Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/sched/coredump.h>
  13#include <linux/sched/numa_balancing.h>
  14#include <linux/highmem.h>
  15#include <linux/hugetlb.h>
  16#include <linux/mmu_notifier.h>
  17#include <linux/rmap.h>
  18#include <linux/swap.h>
  19#include <linux/shrinker.h>
  20#include <linux/mm_inline.h>
  21#include <linux/swapops.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
  40
  41/*
  42 * By default, transparent hugepage support is disabled in order to avoid
  43 * risking an increased memory footprint for applications that are not
  44 * guaranteed to benefit from it. When transparent hugepage support is
  45 * enabled, it is for all mappings, and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
  60static struct shrinker deferred_split_shrinker;
  61
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
  64
  65static struct page *get_huge_zero_page(void)
  66{
  67	struct page *zero_page;
  68retry:
  69	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  70		return READ_ONCE(huge_zero_page);
  71
  72	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  73			HPAGE_PMD_ORDER);
  74	if (!zero_page) {
  75		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  76		return NULL;
  77	}
  78	count_vm_event(THP_ZERO_PAGE_ALLOC);
  79	preempt_disable();
  80	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  81		preempt_enable();
  82		__free_pages(zero_page, compound_order(zero_page));
  83		goto retry;
  84	}
  85
  86	/* We take additional reference here. It will be put back by shrinker */
  87	atomic_set(&huge_zero_refcount, 2);
  88	preempt_enable();
  89	return READ_ONCE(huge_zero_page);
  90}
  91
  92static void put_huge_zero_page(void)
  93{
  94	/*
  95	 * Counter should never go to zero here. Only shrinker can put
  96	 * last reference.
  97	 */
  98	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  99}
 100
 101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 102{
 103	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 104		return READ_ONCE(huge_zero_page);
 105
 106	if (!get_huge_zero_page())
 107		return NULL;
 108
 109	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 110		put_huge_zero_page();
 111
 112	return READ_ONCE(huge_zero_page);
 113}
 114
 115void mm_put_huge_zero_page(struct mm_struct *mm)
 116{
 117	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 118		put_huge_zero_page();
 119}
 120
 121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 122					struct shrink_control *sc)
 123{
 124	/* we can free zero page only if last reference remains */
 125	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 126}
 127
 128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 129				       struct shrink_control *sc)
 130{
 131	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 132		struct page *zero_page = xchg(&huge_zero_page, NULL);
 133		BUG_ON(zero_page == NULL);
 134		__free_pages(zero_page, compound_order(zero_page));
 135		return HPAGE_PMD_NR;
 136	}
 137
 138	return 0;
 139}
 140
 141static struct shrinker huge_zero_page_shrinker = {
 142	.count_objects = shrink_huge_zero_page_count,
 143	.scan_objects = shrink_huge_zero_page_scan,
 144	.seeks = DEFAULT_SEEKS,
 145};
 146
 147#ifdef CONFIG_SYSFS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148static ssize_t enabled_show(struct kobject *kobj,
 149			    struct kobj_attribute *attr, char *buf)
 150{
 151	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 152		return sprintf(buf, "[always] madvise never\n");
 153	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 154		return sprintf(buf, "always [madvise] never\n");
 155	else
 156		return sprintf(buf, "always madvise [never]\n");
 157}
 158
 159static ssize_t enabled_store(struct kobject *kobj,
 160			     struct kobj_attribute *attr,
 161			     const char *buf, size_t count)
 162{
 163	ssize_t ret = count;
 164
 165	if (!memcmp("always", buf,
 166		    min(sizeof("always")-1, count))) {
 167		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 168		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 169	} else if (!memcmp("madvise", buf,
 170			   min(sizeof("madvise")-1, count))) {
 171		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 172		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 173	} else if (!memcmp("never", buf,
 174			   min(sizeof("never")-1, count))) {
 175		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 176		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 177	} else
 178		ret = -EINVAL;
 179
 180	if (ret > 0) {
 181		int err = start_stop_khugepaged();
 182		if (err)
 183			ret = err;
 184	}
 
 185	return ret;
 186}
 187static struct kobj_attribute enabled_attr =
 188	__ATTR(enabled, 0644, enabled_show, enabled_store);
 189
 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
 191				struct kobj_attribute *attr, char *buf,
 192				enum transparent_hugepage_flag flag)
 193{
 194	return sprintf(buf, "%d\n",
 195		       !!test_bit(flag, &transparent_hugepage_flags));
 196}
 197
 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
 199				 struct kobj_attribute *attr,
 200				 const char *buf, size_t count,
 201				 enum transparent_hugepage_flag flag)
 202{
 203	unsigned long value;
 204	int ret;
 205
 206	ret = kstrtoul(buf, 10, &value);
 207	if (ret < 0)
 208		return ret;
 209	if (value > 1)
 210		return -EINVAL;
 211
 212	if (value)
 213		set_bit(flag, &transparent_hugepage_flags);
 214	else
 215		clear_bit(flag, &transparent_hugepage_flags);
 216
 217	return count;
 218}
 219
 
 
 
 
 
 220static ssize_t defrag_show(struct kobject *kobj,
 221			   struct kobj_attribute *attr, char *buf)
 222{
 223	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 224		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 225	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 226		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 227	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 228		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 229	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 230		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 231	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 232}
 233
 
 234static ssize_t defrag_store(struct kobject *kobj,
 235			    struct kobj_attribute *attr,
 236			    const char *buf, size_t count)
 237{
 238	if (!memcmp("always", buf,
 239		    min(sizeof("always")-1, count))) {
 240		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 241		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 242		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 243		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 244	} else if (!memcmp("defer+madvise", buf,
 245		    min(sizeof("defer+madvise")-1, count))) {
 246		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 247		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 248		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 249		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 250	} else if (!memcmp("defer", buf,
 251		    min(sizeof("defer")-1, count))) {
 252		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 253		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 254		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 255		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 256	} else if (!memcmp("madvise", buf,
 257			   min(sizeof("madvise")-1, count))) {
 258		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 259		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 260		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 261		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262	} else if (!memcmp("never", buf,
 263			   min(sizeof("never")-1, count))) {
 264		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 265		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 266		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 267		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 268	} else
 269		return -EINVAL;
 270
 271	return count;
 272}
 273static struct kobj_attribute defrag_attr =
 274	__ATTR(defrag, 0644, defrag_show, defrag_store);
 275
 276static ssize_t use_zero_page_show(struct kobject *kobj,
 277		struct kobj_attribute *attr, char *buf)
 278{
 279	return single_hugepage_flag_show(kobj, attr, buf,
 280				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 281}
 282static ssize_t use_zero_page_store(struct kobject *kobj,
 283		struct kobj_attribute *attr, const char *buf, size_t count)
 284{
 285	return single_hugepage_flag_store(kobj, attr, buf, count,
 286				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 287}
 288static struct kobj_attribute use_zero_page_attr =
 289	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 290
 291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 292		struct kobj_attribute *attr, char *buf)
 293{
 294	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 295}
 296static struct kobj_attribute hpage_pmd_size_attr =
 297	__ATTR_RO(hpage_pmd_size);
 298
 299#ifdef CONFIG_DEBUG_VM
 300static ssize_t debug_cow_show(struct kobject *kobj,
 301				struct kobj_attribute *attr, char *buf)
 302{
 303	return single_hugepage_flag_show(kobj, attr, buf,
 304				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 305}
 306static ssize_t debug_cow_store(struct kobject *kobj,
 307			       struct kobj_attribute *attr,
 308			       const char *buf, size_t count)
 309{
 310	return single_hugepage_flag_store(kobj, attr, buf, count,
 311				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 312}
 313static struct kobj_attribute debug_cow_attr =
 314	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 315#endif /* CONFIG_DEBUG_VM */
 316
 317static struct attribute *hugepage_attr[] = {
 318	&enabled_attr.attr,
 319	&defrag_attr.attr,
 320	&use_zero_page_attr.attr,
 321	&hpage_pmd_size_attr.attr,
 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 323	&shmem_enabled_attr.attr,
 324#endif
 325#ifdef CONFIG_DEBUG_VM
 326	&debug_cow_attr.attr,
 327#endif
 328	NULL,
 329};
 330
 331static const struct attribute_group hugepage_attr_group = {
 332	.attrs = hugepage_attr,
 333};
 334
 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 336{
 337	int err;
 338
 339	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 340	if (unlikely(!*hugepage_kobj)) {
 341		pr_err("failed to create transparent hugepage kobject\n");
 342		return -ENOMEM;
 343	}
 344
 345	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 346	if (err) {
 347		pr_err("failed to register transparent hugepage group\n");
 348		goto delete_obj;
 349	}
 350
 351	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 352	if (err) {
 353		pr_err("failed to register transparent hugepage group\n");
 354		goto remove_hp_group;
 355	}
 356
 357	return 0;
 358
 359remove_hp_group:
 360	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 361delete_obj:
 362	kobject_put(*hugepage_kobj);
 363	return err;
 364}
 365
 366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 367{
 368	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 369	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 370	kobject_put(hugepage_kobj);
 371}
 372#else
 373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 374{
 375	return 0;
 376}
 377
 378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 379{
 380}
 381#endif /* CONFIG_SYSFS */
 382
 383static int __init hugepage_init(void)
 384{
 385	int err;
 386	struct kobject *hugepage_kobj;
 387
 388	if (!has_transparent_hugepage()) {
 389		transparent_hugepage_flags = 0;
 390		return -EINVAL;
 391	}
 392
 393	/*
 394	 * hugepages can't be allocated by the buddy allocator
 395	 */
 396	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 397	/*
 398	 * we use page->mapping and page->index in second tail page
 399	 * as list_head: assuming THP order >= 2
 400	 */
 401	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 402
 403	err = hugepage_init_sysfs(&hugepage_kobj);
 404	if (err)
 405		goto err_sysfs;
 406
 407	err = khugepaged_init();
 408	if (err)
 409		goto err_slab;
 410
 411	err = register_shrinker(&huge_zero_page_shrinker);
 412	if (err)
 413		goto err_hzp_shrinker;
 414	err = register_shrinker(&deferred_split_shrinker);
 415	if (err)
 416		goto err_split_shrinker;
 417
 418	/*
 419	 * By default disable transparent hugepages on smaller systems,
 420	 * where the extra memory used could hurt more than TLB overhead
 421	 * is likely to save.  The admin can still enable it through /sys.
 422	 */
 423	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 424		transparent_hugepage_flags = 0;
 425		return 0;
 426	}
 427
 428	err = start_stop_khugepaged();
 429	if (err)
 430		goto err_khugepaged;
 431
 432	return 0;
 433err_khugepaged:
 434	unregister_shrinker(&deferred_split_shrinker);
 435err_split_shrinker:
 436	unregister_shrinker(&huge_zero_page_shrinker);
 437err_hzp_shrinker:
 438	khugepaged_destroy();
 439err_slab:
 440	hugepage_exit_sysfs(hugepage_kobj);
 441err_sysfs:
 442	return err;
 443}
 444subsys_initcall(hugepage_init);
 445
 446static int __init setup_transparent_hugepage(char *str)
 447{
 448	int ret = 0;
 449	if (!str)
 450		goto out;
 451	if (!strcmp(str, "always")) {
 452		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 453			&transparent_hugepage_flags);
 454		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 455			  &transparent_hugepage_flags);
 456		ret = 1;
 457	} else if (!strcmp(str, "madvise")) {
 458		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 459			  &transparent_hugepage_flags);
 460		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 461			&transparent_hugepage_flags);
 462		ret = 1;
 463	} else if (!strcmp(str, "never")) {
 464		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 465			  &transparent_hugepage_flags);
 466		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 467			  &transparent_hugepage_flags);
 468		ret = 1;
 469	}
 470out:
 471	if (!ret)
 472		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 473	return ret;
 474}
 475__setup("transparent_hugepage=", setup_transparent_hugepage);
 476
 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 478{
 479	if (likely(vma->vm_flags & VM_WRITE))
 480		pmd = pmd_mkwrite(pmd);
 481	return pmd;
 482}
 483
 484static inline struct list_head *page_deferred_list(struct page *page)
 485{
 486	/*
 487	 * ->lru in the tail pages is occupied by compound_head.
 488	 * Let's use ->mapping + ->index in the second tail page as list_head.
 489	 */
 490	return (struct list_head *)&page[2].mapping;
 491}
 492
 493void prep_transhuge_page(struct page *page)
 494{
 495	/*
 496	 * we use page->mapping and page->indexlru in second tail page
 497	 * as list_head: assuming THP order >= 2
 498	 */
 499
 500	INIT_LIST_HEAD(page_deferred_list(page));
 501	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 502}
 503
 504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 505		loff_t off, unsigned long flags, unsigned long size)
 506{
 507	unsigned long addr;
 508	loff_t off_end = off + len;
 509	loff_t off_align = round_up(off, size);
 510	unsigned long len_pad;
 511
 512	if (off_end <= off_align || (off_end - off_align) < size)
 513		return 0;
 514
 515	len_pad = len + size;
 516	if (len_pad < len || (off + len_pad) < off)
 517		return 0;
 518
 519	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 520					      off >> PAGE_SHIFT, flags);
 521	if (IS_ERR_VALUE(addr))
 522		return 0;
 523
 524	addr += (off - addr) & (size - 1);
 525	return addr;
 526}
 527
 528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 529		unsigned long len, unsigned long pgoff, unsigned long flags)
 530{
 531	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 532
 533	if (addr)
 534		goto out;
 535	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 536		goto out;
 537
 538	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 539	if (addr)
 540		return addr;
 541
 542 out:
 543	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 544}
 545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 546
 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
 548		gfp_t gfp)
 549{
 550	struct vm_area_struct *vma = vmf->vma;
 551	struct mem_cgroup *memcg;
 552	pgtable_t pgtable;
 553	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 554	int ret = 0;
 555
 556	VM_BUG_ON_PAGE(!PageCompound(page), page);
 557
 558	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 559		put_page(page);
 560		count_vm_event(THP_FAULT_FALLBACK);
 561		return VM_FAULT_FALLBACK;
 562	}
 563
 564	pgtable = pte_alloc_one(vma->vm_mm, haddr);
 565	if (unlikely(!pgtable)) {
 566		ret = VM_FAULT_OOM;
 567		goto release;
 
 568	}
 569
 570	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 571	/*
 572	 * The memory barrier inside __SetPageUptodate makes sure that
 573	 * clear_huge_page writes become visible before the set_pmd_at()
 574	 * write.
 575	 */
 576	__SetPageUptodate(page);
 577
 578	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 579	if (unlikely(!pmd_none(*vmf->pmd))) {
 580		goto unlock_release;
 
 
 
 581	} else {
 582		pmd_t entry;
 583
 584		ret = check_stable_address_space(vma->vm_mm);
 585		if (ret)
 586			goto unlock_release;
 587
 588		/* Deliver the page fault to userland */
 589		if (userfaultfd_missing(vma)) {
 590			int ret;
 591
 592			spin_unlock(vmf->ptl);
 593			mem_cgroup_cancel_charge(page, memcg, true);
 594			put_page(page);
 595			pte_free(vma->vm_mm, pgtable);
 596			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 597			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 598			return ret;
 599		}
 600
 601		entry = mk_huge_pmd(page, vma->vm_page_prot);
 602		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 603		page_add_new_anon_rmap(page, vma, haddr, true);
 604		mem_cgroup_commit_charge(page, memcg, false, true);
 605		lru_cache_add_active_or_unevictable(page, vma);
 606		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 607		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 608		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 609		mm_inc_nr_ptes(vma->vm_mm);
 610		spin_unlock(vmf->ptl);
 611		count_vm_event(THP_FAULT_ALLOC);
 612	}
 613
 614	return 0;
 615unlock_release:
 616	spin_unlock(vmf->ptl);
 617release:
 618	if (pgtable)
 619		pte_free(vma->vm_mm, pgtable);
 620	mem_cgroup_cancel_charge(page, memcg, true);
 621	put_page(page);
 622	return ret;
 623
 624}
 625
 626/*
 627 * always: directly stall for all thp allocations
 628 * defer: wake kswapd and fail if not immediately available
 629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 630 *		  fail if not immediately available
 631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 632 *	    available
 633 * never: never stall for any thp allocation
 634 */
 635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 636{
 637	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 638
 639	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 640		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 641	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 
 
 642		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 643	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 644		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 645							     __GFP_KSWAPD_RECLAIM);
 646	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 647		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 648							     0);
 649	return GFP_TRANSHUGE_LIGHT;
 650}
 651
 652/* Caller must hold page table lock. */
 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 654		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 655		struct page *zero_page)
 656{
 657	pmd_t entry;
 658	if (!pmd_none(*pmd))
 659		return false;
 660	entry = mk_pmd(zero_page, vma->vm_page_prot);
 661	entry = pmd_mkhuge(entry);
 662	if (pgtable)
 663		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 664	set_pmd_at(mm, haddr, pmd, entry);
 665	mm_inc_nr_ptes(mm);
 666	return true;
 667}
 668
 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 670{
 671	struct vm_area_struct *vma = vmf->vma;
 672	gfp_t gfp;
 673	struct page *page;
 674	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 675
 676	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 677		return VM_FAULT_FALLBACK;
 678	if (unlikely(anon_vma_prepare(vma)))
 679		return VM_FAULT_OOM;
 680	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 681		return VM_FAULT_OOM;
 682	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 683			!mm_forbids_zeropage(vma->vm_mm) &&
 684			transparent_hugepage_use_zero_page()) {
 685		pgtable_t pgtable;
 686		struct page *zero_page;
 687		bool set;
 688		int ret;
 689		pgtable = pte_alloc_one(vma->vm_mm, haddr);
 690		if (unlikely(!pgtable))
 691			return VM_FAULT_OOM;
 692		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 693		if (unlikely(!zero_page)) {
 694			pte_free(vma->vm_mm, pgtable);
 695			count_vm_event(THP_FAULT_FALLBACK);
 696			return VM_FAULT_FALLBACK;
 697		}
 698		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 699		ret = 0;
 700		set = false;
 701		if (pmd_none(*vmf->pmd)) {
 702			ret = check_stable_address_space(vma->vm_mm);
 703			if (ret) {
 704				spin_unlock(vmf->ptl);
 705			} else if (userfaultfd_missing(vma)) {
 706				spin_unlock(vmf->ptl);
 707				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 708				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 709			} else {
 710				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 711						   haddr, vmf->pmd, zero_page);
 712				spin_unlock(vmf->ptl);
 713				set = true;
 714			}
 715		} else
 716			spin_unlock(vmf->ptl);
 717		if (!set)
 718			pte_free(vma->vm_mm, pgtable);
 719		return ret;
 720	}
 721	gfp = alloc_hugepage_direct_gfpmask(vma);
 722	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 723	if (unlikely(!page)) {
 724		count_vm_event(THP_FAULT_FALLBACK);
 725		return VM_FAULT_FALLBACK;
 726	}
 727	prep_transhuge_page(page);
 728	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 729}
 730
 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 732		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 733		pgtable_t pgtable)
 734{
 735	struct mm_struct *mm = vma->vm_mm;
 736	pmd_t entry;
 737	spinlock_t *ptl;
 738
 739	ptl = pmd_lock(mm, pmd);
 740	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 741	if (pfn_t_devmap(pfn))
 742		entry = pmd_mkdevmap(entry);
 743	if (write) {
 744		entry = pmd_mkyoung(pmd_mkdirty(entry));
 745		entry = maybe_pmd_mkwrite(entry, vma);
 746	}
 747
 748	if (pgtable) {
 749		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 750		mm_inc_nr_ptes(mm);
 751	}
 752
 753	set_pmd_at(mm, addr, pmd, entry);
 754	update_mmu_cache_pmd(vma, addr, pmd);
 755	spin_unlock(ptl);
 756}
 757
 758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 759			pmd_t *pmd, pfn_t pfn, bool write)
 760{
 761	pgprot_t pgprot = vma->vm_page_prot;
 762	pgtable_t pgtable = NULL;
 763	/*
 764	 * If we had pmd_special, we could avoid all these restrictions,
 765	 * but we need to be consistent with PTEs and architectures that
 766	 * can't support a 'special' bit.
 767	 */
 768	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 769	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 770						(VM_PFNMAP|VM_MIXEDMAP));
 771	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 772	BUG_ON(!pfn_t_devmap(pfn));
 773
 774	if (addr < vma->vm_start || addr >= vma->vm_end)
 775		return VM_FAULT_SIGBUS;
 776
 777	if (arch_needs_pgtable_deposit()) {
 778		pgtable = pte_alloc_one(vma->vm_mm, addr);
 779		if (!pgtable)
 780			return VM_FAULT_OOM;
 781	}
 782
 783	track_pfn_insert(vma, &pgprot, pfn);
 784
 785	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
 786	return VM_FAULT_NOPAGE;
 787}
 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 789
 790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 792{
 793	if (likely(vma->vm_flags & VM_WRITE))
 794		pud = pud_mkwrite(pud);
 795	return pud;
 796}
 797
 798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 799		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 800{
 801	struct mm_struct *mm = vma->vm_mm;
 802	pud_t entry;
 803	spinlock_t *ptl;
 804
 805	ptl = pud_lock(mm, pud);
 806	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 807	if (pfn_t_devmap(pfn))
 808		entry = pud_mkdevmap(entry);
 809	if (write) {
 810		entry = pud_mkyoung(pud_mkdirty(entry));
 811		entry = maybe_pud_mkwrite(entry, vma);
 812	}
 813	set_pud_at(mm, addr, pud, entry);
 814	update_mmu_cache_pud(vma, addr, pud);
 815	spin_unlock(ptl);
 816}
 817
 818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 819			pud_t *pud, pfn_t pfn, bool write)
 820{
 821	pgprot_t pgprot = vma->vm_page_prot;
 822	/*
 823	 * If we had pud_special, we could avoid all these restrictions,
 824	 * but we need to be consistent with PTEs and architectures that
 825	 * can't support a 'special' bit.
 826	 */
 827	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 828	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 829						(VM_PFNMAP|VM_MIXEDMAP));
 830	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 831	BUG_ON(!pfn_t_devmap(pfn));
 832
 833	if (addr < vma->vm_start || addr >= vma->vm_end)
 834		return VM_FAULT_SIGBUS;
 835
 836	track_pfn_insert(vma, &pgprot, pfn);
 837
 838	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
 839	return VM_FAULT_NOPAGE;
 840}
 841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 843
 844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 845		pmd_t *pmd, int flags)
 846{
 847	pmd_t _pmd;
 848
 849	_pmd = pmd_mkyoung(*pmd);
 850	if (flags & FOLL_WRITE)
 851		_pmd = pmd_mkdirty(_pmd);
 
