Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/sched/coredump.h>
  13#include <linux/sched/numa_balancing.h>
  14#include <linux/highmem.h>
  15#include <linux/hugetlb.h>
  16#include <linux/mmu_notifier.h>
  17#include <linux/rmap.h>
  18#include <linux/swap.h>
  19#include <linux/shrinker.h>
  20#include <linux/mm_inline.h>
  21#include <linux/swapops.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
 
 
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
  40
  41/*
  42 * By default, transparent hugepage support is disabled in order to avoid
  43 * risking an increased memory footprint for applications that are not
  44 * guaranteed to benefit from it. When transparent hugepage support is
  45 * enabled, it is for all mappings, and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
  60static struct shrinker deferred_split_shrinker;
  61
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
  64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65static struct page *get_huge_zero_page(void)
  66{
  67	struct page *zero_page;
  68retry:
  69	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  70		return READ_ONCE(huge_zero_page);
  71
  72	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  73			HPAGE_PMD_ORDER);
  74	if (!zero_page) {
  75		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  76		return NULL;
  77	}
  78	count_vm_event(THP_ZERO_PAGE_ALLOC);
  79	preempt_disable();
  80	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  81		preempt_enable();
  82		__free_pages(zero_page, compound_order(zero_page));
  83		goto retry;
  84	}
  85
  86	/* We take additional reference here. It will be put back by shrinker */
  87	atomic_set(&huge_zero_refcount, 2);
  88	preempt_enable();
  89	return READ_ONCE(huge_zero_page);
  90}
  91
  92static void put_huge_zero_page(void)
  93{
  94	/*
  95	 * Counter should never go to zero here. Only shrinker can put
  96	 * last reference.
  97	 */
  98	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  99}
 100
 101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 102{
 103	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 104		return READ_ONCE(huge_zero_page);
 105
 106	if (!get_huge_zero_page())
 107		return NULL;
 108
 109	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 110		put_huge_zero_page();
 111
 112	return READ_ONCE(huge_zero_page);
 113}
 114
 115void mm_put_huge_zero_page(struct mm_struct *mm)
 116{
 117	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 118		put_huge_zero_page();
 119}
 120
 121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 122					struct shrink_control *sc)
 123{
 124	/* we can free zero page only if last reference remains */
 125	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 126}
 127
 128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 129				       struct shrink_control *sc)
 130{
 131	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 132		struct page *zero_page = xchg(&huge_zero_page, NULL);
 133		BUG_ON(zero_page == NULL);
 134		__free_pages(zero_page, compound_order(zero_page));
 135		return HPAGE_PMD_NR;
 136	}
 137
 138	return 0;
 139}
 140
 141static struct shrinker huge_zero_page_shrinker = {
 142	.count_objects = shrink_huge_zero_page_count,
 143	.scan_objects = shrink_huge_zero_page_scan,
 144	.seeks = DEFAULT_SEEKS,
 145};
 146
 147#ifdef CONFIG_SYSFS
 148static ssize_t enabled_show(struct kobject *kobj,
 149			    struct kobj_attribute *attr, char *buf)
 150{
 151	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 152		return sprintf(buf, "[always] madvise never\n");
 153	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 154		return sprintf(buf, "always [madvise] never\n");
 155	else
 156		return sprintf(buf, "always madvise [never]\n");
 157}
 158
 159static ssize_t enabled_store(struct kobject *kobj,
 160			     struct kobj_attribute *attr,
 161			     const char *buf, size_t count)
 162{
 163	ssize_t ret = count;
 164
 165	if (!memcmp("always", buf,
 166		    min(sizeof("always")-1, count))) {
 167		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 168		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 169	} else if (!memcmp("madvise", buf,
 170			   min(sizeof("madvise")-1, count))) {
 171		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 172		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 173	} else if (!memcmp("never", buf,
 174			   min(sizeof("never")-1, count))) {
 175		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 176		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 177	} else
 178		ret = -EINVAL;
 179
 180	if (ret > 0) {
 181		int err = start_stop_khugepaged();
 182		if (err)
 183			ret = err;
 184	}
 185	return ret;
 186}
 187static struct kobj_attribute enabled_attr =
 188	__ATTR(enabled, 0644, enabled_show, enabled_store);
 189
 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
 191				struct kobj_attribute *attr, char *buf,
 192				enum transparent_hugepage_flag flag)
 193{
 194	return sprintf(buf, "%d\n",
 195		       !!test_bit(flag, &transparent_hugepage_flags));
 196}
 197
 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
 199				 struct kobj_attribute *attr,
 200				 const char *buf, size_t count,
 201				 enum transparent_hugepage_flag flag)
 202{
 203	unsigned long value;
 204	int ret;
 205
 206	ret = kstrtoul(buf, 10, &value);
 207	if (ret < 0)
 208		return ret;
 209	if (value > 1)
 210		return -EINVAL;
 211
 212	if (value)
 213		set_bit(flag, &transparent_hugepage_flags);
 214	else
 215		clear_bit(flag, &transparent_hugepage_flags);
 216
 217	return count;
 218}
 219
 220static ssize_t defrag_show(struct kobject *kobj,
 221			   struct kobj_attribute *attr, char *buf)
 222{
 223	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 224		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 225	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 226		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 227	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 228		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 229	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 230		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 231	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 232}
 233
 234static ssize_t defrag_store(struct kobject *kobj,
 235			    struct kobj_attribute *attr,
 236			    const char *buf, size_t count)
 237{
 238	if (!memcmp("always", buf,
 239		    min(sizeof("always")-1, count))) {
 240		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 241		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 242		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 243		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 244	} else if (!memcmp("defer+madvise", buf,
 245		    min(sizeof("defer+madvise")-1, count))) {
 246		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 247		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 248		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 249		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 250	} else if (!memcmp("defer", buf,
 251		    min(sizeof("defer")-1, count))) {
 252		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 253		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 254		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 255		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 256	} else if (!memcmp("madvise", buf,
 257			   min(sizeof("madvise")-1, count))) {
 258		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 259		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 260		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 261		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262	} else if (!memcmp("never", buf,
 263			   min(sizeof("never")-1, count))) {
 264		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 265		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 266		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 267		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 268	} else
 269		return -EINVAL;
 270
 271	return count;
 272}
 273static struct kobj_attribute defrag_attr =
 274	__ATTR(defrag, 0644, defrag_show, defrag_store);
 275
 276static ssize_t use_zero_page_show(struct kobject *kobj,
 277		struct kobj_attribute *attr, char *buf)
 278{
 279	return single_hugepage_flag_show(kobj, attr, buf,
 280				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 281}
 282static ssize_t use_zero_page_store(struct kobject *kobj,
 283		struct kobj_attribute *attr, const char *buf, size_t count)
 284{
 285	return single_hugepage_flag_store(kobj, attr, buf, count,
 286				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 287}
 288static struct kobj_attribute use_zero_page_attr =
 289	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 290
 291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 292		struct kobj_attribute *attr, char *buf)
 293{
 294	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 295}
 296static struct kobj_attribute hpage_pmd_size_attr =
 297	__ATTR_RO(hpage_pmd_size);
 298
 299#ifdef CONFIG_DEBUG_VM
 300static ssize_t debug_cow_show(struct kobject *kobj,
 301				struct kobj_attribute *attr, char *buf)
 302{
 303	return single_hugepage_flag_show(kobj, attr, buf,
 304				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 305}
 306static ssize_t debug_cow_store(struct kobject *kobj,
 307			       struct kobj_attribute *attr,
 308			       const char *buf, size_t count)
 309{
 310	return single_hugepage_flag_store(kobj, attr, buf, count,
 311				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 312}
 313static struct kobj_attribute debug_cow_attr =
 314	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 315#endif /* CONFIG_DEBUG_VM */
 316
 317static struct attribute *hugepage_attr[] = {
 318	&enabled_attr.attr,
 319	&defrag_attr.attr,
 320	&use_zero_page_attr.attr,
 321	&hpage_pmd_size_attr.attr,
 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 323	&shmem_enabled_attr.attr,
 324#endif
 325#ifdef CONFIG_DEBUG_VM
 326	&debug_cow_attr.attr,
 327#endif
 328	NULL,
 329};
 330
 331static const struct attribute_group hugepage_attr_group = {
 332	.attrs = hugepage_attr,
 333};
 334
 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 336{
 337	int err;
 338
 339	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 340	if (unlikely(!*hugepage_kobj)) {
 341		pr_err("failed to create transparent hugepage kobject\n");
 342		return -ENOMEM;
 343	}
 344
 345	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 346	if (err) {
 347		pr_err("failed to register transparent hugepage group\n");
 348		goto delete_obj;
 349	}
 350
 351	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 352	if (err) {
 353		pr_err("failed to register transparent hugepage group\n");
 354		goto remove_hp_group;
 355	}
 356
 357	return 0;
 358
 359remove_hp_group:
 360	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 361delete_obj:
 362	kobject_put(*hugepage_kobj);
 363	return err;
 364}
 365
 366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 367{
 368	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 369	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 370	kobject_put(hugepage_kobj);
 371}
 372#else
 373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 374{
 375	return 0;
 376}
 377
 378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 379{
 380}
 381#endif /* CONFIG_SYSFS */
 382
 383static int __init hugepage_init(void)
 384{
 385	int err;
 386	struct kobject *hugepage_kobj;
 387
 388	if (!has_transparent_hugepage()) {
 389		transparent_hugepage_flags = 0;
 390		return -EINVAL;
 391	}
 392
 393	/*
 394	 * hugepages can't be allocated by the buddy allocator
 395	 */
 396	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 397	/*
 398	 * we use page->mapping and page->index in second tail page
 399	 * as list_head: assuming THP order >= 2
 400	 */
 401	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 402
 403	err = hugepage_init_sysfs(&hugepage_kobj);
 404	if (err)
 405		goto err_sysfs;
 406
 407	err = khugepaged_init();
 408	if (err)
 409		goto err_slab;
 410
 411	err = register_shrinker(&huge_zero_page_shrinker);
 412	if (err)
 413		goto err_hzp_shrinker;
 414	err = register_shrinker(&deferred_split_shrinker);
 415	if (err)
 416		goto err_split_shrinker;
 417
 418	/*
 419	 * By default disable transparent hugepages on smaller systems,
 420	 * where the extra memory used could hurt more than TLB overhead
 421	 * is likely to save.  The admin can still enable it through /sys.
 422	 */
 423	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 424		transparent_hugepage_flags = 0;
 425		return 0;
 426	}
 427
 428	err = start_stop_khugepaged();
 429	if (err)
 430		goto err_khugepaged;
 431
 432	return 0;
 433err_khugepaged:
 434	unregister_shrinker(&deferred_split_shrinker);
 435err_split_shrinker:
 436	unregister_shrinker(&huge_zero_page_shrinker);
 437err_hzp_shrinker:
 438	khugepaged_destroy();
 439err_slab:
 440	hugepage_exit_sysfs(hugepage_kobj);
 441err_sysfs:
 442	return err;
 443}
 444subsys_initcall(hugepage_init);
 445
 446static int __init setup_transparent_hugepage(char *str)
 447{
 448	int ret = 0;
 449	if (!str)
 450		goto out;
 451	if (!strcmp(str, "always")) {
 452		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 453			&transparent_hugepage_flags);
 454		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 455			  &transparent_hugepage_flags);
 456		ret = 1;
 457	} else if (!strcmp(str, "madvise")) {
 458		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 459			  &transparent_hugepage_flags);
 460		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 461			&transparent_hugepage_flags);
 462		ret = 1;
 463	} else if (!strcmp(str, "never")) {
 464		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 465			  &transparent_hugepage_flags);
 466		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 467			  &transparent_hugepage_flags);
 468		ret = 1;
 469	}
 470out:
 471	if (!ret)
 472		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 473	return ret;
 474}
 475__setup("transparent_hugepage=", setup_transparent_hugepage);
 476
 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 478{
 479	if (likely(vma->vm_flags & VM_WRITE))
 480		pmd = pmd_mkwrite(pmd);
 481	return pmd;
 482}
 483
 484static inline struct list_head *page_deferred_list(struct page *page)
 
 485{
 486	/*
 487	 * ->lru in the tail pages is occupied by compound_head.
 488	 * Let's use ->mapping + ->index in the second tail page as list_head.
 489	 */
 490	return (struct list_head *)&page[2].mapping;
 
 
 491}
 
 
 
 
 
 
 
 
 492
 493void prep_transhuge_page(struct page *page)
 494{
 495	/*
 496	 * we use page->mapping and page->indexlru in second tail page
 497	 * as list_head: assuming THP order >= 2
 498	 */
 499
 500	INIT_LIST_HEAD(page_deferred_list(page));
 501	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 502}
 503
 504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 
 
 
 
 
 
 
 
 
 
 
 
 505		loff_t off, unsigned long flags, unsigned long size)
 506{
 507	unsigned long addr;
 508	loff_t off_end = off + len;
 509	loff_t off_align = round_up(off, size);
 510	unsigned long len_pad;
 511
 512	if (off_end <= off_align || (off_end - off_align) < size)
 513		return 0;
 514
 515	len_pad = len + size;
 516	if (len_pad < len || (off + len_pad) < off)
 517		return 0;
 518
 519	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 520					      off >> PAGE_SHIFT, flags);
 521	if (IS_ERR_VALUE(addr))
 
 
 
 
 
 522		return 0;
 523
 524	addr += (off - addr) & (size - 1);
 525	return addr;
 
 
 
 
 
 
 
 526}
 527
 528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 529		unsigned long len, unsigned long pgoff, unsigned long flags)
 530{
 
 531	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 532
 533	if (addr)
 534		goto out;
 535	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 536		goto out;
 537
 538	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 539	if (addr)
 540		return addr;
 541
 542 out:
 543	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 544}
 545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 546
 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
 548		gfp_t gfp)
 549{
 550	struct vm_area_struct *vma = vmf->vma;
 551	struct mem_cgroup *memcg;
 552	pgtable_t pgtable;
 553	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 554	int ret = 0;
 555
 556	VM_BUG_ON_PAGE(!PageCompound(page), page);
 557
 558	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 559		put_page(page);
 560		count_vm_event(THP_FAULT_FALLBACK);
 
 561		return VM_FAULT_FALLBACK;
 562	}
 
 563
 564	pgtable = pte_alloc_one(vma->vm_mm, haddr);
 565	if (unlikely(!pgtable)) {
 566		ret = VM_FAULT_OOM;
 567		goto release;
 568	}
 569
 570	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 571	/*
 572	 * The memory barrier inside __SetPageUptodate makes sure that
 573	 * clear_huge_page writes become visible before the set_pmd_at()
 574	 * write.
 575	 */
 576	__SetPageUptodate(page);
 577
 578	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 579	if (unlikely(!pmd_none(*vmf->pmd))) {
 580		goto unlock_release;
 581	} else {
 582		pmd_t entry;
 583
 584		ret = check_stable_address_space(vma->vm_mm);
 585		if (ret)
 586			goto unlock_release;
 587
 588		/* Deliver the page fault to userland */
 589		if (userfaultfd_missing(vma)) {
 590			int ret;
 591
 592			spin_unlock(vmf->ptl);
 593			mem_cgroup_cancel_charge(page, memcg, true);
 594			put_page(page);
 595			pte_free(vma->vm_mm, pgtable);
 596			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 597			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 598			return ret;
 599		}
 600
 601		entry = mk_huge_pmd(page, vma->vm_page_prot);
 602		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 603		page_add_new_anon_rmap(page, vma, haddr, true);
 604		mem_cgroup_commit_charge(page, memcg, false, true);
 605		lru_cache_add_active_or_unevictable(page, vma);
 606		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 607		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 608		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 609		mm_inc_nr_ptes(vma->vm_mm);
 610		spin_unlock(vmf->ptl);
 611		count_vm_event(THP_FAULT_ALLOC);
 
 612	}
 613
 614	return 0;
 615unlock_release:
 616	spin_unlock(vmf->ptl);
 617release:
 618	if (pgtable)
 619		pte_free(vma->vm_mm, pgtable);
 620	mem_cgroup_cancel_charge(page, memcg, true);
 621	put_page(page);
 622	return ret;
 623
 624}
 625
 626/*
 627 * always: directly stall for all thp allocations
 628 * defer: wake kswapd and fail if not immediately available
 629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 630 *		  fail if not immediately available
 631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 632 *	    available
 633 * never: never stall for any thp allocation
 634 */
 635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 636{
 637	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 638
 
 639	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 640		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 
 
 641	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 642		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 
 
 643	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 644		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 645							     __GFP_KSWAPD_RECLAIM);
 
 
 
 646	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 647		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 648							     0);
 
 649	return GFP_TRANSHUGE_LIGHT;
 650}
 651
 652/* Caller must hold page table lock. */
 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 654		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 655		struct page *zero_page)
 656{
 657	pmd_t entry;
 658	if (!pmd_none(*pmd))
 659		return false;
 660	entry = mk_pmd(zero_page, vma->vm_page_prot);
 661	entry = pmd_mkhuge(entry);
 662	if (pgtable)
 663		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 664	set_pmd_at(mm, haddr, pmd, entry);
 665	mm_inc_nr_ptes(mm);
 666	return true;
 667}
 668
 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 670{
 671	struct vm_area_struct *vma = vmf->vma;
 672	gfp_t gfp;
 673	struct page *page;
 674	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 675
 676	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 677		return VM_FAULT_FALLBACK;
 678	if (unlikely(anon_vma_prepare(vma)))
 679		return VM_FAULT_OOM;
 680	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 681		return VM_FAULT_OOM;
 682	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 683			!mm_forbids_zeropage(vma->vm_mm) &&
 684			transparent_hugepage_use_zero_page()) {
 685		pgtable_t pgtable;
 686		struct page *zero_page;
 687		bool set;
 688		int ret;
 689		pgtable = pte_alloc_one(vma->vm_mm, haddr);
 690		if (unlikely(!pgtable))
 691			return VM_FAULT_OOM;
 692		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 693		if (unlikely(!zero_page)) {
 694			pte_free(vma->vm_mm, pgtable);
 695			count_vm_event(THP_FAULT_FALLBACK);
 696			return VM_FAULT_FALLBACK;
 697		}
 698		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 699		ret = 0;
 700		set = false;
 701		if (pmd_none(*vmf->pmd)) {
 702			ret = check_stable_address_space(vma->vm_mm);
 703			if (ret) {
 704				spin_unlock(vmf->ptl);
 705			} else if (userfaultfd_missing(vma)) {
 706				spin_unlock(vmf->ptl);
 707				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 708				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 709			} else {
 710				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 711						   haddr, vmf->pmd, zero_page);
 712				spin_unlock(vmf->ptl);
 713				set = true;
 714			}
 715		} else
 716			spin_unlock(vmf->ptl);
 717		if (!set)
 718			pte_free(vma->vm_mm, pgtable);
 719		return ret;
 720	}
 721	gfp = alloc_hugepage_direct_gfpmask(vma);
 722	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 723	if (unlikely(!page)) {
 724		count_vm_event(THP_FAULT_FALLBACK);
 725		return VM_FAULT_FALLBACK;
 726	}
 727	prep_transhuge_page(page);
 728	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 729}
 730
 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 732		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 733		pgtable_t pgtable)
 734{
 735	struct mm_struct *mm = vma->vm_mm;
 736	pmd_t entry;
 737	spinlock_t *ptl;
 738
 739	ptl = pmd_lock(mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 741	if (pfn_t_devmap(pfn))
 742		entry = pmd_mkdevmap(entry);
 743	if (write) {
 744		entry = pmd_mkyoung(pmd_mkdirty(entry));
 745		entry = maybe_pmd_mkwrite(entry, vma);
 746	}
 747
 748	if (pgtable) {
 749		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 750		mm_inc_nr_ptes(mm);
 
 751	}
 752
 753	set_pmd_at(mm, addr, pmd, entry);
 754	update_mmu_cache_pmd(vma, addr, pmd);
 
 
 755	spin_unlock(ptl);
 
 
 756}
 757
 758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 759			pmd_t *pmd, pfn_t pfn, bool write)
 
 
 
 
 
 
 
 
 
 
 
 
 
 760{
 761	pgprot_t pgprot = vma->vm_page_prot;
 
 762	pgtable_t pgtable = NULL;
 
 763	/*
 764	 * If we had pmd_special, we could avoid all these restrictions,
 765	 * but we need to be consistent with PTEs and architectures that
 766	 * can't support a 'special' bit.
 767	 */
 768	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 
 769	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 770						(VM_PFNMAP|VM_MIXEDMAP));
 771	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 772	BUG_ON(!pfn_t_devmap(pfn));
 773
 774	if (addr < vma->vm_start || addr >= vma->vm_end)
 775		return VM_FAULT_SIGBUS;
 776
 777	if (arch_needs_pgtable_deposit()) {
 778		pgtable = pte_alloc_one(vma->vm_mm, addr);
 779		if (!pgtable)
 780			return VM_FAULT_OOM;
 781	}
 782
 783	track_pfn_insert(vma, &pgprot, pfn);
 784
 785	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
 786	return VM_FAULT_NOPAGE;
 787}
 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 789
 790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 792{
 793	if (likely(vma->vm_flags & VM_WRITE))
 794		pud = pud_mkwrite(pud);
 795	return pud;
 796}
 797
 798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 799		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 800{
 801	struct mm_struct *mm = vma->vm_mm;
 802	pud_t entry;
 803	spinlock_t *ptl;
 804
 805	ptl = pud_lock(mm, pud);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 807	if (pfn_t_devmap(pfn))
 808		entry = pud_mkdevmap(entry);
 809	if (write) {
 810		entry = pud_mkyoung(pud_mkdirty(entry));
 811		entry = maybe_pud_mkwrite(entry, vma);
 812	}
 813	set_pud_at(mm, addr, pud, entry);
 814	update_mmu_cache_pud(vma, addr, pud);
 
 
 815	spin_unlock(ptl);
 816}
 817
 818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 819			pud_t *pud, pfn_t pfn, bool write)
 
 
 
 
 
 
 
 
 
 
 
 
 
 820{
 821	pgprot_t pgprot = vma->vm_page_prot;
 
