*
2611		 * The caller does not necessarily hold an mmap_sem that would
2612		 * prevent the anon_vma disappearing so we first we take a
2613		 * reference to it and then lock the anon_vma for write. This
2614		 * is similar to page_lock_anon_vma_read except the write lock
2615		 * is taken to serialise against parallel split or collapse
2616		 * operations.
2617		 */
2618		anon_vma = page_get_anon_vma(head);
2619		if (!anon_vma) {
2620			ret = -EBUSY;
2621			goto out;
2622		}
 
2623		mapping = NULL;
2624		anon_vma_lock_write(anon_vma);
2625	} else {
2626		mapping = head->mapping;
 
 
2627
2628		/* Truncated ? */
2629		if (!mapping) {
2630			ret = -EBUSY;
2631			goto out;
2632		}
2633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634		anon_vma = NULL;
2635		i_mmap_lock_read(mapping);
 
 
 
 
 
 
 
 
 
 
 
2636	}
2637
2638	/*
2639	 * Racy check if we can split the page, before freeze_page() will
2640	 * split PMDs
2641	 */
2642	if (!can_split_huge_page(head, &extra_pins)) {
2643		ret = -EBUSY;
2644		goto out_unlock;
2645	}
2646
2647	mlocked = PageMlocked(page);
2648	freeze_page(head);
2649	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2650
2651	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2652	if (mlocked)
2653		lru_add_drain();
2654
2655	/* prevent PageLRU to go away from under us, and freeze lru stats */
2656	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2657
 
 
2658	if (mapping) {
2659		void **pslot;
2660
2661		xa_lock(&mapping->i_pages);
2662		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2663				page_index(head));
2664		/*
2665		 * Check if the head page is present in radix tree.
2666		 * We assume all tail are present too, if head is there.
2667		 */
2668		if (radix_tree_deref_slot_protected(pslot,
2669					&mapping->i_pages.xa_lock) != head)
 
2670			goto fail;
2671	}
2672
2673	/* Prevent deferred_split_scan() touching ->_refcount */
2674	spin_lock(&pgdata->split_queue_lock);
2675	count = page_count(head);
2676	mapcount = total_mapcount(head);
2677	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2678		if (!list_empty(page_deferred_list(head))) {
2679			pgdata->split_queue_len--;
2680			list_del(page_deferred_list(head));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681		}
2682		if (mapping)
2683			__dec_node_page_state(page, NR_SHMEM_THPS);
2684		spin_unlock(&pgdata->split_queue_lock);
2685		__split_huge_page(page, list, flags);
2686		if (PageSwapCache(head)) {
2687			swp_entry_t entry = { .val = page_private(head) };
2688
2689			ret = split_swap_cluster(entry);
2690		} else
2691			ret = 0;
2692	} else {
2693		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2694			pr_alert("total_mapcount: %u, page_count(): %u\n",
2695					mapcount, count);
2696			if (PageTail(page))
2697				dump_page(head, NULL);
2698			dump_page(page, "total_mapcount(head) > 0");
2699			BUG();
2700		}
2701		spin_unlock(&pgdata->split_queue_lock);
2702fail:		if (mapping)
2703			xa_unlock(&mapping->i_pages);
2704		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2705		unfreeze_page(head);
2706		ret = -EBUSY;
2707	}
2708
2709out_unlock:
2710	if (anon_vma) {
2711		anon_vma_unlock_write(anon_vma);
2712		put_anon_vma(anon_vma);
2713	}
2714	if (mapping)
2715		i_mmap_unlock_read(mapping);
2716out:
 
2717	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2718	return ret;
2719}
2720
2721void free_transhuge_page(struct page *page)
2722{
2723	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2724	unsigned long flags;
2725
2726	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2727	if (!list_empty(page_deferred_list(page))) {
2728		pgdata->split_queue_len--;
2729		list_del(page_deferred_list(page));
 
 
 
 
 
 
 
 
 
2730	}
2731	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2732	free_compound_page(page);
2733}
2734
2735void deferred_split_huge_page(struct page *page)
2736{
2737	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
 
 
 
2738	unsigned long flags;
2739
2740	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2741
2742	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2743	if (list_empty(page_deferred_list(page))) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2744		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2745		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2746		pgdata->split_queue_len++;
 
 
 
 
 
2747	}
2748	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2749}
2750
2751static unsigned long deferred_split_count(struct shrinker *shrink,
2752		struct shrink_control *sc)
2753{
2754	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2755	return READ_ONCE(pgdata->split_queue_len);
 
 
 
 
 
 
2756}
2757
2758static unsigned long deferred_split_scan(struct shrinker *shrink,
2759		struct shrink_control *sc)
2760{
2761	struct pglist_data *pgdata = NODE_DATA(sc->nid);
 
2762	unsigned long flags;
2763	LIST_HEAD(list), *pos, *next;
2764	struct page *page;
2765	int split = 0;
2766
2767	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 
 
 
 
 
2768	/* Take pin on all head pages to avoid freeing them under us */
2769	list_for_each_safe(pos, next, &pgdata->split_queue) {
2770		page = list_entry((void *)pos, struct page, mapping);
2771		page = compound_head(page);
2772		if (get_page_unless_zero(page)) {
2773			list_move(page_deferred_list(page), &list);
2774		} else {
2775			/* We lost race with put_compound_page() */
2776			list_del_init(page_deferred_list(page));
2777			pgdata->split_queue_len--;
2778		}
2779		if (!--sc->nr_to_scan)
2780			break;
2781	}
2782	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2783
2784	list_for_each_safe(pos, next, &list) {
2785		page = list_entry((void *)pos, struct page, mapping);
2786		if (!trylock_page(page))
2787			goto next;
2788		/* split_huge_page() removes page from list on success */
2789		if (!split_huge_page(page))
2790			split++;
2791		unlock_page(page);
2792next:
2793		put_page(page);
2794	}
2795
2796	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2797	list_splice_tail(&list, &pgdata->split_queue);
2798	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2799
2800	/*
2801	 * Stop shrinker if we didn't split any page, but the queue is empty.
2802	 * This can happen if pages were freed under us.
2803	 */
2804	if (!split && list_empty(&pgdata->split_queue))
2805		return SHRINK_STOP;
2806	return split;
2807}
2808
2809static struct shrinker deferred_split_shrinker = {
2810	.count_objects = deferred_split_count,
2811	.scan_objects = deferred_split_scan,
2812	.seeks = DEFAULT_SEEKS,
2813	.flags = SHRINKER_NUMA_AWARE,
2814};
2815
2816#ifdef CONFIG_DEBUG_FS
2817static int split_huge_pages_set(void *data, u64 val)
2818{
2819	struct zone *zone;
2820	struct page *page;
 
2821	unsigned long pfn, max_zone_pfn;
2822	unsigned long total = 0, split = 0;
2823
2824	if (val != 1)
2825		return -EINVAL;
2826
2827	for_each_populated_zone(zone) {
2828		max_zone_pfn = zone_end_pfn(zone);
2829		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2830			if (!pfn_valid(pfn))
2831				continue;
2832
2833			page = pfn_to_page(pfn);
2834			if (!get_page_unless_zero(page))
 
 
 
2835				continue;
2836
2837			if (zone != page_zone(page))
2838				goto next;
2839
2840			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
 
 
 
 
 
2841				goto next;
2842
2843			total++;
2844			lock_page(page);
2845			if (!split_huge_page(page))
 
2846				split++;
2847			unlock_page(page);
 
2848next:
2849			put_page(page);
 
2850		}
2851	}
2852
2853	pr_info("%lu of %lu THP split\n", split, total);
 
2854
2855	return 0;
 
 
 
2856}
2857DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2858		"%llu\n");
2859
2860static int __init split_huge_pages_debugfs(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2861{
2862	void *ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863
2864	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2865			&split_huge_pages_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2866	if (!ret)
2867		pr_warn("Failed to create split_huge_pages in debugfs");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2868	return 0;
2869}
2870late_initcall(split_huge_pages_debugfs);
2871#endif
2872
2873#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2874void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2875		struct page *page)
2876{
 
2877	struct vm_area_struct *vma = pvmw->vma;
2878	struct mm_struct *mm = vma->vm_mm;
2879	unsigned long address = pvmw->address;
 
2880	pmd_t pmdval;
2881	swp_entry_t entry;
2882	pmd_t pmdswp;
2883
2884	if (!(pvmw->pmd && !pvmw->pte))
2885		return;
2886
2887	mmu_notifier_invalidate_range_start(mm, address,
2888			address + HPAGE_PMD_SIZE);
2889
2890	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2891	pmdval = *pvmw->pmd;
2892	pmdp_invalidate(vma, address, pvmw->pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2893	if (pmd_dirty(pmdval))
2894		set_page_dirty(page);
2895	entry = make_migration_entry(page, pmd_write(pmdval));
2896	pmdswp = swp_entry_to_pmd(entry);
2897	if (pmd_soft_dirty(pmdval))
2898		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
 
 
2899	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2900	page_remove_rmap(page, true);
2901	put_page(page);
 
2902
2903	mmu_notifier_invalidate_range_end(mm, address,
2904			address + HPAGE_PMD_SIZE);
2905}
2906
2907void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2908{
 
2909	struct vm_area_struct *vma = pvmw->vma;
2910	struct mm_struct *mm = vma->vm_mm;
2911	unsigned long address = pvmw->address;
2912	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2913	pmd_t pmde;
2914	swp_entry_t entry;
2915
2916	if (!(pvmw->pmd && !pvmw->pte))
2917		return;
2918
2919	entry = pmd_to_swp_entry(*pvmw->pmd);
2920	get_page(new);
2921	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2922	if (pmd_swp_soft_dirty(*pvmw->pmd))
2923		pmde = pmd_mksoft_dirty(pmde);
2924	if (is_write_migration_entry(entry))
2925		pmde = maybe_pmd_mkwrite(pmde, vma);
 
 
 
 
 
 
 
2926
2927	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2928	if (PageAnon(new))
2929		page_add_anon_rmap(new, vma, mmun_start, true);
2930	else
2931		page_add_file_rmap(new, true);
2932	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2933	if (vma->vm_flags & VM_LOCKED)
2934		mlock_vma_page(new);
 
 
 
 
 
 
2935	update_mmu_cache_pmd(vma, address, pvmw->pmd);
 
2936}
2937#endif
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2009  Red Hat, Inc.
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/coredump.h>
  12#include <linux/sched/numa_balancing.h>
  13#include <linux/highmem.h>
  14#include <linux/hugetlb.h>
  15#include <linux/mmu_notifier.h>
  16#include <linux/rmap.h>
  17#include <linux/swap.h>
  18#include <linux/shrinker.h>
  19#include <linux/mm_inline.h>
  20#include <linux/swapops.h>
  21#include <linux/backing-dev.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36#include <linux/numa.h>
  37#include <linux/page_owner.h>
  38#include <linux/sched/sysctl.h>
  39#include <linux/memory-tiers.h>
  40#include <linux/compat.h>
  41
  42#include <asm/tlb.h>
  43#include <asm/pgalloc.h>
  44#include "internal.h"
  45#include "swap.h"
  46
  47#define CREATE_TRACE_POINTS
  48#include <trace/events/thp.h>
  49
  50/*
  51 * By default, transparent hugepage support is disabled in order to avoid
  52 * risking an increased memory footprint for applications that are not
  53 * guaranteed to benefit from it. When transparent hugepage support is
  54 * enabled, it is for all mappings, and khugepaged scans all mappings.
  55 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  56 * for all hugepage allocations.
  57 */
  58unsigned long transparent_hugepage_flags __read_mostly =
  59#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  60	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  61#endif
  62#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  63	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  64#endif
  65	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  66	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  67	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  68
  69static struct shrinker *deferred_split_shrinker;
  70static unsigned long deferred_split_count(struct shrinker *shrink,
  71					  struct shrink_control *sc);
  72static unsigned long deferred_split_scan(struct shrinker *shrink,
  73					 struct shrink_control *sc);
  74
  75static atomic_t huge_zero_refcount;
  76struct page *huge_zero_page __read_mostly;
  77unsigned long huge_zero_pfn __read_mostly = ~0UL;
  78unsigned long huge_anon_orders_always __read_mostly;
  79unsigned long huge_anon_orders_madvise __read_mostly;
  80unsigned long huge_anon_orders_inherit __read_mostly;
  81
  82unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
  83					 unsigned long vm_flags, bool smaps,
  84					 bool in_pf, bool enforce_sysfs,
  85					 unsigned long orders)
  86{
  87	/* Check the intersection of requested and supported orders. */
  88	orders &= vma_is_anonymous(vma) ?
  89			THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE;
  90	if (!orders)
  91		return 0;
  92
  93	if (!vma->vm_mm)		/* vdso */
  94		return 0;
  95
  96	/*
  97	 * Explicitly disabled through madvise or prctl, or some
  98	 * architectures may disable THP for some mappings, for
  99	 * example, s390 kvm.
 100	 * */
 101	if ((vm_flags & VM_NOHUGEPAGE) ||
 102	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
 103		return 0;
 104	/*
 105	 * If the hardware/firmware marked hugepage support disabled.
 106	 */
 107	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
 108		return 0;
 109
 110	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
 111	if (vma_is_dax(vma))
 112		return in_pf ? orders : 0;
 113
 114	/*
 115	 * khugepaged special VMA and hugetlb VMA.
 116	 * Must be checked after dax since some dax mappings may have
 117	 * VM_MIXEDMAP set.
 118	 */
 119	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
 120		return 0;
 121
 122	/*
 123	 * Check alignment for file vma and size for both file and anon vma by
 124	 * filtering out the unsuitable orders.
 125	 *
 126	 * Skip the check for page fault. Huge fault does the check in fault
 127	 * handlers.
 128	 */
 129	if (!in_pf) {
 130		int order = highest_order(orders);
 131		unsigned long addr;
 132
 133		while (orders) {
 134			addr = vma->vm_end - (PAGE_SIZE << order);
 135			if (thp_vma_suitable_order(vma, addr, order))
 136				break;
 137			order = next_order(&orders, order);
 138		}
 139
 140		if (!orders)
 141			return 0;
 142	}
 143
 144	/*
 145	 * Enabled via shmem mount options or sysfs settings.
 146	 * Must be done before hugepage flags check since shmem has its
 147	 * own flags.
 148	 */
 149	if (!in_pf && shmem_file(vma->vm_file))
 150		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
 151				     !enforce_sysfs, vma->vm_mm, vm_flags)
 152			? orders : 0;
 153
 154	if (!vma_is_anonymous(vma)) {
 155		/*
 156		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
 157		 * were already handled in thp_vma_allowable_orders().
 158		 */
 159		if (enforce_sysfs &&
 160		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
 161						    !hugepage_global_always())))
 162			return 0;
 163
 164		/*
 165		 * Trust that ->huge_fault() handlers know what they are doing
 166		 * in fault path.
 167		 */
 168		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
 169			return orders;
 170		/* Only regular file is valid in collapse path */
 171		if (((!in_pf || smaps)) && file_thp_enabled(vma))
 172			return orders;
 173		return 0;
 174	}
 175
 176	if (vma_is_temporary_stack(vma))
 177		return 0;
 178
 179	/*
 180	 * THPeligible bit of smaps should show 1 for proper VMAs even
 181	 * though anon_vma is not initialized yet.
 182	 *
 183	 * Allow page fault since anon_vma may be not initialized until
 184	 * the first page fault.
 185	 */
 186	if (!vma->anon_vma)
 187		return (smaps || in_pf) ? orders : 0;
 188
 189	return orders;
 190}
 191
 192static bool get_huge_zero_page(void)
 193{
 194	struct page *zero_page;
 195retry:
 196	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 197		return true;
 198
 199	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 200			HPAGE_PMD_ORDER);
 201	if (!zero_page) {
 202		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 203		return false;
 204	}
 