 
 
 
 
 852	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 853				pmd, _pmd, flags & FOLL_WRITE))
 854		update_mmu_cache_pmd(vma, addr, pmd);
 855}
 856
 857struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 858		pmd_t *pmd, int flags)
 859{
 860	unsigned long pfn = pmd_pfn(*pmd);
 861	struct mm_struct *mm = vma->vm_mm;
 862	struct dev_pagemap *pgmap;
 863	struct page *page;
 864
 865	assert_spin_locked(pmd_lockptr(mm, pmd));
 866
 867	/*
 868	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 869	 * not be in this function with `flags & FOLL_COW` set.
 870	 */
 871	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 872
 873	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 874		return NULL;
 875
 876	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 877		/* pass */;
 878	else
 879		return NULL;
 880
 881	if (flags & FOLL_TOUCH)
 882		touch_pmd(vma, addr, pmd, flags);
 883
 884	/*
 885	 * device mapped pages can only be returned if the
 886	 * caller will manage the page reference count.
 887	 */
 888	if (!(flags & FOLL_GET))
 889		return ERR_PTR(-EEXIST);
 890
 891	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 892	pgmap = get_dev_pagemap(pfn, NULL);
 893	if (!pgmap)
 894		return ERR_PTR(-EFAULT);
 895	page = pfn_to_page(pfn);
 896	get_page(page);
 897	put_dev_pagemap(pgmap);
 898
 899	return page;
 900}
 901
 902int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 903		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 904		  struct vm_area_struct *vma)
 905{
 906	spinlock_t *dst_ptl, *src_ptl;
 907	struct page *src_page;
 908	pmd_t pmd;
 909	pgtable_t pgtable = NULL;
 910	int ret = -ENOMEM;
 911
 912	/* Skip if can be re-fill on fault */
 913	if (!vma_is_anonymous(vma))
 914		return 0;
 915
 916	pgtable = pte_alloc_one(dst_mm, addr);
 917	if (unlikely(!pgtable))
 918		goto out;
 919
 920	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 921	src_ptl = pmd_lockptr(src_mm, src_pmd);
 922	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 923
 924	ret = -EAGAIN;
 925	pmd = *src_pmd;
 926
 927#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 928	if (unlikely(is_swap_pmd(pmd))) {
 929		swp_entry_t entry = pmd_to_swp_entry(pmd);
 930
 931		VM_BUG_ON(!is_pmd_migration_entry(pmd));
 932		if (is_write_migration_entry(entry)) {
 933			make_migration_entry_read(&entry);
 934			pmd = swp_entry_to_pmd(entry);
 935			if (pmd_swp_soft_dirty(*src_pmd))
 936				pmd = pmd_swp_mksoft_dirty(pmd);
 937			set_pmd_at(src_mm, addr, src_pmd, pmd);
 938		}
 939		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 940		mm_inc_nr_ptes(dst_mm);
 941		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 942		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 943		ret = 0;
 944		goto out_unlock;
 945	}
 946#endif
 947
 948	if (unlikely(!pmd_trans_huge(pmd))) {
 949		pte_free(dst_mm, pgtable);
 950		goto out_unlock;
 951	}
 952	/*
 953	 * When page table lock is held, the huge zero pmd should not be
 954	 * under splitting since we don't split the page itself, only pmd to
 955	 * a page table.
 956	 */
 957	if (is_huge_zero_pmd(pmd)) {
 958		struct page *zero_page;
 959		/*
 960		 * get_huge_zero_page() will never allocate a new page here,
 961		 * since we already have a zero page to copy. It just takes a
 962		 * reference.
 963		 */
 964		zero_page = mm_get_huge_zero_page(dst_mm);
 965		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 966				zero_page);
 967		ret = 0;
 968		goto out_unlock;
 969	}
 970
 971	src_page = pmd_page(pmd);
 972	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 973	get_page(src_page);
 974	page_dup_rmap(src_page, true);
 975	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 976	mm_inc_nr_ptes(dst_mm);
 977	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 978
 979	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 980	pmd = pmd_mkold(pmd_wrprotect(pmd));
 981	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 982
 983	ret = 0;
 984out_unlock:
 985	spin_unlock(src_ptl);
 986	spin_unlock(dst_ptl);
 987out:
 988	return ret;
 989}
 990
 991#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 992static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 993		pud_t *pud, int flags)
 994{
 995	pud_t _pud;
 996
 997	_pud = pud_mkyoung(*pud);
 998	if (flags & FOLL_WRITE)
 999		_pud = pud_mkdirty(_pud);
1000	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1001				pud, _pud, flags & FOLL_WRITE))
1002		update_mmu_cache_pud(vma, addr, pud);
1003}
1004
1005struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1006		pud_t *pud, int flags)
1007{
1008	unsigned long pfn = pud_pfn(*pud);
1009	struct mm_struct *mm = vma->vm_mm;
1010	struct dev_pagemap *pgmap;
1011	struct page *page;
1012
1013	assert_spin_locked(pud_lockptr(mm, pud));
1014
1015	if (flags & FOLL_WRITE && !pud_write(*pud))
1016		return NULL;
1017
1018	if (pud_present(*pud) && pud_devmap(*pud))
1019		/* pass */;
1020	else
1021		return NULL;
1022
1023	if (flags & FOLL_TOUCH)
1024		touch_pud(vma, addr, pud, flags);
1025
1026	/*
1027	 * device mapped pages can only be returned if the
1028	 * caller will manage the page reference count.
1029	 */
1030	if (!(flags & FOLL_GET))
1031		return ERR_PTR(-EEXIST);
1032
1033	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1034	pgmap = get_dev_pagemap(pfn, NULL);
1035	if (!pgmap)
1036		return ERR_PTR(-EFAULT);
1037	page = pfn_to_page(pfn);
1038	get_page(page);
1039	put_dev_pagemap(pgmap);
1040
1041	return page;
1042}
1043
1044int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1046		  struct vm_area_struct *vma)
1047{
1048	spinlock_t *dst_ptl, *src_ptl;
1049	pud_t pud;
1050	int ret;
1051
1052	dst_ptl = pud_lock(dst_mm, dst_pud);
1053	src_ptl = pud_lockptr(src_mm, src_pud);
1054	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1055
1056	ret = -EAGAIN;
1057	pud = *src_pud;
1058	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1059		goto out_unlock;
1060
1061	/*
1062	 * When page table lock is held, the huge zero pud should not be
1063	 * under splitting since we don't split the page itself, only pud to
1064	 * a page table.
1065	 */
1066	if (is_huge_zero_pud(pud)) {
1067		/* No huge zero pud yet */
1068	}
1069
1070	pudp_set_wrprotect(src_mm, addr, src_pud);
1071	pud = pud_mkold(pud_wrprotect(pud));
1072	set_pud_at(dst_mm, addr, dst_pud, pud);
1073
1074	ret = 0;
1075out_unlock:
1076	spin_unlock(src_ptl);
1077	spin_unlock(dst_ptl);
1078	return ret;
1079}
1080
1081void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1082{
1083	pud_t entry;
1084	unsigned long haddr;
1085	bool write = vmf->flags & FAULT_FLAG_WRITE;
1086
1087	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1088	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1089		goto unlock;
1090
1091	entry = pud_mkyoung(orig_pud);
1092	if (write)
1093		entry = pud_mkdirty(entry);
1094	haddr = vmf->address & HPAGE_PUD_MASK;
1095	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1096		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1097
1098unlock:
1099	spin_unlock(vmf->ptl);
1100}
1101#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1102
1103void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1104{
1105	pmd_t entry;
1106	unsigned long haddr;
1107	bool write = vmf->flags & FAULT_FLAG_WRITE;
1108
1109	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1110	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1111		goto unlock;
1112
1113	entry = pmd_mkyoung(orig_pmd);
1114	if (write)
1115		entry = pmd_mkdirty(entry);
1116	haddr = vmf->address & HPAGE_PMD_MASK;
1117	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1118		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1119
1120unlock:
1121	spin_unlock(vmf->ptl);
1122}
1123
1124static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1125		struct page *page)
1126{
1127	struct vm_area_struct *vma = vmf->vma;
1128	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1129	struct mem_cgroup *memcg;
1130	pgtable_t pgtable;
1131	pmd_t _pmd;
1132	int ret = 0, i;
1133	struct page **pages;
1134	unsigned long mmun_start;	/* For mmu_notifiers */
1135	unsigned long mmun_end;		/* For mmu_notifiers */
1136
1137	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1138			GFP_KERNEL);
1139	if (unlikely(!pages)) {
1140		ret |= VM_FAULT_OOM;
1141		goto out;
1142	}
1143
1144	for (i = 0; i < HPAGE_PMD_NR; i++) {
1145		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1146					       vmf->address, page_to_nid(page));
1147		if (unlikely(!pages[i] ||
1148			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1149				     GFP_KERNEL, &memcg, false))) {
1150			if (pages[i])
1151				put_page(pages[i]);
1152			while (--i >= 0) {
1153				memcg = (void *)page_private(pages[i]);
1154				set_page_private(pages[i], 0);
1155				mem_cgroup_cancel_charge(pages[i], memcg,
1156						false);
1157				put_page(pages[i]);
1158			}
1159			kfree(pages);
1160			ret |= VM_FAULT_OOM;
1161			goto out;
1162		}
1163		set_page_private(pages[i], (unsigned long)memcg);
1164	}
1165
1166	for (i = 0; i < HPAGE_PMD_NR; i++) {
1167		copy_user_highpage(pages[i], page + i,
1168				   haddr + PAGE_SIZE * i, vma);
1169		__SetPageUptodate(pages[i]);
1170		cond_resched();
1171	}
1172
1173	mmun_start = haddr;
1174	mmun_end   = haddr + HPAGE_PMD_SIZE;
1175	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1176
1177	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1178	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179		goto out_free_pages;
1180	VM_BUG_ON_PAGE(!PageHead(page), page);
1181
1182	/*
1183	 * Leave pmd empty until pte is filled note we must notify here as
1184	 * concurrent CPU thread might write to new page before the call to
1185	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1186	 * device seeing memory write in different order than CPU.
1187	 *
1188	 * See Documentation/vm/mmu_notifier.txt
1189	 */
1190	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
 
1191
1192	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1193	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1194
1195	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1196		pte_t entry;
1197		entry = mk_pte(pages[i], vma->vm_page_prot);
1198		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1199		memcg = (void *)page_private(pages[i]);
1200		set_page_private(pages[i], 0);
1201		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1202		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1203		lru_cache_add_active_or_unevictable(pages[i], vma);
1204		vmf->pte = pte_offset_map(&_pmd, haddr);
1205		VM_BUG_ON(!pte_none(*vmf->pte));
1206		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1207		pte_unmap(vmf->pte);
1208	}
1209	kfree(pages);
1210
1211	smp_wmb(); /* make pte visible before pmd */
1212	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1213	page_remove_rmap(page, true);
1214	spin_unlock(vmf->ptl);
1215
1216	/*
1217	 * No need to double call mmu_notifier->invalidate_range() callback as
1218	 * the above pmdp_huge_clear_flush_notify() did already call it.
1219	 */
1220	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1221						mmun_end);
1222
1223	ret |= VM_FAULT_WRITE;
1224	put_page(page);
1225
1226out:
1227	return ret;
1228
1229out_free_pages:
1230	spin_unlock(vmf->ptl);
1231	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1232	for (i = 0; i < HPAGE_PMD_NR; i++) {
1233		memcg = (void *)page_private(pages[i]);
1234		set_page_private(pages[i], 0);
1235		mem_cgroup_cancel_charge(pages[i], memcg, false);
1236		put_page(pages[i]);
1237	}
1238	kfree(pages);
1239	goto out;
1240}
1241
1242int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1243{
1244	struct vm_area_struct *vma = vmf->vma;
1245	struct page *page = NULL, *new_page;
1246	struct mem_cgroup *memcg;
1247	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1248	unsigned long mmun_start;	/* For mmu_notifiers */
1249	unsigned long mmun_end;		/* For mmu_notifiers */
1250	gfp_t huge_gfp;			/* for allocation and charge */
1251	int ret = 0;
1252
1253	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1254	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1255	if (is_huge_zero_pmd(orig_pmd))
1256		goto alloc;
1257	spin_lock(vmf->ptl);
1258	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1259		goto out_unlock;
1260
1261	page = pmd_page(orig_pmd);
1262	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1263	/*
1264	 * We can only reuse the page if nobody else maps the huge page or it's
1265	 * part.
1266	 */
1267	if (!trylock_page(page)) {
1268		get_page(page);
1269		spin_unlock(vmf->ptl);
1270		lock_page(page);
1271		spin_lock(vmf->ptl);
1272		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1273			unlock_page(page);
1274			put_page(page);
1275			goto out_unlock;
1276		}
1277		put_page(page);
1278	}
1279	if (reuse_swap_page(page, NULL)) {
1280		pmd_t entry;
1281		entry = pmd_mkyoung(orig_pmd);
1282		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1283		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1284			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1285		ret |= VM_FAULT_WRITE;
1286		unlock_page(page);
1287		goto out_unlock;
1288	}
1289	unlock_page(page);
1290	get_page(page);
1291	spin_unlock(vmf->ptl);
1292alloc:
1293	if (transparent_hugepage_enabled(vma) &&
1294	    !transparent_hugepage_debug_cow()) {
1295		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1296		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1297	} else
1298		new_page = NULL;
1299
1300	if (likely(new_page)) {
1301		prep_transhuge_page(new_page);
1302	} else {
1303		if (!page) {
1304			split_huge_pmd(vma, vmf->pmd, vmf->address);
1305			ret |= VM_FAULT_FALLBACK;
1306		} else {
1307			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1308			if (ret & VM_FAULT_OOM) {
1309				split_huge_pmd(vma, vmf->pmd, vmf->address);
1310				ret |= VM_FAULT_FALLBACK;
1311			}
1312			put_page(page);
1313		}
1314		count_vm_event(THP_FAULT_FALLBACK);
1315		goto out;
1316	}
1317
1318	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1319					huge_gfp, &memcg, true))) {
1320		put_page(new_page);
1321		split_huge_pmd(vma, vmf->pmd, vmf->address);
1322		if (page)
1323			put_page(page);
1324		ret |= VM_FAULT_FALLBACK;
1325		count_vm_event(THP_FAULT_FALLBACK);
1326		goto out;
1327	}
1328
1329	count_vm_event(THP_FAULT_ALLOC);
1330
1331	if (!page)
1332		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1333	else
1334		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1335	__SetPageUptodate(new_page);
1336
1337	mmun_start = haddr;
1338	mmun_end   = haddr + HPAGE_PMD_SIZE;
1339	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1340
1341	spin_lock(vmf->ptl);
1342	if (page)
1343		put_page(page);
1344	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345		spin_unlock(vmf->ptl);
1346		mem_cgroup_cancel_charge(new_page, memcg, true);
1347		put_page(new_page);
1348		goto out_mn;
1349	} else {
1350		pmd_t entry;
1351		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1352		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1353		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1354		page_add_new_anon_rmap(new_page, vma, haddr, true);
1355		mem_cgroup_commit_charge(new_page, memcg, false, true);
1356		lru_cache_add_active_or_unevictable(new_page, vma);
1357		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1358		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359		if (!page) {
1360			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1361		} else {
1362			VM_BUG_ON_PAGE(!PageHead(page), page);
1363			page_remove_rmap(page, true);
1364			put_page(page);
1365		}
1366		ret |= VM_FAULT_WRITE;
1367	}
1368	spin_unlock(vmf->ptl);
1369out_mn:
1370	/*
1371	 * No need to double call mmu_notifier->invalidate_range() callback as
1372	 * the above pmdp_huge_clear_flush_notify() did already call it.
1373	 */
1374	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1375					       mmun_end);
1376out:
1377	return ret;
1378out_unlock:
1379	spin_unlock(vmf->ptl);
1380	return ret;
1381}
1382
1383/*
1384 * FOLL_FORCE can write to even unwritable pmd's, but only
1385 * after we've gone through a COW cycle and they are dirty.
1386 */
1387static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1388{
1389	return pmd_write(pmd) ||
1390	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1391}
1392
1393struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1394				   unsigned long addr,
1395				   pmd_t *pmd,
1396				   unsigned int flags)
1397{
1398	struct mm_struct *mm = vma->vm_mm;
1399	struct page *page = NULL;
1400
1401	assert_spin_locked(pmd_lockptr(mm, pmd));
1402
1403	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1404		goto out;
1405
1406	/* Avoid dumping huge zero page */
1407	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1408		return ERR_PTR(-EFAULT);
1409
1410	/* Full NUMA hinting faults to serialise migration in fault paths */
1411	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1412		goto out;
1413
1414	page = pmd_page(*pmd);
1415	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1416	if (flags & FOLL_TOUCH)
1417		touch_pmd(vma, addr, pmd, flags);
1418	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1419		/*
1420		 * We don't mlock() pte-mapped THPs. This way we can avoid
1421		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1422		 *
1423		 * For anon THP:
1424		 *
1425		 * In most cases the pmd is the only mapping of the page as we
1426		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1427		 * writable private mappings in populate_vma_page_range().
1428		 *
1429		 * The only scenario when we have the page shared here is if we
1430		 * mlocking read-only mapping shared over fork(). We skip
1431		 * mlocking such pages.
1432		 *
1433		 * For file THP:
1434		 *
1435		 * We can expect PageDoubleMap() to be stable under page lock:
1436		 * for file pages we set it in page_add_file_rmap(), which
1437		 * requires page to be locked.
1438		 */
1439
1440		if (PageAnon(page) && compound_mapcount(page) != 1)
1441			goto skip_mlock;
1442		if (PageDoubleMap(page) || !page->mapping)
1443			goto skip_mlock;
1444		if (!trylock_page(page))
1445			goto skip_mlock;
1446		lru_add_drain();
1447		if (page->mapping && !PageDoubleMap(page))
1448			mlock_vma_page(page);
1449		unlock_page(page);
1450	}
1451skip_mlock:
1452	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1453	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1454	if (flags & FOLL_GET)
1455		get_page(page);
1456
1457out:
1458	return page;
1459}
1460
1461/* NUMA hinting page fault entry point for trans huge pmds */
1462int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1463{
1464	struct vm_area_struct *vma = vmf->vma;
1465	struct anon_vma *anon_vma = NULL;
1466	struct page *page;
1467	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1468	int page_nid = -1, this_nid = numa_node_id();
1469	int target_nid, last_cpupid = -1;
1470	bool page_locked;
1471	bool migrated = false;
1472	bool was_writable;
1473	int flags = 0;
1474
1475	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1476	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1477		goto out_unlock;
1478
1479	/*
1480	 * If there are potential migrations, wait for completion and retry
1481	 * without disrupting NUMA hinting information. Do not relock and
1482	 * check_same as the page may no longer be mapped.
1483	 */
1484	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1485		page = pmd_page(*vmf->pmd);
1486		if (!get_page_unless_zero(page))
1487			goto out_unlock;
1488		spin_unlock(vmf->ptl);
1489		wait_on_page_locked(page);
1490		put_page(page);
1491		goto out;
1492	}
1493
1494	page = pmd_page(pmd);
1495	BUG_ON(is_huge_zero_page(page));
1496	page_nid = page_to_nid(page);
1497	last_cpupid = page_cpupid_last(page);
1498	count_vm_numa_event(NUMA_HINT_FAULTS);
1499	if (page_nid == this_nid) {
1500		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501		flags |= TNF_FAULT_LOCAL;
1502	}
1503
1504	/* See similar comment in do_numa_page for explanation */
1505	if (!pmd_savedwrite(pmd))
1506		flags |= TNF_NO_GROUP;
1507
1508	/*
1509	 * Acquire the page lock to serialise THP migrations but avoid dropping
1510	 * page_table_lock if at all possible
1511	 */
1512	page_locked = trylock_page(page);
1513	target_nid = mpol_misplaced(page, vma, haddr);
1514	if (target_nid == -1) {
1515		/* If the page was locked, there are no parallel migrations */
1516		if (page_locked)
1517			goto clear_pmdnuma;
1518	}
1519
1520	/* Migration could have started since the pmd_trans_migrating check */
1521	if (!page_locked) {
1522		page_nid = -1;
1523		if (!get_page_unless_zero(page))
1524			goto out_unlock;
1525		spin_unlock(vmf->ptl);
1526		wait_on_page_locked(page);
1527		put_page(page);
1528		goto out;
1529	}
1530
1531	/*
1532	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1533	 * to serialises splits
1534	 */
1535	get_page(page);
1536	spin_unlock(vmf->ptl);
1537	anon_vma = page_lock_anon_vma_read(page);
1538
1539	/* Confirm the PMD did not change while page_table_lock was released */
1540	spin_lock(vmf->ptl);
1541	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1542		unlock_page(page);
1543		put_page(page);
1544		page_nid = -1;
1545		goto out_unlock;
1546	}
1547
1548	/* Bail if we fail to protect against THP splits for any reason */
1549	if (unlikely(!anon_vma)) {
1550		put_page(page);
1551		page_nid = -1;
1552		goto clear_pmdnuma;
1553	}
1554
1555	/*
1556	 * Since we took the NUMA fault, we must have observed the !accessible
1557	 * bit. Make sure all other CPUs agree with that, to avoid them
1558	 * modifying the page we're about to migrate.
1559	 *
1560	 * Must be done under PTL such that we'll observe the relevant
1561	 * inc_tlb_flush_pending().
1562	 *
1563	 * We are not sure a pending tlb flush here is for a huge page
1564	 * mapping or not. Hence use the tlb range variant
1565	 */
1566	if (mm_tlb_flush_pending(vma->vm_mm))
1567		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1568
1569	/*
1570	 * Migrate the THP to the requested node, returns with page unlocked
1571	 * and access rights restored.
1572	 */
1573	spin_unlock(vmf->ptl);
1574
1575	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1576				vmf->pmd, pmd, vmf->address, page, target_nid);
1577	if (migrated) {
1578		flags |= TNF_MIGRATED;
1579		page_nid = target_nid;
1580	} else
1581		flags |= TNF_MIGRATE_FAIL;
1582
1583	goto out;
1584clear_pmdnuma:
1585	BUG_ON(!PageLocked(page));
1586	was_writable = pmd_savedwrite(pmd);
1587	pmd = pmd_modify(pmd, vma->vm_page_prot);
1588	pmd = pmd_mkyoung(pmd);
1589	if (was_writable)
1590		pmd = pmd_mkwrite(pmd);
1591	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593	unlock_page(page);
1594out_unlock:
1595	spin_unlock(vmf->ptl);
1596
1597out:
1598	if (anon_vma)
1599		page_unlock_anon_vma_read(anon_vma);
1600
1601	if (page_nid != -1)
1602		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1603				flags);
1604
1605	return 0;
1606}
1607
1608/*
1609 * Return true if we do MADV_FREE successfully on entire pmd page.
1610 * Otherwise, return false.
1611 */
1612bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1613		pmd_t *pmd, unsigned long addr, unsigned long next)
1614{
1615	spinlock_t *ptl;
1616	pmd_t orig_pmd;
1617	struct page *page;
1618	struct mm_struct *mm = tlb->mm;
1619	bool ret = false;
1620
1621	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1622
1623	ptl = pmd_trans_huge_lock(pmd, vma);
1624	if (!ptl)
1625		goto out_unlocked;
1626
1627	orig_pmd = *pmd;
1628	if (is_huge_zero_pmd(orig_pmd))
1629		goto out;
1630
1631	if (unlikely(!pmd_present(orig_pmd))) {
1632		VM_BUG_ON(thp_migration_supported() &&
1633				  !is_pmd_migration_entry(orig_pmd));
1634		goto out;
1635	}
1636
1637	page = pmd_page(orig_pmd);
1638	/*
1639	 * If other processes are mapping this page, we couldn't discard
1640	 * the page unless they all do MADV_FREE so let's skip the page.
1641	 */
1642	if (page_mapcount(page) != 1)
1643		goto out;
1644
1645	if (!trylock_page(page))
1646		goto out;
1647
1648	/*
1649	 * If user want to discard part-pages of THP, split it so MADV_FREE
1650	 * will deactivate only them.
1651	 */
1652	if (next - addr != HPAGE_PMD_SIZE) {
1653		get_page(page);
1654		spin_unlock(ptl);
1655		split_huge_page(page);
1656		unlock_page(page);
1657		put_page(page);
 
