Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/sched/coredump.h>
  13#include <linux/sched/numa_balancing.h>
  14#include <linux/highmem.h>
  15#include <linux/hugetlb.h>
  16#include <linux/mmu_notifier.h>
  17#include <linux/rmap.h>
  18#include <linux/swap.h>
  19#include <linux/shrinker.h>
  20#include <linux/mm_inline.h>
  21#include <linux/swapops.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
  40
  41/*
  42 * By default, transparent hugepage support is disabled in order to avoid
  43 * risking an increased memory footprint for applications that are not
  44 * guaranteed to benefit from it. When transparent hugepage support is
  45 * enabled, it is for all mappings, and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
  60static struct shrinker deferred_split_shrinker;
  61
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
  64
  65static struct page *get_huge_zero_page(void)
  66{
  67	struct page *zero_page;
  68retry:
  69	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  70		return READ_ONCE(huge_zero_page);
  71
  72	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  73			HPAGE_PMD_ORDER);
  74	if (!zero_page) {
  75		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  76		return NULL;
  77	}
  78	count_vm_event(THP_ZERO_PAGE_ALLOC);
  79	preempt_disable();
  80	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  81		preempt_enable();
  82		__free_pages(zero_page, compound_order(zero_page));
  83		goto retry;
  84	}
  85
  86	/* We take additional reference here. It will be put back by shrinker */
  87	atomic_set(&huge_zero_refcount, 2);
  88	preempt_enable();
  89	return READ_ONCE(huge_zero_page);
  90}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92static void put_huge_zero_page(void)
  93{
  94	/*
  95	 * Counter should never go to zero here. Only shrinker can put
  96	 * last reference.
  97	 */
  98	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  99}
 100
 101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 102{
 103	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 104		return READ_ONCE(huge_zero_page);
 
 
 
 
 
 
 
 
 105
 106	if (!get_huge_zero_page())
 107		return NULL;
 108
 109	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 110		put_huge_zero_page();
 111
 112	return READ_ONCE(huge_zero_page);
 113}
 
 
 
 
 
 
 114
 115void mm_put_huge_zero_page(struct mm_struct *mm)
 116{
 117	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 118		put_huge_zero_page();
 119}
 120
 121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 122					struct shrink_control *sc)
 123{
 124	/* we can free zero page only if last reference remains */
 125	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 126}
 
 127
 128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 129				       struct shrink_control *sc)
 130{
 131	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 132		struct page *zero_page = xchg(&huge_zero_page, NULL);
 133		BUG_ON(zero_page == NULL);
 134		__free_pages(zero_page, compound_order(zero_page));
 135		return HPAGE_PMD_NR;
 136	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137
 138	return 0;
 
 
 
 
 
 139}
 140
 141static struct shrinker huge_zero_page_shrinker = {
 142	.count_objects = shrink_huge_zero_page_count,
 143	.scan_objects = shrink_huge_zero_page_scan,
 144	.seeks = DEFAULT_SEEKS,
 145};
 146
 147#ifdef CONFIG_SYSFS
 148static ssize_t enabled_show(struct kobject *kobj,
 149			    struct kobj_attribute *attr, char *buf)
 
 
 
 150{
 151	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 
 152		return sprintf(buf, "[always] madvise never\n");
 153	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 154		return sprintf(buf, "always [madvise] never\n");
 155	else
 156		return sprintf(buf, "always madvise [never]\n");
 157}
 158
 159static ssize_t enabled_store(struct kobject *kobj,
 160			     struct kobj_attribute *attr,
 161			     const char *buf, size_t count)
 
 162{
 163	ssize_t ret = count;
 164
 165	if (!memcmp("always", buf,
 166		    min(sizeof("always")-1, count))) {
 167		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 168		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 169	} else if (!memcmp("madvise", buf,
 170			   min(sizeof("madvise")-1, count))) {
 171		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 172		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 173	} else if (!memcmp("never", buf,
 174			   min(sizeof("never")-1, count))) {
 175		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 176		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 177	} else
 178		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180	if (ret > 0) {
 181		int err = start_stop_khugepaged();
 182		if (err)
 183			ret = err;
 184	}
 
 
 
 
 
 
 
 
 185	return ret;
 186}
 187static struct kobj_attribute enabled_attr =
 188	__ATTR(enabled, 0644, enabled_show, enabled_store);
 189
 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
 191				struct kobj_attribute *attr, char *buf,
 192				enum transparent_hugepage_flag flag)
 193{
 194	return sprintf(buf, "%d\n",
 195		       !!test_bit(flag, &transparent_hugepage_flags));
 196}
 197
 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
 199				 struct kobj_attribute *attr,
 200				 const char *buf, size_t count,
 201				 enum transparent_hugepage_flag flag)
 202{
 203	unsigned long value;
 204	int ret;
 205
 206	ret = kstrtoul(buf, 10, &value);
 207	if (ret < 0)
 208		return ret;
 209	if (value > 1)
 210		return -EINVAL;
 211
 212	if (value)
 213		set_bit(flag, &transparent_hugepage_flags);
 214	else
 215		clear_bit(flag, &transparent_hugepage_flags);
 216
 217	return count;
 218}
 219
 
 
 
 
 
 220static ssize_t defrag_show(struct kobject *kobj,
 221			   struct kobj_attribute *attr, char *buf)
 222{
 223	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 224		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 225	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 226		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 227	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 228		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 229	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 230		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 231	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 232}
 233
 234static ssize_t defrag_store(struct kobject *kobj,
 235			    struct kobj_attribute *attr,
 236			    const char *buf, size_t count)
 237{
 238	if (!memcmp("always", buf,
 239		    min(sizeof("always")-1, count))) {
 240		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 241		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 242		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 243		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 244	} else if (!memcmp("defer+madvise", buf,
 245		    min(sizeof("defer+madvise")-1, count))) {
 246		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 247		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 248		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 249		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 250	} else if (!memcmp("defer", buf,
 251		    min(sizeof("defer")-1, count))) {
 252		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 253		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 254		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 255		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 256	} else if (!memcmp("madvise", buf,
 257			   min(sizeof("madvise")-1, count))) {
 258		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 259		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 260		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 261		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262	} else if (!memcmp("never", buf,
 263			   min(sizeof("never")-1, count))) {
 264		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 265		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 266		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 267		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 268	} else
 269		return -EINVAL;
 270
 271	return count;
 272}
 273static struct kobj_attribute defrag_attr =
 274	__ATTR(defrag, 0644, defrag_show, defrag_store);
 275
 276static ssize_t use_zero_page_show(struct kobject *kobj,
 277		struct kobj_attribute *attr, char *buf)
 278{
 279	return single_hugepage_flag_show(kobj, attr, buf,
 280				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 281}
 282static ssize_t use_zero_page_store(struct kobject *kobj,
 283		struct kobj_attribute *attr, const char *buf, size_t count)
 284{
 285	return single_hugepage_flag_store(kobj, attr, buf, count,
 286				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 287}
 288static struct kobj_attribute use_zero_page_attr =
 289	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 290
 291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 292		struct kobj_attribute *attr, char *buf)
 293{
 294	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 295}
 296static struct kobj_attribute hpage_pmd_size_attr =
 297	__ATTR_RO(hpage_pmd_size);
 298
 299#ifdef CONFIG_DEBUG_VM
 300static ssize_t debug_cow_show(struct kobject *kobj,
 301				struct kobj_attribute *attr, char *buf)
 302{
 303	return single_hugepage_flag_show(kobj, attr, buf,
 304				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 305}
 306static ssize_t debug_cow_store(struct kobject *kobj,
 307			       struct kobj_attribute *attr,
 308			       const char *buf, size_t count)
 309{
 310	return single_hugepage_flag_store(kobj, attr, buf, count,
 311				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 312}
 313static struct kobj_attribute debug_cow_attr =
 314	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 315#endif /* CONFIG_DEBUG_VM */
 316
 317static struct attribute *hugepage_attr[] = {
 318	&enabled_attr.attr,
 319	&defrag_attr.attr,
 320	&use_zero_page_attr.attr,
 321	&hpage_pmd_size_attr.attr,
 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 323	&shmem_enabled_attr.attr,
 324#endif
 325#ifdef CONFIG_DEBUG_VM
 326	&debug_cow_attr.attr,
 327#endif
 328	NULL,
 329};
 330
 331static const struct attribute_group hugepage_attr_group = {
 332	.attrs = hugepage_attr,
 333};
 334
 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 
 
 336{
 
 
 
 
 
 
 
 
 337	int err;
 338
 339	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 340	if (unlikely(!*hugepage_kobj)) {
 341		pr_err("failed to create transparent hugepage kobject\n");
 342		return -ENOMEM;
 343	}
 344
 345	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 346	if (err) {
 347		pr_err("failed to register transparent hugepage group\n");
 348		goto delete_obj;
 349	}
 350
 351	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 352	if (err) {
 353		pr_err("failed to register transparent hugepage group\n");
 354		goto remove_hp_group;
 355	}
 356
 357	return 0;
 
 
 
 
 
 358
 359remove_hp_group:
 360	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 361delete_obj:
 362	kobject_put(*hugepage_kobj);
 363	return err;
 
 
 
 
 
 
 
 
 
 
 364}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365
 366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 
 
 
 
 
 
 
 
 367{
 368	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 369	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 370	kobject_put(hugepage_kobj);
 371}
 372#else
 373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 
 
 
 
 374{
 375	return 0;
 376}
 
 
 377
 378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 
 
 
 
 
 
 
 
 379{
 
 
 380}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381#endif /* CONFIG_SYSFS */
 382
 383static int __init hugepage_init(void)
 384{
 385	int err;
 386	struct kobject *hugepage_kobj;
 
 
 387
 
 388	if (!has_transparent_hugepage()) {
 389		transparent_hugepage_flags = 0;
 390		return -EINVAL;
 391	}
 392
 393	/*
 394	 * hugepages can't be allocated by the buddy allocator
 395	 */
 396	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 397	/*
 398	 * we use page->mapping and page->index in second tail page
 399	 * as list_head: assuming THP order >= 2
 400	 */
 401	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 402
 403	err = hugepage_init_sysfs(&hugepage_kobj);
 404	if (err)
 405		goto err_sysfs;
 
 
 406
 407	err = khugepaged_init();
 408	if (err)
 409		goto err_slab;
 
 
 
 410
 411	err = register_shrinker(&huge_zero_page_shrinker);
 412	if (err)
 413		goto err_hzp_shrinker;
 414	err = register_shrinker(&deferred_split_shrinker);
 415	if (err)
 416		goto err_split_shrinker;
 
 
 
 417
 418	/*
 419	 * By default disable transparent hugepages on smaller systems,
 420	 * where the extra memory used could hurt more than TLB overhead
 421	 * is likely to save.  The admin can still enable it through /sys.
 422	 */
 423	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 424		transparent_hugepage_flags = 0;
 425		return 0;
 426	}
 427
 428	err = start_stop_khugepaged();
 429	if (err)
 430		goto err_khugepaged;
 431
 432	return 0;
 433err_khugepaged:
 434	unregister_shrinker(&deferred_split_shrinker);
 435err_split_shrinker:
 436	unregister_shrinker(&huge_zero_page_shrinker);
 437err_hzp_shrinker:
 438	khugepaged_destroy();
 439err_slab:
 440	hugepage_exit_sysfs(hugepage_kobj);
 441err_sysfs:
 442	return err;
 443}
 444subsys_initcall(hugepage_init);
 445
 446static int __init setup_transparent_hugepage(char *str)
 447{
 448	int ret = 0;
 449	if (!str)
 450		goto out;
 451	if (!strcmp(str, "always")) {
 452		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 453			&transparent_hugepage_flags);
 454		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 455			  &transparent_hugepage_flags);
 456		ret = 1;
 457	} else if (!strcmp(str, "madvise")) {
 458		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 459			  &transparent_hugepage_flags);
 460		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 461			&transparent_hugepage_flags);
 462		ret = 1;
 463	} else if (!strcmp(str, "never")) {
 464		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 465			  &transparent_hugepage_flags);
 466		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 467			  &transparent_hugepage_flags);
 468		ret = 1;
 469	}
 470out:
 471	if (!ret)
 472		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 
 473	return ret;
 474}
 475__setup("transparent_hugepage=", setup_transparent_hugepage);
 476
 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 
 478{
 479	if (likely(vma->vm_flags & VM_WRITE))
 480		pmd = pmd_mkwrite(pmd);
 481	return pmd;
 482}
 483
 484static inline struct list_head *page_deferred_list(struct page *page)
 485{
 486	/*
 487	 * ->lru in the tail pages is occupied by compound_head.
 488	 * Let's use ->mapping + ->index in the second tail page as list_head.
 489	 */
 490	return (struct list_head *)&page[2].mapping;
 491}
 492
 493void prep_transhuge_page(struct page *page)
 494{
 495	/*
 496	 * we use page->mapping and page->indexlru in second tail page
 497	 * as list_head: assuming THP order >= 2
 498	 */
 499
 500	INIT_LIST_HEAD(page_deferred_list(page));
 501	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 502}
 503
 504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 505		loff_t off, unsigned long flags, unsigned long size)
 506{
 507	unsigned long addr;
 508	loff_t off_end = off + len;
 509	loff_t off_align = round_up(off, size);
 510	unsigned long len_pad;
 511
 512	if (off_end <= off_align || (off_end - off_align) < size)
 513		return 0;
 514
 515	len_pad = len + size;
 516	if (len_pad < len || (off + len_pad) < off)
 517		return 0;
 518
 519	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 520					      off >> PAGE_SHIFT, flags);
 521	if (IS_ERR_VALUE(addr))
 522		return 0;
 523
 524	addr += (off - addr) & (size - 1);
 525	return addr;
 526}
 527
 528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 529		unsigned long len, unsigned long pgoff, unsigned long flags)
 530{
 531	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 532
 533	if (addr)
 534		goto out;
 535	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 536		goto out;
 537
 538	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 539	if (addr)
 540		return addr;
 541
 542 out:
 543	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 544}
 545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 546
 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
 548		gfp_t gfp)
 
 
 549{
 550	struct vm_area_struct *vma = vmf->vma;
 551	struct mem_cgroup *memcg;
 552	pgtable_t pgtable;
 553	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 554	int ret = 0;
 
 555
 556	VM_BUG_ON_PAGE(!PageCompound(page), page);
 557
 558	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 559		put_page(page);
 560		count_vm_event(THP_FAULT_FALLBACK);
 561		return VM_FAULT_FALLBACK;
 562	}
 563
 564	pgtable = pte_alloc_one(vma->vm_mm, haddr);
 565	if (unlikely(!pgtable)) {
 566		ret = VM_FAULT_OOM;
 567		goto release;
 
 568	}
 569
 570	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 571	/*
 572	 * The memory barrier inside __SetPageUptodate makes sure that
 573	 * clear_huge_page writes become visible before the set_pmd_at()
 574	 * write.
 575	 */
 576	__SetPageUptodate(page);
 577
 578	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 579	if (unlikely(!pmd_none(*vmf->pmd))) {
 580		goto unlock_release;
 
 
 
 581	} else {
 582		pmd_t entry;
 583
 584		ret = check_stable_address_space(vma->vm_mm);
 585		if (ret)
 586			goto unlock_release;
 587
 588		/* Deliver the page fault to userland */
 589		if (userfaultfd_missing(vma)) {
 590			int ret;
 591
 592			spin_unlock(vmf->ptl);
 593			mem_cgroup_cancel_charge(page, memcg, true);
 594			put_page(page);
 595			pte_free(vma->vm_mm, pgtable);
 596			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 597			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 598			return ret;
 599		}
 600
 601		entry = mk_huge_pmd(page, vma->vm_page_prot);
 602		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 603		page_add_new_anon_rmap(page, vma, haddr, true);
 604		mem_cgroup_commit_charge(page, memcg, false, true);
 605		lru_cache_add_active_or_unevictable(page, vma);
 606		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 607		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 608		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 609		mm_inc_nr_ptes(vma->vm_mm);
 610		spin_unlock(vmf->ptl);
 611		count_vm_event(THP_FAULT_ALLOC);
 
 
 
 612	}
 613
 614	return 0;
 615unlock_release:
 616	spin_unlock(vmf->ptl);
 617release:
 618	if (pgtable)
 619		pte_free(vma->vm_mm, pgtable);
 620	mem_cgroup_cancel_charge(page, memcg, true);
 621	put_page(page);
 622	return ret;
 623
 624}
 625
 626/*
 627 * always: directly stall for all thp allocations
 628 * defer: wake kswapd and fail if not immediately available
 629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 630 *		  fail if not immediately available
 631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 632 *	    available
 633 * never: never stall for any thp allocation
 634 */
 635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 636{
 637	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 638
 639	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 640		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 641	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 642		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 643	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 644		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 645							     __GFP_KSWAPD_RECLAIM);
 646	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 647		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 648							     0);
 649	return GFP_TRANSHUGE_LIGHT;
 650}
 651
 652/* Caller must hold page table lock. */
 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 654		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 655		struct page *zero_page)
 656{
 657	pmd_t entry;
 658	if (!pmd_none(*pmd))
 659		return false;
 660	entry = mk_pmd(zero_page, vma->vm_page_prot);
 661	entry = pmd_mkhuge(entry);
 662	if (pgtable)
 663		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 664	set_pmd_at(mm, haddr, pmd, entry);
 665	mm_inc_nr_ptes(mm);
 666	return true;
 667}
 668
 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 670{
 671	struct vm_area_struct *vma = vmf->vma;
 672	gfp_t gfp;
 673	struct page *page;
 674	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 675
 676	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 677		return VM_FAULT_FALLBACK;
 678	if (unlikely(anon_vma_prepare(vma)))
 679		return VM_FAULT_OOM;
 680	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 681		return VM_FAULT_OOM;
 682	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 683			!mm_forbids_zeropage(vma->vm_mm) &&
 684			transparent_hugepage_use_zero_page()) {
 685		pgtable_t pgtable;
 686		struct page *zero_page;
 687		bool set;
 688		int ret;
 689		pgtable = pte_alloc_one(vma->vm_mm, haddr);
 690		if (unlikely(!pgtable))
 691			return VM_FAULT_OOM;
 692		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 693		if (unlikely(!zero_page)) {
 694			pte_free(vma->vm_mm, pgtable);
 695			count_vm_event(THP_FAULT_FALLBACK);
 696			return VM_FAULT_FALLBACK;
 697		}
 698		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 699		ret = 0;
 700		set = false;
 701		if (pmd_none(*vmf->pmd)) {
 702			ret = check_stable_address_space(vma->vm_mm);
 703			if (ret) {
 704				spin_unlock(vmf->ptl);
 705			} else if (userfaultfd_missing(vma)) {
 706				spin_unlock(vmf->ptl);
 707				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 708				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 709			} else {
 710				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 711						   haddr, vmf->pmd, zero_page);
 712				spin_unlock(vmf->ptl);
 713				set = true;
 714			}
 715		} else
 716			spin_unlock(vmf->ptl);
 717		if (!set)
 718			pte_free(vma->vm_mm, pgtable);
 719		return ret;
 720	}
 721	gfp = alloc_hugepage_direct_gfpmask(vma);
 722	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 723	if (unlikely(!page)) {
 724		count_vm_event(THP_FAULT_FALLBACK);
 725		return VM_FAULT_FALLBACK;
 726	}
 727	prep_transhuge_page(page);
 728	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 729}
 730
 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 732		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 733		pgtable_t pgtable)
 734{
 735	struct mm_struct *mm = vma->vm_mm;
 736	pmd_t entry;
 737	spinlock_t *ptl;
 738
 739	ptl = pmd_lock(mm, pmd);
 740	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 741	if (pfn_t_devmap(pfn))
 742		entry = pmd_mkdevmap(entry);
 743	if (write) {
 744		entry = pmd_mkyoung(pmd_mkdirty(entry));
 745		entry = maybe_pmd_mkwrite(entry, vma);
 746	}
 747
 748	if (pgtable) {
 749		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 750		mm_inc_nr_ptes(mm);
 751	}
 752
 753	set_pmd_at(mm, addr, pmd, entry);
 754	update_mmu_cache_pmd(vma, addr, pmd);
 755	spin_unlock(ptl);
 756}
 757
 758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 759			pmd_t *pmd, pfn_t pfn, bool write)
 760{
 761	pgprot_t pgprot = vma->vm_page_prot;
 762	pgtable_t pgtable = NULL;
 763	/*
 764	 * If we had pmd_special, we could avoid all these restrictions,
 765	 * but we need to be consistent with PTEs and architectures that
 766	 * can't support a 'special' bit.
 767	 */
 768	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 769	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 770						(VM_PFNMAP|VM_MIXEDMAP));
 771	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 772	BUG_ON(!pfn_t_devmap(pfn));
 773
 774	if (addr < vma->vm_start || addr >= vma->vm_end)
 775		return VM_FAULT_SIGBUS;
 776
 777	if (arch_needs_pgtable_deposit()) {
 778		pgtable = pte_alloc_one(vma->vm_mm, addr);
 779		if (!pgtable)
 780			return VM_FAULT_OOM;
 781	}
 782
 783	track_pfn_insert(vma, &pgprot, pfn);
 784
 785	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
 786	return VM_FAULT_NOPAGE;
 787}
 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 789
 790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 792{
 793	if (likely(vma->vm_flags & VM_WRITE))
 794		pud = pud_mkwrite(pud);
 795	return pud;
 796}
 797
 798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 799		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 
 
 800{
 801	struct mm_struct *mm = vma->vm_mm;
 802	pud_t entry;
 803	spinlock_t *ptl;
 804
 805	ptl = pud_lock(mm, pud);
 806	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 807	if (pfn_t_devmap(pfn))
 808		entry = pud_mkdevmap(entry);
 809	if (write) {
 810		entry = pud_mkyoung(pud_mkdirty(entry));
 811		entry = maybe_pud_mkwrite(entry, vma);
 812	}
 813	set_pud_at(mm, addr, pud, entry);
 814	update_mmu_cache_pud(vma, addr, pud);
 815	spin_unlock(ptl);
 816}
 817
 818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 819			pud_t *pud, pfn_t pfn, bool write)
 820{
 821	pgprot_t pgprot = vma->vm_page_prot;
 822	/*
 823	 * If we had pud_special, we could avoid all these restrictions,
 824	 * but we need to be consistent with PTEs and architectures that
 825	 * can't support a 'special' bit.
 826	 */
 827	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 828	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 829						(VM_PFNMAP|VM_MIXEDMAP));
 830	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 831	BUG_ON(!pfn_t_devmap(pfn));
 832
 833	if (addr < vma->vm_start || addr >= vma->vm_end)
 834		return VM_FAULT_SIGBUS;
 835
 836	track_pfn_insert(vma, &pgprot, pfn);
 837
 838	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
 839	return VM_FAULT_NOPAGE;
 840}
 841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 843
 844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 845		pmd_t *pmd, int flags)
 846{
 847	pmd_t _pmd;
 848
 849	_pmd = pmd_mkyoung(*pmd);
 850	if (flags & FOLL_WRITE)
 851		_pmd = pmd_mkdirty(_pmd);
 852	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 853				pmd, _pmd, flags & FOLL_WRITE))
 854		update_mmu_cache_pmd(vma, addr, pmd);
 855}
 
 856
 857struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 858		pmd_t *pmd, int flags)
 
 859{
 860	unsigned long pfn = pmd_pfn(*pmd);
 861	struct mm_struct *mm = vma->vm_mm;
 862	struct dev_pagemap *pgmap;
 863	struct page *page;
 
 
 864
 865	assert_spin_locked(pmd_lockptr(mm, pmd));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866
 
 
 
 867	/*
 868	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 869	 * not be in this function with `flags & FOLL_COW` set.
 