 205	preempt_disable();
 206	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 207		preempt_enable();
 208		__free_pages(zero_page, compound_order(zero_page));
 209		goto retry;
 210	}
 211	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
 212
 213	/* We take additional reference here. It will be put back by shrinker */
 214	atomic_set(&huge_zero_refcount, 2);
 215	preempt_enable();
 216	count_vm_event(THP_ZERO_PAGE_ALLOC);
 217	return true;
 218}
 219
 220static void put_huge_zero_page(void)
 221{
 222	/*
 223	 * Counter should never go to zero here. Only shrinker can put
 224	 * last reference.
 225	 */
 226	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 227}
 228
 229struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 230{
 231	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 232		return READ_ONCE(huge_zero_page);
 233
 234	if (!get_huge_zero_page())
 235		return NULL;
 236
 237	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 238		put_huge_zero_page();
 239
 240	return READ_ONCE(huge_zero_page);
 241}
 242
 243void mm_put_huge_zero_page(struct mm_struct *mm)
 244{
 245	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 246		put_huge_zero_page();
 247}
 248
 249static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 250					struct shrink_control *sc)
 251{
 252	/* we can free zero page only if last reference remains */
 253	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 254}
 255
 256static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 257				       struct shrink_control *sc)
 258{
 259	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 260		struct page *zero_page = xchg(&huge_zero_page, NULL);
 261		BUG_ON(zero_page == NULL);
 262		WRITE_ONCE(huge_zero_pfn, ~0UL);
 263		__free_pages(zero_page, compound_order(zero_page));
 264		return HPAGE_PMD_NR;
 265	}
 266
 267	return 0;
 268}
 269
 270static struct shrinker *huge_zero_page_shrinker;
 
 
 
 
 271
 272#ifdef CONFIG_SYSFS
 273static ssize_t enabled_show(struct kobject *kobj,
 274			    struct kobj_attribute *attr, char *buf)
 275{
 276	const char *output;
 277
 278	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 279		output = "[always] madvise never";
 280	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 281			  &transparent_hugepage_flags))
 282		output = "always [madvise] never";
 283	else
 284		output = "always madvise [never]";
 285
 286	return sysfs_emit(buf, "%s\n", output);
 287}
 288
 289static ssize_t enabled_store(struct kobject *kobj,
 290			     struct kobj_attribute *attr,
 291			     const char *buf, size_t count)
 292{
 293	ssize_t ret = count;
 294
 295	if (sysfs_streq(buf, "always")) {
 
 296		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 297		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 298	} else if (sysfs_streq(buf, "madvise")) {
 
 299		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 300		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 301	} else if (sysfs_streq(buf, "never")) {
 
 302		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 303		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 304	} else
 305		ret = -EINVAL;
 306
 307	if (ret > 0) {
 308		int err = start_stop_khugepaged();
 309		if (err)
 310			ret = err;
 311	}
 312	return ret;
 313}
 314
 315static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
 316
 317ssize_t single_hugepage_flag_show(struct kobject *kobj,
 318				  struct kobj_attribute *attr, char *buf,
 319				  enum transparent_hugepage_flag flag)
 320{
 321	return sysfs_emit(buf, "%d\n",
 322			  !!test_bit(flag, &transparent_hugepage_flags));
 323}
 324
 325ssize_t single_hugepage_flag_store(struct kobject *kobj,
 326				 struct kobj_attribute *attr,
 327				 const char *buf, size_t count,
 328				 enum transparent_hugepage_flag flag)
 329{
 330	unsigned long value;
 331	int ret;
 332
 333	ret = kstrtoul(buf, 10, &value);
 334	if (ret < 0)
 335		return ret;
 336	if (value > 1)
 337		return -EINVAL;
 338
 339	if (value)
 340		set_bit(flag, &transparent_hugepage_flags);
 341	else
 342		clear_bit(flag, &transparent_hugepage_flags);
 343
 344	return count;
 345}
 346
 347static ssize_t defrag_show(struct kobject *kobj,
 348			   struct kobj_attribute *attr, char *buf)
 349{
 350	const char *output;
 351
 352	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 353		     &transparent_hugepage_flags))
 354		output = "[always] defer defer+madvise madvise never";
 355	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 356			  &transparent_hugepage_flags))
 357		output = "always [defer] defer+madvise madvise never";
 358	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
 359			  &transparent_hugepage_flags))
 360		output = "always defer [defer+madvise] madvise never";
 361	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 362			  &transparent_hugepage_flags))
 363		output = "always defer defer+madvise [madvise] never";
 364	else
 365		output = "always defer defer+madvise madvise [never]";
 366
 367	return sysfs_emit(buf, "%s\n", output);
 368}
 369
 370static ssize_t defrag_store(struct kobject *kobj,
 371			    struct kobj_attribute *attr,
 372			    const char *buf, size_t count)
 373{
 374	if (sysfs_streq(buf, "always")) {
 
 375		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 376		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 377		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 378		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 379	} else if (sysfs_streq(buf, "defer+madvise")) {
 
 380		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 381		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 382		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 383		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 384	} else if (sysfs_streq(buf, "defer")) {
 
 385		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 386		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 387		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 388		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 389	} else if (sysfs_streq(buf, "madvise")) {
 
 390		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 391		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 392		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 393		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 394	} else if (sysfs_streq(buf, "never")) {
 
 395		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 396		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 397		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 398		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 399	} else
 400		return -EINVAL;
 401
 402	return count;
 403}
 404static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
 
 405
 406static ssize_t use_zero_page_show(struct kobject *kobj,
 407				  struct kobj_attribute *attr, char *buf)
 408{
 409	return single_hugepage_flag_show(kobj, attr, buf,
 410					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 411}
 412static ssize_t use_zero_page_store(struct kobject *kobj,
 413		struct kobj_attribute *attr, const char *buf, size_t count)
 414{
 415	return single_hugepage_flag_store(kobj, attr, buf, count,
 416				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 417}
 418static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
 
 419
 420static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 421				   struct kobj_attribute *attr, char *buf)
 422{
 423	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
 424}
 425static struct kobj_attribute hpage_pmd_size_attr =
 426	__ATTR_RO(hpage_pmd_size);
 427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428static struct attribute *hugepage_attr[] = {
 429	&enabled_attr.attr,
 430	&defrag_attr.attr,
 431	&use_zero_page_attr.attr,
 432	&hpage_pmd_size_attr.attr,
 433#ifdef CONFIG_SHMEM
 434	&shmem_enabled_attr.attr,
 435#endif
 
 
 
 436	NULL,
 437};
 438
 439static const struct attribute_group hugepage_attr_group = {
 440	.attrs = hugepage_attr,
 441};
 442
 443static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
 444static void thpsize_release(struct kobject *kobj);
 445static DEFINE_SPINLOCK(huge_anon_orders_lock);
 446static LIST_HEAD(thpsize_list);
 447
 448struct thpsize {
 449	struct kobject kobj;
 450	struct list_head node;
 451	int order;
 452};
 453
 454#define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
 455
 456static ssize_t thpsize_enabled_show(struct kobject *kobj,
 457				    struct kobj_attribute *attr, char *buf)
 458{
 459	int order = to_thpsize(kobj)->order;
 460	const char *output;
 461
 462	if (test_bit(order, &huge_anon_orders_always))
 463		output = "[always] inherit madvise never";
 464	else if (test_bit(order, &huge_anon_orders_inherit))
 465		output = "always [inherit] madvise never";
 466	else if (test_bit(order, &huge_anon_orders_madvise))
 467		output = "always inherit [madvise] never";
 468	else
 469		output = "always inherit madvise [never]";
 470
 471	return sysfs_emit(buf, "%s\n", output);
 472}
 473
 474static ssize_t thpsize_enabled_store(struct kobject *kobj,
 475				     struct kobj_attribute *attr,
 476				     const char *buf, size_t count)
 477{
 478	int order = to_thpsize(kobj)->order;
 479	ssize_t ret = count;
 480
 481	if (sysfs_streq(buf, "always")) {
 482		spin_lock(&huge_anon_orders_lock);
 483		clear_bit(order, &huge_anon_orders_inherit);
 484		clear_bit(order, &huge_anon_orders_madvise);
 485		set_bit(order, &huge_anon_orders_always);
 486		spin_unlock(&huge_anon_orders_lock);
 487	} else if (sysfs_streq(buf, "inherit")) {
 488		spin_lock(&huge_anon_orders_lock);
 489		clear_bit(order, &huge_anon_orders_always);
 490		clear_bit(order, &huge_anon_orders_madvise);
 491		set_bit(order, &huge_anon_orders_inherit);
 492		spin_unlock(&huge_anon_orders_lock);
 493	} else if (sysfs_streq(buf, "madvise")) {
 494		spin_lock(&huge_anon_orders_lock);
 495		clear_bit(order, &huge_anon_orders_always);
 496		clear_bit(order, &huge_anon_orders_inherit);
 497		set_bit(order, &huge_anon_orders_madvise);
 498		spin_unlock(&huge_anon_orders_lock);
 499	} else if (sysfs_streq(buf, "never")) {
 500		spin_lock(&huge_anon_orders_lock);
 501		clear_bit(order, &huge_anon_orders_always);
 502		clear_bit(order, &huge_anon_orders_inherit);
 503		clear_bit(order, &huge_anon_orders_madvise);
 504		spin_unlock(&huge_anon_orders_lock);
 505	} else
 506		ret = -EINVAL;
 507
 508	return ret;
 509}
 510
 511static struct kobj_attribute thpsize_enabled_attr =
 512	__ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store);
 513
 514static struct attribute *thpsize_attrs[] = {
 515	&thpsize_enabled_attr.attr,
 516	NULL,
 517};
 518
 519static const struct attribute_group thpsize_attr_group = {
 520	.attrs = thpsize_attrs,
 521};
 522
 523static const struct kobj_type thpsize_ktype = {
 524	.release = &thpsize_release,
 525	.sysfs_ops = &kobj_sysfs_ops,
 526};
 527
 528static struct thpsize *thpsize_create(int order, struct kobject *parent)
 529{
 530	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
 531	struct thpsize *thpsize;
 532	int ret;
 533
 534	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
 535	if (!thpsize)
 536		return ERR_PTR(-ENOMEM);
 537
 538	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
 539				   "hugepages-%lukB", size);
 540	if (ret) {
 541		kfree(thpsize);
 542		return ERR_PTR(ret);
 543	}
 544
 545	ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group);
 546	if (ret) {
 547		kobject_put(&thpsize->kobj);
 548		return ERR_PTR(ret);
 549	}
 550
 551	thpsize->order = order;
 552	return thpsize;
 553}
 554
 555static void thpsize_release(struct kobject *kobj)
 556{
 557	kfree(to_thpsize(kobj));
 558}
 559
 560static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 561{
 562	int err;
 563	struct thpsize *thpsize;
 564	unsigned long orders;
 565	int order;
 566
 567	/*
 568	 * Default to setting PMD-sized THP to inherit the global setting and
 569	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
 570	 * constant so we have to do this here.
 571	 */
 572	huge_anon_orders_inherit = BIT(PMD_ORDER);
 573
 574	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 575	if (unlikely(!*hugepage_kobj)) {
 576		pr_err("failed to create transparent hugepage kobject\n");
 577		return -ENOMEM;
 578	}
 579
 580	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 581	if (err) {
 582		pr_err("failed to register transparent hugepage group\n");
 583		goto delete_obj;
 584	}
 585
 586	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 587	if (err) {
 588		pr_err("failed to register transparent hugepage group\n");
 589		goto remove_hp_group;
 590	}
 591
 592	orders = THP_ORDERS_ALL_ANON;
 593	order = highest_order(orders);
 594	while (orders) {
 595		thpsize = thpsize_create(order, *hugepage_kobj);
 596		if (IS_ERR(thpsize)) {
 597			pr_err("failed to create thpsize for order %d\n", order);
 598			err = PTR_ERR(thpsize);
 599			goto remove_all;
 600		}
 601		list_add(&thpsize->node, &thpsize_list);
 602		order = next_order(&orders, order);
 603	}
 604
 605	return 0;
 606
 607remove_all:
 608	hugepage_exit_sysfs(*hugepage_kobj);
 609	return err;
 610remove_hp_group:
 611	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 612delete_obj:
 613	kobject_put(*hugepage_kobj);
 614	return err;
 615}
 616
 617static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 618{
 619	struct thpsize *thpsize, *tmp;
 620
 621	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
 622		list_del(&thpsize->node);
 623		kobject_put(&thpsize->kobj);
 624	}
 625
 626	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 627	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 628	kobject_put(hugepage_kobj);
 629}
 630#else
 631static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 632{
 633	return 0;
 634}
 635
 636static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 637{
 638}
 639#endif /* CONFIG_SYSFS */
 640
 641static int __init thp_shrinker_init(void)
 642{
 643	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
 644	if (!huge_zero_page_shrinker)
 645		return -ENOMEM;
 646
 647	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
 648						 SHRINKER_MEMCG_AWARE |
 649						 SHRINKER_NONSLAB,
 650						 "thp-deferred_split");
 651	if (!deferred_split_shrinker) {
 652		shrinker_free(huge_zero_page_shrinker);
 653		return -ENOMEM;
 654	}
 655
 656	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
 657	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
 658	shrinker_register(huge_zero_page_shrinker);
 659
 660	deferred_split_shrinker->count_objects = deferred_split_count;
 661	deferred_split_shrinker->scan_objects = deferred_split_scan;
 662	shrinker_register(deferred_split_shrinker);
 663
 664	return 0;
 665}
 666
 667static void __init thp_shrinker_exit(void)
 668{
 669	shrinker_free(huge_zero_page_shrinker);
 670	shrinker_free(deferred_split_shrinker);
 671}
 672
 673static int __init hugepage_init(void)
 674{
 675	int err;
 676	struct kobject *hugepage_kobj;
 677
 678	if (!has_transparent_hugepage()) {
 679		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
 680		return -EINVAL;
 681	}
 682
 683	/*
 684	 * hugepages can't be allocated by the buddy allocator
 685	 */
 686	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
 687	/*
 688	 * we use page->mapping and page->index in second tail page
 689	 * as list_head: assuming THP order >= 2
 690	 */
 691	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 692
 693	err = hugepage_init_sysfs(&hugepage_kobj);
 694	if (err)
 695		goto err_sysfs;
 696
 697	err = khugepaged_init();
 698	if (err)
 699		goto err_slab;
 700
 701	err = thp_shrinker_init();
 702	if (err)
 703		goto err_shrinker;
 