1658		goto out_unlocked;
1659	}
1660
1661	if (PageDirty(page))
1662		ClearPageDirty(page);
1663	unlock_page(page);
1664
 
 
 
1665	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1666		pmdp_invalidate(vma, addr, pmd);
 
1667		orig_pmd = pmd_mkold(orig_pmd);
1668		orig_pmd = pmd_mkclean(orig_pmd);
1669
1670		set_pmd_at(mm, addr, pmd, orig_pmd);
1671		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1672	}
1673
1674	mark_page_lazyfree(page);
1675	ret = true;
1676out:
1677	spin_unlock(ptl);
1678out_unlocked:
1679	return ret;
1680}
1681
1682static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1683{
1684	pgtable_t pgtable;
1685
1686	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1687	pte_free(mm, pgtable);
1688	mm_dec_nr_ptes(mm);
1689}
1690
1691int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1692		 pmd_t *pmd, unsigned long addr)
1693{
1694	pmd_t orig_pmd;
1695	spinlock_t *ptl;
1696
1697	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1698
1699	ptl = __pmd_trans_huge_lock(pmd, vma);
1700	if (!ptl)
1701		return 0;
1702	/*
1703	 * For architectures like ppc64 we look at deposited pgtable
1704	 * when calling pmdp_huge_get_and_clear. So do the
1705	 * pgtable_trans_huge_withdraw after finishing pmdp related
1706	 * operations.
1707	 */
1708	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1709			tlb->fullmm);
1710	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1711	if (vma_is_dax(vma)) {
1712		if (arch_needs_pgtable_deposit())
1713			zap_deposited_table(tlb->mm, pmd);
1714		spin_unlock(ptl);
1715		if (is_huge_zero_pmd(orig_pmd))
1716			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1717	} else if (is_huge_zero_pmd(orig_pmd)) {
1718		zap_deposited_table(tlb->mm, pmd);
 
1719		spin_unlock(ptl);
1720		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1721	} else {
1722		struct page *page = NULL;
1723		int flush_needed = 1;
1724
1725		if (pmd_present(orig_pmd)) {
1726			page = pmd_page(orig_pmd);
1727			page_remove_rmap(page, true);
1728			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1729			VM_BUG_ON_PAGE(!PageHead(page), page);
1730		} else if (thp_migration_supported()) {
1731			swp_entry_t entry;
1732
1733			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1734			entry = pmd_to_swp_entry(orig_pmd);
1735			page = pfn_to_page(swp_offset(entry));
1736			flush_needed = 0;
1737		} else
1738			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1739
1740		if (PageAnon(page)) {
1741			zap_deposited_table(tlb->mm, pmd);
 
 
 
1742			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1743		} else {
1744			if (arch_needs_pgtable_deposit())
1745				zap_deposited_table(tlb->mm, pmd);
1746			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1747		}
1748
1749		spin_unlock(ptl);
1750		if (flush_needed)
1751			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1752	}
1753	return 1;
1754}
1755
1756#ifndef pmd_move_must_withdraw
1757static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1758					 spinlock_t *old_pmd_ptl,
1759					 struct vm_area_struct *vma)
1760{
1761	/*
1762	 * With split pmd lock we also need to move preallocated
1763	 * PTE page table if new_pmd is on different PMD page table.
1764	 *
1765	 * We also don't deposit and withdraw tables for file pages.
1766	 */
1767	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1768}
1769#endif
1770
1771static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1772{
1773#ifdef CONFIG_MEM_SOFT_DIRTY
1774	if (unlikely(is_pmd_migration_entry(pmd)))
1775		pmd = pmd_swp_mksoft_dirty(pmd);
1776	else if (pmd_present(pmd))
1777		pmd = pmd_mksoft_dirty(pmd);
1778#endif
1779	return pmd;
1780}
1781
1782bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1783		  unsigned long new_addr, unsigned long old_end,
1784		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1785{
1786	spinlock_t *old_ptl, *new_ptl;
1787	pmd_t pmd;
1788	struct mm_struct *mm = vma->vm_mm;
1789	bool force_flush = false;
1790
1791	if ((old_addr & ~HPAGE_PMD_MASK) ||
1792	    (new_addr & ~HPAGE_PMD_MASK) ||
1793	    old_end - old_addr < HPAGE_PMD_SIZE)
1794		return false;
1795
1796	/*
1797	 * The destination pmd shouldn't be established, free_pgtables()
1798	 * should have release it.
1799	 */
1800	if (WARN_ON(!pmd_none(*new_pmd))) {
1801		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1802		return false;
1803	}
1804
1805	/*
1806	 * We don't have to worry about the ordering of src and dst
1807	 * ptlocks because exclusive mmap_sem prevents deadlock.
1808	 */
1809	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1810	if (old_ptl) {
1811		new_ptl = pmd_lockptr(mm, new_pmd);
1812		if (new_ptl != old_ptl)
1813			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1814		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1815		if (pmd_present(pmd) && pmd_dirty(pmd))
1816			force_flush = true;
1817		VM_BUG_ON(!pmd_none(*new_pmd));
1818
1819		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1820			pgtable_t pgtable;
1821			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1822			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1823		}
1824		pmd = move_soft_dirty_pmd(pmd);
1825		set_pmd_at(mm, new_addr, new_pmd, pmd);
1826		if (new_ptl != old_ptl)
1827			spin_unlock(new_ptl);
1828		if (force_flush)
1829			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1830		else
1831			*need_flush = true;
1832		spin_unlock(old_ptl);
1833		return true;
1834	}
1835	return false;
1836}
1837
1838/*
1839 * Returns
1840 *  - 0 if PMD could not be locked
1841 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1842 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1843 */
1844int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1845		unsigned long addr, pgprot_t newprot, int prot_numa)
1846{
1847	struct mm_struct *mm = vma->vm_mm;
1848	spinlock_t *ptl;
1849	pmd_t entry;
1850	bool preserve_write;
1851	int ret;
1852
1853	ptl = __pmd_trans_huge_lock(pmd, vma);
1854	if (!ptl)
1855		return 0;
 
 
1856
1857	preserve_write = prot_numa && pmd_write(*pmd);
1858	ret = 1;
 
 
 
 
 
 
 
1859
1860#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861	if (is_swap_pmd(*pmd)) {
1862		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1863
1864		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1865		if (is_write_migration_entry(entry)) {
1866			pmd_t newpmd;
1867			/*
1868			 * A protection check is difficult so
1869			 * just be safe and disable write
1870			 */
1871			make_migration_entry_read(&entry);
1872			newpmd = swp_entry_to_pmd(entry);
1873			if (pmd_swp_soft_dirty(*pmd))
1874				newpmd = pmd_swp_mksoft_dirty(newpmd);
1875			set_pmd_at(mm, addr, pmd, newpmd);
1876		}
1877		goto unlock;
1878	}
1879#endif
1880
1881	/*
1882	 * Avoid trapping faults against the zero page. The read-only
1883	 * data is likely to be read-cached on the local CPU and
1884	 * local/remote hits to the zero page are not interesting.
1885	 */
1886	if (prot_numa && is_huge_zero_pmd(*pmd))
1887		goto unlock;
1888
1889	if (prot_numa && pmd_protnone(*pmd))
1890		goto unlock;
1891
1892	/*
1893	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1894	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895	 * which is also under down_read(mmap_sem):
1896	 *
1897	 *	CPU0:				CPU1:
1898	 *				change_huge_pmd(prot_numa=1)
1899	 *				 pmdp_huge_get_and_clear_notify()
1900	 * madvise_dontneed()
1901	 *  zap_pmd_range()
1902	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1903	 *   // skip the pmd
1904	 *				 set_pmd_at();
1905	 *				 // pmd is re-established
1906	 *
1907	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908	 * which may break userspace.
1909	 *
1910	 * pmdp_invalidate() is required to make sure we don't miss
1911	 * dirty/young flags set by hardware.
1912	 */
1913	entry = pmdp_invalidate(vma, addr, pmd);
1914
1915	entry = pmd_modify(entry, newprot);
1916	if (preserve_write)
1917		entry = pmd_mk_savedwrite(entry);
1918	ret = HPAGE_PMD_NR;
1919	set_pmd_at(mm, addr, pmd, entry);
1920	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1921unlock:
1922	spin_unlock(ptl);
1923	return ret;
1924}
1925
1926/*
1927 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1928 *
1929 * Note that if it returns page table lock pointer, this routine returns without
1930 * unlocking page table lock. So callers must unlock it.
1931 */
1932spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1933{
1934	spinlock_t *ptl;
1935	ptl = pmd_lock(vma->vm_mm, pmd);
1936	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1937			pmd_devmap(*pmd)))
1938		return ptl;
1939	spin_unlock(ptl);
1940	return NULL;
1941}
1942
1943/*
1944 * Returns true if a given pud maps a thp, false otherwise.
1945 *
1946 * Note that if it returns true, this routine returns without unlocking page
1947 * table lock. So callers must unlock it.
1948 */
1949spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1950{
1951	spinlock_t *ptl;
1952
1953	ptl = pud_lock(vma->vm_mm, pud);
1954	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1955		return ptl;
1956	spin_unlock(ptl);
1957	return NULL;
1958}
1959
1960#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1961int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1962		 pud_t *pud, unsigned long addr)
1963{
1964	pud_t orig_pud;
1965	spinlock_t *ptl;
1966
1967	ptl = __pud_trans_huge_lock(pud, vma);
1968	if (!ptl)
1969		return 0;
1970	/*
1971	 * For architectures like ppc64 we look at deposited pgtable
1972	 * when calling pudp_huge_get_and_clear. So do the
1973	 * pgtable_trans_huge_withdraw after finishing pudp related
1974	 * operations.
1975	 */
1976	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1977			tlb->fullmm);
1978	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1979	if (vma_is_dax(vma)) {
1980		spin_unlock(ptl);
1981		/* No zero page support yet */
1982	} else {
1983		/* No support for anonymous PUD pages yet */
1984		BUG();
1985	}
1986	return 1;
1987}
1988
1989static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1990		unsigned long haddr)
1991{
1992	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1993	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1994	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1995	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1996
1997	count_vm_event(THP_SPLIT_PUD);
1998
1999	pudp_huge_clear_flush_notify(vma, haddr, pud);
2000}
2001
2002void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2003		unsigned long address)
2004{
2005	spinlock_t *ptl;
2006	struct mm_struct *mm = vma->vm_mm;
2007	unsigned long haddr = address & HPAGE_PUD_MASK;
2008
2009	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2010	ptl = pud_lock(mm, pud);
2011	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2012		goto out;
2013	__split_huge_pud_locked(vma, pud, haddr);
2014
2015out:
2016	spin_unlock(ptl);
2017	/*
2018	 * No need to double call mmu_notifier->invalidate_range() callback as
2019	 * the above pudp_huge_clear_flush_notify() did already call it.
2020	 */
2021	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2022					       HPAGE_PUD_SIZE);
2023}
2024#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2025
2026static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2027		unsigned long haddr, pmd_t *pmd)
2028{
2029	struct mm_struct *mm = vma->vm_mm;
2030	pgtable_t pgtable;
2031	pmd_t _pmd;
2032	int i;
2033
2034	/*
2035	 * Leave pmd empty until pte is filled note that it is fine to delay
2036	 * notification until mmu_notifier_invalidate_range_end() as we are
2037	 * replacing a zero pmd write protected page with a zero pte write
2038	 * protected page.
2039	 *
2040	 * See Documentation/vm/mmu_notifier.txt
2041	 */
2042	pmdp_huge_clear_flush(vma, haddr, pmd);
2043
2044	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2045	pmd_populate(mm, &_pmd, pgtable);
2046
2047	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2048		pte_t *pte, entry;
2049		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2050		entry = pte_mkspecial(entry);
2051		pte = pte_offset_map(&_pmd, haddr);
2052		VM_BUG_ON(!pte_none(*pte));
2053		set_pte_at(mm, haddr, pte, entry);
2054		pte_unmap(pte);
2055	}
2056	smp_wmb(); /* make pte visible before pmd */
2057	pmd_populate(mm, pmd, pgtable);
2058}
2059
2060static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2061		unsigned long haddr, bool freeze)
2062{
2063	struct mm_struct *mm = vma->vm_mm;
2064	struct page *page;
2065	pgtable_t pgtable;
2066	pmd_t old_pmd, _pmd;
2067	bool young, write, soft_dirty, pmd_migration = false;
2068	unsigned long addr;
2069	int i;
2070
2071	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2072	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2073	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2074	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2075				&& !pmd_devmap(*pmd));
2076
2077	count_vm_event(THP_SPLIT_PMD);
2078
2079	if (!vma_is_anonymous(vma)) {
2080		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2081		/*
2082		 * We are going to unmap this huge page. So
2083		 * just go ahead and zap it
2084		 */
2085		if (arch_needs_pgtable_deposit())
2086			zap_deposited_table(mm, pmd);
2087		if (vma_is_dax(vma))
2088			return;
2089		page = pmd_page(_pmd);
2090		if (!PageReferenced(page) && pmd_young(_pmd))
2091			SetPageReferenced(page);
2092		page_remove_rmap(page, true);
2093		put_page(page);
2094		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2095		return;
2096	} else if (is_huge_zero_pmd(*pmd)) {
2097		/*
2098		 * FIXME: Do we want to invalidate secondary mmu by calling
2099		 * mmu_notifier_invalidate_range() see comments below inside
2100		 * __split_huge_pmd() ?
2101		 *
2102		 * We are going from a zero huge page write protected to zero
2103		 * small page also write protected so it does not seems useful
2104		 * to invalidate secondary mmu at this time.
2105		 */
2106		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2107	}
2108
2109	/*
2110	 * Up to this point the pmd is present and huge and userland has the
2111	 * whole access to the hugepage during the split (which happens in
2112	 * place). If we overwrite the pmd with the not-huge version pointing
2113	 * to the pte here (which of course we could if all CPUs were bug
2114	 * free), userland could trigger a small page size TLB miss on the
2115	 * small sized TLB while the hugepage TLB entry is still established in
2116	 * the huge TLB. Some CPU doesn't like that.
2117	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2118	 * 383 on page 93. Intel should be safe but is also warns that it's
2119	 * only safe if the permission and cache attributes of the two entries
2120	 * loaded in the two TLB is identical (which should be the case here).
2121	 * But it is generally safer to never allow small and huge TLB entries
2122	 * for the same virtual address to be loaded simultaneously. So instead
2123	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2124	 * current pmd notpresent (atomically because here the pmd_trans_huge
2125	 * must remain set at all times on the pmd until the split is complete
2126	 * for this pmd), then we flush the SMP TLB and finally we write the
2127	 * non-huge version of the pmd entry with pmd_populate.
2128	 */
2129	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2130
2131#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2132	pmd_migration = is_pmd_migration_entry(old_pmd);
2133	if (pmd_migration) {
2134		swp_entry_t entry;
2135
2136		entry = pmd_to_swp_entry(old_pmd);
2137		page = pfn_to_page(swp_offset(entry));
2138	} else
2139#endif
2140		page = pmd_page(old_pmd);
2141	VM_BUG_ON_PAGE(!page_count(page), page);
2142	page_ref_add(page, HPAGE_PMD_NR - 1);
2143	if (pmd_dirty(old_pmd))
2144		SetPageDirty(page);
2145	write = pmd_write(old_pmd);
2146	young = pmd_young(old_pmd);
2147	soft_dirty = pmd_soft_dirty(old_pmd);
2148
2149	/*
2150	 * Withdraw the table only after we mark the pmd entry invalid.
2151	 * This's critical for some architectures (Power).
2152	 */
2153	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2154	pmd_populate(mm, &_pmd, pgtable);
2155
2156	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2157		pte_t entry, *pte;
2158		/*
2159		 * Note that NUMA hinting access restrictions are not
2160		 * transferred to avoid any possibility of altering
2161		 * permissions across VMAs.
2162		 */
2163		if (freeze || pmd_migration) {
2164			swp_entry_t swp_entry;
2165			swp_entry = make_migration_entry(page + i, write);
2166			entry = swp_entry_to_pte(swp_entry);
2167			if (soft_dirty)
2168				entry = pte_swp_mksoft_dirty(entry);
2169		} else {
2170			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2171			entry = maybe_mkwrite(entry, vma);
2172			if (!write)
2173				entry = pte_wrprotect(entry);
2174			if (!young)
2175				entry = pte_mkold(entry);
2176			if (soft_dirty)
2177				entry = pte_mksoft_dirty(entry);
2178		}
 