 
 822	/*
 823	 * If we had pud_special, we could avoid all these restrictions,
 824	 * but we need to be consistent with PTEs and architectures that
 825	 * can't support a 'special' bit.
 826	 */
 827	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 
 828	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 829						(VM_PFNMAP|VM_MIXEDMAP));
 830	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 831	BUG_ON(!pfn_t_devmap(pfn));
 832
 833	if (addr < vma->vm_start || addr >= vma->vm_end)
 834		return VM_FAULT_SIGBUS;
 835
 836	track_pfn_insert(vma, &pgprot, pfn);
 837
 838	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
 839	return VM_FAULT_NOPAGE;
 840}
 841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 843
 844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 845		pmd_t *pmd, int flags)
 846{
 847	pmd_t _pmd;
 848
 849	_pmd = pmd_mkyoung(*pmd);
 850	if (flags & FOLL_WRITE)
 851		_pmd = pmd_mkdirty(_pmd);
 852	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 853				pmd, _pmd, flags & FOLL_WRITE))
 854		update_mmu_cache_pmd(vma, addr, pmd);
 855}
 856
 857struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 858		pmd_t *pmd, int flags)
 859{
 860	unsigned long pfn = pmd_pfn(*pmd);
 861	struct mm_struct *mm = vma->vm_mm;
 862	struct dev_pagemap *pgmap;
 863	struct page *page;
 864
 865	assert_spin_locked(pmd_lockptr(mm, pmd));
 866
 867	/*
 868	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 869	 * not be in this function with `flags & FOLL_COW` set.
 870	 */
 871	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 872
 
 
 
 
 
 873	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 874		return NULL;
 875
 876	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 877		/* pass */;
 878	else
 879		return NULL;
 880
 881	if (flags & FOLL_TOUCH)
 882		touch_pmd(vma, addr, pmd, flags);
 883
 884	/*
 885	 * device mapped pages can only be returned if the
 886	 * caller will manage the page reference count.
 887	 */
 888	if (!(flags & FOLL_GET))
 889		return ERR_PTR(-EEXIST);
 890
 891	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 892	pgmap = get_dev_pagemap(pfn, NULL);
 893	if (!pgmap)
 894		return ERR_PTR(-EFAULT);
 895	page = pfn_to_page(pfn);
 896	get_page(page);
 897	put_dev_pagemap(pgmap);
 898
 899	return page;
 900}
 901
 902int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 903		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 904		  struct vm_area_struct *vma)
 905{
 906	spinlock_t *dst_ptl, *src_ptl;
 907	struct page *src_page;
 908	pmd_t pmd;
 909	pgtable_t pgtable = NULL;
 910	int ret = -ENOMEM;
 911
 912	/* Skip if can be re-fill on fault */
 913	if (!vma_is_anonymous(vma))
 914		return 0;
 915
 916	pgtable = pte_alloc_one(dst_mm, addr);
 917	if (unlikely(!pgtable))
 918		goto out;
 919
 920	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 921	src_ptl = pmd_lockptr(src_mm, src_pmd);
 922	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 923
 924	ret = -EAGAIN;
 925	pmd = *src_pmd;
 926
 
 
 
 
 
 
 
 
 927#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 928	if (unlikely(is_swap_pmd(pmd))) {
 929		swp_entry_t entry = pmd_to_swp_entry(pmd);
 930
 931		VM_BUG_ON(!is_pmd_migration_entry(pmd));
 932		if (is_write_migration_entry(entry)) {
 933			make_migration_entry_read(&entry);
 934			pmd = swp_entry_to_pmd(entry);
 935			if (pmd_swp_soft_dirty(*src_pmd))
 936				pmd = pmd_swp_mksoft_dirty(pmd);
 937			set_pmd_at(src_mm, addr, src_pmd, pmd);
 938		}
 939		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 940		mm_inc_nr_ptes(dst_mm);
 941		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 942		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 943		ret = 0;
 944		goto out_unlock;
 945	}
 946#endif
 947
 948	if (unlikely(!pmd_trans_huge(pmd))) {
 949		pte_free(dst_mm, pgtable);
 950		goto out_unlock;
 951	}
 952	/*
 953	 * When page table lock is held, the huge zero pmd should not be
 954	 * under splitting since we don't split the page itself, only pmd to
 955	 * a page table.
 956	 */
 957	if (is_huge_zero_pmd(pmd)) {
 958		struct page *zero_page;
 959		/*
 960		 * get_huge_zero_page() will never allocate a new page here,
 961		 * since we already have a zero page to copy. It just takes a
 962		 * reference.
 963		 */
 964		zero_page = mm_get_huge_zero_page(dst_mm);
 965		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 966				zero_page);
 967		ret = 0;
 968		goto out_unlock;
 969	}
 970
 971	src_page = pmd_page(pmd);
 972	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973	get_page(src_page);
 974	page_dup_rmap(src_page, true);
 975	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 976	mm_inc_nr_ptes(dst_mm);
 977	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 978
 979	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 980	pmd = pmd_mkold(pmd_wrprotect(pmd));
 981	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 982
 983	ret = 0;
 984out_unlock:
 985	spin_unlock(src_ptl);
 986	spin_unlock(dst_ptl);
 987out:
 988	return ret;
 989}
 990
 991#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 992static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 993		pud_t *pud, int flags)
 994{
 995	pud_t _pud;
 996
 997	_pud = pud_mkyoung(*pud);
 998	if (flags & FOLL_WRITE)
 999		_pud = pud_mkdirty(_pud);
1000	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1001				pud, _pud, flags & FOLL_WRITE))
1002		update_mmu_cache_pud(vma, addr, pud);
1003}
1004
1005struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1006		pud_t *pud, int flags)
1007{
1008	unsigned long pfn = pud_pfn(*pud);
1009	struct mm_struct *mm = vma->vm_mm;
1010	struct dev_pagemap *pgmap;
1011	struct page *page;
1012
1013	assert_spin_locked(pud_lockptr(mm, pud));
1014
1015	if (flags & FOLL_WRITE && !pud_write(*pud))
1016		return NULL;
1017
 
 
 
 
 
1018	if (pud_present(*pud) && pud_devmap(*pud))
1019		/* pass */;
1020	else
1021		return NULL;
1022
1023	if (flags & FOLL_TOUCH)
1024		touch_pud(vma, addr, pud, flags);
1025
1026	/*
1027	 * device mapped pages can only be returned if the
1028	 * caller will manage the page reference count.
 
 
1029	 */
1030	if (!(flags & FOLL_GET))
1031		return ERR_PTR(-EEXIST);
1032
1033	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1034	pgmap = get_dev_pagemap(pfn, NULL);
1035	if (!pgmap)
1036		return ERR_PTR(-EFAULT);
1037	page = pfn_to_page(pfn);
1038	get_page(page);
1039	put_dev_pagemap(pgmap);
1040
1041	return page;
1042}
1043
1044int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1046		  struct vm_area_struct *vma)
1047{
1048	spinlock_t *dst_ptl, *src_ptl;
1049	pud_t pud;
1050	int ret;
1051
1052	dst_ptl = pud_lock(dst_mm, dst_pud);
1053	src_ptl = pud_lockptr(src_mm, src_pud);
1054	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1055
1056	ret = -EAGAIN;
1057	pud = *src_pud;
1058	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1059		goto out_unlock;
1060
1061	/*
1062	 * When page table lock is held, the huge zero pud should not be
1063	 * under splitting since we don't split the page itself, only pud to
1064	 * a page table.
1065	 */
1066	if (is_huge_zero_pud(pud)) {
1067		/* No huge zero pud yet */
1068	}
1069
 
 
 
 
 
 
 
 
 
 
1070	pudp_set_wrprotect(src_mm, addr, src_pud);
1071	pud = pud_mkold(pud_wrprotect(pud));
1072	set_pud_at(dst_mm, addr, dst_pud, pud);
1073
1074	ret = 0;
1075out_unlock:
1076	spin_unlock(src_ptl);
1077	spin_unlock(dst_ptl);
1078	return ret;
1079}
1080
1081void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1082{
1083	pud_t entry;
1084	unsigned long haddr;
1085	bool write = vmf->flags & FAULT_FLAG_WRITE;
1086
1087	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1088	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1089		goto unlock;
1090
1091	entry = pud_mkyoung(orig_pud);
1092	if (write)
1093		entry = pud_mkdirty(entry);
1094	haddr = vmf->address & HPAGE_PUD_MASK;
1095	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1096		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1097
1098unlock:
1099	spin_unlock(vmf->ptl);
1100}
1101#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1102
1103void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1104{
1105	pmd_t entry;
1106	unsigned long haddr;
1107	bool write = vmf->flags & FAULT_FLAG_WRITE;
1108
1109	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1110	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1111		goto unlock;
1112
1113	entry = pmd_mkyoung(orig_pmd);
1114	if (write)
1115		entry = pmd_mkdirty(entry);
1116	haddr = vmf->address & HPAGE_PMD_MASK;
1117	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1118		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1119
1120unlock:
1121	spin_unlock(vmf->ptl);
1122}
1123
1124static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1125		struct page *page)
1126{
1127	struct vm_area_struct *vma = vmf->vma;
 
1128	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1129	struct mem_cgroup *memcg;
1130	pgtable_t pgtable;
1131	pmd_t _pmd;
1132	int ret = 0, i;
1133	struct page **pages;
1134	unsigned long mmun_start;	/* For mmu_notifiers */
1135	unsigned long mmun_end;		/* For mmu_notifiers */
1136
1137	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1138			GFP_KERNEL);
1139	if (unlikely(!pages)) {
1140		ret |= VM_FAULT_OOM;
1141		goto out;
1142	}
1143
1144	for (i = 0; i < HPAGE_PMD_NR; i++) {
1145		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1146					       vmf->address, page_to_nid(page));
1147		if (unlikely(!pages[i] ||
1148			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1149				     GFP_KERNEL, &memcg, false))) {
1150			if (pages[i])
1151				put_page(pages[i]);
1152			while (--i >= 0) {
1153				memcg = (void *)page_private(pages[i]);
1154				set_page_private(pages[i], 0);
1155				mem_cgroup_cancel_charge(pages[i], memcg,
1156						false);
1157				put_page(pages[i]);
1158			}
1159			kfree(pages);
1160			ret |= VM_FAULT_OOM;
1161			goto out;
1162		}
1163		set_page_private(pages[i], (unsigned long)memcg);
1164	}
1165
1166	for (i = 0; i < HPAGE_PMD_NR; i++) {
1167		copy_user_highpage(pages[i], page + i,
1168				   haddr + PAGE_SIZE * i, vma);
1169		__SetPageUptodate(pages[i]);
1170		cond_resched();
1171	}
1172
1173	mmun_start = haddr;
1174	mmun_end   = haddr + HPAGE_PMD_SIZE;
1175	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1176
1177	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1178	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179		goto out_free_pages;
1180	VM_BUG_ON_PAGE(!PageHead(page), page);
1181
1182	/*
1183	 * Leave pmd empty until pte is filled note we must notify here as
1184	 * concurrent CPU thread might write to new page before the call to
1185	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1186	 * device seeing memory write in different order than CPU.
1187	 *
1188	 * See Documentation/vm/mmu_notifier.txt
1189	 */
1190	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1191
1192	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1193	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1194
1195	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1196		pte_t entry;
1197		entry = mk_pte(pages[i], vma->vm_page_prot);
1198		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1199		memcg = (void *)page_private(pages[i]);
1200		set_page_private(pages[i], 0);
1201		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1202		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1203		lru_cache_add_active_or_unevictable(pages[i], vma);
1204		vmf->pte = pte_offset_map(&_pmd, haddr);
1205		VM_BUG_ON(!pte_none(*vmf->pte));
1206		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1207		pte_unmap(vmf->pte);
1208	}
1209	kfree(pages);
1210
1211	smp_wmb(); /* make pte visible before pmd */
1212	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1213	page_remove_rmap(page, true);
1214	spin_unlock(vmf->ptl);
1215
1216	/*
1217	 * No need to double call mmu_notifier->invalidate_range() callback as
1218	 * the above pmdp_huge_clear_flush_notify() did already call it.
1219	 */
1220	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1221						mmun_end);
1222
1223	ret |= VM_FAULT_WRITE;
1224	put_page(page);
1225
1226out:
1227	return ret;
1228
1229out_free_pages:
1230	spin_unlock(vmf->ptl);
1231	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1232	for (i = 0; i < HPAGE_PMD_NR; i++) {
1233		memcg = (void *)page_private(pages[i]);
1234		set_page_private(pages[i], 0);
1235		mem_cgroup_cancel_charge(pages[i], memcg, false);
1236		put_page(pages[i]);
1237	}
1238	kfree(pages);
1239	goto out;
1240}
1241
1242int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1243{
1244	struct vm_area_struct *vma = vmf->vma;
1245	struct page *page = NULL, *new_page;
1246	struct mem_cgroup *memcg;
1247	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1248	unsigned long mmun_start;	/* For mmu_notifiers */
1249	unsigned long mmun_end;		/* For mmu_notifiers */
1250	gfp_t huge_gfp;			/* for allocation and charge */
1251	int ret = 0;
1252
1253	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1254	VM_BUG_ON_VMA(!vma->anon_vma, vma);
 
1255	if (is_huge_zero_pmd(orig_pmd))
1256		goto alloc;
 
1257	spin_lock(vmf->ptl);
1258	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1259		goto out_unlock;
 
 
 
1260
1261	page = pmd_page(orig_pmd);
1262	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1263	/*
1264	 * We can only reuse the page if nobody else maps the huge page or it's
1265	 * part.
1266	 */
1267	if (!trylock_page(page)) {
1268		get_page(page);
1269		spin_unlock(vmf->ptl);
1270		lock_page(page);
1271		spin_lock(vmf->ptl);
1272		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
 
1273			unlock_page(page);
1274			put_page(page);
1275			goto out_unlock;
1276		}
1277		put_page(page);
1278	}
 
 
 
 
 
1279	if (reuse_swap_page(page, NULL)) {
1280		pmd_t entry;
1281		entry = pmd_mkyoung(orig_pmd);
1282		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1283		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1284			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1285		ret |= VM_FAULT_WRITE;
1286		unlock_page(page);
1287		goto out_unlock;
1288	}
1289	unlock_page(page);
1290	get_page(page);
1291	spin_unlock(vmf->ptl);
1292alloc:
1293	if (transparent_hugepage_enabled(vma) &&
1294	    !transparent_hugepage_debug_cow()) {
1295		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1296		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1297	} else
1298		new_page = NULL;
1299
1300	if (likely(new_page)) {
1301		prep_transhuge_page(new_page);
1302	} else {
1303		if (!page) {
1304			split_huge_pmd(vma, vmf->pmd, vmf->address);
1305			ret |= VM_FAULT_FALLBACK;
1306		} else {
1307			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1308			if (ret & VM_FAULT_OOM) {
1309				split_huge_pmd(vma, vmf->pmd, vmf->address);
1310				ret |= VM_FAULT_FALLBACK;
1311			}
1312			put_page(page);
1313		}
1314		count_vm_event(THP_FAULT_FALLBACK);
1315		goto out;
1316	}
1317
1318	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1319					huge_gfp, &memcg, true))) {
1320		put_page(new_page);
1321		split_huge_pmd(vma, vmf->pmd, vmf->address);
1322		if (page)
1323			put_page(page);
1324		ret |= VM_FAULT_FALLBACK;
1325		count_vm_event(THP_FAULT_FALLBACK);
1326		goto out;
1327	}
1328
1329	count_vm_event(THP_FAULT_ALLOC);
1330
1331	if (!page)
1332		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1333	else
1334		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1335	__SetPageUptodate(new_page);
1336
1337	mmun_start = haddr;
1338	mmun_end   = haddr + HPAGE_PMD_SIZE;
1339	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1340
1341	spin_lock(vmf->ptl);
1342	if (page)
1343		put_page(page);
1344	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345		spin_unlock(vmf->ptl);
1346		mem_cgroup_cancel_charge(new_page, memcg, true);
1347		put_page(new_page);
1348		goto out_mn;
1349	} else {
1350		pmd_t entry;
1351		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1352		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1353		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1354		page_add_new_anon_rmap(new_page, vma, haddr, true);
1355		mem_cgroup_commit_charge(new_page, memcg, false, true);
1356		lru_cache_add_active_or_unevictable(new_page, vma);
1357		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1358		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359		if (!page) {
1360			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1361		} else {
1362			VM_BUG_ON_PAGE(!PageHead(page), page);
1363			page_remove_rmap(page, true);
1364			put_page(page);
1365		}
1366		ret |= VM_FAULT_WRITE;
1367	}
 
 
1368	spin_unlock(vmf->ptl);
1369out_mn:
1370	/*
1371	 * No need to double call mmu_notifier->invalidate_range() callback as
1372	 * the above pmdp_huge_clear_flush_notify() did already call it.
1373	 */
1374	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1375					       mmun_end);
1376out:
1377	return ret;
1378out_unlock:
1379	spin_unlock(vmf->ptl);
1380	return ret;
1381}
1382
1383/*
1384 * FOLL_FORCE can write to even unwritable pmd's, but only
1385 * after we've gone through a COW cycle and they are dirty.
1386 */
1387static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1388{
1389	return pmd_write(pmd) ||
1390	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1391}
1392
1393struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1394				   unsigned long addr,
1395				   pmd_t *pmd,
1396				   unsigned int flags)
1397{
1398	struct mm_struct *mm = vma->vm_mm;
1399	struct page *page = NULL;
1400
1401	assert_spin_locked(pmd_lockptr(mm, pmd));
1402
1403	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1404		goto out;
1405
1406	/* Avoid dumping huge zero page */
1407	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1408		return ERR_PTR(-EFAULT);
1409
1410	/* Full NUMA hinting faults to serialise migration in fault paths */
1411	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1412		goto out;
1413
1414	page = pmd_page(*pmd);
1415	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
 
 
 
 
1416	if (flags & FOLL_TOUCH)
1417		touch_pmd(vma, addr, pmd, flags);
 