 870	 */
 871	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 872
 873	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 874		return NULL;
 875
 876	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 877		/* pass */;
 878	else
 879		return NULL;
 880
 881	if (flags & FOLL_TOUCH)
 882		touch_pmd(vma, addr, pmd, flags);
 883
 884	/*
 885	 * device mapped pages can only be returned if the
 886	 * caller will manage the page reference count.
 
 
 887	 */
 888	if (!(flags & FOLL_GET))
 889		return ERR_PTR(-EEXIST);
 890
 891	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 892	pgmap = get_dev_pagemap(pfn, NULL);
 893	if (!pgmap)
 894		return ERR_PTR(-EFAULT);
 895	page = pfn_to_page(pfn);
 896	get_page(page);
 897	put_dev_pagemap(pgmap);
 898
 899	return page;
 900}
 901
 902int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 903		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 904		  struct vm_area_struct *vma)
 905{
 906	spinlock_t *dst_ptl, *src_ptl;
 907	struct page *src_page;
 908	pmd_t pmd;
 909	pgtable_t pgtable = NULL;
 910	int ret = -ENOMEM;
 911
 912	/* Skip if can be re-fill on fault */
 913	if (!vma_is_anonymous(vma))
 914		return 0;
 915
 
 916	pgtable = pte_alloc_one(dst_mm, addr);
 917	if (unlikely(!pgtable))
 918		goto out;
 919
 920	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 921	src_ptl = pmd_lockptr(src_mm, src_pmd);
 922	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 923
 924	ret = -EAGAIN;
 925	pmd = *src_pmd;
 926
 927#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 928	if (unlikely(is_swap_pmd(pmd))) {
 929		swp_entry_t entry = pmd_to_swp_entry(pmd);
 930
 931		VM_BUG_ON(!is_pmd_migration_entry(pmd));
 932		if (is_write_migration_entry(entry)) {
 933			make_migration_entry_read(&entry);
 934			pmd = swp_entry_to_pmd(entry);
 935			if (pmd_swp_soft_dirty(*src_pmd))
 936				pmd = pmd_swp_mksoft_dirty(pmd);
 937			set_pmd_at(src_mm, addr, src_pmd, pmd);
 938		}
 939		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 940		mm_inc_nr_ptes(dst_mm);
 941		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 942		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 943		ret = 0;
 944		goto out_unlock;
 945	}
 946#endif
 947
 948	if (unlikely(!pmd_trans_huge(pmd))) {
 949		pte_free(dst_mm, pgtable);
 950		goto out_unlock;
 951	}
 952	/*
 953	 * When page table lock is held, the huge zero pmd should not be
 954	 * under splitting since we don't split the page itself, only pmd to
 955	 * a page table.
 956	 */
 957	if (is_huge_zero_pmd(pmd)) {
 958		struct page *zero_page;
 959		/*
 960		 * get_huge_zero_page() will never allocate a new page here,
 961		 * since we already have a zero page to copy. It just takes a
 962		 * reference.
 963		 */
 964		zero_page = mm_get_huge_zero_page(dst_mm);
 965		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 966				zero_page);
 967		ret = 0;
 968		goto out_unlock;
 969	}
 970
 
 
 
 971	src_page = pmd_page(pmd);
 972	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 973	get_page(src_page);
 974	page_dup_rmap(src_page, true);
 975	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 976	mm_inc_nr_ptes(dst_mm);
 977	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 978
 979	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 980	pmd = pmd_mkold(pmd_wrprotect(pmd));
 981	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 
 982
 983	ret = 0;
 984out_unlock:
 985	spin_unlock(src_ptl);
 986	spin_unlock(dst_ptl);
 987out:
 988	return ret;
 989}
 990
 991#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 992static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 993		pud_t *pud, int flags)
 994{
 995	pud_t _pud;
 996
 997	_pud = pud_mkyoung(*pud);
 998	if (flags & FOLL_WRITE)
 999		_pud = pud_mkdirty(_pud);
1000	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1001				pud, _pud, flags & FOLL_WRITE))
1002		update_mmu_cache_pud(vma, addr, pud);
1003}
1004
1005struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1006		pud_t *pud, int flags)
1007{
1008	unsigned long pfn = pud_pfn(*pud);
1009	struct mm_struct *mm = vma->vm_mm;
1010	struct dev_pagemap *pgmap;
1011	struct page *page;
1012
1013	assert_spin_locked(pud_lockptr(mm, pud));
1014
1015	if (flags & FOLL_WRITE && !pud_write(*pud))
1016		return NULL;
1017
1018	if (pud_present(*pud) && pud_devmap(*pud))
1019		/* pass */;
1020	else
1021		return NULL;
1022
1023	if (flags & FOLL_TOUCH)
1024		touch_pud(vma, addr, pud, flags);
1025
1026	/*
1027	 * device mapped pages can only be returned if the
1028	 * caller will manage the page reference count.
1029	 */
1030	if (!(flags & FOLL_GET))
1031		return ERR_PTR(-EEXIST);
1032
1033	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1034	pgmap = get_dev_pagemap(pfn, NULL);
1035	if (!pgmap)
1036		return ERR_PTR(-EFAULT);
1037	page = pfn_to_page(pfn);
1038	get_page(page);
1039	put_dev_pagemap(pgmap);
1040
1041	return page;
1042}
1043
1044int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1046		  struct vm_area_struct *vma)
1047{
1048	spinlock_t *dst_ptl, *src_ptl;
1049	pud_t pud;
1050	int ret;
1051
1052	dst_ptl = pud_lock(dst_mm, dst_pud);
1053	src_ptl = pud_lockptr(src_mm, src_pud);
1054	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1055
1056	ret = -EAGAIN;
1057	pud = *src_pud;
1058	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1059		goto out_unlock;
1060
1061	/*
1062	 * When page table lock is held, the huge zero pud should not be
1063	 * under splitting since we don't split the page itself, only pud to
1064	 * a page table.
1065	 */
1066	if (is_huge_zero_pud(pud)) {
1067		/* No huge zero pud yet */
1068	}
1069
1070	pudp_set_wrprotect(src_mm, addr, src_pud);
1071	pud = pud_mkold(pud_wrprotect(pud));
1072	set_pud_at(dst_mm, addr, dst_pud, pud);
1073
1074	ret = 0;
1075out_unlock:
1076	spin_unlock(src_ptl);
1077	spin_unlock(dst_ptl);
1078	return ret;
1079}
1080
1081void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1082{
1083	pud_t entry;
1084	unsigned long haddr;
1085	bool write = vmf->flags & FAULT_FLAG_WRITE;
1086
1087	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1088	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1089		goto unlock;
1090
1091	entry = pud_mkyoung(orig_pud);
1092	if (write)
1093		entry = pud_mkdirty(entry);
1094	haddr = vmf->address & HPAGE_PUD_MASK;
1095	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1096		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1097
1098unlock:
1099	spin_unlock(vmf->ptl);
1100}
1101#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1102
1103void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1104{
1105	pmd_t entry;
1106	unsigned long haddr;
1107	bool write = vmf->flags & FAULT_FLAG_WRITE;
1108
1109	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1110	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1111		goto unlock;
1112
1113	entry = pmd_mkyoung(orig_pmd);
1114	if (write)
1115		entry = pmd_mkdirty(entry);
1116	haddr = vmf->address & HPAGE_PMD_MASK;
1117	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1118		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1119
1120unlock:
1121	spin_unlock(vmf->ptl);
1122}
1123
1124static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1125		struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126{
1127	struct vm_area_struct *vma = vmf->vma;
1128	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1129	struct mem_cgroup *memcg;
1130	pgtable_t pgtable;
1131	pmd_t _pmd;
1132	int ret = 0, i;
1133	struct page **pages;
1134	unsigned long mmun_start;	/* For mmu_notifiers */
1135	unsigned long mmun_end;		/* For mmu_notifiers */
1136
1137	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1138			GFP_KERNEL);
1139	if (unlikely(!pages)) {
1140		ret |= VM_FAULT_OOM;
1141		goto out;
1142	}
1143
1144	for (i = 0; i < HPAGE_PMD_NR; i++) {
1145		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1146					       vmf->address, page_to_nid(page));
 
1147		if (unlikely(!pages[i] ||
1148			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1149				     GFP_KERNEL, &memcg, false))) {
1150			if (pages[i])
1151				put_page(pages[i]);
 
1152			while (--i >= 0) {
1153				memcg = (void *)page_private(pages[i]);
1154				set_page_private(pages[i], 0);
1155				mem_cgroup_cancel_charge(pages[i], memcg,
1156						false);
1157				put_page(pages[i]);
1158			}
 
1159			kfree(pages);
1160			ret |= VM_FAULT_OOM;
1161			goto out;
1162		}
1163		set_page_private(pages[i], (unsigned long)memcg);
1164	}
1165
1166	for (i = 0; i < HPAGE_PMD_NR; i++) {
1167		copy_user_highpage(pages[i], page + i,
1168				   haddr + PAGE_SIZE * i, vma);
1169		__SetPageUptodate(pages[i]);
1170		cond_resched();
1171	}
1172
1173	mmun_start = haddr;
1174	mmun_end   = haddr + HPAGE_PMD_SIZE;
1175	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1176
1177	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1178	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179		goto out_free_pages;
1180	VM_BUG_ON_PAGE(!PageHead(page), page);
1181
1182	/*
1183	 * Leave pmd empty until pte is filled note we must notify here as
1184	 * concurrent CPU thread might write to new page before the call to
1185	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1186	 * device seeing memory write in different order than CPU.
1187	 *
1188	 * See Documentation/vm/mmu_notifier.txt
1189	 */
1190	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1191
1192	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1193	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1194
1195	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1196		pte_t entry;
1197		entry = mk_pte(pages[i], vma->vm_page_prot);
1198		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1199		memcg = (void *)page_private(pages[i]);
1200		set_page_private(pages[i], 0);
1201		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1202		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1203		lru_cache_add_active_or_unevictable(pages[i], vma);
1204		vmf->pte = pte_offset_map(&_pmd, haddr);
1205		VM_BUG_ON(!pte_none(*vmf->pte));
1206		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1207		pte_unmap(vmf->pte);
1208	}
1209	kfree(pages);
1210
 
1211	smp_wmb(); /* make pte visible before pmd */
1212	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1213	page_remove_rmap(page, true);
1214	spin_unlock(vmf->ptl);
1215
1216	/*
1217	 * No need to double call mmu_notifier->invalidate_range() callback as
1218	 * the above pmdp_huge_clear_flush_notify() did already call it.
1219	 */
1220	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1221						mmun_end);
1222
1223	ret |= VM_FAULT_WRITE;
1224	put_page(page);
1225
1226out:
1227	return ret;
1228
1229out_free_pages:
1230	spin_unlock(vmf->ptl);
1231	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1232	for (i = 0; i < HPAGE_PMD_NR; i++) {
1233		memcg = (void *)page_private(pages[i]);
1234		set_page_private(pages[i], 0);
1235		mem_cgroup_cancel_charge(pages[i], memcg, false);
1236		put_page(pages[i]);
1237	}
 
1238	kfree(pages);
1239	goto out;
1240}
1241
1242int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
 
1243{
1244	struct vm_area_struct *vma = vmf->vma;
1245	struct page *page = NULL, *new_page;
1246	struct mem_cgroup *memcg;
1247	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1248	unsigned long mmun_start;	/* For mmu_notifiers */
1249	unsigned long mmun_end;		/* For mmu_notifiers */
1250	gfp_t huge_gfp;			/* for allocation and charge */
1251	int ret = 0;
 
 
1252
1253	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1254	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1255	if (is_huge_zero_pmd(orig_pmd))
1256		goto alloc;
1257	spin_lock(vmf->ptl);
1258	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1259		goto out_unlock;
1260
1261	page = pmd_page(orig_pmd);
1262	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1263	/*
1264	 * We can only reuse the page if nobody else maps the huge page or it's
1265	 * part.
1266	 */
1267	if (!trylock_page(page)) {
1268		get_page(page);
1269		spin_unlock(vmf->ptl);
1270		lock_page(page);
1271		spin_lock(vmf->ptl);
1272		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1273			unlock_page(page);
1274			put_page(page);
1275			goto out_unlock;
1276		}
1277		put_page(page);
1278	}
1279	if (reuse_swap_page(page, NULL)) {
1280		pmd_t entry;
1281		entry = pmd_mkyoung(orig_pmd);
1282		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1283		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1284			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1285		ret |= VM_FAULT_WRITE;
1286		unlock_page(page);
1287		goto out_unlock;
1288	}
1289	unlock_page(page);
1290	get_page(page);
1291	spin_unlock(vmf->ptl);
1292alloc:
1293	if (transparent_hugepage_enabled(vma) &&
1294	    !transparent_hugepage_debug_cow()) {
1295		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1296		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1297	} else
1298		new_page = NULL;
1299
1300	if (likely(new_page)) {
1301		prep_transhuge_page(new_page);
1302	} else {
1303		if (!page) {
1304			split_huge_pmd(vma, vmf->pmd, vmf->address);
1305			ret |= VM_FAULT_FALLBACK;
1306		} else {
1307			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1308			if (ret & VM_FAULT_OOM) {
1309				split_huge_pmd(vma, vmf->pmd, vmf->address);
1310				ret |= VM_FAULT_FALLBACK;
1311			}
1312			put_page(page);
1313		}
1314		count_vm_event(THP_FAULT_FALLBACK);
 
 
 
1315		goto out;
1316	}
 
1317
1318	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1319					huge_gfp, &memcg, true))) {
1320		put_page(new_page);
1321		split_huge_pmd(vma, vmf->pmd, vmf->address);
1322		if (page)
1323			put_page(page);
1324		ret |= VM_FAULT_FALLBACK;
1325		count_vm_event(THP_FAULT_FALLBACK);
1326		goto out;
1327	}
1328
1329	count_vm_event(THP_FAULT_ALLOC);
1330
1331	if (!page)
1332		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1333	else
1334		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1335	__SetPageUptodate(new_page);
1336
1337	mmun_start = haddr;
1338	mmun_end   = haddr + HPAGE_PMD_SIZE;
1339	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1340
1341	spin_lock(vmf->ptl);
1342	if (page)
1343		put_page(page);
1344	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345		spin_unlock(vmf->ptl);
1346		mem_cgroup_cancel_charge(new_page, memcg, true);
1347		put_page(new_page);
1348		goto out_mn;
1349	} else {
1350		pmd_t entry;
1351		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
 
1352		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1353		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1354		page_add_new_anon_rmap(new_page, vma, haddr, true);
1355		mem_cgroup_commit_charge(new_page, memcg, false, true);
1356		lru_cache_add_active_or_unevictable(new_page, vma);
1357		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1358		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359		if (!page) {
1360			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1361		} else {
1362			VM_BUG_ON_PAGE(!PageHead(page), page);
1363			page_remove_rmap(page, true);
1364			put_page(page);
1365		}
1366		ret |= VM_FAULT_WRITE;
1367	}
1368	spin_unlock(vmf->ptl);
1369out_mn:
1370	/*
1371	 * No need to double call mmu_notifier->invalidate_range() callback as
1372	 * the above pmdp_huge_clear_flush_notify() did already call it.
1373	 */
1374	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1375					       mmun_end);
1376out:
1377	return ret;
1378out_unlock:
1379	spin_unlock(vmf->ptl);
 
1380	return ret;
1381}
1382
1383/*
1384 * FOLL_FORCE can write to even unwritable pmd's, but only
1385 * after we've gone through a COW cycle and they are dirty.
1386 */
1387static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1388{
1389	return pmd_write(pmd) ||
1390	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1391}
1392
1393struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1394				   unsigned long addr,
1395				   pmd_t *pmd,
1396				   unsigned int flags)
1397{
1398	struct mm_struct *mm = vma->vm_mm;
1399	struct page *page = NULL;
1400
1401	assert_spin_locked(pmd_lockptr(mm, pmd));
1402
1403	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1404		goto out;
1405
1406	/* Avoid dumping huge zero page */
1407	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1408		return ERR_PTR(-EFAULT);
1409
1410	/* Full NUMA hinting faults to serialise migration in fault paths */
1411	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1412		goto out;
1413
1414	page = pmd_page(*pmd);
1415	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1416	if (flags & FOLL_TOUCH)
1417		touch_pmd(vma, addr, pmd, flags);
1418	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1419		/*
1420		 * We don't mlock() pte-mapped THPs. This way we can avoid
1421		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1422		 *
1423		 * For anon THP:
1424		 *
1425		 * In most cases the pmd is the only mapping of the page as we
1426		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1427		 * writable private mappings in populate_vma_page_range().
1428		 *
1429		 * The only scenario when we have the page shared here is if we
1430		 * mlocking read-only mapping shared over fork(). We skip
1431		 * mlocking such pages.
1432		 *
1433		 * For file THP:
1434		 *
1435		 * We can expect PageDoubleMap() to be stable under page lock:
1436		 * for file pages we set it in page_add_file_rmap(), which
1437		 * requires page to be locked.
1438		 */
1439
1440		if (PageAnon(page) && compound_mapcount(page) != 1)
1441			goto skip_mlock;
1442		if (PageDoubleMap(page) || !page->mapping)
1443			goto skip_mlock;
1444		if (!trylock_page(page))
1445			goto skip_mlock;
1446		lru_add_drain();
1447		if (page->mapping && !PageDoubleMap(page))
1448			mlock_vma_page(page);
1449		unlock_page(page);
1450	}
1451skip_mlock:
1452	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1453	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1454	if (flags & FOLL_GET)
1455		get_page(page);
1456
1457out:
1458	return page;
1459}
1460
1461/* NUMA hinting page fault entry point for trans huge pmds */
1462int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1463{
1464	struct vm_area_struct *vma = vmf->vma;
1465	struct anon_vma *anon_vma = NULL;
1466	struct page *page;
1467	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1468	int page_nid = -1, this_nid = numa_node_id();
1469	int target_nid, last_cpupid = -1;
1470	bool page_locked;
1471	bool migrated = false;
1472	bool was_writable;
1473	int flags = 0;
1474
1475	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1476	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1477		goto out_unlock;
1478
1479	/*
1480	 * If there are potential migrations, wait for completion and retry
1481	 * without disrupting NUMA hinting information. Do not relock and
1482	 * check_same as the page may no longer be mapped.
1483	 */
1484	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1485		page = pmd_page(*vmf->pmd);
1486		if (!get_page_unless_zero(page))
1487			goto out_unlock;
1488		spin_unlock(vmf->ptl);
1489		wait_on_page_locked(page);
1490		put_page(page);
1491		goto out;
1492	}
 