 
2179		pte = pte_offset_map(&_pmd, addr);
2180		BUG_ON(!pte_none(*pte));
2181		set_pte_at(mm, addr, pte, entry);
2182		atomic_inc(&page[i]._mapcount);
2183		pte_unmap(pte);
2184	}
2185
2186	/*
2187	 * Set PG_double_map before dropping compound_mapcount to avoid
2188	 * false-negative page_mapped().
2189	 */
2190	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2191		for (i = 0; i < HPAGE_PMD_NR; i++)
2192			atomic_inc(&page[i]._mapcount);
2193	}
2194
2195	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2196		/* Last compound_mapcount is gone. */
2197		__dec_node_page_state(page, NR_ANON_THPS);
2198		if (TestClearPageDoubleMap(page)) {
2199			/* No need in mapcount reference anymore */
2200			for (i = 0; i < HPAGE_PMD_NR; i++)
2201				atomic_dec(&page[i]._mapcount);
2202		}
2203	}
2204
2205	smp_wmb(); /* make pte visible before pmd */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2206	pmd_populate(mm, pmd, pgtable);
2207
2208	if (freeze) {
2209		for (i = 0; i < HPAGE_PMD_NR; i++) {
2210			page_remove_rmap(page + i, false);
2211			put_page(page + i);
2212		}
2213	}
2214}
2215
2216void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2217		unsigned long address, bool freeze, struct page *page)
2218{
2219	spinlock_t *ptl;
2220	struct mm_struct *mm = vma->vm_mm;
2221	unsigned long haddr = address & HPAGE_PMD_MASK;
2222
2223	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2224	ptl = pmd_lock(mm, pmd);
2225
2226	/*
2227	 * If caller asks to setup a migration entries, we need a page to check
2228	 * pmd against. Otherwise we can end up replacing wrong page.
2229	 */
2230	VM_BUG_ON(freeze && !page);
2231	if (page && page != pmd_page(*pmd))
2232	        goto out;
2233
2234	if (pmd_trans_huge(*pmd)) {
2235		page = pmd_page(*pmd);
2236		if (PageMlocked(page))
2237			clear_page_mlock(page);
2238	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2239		goto out;
2240	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2241out:
2242	spin_unlock(ptl);
2243	/*
2244	 * No need to double call mmu_notifier->invalidate_range() callback.
2245	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2246	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2247	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2248	 *    fault will trigger a flush_notify before pointing to a new page
2249	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2250	 *    page in the meantime)
2251	 *  3) Split a huge pmd into pte pointing to the same page. No need
2252	 *     to invalidate secondary tlb entry they are all still valid.
2253	 *     any further changes to individual pte will notify. So no need
2254	 *     to call mmu_notifier->invalidate_range()
2255	 */
2256	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2257					       HPAGE_PMD_SIZE);
2258}
2259
2260void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2261		bool freeze, struct page *page)
2262{
2263	pgd_t *pgd;
2264	p4d_t *p4d;
2265	pud_t *pud;
2266	pmd_t *pmd;
2267
2268	pgd = pgd_offset(vma->vm_mm, address);
2269	if (!pgd_present(*pgd))
2270		return;
2271
2272	p4d = p4d_offset(pgd, address);
2273	if (!p4d_present(*p4d))
2274		return;
2275
2276	pud = pud_offset(p4d, address);
2277	if (!pud_present(*pud))
2278		return;
2279
2280	pmd = pmd_offset(pud, address);
2281
2282	__split_huge_pmd(vma, pmd, address, freeze, page);
2283}
2284
2285void vma_adjust_trans_huge(struct vm_area_struct *vma,
2286			     unsigned long start,
2287			     unsigned long end,
2288			     long adjust_next)
2289{
2290	/*
2291	 * If the new start address isn't hpage aligned and it could
2292	 * previously contain an hugepage: check if we need to split
2293	 * an huge pmd.
2294	 */
2295	if (start & ~HPAGE_PMD_MASK &&
2296	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2297	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2298		split_huge_pmd_address(vma, start, false, NULL);
2299
2300	/*
2301	 * If the new end address isn't hpage aligned and it could
2302	 * previously contain an hugepage: check if we need to split
2303	 * an huge pmd.
2304	 */
2305	if (end & ~HPAGE_PMD_MASK &&
2306	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2307	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2308		split_huge_pmd_address(vma, end, false, NULL);
2309
2310	/*
2311	 * If we're also updating the vma->vm_next->vm_start, if the new
2312	 * vm_next->vm_start isn't page aligned and it could previously
2313	 * contain an hugepage: check if we need to split an huge pmd.
2314	 */
2315	if (adjust_next > 0) {
2316		struct vm_area_struct *next = vma->vm_next;
2317		unsigned long nstart = next->vm_start;
2318		nstart += adjust_next << PAGE_SHIFT;
2319		if (nstart & ~HPAGE_PMD_MASK &&
2320		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2321		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2322			split_huge_pmd_address(next, nstart, false, NULL);
2323	}
2324}
2325
2326static void freeze_page(struct page *page)
2327{
2328	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2329		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2330	bool unmap_success;
2331
2332	VM_BUG_ON_PAGE(!PageHead(page), page);
2333
2334	if (PageAnon(page))
2335		ttu_flags |= TTU_SPLIT_FREEZE;
 
 
 
 
 
 
 
2336
2337	unmap_success = try_to_unmap(page, ttu_flags);
2338	VM_BUG_ON_PAGE(!unmap_success, page);
 
2339}
2340
2341static void unfreeze_page(struct page *page)
2342{
2343	int i;
2344	if (PageTransHuge(page)) {
2345		remove_migration_ptes(page, page, true);
2346	} else {
2347		for (i = 0; i < HPAGE_PMD_NR; i++)
2348			remove_migration_ptes(page + i, page + i, true);
2349	}
2350}
2351
2352static void __split_huge_page_tail(struct page *head, int tail,
2353		struct lruvec *lruvec, struct list_head *list)
2354{
2355	struct page *page_tail = head + tail;
2356
2357	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
 
2358
2359	/*
2360	 * Clone page flags before unfreezing refcount.
2361	 *
2362	 * After successful get_page_unless_zero() might follow flags change,
2363	 * for exmaple lock_page() which set PG_waiters.
 
 
 
 
 
2364	 */
 
 
 
 
 
 
 
2365	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2366	page_tail->flags |= (head->flags &
2367			((1L << PG_referenced) |
2368			 (1L << PG_swapbacked) |
2369			 (1L << PG_swapcache) |
2370			 (1L << PG_mlocked) |
2371			 (1L << PG_uptodate) |
2372			 (1L << PG_active) |
2373			 (1L << PG_locked) |
2374			 (1L << PG_unevictable) |
2375			 (1L << PG_dirty)));
2376
2377	/* Page flags must be visible before we make the page non-compound. */
2378	smp_wmb();
2379
2380	/*
2381	 * Clear PageTail before unfreezing page refcount.
2382	 *
2383	 * After successful get_page_unless_zero() might follow put_page()
2384	 * which needs correct compound_head().
2385	 */
2386	clear_compound_head(page_tail);
2387
2388	/* Finally unfreeze refcount. Additional reference from page cache. */
2389	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2390					  PageSwapCache(head)));
2391
2392	if (page_is_young(head))
2393		set_page_young(page_tail);
2394	if (page_is_idle(head))
2395		set_page_idle(page_tail);
2396
2397	/* ->mapping in first tail page is compound_mapcount */
2398	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2399			page_tail);
2400	page_tail->mapping = head->mapping;
2401
2402	page_tail->index = head->index + tail;
2403	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2404
2405	/*
2406	 * always add to the tail because some iterators expect new
2407	 * pages to show after the currently processed elements - e.g.
2408	 * migrate_pages
2409	 */
2410	lru_add_page_tail(head, page_tail, lruvec, list);
2411}
2412
2413static void __split_huge_page(struct page *page, struct list_head *list,
2414		unsigned long flags)
2415{
2416	struct page *head = compound_head(page);
2417	struct zone *zone = page_zone(head);
2418	struct lruvec *lruvec;
2419	pgoff_t end = -1;
2420	int i;
2421
2422	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2423
2424	/* complete memcg works before add pages to LRU */
2425	mem_cgroup_split_huge_fixup(head);
2426
2427	if (!PageAnon(page))
2428		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2429
2430	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2431		__split_huge_page_tail(head, i, lruvec, list);
2432		/* Some pages can be beyond i_size: drop them from page cache */
2433		if (head[i].index >= end) {
2434			ClearPageDirty(head + i);
2435			__delete_from_page_cache(head + i, NULL);
2436			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2437				shmem_uncharge(head->mapping->host, 1);
2438			put_page(head + i);
2439		}
2440	}
2441
2442	ClearPageCompound(head);
2443	/* See comment in __split_huge_page_tail() */
2444	if (PageAnon(head)) {
2445		/* Additional pin to radix tree of swap cache */
2446		if (PageSwapCache(head))
2447			page_ref_add(head, 2);
2448		else
2449			page_ref_inc(head);
2450	} else {
2451		/* Additional pin to radix tree */
2452		page_ref_add(head, 2);
2453		xa_unlock(&head->mapping->i_pages);
2454	}
2455
2456	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2457
2458	unfreeze_page(head);
2459
2460	for (i = 0; i < HPAGE_PMD_NR; i++) {
2461		struct page *subpage = head + i;
2462		if (subpage == page)
2463			continue;
2464		unlock_page(subpage);
2465
2466		/*
2467		 * Subpages may be freed if there wasn't any mapping
2468		 * like if add_to_swap() is running on a lru page that
2469		 * had its mapping zapped. And freeing these pages
2470		 * requires taking the lru_lock so we do the put_page
2471		 * of the tail pages after the split is complete.
2472		 */
2473		put_page(subpage);
2474	}
2475}
2476
2477int total_mapcount(struct page *page)
2478{
2479	int i, compound, ret;
2480
2481	VM_BUG_ON_PAGE(PageTail(page), page);
2482
2483	if (likely(!PageCompound(page)))
2484		return atomic_read(&page->_mapcount) + 1;
2485
2486	compound = compound_mapcount(page);
2487	if (PageHuge(page))
2488		return compound;
2489	ret = compound;
2490	for (i = 0; i < HPAGE_PMD_NR; i++)
2491		ret += atomic_read(&page[i]._mapcount) + 1;
2492	/* File pages has compound_mapcount included in _mapcount */
2493	if (!PageAnon(page))
2494		return ret - compound * HPAGE_PMD_NR;
2495	if (PageDoubleMap(page))
2496		ret -= HPAGE_PMD_NR;
2497	return ret;
2498}
2499
2500/*
2501 * This calculates accurately how many mappings a transparent hugepage
2502 * has (unlike page_mapcount() which isn't fully accurate). This full
2503 * accuracy is primarily needed to know if copy-on-write faults can
2504 * reuse the page and change the mapping to read-write instead of
2505 * copying them. At the same time this returns the total_mapcount too.
2506 *
2507 * The function returns the highest mapcount any one of the subpages
2508 * has. If the return value is one, even if different processes are
2509 * mapping different subpages of the transparent hugepage, they can
2510 * all reuse it, because each process is reusing a different subpage.
2511 *
2512 * The total_mapcount is instead counting all virtual mappings of the
2513 * subpages. If the total_mapcount is equal to "one", it tells the
2514 * caller all mappings belong to the same "mm" and in turn the
2515 * anon_vma of the transparent hugepage can become the vma->anon_vma
2516 * local one as no other process may be mapping any of the subpages.
2517 *
2518 * It would be more accurate to replace page_mapcount() with
2519 * page_trans_huge_mapcount(), however we only use
2520 * page_trans_huge_mapcount() in the copy-on-write faults where we
2521 * need full accuracy to avoid breaking page pinning, because
2522 * page_trans_huge_mapcount() is slower than page_mapcount().
2523 */
2524int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2525{
2526	int i, ret, _total_mapcount, mapcount;
2527
2528	/* hugetlbfs shouldn't call it */
2529	VM_BUG_ON_PAGE(PageHuge(page), page);
2530
2531	if (likely(!PageTransCompound(page))) {
2532		mapcount = atomic_read(&page->_mapcount) + 1;
2533		if (total_mapcount)
2534			*total_mapcount = mapcount;
2535		return mapcount;
2536	}
2537
2538	page = compound_head(page);
2539
2540	_total_mapcount = ret = 0;
2541	for (i = 0; i < HPAGE_PMD_NR; i++) {
2542		mapcount = atomic_read(&page[i]._mapcount) + 1;
2543		ret = max(ret, mapcount);
2544		_total_mapcount += mapcount;
2545	}
2546	if (PageDoubleMap(page)) {
2547		ret -= 1;
2548		_total_mapcount -= HPAGE_PMD_NR;
2549	}
2550	mapcount = compound_mapcount(page);
2551	ret += mapcount;
2552	_total_mapcount += mapcount;
2553	if (total_mapcount)
2554		*total_mapcount = _total_mapcount;
2555	return ret;
2556}
2557
2558/* Racy check whether the huge page can be split */
2559bool can_split_huge_page(struct page *page, int *pextra_pins)
2560{
2561	int extra_pins;
2562
2563	/* Additional pins from radix tree */
2564	if (PageAnon(page))
2565		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2566	else
2567		extra_pins = HPAGE_PMD_NR;
2568	if (pextra_pins)
2569		*pextra_pins = extra_pins;
2570	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2571}
2572
2573/*
2574 * This function splits huge page into normal pages. @page can point to any
2575 * subpage of huge page to split. Split doesn't change the position of @page.
2576 *
2577 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2578 * The huge page must be locked.
2579 *
2580 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2581 *
2582 * Both head page and tail pages will inherit mapping, flags, and so on from
2583 * the hugepage.
2584 *
2585 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2586 * they are not mapped.
2587 *
2588 * Returns 0 if the hugepage is split successfully.
2589 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2590 * us.
2591 */
2592int split_huge_page_to_list(struct page *page, struct list_head *list)
2593{
2594	struct page *head = compound_head(page);
2595	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2596	struct anon_vma *anon_vma = NULL;
2597	struct address_space *mapping = NULL;
2598	int count, mapcount, extra_pins, ret;
2599	bool mlocked;
2600	unsigned long flags;
2601
2602	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2603	VM_BUG_ON_PAGE(!PageLocked(page), page);
 
2604	VM_BUG_ON_PAGE(!PageCompound(page), page);
2605
2606	if (PageWriteback(page))
2607		return -EBUSY;
2608
2609	if (PageAnon(head)) {
2610		/*
2611		 * The caller does not necessarily hold an mmap_sem that would
2612		 * prevent the anon_vma disappearing so we first we take a
2613		 * reference to it and then lock the anon_vma for write. This
2614		 * is similar to page_lock_anon_vma_read except the write lock
2615		 * is taken to serialise against parallel split or collapse
2616		 * operations.
2617		 */
2618		anon_vma = page_get_anon_vma(head);
2619		if (!anon_vma) {
2620			ret = -EBUSY;
2621			goto out;
2622		}
 
2623		mapping = NULL;
2624		anon_vma_lock_write(anon_vma);
2625	} else {
2626		mapping = head->mapping;
2627
2628		/* Truncated ? */
2629		if (!mapping) {
2630			ret = -EBUSY;
2631			goto out;
2632		}
2633
 
