Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/sched/coredump.h>
  13#include <linux/sched/numa_balancing.h>
  14#include <linux/highmem.h>
  15#include <linux/hugetlb.h>
  16#include <linux/mmu_notifier.h>
  17#include <linux/rmap.h>
  18#include <linux/swap.h>
  19#include <linux/shrinker.h>
  20#include <linux/mm_inline.h>
  21#include <linux/swapops.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
  40
  41/*
  42 * By default, transparent hugepage support is disabled in order to avoid
  43 * risking an increased memory footprint for applications that are not
  44 * guaranteed to benefit from it. When transparent hugepage support is
  45 * enabled, it is for all mappings, and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
  60static struct shrinker deferred_split_shrinker;
  61
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
  64
  65static struct page *get_huge_zero_page(void)
  66{
  67	struct page *zero_page;
  68retry:
  69	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  70		return READ_ONCE(huge_zero_page);
  71
  72	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  73			HPAGE_PMD_ORDER);
  74	if (!zero_page) {
  75		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  76		return NULL;
  77	}
  78	count_vm_event(THP_ZERO_PAGE_ALLOC);
  79	preempt_disable();
  80	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  81		preempt_enable();
  82		__free_pages(zero_page, compound_order(zero_page));
  83		goto retry;
  84	}
  85
  86	/* We take additional reference here. It will be put back by shrinker */
  87	atomic_set(&huge_zero_refcount, 2);
  88	preempt_enable();
  89	return READ_ONCE(huge_zero_page);
  90}
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92static void put_huge_zero_page(void)
  93{
  94	/*
  95	 * Counter should never go to zero here. Only shrinker can put
  96	 * last reference.
  97	 */
  98	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  99}
 
 
 
 
 
 
 
 
 
 
 
 
 100
 101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102{
 103	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 104		return READ_ONCE(huge_zero_page);
 
 
 
 
 
 
 
 
 105
 106	if (!get_huge_zero_page())
 107		return NULL;
 108
 109	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 110		put_huge_zero_page();
 111
 112	return READ_ONCE(huge_zero_page);
 113}
 
 
 
 
 
 
 114
 115void mm_put_huge_zero_page(struct mm_struct *mm)
 116{
 117	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 118		put_huge_zero_page();
 119}
 120
 121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 122					struct shrink_control *sc)
 123{
 124	/* we can free zero page only if last reference remains */
 125	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 126}
 
 127
 128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 129				       struct shrink_control *sc)
 130{
 131	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 132		struct page *zero_page = xchg(&huge_zero_page, NULL);
 133		BUG_ON(zero_page == NULL);
 134		__free_pages(zero_page, compound_order(zero_page));
 135		return HPAGE_PMD_NR;
 136	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137
 138	return 0;
 
 
 
 
 
 139}
 140
 141static struct shrinker huge_zero_page_shrinker = {
 142	.count_objects = shrink_huge_zero_page_count,
 143	.scan_objects = shrink_huge_zero_page_scan,
 144	.seeks = DEFAULT_SEEKS,
 145};
 146
 147#ifdef CONFIG_SYSFS
 148static ssize_t enabled_show(struct kobject *kobj,
 149			    struct kobj_attribute *attr, char *buf)
 
 
 
 150{
 151	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 
 152		return sprintf(buf, "[always] madvise never\n");
 153	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 154		return sprintf(buf, "always [madvise] never\n");
 155	else
 156		return sprintf(buf, "always madvise [never]\n");
 157}
 158
 159static ssize_t enabled_store(struct kobject *kobj,
 160			     struct kobj_attribute *attr,
 161			     const char *buf, size_t count)
 
 162{
 163	ssize_t ret = count;
 164
 165	if (!memcmp("always", buf,
 166		    min(sizeof("always")-1, count))) {
 167		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 168		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 169	} else if (!memcmp("madvise", buf,
 170			   min(sizeof("madvise")-1, count))) {
 171		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 172		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 173	} else if (!memcmp("never", buf,
 174			   min(sizeof("never")-1, count))) {
 175		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 176		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 177	} else
 178		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180	if (ret > 0) {
 181		int err = start_stop_khugepaged();
 182		if (err)
 183			ret = err;
 184	}
 
 
 
 
 
 
 
 
 185	return ret;
 186}
 187static struct kobj_attribute enabled_attr =
 188	__ATTR(enabled, 0644, enabled_show, enabled_store);
 189
 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
 191				struct kobj_attribute *attr, char *buf,
 192				enum transparent_hugepage_flag flag)
 193{
 194	return sprintf(buf, "%d\n",
 195		       !!test_bit(flag, &transparent_hugepage_flags));
 196}
 197
 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
 199				 struct kobj_attribute *attr,
 200				 const char *buf, size_t count,
 201				 enum transparent_hugepage_flag flag)
 202{
 203	unsigned long value;
 204	int ret;
 205
 206	ret = kstrtoul(buf, 10, &value);
 207	if (ret < 0)
 208		return ret;
 209	if (value > 1)
 210		return -EINVAL;
 211
 212	if (value)
 213		set_bit(flag, &transparent_hugepage_flags);
 214	else
 215		clear_bit(flag, &transparent_hugepage_flags);
 216
 217	return count;
 218}
 219
 
 
 
 
 
 220static ssize_t defrag_show(struct kobject *kobj,
 221			   struct kobj_attribute *attr, char *buf)
 222{
 223	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 224		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 225	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 226		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 227	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 228		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 229	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 230		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 231	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 232}
 233
 234static ssize_t defrag_store(struct kobject *kobj,
 235			    struct kobj_attribute *attr,
 236			    const char *buf, size_t count)
 237{
 238	if (!memcmp("always", buf,
 239		    min(sizeof("always")-1, count))) {
 240		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 241		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 242		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 243		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 244	} else if (!memcmp("defer+madvise", buf,
 245		    min(sizeof("defer+madvise")-1, count))) {
 246		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 247		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 248		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 249		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 250	} else if (!memcmp("defer", buf,
 251		    min(sizeof("defer")-1, count))) {
 252		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 253		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 254		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 255		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 256	} else if (!memcmp("madvise", buf,
 257			   min(sizeof("madvise")-1, count))) {
 258		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 259		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 260		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 261		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262	} else if (!memcmp("never", buf,
 263			   min(sizeof("never")-1, count))) {
 264		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 265		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 266		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 267		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 268	} else
 269		return -EINVAL;
 270
 271	return count;
 272}
 273static struct kobj_attribute defrag_attr =
 274	__ATTR(defrag, 0644, defrag_show, defrag_store);
 275
 276static ssize_t use_zero_page_show(struct kobject *kobj,
 277		struct kobj_attribute *attr, char *buf)
 278{
 279	return single_hugepage_flag_show(kobj, attr, buf,
 280				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 281}
 282static ssize_t use_zero_page_store(struct kobject *kobj,
 283		struct kobj_attribute *attr, const char *buf, size_t count)
 284{
 285	return single_hugepage_flag_store(kobj, attr, buf, count,
 286				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 287}
 288static struct kobj_attribute use_zero_page_attr =
 289	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 290
 291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 292		struct kobj_attribute *attr, char *buf)
 293{
 294	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 295}
 296static struct kobj_attribute hpage_pmd_size_attr =
 297	__ATTR_RO(hpage_pmd_size);
 298
 299#ifdef CONFIG_DEBUG_VM
 300static ssize_t debug_cow_show(struct kobject *kobj,
 301				struct kobj_attribute *attr, char *buf)
 302{
 303	return single_hugepage_flag_show(kobj, attr, buf,
 304				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 305}
 306static ssize_t debug_cow_store(struct kobject *kobj,
 307			       struct kobj_attribute *attr,
 308			       const char *buf, size_t count)
 309{
 310	return single_hugepage_flag_store(kobj, attr, buf, count,
 311				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 312}
 313static struct kobj_attribute debug_cow_attr =
 314	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 315#endif /* CONFIG_DEBUG_VM */
 316
 317static struct attribute *hugepage_attr[] = {
 318	&enabled_attr.attr,
 319	&defrag_attr.attr,
 320	&use_zero_page_attr.attr,
 321	&hpage_pmd_size_attr.attr,
 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 323	&shmem_enabled_attr.attr,
 324#endif
 325#ifdef CONFIG_DEBUG_VM
 326	&debug_cow_attr.attr,
 327#endif
 328	NULL,
 329};
 330
 331static const struct attribute_group hugepage_attr_group = {
 332	.attrs = hugepage_attr,
 333};
 334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 336{
 337	int err;
 338
 339	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 340	if (unlikely(!*hugepage_kobj)) {
 341		pr_err("failed to create transparent hugepage kobject\n");
 342		return -ENOMEM;
 343	}
 344
 345	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 346	if (err) {
 347		pr_err("failed to register transparent hugepage group\n");
 348		goto delete_obj;
 349	}
 350
 351	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 352	if (err) {
 353		pr_err("failed to register transparent hugepage group\n");
 354		goto remove_hp_group;
 355	}
 356
 357	return 0;
 358
 359remove_hp_group:
 360	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 361delete_obj:
 362	kobject_put(*hugepage_kobj);
 363	return err;
 364}
 365
 366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 367{
 368	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 369	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 370	kobject_put(hugepage_kobj);
 371}
 372#else
 373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 374{
 375	return 0;
 376}
 377
 378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 379{
 380}
 381#endif /* CONFIG_SYSFS */
 382
 383static int __init hugepage_init(void)
 384{
 385	int err;
 386	struct kobject *hugepage_kobj;
 387
 388	if (!has_transparent_hugepage()) {
 389		transparent_hugepage_flags = 0;
 390		return -EINVAL;
 391	}
 392
 393	/*
 394	 * hugepages can't be allocated by the buddy allocator
 395	 */
 396	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 397	/*
 398	 * we use page->mapping and page->index in second tail page
 399	 * as list_head: assuming THP order >= 2
 400	 */
 401	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 402
 403	err = hugepage_init_sysfs(&hugepage_kobj);
 404	if (err)
 405		goto err_sysfs;
 406
 407	err = khugepaged_init();
 408	if (err)
 409		goto err_slab;
 410
 411	err = register_shrinker(&huge_zero_page_shrinker);
 412	if (err)
 413		goto err_hzp_shrinker;
 414	err = register_shrinker(&deferred_split_shrinker);
 415	if (err)
 416		goto err_split_shrinker;
 417
 418	/*
 419	 * By default disable transparent hugepages on smaller systems,
 420	 * where the extra memory used could hurt more than TLB overhead
 421	 * is likely to save.  The admin can still enable it through /sys.
 422	 */
 423	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 424		transparent_hugepage_flags = 0;
 425		return 0;
 426	}
 427
 428	err = start_stop_khugepaged();
 429	if (err)
 430		goto err_khugepaged;
 431
 432	return 0;
 433err_khugepaged:
 434	unregister_shrinker(&deferred_split_shrinker);
 435err_split_shrinker:
 436	unregister_shrinker(&huge_zero_page_shrinker);
 437err_hzp_shrinker:
 438	khugepaged_destroy();
 439err_slab:
 440	hugepage_exit_sysfs(hugepage_kobj);
 441err_sysfs:
 442	return err;
 443}
 444subsys_initcall(hugepage_init);
 445
 446static int __init setup_transparent_hugepage(char *str)
 447{
 448	int ret = 0;
 449	if (!str)
 450		goto out;
 451	if (!strcmp(str, "always")) {
 452		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 453			&transparent_hugepage_flags);
 454		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 455			  &transparent_hugepage_flags);
 456		ret = 1;
 457	} else if (!strcmp(str, "madvise")) {
 458		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 459			  &transparent_hugepage_flags);
 460		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 461			&transparent_hugepage_flags);
 462		ret = 1;
 463	} else if (!strcmp(str, "never")) {
 464		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 465			  &transparent_hugepage_flags);
 466		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 467			  &transparent_hugepage_flags);
 468		ret = 1;
 469	}
 470out:
 471	if (!ret)
 472		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 
 473	return ret;
 474}
 475__setup("transparent_hugepage=", setup_transparent_hugepage);
 476
 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 478{
 479	if (likely(vma->vm_flags & VM_WRITE))
 480		pmd = pmd_mkwrite(pmd);
 481	return pmd;
 482}
 483
 484static inline struct list_head *page_deferred_list(struct page *page)
 485{
 486	/*
 487	 * ->lru in the tail pages is occupied by compound_head.
 488	 * Let's use ->mapping + ->index in the second tail page as list_head.
 489	 */
 490	return (struct list_head *)&page[2].mapping;
 491}
 492
 493void prep_transhuge_page(struct page *page)
 494{
 495	/*
 496	 * we use page->mapping and page->indexlru in second tail page
 497	 * as list_head: assuming THP order >= 2
 498	 */
 499
 500	INIT_LIST_HEAD(page_deferred_list(page));
 501	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 502}
 503
 504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 505		loff_t off, unsigned long flags, unsigned long size)
 506{
 507	unsigned long addr;
 508	loff_t off_end = off + len;
 509	loff_t off_align = round_up(off, size);
 510	unsigned long len_pad;
 511
 512	if (off_end <= off_align || (off_end - off_align) < size)
 513		return 0;
 514
 515	len_pad = len + size;
 516	if (len_pad < len || (off + len_pad) < off)
 517		return 0;
 518
 519	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 520					      off >> PAGE_SHIFT, flags);
 521	if (IS_ERR_VALUE(addr))
 522		return 0;
 523
 524	addr += (off - addr) & (size - 1);
 525	return addr;
 526}
 527
 528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 529		unsigned long len, unsigned long pgoff, unsigned long flags)
 530{
 531	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 532
 533	if (addr)
 534		goto out;
 535	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 536		goto out;
 537
 538	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 539	if (addr)
 540		return addr;
 541
 542 out:
 543	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 544}
 545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 546
 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
 548		gfp_t gfp)
 
 
 549{
 550	struct vm_area_struct *vma = vmf->vma;
 551	struct mem_cgroup *memcg;
 552	pgtable_t pgtable;
 553	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 554	int ret = 0;
 555
 556	VM_BUG_ON_PAGE(!PageCompound(page), page);
 557
 558	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 559		put_page(page);
 560		count_vm_event(THP_FAULT_FALLBACK);
 561		return VM_FAULT_FALLBACK;
 562	}
 563
 564	pgtable = pte_alloc_one(vma->vm_mm, haddr);
 565	if (unlikely(!pgtable)) {
 566		ret = VM_FAULT_OOM;
 567		goto release;
 568	}
 569
 570	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 571	/*
 572	 * The memory barrier inside __SetPageUptodate makes sure that
 573	 * clear_huge_page writes become visible before the set_pmd_at()
 574	 * write.
 575	 */
 576	__SetPageUptodate(page);
 577
 578	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 579	if (unlikely(!pmd_none(*vmf->pmd))) {
 580		goto unlock_release;
 
 
 
 581	} else {
 582		pmd_t entry;
 583
 584		ret = check_stable_address_space(vma->vm_mm);
 585		if (ret)
 586			goto unlock_release;
 587
 588		/* Deliver the page fault to userland */
 589		if (userfaultfd_missing(vma)) {
 590			int ret;
 591
 592			spin_unlock(vmf->ptl);
 593			mem_cgroup_cancel_charge(page, memcg, true);
 594			put_page(page);
 595			pte_free(vma->vm_mm, pgtable);
 596			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 597			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 598			return ret;
 599		}
 600
 601		entry = mk_huge_pmd(page, vma->vm_page_prot);
 602		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 603		page_add_new_anon_rmap(page, vma, haddr, true);
 604		mem_cgroup_commit_charge(page, memcg, false, true);
 605		lru_cache_add_active_or_unevictable(page, vma);
 606		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 607		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 608		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 609		mm_inc_nr_ptes(vma->vm_mm);
 610		spin_unlock(vmf->ptl);
 611		count_vm_event(THP_FAULT_ALLOC);
 
 
 
 
 612	}
 613
 614	return 0;
 615unlock_release:
 616	spin_unlock(vmf->ptl);
 617release:
 618	if (pgtable)
 619		pte_free(vma->vm_mm, pgtable);
 620	mem_cgroup_cancel_charge(page, memcg, true);
 621	put_page(page);
 622	return ret;
 623
 624}
 625
 626/*
 627 * always: directly stall for all thp allocations
 628 * defer: wake kswapd and fail if not immediately available
 629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 630 *		  fail if not immediately available
 631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 632 *	    available
 633 * never: never stall for any thp allocation
 634 */
 635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 636{
 637	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 638
 639	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 640		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 641	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 642		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 643	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 644		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 645							     __GFP_KSWAPD_RECLAIM);
 646	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 647		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 648							     0);
 649	return GFP_TRANSHUGE_LIGHT;
 650}
 651
 652/* Caller must hold page table lock. */
 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 654		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 655		struct page *zero_page)
 656{
 657	pmd_t entry;
 658	if (!pmd_none(*pmd))
 659		return false;
 660	entry = mk_pmd(zero_page, vma->vm_page_prot);
 661	entry = pmd_mkhuge(entry);
 662	if (pgtable)
 663		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 664	set_pmd_at(mm, haddr, pmd, entry);
 665	mm_inc_nr_ptes(mm);
 666	return true;
 667}
 668
 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 670{
 671	struct vm_area_struct *vma = vmf->vma;
 672	gfp_t gfp;
 673	struct page *page;
 674	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 675
 676	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 677		return VM_FAULT_FALLBACK;
 678	if (unlikely(anon_vma_prepare(vma)))
 679		return VM_FAULT_OOM;
 680	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 681		return VM_FAULT_OOM;
 682	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 683			!mm_forbids_zeropage(vma->vm_mm) &&
 684			transparent_hugepage_use_zero_page()) {
 685		pgtable_t pgtable;
 686		struct page *zero_page;
 687		bool set;
 688		int ret;
 689		pgtable = pte_alloc_one(vma->vm_mm, haddr);
 690		if (unlikely(!pgtable))
 691			return VM_FAULT_OOM;
 692		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 693		if (unlikely(!zero_page)) {
 694			pte_free(vma->vm_mm, pgtable);
 695			count_vm_event(THP_FAULT_FALLBACK);
 696			return VM_FAULT_FALLBACK;
 697		}
 698		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 699		ret = 0;
 700		set = false;
 701		if (pmd_none(*vmf->pmd)) {
 702			ret = check_stable_address_space(vma->vm_mm);
 703			if (ret) {
 704				spin_unlock(vmf->ptl);
 705			} else if (userfaultfd_missing(vma)) {
 706				spin_unlock(vmf->ptl);
 707				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 708				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 709			} else {
 710				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 711						   haddr, vmf->pmd, zero_page);
 712				spin_unlock(vmf->ptl);
 713				set = true;
 714			}
 715		} else
 716			spin_unlock(vmf->ptl);
 717		if (!set)
 718			pte_free(vma->vm_mm, pgtable);
 719		return ret;
 720	}
 721	gfp = alloc_hugepage_direct_gfpmask(vma);
 722	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 723	if (unlikely(!page)) {
 724		count_vm_event(THP_FAULT_FALLBACK);
 725		return VM_FAULT_FALLBACK;
 726	}
 727	prep_transhuge_page(page);
 728	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 729}
 730
 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 732		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 733		pgtable_t pgtable)
 734{
 735	struct mm_struct *mm = vma->vm_mm;
 736	pmd_t entry;
 737	spinlock_t *ptl;
 738
 739	ptl = pmd_lock(mm, pmd);
 740	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 741	if (pfn_t_devmap(pfn))
 742		entry = pmd_mkdevmap(entry);
 743	if (write) {
 744		entry = pmd_mkyoung(pmd_mkdirty(entry));
 745		entry = maybe_pmd_mkwrite(entry, vma);
 746	}
 747
 748	if (pgtable) {
 749		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 750		mm_inc_nr_ptes(mm);
 751	}
 752
 753	set_pmd_at(mm, addr, pmd, entry);
 754	update_mmu_cache_pmd(vma, addr, pmd);
 755	spin_unlock(ptl);
 756}
 757
 758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 759			pmd_t *pmd, pfn_t pfn, bool write)
 760{
 761	pgprot_t pgprot = vma->vm_page_prot;
 762	pgtable_t pgtable = NULL;
 763	/*
 764	 * If we had pmd_special, we could avoid all these restrictions,
 765	 * but we need to be consistent with PTEs and architectures that
 766	 * can't support a 'special' bit.
 767	 */
 768	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 769	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 770						(VM_PFNMAP|VM_MIXEDMAP));
 771	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 772	BUG_ON(!pfn_t_devmap(pfn));
 773
 774	if (addr < vma->vm_start || addr >= vma->vm_end)
 775		return VM_FAULT_SIGBUS;
 776
 777	if (arch_needs_pgtable_deposit()) {
 778		pgtable = pte_alloc_one(vma->vm_mm, addr);
 779		if (!pgtable)
 780			return VM_FAULT_OOM;
 781	}
 782
 783	track_pfn_insert(vma, &pgprot, pfn);
 784
 785	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
 786	return VM_FAULT_NOPAGE;
 787}
 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 789
 790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 792{
 793	if (likely(vma->vm_flags & VM_WRITE))
 794		pud = pud_mkwrite(pud);
 795	return pud;
 796}
 797
 798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 799		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 
 
 800{
 801	struct mm_struct *mm = vma->vm_mm;
 802	pud_t entry;
 803	spinlock_t *ptl;
 804
 805	ptl = pud_lock(mm, pud);
 806	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 807	if (pfn_t_devmap(pfn))
 808		entry = pud_mkdevmap(entry);
 809	if (write) {
 810		entry = pud_mkyoung(pud_mkdirty(entry));
 811		entry = maybe_pud_mkwrite(entry, vma);
 812	}
 813	set_pud_at(mm, addr, pud, entry);
 814	update_mmu_cache_pud(vma, addr, pud);
 815	spin_unlock(ptl);
 816}
 817
 818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 819			pud_t *pud, pfn_t pfn, bool write)
 820{
 821	pgprot_t pgprot = vma->vm_page_prot;
 822	/*
 823	 * If we had pud_special, we could avoid all these restrictions,
 824	 * but we need to be consistent with PTEs and architectures that
 825	 * can't support a 'special' bit.
 826	 */
 827	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 828	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 829						(VM_PFNMAP|VM_MIXEDMAP));
 830	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 831	BUG_ON(!pfn_t_devmap(pfn));
 832
 833	if (addr < vma->vm_start || addr >= vma->vm_end)
 834		return VM_FAULT_SIGBUS;
 835
 836	track_pfn_insert(vma, &pgprot, pfn);
 837
 838	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
 839	return VM_FAULT_NOPAGE;
 840}
 841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 843
 844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 845		pmd_t *pmd, int flags)
 846{
 847	pmd_t _pmd;
 848
 849	_pmd = pmd_mkyoung(*pmd);
 850	if (flags & FOLL_WRITE)
 851		_pmd = pmd_mkdirty(_pmd);
 852	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 853				pmd, _pmd, flags & FOLL_WRITE))
 854		update_mmu_cache_pmd(vma, addr, pmd);
 855}
 
 856
 857struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 858		pmd_t *pmd, int flags)
 
 859{
 860	unsigned long pfn = pmd_pfn(*pmd);
 861	struct mm_struct *mm = vma->vm_mm;
 862	struct dev_pagemap *pgmap;
 863	struct page *page;
 
 
 864
 865	assert_spin_locked(pmd_lockptr(mm, pmd));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866
 
 
 
 867	/*
 868	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 869	 * not be in this function with `flags & FOLL_COW` set.
 