 
 
 704
 705	/*
 706	 * By default disable transparent hugepages on smaller systems,
 707	 * where the extra memory used could hurt more than TLB overhead
 708	 * is likely to save.  The admin can still enable it through /sys.
 709	 */
 710	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
 711		transparent_hugepage_flags = 0;
 712		return 0;
 713	}
 714
 715	err = start_stop_khugepaged();
 716	if (err)
 717		goto err_khugepaged;
 718
 719	return 0;
 720err_khugepaged:
 721	thp_shrinker_exit();
 722err_shrinker:
 
 
 723	khugepaged_destroy();
 724err_slab:
 725	hugepage_exit_sysfs(hugepage_kobj);
 726err_sysfs:
 727	return err;
 728}
 729subsys_initcall(hugepage_init);
 730
 731static int __init setup_transparent_hugepage(char *str)
 732{
 733	int ret = 0;
 734	if (!str)
 735		goto out;
 736	if (!strcmp(str, "always")) {
 737		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 738			&transparent_hugepage_flags);
 739		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 740			  &transparent_hugepage_flags);
 741		ret = 1;
 742	} else if (!strcmp(str, "madvise")) {
 743		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 744			  &transparent_hugepage_flags);
 745		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 746			&transparent_hugepage_flags);
 747		ret = 1;
 748	} else if (!strcmp(str, "never")) {
 749		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 750			  &transparent_hugepage_flags);
 751		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 752			  &transparent_hugepage_flags);
 753		ret = 1;
 754	}
 755out:
 756	if (!ret)
 757		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 758	return ret;
 759}
 760__setup("transparent_hugepage=", setup_transparent_hugepage);
 761
 762pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 763{
 764	if (likely(vma->vm_flags & VM_WRITE))
 765		pmd = pmd_mkwrite(pmd, vma);
 766	return pmd;
 767}
 768
 769#ifdef CONFIG_MEMCG
 770static inline
 771struct deferred_split *get_deferred_split_queue(struct folio *folio)
 772{
 773	struct mem_cgroup *memcg = folio_memcg(folio);
 774	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
 775
 776	if (memcg)
 777		return &memcg->deferred_split_queue;
 778	else
 779		return &pgdat->deferred_split_queue;
 780}
 781#else
 782static inline
 783struct deferred_split *get_deferred_split_queue(struct folio *folio)
 784{
 785	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
 786
 787	return &pgdat->deferred_split_queue;
 788}
 789#endif
 790
 791void folio_prep_large_rmappable(struct folio *folio)
 792{
 793	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
 794	INIT_LIST_HEAD(&folio->_deferred_list);
 795	folio_set_large_rmappable(folio);
 796}
 797
 798static inline bool is_transparent_hugepage(struct folio *folio)
 799{
 800	if (!folio_test_large(folio))
 801		return false;
 802
 803	return is_huge_zero_page(&folio->page) ||
 804		folio_test_large_rmappable(folio);
 805}
 806
 807static unsigned long __thp_get_unmapped_area(struct file *filp,
 808		unsigned long addr, unsigned long len,
 809		loff_t off, unsigned long flags, unsigned long size)
 810{
 
 811	loff_t off_end = off + len;
 812	loff_t off_align = round_up(off, size);
 813	unsigned long len_pad, ret, off_sub;
 814
 815	if (IS_ENABLED(CONFIG_32BIT) || in_compat_syscall())
 816		return 0;
 817
 818	if (off_end <= off_align || (off_end - off_align) < size)
 819		return 0;
 820
 821	len_pad = len + size;
 822	if (len_pad < len || (off + len_pad) < off)
 823		return 0;
 824
 825	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
 826					      off >> PAGE_SHIFT, flags);
 827
 828	/*
 829	 * The failure might be due to length padding. The caller will retry
 830	 * without the padding.
 831	 */
 832	if (IS_ERR_VALUE(ret))
 833		return 0;
 834
 835	/*
 836	 * Do not try to align to THP boundary if allocation at the address
 837	 * hint succeeds.
 838	 */
 839	if (ret == addr)
 840		return addr;
 841
 842	off_sub = (off - ret) & (size - 1);
 843
 844	if (current->mm->get_unmapped_area == arch_get_unmapped_area_topdown &&
 845	    !off_sub)
 846		return ret + size;
 847
 848	ret += off_sub;
 849	return ret;
 850}
 851
 852unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 853		unsigned long len, unsigned long pgoff, unsigned long flags)
 854{
 855	unsigned long ret;
 856	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 857
 858	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
 859	if (ret)
 860		return ret;
 
 
 
 
 
 861
 
 862	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 863}
 864EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 865
 866static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
 867			struct page *page, gfp_t gfp)
 868{
 869	struct vm_area_struct *vma = vmf->vma;
 870	struct folio *folio = page_folio(page);
 871	pgtable_t pgtable;
 872	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 873	vm_fault_t ret = 0;
 874
 875	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
 876
 877	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
 878		folio_put(folio);
 879		count_vm_event(THP_FAULT_FALLBACK);
 880		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
 881		return VM_FAULT_FALLBACK;
 882	}
 883	folio_throttle_swaprate(folio, gfp);
 884
 885	pgtable = pte_alloc_one(vma->vm_mm);
 886	if (unlikely(!pgtable)) {
 887		ret = VM_FAULT_OOM;
 888		goto release;
 889	}
 890
 891	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 892	/*
 893	 * The memory barrier inside __folio_mark_uptodate makes sure that
 894	 * clear_huge_page writes become visible before the set_pmd_at()
 895	 * write.
 896	 */
 897	__folio_mark_uptodate(folio);
 898
 899	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 900	if (unlikely(!pmd_none(*vmf->pmd))) {
 901		goto unlock_release;
 902	} else {
 903		pmd_t entry;
 904
 905		ret = check_stable_address_space(vma->vm_mm);
 906		if (ret)
 907			goto unlock_release;
 908
 909		/* Deliver the page fault to userland */
 910		if (userfaultfd_missing(vma)) {
 
 
 911			spin_unlock(vmf->ptl);
 912			folio_put(folio);
 
 913			pte_free(vma->vm_mm, pgtable);
 914			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 915			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 916			return ret;
 917		}
 918
 919		entry = mk_huge_pmd(page, vma->vm_page_prot);
 920		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 921		folio_add_new_anon_rmap(folio, vma, haddr);
 922		folio_add_lru_vma(folio, vma);
 
 923		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 924		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 925		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 926		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 927		mm_inc_nr_ptes(vma->vm_mm);
 928		spin_unlock(vmf->ptl);
 929		count_vm_event(THP_FAULT_ALLOC);
 930		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
 931	}
 932
 933	return 0;
 934unlock_release:
 935	spin_unlock(vmf->ptl);
 936release:
 937	if (pgtable)
 938		pte_free(vma->vm_mm, pgtable);
 939	folio_put(folio);
 
 940	return ret;
 941
 942}
 943
 944/*
 945 * always: directly stall for all thp allocations
 946 * defer: wake kswapd and fail if not immediately available
 947 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 948 *		  fail if not immediately available
 949 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 950 *	    available
 951 * never: never stall for any thp allocation
 952 */
 953gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
 954{
 955	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
 956
 957	/* Always do synchronous compaction */
 958	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 959		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 960
 961	/* Kick kcompactd and fail quickly */
 962	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 963		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 964
 965	/* Synchronous compaction if madvised, otherwise kick kcompactd */
 966	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 967		return GFP_TRANSHUGE_LIGHT |
 968			(vma_madvised ? __GFP_DIRECT_RECLAIM :
 969					__GFP_KSWAPD_RECLAIM);
 970
 971	/* Only do synchronous compaction if madvised */
 972	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 973		return GFP_TRANSHUGE_LIGHT |
 974		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
 975
 976	return GFP_TRANSHUGE_LIGHT;
 977}
 978
 979/* Caller must hold page table lock. */
 980static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 981		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 982		struct page *zero_page)
 983{
 984	pmd_t entry;
 985	if (!pmd_none(*pmd))
 986		return;
 987	entry = mk_pmd(zero_page, vma->vm_page_prot);
 988	entry = pmd_mkhuge(entry);
 989	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 
 990	set_pmd_at(mm, haddr, pmd, entry);
 991	mm_inc_nr_ptes(mm);
 
 992}
 993
 994vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 995{
 996	struct vm_area_struct *vma = vmf->vma;
 997	gfp_t gfp;
 998	struct folio *folio;
 999	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1000
1001	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1002		return VM_FAULT_FALLBACK;
1003	if (unlikely(anon_vma_prepare(vma)))
1004		return VM_FAULT_OOM;
1005	khugepaged_enter_vma(vma, vma->vm_flags);
1006
1007	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1008			!mm_forbids_zeropage(vma->vm_mm) &&
1009			transparent_hugepage_use_zero_page()) {
1010		pgtable_t pgtable;
1011		struct page *zero_page;
1012		vm_fault_t ret;
1013		pgtable = pte_alloc_one(vma->vm_mm);
 
1014		if (unlikely(!pgtable))
1015			return VM_FAULT_OOM;
1016		zero_page = mm_get_huge_zero_page(vma->vm_mm);
1017		if (unlikely(!zero_page)) {
1018			pte_free(vma->vm_mm, pgtable);
1019			count_vm_event(THP_FAULT_FALLBACK);
1020			return VM_FAULT_FALLBACK;
1021		}
1022		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1023		ret = 0;
 
1024		if (pmd_none(*vmf->pmd)) {
1025			ret = check_stable_address_space(vma->vm_mm);
1026			if (ret) {
1027				spin_unlock(vmf->ptl);
1028				pte_free(vma->vm_mm, pgtable);
1029			} else if (userfaultfd_missing(vma)) {
1030				spin_unlock(vmf->ptl);
1031				pte_free(vma->vm_mm, pgtable);
1032				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1033				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1034			} else {
1035				set_huge_zero_page(pgtable, vma->vm_mm, vma,
1036						   haddr, vmf->pmd, zero_page);
1037				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1038				spin_unlock(vmf->ptl);
 
1039			}
1040		} else {
1041			spin_unlock(vmf->ptl);
 
1042			pte_free(vma->vm_mm, pgtable);
1043		}
1044		return ret;
1045	}
1046	gfp = vma_thp_gfp_mask(vma);
1047	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1048	if (unlikely(!folio)) {
1049		count_vm_event(THP_FAULT_FALLBACK);
1050		return VM_FAULT_FALLBACK;
1051	}
1052	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
 
1053}
1054
1055static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1056		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1057		pgtable_t pgtable)
1058{
1059	struct mm_struct *mm = vma->vm_mm;
1060	pmd_t entry;
1061	spinlock_t *ptl;
1062
1063	ptl = pmd_lock(mm, pmd);
1064	if (!pmd_none(*pmd)) {
1065		if (write) {
1066			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1067				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1068				goto out_unlock;
1069			}
1070			entry = pmd_mkyoung(*pmd);
1071			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1073				update_mmu_cache_pmd(vma, addr, pmd);
1074		}
1075
1076		goto out_unlock;
1077	}
1078
1079	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1080	if (pfn_t_devmap(pfn))
1081		entry = pmd_mkdevmap(entry);
1082	if (write) {
1083		entry = pmd_mkyoung(pmd_mkdirty(entry));
1084		entry = maybe_pmd_mkwrite(entry, vma);
1085	}
1086
1087	if (pgtable) {
1088		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1089		mm_inc_nr_ptes(mm);
1090		pgtable = NULL;
1091	}
1092
1093	set_pmd_at(mm, addr, pmd, entry);
1094	update_mmu_cache_pmd(vma, addr, pmd);
1095
1096out_unlock:
1097	spin_unlock(ptl);
1098	if (pgtable)
1099		pte_free(mm, pgtable);
1100}
1101
1102/**
1103 * vmf_insert_pfn_pmd - insert a pmd size pfn
1104 * @vmf: Structure describing the fault
1105 * @pfn: pfn to insert
1106 * @write: whether it's a write fault
1107 *
1108 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1109 *
1110 * Return: vm_fault_t value.
1111 */
1112vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1113{
1114	unsigned long addr = vmf->address & PMD_MASK;
1115	struct vm_area_struct *vma = vmf->vma;
1116	pgprot_t pgprot = vma->vm_page_prot;
1117	pgtable_t pgtable = NULL;
1118
1119	/*
1120	 * If we had pmd_special, we could avoid all these restrictions,
1121	 * but we need to be consistent with PTEs and architectures that
1122	 * can't support a 'special' bit.
1123	 */
1124	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1125			!pfn_t_devmap(pfn));
1126	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1127						(VM_PFNMAP|VM_MIXEDMAP));
1128	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 
1129
1130	if (addr < vma->vm_start || addr >= vma->vm_end)
1131		return VM_FAULT_SIGBUS;
1132
1133	if (arch_needs_pgtable_deposit()) {
1134		pgtable = pte_alloc_one(vma->vm_mm);
1135		if (!pgtable)
1136			return VM_FAULT_OOM;
1137	}
1138
1139	track_pfn_insert(vma, &pgprot, pfn);
1140
1141	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1142	return VM_FAULT_NOPAGE;
1143}
1144EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1145
1146#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1147static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1148{
1149	if (likely(vma->vm_flags & VM_WRITE))
1150		pud = pud_mkwrite(pud);
1151	return pud;
1152}
1153
1154static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1155		pud_t *pud, pfn_t pfn, bool write)
1156{
1157	struct mm_struct *mm = vma->vm_mm;
1158	pgprot_t prot = vma->vm_page_prot;
1159	pud_t entry;
1160	spinlock_t *ptl;
1161
1162	ptl = pud_lock(mm, pud);
1163	if (!pud_none(*pud)) {
1164		if (write) {
1165			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
1166				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
1167				goto out_unlock;
1168			}
1169			entry = pud_mkyoung(*pud);
1170			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1171			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1172				update_mmu_cache_pud(vma, addr, pud);
1173		}
1174		goto out_unlock;
1175	}
1176
1177	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1178	if (pfn_t_devmap(pfn))
1179		entry = pud_mkdevmap(entry);
1180	if (write) {
1181		entry = pud_mkyoung(pud_mkdirty(entry));
1182		entry = maybe_pud_mkwrite(entry, vma);
1183	}
1184	set_pud_at(mm, addr, pud, entry);
1185	update_mmu_cache_pud(vma, addr, pud);
1186
1187out_unlock:
1188	spin_unlock(ptl);
1189}
1190
1191/**
1192 * vmf_insert_pfn_pud - insert a pud size pfn
1193 * @vmf: Structure describing the fault
1194 * @pfn: pfn to insert
1195 * @write: whether it's a write fault
1196 *
1197 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1198 *
1199 * Return: vm_fault_t value.
1200 */
1201vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1202{
1203	unsigned long addr = vmf->address & PUD_MASK;
1204	struct vm_area_struct *vma = vmf->vma;
1205	pgprot_t pgprot = vma->vm_page_prot;
1206
1207	/*
1208	 * If we had pud_special, we could avoid all these restrictions,
1209	 * but we need to be consistent with PTEs and architectures that
1210	 * can't support a 'special' bit.
1211	 */
1212	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1213			!pfn_t_devmap(pfn));
1214	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1215						(VM_PFNMAP|VM_MIXEDMAP));
1216	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 
1217
1218	if (addr < vma->vm_start || addr >= vma->vm_end)
1219		return VM_FAULT_SIGBUS;
1220
1221	track_pfn_insert(vma, &pgprot, pfn);
1222
1223	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1224	return VM_FAULT_NOPAGE;
1225}
1226EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1227#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1228
1229static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1230		      pmd_t *pmd, bool write)
1231{
1232	pmd_t _pmd;
1233
1234	_pmd = pmd_mkyoung(*pmd);
1235	if (write)
1236		_pmd = pmd_mkdirty(_pmd);
1237	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1238				  pmd, _pmd, write))
1239		update_mmu_cache_pmd(vma, addr, pmd);
1240}
1241
1242struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1243		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1244{
1245	unsigned long pfn = pmd_pfn(*pmd);
1246	struct mm_struct *mm = vma->vm_mm;
 