 
2634		anon_vma = NULL;
2635		i_mmap_lock_read(mapping);
2636	}
2637
2638	/*
2639	 * Racy check if we can split the page, before freeze_page() will
2640	 * split PMDs
2641	 */
2642	if (!can_split_huge_page(head, &extra_pins)) {
2643		ret = -EBUSY;
2644		goto out_unlock;
2645	}
2646
2647	mlocked = PageMlocked(page);
2648	freeze_page(head);
2649	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2650
2651	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2652	if (mlocked)
2653		lru_add_drain();
2654
2655	/* prevent PageLRU to go away from under us, and freeze lru stats */
2656	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2657
2658	if (mapping) {
2659		void **pslot;
2660
2661		xa_lock(&mapping->i_pages);
2662		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2663				page_index(head));
2664		/*
2665		 * Check if the head page is present in radix tree.
2666		 * We assume all tail are present too, if head is there.
2667		 */
2668		if (radix_tree_deref_slot_protected(pslot,
2669					&mapping->i_pages.xa_lock) != head)
2670			goto fail;
2671	}
2672
2673	/* Prevent deferred_split_scan() touching ->_refcount */
2674	spin_lock(&pgdata->split_queue_lock);
2675	count = page_count(head);
2676	mapcount = total_mapcount(head);
2677	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2678		if (!list_empty(page_deferred_list(head))) {
2679			pgdata->split_queue_len--;
2680			list_del(page_deferred_list(head));
2681		}
2682		if (mapping)
2683			__dec_node_page_state(page, NR_SHMEM_THPS);
2684		spin_unlock(&pgdata->split_queue_lock);
2685		__split_huge_page(page, list, flags);
2686		if (PageSwapCache(head)) {
2687			swp_entry_t entry = { .val = page_private(head) };
2688
2689			ret = split_swap_cluster(entry);
2690		} else
2691			ret = 0;
2692	} else {
2693		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2694			pr_alert("total_mapcount: %u, page_count(): %u\n",
2695					mapcount, count);
2696			if (PageTail(page))
2697				dump_page(head, NULL);
2698			dump_page(page, "total_mapcount(head) > 0");
2699			BUG();
2700		}
2701		spin_unlock(&pgdata->split_queue_lock);
2702fail:		if (mapping)
2703			xa_unlock(&mapping->i_pages);
2704		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2705		unfreeze_page(head);
2706		ret = -EBUSY;
2707	}
2708
2709out_unlock:
2710	if (anon_vma) {
2711		anon_vma_unlock_write(anon_vma);
2712		put_anon_vma(anon_vma);
2713	}
2714	if (mapping)
2715		i_mmap_unlock_read(mapping);
2716out:
2717	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2718	return ret;
2719}
2720
2721void free_transhuge_page(struct page *page)
2722{
2723	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2724	unsigned long flags;
2725
2726	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2727	if (!list_empty(page_deferred_list(page))) {
2728		pgdata->split_queue_len--;
2729		list_del(page_deferred_list(page));
2730	}
2731	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2732	free_compound_page(page);
2733}
2734
2735void deferred_split_huge_page(struct page *page)
2736{
2737	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2738	unsigned long flags;
2739
2740	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2741
2742	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2743	if (list_empty(page_deferred_list(page))) {
2744		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2745		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2746		pgdata->split_queue_len++;
2747	}
2748	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2749}
2750
2751static unsigned long deferred_split_count(struct shrinker *shrink,
2752		struct shrink_control *sc)
2753{
2754	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2755	return READ_ONCE(pgdata->split_queue_len);
2756}
2757
2758static unsigned long deferred_split_scan(struct shrinker *shrink,
2759		struct shrink_control *sc)
2760{
2761	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2762	unsigned long flags;
2763	LIST_HEAD(list), *pos, *next;
2764	struct page *page;
2765	int split = 0;
2766
2767	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2768	/* Take pin on all head pages to avoid freeing them under us */
2769	list_for_each_safe(pos, next, &pgdata->split_queue) {
2770		page = list_entry((void *)pos, struct page, mapping);
2771		page = compound_head(page);
2772		if (get_page_unless_zero(page)) {
2773			list_move(page_deferred_list(page), &list);
2774		} else {
2775			/* We lost race with put_compound_page() */
2776			list_del_init(page_deferred_list(page));
2777			pgdata->split_queue_len--;
2778		}
2779		if (!--sc->nr_to_scan)
2780			break;
2781	}
2782	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2783
2784	list_for_each_safe(pos, next, &list) {
2785		page = list_entry((void *)pos, struct page, mapping);
2786		if (!trylock_page(page))
2787			goto next;
2788		/* split_huge_page() removes page from list on success */
2789		if (!split_huge_page(page))
2790			split++;
2791		unlock_page(page);
2792next:
2793		put_page(page);
2794	}
2795
2796	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2797	list_splice_tail(&list, &pgdata->split_queue);
2798	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2799
2800	/*
2801	 * Stop shrinker if we didn't split any page, but the queue is empty.
2802	 * This can happen if pages were freed under us.
2803	 */
2804	if (!split && list_empty(&pgdata->split_queue))
2805		return SHRINK_STOP;
2806	return split;
2807}
2808
2809static struct shrinker deferred_split_shrinker = {
2810	.count_objects = deferred_split_count,
2811	.scan_objects = deferred_split_scan,
2812	.seeks = DEFAULT_SEEKS,
2813	.flags = SHRINKER_NUMA_AWARE,
2814};
2815
2816#ifdef CONFIG_DEBUG_FS
2817static int split_huge_pages_set(void *data, u64 val)
2818{
2819	struct zone *zone;
2820	struct page *page;
2821	unsigned long pfn, max_zone_pfn;
2822	unsigned long total = 0, split = 0;
2823
2824	if (val != 1)
2825		return -EINVAL;
2826
2827	for_each_populated_zone(zone) {
2828		max_zone_pfn = zone_end_pfn(zone);
2829		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2830			if (!pfn_valid(pfn))
2831				continue;
2832
2833			page = pfn_to_page(pfn);
2834			if (!get_page_unless_zero(page))
2835				continue;
2836
2837			if (zone != page_zone(page))
2838				goto next;
2839
2840			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2841				goto next;
2842
2843			total++;
2844			lock_page(page);
2845			if (!split_huge_page(page))
2846				split++;
2847			unlock_page(page);
2848next:
2849			put_page(page);
2850		}
2851	}
2852
2853	pr_info("%lu of %lu THP split\n", split, total);
2854
2855	return 0;
2856}
2857DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2858		"%llu\n");
2859
2860static int __init split_huge_pages_debugfs(void)
2861{
2862	void *ret;
2863
2864	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2865			&split_huge_pages_fops);
2866	if (!ret)
2867		pr_warn("Failed to create split_huge_pages in debugfs");
2868	return 0;
2869}
2870late_initcall(split_huge_pages_debugfs);
2871#endif
2872
2873#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2874void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2875		struct page *page)
2876{
2877	struct vm_area_struct *vma = pvmw->vma;
2878	struct mm_struct *mm = vma->vm_mm;
2879	unsigned long address = pvmw->address;
2880	pmd_t pmdval;
2881	swp_entry_t entry;
2882	pmd_t pmdswp;
2883
2884	if (!(pvmw->pmd && !pvmw->pte))
2885		return;
2886
2887	mmu_notifier_invalidate_range_start(mm, address,
2888			address + HPAGE_PMD_SIZE);
2889
2890	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2891	pmdval = *pvmw->pmd;
2892	pmdp_invalidate(vma, address, pvmw->pmd);
2893	if (pmd_dirty(pmdval))
2894		set_page_dirty(page);
2895	entry = make_migration_entry(page, pmd_write(pmdval));
2896	pmdswp = swp_entry_to_pmd(entry);
2897	if (pmd_soft_dirty(pmdval))
2898		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2899	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2900	page_remove_rmap(page, true);
2901	put_page(page);
2902
2903	mmu_notifier_invalidate_range_end(mm, address,
2904			address + HPAGE_PMD_SIZE);
2905}
2906
2907void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2908{
2909	struct vm_area_struct *vma = pvmw->vma;
2910	struct mm_struct *mm = vma->vm_mm;
2911	unsigned long address = pvmw->address;
2912	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2913	pmd_t pmde;
2914	swp_entry_t entry;
2915
2916	if (!(pvmw->pmd && !pvmw->pte))
2917		return;
2918
2919	entry = pmd_to_swp_entry(*pvmw->pmd);
2920	get_page(new);
2921	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2922	if (pmd_swp_soft_dirty(*pvmw->pmd))
2923		pmde = pmd_mksoft_dirty(pmde);
2924	if (is_write_migration_entry(entry))
2925		pmde = maybe_pmd_mkwrite(pmde, vma);
2926
2927	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2928	if (PageAnon(new))
2929		page_add_anon_rmap(new, vma, mmun_start, true);
2930	else
2931		page_add_file_rmap(new, true);
2932	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2933	if (vma->vm_flags & VM_LOCKED)
2934		mlock_vma_page(new);
2935	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2936}
2937#endif
v4.10.11
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
 
 
  12#include <linux/highmem.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mmu_notifier.h>
  15#include <linux/rmap.h>
  16#include <linux/swap.h>
  17#include <linux/shrinker.h>
  18#include <linux/mm_inline.h>
  19#include <linux/swapops.h>
  20#include <linux/dax.h>
  21#include <linux/khugepaged.h>
  22#include <linux/freezer.h>
  23#include <linux/pfn_t.h>
  24#include <linux/mman.h>
  25#include <linux/memremap.h>
  26#include <linux/pagemap.h>
  27#include <linux/debugfs.h>
  28#include <linux/migrate.h>
  29#include <linux/hashtable.h>
  30#include <linux/userfaultfd_k.h>
  31#include <linux/page_idle.h>
  32#include <linux/shmem_fs.h>
 
  33
  34#include <asm/tlb.h>
  35#include <asm/pgalloc.h>
  36#include "internal.h"
  37
  38/*
  39 * By default transparent hugepage support is disabled in order that avoid
  40 * to risk increase the memory footprint of applications without a guaranteed
  41 * benefit. When transparent hugepage support is enabled, is for all mappings,
  42 * and khugepaged scans all mappings.
  43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  44 * for all hugepage allocations.
  45 */
  46unsigned long transparent_hugepage_flags __read_mostly =
  47#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  48	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  49#endif
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  51	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  52#endif
  53	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  54	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  55	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  56
  57static struct shrinker deferred_split_shrinker;
  58
  59static atomic_t huge_zero_refcount;
  60struct page *huge_zero_page __read_mostly;
  61
  62static struct page *get_huge_zero_page(void)
  63{
  64	struct page *zero_page;
  65retry:
  66	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  67		return READ_ONCE(huge_zero_page);
  68
  69	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  70			HPAGE_PMD_ORDER);
  71	if (!zero_page) {
  72		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  73		return NULL;
  74	}
  75	count_vm_event(THP_ZERO_PAGE_ALLOC);
  76	preempt_disable();
  77	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  78		preempt_enable();
  79		__free_pages(zero_page, compound_order(zero_page));
  80		goto retry;
  81	}
  82
  83	/* We take additional reference here. It will be put back by shrinker */
  84	atomic_set(&huge_zero_refcount, 2);
  85	preempt_enable();
  86	return READ_ONCE(huge_zero_page);
  87}
  88
  89static void put_huge_zero_page(void)
  90{
  91	/*
  92	 * Counter should never go to zero here. Only shrinker can put
  93	 * last reference.
  94	 */
  95	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  96}
  97
  98struct page *mm_get_huge_zero_page(struct mm_struct *mm)
  99{
 100	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 101		return READ_ONCE(huge_zero_page);
 102
 103	if (!get_huge_zero_page())
 104		return NULL;
 105
 106	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 107		put_huge_zero_page();
 108
 109	return READ_ONCE(huge_zero_page);
 110}
 111
 112void mm_put_huge_zero_page(struct mm_struct *mm)
 113{
 114	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 115		put_huge_zero_page();
 116}
 117
 118static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 119					struct shrink_control *sc)
 120{
 121	/* we can free zero page only if last reference remains */
 122	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 123}
 124
 125static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 126				       struct shrink_control *sc)
 127{
 128	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 129		struct page *zero_page = xchg(&huge_zero_page, NULL);
 130		BUG_ON(zero_page == NULL);
 131		__free_pages(zero_page, compound_order(zero_page));
 132		return HPAGE_PMD_NR;
 133	}
 134
 135	return 0;
 136}
 137
 138static struct shrinker huge_zero_page_shrinker = {
 139	.count_objects = shrink_huge_zero_page_count,
 140	.scan_objects = shrink_huge_zero_page_scan,
 141	.seeks = DEFAULT_SEEKS,
 142};
 143
 144#ifdef CONFIG_SYSFS
 145
 146static ssize_t triple_flag_store(struct kobject *kobj,
 147				 struct kobj_attribute *attr,
 148				 const char *buf, size_t count,
 149				 enum transparent_hugepage_flag enabled,
 150				 enum transparent_hugepage_flag deferred,
 151				 enum transparent_hugepage_flag req_madv)
 152{
 153	if (!memcmp("defer", buf,
 154		    min(sizeof("defer")-1, count))) {
 155		if (enabled == deferred)
 156			return -EINVAL;
 157		clear_bit(enabled, &transparent_hugepage_flags);
 158		clear_bit(req_madv, &transparent_hugepage_flags);
 159		set_bit(deferred, &transparent_hugepage_flags);
 160	} else if (!memcmp("always", buf,
 161		    min(sizeof("always")-1, count))) {
 162		clear_bit(deferred, &transparent_hugepage_flags);
 163		clear_bit(req_madv, &transparent_hugepage_flags);
 164		set_bit(enabled, &transparent_hugepage_flags);
 165	} else if (!memcmp("madvise", buf,
 166			   min(sizeof("madvise")-1, count))) {
 167		clear_bit(enabled, &transparent_hugepage_flags);
 168		clear_bit(deferred, &transparent_hugepage_flags);
 169		set_bit(req_madv, &transparent_hugepage_flags);
 170	} else if (!memcmp("never", buf,
 171			   min(sizeof("never")-1, count))) {
 172		clear_bit(enabled, &transparent_hugepage_flags);
 173		clear_bit(req_madv, &transparent_hugepage_flags);
 174		clear_bit(deferred, &transparent_hugepage_flags);
 175	} else
 176		return -EINVAL;
 177
 178	return count;
 179}
 180
 181static ssize_t enabled_show(struct kobject *kobj,
 182			    struct kobj_attribute *attr, char *buf)
 183{
 184	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 185		return sprintf(buf, "[always] madvise never\n");
 186	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 187		return sprintf(buf, "always [madvise] never\n");
 188	else
 189		return sprintf(buf, "always madvise [never]\n");
 190}
 191
 192static ssize_t enabled_store(struct kobject *kobj,
 193			     struct kobj_attribute *attr,
 194			     const char *buf, size_t count)
 195{
 196	ssize_t ret;
 197
 198	ret = triple_flag_store(kobj, attr, buf, count,
 199				TRANSPARENT_HUGEPAGE_FLAG,
 200				TRANSPARENT_HUGEPAGE_FLAG,
 201				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 
 
 202
 203	if (ret > 0) {
 204		int err = start_stop_khugepaged();
 205		if (err)
 206			ret = err;
 207	}
 208
 209	return ret;
 210}
 211static struct kobj_attribute enabled_attr =
 212	__ATTR(enabled, 0644, enabled_show, enabled_store);
 213
 214ssize_t single_hugepage_flag_show(struct kobject *kobj,
 215				struct kobj_attribute *attr, char *buf,
 216				enum transparent_hugepage_flag flag)
 217{
 218	return sprintf(buf, "%d\n",
 219		       !!test_bit(flag, &transparent_hugepage_flags));
 220}
 221
 222ssize_t single_hugepage_flag_store(struct kobject *kobj,
 223				 struct kobj_attribute *attr,
 224				 const char *buf, size_t count,
 225				 enum transparent_hugepage_flag flag)
 226{
 227	unsigned long value;
 228	int ret;
 229
 230	ret = kstrtoul(buf, 10, &value);
 231	if (ret < 0)
 232		return ret;
 233	if (value > 1)
 234		return -EINVAL;
 235
 236	if (value)
 237		set_bit(flag, &transparent_hugepage_flags);
 238	else
 239		clear_bit(flag, &transparent_hugepage_flags);
 240
 241	return count;
 242}
 243
 244/*
 245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 247 * memory just to allocate one more hugepage.
 248 */
 249static ssize_t defrag_show(struct kobject *kobj,
 250			   struct kobj_attribute *attr, char *buf)
 251{
 252	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 253		return sprintf(buf, "[always] defer madvise never\n");
 254	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 255		return sprintf(buf, "always [defer] madvise never\n");
 256	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 257		return sprintf(buf, "always defer [madvise] never\n");
 258	else
 259		return sprintf(buf, "always defer madvise [never]\n");
 
 
 260
 261}
 262static ssize_t defrag_store(struct kobject *kobj,
 263			    struct kobj_attribute *attr,
 264			    const char *buf, size_t count)
 265{
 266	return triple_flag_store(kobj, attr, buf, count,
 267				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 268				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 269				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270}
 271static struct kobj_attribute defrag_attr =
 272	__ATTR(defrag, 0644, defrag_show, defrag_store);
 273
 274static ssize_t use_zero_page_show(struct kobject *kobj,
 275		struct kobj_attribute *attr, char *buf)
 276{
 277	return single_hugepage_flag_show(kobj, attr, buf,
 278				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 279}
 280static ssize_t use_zero_page_store(struct kobject *kobj,
 281		struct kobj_attribute *attr, const char *buf, size_t count)
 282{
 283	return single_hugepage_flag_store(kobj, attr, buf, count,
 284				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 285}
 286static struct kobj_attribute use_zero_page_attr =
 287	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 288
 289static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 290		struct kobj_attribute *attr, char *buf)
 291{
 292	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 293}
 294static struct kobj_attribute hpage_pmd_size_attr =
 295	__ATTR_RO(hpage_pmd_size);
 296
 297#ifdef CONFIG_DEBUG_VM
 298static ssize_t debug_cow_show(struct kobject *kobj,
 299				struct kobj_attribute *attr, char *buf)
 300{
 301	return single_hugepage_flag_show(kobj, attr, buf,
 302				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 303}
 304static ssize_t debug_cow_store(struct kobject *kobj,
 305			       struct kobj_attribute *attr,
 306			       const char *buf, size_t count)
 307{
 308	return single_hugepage_flag_store(kobj, attr, buf, count,
 309				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 310}
 311static struct kobj_attribute debug_cow_attr =
 312	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 313#endif /* CONFIG_DEBUG_VM */
 314
 315static struct attribute *hugepage_attr[] = {
 316	&enabled_attr.attr,
 317	&defrag_attr.attr,
 318	&use_zero_page_attr.attr,
 319	&hpage_pmd_size_attr.attr,
 320#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 321	&shmem_enabled_attr.attr,
 322#endif
 323#ifdef CONFIG_DEBUG_VM
 324	&debug_cow_attr.attr,
 325#endif
 326	NULL,
 327};
 328
 329static struct attribute_group hugepage_attr_group = {
 330	.attrs = hugepage_attr,
 331};
 332
 333static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 334{
 335	int err;
 336
 337	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 338	if (unlikely(!*hugepage_kobj)) {
 339		pr_err("failed to create transparent hugepage kobject\n");
 340		return -ENOMEM;
 341	}
 342
 343	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 344	if (err) {
 345		pr_err("failed to register transparent hugepage group\n");
 346		goto delete_obj;
 347	}
 348
 349	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 350	if (err) {
 351		pr_err("failed to register transparent hugepage group\n");
 352		goto remove_hp_group;
 353	}
 354
 355	return 0;
 356
 357remove_hp_group:
 358	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 359delete_obj:
 360	kobject_put(*hugepage_kobj);
 361	return err;
 362}
 363
 364static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 365{
 366	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 367	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 368	kobject_put(hugepage_kobj);
 369}
 370#else
 371static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 372{
 373	return 0;
 374}
 375
 376static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 377{
 378}
 379#endif /* CONFIG_SYSFS */
 380
 381static int __init hugepage_init(void)
 382{
 383	int err;
 384	struct kobject *hugepage_kobj;
 385
 386	if (!has_transparent_hugepage()) {
 387		transparent_hugepage_flags = 0;
 388		return -EINVAL;
 389	}
 390
 391	/*
 392	 * hugepages can't be allocated by the buddy allocator
 393	 */
 394	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 395	/*
 396	 * we use page->mapping and page->index in second tail page
 397	 * as list_head: assuming THP order >= 2
 398	 */
 399	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 400
 401	err = hugepage_init_sysfs(&hugepage_kobj);
 402	if (err)
 403		goto err_sysfs;
 404
 405	err = khugepaged_init();
 406	if (err)
 407		goto err_slab;
 408
 409	err = register_shrinker(&huge_zero_page_shrinker);
 410	if (err)
 411		goto err_hzp_shrinker;
 412	err = register_shrinker(&deferred_split_shrinker);
 413	if (err)
 414		goto err_split_shrinker;
 415
 416	/*
 417	 * By default disable transparent hugepages on smaller systems,
 418	 * where the extra memory used could hurt more than TLB overhead
 419	 * is likely to save.  The admin can still enable it through /sys.
 420	 */
 421	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 422		transparent_hugepage_flags = 0;
 423		return 0;
 424	}
 425
 426	err = start_stop_khugepaged();
 427	if (err)
 428		goto err_khugepaged;
 429
 430	return 0;
 431err_khugepaged:
 432	unregister_shrinker(&deferred_split_shrinker);
 433err_split_shrinker:
 434	unregister_shrinker(&huge_zero_page_shrinker);
 435err_hzp_shrinker:
 436	khugepaged_destroy();
 437err_slab:
 438	hugepage_exit_sysfs(hugepage_kobj);
 439err_sysfs:
 440	return err;
 441}
 442subsys_initcall(hugepage_init);
 443
 444static int __init setup_transparent_hugepage(char *str)
 445{
 446	int ret = 0;
 447	if (!str)
 448		goto out;
 449	if (!strcmp(str, "always")) {
 450		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 451			&transparent_hugepage_flags);
 452		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 453			  &transparent_hugepage_flags);
 454		ret = 1;
 455	} else if (!strcmp(str, "madvise")) {
 456		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 457			  &transparent_hugepage_flags);
 458		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 459			&transparent_hugepage_flags);
 460		ret = 1;
 461	} else if (!strcmp(str, "never")) {
 462		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 463			  &transparent_hugepage_flags);
 464		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 465			  &transparent_hugepage_flags);
 466		ret = 1;
 467	}
 468out:
 469	if (!ret)
 470		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 471	return ret;
 472}
 473__setup("transparent_hugepage=", setup_transparent_hugepage);
 474
 475pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 476{
 477	if (likely(vma->vm_flags & VM_WRITE))
 478		pmd = pmd_mkwrite(pmd);
 479	return pmd;
 480}
 481
 482static inline struct list_head *page_deferred_list(struct page *page)
 483{
 484	/*
 485	 * ->lru in the tail pages is occupied by compound_head.
 486	 * Let's use ->mapping + ->index in the second tail page as list_head.
 487	 */
 488	return (struct list_head *)&page[2].mapping;
 489}
 490
 491void prep_transhuge_page(struct page *page)
 492{
 493	/*
 494	 * we use page->mapping and page->indexlru in second tail page
 495	 * as list_head: assuming THP order >= 2
 496	 */
 497
 498	INIT_LIST_HEAD(page_deferred_list(page));
 499	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 500}
 501
 502unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 503		loff_t off, unsigned long flags, unsigned long size)
 504{
 505	unsigned long addr;
 506	loff_t off_end = off + len;
 507	loff_t off_align = round_up(off, size);
 508	unsigned long len_pad;
 509
 510	if (off_end <= off_align || (off_end - off_align) < size)
 511		return 0;
 512
 513	len_pad = len + size;
 514	if (len_pad < len || (off + len_pad) < off)
 515		return 0;
 516
 517	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 518					      off >> PAGE_SHIFT, flags);
 519	if (IS_ERR_VALUE(addr))
 520		return 0;
 521
 522	addr += (off - addr) & (size - 1);
 523	return addr;
 524}
 525
 526unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 527		unsigned long len, unsigned long pgoff, unsigned long flags)
 528{
 529	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 530
 531	if (addr)
 532		goto out;
 533	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 534		goto out;
 535
 536	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 537	if (addr)
 538		return addr;
 539
 540 out:
 541	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 542}
 543EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 544
 545static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
 546		gfp_t gfp)
 547{
 548	struct vm_area_struct *vma = vmf->vma;
 549	struct mem_cgroup *memcg;
 550	pgtable_t pgtable;
 551	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 
 552
 553	VM_BUG_ON_PAGE(!PageCompound(page), page);
 554
 555	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 556		put_page(page);
 557		count_vm_event(THP_FAULT_FALLBACK);
 558		return VM_FAULT_FALLBACK;
 559	}
 560
 561	pgtable = pte_alloc_one(vma->vm_mm, haddr);
 562	if (unlikely(!pgtable)) {
 563		mem_cgroup_cancel_charge(page, memcg, true);
 564		put_page(page);
 565		return VM_FAULT_OOM;
 566	}
 567
 568	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 569	/*
 570	 * The memory barrier inside __SetPageUptodate makes sure that
 571	 * clear_huge_page writes become visible before the set_pmd_at()
 572	 * write.
 573	 */
 574	__SetPageUptodate(page);
 575
 576	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 577	if (unlikely(!pmd_none(*vmf->pmd))) {
 578		spin_unlock(vmf->ptl);
 579		mem_cgroup_cancel_charge(page, memcg, true);
 580		put_page(page);
 581		pte_free(vma->vm_mm, pgtable);
 582	} else {
 583		pmd_t entry;
 584
 