 870	 */
 871	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 872
 873	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 874		return NULL;
 875
 876	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 877		/* pass */;
 878	else
 879		return NULL;
 880
 881	if (flags & FOLL_TOUCH)
 882		touch_pmd(vma, addr, pmd, flags);
 883
 884	/*
 885	 * device mapped pages can only be returned if the
 886	 * caller will manage the page reference count.
 
 
 887	 */
 888	if (!(flags & FOLL_GET))
 889		return ERR_PTR(-EEXIST);
 890
 891	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 892	pgmap = get_dev_pagemap(pfn, NULL);
 893	if (!pgmap)
 894		return ERR_PTR(-EFAULT);
 895	page = pfn_to_page(pfn);
 896	get_page(page);
 897	put_dev_pagemap(pgmap);
 898
 899	return page;
 900}
 901
 902int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 903		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 904		  struct vm_area_struct *vma)
 905{
 906	spinlock_t *dst_ptl, *src_ptl;
 907	struct page *src_page;
 908	pmd_t pmd;
 909	pgtable_t pgtable = NULL;
 910	int ret = -ENOMEM;
 911
 912	/* Skip if can be re-fill on fault */
 913	if (!vma_is_anonymous(vma))
 914		return 0;
 915
 
 916	pgtable = pte_alloc_one(dst_mm, addr);
 917	if (unlikely(!pgtable))
 918		goto out;
 919
 920	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 921	src_ptl = pmd_lockptr(src_mm, src_pmd);
 922	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 923
 924	ret = -EAGAIN;
 925	pmd = *src_pmd;
 926
 927#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 928	if (unlikely(is_swap_pmd(pmd))) {
 929		swp_entry_t entry = pmd_to_swp_entry(pmd);
 930
 931		VM_BUG_ON(!is_pmd_migration_entry(pmd));
 932		if (is_write_migration_entry(entry)) {
 933			make_migration_entry_read(&entry);
 934			pmd = swp_entry_to_pmd(entry);
 935			if (pmd_swp_soft_dirty(*src_pmd))
 936				pmd = pmd_swp_mksoft_dirty(pmd);
 937			set_pmd_at(src_mm, addr, src_pmd, pmd);
 938		}
 939		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 940		mm_inc_nr_ptes(dst_mm);
 941		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 942		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 943		ret = 0;
 944		goto out_unlock;
 945	}
 946#endif
 947
 948	if (unlikely(!pmd_trans_huge(pmd))) {
 949		pte_free(dst_mm, pgtable);
 950		goto out_unlock;
 951	}
 952	/*
 953	 * When page table lock is held, the huge zero pmd should not be
 954	 * under splitting since we don't split the page itself, only pmd to
 955	 * a page table.
 956	 */
 957	if (is_huge_zero_pmd(pmd)) {
 958		struct page *zero_page;
 959		/*
 960		 * get_huge_zero_page() will never allocate a new page here,
 961		 * since we already have a zero page to copy. It just takes a
 962		 * reference.
 963		 */
 964		zero_page = mm_get_huge_zero_page(dst_mm);
 965		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 966				zero_page);
 967		ret = 0;
 968		goto out_unlock;
 969	}
 970
 
 
 
 971	src_page = pmd_page(pmd);
 972	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 973	get_page(src_page);
 974	page_dup_rmap(src_page, true);
 975	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 976	mm_inc_nr_ptes(dst_mm);
 977	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 978
 979	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 980	pmd = pmd_mkold(pmd_wrprotect(pmd));
 981	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 
 
 982
 983	ret = 0;
 984out_unlock:
 985	spin_unlock(src_ptl);
 986	spin_unlock(dst_ptl);
 987out:
 988	return ret;
 989}
 990
 991#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 992static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 993		pud_t *pud, int flags)
 994{
 995	pud_t _pud;
 996
 997	_pud = pud_mkyoung(*pud);
 998	if (flags & FOLL_WRITE)
 999		_pud = pud_mkdirty(_pud);
1000	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1001				pud, _pud, flags & FOLL_WRITE))
1002		update_mmu_cache_pud(vma, addr, pud);
1003}
1004
1005struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1006		pud_t *pud, int flags)
1007{
1008	unsigned long pfn = pud_pfn(*pud);
1009	struct mm_struct *mm = vma->vm_mm;
1010	struct dev_pagemap *pgmap;
1011	struct page *page;
1012
1013	assert_spin_locked(pud_lockptr(mm, pud));
1014
1015	if (flags & FOLL_WRITE && !pud_write(*pud))
1016		return NULL;
1017
1018	if (pud_present(*pud) && pud_devmap(*pud))
1019		/* pass */;
1020	else
1021		return NULL;
1022
1023	if (flags & FOLL_TOUCH)
1024		touch_pud(vma, addr, pud, flags);
1025
1026	/*
1027	 * device mapped pages can only be returned if the
1028	 * caller will manage the page reference count.
1029	 */
1030	if (!(flags & FOLL_GET))
1031		return ERR_PTR(-EEXIST);
1032
1033	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1034	pgmap = get_dev_pagemap(pfn, NULL);
1035	if (!pgmap)
1036		return ERR_PTR(-EFAULT);
1037	page = pfn_to_page(pfn);
1038	get_page(page);
1039	put_dev_pagemap(pgmap);
1040
1041	return page;
1042}
1043
1044int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1046		  struct vm_area_struct *vma)
1047{
1048	spinlock_t *dst_ptl, *src_ptl;
1049	pud_t pud;
1050	int ret;
1051
1052	dst_ptl = pud_lock(dst_mm, dst_pud);
1053	src_ptl = pud_lockptr(src_mm, src_pud);
1054	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1055
1056	ret = -EAGAIN;
1057	pud = *src_pud;
1058	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1059		goto out_unlock;
1060
1061	/*
1062	 * When page table lock is held, the huge zero pud should not be
1063	 * under splitting since we don't split the page itself, only pud to
1064	 * a page table.
1065	 */
1066	if (is_huge_zero_pud(pud)) {
1067		/* No huge zero pud yet */
1068	}
1069
1070	pudp_set_wrprotect(src_mm, addr, src_pud);
1071	pud = pud_mkold(pud_wrprotect(pud));
1072	set_pud_at(dst_mm, addr, dst_pud, pud);
1073
1074	ret = 0;
1075out_unlock:
1076	spin_unlock(src_ptl);
1077	spin_unlock(dst_ptl);
1078	return ret;
1079}
1080
1081void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1082{
1083	pud_t entry;
1084	unsigned long haddr;
1085	bool write = vmf->flags & FAULT_FLAG_WRITE;
1086
1087	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1088	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1089		goto unlock;
1090
1091	entry = pud_mkyoung(orig_pud);
1092	if (write)
1093		entry = pud_mkdirty(entry);
1094	haddr = vmf->address & HPAGE_PUD_MASK;
1095	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1096		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1097
1098unlock:
1099	spin_unlock(vmf->ptl);
1100}
1101#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1102
1103void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1104{
1105	pmd_t entry;
1106	unsigned long haddr;
1107	bool write = vmf->flags & FAULT_FLAG_WRITE;
1108
1109	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1110	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1111		goto unlock;
1112
1113	entry = pmd_mkyoung(orig_pmd);
1114	if (write)
1115		entry = pmd_mkdirty(entry);
1116	haddr = vmf->address & HPAGE_PMD_MASK;
1117	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1118		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1119
1120unlock:
1121	spin_unlock(vmf->ptl);
1122}
1123
1124static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1125		struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126{
1127	struct vm_area_struct *vma = vmf->vma;
1128	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1129	struct mem_cgroup *memcg;
1130	pgtable_t pgtable;
1131	pmd_t _pmd;
1132	int ret = 0, i;
1133	struct page **pages;
1134	unsigned long mmun_start;	/* For mmu_notifiers */
1135	unsigned long mmun_end;		/* For mmu_notifiers */
1136
1137	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1138			GFP_KERNEL);
1139	if (unlikely(!pages)) {
1140		ret |= VM_FAULT_OOM;
1141		goto out;
1142	}
1143
1144	for (i = 0; i < HPAGE_PMD_NR; i++) {
1145		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1146					       vmf->address, page_to_nid(page));
 
1147		if (unlikely(!pages[i] ||
1148			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1149				     GFP_KERNEL, &memcg, false))) {
1150			if (pages[i])
1151				put_page(pages[i]);
 
1152			while (--i >= 0) {
1153				memcg = (void *)page_private(pages[i]);
1154				set_page_private(pages[i], 0);
1155				mem_cgroup_cancel_charge(pages[i], memcg,
1156						false);
1157				put_page(pages[i]);
1158			}
 
1159			kfree(pages);
1160			ret |= VM_FAULT_OOM;
1161			goto out;
1162		}
1163		set_page_private(pages[i], (unsigned long)memcg);
1164	}
1165
1166	for (i = 0; i < HPAGE_PMD_NR; i++) {
1167		copy_user_highpage(pages[i], page + i,
1168				   haddr + PAGE_SIZE * i, vma);
1169		__SetPageUptodate(pages[i]);
1170		cond_resched();
1171	}
1172
1173	mmun_start = haddr;
1174	mmun_end   = haddr + HPAGE_PMD_SIZE;
1175	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1176
1177	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1178	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179		goto out_free_pages;
1180	VM_BUG_ON_PAGE(!PageHead(page), page);
1181
1182	/*
1183	 * Leave pmd empty until pte is filled note we must notify here as
1184	 * concurrent CPU thread might write to new page before the call to
1185	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1186	 * device seeing memory write in different order than CPU.
1187	 *
1188	 * See Documentation/vm/mmu_notifier.txt
1189	 */
1190	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1191
1192	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1193	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1194
1195	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1196		pte_t entry;
1197		entry = mk_pte(pages[i], vma->vm_page_prot);
1198		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1199		memcg = (void *)page_private(pages[i]);
1200		set_page_private(pages[i], 0);
1201		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1202		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1203		lru_cache_add_active_or_unevictable(pages[i], vma);
1204		vmf->pte = pte_offset_map(&_pmd, haddr);
1205		VM_BUG_ON(!pte_none(*vmf->pte));
1206		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1207		pte_unmap(vmf->pte);
1208	}
1209	kfree(pages);
1210
1211	smp_wmb(); /* make pte visible before pmd */
1212	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1213	page_remove_rmap(page, true);
1214	spin_unlock(vmf->ptl);
1215
1216	/*
1217	 * No need to double call mmu_notifier->invalidate_range() callback as
1218	 * the above pmdp_huge_clear_flush_notify() did already call it.
1219	 */
1220	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1221						mmun_end);
1222
1223	ret |= VM_FAULT_WRITE;
1224	put_page(page);
1225
1226out:
1227	return ret;
1228
1229out_free_pages:
1230	spin_unlock(vmf->ptl);
1231	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1232	for (i = 0; i < HPAGE_PMD_NR; i++) {
1233		memcg = (void *)page_private(pages[i]);
1234		set_page_private(pages[i], 0);
1235		mem_cgroup_cancel_charge(pages[i], memcg, false);
1236		put_page(pages[i]);
1237	}
 
1238	kfree(pages);
1239	goto out;
1240}
1241
1242int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
 
1243{
1244	struct vm_area_struct *vma = vmf->vma;
1245	struct page *page = NULL, *new_page;
1246	struct mem_cgroup *memcg;
1247	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1248	unsigned long mmun_start;	/* For mmu_notifiers */
1249	unsigned long mmun_end;		/* For mmu_notifiers */
1250	gfp_t huge_gfp;			/* for allocation and charge */
1251	int ret = 0;
 
 
1252
1253	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1254	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1255	if (is_huge_zero_pmd(orig_pmd))
1256		goto alloc;
1257	spin_lock(vmf->ptl);
1258	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1259		goto out_unlock;
1260
1261	page = pmd_page(orig_pmd);
1262	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1263	/*
1264	 * We can only reuse the page if nobody else maps the huge page or it's
1265	 * part.
1266	 */
1267	if (!trylock_page(page)) {
1268		get_page(page);
1269		spin_unlock(vmf->ptl);
1270		lock_page(page);
1271		spin_lock(vmf->ptl);
1272		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1273			unlock_page(page);
1274			put_page(page);
1275			goto out_unlock;
1276		}
1277		put_page(page);
1278	}
1279	if (reuse_swap_page(page, NULL)) {
1280		pmd_t entry;
1281		entry = pmd_mkyoung(orig_pmd);
1282		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1283		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1284			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1285		ret |= VM_FAULT_WRITE;
1286		unlock_page(page);
1287		goto out_unlock;
1288	}
1289	unlock_page(page);
1290	get_page(page);
1291	spin_unlock(vmf->ptl);
1292alloc:
1293	if (transparent_hugepage_enabled(vma) &&
1294	    !transparent_hugepage_debug_cow()) {
1295		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1296		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1297	} else
1298		new_page = NULL;
1299
1300	if (likely(new_page)) {
1301		prep_transhuge_page(new_page);
1302	} else {
1303		if (!page) {
1304			split_huge_pmd(vma, vmf->pmd, vmf->address);
1305			ret |= VM_FAULT_FALLBACK;
1306		} else {
1307			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1308			if (ret & VM_FAULT_OOM) {
1309				split_huge_pmd(vma, vmf->pmd, vmf->address);
1310				ret |= VM_FAULT_FALLBACK;
1311			}
1312			put_page(page);
1313		}
1314		count_vm_event(THP_FAULT_FALLBACK);
 
 
 
 
 
1315		goto out;
1316	}
 
1317
1318	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1319					huge_gfp, &memcg, true))) {
1320		put_page(new_page);
1321		split_huge_pmd(vma, vmf->pmd, vmf->address);
1322		if (page)
1323			put_page(page);
1324		ret |= VM_FAULT_FALLBACK;
1325		count_vm_event(THP_FAULT_FALLBACK);
1326		goto out;
1327	}
1328
1329	count_vm_event(THP_FAULT_ALLOC);
1330
1331	if (!page)
1332		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1333	else
1334		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1335	__SetPageUptodate(new_page);
1336
1337	mmun_start = haddr;
1338	mmun_end   = haddr + HPAGE_PMD_SIZE;
1339	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1340
1341	spin_lock(vmf->ptl);
1342	if (page)
1343		put_page(page);
1344	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345		spin_unlock(vmf->ptl);
1346		mem_cgroup_cancel_charge(new_page, memcg, true);
1347		put_page(new_page);
1348		goto out_mn;
1349	} else {
1350		pmd_t entry;
1351		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
 
1352		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1353		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1354		page_add_new_anon_rmap(new_page, vma, haddr, true);
1355		mem_cgroup_commit_charge(new_page, memcg, false, true);
1356		lru_cache_add_active_or_unevictable(new_page, vma);
1357		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1358		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359		if (!page) {
1360			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1361		} else {
1362			VM_BUG_ON_PAGE(!PageHead(page), page);
1363			page_remove_rmap(page, true);
1364			put_page(page);
1365		}
1366		ret |= VM_FAULT_WRITE;
1367	}
1368	spin_unlock(vmf->ptl);
1369out_mn:
1370	/*
1371	 * No need to double call mmu_notifier->invalidate_range() callback as
1372	 * the above pmdp_huge_clear_flush_notify() did already call it.
1373	 */
1374	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1375					       mmun_end);
1376out:
1377	return ret;
1378out_unlock:
1379	spin_unlock(vmf->ptl);
 
1380	return ret;
1381}
1382
1383/*
1384 * FOLL_FORCE can write to even unwritable pmd's, but only
1385 * after we've gone through a COW cycle and they are dirty.
1386 */
1387static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1388{
1389	return pmd_write(pmd) ||
1390	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1391}
1392
1393struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1394				   unsigned long addr,
1395				   pmd_t *pmd,
1396				   unsigned int flags)
1397{
1398	struct mm_struct *mm = vma->vm_mm;
1399	struct page *page = NULL;
1400
1401	assert_spin_locked(pmd_lockptr(mm, pmd));
1402
1403	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1404		goto out;
1405
1406	/* Avoid dumping huge zero page */
1407	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1408		return ERR_PTR(-EFAULT);
1409
1410	/* Full NUMA hinting faults to serialise migration in fault paths */
1411	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1412		goto out;
1413
1414	page = pmd_page(*pmd);
1415	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1416	if (flags & FOLL_TOUCH)
1417		touch_pmd(vma, addr, pmd, flags);
1418	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1419		/*
1420		 * We don't mlock() pte-mapped THPs. This way we can avoid
1421		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1422		 *
1423		 * For anon THP:
1424		 *
1425		 * In most cases the pmd is the only mapping of the page as we
1426		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1427		 * writable private mappings in populate_vma_page_range().
1428		 *
1429		 * The only scenario when we have the page shared here is if we
1430		 * mlocking read-only mapping shared over fork(). We skip
1431		 * mlocking such pages.
1432		 *
1433		 * For file THP:
1434		 *
1435		 * We can expect PageDoubleMap() to be stable under page lock:
1436		 * for file pages we set it in page_add_file_rmap(), which
1437		 * requires page to be locked.
1438		 */
1439
1440		if (PageAnon(page) && compound_mapcount(page) != 1)
1441			goto skip_mlock;
1442		if (PageDoubleMap(page) || !page->mapping)
1443			goto skip_mlock;
1444		if (!trylock_page(page))
1445			goto skip_mlock;
1446		lru_add_drain();
1447		if (page->mapping && !PageDoubleMap(page))
1448			mlock_vma_page(page);
1449		unlock_page(page);
1450	}
1451skip_mlock:
1452	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1453	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1454	if (flags & FOLL_GET)
1455		get_page(page);
1456
1457out:
1458	return page;
1459}
1460
1461/* NUMA hinting page fault entry point for trans huge pmds */
1462int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1463{
1464	struct vm_area_struct *vma = vmf->vma;
1465	struct anon_vma *anon_vma = NULL;
1466	struct page *page;
1467	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1468	int page_nid = -1, this_nid = numa_node_id();
1469	int target_nid, last_cpupid = -1;
1470	bool page_locked;
1471	bool migrated = false;
1472	bool was_writable;
1473	int flags = 0;
1474
1475	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1476	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1477		goto out_unlock;
1478
1479	/*
1480	 * If there are potential migrations, wait for completion and retry
1481	 * without disrupting NUMA hinting information. Do not relock and
1482	 * check_same as the page may no longer be mapped.
1483	 */
1484	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1485		page = pmd_page(*vmf->pmd);
1486		if (!get_page_unless_zero(page))
1487			goto out_unlock;
1488		spin_unlock(vmf->ptl);
1489		wait_on_page_locked(page);
1490		put_page(page);
1491		goto out;
 
 
 