 
 
 
 
 
 
 
 
1493
1494	page = pmd_page(pmd);
1495	BUG_ON(is_huge_zero_page(page));
1496	page_nid = page_to_nid(page);
1497	last_cpupid = page_cpupid_last(page);
1498	count_vm_numa_event(NUMA_HINT_FAULTS);
1499	if (page_nid == this_nid) {
1500		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501		flags |= TNF_FAULT_LOCAL;
1502	}
1503
1504	/* See similar comment in do_numa_page for explanation */
1505	if (!pmd_savedwrite(pmd))
1506		flags |= TNF_NO_GROUP;
1507
1508	/*
1509	 * Acquire the page lock to serialise THP migrations but avoid dropping
1510	 * page_table_lock if at all possible
1511	 */
1512	page_locked = trylock_page(page);
1513	target_nid = mpol_misplaced(page, vma, haddr);
1514	if (target_nid == -1) {
1515		/* If the page was locked, there are no parallel migrations */
1516		if (page_locked)
1517			goto clear_pmdnuma;
1518	}
1519
1520	/* Migration could have started since the pmd_trans_migrating check */
1521	if (!page_locked) {
1522		page_nid = -1;
1523		if (!get_page_unless_zero(page))
1524			goto out_unlock;
1525		spin_unlock(vmf->ptl);
1526		wait_on_page_locked(page);
1527		put_page(page);
1528		goto out;
1529	}
1530
1531	/*
1532	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1533	 * to serialises splits
1534	 */
1535	get_page(page);
1536	spin_unlock(vmf->ptl);
1537	anon_vma = page_lock_anon_vma_read(page);
1538
1539	/* Confirm the PMD did not change while page_table_lock was released */
1540	spin_lock(vmf->ptl);
1541	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1542		unlock_page(page);
1543		put_page(page);
1544		page_nid = -1;
1545		goto out_unlock;
1546	}
 
 
 
 
 
 
 
1547
1548	/* Bail if we fail to protect against THP splits for any reason */
1549	if (unlikely(!anon_vma)) {
1550		put_page(page);
1551		page_nid = -1;
1552		goto clear_pmdnuma;
1553	}
1554
1555	/*
1556	 * Since we took the NUMA fault, we must have observed the !accessible
1557	 * bit. Make sure all other CPUs agree with that, to avoid them
1558	 * modifying the page we're about to migrate.
1559	 *
1560	 * Must be done under PTL such that we'll observe the relevant
1561	 * inc_tlb_flush_pending().
1562	 *
1563	 * We are not sure a pending tlb flush here is for a huge page
1564	 * mapping or not. Hence use the tlb range variant
1565	 */
1566	if (mm_tlb_flush_pending(vma->vm_mm))
1567		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1568
1569	/*
1570	 * Migrate the THP to the requested node, returns with page unlocked
1571	 * and access rights restored.
1572	 */
1573	spin_unlock(vmf->ptl);
 
 
1574
1575	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1576				vmf->pmd, pmd, vmf->address, page, target_nid);
1577	if (migrated) {
1578		flags |= TNF_MIGRATED;
1579		page_nid = target_nid;
 
 
1580	} else
1581		flags |= TNF_MIGRATE_FAIL;
1582
1583	goto out;
1584clear_pmdnuma:
1585	BUG_ON(!PageLocked(page));
1586	was_writable = pmd_savedwrite(pmd);
1587	pmd = pmd_modify(pmd, vma->vm_page_prot);
1588	pmd = pmd_mkyoung(pmd);
1589	if (was_writable)
1590		pmd = pmd_mkwrite(pmd);
1591	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593	unlock_page(page);
1594out_unlock:
1595	spin_unlock(vmf->ptl);
1596
1597out:
1598	if (anon_vma)
1599		page_unlock_anon_vma_read(anon_vma);
1600
1601	if (page_nid != -1)
1602		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1603				flags);
1604
1605	return 0;
1606}
1607
1608/*
1609 * Return true if we do MADV_FREE successfully on entire pmd page.
1610 * Otherwise, return false.
1611 */
1612bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1613		pmd_t *pmd, unsigned long addr, unsigned long next)
1614{
1615	spinlock_t *ptl;
1616	pmd_t orig_pmd;
1617	struct page *page;
1618	struct mm_struct *mm = tlb->mm;
1619	bool ret = false;
1620
1621	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1622
1623	ptl = pmd_trans_huge_lock(pmd, vma);
1624	if (!ptl)
1625		goto out_unlocked;
1626
1627	orig_pmd = *pmd;
1628	if (is_huge_zero_pmd(orig_pmd))
1629		goto out;
1630
1631	if (unlikely(!pmd_present(orig_pmd))) {
1632		VM_BUG_ON(thp_migration_supported() &&
1633				  !is_pmd_migration_entry(orig_pmd));
1634		goto out;
1635	}
1636
1637	page = pmd_page(orig_pmd);
1638	/*
1639	 * If other processes are mapping this page, we couldn't discard
1640	 * the page unless they all do MADV_FREE so let's skip the page.
1641	 */
1642	if (page_mapcount(page) != 1)
1643		goto out;
1644
1645	if (!trylock_page(page))
 
 
 
1646		goto out;
1647
1648	/*
1649	 * If user want to discard part-pages of THP, split it so MADV_FREE
1650	 * will deactivate only them.
 
 
 
1651	 */
1652	if (next - addr != HPAGE_PMD_SIZE) {
1653		get_page(page);
1654		spin_unlock(ptl);
1655		split_huge_page(page);
1656		unlock_page(page);
1657		put_page(page);
1658		goto out_unlocked;
1659	}
 
 
 
1660
1661	if (PageDirty(page))
1662		ClearPageDirty(page);
1663	unlock_page(page);
1664
1665	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1666		pmdp_invalidate(vma, addr, pmd);
1667		orig_pmd = pmd_mkold(orig_pmd);
1668		orig_pmd = pmd_mkclean(orig_pmd);
1669
1670		set_pmd_at(mm, addr, pmd, orig_pmd);
1671		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 
 
 
 
 
 
 
 
 
 
 
1672	}
 
1673
1674	mark_page_lazyfree(page);
1675	ret = true;
1676out:
1677	spin_unlock(ptl);
1678out_unlocked:
1679	return ret;
1680}
1681
1682static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1683{
1684	pgtable_t pgtable;
 
 
 
1685
1686	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1687	pte_free(mm, pgtable);
1688	mm_dec_nr_ptes(mm);
1689}
1690
1691int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1692		 pmd_t *pmd, unsigned long addr)
1693{
1694	pmd_t orig_pmd;
1695	spinlock_t *ptl;
1696
1697	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
 
 
 
 
1698
1699	ptl = __pmd_trans_huge_lock(pmd, vma);
1700	if (!ptl)
1701		return 0;
1702	/*
1703	 * For architectures like ppc64 we look at deposited pgtable
1704	 * when calling pmdp_huge_get_and_clear. So do the
1705	 * pgtable_trans_huge_withdraw after finishing pmdp related
1706	 * operations.
1707	 */
1708	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1709			tlb->fullmm);
1710	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1711	if (vma_is_dax(vma)) {
1712		if (arch_needs_pgtable_deposit())
1713			zap_deposited_table(tlb->mm, pmd);
1714		spin_unlock(ptl);
1715		if (is_huge_zero_pmd(orig_pmd))
1716			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1717	} else if (is_huge_zero_pmd(orig_pmd)) {
1718		zap_deposited_table(tlb->mm, pmd);
1719		spin_unlock(ptl);
1720		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1721	} else {
1722		struct page *page = NULL;
1723		int flush_needed = 1;
1724
1725		if (pmd_present(orig_pmd)) {
1726			page = pmd_page(orig_pmd);
1727			page_remove_rmap(page, true);
1728			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1729			VM_BUG_ON_PAGE(!PageHead(page), page);
1730		} else if (thp_migration_supported()) {
1731			swp_entry_t entry;
1732
1733			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1734			entry = pmd_to_swp_entry(orig_pmd);
1735			page = pfn_to_page(swp_offset(entry));
1736			flush_needed = 0;
1737		} else
1738			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1739
1740		if (PageAnon(page)) {
1741			zap_deposited_table(tlb->mm, pmd);
1742			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1743		} else {
1744			if (arch_needs_pgtable_deposit())
1745				zap_deposited_table(tlb->mm, pmd);
1746			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1747		}
1748
1749		spin_unlock(ptl);
1750		if (flush_needed)
1751			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1752	}
1753	return 1;
1754}
 
 
 
 
 
 
 
 
 
 
1755
1756#ifndef pmd_move_must_withdraw
1757static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1758					 spinlock_t *old_pmd_ptl,
1759					 struct vm_area_struct *vma)
1760{
1761	/*
1762	 * With split pmd lock we also need to move preallocated
1763	 * PTE page table if new_pmd is on different PMD page table.
1764	 *
1765	 * We also don't deposit and withdraw tables for file pages.
1766	 */
1767	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1768}
1769#endif
1770
1771static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1772{
1773#ifdef CONFIG_MEM_SOFT_DIRTY
1774	if (unlikely(is_pmd_migration_entry(pmd)))
1775		pmd = pmd_swp_mksoft_dirty(pmd);
1776	else if (pmd_present(pmd))
1777		pmd = pmd_mksoft_dirty(pmd);
1778#endif
1779	return pmd;
1780}
1781
1782bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1783		  unsigned long new_addr, unsigned long old_end,
1784		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1785{
1786	spinlock_t *old_ptl, *new_ptl;
1787	pmd_t pmd;
1788	struct mm_struct *mm = vma->vm_mm;
1789	bool force_flush = false;
1790
1791	if ((old_addr & ~HPAGE_PMD_MASK) ||
1792	    (new_addr & ~HPAGE_PMD_MASK) ||
1793	    old_end - old_addr < HPAGE_PMD_SIZE)
1794		return false;
1795
1796	/*
1797	 * The destination pmd shouldn't be established, free_pgtables()
1798	 * should have release it.
1799	 */
1800	if (WARN_ON(!pmd_none(*new_pmd))) {
1801		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1802		return false;
1803	}
1804
 
 
 
1805	/*
1806	 * We don't have to worry about the ordering of src and dst
1807	 * ptlocks because exclusive mmap_sem prevents deadlock.
1808	 */
1809	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1810	if (old_ptl) {
1811		new_ptl = pmd_lockptr(mm, new_pmd);
1812		if (new_ptl != old_ptl)
1813			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1814		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1815		if (pmd_present(pmd) && pmd_dirty(pmd))
1816			force_flush = true;
1817		VM_BUG_ON(!pmd_none(*new_pmd));
1818
1819		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1820			pgtable_t pgtable;
1821			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1822			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1823		}
1824		pmd = move_soft_dirty_pmd(pmd);
1825		set_pmd_at(mm, new_addr, new_pmd, pmd);
1826		if (new_ptl != old_ptl)
1827			spin_unlock(new_ptl);
1828		if (force_flush)
1829			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1830		else
1831			*need_flush = true;
1832		spin_unlock(old_ptl);
1833		return true;
1834	}
1835	return false;
 
 
 
 
 
1836}
1837
1838/*
1839 * Returns
1840 *  - 0 if PMD could not be locked
1841 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1842 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1843 */
1844int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1845		unsigned long addr, pgprot_t newprot, int prot_numa)
1846{
1847	struct mm_struct *mm = vma->vm_mm;
1848	spinlock_t *ptl;
1849	pmd_t entry;
1850	bool preserve_write;
1851	int ret;
1852
1853	ptl = __pmd_trans_huge_lock(pmd, vma);
1854	if (!ptl)
1855		return 0;
1856
1857	preserve_write = prot_numa && pmd_write(*pmd);
1858	ret = 1;
1859
1860#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861	if (is_swap_pmd(*pmd)) {
1862		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1863
1864		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1865		if (is_write_migration_entry(entry)) {
1866			pmd_t newpmd;
1867			/*
1868			 * A protection check is difficult so
1869			 * just be safe and disable write
1870			 */
1871			make_migration_entry_read(&entry);
1872			newpmd = swp_entry_to_pmd(entry);
1873			if (pmd_swp_soft_dirty(*pmd))
1874				newpmd = pmd_swp_mksoft_dirty(newpmd);
1875			set_pmd_at(mm, addr, pmd, newpmd);
 
 
 
 
 
 
 
1876		}
1877		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878	}
1879#endif
1880
1881	/*
1882	 * Avoid trapping faults against the zero page. The read-only
1883	 * data is likely to be read-cached on the local CPU and
1884	 * local/remote hits to the zero page are not interesting.
1885	 */
1886	if (prot_numa && is_huge_zero_pmd(*pmd))
1887		goto unlock;
1888
1889	if (prot_numa && pmd_protnone(*pmd))
1890		goto unlock;
1891
1892	/*
1893	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1894	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895	 * which is also under down_read(mmap_sem):
1896	 *
1897	 *	CPU0:				CPU1:
1898	 *				change_huge_pmd(prot_numa=1)
1899	 *				 pmdp_huge_get_and_clear_notify()
1900	 * madvise_dontneed()
1901	 *  zap_pmd_range()
1902	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1903	 *   // skip the pmd
1904	 *				 set_pmd_at();
1905	 *				 // pmd is re-established
1906	 *
1907	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908	 * which may break userspace.
1909	 *
1910	 * pmdp_invalidate() is required to make sure we don't miss
1911	 * dirty/young flags set by hardware.
1912	 */
1913	entry = pmdp_invalidate(vma, addr, pmd);
1914
1915	entry = pmd_modify(entry, newprot);
1916	if (preserve_write)
1917		entry = pmd_mk_savedwrite(entry);
1918	ret = HPAGE_PMD_NR;
1919	set_pmd_at(mm, addr, pmd, entry);
1920	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1921unlock:
1922	spin_unlock(ptl);
1923	return ret;
1924}
1925
1926/*
1927 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1928 *
1929 * Note that if it returns page table lock pointer, this routine returns without
1930 * unlocking page table lock. So callers must unlock it.
1931 */
1932spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1933{
1934	spinlock_t *ptl;
1935	ptl = pmd_lock(vma->vm_mm, pmd);
1936	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1937			pmd_devmap(*pmd)))
1938		return ptl;
1939	spin_unlock(ptl);
1940	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1941}
1942
1943/*
1944 * Returns true if a given pud maps a thp, false otherwise.
1945 *
1946 * Note that if it returns true, this routine returns without unlocking page
1947 * table lock. So callers must unlock it.
1948 */
1949spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1950{
1951	spinlock_t *ptl;
 
1952
1953	ptl = pud_lock(vma->vm_mm, pud);
1954	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1955		return ptl;
1956	spin_unlock(ptl);
1957	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
1958}
1959
1960#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1961int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1962		 pud_t *pud, unsigned long addr)
1963{
1964	pud_t orig_pud;
1965	spinlock_t *ptl;
1966
1967	ptl = __pud_trans_huge_lock(pud, vma);
1968	if (!ptl)
1969		return 0;
1970	/*
1971	 * For architectures like ppc64 we look at deposited pgtable
1972	 * when calling pudp_huge_get_and_clear. So do the
1973	 * pgtable_trans_huge_withdraw after finishing pudp related
1974	 * operations.
1975	 */
1976	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1977			tlb->fullmm);
1978	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1979	if (vma_is_dax(vma)) {
1980		spin_unlock(ptl);
1981		/* No zero page support yet */
1982	} else {
1983		/* No support for anonymous PUD pages yet */
1984		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1985	}
1986	return 1;
 
1987}
1988
1989static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1990		unsigned long haddr)
1991{
1992	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1993	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1994	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1995	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
 
1996
1997	count_vm_event(THP_SPLIT_PUD);
 
1998
1999	pudp_huge_clear_flush_notify(vma, haddr, pud);
 
 
 
2000}
2001
2002void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2003		unsigned long address)
2004{
2005	spinlock_t *ptl;
2006	struct mm_struct *mm = vma->vm_mm;
2007	unsigned long haddr = address & HPAGE_PUD_MASK;
 
2008
2009	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2010	ptl = pud_lock(mm, pud);
2011	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2012		goto out;
2013	__split_huge_pud_locked(vma, pud, haddr);
2014
2015out:
2016	spin_unlock(ptl);
2017	/*
2018	 * No need to double call mmu_notifier->invalidate_range() callback as
2019	 * the above pudp_huge_clear_flush_notify() did already call it.
2020	 */
2021	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2022					       HPAGE_PUD_SIZE);
2023}
2024#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2025
2026static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2027		unsigned long haddr, pmd_t *pmd)
2028{
2029	struct mm_struct *mm = vma->vm_mm;
2030	pgtable_t pgtable;
2031	pmd_t _pmd;
2032	int i;
2033
2034	/*
2035	 * Leave pmd empty until pte is filled note that it is fine to delay
2036	 * notification until mmu_notifier_invalidate_range_end() as we are
2037	 * replacing a zero pmd write protected page with a zero pte write
2038	 * protected page.
2039	 *
2040	 * See Documentation/vm/mmu_notifier.txt
2041	 */
2042	pmdp_huge_clear_flush(vma, haddr, pmd);
 
 
 
 
 
2043
2044	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2045	pmd_populate(mm, &_pmd, pgtable);
 
 
2046
2047	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2048		pte_t *pte, entry;
2049		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2050		entry = pte_mkspecial(entry);
2051		pte = pte_offset_map(&_pmd, haddr);
2052		VM_BUG_ON(!pte_none(*pte));
2053		set_pte_at(mm, haddr, pte, entry);
2054		pte_unmap(pte);
2055	}
2056	smp_wmb(); /* make pte visible before pmd */
2057	pmd_populate(mm, pmd, pgtable);
2058}
2059
2060static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2061		unsigned long haddr, bool freeze)
2062{
2063	struct mm_struct *mm = vma->vm_mm;
2064	struct page *page;
2065	pgtable_t pgtable;
2066	pmd_t old_pmd, _pmd;
2067	bool young, write, soft_dirty, pmd_migration = false;
2068	unsigned long addr;
2069	int i;
2070
2071	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2072	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2073	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2074	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2075				&& !pmd_devmap(*pmd));
2076
2077	count_vm_event(THP_SPLIT_PMD);
 
 
2078
2079	if (!vma_is_anonymous(vma)) {
2080		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2081		/*
2082		 * We are going to unmap this huge page. So
2083		 * just go ahead and zap it
2084		 */
2085		if (arch_needs_pgtable_deposit())
2086			zap_deposited_table(mm, pmd);
2087		if (vma_is_dax(vma))
2088			return;
2089		page = pmd_page(_pmd);
2090		if (!PageReferenced(page) && pmd_young(_pmd))
2091			SetPageReferenced(page);
2092		page_remove_rmap(page, true);
2093		put_page(page);
2094		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2095		return;
2096	} else if (is_huge_zero_pmd(*pmd)) {
2097		/*
2098		 * FIXME: Do we want to invalidate secondary mmu by calling
2099		 * mmu_notifier_invalidate_range() see comments below inside
2100		 * __split_huge_pmd() ?
2101		 *
2102		 * We are going from a zero huge page write protected to zero
2103		 * small page also write protected so it does not seems useful
2104		 * to invalidate secondary mmu at this time.
2105		 */
2106		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2107	}
2108
 
 
2109	/*
2110	 * Up to this point the pmd is present and huge and userland has the
2111	 * whole access to the hugepage during the split (which happens in
2112	 * place). If we overwrite the pmd with the not-huge version pointing
2113	 * to the pte here (which of course we could if all CPUs were bug
2114	 * free), userland could trigger a small page size TLB miss on the
2115	 * small sized TLB while the hugepage TLB entry is still established in
2116	 * the huge TLB. Some CPU doesn't like that.
2117	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2118	 * 383 on page 93. Intel should be safe but is also warns that it's
2119	 * only safe if the permission and cache attributes of the two entries
2120	 * loaded in the two TLB is identical (which should be the case here).
2121	 * But it is generally safer to never allow small and huge TLB entries
2122	 * for the same virtual address to be loaded simultaneously. So instead
2123	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2124	 * current pmd notpresent (atomically because here the pmd_trans_huge
2125	 * must remain set at all times on the pmd until the split is complete
2126	 * for this pmd), then we flush the SMP TLB and finally we write the
2127	 * non-huge version of the pmd entry with pmd_populate.
2128	 */
2129	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2130
2131#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2132	pmd_migration = is_pmd_migration_entry(old_pmd);
2133	if (pmd_migration) {
2134		swp_entry_t entry;
2135
2136		entry = pmd_to_swp_entry(old_pmd);
2137		page = pfn_to_page(swp_offset(entry));
2138	} else
2139#endif
2140		page = pmd_page(old_pmd);
2141	VM_BUG_ON_PAGE(!page_count(page), page);
2142	page_ref_add(page, HPAGE_PMD_NR - 1);
2143	if (pmd_dirty(old_pmd))
2144		SetPageDirty(page);
2145	write = pmd_write(old_pmd);
2146	young = pmd_young(old_pmd);
2147	soft_dirty = pmd_soft_dirty(old_pmd);
2148
 
 
 
 
 
 
 
 
 
 
 
 
2149	/*
2150	 * Withdraw the table only after we mark the pmd entry invalid.
2151	 * This's critical for some architectures (Power).
2152	 */
2153	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2154	pmd_populate(mm, &_pmd, pgtable);
 
 
 
 
 
 
 
 
 
 
2155
2156	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2157		pte_t entry, *pte;
 
 
 
 
 
 
 
 
 
 
 
 
2158		/*
2159		 * Note that NUMA hinting access restrictions are not
2160		 * transferred to avoid any possibility of altering
2161		 * permissions across VMAs.
 