 
 
 
 585		/* Deliver the page fault to userland */
 586		if (userfaultfd_missing(vma)) {
 587			int ret;
 588
 589			spin_unlock(vmf->ptl);
 590			mem_cgroup_cancel_charge(page, memcg, true);
 591			put_page(page);
 592			pte_free(vma->vm_mm, pgtable);
 593			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 594			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 595			return ret;
 596		}
 597
 598		entry = mk_huge_pmd(page, vma->vm_page_prot);
 599		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 600		page_add_new_anon_rmap(page, vma, haddr, true);
 601		mem_cgroup_commit_charge(page, memcg, false, true);
 602		lru_cache_add_active_or_unevictable(page, vma);
 603		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 604		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 605		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 606		atomic_long_inc(&vma->vm_mm->nr_ptes);
 607		spin_unlock(vmf->ptl);
 608		count_vm_event(THP_FAULT_ALLOC);
 609	}
 610
 611	return 0;
 
 
 
 
 
 
 
 
 
 612}
 613
 614/*
 615 * If THP defrag is set to always then directly reclaim/compact as necessary
 616 * If set to defer then do only background reclaim/compact and defer to khugepaged
 617 * If set to madvise and the VMA is flagged then directly reclaim/compact
 618 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
 
 
 
 619 */
 620static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 621{
 622	bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 623
 624	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 625				&transparent_hugepage_flags) && vma_madvised)
 626		return GFP_TRANSHUGE;
 627	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 628						&transparent_hugepage_flags))
 629		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 630	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 631						&transparent_hugepage_flags))
 632		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 633
 
 
 634	return GFP_TRANSHUGE_LIGHT;
 635}
 636
 637/* Caller must hold page table lock. */
 638static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 639		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 640		struct page *zero_page)
 641{
 642	pmd_t entry;
 643	if (!pmd_none(*pmd))
 644		return false;
 645	entry = mk_pmd(zero_page, vma->vm_page_prot);
 646	entry = pmd_mkhuge(entry);
 647	if (pgtable)
 648		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 649	set_pmd_at(mm, haddr, pmd, entry);
 650	atomic_long_inc(&mm->nr_ptes);
 651	return true;
 652}
 653
 654int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 655{
 656	struct vm_area_struct *vma = vmf->vma;
 657	gfp_t gfp;
 658	struct page *page;
 659	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 660
 661	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 662		return VM_FAULT_FALLBACK;
 663	if (unlikely(anon_vma_prepare(vma)))
 664		return VM_FAULT_OOM;
 665	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 666		return VM_FAULT_OOM;
 667	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 668			!mm_forbids_zeropage(vma->vm_mm) &&
 669			transparent_hugepage_use_zero_page()) {
 670		pgtable_t pgtable;
 671		struct page *zero_page;
 672		bool set;
 673		int ret;
 674		pgtable = pte_alloc_one(vma->vm_mm, haddr);
 675		if (unlikely(!pgtable))
 676			return VM_FAULT_OOM;
 677		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 678		if (unlikely(!zero_page)) {
 679			pte_free(vma->vm_mm, pgtable);
 680			count_vm_event(THP_FAULT_FALLBACK);
 681			return VM_FAULT_FALLBACK;
 682		}
 683		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 684		ret = 0;
 685		set = false;
 686		if (pmd_none(*vmf->pmd)) {
 687			if (userfaultfd_missing(vma)) {
 
 
 
 688				spin_unlock(vmf->ptl);
 689				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 690				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 691			} else {
 692				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 693						   haddr, vmf->pmd, zero_page);
 694				spin_unlock(vmf->ptl);
 695				set = true;
 696			}
 697		} else
 698			spin_unlock(vmf->ptl);
 699		if (!set)
 700			pte_free(vma->vm_mm, pgtable);
 701		return ret;
 702	}
 703	gfp = alloc_hugepage_direct_gfpmask(vma);
 704	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 705	if (unlikely(!page)) {
 706		count_vm_event(THP_FAULT_FALLBACK);
 707		return VM_FAULT_FALLBACK;
 708	}
 709	prep_transhuge_page(page);
 710	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 711}
 712
 713static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 714		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
 
 715{
 716	struct mm_struct *mm = vma->vm_mm;
 717	pmd_t entry;
 718	spinlock_t *ptl;
 719
 720	ptl = pmd_lock(mm, pmd);
 721	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 722	if (pfn_t_devmap(pfn))
 723		entry = pmd_mkdevmap(entry);
 724	if (write) {
 725		entry = pmd_mkyoung(pmd_mkdirty(entry));
 726		entry = maybe_pmd_mkwrite(entry, vma);
 727	}
 
 
 
 
 
 
 728	set_pmd_at(mm, addr, pmd, entry);
 729	update_mmu_cache_pmd(vma, addr, pmd);
 730	spin_unlock(ptl);
 731}
 732
 733int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 734			pmd_t *pmd, pfn_t pfn, bool write)
 735{
 736	pgprot_t pgprot = vma->vm_page_prot;
 
 737	/*
 738	 * If we had pmd_special, we could avoid all these restrictions,
 739	 * but we need to be consistent with PTEs and architectures that
 740	 * can't support a 'special' bit.
 741	 */
 742	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 743	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 744						(VM_PFNMAP|VM_MIXEDMAP));
 745	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 746	BUG_ON(!pfn_t_devmap(pfn));
 747
 748	if (addr < vma->vm_start || addr >= vma->vm_end)
 749		return VM_FAULT_SIGBUS;
 750
 
 
 
 
 
 
 751	track_pfn_insert(vma, &pgprot, pfn);
 752
 753	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
 754	return VM_FAULT_NOPAGE;
 755}
 756EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 759		pmd_t *pmd)
 760{
 761	pmd_t _pmd;
 762
 763	/*
 764	 * We should set the dirty bit only for FOLL_WRITE but for now
 765	 * the dirty bit in the pmd is meaningless.  And if the dirty
 766	 * bit will become meaningful and we'll only set it with
 767	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
 768	 * set the young bit, instead of the current set_pmd_at.
 769	 */
 770	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 771	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 772				pmd, _pmd,  1))
 773		update_mmu_cache_pmd(vma, addr, pmd);
 774}
 775
 776struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 777		pmd_t *pmd, int flags)
 778{
 779	unsigned long pfn = pmd_pfn(*pmd);
 780	struct mm_struct *mm = vma->vm_mm;
 781	struct dev_pagemap *pgmap;
 782	struct page *page;
 783
 784	assert_spin_locked(pmd_lockptr(mm, pmd));
 785
 786	/*
 787	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 788	 * not be in this function with `flags & FOLL_COW` set.
 789	 */
 790	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 791
 792	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 793		return NULL;
 794
 795	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 796		/* pass */;
 797	else
 798		return NULL;
 799
 800	if (flags & FOLL_TOUCH)
 801		touch_pmd(vma, addr, pmd);
 802
 803	/*
 804	 * device mapped pages can only be returned if the
 805	 * caller will manage the page reference count.
 806	 */
 807	if (!(flags & FOLL_GET))
 808		return ERR_PTR(-EEXIST);
 809
 810	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 811	pgmap = get_dev_pagemap(pfn, NULL);
 812	if (!pgmap)
 813		return ERR_PTR(-EFAULT);
 814	page = pfn_to_page(pfn);
 815	get_page(page);
 816	put_dev_pagemap(pgmap);
 817
 818	return page;
 819}
 820
 821int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 822		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 823		  struct vm_area_struct *vma)
 824{
 825	spinlock_t *dst_ptl, *src_ptl;
 826	struct page *src_page;
 827	pmd_t pmd;
 828	pgtable_t pgtable = NULL;
 829	int ret = -ENOMEM;
 830
 831	/* Skip if can be re-fill on fault */
 832	if (!vma_is_anonymous(vma))
 833		return 0;
 834
 835	pgtable = pte_alloc_one(dst_mm, addr);
 836	if (unlikely(!pgtable))
 837		goto out;
 838
 839	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 840	src_ptl = pmd_lockptr(src_mm, src_pmd);
 841	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 842
 843	ret = -EAGAIN;
 844	pmd = *src_pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845	if (unlikely(!pmd_trans_huge(pmd))) {
 846		pte_free(dst_mm, pgtable);
 847		goto out_unlock;
 848	}
 849	/*
 850	 * When page table lock is held, the huge zero pmd should not be
 851	 * under splitting since we don't split the page itself, only pmd to
 852	 * a page table.
 853	 */
 854	if (is_huge_zero_pmd(pmd)) {
 855		struct page *zero_page;
 856		/*
 857		 * get_huge_zero_page() will never allocate a new page here,
 858		 * since we already have a zero page to copy. It just takes a
 859		 * reference.
 860		 */
 861		zero_page = mm_get_huge_zero_page(dst_mm);
 862		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 863				zero_page);
 864		ret = 0;
 865		goto out_unlock;
 866	}
 867
 868	src_page = pmd_page(pmd);
 869	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 870	get_page(src_page);
 871	page_dup_rmap(src_page, true);
 872	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 873	atomic_long_inc(&dst_mm->nr_ptes);
 874	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 875
 876	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 877	pmd = pmd_mkold(pmd_wrprotect(pmd));
 878	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 879
 880	ret = 0;
 881out_unlock:
 882	spin_unlock(src_ptl);
 883	spin_unlock(dst_ptl);
 884out:
 885	return ret;
 886}
 887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
 889{
 890	pmd_t entry;
 891	unsigned long haddr;
 892	bool write = vmf->flags & FAULT_FLAG_WRITE;
 893
 894	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
 895	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
 896		goto unlock;
 897
 898	entry = pmd_mkyoung(orig_pmd);
 899	if (write)
 900		entry = pmd_mkdirty(entry);
 901	haddr = vmf->address & HPAGE_PMD_MASK;
 902	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
 903		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
 904
 905unlock:
 906	spin_unlock(vmf->ptl);
 907}
 908
 909static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
 910		struct page *page)
 911{
 912	struct vm_area_struct *vma = vmf->vma;
 913	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 914	struct mem_cgroup *memcg;
 915	pgtable_t pgtable;
 916	pmd_t _pmd;
 917	int ret = 0, i;
 918	struct page **pages;
 919	unsigned long mmun_start;	/* For mmu_notifiers */
 920	unsigned long mmun_end;		/* For mmu_notifiers */
 921
 922	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 923			GFP_KERNEL);
 924	if (unlikely(!pages)) {
 925		ret |= VM_FAULT_OOM;
 926		goto out;
 927	}
 928
 929	for (i = 0; i < HPAGE_PMD_NR; i++) {
 930		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
 931					       vmf->address, page_to_nid(page));
 932		if (unlikely(!pages[i] ||
 933			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
 934				     GFP_KERNEL, &memcg, false))) {
 935			if (pages[i])
 936				put_page(pages[i]);
 937			while (--i >= 0) {
 938				memcg = (void *)page_private(pages[i]);
 939				set_page_private(pages[i], 0);
 940				mem_cgroup_cancel_charge(pages[i], memcg,
 941						false);
 942				put_page(pages[i]);
 943			}
 944			kfree(pages);
 945			ret |= VM_FAULT_OOM;
 946			goto out;
 947		}
 948		set_page_private(pages[i], (unsigned long)memcg);
 949	}
 950
 951	for (i = 0; i < HPAGE_PMD_NR; i++) {
 952		copy_user_highpage(pages[i], page + i,
 953				   haddr + PAGE_SIZE * i, vma);
 954		__SetPageUptodate(pages[i]);
 955		cond_resched();
 956	}
 957
 958	mmun_start = haddr;
 959	mmun_end   = haddr + HPAGE_PMD_SIZE;
 960	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
 961
 962	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 963	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
 964		goto out_free_pages;
 965	VM_BUG_ON_PAGE(!PageHead(page), page);
 966
 
 
 
 
 
 
 
 
 967	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
 968	/* leave pmd empty until pte is filled */
 969
 970	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
 971	pmd_populate(vma->vm_mm, &_pmd, pgtable);
 972
 973	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 974		pte_t entry;
 975		entry = mk_pte(pages[i], vma->vm_page_prot);
 976		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 977		memcg = (void *)page_private(pages[i]);
 978		set_page_private(pages[i], 0);
 979		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
 980		mem_cgroup_commit_charge(pages[i], memcg, false, false);
 981		lru_cache_add_active_or_unevictable(pages[i], vma);
 982		vmf->pte = pte_offset_map(&_pmd, haddr);
 983		VM_BUG_ON(!pte_none(*vmf->pte));
 984		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
 985		pte_unmap(vmf->pte);
 986	}
 987	kfree(pages);
 988
 989	smp_wmb(); /* make pte visible before pmd */
 990	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
 991	page_remove_rmap(page, true);
 992	spin_unlock(vmf->ptl);
 993
 994	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
 
 
 
 
 
 995
 996	ret |= VM_FAULT_WRITE;
 997	put_page(page);
 998
 999out:
1000	return ret;
1001
1002out_free_pages:
1003	spin_unlock(vmf->ptl);
1004	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1005	for (i = 0; i < HPAGE_PMD_NR; i++) {
1006		memcg = (void *)page_private(pages[i]);
1007		set_page_private(pages[i], 0);
1008		mem_cgroup_cancel_charge(pages[i], memcg, false);
1009		put_page(pages[i]);
1010	}
1011	kfree(pages);
1012	goto out;
1013}
1014
1015int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1016{
1017	struct vm_area_struct *vma = vmf->vma;
1018	struct page *page = NULL, *new_page;
1019	struct mem_cgroup *memcg;
1020	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1021	unsigned long mmun_start;	/* For mmu_notifiers */
1022	unsigned long mmun_end;		/* For mmu_notifiers */
1023	gfp_t huge_gfp;			/* for allocation and charge */
1024	int ret = 0;
1025
1026	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1027	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1028	if (is_huge_zero_pmd(orig_pmd))
1029		goto alloc;
1030	spin_lock(vmf->ptl);
1031	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1032		goto out_unlock;
1033
1034	page = pmd_page(orig_pmd);
1035	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1036	/*
1037	 * We can only reuse the page if nobody else maps the huge page or it's
1038	 * part.
1039	 */
1040	if (page_trans_huge_mapcount(page, NULL) == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
1041		pmd_t entry;
1042		entry = pmd_mkyoung(orig_pmd);
1043		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1044		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1045			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1046		ret |= VM_FAULT_WRITE;
 
1047		goto out_unlock;
1048	}
 
1049	get_page(page);
1050	spin_unlock(vmf->ptl);
1051alloc:
1052	if (transparent_hugepage_enabled(vma) &&
1053	    !transparent_hugepage_debug_cow()) {
1054		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1055		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1056	} else
1057		new_page = NULL;
1058
1059	if (likely(new_page)) {
1060		prep_transhuge_page(new_page);
1061	} else {
1062		if (!page) {
1063			split_huge_pmd(vma, vmf->pmd, vmf->address);
1064			ret |= VM_FAULT_FALLBACK;
1065		} else {
1066			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1067			if (ret & VM_FAULT_OOM) {
1068				split_huge_pmd(vma, vmf->pmd, vmf->address);
1069				ret |= VM_FAULT_FALLBACK;
1070			}
1071			put_page(page);
1072		}
1073		count_vm_event(THP_FAULT_FALLBACK);
1074		goto out;
1075	}
1076
1077	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1078					huge_gfp, &memcg, true))) {
1079		put_page(new_page);
1080		split_huge_pmd(vma, vmf->pmd, vmf->address);
1081		if (page)
1082			put_page(page);
1083		ret |= VM_FAULT_FALLBACK;
1084		count_vm_event(THP_FAULT_FALLBACK);
1085		goto out;
1086	}
1087
1088	count_vm_event(THP_FAULT_ALLOC);
1089
1090	if (!page)
1091		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1092	else
1093		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1094	__SetPageUptodate(new_page);
1095
1096	mmun_start = haddr;
1097	mmun_end   = haddr + HPAGE_PMD_SIZE;
1098	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1099
1100	spin_lock(vmf->ptl);
1101	if (page)
1102		put_page(page);
1103	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1104		spin_unlock(vmf->ptl);
1105		mem_cgroup_cancel_charge(new_page, memcg, true);
1106		put_page(new_page);
1107		goto out_mn;
1108	} else {
1109		pmd_t entry;
1110		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1111		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1112		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1113		page_add_new_anon_rmap(new_page, vma, haddr, true);
1114		mem_cgroup_commit_charge(new_page, memcg, false, true);
1115		lru_cache_add_active_or_unevictable(new_page, vma);
1116		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1117		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1118		if (!page) {
1119			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1120		} else {
1121			VM_BUG_ON_PAGE(!PageHead(page), page);
1122			page_remove_rmap(page, true);
1123			put_page(page);
1124		}
1125		ret |= VM_FAULT_WRITE;
1126	}
1127	spin_unlock(vmf->ptl);
1128out_mn:
1129	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
 