1492	}
 
 
1493
1494	page = pmd_page(pmd);
1495	BUG_ON(is_huge_zero_page(page));
1496	page_nid = page_to_nid(page);
1497	last_cpupid = page_cpupid_last(page);
1498	count_vm_numa_event(NUMA_HINT_FAULTS);
1499	if (page_nid == this_nid) {
1500		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501		flags |= TNF_FAULT_LOCAL;
1502	}
1503
1504	/* See similar comment in do_numa_page for explanation */
1505	if (!pmd_savedwrite(pmd))
1506		flags |= TNF_NO_GROUP;
1507
1508	/*
1509	 * Acquire the page lock to serialise THP migrations but avoid dropping
1510	 * page_table_lock if at all possible
1511	 */
1512	page_locked = trylock_page(page);
1513	target_nid = mpol_misplaced(page, vma, haddr);
1514	if (target_nid == -1) {
1515		/* If the page was locked, there are no parallel migrations */
1516		if (page_locked)
1517			goto clear_pmdnuma;
1518	}
1519
1520	/* Migration could have started since the pmd_trans_migrating check */
1521	if (!page_locked) {
1522		page_nid = -1;
1523		if (!get_page_unless_zero(page))
1524			goto out_unlock;
1525		spin_unlock(vmf->ptl);
1526		wait_on_page_locked(page);
1527		put_page(page);
1528		goto out;
1529	}
1530
1531	/*
1532	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1533	 * to serialises splits
1534	 */
1535	get_page(page);
1536	spin_unlock(vmf->ptl);
1537	anon_vma = page_lock_anon_vma_read(page);
1538
1539	/* Confirm the PMD did not change while page_table_lock was released */
1540	spin_lock(vmf->ptl);
1541	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1542		unlock_page(page);
1543		put_page(page);
1544		page_nid = -1;
1545		goto out_unlock;
1546	}
1547
1548	/* Bail if we fail to protect against THP splits for any reason */
1549	if (unlikely(!anon_vma)) {
1550		put_page(page);
1551		page_nid = -1;
1552		goto clear_pmdnuma;
1553	}
1554
1555	/*
1556	 * Since we took the NUMA fault, we must have observed the !accessible
1557	 * bit. Make sure all other CPUs agree with that, to avoid them
1558	 * modifying the page we're about to migrate.
1559	 *
1560	 * Must be done under PTL such that we'll observe the relevant
1561	 * inc_tlb_flush_pending().
1562	 *
1563	 * We are not sure a pending tlb flush here is for a huge page
1564	 * mapping or not. Hence use the tlb range variant
1565	 */
1566	if (mm_tlb_flush_pending(vma->vm_mm))
1567		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1568
1569	/*
1570	 * Migrate the THP to the requested node, returns with page unlocked
1571	 * and access rights restored.
1572	 */
1573	spin_unlock(vmf->ptl);
1574
1575	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1576				vmf->pmd, pmd, vmf->address, page, target_nid);
1577	if (migrated) {
1578		flags |= TNF_MIGRATED;
1579		page_nid = target_nid;
1580	} else
1581		flags |= TNF_MIGRATE_FAIL;
1582
1583	goto out;
1584clear_pmdnuma:
1585	BUG_ON(!PageLocked(page));
1586	was_writable = pmd_savedwrite(pmd);
1587	pmd = pmd_modify(pmd, vma->vm_page_prot);
1588	pmd = pmd_mkyoung(pmd);
1589	if (was_writable)
1590		pmd = pmd_mkwrite(pmd);
1591	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593	unlock_page(page);
1594out_unlock:
1595	spin_unlock(vmf->ptl);
1596
 
 
 
 
 
 
 
1597out:
1598	if (anon_vma)
1599		page_unlock_anon_vma_read(anon_vma);
 
 
 
 
 
 
1600
1601	if (page_nid != -1)
1602		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1603				flags);
 
 
 
 
 
1604
1605	return 0;
1606}
1607
1608/*
1609 * Return true if we do MADV_FREE successfully on entire pmd page.
1610 * Otherwise, return false.
 
 
 
1611 */
1612bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1613		pmd_t *pmd, unsigned long addr, unsigned long next)
1614{
1615	spinlock_t *ptl;
1616	pmd_t orig_pmd;
1617	struct page *page;
1618	struct mm_struct *mm = tlb->mm;
1619	bool ret = false;
1620
1621	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
 
 
 
 
 
 
 
 
1622
1623	ptl = pmd_trans_huge_lock(pmd, vma);
1624	if (!ptl)
1625		goto out_unlocked;
 
 
 
 
 
1626
1627	orig_pmd = *pmd;
1628	if (is_huge_zero_pmd(orig_pmd))
1629		goto out;
1630
1631	if (unlikely(!pmd_present(orig_pmd))) {
1632		VM_BUG_ON(thp_migration_supported() &&
1633				  !is_pmd_migration_entry(orig_pmd));
1634		goto out;
1635	}
1636
1637	page = pmd_page(orig_pmd);
1638	/*
1639	 * If other processes are mapping this page, we couldn't discard
1640	 * the page unless they all do MADV_FREE so let's skip the page.
1641	 */
1642	if (page_mapcount(page) != 1)
1643		goto out;
1644
1645	if (!trylock_page(page))
 
 
 
1646		goto out;
1647
1648	/*
1649	 * If user want to discard part-pages of THP, split it so MADV_FREE
1650	 * will deactivate only them.
 
 
 
1651	 */
1652	if (next - addr != HPAGE_PMD_SIZE) {
1653		get_page(page);
1654		spin_unlock(ptl);
1655		split_huge_page(page);
1656		unlock_page(page);
1657		put_page(page);
1658		goto out_unlocked;
1659	}
 
 
 
1660
1661	if (PageDirty(page))
1662		ClearPageDirty(page);
1663	unlock_page(page);
1664
1665	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1666		pmdp_invalidate(vma, addr, pmd);
1667		orig_pmd = pmd_mkold(orig_pmd);
1668		orig_pmd = pmd_mkclean(orig_pmd);
1669
1670		set_pmd_at(mm, addr, pmd, orig_pmd);
1671		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 
 
 
 
 
 
 
 
 
 
 
1672	}
 
1673
1674	mark_page_lazyfree(page);
1675	ret = true;
1676out:
1677	spin_unlock(ptl);
1678out_unlocked:
1679	return ret;
1680}
1681
1682static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1683{
1684	pgtable_t pgtable;
 
 
 
1685
1686	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1687	pte_free(mm, pgtable);
1688	mm_dec_nr_ptes(mm);
1689}
1690
1691int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1692		 pmd_t *pmd, unsigned long addr)
1693{
1694	pmd_t orig_pmd;
1695	spinlock_t *ptl;
1696
1697	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
 
1698
1699	ptl = __pmd_trans_huge_lock(pmd, vma);
1700	if (!ptl)
1701		return 0;
1702	/*
1703	 * For architectures like ppc64 we look at deposited pgtable
1704	 * when calling pmdp_huge_get_and_clear. So do the
1705	 * pgtable_trans_huge_withdraw after finishing pmdp related
1706	 * operations.
1707	 */
1708	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1709			tlb->fullmm);
1710	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1711	if (vma_is_dax(vma)) {
1712		if (arch_needs_pgtable_deposit())
1713			zap_deposited_table(tlb->mm, pmd);
1714		spin_unlock(ptl);
1715		if (is_huge_zero_pmd(orig_pmd))
1716			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1717	} else if (is_huge_zero_pmd(orig_pmd)) {
1718		zap_deposited_table(tlb->mm, pmd);
1719		spin_unlock(ptl);
1720		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1721	} else {
1722		struct page *page = NULL;
1723		int flush_needed = 1;
1724
1725		if (pmd_present(orig_pmd)) {
1726			page = pmd_page(orig_pmd);
1727			page_remove_rmap(page, true);
1728			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1729			VM_BUG_ON_PAGE(!PageHead(page), page);
1730		} else if (thp_migration_supported()) {
1731			swp_entry_t entry;
1732
1733			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1734			entry = pmd_to_swp_entry(orig_pmd);
1735			page = pfn_to_page(swp_offset(entry));
1736			flush_needed = 0;
1737		} else
1738			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1739
1740		if (PageAnon(page)) {
1741			zap_deposited_table(tlb->mm, pmd);
1742			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1743		} else {
1744			if (arch_needs_pgtable_deposit())
1745				zap_deposited_table(tlb->mm, pmd);
1746			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1747		}
 
 
 
 
1748
1749		spin_unlock(ptl);
1750		if (flush_needed)
1751			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752	}
1753	return 1;
1754}
1755
1756#ifndef pmd_move_must_withdraw
1757static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1758					 spinlock_t *old_pmd_ptl,
1759					 struct vm_area_struct *vma)
1760{
1761	/*
1762	 * With split pmd lock we also need to move preallocated
1763	 * PTE page table if new_pmd is on different PMD page table.
1764	 *
1765	 * We also don't deposit and withdraw tables for file pages.
1766	 */
1767	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1768}
1769#endif
1770
1771static pmd_t move_soft_dirty_pmd(pmd_t pmd)
 
 
1772{
1773#ifdef CONFIG_MEM_SOFT_DIRTY
1774	if (unlikely(is_pmd_migration_entry(pmd)))
1775		pmd = pmd_swp_mksoft_dirty(pmd);
1776	else if (pmd_present(pmd))
1777		pmd = pmd_mksoft_dirty(pmd);
1778#endif
1779	return pmd;
1780}
1781
1782bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1783		  unsigned long new_addr, unsigned long old_end,
1784		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1785{
1786	spinlock_t *old_ptl, *new_ptl;
1787	pmd_t pmd;
1788	struct mm_struct *mm = vma->vm_mm;
1789	bool force_flush = false;
 
 
 
1790
1791	if ((old_addr & ~HPAGE_PMD_MASK) ||
1792	    (new_addr & ~HPAGE_PMD_MASK) ||
1793	    old_end - old_addr < HPAGE_PMD_SIZE)
1794		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795
1796	/*
1797	 * The destination pmd shouldn't be established, free_pgtables()
1798	 * should have release it.
1799	 */
1800	if (WARN_ON(!pmd_none(*new_pmd))) {
1801		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1802		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803	}
 
1804
1805	/*
1806	 * We don't have to worry about the ordering of src and dst
1807	 * ptlocks because exclusive mmap_sem prevents deadlock.
1808	 */
1809	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1810	if (old_ptl) {
1811		new_ptl = pmd_lockptr(mm, new_pmd);
1812		if (new_ptl != old_ptl)
1813			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1814		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1815		if (pmd_present(pmd) && pmd_dirty(pmd))
1816			force_flush = true;
1817		VM_BUG_ON(!pmd_none(*new_pmd));
1818
1819		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1820			pgtable_t pgtable;
1821			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1822			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1823		}
1824		pmd = move_soft_dirty_pmd(pmd);
1825		set_pmd_at(mm, new_addr, new_pmd, pmd);
1826		if (new_ptl != old_ptl)
1827			spin_unlock(new_ptl);
1828		if (force_flush)
1829			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1830		else
1831			*need_flush = true;
1832		spin_unlock(old_ptl);
1833		return true;
 
 
 
1834	}
1835	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836}
1837
1838/*
1839 * Returns
1840 *  - 0 if PMD could not be locked
1841 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1842 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1843 */
1844int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1845		unsigned long addr, pgprot_t newprot, int prot_numa)
1846{
1847	struct mm_struct *mm = vma->vm_mm;
1848	spinlock_t *ptl;
1849	pmd_t entry;
1850	bool preserve_write;
1851	int ret;
1852
1853	ptl = __pmd_trans_huge_lock(pmd, vma);
1854	if (!ptl)
1855		return 0;
 
 
 
 
1856
1857	preserve_write = prot_numa && pmd_write(*pmd);
1858	ret = 1;
 
1859
1860#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861	if (is_swap_pmd(*pmd)) {
1862		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1863
1864		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1865		if (is_write_migration_entry(entry)) {
1866			pmd_t newpmd;
1867			/*
1868			 * A protection check is difficult so
1869			 * just be safe and disable write
1870			 */
1871			make_migration_entry_read(&entry);
1872			newpmd = swp_entry_to_pmd(entry);
1873			if (pmd_swp_soft_dirty(*pmd))
1874				newpmd = pmd_swp_mksoft_dirty(newpmd);
1875			set_pmd_at(mm, addr, pmd, newpmd);
1876		}
1877		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878	}
1879#endif
1880
1881	/*
1882	 * Avoid trapping faults against the zero page. The read-only
1883	 * data is likely to be read-cached on the local CPU and
1884	 * local/remote hits to the zero page are not interesting.
1885	 */
1886	if (prot_numa && is_huge_zero_pmd(*pmd))
1887		goto unlock;
1888
1889	if (prot_numa && pmd_protnone(*pmd))
1890		goto unlock;
1891
1892	/*
1893	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1894	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895	 * which is also under down_read(mmap_sem):
1896	 *
1897	 *	CPU0:				CPU1:
1898	 *				change_huge_pmd(prot_numa=1)
1899	 *				 pmdp_huge_get_and_clear_notify()
1900	 * madvise_dontneed()
1901	 *  zap_pmd_range()
1902	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1903	 *   // skip the pmd
1904	 *				 set_pmd_at();
1905	 *				 // pmd is re-established
1906	 *
1907	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908	 * which may break userspace.
1909	 *
1910	 * pmdp_invalidate() is required to make sure we don't miss
1911	 * dirty/young flags set by hardware.
1912	 */
1913	entry = pmdp_invalidate(vma, addr, pmd);
1914
1915	entry = pmd_modify(entry, newprot);
1916	if (preserve_write)
1917		entry = pmd_mk_savedwrite(entry);
1918	ret = HPAGE_PMD_NR;
1919	set_pmd_at(mm, addr, pmd, entry);
1920	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1921unlock:
1922	spin_unlock(ptl);
1923	return ret;
1924}
1925
1926/*
1927 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1928 *
1929 * Note that if it returns page table lock pointer, this routine returns without
1930 * unlocking page table lock. So callers must unlock it.
1931 */
1932spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1933{
1934	spinlock_t *ptl;
1935	ptl = pmd_lock(vma->vm_mm, pmd);
1936	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1937			pmd_devmap(*pmd)))
1938		return ptl;
1939	spin_unlock(ptl);
1940	return NULL;
1941}
1942
1943/*
1944 * Returns true if a given pud maps a thp, false otherwise.
1945 *
1946 * Note that if it returns true, this routine returns without unlocking page
1947 * table lock. So callers must unlock it.
1948 */
1949spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1950{
1951	spinlock_t *ptl;
 
 
1952
1953	ptl = pud_lock(vma->vm_mm, pud);
1954	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1955		return ptl;
1956	spin_unlock(ptl);
1957	return NULL;
1958}
1959
1960#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1961int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1962		 pud_t *pud, unsigned long addr)
1963{
1964	pud_t orig_pud;
1965	spinlock_t *ptl;
1966
1967	ptl = __pud_trans_huge_lock(pud, vma);
1968	if (!ptl)
1969		return 0;
1970	/*
1971	 * For architectures like ppc64 we look at deposited pgtable
1972	 * when calling pudp_huge_get_and_clear. So do the
1973	 * pgtable_trans_huge_withdraw after finishing pudp related
1974	 * operations.
1975	 */
1976	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1977			tlb->fullmm);
1978	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1979	if (vma_is_dax(vma)) {
1980		spin_unlock(ptl);
1981		/* No zero page support yet */
1982	} else {
1983		/* No support for anonymous PUD pages yet */
1984		BUG();
 
 
 
 
 
 
 
 
 
 
1985	}
1986	return 1;
1987}
1988
1989static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1990		unsigned long haddr)
1991{
1992	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1993	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1994	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1995	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1996
1997	count_vm_event(THP_SPLIT_PUD);
 
 
 
 
1998
1999	pudp_huge_clear_flush_notify(vma, haddr, pud);
 
 
2000}
2001
2002void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2003		unsigned long address)
2004{
2005	spinlock_t *ptl;
2006	struct mm_struct *mm = vma->vm_mm;
2007	unsigned long haddr = address & HPAGE_PUD_MASK;
2008
2009	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2010	ptl = pud_lock(mm, pud);
2011	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2012		goto out;
2013	__split_huge_pud_locked(vma, pud, haddr);
2014
2015out:
2016	spin_unlock(ptl);
 
 
 
 
 
 
 
2017	/*
2018	 * No need to double call mmu_notifier->invalidate_range() callback as
2019	 * the above pudp_huge_clear_flush_notify() did already call it.
2020	 */
2021	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2022					       HPAGE_PUD_SIZE);
 
 
 
 
 
 
 
2023}
2024#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2025
2026static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2027		unsigned long haddr, pmd_t *pmd)
2028{
2029	struct mm_struct *mm = vma->vm_mm;
2030	pgtable_t pgtable;
2031	pmd_t _pmd;
2032	int i;
2033
 
 
 
 
 
2034	/*
2035	 * Leave pmd empty until pte is filled note that it is fine to delay
2036	 * notification until mmu_notifier_invalidate_range_end() as we are
2037	 * replacing a zero pmd write protected page with a zero pte write
2038	 * protected page.
2039	 *
2040	 * See Documentation/vm/mmu_notifier.txt
2041	 */
2042	pmdp_huge_clear_flush(vma, haddr, pmd);
2043
2044	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2045	pmd_populate(mm, &_pmd, pgtable);
2046
2047	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2048		pte_t *pte, entry;
2049		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2050		entry = pte_mkspecial(entry);
2051		pte = pte_offset_map(&_pmd, haddr);
2052		VM_BUG_ON(!pte_none(*pte));
2053		set_pte_at(mm, haddr, pte, entry);
2054		pte_unmap(pte);
2055	}
2056	smp_wmb(); /* make pte visible before pmd */
2057	pmd_populate(mm, pmd, pgtable);
2058}
2059
2060static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2061		unsigned long haddr, bool freeze)
2062{
2063	struct mm_struct *mm = vma->vm_mm;
2064	struct page *page;
2065	pgtable_t pgtable;
2066	pmd_t old_pmd, _pmd;
2067	bool young, write, soft_dirty, pmd_migration = false;
2068	unsigned long addr;
2069	int i;
2070
2071	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2072	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2073	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2074	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2075				&& !pmd_devmap(*pmd));
2076
2077	count_vm_event(THP_SPLIT_PMD);
2078
2079	if (!vma_is_anonymous(vma)) {
2080		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
2081		/*
2082		 * We are going to unmap this huge page. So
2083		 * just go ahead and zap it
 
 
 
 
2084		 */
2085		if (arch_needs_pgtable_deposit())
2086			zap_deposited_table(mm, pmd);
2087		if (vma_is_dax(vma))
2088			return;
2089		page = pmd_page(_pmd);
2090		if (!PageReferenced(page) && pmd_young(_pmd))
2091			SetPageReferenced(page);
2092		page_remove_rmap(page, true);
2093		put_page(page);
2094		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2095		return;
2096	} else if (is_huge_zero_pmd(*pmd)) {
2097		/*
2098		 * FIXME: Do we want to invalidate secondary mmu by calling
2099		 * mmu_notifier_invalidate_range() see comments below inside
2100		 * __split_huge_pmd() ?
2101		 *
2102		 * We are going from a zero huge page write protected to zero
2103		 * small page also write protected so it does not seems useful
2104		 * to invalidate secondary mmu at this time.
2105		 */
2106		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2107	}
 
2108
2109	/*
2110	 * Up to this point the pmd is present and huge and userland has the
2111	 * whole access to the hugepage during the split (which happens in
2112	 * place). If we overwrite the pmd with the not-huge version pointing
2113	 * to the pte here (which of course we could if all CPUs were bug
2114	 * free), userland could trigger a small page size TLB miss on the
2115	 * small sized TLB while the hugepage TLB entry is still established in
2116	 * the huge TLB. Some CPU doesn't like that.
2117	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2118	 * 383 on page 93. Intel should be safe but is also warns that it's
2119	 * only safe if the permission and cache attributes of the two entries
2120	 * loaded in the two TLB is identical (which should be the case here).
2121	 * But it is generally safer to never allow small and huge TLB entries
2122	 * for the same virtual address to be loaded simultaneously. So instead
2123	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2124	 * current pmd notpresent (atomically because here the pmd_trans_huge
2125	 * must remain set at all times on the pmd until the split is complete
2126	 * for this pmd), then we flush the SMP TLB and finally we write the
2127	 * non-huge version of the pmd entry with pmd_populate.
2128	 */
2129	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2130
2131#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2132	pmd_migration = is_pmd_migration_entry(old_pmd);
2133	if (pmd_migration) {
2134		swp_entry_t entry;
2135
2136		entry = pmd_to_swp_entry(old_pmd);
2137		page = pfn_to_page(swp_offset(entry));
2138	} else
2139#endif
2140		page = pmd_page(old_pmd);
2141	VM_BUG_ON_PAGE(!page_count(page), page);
2142	page_ref_add(page, HPAGE_PMD_NR - 1);
2143	if (pmd_dirty(old_pmd))
2144		SetPageDirty(page);
2145	write = pmd_write(old_pmd);
2146	young = pmd_young(old_pmd);
2147	soft_dirty = pmd_soft_dirty(old_pmd);
2148
2149	/*
2150	 * Withdraw the table only after we mark the pmd entry invalid.
2151	 * This's critical for some architectures (Power).
2152	 */
2153	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2154	pmd_populate(mm, &_pmd, pgtable);
2155
2156	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2157		pte_t entry, *pte;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2158		/*
2159		 * Note that NUMA hinting access restrictions are not
2160		 * transferred to avoid any possibility of altering
2161		 * permissions across VMAs.
 