1247	struct page *page;
1248	int ret;
1249
1250	assert_spin_locked(pmd_lockptr(mm, pmd));
1251
 
 
 
 
 
 
1252	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1253		return NULL;
1254
1255	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1256		/* pass */;
1257	else
1258		return NULL;
1259
1260	if (flags & FOLL_TOUCH)
1261		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1262
1263	/*
1264	 * device mapped pages can only be returned if the
1265	 * caller will manage the page reference count.
1266	 */
1267	if (!(flags & (FOLL_GET | FOLL_PIN)))
1268		return ERR_PTR(-EEXIST);
1269
1270	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1271	*pgmap = get_dev_pagemap(pfn, *pgmap);
1272	if (!*pgmap)
1273		return ERR_PTR(-EFAULT);
1274	page = pfn_to_page(pfn);
1275	ret = try_grab_page(page, flags);
1276	if (ret)
1277		page = ERR_PTR(ret);
1278
1279	return page;
1280}
1281
1282int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1283		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1284		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1285{
1286	spinlock_t *dst_ptl, *src_ptl;
1287	struct page *src_page;
1288	struct folio *src_folio;
1289	pmd_t pmd;
1290	pgtable_t pgtable = NULL;
1291	int ret = -ENOMEM;
1292
1293	/* Skip if can be re-fill on fault */
1294	if (!vma_is_anonymous(dst_vma))
1295		return 0;
1296
1297	pgtable = pte_alloc_one(dst_mm);
1298	if (unlikely(!pgtable))
1299		goto out;
1300
1301	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1302	src_ptl = pmd_lockptr(src_mm, src_pmd);
1303	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1304
1305	ret = -EAGAIN;
1306	pmd = *src_pmd;
1307
1308#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1309	if (unlikely(is_swap_pmd(pmd))) {
1310		swp_entry_t entry = pmd_to_swp_entry(pmd);
1311
1312		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1313		if (!is_readable_migration_entry(entry)) {
1314			entry = make_readable_migration_entry(
1315							swp_offset(entry));
1316			pmd = swp_entry_to_pmd(entry);
1317			if (pmd_swp_soft_dirty(*src_pmd))
1318				pmd = pmd_swp_mksoft_dirty(pmd);
1319			if (pmd_swp_uffd_wp(*src_pmd))
1320				pmd = pmd_swp_mkuffd_wp(pmd);
1321			set_pmd_at(src_mm, addr, src_pmd, pmd);
1322		}
1323		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1324		mm_inc_nr_ptes(dst_mm);
1325		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1326		if (!userfaultfd_wp(dst_vma))
1327			pmd = pmd_swp_clear_uffd_wp(pmd);
1328		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1329		ret = 0;
1330		goto out_unlock;
1331	}
1332#endif
1333
1334	if (unlikely(!pmd_trans_huge(pmd))) {
1335		pte_free(dst_mm, pgtable);
1336		goto out_unlock;
1337	}
1338	/*
1339	 * When page table lock is held, the huge zero pmd should not be
1340	 * under splitting since we don't split the page itself, only pmd to
1341	 * a page table.
1342	 */
1343	if (is_huge_zero_pmd(pmd)) {
 
1344		/*
1345		 * get_huge_zero_page() will never allocate a new page here,
1346		 * since we already have a zero page to copy. It just takes a
1347		 * reference.
1348		 */
1349		mm_get_huge_zero_page(dst_mm);
1350		goto out_zero_page;
 
 
 
1351	}
1352
1353	src_page = pmd_page(pmd);
1354	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1355	src_folio = page_folio(src_page);
1356
1357	folio_get(src_folio);
1358	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1359		/* Page maybe pinned: split and retry the fault on PTEs. */
1360		folio_put(src_folio);
1361		pte_free(dst_mm, pgtable);
1362		spin_unlock(src_ptl);
1363		spin_unlock(dst_ptl);
1364		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1365		return -EAGAIN;
1366	}
1367	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1368out_zero_page:
1369	mm_inc_nr_ptes(dst_mm);
1370	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 
1371	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1372	if (!userfaultfd_wp(dst_vma))
1373		pmd = pmd_clear_uffd_wp(pmd);
1374	pmd = pmd_mkold(pmd_wrprotect(pmd));
1375	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1376
1377	ret = 0;
1378out_unlock:
1379	spin_unlock(src_ptl);
1380	spin_unlock(dst_ptl);
1381out:
1382	return ret;
1383}
1384
1385#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1386static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1387		      pud_t *pud, bool write)
1388{
1389	pud_t _pud;
1390
1391	_pud = pud_mkyoung(*pud);
1392	if (write)
1393		_pud = pud_mkdirty(_pud);
1394	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1395				  pud, _pud, write))
1396		update_mmu_cache_pud(vma, addr, pud);
1397}
1398
1399struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1400		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1401{
1402	unsigned long pfn = pud_pfn(*pud);
1403	struct mm_struct *mm = vma->vm_mm;
 
1404	struct page *page;
1405	int ret;
1406
1407	assert_spin_locked(pud_lockptr(mm, pud));
1408
1409	if (flags & FOLL_WRITE && !pud_write(*pud))
1410		return NULL;
1411
1412	if (pud_present(*pud) && pud_devmap(*pud))
1413		/* pass */;
1414	else
1415		return NULL;
1416
1417	if (flags & FOLL_TOUCH)
1418		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1419
1420	/*
1421	 * device mapped pages can only be returned if the
1422	 * caller will manage the page reference count.
1423	 *
1424	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1425	 */
1426	if (!(flags & (FOLL_GET | FOLL_PIN)))
1427		return ERR_PTR(-EEXIST);
1428
1429	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1430	*pgmap = get_dev_pagemap(pfn, *pgmap);
1431	if (!*pgmap)
1432		return ERR_PTR(-EFAULT);
1433	page = pfn_to_page(pfn);
1434
1435	ret = try_grab_page(page, flags);
1436	if (ret)
1437		page = ERR_PTR(ret);
1438
1439	return page;
1440}
1441
1442int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1443		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1444		  struct vm_area_struct *vma)
1445{
1446	spinlock_t *dst_ptl, *src_ptl;
1447	pud_t pud;
1448	int ret;
1449
1450	dst_ptl = pud_lock(dst_mm, dst_pud);
1451	src_ptl = pud_lockptr(src_mm, src_pud);
1452	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1453
1454	ret = -EAGAIN;
1455	pud = *src_pud;
1456	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1457		goto out_unlock;
1458
1459	/*
1460	 * When page table lock is held, the huge zero pud should not be
1461	 * under splitting since we don't split the page itself, only pud to
1462	 * a page table.
1463	 */
1464	if (is_huge_zero_pud(pud)) {
1465		/* No huge zero pud yet */
1466	}
1467
1468	/*
1469	 * TODO: once we support anonymous pages, use
1470	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1471	 */
1472	pudp_set_wrprotect(src_mm, addr, src_pud);
1473	pud = pud_mkold(pud_wrprotect(pud));
1474	set_pud_at(dst_mm, addr, dst_pud, pud);
1475
1476	ret = 0;
1477out_unlock:
1478	spin_unlock(src_ptl);
1479	spin_unlock(dst_ptl);
1480	return ret;
1481}
1482
1483void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1484{
 
 
1485	bool write = vmf->flags & FAULT_FLAG_WRITE;
1486
1487	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1488	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1489		goto unlock;
1490
1491	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
 
 
 
 
 
 
1492unlock:
1493	spin_unlock(vmf->ptl);
1494}
1495#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1496
1497void huge_pmd_set_accessed(struct vm_fault *vmf)
1498{
 
 
1499	bool write = vmf->flags & FAULT_FLAG_WRITE;
1500
1501	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1502	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1503		goto unlock;
1504
1505	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
 
 
 
 
 
1506
1507unlock:
1508	spin_unlock(vmf->ptl);
1509}
1510
1511vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
 
1512{
1513	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1514	struct vm_area_struct *vma = vmf->vma;
1515	struct folio *folio;
1516	struct page *page;
1517	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1518	pmd_t orig_pmd = vmf->orig_pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
1519
1520	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1521	VM_BUG_ON_VMA(!vma->anon_vma, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522
1523	if (is_huge_zero_pmd(orig_pmd))
1524		goto fallback;
 
 
 
 
1525
1526	spin_lock(vmf->ptl);
 
 
1527
1528	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1529		spin_unlock(vmf->ptl);
1530		return 0;
1531	}
1532
1533	page = pmd_page(orig_pmd);
1534	folio = page_folio(page);
1535	VM_BUG_ON_PAGE(!PageHead(page), page);
 
 
 
 
 
 
1536
1537	/* Early check when only holding the PT lock. */
1538	if (PageAnonExclusive(page))
1539		goto reuse;
1540
1541	if (!folio_trylock(folio)) {
1542		folio_get(folio);
1543		spin_unlock(vmf->ptl);
1544		folio_lock(folio);
1545		spin_lock(vmf->ptl);
1546		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1547			spin_unlock(vmf->ptl);
1548			folio_unlock(folio);
1549			folio_put(folio);
1550			return 0;
1551		}
1552		folio_put(folio);
 
1553	}
 
1554
1555	/* Recheck after temporarily dropping the PT lock. */
1556	if (PageAnonExclusive(page)) {
1557		folio_unlock(folio);
1558		goto reuse;
1559	}
1560
1561	/*
1562	 * See do_wp_page(): we can only reuse the folio exclusively if
1563	 * there are no additional references. Note that we always drain
1564	 * the LRU cache immediately after adding a THP.
1565	 */
1566	if (folio_ref_count(folio) >
1567			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1568		goto unlock_fallback;
1569	if (folio_test_swapcache(folio))
1570		folio_free_swap(folio);
1571	if (folio_ref_count(folio) == 1) {
1572		pmd_t entry;
1573
1574		folio_move_anon_rmap(folio, vma);
1575		SetPageAnonExclusive(page);
1576		folio_unlock(folio);
1577reuse:
1578		if (unlikely(unshare)) {
1579			spin_unlock(vmf->ptl);
1580			return 0;
1581		}
1582		entry = pmd_mkyoung(orig_pmd);
1583		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1584		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1585			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1586		spin_unlock(vmf->ptl);
1587		return 0;
1588	}
1589
1590unlock_fallback:
1591	folio_unlock(folio);
1592	spin_unlock(vmf->ptl);
1593fallback:
1594	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1595	return VM_FAULT_FALLBACK;
 
 
 
 
 
 
1596}
1597
1598static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1599					   unsigned long addr, pmd_t pmd)
1600{
1601	struct page *page;
 
 
 
 
 
 
 
1602
1603	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1604		return false;
 
 
 
 
 
1605
1606	/* Don't touch entries that are not even readable (NUMA hinting). */
1607	if (pmd_protnone(pmd))
1608		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1609
1610	/* Do we need write faults for softdirty tracking? */
1611	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1612		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1613
1614	/* Do we need write faults for uffd-wp tracking? */
1615	if (userfaultfd_huge_pmd_wp(vma, pmd))
1616		return false;
1617
1618	if (!(vma->vm_flags & VM_SHARED)) {
1619		/* See can_change_pte_writable(). */
1620		page = vm_normal_page_pmd(vma, addr, pmd);
1621		return page && PageAnon(page) && PageAnonExclusive(page);
 
1622	}
1623
1624	/* See can_change_pte_writable(). */
1625	return pmd_dirty(pmd);
1626}
1627
1628/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1629static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1630					struct vm_area_struct *vma,
1631					unsigned int flags)
1632{
1633	/* If the pmd is writable, we can write to the page. */
1634	if (pmd_write(pmd))
1635		return true;
1636
1637	/* Maybe FOLL_FORCE is set to override it? */
1638	if (!(flags & FOLL_FORCE))
1639		return false;
1640
1641	/* But FOLL_FORCE has no effect on shared mappings */
1642	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1643		return false;
1644
1645	/* ... or read-only private ones */
1646	if (!(vma->vm_flags & VM_MAYWRITE))
1647		return false;
1648
1649	/* ... or already writable ones that just need to take a write fault */
1650	if (vma->vm_flags & VM_WRITE)
1651		return false;
1652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1653	/*
1654	 * See can_change_pte_writable(): we broke COW and could map the page
1655	 * writable if we have an exclusive anonymous page ...
1656	 */
1657	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1658		return false;
 
 
 
 
 
 
1659
1660	/* ... and a write-fault isn't required for other reasons. */
1661	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1662		return false;
1663	return !userfaultfd_huge_pmd_wp(vma, pmd);
 
 
 
 
1664}
1665
1666struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1667				   unsigned long addr,
1668				   pmd_t *pmd,
1669				   unsigned int flags)
1670{
1671	struct mm_struct *mm = vma->vm_mm;
1672	struct page *page;
1673	int ret;
1674
1675	assert_spin_locked(pmd_lockptr(mm, pmd));
1676
1677	page = pmd_page(*pmd);
1678	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1679
1680	if ((flags & FOLL_WRITE) &&
1681	    !can_follow_write_pmd(*pmd, page, vma, flags))
1682		return NULL;
1683
1684	/* Avoid dumping huge zero page */
1685	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1686		return ERR_PTR(-EFAULT);
1687
1688	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1689		return NULL;
1690
1691	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1692		return ERR_PTR(-EMLINK);
1693
1694	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1695			!PageAnonExclusive(page), page);
1696
1697	ret = try_grab_page(page, flags);
1698	if (ret)
1699		return ERR_PTR(ret);
1700
 
 
1701	if (flags & FOLL_TOUCH)
1702		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703
 
 
 
 
 
 
 
 
 
 
 
 
1704	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1705	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
 
 
1706
 
1707	return page;
1708}
1709
1710/* NUMA hinting page fault entry point for trans huge pmds */
1711vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1712{
1713	struct vm_area_struct *vma = vmf->vma;
1714	pmd_t oldpmd = vmf->orig_pmd;
1715	pmd_t pmd;
1716	struct folio *folio;
1717	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1718	int nid = NUMA_NO_NODE;
1719	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1720	bool migrated = false, writable = false;
 
 
1721	int flags = 0;
1722
1723	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1724	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
 
 
 
 
 
 
 
 
 
 
 
1725		spin_unlock(vmf->ptl);
 
 
1726		goto out;
1727	}
1728
1729	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
1730
1731	/*
1732	 * Detect now whether the PMD could be writable; this information
1733	 * is only valid while holding the PT lock.
1734	 */
1735	writable = pmd_write(pmd);
1736	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1737	    can_change_pmd_writable(vma, vmf->address, pmd))
1738		writable = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1739
1740	folio = vm_normal_folio_pmd(vma, haddr, pmd);
1741	if (!folio)
1742		goto out_map;
 
 
 
 
1743
1744	/* See similar comment in do_numa_page for explanation */
1745	if (!writable)
1746		flags |= TNF_NO_GROUP;
 
 
 
 
 
 
 
 
 
 
 
 
1747
1748	nid = folio_nid(folio);
1749	/*
1750	 * For memory tiering mode, cpupid of slow memory page is used
1751	 * to record page access time.  So use default value.
 