1418	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1419		/*
1420		 * We don't mlock() pte-mapped THPs. This way we can avoid
1421		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1422		 *
1423		 * For anon THP:
1424		 *
1425		 * In most cases the pmd is the only mapping of the page as we
1426		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1427		 * writable private mappings in populate_vma_page_range().
1428		 *
1429		 * The only scenario when we have the page shared here is if we
1430		 * mlocking read-only mapping shared over fork(). We skip
1431		 * mlocking such pages.
1432		 *
1433		 * For file THP:
1434		 *
1435		 * We can expect PageDoubleMap() to be stable under page lock:
1436		 * for file pages we set it in page_add_file_rmap(), which
1437		 * requires page to be locked.
1438		 */
1439
1440		if (PageAnon(page) && compound_mapcount(page) != 1)
1441			goto skip_mlock;
1442		if (PageDoubleMap(page) || !page->mapping)
1443			goto skip_mlock;
1444		if (!trylock_page(page))
1445			goto skip_mlock;
1446		lru_add_drain();
1447		if (page->mapping && !PageDoubleMap(page))
1448			mlock_vma_page(page);
1449		unlock_page(page);
1450	}
1451skip_mlock:
1452	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1453	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1454	if (flags & FOLL_GET)
1455		get_page(page);
1456
1457out:
1458	return page;
1459}
1460
1461/* NUMA hinting page fault entry point for trans huge pmds */
1462int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1463{
1464	struct vm_area_struct *vma = vmf->vma;
1465	struct anon_vma *anon_vma = NULL;
1466	struct page *page;
1467	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1468	int page_nid = -1, this_nid = numa_node_id();
1469	int target_nid, last_cpupid = -1;
1470	bool page_locked;
1471	bool migrated = false;
1472	bool was_writable;
1473	int flags = 0;
1474
1475	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1476	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1477		goto out_unlock;
1478
1479	/*
1480	 * If there are potential migrations, wait for completion and retry
1481	 * without disrupting NUMA hinting information. Do not relock and
1482	 * check_same as the page may no longer be mapped.
1483	 */
1484	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1485		page = pmd_page(*vmf->pmd);
1486		if (!get_page_unless_zero(page))
1487			goto out_unlock;
1488		spin_unlock(vmf->ptl);
1489		wait_on_page_locked(page);
1490		put_page(page);
1491		goto out;
1492	}
1493
1494	page = pmd_page(pmd);
1495	BUG_ON(is_huge_zero_page(page));
1496	page_nid = page_to_nid(page);
1497	last_cpupid = page_cpupid_last(page);
1498	count_vm_numa_event(NUMA_HINT_FAULTS);
1499	if (page_nid == this_nid) {
1500		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501		flags |= TNF_FAULT_LOCAL;
1502	}
1503
1504	/* See similar comment in do_numa_page for explanation */
1505	if (!pmd_savedwrite(pmd))
1506		flags |= TNF_NO_GROUP;
1507
1508	/*
1509	 * Acquire the page lock to serialise THP migrations but avoid dropping
1510	 * page_table_lock if at all possible
1511	 */
1512	page_locked = trylock_page(page);
1513	target_nid = mpol_misplaced(page, vma, haddr);
1514	if (target_nid == -1) {
1515		/* If the page was locked, there are no parallel migrations */
1516		if (page_locked)
1517			goto clear_pmdnuma;
1518	}
1519
1520	/* Migration could have started since the pmd_trans_migrating check */
1521	if (!page_locked) {
1522		page_nid = -1;
1523		if (!get_page_unless_zero(page))
1524			goto out_unlock;
1525		spin_unlock(vmf->ptl);
1526		wait_on_page_locked(page);
1527		put_page(page);
1528		goto out;
1529	}
1530
1531	/*
1532	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1533	 * to serialises splits
1534	 */
1535	get_page(page);
1536	spin_unlock(vmf->ptl);
1537	anon_vma = page_lock_anon_vma_read(page);
1538
1539	/* Confirm the PMD did not change while page_table_lock was released */
1540	spin_lock(vmf->ptl);
1541	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1542		unlock_page(page);
1543		put_page(page);
1544		page_nid = -1;
1545		goto out_unlock;
1546	}
1547
1548	/* Bail if we fail to protect against THP splits for any reason */
1549	if (unlikely(!anon_vma)) {
1550		put_page(page);
1551		page_nid = -1;
1552		goto clear_pmdnuma;
1553	}
1554
1555	/*
1556	 * Since we took the NUMA fault, we must have observed the !accessible
1557	 * bit. Make sure all other CPUs agree with that, to avoid them
1558	 * modifying the page we're about to migrate.
1559	 *
1560	 * Must be done under PTL such that we'll observe the relevant
1561	 * inc_tlb_flush_pending().
1562	 *
1563	 * We are not sure a pending tlb flush here is for a huge page
1564	 * mapping or not. Hence use the tlb range variant
1565	 */
1566	if (mm_tlb_flush_pending(vma->vm_mm))
1567		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
1568
1569	/*
1570	 * Migrate the THP to the requested node, returns with page unlocked
1571	 * and access rights restored.
1572	 */
1573	spin_unlock(vmf->ptl);
1574
1575	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1576				vmf->pmd, pmd, vmf->address, page, target_nid);
1577	if (migrated) {
1578		flags |= TNF_MIGRATED;
1579		page_nid = target_nid;
1580	} else
1581		flags |= TNF_MIGRATE_FAIL;
1582
1583	goto out;
1584clear_pmdnuma:
1585	BUG_ON(!PageLocked(page));
1586	was_writable = pmd_savedwrite(pmd);
1587	pmd = pmd_modify(pmd, vma->vm_page_prot);
1588	pmd = pmd_mkyoung(pmd);
1589	if (was_writable)
1590		pmd = pmd_mkwrite(pmd);
1591	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593	unlock_page(page);
1594out_unlock:
1595	spin_unlock(vmf->ptl);
1596
1597out:
1598	if (anon_vma)
1599		page_unlock_anon_vma_read(anon_vma);
1600
1601	if (page_nid != -1)
1602		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1603				flags);
1604
1605	return 0;
1606}
1607
1608/*
1609 * Return true if we do MADV_FREE successfully on entire pmd page.
1610 * Otherwise, return false.
1611 */
1612bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1613		pmd_t *pmd, unsigned long addr, unsigned long next)
1614{
1615	spinlock_t *ptl;
1616	pmd_t orig_pmd;
1617	struct page *page;
1618	struct mm_struct *mm = tlb->mm;
1619	bool ret = false;
1620
1621	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1622
1623	ptl = pmd_trans_huge_lock(pmd, vma);
1624	if (!ptl)
1625		goto out_unlocked;
1626
1627	orig_pmd = *pmd;
1628	if (is_huge_zero_pmd(orig_pmd))
1629		goto out;
1630
1631	if (unlikely(!pmd_present(orig_pmd))) {
1632		VM_BUG_ON(thp_migration_supported() &&
1633				  !is_pmd_migration_entry(orig_pmd));
1634		goto out;
1635	}
1636
1637	page = pmd_page(orig_pmd);
1638	/*
1639	 * If other processes are mapping this page, we couldn't discard
1640	 * the page unless they all do MADV_FREE so let's skip the page.
1641	 */
1642	if (page_mapcount(page) != 1)
1643		goto out;
1644
1645	if (!trylock_page(page))
1646		goto out;
1647
1648	/*
1649	 * If user want to discard part-pages of THP, split it so MADV_FREE
1650	 * will deactivate only them.
1651	 */
1652	if (next - addr != HPAGE_PMD_SIZE) {
1653		get_page(page);
1654		spin_unlock(ptl);
1655		split_huge_page(page);
1656		unlock_page(page);
1657		put_page(page);
1658		goto out_unlocked;
1659	}
1660
1661	if (PageDirty(page))
1662		ClearPageDirty(page);
1663	unlock_page(page);
1664
1665	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1666		pmdp_invalidate(vma, addr, pmd);
1667		orig_pmd = pmd_mkold(orig_pmd);
1668		orig_pmd = pmd_mkclean(orig_pmd);
1669
1670		set_pmd_at(mm, addr, pmd, orig_pmd);
1671		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1672	}
1673
1674	mark_page_lazyfree(page);
1675	ret = true;
1676out:
1677	spin_unlock(ptl);
1678out_unlocked:
1679	return ret;
1680}
1681
1682static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1683{
1684	pgtable_t pgtable;
1685
1686	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1687	pte_free(mm, pgtable);
1688	mm_dec_nr_ptes(mm);
1689}
1690
1691int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1692		 pmd_t *pmd, unsigned long addr)
1693{
1694	pmd_t orig_pmd;
1695	spinlock_t *ptl;
1696
1697	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1698
1699	ptl = __pmd_trans_huge_lock(pmd, vma);
1700	if (!ptl)
1701		return 0;
1702	/*
1703	 * For architectures like ppc64 we look at deposited pgtable
1704	 * when calling pmdp_huge_get_and_clear. So do the
1705	 * pgtable_trans_huge_withdraw after finishing pmdp related
1706	 * operations.
1707	 */
1708	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1709			tlb->fullmm);
1710	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1711	if (vma_is_dax(vma)) {
1712		if (arch_needs_pgtable_deposit())
1713			zap_deposited_table(tlb->mm, pmd);
1714		spin_unlock(ptl);
1715		if (is_huge_zero_pmd(orig_pmd))
1716			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1717	} else if (is_huge_zero_pmd(orig_pmd)) {
1718		zap_deposited_table(tlb->mm, pmd);
1719		spin_unlock(ptl);
1720		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1721	} else {
1722		struct page *page = NULL;
1723		int flush_needed = 1;
1724
1725		if (pmd_present(orig_pmd)) {
1726			page = pmd_page(orig_pmd);
1727			page_remove_rmap(page, true);
1728			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1729			VM_BUG_ON_PAGE(!PageHead(page), page);
1730		} else if (thp_migration_supported()) {
1731			swp_entry_t entry;
1732
1733			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1734			entry = pmd_to_swp_entry(orig_pmd);
1735			page = pfn_to_page(swp_offset(entry));
1736			flush_needed = 0;
1737		} else
1738			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1739
1740		if (PageAnon(page)) {
1741			zap_deposited_table(tlb->mm, pmd);
1742			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1743		} else {
1744			if (arch_needs_pgtable_deposit())
1745				zap_deposited_table(tlb->mm, pmd);
1746			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1747		}
1748
1749		spin_unlock(ptl);
1750		if (flush_needed)
1751			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1752	}
1753	return 1;
1754}
1755
1756#ifndef pmd_move_must_withdraw
1757static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1758					 spinlock_t *old_pmd_ptl,
1759					 struct vm_area_struct *vma)
1760{
1761	/*
1762	 * With split pmd lock we also need to move preallocated
1763	 * PTE page table if new_pmd is on different PMD page table.
1764	 *
1765	 * We also don't deposit and withdraw tables for file pages.
1766	 */
1767	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1768}
1769#endif
1770
1771static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1772{
1773#ifdef CONFIG_MEM_SOFT_DIRTY
1774	if (unlikely(is_pmd_migration_entry(pmd)))
1775		pmd = pmd_swp_mksoft_dirty(pmd);
1776	else if (pmd_present(pmd))
1777		pmd = pmd_mksoft_dirty(pmd);
1778#endif
1779	return pmd;
1780}
1781
1782bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1783		  unsigned long new_addr, unsigned long old_end,
1784		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1785{
1786	spinlock_t *old_ptl, *new_ptl;
1787	pmd_t pmd;
1788	struct mm_struct *mm = vma->vm_mm;
1789	bool force_flush = false;
1790
1791	if ((old_addr & ~HPAGE_PMD_MASK) ||
1792	    (new_addr & ~HPAGE_PMD_MASK) ||
1793	    old_end - old_addr < HPAGE_PMD_SIZE)
1794		return false;
1795
1796	/*
1797	 * The destination pmd shouldn't be established, free_pgtables()
1798	 * should have release it.
1799	 */
1800	if (WARN_ON(!pmd_none(*new_pmd))) {
1801		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1802		return false;
1803	}
1804
1805	/*
1806	 * We don't have to worry about the ordering of src and dst
1807	 * ptlocks because exclusive mmap_sem prevents deadlock.
1808	 */
1809	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1810	if (old_ptl) {
1811		new_ptl = pmd_lockptr(mm, new_pmd);
1812		if (new_ptl != old_ptl)
1813			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1814		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1815		if (pmd_present(pmd) && pmd_dirty(pmd))
1816			force_flush = true;
1817		VM_BUG_ON(!pmd_none(*new_pmd));
1818
1819		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1820			pgtable_t pgtable;
1821			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1822			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1823		}
1824		pmd = move_soft_dirty_pmd(pmd);
1825		set_pmd_at(mm, new_addr, new_pmd, pmd);
1826		if (new_ptl != old_ptl)
1827			spin_unlock(new_ptl);
1828		if (force_flush)
1829			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1830		else
1831			*need_flush = true;
1832		spin_unlock(old_ptl);
1833		return true;
1834	}
1835	return false;
1836}
1837
1838/*
1839 * Returns
1840 *  - 0 if PMD could not be locked
1841 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1842 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1843 */
1844int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1845		unsigned long addr, pgprot_t newprot, int prot_numa)
1846{
1847	struct mm_struct *mm = vma->vm_mm;
1848	spinlock_t *ptl;
1849	pmd_t entry;
1850	bool preserve_write;
1851	int ret;
 
 
 
1852
1853	ptl = __pmd_trans_huge_lock(pmd, vma);
1854	if (!ptl)
1855		return 0;
1856
1857	preserve_write = prot_numa && pmd_write(*pmd);
1858	ret = 1;
1859
1860#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861	if (is_swap_pmd(*pmd)) {
1862		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1863
1864		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1865		if (is_write_migration_entry(entry)) {
1866			pmd_t newpmd;
1867			/*
1868			 * A protection check is difficult so
1869			 * just be safe and disable write
1870			 */
1871			make_migration_entry_read(&entry);
1872			newpmd = swp_entry_to_pmd(entry);
1873			if (pmd_swp_soft_dirty(*pmd))
1874				newpmd = pmd_swp_mksoft_dirty(newpmd);
1875			set_pmd_at(mm, addr, pmd, newpmd);
1876		}
1877		goto unlock;
1878	}
1879#endif
1880
1881	/*
1882	 * Avoid trapping faults against the zero page. The read-only
1883	 * data is likely to be read-cached on the local CPU and
1884	 * local/remote hits to the zero page are not interesting.
1885	 */
1886	if (prot_numa && is_huge_zero_pmd(*pmd))
1887		goto unlock;
1888
1889	if (prot_numa && pmd_protnone(*pmd))
1890		goto unlock;
1891
1892	/*
1893	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1894	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895	 * which is also under down_read(mmap_sem):
1896	 *
1897	 *	CPU0:				CPU1:
1898	 *				change_huge_pmd(prot_numa=1)
1899	 *				 pmdp_huge_get_and_clear_notify()
1900	 * madvise_dontneed()
1901	 *  zap_pmd_range()
1902	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1903	 *   // skip the pmd
1904	 *				 set_pmd_at();
1905	 *				 // pmd is re-established
1906	 *
1907	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908	 * which may break userspace.
1909	 *
1910	 * pmdp_invalidate() is required to make sure we don't miss
1911	 * dirty/young flags set by hardware.
1912	 */
1913	entry = pmdp_invalidate(vma, addr, pmd);
1914
1915	entry = pmd_modify(entry, newprot);
1916	if (preserve_write)
1917		entry = pmd_mk_savedwrite(entry);
 
 
 
 
 
 
 
 
 
 
 
1918	ret = HPAGE_PMD_NR;
1919	set_pmd_at(mm, addr, pmd, entry);
1920	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1921unlock:
1922	spin_unlock(ptl);
1923	return ret;
1924}
1925
1926/*
1927 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1928 *
1929 * Note that if it returns page table lock pointer, this routine returns without
1930 * unlocking page table lock. So callers must unlock it.
1931 */
1932spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1933{
1934	spinlock_t *ptl;
1935	ptl = pmd_lock(vma->vm_mm, pmd);
1936	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1937			pmd_devmap(*pmd)))
1938		return ptl;
1939	spin_unlock(ptl);
1940	return NULL;
1941}
1942
1943/*
1944 * Returns true if a given pud maps a thp, false otherwise.
1945 *
1946 * Note that if it returns true, this routine returns without unlocking page
1947 * table lock. So callers must unlock it.
1948 */
1949spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1950{
1951	spinlock_t *ptl;
1952
1953	ptl = pud_lock(vma->vm_mm, pud);
1954	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1955		return ptl;
1956	spin_unlock(ptl);
1957	return NULL;
1958}
1959
1960#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1961int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1962		 pud_t *pud, unsigned long addr)
1963{
1964	pud_t orig_pud;
1965	spinlock_t *ptl;
1966
1967	ptl = __pud_trans_huge_lock(pud, vma);
1968	if (!ptl)
1969		return 0;
1970	/*
1971	 * For architectures like ppc64 we look at deposited pgtable
1972	 * when calling pudp_huge_get_and_clear. So do the
1973	 * pgtable_trans_huge_withdraw after finishing pudp related
1974	 * operations.
1975	 */
1976	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1977			tlb->fullmm);
1978	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1979	if (vma_is_dax(vma)) {
1980		spin_unlock(ptl);
1981		/* No zero page support yet */
1982	} else {
1983		/* No support for anonymous PUD pages yet */
1984		BUG();
1985	}
1986	return 1;
1987}
1988
1989static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1990		unsigned long haddr)
1991{
1992	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1993	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1994	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1995	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1996
1997	count_vm_event(THP_SPLIT_PUD);
1998
1999	pudp_huge_clear_flush_notify(vma, haddr, pud);
2000}
2001
2002void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2003		unsigned long address)
2004{
2005	spinlock_t *ptl;
2006	struct mm_struct *mm = vma->vm_mm;
2007	unsigned long haddr = address & HPAGE_PUD_MASK;
2008
2009	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2010	ptl = pud_lock(mm, pud);
 
 
 
2011	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2012		goto out;
2013	__split_huge_pud_locked(vma, pud, haddr);
2014
2015out:
2016	spin_unlock(ptl);
2017	/*
2018	 * No need to double call mmu_notifier->invalidate_range() callback as
2019	 * the above pudp_huge_clear_flush_notify() did already call it.
2020	 */
2021	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2022					       HPAGE_PUD_SIZE);
2023}
2024#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2025
2026static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2027		unsigned long haddr, pmd_t *pmd)
2028{
2029	struct mm_struct *mm = vma->vm_mm;
2030	pgtable_t pgtable;
2031	pmd_t _pmd;
2032	int i;
2033
2034	/*
2035	 * Leave pmd empty until pte is filled note that it is fine to delay
2036	 * notification until mmu_notifier_invalidate_range_end() as we are
2037	 * replacing a zero pmd write protected page with a zero pte write
2038	 * protected page.
2039	 *
2040	 * See Documentation/vm/mmu_notifier.txt
2041	 */
2042	pmdp_huge_clear_flush(vma, haddr, pmd);
2043
2044	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2045	pmd_populate(mm, &_pmd, pgtable);
2046
2047	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2048		pte_t *pte, entry;
2049		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2050		entry = pte_mkspecial(entry);
2051		pte = pte_offset_map(&_pmd, haddr);
2052		VM_BUG_ON(!pte_none(*pte));
2053		set_pte_at(mm, haddr, pte, entry);
2054		pte_unmap(pte);
2055	}
2056	smp_wmb(); /* make pte visible before pmd */
2057	pmd_populate(mm, pmd, pgtable);
2058}
2059
2060static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2061		unsigned long haddr, bool freeze)
2062{
2063	struct mm_struct *mm = vma->vm_mm;
2064	struct page *page;
2065	pgtable_t pgtable;
2066	pmd_t old_pmd, _pmd;
2067	bool young, write, soft_dirty, pmd_migration = false;
2068	unsigned long addr;
2069	int i;
2070
2071	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2072	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2073	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2074	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2075				&& !pmd_devmap(*pmd));
2076
2077	count_vm_event(THP_SPLIT_PMD);
2078
2079	if (!vma_is_anonymous(vma)) {
2080		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2081		/*
2082		 * We are going to unmap this huge page. So
2083		 * just go ahead and zap it
2084		 */
2085		if (arch_needs_pgtable_deposit())
2086			zap_deposited_table(mm, pmd);
2087		if (vma_is_dax(vma))
2088			return;
2089		page = pmd_page(_pmd);
 
 
2090		if (!PageReferenced(page) && pmd_young(_pmd))
2091			SetPageReferenced(page);
2092		page_remove_rmap(page, true);
2093		put_page(page);
2094		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2095		return;
2096	} else if (is_huge_zero_pmd(*pmd)) {
2097		/*
2098		 * FIXME: Do we want to invalidate secondary mmu by calling
2099		 * mmu_notifier_invalidate_range() see comments below inside
2100		 * __split_huge_pmd() ?
2101		 *
2102		 * We are going from a zero huge page write protected to zero
2103		 * small page also write protected so it does not seems useful
2104		 * to invalidate secondary mmu at this time.
2105		 */
2106		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2107	}
2108
2109	/*
2110	 * Up to this point the pmd is present and huge and userland has the
2111	 * whole access to the hugepage during the split (which happens in
2112	 * place). If we overwrite the pmd with the not-huge version pointing
2113	 * to the pte here (which of course we could if all CPUs were bug
2114	 * free), userland could trigger a small page size TLB miss on the
2115	 * small sized TLB while the hugepage TLB entry is still established in
2116	 * the huge TLB. Some CPU doesn't like that.
2117	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2118	 * 383 on page 93. Intel should be safe but is also warns that it's
2119	 * only safe if the permission and cache attributes of the two entries
2120	 * loaded in the two TLB is identical (which should be the case here).
2121	 * But it is generally safer to never allow small and huge TLB entries
2122	 * for the same virtual address to be loaded simultaneously. So instead
2123	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2124	 * current pmd notpresent (atomically because here the pmd_trans_huge
2125	 * must remain set at all times on the pmd until the split is complete
2126	 * for this pmd), then we flush the SMP TLB and finally we write the
2127	 * non-huge version of the pmd entry with pmd_populate.
2128	 */
2129	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2130
2131#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2132	pmd_migration = is_pmd_migration_entry(old_pmd);
2133	if (pmd_migration) {
2134		swp_entry_t entry;
2135
2136		entry = pmd_to_swp_entry(old_pmd);
2137		page = pfn_to_page(swp_offset(entry));
2138	} else
2139#endif
 
 
 
2140		page = pmd_page(old_pmd);
 
 
 
 
 
 
 
2141	VM_BUG_ON_PAGE(!page_count(page), page);
2142	page_ref_add(page, HPAGE_PMD_NR - 1);
2143	if (pmd_dirty(old_pmd))
2144		SetPageDirty(page);
2145	write = pmd_write(old_pmd);
2146	young = pmd_young(old_pmd);
2147	soft_dirty = pmd_soft_dirty(old_pmd);
2148
2149	/*
2150	 * Withdraw the table only after we mark the pmd entry invalid.
2151	 * This's critical for some architectures (Power).
2152	 */
2153	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2154	pmd_populate(mm, &_pmd, pgtable);
2155
2156	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2157		pte_t entry, *pte;
2158		/*
2159		 * Note that NUMA hinting access restrictions are not
2160		 * transferred to avoid any possibility of altering
2161		 * permissions across VMAs.
2162		 */
2163		if (freeze || pmd_migration) {
2164			swp_entry_t swp_entry;
2165			swp_entry = make_migration_entry(page + i, write);
2166			entry = swp_entry_to_pte(swp_entry);
2167			if (soft_dirty)
2168				entry = pte_swp_mksoft_dirty(entry);
 
 
2169		} else {
2170			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2171			entry = maybe_mkwrite(entry, vma);
2172			if (!write)
2173				entry = pte_wrprotect(entry);
2174			if (!young)
2175				entry = pte_mkold(entry);
2176			if (soft_dirty)
2177				entry = pte_mksoft_dirty(entry);
 
 
2178		}
2179		pte = pte_offset_map(&_pmd, addr);
2180		BUG_ON(!pte_none(*pte));
2181		set_pte_at(mm, addr, pte, entry);
2182		atomic_inc(&page[i]._mapcount);
2183		pte_unmap(pte);
2184	}
2185
2186	/*
2187	 * Set PG_double_map before dropping compound_mapcount to avoid
2188	 * false-negative page_mapped().
2189	 */
2190	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2191		for (i = 0; i < HPAGE_PMD_NR; i++)
2192			atomic_inc(&page[i]._mapcount);
 
2193	}
2194
2195	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2196		/* Last compound_mapcount is gone. */
2197		__dec_node_page_state(page, NR_ANON_THPS);
2198		if (TestClearPageDoubleMap(page)) {
2199			/* No need in mapcount reference anymore */
 
 
2200			for (i = 0; i < HPAGE_PMD_NR; i++)
2201				atomic_dec(&page[i]._mapcount);
2202		}
 
 
 
 
 
 
 
 
 
 
 
 
2203	}
2204
2205	smp_wmb(); /* make pte visible before pmd */
2206	pmd_populate(mm, pmd, pgtable);
2207
2208	if (freeze) {
2209		for (i = 0; i < HPAGE_PMD_NR; i++) {
2210			page_remove_rmap(page + i, false);
2211			put_page(page + i);
2212		}
2213	}
2214}
2215
2216void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2217		unsigned long address, bool freeze, struct page *page)
2218{
2219	spinlock_t *ptl;
2220	struct mm_struct *mm = vma->vm_mm;
2221	unsigned long haddr = address & HPAGE_PMD_MASK;
 
2222
2223	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2224	ptl = pmd_lock(mm, pmd);
 
 
 
2225
2226	/*
2227	 * If caller asks to setup a migration entries, we need a page to check
2228	 * pmd against. Otherwise we can end up replacing wrong page.
2229	 */
2230	VM_BUG_ON(freeze && !page);
2231	if (page && page != pmd_page(*pmd))
2232	        goto out;
 
 
 
 
2233
 
2234	if (pmd_trans_huge(*pmd)) {
2235		page = pmd_page(*pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236		if (PageMlocked(page))
2237			clear_page_mlock(page);
2238	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2239		goto out;
2240	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2241out:
2242	spin_unlock(ptl);
 