 
 
2162		 */
2163		if (freeze || pmd_migration) {
2164			swp_entry_t swp_entry;
2165			swp_entry = make_migration_entry(page + i, write);
2166			entry = swp_entry_to_pte(swp_entry);
2167			if (soft_dirty)
2168				entry = pte_swp_mksoft_dirty(entry);
2169		} else {
2170			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2171			entry = maybe_mkwrite(entry, vma);
2172			if (!write)
2173				entry = pte_wrprotect(entry);
2174			if (!young)
2175				entry = pte_mkold(entry);
2176			if (soft_dirty)
2177				entry = pte_mksoft_dirty(entry);
2178		}
2179		pte = pte_offset_map(&_pmd, addr);
2180		BUG_ON(!pte_none(*pte));
2181		set_pte_at(mm, addr, pte, entry);
2182		atomic_inc(&page[i]._mapcount);
2183		pte_unmap(pte);
2184	}
 
2185
2186	/*
2187	 * Set PG_double_map before dropping compound_mapcount to avoid
2188	 * false-negative page_mapped().
2189	 */
2190	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2191		for (i = 0; i < HPAGE_PMD_NR; i++)
2192			atomic_inc(&page[i]._mapcount);
 
 
 
 
 
 
 
2193	}
 
2194
2195	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2196		/* Last compound_mapcount is gone. */
2197		__dec_node_page_state(page, NR_ANON_THPS);
2198		if (TestClearPageDoubleMap(page)) {
2199			/* No need in mapcount reference anymore */
2200			for (i = 0; i < HPAGE_PMD_NR; i++)
2201				atomic_dec(&page[i]._mapcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203	}
 
 
 
 
 
 
 
2204
2205	smp_wmb(); /* make pte visible before pmd */
2206	pmd_populate(mm, pmd, pgtable);
2207
2208	if (freeze) {
2209		for (i = 0; i < HPAGE_PMD_NR; i++) {
2210			page_remove_rmap(page + i, false);
2211			put_page(page + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212		}
 
 
 
2213	}
2214}
2215
2216void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2217		unsigned long address, bool freeze, struct page *page)
 
 
 
2218{
 
 
 
 
 
 
2219	spinlock_t *ptl;
2220	struct mm_struct *mm = vma->vm_mm;
2221	unsigned long haddr = address & HPAGE_PMD_MASK;
2222
2223	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2224	ptl = pmd_lock(mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225
2226	/*
2227	 * If caller asks to setup a migration entries, we need a page to check
2228	 * pmd against. Otherwise we can end up replacing wrong page.
 
2229	 */
2230	VM_BUG_ON(freeze && !page);
2231	if (page && page != pmd_page(*pmd))
2232	        goto out;
2233
2234	if (pmd_trans_huge(*pmd)) {
2235		page = pmd_page(*pmd);
2236		if (PageMlocked(page))
2237			clear_page_mlock(page);
2238	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
 
 
 
 
 
 
 
 
2239		goto out;
2240	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2241out:
2242	spin_unlock(ptl);
2243	/*
2244	 * No need to double call mmu_notifier->invalidate_range() callback.
2245	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2246	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2247	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2248	 *    fault will trigger a flush_notify before pointing to a new page
2249	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2250	 *    page in the meantime)
2251	 *  3) Split a huge pmd into pte pointing to the same page. No need
2252	 *     to invalidate secondary tlb entry they are all still valid.
2253	 *     any further changes to individual pte will notify. So no need
2254	 *     to call mmu_notifier->invalidate_range()
2255	 */
2256	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2257					       HPAGE_PMD_SIZE);
2258}
2259
2260void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2261		bool freeze, struct page *page)
2262{
2263	pgd_t *pgd;
2264	p4d_t *p4d;
2265	pud_t *pud;
2266	pmd_t *pmd;
2267
2268	pgd = pgd_offset(vma->vm_mm, address);
2269	if (!pgd_present(*pgd))
2270		return;
2271
2272	p4d = p4d_offset(pgd, address);
2273	if (!p4d_present(*p4d))
2274		return;
2275
2276	pud = pud_offset(p4d, address);
2277	if (!pud_present(*pud))
2278		return;
2279
2280	pmd = pmd_offset(pud, address);
 
 
 
2281
2282	__split_huge_pmd(vma, pmd, address, freeze, page);
2283}
2284
2285void vma_adjust_trans_huge(struct vm_area_struct *vma,
2286			     unsigned long start,
2287			     unsigned long end,
2288			     long adjust_next)
2289{
2290	/*
2291	 * If the new start address isn't hpage aligned and it could
2292	 * previously contain an hugepage: check if we need to split
2293	 * an huge pmd.
2294	 */
2295	if (start & ~HPAGE_PMD_MASK &&
2296	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2297	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2298		split_huge_pmd_address(vma, start, false, NULL);
2299
 
2300	/*
2301	 * If the new end address isn't hpage aligned and it could
2302	 * previously contain an hugepage: check if we need to split
2303	 * an huge pmd.
 
2304	 */
2305	if (end & ~HPAGE_PMD_MASK &&
2306	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2307	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2308		split_huge_pmd_address(vma, end, false, NULL);
2309
2310	/*
2311	 * If we're also updating the vma->vm_next->vm_start, if the new
2312	 * vm_next->vm_start isn't page aligned and it could previously
2313	 * contain an hugepage: check if we need to split an huge pmd.
2314	 */
2315	if (adjust_next > 0) {
2316		struct vm_area_struct *next = vma->vm_next;
2317		unsigned long nstart = next->vm_start;
2318		nstart += adjust_next << PAGE_SHIFT;
2319		if (nstart & ~HPAGE_PMD_MASK &&
2320		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2321		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2322			split_huge_pmd_address(next, nstart, false, NULL);
2323	}
2324}
2325
2326static void freeze_page(struct page *page)
2327{
2328	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2329		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2330	bool unmap_success;
2331
2332	VM_BUG_ON_PAGE(!PageHead(page), page);
2333
2334	if (PageAnon(page))
2335		ttu_flags |= TTU_SPLIT_FREEZE;
2336
2337	unmap_success = try_to_unmap(page, ttu_flags);
2338	VM_BUG_ON_PAGE(!unmap_success, page);
2339}
2340
2341static void unfreeze_page(struct page *page)
2342{
2343	int i;
2344	if (PageTransHuge(page)) {
2345		remove_migration_ptes(page, page, true);
2346	} else {
2347		for (i = 0; i < HPAGE_PMD_NR; i++)
2348			remove_migration_ptes(page + i, page + i, true);
2349	}
2350}
2351
2352static void __split_huge_page_tail(struct page *head, int tail,
2353		struct lruvec *lruvec, struct list_head *list)
2354{
2355	struct page *page_tail = head + tail;
2356
2357	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2358
2359	/*
2360	 * Clone page flags before unfreezing refcount.
2361	 *
2362	 * After successful get_page_unless_zero() might follow flags change,
2363	 * for exmaple lock_page() which set PG_waiters.
2364	 */
2365	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2366	page_tail->flags |= (head->flags &
2367			((1L << PG_referenced) |
2368			 (1L << PG_swapbacked) |
2369			 (1L << PG_swapcache) |
2370			 (1L << PG_mlocked) |
2371			 (1L << PG_uptodate) |
2372			 (1L << PG_active) |
2373			 (1L << PG_locked) |
2374			 (1L << PG_unevictable) |
2375			 (1L << PG_dirty)));
2376
2377	/* Page flags must be visible before we make the page non-compound. */
2378	smp_wmb();
 
 
 
 
 
 
 
 
2379
2380	/*
2381	 * Clear PageTail before unfreezing page refcount.
2382	 *
2383	 * After successful get_page_unless_zero() might follow put_page()
2384	 * which needs correct compound_head().
2385	 */
2386	clear_compound_head(page_tail);
2387
2388	/* Finally unfreeze refcount. Additional reference from page cache. */
2389	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2390					  PageSwapCache(head)));
2391
2392	if (page_is_young(head))
2393		set_page_young(page_tail);
2394	if (page_is_idle(head))
2395		set_page_idle(page_tail);
2396
2397	/* ->mapping in first tail page is compound_mapcount */
2398	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2399			page_tail);
2400	page_tail->mapping = head->mapping;
 
 
 
 
2401
2402	page_tail->index = head->index + tail;
2403	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
 
 
 
 
 
2404
2405	/*
2406	 * always add to the tail because some iterators expect new
2407	 * pages to show after the currently processed elements - e.g.
2408	 * migrate_pages
2409	 */
2410	lru_add_page_tail(head, page_tail, lruvec, list);
2411}
2412
2413static void __split_huge_page(struct page *page, struct list_head *list,
2414		unsigned long flags)
 
 
2415{
2416	struct page *head = compound_head(page);
2417	struct zone *zone = page_zone(head);
2418	struct lruvec *lruvec;
2419	pgoff_t end = -1;
2420	int i;
2421
2422	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2423
2424	/* complete memcg works before add pages to LRU */
2425	mem_cgroup_split_huge_fixup(head);
2426
2427	if (!PageAnon(page))
2428		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2429
2430	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2431		__split_huge_page_tail(head, i, lruvec, list);
2432		/* Some pages can be beyond i_size: drop them from page cache */
2433		if (head[i].index >= end) {
2434			ClearPageDirty(head + i);
2435			__delete_from_page_cache(head + i, NULL);
2436			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2437				shmem_uncharge(head->mapping->host, 1);
2438			put_page(head + i);
2439		}
2440	}
2441
2442	ClearPageCompound(head);
2443	/* See comment in __split_huge_page_tail() */
2444	if (PageAnon(head)) {
2445		/* Additional pin to radix tree of swap cache */
2446		if (PageSwapCache(head))
2447			page_ref_add(head, 2);
2448		else
2449			page_ref_inc(head);
2450	} else {
2451		/* Additional pin to radix tree */
2452		page_ref_add(head, 2);
2453		xa_unlock(&head->mapping->i_pages);
2454	}
2455
2456	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
 
 
2457
2458	unfreeze_page(head);
 
 
2459
2460	for (i = 0; i < HPAGE_PMD_NR; i++) {
2461		struct page *subpage = head + i;
2462		if (subpage == page)
2463			continue;
2464		unlock_page(subpage);
2465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466		/*
2467		 * Subpages may be freed if there wasn't any mapping
2468		 * like if add_to_swap() is running on a lru page that
2469		 * had its mapping zapped. And freeing these pages
2470		 * requires taking the lru_lock so we do the put_page
2471		 * of the tail pages after the split is complete.
2472		 */
2473		put_page(subpage);
 
 
 
 
 
 
 
 
 
 
2474	}
 
 
 
 
 
 
 
 
 
2475}
2476
2477int total_mapcount(struct page *page)
2478{
2479	int i, compound, ret;
2480
2481	VM_BUG_ON_PAGE(PageTail(page), page);
2482
2483	if (likely(!PageCompound(page)))
2484		return atomic_read(&page->_mapcount) + 1;
 
 
2485
2486	compound = compound_mapcount(page);
2487	if (PageHuge(page))
2488		return compound;
2489	ret = compound;
2490	for (i = 0; i < HPAGE_PMD_NR; i++)
2491		ret += atomic_read(&page[i]._mapcount) + 1;
2492	/* File pages has compound_mapcount included in _mapcount */
2493	if (!PageAnon(page))
2494		return ret - compound * HPAGE_PMD_NR;
2495	if (PageDoubleMap(page))
2496		ret -= HPAGE_PMD_NR;
2497	return ret;
2498}
2499
2500/*
2501 * This calculates accurately how many mappings a transparent hugepage
2502 * has (unlike page_mapcount() which isn't fully accurate). This full
2503 * accuracy is primarily needed to know if copy-on-write faults can
2504 * reuse the page and change the mapping to read-write instead of
2505 * copying them. At the same time this returns the total_mapcount too.
2506 *
2507 * The function returns the highest mapcount any one of the subpages
2508 * has. If the return value is one, even if different processes are
2509 * mapping different subpages of the transparent hugepage, they can
2510 * all reuse it, because each process is reusing a different subpage.
2511 *
2512 * The total_mapcount is instead counting all virtual mappings of the
2513 * subpages. If the total_mapcount is equal to "one", it tells the
2514 * caller all mappings belong to the same "mm" and in turn the
2515 * anon_vma of the transparent hugepage can become the vma->anon_vma
2516 * local one as no other process may be mapping any of the subpages.
2517 *
2518 * It would be more accurate to replace page_mapcount() with
2519 * page_trans_huge_mapcount(), however we only use
2520 * page_trans_huge_mapcount() in the copy-on-write faults where we
2521 * need full accuracy to avoid breaking page pinning, because
2522 * page_trans_huge_mapcount() is slower than page_mapcount().
2523 */
2524int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2525{
2526	int i, ret, _total_mapcount, mapcount;
 
 
 
2527
2528	/* hugetlbfs shouldn't call it */
2529	VM_BUG_ON_PAGE(PageHuge(page), page);
2530
2531	if (likely(!PageTransCompound(page))) {
2532		mapcount = atomic_read(&page->_mapcount) + 1;
2533		if (total_mapcount)
2534			*total_mapcount = mapcount;
2535		return mapcount;
 
 
2536	}
 
2537
2538	page = compound_head(page);
2539
2540	_total_mapcount = ret = 0;
2541	for (i = 0; i < HPAGE_PMD_NR; i++) {
2542		mapcount = atomic_read(&page[i]._mapcount) + 1;
2543		ret = max(ret, mapcount);
2544		_total_mapcount += mapcount;
2545	}
2546	if (PageDoubleMap(page)) {
2547		ret -= 1;
2548		_total_mapcount -= HPAGE_PMD_NR;
2549	}
2550	mapcount = compound_mapcount(page);
2551	ret += mapcount;
2552	_total_mapcount += mapcount;
2553	if (total_mapcount)
2554		*total_mapcount = _total_mapcount;
2555	return ret;
2556}
2557
2558/* Racy check whether the huge page can be split */
2559bool can_split_huge_page(struct page *page, int *pextra_pins)
2560{
2561	int extra_pins;
2562
2563	/* Additional pins from radix tree */
2564	if (PageAnon(page))
2565		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2566	else
2567		extra_pins = HPAGE_PMD_NR;
2568	if (pextra_pins)
2569		*pextra_pins = extra_pins;
2570	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2571}
2572
2573/*
2574 * This function splits huge page into normal pages. @page can point to any
2575 * subpage of huge page to split. Split doesn't change the position of @page.
2576 *
2577 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2578 * The huge page must be locked.
2579 *
2580 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2581 *
2582 * Both head page and tail pages will inherit mapping, flags, and so on from
2583 * the hugepage.
2584 *
2585 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2586 * they are not mapped.
2587 *
2588 * Returns 0 if the hugepage is split successfully.
2589 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2590 * us.
2591 */
2592int split_huge_page_to_list(struct page *page, struct list_head *list)
2593{
2594	struct page *head = compound_head(page);
2595	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2596	struct anon_vma *anon_vma = NULL;
2597	struct address_space *mapping = NULL;
2598	int count, mapcount, extra_pins, ret;
2599	bool mlocked;
2600	unsigned long flags;
2601
2602	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2603	VM_BUG_ON_PAGE(!PageLocked(page), page);
2604	VM_BUG_ON_PAGE(!PageCompound(page), page);
2605
2606	if (PageWriteback(page))
2607		return -EBUSY;
 
 
 
2608
2609	if (PageAnon(head)) {
 
 
 
 
 
 
 
 
 
 
2610		/*
2611		 * The caller does not necessarily hold an mmap_sem that would
2612		 * prevent the anon_vma disappearing so we first we take a
2613		 * reference to it and then lock the anon_vma for write. This
2614		 * is similar to page_lock_anon_vma_read except the write lock
2615		 * is taken to serialise against parallel split or collapse
2616		 * operations.
2617		 */
2618		anon_vma = page_get_anon_vma(head);
2619		if (!anon_vma) {
2620			ret = -EBUSY;
2621			goto out;
2622		}
2623		mapping = NULL;
2624		anon_vma_lock_write(anon_vma);
2625	} else {
2626		mapping = head->mapping;
2627
2628		/* Truncated ? */
2629		if (!mapping) {
2630			ret = -EBUSY;
2631			goto out;
2632		}
 
 
 
 
2633
2634		anon_vma = NULL;
2635		i_mmap_lock_read(mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636	}
 
 
 
2637
 
 
2638	/*
2639	 * Racy check if we can split the page, before freeze_page() will
2640	 * split PMDs
2641	 */
2642	if (!can_split_huge_page(head, &extra_pins)) {
2643		ret = -EBUSY;
2644		goto out_unlock;
2645	}
2646
2647	mlocked = PageMlocked(page);
2648	freeze_page(head);
2649	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2650
2651	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2652	if (mlocked)
2653		lru_add_drain();
2654
2655	/* prevent PageLRU to go away from under us, and freeze lru stats */
2656	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2657
2658	if (mapping) {
2659		void **pslot;
2660
2661		xa_lock(&mapping->i_pages);
2662		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2663				page_index(head));
2664		/*
2665		 * Check if the head page is present in radix tree.
2666		 * We assume all tail are present too, if head is there.
 