 
 
 
 
 
 
1752	 */
1753	if (node_is_toptier(nid))
1754		last_cpupid = folio_last_cpupid(folio);
1755	target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags);
1756	if (target_nid == NUMA_NO_NODE) {
1757		folio_put(folio);
1758		goto out_map;
1759	}
1760
 
 
 
 
1761	spin_unlock(vmf->ptl);
1762	writable = false;
1763
1764	migrated = migrate_misplaced_folio(folio, vma, target_nid);
 
1765	if (migrated) {
1766		flags |= TNF_MIGRATED;
1767		nid = target_nid;
1768	} else {
1769		flags |= TNF_MIGRATE_FAIL;
1770		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1771		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1772			spin_unlock(vmf->ptl);
1773			goto out;
1774		}
1775		goto out_map;
1776	}
1777
1778out:
1779	if (nid != NUMA_NO_NODE)
1780		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1781
1782	return 0;
1783
1784out_map:
1785	/* Restore the PMD */
1786	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1787	pmd = pmd_mkyoung(pmd);
1788	if (writable)
1789		pmd = pmd_mkwrite(pmd, vma);
1790	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1791	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 
 
1792	spin_unlock(vmf->ptl);
1793	goto out;
 
 
 
 
 
 
 
 
 
1794}
1795
1796/*
1797 * Return true if we do MADV_FREE successfully on entire pmd page.
1798 * Otherwise, return false.
1799 */
1800bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1801		pmd_t *pmd, unsigned long addr, unsigned long next)
1802{
1803	spinlock_t *ptl;
1804	pmd_t orig_pmd;
1805	struct folio *folio;
1806	struct mm_struct *mm = tlb->mm;
1807	bool ret = false;
1808
1809	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1810
1811	ptl = pmd_trans_huge_lock(pmd, vma);
1812	if (!ptl)
1813		goto out_unlocked;
1814
1815	orig_pmd = *pmd;
1816	if (is_huge_zero_pmd(orig_pmd))
1817		goto out;
1818
1819	if (unlikely(!pmd_present(orig_pmd))) {
1820		VM_BUG_ON(thp_migration_supported() &&
1821				  !is_pmd_migration_entry(orig_pmd));
1822		goto out;
1823	}
1824
1825	folio = pfn_folio(pmd_pfn(orig_pmd));
1826	/*
1827	 * If other processes are mapping this folio, we couldn't discard
1828	 * the folio unless they all do MADV_FREE so let's skip the folio.
1829	 */
1830	if (folio_estimated_sharers(folio) != 1)
1831		goto out;
1832
1833	if (!folio_trylock(folio))
1834		goto out;
1835
1836	/*
1837	 * If user want to discard part-pages of THP, split it so MADV_FREE
1838	 * will deactivate only them.
1839	 */
1840	if (next - addr != HPAGE_PMD_SIZE) {
1841		folio_get(folio);
1842		spin_unlock(ptl);
1843		split_folio(folio);
1844		folio_unlock(folio);
1845		folio_put(folio);
1846		goto out_unlocked;
1847	}
1848
1849	if (folio_test_dirty(folio))
1850		folio_clear_dirty(folio);
1851	folio_unlock(folio);
1852
1853	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1854		pmdp_invalidate(vma, addr, pmd);
1855		orig_pmd = pmd_mkold(orig_pmd);
1856		orig_pmd = pmd_mkclean(orig_pmd);
1857
1858		set_pmd_at(mm, addr, pmd, orig_pmd);
1859		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1860	}
1861
1862	folio_mark_lazyfree(folio);
1863	ret = true;
1864out:
1865	spin_unlock(ptl);
1866out_unlocked:
1867	return ret;
1868}
1869
1870static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1871{
1872	pgtable_t pgtable;
1873
1874	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1875	pte_free(mm, pgtable);
1876	mm_dec_nr_ptes(mm);
1877}
1878
1879int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1880		 pmd_t *pmd, unsigned long addr)
1881{
1882	pmd_t orig_pmd;
1883	spinlock_t *ptl;
1884
1885	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1886
1887	ptl = __pmd_trans_huge_lock(pmd, vma);
1888	if (!ptl)
1889		return 0;
1890	/*
1891	 * For architectures like ppc64 we look at deposited pgtable
1892	 * when calling pmdp_huge_get_and_clear. So do the
1893	 * pgtable_trans_huge_withdraw after finishing pmdp related
1894	 * operations.
1895	 */
1896	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1897						tlb->fullmm);
1898	arch_check_zapped_pmd(vma, orig_pmd);
1899	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1900	if (vma_is_special_huge(vma)) {
1901		if (arch_needs_pgtable_deposit())
1902			zap_deposited_table(tlb->mm, pmd);
1903		spin_unlock(ptl);
 
 
1904	} else if (is_huge_zero_pmd(orig_pmd)) {
1905		zap_deposited_table(tlb->mm, pmd);
1906		spin_unlock(ptl);
 
1907	} else {
1908		struct page *page = NULL;
1909		int flush_needed = 1;
1910
1911		if (pmd_present(orig_pmd)) {
1912			page = pmd_page(orig_pmd);
1913			folio_remove_rmap_pmd(page_folio(page), page, vma);
1914			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1915			VM_BUG_ON_PAGE(!PageHead(page), page);
1916		} else if (thp_migration_supported()) {
1917			swp_entry_t entry;
1918
1919			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1920			entry = pmd_to_swp_entry(orig_pmd);
1921			page = pfn_swap_entry_to_page(entry);
1922			flush_needed = 0;
1923		} else
1924			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1925
1926		if (PageAnon(page)) {
1927			zap_deposited_table(tlb->mm, pmd);
1928			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1929		} else {
1930			if (arch_needs_pgtable_deposit())
1931				zap_deposited_table(tlb->mm, pmd);
1932			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1933		}
1934
1935		spin_unlock(ptl);
1936		if (flush_needed)
1937			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1938	}
1939	return 1;
1940}
1941
1942#ifndef pmd_move_must_withdraw
1943static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1944					 spinlock_t *old_pmd_ptl,
1945					 struct vm_area_struct *vma)
1946{
1947	/*
1948	 * With split pmd lock we also need to move preallocated
1949	 * PTE page table if new_pmd is on different PMD page table.
1950	 *
1951	 * We also don't deposit and withdraw tables for file pages.
1952	 */
1953	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1954}
1955#endif
1956
1957static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1958{
1959#ifdef CONFIG_MEM_SOFT_DIRTY
1960	if (unlikely(is_pmd_migration_entry(pmd)))
1961		pmd = pmd_swp_mksoft_dirty(pmd);
1962	else if (pmd_present(pmd))
1963		pmd = pmd_mksoft_dirty(pmd);
1964#endif
1965	return pmd;
1966}
1967
1968bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1969		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
 
1970{
1971	spinlock_t *old_ptl, *new_ptl;
1972	pmd_t pmd;
1973	struct mm_struct *mm = vma->vm_mm;
1974	bool force_flush = false;
1975
 
 
 
 
 
1976	/*
1977	 * The destination pmd shouldn't be established, free_pgtables()
1978	 * should have released it; but move_page_tables() might have already
1979	 * inserted a page table, if racing against shmem/file collapse.
1980	 */
1981	if (!pmd_none(*new_pmd)) {
1982		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1983		return false;
1984	}
1985
1986	/*
1987	 * We don't have to worry about the ordering of src and dst
1988	 * ptlocks because exclusive mmap_lock prevents deadlock.
1989	 */
1990	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1991	if (old_ptl) {
1992		new_ptl = pmd_lockptr(mm, new_pmd);
1993		if (new_ptl != old_ptl)
1994			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1995		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1996		if (pmd_present(pmd))
1997			force_flush = true;
1998		VM_BUG_ON(!pmd_none(*new_pmd));
1999
2000		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2001			pgtable_t pgtable;
2002			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2003			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2004		}
2005		pmd = move_soft_dirty_pmd(pmd);
2006		set_pmd_at(mm, new_addr, new_pmd, pmd);
2007		if (force_flush)
2008			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2009		if (new_ptl != old_ptl)
2010			spin_unlock(new_ptl);
 
 
 
 
2011		spin_unlock(old_ptl);
2012		return true;
2013	}
2014	return false;
2015}
2016
2017/*
2018 * Returns
2019 *  - 0 if PMD could not be locked
2020 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2021 *      or if prot_numa but THP migration is not supported
2022 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2023 */
2024int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2025		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2026		    unsigned long cp_flags)
2027{
2028	struct mm_struct *mm = vma->vm_mm;
2029	spinlock_t *ptl;
2030	pmd_t oldpmd, entry;
2031	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2032	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2033	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2034	int ret = 1;
2035
2036	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2037
2038	if (prot_numa && !thp_migration_supported())
2039		return 1;
2040
2041	ptl = __pmd_trans_huge_lock(pmd, vma);
2042	if (!ptl)
2043		return 0;
2044
 
 
 
2045#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2046	if (is_swap_pmd(*pmd)) {
2047		swp_entry_t entry = pmd_to_swp_entry(*pmd);
2048		struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
2049		pmd_t newpmd;
2050
2051		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2052		if (is_writable_migration_entry(entry)) {
 
2053			/*
2054			 * A protection check is difficult so
2055			 * just be safe and disable write
2056			 */
2057			if (folio_test_anon(folio))
2058				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2059			else
2060				entry = make_readable_migration_entry(swp_offset(entry));
2061			newpmd = swp_entry_to_pmd(entry);
2062			if (pmd_swp_soft_dirty(*pmd))
2063				newpmd = pmd_swp_mksoft_dirty(newpmd);
2064		} else {
2065			newpmd = *pmd;
2066		}
2067
2068		if (uffd_wp)
2069			newpmd = pmd_swp_mkuffd_wp(newpmd);
2070		else if (uffd_wp_resolve)
2071			newpmd = pmd_swp_clear_uffd_wp(newpmd);
2072		if (!pmd_same(*pmd, newpmd))
2073			set_pmd_at(mm, addr, pmd, newpmd);
2074		goto unlock;
2075	}
2076#endif
2077
2078	if (prot_numa) {
2079		struct folio *folio;
2080		bool toptier;
2081		/*
2082		 * Avoid trapping faults against the zero page. The read-only
2083		 * data is likely to be read-cached on the local CPU and
2084		 * local/remote hits to the zero page are not interesting.
2085		 */
2086		if (is_huge_zero_pmd(*pmd))
2087			goto unlock;
2088
2089		if (pmd_protnone(*pmd))
2090			goto unlock;
2091
2092		folio = page_folio(pmd_page(*pmd));
2093		toptier = node_is_toptier(folio_nid(folio));
2094		/*
2095		 * Skip scanning top tier node if normal numa
2096		 * balancing is disabled
2097		 */
2098		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2099		    toptier)
2100			goto unlock;
2101
2102		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
2103		    !toptier)
2104			folio_xchg_access_time(folio,
2105					       jiffies_to_msecs(jiffies));
2106	}
2107	/*
2108	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2109	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2110	 * which is also under mmap_read_lock(mm):
2111	 *
2112	 *	CPU0:				CPU1:
2113	 *				change_huge_pmd(prot_numa=1)
2114	 *				 pmdp_huge_get_and_clear_notify()
2115	 * madvise_dontneed()
2116	 *  zap_pmd_range()
2117	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2118	 *   // skip the pmd
2119	 *				 set_pmd_at();
2120	 *				 // pmd is re-established
2121	 *
2122	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2123	 * which may break userspace.
2124	 *
2125	 * pmdp_invalidate_ad() is required to make sure we don't miss
2126	 * dirty/young flags set by hardware.
2127	 */
2128	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2129
2130	entry = pmd_modify(oldpmd, newprot);
2131	if (uffd_wp)
2132		entry = pmd_mkuffd_wp(entry);
2133	else if (uffd_wp_resolve)
2134		/*
2135		 * Leave the write bit to be handled by PF interrupt
2136		 * handler, then things like COW could be properly
2137		 * handled.
2138		 */
2139		entry = pmd_clear_uffd_wp(entry);
2140
2141	/* See change_pte_range(). */
2142	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2143	    can_change_pmd_writable(vma, addr, entry))
2144		entry = pmd_mkwrite(entry, vma);
2145
 
 
 