 
2243	/*
2244	 * No need to double call mmu_notifier->invalidate_range() callback.
2245	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2246	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2247	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2248	 *    fault will trigger a flush_notify before pointing to a new page
2249	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2250	 *    page in the meantime)
2251	 *  3) Split a huge pmd into pte pointing to the same page. No need
2252	 *     to invalidate secondary tlb entry they are all still valid.
2253	 *     any further changes to individual pte will notify. So no need
2254	 *     to call mmu_notifier->invalidate_range()
2255	 */
2256	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2257					       HPAGE_PMD_SIZE);
2258}
2259
2260void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2261		bool freeze, struct page *page)
2262{
2263	pgd_t *pgd;
2264	p4d_t *p4d;
2265	pud_t *pud;
2266	pmd_t *pmd;
2267
2268	pgd = pgd_offset(vma->vm_mm, address);
2269	if (!pgd_present(*pgd))
2270		return;
2271
2272	p4d = p4d_offset(pgd, address);
2273	if (!p4d_present(*p4d))
2274		return;
2275
2276	pud = pud_offset(p4d, address);
2277	if (!pud_present(*pud))
2278		return;
2279
2280	pmd = pmd_offset(pud, address);
2281
2282	__split_huge_pmd(vma, pmd, address, freeze, page);
2283}
2284
2285void vma_adjust_trans_huge(struct vm_area_struct *vma,
2286			     unsigned long start,
2287			     unsigned long end,
2288			     long adjust_next)
2289{
2290	/*
2291	 * If the new start address isn't hpage aligned and it could
2292	 * previously contain an hugepage: check if we need to split
2293	 * an huge pmd.
2294	 */
2295	if (start & ~HPAGE_PMD_MASK &&
2296	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2297	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2298		split_huge_pmd_address(vma, start, false, NULL);
2299
2300	/*
2301	 * If the new end address isn't hpage aligned and it could
2302	 * previously contain an hugepage: check if we need to split
2303	 * an huge pmd.
2304	 */
2305	if (end & ~HPAGE_PMD_MASK &&
2306	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2307	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2308		split_huge_pmd_address(vma, end, false, NULL);
2309
2310	/*
2311	 * If we're also updating the vma->vm_next->vm_start, if the new
2312	 * vm_next->vm_start isn't page aligned and it could previously
2313	 * contain an hugepage: check if we need to split an huge pmd.
2314	 */
2315	if (adjust_next > 0) {
2316		struct vm_area_struct *next = vma->vm_next;
2317		unsigned long nstart = next->vm_start;
2318		nstart += adjust_next << PAGE_SHIFT;
2319		if (nstart & ~HPAGE_PMD_MASK &&
2320		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2321		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2322			split_huge_pmd_address(next, nstart, false, NULL);
2323	}
2324}
2325
2326static void freeze_page(struct page *page)
2327{
2328	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2329		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2330	bool unmap_success;
2331
2332	VM_BUG_ON_PAGE(!PageHead(page), page);
2333
2334	if (PageAnon(page))
2335		ttu_flags |= TTU_SPLIT_FREEZE;
2336
2337	unmap_success = try_to_unmap(page, ttu_flags);
2338	VM_BUG_ON_PAGE(!unmap_success, page);
2339}
2340
2341static void unfreeze_page(struct page *page)
2342{
2343	int i;
2344	if (PageTransHuge(page)) {
2345		remove_migration_ptes(page, page, true);
2346	} else {
2347		for (i = 0; i < HPAGE_PMD_NR; i++)
2348			remove_migration_ptes(page + i, page + i, true);
2349	}
2350}
2351
2352static void __split_huge_page_tail(struct page *head, int tail,
2353		struct lruvec *lruvec, struct list_head *list)
2354{
2355	struct page *page_tail = head + tail;
2356
2357	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2358
2359	/*
2360	 * Clone page flags before unfreezing refcount.
2361	 *
2362	 * After successful get_page_unless_zero() might follow flags change,
2363	 * for exmaple lock_page() which set PG_waiters.
2364	 */
2365	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2366	page_tail->flags |= (head->flags &
2367			((1L << PG_referenced) |
2368			 (1L << PG_swapbacked) |
2369			 (1L << PG_swapcache) |
2370			 (1L << PG_mlocked) |
2371			 (1L << PG_uptodate) |
2372			 (1L << PG_active) |
 
2373			 (1L << PG_locked) |
2374			 (1L << PG_unevictable) |
2375			 (1L << PG_dirty)));
2376
 
 
 
 
 
 
2377	/* Page flags must be visible before we make the page non-compound. */
2378	smp_wmb();
2379
2380	/*
2381	 * Clear PageTail before unfreezing page refcount.
2382	 *
2383	 * After successful get_page_unless_zero() might follow put_page()
2384	 * which needs correct compound_head().
2385	 */
2386	clear_compound_head(page_tail);
2387
2388	/* Finally unfreeze refcount. Additional reference from page cache. */
2389	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2390					  PageSwapCache(head)));
2391
2392	if (page_is_young(head))
2393		set_page_young(page_tail);
2394	if (page_is_idle(head))
2395		set_page_idle(page_tail);
2396
2397	/* ->mapping in first tail page is compound_mapcount */
2398	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2399			page_tail);
2400	page_tail->mapping = head->mapping;
2401
2402	page_tail->index = head->index + tail;
2403	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2404
2405	/*
2406	 * always add to the tail because some iterators expect new
2407	 * pages to show after the currently processed elements - e.g.
2408	 * migrate_pages
2409	 */
2410	lru_add_page_tail(head, page_tail, lruvec, list);
2411}
2412
2413static void __split_huge_page(struct page *page, struct list_head *list,
2414		unsigned long flags)
2415{
2416	struct page *head = compound_head(page);
2417	struct zone *zone = page_zone(head);
2418	struct lruvec *lruvec;
2419	pgoff_t end = -1;
 
2420	int i;
2421
2422	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2423
2424	/* complete memcg works before add pages to LRU */
2425	mem_cgroup_split_huge_fixup(head);
2426
2427	if (!PageAnon(page))
2428		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
 
 
 
 
 
2429
2430	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2431		__split_huge_page_tail(head, i, lruvec, list);
2432		/* Some pages can be beyond i_size: drop them from page cache */
2433		if (head[i].index >= end) {
2434			ClearPageDirty(head + i);
2435			__delete_from_page_cache(head + i, NULL);
2436			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2437				shmem_uncharge(head->mapping->host, 1);
2438			put_page(head + i);
 
 
 
 
 
 
2439		}
2440	}
2441
2442	ClearPageCompound(head);
 
 
 
2443	/* See comment in __split_huge_page_tail() */
2444	if (PageAnon(head)) {
2445		/* Additional pin to radix tree of swap cache */
2446		if (PageSwapCache(head))
2447			page_ref_add(head, 2);
2448		else
 
2449			page_ref_inc(head);
 
2450	} else {
2451		/* Additional pin to radix tree */
2452		page_ref_add(head, 2);
2453		xa_unlock(&head->mapping->i_pages);
2454	}
2455
2456	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2457
2458	unfreeze_page(head);
2459
2460	for (i = 0; i < HPAGE_PMD_NR; i++) {
2461		struct page *subpage = head + i;
2462		if (subpage == page)
2463			continue;
2464		unlock_page(subpage);
2465
2466		/*
2467		 * Subpages may be freed if there wasn't any mapping
2468		 * like if add_to_swap() is running on a lru page that
2469		 * had its mapping zapped. And freeing these pages
2470		 * requires taking the lru_lock so we do the put_page
2471		 * of the tail pages after the split is complete.
2472		 */
2473		put_page(subpage);
2474	}
2475}
2476
2477int total_mapcount(struct page *page)
2478{
2479	int i, compound, ret;
2480
2481	VM_BUG_ON_PAGE(PageTail(page), page);
2482
2483	if (likely(!PageCompound(page)))
2484		return atomic_read(&page->_mapcount) + 1;
2485
2486	compound = compound_mapcount(page);
2487	if (PageHuge(page))
2488		return compound;
2489	ret = compound;
2490	for (i = 0; i < HPAGE_PMD_NR; i++)
2491		ret += atomic_read(&page[i]._mapcount) + 1;
2492	/* File pages has compound_mapcount included in _mapcount */
2493	if (!PageAnon(page))
2494		return ret - compound * HPAGE_PMD_NR;
2495	if (PageDoubleMap(page))
2496		ret -= HPAGE_PMD_NR;
2497	return ret;
2498}
2499
2500/*
2501 * This calculates accurately how many mappings a transparent hugepage
2502 * has (unlike page_mapcount() which isn't fully accurate). This full
2503 * accuracy is primarily needed to know if copy-on-write faults can
2504 * reuse the page and change the mapping to read-write instead of
2505 * copying them. At the same time this returns the total_mapcount too.
2506 *
2507 * The function returns the highest mapcount any one of the subpages
2508 * has. If the return value is one, even if different processes are
2509 * mapping different subpages of the transparent hugepage, they can
2510 * all reuse it, because each process is reusing a different subpage.
2511 *
2512 * The total_mapcount is instead counting all virtual mappings of the
2513 * subpages. If the total_mapcount is equal to "one", it tells the
2514 * caller all mappings belong to the same "mm" and in turn the
2515 * anon_vma of the transparent hugepage can become the vma->anon_vma
2516 * local one as no other process may be mapping any of the subpages.
2517 *
2518 * It would be more accurate to replace page_mapcount() with
2519 * page_trans_huge_mapcount(), however we only use
2520 * page_trans_huge_mapcount() in the copy-on-write faults where we
2521 * need full accuracy to avoid breaking page pinning, because
2522 * page_trans_huge_mapcount() is slower than page_mapcount().
2523 */
2524int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2525{
2526	int i, ret, _total_mapcount, mapcount;
2527
2528	/* hugetlbfs shouldn't call it */
2529	VM_BUG_ON_PAGE(PageHuge(page), page);
2530
2531	if (likely(!PageTransCompound(page))) {
2532		mapcount = atomic_read(&page->_mapcount) + 1;
2533		if (total_mapcount)
2534			*total_mapcount = mapcount;
2535		return mapcount;
2536	}
2537
2538	page = compound_head(page);
2539
2540	_total_mapcount = ret = 0;
2541	for (i = 0; i < HPAGE_PMD_NR; i++) {
2542		mapcount = atomic_read(&page[i]._mapcount) + 1;
2543		ret = max(ret, mapcount);
2544		_total_mapcount += mapcount;
2545	}
2546	if (PageDoubleMap(page)) {
2547		ret -= 1;
2548		_total_mapcount -= HPAGE_PMD_NR;
2549	}
2550	mapcount = compound_mapcount(page);
2551	ret += mapcount;
2552	_total_mapcount += mapcount;
2553	if (total_mapcount)
2554		*total_mapcount = _total_mapcount;
2555	return ret;
2556}
2557
2558/* Racy check whether the huge page can be split */
2559bool can_split_huge_page(struct page *page, int *pextra_pins)
2560{
2561	int extra_pins;
2562
2563	/* Additional pins from radix tree */
2564	if (PageAnon(page))
2565		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2566	else
2567		extra_pins = HPAGE_PMD_NR;
2568	if (pextra_pins)
2569		*pextra_pins = extra_pins;
2570	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2571}
2572
2573/*
2574 * This function splits huge page into normal pages. @page can point to any
2575 * subpage of huge page to split. Split doesn't change the position of @page.
2576 *
2577 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2578 * The huge page must be locked.
2579 *
2580 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2581 *
2582 * Both head page and tail pages will inherit mapping, flags, and so on from
2583 * the hugepage.
2584 *
2585 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2586 * they are not mapped.
2587 *
2588 * Returns 0 if the hugepage is split successfully.
2589 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2590 * us.
2591 */
2592int split_huge_page_to_list(struct page *page, struct list_head *list)
2593{
2594	struct page *head = compound_head(page);
2595	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
 
2596	struct anon_vma *anon_vma = NULL;
2597	struct address_space *mapping = NULL;
2598	int count, mapcount, extra_pins, ret;
2599	bool mlocked;
2600	unsigned long flags;
 
2601
2602	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2603	VM_BUG_ON_PAGE(!PageLocked(page), page);
2604	VM_BUG_ON_PAGE(!PageCompound(page), page);
2605
2606	if (PageWriteback(page))
2607		return -EBUSY;
2608
2609	if (PageAnon(head)) {
2610		/*
2611		 * The caller does not necessarily hold an mmap_sem that would
2612		 * prevent the anon_vma disappearing so we first we take a
2613		 * reference to it and then lock the anon_vma for write. This
2614		 * is similar to page_lock_anon_vma_read except the write lock
2615		 * is taken to serialise against parallel split or collapse
2616		 * operations.
2617		 */
2618		anon_vma = page_get_anon_vma(head);
2619		if (!anon_vma) {
2620			ret = -EBUSY;
2621			goto out;
2622		}
 
2623		mapping = NULL;
2624		anon_vma_lock_write(anon_vma);
2625	} else {
2626		mapping = head->mapping;
2627
2628		/* Truncated ? */
2629		if (!mapping) {
2630			ret = -EBUSY;
2631			goto out;
2632		}
2633
2634		anon_vma = NULL;
2635		i_mmap_lock_read(mapping);
 
 
 
 
 
 
 
 
 
2636	}
2637
2638	/*
2639	 * Racy check if we can split the page, before freeze_page() will
2640	 * split PMDs
2641	 */
2642	if (!can_split_huge_page(head, &extra_pins)) {
2643		ret = -EBUSY;
2644		goto out_unlock;
2645	}
2646
2647	mlocked = PageMlocked(page);
2648	freeze_page(head);
2649	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2650
2651	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2652	if (mlocked)
2653		lru_add_drain();
2654
2655	/* prevent PageLRU to go away from under us, and freeze lru stats */
2656	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2657
2658	if (mapping) {
2659		void **pslot;
2660
2661		xa_lock(&mapping->i_pages);
2662		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2663				page_index(head));
2664		/*
2665		 * Check if the head page is present in radix tree.
2666		 * We assume all tail are present too, if head is there.
2667		 */
2668		if (radix_tree_deref_slot_protected(pslot,
2669					&mapping->i_pages.xa_lock) != head)
2670			goto fail;
2671	}
2672
2673	/* Prevent deferred_split_scan() touching ->_refcount */
2674	spin_lock(&pgdata->split_queue_lock);
2675	count = page_count(head);
2676	mapcount = total_mapcount(head);
2677	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2678		if (!list_empty(page_deferred_list(head))) {
2679			pgdata->split_queue_len--;
2680			list_del(page_deferred_list(head));
2681		}
2682		if (mapping)
2683			__dec_node_page_state(page, NR_SHMEM_THPS);
2684		spin_unlock(&pgdata->split_queue_lock);
2685		__split_huge_page(page, list, flags);
 
 
 
 
 
2686		if (PageSwapCache(head)) {
2687			swp_entry_t entry = { .val = page_private(head) };
2688
2689			ret = split_swap_cluster(entry);
2690		} else
2691			ret = 0;
2692	} else {
2693		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2694			pr_alert("total_mapcount: %u, page_count(): %u\n",
2695					mapcount, count);
2696			if (PageTail(page))
2697				dump_page(head, NULL);
2698			dump_page(page, "total_mapcount(head) > 0");
2699			BUG();
2700		}
2701		spin_unlock(&pgdata->split_queue_lock);
2702fail:		if (mapping)
2703			xa_unlock(&mapping->i_pages);
2704		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2705		unfreeze_page(head);
2706		ret = -EBUSY;
2707	}
2708
2709out_unlock:
2710	if (anon_vma) {
2711		anon_vma_unlock_write(anon_vma);
2712		put_anon_vma(anon_vma);
2713	}
2714	if (mapping)
2715		i_mmap_unlock_read(mapping);
2716out:
2717	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2718	return ret;
2719}
2720
2721void free_transhuge_page(struct page *page)
2722{
2723	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2724	unsigned long flags;
2725
2726	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2727	if (!list_empty(page_deferred_list(page))) {
2728		pgdata->split_queue_len--;
2729		list_del(page_deferred_list(page));
2730	}
2731	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2732	free_compound_page(page);
2733}
2734
2735void deferred_split_huge_page(struct page *page)
2736{
2737	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
 
 
 
2738	unsigned long flags;
2739
2740	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2741
2742	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
2743	if (list_empty(page_deferred_list(page))) {
2744		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2745		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2746		pgdata->split_queue_len++;
 
 
 
 
 
2747	}
2748	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2749}
2750
2751static unsigned long deferred_split_count(struct shrinker *shrink,
2752		struct shrink_control *sc)
2753{
2754	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2755	return READ_ONCE(pgdata->split_queue_len);
 
 
 
 
 
 
2756}
2757
2758static unsigned long deferred_split_scan(struct shrinker *shrink,
2759		struct shrink_control *sc)
2760{
2761	struct pglist_data *pgdata = NODE_DATA(sc->nid);
 
2762	unsigned long flags;
2763	LIST_HEAD(list), *pos, *next;
2764	struct page *page;
2765	int split = 0;
2766
2767	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 
 
 
 
 
2768	/* Take pin on all head pages to avoid freeing them under us */
2769	list_for_each_safe(pos, next, &pgdata->split_queue) {
2770		page = list_entry((void *)pos, struct page, mapping);
2771		page = compound_head(page);
2772		if (get_page_unless_zero(page)) {
2773			list_move(page_deferred_list(page), &list);
2774		} else {
2775			/* We lost race with put_compound_page() */
2776			list_del_init(page_deferred_list(page));
2777			pgdata->split_queue_len--;
2778		}
2779		if (!--sc->nr_to_scan)
2780			break;
2781	}
2782	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2783
2784	list_for_each_safe(pos, next, &list) {
2785		page = list_entry((void *)pos, struct page, mapping);
2786		if (!trylock_page(page))
2787			goto next;
2788		/* split_huge_page() removes page from list on success */
2789		if (!split_huge_page(page))
2790			split++;
2791		unlock_page(page);
2792next:
2793		put_page(page);
2794	}
2795
2796	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2797	list_splice_tail(&list, &pgdata->split_queue);
2798	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2799
2800	/*
2801	 * Stop shrinker if we didn't split any page, but the queue is empty.
2802	 * This can happen if pages were freed under us.
2803	 */
2804	if (!split && list_empty(&pgdata->split_queue))
2805		return SHRINK_STOP;
2806	return split;
2807}
2808
2809static struct shrinker deferred_split_shrinker = {
2810	.count_objects = deferred_split_count,
2811	.scan_objects = deferred_split_scan,
2812	.seeks = DEFAULT_SEEKS,
2813	.flags = SHRINKER_NUMA_AWARE,
 
2814};
2815
2816#ifdef CONFIG_DEBUG_FS
2817static int split_huge_pages_set(void *data, u64 val)
2818{
2819	struct zone *zone;
2820	struct page *page;
2821	unsigned long pfn, max_zone_pfn;
2822	unsigned long total = 0, split = 0;
2823
2824	if (val != 1)
2825		return -EINVAL;
2826
2827	for_each_populated_zone(zone) {
2828		max_zone_pfn = zone_end_pfn(zone);
2829		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2830			if (!pfn_valid(pfn))
2831				continue;
2832
2833			page = pfn_to_page(pfn);
2834			if (!get_page_unless_zero(page))
2835				continue;
2836
2837			if (zone != page_zone(page))
2838				goto next;
2839
2840			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2841				goto next;
2842
2843			total++;
2844			lock_page(page);
2845			if (!split_huge_page(page))
2846				split++;
2847			unlock_page(page);
2848next:
2849			put_page(page);
2850		}
2851	}
2852
2853	pr_info("%lu of %lu THP split\n", split, total);
2854
2855	return 0;
2856}
2857DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2858		"%llu\n");
2859
2860static int __init split_huge_pages_debugfs(void)
2861{
2862	void *ret;
2863
2864	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2865			&split_huge_pages_fops);
2866	if (!ret)
2867		pr_warn("Failed to create split_huge_pages in debugfs");
2868	return 0;
2869}
2870late_initcall(split_huge_pages_debugfs);
2871#endif
2872
2873#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2874void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2875		struct page *page)
2876{
2877	struct vm_area_struct *vma = pvmw->vma;
2878	struct mm_struct *mm = vma->vm_mm;
2879	unsigned long address = pvmw->address;
2880	pmd_t pmdval;
2881	swp_entry_t entry;
2882	pmd_t pmdswp;
2883
2884	if (!(pvmw->pmd && !pvmw->pte))
2885		return;
2886
2887	mmu_notifier_invalidate_range_start(mm, address,
2888			address + HPAGE_PMD_SIZE);
2889
2890	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2891	pmdval = *pvmw->pmd;
2892	pmdp_invalidate(vma, address, pvmw->pmd);
2893	if (pmd_dirty(pmdval))
2894		set_page_dirty(page);
2895	entry = make_migration_entry(page, pmd_write(pmdval));
2896	pmdswp = swp_entry_to_pmd(entry);
2897	if (pmd_soft_dirty(pmdval))
2898		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2899	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2900	page_remove_rmap(page, true);
2901	put_page(page);
2902
2903	mmu_notifier_invalidate_range_end(mm, address,
2904			address + HPAGE_PMD_SIZE);
2905}
2906
2907void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2908{
2909	struct vm_area_struct *vma = pvmw->vma;
2910	struct mm_struct *mm = vma->vm_mm;
2911	unsigned long address = pvmw->address;
2912	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2913	pmd_t pmde;
2914	swp_entry_t entry;
2915
2916	if (!(pvmw->pmd && !pvmw->pte))
2917		return;
2918
2919	entry = pmd_to_swp_entry(*pvmw->pmd);
2920	get_page(new);
2921	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2922	if (pmd_swp_soft_dirty(*pvmw->pmd))
2923		pmde = pmd_mksoft_dirty(pmde);
2924	if (is_write_migration_entry(entry))
2925		pmde = maybe_pmd_mkwrite(pmde, vma);
2926
2927	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2928	if (PageAnon(new))
2929		page_add_anon_rmap(new, vma, mmun_start, true);
2930	else
2931		page_add_file_rmap(new, true);
2932	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2933	if (vma->vm_flags & VM_LOCKED)
2934		mlock_vma_page(new);
2935	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2936}
2937#endif
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2009  Red Hat, Inc.
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/sched/coredump.h>
  11#include <linux/sched/numa_balancing.h>
  12#include <linux/highmem.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mmu_notifier.h>
  15#include <linux/rmap.h>
  16#include <linux/swap.h>
  17#include <linux/shrinker.h>
  18#include <linux/mm_inline.h>
  19#include <linux/swapops.h>
  20#include <linux/dax.h>
  21#include <linux/khugepaged.h>
  22#include <linux/freezer.h>
  23#include <linux/pfn_t.h>
  24#include <linux/mman.h>
  25#include <linux/memremap.h>
  26#include <linux/pagemap.h>
  27#include <linux/debugfs.h>
  28#include <linux/migrate.h>
  29#include <linux/hashtable.h>
  30#include <linux/userfaultfd_k.h>
  31#include <linux/page_idle.h>
  32#include <linux/shmem_fs.h>
  33#include <linux/oom.h>
  34#include <linux/numa.h>
  35#include <linux/page_owner.h>
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
  40
  41/*
  42 * By default, transparent hugepage support is disabled in order to avoid
  43 * risking an increased memory footprint for applications that are not
  44 * guaranteed to benefit from it. When transparent hugepage support is
  45 * enabled, it is for all mappings, and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
  60static struct shrinker deferred_split_shrinker;
  61
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
  64
  65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
  66{
  67	/* The addr is used to check if the vma size fits */
  68	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
  69
  70	if (!transhuge_vma_suitable(vma, addr))
  71		return false;
  72	if (vma_is_anonymous(vma))
  73		return __transparent_hugepage_enabled(vma);
  74	if (vma_is_shmem(vma))
  75		return shmem_huge_enabled(vma);
  76
  77	return false;
  78}
  79
  80static struct page *get_huge_zero_page(void)
  81{
  82	struct page *zero_page;
  83retry:
  84	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  85		return READ_ONCE(huge_zero_page);
  86
  87	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  88			HPAGE_PMD_ORDER);
  89	if (!zero_page) {
  90		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  91		return NULL;
  92	}
  93	count_vm_event(THP_ZERO_PAGE_ALLOC);
  94	preempt_disable();
  95	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  96		preempt_enable();
  97		__free_pages(zero_page, compound_order(zero_page));
  98		goto retry;
  99	}
 100
 101	/* We take additional reference here. It will be put back by shrinker */
 102	atomic_set(&huge_zero_refcount, 2);
 103	preempt_enable();
 104	return READ_ONCE(huge_zero_page);
 105}
 106
 107static void put_huge_zero_page(void)
 108{
 109	/*
 110	 * Counter should never go to zero here. Only shrinker can put
 111	 * last reference.
 112	 */
 113	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 114}
 115
 116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 117{
 118	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 119		return READ_ONCE(huge_zero_page);
 120
 121	if (!get_huge_zero_page())
 122		return NULL;
 123
 124	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 125		put_huge_zero_page();
 126
 127	return READ_ONCE(huge_zero_page);
 128}
 129
 130void mm_put_huge_zero_page(struct mm_struct *mm)
 131{
 132	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 133		put_huge_zero_page();
 134}
 135
 136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 137					struct shrink_control *sc)
 138{
 139	/* we can free zero page only if last reference remains */
 140	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 141}
 142
 143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 144				       struct shrink_control *sc)
 145{
 146	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 147		struct page *zero_page = xchg(&huge_zero_page, NULL);
 148		BUG_ON(zero_page == NULL);
 149		__free_pages(zero_page, compound_order(zero_page));
 150		return HPAGE_PMD_NR;
 151	}
 152
 153	return 0;
 154}
 155
 156static struct shrinker huge_zero_page_shrinker = {
 157	.count_objects = shrink_huge_zero_page_count,
 158	.scan_objects = shrink_huge_zero_page_scan,
 159	.seeks = DEFAULT_SEEKS,
 160};
 161
 162#ifdef CONFIG_SYSFS
 163static ssize_t enabled_show(struct kobject *kobj,
 164			    struct kobj_attribute *attr, char *buf)
 165{
 166	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 167		return sprintf(buf, "[always] madvise never\n");
 168	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 169		return sprintf(buf, "always [madvise] never\n");
 170	else
 171		return sprintf(buf, "always madvise [never]\n");
 172}
 173
 174static ssize_t enabled_store(struct kobject *kobj,
 175			     struct kobj_attribute *attr,
 176			     const char *buf, size_t count)
 177{
 178	ssize_t ret = count;
 179
 180	if (sysfs_streq(buf, "always")) {
 