2162		 */
2163		if (freeze || pmd_migration) {
2164			swp_entry_t swp_entry;
2165			swp_entry = make_migration_entry(page + i, write);
2166			entry = swp_entry_to_pte(swp_entry);
2167			if (soft_dirty)
2168				entry = pte_swp_mksoft_dirty(entry);
2169		} else {
2170			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2171			entry = maybe_mkwrite(entry, vma);
2172			if (!write)
2173				entry = pte_wrprotect(entry);
2174			if (!young)
2175				entry = pte_mkold(entry);
2176			if (soft_dirty)
2177				entry = pte_mksoft_dirty(entry);
2178		}
2179		pte = pte_offset_map(&_pmd, addr);
2180		BUG_ON(!pte_none(*pte));
2181		set_pte_at(mm, addr, pte, entry);
2182		atomic_inc(&page[i]._mapcount);
2183		pte_unmap(pte);
2184	}
2185
2186	/*
2187	 * Set PG_double_map before dropping compound_mapcount to avoid
2188	 * false-negative page_mapped().
2189	 */
2190	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2191		for (i = 0; i < HPAGE_PMD_NR; i++)
2192			atomic_inc(&page[i]._mapcount);
2193	}
2194
2195	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2196		/* Last compound_mapcount is gone. */
2197		__dec_node_page_state(page, NR_ANON_THPS);
2198		if (TestClearPageDoubleMap(page)) {
2199			/* No need in mapcount reference anymore */
2200			for (i = 0; i < HPAGE_PMD_NR; i++)
2201				atomic_dec(&page[i]._mapcount);
2202		}
 
 
 
 
 
 
 
 
 
2203	}
 
 
 
 
 
 
 
2204
2205	smp_wmb(); /* make pte visible before pmd */
2206	pmd_populate(mm, pmd, pgtable);
2207
2208	if (freeze) {
2209		for (i = 0; i < HPAGE_PMD_NR; i++) {
2210			page_remove_rmap(page + i, false);
2211			put_page(page + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212		}
 
 
 
2213	}
2214}
2215
2216void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2217		unsigned long address, bool freeze, struct page *page)
 
 
 
2218{
 
 
 
 
 
 
2219	spinlock_t *ptl;
2220	struct mm_struct *mm = vma->vm_mm;
2221	unsigned long haddr = address & HPAGE_PMD_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2222
2223	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2224	ptl = pmd_lock(mm, pmd);
 
 
 
 
 
2225
2226	/*
2227	 * If caller asks to setup a migration entries, we need a page to check
2228	 * pmd against. Otherwise we can end up replacing wrong page.
 
2229	 */
2230	VM_BUG_ON(freeze && !page);
2231	if (page && page != pmd_page(*pmd))
2232	        goto out;
2233
2234	if (pmd_trans_huge(*pmd)) {
2235		page = pmd_page(*pmd);
2236		if (PageMlocked(page))
2237			clear_page_mlock(page);
2238	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
 
 
 
 
 
 
 
 
2239		goto out;
2240	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2241out:
2242	spin_unlock(ptl);
2243	/*
2244	 * No need to double call mmu_notifier->invalidate_range() callback.
2245	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2246	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2247	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2248	 *    fault will trigger a flush_notify before pointing to a new page
2249	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2250	 *    page in the meantime)
2251	 *  3) Split a huge pmd into pte pointing to the same page. No need
2252	 *     to invalidate secondary tlb entry they are all still valid.
2253	 *     any further changes to individual pte will notify. So no need
2254	 *     to call mmu_notifier->invalidate_range()
2255	 */
2256	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2257					       HPAGE_PMD_SIZE);
2258}
2259
2260void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2261		bool freeze, struct page *page)
2262{
2263	pgd_t *pgd;
2264	p4d_t *p4d;
2265	pud_t *pud;
2266	pmd_t *pmd;
2267
2268	pgd = pgd_offset(vma->vm_mm, address);
2269	if (!pgd_present(*pgd))
2270		return;
2271
2272	p4d = p4d_offset(pgd, address);
2273	if (!p4d_present(*p4d))
2274		return;
2275
2276	pud = pud_offset(p4d, address);
2277	if (!pud_present(*pud))
2278		return;
2279
2280	pmd = pmd_offset(pud, address);
 
 
 
2281
2282	__split_huge_pmd(vma, pmd, address, freeze, page);
2283}
2284
2285void vma_adjust_trans_huge(struct vm_area_struct *vma,
2286			     unsigned long start,
2287			     unsigned long end,
2288			     long adjust_next)
2289{
2290	/*
2291	 * If the new start address isn't hpage aligned and it could
2292	 * previously contain an hugepage: check if we need to split
2293	 * an huge pmd.
2294	 */
2295	if (start & ~HPAGE_PMD_MASK &&
2296	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2297	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2298		split_huge_pmd_address(vma, start, false, NULL);
2299
 
2300	/*
2301	 * If the new end address isn't hpage aligned and it could
2302	 * previously contain an hugepage: check if we need to split
2303	 * an huge pmd.
 
2304	 */
2305	if (end & ~HPAGE_PMD_MASK &&
2306	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2307	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2308		split_huge_pmd_address(vma, end, false, NULL);
2309
2310	/*
2311	 * If we're also updating the vma->vm_next->vm_start, if the new
2312	 * vm_next->vm_start isn't page aligned and it could previously
2313	 * contain an hugepage: check if we need to split an huge pmd.
2314	 */
2315	if (adjust_next > 0) {
2316		struct vm_area_struct *next = vma->vm_next;
2317		unsigned long nstart = next->vm_start;
2318		nstart += adjust_next << PAGE_SHIFT;
2319		if (nstart & ~HPAGE_PMD_MASK &&
2320		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2321		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2322			split_huge_pmd_address(next, nstart, false, NULL);
2323	}
2324}
2325
2326static void freeze_page(struct page *page)
2327{
2328	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2329		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2330	bool unmap_success;
2331
2332	VM_BUG_ON_PAGE(!PageHead(page), page);
2333
2334	if (PageAnon(page))
2335		ttu_flags |= TTU_SPLIT_FREEZE;
2336
2337	unmap_success = try_to_unmap(page, ttu_flags);
2338	VM_BUG_ON_PAGE(!unmap_success, page);
2339}
2340
2341static void unfreeze_page(struct page *page)
2342{
2343	int i;
2344	if (PageTransHuge(page)) {
2345		remove_migration_ptes(page, page, true);
2346	} else {
2347		for (i = 0; i < HPAGE_PMD_NR; i++)
2348			remove_migration_ptes(page + i, page + i, true);
2349	}
2350}
2351
2352static void __split_huge_page_tail(struct page *head, int tail,
2353		struct lruvec *lruvec, struct list_head *list)
2354{
2355	struct page *page_tail = head + tail;
2356
2357	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2358
2359	/*
2360	 * Clone page flags before unfreezing refcount.
2361	 *
2362	 * After successful get_page_unless_zero() might follow flags change,
2363	 * for exmaple lock_page() which set PG_waiters.
2364	 */
2365	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2366	page_tail->flags |= (head->flags &
2367			((1L << PG_referenced) |
2368			 (1L << PG_swapbacked) |
2369			 (1L << PG_swapcache) |
2370			 (1L << PG_mlocked) |
2371			 (1L << PG_uptodate) |
2372			 (1L << PG_active) |
2373			 (1L << PG_locked) |
2374			 (1L << PG_unevictable) |
2375			 (1L << PG_dirty)));
2376
2377	/* Page flags must be visible before we make the page non-compound. */
2378	smp_wmb();
 
 
 
 
 
 
 
 
2379
2380	/*
2381	 * Clear PageTail before unfreezing page refcount.
2382	 *
2383	 * After successful get_page_unless_zero() might follow put_page()
2384	 * which needs correct compound_head().
2385	 */
2386	clear_compound_head(page_tail);
2387
2388	/* Finally unfreeze refcount. Additional reference from page cache. */
2389	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2390					  PageSwapCache(head)));
2391
2392	if (page_is_young(head))
2393		set_page_young(page_tail);
2394	if (page_is_idle(head))
2395		set_page_idle(page_tail);
2396
2397	/* ->mapping in first tail page is compound_mapcount */
2398	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2399			page_tail);
2400	page_tail->mapping = head->mapping;
 
 
 
2401
2402	page_tail->index = head->index + tail;
2403	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
 
 
 
 
 
2404
2405	/*
2406	 * always add to the tail because some iterators expect new
2407	 * pages to show after the currently processed elements - e.g.
2408	 * migrate_pages
2409	 */
2410	lru_add_page_tail(head, page_tail, lruvec, list);
2411}
2412
2413static void __split_huge_page(struct page *page, struct list_head *list,
2414		unsigned long flags)
 
 
2415{
2416	struct page *head = compound_head(page);
2417	struct zone *zone = page_zone(head);
2418	struct lruvec *lruvec;
2419	pgoff_t end = -1;
2420	int i;
2421
2422	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2423
2424	/* complete memcg works before add pages to LRU */
2425	mem_cgroup_split_huge_fixup(head);
2426
2427	if (!PageAnon(page))
2428		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2429
2430	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2431		__split_huge_page_tail(head, i, lruvec, list);
2432		/* Some pages can be beyond i_size: drop them from page cache */
2433		if (head[i].index >= end) {
2434			ClearPageDirty(head + i);
2435			__delete_from_page_cache(head + i, NULL);
2436			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2437				shmem_uncharge(head->mapping->host, 1);
2438			put_page(head + i);
2439		}
2440	}
2441
2442	ClearPageCompound(head);
2443	/* See comment in __split_huge_page_tail() */
2444	if (PageAnon(head)) {
2445		/* Additional pin to radix tree of swap cache */
2446		if (PageSwapCache(head))
2447			page_ref_add(head, 2);
2448		else
2449			page_ref_inc(head);
2450	} else {
2451		/* Additional pin to radix tree */
2452		page_ref_add(head, 2);
2453		xa_unlock(&head->mapping->i_pages);
2454	}
2455
2456	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
 
 
2457
2458	unfreeze_page(head);
 
 
2459
2460	for (i = 0; i < HPAGE_PMD_NR; i++) {
2461		struct page *subpage = head + i;
2462		if (subpage == page)
2463			continue;
2464		unlock_page(subpage);
2465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466		/*
2467		 * Subpages may be freed if there wasn't any mapping
2468		 * like if add_to_swap() is running on a lru page that
2469		 * had its mapping zapped. And freeing these pages
2470		 * requires taking the lru_lock so we do the put_page
2471		 * of the tail pages after the split is complete.
2472		 */
2473		put_page(subpage);
 
 
 
 
 
 
 
 
 
 
2474	}
2475}
2476
2477int total_mapcount(struct page *page)
2478{
2479	int i, compound, ret;
2480
2481	VM_BUG_ON_PAGE(PageTail(page), page);
2482
2483	if (likely(!PageCompound(page)))
2484		return atomic_read(&page->_mapcount) + 1;
2485
2486	compound = compound_mapcount(page);
2487	if (PageHuge(page))
2488		return compound;
2489	ret = compound;
2490	for (i = 0; i < HPAGE_PMD_NR; i++)
2491		ret += atomic_read(&page[i]._mapcount) + 1;
2492	/* File pages has compound_mapcount included in _mapcount */
2493	if (!PageAnon(page))
2494		return ret - compound * HPAGE_PMD_NR;
2495	if (PageDoubleMap(page))
2496		ret -= HPAGE_PMD_NR;
2497	return ret;
2498}
2499
2500/*
2501 * This calculates accurately how many mappings a transparent hugepage
2502 * has (unlike page_mapcount() which isn't fully accurate). This full
2503 * accuracy is primarily needed to know if copy-on-write faults can
2504 * reuse the page and change the mapping to read-write instead of
2505 * copying them. At the same time this returns the total_mapcount too.
2506 *
2507 * The function returns the highest mapcount any one of the subpages
2508 * has. If the return value is one, even if different processes are
2509 * mapping different subpages of the transparent hugepage, they can
2510 * all reuse it, because each process is reusing a different subpage.
2511 *
2512 * The total_mapcount is instead counting all virtual mappings of the
2513 * subpages. If the total_mapcount is equal to "one", it tells the
2514 * caller all mappings belong to the same "mm" and in turn the
2515 * anon_vma of the transparent hugepage can become the vma->anon_vma
2516 * local one as no other process may be mapping any of the subpages.
2517 *
2518 * It would be more accurate to replace page_mapcount() with
2519 * page_trans_huge_mapcount(), however we only use
2520 * page_trans_huge_mapcount() in the copy-on-write faults where we
2521 * need full accuracy to avoid breaking page pinning, because
2522 * page_trans_huge_mapcount() is slower than page_mapcount().
2523 */
2524int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2525{
2526	int i, ret, _total_mapcount, mapcount;
2527
2528	/* hugetlbfs shouldn't call it */
2529	VM_BUG_ON_PAGE(PageHuge(page), page);
2530
2531	if (likely(!PageTransCompound(page))) {
2532		mapcount = atomic_read(&page->_mapcount) + 1;
2533		if (total_mapcount)
2534			*total_mapcount = mapcount;
2535		return mapcount;
2536	}
2537
2538	page = compound_head(page);
 
 
 
 
2539
2540	_total_mapcount = ret = 0;
2541	for (i = 0; i < HPAGE_PMD_NR; i++) {
2542		mapcount = atomic_read(&page[i]._mapcount) + 1;
2543		ret = max(ret, mapcount);
2544		_total_mapcount += mapcount;
2545	}
2546	if (PageDoubleMap(page)) {
2547		ret -= 1;
2548		_total_mapcount -= HPAGE_PMD_NR;
2549	}
2550	mapcount = compound_mapcount(page);
2551	ret += mapcount;
2552	_total_mapcount += mapcount;
2553	if (total_mapcount)
2554		*total_mapcount = _total_mapcount;
2555	return ret;
2556}
2557
2558/* Racy check whether the huge page can be split */
2559bool can_split_huge_page(struct page *page, int *pextra_pins)
2560{
2561	int extra_pins;
2562
2563	/* Additional pins from radix tree */
2564	if (PageAnon(page))
2565		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2566	else
2567		extra_pins = HPAGE_PMD_NR;
2568	if (pextra_pins)
2569		*pextra_pins = extra_pins;
2570	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2571}
2572
2573/*
2574 * This function splits huge page into normal pages. @page can point to any
2575 * subpage of huge page to split. Split doesn't change the position of @page.
2576 *
2577 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2578 * The huge page must be locked.
2579 *
2580 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2581 *
2582 * Both head page and tail pages will inherit mapping, flags, and so on from
2583 * the hugepage.
2584 *
2585 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2586 * they are not mapped.
2587 *
2588 * Returns 0 if the hugepage is split successfully.
2589 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2590 * us.
2591 */
2592int split_huge_page_to_list(struct page *page, struct list_head *list)
2593{
2594	struct page *head = compound_head(page);
2595	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2596	struct anon_vma *anon_vma = NULL;
2597	struct address_space *mapping = NULL;
2598	int count, mapcount, extra_pins, ret;
2599	bool mlocked;
2600	unsigned long flags;
2601
2602	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2603	VM_BUG_ON_PAGE(!PageLocked(page), page);
2604	VM_BUG_ON_PAGE(!PageCompound(page), page);
2605
2606	if (PageWriteback(page))
2607		return -EBUSY;
2608
2609	if (PageAnon(head)) {
2610		/*
2611		 * The caller does not necessarily hold an mmap_sem that would
2612		 * prevent the anon_vma disappearing so we first we take a
2613		 * reference to it and then lock the anon_vma for write. This
2614		 * is similar to page_lock_anon_vma_read except the write lock
2615		 * is taken to serialise against parallel split or collapse
2616		 * operations.
2617		 */
2618		anon_vma = page_get_anon_vma(head);
2619		if (!anon_vma) {
2620			ret = -EBUSY;
2621			goto out;
2622		}
2623		mapping = NULL;
2624		anon_vma_lock_write(anon_vma);
2625	} else {
2626		mapping = head->mapping;
2627
2628		/* Truncated ? */
2629		if (!mapping) {
2630			ret = -EBUSY;
2631			goto out;
 
 
2632		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2633
2634		anon_vma = NULL;
2635		i_mmap_lock_read(mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636	}
 
 
 
2637
 
 
2638	/*
2639	 * Racy check if we can split the page, before freeze_page() will
2640	 * split PMDs
2641	 */
2642	if (!can_split_huge_page(head, &extra_pins)) {
2643		ret = -EBUSY;
2644		goto out_unlock;
2645	}
2646
2647	mlocked = PageMlocked(page);
2648	freeze_page(head);
2649	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2650
2651	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2652	if (mlocked)
2653		lru_add_drain();
2654
2655	/* prevent PageLRU to go away from under us, and freeze lru stats */
2656	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2657
2658	if (mapping) {
2659		void **pslot;
2660
2661		xa_lock(&mapping->i_pages);
2662		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2663				page_index(head));
2664		/*
2665		 * Check if the head page is present in radix tree.
2666		 * We assume all tail are present too, if head is there.
 
2667		 */
2668		if (radix_tree_deref_slot_protected(pslot,
2669					&mapping->i_pages.xa_lock) != head)
2670			goto fail;
2671	}
2672
2673	/* Prevent deferred_split_scan() touching ->_refcount */
2674	spin_lock(&pgdata->split_queue_lock);
2675	count = page_count(head);
2676	mapcount = total_mapcount(head);
2677	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2678		if (!list_empty(page_deferred_list(head))) {
2679			pgdata->split_queue_len--;
2680			list_del(page_deferred_list(head));
2681		}
2682		if (mapping)
2683			__dec_node_page_state(page, NR_SHMEM_THPS);
2684		spin_unlock(&pgdata->split_queue_lock);
2685		__split_huge_page(page, list, flags);
2686		if (PageSwapCache(head)) {
2687			swp_entry_t entry = { .val = page_private(head) };
2688
2689			ret = split_swap_cluster(entry);
2690		} else
2691			ret = 0;
2692	} else {
2693		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2694			pr_alert("total_mapcount: %u, page_count(): %u\n",
2695					mapcount, count);
2696			if (PageTail(page))
2697				dump_page(head, NULL);
2698			dump_page(page, "total_mapcount(head) > 0");
2699			BUG();
2700		}
2701		spin_unlock(&pgdata->split_queue_lock);
2702fail:		if (mapping)
2703			xa_unlock(&mapping->i_pages);
2704		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2705		unfreeze_page(head);
2706		ret = -EBUSY;
2707	}
2708
2709out_unlock:
2710	if (anon_vma) {
2711		anon_vma_unlock_write(anon_vma);
2712		put_anon_vma(anon_vma);
2713	}
2714	if (mapping)
2715		i_mmap_unlock_read(mapping);
2716out:
2717	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2718	return ret;
2719}
2720
2721void free_transhuge_page(struct page *page)
2722{
2723	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2724	unsigned long flags;
2725
2726	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2727	if (!list_empty(page_deferred_list(page))) {
2728		pgdata->split_queue_len--;
2729		list_del(page_deferred_list(page));
2730	}
2731	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2732	free_compound_page(page);
2733}
2734
2735void deferred_split_huge_page(struct page *page)
2736{
2737	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2738	unsigned long flags;
2739
2740	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2741
2742	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2743	if (list_empty(page_deferred_list(page))) {
2744		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2745		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2746		pgdata->split_queue_len++;
2747	}
2748	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2749}
2750
2751static unsigned long deferred_split_count(struct shrinker *shrink,
2752		struct shrink_control *sc)
2753{
2754	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2755	return READ_ONCE(pgdata->split_queue_len);
2756}
2757
2758static unsigned long deferred_split_scan(struct shrinker *shrink,
2759		struct shrink_control *sc)
2760{
2761	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2762	unsigned long flags;
2763	LIST_HEAD(list), *pos, *next;
2764	struct page *page;
2765	int split = 0;
2766
2767	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2768	/* Take pin on all head pages to avoid freeing them under us */
2769	list_for_each_safe(pos, next, &pgdata->split_queue) {
2770		page = list_entry((void *)pos, struct page, mapping);
2771		page = compound_head(page);
2772		if (get_page_unless_zero(page)) {
2773			list_move(page_deferred_list(page), &list);
2774		} else {
2775			/* We lost race with put_compound_page() */
2776			list_del_init(page_deferred_list(page));
2777			pgdata->split_queue_len--;
2778		}
2779		if (!--sc->nr_to_scan)
 
2780			break;
2781	}
2782	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2783
2784	list_for_each_safe(pos, next, &list) {
2785		page = list_entry((void *)pos, struct page, mapping);
2786		if (!trylock_page(page))
2787			goto next;
2788		/* split_huge_page() removes page from list on success */
2789		if (!split_huge_page(page))
2790			split++;
2791		unlock_page(page);
2792next:
2793		put_page(page);
2794	}
2795
2796	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2797	list_splice_tail(&list, &pgdata->split_queue);
2798	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 
 