2146	ret = HPAGE_PMD_NR;
2147	set_pmd_at(mm, addr, pmd, entry);
2148
2149	if (huge_pmd_needs_flush(oldpmd, entry))
2150		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2151unlock:
2152	spin_unlock(ptl);
2153	return ret;
2154}
2155
2156#ifdef CONFIG_USERFAULTFD
2157/*
2158 * The PT lock for src_pmd and the mmap_lock for reading are held by
2159 * the caller, but it must return after releasing the page_table_lock.
2160 * Just move the page from src_pmd to dst_pmd if possible.
2161 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2162 * repeated by the caller, or other errors in case of failure.
2163 */
2164int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2165			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2166			unsigned long dst_addr, unsigned long src_addr)
2167{
2168	pmd_t _dst_pmd, src_pmdval;
2169	struct page *src_page;
2170	struct folio *src_folio;
2171	struct anon_vma *src_anon_vma;
2172	spinlock_t *src_ptl, *dst_ptl;
2173	pgtable_t src_pgtable;
2174	struct mmu_notifier_range range;
2175	int err = 0;
2176
2177	src_pmdval = *src_pmd;
2178	src_ptl = pmd_lockptr(mm, src_pmd);
2179
2180	lockdep_assert_held(src_ptl);
2181	mmap_assert_locked(mm);
2182
2183	/* Sanity checks before the operation */
2184	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2185	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2186		spin_unlock(src_ptl);
2187		return -EINVAL;
2188	}
2189
2190	if (!pmd_trans_huge(src_pmdval)) {
2191		spin_unlock(src_ptl);
2192		if (is_pmd_migration_entry(src_pmdval)) {
2193			pmd_migration_entry_wait(mm, &src_pmdval);
2194			return -EAGAIN;
2195		}
2196		return -ENOENT;
2197	}
2198
2199	src_page = pmd_page(src_pmdval);
2200	if (unlikely(!PageAnonExclusive(src_page))) {
2201		spin_unlock(src_ptl);
2202		return -EBUSY;
2203	}
2204
2205	src_folio = page_folio(src_page);
2206	folio_get(src_folio);
2207	spin_unlock(src_ptl);
2208
2209	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2210	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2211				src_addr + HPAGE_PMD_SIZE);
2212	mmu_notifier_invalidate_range_start(&range);
2213
2214	folio_lock(src_folio);
2215
2216	/*
2217	 * split_huge_page walks the anon_vma chain without the page
2218	 * lock. Serialize against it with the anon_vma lock, the page
2219	 * lock is not enough.
2220	 */
2221	src_anon_vma = folio_get_anon_vma(src_folio);
2222	if (!src_anon_vma) {
2223		err = -EAGAIN;
2224		goto unlock_folio;
2225	}
2226	anon_vma_lock_write(src_anon_vma);
2227
2228	dst_ptl = pmd_lockptr(mm, dst_pmd);
2229	double_pt_lock(src_ptl, dst_ptl);
2230	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2231		     !pmd_same(*dst_pmd, dst_pmdval))) {
2232		err = -EAGAIN;
2233		goto unlock_ptls;
2234	}
2235	if (folio_maybe_dma_pinned(src_folio) ||
2236	    !PageAnonExclusive(&src_folio->page)) {
2237		err = -EBUSY;
2238		goto unlock_ptls;
2239	}
2240
2241	if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2242	    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2243		err = -EBUSY;
2244		goto unlock_ptls;
2245	}
2246
2247	folio_move_anon_rmap(src_folio, dst_vma);
2248	WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr));
2249
2250	src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2251	/* Folio got pinned from under us. Put it back and fail the move. */
2252	if (folio_maybe_dma_pinned(src_folio)) {
2253		set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2254		err = -EBUSY;
2255		goto unlock_ptls;
2256	}
2257
2258	_dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2259	/* Follow mremap() behavior and treat the entry dirty after the move */
2260	_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2261	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2262
2263	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2264	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2265unlock_ptls:
2266	double_pt_unlock(src_ptl, dst_ptl);
2267	anon_vma_unlock_write(src_anon_vma);
2268	put_anon_vma(src_anon_vma);
2269unlock_folio:
2270	/* unblock rmap walks */
2271	folio_unlock(src_folio);
2272	mmu_notifier_invalidate_range_end(&range);
2273	folio_put(src_folio);
2274	return err;
2275}
2276#endif /* CONFIG_USERFAULTFD */
2277
2278/*
2279 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2280 *
2281 * Note that if it returns page table lock pointer, this routine returns without
2282 * unlocking page table lock. So callers must unlock it.
2283 */
2284spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2285{
2286	spinlock_t *ptl;
2287	ptl = pmd_lock(vma->vm_mm, pmd);
2288	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2289			pmd_devmap(*pmd)))
2290		return ptl;
2291	spin_unlock(ptl);
2292	return NULL;
2293}
2294
2295/*
2296 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2297 *
2298 * Note that if it returns page table lock pointer, this routine returns without
2299 * unlocking page table lock. So callers must unlock it.
2300 */
2301spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2302{
2303	spinlock_t *ptl;
2304
2305	ptl = pud_lock(vma->vm_mm, pud);
2306	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2307		return ptl;
2308	spin_unlock(ptl);
2309	return NULL;
2310}
2311
2312#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2313int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2314		 pud_t *pud, unsigned long addr)
2315{
 
2316	spinlock_t *ptl;
2317
2318	ptl = __pud_trans_huge_lock(pud, vma);
2319	if (!ptl)
2320		return 0;
2321
2322	pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
 
 
 
 
 
 
2323	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2324	if (vma_is_special_huge(vma)) {
2325		spin_unlock(ptl);
2326		/* No zero page support yet */
2327	} else {
2328		/* No support for anonymous PUD pages yet */
2329		BUG();
2330	}
2331	return 1;
2332}
2333
2334static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2335		unsigned long haddr)
2336{
2337	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2338	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2339	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2340	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2341
2342	count_vm_event(THP_SPLIT_PUD);
2343
2344	pudp_huge_clear_flush(vma, haddr, pud);
2345}
2346
2347void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2348		unsigned long address)
2349{
2350	spinlock_t *ptl;
2351	struct mmu_notifier_range range;
 
2352
2353	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2354				address & HPAGE_PUD_MASK,
2355				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2356	mmu_notifier_invalidate_range_start(&range);
2357	ptl = pud_lock(vma->vm_mm, pud);
2358	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2359		goto out;
2360	__split_huge_pud_locked(vma, pud, range.start);
2361
2362out:
2363	spin_unlock(ptl);
2364	mmu_notifier_invalidate_range_end(&range);
 
 
 
 
 
2365}
2366#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2367
2368static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2369		unsigned long haddr, pmd_t *pmd)
2370{
2371	struct mm_struct *mm = vma->vm_mm;
2372	pgtable_t pgtable;
2373	pmd_t _pmd, old_pmd;
2374	unsigned long addr;
2375	pte_t *pte;
2376	int i;
2377
2378	/*
2379	 * Leave pmd empty until pte is filled note that it is fine to delay
2380	 * notification until mmu_notifier_invalidate_range_end() as we are
2381	 * replacing a zero pmd write protected page with a zero pte write
2382	 * protected page.
2383	 *
2384	 * See Documentation/mm/mmu_notifier.rst
2385	 */
2386	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2387
2388	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2389	pmd_populate(mm, &_pmd, pgtable);
2390
2391	pte = pte_offset_map(&_pmd, haddr);
2392	VM_BUG_ON(!pte);
2393	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2394		pte_t entry;
2395
2396		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2397		entry = pte_mkspecial(entry);
2398		if (pmd_uffd_wp(old_pmd))
2399			entry = pte_mkuffd_wp(entry);
2400		VM_BUG_ON(!pte_none(ptep_get(pte)));
2401		set_pte_at(mm, addr, pte, entry);
2402		pte++;
2403	}
2404	pte_unmap(pte - 1);
2405	smp_wmb(); /* make pte visible before pmd */
2406	pmd_populate(mm, pmd, pgtable);
2407}
2408
2409static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2410		unsigned long haddr, bool freeze)
2411{
2412	struct mm_struct *mm = vma->vm_mm;
2413	struct folio *folio;
2414	struct page *page;
2415	pgtable_t pgtable;
2416	pmd_t old_pmd, _pmd;
2417	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2418	bool anon_exclusive = false, dirty = false;
2419	unsigned long addr;
2420	pte_t *pte;
2421	int i;
2422
2423	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2424	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2425	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2426	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2427				&& !pmd_devmap(*pmd));
2428
2429	count_vm_event(THP_SPLIT_PMD);
2430
2431	if (!vma_is_anonymous(vma)) {
2432		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2433		/*
2434		 * We are going to unmap this huge page. So
2435		 * just go ahead and zap it
2436		 */
2437		if (arch_needs_pgtable_deposit())
2438			zap_deposited_table(mm, pmd);
2439		if (vma_is_special_huge(vma))
2440			return;
2441		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2442			swp_entry_t entry;
2443
2444			entry = pmd_to_swp_entry(old_pmd);
2445			page = pfn_swap_entry_to_page(entry);
2446		} else {
2447			page = pmd_page(old_pmd);
2448			folio = page_folio(page);
2449			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2450				folio_mark_dirty(folio);
2451			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2452				folio_set_referenced(folio);
2453			folio_remove_rmap_pmd(folio, page, vma);
2454			folio_put(folio);
2455		}
2456		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2457		return;
2458	}
2459
2460	if (is_huge_zero_pmd(*pmd)) {
2461		/*
2462		 * FIXME: Do we want to invalidate secondary mmu by calling
2463		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2464		 * inside __split_huge_pmd() ?
2465		 *
2466		 * We are going from a zero huge page write protected to zero
2467		 * small page also write protected so it does not seems useful
2468		 * to invalidate secondary mmu at this time.
2469		 */
2470		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2471	}
2472
2473	/*
2474	 * Up to this point the pmd is present and huge and userland has the
2475	 * whole access to the hugepage during the split (which happens in
2476	 * place). If we overwrite the pmd with the not-huge version pointing
2477	 * to the pte here (which of course we could if all CPUs were bug
2478	 * free), userland could trigger a small page size TLB miss on the
2479	 * small sized TLB while the hugepage TLB entry is still established in
2480	 * the huge TLB. Some CPU doesn't like that.
2481	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2482	 * 383 on page 105. Intel should be safe but is also warns that it's
2483	 * only safe if the permission and cache attributes of the two entries
2484	 * loaded in the two TLB is identical (which should be the case here).
2485	 * But it is generally safer to never allow small and huge TLB entries
2486	 * for the same virtual address to be loaded simultaneously. So instead
2487	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2488	 * current pmd notpresent (atomically because here the pmd_trans_huge
2489	 * must remain set at all times on the pmd until the split is complete
2490	 * for this pmd), then we flush the SMP TLB and finally we write the
2491	 * non-huge version of the pmd entry with pmd_populate.
2492	 */
2493	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2494
 
2495	pmd_migration = is_pmd_migration_entry(old_pmd);
2496	if (unlikely(pmd_migration)) {
2497		swp_entry_t entry;
2498
2499		entry = pmd_to_swp_entry(old_pmd);
2500		page = pfn_swap_entry_to_page(entry);
2501		write = is_writable_migration_entry(entry);
2502		if (PageAnon(page))
2503			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2504		young = is_migration_entry_young(entry);
2505		dirty = is_migration_entry_dirty(entry);
2506		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2507		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2508	} else {
2509		page = pmd_page(old_pmd);
2510		folio = page_folio(page);
2511		if (pmd_dirty(old_pmd)) {
2512			dirty = true;
2513			folio_set_dirty(folio);
2514		}
2515		write = pmd_write(old_pmd);
2516		young = pmd_young(old_pmd);
2517		soft_dirty = pmd_soft_dirty(old_pmd);
2518		uffd_wp = pmd_uffd_wp(old_pmd);
2519
2520		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2521		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2522
2523		/*
2524		 * Without "freeze", we'll simply split the PMD, propagating the
2525		 * PageAnonExclusive() flag for each PTE by setting it for
2526		 * each subpage -- no need to (temporarily) clear.
2527		 *
2528		 * With "freeze" we want to replace mapped pages by
2529		 * migration entries right away. This is only possible if we
2530		 * managed to clear PageAnonExclusive() -- see
2531		 * set_pmd_migration_entry().
2532		 *
2533		 * In case we cannot clear PageAnonExclusive(), split the PMD
2534		 * only and let try_to_migrate_one() fail later.
2535		 *
2536		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2537		 */
2538		anon_exclusive = PageAnonExclusive(page);
2539		if (freeze && anon_exclusive &&
2540		    folio_try_share_anon_rmap_pmd(folio, page))
2541			freeze = false;
2542		if (!freeze) {
2543			rmap_t rmap_flags = RMAP_NONE;
2544
2545			folio_ref_add(folio, HPAGE_PMD_NR - 1);
2546			if (anon_exclusive)
2547				rmap_flags |= RMAP_EXCLUSIVE;
2548			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2549						 vma, haddr, rmap_flags);
2550		}
2551	}
2552
2553	/*
2554	 * Withdraw the table only after we mark the pmd entry invalid.
2555	 * This's critical for some architectures (Power).
2556	 */
2557	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2558	pmd_populate(mm, &_pmd, pgtable);
2559
2560	pte = pte_offset_map(&_pmd, haddr);
2561	VM_BUG_ON(!pte);
2562	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2563		pte_t entry;
2564		/*
2565		 * Note that NUMA hinting access restrictions are not
2566		 * transferred to avoid any possibility of altering
2567		 * permissions across VMAs.
2568		 */
2569		if (freeze || pmd_migration) {
2570			swp_entry_t swp_entry;
2571			if (write)
2572				swp_entry = make_writable_migration_entry(
2573							page_to_pfn(page + i));
2574			else if (anon_exclusive)
2575				swp_entry = make_readable_exclusive_migration_entry(
2576							page_to_pfn(page + i));
2577			else
2578				swp_entry = make_readable_migration_entry(
2579							page_to_pfn(page + i));
2580			if (young)
2581				swp_entry = make_migration_entry_young(swp_entry);
2582			if (dirty)
2583				swp_entry = make_migration_entry_dirty(swp_entry);
2584			entry = swp_entry_to_pte(swp_entry);
2585			if (soft_dirty)
2586				entry = pte_swp_mksoft_dirty(entry);
2587			if (uffd_wp)
2588				entry = pte_swp_mkuffd_wp(entry);
2589		} else {
2590			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2591			if (write)
2592				entry = pte_mkwrite(entry, vma);
 
2593			if (!young)
2594				entry = pte_mkold(entry);
2595			/* NOTE: this may set soft-dirty too on some archs */
2596			if (dirty)
2597				entry = pte_mkdirty(entry);
2598			if (soft_dirty)
2599				entry = pte_mksoft_dirty(entry);
2600			if (uffd_wp)
2601				entry = pte_mkuffd_wp(entry);
2602		}
2603		VM_BUG_ON(!pte_none(ptep_get(pte)));
 
2604		set_pte_at(mm, addr, pte, entry);
2605		pte++;
 
 
 
 
 
 
 
 
 
 
2606	}
2607	pte_unmap(pte - 1);
2608
2609	if (!pmd_migration)
2610		folio_remove_rmap_pmd(folio, page, vma);
2611	if (freeze)
2612		put_page(page);
 
 
 
 
 
2613
2614	smp_wmb(); /* make pte visible before pmd */
2615	pmd_populate(mm, pmd, pgtable);
 
 
 
 
 
 
 
2616}
2617
2618void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2619		unsigned long address, bool freeze, struct folio *folio)
2620{
2621	spinlock_t *ptl;
2622	struct mmu_notifier_range range;
 
2623
2624	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2625				address & HPAGE_PMD_MASK,
2626				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2627	mmu_notifier_invalidate_range_start(&range);
2628	ptl = pmd_lock(vma->vm_mm, pmd);
2629
2630	/*
2631	 * If caller asks to setup a migration entry, we need a folio to check
2632	 * pmd against. Otherwise we can end up replacing wrong folio.
2633	 */
2634	VM_BUG_ON(freeze && !folio);
2635	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2636
2637	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2638	    is_pmd_migration_entry(*pmd)) {
2639		/*
2640		 * It's safe to call pmd_page when folio is set because it's
2641		 * guaranteed that pmd is present.
2642		 */
2643		if (folio && folio != page_folio(pmd_page(*pmd)))
2644			goto out;
2645		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2646	}
2647
2648out:
2649	spin_unlock(ptl);
2650	mmu_notifier_invalidate_range_end(&range);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2651}
2652
2653void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2654		bool freeze, struct folio *folio)
2655{
2656	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
 
 
 
 
 
 
 
 
 
 
 
2657
2658	if (!pmd)
 
2659		return;
2660
2661	__split_huge_pmd(vma, pmd, address, freeze, folio);
2662}
2663
2664static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2665{
2666	/*
2667	 * If the new address isn't hpage aligned and it could previously
2668	 * contain an hugepage: check if we need to split an huge pmd.
2669	 */
2670	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2671	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2672			 ALIGN(address, HPAGE_PMD_SIZE)))
2673		split_huge_pmd_address(vma, address, false, NULL);
2674}
2675
2676void vma_adjust_trans_huge(struct vm_area_struct *vma,
2677			     unsigned long start,
2678			     unsigned long end,
2679			     long adjust_next)
2680{
2681	/* Check if we need to split start first. */
2682	split_huge_pmd_if_needed(vma, start);
 
 
 
 
 
 
 
2683
2684	/* Check if we need to split end next. */
2685	split_huge_pmd_if_needed(vma, end);
 
 
 
 
 
 
 
2686
2687	/*
2688	 * If we're also updating the next vma vm_start,
2689	 * check if we need to split it.
 