 181		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 182		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 183	} else if (sysfs_streq(buf, "madvise")) {
 
 184		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 185		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 186	} else if (sysfs_streq(buf, "never")) {
 
 187		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 188		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 189	} else
 190		ret = -EINVAL;
 191
 192	if (ret > 0) {
 193		int err = start_stop_khugepaged();
 194		if (err)
 195			ret = err;
 196	}
 197	return ret;
 198}
 199static struct kobj_attribute enabled_attr =
 200	__ATTR(enabled, 0644, enabled_show, enabled_store);
 201
 202ssize_t single_hugepage_flag_show(struct kobject *kobj,
 203				struct kobj_attribute *attr, char *buf,
 204				enum transparent_hugepage_flag flag)
 205{
 206	return sprintf(buf, "%d\n",
 207		       !!test_bit(flag, &transparent_hugepage_flags));
 208}
 209
 210ssize_t single_hugepage_flag_store(struct kobject *kobj,
 211				 struct kobj_attribute *attr,
 212				 const char *buf, size_t count,
 213				 enum transparent_hugepage_flag flag)
 214{
 215	unsigned long value;
 216	int ret;
 217
 218	ret = kstrtoul(buf, 10, &value);
 219	if (ret < 0)
 220		return ret;
 221	if (value > 1)
 222		return -EINVAL;
 223
 224	if (value)
 225		set_bit(flag, &transparent_hugepage_flags);
 226	else
 227		clear_bit(flag, &transparent_hugepage_flags);
 228
 229	return count;
 230}
 231
 232static ssize_t defrag_show(struct kobject *kobj,
 233			   struct kobj_attribute *attr, char *buf)
 234{
 235	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 236		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 237	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 238		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 239	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 240		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 241	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 242		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 243	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 244}
 245
 246static ssize_t defrag_store(struct kobject *kobj,
 247			    struct kobj_attribute *attr,
 248			    const char *buf, size_t count)
 249{
 250	if (sysfs_streq(buf, "always")) {
 
 251		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 252		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 253		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 254		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 255	} else if (sysfs_streq(buf, "defer+madvise")) {
 
 256		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 257		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 258		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 259		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 260	} else if (sysfs_streq(buf, "defer")) {
 
 261		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 262		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 263		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 264		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 265	} else if (sysfs_streq(buf, "madvise")) {
 
 266		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 267		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 268		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 269		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 270	} else if (sysfs_streq(buf, "never")) {
 
 271		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 272		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 273		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 274		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 275	} else
 276		return -EINVAL;
 277
 278	return count;
 279}
 280static struct kobj_attribute defrag_attr =
 281	__ATTR(defrag, 0644, defrag_show, defrag_store);
 282
 283static ssize_t use_zero_page_show(struct kobject *kobj,
 284		struct kobj_attribute *attr, char *buf)
 285{
 286	return single_hugepage_flag_show(kobj, attr, buf,
 287				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 288}
 289static ssize_t use_zero_page_store(struct kobject *kobj,
 290		struct kobj_attribute *attr, const char *buf, size_t count)
 291{
 292	return single_hugepage_flag_store(kobj, attr, buf, count,
 293				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 294}
 295static struct kobj_attribute use_zero_page_attr =
 296	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 297
 298static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 299		struct kobj_attribute *attr, char *buf)
 300{
 301	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 302}
 303static struct kobj_attribute hpage_pmd_size_attr =
 304	__ATTR_RO(hpage_pmd_size);
 305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306static struct attribute *hugepage_attr[] = {
 307	&enabled_attr.attr,
 308	&defrag_attr.attr,
 309	&use_zero_page_attr.attr,
 310	&hpage_pmd_size_attr.attr,
 311#ifdef CONFIG_SHMEM
 312	&shmem_enabled_attr.attr,
 313#endif
 
 
 
 314	NULL,
 315};
 316
 317static const struct attribute_group hugepage_attr_group = {
 318	.attrs = hugepage_attr,
 319};
 320
 321static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 322{
 323	int err;
 324
 325	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 326	if (unlikely(!*hugepage_kobj)) {
 327		pr_err("failed to create transparent hugepage kobject\n");
 328		return -ENOMEM;
 329	}
 330
 331	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 332	if (err) {
 333		pr_err("failed to register transparent hugepage group\n");
 334		goto delete_obj;
 335	}
 336
 337	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 338	if (err) {
 339		pr_err("failed to register transparent hugepage group\n");
 340		goto remove_hp_group;
 341	}
 342
 343	return 0;
 344
 345remove_hp_group:
 346	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 347delete_obj:
 348	kobject_put(*hugepage_kobj);
 349	return err;
 350}
 351
 352static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 353{
 354	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 355	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 356	kobject_put(hugepage_kobj);
 357}
 358#else
 359static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 360{
 361	return 0;
 362}
 363
 364static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 365{
 366}
 367#endif /* CONFIG_SYSFS */
 368
 369static int __init hugepage_init(void)
 370{
 371	int err;
 372	struct kobject *hugepage_kobj;
 373
 374	if (!has_transparent_hugepage()) {
 375		transparent_hugepage_flags = 0;
 376		return -EINVAL;
 377	}
 378
 379	/*
 380	 * hugepages can't be allocated by the buddy allocator
 381	 */
 382	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 383	/*
 384	 * we use page->mapping and page->index in second tail page
 385	 * as list_head: assuming THP order >= 2
 386	 */
 387	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 388
 389	err = hugepage_init_sysfs(&hugepage_kobj);
 390	if (err)
 391		goto err_sysfs;
 392
 393	err = khugepaged_init();
 394	if (err)
 395		goto err_slab;
 396
 397	err = register_shrinker(&huge_zero_page_shrinker);
 398	if (err)
 399		goto err_hzp_shrinker;
 400	err = register_shrinker(&deferred_split_shrinker);
 401	if (err)
 402		goto err_split_shrinker;
 403
 404	/*
 405	 * By default disable transparent hugepages on smaller systems,
 406	 * where the extra memory used could hurt more than TLB overhead
 407	 * is likely to save.  The admin can still enable it through /sys.
 408	 */
 409	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
 410		transparent_hugepage_flags = 0;
 411		return 0;
 412	}
 413
 414	err = start_stop_khugepaged();
 415	if (err)
 416		goto err_khugepaged;
 417
 418	return 0;
 419err_khugepaged:
 420	unregister_shrinker(&deferred_split_shrinker);
 421err_split_shrinker:
 422	unregister_shrinker(&huge_zero_page_shrinker);
 423err_hzp_shrinker:
 424	khugepaged_destroy();
 425err_slab:
 426	hugepage_exit_sysfs(hugepage_kobj);
 427err_sysfs:
 428	return err;
 429}
 430subsys_initcall(hugepage_init);
 431
 432static int __init setup_transparent_hugepage(char *str)
 433{
 434	int ret = 0;
 435	if (!str)
 436		goto out;
 437	if (!strcmp(str, "always")) {
 438		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 439			&transparent_hugepage_flags);
 440		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 441			  &transparent_hugepage_flags);
 442		ret = 1;
 443	} else if (!strcmp(str, "madvise")) {
 444		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 445			  &transparent_hugepage_flags);
 446		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 447			&transparent_hugepage_flags);
 448		ret = 1;
 449	} else if (!strcmp(str, "never")) {
 450		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 451			  &transparent_hugepage_flags);
 452		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 453			  &transparent_hugepage_flags);
 454		ret = 1;
 455	}
 456out:
 457	if (!ret)
 458		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 459	return ret;
 460}
 461__setup("transparent_hugepage=", setup_transparent_hugepage);
 462
 463pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 464{
 465	if (likely(vma->vm_flags & VM_WRITE))
 466		pmd = pmd_mkwrite(pmd);
 467	return pmd;
 468}
 469
 470#ifdef CONFIG_MEMCG
 471static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 472{
 473	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
 474	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 475
 476	if (memcg)
 477		return &memcg->deferred_split_queue;
 478	else
 479		return &pgdat->deferred_split_queue;
 480}
 481#else
 482static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 483{
 484	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 485
 486	return &pgdat->deferred_split_queue;
 487}
 488#endif
 489
 490void prep_transhuge_page(struct page *page)
 491{
 492	/*
 493	 * we use page->mapping and page->indexlru in second tail page
 494	 * as list_head: assuming THP order >= 2
 495	 */
 496
 497	INIT_LIST_HEAD(page_deferred_list(page));
 498	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 499}
 500
 501bool is_transparent_hugepage(struct page *page)
 502{
 503	if (!PageCompound(page))
 504		return false;
 505
 506	page = compound_head(page);
 507	return is_huge_zero_page(page) ||
 508	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
 509}
 510EXPORT_SYMBOL_GPL(is_transparent_hugepage);
 511
 512static unsigned long __thp_get_unmapped_area(struct file *filp,
 513		unsigned long addr, unsigned long len,
 514		loff_t off, unsigned long flags, unsigned long size)
 515{
 
 516	loff_t off_end = off + len;
 517	loff_t off_align = round_up(off, size);
 518	unsigned long len_pad, ret;
 519
 520	if (off_end <= off_align || (off_end - off_align) < size)
 521		return 0;
 522
 523	len_pad = len + size;
 524	if (len_pad < len || (off + len_pad) < off)
 525		return 0;
 526
 527	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
 528					      off >> PAGE_SHIFT, flags);
 529
 530	/*
 531	 * The failure might be due to length padding. The caller will retry
 532	 * without the padding.
 533	 */
 534	if (IS_ERR_VALUE(ret))
 535		return 0;
 536
 537	/*
 538	 * Do not try to align to THP boundary if allocation at the address
 539	 * hint succeeds.
 540	 */
 541	if (ret == addr)
 542		return addr;
 543
 544	ret += (off - ret) & (size - 1);
 545	return ret;
 546}
 547
 548unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 549		unsigned long len, unsigned long pgoff, unsigned long flags)
 550{
 551	unsigned long ret;
 552	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 553
 
 
 554	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 555		goto out;
 556
 557	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
 558	if (ret)
 559		return ret;
 560out:
 
 561	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 562}
 563EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 564
 565static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
 566			struct page *page, gfp_t gfp)
 567{
 568	struct vm_area_struct *vma = vmf->vma;
 
 569	pgtable_t pgtable;
 570	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 571	vm_fault_t ret = 0;
 572
 573	VM_BUG_ON_PAGE(!PageCompound(page), page);
 574
 575	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
 576		put_page(page);
 577		count_vm_event(THP_FAULT_FALLBACK);
 578		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
 579		return VM_FAULT_FALLBACK;
 580	}
 581	cgroup_throttle_swaprate(page, gfp);
 582
 583	pgtable = pte_alloc_one(vma->vm_mm);
 584	if (unlikely(!pgtable)) {
 585		ret = VM_FAULT_OOM;
 586		goto release;
 587	}
 588
 589	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 590	/*
 591	 * The memory barrier inside __SetPageUptodate makes sure that
 592	 * clear_huge_page writes become visible before the set_pmd_at()
 593	 * write.
 594	 */
 595	__SetPageUptodate(page);
 596
 597	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 598	if (unlikely(!pmd_none(*vmf->pmd))) {
 599		goto unlock_release;
 600	} else {
 601		pmd_t entry;
 602
 603		ret = check_stable_address_space(vma->vm_mm);
 604		if (ret)
 605			goto unlock_release;
 606
 607		/* Deliver the page fault to userland */
 608		if (userfaultfd_missing(vma)) {
 609			vm_fault_t ret2;
 610
 611			spin_unlock(vmf->ptl);
 
 612			put_page(page);
 613			pte_free(vma->vm_mm, pgtable);
 614			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
 615			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
 616			return ret2;
 617		}
 618
 619		entry = mk_huge_pmd(page, vma->vm_page_prot);
 620		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 621		page_add_new_anon_rmap(page, vma, haddr, true);
 622		lru_cache_add_inactive_or_unevictable(page, vma);
 
 623		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 624		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 625		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 626		mm_inc_nr_ptes(vma->vm_mm);
 627		spin_unlock(vmf->ptl);
 628		count_vm_event(THP_FAULT_ALLOC);
 629		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
 630	}
 631
 632	return 0;
 633unlock_release:
 634	spin_unlock(vmf->ptl);
 635release:
 636	if (pgtable)
 637		pte_free(vma->vm_mm, pgtable);
 
 638	put_page(page);
 639	return ret;
 640
 641}
 642
 643/*
 644 * always: directly stall for all thp allocations
 645 * defer: wake kswapd and fail if not immediately available
 646 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 647 *		  fail if not immediately available
 648 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 649 *	    available
 650 * never: never stall for any thp allocation
 651 */
 652static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 653{
 654	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 655
 656	/* Always do synchronous compaction */
 657	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 658		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 659
 660	/* Kick kcompactd and fail quickly */
 661	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 662		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 663
 664	/* Synchronous compaction if madvised, otherwise kick kcompactd */
 665	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 666		return GFP_TRANSHUGE_LIGHT |
 667			(vma_madvised ? __GFP_DIRECT_RECLAIM :
 668					__GFP_KSWAPD_RECLAIM);
 669
 670	/* Only do synchronous compaction if madvised */
 671	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 672		return GFP_TRANSHUGE_LIGHT |
 673		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
 674
 675	return GFP_TRANSHUGE_LIGHT;
 676}
 677
 678/* Caller must hold page table lock. */
 679static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 680		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 681		struct page *zero_page)
 682{
 683	pmd_t entry;
 684	if (!pmd_none(*pmd))
 685		return false;
 686	entry = mk_pmd(zero_page, vma->vm_page_prot);
 687	entry = pmd_mkhuge(entry);
 688	if (pgtable)
 689		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 690	set_pmd_at(mm, haddr, pmd, entry);
 691	mm_inc_nr_ptes(mm);
 692	return true;
 693}
 694
 695vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 696{
 697	struct vm_area_struct *vma = vmf->vma;
 698	gfp_t gfp;
 699	struct page *page;
 700	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 701
 702	if (!transhuge_vma_suitable(vma, haddr))
 703		return VM_FAULT_FALLBACK;
 704	if (unlikely(anon_vma_prepare(vma)))
 705		return VM_FAULT_OOM;
 706	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 707		return VM_FAULT_OOM;
 708	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 709			!mm_forbids_zeropage(vma->vm_mm) &&
 710			transparent_hugepage_use_zero_page()) {
 711		pgtable_t pgtable;
 712		struct page *zero_page;
 713		bool set;
 714		vm_fault_t ret;
 715		pgtable = pte_alloc_one(vma->vm_mm);
 716		if (unlikely(!pgtable))
 717			return VM_FAULT_OOM;
 718		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 719		if (unlikely(!zero_page)) {
 720			pte_free(vma->vm_mm, pgtable);
 721			count_vm_event(THP_FAULT_FALLBACK);
 722			return VM_FAULT_FALLBACK;
 723		}
 724		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 725		ret = 0;
 726		set = false;
 727		if (pmd_none(*vmf->pmd)) {
 728			ret = check_stable_address_space(vma->vm_mm);
 729			if (ret) {
 730				spin_unlock(vmf->ptl);
 731			} else if (userfaultfd_missing(vma)) {
 732				spin_unlock(vmf->ptl);
 733				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 734				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 735			} else {
 736				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 737						   haddr, vmf->pmd, zero_page);
 738				spin_unlock(vmf->ptl);
 739				set = true;
 740			}
 741		} else
 742			spin_unlock(vmf->ptl);
 743		if (!set)
 744			pte_free(vma->vm_mm, pgtable);
 745		return ret;
 746	}
 747	gfp = alloc_hugepage_direct_gfpmask(vma);
 748	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 749	if (unlikely(!page)) {
 750		count_vm_event(THP_FAULT_FALLBACK);
 751		return VM_FAULT_FALLBACK;
 752	}
 753	prep_transhuge_page(page);
 754	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 755}
 756
 757static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 758		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 759		pgtable_t pgtable)
 760{
 761	struct mm_struct *mm = vma->vm_mm;
 762	pmd_t entry;
 763	spinlock_t *ptl;
 764
 765	ptl = pmd_lock(mm, pmd);
 766	if (!pmd_none(*pmd)) {
 767		if (write) {
 768			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
 769				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
 770				goto out_unlock;
 771			}
 772			entry = pmd_mkyoung(*pmd);
 773			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 774			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
 775				update_mmu_cache_pmd(vma, addr, pmd);
 776		}
 777
 778		goto out_unlock;
 779	}
 780
 781	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 782	if (pfn_t_devmap(pfn))
 783		entry = pmd_mkdevmap(entry);
 784	if (write) {
 785		entry = pmd_mkyoung(pmd_mkdirty(entry));
 786		entry = maybe_pmd_mkwrite(entry, vma);
 787	}
 788
 789	if (pgtable) {
 790		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 791		mm_inc_nr_ptes(mm);
 792		pgtable = NULL;
 793	}
 794
 795	set_pmd_at(mm, addr, pmd, entry);
 796	update_mmu_cache_pmd(vma, addr, pmd);
 797
 798out_unlock:
 799	spin_unlock(ptl);
 800	if (pgtable)
 801		pte_free(mm, pgtable);
 802}
 803
 804/**
 805 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 806 * @vmf: Structure describing the fault
 807 * @pfn: pfn to insert
 808 * @pgprot: page protection to use
 809 * @write: whether it's a write fault
 810 *
 811 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 812 * also consult the vmf_insert_mixed_prot() documentation when
 813 * @pgprot != @vmf->vma->vm_page_prot.
 814 *
 815 * Return: vm_fault_t value.
 816 */
 817vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
 818				   pgprot_t pgprot, bool write)
 819{
 820	unsigned long addr = vmf->address & PMD_MASK;
 821	struct vm_area_struct *vma = vmf->vma;
 822	pgtable_t pgtable = NULL;
 823
 824	/*
 825	 * If we had pmd_special, we could avoid all these restrictions,
 826	 * but we need to be consistent with PTEs and architectures that
 827	 * can't support a 'special' bit.
 828	 */
 829	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 830			!pfn_t_devmap(pfn));
 831	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 832						(VM_PFNMAP|VM_MIXEDMAP));
 833	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 
 834
 835	if (addr < vma->vm_start || addr >= vma->vm_end)
 836		return VM_FAULT_SIGBUS;
 837
 838	if (arch_needs_pgtable_deposit()) {
 839		pgtable = pte_alloc_one(vma->vm_mm);
 840		if (!pgtable)
 841			return VM_FAULT_OOM;
 842	}
 843
 844	track_pfn_insert(vma, &pgprot, pfn);
 845
 846	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
 847	return VM_FAULT_NOPAGE;
 848}
 849EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
 850
 851#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 852static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 853{
 854	if (likely(vma->vm_flags & VM_WRITE))
 855		pud = pud_mkwrite(pud);
 856	return pud;
 857}
 858
 859static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 860		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 861{
 862	struct mm_struct *mm = vma->vm_mm;
 863	pud_t entry;
 864	spinlock_t *ptl;
 865
 866	ptl = pud_lock(mm, pud);
 867	if (!pud_none(*pud)) {
 868		if (write) {
 869			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
 870				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
 871				goto out_unlock;
 872			}
 873			entry = pud_mkyoung(*pud);
 874			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
 875			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
 876				update_mmu_cache_pud(vma, addr, pud);
 877		}
 878		goto out_unlock;
 879	}
 880
 881	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 882	if (pfn_t_devmap(pfn))
 883		entry = pud_mkdevmap(entry);
 884	if (write) {
 885		entry = pud_mkyoung(pud_mkdirty(entry));
 886		entry = maybe_pud_mkwrite(entry, vma);
 887	}
 888	set_pud_at(mm, addr, pud, entry);
 889	update_mmu_cache_pud(vma, addr, pud);
 890
 891out_unlock:
 892	spin_unlock(ptl);
 893}
 894
 895/**
 896 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 897 * @vmf: Structure describing the fault
 898 * @pfn: pfn to insert
 899 * @pgprot: page protection to use
 900 * @write: whether it's a write fault
 901 *
 902 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 903 * also consult the vmf_insert_mixed_prot() documentation when
 904 * @pgprot != @vmf->vma->vm_page_prot.
 905 *
 906 * Return: vm_fault_t value.
 907 */
 908vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
 909				   pgprot_t pgprot, bool write)
 910{
 911	unsigned long addr = vmf->address & PUD_MASK;
 912	struct vm_area_struct *vma = vmf->vma;
 913
 914	/*
 915	 * If we had pud_special, we could avoid all these restrictions,
 916	 * but we need to be consistent with PTEs and architectures that
 917	 * can't support a 'special' bit.
 918	 */
 919	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 920			!pfn_t_devmap(pfn));
 921	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 922						(VM_PFNMAP|VM_MIXEDMAP));
 923	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 
 924
 925	if (addr < vma->vm_start || addr >= vma->vm_end)
 926		return VM_FAULT_SIGBUS;
 927
 928	track_pfn_insert(vma, &pgprot, pfn);
 929
 930	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
 931	return VM_FAULT_NOPAGE;
 932}
 933EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
 934#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 935
 936static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 937		pmd_t *pmd, int flags)
 938{
 939	pmd_t _pmd;
 940
 941	_pmd = pmd_mkyoung(*pmd);
 942	if (flags & FOLL_WRITE)
 943		_pmd = pmd_mkdirty(_pmd);
 944	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 945				pmd, _pmd, flags & FOLL_WRITE))
 946		update_mmu_cache_pmd(vma, addr, pmd);
 947}
 948
 949struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 950		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
 951{
 952	unsigned long pfn = pmd_pfn(*pmd);
 953	struct mm_struct *mm = vma->vm_mm;
 