2667		 */
2668		if (radix_tree_deref_slot_protected(pslot,
2669					&mapping->i_pages.xa_lock) != head)
2670			goto fail;
2671	}
2672
2673	/* Prevent deferred_split_scan() touching ->_refcount */
2674	spin_lock(&pgdata->split_queue_lock);
2675	count = page_count(head);
2676	mapcount = total_mapcount(head);
2677	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2678		if (!list_empty(page_deferred_list(head))) {
2679			pgdata->split_queue_len--;
2680			list_del(page_deferred_list(head));
2681		}
2682		if (mapping)
2683			__dec_node_page_state(page, NR_SHMEM_THPS);
2684		spin_unlock(&pgdata->split_queue_lock);
2685		__split_huge_page(page, list, flags);
2686		if (PageSwapCache(head)) {
2687			swp_entry_t entry = { .val = page_private(head) };
2688
2689			ret = split_swap_cluster(entry);
2690		} else
2691			ret = 0;
2692	} else {
2693		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2694			pr_alert("total_mapcount: %u, page_count(): %u\n",
2695					mapcount, count);
2696			if (PageTail(page))
2697				dump_page(head, NULL);
2698			dump_page(page, "total_mapcount(head) > 0");
2699			BUG();
2700		}
2701		spin_unlock(&pgdata->split_queue_lock);
2702fail:		if (mapping)
2703			xa_unlock(&mapping->i_pages);
2704		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2705		unfreeze_page(head);
2706		ret = -EBUSY;
2707	}
2708
2709out_unlock:
2710	if (anon_vma) {
2711		anon_vma_unlock_write(anon_vma);
2712		put_anon_vma(anon_vma);
2713	}
2714	if (mapping)
2715		i_mmap_unlock_read(mapping);
2716out:
2717	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2718	return ret;
2719}
2720
2721void free_transhuge_page(struct page *page)
2722{
2723	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2724	unsigned long flags;
2725
2726	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2727	if (!list_empty(page_deferred_list(page))) {
2728		pgdata->split_queue_len--;
2729		list_del(page_deferred_list(page));
2730	}
2731	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2732	free_compound_page(page);
2733}
2734
2735void deferred_split_huge_page(struct page *page)
2736{
2737	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2738	unsigned long flags;
2739
2740	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2741
2742	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2743	if (list_empty(page_deferred_list(page))) {
2744		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2745		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2746		pgdata->split_queue_len++;
2747	}
2748	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2749}
2750
2751static unsigned long deferred_split_count(struct shrinker *shrink,
2752		struct shrink_control *sc)
2753{
2754	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2755	return READ_ONCE(pgdata->split_queue_len);
2756}
2757
2758static unsigned long deferred_split_scan(struct shrinker *shrink,
2759		struct shrink_control *sc)
2760{
2761	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2762	unsigned long flags;
2763	LIST_HEAD(list), *pos, *next;
2764	struct page *page;
2765	int split = 0;
2766
2767	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2768	/* Take pin on all head pages to avoid freeing them under us */
2769	list_for_each_safe(pos, next, &pgdata->split_queue) {
2770		page = list_entry((void *)pos, struct page, mapping);
2771		page = compound_head(page);
2772		if (get_page_unless_zero(page)) {
2773			list_move(page_deferred_list(page), &list);
2774		} else {
2775			/* We lost race with put_compound_page() */
2776			list_del_init(page_deferred_list(page));
2777			pgdata->split_queue_len--;
2778		}
2779		if (!--sc->nr_to_scan)
 
2780			break;
2781	}
2782	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2783
2784	list_for_each_safe(pos, next, &list) {
2785		page = list_entry((void *)pos, struct page, mapping);
2786		if (!trylock_page(page))
2787			goto next;
2788		/* split_huge_page() removes page from list on success */
2789		if (!split_huge_page(page))
2790			split++;
2791		unlock_page(page);
2792next:
2793		put_page(page);
2794	}
2795
2796	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2797	list_splice_tail(&list, &pgdata->split_queue);
2798	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 
 
 
 
 
 
 
 
 
2799
2800	/*
2801	 * Stop shrinker if we didn't split any page, but the queue is empty.
2802	 * This can happen if pages were freed under us.
2803	 */
2804	if (!split && list_empty(&pgdata->split_queue))
2805		return SHRINK_STOP;
2806	return split;
 
2807}
2808
2809static struct shrinker deferred_split_shrinker = {
2810	.count_objects = deferred_split_count,
2811	.scan_objects = deferred_split_scan,
2812	.seeks = DEFAULT_SEEKS,
2813	.flags = SHRINKER_NUMA_AWARE,
2814};
 
 
 
 
 
 
 
 
 
 
 
2815
2816#ifdef CONFIG_DEBUG_FS
2817static int split_huge_pages_set(void *data, u64 val)
2818{
2819	struct zone *zone;
2820	struct page *page;
2821	unsigned long pfn, max_zone_pfn;
2822	unsigned long total = 0, split = 0;
2823
2824	if (val != 1)
2825		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
2826
2827	for_each_populated_zone(zone) {
2828		max_zone_pfn = zone_end_pfn(zone);
2829		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2830			if (!pfn_valid(pfn))
 
 
 
 
 
 
 
2831				continue;
 
 
 
 
 
 
 
 
 
 
2832
2833			page = pfn_to_page(pfn);
2834			if (!get_page_unless_zero(page))
2835				continue;
2836
2837			if (zone != page_zone(page))
2838				goto next;
2839
2840			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2841				goto next;
2842
2843			total++;
2844			lock_page(page);
2845			if (!split_huge_page(page))
2846				split++;
2847			unlock_page(page);
2848next:
2849			put_page(page);
2850		}
 
 
 
2851	}
2852
2853	pr_info("%lu of %lu THP split\n", split, total);
 
 
 
 
 
 
 
 
2854
2855	return 0;
2856}
2857DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2858		"%llu\n");
2859
2860static int __init split_huge_pages_debugfs(void)
2861{
2862	void *ret;
2863
2864	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2865			&split_huge_pages_fops);
2866	if (!ret)
2867		pr_warn("Failed to create split_huge_pages in debugfs");
2868	return 0;
 
 
 
 
 
 
 
 
 
2869}
2870late_initcall(split_huge_pages_debugfs);
2871#endif
2872
2873#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2874void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2875		struct page *page)
2876{
2877	struct vm_area_struct *vma = pvmw->vma;
2878	struct mm_struct *mm = vma->vm_mm;
2879	unsigned long address = pvmw->address;
2880	pmd_t pmdval;
2881	swp_entry_t entry;
2882	pmd_t pmdswp;
2883
2884	if (!(pvmw->pmd && !pvmw->pte))
2885		return;
2886
2887	mmu_notifier_invalidate_range_start(mm, address,
2888			address + HPAGE_PMD_SIZE);
 
2889
2890	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2891	pmdval = *pvmw->pmd;
2892	pmdp_invalidate(vma, address, pvmw->pmd);
2893	if (pmd_dirty(pmdval))
2894		set_page_dirty(page);
2895	entry = make_migration_entry(page, pmd_write(pmdval));
2896	pmdswp = swp_entry_to_pmd(entry);
2897	if (pmd_soft_dirty(pmdval))
2898		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2899	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2900	page_remove_rmap(page, true);
2901	put_page(page);
2902
2903	mmu_notifier_invalidate_range_end(mm, address,
2904			address + HPAGE_PMD_SIZE);
 
 
 
 
 
 
2905}
2906
2907void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
 
 
 
2908{
2909	struct vm_area_struct *vma = pvmw->vma;
2910	struct mm_struct *mm = vma->vm_mm;
2911	unsigned long address = pvmw->address;
2912	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2913	pmd_t pmde;
2914	swp_entry_t entry;
 
 
 
2915
2916	if (!(pvmw->pmd && !pvmw->pte))
2917		return;
 
 
 
 
 
 
 
2918
2919	entry = pmd_to_swp_entry(*pvmw->pmd);
2920	get_page(new);
2921	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2922	if (pmd_swp_soft_dirty(*pvmw->pmd))
2923		pmde = pmd_mksoft_dirty(pmde);
2924	if (is_write_migration_entry(entry))
2925		pmde = maybe_pmd_mkwrite(pmde, vma);
2926
2927	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2928	if (PageAnon(new))
2929		page_add_anon_rmap(new, vma, mmun_start, true);
2930	else
2931		page_add_file_rmap(new, true);
2932	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2933	if (vma->vm_flags & VM_LOCKED)
2934		mlock_vma_page(new);
2935	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2936}
2937#endif
v3.1
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
 
 
   8#include <linux/mm.h>
   9#include <linux/sched.h>
 
 
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
 
  15#include <linux/mm_inline.h>
  16#include <linux/kthread.h>
 
  17#include <linux/khugepaged.h>
  18#include <linux/freezer.h>
 
  19#include <linux/mman.h>
 
 
 
 
 
 
 
 
 
 
  20#include <asm/tlb.h>
  21#include <asm/pgalloc.h>
  22#include "internal.h"
  23
  24/*
  25 * By default transparent hugepage support is enabled for all mappings
  26 * and khugepaged scans all mappings. Defrag is only invoked by
  27 * khugepaged hugepage allocations and by page faults inside
  28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29 * allocations.
 
  30 */
  31unsigned long transparent_hugepage_flags __read_mostly =
  32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34#endif
  35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37#endif
  38	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40
  41/* default scan 8*512 pte (or vmas) every 30 second */
  42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  43static unsigned int khugepaged_pages_collapsed;
  44static unsigned int khugepaged_full_scans;
  45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  46/* during fragmentation poll the hugepage allocator once every minute */
  47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  48static struct task_struct *khugepaged_thread __read_mostly;
  49static DEFINE_MUTEX(khugepaged_mutex);
  50static DEFINE_SPINLOCK(khugepaged_mm_lock);
  51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  52/*
  53 * default collapse hugepages if there is at least one pte mapped like
  54 * it would have happened if the vma was large enough during page
  55 * fault.
  56 */
  57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  58
  59static int khugepaged(void *none);
  60static int mm_slots_hash_init(void);
  61static int khugepaged_slab_init(void);
  62static void khugepaged_slab_free(void);
  63
  64#define MM_SLOTS_HASH_HEADS 1024
  65static struct hlist_head *mm_slots_hash __read_mostly;
  66static struct kmem_cache *mm_slot_cache __read_mostly;
  67
  68/**
  69 * struct mm_slot - hash lookup from mm to mm_slot
  70 * @hash: hash collision list
  71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72 * @mm: the mm that this information is valid for
  73 */
  74struct mm_slot {
  75	struct hlist_node hash;
  76	struct list_head mm_node;
  77	struct mm_struct *mm;
  78};
  79
  80/**
  81 * struct khugepaged_scan - cursor for scanning
  82 * @mm_head: the head of the mm list to scan
  83 * @mm_slot: the current mm_slot we are scanning
  84 * @address: the next address inside that to be scanned
  85 *
  86 * There is only the one khugepaged_scan instance of this cursor structure.
  87 */
  88struct khugepaged_scan {
  89	struct list_head mm_head;
  90	struct mm_slot *mm_slot;
  91	unsigned long address;
  92} khugepaged_scan = {
  93	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94};
  95
 
 
 
 
 
 
 
 
  96
  97static int set_recommended_min_free_kbytes(void)
  98{
  99	struct zone *zone;
 100	int nr_zones = 0;
 101	unsigned long recommended_min;
 102	extern int min_free_kbytes;
 103
 104	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 105		      &transparent_hugepage_flags) &&
 106	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 107		      &transparent_hugepage_flags))
 108		return 0;
 109
 110	for_each_populated_zone(zone)
 111		nr_zones++;
 112
 113	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 114	recommended_min = pageblock_nr_pages * nr_zones * 2;
 115
 116	/*
 117	 * Make sure that on average at least two pageblocks are almost free
 118	 * of another type, one for a migratetype to fall back to and a
 119	 * second to avoid subsequent fallbacks of other types There are 3
 120	 * MIGRATE_TYPES we care about.
 121	 */
 122	recommended_min += pageblock_nr_pages * nr_zones *
 123			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 124
 125	/* don't ever allow to reserve more than 5% of the lowmem */
 126	recommended_min = min(recommended_min,
 127			      (unsigned long) nr_free_buffer_pages() / 20);
 128	recommended_min <<= (PAGE_SHIFT-10);
 
 129
 130	if (recommended_min > min_free_kbytes)
 131		min_free_kbytes = recommended_min;
 132	setup_per_zone_wmarks();
 133	return 0;
 
 134}
 135late_initcall(set_recommended_min_free_kbytes);
 136
 137static int start_khugepaged(void)
 
 138{
 139	int err = 0;
 140	if (khugepaged_enabled()) {
 141		int wakeup;
 142		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
 143			err = -ENOMEM;
 144			goto out;
 145		}
 146		mutex_lock(&khugepaged_mutex);
 147		if (!khugepaged_thread)
 148			khugepaged_thread = kthread_run(khugepaged, NULL,
 149							"khugepaged");
 150		if (unlikely(IS_ERR(khugepaged_thread))) {
 151			printk(KERN_ERR
 152			       "khugepaged: kthread_run(khugepaged) failed\n");
 153			err = PTR_ERR(khugepaged_thread);
 154			khugepaged_thread = NULL;
 155		}
 156		wakeup = !list_empty(&khugepaged_scan.mm_head);
 157		mutex_unlock(&khugepaged_mutex);
 158		if (wakeup)
 159			wake_up_interruptible(&khugepaged_wait);
 160
 161		set_recommended_min_free_kbytes();
 162	} else
 163		/* wakeup to exit */
 164		wake_up_interruptible(&khugepaged_wait);
 165out:
 166	return err;
 167}
 168
 
 
 
 
 
 
 169#ifdef CONFIG_SYSFS
 170
 171static ssize_t double_flag_show(struct kobject *kobj,
 172				struct kobj_attribute *attr, char *buf,
 173				enum transparent_hugepage_flag enabled,
 174				enum transparent_hugepage_flag req_madv)
 175{
 176	if (test_bit(enabled, &transparent_hugepage_flags)) {
 177		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 178		return sprintf(buf, "[always] madvise never\n");
 179	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 180		return sprintf(buf, "always [madvise] never\n");
 181	else
 182		return sprintf(buf, "always madvise [never]\n");
 183}
 184static ssize_t double_flag_store(struct kobject *kobj,
 185				 struct kobj_attribute *attr,
 186				 const char *buf, size_t count,
 187				 enum transparent_hugepage_flag enabled,
 188				 enum transparent_hugepage_flag req_madv)
 189{
 
 
 190	if (!memcmp("always", buf,
 191		    min(sizeof("always")-1, count))) {
 192		set_bit(enabled, &transparent_hugepage_flags);
 193		clear_bit(req_madv, &transparent_hugepage_flags);
 194	} else if (!memcmp("madvise", buf,
 195			   min(sizeof("madvise")-1, count))) {
 196		clear_bit(enabled, &transparent_hugepage_flags);
 197		set_bit(req_madv, &transparent_hugepage_flags);
 198	} else if (!memcmp("never", buf,
 199			   min(sizeof("never")-1, count))) {
 200		clear_bit(enabled, &transparent_hugepage_flags);
 201		clear_bit(req_madv, &transparent_hugepage_flags);
 202	} else
 203		return -EINVAL;
 204
 205	return count;
 206}
 207
 208static ssize_t enabled_show(struct kobject *kobj,
 209			    struct kobj_attribute *attr, char *buf)
 210{
 211	return double_flag_show(kobj, attr, buf,
 212				TRANSPARENT_HUGEPAGE_FLAG,
 213				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 214}
 215static ssize_t enabled_store(struct kobject *kobj,
 216			     struct kobj_attribute *attr,
 217			     const char *buf, size_t count)
 218{
 219	ssize_t ret;
 220
 221	ret = double_flag_store(kobj, attr, buf, count,
 222				TRANSPARENT_HUGEPAGE_FLAG,
 223				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 224
 225	if (ret > 0) {
 226		int err = start_khugepaged();
 227		if (err)
 228			ret = err;
 229	}
 230
 231	if (ret > 0 &&
 232	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 233		      &transparent_hugepage_flags) ||
 234	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 235		      &transparent_hugepage_flags)))
 236		set_recommended_min_free_kbytes();
 237
 238	return ret;
 239}
 240static struct kobj_attribute enabled_attr =
 241	__ATTR(enabled, 0644, enabled_show, enabled_store);
 242
 243static ssize_t single_flag_show(struct kobject *kobj,
 244				struct kobj_attribute *attr, char *buf,
 245				enum transparent_hugepage_flag flag)
 246{
 247	return sprintf(buf, "%d\n",
 248		       !!test_bit(flag, &transparent_hugepage_flags));
 249}
 250
 251static ssize_t single_flag_store(struct kobject *kobj,
 252				 struct kobj_attribute *attr,
 253				 const char *buf, size_t count,
 254				 enum transparent_hugepage_flag flag)
 255{
 256	unsigned long value;
 257	int ret;
 258
 259	ret = kstrtoul(buf, 10, &value);
 260	if (ret < 0)
 261		return ret;
 262	if (value > 1)
 263		return -EINVAL;
 264
 265	if (value)
 266		set_bit(flag, &transparent_hugepage_flags);
 267	else
 268		clear_bit(flag, &transparent_hugepage_flags);
 269
 270	return count;
 271}
 272
 273/*
 274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 276 * memory just to allocate one more hugepage.
 277 */
 278static ssize_t defrag_show(struct kobject *kobj,
 279			   struct kobj_attribute *attr, char *buf)
 280{
 281	return double_flag_show(kobj, attr, buf,
 282				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 283				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 284}
 
 285static ssize_t defrag_store(struct kobject *kobj,
 286			    struct kobj_attribute *attr,
 287			    const char *buf, size_t count)
 288{
 289	return double_flag_store(kobj, attr, buf, count,
 290				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 291				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292}
 293static struct kobj_attribute defrag_attr =
 294	__ATTR(defrag, 0644, defrag_show, defrag_store);
 295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296#ifdef CONFIG_DEBUG_VM
 297static ssize_t debug_cow_show(struct kobject *kobj,
 298				struct kobj_attribute *attr, char *buf)
 299{
 300	return single_flag_show(kobj, attr, buf,
 301				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 302}
 303static ssize_t debug_cow_store(struct kobject *kobj,
 304			       struct kobj_attribute *attr,
 305			       const char *buf, size_t count)
 306{
 307	return single_flag_store(kobj, attr, buf, count,
 308				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 309}
 310static struct kobj_attribute debug_cow_attr =
 311	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 312#endif /* CONFIG_DEBUG_VM */
 313
 314static struct attribute *hugepage_attr[] = {
 315	&enabled_attr.attr,
 316	&defrag_attr.attr,
 
 
 
 
 
 317#ifdef CONFIG_DEBUG_VM
 318	&debug_cow_attr.attr,
 319#endif
 320	NULL,
 321};
 322
 323static struct attribute_group hugepage_attr_group = {
 324	.attrs = hugepage_attr,
 325};
 326
 327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 328					 struct kobj_attribute *attr,
 329					 char *buf)
 330{
 331	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 332}
 333
 334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 335					  struct kobj_attribute *attr,
 336					  const char *buf, size_t count)
 337{
 338	unsigned long msecs;
 339	int err;
 340
 341	err = strict_strtoul(buf, 10, &msecs);
 342	if (err || msecs > UINT_MAX)
 343		return -EINVAL;
 
 
 344
 345	khugepaged_scan_sleep_millisecs = msecs;
 346	wake_up_interruptible(&khugepaged_wait);
 
 
 
 347
 348	return count;
 349}
 350static struct kobj_attribute scan_sleep_millisecs_attr =
 351	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 352	       scan_sleep_millisecs_store);
 353
 354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 355					  struct kobj_attribute *attr,
 356					  char *buf)
 357{
 358	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 359}
 360
 361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 362					   struct kobj_attribute *attr,
 363					   const char *buf, size_t count)
 364{
 365	unsigned long msecs;
 366	int err;
 367
 368	err = strict_strtoul(buf, 10, &msecs);
 369	if (err || msecs > UINT_MAX)
 370		return -EINVAL;
 371
 372	khugepaged_alloc_sleep_millisecs = msecs;
 373	wake_up_interruptible(&khugepaged_wait);
 374
 375	return count;
 376}
 377static struct kobj_attribute alloc_sleep_millisecs_attr =
 378	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 379	       alloc_sleep_millisecs_store);
 380
 381static ssize_t pages_to_scan_show(struct kobject *kobj,
 382				  struct kobj_attribute *attr,
 383				  char *buf)
 384{
 385	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 386}
 387static ssize_t pages_to_scan_store(struct kobject *kobj,
 388				   struct kobj_attribute *attr,
 389				   const char *buf, size_t count)
 390{
 391	int err;
 392	unsigned long pages;
 393
 394	err = strict_strtoul(buf, 10, &pages);
 395	if (err || !pages || pages > UINT_MAX)
 396		return -EINVAL;
 397
 398	khugepaged_pages_to_scan = pages;
 399
 400	return count;
 401}
 402static struct kobj_attribute pages_to_scan_attr =
 403	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 404	       pages_to_scan_store);
 405
 406static ssize_t pages_collapsed_show(struct kobject *kobj,
 407				    struct kobj_attribute *attr,
 408				    char *buf)
 409{
 410	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 
 
 411}
 412static struct kobj_attribute pages_collapsed_attr =
 413	__ATTR_RO(pages_collapsed);
 414
 415static ssize_t full_scans_show(struct kobject *kobj,
 416			       struct kobj_attribute *attr,
 417			       char *buf)
 418{
 419	return sprintf(buf, "%u\n", khugepaged_full_scans);
 420}
 421static struct kobj_attribute full_scans_attr =
 422	__ATTR_RO(full_scans);
 423
 424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 425				      struct kobj_attribute *attr, char *buf)
 426{
 427	return single_flag_show(kobj, attr, buf,
 428				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 429}
 430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 431				       struct kobj_attribute *attr,
 432				       const char *buf, size_t count)
 433{
 434	return single_flag_store(kobj, attr, buf, count,
 435				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 436}
 437static struct kobj_attribute khugepaged_defrag_attr =
 438	__ATTR(defrag, 0644, khugepaged_defrag_show,
 439	       khugepaged_defrag_store);
 440
 441/*
 442 * max_ptes_none controls if khugepaged should collapse hugepages over
 443 * any unmapped ptes in turn potentially increasing the memory
 444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 445 * reduce the available free memory in the system as it
 446 * runs. Increasing max_ptes_none will instead potentially reduce the
 447 * free memory in the system during the khugepaged scan.
 448 */
 449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 450					     struct kobj_attribute *attr,
 451					     char *buf)
 452{
 453	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 454}
 455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 456					      struct kobj_attribute *attr,
 457					      const char *buf, size_t count)
 458{
 459	int err;
 460	unsigned long max_ptes_none;
 461
 462	err = strict_strtoul(buf, 10, &max_ptes_none);
 463	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 464		return -EINVAL;
 465
 466	khugepaged_max_ptes_none = max_ptes_none;
 467
 468	return count;
 469}
 470static struct kobj_attribute khugepaged_max_ptes_none_attr =
 471	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 472	       khugepaged_max_ptes_none_store);
 473
 474static struct attribute *khugepaged_attr[] = {
 475	&khugepaged_defrag_attr.attr,
 476	&khugepaged_max_ptes_none_attr.attr,
 477	&pages_to_scan_attr.attr,
 478	&pages_collapsed_attr.attr,
 479	&full_scans_attr.attr,
 480	&scan_sleep_millisecs_attr.attr,
 481	&alloc_sleep_millisecs_attr.attr,
 482	NULL,
 483};
 484
 485static struct attribute_group khugepaged_attr_group = {
 486	.attrs = khugepaged_attr,
 487	.name = "khugepaged",
 488};
 489#endif /* CONFIG_SYSFS */
 490
 491static int __init hugepage_init(void)
 492{
 493	int err;
 494#ifdef CONFIG_SYSFS
 495	static struct kobject *hugepage_kobj;
 496#endif
 497
 498	err = -EINVAL;
 499	if (!has_transparent_hugepage()) {
 500		transparent_hugepage_flags = 0;
 501		goto out;
 502	}
 503
 504#ifdef CONFIG_SYSFS
 505	err = -ENOMEM;
 506	hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 507	if (unlikely(!hugepage_kobj)) {
 508		printk(KERN_ERR "hugepage: failed kobject create\n");
 509		goto out;
 510	}
 