 
 
 
 
 
 
 
2799
2800	/*
2801	 * Stop shrinker if we didn't split any page, but the queue is empty.
2802	 * This can happen if pages were freed under us.
2803	 */
2804	if (!split && list_empty(&pgdata->split_queue))
2805		return SHRINK_STOP;
2806	return split;
2807}
2808
2809static struct shrinker deferred_split_shrinker = {
2810	.count_objects = deferred_split_count,
2811	.scan_objects = deferred_split_scan,
2812	.seeks = DEFAULT_SEEKS,
2813	.flags = SHRINKER_NUMA_AWARE,
2814};
 
 
 
 
 
 
 
 
 
 
 
2815
2816#ifdef CONFIG_DEBUG_FS
2817static int split_huge_pages_set(void *data, u64 val)
2818{
2819	struct zone *zone;
2820	struct page *page;
2821	unsigned long pfn, max_zone_pfn;
2822	unsigned long total = 0, split = 0;
2823
2824	if (val != 1)
2825		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
2826
2827	for_each_populated_zone(zone) {
2828		max_zone_pfn = zone_end_pfn(zone);
2829		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2830			if (!pfn_valid(pfn))
 
 
 
 
 
 
2831				continue;
 
 
 
 
 
 
 
2832
2833			page = pfn_to_page(pfn);
2834			if (!get_page_unless_zero(page))
2835				continue;
2836
2837			if (zone != page_zone(page))
2838				goto next;
2839
2840			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2841				goto next;
2842
2843			total++;
2844			lock_page(page);
2845			if (!split_huge_page(page))
2846				split++;
2847			unlock_page(page);
2848next:
2849			put_page(page);
2850		}
 
 
 
2851	}
2852
2853	pr_info("%lu of %lu THP split\n", split, total);
 
 
 
 
 
 
 
 
2854
2855	return 0;
2856}
2857DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2858		"%llu\n");
2859
2860static int __init split_huge_pages_debugfs(void)
2861{
2862	void *ret;
2863
2864	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2865			&split_huge_pages_fops);
2866	if (!ret)
2867		pr_warn("Failed to create split_huge_pages in debugfs");
2868	return 0;
 
 
 
 
 
 
 
 
 
2869}
2870late_initcall(split_huge_pages_debugfs);
2871#endif
2872
2873#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2874void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2875		struct page *page)
2876{
2877	struct vm_area_struct *vma = pvmw->vma;
2878	struct mm_struct *mm = vma->vm_mm;
2879	unsigned long address = pvmw->address;
2880	pmd_t pmdval;
2881	swp_entry_t entry;
2882	pmd_t pmdswp;
2883
2884	if (!(pvmw->pmd && !pvmw->pte))
2885		return;
2886
2887	mmu_notifier_invalidate_range_start(mm, address,
2888			address + HPAGE_PMD_SIZE);
 
2889
2890	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2891	pmdval = *pvmw->pmd;
2892	pmdp_invalidate(vma, address, pvmw->pmd);
2893	if (pmd_dirty(pmdval))
2894		set_page_dirty(page);
2895	entry = make_migration_entry(page, pmd_write(pmdval));
2896	pmdswp = swp_entry_to_pmd(entry);
2897	if (pmd_soft_dirty(pmdval))
2898		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2899	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2900	page_remove_rmap(page, true);
2901	put_page(page);
2902
2903	mmu_notifier_invalidate_range_end(mm, address,
2904			address + HPAGE_PMD_SIZE);
 
 
 
 
 
 
2905}
2906
2907void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
 
 
 
2908{
2909	struct vm_area_struct *vma = pvmw->vma;
2910	struct mm_struct *mm = vma->vm_mm;
2911	unsigned long address = pvmw->address;
2912	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2913	pmd_t pmde;
2914	swp_entry_t entry;
 
 
 
2915
2916	if (!(pvmw->pmd && !pvmw->pte))
2917		return;
 
 
 
 
 
 
 
2918
2919	entry = pmd_to_swp_entry(*pvmw->pmd);
2920	get_page(new);
2921	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2922	if (pmd_swp_soft_dirty(*pvmw->pmd))
2923		pmde = pmd_mksoft_dirty(pmde);
2924	if (is_write_migration_entry(entry))
2925		pmde = maybe_pmd_mkwrite(pmde, vma);
2926
2927	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2928	if (PageAnon(new))
2929		page_add_anon_rmap(new, vma, mmun_start, true);
2930	else
2931		page_add_file_rmap(new, true);
2932	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2933	if (vma->vm_flags & VM_LOCKED)
2934		mlock_vma_page(new);
2935	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2936}
2937#endif
v3.5.6
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
 
 
   8#include <linux/mm.h>
   9#include <linux/sched.h>
 
 
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
 
  15#include <linux/mm_inline.h>
  16#include <linux/kthread.h>
 
  17#include <linux/khugepaged.h>
  18#include <linux/freezer.h>
 
  19#include <linux/mman.h>
 
 
 
 
 
 
 
 
 
 
  20#include <asm/tlb.h>
  21#include <asm/pgalloc.h>
  22#include "internal.h"
  23
  24/*
  25 * By default transparent hugepage support is enabled for all mappings
  26 * and khugepaged scans all mappings. Defrag is only invoked by
  27 * khugepaged hugepage allocations and by page faults inside
  28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29 * allocations.
 
  30 */
  31unsigned long transparent_hugepage_flags __read_mostly =
  32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34#endif
  35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37#endif
  38	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40
  41/* default scan 8*512 pte (or vmas) every 30 second */
  42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  43static unsigned int khugepaged_pages_collapsed;
  44static unsigned int khugepaged_full_scans;
  45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  46/* during fragmentation poll the hugepage allocator once every minute */
  47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  48static struct task_struct *khugepaged_thread __read_mostly;
  49static DEFINE_MUTEX(khugepaged_mutex);
  50static DEFINE_SPINLOCK(khugepaged_mm_lock);
  51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  52/*
  53 * default collapse hugepages if there is at least one pte mapped like
  54 * it would have happened if the vma was large enough during page
  55 * fault.
  56 */
  57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  58
  59static int khugepaged(void *none);
  60static int mm_slots_hash_init(void);
  61static int khugepaged_slab_init(void);
  62static void khugepaged_slab_free(void);
  63
  64#define MM_SLOTS_HASH_HEADS 1024
  65static struct hlist_head *mm_slots_hash __read_mostly;
  66static struct kmem_cache *mm_slot_cache __read_mostly;
  67
  68/**
  69 * struct mm_slot - hash lookup from mm to mm_slot
  70 * @hash: hash collision list
  71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72 * @mm: the mm that this information is valid for
  73 */
  74struct mm_slot {
  75	struct hlist_node hash;
  76	struct list_head mm_node;
  77	struct mm_struct *mm;
  78};
  79
  80/**
  81 * struct khugepaged_scan - cursor for scanning
  82 * @mm_head: the head of the mm list to scan
  83 * @mm_slot: the current mm_slot we are scanning
  84 * @address: the next address inside that to be scanned
  85 *
  86 * There is only the one khugepaged_scan instance of this cursor structure.
  87 */
  88struct khugepaged_scan {
  89	struct list_head mm_head;
  90	struct mm_slot *mm_slot;
  91	unsigned long address;
  92};
  93static struct khugepaged_scan khugepaged_scan = {
  94	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  95};
  96
  97
  98static int set_recommended_min_free_kbytes(void)
  99{
 100	struct zone *zone;
 101	int nr_zones = 0;
 102	unsigned long recommended_min;
 103	extern int min_free_kbytes;
 104
 105	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 106		      &transparent_hugepage_flags) &&
 107	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 108		      &transparent_hugepage_flags))
 109		return 0;
 110
 111	for_each_populated_zone(zone)
 112		nr_zones++;
 113
 114	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 115	recommended_min = pageblock_nr_pages * nr_zones * 2;
 116
 117	/*
 118	 * Make sure that on average at least two pageblocks are almost free
 119	 * of another type, one for a migratetype to fall back to and a
 120	 * second to avoid subsequent fallbacks of other types There are 3
 121	 * MIGRATE_TYPES we care about.
 122	 */
 123	recommended_min += pageblock_nr_pages * nr_zones *
 124			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 125
 126	/* don't ever allow to reserve more than 5% of the lowmem */
 127	recommended_min = min(recommended_min,
 128			      (unsigned long) nr_free_buffer_pages() / 20);
 129	recommended_min <<= (PAGE_SHIFT-10);
 
 130
 131	if (recommended_min > min_free_kbytes)
 132		min_free_kbytes = recommended_min;
 133	setup_per_zone_wmarks();
 134	return 0;
 
 135}
 136late_initcall(set_recommended_min_free_kbytes);
 137
 138static int start_khugepaged(void)
 
 139{
 140	int err = 0;
 141	if (khugepaged_enabled()) {
 142		int wakeup;
 143		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
 144			err = -ENOMEM;
 145			goto out;
 146		}
 147		mutex_lock(&khugepaged_mutex);
 148		if (!khugepaged_thread)
 149			khugepaged_thread = kthread_run(khugepaged, NULL,
 150							"khugepaged");
 151		if (unlikely(IS_ERR(khugepaged_thread))) {
 152			printk(KERN_ERR
 153			       "khugepaged: kthread_run(khugepaged) failed\n");
 154			err = PTR_ERR(khugepaged_thread);
 155			khugepaged_thread = NULL;
 156		}
 157		wakeup = !list_empty(&khugepaged_scan.mm_head);
 158		mutex_unlock(&khugepaged_mutex);
 159		if (wakeup)
 160			wake_up_interruptible(&khugepaged_wait);
 161
 162		set_recommended_min_free_kbytes();
 163	} else
 164		/* wakeup to exit */
 165		wake_up_interruptible(&khugepaged_wait);
 166out:
 167	return err;
 168}
 169
 
 
 
 
 
 
 170#ifdef CONFIG_SYSFS
 171
 172static ssize_t double_flag_show(struct kobject *kobj,
 173				struct kobj_attribute *attr, char *buf,
 174				enum transparent_hugepage_flag enabled,
 175				enum transparent_hugepage_flag req_madv)
 176{
 177	if (test_bit(enabled, &transparent_hugepage_flags)) {
 178		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 179		return sprintf(buf, "[always] madvise never\n");
 180	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 181		return sprintf(buf, "always [madvise] never\n");
 182	else
 183		return sprintf(buf, "always madvise [never]\n");
 184}
 185static ssize_t double_flag_store(struct kobject *kobj,
 186				 struct kobj_attribute *attr,
 187				 const char *buf, size_t count,
 188				 enum transparent_hugepage_flag enabled,
 189				 enum transparent_hugepage_flag req_madv)
 190{
 
 
 191	if (!memcmp("always", buf,
 192		    min(sizeof("always")-1, count))) {
 193		set_bit(enabled, &transparent_hugepage_flags);
 194		clear_bit(req_madv, &transparent_hugepage_flags);
 195	} else if (!memcmp("madvise", buf,
 196			   min(sizeof("madvise")-1, count))) {
 197		clear_bit(enabled, &transparent_hugepage_flags);
 198		set_bit(req_madv, &transparent_hugepage_flags);
 199	} else if (!memcmp("never", buf,
 200			   min(sizeof("never")-1, count))) {
 201		clear_bit(enabled, &transparent_hugepage_flags);
 202		clear_bit(req_madv, &transparent_hugepage_flags);
 203	} else
 204		return -EINVAL;
 205
 206	return count;
 207}
 208
 209static ssize_t enabled_show(struct kobject *kobj,
 210			    struct kobj_attribute *attr, char *buf)
 211{
 212	return double_flag_show(kobj, attr, buf,
 213				TRANSPARENT_HUGEPAGE_FLAG,
 214				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 215}
 216static ssize_t enabled_store(struct kobject *kobj,
 217			     struct kobj_attribute *attr,
 218			     const char *buf, size_t count)
 219{
 220	ssize_t ret;
 221
 222	ret = double_flag_store(kobj, attr, buf, count,
 223				TRANSPARENT_HUGEPAGE_FLAG,
 224				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 225
 226	if (ret > 0) {
 227		int err = start_khugepaged();
 228		if (err)
 229			ret = err;
 230	}
 231
 232	if (ret > 0 &&
 233	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 234		      &transparent_hugepage_flags) ||
 235	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 236		      &transparent_hugepage_flags)))
 237		set_recommended_min_free_kbytes();
 238
 239	return ret;
 240}
 241static struct kobj_attribute enabled_attr =
 242	__ATTR(enabled, 0644, enabled_show, enabled_store);
 243
 244static ssize_t single_flag_show(struct kobject *kobj,
 245				struct kobj_attribute *attr, char *buf,
 246				enum transparent_hugepage_flag flag)
 247{
 248	return sprintf(buf, "%d\n",
 249		       !!test_bit(flag, &transparent_hugepage_flags));
 250}
 251
 252static ssize_t single_flag_store(struct kobject *kobj,
 253				 struct kobj_attribute *attr,
 254				 const char *buf, size_t count,
 255				 enum transparent_hugepage_flag flag)
 256{
 257	unsigned long value;
 258	int ret;
 259
 260	ret = kstrtoul(buf, 10, &value);
 261	if (ret < 0)
 262		return ret;
 263	if (value > 1)
 264		return -EINVAL;
 265
 266	if (value)
 267		set_bit(flag, &transparent_hugepage_flags);
 268	else
 269		clear_bit(flag, &transparent_hugepage_flags);
 270
 271	return count;
 272}
 273
 274/*
 275 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 276 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 277 * memory just to allocate one more hugepage.
 278 */
 279static ssize_t defrag_show(struct kobject *kobj,
 280			   struct kobj_attribute *attr, char *buf)
 281{
 282	return double_flag_show(kobj, attr, buf,
 283				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 284				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 285}
 
 286static ssize_t defrag_store(struct kobject *kobj,
 287			    struct kobj_attribute *attr,
 288			    const char *buf, size_t count)
 289{
 290	return double_flag_store(kobj, attr, buf, count,
 291				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 292				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293}
 294static struct kobj_attribute defrag_attr =
 295	__ATTR(defrag, 0644, defrag_show, defrag_store);
 296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297#ifdef CONFIG_DEBUG_VM
 298static ssize_t debug_cow_show(struct kobject *kobj,
 299				struct kobj_attribute *attr, char *buf)
 300{
 301	return single_flag_show(kobj, attr, buf,
 302				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 303}
 304static ssize_t debug_cow_store(struct kobject *kobj,
 305			       struct kobj_attribute *attr,
 306			       const char *buf, size_t count)
 307{
 308	return single_flag_store(kobj, attr, buf, count,
 309				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 310}
 311static struct kobj_attribute debug_cow_attr =
 312	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 313#endif /* CONFIG_DEBUG_VM */
 314
 315static struct attribute *hugepage_attr[] = {
 316	&enabled_attr.attr,
 317	&defrag_attr.attr,
 
 
 
 
 
 318#ifdef CONFIG_DEBUG_VM
 319	&debug_cow_attr.attr,
 320#endif
 321	NULL,
 322};
 323
 324static struct attribute_group hugepage_attr_group = {
 325	.attrs = hugepage_attr,
 326};
 327
 328static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 329					 struct kobj_attribute *attr,
 330					 char *buf)
 331{
 332	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 333}
 334
 335static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 336					  struct kobj_attribute *attr,
 337					  const char *buf, size_t count)
 338{
 339	unsigned long msecs;
 340	int err;
 341
 342	err = strict_strtoul(buf, 10, &msecs);
 343	if (err || msecs > UINT_MAX)
 344		return -EINVAL;
 345
 346	khugepaged_scan_sleep_millisecs = msecs;
 347	wake_up_interruptible(&khugepaged_wait);
 348
 349	return count;
 350}
 351static struct kobj_attribute scan_sleep_millisecs_attr =
 352	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 353	       scan_sleep_millisecs_store);
 354
 355static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 356					  struct kobj_attribute *attr,
 357					  char *buf)
 358{
 359	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 360}
 361
 362static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 363					   struct kobj_attribute *attr,
 364					   const char *buf, size_t count)
 365{
 366	unsigned long msecs;
 367	int err;
 368
 369	err = strict_strtoul(buf, 10, &msecs);
 370	if (err || msecs > UINT_MAX)
 371		return -EINVAL;
 372
 373	khugepaged_alloc_sleep_millisecs = msecs;
 374	wake_up_interruptible(&khugepaged_wait);
 375
 376	return count;
 377}
 378static struct kobj_attribute alloc_sleep_millisecs_attr =
 379	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 380	       alloc_sleep_millisecs_store);
 381
 382static ssize_t pages_to_scan_show(struct kobject *kobj,
 383				  struct kobj_attribute *attr,
 384				  char *buf)
 385{
 386	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 387}
 388static ssize_t pages_to_scan_store(struct kobject *kobj,
 389				   struct kobj_attribute *attr,
 390				   const char *buf, size_t count)
 391{
 392	int err;
 393	unsigned long pages;
 394
 395	err = strict_strtoul(buf, 10, &pages);
 396	if (err || !pages || pages > UINT_MAX)
 397		return -EINVAL;
 398
 399	khugepaged_pages_to_scan = pages;
 400
 401	return count;
 402}
 403static struct kobj_attribute pages_to_scan_attr =
 404	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 405	       pages_to_scan_store);
 406
 407static ssize_t pages_collapsed_show(struct kobject *kobj,
 408				    struct kobj_attribute *attr,
 409				    char *buf)
 410{
 411	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 412}
 413static struct kobj_attribute pages_collapsed_attr =
 414	__ATTR_RO(pages_collapsed);
 415
 416static ssize_t full_scans_show(struct kobject *kobj,
 417			       struct kobj_attribute *attr,
 418			       char *buf)
 419{
 420	return sprintf(buf, "%u\n", khugepaged_full_scans);
 421}
 422static struct kobj_attribute full_scans_attr =
 423	__ATTR_RO(full_scans);
 424
 425static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 426				      struct kobj_attribute *attr, char *buf)
 427{
 428	return single_flag_show(kobj, attr, buf,
 429				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 430}
 431static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 432				       struct kobj_attribute *attr,
 433				       const char *buf, size_t count)
 434{
 435	return single_flag_store(kobj, attr, buf, count,
 436				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 437}
 438static struct kobj_attribute khugepaged_defrag_attr =
 439	__ATTR(defrag, 0644, khugepaged_defrag_show,
 440	       khugepaged_defrag_store);
 441
 442/*
 443 * max_ptes_none controls if khugepaged should collapse hugepages over
 444 * any unmapped ptes in turn potentially increasing the memory
 445 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 446 * reduce the available free memory in the system as it
 447 * runs. Increasing max_ptes_none will instead potentially reduce the
 448 * free memory in the system during the khugepaged scan.
 449 */
 450static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 451					     struct kobj_attribute *attr,
 452					     char *buf)
 453{
 454	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 455}
 456static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 457					      struct kobj_attribute *attr,
 458					      const char *buf, size_t count)
 459{
 460	int err;
 461	unsigned long max_ptes_none;
 462
 463	err = strict_strtoul(buf, 10, &max_ptes_none);
 464	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 465		return -EINVAL;
 466
 467	khugepaged_max_ptes_none = max_ptes_none;
 468
 469	return count;
 470}
 471static struct kobj_attribute khugepaged_max_ptes_none_attr =
 472	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 473	       khugepaged_max_ptes_none_store);
 474
 475static struct attribute *khugepaged_attr[] = {
 476	&khugepaged_defrag_attr.attr,
 477	&khugepaged_max_ptes_none_attr.attr,
 478	&pages_to_scan_attr.attr,
 479	&pages_collapsed_attr.attr,
 480	&full_scans_attr.attr,
 481	&scan_sleep_millisecs_attr.attr,
 482	&alloc_sleep_millisecs_attr.attr,
 483	NULL,
 484};
 485
 486static struct attribute_group khugepaged_attr_group = {
 487	.attrs = khugepaged_attr,
 488	.name = "khugepaged",
 489};
 490
 491static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 492{
 493	int err;
 494
 495	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 496	if (unlikely(!*hugepage_kobj)) {
 497		printk(KERN_ERR "hugepage: failed kobject create\n");
 498		return -ENOMEM;
 499	}
 500
 501	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 502	if (err) {
 503		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 504		goto delete_obj;
 505	}
 506
 507	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 508	if (err) {
 509		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 510		goto remove_hp_group;
 511	}
 512
 513	return 0;
 514
 515remove_hp_group:
 516	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 517delete_obj:
 518	kobject_put(*hugepage_kobj);
 519	return err;
 520}
 521
 522static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 523{
 524	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 525	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 526	kobject_put(hugepage_kobj);
 527}
 528#else
 529static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 530{
 531	return 0;
 532}
 533
 534static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 535{
 536}
 537#endif /* CONFIG_SYSFS */
 538
 539static int __init hugepage_init(void)
 540{
 541	int err;
 542	struct kobject *hugepage_kobj;
 543
 544	if (!has_transparent_hugepage()) {
 545		transparent_hugepage_flags = 0;
 546		return -EINVAL;
 547	}
 548
 