 954	struct page *page;
 955
 956	assert_spin_locked(pmd_lockptr(mm, pmd));
 957
 958	/*
 959	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 960	 * not be in this function with `flags & FOLL_COW` set.
 961	 */
 962	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 963
 964	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
 965	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
 966			 (FOLL_PIN | FOLL_GET)))
 967		return NULL;
 968
 969	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 970		return NULL;
 971
 972	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 973		/* pass */;
 974	else
 975		return NULL;
 976
 977	if (flags & FOLL_TOUCH)
 978		touch_pmd(vma, addr, pmd, flags);
 979
 980	/*
 981	 * device mapped pages can only be returned if the
 982	 * caller will manage the page reference count.
 983	 */
 984	if (!(flags & (FOLL_GET | FOLL_PIN)))
 985		return ERR_PTR(-EEXIST);
 986
 987	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 988	*pgmap = get_dev_pagemap(pfn, *pgmap);
 989	if (!*pgmap)
 990		return ERR_PTR(-EFAULT);
 991	page = pfn_to_page(pfn);
 992	if (!try_grab_page(page, flags))
 993		page = ERR_PTR(-ENOMEM);
 994
 995	return page;
 996}
 997
 998int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 999		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1000		  struct vm_area_struct *vma)
1001{
1002	spinlock_t *dst_ptl, *src_ptl;
1003	struct page *src_page;
1004	pmd_t pmd;
1005	pgtable_t pgtable = NULL;
1006	int ret = -ENOMEM;
1007
1008	/* Skip if can be re-fill on fault */
1009	if (!vma_is_anonymous(vma))
1010		return 0;
1011
1012	pgtable = pte_alloc_one(dst_mm);
1013	if (unlikely(!pgtable))
1014		goto out;
1015
1016	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1017	src_ptl = pmd_lockptr(src_mm, src_pmd);
1018	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1019
1020	ret = -EAGAIN;
1021	pmd = *src_pmd;
1022
1023	/*
1024	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1025	 * does not have the VM_UFFD_WP, which means that the uffd
1026	 * fork event is not enabled.
1027	 */
1028	if (!(vma->vm_flags & VM_UFFD_WP))
1029		pmd = pmd_clear_uffd_wp(pmd);
1030
1031#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1032	if (unlikely(is_swap_pmd(pmd))) {
1033		swp_entry_t entry = pmd_to_swp_entry(pmd);
1034
1035		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1036		if (is_write_migration_entry(entry)) {
1037			make_migration_entry_read(&entry);
1038			pmd = swp_entry_to_pmd(entry);
1039			if (pmd_swp_soft_dirty(*src_pmd))
1040				pmd = pmd_swp_mksoft_dirty(pmd);
1041			set_pmd_at(src_mm, addr, src_pmd, pmd);
1042		}
1043		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1044		mm_inc_nr_ptes(dst_mm);
1045		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1046		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1047		ret = 0;
1048		goto out_unlock;
1049	}
1050#endif
1051
1052	if (unlikely(!pmd_trans_huge(pmd))) {
1053		pte_free(dst_mm, pgtable);
1054		goto out_unlock;
1055	}
1056	/*
1057	 * When page table lock is held, the huge zero pmd should not be
1058	 * under splitting since we don't split the page itself, only pmd to
1059	 * a page table.
1060	 */
1061	if (is_huge_zero_pmd(pmd)) {
1062		struct page *zero_page;
1063		/*
1064		 * get_huge_zero_page() will never allocate a new page here,
1065		 * since we already have a zero page to copy. It just takes a
1066		 * reference.
1067		 */
1068		zero_page = mm_get_huge_zero_page(dst_mm);
1069		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1070				zero_page);
1071		ret = 0;
1072		goto out_unlock;
1073	}
1074
1075	src_page = pmd_page(pmd);
1076	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1077
1078	/*
1079	 * If this page is a potentially pinned page, split and retry the fault
1080	 * with smaller page size.  Normally this should not happen because the
1081	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1082	 * best effort that the pinned pages won't be replaced by another
1083	 * random page during the coming copy-on-write.
1084	 */
1085	if (unlikely(is_cow_mapping(vma->vm_flags) &&
1086		     atomic_read(&src_mm->has_pinned) &&
1087		     page_maybe_dma_pinned(src_page))) {
1088		pte_free(dst_mm, pgtable);
1089		spin_unlock(src_ptl);
1090		spin_unlock(dst_ptl);
1091		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
1092		return -EAGAIN;
1093	}
1094
1095	get_page(src_page);
1096	page_dup_rmap(src_page, true);
1097	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1098	mm_inc_nr_ptes(dst_mm);
1099	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1100
1101	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1102	pmd = pmd_mkold(pmd_wrprotect(pmd));
1103	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1104
1105	ret = 0;
1106out_unlock:
1107	spin_unlock(src_ptl);
1108	spin_unlock(dst_ptl);
1109out:
1110	return ret;
1111}
1112
1113#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1114static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1115		pud_t *pud, int flags)
1116{
1117	pud_t _pud;
1118
1119	_pud = pud_mkyoung(*pud);
1120	if (flags & FOLL_WRITE)
1121		_pud = pud_mkdirty(_pud);
1122	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1123				pud, _pud, flags & FOLL_WRITE))
1124		update_mmu_cache_pud(vma, addr, pud);
1125}
1126
1127struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1128		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1129{
1130	unsigned long pfn = pud_pfn(*pud);
1131	struct mm_struct *mm = vma->vm_mm;
 
1132	struct page *page;
1133
1134	assert_spin_locked(pud_lockptr(mm, pud));
1135
1136	if (flags & FOLL_WRITE && !pud_write(*pud))
1137		return NULL;
1138
1139	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1140	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1141			 (FOLL_PIN | FOLL_GET)))
1142		return NULL;
1143
1144	if (pud_present(*pud) && pud_devmap(*pud))
1145		/* pass */;
1146	else
1147		return NULL;
1148
1149	if (flags & FOLL_TOUCH)
1150		touch_pud(vma, addr, pud, flags);
1151
1152	/*
1153	 * device mapped pages can only be returned if the
1154	 * caller will manage the page reference count.
1155	 *
1156	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1157	 */
1158	if (!(flags & (FOLL_GET | FOLL_PIN)))
1159		return ERR_PTR(-EEXIST);
1160
1161	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1162	*pgmap = get_dev_pagemap(pfn, *pgmap);
1163	if (!*pgmap)
1164		return ERR_PTR(-EFAULT);
1165	page = pfn_to_page(pfn);
1166	if (!try_grab_page(page, flags))
1167		page = ERR_PTR(-ENOMEM);
1168
1169	return page;
1170}
1171
1172int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1173		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1174		  struct vm_area_struct *vma)
1175{
1176	spinlock_t *dst_ptl, *src_ptl;
1177	pud_t pud;
1178	int ret;
1179
1180	dst_ptl = pud_lock(dst_mm, dst_pud);
1181	src_ptl = pud_lockptr(src_mm, src_pud);
1182	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1183
1184	ret = -EAGAIN;
1185	pud = *src_pud;
1186	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1187		goto out_unlock;
1188
1189	/*
1190	 * When page table lock is held, the huge zero pud should not be
1191	 * under splitting since we don't split the page itself, only pud to
1192	 * a page table.
1193	 */
1194	if (is_huge_zero_pud(pud)) {
1195		/* No huge zero pud yet */
1196	}
1197
1198	/* Please refer to comments in copy_huge_pmd() */
1199	if (unlikely(is_cow_mapping(vma->vm_flags) &&
1200		     atomic_read(&src_mm->has_pinned) &&
1201		     page_maybe_dma_pinned(pud_page(pud)))) {
1202		spin_unlock(src_ptl);
1203		spin_unlock(dst_ptl);
1204		__split_huge_pud(vma, src_pud, addr);
1205		return -EAGAIN;
1206	}
1207
1208	pudp_set_wrprotect(src_mm, addr, src_pud);
1209	pud = pud_mkold(pud_wrprotect(pud));
1210	set_pud_at(dst_mm, addr, dst_pud, pud);
1211
1212	ret = 0;
1213out_unlock:
1214	spin_unlock(src_ptl);
1215	spin_unlock(dst_ptl);
1216	return ret;
1217}
1218
1219void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1220{
1221	pud_t entry;
1222	unsigned long haddr;
1223	bool write = vmf->flags & FAULT_FLAG_WRITE;
1224
1225	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1226	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1227		goto unlock;
1228
1229	entry = pud_mkyoung(orig_pud);
1230	if (write)
1231		entry = pud_mkdirty(entry);
1232	haddr = vmf->address & HPAGE_PUD_MASK;
1233	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1234		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1235
1236unlock:
1237	spin_unlock(vmf->ptl);
1238}
1239#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1240
1241void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1242{
1243	pmd_t entry;
1244	unsigned long haddr;
1245	bool write = vmf->flags & FAULT_FLAG_WRITE;
1246
1247	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1248	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1249		goto unlock;
1250
1251	entry = pmd_mkyoung(orig_pmd);
1252	if (write)
1253		entry = pmd_mkdirty(entry);
1254	haddr = vmf->address & HPAGE_PMD_MASK;
1255	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1256		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1257
1258unlock:
1259	spin_unlock(vmf->ptl);
1260}
1261
1262vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
 
1263{
1264	struct vm_area_struct *vma = vmf->vma;
1265	struct page *page;
1266	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267
1268	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1269	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1270
1271	if (is_huge_zero_pmd(orig_pmd))
1272		goto fallback;
1273
1274	spin_lock(vmf->ptl);
1275
1276	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1277		spin_unlock(vmf->ptl);
1278		return 0;
1279	}
1280
1281	page = pmd_page(orig_pmd);
1282	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1283
1284	/* Lock page for reuse_swap_page() */
 
 
1285	if (!trylock_page(page)) {
1286		get_page(page);
1287		spin_unlock(vmf->ptl);
1288		lock_page(page);
1289		spin_lock(vmf->ptl);
1290		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1291			spin_unlock(vmf->ptl);
1292			unlock_page(page);
1293			put_page(page);
1294			return 0;
1295		}
1296		put_page(page);
1297	}
1298
1299	/*
1300	 * We can only reuse the page if nobody else maps the huge page or it's
1301	 * part.
1302	 */
1303	if (reuse_swap_page(page, NULL)) {
1304		pmd_t entry;
1305		entry = pmd_mkyoung(orig_pmd);
1306		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1307		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1308			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 
1309		unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310		spin_unlock(vmf->ptl);
1311		return VM_FAULT_WRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312	}
1313
1314	unlock_page(page);
1315	spin_unlock(vmf->ptl);
1316fallback:
1317	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1318	return VM_FAULT_FALLBACK;
 
 
 
 
 
 
 
 
 
1319}
1320
1321/*
1322 * FOLL_FORCE can write to even unwritable pmd's, but only
1323 * after we've gone through a COW cycle and they are dirty.
1324 */
1325static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1326{
1327	return pmd_write(pmd) ||
1328	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1329}
1330
1331struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1332				   unsigned long addr,
1333				   pmd_t *pmd,
1334				   unsigned int flags)
1335{
1336	struct mm_struct *mm = vma->vm_mm;
1337	struct page *page = NULL;
1338
1339	assert_spin_locked(pmd_lockptr(mm, pmd));
1340
1341	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1342		goto out;
1343
1344	/* Avoid dumping huge zero page */
1345	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1346		return ERR_PTR(-EFAULT);
1347
1348	/* Full NUMA hinting faults to serialise migration in fault paths */
1349	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1350		goto out;
1351
1352	page = pmd_page(*pmd);
1353	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1354
1355	if (!try_grab_page(page, flags))
1356		return ERR_PTR(-ENOMEM);
1357
1358	if (flags & FOLL_TOUCH)
1359		touch_pmd(vma, addr, pmd, flags);
1360
1361	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1362		/*
1363		 * We don't mlock() pte-mapped THPs. This way we can avoid
1364		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1365		 *
1366		 * For anon THP:
1367		 *
1368		 * In most cases the pmd is the only mapping of the page as we
1369		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1370		 * writable private mappings in populate_vma_page_range().
1371		 *
1372		 * The only scenario when we have the page shared here is if we
1373		 * mlocking read-only mapping shared over fork(). We skip
1374		 * mlocking such pages.
1375		 *
1376		 * For file THP:
1377		 *
1378		 * We can expect PageDoubleMap() to be stable under page lock:
1379		 * for file pages we set it in page_add_file_rmap(), which
1380		 * requires page to be locked.
1381		 */
1382
1383		if (PageAnon(page) && compound_mapcount(page) != 1)
1384			goto skip_mlock;
1385		if (PageDoubleMap(page) || !page->mapping)
1386			goto skip_mlock;
1387		if (!trylock_page(page))
1388			goto skip_mlock;
 
1389		if (page->mapping && !PageDoubleMap(page))
1390			mlock_vma_page(page);
1391		unlock_page(page);
1392	}
1393skip_mlock:
1394	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1395	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
 
 
1396
1397out:
1398	return page;
1399}
1400
1401/* NUMA hinting page fault entry point for trans huge pmds */
1402vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1403{
1404	struct vm_area_struct *vma = vmf->vma;
1405	struct anon_vma *anon_vma = NULL;
1406	struct page *page;
1407	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1408	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1409	int target_nid, last_cpupid = -1;
1410	bool page_locked;
1411	bool migrated = false;
1412	bool was_writable;
1413	int flags = 0;
1414
1415	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1416	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1417		goto out_unlock;
1418
1419	/*
1420	 * If there are potential migrations, wait for completion and retry
1421	 * without disrupting NUMA hinting information. Do not relock and
1422	 * check_same as the page may no longer be mapped.
1423	 */
1424	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1425		page = pmd_page(*vmf->pmd);
1426		if (!get_page_unless_zero(page))
1427			goto out_unlock;
1428		spin_unlock(vmf->ptl);
1429		put_and_wait_on_page_locked(page);
 
1430		goto out;
1431	}
1432
1433	page = pmd_page(pmd);
1434	BUG_ON(is_huge_zero_page(page));
1435	page_nid = page_to_nid(page);
1436	last_cpupid = page_cpupid_last(page);
1437	count_vm_numa_event(NUMA_HINT_FAULTS);
1438	if (page_nid == this_nid) {
1439		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1440		flags |= TNF_FAULT_LOCAL;
1441	}
1442
1443	/* See similar comment in do_numa_page for explanation */
1444	if (!pmd_savedwrite(pmd))
1445		flags |= TNF_NO_GROUP;
1446
1447	/*
1448	 * Acquire the page lock to serialise THP migrations but avoid dropping
1449	 * page_table_lock if at all possible
1450	 */
1451	page_locked = trylock_page(page);
1452	target_nid = mpol_misplaced(page, vma, haddr);
1453	if (target_nid == NUMA_NO_NODE) {
1454		/* If the page was locked, there are no parallel migrations */
1455		if (page_locked)
1456			goto clear_pmdnuma;
1457	}
1458
1459	/* Migration could have started since the pmd_trans_migrating check */
1460	if (!page_locked) {
1461		page_nid = NUMA_NO_NODE;
1462		if (!get_page_unless_zero(page))
1463			goto out_unlock;
1464		spin_unlock(vmf->ptl);
1465		put_and_wait_on_page_locked(page);
 