 
 
 
 
1130out:
1131	return ret;
1132out_unlock:
1133	spin_unlock(vmf->ptl);
1134	return ret;
1135}
1136
1137/*
1138 * FOLL_FORCE can write to even unwritable pmd's, but only
1139 * after we've gone through a COW cycle and they are dirty.
1140 */
1141static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1142{
1143	return pmd_write(pmd) ||
1144	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1145}
1146
1147struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1148				   unsigned long addr,
1149				   pmd_t *pmd,
1150				   unsigned int flags)
1151{
1152	struct mm_struct *mm = vma->vm_mm;
1153	struct page *page = NULL;
1154
1155	assert_spin_locked(pmd_lockptr(mm, pmd));
1156
1157	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1158		goto out;
1159
1160	/* Avoid dumping huge zero page */
1161	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1162		return ERR_PTR(-EFAULT);
1163
1164	/* Full NUMA hinting faults to serialise migration in fault paths */
1165	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1166		goto out;
1167
1168	page = pmd_page(*pmd);
1169	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1170	if (flags & FOLL_TOUCH)
1171		touch_pmd(vma, addr, pmd);
1172	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1173		/*
1174		 * We don't mlock() pte-mapped THPs. This way we can avoid
1175		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1176		 *
1177		 * For anon THP:
1178		 *
1179		 * In most cases the pmd is the only mapping of the page as we
1180		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1181		 * writable private mappings in populate_vma_page_range().
1182		 *
1183		 * The only scenario when we have the page shared here is if we
1184		 * mlocking read-only mapping shared over fork(). We skip
1185		 * mlocking such pages.
1186		 *
1187		 * For file THP:
1188		 *
1189		 * We can expect PageDoubleMap() to be stable under page lock:
1190		 * for file pages we set it in page_add_file_rmap(), which
1191		 * requires page to be locked.
1192		 */
1193
1194		if (PageAnon(page) && compound_mapcount(page) != 1)
1195			goto skip_mlock;
1196		if (PageDoubleMap(page) || !page->mapping)
1197			goto skip_mlock;
1198		if (!trylock_page(page))
1199			goto skip_mlock;
1200		lru_add_drain();
1201		if (page->mapping && !PageDoubleMap(page))
1202			mlock_vma_page(page);
1203		unlock_page(page);
1204	}
1205skip_mlock:
1206	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1207	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1208	if (flags & FOLL_GET)
1209		get_page(page);
1210
1211out:
1212	return page;
1213}
1214
1215/* NUMA hinting page fault entry point for trans huge pmds */
1216int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1217{
1218	struct vm_area_struct *vma = vmf->vma;
1219	struct anon_vma *anon_vma = NULL;
1220	struct page *page;
1221	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1222	int page_nid = -1, this_nid = numa_node_id();
1223	int target_nid, last_cpupid = -1;
1224	bool page_locked;
1225	bool migrated = false;
1226	bool was_writable;
1227	int flags = 0;
1228
1229	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1230	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1231		goto out_unlock;
1232
1233	/*
1234	 * If there are potential migrations, wait for completion and retry
1235	 * without disrupting NUMA hinting information. Do not relock and
1236	 * check_same as the page may no longer be mapped.
1237	 */
1238	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1239		page = pmd_page(*vmf->pmd);
 
 
1240		spin_unlock(vmf->ptl);
1241		wait_on_page_locked(page);
 
1242		goto out;
1243	}
1244
1245	page = pmd_page(pmd);
1246	BUG_ON(is_huge_zero_page(page));
1247	page_nid = page_to_nid(page);
1248	last_cpupid = page_cpupid_last(page);
1249	count_vm_numa_event(NUMA_HINT_FAULTS);
1250	if (page_nid == this_nid) {
1251		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1252		flags |= TNF_FAULT_LOCAL;
1253	}
1254
1255	/* See similar comment in do_numa_page for explanation */
1256	if (!pmd_write(pmd))
1257		flags |= TNF_NO_GROUP;
1258
1259	/*
1260	 * Acquire the page lock to serialise THP migrations but avoid dropping
1261	 * page_table_lock if at all possible
1262	 */
1263	page_locked = trylock_page(page);
1264	target_nid = mpol_misplaced(page, vma, haddr);
1265	if (target_nid == -1) {
1266		/* If the page was locked, there are no parallel migrations */
1267		if (page_locked)
1268			goto clear_pmdnuma;
1269	}
1270
1271	/* Migration could have started since the pmd_trans_migrating check */
1272	if (!page_locked) {
 
 
 
1273		spin_unlock(vmf->ptl);
1274		wait_on_page_locked(page);
1275		page_nid = -1;
1276		goto out;
1277	}
1278
1279	/*
1280	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1281	 * to serialises splits
1282	 */
1283	get_page(page);
1284	spin_unlock(vmf->ptl);
1285	anon_vma = page_lock_anon_vma_read(page);
1286
1287	/* Confirm the PMD did not change while page_table_lock was released */
1288	spin_lock(vmf->ptl);
1289	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1290		unlock_page(page);
1291		put_page(page);
1292		page_nid = -1;
1293		goto out_unlock;
1294	}
1295
1296	/* Bail if we fail to protect against THP splits for any reason */
1297	if (unlikely(!anon_vma)) {
1298		put_page(page);
1299		page_nid = -1;
1300		goto clear_pmdnuma;
1301	}
1302
1303	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304	 * Migrate the THP to the requested node, returns with page unlocked
1305	 * and access rights restored.
1306	 */
1307	spin_unlock(vmf->ptl);
 
1308	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1309				vmf->pmd, pmd, vmf->address, page, target_nid);
1310	if (migrated) {
1311		flags |= TNF_MIGRATED;
1312		page_nid = target_nid;
1313	} else
1314		flags |= TNF_MIGRATE_FAIL;
1315
1316	goto out;
1317clear_pmdnuma:
1318	BUG_ON(!PageLocked(page));
1319	was_writable = pmd_write(pmd);
1320	pmd = pmd_modify(pmd, vma->vm_page_prot);
1321	pmd = pmd_mkyoung(pmd);
1322	if (was_writable)
1323		pmd = pmd_mkwrite(pmd);
1324	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1325	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1326	unlock_page(page);
1327out_unlock:
1328	spin_unlock(vmf->ptl);
1329
1330out:
1331	if (anon_vma)
1332		page_unlock_anon_vma_read(anon_vma);
1333
1334	if (page_nid != -1)
1335		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1336				vmf->flags);
1337
1338	return 0;
1339}
1340
1341/*
1342 * Return true if we do MADV_FREE successfully on entire pmd page.
1343 * Otherwise, return false.
1344 */
1345bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1346		pmd_t *pmd, unsigned long addr, unsigned long next)
1347{
1348	spinlock_t *ptl;
1349	pmd_t orig_pmd;
1350	struct page *page;
1351	struct mm_struct *mm = tlb->mm;
1352	bool ret = false;
1353
1354	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1355
1356	ptl = pmd_trans_huge_lock(pmd, vma);
1357	if (!ptl)
1358		goto out_unlocked;
1359
1360	orig_pmd = *pmd;
1361	if (is_huge_zero_pmd(orig_pmd))
1362		goto out;
1363
 
 
 
 
 
 
1364	page = pmd_page(orig_pmd);
1365	/*
1366	 * If other processes are mapping this page, we couldn't discard
1367	 * the page unless they all do MADV_FREE so let's skip the page.
1368	 */
1369	if (page_mapcount(page) != 1)
1370		goto out;
1371
1372	if (!trylock_page(page))
1373		goto out;
1374
1375	/*
1376	 * If user want to discard part-pages of THP, split it so MADV_FREE
1377	 * will deactivate only them.
1378	 */
1379	if (next - addr != HPAGE_PMD_SIZE) {
1380		get_page(page);
1381		spin_unlock(ptl);
1382		split_huge_page(page);
 
1383		put_page(page);
1384		unlock_page(page);
1385		goto out_unlocked;
1386	}
1387
1388	if (PageDirty(page))
1389		ClearPageDirty(page);
1390	unlock_page(page);
1391
1392	if (PageActive(page))
1393		deactivate_page(page);
1394
1395	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1396		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1397			tlb->fullmm);
1398		orig_pmd = pmd_mkold(orig_pmd);
1399		orig_pmd = pmd_mkclean(orig_pmd);
1400
1401		set_pmd_at(mm, addr, pmd, orig_pmd);
1402		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1403	}
 
 
1404	ret = true;
1405out:
1406	spin_unlock(ptl);
1407out_unlocked:
1408	return ret;
1409}
1410
1411static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1412{
1413	pgtable_t pgtable;
1414
1415	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1416	pte_free(mm, pgtable);
1417	atomic_long_dec(&mm->nr_ptes);
1418}
1419
1420int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1421		 pmd_t *pmd, unsigned long addr)
1422{
1423	pmd_t orig_pmd;
1424	spinlock_t *ptl;
1425
1426	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1427
1428	ptl = __pmd_trans_huge_lock(pmd, vma);
1429	if (!ptl)
1430		return 0;
1431	/*
1432	 * For architectures like ppc64 we look at deposited pgtable
1433	 * when calling pmdp_huge_get_and_clear. So do the
1434	 * pgtable_trans_huge_withdraw after finishing pmdp related
1435	 * operations.
1436	 */
1437	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1438			tlb->fullmm);
1439	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1440	if (vma_is_dax(vma)) {
 
 
1441		spin_unlock(ptl);
1442		if (is_huge_zero_pmd(orig_pmd))
1443			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1444	} else if (is_huge_zero_pmd(orig_pmd)) {
1445		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1446		atomic_long_dec(&tlb->mm->nr_ptes);
1447		spin_unlock(ptl);
1448		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1449	} else {
1450		struct page *page = pmd_page(orig_pmd);
1451		page_remove_rmap(page, true);
1452		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1453		VM_BUG_ON_PAGE(!PageHead(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1454		if (PageAnon(page)) {
1455			pgtable_t pgtable;
1456			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1457			pte_free(tlb->mm, pgtable);
1458			atomic_long_dec(&tlb->mm->nr_ptes);
1459			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1460		} else {
1461			if (arch_needs_pgtable_deposit())
1462				zap_deposited_table(tlb->mm, pmd);
1463			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1464		}
 
1465		spin_unlock(ptl);
1466		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
 
1467	}
1468	return 1;
1469}
1470
1471#ifndef pmd_move_must_withdraw
1472static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1473					 spinlock_t *old_pmd_ptl,
1474					 struct vm_area_struct *vma)
1475{
1476	/*
1477	 * With split pmd lock we also need to move preallocated
1478	 * PTE page table if new_pmd is on different PMD page table.
1479	 *
1480	 * We also don't deposit and withdraw tables for file pages.
1481	 */
1482	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1483}
1484#endif
1485
 
 
 
 
 
 
 
 
 
 
 
1486bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1487		  unsigned long new_addr, unsigned long old_end,
1488		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1489{
1490	spinlock_t *old_ptl, *new_ptl;
1491	pmd_t pmd;
1492	struct mm_struct *mm = vma->vm_mm;
1493	bool force_flush = false;
1494
1495	if ((old_addr & ~HPAGE_PMD_MASK) ||
1496	    (new_addr & ~HPAGE_PMD_MASK) ||
1497	    old_end - old_addr < HPAGE_PMD_SIZE)
1498		return false;
1499
1500	/*
1501	 * The destination pmd shouldn't be established, free_pgtables()
1502	 * should have release it.
1503	 */
1504	if (WARN_ON(!pmd_none(*new_pmd))) {
1505		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1506		return false;
1507	}
1508
1509	/*
1510	 * We don't have to worry about the ordering of src and dst
1511	 * ptlocks because exclusive mmap_sem prevents deadlock.
1512	 */
1513	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1514	if (old_ptl) {
1515		new_ptl = pmd_lockptr(mm, new_pmd);
1516		if (new_ptl != old_ptl)
1517			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1518		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1519		if (pmd_present(pmd) && pmd_dirty(pmd))
1520			force_flush = true;
1521		VM_BUG_ON(!pmd_none(*new_pmd));
1522
1523		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1524			pgtable_t pgtable;
1525			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1526			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1527		}
1528		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
 
1529		if (new_ptl != old_ptl)
1530			spin_unlock(new_ptl);
1531		if (force_flush)
1532			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1533		else
1534			*need_flush = true;
1535		spin_unlock(old_ptl);
1536		return true;
1537	}
1538	return false;
1539}
1540
1541/*
1542 * Returns
1543 *  - 0 if PMD could not be locked
1544 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1545 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1546 */
1547int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1548		unsigned long addr, pgprot_t newprot, int prot_numa)
1549{
1550	struct mm_struct *mm = vma->vm_mm;
1551	spinlock_t *ptl;
1552	int ret = 0;
 
 
1553
1554	ptl = __pmd_trans_huge_lock(pmd, vma);
1555	if (ptl) {
1556		pmd_t entry;
1557		bool preserve_write = prot_numa && pmd_write(*pmd);
1558		ret = 1;
1559
1560		/*
1561		 * Avoid trapping faults against the zero page. The read-only
1562		 * data is likely to be read-cached on the local CPU and
1563		 * local/remote hits to the zero page are not interesting.
1564		 */
1565		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1566			spin_unlock(ptl);
1567			return ret;
1568		}
1569
1570		if (!prot_numa || !pmd_protnone(*pmd)) {
1571			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1572			entry = pmd_modify(entry, newprot);
1573			if (preserve_write)
1574				entry = pmd_mkwrite(entry);
1575			ret = HPAGE_PMD_NR;
1576			set_pmd_at(mm, addr, pmd, entry);
1577			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1578					pmd_write(entry));
 
 
 
 
 
 
 
1579		}
1580		spin_unlock(ptl);
1581	}
 
 
 
 
 
 
 
 
 
 
 
 
1582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1583	return ret;
1584}
1585
1586/*
1587 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1588 *
1589 * Note that if it returns page table lock pointer, this routine returns without
1590 * unlocking page table lock. So callers must unlock it.
1591 */
1592spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1593{
1594	spinlock_t *ptl;
1595	ptl = pmd_lock(vma->vm_mm, pmd);
1596	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
 
1597		return ptl;
1598	spin_unlock(ptl);
1599	return NULL;
1600}
1601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1603		unsigned long haddr, pmd_t *pmd)
1604{
1605	struct mm_struct *mm = vma->vm_mm;
1606	pgtable_t pgtable;
1607	pmd_t _pmd;
1608	int i;
1609
1610	/* leave pmd empty until pte is filled */
1611	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
 
 
 
 
 
 
 
1612
1613	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1614	pmd_populate(mm, &_pmd, pgtable);
1615
1616	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1617		pte_t *pte, entry;
1618		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1619		entry = pte_mkspecial(entry);
1620		pte = pte_offset_map(&_pmd, haddr);
1621		VM_BUG_ON(!pte_none(*pte));
1622		set_pte_at(mm, haddr, pte, entry);
1623		pte_unmap(pte);
1624	}
1625	smp_wmb(); /* make pte visible before pmd */
1626	pmd_populate(mm, pmd, pgtable);
1627}
1628
1629static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1630		unsigned long haddr, bool freeze)
1631{
1632	struct mm_struct *mm = vma->vm_mm;
1633	struct page *page;
1634	pgtable_t pgtable;
1635	pmd_t _pmd;
1636	bool young, write, dirty, soft_dirty;
1637	unsigned long addr;
1638	int i;
1639
1640	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1641	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1642	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1643	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
 
1644
1645	count_vm_event(THP_SPLIT_PMD);
1646
1647	if (!vma_is_anonymous(vma)) {
1648		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1649		/*
1650		 * We are going to unmap this huge page. So
1651		 * just go ahead and zap it
1652		 */
1653		if (arch_needs_pgtable_deposit())
1654			zap_deposited_table(mm, pmd);
1655		if (vma_is_dax(vma))
1656			return;
1657		page = pmd_page(_pmd);
1658		if (!PageReferenced(page) && pmd_young(_pmd))
1659			SetPageReferenced(page);
1660		page_remove_rmap(page, true);
1661		put_page(page);
1662		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1663		return;
1664	} else if (is_huge_zero_pmd(*pmd)) {
 
 
 
 
 
 
 
 
 
1665		return __split_huge_zero_page_pmd(vma, haddr, pmd);
1666	}
1667
1668	page = pmd_page(*pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1669	VM_BUG_ON_PAGE(!page_count(page), page);
1670	page_ref_add(page, HPAGE_PMD_NR - 1);
1671	write = pmd_write(*pmd);
1672	young = pmd_young(*pmd);
1673	dirty = pmd_dirty(*pmd);
1674	soft_dirty = pmd_soft_dirty(*pmd);
 
1675
1676	pmdp_huge_split_prepare(vma, haddr, pmd);
 
 
 
1677	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1678	pmd_populate(mm, &_pmd, pgtable);
1679
1680	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1681		pte_t entry, *pte;
1682		/*
1683		 * Note that NUMA hinting access restrictions are not
1684		 * transferred to avoid any possibility of altering
1685		 * permissions across VMAs.
1686		 */
1687		if (freeze) {
1688			swp_entry_t swp_entry;
1689			swp_entry = make_migration_entry(page + i, write);
1690			entry = swp_entry_to_pte(swp_entry);
1691			if (soft_dirty)
1692				entry = pte_swp_mksoft_dirty(entry);
1693		} else {
1694			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1695			entry = maybe_mkwrite(entry, vma);
1696			if (!write)
1697				entry = pte_wrprotect(entry);
1698			if (!young)
1699				entry = pte_mkold(entry);
1700			if (soft_dirty)
1701				entry = pte_mksoft_dirty(entry);
1702		}
1703		if (dirty)
1704			SetPageDirty(page + i);
1705		pte = pte_offset_map(&_pmd, addr);
1706		BUG_ON(!pte_none(*pte));
1707		set_pte_at(mm, addr, pte, entry);
1708		atomic_inc(&page[i]._mapcount);
1709		pte_unmap(pte);
1710	}
1711
1712	/*
1713	 * Set PG_double_map before dropping compound_mapcount to avoid
1714	 * false-negative page_mapped().
1715	 */
1716	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1717		for (i = 0; i < HPAGE_PMD_NR; i++)
1718			atomic_inc(&page[i]._mapcount);
1719	}
1720
1721	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1722		/* Last compound_mapcount is gone. */
1723		__dec_node_page_state(page, NR_ANON_THPS);
1724		if (TestClearPageDoubleMap(page)) {
1725			/* No need in mapcount reference anymore */
1726			for (i = 0; i < HPAGE_PMD_NR; i++)
1727				atomic_dec(&page[i]._mapcount);
1728		}
1729	}
1730
1731	smp_wmb(); /* make pte visible before pmd */
1732	/*
1733	 * Up to this point the pmd is present and huge and userland has the
1734	 * whole access to the hugepage during the split (which happens in
1735	 * place). If we overwrite the pmd with the not-huge version pointing
1736	 * to the pte here (which of course we could if all CPUs were bug
1737	 * free), userland could trigger a small page size TLB miss on the
1738	 * small sized TLB while the hugepage TLB entry is still established in
1739	 * the huge TLB. Some CPU doesn't like that.
1740	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1741	 * 383 on page 93. Intel should be safe but is also warns that it's
1742	 * only safe if the permission and cache attributes of the two entries
1743	 * loaded in the two TLB is identical (which should be the case here).
1744	 * But it is generally safer to never allow small and huge TLB entries
1745	 * for the same virtual address to be loaded simultaneously. So instead
1746	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1747	 * current pmd notpresent (atomically because here the pmd_trans_huge
1748	 * and pmd_trans_splitting must remain set at all times on the pmd
1749	 * until the split is complete for this pmd), then we flush the SMP TLB
1750	 * and finally we write the non-huge version of the pmd entry with
1751	 * pmd_populate.
1752	 */
1753	pmdp_invalidate(vma, haddr, pmd);
1754	pmd_populate(mm, pmd, pgtable);
1755
1756	if (freeze) {
1757		for (i = 0; i < HPAGE_PMD_NR; i++) {
1758			page_remove_rmap(page + i, false);
1759			put_page(page + i);
1760		}
1761	}
1762}
1763
1764void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1765		unsigned long address, bool freeze, struct page *page)
1766{
1767	spinlock_t *ptl;
1768	struct mm_struct *mm = vma->vm_mm;
1769	unsigned long haddr = address & HPAGE_PMD_MASK;
1770
1771	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1772	ptl = pmd_lock(mm, pmd);
1773
1774	/*
1775	 * If caller asks to setup a migration entries, we need a page to check
1776	 * pmd against. Otherwise we can end up replacing wrong page.
1777	 */
1778	VM_BUG_ON(freeze && !page);
1779	if (page && page != pmd_page(*pmd))
1780	        goto out;
1781
1782	if (pmd_trans_huge(*pmd)) {
1783		page = pmd_page(*pmd);
1784		if (PageMlocked(page))
1785			clear_page_mlock(page);
1786	} else if (!pmd_devmap(*pmd))
1787		goto out;
1788	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
1789out:
1790	spin_unlock(ptl);
1791	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1792}
1793
1794void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1795		bool freeze, struct page *page)
1796{
1797	pgd_t *pgd;
 