 
 
 
 
 
 
 
 
 
 549	err = hugepage_init_sysfs(&hugepage_kobj);
 550	if (err)
 551		return err;
 552
 553	err = khugepaged_slab_init();
 554	if (err)
 555		goto out;
 556
 557	err = mm_slots_hash_init();
 558	if (err) {
 559		khugepaged_slab_free();
 560		goto out;
 561	}
 
 562
 563	/*
 564	 * By default disable transparent hugepages on smaller systems,
 565	 * where the extra memory used could hurt more than TLB overhead
 566	 * is likely to save.  The admin can still enable it through /sys.
 567	 */
 568	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 569		transparent_hugepage_flags = 0;
 
 
 570
 571	start_khugepaged();
 572
 573	set_recommended_min_free_kbytes();
 574
 575	return 0;
 576out:
 
 
 
 
 
 
 577	hugepage_exit_sysfs(hugepage_kobj);
 
 578	return err;
 579}
 580module_init(hugepage_init)
 581
 582static int __init setup_transparent_hugepage(char *str)
 583{
 584	int ret = 0;
 585	if (!str)
 586		goto out;
 587	if (!strcmp(str, "always")) {
 588		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 589			&transparent_hugepage_flags);
 590		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 591			  &transparent_hugepage_flags);
 592		ret = 1;
 593	} else if (!strcmp(str, "madvise")) {
 594		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 595			  &transparent_hugepage_flags);
 596		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 597			&transparent_hugepage_flags);
 598		ret = 1;
 599	} else if (!strcmp(str, "never")) {
 600		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 601			  &transparent_hugepage_flags);
 602		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 603			  &transparent_hugepage_flags);
 604		ret = 1;
 605	}
 606out:
 607	if (!ret)
 608		printk(KERN_WARNING
 609		       "transparent_hugepage= cannot parse, ignored\n");
 610	return ret;
 611}
 612__setup("transparent_hugepage=", setup_transparent_hugepage);
 613
 614static void prepare_pmd_huge_pte(pgtable_t pgtable,
 615				 struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616{
 617	assert_spin_locked(&mm->page_table_lock);
 
 
 
 
 
 
 
 618
 619	/* FIFO */
 620	if (!mm->pmd_huge_pte)
 621		INIT_LIST_HEAD(&pgtable->lru);
 622	else
 623		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
 624	mm->pmd_huge_pte = pgtable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625}
 626
 627static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 
 628{
 629	if (likely(vma->vm_flags & VM_WRITE))
 630		pmd = pmd_mkwrite(pmd);
 631	return pmd;
 
 
 
 
 
 
 
 
 
 
 632}
 
 633
 634static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 635					struct vm_area_struct *vma,
 636					unsigned long haddr, pmd_t *pmd,
 637					struct page *page)
 638{
 
 
 639	pgtable_t pgtable;
 
 
 640
 641	VM_BUG_ON(!PageCompound(page));
 642	pgtable = pte_alloc_one(mm, haddr);
 643	if (unlikely(!pgtable))
 644		return VM_FAULT_OOM;
 
 
 
 
 
 
 
 
 
 645
 646	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 
 
 
 
 
 647	__SetPageUptodate(page);
 648
 649	spin_lock(&mm->page_table_lock);
 650	if (unlikely(!pmd_none(*pmd))) {
 651		spin_unlock(&mm->page_table_lock);
 652		mem_cgroup_uncharge_page(page);
 653		put_page(page);
 654		pte_free(mm, pgtable);
 655	} else {
 656		pmd_t entry;
 657		entry = mk_pmd(page, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 659		entry = pmd_mkhuge(entry);
 660		/*
 661		 * The spinlocking to take the lru_lock inside
 662		 * page_add_new_anon_rmap() acts as a full memory
 663		 * barrier to be sure clear_huge_page writes become
 664		 * visible after the set_pmd_at() write.
 665		 */
 666		page_add_new_anon_rmap(page, vma, haddr);
 667		set_pmd_at(mm, haddr, pmd, entry);
 668		prepare_pmd_huge_pte(pgtable, mm);
 669		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 670		mm->nr_ptes++;
 671		spin_unlock(&mm->page_table_lock);
 672	}
 673
 674	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 675}
 
 676
 677static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 
 678{
 679	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 
 
 680}
 681
 682static inline struct page *alloc_hugepage_vma(int defrag,
 683					      struct vm_area_struct *vma,
 684					      unsigned long haddr, int nd,
 685					      gfp_t extra_gfp)
 686{
 687	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 688			       HPAGE_PMD_ORDER, vma, haddr, nd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689}
 
 
 690
 691#ifndef CONFIG_NUMA
 692static inline struct page *alloc_hugepage(int defrag)
 693{
 694	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
 695			   HPAGE_PMD_ORDER);
 
 
 
 
 
 
 696}
 697#endif
 698
 699int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 700			       unsigned long address, pmd_t *pmd,
 701			       unsigned int flags)
 702{
 
 
 
 703	struct page *page;
 704	unsigned long haddr = address & HPAGE_PMD_MASK;
 705	pte_t *pte;
 706
 707	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
 708		if (unlikely(anon_vma_prepare(vma)))
 709			return VM_FAULT_OOM;
 710		if (unlikely(khugepaged_enter(vma)))
 711			return VM_FAULT_OOM;
 712		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 713					  vma, haddr, numa_node_id(), 0);
 714		if (unlikely(!page)) {
 715			count_vm_event(THP_FAULT_FALLBACK);
 716			goto out;
 717		}
 718		count_vm_event(THP_FAULT_ALLOC);
 719		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
 720			put_page(page);
 721			goto out;
 722		}
 723		if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
 724							  page))) {
 725			mem_cgroup_uncharge_page(page);
 726			put_page(page);
 727			goto out;
 728		}
 729
 730		return 0;
 731	}
 732out:
 733	/*
 734	 * Use __pte_alloc instead of pte_alloc_map, because we can't
 735	 * run pte_offset_map on the pmd, if an huge pmd could
 736	 * materialize from under us from a different thread.
 737	 */
 738	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
 739		return VM_FAULT_OOM;
 740	/* if an huge pmd materialized from under us just retry later */
 741	if (unlikely(pmd_trans_huge(*pmd)))
 742		return 0;
 
 
 
 
 
 
 
 
 743	/*
 744	 * A regular pmd is established and it can't morph into a huge pmd
 745	 * from under us anymore at this point because we hold the mmap_sem
 746	 * read mode and khugepaged takes it in write mode. So now it's
 747	 * safe to run pte_offset_map().
 748	 */
 749	pte = pte_offset_map(pmd, address);
 750	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 
 
 
 
 
 
 
 
 
 
 751}
 752
 753int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 754		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 755		  struct vm_area_struct *vma)
 756{
 
 757	struct page *src_page;
 758	pmd_t pmd;
 759	pgtable_t pgtable;
 760	int ret;
 
 
 
 
 761
 762	ret = -ENOMEM;
 763	pgtable = pte_alloc_one(dst_mm, addr);
 764	if (unlikely(!pgtable))
 765		goto out;
 766
 767	spin_lock(&dst_mm->page_table_lock);
 768	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
 
 769
 770	ret = -EAGAIN;
 771	pmd = *src_pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772	if (unlikely(!pmd_trans_huge(pmd))) {
 773		pte_free(dst_mm, pgtable);
 774		goto out_unlock;
 775	}
 776	if (unlikely(pmd_trans_splitting(pmd))) {
 777		/* split huge page running from under us */
 778		spin_unlock(&src_mm->page_table_lock);
 779		spin_unlock(&dst_mm->page_table_lock);
 780		pte_free(dst_mm, pgtable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 781
 782		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 783		goto out;
 784	}
 785	src_page = pmd_page(pmd);
 786	VM_BUG_ON(!PageHead(src_page));
 787	get_page(src_page);
 788	page_dup_rmap(src_page);
 789	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 
 
 790
 791	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 792	pmd = pmd_mkold(pmd_wrprotect(pmd));
 793	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 794	prepare_pmd_huge_pte(pgtable, dst_mm);
 795	dst_mm->nr_ptes++;
 796
 797	ret = 0;
 798out_unlock:
 799	spin_unlock(&src_mm->page_table_lock);
 800	spin_unlock(&dst_mm->page_table_lock);
 801out:
 802	return ret;
 803}
 804
 805/* no "address" argument so destroys page coloring of some arch */
 806pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
 
 807{
 808	pgtable_t pgtable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809
 810	assert_spin_locked(&mm->page_table_lock);
 
 
 811
 812	/* FIFO */
 813	pgtable = mm->pmd_huge_pte;
 814	if (list_empty(&pgtable->lru))
 815		mm->pmd_huge_pte = NULL;
 816	else {
 817		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
 818					      struct page, lru);
 819		list_del(&pgtable->lru);
 820	}
 821	return pgtable;
 822}
 823
 824static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 825					struct vm_area_struct *vma,
 826					unsigned long address,
 827					pmd_t *pmd, pmd_t orig_pmd,
 828					struct page *page,
 829					unsigned long haddr)
 830{
 
 
 
 831	pgtable_t pgtable;
 832	pmd_t _pmd;
 833	int ret = 0, i;
 834	struct page **pages;
 
 
 835
 836	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 837			GFP_KERNEL);
 838	if (unlikely(!pages)) {
 839		ret |= VM_FAULT_OOM;
 840		goto out;
 841	}
 842
 843	for (i = 0; i < HPAGE_PMD_NR; i++) {
 844		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 845					       __GFP_OTHER_NODE,
 846					       vma, address, page_to_nid(page));
 847		if (unlikely(!pages[i] ||
 848			     mem_cgroup_newpage_charge(pages[i], mm,
 849						       GFP_KERNEL))) {
 850			if (pages[i])
 851				put_page(pages[i]);
 852			mem_cgroup_uncharge_start();
 853			while (--i >= 0) {
 854				mem_cgroup_uncharge_page(pages[i]);
 
 
 
 855				put_page(pages[i]);
 856			}
 857			mem_cgroup_uncharge_end();
 858			kfree(pages);
 859			ret |= VM_FAULT_OOM;
 860			goto out;
 861		}
 
 862	}
 863
 864	for (i = 0; i < HPAGE_PMD_NR; i++) {
 865		copy_user_highpage(pages[i], page + i,
 866				   haddr + PAGE_SIZE * i, vma);
 867		__SetPageUptodate(pages[i]);
 868		cond_resched();
 869	}
 870
 871	spin_lock(&mm->page_table_lock);
 872	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 
 
 
 
 873		goto out_free_pages;
 874	VM_BUG_ON(!PageHead(page));
 875
 876	pmdp_clear_flush_notify(vma, haddr, pmd);
 877	/* leave pmd empty until pte is filled */
 
 
 
 
 
 
 
 878
 879	pgtable = get_pmd_huge_pte(mm);
 880	pmd_populate(mm, &_pmd, pgtable);
 881
 882	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 883		pte_t *pte, entry;
 884		entry = mk_pte(pages[i], vma->vm_page_prot);
 885		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 886		page_add_new_anon_rmap(pages[i], vma, haddr);
 887		pte = pte_offset_map(&_pmd, haddr);
 888		VM_BUG_ON(!pte_none(*pte));
 889		set_pte_at(mm, haddr, pte, entry);
 890		pte_unmap(pte);
 
 
 
 
 891	}
 892	kfree(pages);
 893
 894	smp_wmb(); /* make pte visible before pmd */
 895	pmd_populate(mm, pmd, pgtable);
 896	page_remove_rmap(page);
 897	spin_unlock(&mm->page_table_lock);
 
 
 
 
 
 
 
 898
 899	ret |= VM_FAULT_WRITE;
 900	put_page(page);
 901
 902out:
 903	return ret;
 904
 905out_free_pages:
 906	spin_unlock(&mm->page_table_lock);
 907	mem_cgroup_uncharge_start();
 908	for (i = 0; i < HPAGE_PMD_NR; i++) {
 909		mem_cgroup_uncharge_page(pages[i]);
 
 
 910		put_page(pages[i]);
 911	}
 912	mem_cgroup_uncharge_end();
 913	kfree(pages);
 914	goto out;
 915}
 916
 917int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 918			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
 919{
 
 
 
 
 
 
 
 920	int ret = 0;
 921	struct page *page, *new_page;
 922	unsigned long haddr;
 923
 924	VM_BUG_ON(!vma->anon_vma);
 925	spin_lock(&mm->page_table_lock);
 926	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 
 
 
 927		goto out_unlock;
 928
 929	page = pmd_page(orig_pmd);
 930	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
 931	haddr = address & HPAGE_PMD_MASK;
 932	if (page_mapcount(page) == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933		pmd_t entry;
 934		entry = pmd_mkyoung(orig_pmd);
 935		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 936		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
 937			update_mmu_cache(vma, address, entry);
 938		ret |= VM_FAULT_WRITE;
 
 939		goto out_unlock;
 940	}
 
 941	get_page(page);
 942	spin_unlock(&mm->page_table_lock);
 943
 944	if (transparent_hugepage_enabled(vma) &&
 945	    !transparent_hugepage_debug_cow())
 946		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 947					      vma, haddr, numa_node_id(), 0);
 948	else
 949		new_page = NULL;
 950
 951	if (unlikely(!new_page)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 952		count_vm_event(THP_FAULT_FALLBACK);
 953		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
 954						   pmd, orig_pmd, page, haddr);
 955		if (ret & VM_FAULT_OOM)
 956			split_huge_page(page);
 957		put_page(page);
 958		goto out;
 959	}
 960	count_vm_event(THP_FAULT_ALLOC);
 961
 962	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
 
 963		put_page(new_page);
 964		split_huge_page(page);
 965		put_page(page);
 966		ret |= VM_FAULT_OOM;
 
 
 967		goto out;
 968	}
 969
 970	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 
 
 
 
 
 971	__SetPageUptodate(new_page);
 972
 973	spin_lock(&mm->page_table_lock);
 974	put_page(page);
 975	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
 976		spin_unlock(&mm->page_table_lock);
 977		mem_cgroup_uncharge_page(new_page);
 
 
 
 
 
 978		put_page(new_page);
 979		goto out;
 980	} else {
 981		pmd_t entry;
 982		VM_BUG_ON(!PageHead(page));
 983		entry = mk_pmd(new_page, vma->vm_page_prot);
 984		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 985		entry = pmd_mkhuge(entry);
 986		pmdp_clear_flush_notify(vma, haddr, pmd);
 987		page_add_new_anon_rmap(new_page, vma, haddr);
 988		set_pmd_at(mm, haddr, pmd, entry);
 989		update_mmu_cache(vma, address, entry);
 990		page_remove_rmap(page);
 991		put_page(page);
 
 
 
 
 
 
 992		ret |= VM_FAULT_WRITE;
 993	}
 
 
 
 
 
 
 
 
 
 
 994out_unlock:
 995	spin_unlock(&mm->page_table_lock);
 996out:
 997	return ret;
 998}
 999
1000struct page *follow_trans_huge_pmd(struct mm_struct *mm,
 
 
 
 
 
 
 
 
 
 
1001				   unsigned long addr,
1002				   pmd_t *pmd,
1003				   unsigned int flags)
1004{
 
1005	struct page *page = NULL;
1006
1007	assert_spin_locked(&mm->page_table_lock);
 
 
 
 
 
 
 
1008
1009	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 
1010		goto out;
1011
1012	page = pmd_page(*pmd);
1013	VM_BUG_ON(!PageHead(page));
1014	if (flags & FOLL_TOUCH) {
1015		pmd_t _pmd;
 
1016		/*
1017		 * We should set the dirty bit only for FOLL_WRITE but
1018		 * for now the dirty bit in the pmd is meaningless.
1019		 * And if the dirty bit will become meaningful and
1020		 * we'll only set it with FOLL_WRITE, an atomic
1021		 * set_bit will be required on the pmd to set the
1022		 * young bit, instead of the current set_pmd_at.
 
 
 
 
 
 
 
 
 
 
 
 
1023		 */
1024		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1025		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
 
 
 
 
 
 
 
 
 
1026	}
 
1027	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1028	VM_BUG_ON(!PageCompound(page));
1029	if (flags & FOLL_GET)
1030		get_page_foll(page);
1031
1032out:
1033	return page;
1034}
1035
1036int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1037		 pmd_t *pmd, unsigned long addr)
1038{
1039	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1040
1041	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1042		struct page *page;
1043		pgtable_t pgtable;
1044		pgtable = get_pmd_huge_pte(tlb->mm);
1045		page = pmd_page(*pmd);
1046		pmd_clear(pmd);
1047		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1048		page_remove_rmap(page);
1049		VM_BUG_ON(page_mapcount(page) < 0);
1050		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1051		VM_BUG_ON(!PageHead(page));
1052		tlb->mm->nr_ptes--;
1053		spin_unlock(&tlb->mm->page_table_lock);
1054		tlb_remove_page(tlb, page);
1055		pte_free(tlb->mm, pgtable);
1056		ret = 1;
1057	}
1058	return ret;
1059}
1060
1061int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1062		unsigned long addr, unsigned long end,
1063		unsigned char *vec)
1064{
1065	int ret = 0;
1066
1067	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1068		/*
1069		 * All logical pages in the range are present
1070		 * if backed by a huge page.
1071		 */
1072		spin_unlock(&vma->vm_mm->page_table_lock);
1073		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1074		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075	}
1076
1077	return ret;
1078}
 
 
 
 
 
1079
1080int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1081		  unsigned long old_addr,
1082		  unsigned long new_addr, unsigned long old_end,
1083		  pmd_t *old_pmd, pmd_t *new_pmd)
1084{
1085	int ret = 0;
1086	pmd_t pmd;
 
1087
1088	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
 
1089
1090	if ((old_addr & ~HPAGE_PMD_MASK) ||
1091	    (new_addr & ~HPAGE_PMD_MASK) ||
1092	    old_end - old_addr < HPAGE_PMD_SIZE ||
1093	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1094		goto out;
 
 
 
 
 
 
 
 
1095
1096	/*
1097	 * The destination pmd shouldn't be established, free_pgtables()
1098	 * should have release it.
1099	 */
1100	if (WARN_ON(!pmd_none(*new_pmd))) {
1101		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1102		goto out;
1103	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104
1105	ret = __pmd_trans_huge_lock(old_pmd, vma);
1106	if (ret == 1) {
1107		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1108		VM_BUG_ON(!pmd_none(*new_pmd));
1109		set_pmd_at(mm, new_addr, new_pmd, pmd);
1110		spin_unlock(&mm->page_table_lock);
1111	}
1112out:
1113	return ret;
1114}
1115
1116int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1117		unsigned long addr, pgprot_t newprot)
1118{
1119	struct mm_struct *mm = vma->vm_mm;
1120	int ret = 0;
1121
1122	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1123		pmd_t entry;
1124		entry = pmdp_get_and_clear(mm, addr, pmd);
1125		entry = pmd_modify(entry, newprot);
1126		set_pmd_at(mm, addr, pmd, entry);
1127		spin_unlock(&vma->vm_mm->page_table_lock);
1128		ret = 1;
1129	}
1130
1131	return ret;
1132}
1133
1134/*
1135 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1136 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1137 *
1138 * Note that if it returns 1, this routine returns without unlocking page
1139 * table locks. So callers must unlock them.
1140 */
1141int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
 
1142{
1143	spin_lock(&vma->vm_mm->page_table_lock);
1144	if (likely(pmd_trans_huge(*pmd))) {
1145		if (unlikely(pmd_trans_splitting(*pmd))) {
1146			spin_unlock(&vma->vm_mm->page_table_lock);
1147			wait_split_huge_page(vma->anon_vma, pmd);
1148			return -1;
1149		} else {
1150			/* Thp mapped by 'pmd' is stable, so we can
1151			 * handle it as it is. */
1152			return 1;
1153		}
1154	}
1155	spin_unlock(&vma->vm_mm->page_table_lock);
1156	return 0;
1157}
1158
1159pmd_t *page_check_address_pmd(struct page *page,
1160			      struct mm_struct *mm,
1161			      unsigned long address,
1162			      enum page_check_address_pmd_flag flag)
1163{
1164	pgd_t *pgd;
1165	pud_t *pud;
1166	pmd_t *pmd, *ret = NULL;
1167
1168	if (address & ~HPAGE_PMD_MASK)
 
1169		goto out;
1170
1171	pgd = pgd_offset(mm, address);
1172	if (!pgd_present(*pgd))
 
1173		goto out;
 
1174
1175	pud = pud_offset(pgd, address);
1176	if (!pud_present(*pud))
 
 
 
 
1177		goto out;
1178
1179	pmd = pmd_offset(pud, address);
1180	if (pmd_none(*pmd))
1181		goto out;
1182	if (pmd_page(*pmd) != page)
1183		goto out;
 