1466		goto out;
1467	}
1468
1469	/*
1470	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1471	 * to serialises splits
1472	 */
1473	get_page(page);
1474	spin_unlock(vmf->ptl);
1475	anon_vma = page_lock_anon_vma_read(page);
1476
1477	/* Confirm the PMD did not change while page_table_lock was released */
1478	spin_lock(vmf->ptl);
1479	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1480		unlock_page(page);
1481		put_page(page);
1482		page_nid = NUMA_NO_NODE;
1483		goto out_unlock;
1484	}
1485
1486	/* Bail if we fail to protect against THP splits for any reason */
1487	if (unlikely(!anon_vma)) {
1488		put_page(page);
1489		page_nid = NUMA_NO_NODE;
1490		goto clear_pmdnuma;
1491	}
1492
1493	/*
1494	 * Since we took the NUMA fault, we must have observed the !accessible
1495	 * bit. Make sure all other CPUs agree with that, to avoid them
1496	 * modifying the page we're about to migrate.
1497	 *
1498	 * Must be done under PTL such that we'll observe the relevant
1499	 * inc_tlb_flush_pending().
1500	 *
1501	 * We are not sure a pending tlb flush here is for a huge page
1502	 * mapping or not. Hence use the tlb range variant
1503	 */
1504	if (mm_tlb_flush_pending(vma->vm_mm)) {
1505		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1506		/*
1507		 * change_huge_pmd() released the pmd lock before
1508		 * invalidating the secondary MMUs sharing the primary
1509		 * MMU pagetables (with ->invalidate_range()). The
1510		 * mmu_notifier_invalidate_range_end() (which
1511		 * internally calls ->invalidate_range()) in
1512		 * change_pmd_range() will run after us, so we can't
1513		 * rely on it here and we need an explicit invalidate.
1514		 */
1515		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1516					      haddr + HPAGE_PMD_SIZE);
1517	}
1518
1519	/*
1520	 * Migrate the THP to the requested node, returns with page unlocked
1521	 * and access rights restored.
1522	 */
1523	spin_unlock(vmf->ptl);
1524
1525	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1526				vmf->pmd, pmd, vmf->address, page, target_nid);
1527	if (migrated) {
1528		flags |= TNF_MIGRATED;
1529		page_nid = target_nid;
1530	} else
1531		flags |= TNF_MIGRATE_FAIL;
1532
1533	goto out;
1534clear_pmdnuma:
1535	BUG_ON(!PageLocked(page));
1536	was_writable = pmd_savedwrite(pmd);
1537	pmd = pmd_modify(pmd, vma->vm_page_prot);
1538	pmd = pmd_mkyoung(pmd);
1539	if (was_writable)
1540		pmd = pmd_mkwrite(pmd);
1541	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1542	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1543	unlock_page(page);
1544out_unlock:
1545	spin_unlock(vmf->ptl);
1546
1547out:
1548	if (anon_vma)
1549		page_unlock_anon_vma_read(anon_vma);
1550
1551	if (page_nid != NUMA_NO_NODE)
1552		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1553				flags);
1554
1555	return 0;
1556}
1557
1558/*
1559 * Return true if we do MADV_FREE successfully on entire pmd page.
1560 * Otherwise, return false.
1561 */
1562bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1563		pmd_t *pmd, unsigned long addr, unsigned long next)
1564{
1565	spinlock_t *ptl;
1566	pmd_t orig_pmd;
1567	struct page *page;
1568	struct mm_struct *mm = tlb->mm;
1569	bool ret = false;
1570
1571	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1572
1573	ptl = pmd_trans_huge_lock(pmd, vma);
1574	if (!ptl)
1575		goto out_unlocked;
1576
1577	orig_pmd = *pmd;
1578	if (is_huge_zero_pmd(orig_pmd))
1579		goto out;
1580
1581	if (unlikely(!pmd_present(orig_pmd))) {
1582		VM_BUG_ON(thp_migration_supported() &&
1583				  !is_pmd_migration_entry(orig_pmd));
1584		goto out;
1585	}
1586
1587	page = pmd_page(orig_pmd);
1588	/*
1589	 * If other processes are mapping this page, we couldn't discard
1590	 * the page unless they all do MADV_FREE so let's skip the page.
1591	 */
1592	if (page_mapcount(page) != 1)
1593		goto out;
1594
1595	if (!trylock_page(page))
1596		goto out;
1597
1598	/*
1599	 * If user want to discard part-pages of THP, split it so MADV_FREE
1600	 * will deactivate only them.
1601	 */
1602	if (next - addr != HPAGE_PMD_SIZE) {
1603		get_page(page);
1604		spin_unlock(ptl);
1605		split_huge_page(page);
1606		unlock_page(page);
1607		put_page(page);
1608		goto out_unlocked;
1609	}
1610
1611	if (PageDirty(page))
1612		ClearPageDirty(page);
1613	unlock_page(page);
1614
1615	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1616		pmdp_invalidate(vma, addr, pmd);
1617		orig_pmd = pmd_mkold(orig_pmd);
1618		orig_pmd = pmd_mkclean(orig_pmd);
1619
1620		set_pmd_at(mm, addr, pmd, orig_pmd);
1621		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1622	}
1623
1624	mark_page_lazyfree(page);
1625	ret = true;
1626out:
1627	spin_unlock(ptl);
1628out_unlocked:
1629	return ret;
1630}
1631
1632static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1633{
1634	pgtable_t pgtable;
1635
1636	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1637	pte_free(mm, pgtable);
1638	mm_dec_nr_ptes(mm);
1639}
1640
1641int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1642		 pmd_t *pmd, unsigned long addr)
1643{
1644	pmd_t orig_pmd;
1645	spinlock_t *ptl;
1646
1647	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1648
1649	ptl = __pmd_trans_huge_lock(pmd, vma);
1650	if (!ptl)
1651		return 0;
1652	/*
1653	 * For architectures like ppc64 we look at deposited pgtable
1654	 * when calling pmdp_huge_get_and_clear. So do the
1655	 * pgtable_trans_huge_withdraw after finishing pmdp related
1656	 * operations.
1657	 */
1658	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1659						tlb->fullmm);
1660	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1661	if (vma_is_special_huge(vma)) {
1662		if (arch_needs_pgtable_deposit())
1663			zap_deposited_table(tlb->mm, pmd);
1664		spin_unlock(ptl);
1665		if (is_huge_zero_pmd(orig_pmd))
1666			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1667	} else if (is_huge_zero_pmd(orig_pmd)) {
1668		zap_deposited_table(tlb->mm, pmd);
1669		spin_unlock(ptl);
1670		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1671	} else {
1672		struct page *page = NULL;
1673		int flush_needed = 1;
1674
1675		if (pmd_present(orig_pmd)) {
1676			page = pmd_page(orig_pmd);
1677			page_remove_rmap(page, true);
1678			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1679			VM_BUG_ON_PAGE(!PageHead(page), page);
1680		} else if (thp_migration_supported()) {
1681			swp_entry_t entry;
1682
1683			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1684			entry = pmd_to_swp_entry(orig_pmd);
1685			page = pfn_to_page(swp_offset(entry));
1686			flush_needed = 0;
1687		} else
1688			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1689
1690		if (PageAnon(page)) {
1691			zap_deposited_table(tlb->mm, pmd);
1692			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1693		} else {
1694			if (arch_needs_pgtable_deposit())
1695				zap_deposited_table(tlb->mm, pmd);
1696			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1697		}
1698
1699		spin_unlock(ptl);
1700		if (flush_needed)
1701			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1702	}
1703	return 1;
1704}
1705
1706#ifndef pmd_move_must_withdraw
1707static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1708					 spinlock_t *old_pmd_ptl,
1709					 struct vm_area_struct *vma)
1710{
1711	/*
1712	 * With split pmd lock we also need to move preallocated
1713	 * PTE page table if new_pmd is on different PMD page table.
1714	 *
1715	 * We also don't deposit and withdraw tables for file pages.
1716	 */
1717	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1718}
1719#endif
1720
1721static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1722{
1723#ifdef CONFIG_MEM_SOFT_DIRTY
1724	if (unlikely(is_pmd_migration_entry(pmd)))
1725		pmd = pmd_swp_mksoft_dirty(pmd);
1726	else if (pmd_present(pmd))
1727		pmd = pmd_mksoft_dirty(pmd);
1728#endif
1729	return pmd;
1730}
1731
1732bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1733		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
 
1734{
1735	spinlock_t *old_ptl, *new_ptl;
1736	pmd_t pmd;
1737	struct mm_struct *mm = vma->vm_mm;
1738	bool force_flush = false;
1739
 
 
 
 
 
1740	/*
1741	 * The destination pmd shouldn't be established, free_pgtables()
1742	 * should have release it.
1743	 */
1744	if (WARN_ON(!pmd_none(*new_pmd))) {
1745		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1746		return false;
1747	}
1748
1749	/*
1750	 * We don't have to worry about the ordering of src and dst
1751	 * ptlocks because exclusive mmap_lock prevents deadlock.
1752	 */
1753	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1754	if (old_ptl) {
1755		new_ptl = pmd_lockptr(mm, new_pmd);
1756		if (new_ptl != old_ptl)
1757			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1758		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1759		if (pmd_present(pmd))
1760			force_flush = true;
1761		VM_BUG_ON(!pmd_none(*new_pmd));
1762
1763		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1764			pgtable_t pgtable;
1765			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1766			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1767		}
1768		pmd = move_soft_dirty_pmd(pmd);
1769		set_pmd_at(mm, new_addr, new_pmd, pmd);
 
 
1770		if (force_flush)
1771			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1772		if (new_ptl != old_ptl)
1773			spin_unlock(new_ptl);
1774		spin_unlock(old_ptl);
1775		return true;
1776	}
1777	return false;
1778}
1779
1780/*
1781 * Returns
1782 *  - 0 if PMD could not be locked
1783 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1784 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1785 */
1786int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1787		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1788{
1789	struct mm_struct *mm = vma->vm_mm;
1790	spinlock_t *ptl;
1791	pmd_t entry;
1792	bool preserve_write;
1793	int ret;
1794	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1795	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1796	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1797
1798	ptl = __pmd_trans_huge_lock(pmd, vma);
1799	if (!ptl)
1800		return 0;
1801
1802	preserve_write = prot_numa && pmd_write(*pmd);
1803	ret = 1;
1804
1805#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1806	if (is_swap_pmd(*pmd)) {
1807		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1808
1809		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1810		if (is_write_migration_entry(entry)) {
1811			pmd_t newpmd;
1812			/*
1813			 * A protection check is difficult so
1814			 * just be safe and disable write
1815			 */
1816			make_migration_entry_read(&entry);
1817			newpmd = swp_entry_to_pmd(entry);
1818			if (pmd_swp_soft_dirty(*pmd))
1819				newpmd = pmd_swp_mksoft_dirty(newpmd);
1820			set_pmd_at(mm, addr, pmd, newpmd);
1821		}
1822		goto unlock;
1823	}
1824#endif
1825
1826	/*
1827	 * Avoid trapping faults against the zero page. The read-only
1828	 * data is likely to be read-cached on the local CPU and
1829	 * local/remote hits to the zero page are not interesting.
1830	 */
1831	if (prot_numa && is_huge_zero_pmd(*pmd))
1832		goto unlock;
1833
1834	if (prot_numa && pmd_protnone(*pmd))
1835		goto unlock;
1836
1837	/*
1838	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1839	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1840	 * which is also under mmap_read_lock(mm):
1841	 *
1842	 *	CPU0:				CPU1:
1843	 *				change_huge_pmd(prot_numa=1)
1844	 *				 pmdp_huge_get_and_clear_notify()
1845	 * madvise_dontneed()
1846	 *  zap_pmd_range()
1847	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1848	 *   // skip the pmd
1849	 *				 set_pmd_at();
1850	 *				 // pmd is re-established
1851	 *
1852	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1853	 * which may break userspace.
1854	 *
1855	 * pmdp_invalidate() is required to make sure we don't miss
1856	 * dirty/young flags set by hardware.
1857	 */
1858	entry = pmdp_invalidate(vma, addr, pmd);
1859
1860	entry = pmd_modify(entry, newprot);
1861	if (preserve_write)
1862		entry = pmd_mk_savedwrite(entry);
1863	if (uffd_wp) {
1864		entry = pmd_wrprotect(entry);
1865		entry = pmd_mkuffd_wp(entry);
1866	} else if (uffd_wp_resolve) {
1867		/*
1868		 * Leave the write bit to be handled by PF interrupt
1869		 * handler, then things like COW could be properly
1870		 * handled.
1871		 */
1872		entry = pmd_clear_uffd_wp(entry);
1873	}
1874	ret = HPAGE_PMD_NR;
1875	set_pmd_at(mm, addr, pmd, entry);
1876	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1877unlock:
1878	spin_unlock(ptl);
1879	return ret;
1880}
1881
1882/*
1883 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1884 *
1885 * Note that if it returns page table lock pointer, this routine returns without
1886 * unlocking page table lock. So callers must unlock it.
1887 */
1888spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1889{
1890	spinlock_t *ptl;
1891	ptl = pmd_lock(vma->vm_mm, pmd);
1892	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1893			pmd_devmap(*pmd)))
1894		return ptl;
1895	spin_unlock(ptl);
1896	return NULL;
1897}
1898
1899/*
1900 * Returns true if a given pud maps a thp, false otherwise.
1901 *
1902 * Note that if it returns true, this routine returns without unlocking page
1903 * table lock. So callers must unlock it.
1904 */
1905spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1906{
1907	spinlock_t *ptl;
1908
1909	ptl = pud_lock(vma->vm_mm, pud);
1910	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1911		return ptl;
1912	spin_unlock(ptl);
1913	return NULL;
1914}
1915
1916#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1917int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1918		 pud_t *pud, unsigned long addr)
1919{
 
1920	spinlock_t *ptl;
1921
1922	ptl = __pud_trans_huge_lock(pud, vma);
1923	if (!ptl)
1924		return 0;
1925	/*
1926	 * For architectures like ppc64 we look at deposited pgtable
1927	 * when calling pudp_huge_get_and_clear. So do the
1928	 * pgtable_trans_huge_withdraw after finishing pudp related
1929	 * operations.
1930	 */
1931	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
 
1932	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1933	if (vma_is_special_huge(vma)) {
1934		spin_unlock(ptl);
1935		/* No zero page support yet */
1936	} else {
1937		/* No support for anonymous PUD pages yet */
1938		BUG();
1939	}
1940	return 1;
1941}
1942
1943static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1944		unsigned long haddr)
1945{
1946	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1947	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1948	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1949	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1950
1951	count_vm_event(THP_SPLIT_PUD);
1952
1953	pudp_huge_clear_flush_notify(vma, haddr, pud);
1954}
1955
1956void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1957		unsigned long address)
1958{
1959	spinlock_t *ptl;
1960	struct mmu_notifier_range range;
 
1961
1962	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1963				address & HPAGE_PUD_MASK,
1964				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1965	mmu_notifier_invalidate_range_start(&range);
1966	ptl = pud_lock(vma->vm_mm, pud);
1967	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1968		goto out;
1969	__split_huge_pud_locked(vma, pud, range.start);
1970
1971out:
1972	spin_unlock(ptl);
1973	/*
1974	 * No need to double call mmu_notifier->invalidate_range() callback as
1975	 * the above pudp_huge_clear_flush_notify() did already call it.
1976	 */
1977	mmu_notifier_invalidate_range_only_end(&range);
 
1978}
1979#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1980
1981static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1982		unsigned long haddr, pmd_t *pmd)
1983{
1984	struct mm_struct *mm = vma->vm_mm;
1985	pgtable_t pgtable;
1986	pmd_t _pmd;
1987	int i;
1988
1989	/*
1990	 * Leave pmd empty until pte is filled note that it is fine to delay
1991	 * notification until mmu_notifier_invalidate_range_end() as we are
1992	 * replacing a zero pmd write protected page with a zero pte write
1993	 * protected page.
1994	 *
1995	 * See Documentation/vm/mmu_notifier.rst
1996	 */
1997	pmdp_huge_clear_flush(vma, haddr, pmd);
1998
1999	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2000	pmd_populate(mm, &_pmd, pgtable);
2001
2002	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2003		pte_t *pte, entry;
2004		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2005		entry = pte_mkspecial(entry);
2006		pte = pte_offset_map(&_pmd, haddr);
2007		VM_BUG_ON(!pte_none(*pte));
2008		set_pte_at(mm, haddr, pte, entry);
2009		pte_unmap(pte);
2010	}
2011	smp_wmb(); /* make pte visible before pmd */
2012	pmd_populate(mm, pmd, pgtable);
2013}
2014
2015static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2016		unsigned long haddr, bool freeze)
2017{
2018	struct mm_struct *mm = vma->vm_mm;
2019	struct page *page;
2020	pgtable_t pgtable;
2021	pmd_t old_pmd, _pmd;
2022	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2023	unsigned long addr;
2024	int i;
2025
2026	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2027	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2028	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2029	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2030				&& !pmd_devmap(*pmd));
2031
2032	count_vm_event(THP_SPLIT_PMD);
2033
2034	if (!vma_is_anonymous(vma)) {
2035		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2036		/*
2037		 * We are going to unmap this huge page. So
2038		 * just go ahead and zap it
2039		 */
2040		if (arch_needs_pgtable_deposit())
2041			zap_deposited_table(mm, pmd);
2042		if (vma_is_special_huge(vma))
2043			return;
2044		page = pmd_page(_pmd);
2045		if (!PageDirty(page) && pmd_dirty(_pmd))
2046			set_page_dirty(page);
2047		if (!PageReferenced(page) && pmd_young(_pmd))
2048			SetPageReferenced(page);
2049		page_remove_rmap(page, true);
2050		put_page(page);
2051		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2052		return;
2053	} else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2054		/*
2055		 * FIXME: Do we want to invalidate secondary mmu by calling
2056		 * mmu_notifier_invalidate_range() see comments below inside
2057		 * __split_huge_pmd() ?
2058		 *
2059		 * We are going from a zero huge page write protected to zero
2060		 * small page also write protected so it does not seems useful
2061		 * to invalidate secondary mmu at this time.
2062		 */
2063		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2064	}
2065
2066	/*
2067	 * Up to this point the pmd is present and huge and userland has the
2068	 * whole access to the hugepage during the split (which happens in
2069	 * place). If we overwrite the pmd with the not-huge version pointing
2070	 * to the pte here (which of course we could if all CPUs were bug
2071	 * free), userland could trigger a small page size TLB miss on the
2072	 * small sized TLB while the hugepage TLB entry is still established in
2073	 * the huge TLB. Some CPU doesn't like that.
2074	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2075	 * 383 on page 105. Intel should be safe but is also warns that it's
2076	 * only safe if the permission and cache attributes of the two entries
2077	 * loaded in the two TLB is identical (which should be the case here).
2078	 * But it is generally safer to never allow small and huge TLB entries
2079	 * for the same virtual address to be loaded simultaneously. So instead
2080	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2081	 * current pmd notpresent (atomically because here the pmd_trans_huge
2082	 * must remain set at all times on the pmd until the split is complete
2083	 * for this pmd), then we flush the SMP TLB and finally we write the
2084	 * non-huge version of the pmd entry with pmd_populate.
2085	 */
2086	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2087
 
2088	pmd_migration = is_pmd_migration_entry(old_pmd);
2089	if (unlikely(pmd_migration)) {
2090		swp_entry_t entry;
2091
2092		entry = pmd_to_swp_entry(old_pmd);
2093		page = pfn_to_page(swp_offset(entry));
2094		write = is_write_migration_entry(entry);
2095		young = false;
2096		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2097		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2098	} else {
2099		page = pmd_page(old_pmd);
2100		if (pmd_dirty(old_pmd))
2101			SetPageDirty(page);
2102		write = pmd_write(old_pmd);
2103		young = pmd_young(old_pmd);
2104		soft_dirty = pmd_soft_dirty(old_pmd);
2105		uffd_wp = pmd_uffd_wp(old_pmd);
2106	}
2107	VM_BUG_ON_PAGE(!page_count(page), page);
2108	page_ref_add(page, HPAGE_PMD_NR - 1);
 
 
 
 
 
2109
2110	/*
2111	 * Withdraw the table only after we mark the pmd entry invalid.
2112	 * This's critical for some architectures (Power).
2113	 */
2114	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2115	pmd_populate(mm, &_pmd, pgtable);
2116
2117	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2118		pte_t entry, *pte;
2119		/*
2120		 * Note that NUMA hinting access restrictions are not
2121		 * transferred to avoid any possibility of altering
2122		 * permissions across VMAs.
2123		 */
2124		if (freeze || pmd_migration) {
2125			swp_entry_t swp_entry;
2126			swp_entry = make_migration_entry(page + i, write);
2127			entry = swp_entry_to_pte(swp_entry);
2128			if (soft_dirty)
2129				entry = pte_swp_mksoft_dirty(entry);
2130			if (uffd_wp)
2131				entry = pte_swp_mkuffd_wp(entry);
2132		} else {
2133			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2134			entry = maybe_mkwrite(entry, vma);
2135			if (!write)
2136				entry = pte_wrprotect(entry);
2137			if (!young)
2138				entry = pte_mkold(entry);
2139			if (soft_dirty)
2140				entry = pte_mksoft_dirty(entry);
2141			if (uffd_wp)
2142				entry = pte_mkuffd_wp(entry);
2143		}
2144		pte = pte_offset_map(&_pmd, addr);
2145		BUG_ON(!pte_none(*pte));
2146		set_pte_at(mm, addr, pte, entry);
2147		if (!pmd_migration)
 
 
 
 
 
 
 
 
 
2148			atomic_inc(&page[i]._mapcount);
2149		pte_unmap(pte);
2150	}
2151
2152	if (!pmd_migration) {
2153		/*
2154		 * Set PG_double_map before dropping compound_mapcount to avoid
2155		 * false-negative page_mapped().
2156		 */
2157		if (compound_mapcount(page) > 1 &&
2158		    !TestSetPageDoubleMap(page)) {
2159			for (i = 0; i < HPAGE_PMD_NR; i++)
2160				atomic_inc(&page[i]._mapcount);
2161		}
2162
2163		lock_page_memcg(page);
2164		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2165			/* Last compound_mapcount is gone. */
2166			__dec_lruvec_page_state(page, NR_ANON_THPS);
2167			if (TestClearPageDoubleMap(page)) {
2168				/* No need in mapcount reference anymore */
2169				for (i = 0; i < HPAGE_PMD_NR; i++)
2170					atomic_dec(&page[i]._mapcount);
2171			}
2172		}
2173		unlock_page_memcg(page);
2174	}
2175
2176	smp_wmb(); /* make pte visible before pmd */
2177	pmd_populate(mm, pmd, pgtable);
2178
2179	if (freeze) {
2180		for (i = 0; i < HPAGE_PMD_NR; i++) {
2181			page_remove_rmap(page + i, false);
2182			put_page(page + i);
2183		}
2184	}
2185}
2186
2187void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2188		unsigned long address, bool freeze, struct page *page)
2189{
2190	spinlock_t *ptl;
2191	struct mmu_notifier_range range;
2192	bool was_locked = false;
2193	pmd_t _pmd;
2194
2195	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2196				address & HPAGE_PMD_MASK,
2197				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2198	mmu_notifier_invalidate_range_start(&range);
2199	ptl = pmd_lock(vma->vm_mm, pmd);
2200
2201	/*
2202	 * If caller asks to setup a migration entries, we need a page to check
2203	 * pmd against. Otherwise we can end up replacing wrong page.
2204	 */
2205	VM_BUG_ON(freeze && !page);
2206	if (page) {
2207		VM_WARN_ON_ONCE(!PageLocked(page));
2208		was_locked = true;
2209		if (page != pmd_page(*pmd))
2210			goto out;
2211	}
2212
2213repeat:
2214	if (pmd_trans_huge(*pmd)) {
2215		if (!page) {
2216			page = pmd_page(*pmd);
2217			if (unlikely(!trylock_page(page))) {
2218				get_page(page);
2219				_pmd = *pmd;
2220				spin_unlock(ptl);
2221				lock_page(page);
2222				spin_lock(ptl);
2223				if (unlikely(!pmd_same(*pmd, _pmd))) {
2224					unlock_page(page);
2225					put_page(page);
2226					page = NULL;
2227					goto repeat;
2228				}
2229				put_page(page);
2230			}
2231		}
2232		if (PageMlocked(page))
2233			clear_page_mlock(page);
2234	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2235		goto out;
2236	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2237out:
2238	spin_unlock(ptl);
2239	if (!was_locked && page)
2240		unlock_page(page);
2241	/*
2242	 * No need to double call mmu_notifier->invalidate_range() callback.
2243	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2244	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2245	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2246	 *    fault will trigger a flush_notify before pointing to a new page
2247	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2248	 *    page in the meantime)
2249	 *  3) Split a huge pmd into pte pointing to the same page. No need
2250	 *     to invalidate secondary tlb entry they are all still valid.
2251	 *     any further changes to individual pte will notify. So no need
2252	 *     to call mmu_notifier->invalidate_range()
2253	 */
2254	mmu_notifier_invalidate_range_only_end(&range);
 