2690	 */
2691	if (adjust_next > 0) {
2692		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2693		unsigned long nstart = next->vm_start;
2694		nstart += adjust_next;
2695		split_huge_pmd_if_needed(next, nstart);
 
 
 
2696	}
2697}
2698
2699static void unmap_folio(struct folio *folio)
2700{
2701	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2702		TTU_SYNC | TTU_BATCH_FLUSH;
 
2703
2704	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2705
2706	/*
2707	 * Anon pages need migration entries to preserve them, but file
2708	 * pages can simply be left unmapped, then faulted back on demand.
2709	 * If that is ever changed (perhaps for mlock), update remap_page().
2710	 */
2711	if (folio_test_anon(folio))
2712		try_to_migrate(folio, ttu_flags);
2713	else
2714		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2715
2716	try_to_unmap_flush();
 
2717}
2718
2719static void remap_page(struct folio *folio, unsigned long nr)
2720{
2721	int i = 0;
2722
2723	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2724	if (!folio_test_anon(folio))
2725		return;
2726	for (;;) {
2727		remove_migration_ptes(folio, folio, true);
2728		i += folio_nr_pages(folio);
2729		if (i >= nr)
2730			break;
2731		folio = folio_next(folio);
2732	}
2733}
2734
2735static void lru_add_page_tail(struct page *head, struct page *tail,
2736		struct lruvec *lruvec, struct list_head *list)
2737{
2738	VM_BUG_ON_PAGE(!PageHead(head), head);
2739	VM_BUG_ON_PAGE(PageCompound(tail), head);
2740	VM_BUG_ON_PAGE(PageLRU(tail), head);
2741	lockdep_assert_held(&lruvec->lru_lock);
2742
2743	if (list) {
2744		/* page reclaim is reclaiming a huge page */
2745		VM_WARN_ON(PageLRU(head));
2746		get_page(tail);
2747		list_add_tail(&tail->lru, list);
2748	} else {
2749		/* head is still on lru (and we have it frozen) */
2750		VM_WARN_ON(!PageLRU(head));
2751		if (PageUnevictable(tail))
2752			tail->mlock_count = 0;
2753		else
2754			list_add_tail(&tail->lru, &head->lru);
2755		SetPageLRU(tail);
2756	}
2757}
2758
2759static void __split_huge_page_tail(struct folio *folio, int tail,
2760		struct lruvec *lruvec, struct list_head *list)
2761{
2762	struct page *head = &folio->page;
2763	struct page *page_tail = head + tail;
2764	/*
2765	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2766	 * Don't pass it around before clear_compound_head().
2767	 */
2768	struct folio *new_folio = (struct folio *)page_tail;
2769
2770	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2771
2772	/*
2773	 * Clone page flags before unfreezing refcount.
2774	 *
2775	 * After successful get_page_unless_zero() might follow flags change,
2776	 * for example lock_page() which set PG_waiters.
2777	 *
2778	 * Note that for mapped sub-pages of an anonymous THP,
2779	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2780	 * the migration entry instead from where remap_page() will restore it.
2781	 * We can still have PG_anon_exclusive set on effectively unmapped and
2782	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2783	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2784	 */
2785	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2786	page_tail->flags |= (head->flags &
2787			((1L << PG_referenced) |
2788			 (1L << PG_swapbacked) |
2789			 (1L << PG_swapcache) |
2790			 (1L << PG_mlocked) |
2791			 (1L << PG_uptodate) |
2792			 (1L << PG_active) |
2793			 (1L << PG_workingset) |
2794			 (1L << PG_locked) |
2795			 (1L << PG_unevictable) |
2796#ifdef CONFIG_ARCH_USES_PG_ARCH_X
2797			 (1L << PG_arch_2) |
2798			 (1L << PG_arch_3) |
2799#endif
2800			 (1L << PG_dirty) |
2801			 LRU_GEN_MASK | LRU_REFS_MASK));
2802
2803	/* ->mapping in first and second tail page is replaced by other uses */
2804	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2805			page_tail);
2806	page_tail->mapping = head->mapping;
2807	page_tail->index = head->index + tail;
2808
2809	/*
2810	 * page->private should not be set in tail pages. Fix up and warn once
2811	 * if private is unexpectedly set.
2812	 */
2813	if (unlikely(page_tail->private)) {
2814		VM_WARN_ON_ONCE_PAGE(true, page_tail);
2815		page_tail->private = 0;
2816	}
2817	if (folio_test_swapcache(folio))
2818		new_folio->swap.val = folio->swap.val + tail;
2819
2820	/* Page flags must be visible before we make the page non-compound. */
2821	smp_wmb();
2822
2823	/*
2824	 * Clear PageTail before unfreezing page refcount.
2825	 *
2826	 * After successful get_page_unless_zero() might follow put_page()
2827	 * which needs correct compound_head().
2828	 */
2829	clear_compound_head(page_tail);
2830
2831	/* Finally unfreeze refcount. Additional reference from page cache. */
2832	page_ref_unfreeze(page_tail, 1 + (!folio_test_anon(folio) ||
2833					  folio_test_swapcache(folio)));
2834
2835	if (folio_test_young(folio))
2836		folio_set_young(new_folio);
2837	if (folio_test_idle(folio))
2838		folio_set_idle(new_folio);
2839
2840	folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
 
 
 
 
 
 
2841
2842	/*
2843	 * always add to the tail because some iterators expect new
2844	 * pages to show after the currently processed elements - e.g.
2845	 * migrate_pages
2846	 */
2847	lru_add_page_tail(head, page_tail, lruvec, list);
2848}
2849
2850static void __split_huge_page(struct page *page, struct list_head *list,
2851		pgoff_t end)
2852{
2853	struct folio *folio = page_folio(page);
2854	struct page *head = &folio->page;
2855	struct lruvec *lruvec;
2856	struct address_space *swap_cache = NULL;
2857	unsigned long offset = 0;
2858	unsigned int nr = thp_nr_pages(head);
2859	int i, nr_dropped = 0;
2860
2861	/* complete memcg works before add pages to LRU */
2862	split_page_memcg(head, nr);
2863
2864	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2865		offset = swp_offset(folio->swap);
2866		swap_cache = swap_address_space(folio->swap);
2867		xa_lock(&swap_cache->i_pages);
2868	}
2869
2870	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2871	lruvec = folio_lruvec_lock(folio);
2872
2873	ClearPageHasHWPoisoned(head);
 
2874
2875	for (i = nr - 1; i >= 1; i--) {
2876		__split_huge_page_tail(folio, i, lruvec, list);
2877		/* Some pages can be beyond EOF: drop them from page cache */
2878		if (head[i].index >= end) {
2879			struct folio *tail = page_folio(head + i);
2880
2881			if (shmem_mapping(head->mapping))
2882				nr_dropped++;
2883			else if (folio_test_clear_dirty(tail))
2884				folio_account_cleaned(tail,
2885					inode_to_wb(folio->mapping->host));
2886			__filemap_remove_folio(tail, NULL);
2887			folio_put(tail);
2888		} else if (!PageAnon(page)) {
2889			__xa_store(&head->mapping->i_pages, head[i].index,
2890					head + i, 0);
2891		} else if (swap_cache) {
2892			__xa_store(&swap_cache->i_pages, offset + i,
2893					head + i, 0);
2894		}
2895	}
2896
2897	ClearPageCompound(head);
2898	unlock_page_lruvec(lruvec);
2899	/* Caller disabled irqs, so they are still disabled here */
2900
2901	split_page_owner(head, nr);
2902
2903	/* See comment in __split_huge_page_tail() */
2904	if (PageAnon(head)) {
2905		/* Additional pin to swap cache */
2906		if (PageSwapCache(head)) {
2907			page_ref_add(head, 2);
2908			xa_unlock(&swap_cache->i_pages);
2909		} else {
2910			page_ref_inc(head);
2911		}
2912	} else {
2913		/* Additional pin to page cache */
2914		page_ref_add(head, 2);
2915		xa_unlock(&head->mapping->i_pages);
2916	}
2917	local_irq_enable();
2918
2919	if (nr_dropped)
2920		shmem_uncharge(head->mapping->host, nr_dropped);
2921	remap_page(folio, nr);
2922
2923	if (folio_test_swapcache(folio))
2924		split_swap_cluster(folio->swap);
2925
2926	for (i = 0; i < nr; i++) {
2927		struct page *subpage = head + i;
2928		if (subpage == page)
2929			continue;
2930		unlock_page(subpage);
2931
2932		/*
2933		 * Subpages may be freed if there wasn't any mapping
2934		 * like if add_to_swap() is running on a lru page that
2935		 * had its mapping zapped. And freeing these pages
2936		 * requires taking the lru_lock so we do the put_page
2937		 * of the tail pages after the split is complete.
2938		 */
2939		free_page_and_swap_cache(subpage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2940	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2941}
2942
2943/* Racy check whether the huge page can be split */
2944bool can_split_folio(struct folio *folio, int *pextra_pins)
2945{
2946	int extra_pins;
2947
2948	/* Additional pins from page cache */
2949	if (folio_test_anon(folio))
2950		extra_pins = folio_test_swapcache(folio) ?
2951				folio_nr_pages(folio) : 0;
2952	else
2953		extra_pins = folio_nr_pages(folio);
2954	if (pextra_pins)
2955		*pextra_pins = extra_pins;
2956	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2957}
2958
2959/*
2960 * This function splits huge page into normal pages. @page can point to any
2961 * subpage of huge page to split. Split doesn't change the position of @page.
2962 *
2963 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2964 * The huge page must be locked.
2965 *
2966 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2967 *
2968 * Both head page and tail pages will inherit mapping, flags, and so on from
2969 * the hugepage.
2970 *
2971 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2972 * they are not mapped.
2973 *
2974 * Returns 0 if the hugepage is split successfully.
2975 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2976 * us.
2977 */
2978int split_huge_page_to_list(struct page *page, struct list_head *list)
2979{
2980	struct folio *folio = page_folio(page);
2981	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2982	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2983	struct anon_vma *anon_vma = NULL;
2984	struct address_space *mapping = NULL;
2985	int extra_pins, ret;
2986	pgoff_t end;
2987	bool is_hzp;
2988
2989	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2990	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2991
2992	is_hzp = is_huge_zero_page(&folio->page);
2993	if (is_hzp) {
2994		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2995		return -EBUSY;
2996	}
2997
2998	if (folio_test_writeback(folio))
2999		return -EBUSY;
3000
3001	if (folio_test_anon(folio)) {
3002		/*
3003		 * The caller does not necessarily hold an mmap_lock that would
3004		 * prevent the anon_vma disappearing so we first we take a
3005		 * reference to it and then lock the anon_vma for write. This
3006		 * is similar to folio_lock_anon_vma_read except the write lock
3007		 * is taken to serialise against parallel split or collapse
3008		 * operations.
3009		 */
3010		anon_vma = folio_get_anon_vma(folio);
3011		if (!anon_vma) {
3012			ret = -EBUSY;
3013			goto out;
3014		}
3015		end = -1;
3016		mapping = NULL;
3017		anon_vma_lock_write(anon_vma);
3018	} else {
3019		gfp_t gfp;
3020
3021		mapping = folio->mapping;
3022
3023		/* Truncated ? */
3024		if (!mapping) {
3025			ret = -EBUSY;
3026			goto out;
3027		}
3028
3029		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3030							GFP_RECLAIM_MASK);
3031
3032		if (!filemap_release_folio(folio, gfp)) {
3033			ret = -EBUSY;
3034			goto out;
3035		}
3036
3037		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3038		if (xas_error(&xas)) {
3039			ret = xas_error(&xas);
3040			goto out;
3041		}
3042
3043		anon_vma = NULL;
3044		i_mmap_lock_read(mapping);
3045
3046		/*
3047		 *__split_huge_page() may need to trim off pages beyond EOF:
3048		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3049		 * which cannot be nested inside the page tree lock. So note
3050		 * end now: i_size itself may be changed at any moment, but
3051		 * folio lock is good enough to serialize the trimming.
3052		 */
3053		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3054		if (shmem_mapping(mapping))
3055			end = shmem_fallocend(mapping->host, end);
3056	}
3057
3058	/*
3059	 * Racy check if we can split the page, before unmap_folio() will
3060	 * split PMDs
3061	 */
3062	if (!can_split_folio(folio, &extra_pins)) {
3063		ret = -EAGAIN;
3064		goto out_unlock;
3065	}
3066
3067	unmap_folio(folio);
 
 
 
 
 
 
 
 
 
3068
3069	/* block interrupt reentry in xa_lock and spinlock */
3070	local_irq_disable();
3071	if (mapping) {
 
 
 
 
 
3072		/*
3073		 * Check if the folio is present in page cache.
3074		 * We assume all tail are present too, if folio is there.
3075		 */
3076		xas_lock(&xas);
3077		xas_reset(&xas);
3078		if (xas_load(&xas) != folio)
3079			goto fail;
3080	}
3081
3082	/* Prevent deferred_split_scan() touching ->_refcount */
3083	spin_lock(&ds_queue->split_queue_lock);
3084	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3085		if (!list_empty(&folio->_deferred_list)) {
3086			ds_queue->split_queue_len--;
3087			list_del(&folio->_deferred_list);
3088		}
3089		spin_unlock(&ds_queue->split_queue_lock);
3090		if (mapping) {
3091			int nr = folio_nr_pages(folio);
3092
3093			xas_split(&xas, folio, folio_order(folio));
3094			if (folio_test_pmd_mappable(folio)) {
3095				if (folio_test_swapbacked(folio)) {
3096					__lruvec_stat_mod_folio(folio,
3097							NR_SHMEM_THPS, -nr);
3098				} else {
3099					__lruvec_stat_mod_folio(folio,
3100							NR_FILE_THPS, -nr);
3101					filemap_nr_thps_dec(mapping);
3102				}
3103			}
3104		}
 
 
 
 
 
 
3105
3106		__split_huge_page(page, list, end);
3107		ret = 0;
 
3108	} else {
3109		spin_unlock(&ds_queue->split_queue_lock);
3110fail:
3111		if (mapping)
3112			xas_unlock(&xas);
3113		local_irq_enable();
3114		remap_page(folio, folio_nr_pages(folio));
3115		ret = -EAGAIN;
 
 
 
 
 