 
 511
 512	err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
 513	if (err) {
 514		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 515		goto out;
 516	}
 517
 518	err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
 519	if (err) {
 520		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 521		goto out;
 522	}
 523#endif
 524
 525	err = khugepaged_slab_init();
 526	if (err)
 527		goto out;
 528
 529	err = mm_slots_hash_init();
 530	if (err) {
 531		khugepaged_slab_free();
 532		goto out;
 533	}
 534
 535	/*
 536	 * By default disable transparent hugepages on smaller systems,
 537	 * where the extra memory used could hurt more than TLB overhead
 538	 * is likely to save.  The admin can still enable it through /sys.
 539	 */
 540	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 541		transparent_hugepage_flags = 0;
 
 
 542
 543	start_khugepaged();
 
 
 544
 545	set_recommended_min_free_kbytes();
 546
 547out:
 
 
 
 
 
 
 
 548	return err;
 549}
 550module_init(hugepage_init)
 551
 552static int __init setup_transparent_hugepage(char *str)
 553{
 554	int ret = 0;
 555	if (!str)
 556		goto out;
 557	if (!strcmp(str, "always")) {
 558		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 559			&transparent_hugepage_flags);
 560		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 561			  &transparent_hugepage_flags);
 562		ret = 1;
 563	} else if (!strcmp(str, "madvise")) {
 564		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 565			  &transparent_hugepage_flags);
 566		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 567			&transparent_hugepage_flags);
 568		ret = 1;
 569	} else if (!strcmp(str, "never")) {
 570		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 571			  &transparent_hugepage_flags);
 572		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 573			  &transparent_hugepage_flags);
 574		ret = 1;
 575	}
 576out:
 577	if (!ret)
 578		printk(KERN_WARNING
 579		       "transparent_hugepage= cannot parse, ignored\n");
 580	return ret;
 581}
 582__setup("transparent_hugepage=", setup_transparent_hugepage);
 583
 584static void prepare_pmd_huge_pte(pgtable_t pgtable,
 585				 struct mm_struct *mm)
 586{
 587	assert_spin_locked(&mm->page_table_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588
 589	/* FIFO */
 590	if (!mm->pmd_huge_pte)
 591		INIT_LIST_HEAD(&pgtable->lru);
 592	else
 593		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
 594	mm->pmd_huge_pte = pgtable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595}
 596
 597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 
 598{
 599	if (likely(vma->vm_flags & VM_WRITE))
 600		pmd = pmd_mkwrite(pmd);
 601	return pmd;
 
 
 
 
 
 
 
 
 
 
 602}
 
 603
 604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 605					struct vm_area_struct *vma,
 606					unsigned long haddr, pmd_t *pmd,
 607					struct page *page)
 608{
 
 
 
 
 609	int ret = 0;
 610	pgtable_t pgtable;
 611
 612	VM_BUG_ON(!PageCompound(page));
 613	pgtable = pte_alloc_one(mm, haddr);
 
 
 
 
 
 
 
 614	if (unlikely(!pgtable)) {
 615		mem_cgroup_uncharge_page(page);
 616		put_page(page);
 617		return VM_FAULT_OOM;
 618	}
 619
 620	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 
 
 
 
 
 621	__SetPageUptodate(page);
 622
 623	spin_lock(&mm->page_table_lock);
 624	if (unlikely(!pmd_none(*pmd))) {
 625		spin_unlock(&mm->page_table_lock);
 626		mem_cgroup_uncharge_page(page);
 627		put_page(page);
 628		pte_free(mm, pgtable);
 629	} else {
 630		pmd_t entry;
 631		entry = mk_pmd(page, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 633		entry = pmd_mkhuge(entry);
 634		/*
 635		 * The spinlocking to take the lru_lock inside
 636		 * page_add_new_anon_rmap() acts as a full memory
 637		 * barrier to be sure clear_huge_page writes become
 638		 * visible after the set_pmd_at() write.
 639		 */
 640		page_add_new_anon_rmap(page, vma, haddr);
 641		set_pmd_at(mm, haddr, pmd, entry);
 642		prepare_pmd_huge_pte(pgtable, mm);
 643		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 644		spin_unlock(&mm->page_table_lock);
 645	}
 646
 
 
 
 
 
 
 
 
 647	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648}
 
 649
 650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 
 651{
 652	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 
 
 653}
 654
 655static inline struct page *alloc_hugepage_vma(int defrag,
 656					      struct vm_area_struct *vma,
 657					      unsigned long haddr, int nd,
 658					      gfp_t extra_gfp)
 659{
 660	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 661			       HPAGE_PMD_ORDER, vma, haddr, nd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 662}
 663
 664#ifndef CONFIG_NUMA
 665static inline struct page *alloc_hugepage(int defrag)
 666{
 667	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
 668			   HPAGE_PMD_ORDER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669}
 670#endif
 671
 672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 673			       unsigned long address, pmd_t *pmd,
 674			       unsigned int flags)
 675{
 
 
 
 676	struct page *page;
 677	unsigned long haddr = address & HPAGE_PMD_MASK;
 678	pte_t *pte;
 679
 680	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
 681		if (unlikely(anon_vma_prepare(vma)))
 682			return VM_FAULT_OOM;
 683		if (unlikely(khugepaged_enter(vma)))
 684			return VM_FAULT_OOM;
 685		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 686					  vma, haddr, numa_node_id(), 0);
 687		if (unlikely(!page)) {
 688			count_vm_event(THP_FAULT_FALLBACK);
 689			goto out;
 690		}
 691		count_vm_event(THP_FAULT_ALLOC);
 692		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
 693			put_page(page);
 694			goto out;
 695		}
 696
 697		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
 698	}
 699out:
 700	/*
 701	 * Use __pte_alloc instead of pte_alloc_map, because we can't
 702	 * run pte_offset_map on the pmd, if an huge pmd could
 703	 * materialize from under us from a different thread.
 704	 */
 705	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
 706		return VM_FAULT_OOM;
 707	/* if an huge pmd materialized from under us just retry later */
 708	if (unlikely(pmd_trans_huge(*pmd)))
 709		return 0;
 
 
 
 
 
 
 
 
 710	/*
 711	 * A regular pmd is established and it can't morph into a huge pmd
 712	 * from under us anymore at this point because we hold the mmap_sem
 713	 * read mode and khugepaged takes it in write mode. So now it's
 714	 * safe to run pte_offset_map().
 715	 */
 716	pte = pte_offset_map(pmd, address);
 717	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 
 
 
 
 
 
 
 
 
 
 718}
 719
 720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 721		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 722		  struct vm_area_struct *vma)
 723{
 
 724	struct page *src_page;
 725	pmd_t pmd;
 726	pgtable_t pgtable;
 727	int ret;
 
 
 
 
 728
 729	ret = -ENOMEM;
 730	pgtable = pte_alloc_one(dst_mm, addr);
 731	if (unlikely(!pgtable))
 732		goto out;
 733
 734	spin_lock(&dst_mm->page_table_lock);
 735	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
 
 736
 737	ret = -EAGAIN;
 738	pmd = *src_pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739	if (unlikely(!pmd_trans_huge(pmd))) {
 740		pte_free(dst_mm, pgtable);
 741		goto out_unlock;
 742	}
 743	if (unlikely(pmd_trans_splitting(pmd))) {
 744		/* split huge page running from under us */
 745		spin_unlock(&src_mm->page_table_lock);
 746		spin_unlock(&dst_mm->page_table_lock);
 747		pte_free(dst_mm, pgtable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 748
 749		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 750		goto out;
 751	}
 752	src_page = pmd_page(pmd);
 753	VM_BUG_ON(!PageHead(src_page));
 754	get_page(src_page);
 755	page_dup_rmap(src_page);
 756	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 
 
 757
 758	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 759	pmd = pmd_mkold(pmd_wrprotect(pmd));
 760	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 761	prepare_pmd_huge_pte(pgtable, dst_mm);
 762
 763	ret = 0;
 764out_unlock:
 765	spin_unlock(&src_mm->page_table_lock);
 766	spin_unlock(&dst_mm->page_table_lock);
 767out:
 768	return ret;
 769}
 770
 771/* no "address" argument so destroys page coloring of some arch */
 772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773{
 774	pgtable_t pgtable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775
 776	assert_spin_locked(&mm->page_table_lock);
 
 
 777
 778	/* FIFO */
 779	pgtable = mm->pmd_huge_pte;
 780	if (list_empty(&pgtable->lru))
 781		mm->pmd_huge_pte = NULL;
 782	else {
 783		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
 784					      struct page, lru);
 785		list_del(&pgtable->lru);
 786	}
 787	return pgtable;
 788}
 789
 790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 791					struct vm_area_struct *vma,
 792					unsigned long address,
 793					pmd_t *pmd, pmd_t orig_pmd,
 794					struct page *page,
 795					unsigned long haddr)
 796{
 
 
 
 797	pgtable_t pgtable;
 798	pmd_t _pmd;
 799	int ret = 0, i;
 800	struct page **pages;
 
 
 801
 802	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 803			GFP_KERNEL);
 804	if (unlikely(!pages)) {
 805		ret |= VM_FAULT_OOM;
 806		goto out;
 807	}
 808
 809	for (i = 0; i < HPAGE_PMD_NR; i++) {
 810		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 811					       __GFP_OTHER_NODE,
 812					       vma, address, page_to_nid(page));
 813		if (unlikely(!pages[i] ||
 814			     mem_cgroup_newpage_charge(pages[i], mm,
 815						       GFP_KERNEL))) {
 816			if (pages[i])
 817				put_page(pages[i]);
 818			mem_cgroup_uncharge_start();
 819			while (--i >= 0) {
 820				mem_cgroup_uncharge_page(pages[i]);
 
 
 
 821				put_page(pages[i]);
 822			}
 823			mem_cgroup_uncharge_end();
 824			kfree(pages);
 825			ret |= VM_FAULT_OOM;
 826			goto out;
 827		}
 
 828	}
 829
 830	for (i = 0; i < HPAGE_PMD_NR; i++) {
 831		copy_user_highpage(pages[i], page + i,
 832				   haddr + PAGE_SHIFT*i, vma);
 833		__SetPageUptodate(pages[i]);
 834		cond_resched();
 835	}
 836
 837	spin_lock(&mm->page_table_lock);
 838	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 
 
 
 
 839		goto out_free_pages;
 840	VM_BUG_ON(!PageHead(page));
 841
 842	pmdp_clear_flush_notify(vma, haddr, pmd);
 843	/* leave pmd empty until pte is filled */
 
 
 
 
 
 
 
 844
 845	pgtable = get_pmd_huge_pte(mm);
 846	pmd_populate(mm, &_pmd, pgtable);
 847
 848	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 849		pte_t *pte, entry;
 850		entry = mk_pte(pages[i], vma->vm_page_prot);
 851		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 852		page_add_new_anon_rmap(pages[i], vma, haddr);
 853		pte = pte_offset_map(&_pmd, haddr);
 854		VM_BUG_ON(!pte_none(*pte));
 855		set_pte_at(mm, haddr, pte, entry);
 856		pte_unmap(pte);
 
 
 
 
 857	}
 858	kfree(pages);
 859
 860	mm->nr_ptes++;
 861	smp_wmb(); /* make pte visible before pmd */
 862	pmd_populate(mm, pmd, pgtable);
 863	page_remove_rmap(page);
 864	spin_unlock(&mm->page_table_lock);
 
 
 
 
 
 
 
 865
 866	ret |= VM_FAULT_WRITE;
 867	put_page(page);
 868
 869out:
 870	return ret;
 871
 872out_free_pages:
 873	spin_unlock(&mm->page_table_lock);
 874	mem_cgroup_uncharge_start();
 875	for (i = 0; i < HPAGE_PMD_NR; i++) {
 876		mem_cgroup_uncharge_page(pages[i]);
 
 
 877		put_page(pages[i]);
 878	}
 879	mem_cgroup_uncharge_end();
 880	kfree(pages);
 881	goto out;
 882}
 883
 884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 885			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
 886{
 
 
 
 
 
 
 
 887	int ret = 0;
 888	struct page *page, *new_page;
 889	unsigned long haddr;
 890
 891	VM_BUG_ON(!vma->anon_vma);
 892	spin_lock(&mm->page_table_lock);
 893	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 
 
 
 894		goto out_unlock;
 895
 896	page = pmd_page(orig_pmd);
 897	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
 898	haddr = address & HPAGE_PMD_MASK;
 899	if (page_mapcount(page) == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900		pmd_t entry;
 901		entry = pmd_mkyoung(orig_pmd);
 902		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 903		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
 904			update_mmu_cache(vma, address, entry);
 905		ret |= VM_FAULT_WRITE;
 
 906		goto out_unlock;
 907	}
 
 908	get_page(page);
 909	spin_unlock(&mm->page_table_lock);
 910
 911	if (transparent_hugepage_enabled(vma) &&
 912	    !transparent_hugepage_debug_cow())
 913		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 914					      vma, haddr, numa_node_id(), 0);
 915	else
 916		new_page = NULL;
 917
 918	if (unlikely(!new_page)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 919		count_vm_event(THP_FAULT_FALLBACK);
 920		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
 921						   pmd, orig_pmd, page, haddr);
 922		put_page(page);
 923		goto out;
 924	}
 925	count_vm_event(THP_FAULT_ALLOC);
 926
 927	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
 
 928		put_page(new_page);
 929		put_page(page);
 930		ret |= VM_FAULT_OOM;
 
 
 
 931		goto out;
 932	}
 933
 934	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 
 
 
 
 
 935	__SetPageUptodate(new_page);
 936
 937	spin_lock(&mm->page_table_lock);
 938	put_page(page);
 939	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
 940		mem_cgroup_uncharge_page(new_page);
 
 
 
 
 
 
 941		put_page(new_page);
 
 942	} else {
 943		pmd_t entry;
 944		VM_BUG_ON(!PageHead(page));
 945		entry = mk_pmd(new_page, vma->vm_page_prot);
 946		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 947		entry = pmd_mkhuge(entry);
 948		pmdp_clear_flush_notify(vma, haddr, pmd);
 949		page_add_new_anon_rmap(new_page, vma, haddr);
 950		set_pmd_at(mm, haddr, pmd, entry);
 951		update_mmu_cache(vma, address, entry);
 952		page_remove_rmap(page);
 953		put_page(page);
 
 
 
 
 
 
 954		ret |= VM_FAULT_WRITE;
 955	}
 
 
 
 
 
 
 
 
 
 
 956out_unlock:
 957	spin_unlock(&mm->page_table_lock);
 958out:
 959	return ret;
 960}
 961
 962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
 
 
 
 
 
 
 
 
 
 
 963				   unsigned long addr,
 964				   pmd_t *pmd,
 965				   unsigned int flags)
 966{
 
 967	struct page *page = NULL;
 968
 969	assert_spin_locked(&mm->page_table_lock);
 
 
 
 
 
 
 
 970
 971	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 
 972		goto out;
 973
 974	page = pmd_page(*pmd);
 975	VM_BUG_ON(!PageHead(page));
 976	if (flags & FOLL_TOUCH) {
 977		pmd_t _pmd;
 
 978		/*
 979		 * We should set the dirty bit only for FOLL_WRITE but
 980		 * for now the dirty bit in the pmd is meaningless.
 981		 * And if the dirty bit will become meaningful and
 982		 * we'll only set it with FOLL_WRITE, an atomic
 983		 * set_bit will be required on the pmd to set the
 984		 * young bit, instead of the current set_pmd_at.
 
 
 
 
 
 
 
 
 
 
 
 
 985		 */
 986		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 987		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
 
 
 
 
 
 
 
 
 
 988	}
 
 989	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 990	VM_BUG_ON(!PageCompound(page));
 991	if (flags & FOLL_GET)
 992		get_page(page);
 993
 994out:
 995	return page;
 996}
 997
 998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 999		 pmd_t *pmd)
1000{
1001	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1002
1003	spin_lock(&tlb->mm->page_table_lock);
1004	if (likely(pmd_trans_huge(*pmd))) {
1005		if (unlikely(pmd_trans_splitting(*pmd))) {
1006			spin_unlock(&tlb->mm->page_table_lock);
1007			wait_split_huge_page(vma->anon_vma,
1008					     pmd);
1009		} else {
1010			struct page *page;
1011			pgtable_t pgtable;
1012			pgtable = get_pmd_huge_pte(tlb->mm);
1013			page = pmd_page(*pmd);
1014			pmd_clear(pmd);
1015			page_remove_rmap(page);
1016			VM_BUG_ON(page_mapcount(page) < 0);
1017			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018			VM_BUG_ON(!PageHead(page));
1019			spin_unlock(&tlb->mm->page_table_lock);
1020			tlb_remove_page(tlb, page);
1021			pte_free(tlb->mm, pgtable);
1022			ret = 1;
1023		}
1024	} else
1025		spin_unlock(&tlb->mm->page_table_lock);
1026
1027	return ret;
1028}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031		unsigned long addr, unsigned long end,
1032		unsigned char *vec)
1033{
1034	int ret = 0;
 
 
1035
1036	spin_lock(&vma->vm_mm->page_table_lock);
1037	if (likely(pmd_trans_huge(*pmd))) {
1038		ret = !pmd_trans_splitting(*pmd);
1039		spin_unlock(&vma->vm_mm->page_table_lock);
1040		if (unlikely(!ret))
1041			wait_split_huge_page(vma->anon_vma, pmd);
1042		else {
1043			/*
1044			 * All logical pages in the range are present
1045			 * if backed by a huge page.
1046			 */
1047			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048		}
1049	} else
1050		spin_unlock(&vma->vm_mm->page_table_lock);
1051
1052	return ret;
1053}
 
 
 
 
1054
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056		unsigned long addr, pgprot_t newprot)
1057{
1058	struct mm_struct *mm = vma->vm_mm;
1059	int ret = 0;
 
 
 
 
 
 
 
 
1060
1061	spin_lock(&mm->page_table_lock);
1062	if (likely(pmd_trans_huge(*pmd))) {
1063		if (unlikely(pmd_trans_splitting(*pmd))) {
1064			spin_unlock(&mm->page_table_lock);
1065			wait_split_huge_page(vma->anon_vma, pmd);
1066		} else {
1067			pmd_t entry;
1068
1069			entry = pmdp_get_and_clear(mm, addr, pmd);
1070			entry = pmd_modify(entry, newprot);
1071			set_pmd_at(mm, addr, pmd, entry);
1072			spin_unlock(&vma->vm_mm->page_table_lock);
1073			flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074			ret = 1;
1075		}
1076	} else
1077		spin_unlock(&vma->vm_mm->page_table_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078
1079	return ret;
 
 
 
 
 
 
 
 
1080}
1081
1082pmd_t *page_check_address_pmd(struct page *page,
1083			      struct mm_struct *mm,
1084			      unsigned long address,
1085			      enum page_check_address_pmd_flag flag)
 
 
1086{
1087	pgd_t *pgd;
1088	pud_t *pud;
1089	pmd_t *pmd, *ret = NULL;
 
 
 
 
 
 
 
 
1090
1091	if (address & ~HPAGE_PMD_MASK)
 
1092		goto out;
1093
1094	pgd = pgd_offset(mm, address);
1095	if (!pgd_present(*pgd))
 
1096		goto out;
 
1097
1098	pud = pud_offset(pgd, address);
1099	if (!pud_present(*pud))
 
 
 
 
1100		goto out;
1101
1102	pmd = pmd_offset(pud, address);
1103	if (pmd_none(*pmd))
1104		goto out;
1105	if (pmd_page(*pmd) != page)
1106		goto out;
 