1184	/*
1185	 * split_vma() may create temporary aliased mappings. There is
1186	 * no risk as long as all huge pmd are found and have their
1187	 * splitting bit set before __split_huge_page_refcount
1188	 * runs. Finding the same huge pmd more than once during the
1189	 * same rmap walk is not a problem.
1190	 */
1191	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1192	    pmd_trans_splitting(*pmd))
1193		goto out;
1194	if (pmd_trans_huge(*pmd)) {
1195		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1196			  !pmd_trans_splitting(*pmd));
1197		ret = pmd;
1198	}
1199out:
1200	return ret;
1201}
1202
1203static int __split_huge_page_splitting(struct page *page,
1204				       struct vm_area_struct *vma,
1205				       unsigned long address)
1206{
1207	struct mm_struct *mm = vma->vm_mm;
1208	pmd_t *pmd;
1209	int ret = 0;
 
1210
1211	spin_lock(&mm->page_table_lock);
1212	pmd = page_check_address_pmd(page, mm, address,
1213				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1214	if (pmd) {
1215		/*
1216		 * We can't temporarily set the pmd to null in order
1217		 * to split it, the pmd must remain marked huge at all
1218		 * times or the VM won't take the pmd_trans_huge paths
1219		 * and it won't wait on the anon_vma->root->mutex to
1220		 * serialize against split_huge_page*.
1221		 */
1222		pmdp_splitting_flush_notify(vma, address, pmd);
1223		ret = 1;
1224	}
1225	spin_unlock(&mm->page_table_lock);
1226
 
 
 
 
 
1227	return ret;
1228}
1229
1230static void __split_huge_page_refcount(struct page *page)
1231{
1232	int i;
1233	struct zone *zone = page_zone(page);
1234	struct lruvec *lruvec;
1235	int tail_count = 0;
1236
1237	/* prevent PageLRU to go away from under us, and freeze lru stats */
1238	spin_lock_irq(&zone->lru_lock);
1239	lruvec = mem_cgroup_page_lruvec(page, zone);
 
1240
1241	compound_lock(page);
1242	/* complete memcg works before add pages to LRU */
1243	mem_cgroup_split_huge_fixup(page);
 
 
1244
1245	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1246		struct page *page_tail = page + i;
1247
1248		/* tail_page->_mapcount cannot change */
1249		BUG_ON(page_mapcount(page_tail) < 0);
1250		tail_count += page_mapcount(page_tail);
1251		/* check for overflow */
1252		BUG_ON(tail_count < 0);
1253		BUG_ON(atomic_read(&page_tail->_count) != 0);
1254		/*
1255		 * tail_page->_count is zero and not changing from
1256		 * under us. But get_page_unless_zero() may be running
1257		 * from under us on the tail_page. If we used
1258		 * atomic_set() below instead of atomic_add(), we
1259		 * would then run atomic_set() concurrently with
1260		 * get_page_unless_zero(), and atomic_set() is
1261		 * implemented in C not using locked ops. spin_unlock
1262		 * on x86 sometime uses locked ops because of PPro
1263		 * errata 66, 92, so unless somebody can guarantee
1264		 * atomic_set() here would be safe on all archs (and
1265		 * not only on x86), it's safer to use atomic_add().
1266		 */
1267		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1268			   &page_tail->_count);
 
 
 
 
1269
1270		/* after clearing PageTail the gup refcount can be released */
1271		smp_mb();
 
 
 
 
 
 
 
 
 
 
 
 
1272
1273		/*
1274		 * retain hwpoison flag of the poisoned tail page:
1275		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1276		 *   by the memory-failure.
1277		 */
1278		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1279		page_tail->flags |= (page->flags &
1280				     ((1L << PG_referenced) |
1281				      (1L << PG_swapbacked) |
1282				      (1L << PG_mlocked) |
1283				      (1L << PG_uptodate)));
1284		page_tail->flags |= (1L << PG_dirty);
1285
1286		/* clear PageTail before overwriting first_page */
1287		smp_wmb();
1288
1289		/*
1290		 * __split_huge_page_splitting() already set the
1291		 * splitting bit in all pmd that could map this
1292		 * hugepage, that will ensure no CPU can alter the
1293		 * mapcount on the head page. The mapcount is only
1294		 * accounted in the head page and it has to be
1295		 * transferred to all tail pages in the below code. So
1296		 * for this code to be safe, the split the mapcount
1297		 * can't change. But that doesn't mean userland can't
1298		 * keep changing and reading the page contents while
1299		 * we transfer the mapcount, so the pmd splitting
1300		 * status is achieved setting a reserved bit in the
1301		 * pmd, not by clearing the present bit.
1302		*/
1303		page_tail->_mapcount = page->_mapcount;
1304
1305		BUG_ON(page_tail->mapping);
1306		page_tail->mapping = page->mapping;
1307
1308		page_tail->index = page->index + i;
1309
1310		BUG_ON(!PageAnon(page_tail));
1311		BUG_ON(!PageUptodate(page_tail));
1312		BUG_ON(!PageDirty(page_tail));
1313		BUG_ON(!PageSwapBacked(page_tail));
1314
1315		lru_add_page_tail(page, page_tail, lruvec);
1316	}
1317	atomic_sub(tail_count, &page->_count);
1318	BUG_ON(atomic_read(&page->_count) <= 0);
1319
1320	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1321	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1322
1323	ClearPageCompound(page);
1324	compound_unlock(page);
1325	spin_unlock_irq(&zone->lru_lock);
1326
1327	for (i = 1; i < HPAGE_PMD_NR; i++) {
1328		struct page *page_tail = page + i;
1329		BUG_ON(page_count(page_tail) <= 0);
1330		/*
1331		 * Tail pages may be freed if there wasn't any mapping
1332		 * like if add_to_swap() is running on a lru page that
1333		 * had its mapping zapped. And freeing these pages
1334		 * requires taking the lru_lock so we do the put_page
1335		 * of the tail pages after the split is complete.
1336		 */
1337		put_page(page_tail);
1338	}
 
 
1339
 
 
 
 
 
1340	/*
1341	 * Only the head page (now become a regular page) is required
1342	 * to be pinned by the caller.
 
 
1343	 */
1344	BUG_ON(page_count(page) <= 0);
1345}
 
1346
1347static int __split_huge_page_map(struct page *page,
1348				 struct vm_area_struct *vma,
1349				 unsigned long address)
1350{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351	struct mm_struct *mm = vma->vm_mm;
1352	pmd_t *pmd, _pmd;
1353	int ret = 0, i;
1354	pgtable_t pgtable;
1355	unsigned long haddr;
1356
1357	spin_lock(&mm->page_table_lock);
1358	pmd = page_check_address_pmd(page, mm, address,
1359				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1360	if (pmd) {
1361		pgtable = get_pmd_huge_pte(mm);
1362		pmd_populate(mm, &_pmd, pgtable);
1363
1364		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1365		     i++, haddr += PAGE_SIZE) {
1366			pte_t *pte, entry;
1367			BUG_ON(PageCompound(page+i));
1368			entry = mk_pte(page + i, vma->vm_page_prot);
1369			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1370			if (!pmd_write(*pmd))
1371				entry = pte_wrprotect(entry);
1372			else
1373				BUG_ON(page_mapcount(page) != 1);
1374			if (!pmd_young(*pmd))
1375				entry = pte_mkold(entry);
1376			pte = pte_offset_map(&_pmd, haddr);
1377			BUG_ON(!pte_none(*pte));
1378			set_pte_at(mm, haddr, pte, entry);
1379			pte_unmap(pte);
1380		}
1381
1382		smp_wmb(); /* make pte visible before pmd */
1383		/*
1384		 * Up to this point the pmd is present and huge and
1385		 * userland has the whole access to the hugepage
1386		 * during the split (which happens in place). If we
1387		 * overwrite the pmd with the not-huge version
1388		 * pointing to the pte here (which of course we could
1389		 * if all CPUs were bug free), userland could trigger
1390		 * a small page size TLB miss on the small sized TLB
1391		 * while the hugepage TLB entry is still established
1392		 * in the huge TLB. Some CPU doesn't like that. See
1393		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1394		 * Erratum 383 on page 93. Intel should be safe but is
1395		 * also warns that it's only safe if the permission
1396		 * and cache attributes of the two entries loaded in
1397		 * the two TLB is identical (which should be the case
1398		 * here). But it is generally safer to never allow
1399		 * small and huge TLB entries for the same virtual
1400		 * address to be loaded simultaneously. So instead of
1401		 * doing "pmd_populate(); flush_tlb_range();" we first
1402		 * mark the current pmd notpresent (atomically because
1403		 * here the pmd_trans_huge and pmd_trans_splitting
1404		 * must remain set at all times on the pmd until the
1405		 * split is complete for this pmd), then we flush the
1406		 * SMP TLB and finally we write the non-huge version
1407		 * of the pmd entry with pmd_populate.
1408		 */
1409		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1410		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1411		pmd_populate(mm, pmd, pgtable);
1412		ret = 1;
1413	}
1414	spin_unlock(&mm->page_table_lock);
1415
1416	return ret;
1417}
 
 
 
 
 
 
 
 
 
 
 
1418
1419/* must be called with anon_vma->root->mutex hold */
1420static void __split_huge_page(struct page *page,
1421			      struct anon_vma *anon_vma)
1422{
1423	int mapcount, mapcount2;
1424	struct anon_vma_chain *avc;
1425
1426	BUG_ON(!PageHead(page));
1427	BUG_ON(PageTail(page));
1428
1429	mapcount = 0;
1430	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1431		struct vm_area_struct *vma = avc->vma;
1432		unsigned long addr = vma_address(page, vma);
1433		BUG_ON(is_vma_temporary_stack(vma));
1434		if (addr == -EFAULT)
1435			continue;
1436		mapcount += __split_huge_page_splitting(page, vma, addr);
1437	}
1438	/*
1439	 * It is critical that new vmas are added to the tail of the
1440	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1441	 * and establishes a child pmd before
1442	 * __split_huge_page_splitting() freezes the parent pmd (so if
1443	 * we fail to prevent copy_huge_pmd() from running until the
1444	 * whole __split_huge_page() is complete), we will still see
1445	 * the newly established pmd of the child later during the
1446	 * walk, to be able to set it as pmd_trans_splitting too.
1447	 */
1448	if (mapcount != page_mapcount(page))
1449		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1450		       mapcount, page_mapcount(page));
1451	BUG_ON(mapcount != page_mapcount(page));
1452
1453	__split_huge_page_refcount(page);
1454
1455	mapcount2 = 0;
1456	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1457		struct vm_area_struct *vma = avc->vma;
1458		unsigned long addr = vma_address(page, vma);
1459		BUG_ON(is_vma_temporary_stack(vma));
1460		if (addr == -EFAULT)
1461			continue;
1462		mapcount2 += __split_huge_page_map(page, vma, addr);
1463	}
1464	if (mapcount != mapcount2)
1465		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1466		       mapcount, mapcount2, page_mapcount(page));
1467	BUG_ON(mapcount != mapcount2);
1468}
1469
1470int split_huge_page(struct page *page)
 
 
 
 
 
 
 
1471{
1472	struct anon_vma *anon_vma;
1473	int ret = 1;
 
 
 
1474
1475	BUG_ON(!PageAnon(page));
1476	anon_vma = page_lock_anon_vma(page);
1477	if (!anon_vma)
1478		goto out;
1479	ret = 0;
1480	if (!PageCompound(page))
1481		goto out_unlock;
1482
1483	BUG_ON(!PageSwapBacked(page));
1484	__split_huge_page(page, anon_vma);
1485	count_vm_event(THP_SPLIT);
1486
1487	BUG_ON(PageCompound(page));
1488out_unlock:
1489	page_unlock_anon_vma(anon_vma);
1490out:
1491	return ret;
1492}
1493
1494#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1495		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1496
1497int hugepage_madvise(struct vm_area_struct *vma,
1498		     unsigned long *vm_flags, int advice)
1499{
1500	switch (advice) {
1501	case MADV_HUGEPAGE:
1502		/*
1503		 * Be somewhat over-protective like KSM for now!
1504		 */
1505		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1506			return -EINVAL;
1507		*vm_flags &= ~VM_NOHUGEPAGE;
1508		*vm_flags |= VM_HUGEPAGE;
1509		/*
1510		 * If the vma become good for khugepaged to scan,
1511		 * register it here without waiting a page fault that
1512		 * may not happen any time soon.
1513		 */
1514		if (unlikely(khugepaged_enter_vma_merge(vma)))
1515			return -ENOMEM;
1516		break;
1517	case MADV_NOHUGEPAGE:
1518		/*
1519		 * Be somewhat over-protective like KSM for now!
1520		 */
1521		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1522			return -EINVAL;
1523		*vm_flags &= ~VM_HUGEPAGE;
1524		*vm_flags |= VM_NOHUGEPAGE;
1525		/*
1526		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1527		 * this vma even if we leave the mm registered in khugepaged if
1528		 * it got registered before VM_NOHUGEPAGE was set.
1529		 */
1530		break;
1531	}
 
1532
1533	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534}
1535
1536static int __init khugepaged_slab_init(void)
 
 
 
 
 
 
1537{
1538	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1539					  sizeof(struct mm_slot),
1540					  __alignof__(struct mm_slot), 0, NULL);
1541	if (!mm_slot_cache)
1542		return -ENOMEM;
1543
1544	return 0;
1545}
1546
1547static void __init khugepaged_slab_free(void)
 
 
 
 
 
 
1548{
1549	kmem_cache_destroy(mm_slot_cache);
1550	mm_slot_cache = NULL;
1551}
1552
1553static inline struct mm_slot *alloc_mm_slot(void)
1554{
1555	if (!mm_slot_cache)	/* initialization failed */
1556		return NULL;
1557	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1558}
1559
1560static inline void free_mm_slot(struct mm_slot *mm_slot)
 
 
1561{
1562	kmem_cache_free(mm_slot_cache, mm_slot);
1563}
1564
1565static int __init mm_slots_hash_init(void)
1566{
1567	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1568				GFP_KERNEL);
1569	if (!mm_slots_hash)
1570		return -ENOMEM;
1571	return 0;
1572}
1573
1574#if 0
1575static void __init mm_slots_hash_free(void)
1576{
1577	kfree(mm_slots_hash);
1578	mm_slots_hash = NULL;
1579}
1580#endif
1581
1582static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1583{
1584	struct mm_slot *mm_slot;
1585	struct hlist_head *bucket;
1586	struct hlist_node *node;
1587
1588	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1589				% MM_SLOTS_HASH_HEADS];
1590	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1591		if (mm == mm_slot->mm)
1592			return mm_slot;
1593	}
1594	return NULL;
1595}
1596
1597static void insert_to_mm_slots_hash(struct mm_struct *mm,
1598				    struct mm_slot *mm_slot)
1599{
1600	struct hlist_head *bucket;
 
 
 
1601
1602	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1603				% MM_SLOTS_HASH_HEADS];
1604	mm_slot->mm = mm;
1605	hlist_add_head(&mm_slot->hash, bucket);
1606}
1607
1608static inline int khugepaged_test_exit(struct mm_struct *mm)
1609{
1610	return atomic_read(&mm->mm_users) == 0;
1611}
1612
1613int __khugepaged_enter(struct mm_struct *mm)
 
1614{
1615	struct mm_slot *mm_slot;
1616	int wakeup;
 
1617
1618	mm_slot = alloc_mm_slot();
1619	if (!mm_slot)
1620		return -ENOMEM;
 
 
1621
1622	/* __khugepaged_exit() must not run from under us */
1623	VM_BUG_ON(khugepaged_test_exit(mm));
1624	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1625		free_mm_slot(mm_slot);
1626		return 0;
1627	}
1628
1629	spin_lock(&khugepaged_mm_lock);
1630	insert_to_mm_slots_hash(mm, mm_slot);
1631	/*
1632	 * Insert just behind the scanning cursor, to let the area settle
1633	 * down a little.
1634	 */
1635	wakeup = list_empty(&khugepaged_scan.mm_head);
1636	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1637	spin_unlock(&khugepaged_mm_lock);
1638
1639	atomic_inc(&mm->mm_count);
1640	if (wakeup)
1641		wake_up_interruptible(&khugepaged_wait);
1642
1643	return 0;
1644}
 
1645
1646int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
 
1647{
1648	unsigned long hstart, hend;
1649	if (!vma->anon_vma)
1650		/*
1651		 * Not yet faulted in so we will register later in the
1652		 * page fault if needed.
1653		 */
1654		return 0;
1655	if (vma->vm_ops)
1656		/* khugepaged not yet working on file or special mappings */
1657		return 0;
1658	/*
1659	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1660	 * true too, verify it here.
 
 
 
 
1661	 */
1662	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1663	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1664	hend = vma->vm_end & HPAGE_PMD_MASK;
1665	if (hstart < hend)
1666		return khugepaged_enter(vma);
1667	return 0;
 
 
 
 
 
 
 
 
 
 
1668}
1669
1670void __khugepaged_exit(struct mm_struct *mm)
 
1671{
1672	struct mm_slot *mm_slot;
1673	int free = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1674
1675	spin_lock(&khugepaged_mm_lock);
1676	mm_slot = get_mm_slot(mm);
1677	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1678		hlist_del(&mm_slot->hash);
1679		list_del(&mm_slot->mm_node);
1680		free = 1;
1681	}
1682	spin_unlock(&khugepaged_mm_lock);
1683
1684	if (free) {
1685		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1686		free_mm_slot(mm_slot);
1687		mmdrop(mm);
1688	} else if (mm_slot) {
1689		/*
1690		 * This is required to serialize against
1691		 * khugepaged_test_exit() (which is guaranteed to run
1692		 * under mmap sem read mode). Stop here (after we
1693		 * return all pagetables will be destroyed) until
1694		 * khugepaged has finished working on the pagetables
1695		 * under the mmap_sem.
1696		 */
1697		down_write(&mm->mmap_sem);
1698		up_write(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699	}
1700}
1701
1702static void release_pte_page(struct page *page)
1703{
1704	/* 0 stands for page_is_file_cache(page) == false */
1705	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1706	unlock_page(page);
1707	putback_lru_page(page);
1708}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709
1710static void release_pte_pages(pte_t *pte, pte_t *_pte)
1711{
1712	while (--_pte >= pte) {
1713		pte_t pteval = *_pte;
1714		if (!pte_none(pteval))
1715			release_pte_page(pte_page(pteval));
1716	}
1717}
 
 
 
 
1718
1719static void release_all_pte_pages(pte_t *pte)
1720{
1721	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1722}
 