 
 
3116	}
3117
3118out_unlock:
3119	if (anon_vma) {
3120		anon_vma_unlock_write(anon_vma);
3121		put_anon_vma(anon_vma);
3122	}
3123	if (mapping)
3124		i_mmap_unlock_read(mapping);
3125out:
3126	xas_destroy(&xas);
3127	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3128	return ret;
3129}
3130
3131void folio_undo_large_rmappable(struct folio *folio)
3132{
3133	struct deferred_split *ds_queue;
3134	unsigned long flags;
3135
3136	/*
3137	 * At this point, there is no one trying to add the folio to
3138	 * deferred_list. If folio is not in deferred_list, it's safe
3139	 * to check without acquiring the split_queue_lock.
3140	 */
3141	if (data_race(list_empty(&folio->_deferred_list)))
3142		return;
3143
3144	ds_queue = get_deferred_split_queue(folio);
3145	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3146	if (!list_empty(&folio->_deferred_list)) {
3147		ds_queue->split_queue_len--;
3148		list_del_init(&folio->_deferred_list);
3149	}
3150	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
 
3151}
3152
3153void deferred_split_folio(struct folio *folio)
3154{
3155	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3156#ifdef CONFIG_MEMCG
3157	struct mem_cgroup *memcg = folio_memcg(folio);
3158#endif
3159	unsigned long flags;
3160
3161	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
3162
3163	/*
3164	 * The try_to_unmap() in page reclaim path might reach here too,
3165	 * this may cause a race condition to corrupt deferred split queue.
3166	 * And, if page reclaim is already handling the same folio, it is
3167	 * unnecessary to handle it again in shrinker.
3168	 *
3169	 * Check the swapcache flag to determine if the folio is being
3170	 * handled by page reclaim since THP swap would add the folio into
3171	 * swap cache before calling try_to_unmap().
3172	 */
3173	if (folio_test_swapcache(folio))
3174		return;
3175
3176	if (!list_empty(&folio->_deferred_list))
3177		return;
3178
3179	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3180	if (list_empty(&folio->_deferred_list)) {
3181		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3182		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3183		ds_queue->split_queue_len++;
3184#ifdef CONFIG_MEMCG
3185		if (memcg)
3186			set_shrinker_bit(memcg, folio_nid(folio),
3187					 deferred_split_shrinker->id);
3188#endif
3189	}
3190	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3191}
3192
3193static unsigned long deferred_split_count(struct shrinker *shrink,
3194		struct shrink_control *sc)
3195{
3196	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3197	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3198
3199#ifdef CONFIG_MEMCG
3200	if (sc->memcg)
3201		ds_queue = &sc->memcg->deferred_split_queue;
3202#endif
3203	return READ_ONCE(ds_queue->split_queue_len);
3204}
3205
3206static unsigned long deferred_split_scan(struct shrinker *shrink,
3207		struct shrink_control *sc)
3208{
3209	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3210	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3211	unsigned long flags;
3212	LIST_HEAD(list);
3213	struct folio *folio, *next;
3214	int split = 0;
3215
3216#ifdef CONFIG_MEMCG
3217	if (sc->memcg)
3218		ds_queue = &sc->memcg->deferred_split_queue;
3219#endif
3220
3221	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3222	/* Take pin on all head pages to avoid freeing them under us */
3223	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3224							_deferred_list) {
3225		if (folio_try_get(folio)) {
3226			list_move(&folio->_deferred_list, &list);
 
3227		} else {
3228			/* We lost race with folio_put() */
3229			list_del_init(&folio->_deferred_list);
3230			ds_queue->split_queue_len--;
3231		}
3232		if (!--sc->nr_to_scan)
3233			break;
3234	}
3235	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3236
3237	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3238		if (!folio_trylock(folio))
 
3239			goto next;
3240		/* split_huge_page() removes page from list on success */
3241		if (!split_folio(folio))
3242			split++;
3243		folio_unlock(folio);
3244next:
3245		folio_put(folio);
3246	}
3247
3248	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3249	list_splice_tail(&list, &ds_queue->split_queue);
3250	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3251
3252	/*
3253	 * Stop shrinker if we didn't split any page, but the queue is empty.
3254	 * This can happen if pages were freed under us.
3255	 */
3256	if (!split && list_empty(&ds_queue->split_queue))
3257		return SHRINK_STOP;
3258	return split;
3259}
3260
 
 
 
 
 
 
 
3261#ifdef CONFIG_DEBUG_FS
3262static void split_huge_pages_all(void)
3263{
3264	struct zone *zone;
3265	struct page *page;
3266	struct folio *folio;
3267	unsigned long pfn, max_zone_pfn;
3268	unsigned long total = 0, split = 0;
3269
3270	pr_debug("Split all THPs\n");
3271	for_each_zone(zone) {
3272		if (!managed_zone(zone))
3273			continue;
3274		max_zone_pfn = zone_end_pfn(zone);
3275		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3276			int nr_pages;
 
3277
3278			page = pfn_to_online_page(pfn);
3279			if (!page || PageTail(page))
3280				continue;
3281			folio = page_folio(page);
3282			if (!folio_try_get(folio))
3283				continue;
3284
3285			if (unlikely(page_folio(page) != folio))
3286				goto next;
3287
3288			if (zone != folio_zone(folio))
3289				goto next;
3290
3291			if (!folio_test_large(folio)
3292				|| folio_test_hugetlb(folio)
3293				|| !folio_test_lru(folio))
3294				goto next;
3295
3296			total++;
3297			folio_lock(folio);
3298			nr_pages = folio_nr_pages(folio);
3299			if (!split_folio(folio))
3300				split++;
3301			pfn += nr_pages - 1;
3302			folio_unlock(folio);
3303next:
3304			folio_put(folio);
3305			cond_resched();
3306		}
3307	}
3308
3309	pr_debug("%lu of %lu THP split\n", split, total);
3310}
3311
3312static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3313{
3314	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3315		    is_vm_hugetlb_page(vma);
3316}
 
 
3317
3318static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3319				unsigned long vaddr_end)
3320{
3321	int ret = 0;
3322	struct task_struct *task;
3323	struct mm_struct *mm;
3324	unsigned long total = 0, split = 0;
3325	unsigned long addr;
3326
3327	vaddr_start &= PAGE_MASK;
3328	vaddr_end &= PAGE_MASK;
3329
3330	/* Find the task_struct from pid */
3331	rcu_read_lock();
3332	task = find_task_by_vpid(pid);
3333	if (!task) {
3334		rcu_read_unlock();
3335		ret = -ESRCH;
3336		goto out;
3337	}
3338	get_task_struct(task);
3339	rcu_read_unlock();
3340
3341	/* Find the mm_struct */
3342	mm = get_task_mm(task);
3343	put_task_struct(task);
3344
3345	if (!mm) {
3346		ret = -EINVAL;
3347		goto out;
3348	}
3349
3350	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3351		 pid, vaddr_start, vaddr_end);
3352
3353	mmap_read_lock(mm);
3354	/*
3355	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3356	 * table filled with PTE-mapped THPs, each of which is distinct.
3357	 */
3358	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3359		struct vm_area_struct *vma = vma_lookup(mm, addr);
3360		struct page *page;
3361		struct folio *folio;
3362
3363		if (!vma)
3364			break;
3365
3366		/* skip special VMA and hugetlb VMA */
3367		if (vma_not_suitable_for_thp_split(vma)) {
3368			addr = vma->vm_end;
3369			continue;
3370		}
3371
3372		/* FOLL_DUMP to ignore special (like zero) pages */
3373		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3374
3375		if (IS_ERR_OR_NULL(page))
3376			continue;
3377
3378		folio = page_folio(page);
3379		if (!is_transparent_hugepage(folio))
3380			goto next;
3381
3382		total++;
3383		if (!can_split_folio(folio, NULL))
3384			goto next;
3385
3386		if (!folio_trylock(folio))
3387			goto next;
3388
3389		if (!split_folio(folio))
3390			split++;
3391
3392		folio_unlock(folio);
3393next:
3394		folio_put(folio);
3395		cond_resched();
3396	}
3397	mmap_read_unlock(mm);
3398	mmput(mm);
3399
3400	pr_debug("%lu of %lu THP split\n", split, total);
3401
3402out:
3403	return ret;
3404}
3405
3406static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3407				pgoff_t off_end)
3408{
3409	struct filename *file;
3410	struct file *candidate;
3411	struct address_space *mapping;
3412	int ret = -EINVAL;
3413	pgoff_t index;
3414	int nr_pages = 1;
3415	unsigned long total = 0, split = 0;
3416
3417	file = getname_kernel(file_path);
3418	if (IS_ERR(file))
3419		return ret;
3420
3421	candidate = file_open_name(file, O_RDONLY, 0);
3422	if (IS_ERR(candidate))
3423		goto out;
3424
3425	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3426		 file_path, off_start, off_end);
3427
3428	mapping = candidate->f_mapping;
3429
3430	for (index = off_start; index < off_end; index += nr_pages) {
3431		struct folio *folio = filemap_get_folio(mapping, index);
3432
3433		nr_pages = 1;
3434		if (IS_ERR(folio))
3435			continue;
3436
3437		if (!folio_test_large(folio))
3438			goto next;
3439
3440		total++;
3441		nr_pages = folio_nr_pages(folio);
3442
3443		if (!folio_trylock(folio))
3444			goto next;
3445
3446		if (!split_folio(folio))
3447			split++;
3448
3449		folio_unlock(folio);
3450next:
3451		folio_put(folio);
3452		cond_resched();
3453	}
3454
3455	filp_close(candidate, NULL);
3456	ret = 0;
3457
3458	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3459out:
3460	putname(file);
3461	return ret;
3462}
3463
3464#define MAX_INPUT_BUF_SZ 255
3465
3466static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3467				size_t count, loff_t *ppops)
3468{
3469	static DEFINE_MUTEX(split_debug_mutex);
3470	ssize_t ret;
3471	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3472	char input_buf[MAX_INPUT_BUF_SZ];
3473	int pid;
3474	unsigned long vaddr_start, vaddr_end;
3475
3476	ret = mutex_lock_interruptible(&split_debug_mutex);
3477	if (ret)
3478		return ret;
3479
3480	ret = -EFAULT;
3481
3482	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3483	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3484		goto out;
3485
3486	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3487
3488	if (input_buf[0] == '/') {
3489		char *tok;
3490		char *buf = input_buf;
3491		char file_path[MAX_INPUT_BUF_SZ];
3492		pgoff_t off_start = 0, off_end = 0;
3493		size_t input_len = strlen(input_buf);
3494
3495		tok = strsep(&buf, ",");
3496		if (tok) {
3497			strcpy(file_path, tok);
3498		} else {
3499			ret = -EINVAL;
3500			goto out;
3501		}
3502
3503		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3504		if (ret != 2) {
3505			ret = -EINVAL;
3506			goto out;
3507		}
3508		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3509		if (!ret)
3510			ret = input_len;
3511
3512		goto out;
3513	}
3514
3515	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3516	if (ret == 1 && pid == 1) {
3517		split_huge_pages_all();
3518		ret = strlen(input_buf);
3519		goto out;
3520	} else if (ret != 3) {
3521		ret = -EINVAL;
3522		goto out;
3523	}
3524
3525	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3526	if (!ret)
3527		ret = strlen(input_buf);
3528out:
3529	mutex_unlock(&split_debug_mutex);
3530	return ret;
3531
3532}
3533
3534static const struct file_operations split_huge_pages_fops = {
3535	.owner	 = THIS_MODULE,
3536	.write	 = split_huge_pages_write,
3537	.llseek  = no_llseek,
3538};
3539
3540static int __init split_huge_pages_debugfs(void)
3541{
3542	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3543			    &split_huge_pages_fops);
3544	return 0;
3545}
3546late_initcall(split_huge_pages_debugfs);
3547#endif
3548
3549#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3550int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3551		struct page *page)
3552{
3553	struct folio *folio = page_folio(page);
3554	struct vm_area_struct *vma = pvmw->vma;
3555	struct mm_struct *mm = vma->vm_mm;
3556	unsigned long address = pvmw->address;
3557	bool anon_exclusive;
3558	pmd_t pmdval;
3559	swp_entry_t entry;
3560	pmd_t pmdswp;
3561
3562	if (!(pvmw->pmd && !pvmw->pte))
3563		return 0;
 
 
 
3564
3565	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3566	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3567
3568	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
3569	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
3570	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
3571		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3572		return -EBUSY;
3573	}
3574
3575	if (pmd_dirty(pmdval))
3576		folio_mark_dirty(folio);
3577	if (pmd_write(pmdval))
3578		entry = make_writable_migration_entry(page_to_pfn(page));
3579	else if (anon_exclusive)
3580		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3581	else
3582		entry = make_readable_migration_entry(page_to_pfn(page));
3583	if (pmd_young(pmdval))
3584		entry = make_migration_entry_young(entry);
3585	if (pmd_dirty(pmdval))
3586		entry = make_migration_entry_dirty(entry);
 
3587	pmdswp = swp_entry_to_pmd(entry);
3588	if (pmd_soft_dirty(pmdval))
3589		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3590	if (pmd_uffd_wp(pmdval))
3591		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3592	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3593	folio_remove_rmap_pmd(folio, page, vma);
3594	folio_put(folio);
3595	trace_set_migration_pmd(address, pmd_val(pmdswp));
3596
3597	return 0;
 
3598}
3599
3600void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3601{
3602	struct folio *folio = page_folio(new);
3603	struct vm_area_struct *vma = pvmw->vma;
3604	struct mm_struct *mm = vma->vm_mm;
3605	unsigned long address = pvmw->address;
3606	unsigned long haddr = address & HPAGE_PMD_MASK;
3607	pmd_t pmde;
3608	swp_entry_t entry;
3609
3610	if (!(pvmw->pmd && !pvmw->pte))
3611		return;
3612
3613	entry = pmd_to_swp_entry(*pvmw->pmd);
3614	folio_get(folio);
3615	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3616	if (pmd_swp_soft_dirty(*pvmw->pmd))
3617		pmde = pmd_mksoft_dirty(pmde);
3618	if (is_writable_migration_entry(entry))
3619		pmde = pmd_mkwrite(pmde, vma);
3620	if (pmd_swp_uffd_wp(*pvmw->pmd))
3621		pmde = pmd_mkuffd_wp(pmde);
3622	if (!is_migration_entry_young(entry))
3623		pmde = pmd_mkold(pmde);
3624	/* NOTE: this may contain setting soft-dirty on some archs */
3625	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
3626		pmde = pmd_mkdirty(pmde);
3627
3628	if (folio_test_anon(folio)) {
3629		rmap_t rmap_flags = RMAP_NONE;
3630
3631		if (!is_readable_migration_entry(entry))
3632			rmap_flags |= RMAP_EXCLUSIVE;
3633
3634		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
3635	} else {
3636		folio_add_file_rmap_pmd(folio, new, vma);
3637	}
3638	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
3639	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3640
3641	/* No need to invalidate - it was non-present before */
3642	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3643	trace_remove_migration_pmd(address, pmd_val(pmde));
3644}
3645#endif