1107	/*
1108	 * split_vma() may create temporary aliased mappings. There is
1109	 * no risk as long as all huge pmd are found and have their
1110	 * splitting bit set before __split_huge_page_refcount
1111	 * runs. Finding the same huge pmd more than once during the
1112	 * same rmap walk is not a problem.
1113	 */
1114	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115	    pmd_trans_splitting(*pmd))
1116		goto out;
1117	if (pmd_trans_huge(*pmd)) {
1118		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119			  !pmd_trans_splitting(*pmd));
1120		ret = pmd;
1121	}
1122out:
1123	return ret;
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127				       struct vm_area_struct *vma,
1128				       unsigned long address)
1129{
1130	struct mm_struct *mm = vma->vm_mm;
1131	pmd_t *pmd;
1132	int ret = 0;
 
1133
1134	spin_lock(&mm->page_table_lock);
1135	pmd = page_check_address_pmd(page, mm, address,
1136				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137	if (pmd) {
1138		/*
1139		 * We can't temporarily set the pmd to null in order
1140		 * to split it, the pmd must remain marked huge at all
1141		 * times or the VM won't take the pmd_trans_huge paths
1142		 * and it won't wait on the anon_vma->root->mutex to
1143		 * serialize against split_huge_page*.
1144		 */
1145		pmdp_splitting_flush_notify(vma, address, pmd);
1146		ret = 1;
1147	}
1148	spin_unlock(&mm->page_table_lock);
1149
 
 
 
 
 
1150	return ret;
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
1154{
1155	int i;
1156	unsigned long head_index = page->index;
1157	struct zone *zone = page_zone(page);
1158	int zonestat;
1159
1160	/* prevent PageLRU to go away from under us, and freeze lru stats */
1161	spin_lock_irq(&zone->lru_lock);
1162	compound_lock(page);
 
1163
1164	for (i = 1; i < HPAGE_PMD_NR; i++) {
1165		struct page *page_tail = page + i;
 
 
 
1166
1167		/* tail_page->_count cannot change */
1168		atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169		BUG_ON(page_count(page) <= 0);
1170		atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171		BUG_ON(atomic_read(&page_tail->_count) <= 0);
1172
1173		/* after clearing PageTail the gup refcount can be released */
1174		smp_mb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175
1176		/*
1177		 * retain hwpoison flag of the poisoned tail page:
1178		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1179		 *   by the memory-failure.
1180		 */
1181		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182		page_tail->flags |= (page->flags &
1183				     ((1L << PG_referenced) |
1184				      (1L << PG_swapbacked) |
1185				      (1L << PG_mlocked) |
1186				      (1L << PG_uptodate)));
1187		page_tail->flags |= (1L << PG_dirty);
 
 
1188
1189		/*
1190		 * 1) clear PageTail before overwriting first_page
1191		 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192		 */
1193		smp_wmb();
 
 
 
1194
1195		/*
1196		 * __split_huge_page_splitting() already set the
1197		 * splitting bit in all pmd that could map this
1198		 * hugepage, that will ensure no CPU can alter the
1199		 * mapcount on the head page. The mapcount is only
1200		 * accounted in the head page and it has to be
1201		 * transferred to all tail pages in the below code. So
1202		 * for this code to be safe, the split the mapcount
1203		 * can't change. But that doesn't mean userland can't
1204		 * keep changing and reading the page contents while
1205		 * we transfer the mapcount, so the pmd splitting
1206		 * status is achieved setting a reserved bit in the
1207		 * pmd, not by clearing the present bit.
1208		*/
1209		BUG_ON(page_mapcount(page_tail));
1210		page_tail->_mapcount = page->_mapcount;
1211
1212		BUG_ON(page_tail->mapping);
1213		page_tail->mapping = page->mapping;
 
 
 
 
 
 
 
 
 
 
 
 
1214
1215		page_tail->index = ++head_index;
 
 
 
 
 
 
 
 
 
1216
1217		BUG_ON(!PageAnon(page_tail));
1218		BUG_ON(!PageUptodate(page_tail));
1219		BUG_ON(!PageDirty(page_tail));
1220		BUG_ON(!PageSwapBacked(page_tail));
 
 
 
 
1221
1222		mem_cgroup_split_huge_fixup(page, page_tail);
 
 
 
1223
1224		lru_add_page_tail(zone, page, page_tail);
 
 
 
 
 
 
1225	}
1226
1227	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1229
1230	/*
1231	 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232	 * so adjust those appropriately if this page is on the LRU.
1233	 */
1234	if (PageLRU(page)) {
1235		zonestat = NR_LRU_BASE + page_lru(page);
1236		__mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237	}
 
 
 
 
 
1238
1239	ClearPageCompound(page);
1240	compound_unlock(page);
1241	spin_unlock_irq(&zone->lru_lock);
1242
1243	for (i = 1; i < HPAGE_PMD_NR; i++) {
1244		struct page *page_tail = page + i;
1245		BUG_ON(page_count(page_tail) <= 0);
1246		/*
1247		 * Tail pages may be freed if there wasn't any mapping
1248		 * like if add_to_swap() is running on a lru page that
1249		 * had its mapping zapped. And freeing these pages
1250		 * requires taking the lru_lock so we do the put_page
1251		 * of the tail pages after the split is complete.
1252		 */
1253		put_page(page_tail);
1254	}
1255
1256	/*
1257	 * Only the head page (now become a regular page) is required
1258	 * to be pinned by the caller.
1259	 */
1260	BUG_ON(page_count(page) <= 0);
1261}
1262
1263static int __split_huge_page_map(struct page *page,
1264				 struct vm_area_struct *vma,
1265				 unsigned long address)
 
 
 
 
 
1266{
1267	struct mm_struct *mm = vma->vm_mm;
1268	pmd_t *pmd, _pmd;
1269	int ret = 0, i;
1270	pgtable_t pgtable;
1271	unsigned long haddr;
 
 
 
 
 
 
 
1272
1273	spin_lock(&mm->page_table_lock);
1274	pmd = page_check_address_pmd(page, mm, address,
1275				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276	if (pmd) {
1277		pgtable = get_pmd_huge_pte(mm);
1278		pmd_populate(mm, &_pmd, pgtable);
1279
1280		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281		     i++, haddr += PAGE_SIZE) {
1282			pte_t *pte, entry;
1283			BUG_ON(PageCompound(page+i));
1284			entry = mk_pte(page + i, vma->vm_page_prot);
1285			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286			if (!pmd_write(*pmd))
1287				entry = pte_wrprotect(entry);
1288			else
1289				BUG_ON(page_mapcount(page) != 1);
1290			if (!pmd_young(*pmd))
1291				entry = pte_mkold(entry);
1292			pte = pte_offset_map(&_pmd, haddr);
1293			BUG_ON(!pte_none(*pte));
1294			set_pte_at(mm, haddr, pte, entry);
1295			pte_unmap(pte);
1296		}
1297
1298		mm->nr_ptes++;
1299		smp_wmb(); /* make pte visible before pmd */
1300		/*
1301		 * Up to this point the pmd is present and huge and
1302		 * userland has the whole access to the hugepage
1303		 * during the split (which happens in place). If we
1304		 * overwrite the pmd with the not-huge version
1305		 * pointing to the pte here (which of course we could
1306		 * if all CPUs were bug free), userland could trigger
1307		 * a small page size TLB miss on the small sized TLB
1308		 * while the hugepage TLB entry is still established
1309		 * in the huge TLB. Some CPU doesn't like that. See
1310		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311		 * Erratum 383 on page 93. Intel should be safe but is
1312		 * also warns that it's only safe if the permission
1313		 * and cache attributes of the two entries loaded in
1314		 * the two TLB is identical (which should be the case
1315		 * here). But it is generally safer to never allow
1316		 * small and huge TLB entries for the same virtual
1317		 * address to be loaded simultaneously. So instead of
1318		 * doing "pmd_populate(); flush_tlb_range();" we first
1319		 * mark the current pmd notpresent (atomically because
1320		 * here the pmd_trans_huge and pmd_trans_splitting
1321		 * must remain set at all times on the pmd until the
1322		 * split is complete for this pmd), then we flush the
1323		 * SMP TLB and finally we write the non-huge version
1324		 * of the pmd entry with pmd_populate.
1325		 */
1326		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328		pmd_populate(mm, pmd, pgtable);
1329		ret = 1;
1330	}
1331	spin_unlock(&mm->page_table_lock);
1332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1333	return ret;
1334}
1335
1336/* must be called with anon_vma->root->mutex hold */
1337static void __split_huge_page(struct page *page,
1338			      struct anon_vma *anon_vma)
1339{
1340	int mapcount, mapcount2;
1341	struct anon_vma_chain *avc;
1342
1343	BUG_ON(!PageHead(page));
1344	BUG_ON(PageTail(page));
1345
1346	mapcount = 0;
1347	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348		struct vm_area_struct *vma = avc->vma;
1349		unsigned long addr = vma_address(page, vma);
1350		BUG_ON(is_vma_temporary_stack(vma));
1351		if (addr == -EFAULT)
1352			continue;
1353		mapcount += __split_huge_page_splitting(page, vma, addr);
1354	}
1355	/*
1356	 * It is critical that new vmas are added to the tail of the
1357	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358	 * and establishes a child pmd before
1359	 * __split_huge_page_splitting() freezes the parent pmd (so if
1360	 * we fail to prevent copy_huge_pmd() from running until the
1361	 * whole __split_huge_page() is complete), we will still see
1362	 * the newly established pmd of the child later during the
1363	 * walk, to be able to set it as pmd_trans_splitting too.
1364	 */
1365	if (mapcount != page_mapcount(page))
1366		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367		       mapcount, page_mapcount(page));
1368	BUG_ON(mapcount != page_mapcount(page));
1369
1370	__split_huge_page_refcount(page);
1371
1372	mapcount2 = 0;
1373	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374		struct vm_area_struct *vma = avc->vma;
1375		unsigned long addr = vma_address(page, vma);
1376		BUG_ON(is_vma_temporary_stack(vma));
1377		if (addr == -EFAULT)
1378			continue;
1379		mapcount2 += __split_huge_page_map(page, vma, addr);
1380	}
1381	if (mapcount != mapcount2)
1382		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383		       mapcount, mapcount2, page_mapcount(page));
1384	BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
 
 
 
 
 
 
1388{
1389	struct anon_vma *anon_vma;
1390	int ret = 1;
1391
1392	BUG_ON(!PageAnon(page));
1393	anon_vma = page_lock_anon_vma(page);
1394	if (!anon_vma)
1395		goto out;
1396	ret = 0;
1397	if (!PageCompound(page))
1398		goto out_unlock;
1399
1400	BUG_ON(!PageSwapBacked(page));
1401	__split_huge_page(page, anon_vma);
1402	count_vm_event(THP_SPLIT);
1403
1404	BUG_ON(PageCompound(page));
1405out_unlock:
1406	page_unlock_anon_vma(anon_vma);
1407out:
1408	return ret;
1409}
1410
1411#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1412		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
 
 
 
 
1413
1414int hugepage_madvise(struct vm_area_struct *vma,
1415		     unsigned long *vm_flags, int advice)
1416{
1417	switch (advice) {
1418	case MADV_HUGEPAGE:
1419		/*
1420		 * Be somewhat over-protective like KSM for now!
1421		 */
1422		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1423			return -EINVAL;
1424		*vm_flags &= ~VM_NOHUGEPAGE;
1425		*vm_flags |= VM_HUGEPAGE;
1426		/*
1427		 * If the vma become good for khugepaged to scan,
1428		 * register it here without waiting a page fault that
1429		 * may not happen any time soon.
1430		 */
1431		if (unlikely(khugepaged_enter_vma_merge(vma)))
1432			return -ENOMEM;
1433		break;
1434	case MADV_NOHUGEPAGE:
1435		/*
1436		 * Be somewhat over-protective like KSM for now!
1437		 */
1438		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1439			return -EINVAL;
1440		*vm_flags &= ~VM_HUGEPAGE;
1441		*vm_flags |= VM_NOHUGEPAGE;
1442		/*
1443		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1444		 * this vma even if we leave the mm registered in khugepaged if
1445		 * it got registered before VM_NOHUGEPAGE was set.
1446		 */
1447		break;
1448	}
1449
1450	return 0;
1451}
1452
1453static int __init khugepaged_slab_init(void)
 
1454{
1455	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1456					  sizeof(struct mm_slot),
1457					  __alignof__(struct mm_slot), 0, NULL);
1458	if (!mm_slot_cache)
1459		return -ENOMEM;
1460
1461	return 0;
1462}
1463
1464static void __init khugepaged_slab_free(void)
1465{
1466	kmem_cache_destroy(mm_slot_cache);
1467	mm_slot_cache = NULL;
1468}
1469
1470static inline struct mm_slot *alloc_mm_slot(void)
 
1471{
1472	if (!mm_slot_cache)	/* initialization failed */
1473		return NULL;
1474	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1475}
1476
1477static inline void free_mm_slot(struct mm_slot *mm_slot)
1478{
1479	kmem_cache_free(mm_slot_cache, mm_slot);
1480}
 
1481
1482static int __init mm_slots_hash_init(void)
1483{
1484	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1485				GFP_KERNEL);
1486	if (!mm_slots_hash)
1487		return -ENOMEM;
1488	return 0;
 
1489}
 
1490
1491#if 0
1492static void __init mm_slots_hash_free(void)
1493{
1494	kfree(mm_slots_hash);
1495	mm_slots_hash = NULL;
1496}
1497#endif
1498
1499static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1500{
1501	struct mm_slot *mm_slot;
1502	struct hlist_head *bucket;
1503	struct hlist_node *node;
1504
1505	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1506				% MM_SLOTS_HASH_HEADS];
1507	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1508		if (mm == mm_slot->mm)
1509			return mm_slot;
1510	}
1511	return NULL;
1512}
1513
1514static void insert_to_mm_slots_hash(struct mm_struct *mm,
1515				    struct mm_slot *mm_slot)
1516{
1517	struct hlist_head *bucket;
1518
1519	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1520				% MM_SLOTS_HASH_HEADS];
1521	mm_slot->mm = mm;
1522	hlist_add_head(&mm_slot->hash, bucket);
 
 
 
 
 
 
 
1523}
1524
1525static inline int khugepaged_test_exit(struct mm_struct *mm)
 
1526{
1527	return atomic_read(&mm->mm_users) == 0;
1528}
 
 
 
 
 
1529
1530int __khugepaged_enter(struct mm_struct *mm)
1531{
1532	struct mm_slot *mm_slot;
1533	int wakeup;
 
1534
1535	mm_slot = alloc_mm_slot();
1536	if (!mm_slot)
1537		return -ENOMEM;
1538
1539	/* __khugepaged_exit() must not run from under us */
1540	VM_BUG_ON(khugepaged_test_exit(mm));
1541	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1542		free_mm_slot(mm_slot);
1543		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544	}
1545
1546	spin_lock(&khugepaged_mm_lock);
1547	insert_to_mm_slots_hash(mm, mm_slot);
1548	/*
1549	 * Insert just behind the scanning cursor, to let the area settle
1550	 * down a little.
1551	 */
1552	wakeup = list_empty(&khugepaged_scan.mm_head);
1553	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1554	spin_unlock(&khugepaged_mm_lock);
1555
1556	atomic_inc(&mm->mm_count);
1557	if (wakeup)
1558		wake_up_interruptible(&khugepaged_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559
1560	return 0;
1561}
 
 
 
 
 
 
 
 
 
 
1562
1563int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1564{
1565	unsigned long hstart, hend;
1566	if (!vma->anon_vma)
1567		/*
1568		 * Not yet faulted in so we will register later in the
1569		 * page fault if needed.
1570		 */
1571		return 0;
1572	if (vma->vm_ops)
1573		/* khugepaged not yet working on file or special mappings */
1574		return 0;
1575	/*
1576	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1577	 * true too, verify it here.
1578	 */
1579	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1580	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1581	hend = vma->vm_end & HPAGE_PMD_MASK;
1582	if (hstart < hend)
1583		return khugepaged_enter(vma);
1584	return 0;
1585}
1586
1587void __khugepaged_exit(struct mm_struct *mm)
1588{
1589	struct mm_slot *mm_slot;
1590	int free = 0;
1591
1592	spin_lock(&khugepaged_mm_lock);
1593	mm_slot = get_mm_slot(mm);
1594	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1595		hlist_del(&mm_slot->hash);
1596		list_del(&mm_slot->mm_node);
1597		free = 1;
1598	}
1599	spin_unlock(&khugepaged_mm_lock);
1600
1601	if (free) {
1602		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1603		free_mm_slot(mm_slot);
1604		mmdrop(mm);
1605	} else if (mm_slot) {
1606		/*
1607		 * This is required to serialize against
1608		 * khugepaged_test_exit() (which is guaranteed to run
1609		 * under mmap sem read mode). Stop here (after we
1610		 * return all pagetables will be destroyed) until
1611		 * khugepaged has finished working on the pagetables
1612		 * under the mmap_sem.
1613		 */
1614		down_write(&mm->mmap_sem);
1615		up_write(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616	}
1617}
1618
1619static void release_pte_page(struct page *page)
1620{
1621	/* 0 stands for page_is_file_cache(page) == false */
1622	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1623	unlock_page(page);
1624	putback_lru_page(page);
1625}
1626
1627static void release_pte_pages(pte_t *pte, pte_t *_pte)
1628{
1629	while (--_pte >= pte) {
1630		pte_t pteval = *_pte;
1631		if (!pte_none(pteval))
1632			release_pte_page(pte_page(pteval));
1633	}
1634}
1635
1636static void release_all_pte_pages(pte_t *pte)
1637{
1638	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1639}
1640
1641static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1642					unsigned long address,
1643					pte_t *pte)
1644{
1645	struct page *page;
1646	pte_t *_pte;
1647	int referenced = 0, isolated = 0, none = 0;
1648	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1649	     _pte++, address += PAGE_SIZE) {
1650		pte_t pteval = *_pte;
1651		if (pte_none(pteval)) {
1652			if (++none <= khugepaged_max_ptes_none)
1653				continue;
1654			else {
1655				release_pte_pages(pte, _pte);
1656				goto out;
1657			}
1658		}
1659		if (!pte_present(pteval) || !pte_write(pteval)) {
1660			release_pte_pages(pte, _pte);
1661			goto out;
1662		}
1663		page = vm_normal_page(vma, address, pteval);
1664		if (unlikely(!page)) {
1665			release_pte_pages(pte, _pte);
1666			goto out;
1667		}
1668		VM_BUG_ON(PageCompound(page));
1669		BUG_ON(!PageAnon(page));
1670		VM_BUG_ON(!PageSwapBacked(page));
1671
1672		/* cannot use mapcount: can't collapse if there's a gup pin */
1673		if (page_count(page) != 1) {
1674			release_pte_pages(pte, _pte);
1675			goto out;
1676		}
1677		/*
1678		 * We can do it before isolate_lru_page because the
1679		 * page can't be freed from under us. NOTE: PG_lock
1680		 * is needed to serialize against split_huge_page
1681		 * when invoked from the VM.
1682		 */
1683		if (!trylock_page(page)) {
1684			release_pte_pages(pte, _pte);
1685			goto out;
1686		}
1687		/*
1688		 * Isolate the page to avoid collapsing an hugepage
1689		 * currently in use by the VM.
1690		 */
1691		if (isolate_lru_page(page)) {
1692			unlock_page(page);
1693			release_pte_pages(pte, _pte);
1694			goto out;
1695		}
1696		/* 0 stands for page_is_file_cache(page) == false */
1697		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698		VM_BUG_ON(!PageLocked(page));
1699		VM_BUG_ON(PageLRU(page));
1700
1701		/* If there is no mapped pte young don't collapse the page */
1702		if (pte_young(pteval) || PageReferenced(page) ||
1703		    mmu_notifier_test_young(vma->vm_mm, address))
1704			referenced = 1;
1705	}
1706	if (unlikely(!referenced))
1707		release_all_pte_pages(pte);
1708	else
1709		isolated = 1;
1710out:
1711	return isolated;
1712}
1713
1714static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1715				      struct vm_area_struct *vma,
1716				      unsigned long address,
1717				      spinlock_t *ptl)
1718{
1719	pte_t *_pte;
1720	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1721		pte_t pteval = *_pte;
1722		struct page *src_page;
1723
1724		if (pte_none(pteval)) {
1725			clear_user_highpage(page, address);
1726			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1727		} else {
1728			src_page = pte_page(pteval);
1729			copy_user_highpage(page, src_page, address, vma);
1730			VM_BUG_ON(page_mapcount(src_page) != 1);
1731			VM_BUG_ON(page_count(src_page) != 2);
1732			release_pte_page(src_page);
1733			/*
1734			 * ptl mostly unnecessary, but preempt has to
1735			 * be disabled to update the per-cpu stats
1736			 * inside page_remove_rmap().
1737			 */
1738			spin_lock(ptl);
1739			/*
1740			 * paravirt calls inside pte_clear here are
1741			 * superfluous.
1742			 */
1743			pte_clear(vma->vm_mm, address, _pte);
1744			page_remove_rmap(src_page);
1745			spin_unlock(ptl);
1746			free_page_and_swap_cache(src_page);
1747		}
1748
1749		address += PAGE_SIZE;
1750		page++;
1751	}
1752}
1753
1754static void collapse_huge_page(struct mm_struct *mm,
1755			       unsigned long address,
1756			       struct page **hpage,
1757			       struct vm_area_struct *vma,
1758			       int node)
1759{
1760	pgd_t *pgd;
1761	pud_t *pud;
1762	pmd_t *pmd, _pmd;
1763	pte_t *pte;
1764	pgtable_t pgtable;
1765	struct page *new_page;
1766	spinlock_t *ptl;
1767	int isolated;
1768	unsigned long hstart, hend;
1769
1770	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1771#ifndef CONFIG_NUMA
1772	up_read(&mm->mmap_sem);
1773	VM_BUG_ON(!*hpage);
1774	new_page = *hpage;
1775#else
1776	VM_BUG_ON(*hpage);
1777	/*
1778	 * Allocate the page while the vma is still valid and under
1779	 * the mmap_sem read mode so there is no memory allocation
1780	 * later when we take the mmap_sem in write mode. This is more
1781	 * friendly behavior (OTOH it may actually hide bugs) to
1782	 * filesystems in userland with daemons allocating memory in
1783	 * the userland I/O paths.  Allocating memory with the
1784	 * mmap_sem in read mode is good idea also to allow greater
1785	 * scalability.
1786	 */
1787	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1788				      node, __GFP_OTHER_NODE);
1789
1790	/*
1791	 * After allocating the hugepage, release the mmap_sem read lock in
1792	 * preparation for taking it in write mode.
1793	 */
1794	up_read(&mm->mmap_sem);
1795	if (unlikely(!new_page)) {
1796		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1797		*hpage = ERR_PTR(-ENOMEM);
1798		return;
1799	}
1800#endif
1801
1802	count_vm_event(THP_COLLAPSE_ALLOC);
1803	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1804#ifdef CONFIG_NUMA
1805		put_page(new_page);
1806#endif
1807		return;
1808	}
1809
1810	/*
1811	 * Prevent all access to pagetables with the exception of
1812	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1813	 * handled by the anon_vma lock + PG_lock.
1814	 */
1815	down_write(&mm->mmap_sem);
1816	if (unlikely(khugepaged_test_exit(mm)))
1817		goto out;
1818
1819	vma = find_vma(mm, address);
1820	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1821	hend = vma->vm_end & HPAGE_PMD_MASK;
1822	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1823		goto out;
1824
1825	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1826	    (vma->vm_flags & VM_NOHUGEPAGE))
1827		goto out;
1828
1829	if (!vma->anon_vma || vma->vm_ops)
1830		goto out;
1831	if (is_vma_temporary_stack(vma))
1832		goto out;
 
 
 
1833	/*
1834	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1835	 * true too, verify it here.
 