1798	pud_t *pud;
1799	pmd_t *pmd;
1800
1801	pgd = pgd_offset(vma->vm_mm, address);
1802	if (!pgd_present(*pgd))
1803		return;
1804
1805	pud = pud_offset(pgd, address);
 
 
 
 
1806	if (!pud_present(*pud))
1807		return;
1808
1809	pmd = pmd_offset(pud, address);
1810
1811	__split_huge_pmd(vma, pmd, address, freeze, page);
1812}
1813
1814void vma_adjust_trans_huge(struct vm_area_struct *vma,
1815			     unsigned long start,
1816			     unsigned long end,
1817			     long adjust_next)
1818{
1819	/*
1820	 * If the new start address isn't hpage aligned and it could
1821	 * previously contain an hugepage: check if we need to split
1822	 * an huge pmd.
1823	 */
1824	if (start & ~HPAGE_PMD_MASK &&
1825	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1826	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1827		split_huge_pmd_address(vma, start, false, NULL);
1828
1829	/*
1830	 * If the new end address isn't hpage aligned and it could
1831	 * previously contain an hugepage: check if we need to split
1832	 * an huge pmd.
1833	 */
1834	if (end & ~HPAGE_PMD_MASK &&
1835	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1836	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1837		split_huge_pmd_address(vma, end, false, NULL);
1838
1839	/*
1840	 * If we're also updating the vma->vm_next->vm_start, if the new
1841	 * vm_next->vm_start isn't page aligned and it could previously
1842	 * contain an hugepage: check if we need to split an huge pmd.
1843	 */
1844	if (adjust_next > 0) {
1845		struct vm_area_struct *next = vma->vm_next;
1846		unsigned long nstart = next->vm_start;
1847		nstart += adjust_next << PAGE_SHIFT;
1848		if (nstart & ~HPAGE_PMD_MASK &&
1849		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1850		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1851			split_huge_pmd_address(next, nstart, false, NULL);
1852	}
1853}
1854
1855static void freeze_page(struct page *page)
1856{
1857	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1858		TTU_RMAP_LOCKED;
1859	int i, ret;
1860
1861	VM_BUG_ON_PAGE(!PageHead(page), page);
1862
1863	if (PageAnon(page))
1864		ttu_flags |= TTU_MIGRATION;
1865
1866	/* We only need TTU_SPLIT_HUGE_PMD once */
1867	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1868	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1869		/* Cut short if the page is unmapped */
1870		if (page_count(page) == 1)
1871			return;
1872
1873		ret = try_to_unmap(page + i, ttu_flags);
1874	}
1875	VM_BUG_ON_PAGE(ret, page + i - 1);
1876}
1877
1878static void unfreeze_page(struct page *page)
1879{
1880	int i;
1881
1882	for (i = 0; i < HPAGE_PMD_NR; i++)
1883		remove_migration_ptes(page + i, page + i, true);
 
 
 
1884}
1885
1886static void __split_huge_page_tail(struct page *head, int tail,
1887		struct lruvec *lruvec, struct list_head *list)
1888{
1889	struct page *page_tail = head + tail;
1890
1891	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1892	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1893
1894	/*
1895	 * tail_page->_refcount is zero and not changing from under us. But
1896	 * get_page_unless_zero() may be running from under us on the
1897	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1898	 * atomic_add(), we would then run atomic_set() concurrently with
1899	 * get_page_unless_zero(), and atomic_set() is implemented in C not
1900	 * using locked ops. spin_unlock on x86 sometime uses locked ops
1901	 * because of PPro errata 66, 92, so unless somebody can guarantee
1902	 * atomic_set() here would be safe on all archs (and not only on x86),
1903	 * it's safer to use atomic_inc()/atomic_add().
1904	 */
1905	if (PageAnon(head)) {
1906		page_ref_inc(page_tail);
1907	} else {
1908		/* Additional pin to radix tree */
1909		page_ref_add(page_tail, 2);
1910	}
1911
1912	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1913	page_tail->flags |= (head->flags &
1914			((1L << PG_referenced) |
1915			 (1L << PG_swapbacked) |
 
1916			 (1L << PG_mlocked) |
1917			 (1L << PG_uptodate) |
1918			 (1L << PG_active) |
1919			 (1L << PG_locked) |
1920			 (1L << PG_unevictable) |
1921			 (1L << PG_dirty)));
1922
 
 
 
1923	/*
1924	 * After clearing PageTail the gup refcount can be released.
1925	 * Page flags also must be visible before we make the page non-compound.
 
 
1926	 */
1927	smp_wmb();
1928
1929	clear_compound_head(page_tail);
 
 
1930
1931	if (page_is_young(head))
1932		set_page_young(page_tail);
1933	if (page_is_idle(head))
1934		set_page_idle(page_tail);
1935
1936	/* ->mapping in first tail page is compound_mapcount */
1937	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1938			page_tail);
1939	page_tail->mapping = head->mapping;
1940
1941	page_tail->index = head->index + tail;
1942	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
 
 
 
 
 
 
1943	lru_add_page_tail(head, page_tail, lruvec, list);
1944}
1945
1946static void __split_huge_page(struct page *page, struct list_head *list,
1947		unsigned long flags)
1948{
1949	struct page *head = compound_head(page);
1950	struct zone *zone = page_zone(head);
1951	struct lruvec *lruvec;
1952	pgoff_t end = -1;
1953	int i;
1954
1955	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1956
1957	/* complete memcg works before add pages to LRU */
1958	mem_cgroup_split_huge_fixup(head);
1959
1960	if (!PageAnon(page))
1961		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1962
1963	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1964		__split_huge_page_tail(head, i, lruvec, list);
1965		/* Some pages can be beyond i_size: drop them from page cache */
1966		if (head[i].index >= end) {
1967			__ClearPageDirty(head + i);
1968			__delete_from_page_cache(head + i, NULL);
1969			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1970				shmem_uncharge(head->mapping->host, 1);
1971			put_page(head + i);
1972		}
1973	}
1974
1975	ClearPageCompound(head);
1976	/* See comment in __split_huge_page_tail() */
1977	if (PageAnon(head)) {
1978		page_ref_inc(head);
 
 
 
 
1979	} else {
1980		/* Additional pin to radix tree */
1981		page_ref_add(head, 2);
1982		spin_unlock(&head->mapping->tree_lock);
1983	}
1984
1985	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1986
1987	unfreeze_page(head);
1988
1989	for (i = 0; i < HPAGE_PMD_NR; i++) {
1990		struct page *subpage = head + i;
1991		if (subpage == page)
1992			continue;
1993		unlock_page(subpage);
1994
1995		/*
1996		 * Subpages may be freed if there wasn't any mapping
1997		 * like if add_to_swap() is running on a lru page that
1998		 * had its mapping zapped. And freeing these pages
1999		 * requires taking the lru_lock so we do the put_page
2000		 * of the tail pages after the split is complete.
2001		 */
2002		put_page(subpage);
2003	}
2004}
2005
2006int total_mapcount(struct page *page)
2007{
2008	int i, compound, ret;
2009
2010	VM_BUG_ON_PAGE(PageTail(page), page);
2011
2012	if (likely(!PageCompound(page)))
2013		return atomic_read(&page->_mapcount) + 1;
2014
2015	compound = compound_mapcount(page);
2016	if (PageHuge(page))
2017		return compound;
2018	ret = compound;
2019	for (i = 0; i < HPAGE_PMD_NR; i++)
2020		ret += atomic_read(&page[i]._mapcount) + 1;
2021	/* File pages has compound_mapcount included in _mapcount */
2022	if (!PageAnon(page))
2023		return ret - compound * HPAGE_PMD_NR;
2024	if (PageDoubleMap(page))
2025		ret -= HPAGE_PMD_NR;
2026	return ret;
2027}
2028
2029/*
2030 * This calculates accurately how many mappings a transparent hugepage
2031 * has (unlike page_mapcount() which isn't fully accurate). This full
2032 * accuracy is primarily needed to know if copy-on-write faults can
2033 * reuse the page and change the mapping to read-write instead of
2034 * copying them. At the same time this returns the total_mapcount too.
2035 *
2036 * The function returns the highest mapcount any one of the subpages
2037 * has. If the return value is one, even if different processes are
2038 * mapping different subpages of the transparent hugepage, they can
2039 * all reuse it, because each process is reusing a different subpage.
2040 *
2041 * The total_mapcount is instead counting all virtual mappings of the
2042 * subpages. If the total_mapcount is equal to "one", it tells the
2043 * caller all mappings belong to the same "mm" and in turn the
2044 * anon_vma of the transparent hugepage can become the vma->anon_vma
2045 * local one as no other process may be mapping any of the subpages.
2046 *
2047 * It would be more accurate to replace page_mapcount() with
2048 * page_trans_huge_mapcount(), however we only use
2049 * page_trans_huge_mapcount() in the copy-on-write faults where we
2050 * need full accuracy to avoid breaking page pinning, because
2051 * page_trans_huge_mapcount() is slower than page_mapcount().
2052 */
2053int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2054{
2055	int i, ret, _total_mapcount, mapcount;
2056
2057	/* hugetlbfs shouldn't call it */
2058	VM_BUG_ON_PAGE(PageHuge(page), page);
2059
2060	if (likely(!PageTransCompound(page))) {
2061		mapcount = atomic_read(&page->_mapcount) + 1;
2062		if (total_mapcount)
2063			*total_mapcount = mapcount;
2064		return mapcount;
2065	}
2066
2067	page = compound_head(page);
2068
2069	_total_mapcount = ret = 0;
2070	for (i = 0; i < HPAGE_PMD_NR; i++) {
2071		mapcount = atomic_read(&page[i]._mapcount) + 1;
2072		ret = max(ret, mapcount);
2073		_total_mapcount += mapcount;
2074	}
2075	if (PageDoubleMap(page)) {
2076		ret -= 1;
2077		_total_mapcount -= HPAGE_PMD_NR;
2078	}
2079	mapcount = compound_mapcount(page);
2080	ret += mapcount;
2081	_total_mapcount += mapcount;
2082	if (total_mapcount)
2083		*total_mapcount = _total_mapcount;
2084	return ret;
2085}
2086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2087/*
2088 * This function splits huge page into normal pages. @page can point to any
2089 * subpage of huge page to split. Split doesn't change the position of @page.
2090 *
2091 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2092 * The huge page must be locked.
2093 *
2094 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2095 *
2096 * Both head page and tail pages will inherit mapping, flags, and so on from
2097 * the hugepage.
2098 *
2099 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2100 * they are not mapped.
2101 *
2102 * Returns 0 if the hugepage is split successfully.
2103 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2104 * us.
2105 */
2106int split_huge_page_to_list(struct page *page, struct list_head *list)
2107{
2108	struct page *head = compound_head(page);
2109	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2110	struct anon_vma *anon_vma = NULL;
2111	struct address_space *mapping = NULL;
2112	int count, mapcount, extra_pins, ret;
2113	bool mlocked;
2114	unsigned long flags;
2115
2116	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2117	VM_BUG_ON_PAGE(!PageLocked(page), page);
2118	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2119	VM_BUG_ON_PAGE(!PageCompound(page), page);
2120
 
 
 
2121	if (PageAnon(head)) {
2122		/*
2123		 * The caller does not necessarily hold an mmap_sem that would
2124		 * prevent the anon_vma disappearing so we first we take a
2125		 * reference to it and then lock the anon_vma for write. This
2126		 * is similar to page_lock_anon_vma_read except the write lock
2127		 * is taken to serialise against parallel split or collapse
2128		 * operations.
2129		 */
2130		anon_vma = page_get_anon_vma(head);
2131		if (!anon_vma) {
2132			ret = -EBUSY;
2133			goto out;
2134		}
2135		extra_pins = 0;
2136		mapping = NULL;
2137		anon_vma_lock_write(anon_vma);
2138	} else {
2139		mapping = head->mapping;
2140
2141		/* Truncated ? */
2142		if (!mapping) {
2143			ret = -EBUSY;
2144			goto out;
2145		}
2146
2147		/* Addidional pins from radix tree */
2148		extra_pins = HPAGE_PMD_NR;
2149		anon_vma = NULL;
2150		i_mmap_lock_read(mapping);
2151	}
2152
2153	/*
2154	 * Racy check if we can split the page, before freeze_page() will
2155	 * split PMDs
2156	 */
2157	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2158		ret = -EBUSY;
2159		goto out_unlock;
2160	}
2161
2162	mlocked = PageMlocked(page);
2163	freeze_page(head);
2164	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2165
2166	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2167	if (mlocked)
2168		lru_add_drain();
2169
2170	/* prevent PageLRU to go away from under us, and freeze lru stats */
2171	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2172
2173	if (mapping) {
2174		void **pslot;
2175
2176		spin_lock(&mapping->tree_lock);
2177		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2178				page_index(head));
2179		/*
2180		 * Check if the head page is present in radix tree.
2181		 * We assume all tail are present too, if head is there.
2182		 */
2183		if (radix_tree_deref_slot_protected(pslot,
2184					&mapping->tree_lock) != head)
2185			goto fail;
2186	}
2187
2188	/* Prevent deferred_split_scan() touching ->_refcount */
2189	spin_lock(&pgdata->split_queue_lock);
2190	count = page_count(head);
2191	mapcount = total_mapcount(head);
2192	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2193		if (!list_empty(page_deferred_list(head))) {
2194			pgdata->split_queue_len--;
2195			list_del(page_deferred_list(head));
2196		}
2197		if (mapping)
2198			__dec_node_page_state(page, NR_SHMEM_THPS);
2199		spin_unlock(&pgdata->split_queue_lock);
2200		__split_huge_page(page, list, flags);
2201		ret = 0;
 
 
 
 
 
2202	} else {
2203		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2204			pr_alert("total_mapcount: %u, page_count(): %u\n",
2205					mapcount, count);
2206			if (PageTail(page))
2207				dump_page(head, NULL);
2208			dump_page(page, "total_mapcount(head) > 0");
2209			BUG();
2210		}
2211		spin_unlock(&pgdata->split_queue_lock);
2212fail:		if (mapping)
2213			spin_unlock(&mapping->tree_lock);
2214		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2215		unfreeze_page(head);
2216		ret = -EBUSY;
2217	}
2218
2219out_unlock:
2220	if (anon_vma) {
2221		anon_vma_unlock_write(anon_vma);
2222		put_anon_vma(anon_vma);
2223	}
2224	if (mapping)
2225		i_mmap_unlock_read(mapping);
2226out:
2227	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2228	return ret;
2229}
2230
2231void free_transhuge_page(struct page *page)
2232{
2233	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2234	unsigned long flags;
2235
2236	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2237	if (!list_empty(page_deferred_list(page))) {
2238		pgdata->split_queue_len--;
2239		list_del(page_deferred_list(page));
2240	}
2241	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2242	free_compound_page(page);
2243}
2244
2245void deferred_split_huge_page(struct page *page)
2246{
2247	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2248	unsigned long flags;
2249
2250	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2251
2252	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2253	if (list_empty(page_deferred_list(page))) {
2254		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2255		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2256		pgdata->split_queue_len++;
2257	}
2258	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2259}
2260
2261static unsigned long deferred_split_count(struct shrinker *shrink,
2262		struct shrink_control *sc)
2263{
2264	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2265	return ACCESS_ONCE(pgdata->split_queue_len);
2266}
2267
2268static unsigned long deferred_split_scan(struct shrinker *shrink,
2269		struct shrink_control *sc)
2270{
2271	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2272	unsigned long flags;
2273	LIST_HEAD(list), *pos, *next;
2274	struct page *page;
2275	int split = 0;
2276
2277	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2278	/* Take pin on all head pages to avoid freeing them under us */
2279	list_for_each_safe(pos, next, &pgdata->split_queue) {
2280		page = list_entry((void *)pos, struct page, mapping);
2281		page = compound_head(page);
2282		if (get_page_unless_zero(page)) {
2283			list_move(page_deferred_list(page), &list);
2284		} else {
2285			/* We lost race with put_compound_page() */
2286			list_del_init(page_deferred_list(page));
2287			pgdata->split_queue_len--;
2288		}
2289		if (!--sc->nr_to_scan)
2290			break;
2291	}
2292	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2293
2294	list_for_each_safe(pos, next, &list) {
2295		page = list_entry((void *)pos, struct page, mapping);
2296		lock_page(page);
 
2297		/* split_huge_page() removes page from list on success */
2298		if (!split_huge_page(page))
2299			split++;
2300		unlock_page(page);
 
2301		put_page(page);
2302	}
2303
2304	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2305	list_splice_tail(&list, &pgdata->split_queue);
2306	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2307
2308	/*
2309	 * Stop shrinker if we didn't split any page, but the queue is empty.
2310	 * This can happen if pages were freed under us.
2311	 */
2312	if (!split && list_empty(&pgdata->split_queue))
2313		return SHRINK_STOP;
2314	return split;
2315}
2316
2317static struct shrinker deferred_split_shrinker = {
2318	.count_objects = deferred_split_count,
2319	.scan_objects = deferred_split_scan,
2320	.seeks = DEFAULT_SEEKS,
2321	.flags = SHRINKER_NUMA_AWARE,
2322};
2323
2324#ifdef CONFIG_DEBUG_FS
2325static int split_huge_pages_set(void *data, u64 val)
2326{
2327	struct zone *zone;
2328	struct page *page;
2329	unsigned long pfn, max_zone_pfn;
2330	unsigned long total = 0, split = 0;
2331
2332	if (val != 1)
2333		return -EINVAL;
2334
2335	for_each_populated_zone(zone) {
2336		max_zone_pfn = zone_end_pfn(zone);
2337		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2338			if (!pfn_valid(pfn))
2339				continue;
2340
2341			page = pfn_to_page(pfn);
2342			if (!get_page_unless_zero(page))
2343				continue;
2344
2345			if (zone != page_zone(page))
2346				goto next;
2347
2348			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2349				goto next;
2350
2351			total++;
2352			lock_page(page);
2353			if (!split_huge_page(page))
2354				split++;
2355			unlock_page(page);
2356next:
2357			put_page(page);
2358		}
2359	}
2360
2361	pr_info("%lu of %lu THP split\n", split, total);
2362
2363	return 0;
2364}
2365DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2366		"%llu\n");
2367
2368static int __init split_huge_pages_debugfs(void)
2369{
2370	void *ret;
2371
2372	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2373			&split_huge_pages_fops);
2374	if (!ret)
2375		pr_warn("Failed to create split_huge_pages in debugfs");
2376	return 0;
2377}
2378late_initcall(split_huge_pages_debugfs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2379#endif