 
1723
1724static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1725					unsigned long address,
1726					pte_t *pte)
1727{
1728	struct page *page;
1729	pte_t *_pte;
1730	int referenced = 0, isolated = 0, none = 0;
1731	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1732	     _pte++, address += PAGE_SIZE) {
1733		pte_t pteval = *_pte;
1734		if (pte_none(pteval)) {
1735			if (++none <= khugepaged_max_ptes_none)
1736				continue;
1737			else {
1738				release_pte_pages(pte, _pte);
1739				goto out;
1740			}
1741		}
1742		if (!pte_present(pteval) || !pte_write(pteval)) {
1743			release_pte_pages(pte, _pte);
1744			goto out;
1745		}
1746		page = vm_normal_page(vma, address, pteval);
1747		if (unlikely(!page)) {
1748			release_pte_pages(pte, _pte);
1749			goto out;
1750		}
1751		VM_BUG_ON(PageCompound(page));
1752		BUG_ON(!PageAnon(page));
1753		VM_BUG_ON(!PageSwapBacked(page));
1754
1755		/* cannot use mapcount: can't collapse if there's a gup pin */
1756		if (page_count(page) != 1) {
1757			release_pte_pages(pte, _pte);
1758			goto out;
1759		}
1760		/*
1761		 * We can do it before isolate_lru_page because the
1762		 * page can't be freed from under us. NOTE: PG_lock
1763		 * is needed to serialize against split_huge_page
1764		 * when invoked from the VM.
1765		 */
1766		if (!trylock_page(page)) {
1767			release_pte_pages(pte, _pte);
1768			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
1769		}
1770		/*
1771		 * Isolate the page to avoid collapsing an hugepage
1772		 * currently in use by the VM.
1773		 */
1774		if (isolate_lru_page(page)) {
1775			unlock_page(page);
1776			release_pte_pages(pte, _pte);
1777			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778		}
1779		/* 0 stands for page_is_file_cache(page) == false */
1780		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1781		VM_BUG_ON(!PageLocked(page));
1782		VM_BUG_ON(PageLRU(page));
1783
1784		/* If there is no mapped pte young don't collapse the page */
1785		if (pte_young(pteval) || PageReferenced(page) ||
1786		    mmu_notifier_test_young(vma->vm_mm, address))
1787			referenced = 1;
1788	}
1789	if (unlikely(!referenced))
1790		release_all_pte_pages(pte);
1791	else
1792		isolated = 1;
1793out:
1794	return isolated;
1795}
1796
1797static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1798				      struct vm_area_struct *vma,
1799				      unsigned long address,
1800				      spinlock_t *ptl)
1801{
1802	pte_t *_pte;
1803	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1804		pte_t pteval = *_pte;
1805		struct page *src_page;
1806
1807		if (pte_none(pteval)) {
1808			clear_user_highpage(page, address);
1809			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1810		} else {
1811			src_page = pte_page(pteval);
1812			copy_user_highpage(page, src_page, address, vma);
1813			VM_BUG_ON(page_mapcount(src_page) != 1);
1814			VM_BUG_ON(page_count(src_page) != 2);
1815			release_pte_page(src_page);
1816			/*
1817			 * ptl mostly unnecessary, but preempt has to
1818			 * be disabled to update the per-cpu stats
1819			 * inside page_remove_rmap().
1820			 */
1821			spin_lock(ptl);
1822			/*
1823			 * paravirt calls inside pte_clear here are
1824			 * superfluous.
1825			 */
1826			pte_clear(vma->vm_mm, address, _pte);
1827			page_remove_rmap(src_page);
1828			spin_unlock(ptl);
1829			free_page_and_swap_cache(src_page);
1830		}
1831
1832		address += PAGE_SIZE;
1833		page++;
1834	}
1835}
1836
1837static void collapse_huge_page(struct mm_struct *mm,
1838			       unsigned long address,
1839			       struct page **hpage,
1840			       struct vm_area_struct *vma,
1841			       int node)
1842{
1843	pgd_t *pgd;
1844	pud_t *pud;
1845	pmd_t *pmd, _pmd;
1846	pte_t *pte;
1847	pgtable_t pgtable;
1848	struct page *new_page;
1849	spinlock_t *ptl;
1850	int isolated;
1851	unsigned long hstart, hend;
1852
1853	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1854#ifndef CONFIG_NUMA
1855	up_read(&mm->mmap_sem);
1856	VM_BUG_ON(!*hpage);
1857	new_page = *hpage;
1858#else
1859	VM_BUG_ON(*hpage);
1860	/*
1861	 * Allocate the page while the vma is still valid and under
1862	 * the mmap_sem read mode so there is no memory allocation
1863	 * later when we take the mmap_sem in write mode. This is more
1864	 * friendly behavior (OTOH it may actually hide bugs) to
1865	 * filesystems in userland with daemons allocating memory in
1866	 * the userland I/O paths.  Allocating memory with the
1867	 * mmap_sem in read mode is good idea also to allow greater
1868	 * scalability.
1869	 */
1870	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1871				      node, __GFP_OTHER_NODE);
1872
1873	/*
1874	 * After allocating the hugepage, release the mmap_sem read lock in
1875	 * preparation for taking it in write mode.
1876	 */
1877	up_read(&mm->mmap_sem);
1878	if (unlikely(!new_page)) {
1879		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1880		*hpage = ERR_PTR(-ENOMEM);
1881		return;
1882	}
1883#endif
1884
1885	count_vm_event(THP_COLLAPSE_ALLOC);
1886	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1887#ifdef CONFIG_NUMA
1888		put_page(new_page);
1889#endif
1890		return;
1891	}
1892
1893	/*
1894	 * Prevent all access to pagetables with the exception of
1895	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1896	 * handled by the anon_vma lock + PG_lock.
1897	 */
1898	down_write(&mm->mmap_sem);
1899	if (unlikely(khugepaged_test_exit(mm)))
1900		goto out;
1901
1902	vma = find_vma(mm, address);
1903	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1904	hend = vma->vm_end & HPAGE_PMD_MASK;
1905	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1906		goto out;
1907
1908	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1909	    (vma->vm_flags & VM_NOHUGEPAGE))
1910		goto out;
1911
1912	if (!vma->anon_vma || vma->vm_ops)
1913		goto out;
1914	if (is_vma_temporary_stack(vma))
1915		goto out;
 
 
 
1916	/*
1917	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1918	 * true too, verify it here.
 
 
 
 
 
 
 
 
 
1919	 */
1920	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
 
 
 
 
 
 
 
 
 
 
1921
1922	pgd = pgd_offset(mm, address);
1923	if (!pgd_present(*pgd))
1924		goto out;
 
 
 
 
1925
1926	pud = pud_offset(pgd, address);
1927	if (!pud_present(*pud))
1928		goto out;
1929
1930	pmd = pmd_offset(pud, address);
1931	/* pmd can't go away or become huge under us */
1932	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1933		goto out;
1934
1935	anon_vma_lock(vma->anon_vma);
 
1936
1937	pte = pte_offset_map(pmd, address);
1938	ptl = pte_lockptr(mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
1939
1940	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1941	/*
1942	 * After this gup_fast can't run anymore. This also removes
1943	 * any huge TLB entry from the CPU so we won't allow
1944	 * huge and small TLB entries for the same virtual address
1945	 * to avoid the risk of CPU bugs in that area.
1946	 */
1947	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1948	spin_unlock(&mm->page_table_lock);
 
 
1949
1950	spin_lock(ptl);
1951	isolated = __collapse_huge_page_isolate(vma, address, pte);
1952	spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1953
1954	if (unlikely(!isolated)) {
1955		pte_unmap(pte);
1956		spin_lock(&mm->page_table_lock);
1957		BUG_ON(!pmd_none(*pmd));
1958		set_pmd_at(mm, address, pmd, _pmd);
1959		spin_unlock(&mm->page_table_lock);
1960		anon_vma_unlock(vma->anon_vma);
1961		goto out;
1962	}
 
 
 
 
 
 
 
 
1963
1964	/*
1965	 * All pages are isolated and locked so anon_vma rmap
1966	 * can't run anymore.
 
 
1967	 */
1968	anon_vma_unlock(vma->anon_vma);
 
 
 
 
 
 
 
 
 
 
1969
1970	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1971	pte_unmap(pte);
1972	__SetPageUptodate(new_page);
1973	pgtable = pmd_pgtable(_pmd);
1974	VM_BUG_ON(page_count(pgtable) != 1);
1975	VM_BUG_ON(page_mapcount(pgtable) != 0);
1976
1977	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1978	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1979	_pmd = pmd_mkhuge(_pmd);
1980
1981	/*
1982	 * spin_lock() below is not the equivalent of smp_wmb(), so
1983	 * this is needed to avoid the copy_huge_page writes to become
1984	 * visible after the set_pmd_at() write.
 
1985	 */
1986	smp_wmb();
 
 
 
 
 
 
 
 
 
1987
1988	spin_lock(&mm->page_table_lock);
1989	BUG_ON(!pmd_none(*pmd));
1990	page_add_new_anon_rmap(new_page, vma, address);
1991	set_pmd_at(mm, address, pmd, _pmd);
1992	update_mmu_cache(vma, address, _pmd);
1993	prepare_pmd_huge_pte(pgtable, mm);
1994	spin_unlock(&mm->page_table_lock);
1995
1996#ifndef CONFIG_NUMA
1997	*hpage = NULL;
1998#endif
1999	khugepaged_pages_collapsed++;
2000out_up_write:
2001	up_write(&mm->mmap_sem);
2002	return;
2003
2004out:
2005	mem_cgroup_uncharge_page(new_page);
2006#ifdef CONFIG_NUMA
2007	put_page(new_page);
2008#endif
2009	goto out_up_write;
2010}
2011
2012static int khugepaged_scan_pmd(struct mm_struct *mm,
2013			       struct vm_area_struct *vma,
2014			       unsigned long address,
2015			       struct page **hpage)
2016{
2017	pgd_t *pgd;
2018	pud_t *pud;
2019	pmd_t *pmd;
2020	pte_t *pte, *_pte;
2021	int ret = 0, referenced = 0, none = 0;
2022	struct page *page;
2023	unsigned long _address;
2024	spinlock_t *ptl;
2025	int node = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026
2027	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
2028
2029	pgd = pgd_offset(mm, address);
2030	if (!pgd_present(*pgd))
2031		goto out;
2032
2033	pud = pud_offset(pgd, address);
2034	if (!pud_present(*pud))
2035		goto out;
2036
2037	pmd = pmd_offset(pud, address);
2038	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2039		goto out;
 
 
2040
2041	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2042	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2043	     _pte++, _address += PAGE_SIZE) {
2044		pte_t pteval = *_pte;
2045		if (pte_none(pteval)) {
2046			if (++none <= khugepaged_max_ptes_none)
2047				continue;
2048			else
2049				goto out_unmap;
2050		}
2051		if (!pte_present(pteval) || !pte_write(pteval))
2052			goto out_unmap;
2053		page = vm_normal_page(vma, _address, pteval);
2054		if (unlikely(!page))
2055			goto out_unmap;
2056		/*
2057		 * Chose the node of the first page. This could
2058		 * be more sophisticated and look at more pages,
2059		 * but isn't for now.
 
 
2060		 */
2061		if (node == -1)
2062			node = page_to_nid(page);
2063		VM_BUG_ON(PageCompound(page));
2064		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2065			goto out_unmap;
2066		/* cannot use mapcount: can't collapse if there's a gup pin */
2067		if (page_count(page) != 1)
2068			goto out_unmap;
2069		if (pte_young(pteval) || PageReferenced(page) ||
2070		    mmu_notifier_test_young(vma->vm_mm, address))
2071			referenced = 1;
2072	}
2073	if (referenced)
2074		ret = 1;
2075out_unmap:
2076	pte_unmap_unlock(pte, ptl);
2077	if (ret)
2078		/* collapse_huge_page will return with the mmap_sem released */
2079		collapse_huge_page(mm, address, hpage, vma, node);
2080out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2081	return ret;
2082}
2083
2084static void collect_mm_slot(struct mm_slot *mm_slot)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085{
2086	struct mm_struct *mm = mm_slot->mm;
2087
2088	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
 
2089
2090	if (khugepaged_test_exit(mm)) {
2091		/* free mm_slot */
2092		hlist_del(&mm_slot->hash);
2093		list_del(&mm_slot->mm_node);
 
 
2094
2095		/*
2096		 * Not strictly needed because the mm exited already.
2097		 *
2098		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2099		 */
2100
2101		/* khugepaged_mm_lock actually not necessary for the below */
2102		free_mm_slot(mm_slot);
2103		mmdrop(mm);
2104	}
 
 
 
 
 
 
 
 
 
 
 
 
2105}
2106
2107static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2108					    struct page **hpage)
2109	__releases(&khugepaged_mm_lock)
2110	__acquires(&khugepaged_mm_lock)
2111{
2112	struct mm_slot *mm_slot;
2113	struct mm_struct *mm;
2114	struct vm_area_struct *vma;
2115	int progress = 0;
2116
2117	VM_BUG_ON(!pages);
2118	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2119
2120	if (khugepaged_scan.mm_slot)
2121		mm_slot = khugepaged_scan.mm_slot;
2122	else {
2123		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2124				     struct mm_slot, mm_node);
2125		khugepaged_scan.address = 0;
2126		khugepaged_scan.mm_slot = mm_slot;
2127	}
2128	spin_unlock(&khugepaged_mm_lock);
2129
2130	mm = mm_slot->mm;
2131	down_read(&mm->mmap_sem);
2132	if (unlikely(khugepaged_test_exit(mm)))
2133		vma = NULL;
2134	else
2135		vma = find_vma(mm, khugepaged_scan.address);
 
 
 
 
2136
2137	progress++;
2138	for (; vma; vma = vma->vm_next) {
2139		unsigned long hstart, hend;
2140
2141		cond_resched();
2142		if (unlikely(khugepaged_test_exit(mm))) {
2143			progress++;
2144			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145		}
 
 
 
 
2146
2147		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2148		     !khugepaged_always()) ||
2149		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2150		skip:
2151			progress++;
2152			continue;
2153		}
2154		if (!vma->anon_vma || vma->vm_ops)
2155			goto skip;
2156		if (is_vma_temporary_stack(vma))
2157			goto skip;
2158		/*
2159		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2160		 * must be true too, verify it here.
2161		 */
2162		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2163			  vma->vm_flags & VM_NO_THP);
2164
2165		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2166		hend = vma->vm_end & HPAGE_PMD_MASK;
2167		if (hstart >= hend)
2168			goto skip;
2169		if (khugepaged_scan.address > hend)
2170			goto skip;
2171		if (khugepaged_scan.address < hstart)
2172			khugepaged_scan.address = hstart;
2173		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2174
2175		while (khugepaged_scan.address < hend) {
2176			int ret;
2177			cond_resched();
2178			if (unlikely(khugepaged_test_exit(mm)))
2179				goto breakouterloop;
2180
2181			VM_BUG_ON(khugepaged_scan.address < hstart ||
2182				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2183				  hend);
2184			ret = khugepaged_scan_pmd(mm, vma,
2185						  khugepaged_scan.address,
2186						  hpage);
2187			/* move to next address */
2188			khugepaged_scan.address += HPAGE_PMD_SIZE;
2189			progress += HPAGE_PMD_NR;
2190			if (ret)
2191				/* we released mmap_sem so break loop */
2192				goto breakouterloop_mmap_sem;
2193			if (progress >= pages)
2194				goto breakouterloop;
2195		}
2196	}
2197breakouterloop:
2198	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2199breakouterloop_mmap_sem:
2200
2201	spin_lock(&khugepaged_mm_lock);
2202	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2203	/*
2204	 * Release the current mm_slot if this mm is about to die, or
2205	 * if we scanned all vmas of this mm.
2206	 */
2207	if (khugepaged_test_exit(mm) || !vma) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2208		/*
2209		 * Make sure that if mm_users is reaching zero while
2210		 * khugepaged runs here, khugepaged_exit will find
2211		 * mm_slot not pointing to the exiting mm.
2212		 */
2213		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2214			khugepaged_scan.mm_slot = list_entry(
2215				mm_slot->mm_node.next,
2216				struct mm_slot, mm_node);
2217			khugepaged_scan.address = 0;
2218		} else {
2219			khugepaged_scan.mm_slot = NULL;
2220			khugepaged_full_scans++;
2221		}
 
 
 
 
 
 
 
 
 
 
 
2222
2223		collect_mm_slot(mm_slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2224	}
2225
2226	return progress;
 
 
 
 
 
 
 
 
 
2227}
2228
2229static int khugepaged_has_work(void)
2230{
2231	return !list_empty(&khugepaged_scan.mm_head) &&
2232		khugepaged_enabled();
 
 
 
 
 
 
 
 
2233}
2234
2235static int khugepaged_wait_event(void)
2236{
2237	return !list_empty(&khugepaged_scan.mm_head) ||
2238		!khugepaged_enabled();
 
 
 
 
 
 
 
 
 
 
2239}
2240
2241static void khugepaged_do_scan(struct page **hpage)
 
2242{
2243	unsigned int progress = 0, pass_through_head = 0;
2244	unsigned int pages = khugepaged_pages_to_scan;
 
2245
2246	barrier(); /* write khugepaged_pages_to_scan to local stack */
 
 
 
 
 
 
 
2247
2248	while (progress < pages) {
2249		cond_resched();
2250
2251#ifndef CONFIG_NUMA
2252		if (!*hpage) {
2253			*hpage = alloc_hugepage(khugepaged_defrag());
2254			if (unlikely(!*hpage)) {
2255				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2256				break;
2257			}
2258			count_vm_event(THP_COLLAPSE_ALLOC);
2259		}
2260#else
2261		if (IS_ERR(*hpage))
2262			break;
2263#endif
 
2264
2265		if (unlikely(kthread_should_stop() || freezing(current)))
2266			break;
 
 
 
 
 
 
 
 
 
2267
2268		spin_lock(&khugepaged_mm_lock);
2269		if (!khugepaged_scan.mm_slot)
2270			pass_through_head++;
2271		if (khugepaged_has_work() &&
2272		    pass_through_head < 2)
2273			progress += khugepaged_scan_mm_slot(pages - progress,
2274							    hpage);
2275		else
2276			progress = pages;
2277		spin_unlock(&khugepaged_mm_lock);
2278	}
2279}
2280
2281static void khugepaged_alloc_sleep(void)
2282{
2283	wait_event_freezable_timeout(khugepaged_wait, false,
2284			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
 
 
 
2285}
2286
2287#ifndef CONFIG_NUMA
2288static struct page *khugepaged_alloc_hugepage(void)
2289{
2290	struct page *hpage;
2291
2292	do {
2293		hpage = alloc_hugepage(khugepaged_defrag());
2294		if (!hpage) {
2295			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2296			khugepaged_alloc_sleep();
2297		} else
2298			count_vm_event(THP_COLLAPSE_ALLOC);
2299	} while (unlikely(!hpage) &&
2300		 likely(khugepaged_enabled()));
2301	return hpage;
2302}
2303#endif
2304
2305static void khugepaged_loop(void)
 
2306{
2307	struct page *hpage;
 
 
 
2308
2309#ifdef CONFIG_NUMA
2310	hpage = NULL;
2311#endif
2312	while (likely(khugepaged_enabled())) {
2313#ifndef CONFIG_NUMA
2314		hpage = khugepaged_alloc_hugepage();
2315		if (unlikely(!hpage))
2316			break;
2317#else
2318		if (IS_ERR(hpage)) {
2319			khugepaged_alloc_sleep();
2320			hpage = NULL;
2321		}
2322#endif
2323
2324		khugepaged_do_scan(&hpage);
2325#ifndef CONFIG_NUMA
2326		if (hpage)
2327			put_page(hpage);
2328#endif
2329		try_to_freeze();
2330		if (unlikely(kthread_should_stop()))
2331			break;
2332		if (khugepaged_has_work()) {
2333			if (!khugepaged_scan_sleep_millisecs)
2334				continue;
2335			wait_event_freezable_timeout(khugepaged_wait, false,
2336			    msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2337		} else if (khugepaged_enabled())
2338			wait_event_freezable(khugepaged_wait,
2339					     khugepaged_wait_event());
2340	}
2341}
2342
2343static int khugepaged(void *none)
2344{
2345	struct mm_slot *mm_slot;
2346
2347	set_freezable();
2348	set_user_nice(current, 19);
2349
2350	/* serialize with start_khugepaged() */
2351	mutex_lock(&khugepaged_mutex);
2352
2353	for (;;) {
2354		mutex_unlock(&khugepaged_mutex);
2355		VM_BUG_ON(khugepaged_thread != current);
2356		khugepaged_loop();
2357		VM_BUG_ON(khugepaged_thread != current);
2358
2359		mutex_lock(&khugepaged_mutex);
2360		if (!khugepaged_enabled())
2361			break;
2362		if (unlikely(kthread_should_stop()))
2363			break;
2364	}
2365
2366	spin_lock(&khugepaged_mm_lock);
2367	mm_slot = khugepaged_scan.mm_slot;
2368	khugepaged_scan.mm_slot = NULL;
2369	if (mm_slot)
2370		collect_mm_slot(mm_slot);
2371	spin_unlock(&khugepaged_mm_lock);
2372
2373	khugepaged_thread = NULL;
2374	mutex_unlock(&khugepaged_mutex);
2375
2376	return 0;
2377}
 
 
2378
2379void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2380{
2381	struct page *page;
2382
2383	spin_lock(&mm->page_table_lock);
2384	if (unlikely(!pmd_trans_huge(*pmd))) {
2385		spin_unlock(&mm->page_table_lock);
2386		return;
2387	}
2388	page = pmd_page(*pmd);
2389	VM_BUG_ON(!page_count(page));
2390	get_page(page);
2391	spin_unlock(&mm->page_table_lock);
2392
2393	split_huge_page(page);
2394
2395	put_page(page);
2396	BUG_ON(pmd_trans_huge(*pmd));
2397}
 
 
2398
2399static void split_huge_page_address(struct mm_struct *mm,
2400				    unsigned long address)
 
2401{
2402	pgd_t *pgd;
2403	pud_t *pud;
2404	pmd_t *pmd;
 
 
 
2405
2406	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
 
2407
2408	pgd = pgd_offset(mm, address);
2409	if (!pgd_present(*pgd))
2410		return;
2411
2412	pud = pud_offset(pgd, address);
2413	if (!pud_present(*pud))
2414		return;
 
 
 
 
 
 
 
 
 
2415
2416	pmd = pmd_offset(pud, address);
2417	if (!pmd_present(*pmd))
2418		return;
2419	/*
2420	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2421	 * materialize from under us.
2422	 */
2423	split_huge_page_pmd(mm, pmd);
2424}
2425
2426void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2427			     unsigned long start,
2428			     unsigned long end,
2429			     long adjust_next)
2430{
2431	/*
2432	 * If the new start address isn't hpage aligned and it could
2433	 * previously contain an hugepage: check if we need to split
2434	 * an huge pmd.
2435	 */
2436	if (start & ~HPAGE_PMD_MASK &&
2437	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2438	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2439		split_huge_page_address(vma->vm_mm, start);
2440
2441	/*
2442	 * If the new end address isn't hpage aligned and it could
2443	 * previously contain an hugepage: check if we need to split
2444	 * an huge pmd.
2445	 */
2446	if (end & ~HPAGE_PMD_MASK &&
2447	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2448	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2449		split_huge_page_address(vma->vm_mm, end);
2450
2451	/*
2452	 * If we're also updating the vma->vm_next->vm_start, if the new
2453	 * vm_next->vm_start isn't page aligned and it could previously
2454	 * contain an hugepage: check if we need to split an huge pmd.
2455	 */
2456	if (adjust_next > 0) {
2457		struct vm_area_struct *next = vma->vm_next;
2458		unsigned long nstart = next->vm_start;
2459		nstart += adjust_next << PAGE_SHIFT;
2460		if (nstart & ~HPAGE_PMD_MASK &&
2461		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2462		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2463			split_huge_page_address(next->vm_mm, nstart);
2464	}
 
 
 
2465}