 
 
 
 
 
 
 
 
1836	 */
1837	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
 
 
 
 
 
 
 
 
 
 
1838
1839	pgd = pgd_offset(mm, address);
1840	if (!pgd_present(*pgd))
1841		goto out;
 
 
 
 
1842
1843	pud = pud_offset(pgd, address);
1844	if (!pud_present(*pud))
1845		goto out;
1846
1847	pmd = pmd_offset(pud, address);
1848	/* pmd can't go away or become huge under us */
1849	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1850		goto out;
1851
1852	anon_vma_lock(vma->anon_vma);
 
1853
1854	pte = pte_offset_map(pmd, address);
1855	ptl = pte_lockptr(mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
1856
1857	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1858	/*
1859	 * After this gup_fast can't run anymore. This also removes
1860	 * any huge TLB entry from the CPU so we won't allow
1861	 * huge and small TLB entries for the same virtual address
1862	 * to avoid the risk of CPU bugs in that area.
1863	 */
1864	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1865	spin_unlock(&mm->page_table_lock);
 
 
1866
1867	spin_lock(ptl);
1868	isolated = __collapse_huge_page_isolate(vma, address, pte);
1869	spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870
1871	if (unlikely(!isolated)) {
1872		pte_unmap(pte);
1873		spin_lock(&mm->page_table_lock);
1874		BUG_ON(!pmd_none(*pmd));
1875		set_pmd_at(mm, address, pmd, _pmd);
1876		spin_unlock(&mm->page_table_lock);
1877		anon_vma_unlock(vma->anon_vma);
1878		goto out;
1879	}
 
 
 
 
 
 
 
 
1880
1881	/*
1882	 * All pages are isolated and locked so anon_vma rmap
1883	 * can't run anymore.
 
 
1884	 */
1885	anon_vma_unlock(vma->anon_vma);
 
 
 
 
 
 
 
 
 
 
1886
1887	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1888	pte_unmap(pte);
1889	__SetPageUptodate(new_page);
1890	pgtable = pmd_pgtable(_pmd);
1891	VM_BUG_ON(page_count(pgtable) != 1);
1892	VM_BUG_ON(page_mapcount(pgtable) != 0);
1893
1894	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1895	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1896	_pmd = pmd_mkhuge(_pmd);
1897
1898	/*
1899	 * spin_lock() below is not the equivalent of smp_wmb(), so
1900	 * this is needed to avoid the copy_huge_page writes to become
1901	 * visible after the set_pmd_at() write.
 
1902	 */
1903	smp_wmb();
 
 
 
 
 
 
 
 
 
1904
1905	spin_lock(&mm->page_table_lock);
1906	BUG_ON(!pmd_none(*pmd));
1907	page_add_new_anon_rmap(new_page, vma, address);
1908	set_pmd_at(mm, address, pmd, _pmd);
1909	update_mmu_cache(vma, address, entry);
1910	prepare_pmd_huge_pte(pgtable, mm);
1911	mm->nr_ptes--;
1912	spin_unlock(&mm->page_table_lock);
1913
1914#ifndef CONFIG_NUMA
1915	*hpage = NULL;
1916#endif
1917	khugepaged_pages_collapsed++;
1918out_up_write:
1919	up_write(&mm->mmap_sem);
1920	return;
1921
1922out:
1923	mem_cgroup_uncharge_page(new_page);
1924#ifdef CONFIG_NUMA
1925	put_page(new_page);
1926#endif
1927	goto out_up_write;
1928}
1929
1930static int khugepaged_scan_pmd(struct mm_struct *mm,
1931			       struct vm_area_struct *vma,
1932			       unsigned long address,
1933			       struct page **hpage)
1934{
1935	pgd_t *pgd;
1936	pud_t *pud;
1937	pmd_t *pmd;
1938	pte_t *pte, *_pte;
1939	int ret = 0, referenced = 0, none = 0;
1940	struct page *page;
1941	unsigned long _address;
1942	spinlock_t *ptl;
1943	int node = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944
1945	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
1946
1947	pgd = pgd_offset(mm, address);
1948	if (!pgd_present(*pgd))
1949		goto out;
1950
1951	pud = pud_offset(pgd, address);
1952	if (!pud_present(*pud))
1953		goto out;
1954
1955	pmd = pmd_offset(pud, address);
1956	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1957		goto out;
 
 
1958
1959	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1960	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1961	     _pte++, _address += PAGE_SIZE) {
1962		pte_t pteval = *_pte;
1963		if (pte_none(pteval)) {
1964			if (++none <= khugepaged_max_ptes_none)
1965				continue;
1966			else
1967				goto out_unmap;
1968		}
1969		if (!pte_present(pteval) || !pte_write(pteval))
1970			goto out_unmap;
1971		page = vm_normal_page(vma, _address, pteval);
1972		if (unlikely(!page))
1973			goto out_unmap;
1974		/*
1975		 * Chose the node of the first page. This could
1976		 * be more sophisticated and look at more pages,
1977		 * but isn't for now.
 
 
1978		 */
1979		if (node == -1)
1980			node = page_to_nid(page);
1981		VM_BUG_ON(PageCompound(page));
1982		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1983			goto out_unmap;
1984		/* cannot use mapcount: can't collapse if there's a gup pin */
1985		if (page_count(page) != 1)
1986			goto out_unmap;
1987		if (pte_young(pteval) || PageReferenced(page) ||
1988		    mmu_notifier_test_young(vma->vm_mm, address))
1989			referenced = 1;
1990	}
1991	if (referenced)
1992		ret = 1;
1993out_unmap:
1994	pte_unmap_unlock(pte, ptl);
1995	if (ret)
1996		/* collapse_huge_page will return with the mmap_sem released */
1997		collapse_huge_page(mm, address, hpage, vma, node);
1998out:
1999	return ret;
2000}
2001
2002static void collect_mm_slot(struct mm_slot *mm_slot)
2003{
2004	struct mm_struct *mm = mm_slot->mm;
2005
2006	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2007
2008	if (khugepaged_test_exit(mm)) {
2009		/* free mm_slot */
2010		hlist_del(&mm_slot->hash);
2011		list_del(&mm_slot->mm_node);
2012
2013		/*
2014		 * Not strictly needed because the mm exited already.
2015		 *
2016		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2017		 */
2018
2019		/* khugepaged_mm_lock actually not necessary for the below */
2020		free_mm_slot(mm_slot);
2021		mmdrop(mm);
2022	}
 
 
2023}
2024
2025static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2026					    struct page **hpage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2027{
2028	struct mm_slot *mm_slot;
2029	struct mm_struct *mm;
2030	struct vm_area_struct *vma;
2031	int progress = 0;
2032
2033	VM_BUG_ON(!pages);
2034	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2035
2036	if (khugepaged_scan.mm_slot)
2037		mm_slot = khugepaged_scan.mm_slot;
2038	else {
2039		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2040				     struct mm_slot, mm_node);
2041		khugepaged_scan.address = 0;
2042		khugepaged_scan.mm_slot = mm_slot;
2043	}
2044	spin_unlock(&khugepaged_mm_lock);
2045
2046	mm = mm_slot->mm;
2047	down_read(&mm->mmap_sem);
2048	if (unlikely(khugepaged_test_exit(mm)))
2049		vma = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2050	else
2051		vma = find_vma(mm, khugepaged_scan.address);
 
 
 
 
2052
2053	progress++;
2054	for (; vma; vma = vma->vm_next) {
2055		unsigned long hstart, hend;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056
2057		cond_resched();
2058		if (unlikely(khugepaged_test_exit(mm))) {
2059			progress++;
2060			break;
2061		}
2062
2063		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2064		     !khugepaged_always()) ||
2065		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2066		skip:
2067			progress++;
2068			continue;
2069		}
2070		if (!vma->anon_vma || vma->vm_ops)
2071			goto skip;
2072		if (is_vma_temporary_stack(vma))
2073			goto skip;
2074		/*
2075		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2076		 * must be true too, verify it here.
 
 
 
 
2077		 */
2078		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2079			  vma->vm_flags & VM_NO_THP);
 
 
 
 
 
 
 
2080
2081		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2082		hend = vma->vm_end & HPAGE_PMD_MASK;
2083		if (hstart >= hend)
2084			goto skip;
2085		if (khugepaged_scan.address > hend)
2086			goto skip;
2087		if (khugepaged_scan.address < hstart)
2088			khugepaged_scan.address = hstart;
2089		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2090
2091		while (khugepaged_scan.address < hend) {
2092			int ret;
2093			cond_resched();
2094			if (unlikely(khugepaged_test_exit(mm)))
2095				goto breakouterloop;
2096
2097			VM_BUG_ON(khugepaged_scan.address < hstart ||
2098				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2099				  hend);
2100			ret = khugepaged_scan_pmd(mm, vma,
2101						  khugepaged_scan.address,
2102						  hpage);
2103			/* move to next address */
2104			khugepaged_scan.address += HPAGE_PMD_SIZE;
2105			progress += HPAGE_PMD_NR;
2106			if (ret)
2107				/* we released mmap_sem so break loop */
2108				goto breakouterloop_mmap_sem;
2109			if (progress >= pages)
2110				goto breakouterloop;
2111		}
2112	}
2113breakouterloop:
2114	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2115breakouterloop_mmap_sem:
2116
2117	spin_lock(&khugepaged_mm_lock);
2118	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2119	/*
2120	 * Release the current mm_slot if this mm is about to die, or
2121	 * if we scanned all vmas of this mm.
2122	 */
2123	if (khugepaged_test_exit(mm) || !vma) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124		/*
2125		 * Make sure that if mm_users is reaching zero while
2126		 * khugepaged runs here, khugepaged_exit will find
2127		 * mm_slot not pointing to the exiting mm.
2128		 */
2129		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2130			khugepaged_scan.mm_slot = list_entry(
2131				mm_slot->mm_node.next,
2132				struct mm_slot, mm_node);
2133			khugepaged_scan.address = 0;
2134		} else {
2135			khugepaged_scan.mm_slot = NULL;
2136			khugepaged_full_scans++;
2137		}
 
 
 
 
 
 
 
 
 
 
 
2138
2139		collect_mm_slot(mm_slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2140	}
2141
2142	return progress;
 
 
 
 
 
 
 
 
 
2143}
2144
2145static int khugepaged_has_work(void)
2146{
2147	return !list_empty(&khugepaged_scan.mm_head) &&
2148		khugepaged_enabled();
 
 
 
 
 
 
 
 
2149}
2150
2151static int khugepaged_wait_event(void)
2152{
2153	return !list_empty(&khugepaged_scan.mm_head) ||
2154		!khugepaged_enabled();
 
 
 
 
 
 
 
 
 
 
2155}
2156
2157static void khugepaged_do_scan(struct page **hpage)
 
2158{
2159	unsigned int progress = 0, pass_through_head = 0;
2160	unsigned int pages = khugepaged_pages_to_scan;
 
2161
2162	barrier(); /* write khugepaged_pages_to_scan to local stack */
 
 
 
 
 
 
 
2163
2164	while (progress < pages) {
2165		cond_resched();
2166
2167#ifndef CONFIG_NUMA
2168		if (!*hpage) {
2169			*hpage = alloc_hugepage(khugepaged_defrag());
2170			if (unlikely(!*hpage)) {
2171				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2172				break;
2173			}
2174			count_vm_event(THP_COLLAPSE_ALLOC);
2175		}
2176#else
2177		if (IS_ERR(*hpage))
2178			break;
2179#endif
 
2180
2181		if (unlikely(kthread_should_stop() || freezing(current)))
2182			break;
 
 
 
 
 
 
 
 
 
2183
2184		spin_lock(&khugepaged_mm_lock);
2185		if (!khugepaged_scan.mm_slot)
2186			pass_through_head++;
2187		if (khugepaged_has_work() &&
2188		    pass_through_head < 2)
2189			progress += khugepaged_scan_mm_slot(pages - progress,
2190							    hpage);
2191		else
2192			progress = pages;
2193		spin_unlock(&khugepaged_mm_lock);
2194	}
2195}
2196
2197static void khugepaged_alloc_sleep(void)
2198{
2199	DEFINE_WAIT(wait);
2200	add_wait_queue(&khugepaged_wait, &wait);
2201	schedule_timeout_interruptible(
2202		msecs_to_jiffies(
2203			khugepaged_alloc_sleep_millisecs));
2204	remove_wait_queue(&khugepaged_wait, &wait);
2205}
2206
2207#ifndef CONFIG_NUMA
2208static struct page *khugepaged_alloc_hugepage(void)
2209{
2210	struct page *hpage;
2211
2212	do {
2213		hpage = alloc_hugepage(khugepaged_defrag());
2214		if (!hpage) {
2215			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2216			khugepaged_alloc_sleep();
2217		} else
2218			count_vm_event(THP_COLLAPSE_ALLOC);
2219	} while (unlikely(!hpage) &&
2220		 likely(khugepaged_enabled()));
2221	return hpage;
2222}
2223#endif
2224
2225static void khugepaged_loop(void)
 
2226{
2227	struct page *hpage;
 
 
 
2228
2229#ifdef CONFIG_NUMA
2230	hpage = NULL;
2231#endif
2232	while (likely(khugepaged_enabled())) {
2233#ifndef CONFIG_NUMA
2234		hpage = khugepaged_alloc_hugepage();
2235		if (unlikely(!hpage))
2236			break;
2237#else
2238		if (IS_ERR(hpage)) {
2239			khugepaged_alloc_sleep();
2240			hpage = NULL;
2241		}
2242#endif
2243
2244		khugepaged_do_scan(&hpage);
2245#ifndef CONFIG_NUMA
2246		if (hpage)
2247			put_page(hpage);
2248#endif
2249		try_to_freeze();
2250		if (unlikely(kthread_should_stop()))
2251			break;
2252		if (khugepaged_has_work()) {
2253			DEFINE_WAIT(wait);
2254			if (!khugepaged_scan_sleep_millisecs)
2255				continue;
2256			add_wait_queue(&khugepaged_wait, &wait);
2257			schedule_timeout_interruptible(
2258				msecs_to_jiffies(
2259					khugepaged_scan_sleep_millisecs));
2260			remove_wait_queue(&khugepaged_wait, &wait);
2261		} else if (khugepaged_enabled())
2262			wait_event_freezable(khugepaged_wait,
2263					     khugepaged_wait_event());
2264	}
2265}
2266
2267static int khugepaged(void *none)
2268{
2269	struct mm_slot *mm_slot;
2270
2271	set_freezable();
2272	set_user_nice(current, 19);
2273
2274	/* serialize with start_khugepaged() */
2275	mutex_lock(&khugepaged_mutex);
2276
2277	for (;;) {
2278		mutex_unlock(&khugepaged_mutex);
2279		VM_BUG_ON(khugepaged_thread != current);
2280		khugepaged_loop();
2281		VM_BUG_ON(khugepaged_thread != current);
2282
2283		mutex_lock(&khugepaged_mutex);
2284		if (!khugepaged_enabled())
2285			break;
2286		if (unlikely(kthread_should_stop()))
2287			break;
2288	}
2289
2290	spin_lock(&khugepaged_mm_lock);
2291	mm_slot = khugepaged_scan.mm_slot;
2292	khugepaged_scan.mm_slot = NULL;
2293	if (mm_slot)
2294		collect_mm_slot(mm_slot);
2295	spin_unlock(&khugepaged_mm_lock);
2296
2297	khugepaged_thread = NULL;
2298	mutex_unlock(&khugepaged_mutex);
2299
2300	return 0;
2301}
 
 
2302
2303void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2304{
2305	struct page *page;
2306
2307	spin_lock(&mm->page_table_lock);
2308	if (unlikely(!pmd_trans_huge(*pmd))) {
2309		spin_unlock(&mm->page_table_lock);
2310		return;
2311	}
2312	page = pmd_page(*pmd);
2313	VM_BUG_ON(!page_count(page));
2314	get_page(page);
2315	spin_unlock(&mm->page_table_lock);
2316
2317	split_huge_page(page);
2318
2319	put_page(page);
2320	BUG_ON(pmd_trans_huge(*pmd));
2321}
 
 
2322
2323static void split_huge_page_address(struct mm_struct *mm,
2324				    unsigned long address)
 
2325{
2326	pgd_t *pgd;
2327	pud_t *pud;
2328	pmd_t *pmd;
 
 
 
2329
2330	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
 
2331
2332	pgd = pgd_offset(mm, address);
2333	if (!pgd_present(*pgd))
2334		return;
2335
2336	pud = pud_offset(pgd, address);
2337	if (!pud_present(*pud))
2338		return;
 
 
 
 
 
 
 
 
 
2339
2340	pmd = pmd_offset(pud, address);
2341	if (!pmd_present(*pmd))
2342		return;
2343	/*
2344	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2345	 * materialize from under us.
2346	 */
2347	split_huge_page_pmd(mm, pmd);
2348}
2349
2350void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2351			     unsigned long start,
2352			     unsigned long end,
2353			     long adjust_next)
2354{
2355	/*
2356	 * If the new start address isn't hpage aligned and it could
2357	 * previously contain an hugepage: check if we need to split
2358	 * an huge pmd.
2359	 */
2360	if (start & ~HPAGE_PMD_MASK &&
2361	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2362	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2363		split_huge_page_address(vma->vm_mm, start);
2364
2365	/*
2366	 * If the new end address isn't hpage aligned and it could
2367	 * previously contain an hugepage: check if we need to split
2368	 * an huge pmd.
2369	 */
2370	if (end & ~HPAGE_PMD_MASK &&
2371	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2372	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2373		split_huge_page_address(vma->vm_mm, end);
2374
2375	/*
2376	 * If we're also updating the vma->vm_next->vm_start, if the new
2377	 * vm_next->vm_start isn't page aligned and it could previously
2378	 * contain an hugepage: check if we need to split an huge pmd.
2379	 */
2380	if (adjust_next > 0) {
2381		struct vm_area_struct *next = vma->vm_next;
2382		unsigned long nstart = next->vm_start;
2383		nstart += adjust_next << PAGE_SHIFT;
2384		if (nstart & ~HPAGE_PMD_MASK &&
2385		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2386		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2387			split_huge_page_address(next->vm_mm, nstart);
2388	}
 
 
 
2389}