2255}
2256
2257void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2258		bool freeze, struct page *page)
2259{
2260	pgd_t *pgd;
2261	p4d_t *p4d;
2262	pud_t *pud;
2263	pmd_t *pmd;
2264
2265	pgd = pgd_offset(vma->vm_mm, address);
2266	if (!pgd_present(*pgd))
2267		return;
2268
2269	p4d = p4d_offset(pgd, address);
2270	if (!p4d_present(*p4d))
2271		return;
2272
2273	pud = pud_offset(p4d, address);
2274	if (!pud_present(*pud))
2275		return;
2276
2277	pmd = pmd_offset(pud, address);
2278
2279	__split_huge_pmd(vma, pmd, address, freeze, page);
2280}
2281
2282void vma_adjust_trans_huge(struct vm_area_struct *vma,
2283			     unsigned long start,
2284			     unsigned long end,
2285			     long adjust_next)
2286{
2287	/*
2288	 * If the new start address isn't hpage aligned and it could
2289	 * previously contain an hugepage: check if we need to split
2290	 * an huge pmd.
2291	 */
2292	if (start & ~HPAGE_PMD_MASK &&
2293	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2294	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2295		split_huge_pmd_address(vma, start, false, NULL);
2296
2297	/*
2298	 * If the new end address isn't hpage aligned and it could
2299	 * previously contain an hugepage: check if we need to split
2300	 * an huge pmd.
2301	 */
2302	if (end & ~HPAGE_PMD_MASK &&
2303	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2304	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2305		split_huge_pmd_address(vma, end, false, NULL);
2306
2307	/*
2308	 * If we're also updating the vma->vm_next->vm_start, if the new
2309	 * vm_next->vm_start isn't page aligned and it could previously
2310	 * contain an hugepage: check if we need to split an huge pmd.
2311	 */
2312	if (adjust_next > 0) {
2313		struct vm_area_struct *next = vma->vm_next;
2314		unsigned long nstart = next->vm_start;
2315		nstart += adjust_next << PAGE_SHIFT;
2316		if (nstart & ~HPAGE_PMD_MASK &&
2317		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2318		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2319			split_huge_pmd_address(next, nstart, false, NULL);
2320	}
2321}
2322
2323static void unmap_page(struct page *page)
2324{
2325	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2326		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2327	bool unmap_success;
2328
2329	VM_BUG_ON_PAGE(!PageHead(page), page);
2330
2331	if (PageAnon(page))
2332		ttu_flags |= TTU_SPLIT_FREEZE;
2333
2334	unmap_success = try_to_unmap(page, ttu_flags);
2335	VM_BUG_ON_PAGE(!unmap_success, page);
2336}
2337
2338static void remap_page(struct page *page)
2339{
2340	int i;
2341	if (PageTransHuge(page)) {
2342		remove_migration_ptes(page, page, true);
2343	} else {
2344		for (i = 0; i < HPAGE_PMD_NR; i++)
2345			remove_migration_ptes(page + i, page + i, true);
2346	}
2347}
2348
2349static void __split_huge_page_tail(struct page *head, int tail,
2350		struct lruvec *lruvec, struct list_head *list)
2351{
2352	struct page *page_tail = head + tail;
2353
2354	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2355
2356	/*
2357	 * Clone page flags before unfreezing refcount.
2358	 *
2359	 * After successful get_page_unless_zero() might follow flags change,
2360	 * for exmaple lock_page() which set PG_waiters.
2361	 */
2362	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2363	page_tail->flags |= (head->flags &
2364			((1L << PG_referenced) |
2365			 (1L << PG_swapbacked) |
2366			 (1L << PG_swapcache) |
2367			 (1L << PG_mlocked) |
2368			 (1L << PG_uptodate) |
2369			 (1L << PG_active) |
2370			 (1L << PG_workingset) |
2371			 (1L << PG_locked) |
2372			 (1L << PG_unevictable) |
2373			 (1L << PG_dirty)));
2374
2375	/* ->mapping in first tail page is compound_mapcount */
2376	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2377			page_tail);
2378	page_tail->mapping = head->mapping;
2379	page_tail->index = head->index + tail;
2380
2381	/* Page flags must be visible before we make the page non-compound. */
2382	smp_wmb();
2383
2384	/*
2385	 * Clear PageTail before unfreezing page refcount.
2386	 *
2387	 * After successful get_page_unless_zero() might follow put_page()
2388	 * which needs correct compound_head().
2389	 */
2390	clear_compound_head(page_tail);
2391
2392	/* Finally unfreeze refcount. Additional reference from page cache. */
2393	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2394					  PageSwapCache(head)));
2395
2396	if (page_is_young(head))
2397		set_page_young(page_tail);
2398	if (page_is_idle(head))
2399		set_page_idle(page_tail);
2400
 
 
 
 
 
 
2401	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2402
2403	/*
2404	 * always add to the tail because some iterators expect new
2405	 * pages to show after the currently processed elements - e.g.
2406	 * migrate_pages
2407	 */
2408	lru_add_page_tail(head, page_tail, lruvec, list);
2409}
2410
2411static void __split_huge_page(struct page *page, struct list_head *list,
2412		pgoff_t end, unsigned long flags)
2413{
2414	struct page *head = compound_head(page);
2415	pg_data_t *pgdat = page_pgdat(head);
2416	struct lruvec *lruvec;
2417	struct address_space *swap_cache = NULL;
2418	unsigned long offset = 0;
2419	int i;
2420
2421	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2422
2423	/* complete memcg works before add pages to LRU */
2424	mem_cgroup_split_huge_fixup(head);
2425
2426	if (PageAnon(head) && PageSwapCache(head)) {
2427		swp_entry_t entry = { .val = page_private(head) };
2428
2429		offset = swp_offset(entry);
2430		swap_cache = swap_address_space(entry);
2431		xa_lock(&swap_cache->i_pages);
2432	}
2433
2434	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2435		__split_huge_page_tail(head, i, lruvec, list);
2436		/* Some pages can be beyond i_size: drop them from page cache */
2437		if (head[i].index >= end) {
2438			ClearPageDirty(head + i);
2439			__delete_from_page_cache(head + i, NULL);
2440			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2441				shmem_uncharge(head->mapping->host, 1);
2442			put_page(head + i);
2443		} else if (!PageAnon(page)) {
2444			__xa_store(&head->mapping->i_pages, head[i].index,
2445					head + i, 0);
2446		} else if (swap_cache) {
2447			__xa_store(&swap_cache->i_pages, offset + i,
2448					head + i, 0);
2449		}
2450	}
2451
2452	ClearPageCompound(head);
2453
2454	split_page_owner(head, HPAGE_PMD_ORDER);
2455
2456	/* See comment in __split_huge_page_tail() */
2457	if (PageAnon(head)) {
2458		/* Additional pin to swap cache */
2459		if (PageSwapCache(head)) {
2460			page_ref_add(head, 2);
2461			xa_unlock(&swap_cache->i_pages);
2462		} else {
2463			page_ref_inc(head);
2464		}
2465	} else {
2466		/* Additional pin to page cache */
2467		page_ref_add(head, 2);
2468		xa_unlock(&head->mapping->i_pages);
2469	}
2470
2471	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2472
2473	remap_page(head);
2474
2475	for (i = 0; i < HPAGE_PMD_NR; i++) {
2476		struct page *subpage = head + i;
2477		if (subpage == page)
2478			continue;
2479		unlock_page(subpage);
2480
2481		/*
2482		 * Subpages may be freed if there wasn't any mapping
2483		 * like if add_to_swap() is running on a lru page that
2484		 * had its mapping zapped. And freeing these pages
2485		 * requires taking the lru_lock so we do the put_page
2486		 * of the tail pages after the split is complete.
2487		 */
2488		put_page(subpage);
2489	}
2490}
2491
2492int total_mapcount(struct page *page)
2493{
2494	int i, compound, ret;
2495
2496	VM_BUG_ON_PAGE(PageTail(page), page);
2497
2498	if (likely(!PageCompound(page)))
2499		return atomic_read(&page->_mapcount) + 1;
2500
2501	compound = compound_mapcount(page);
2502	if (PageHuge(page))
2503		return compound;
2504	ret = compound;
2505	for (i = 0; i < HPAGE_PMD_NR; i++)
2506		ret += atomic_read(&page[i]._mapcount) + 1;
2507	/* File pages has compound_mapcount included in _mapcount */
2508	if (!PageAnon(page))
2509		return ret - compound * HPAGE_PMD_NR;
2510	if (PageDoubleMap(page))
2511		ret -= HPAGE_PMD_NR;
2512	return ret;
2513}
2514
2515/*
2516 * This calculates accurately how many mappings a transparent hugepage
2517 * has (unlike page_mapcount() which isn't fully accurate). This full
2518 * accuracy is primarily needed to know if copy-on-write faults can
2519 * reuse the page and change the mapping to read-write instead of
2520 * copying them. At the same time this returns the total_mapcount too.
2521 *
2522 * The function returns the highest mapcount any one of the subpages
2523 * has. If the return value is one, even if different processes are
2524 * mapping different subpages of the transparent hugepage, they can
2525 * all reuse it, because each process is reusing a different subpage.
2526 *
2527 * The total_mapcount is instead counting all virtual mappings of the
2528 * subpages. If the total_mapcount is equal to "one", it tells the
2529 * caller all mappings belong to the same "mm" and in turn the
2530 * anon_vma of the transparent hugepage can become the vma->anon_vma
2531 * local one as no other process may be mapping any of the subpages.
2532 *
2533 * It would be more accurate to replace page_mapcount() with
2534 * page_trans_huge_mapcount(), however we only use
2535 * page_trans_huge_mapcount() in the copy-on-write faults where we
2536 * need full accuracy to avoid breaking page pinning, because
2537 * page_trans_huge_mapcount() is slower than page_mapcount().
2538 */
2539int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2540{
2541	int i, ret, _total_mapcount, mapcount;
2542
2543	/* hugetlbfs shouldn't call it */
2544	VM_BUG_ON_PAGE(PageHuge(page), page);
2545
2546	if (likely(!PageTransCompound(page))) {
2547		mapcount = atomic_read(&page->_mapcount) + 1;
2548		if (total_mapcount)
2549			*total_mapcount = mapcount;
2550		return mapcount;
2551	}
2552
2553	page = compound_head(page);
2554
2555	_total_mapcount = ret = 0;
2556	for (i = 0; i < HPAGE_PMD_NR; i++) {
2557		mapcount = atomic_read(&page[i]._mapcount) + 1;
2558		ret = max(ret, mapcount);
2559		_total_mapcount += mapcount;
2560	}
2561	if (PageDoubleMap(page)) {
2562		ret -= 1;
2563		_total_mapcount -= HPAGE_PMD_NR;
2564	}
2565	mapcount = compound_mapcount(page);
2566	ret += mapcount;
2567	_total_mapcount += mapcount;
2568	if (total_mapcount)
2569		*total_mapcount = _total_mapcount;
2570	return ret;
2571}
2572
2573/* Racy check whether the huge page can be split */
2574bool can_split_huge_page(struct page *page, int *pextra_pins)
2575{
2576	int extra_pins;
2577
2578	/* Additional pins from page cache */
2579	if (PageAnon(page))
2580		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2581	else
2582		extra_pins = HPAGE_PMD_NR;
2583	if (pextra_pins)
2584		*pextra_pins = extra_pins;
2585	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2586}
2587
2588/*
2589 * This function splits huge page into normal pages. @page can point to any
2590 * subpage of huge page to split. Split doesn't change the position of @page.
2591 *
2592 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2593 * The huge page must be locked.
2594 *
2595 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2596 *
2597 * Both head page and tail pages will inherit mapping, flags, and so on from
2598 * the hugepage.
2599 *
2600 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2601 * they are not mapped.
2602 *
2603 * Returns 0 if the hugepage is split successfully.
2604 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2605 * us.
2606 */
2607int split_huge_page_to_list(struct page *page, struct list_head *list)
2608{
2609	struct page *head = compound_head(page);
2610	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2611	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2612	struct anon_vma *anon_vma = NULL;
2613	struct address_space *mapping = NULL;
2614	int count, mapcount, extra_pins, ret;
 
2615	unsigned long flags;
2616	pgoff_t end;
2617
2618	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2619	VM_BUG_ON_PAGE(!PageLocked(head), head);
2620	VM_BUG_ON_PAGE(!PageCompound(head), head);
2621
2622	if (PageWriteback(head))
2623		return -EBUSY;
2624
2625	if (PageAnon(head)) {
2626		/*
2627		 * The caller does not necessarily hold an mmap_lock that would
2628		 * prevent the anon_vma disappearing so we first we take a
2629		 * reference to it and then lock the anon_vma for write. This
2630		 * is similar to page_lock_anon_vma_read except the write lock
2631		 * is taken to serialise against parallel split or collapse
2632		 * operations.
2633		 */
2634		anon_vma = page_get_anon_vma(head);
2635		if (!anon_vma) {
2636			ret = -EBUSY;
2637			goto out;
2638		}
2639		end = -1;
2640		mapping = NULL;
2641		anon_vma_lock_write(anon_vma);
2642	} else {
2643		mapping = head->mapping;
2644
2645		/* Truncated ? */
2646		if (!mapping) {
2647			ret = -EBUSY;
2648			goto out;
2649		}
2650
2651		anon_vma = NULL;
2652		i_mmap_lock_read(mapping);
2653
2654		/*
2655		 *__split_huge_page() may need to trim off pages beyond EOF:
2656		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2657		 * which cannot be nested inside the page tree lock. So note
2658		 * end now: i_size itself may be changed at any moment, but
2659		 * head page lock is good enough to serialize the trimming.
2660		 */
2661		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2662	}
2663
2664	/*
2665	 * Racy check if we can split the page, before unmap_page() will
2666	 * split PMDs
2667	 */
2668	if (!can_split_huge_page(head, &extra_pins)) {
2669		ret = -EBUSY;
2670		goto out_unlock;
2671	}
2672
2673	unmap_page(head);
 
2674	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2675
 
 
 
 
2676	/* prevent PageLRU to go away from under us, and freeze lru stats */
2677	spin_lock_irqsave(&pgdata->lru_lock, flags);
2678
2679	if (mapping) {
2680		XA_STATE(xas, &mapping->i_pages, page_index(head));
2681
 
 
 
2682		/*
2683		 * Check if the head page is present in page cache.
2684		 * We assume all tail are present too, if head is there.
2685		 */
2686		xa_lock(&mapping->i_pages);
2687		if (xas_load(&xas) != head)
2688			goto fail;
2689	}
2690
2691	/* Prevent deferred_split_scan() touching ->_refcount */
2692	spin_lock(&ds_queue->split_queue_lock);
2693	count = page_count(head);
2694	mapcount = total_mapcount(head);
2695	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2696		if (!list_empty(page_deferred_list(head))) {
2697			ds_queue->split_queue_len--;
2698			list_del(page_deferred_list(head));
2699		}
2700		spin_unlock(&ds_queue->split_queue_lock);
2701		if (mapping) {
2702			if (PageSwapBacked(head))
2703				__dec_node_page_state(head, NR_SHMEM_THPS);
2704			else
2705				__dec_node_page_state(head, NR_FILE_THPS);
2706		}
2707
2708		__split_huge_page(page, list, end, flags);
2709		if (PageSwapCache(head)) {
2710			swp_entry_t entry = { .val = page_private(head) };
2711
2712			ret = split_swap_cluster(entry);
2713		} else
2714			ret = 0;
2715	} else {
2716		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2717			pr_alert("total_mapcount: %u, page_count(): %u\n",
2718					mapcount, count);
2719			if (PageTail(page))
2720				dump_page(head, NULL);
2721			dump_page(page, "total_mapcount(head) > 0");
2722			BUG();
2723		}
2724		spin_unlock(&ds_queue->split_queue_lock);
2725fail:		if (mapping)
2726			xa_unlock(&mapping->i_pages);
2727		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2728		remap_page(head);
2729		ret = -EBUSY;
2730	}
2731
2732out_unlock:
2733	if (anon_vma) {
2734		anon_vma_unlock_write(anon_vma);
2735		put_anon_vma(anon_vma);
2736	}
2737	if (mapping)
2738		i_mmap_unlock_read(mapping);
2739out:
2740	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2741	return ret;
2742}
2743
2744void free_transhuge_page(struct page *page)
2745{
2746	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2747	unsigned long flags;
2748
2749	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2750	if (!list_empty(page_deferred_list(page))) {
2751		ds_queue->split_queue_len--;
2752		list_del(page_deferred_list(page));
2753	}
2754	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2755	free_compound_page(page);
2756}
2757
2758void deferred_split_huge_page(struct page *page)
2759{
2760	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2761#ifdef CONFIG_MEMCG
2762	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2763#endif
2764	unsigned long flags;
2765
2766	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2767
2768	/*
2769	 * The try_to_unmap() in page reclaim path might reach here too,
2770	 * this may cause a race condition to corrupt deferred split queue.
2771	 * And, if page reclaim is already handling the same page, it is
2772	 * unnecessary to handle it again in shrinker.
2773	 *
2774	 * Check PageSwapCache to determine if the page is being
2775	 * handled by page reclaim since THP swap would add the page into
2776	 * swap cache before calling try_to_unmap().
2777	 */
2778	if (PageSwapCache(page))
2779		return;
2780
2781	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2782	if (list_empty(page_deferred_list(page))) {
2783		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2784		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2785		ds_queue->split_queue_len++;
2786#ifdef CONFIG_MEMCG
2787		if (memcg)
2788			memcg_set_shrinker_bit(memcg, page_to_nid(page),
2789					       deferred_split_shrinker.id);
2790#endif
2791	}
2792	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2793}
2794
2795static unsigned long deferred_split_count(struct shrinker *shrink,
2796		struct shrink_control *sc)
2797{
2798	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2799	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2800
2801#ifdef CONFIG_MEMCG
2802	if (sc->memcg)
2803		ds_queue = &sc->memcg->deferred_split_queue;
2804#endif
2805	return READ_ONCE(ds_queue->split_queue_len);
2806}
2807
2808static unsigned long deferred_split_scan(struct shrinker *shrink,
2809		struct shrink_control *sc)
2810{
2811	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2812	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2813	unsigned long flags;
2814	LIST_HEAD(list), *pos, *next;
2815	struct page *page;
2816	int split = 0;
2817
2818#ifdef CONFIG_MEMCG
2819	if (sc->memcg)
2820		ds_queue = &sc->memcg->deferred_split_queue;
2821#endif
2822
2823	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2824	/* Take pin on all head pages to avoid freeing them under us */
2825	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2826		page = list_entry((void *)pos, struct page, mapping);
2827		page = compound_head(page);
2828		if (get_page_unless_zero(page)) {
2829			list_move(page_deferred_list(page), &list);
2830		} else {
2831			/* We lost race with put_compound_page() */
2832			list_del_init(page_deferred_list(page));
2833			ds_queue->split_queue_len--;
2834		}
2835		if (!--sc->nr_to_scan)
2836			break;
2837	}
2838	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2839
2840	list_for_each_safe(pos, next, &list) {
2841		page = list_entry((void *)pos, struct page, mapping);
2842		if (!trylock_page(page))
2843			goto next;
2844		/* split_huge_page() removes page from list on success */
2845		if (!split_huge_page(page))
2846			split++;
2847		unlock_page(page);
2848next:
2849		put_page(page);
2850	}
2851
2852	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2853	list_splice_tail(&list, &ds_queue->split_queue);
2854	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2855
2856	/*
2857	 * Stop shrinker if we didn't split any page, but the queue is empty.
2858	 * This can happen if pages were freed under us.
2859	 */
2860	if (!split && list_empty(&ds_queue->split_queue))
2861		return SHRINK_STOP;
2862	return split;
2863}
2864
2865static struct shrinker deferred_split_shrinker = {
2866	.count_objects = deferred_split_count,
2867	.scan_objects = deferred_split_scan,
2868	.seeks = DEFAULT_SEEKS,
2869	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2870		 SHRINKER_NONSLAB,
2871};
2872
2873#ifdef CONFIG_DEBUG_FS
2874static int split_huge_pages_set(void *data, u64 val)
2875{
2876	struct zone *zone;
2877	struct page *page;
2878	unsigned long pfn, max_zone_pfn;
2879	unsigned long total = 0, split = 0;
2880
2881	if (val != 1)
2882		return -EINVAL;
2883
2884	for_each_populated_zone(zone) {
2885		max_zone_pfn = zone_end_pfn(zone);
2886		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2887			if (!pfn_valid(pfn))
2888				continue;
2889
2890			page = pfn_to_page(pfn);
2891			if (!get_page_unless_zero(page))
2892				continue;
2893
2894			if (zone != page_zone(page))
2895				goto next;
2896
2897			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2898				goto next;
2899
2900			total++;
2901			lock_page(page);
2902			if (!split_huge_page(page))
2903				split++;
2904			unlock_page(page);
2905next:
2906			put_page(page);
2907		}
2908	}
2909
2910	pr_info("%lu of %lu THP split\n", split, total);
2911
2912	return 0;
2913}
2914DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2915		"%llu\n");
2916
2917static int __init split_huge_pages_debugfs(void)
2918{
2919	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2920			    &split_huge_pages_fops);
 
 
 
 
2921	return 0;
2922}
2923late_initcall(split_huge_pages_debugfs);
2924#endif
2925
2926#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2927void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2928		struct page *page)
2929{
2930	struct vm_area_struct *vma = pvmw->vma;
2931	struct mm_struct *mm = vma->vm_mm;
2932	unsigned long address = pvmw->address;
2933	pmd_t pmdval;
2934	swp_entry_t entry;
2935	pmd_t pmdswp;
2936
2937	if (!(pvmw->pmd && !pvmw->pte))
2938		return;
2939
 
 
 
2940	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2941	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
 
2942	if (pmd_dirty(pmdval))
2943		set_page_dirty(page);
2944	entry = make_migration_entry(page, pmd_write(pmdval));
2945	pmdswp = swp_entry_to_pmd(entry);
2946	if (pmd_soft_dirty(pmdval))
2947		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2948	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2949	page_remove_rmap(page, true);
2950	put_page(page);
 
 
 
2951}
2952
2953void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2954{
2955	struct vm_area_struct *vma = pvmw->vma;
2956	struct mm_struct *mm = vma->vm_mm;
2957	unsigned long address = pvmw->address;
2958	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2959	pmd_t pmde;
2960	swp_entry_t entry;
2961
2962	if (!(pvmw->pmd && !pvmw->pte))
2963		return;
2964
2965	entry = pmd_to_swp_entry(*pvmw->pmd);
2966	get_page(new);
2967	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2968	if (pmd_swp_soft_dirty(*pvmw->pmd))
2969		pmde = pmd_mksoft_dirty(pmde);
2970	if (is_write_migration_entry(entry))
2971		pmde = maybe_pmd_mkwrite(pmde, vma);
2972
2973	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2974	if (PageAnon(new))
2975		page_add_anon_rmap(new, vma, mmun_start, true);
2976	else
2977		page_add_file_rmap(new, true);
2978	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2979	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2980		mlock_vma_page(new);
2981	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2982}
2983#endif