Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
 
 
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
 
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
 
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
 
 
 
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 
 
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122			      struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126			      unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130			     int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132				struct pipe_inode_info *pipe, size_t len,
 133				unsigned int flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134
 135/*
 136 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *	in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141	.owner =	THIS_MODULE,
 142	.llseek =	no_llseek,
 143	.read_iter =	sock_read_iter,
 144	.write_iter =	sock_write_iter,
 145	.poll =		sock_poll,
 146	.unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148	.compat_ioctl = compat_sock_ioctl,
 149#endif
 
 150	.mmap =		sock_mmap,
 151	.release =	sock_close,
 152	.fasync =	sock_fasync,
 153	.sendpage =	sock_sendpage,
 154	.splice_write = generic_splice_sendpage,
 155	.splice_read =	sock_splice_read,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156};
 157
 158/*
 159 *	The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *	Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *	move_addr_to_kernel	-	copy a socket address into kernel space
 179 *	@uaddr: Address in user space
 180 *	@kaddr: Address in kernel space
 181 *	@ulen: Length in user space
 182 *
 183 *	The address is copied into kernel space. If the provided address is
 184 *	too long an error code of -EINVAL is returned. If the copy gives
 185 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191		return -EINVAL;
 192	if (ulen == 0)
 193		return 0;
 194	if (copy_from_user(kaddr, uaddr, ulen))
 195		return -EFAULT;
 196	return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *	move_addr_to_user	-	copy an address to user space
 201 *	@kaddr: kernel space address
 202 *	@klen: length of address in kernel
 203 *	@uaddr: user space address
 204 *	@ulen: pointer to user length field
 205 *
 206 *	The value pointed to by ulen on entry is the buffer length available.
 207 *	This is overwritten with the buffer space used. -EINVAL is returned
 208 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *	is returned if either the buffer or the length field are not
 210 *	accessible.
 211 *	After copying the data up to the limit the user specifies, the true
 212 *	length of the data is written over the length limit the user
 213 *	specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217			     void __user *uaddr, int __user *ulen)
 218{
 219	int err;
 220	int len;
 221
 222	BUG_ON(klen > sizeof(struct sockaddr_storage));
 223	err = get_user(len, ulen);
 224	if (err)
 225		return err;
 226	if (len > klen)
 227		len = klen;
 228	if (len < 0)
 229		return -EINVAL;
 230	if (len) {
 231		if (audit_sockaddr(klen, kaddr))
 232			return -ENOMEM;
 233		if (copy_to_user(uaddr, kaddr, len))
 234			return -EFAULT;
 235	}
 236	/*
 237	 *      "fromlen shall refer to the value before truncation.."
 238	 *                      1003.1g
 239	 */
 240	return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247	struct socket_alloc *ei;
 248	struct socket_wq *wq;
 249
 250	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251	if (!ei)
 252		return NULL;
 253	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254	if (!wq) {
 255		kmem_cache_free(sock_inode_cachep, ei);
 256		return NULL;
 257	}
 258	init_waitqueue_head(&wq->wait);
 259	wq->fasync_list = NULL;
 260	wq->flags = 0;
 261	RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263	ei->socket.state = SS_UNCONNECTED;
 264	ei->socket.flags = 0;
 265	ei->socket.ops = NULL;
 266	ei->socket.sk = NULL;
 267	ei->socket.file = NULL;
 268
 269	return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274	struct socket_alloc *ei;
 275	struct socket_wq *wq;
 276
 277	ei = container_of(inode, struct socket_alloc, vfs_inode);
 278	wq = rcu_dereference_protected(ei->socket.wq, 1);
 279	kfree_rcu(wq, rcu);
 280	kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285	struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287	inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293					      sizeof(struct socket_alloc),
 294					      0,
 295					      (SLAB_HWCACHE_ALIGN |
 296					       SLAB_RECLAIM_ACCOUNT |
 297					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298					      init_once);
 299	if (sock_inode_cachep == NULL)
 300		return -ENOMEM;
 301	return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305	.alloc_inode	= sock_alloc_inode,
 306	.destroy_inode	= sock_destroy_inode,
 307	.statfs		= simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316				d_inode(dentry)->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320	.d_dname  = sockfs_dname,
 321};
 322
 323static int sockfs_xattr_get(const struct xattr_handler *handler,
 324			    struct dentry *dentry, struct inode *inode,
 325			    const char *suffix, void *value, size_t size)
 326{
 327	if (value) {
 328		if (dentry->d_name.len + 1 > size)
 329			return -ERANGE;
 330		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 331	}
 332	return dentry->d_name.len + 1;
 333}
 334
 335#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 336#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 337#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 338
 339static const struct xattr_handler sockfs_xattr_handler = {
 340	.name = XATTR_NAME_SOCKPROTONAME,
 341	.get = sockfs_xattr_get,
 342};
 343
 344static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 
 345				     struct dentry *dentry, struct inode *inode,
 346				     const char *suffix, const void *value,
 347				     size_t size, int flags)
 348{
 349	/* Handled by LSM. */
 350	return -EAGAIN;
 351}
 352
 353static const struct xattr_handler sockfs_security_xattr_handler = {
 354	.prefix = XATTR_SECURITY_PREFIX,
 355	.set = sockfs_security_xattr_set,
 356};
 357
 358static const struct xattr_handler *sockfs_xattr_handlers[] = {
 359	&sockfs_xattr_handler,
 360	&sockfs_security_xattr_handler,
 361	NULL
 362};
 363
 364static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 365			 int flags, const char *dev_name, void *data)
 366{
 367	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 368				  sockfs_xattr_handlers,
 369				  &sockfs_dentry_operations, SOCKFS_MAGIC);
 
 
 
 
 370}
 371
 372static struct vfsmount *sock_mnt __read_mostly;
 373
 374static struct file_system_type sock_fs_type = {
 375	.name =		"sockfs",
 376	.mount =	sockfs_mount,
 377	.kill_sb =	kill_anon_super,
 378};
 379
 380/*
 381 *	Obtains the first available file descriptor and sets it up for use.
 382 *
 383 *	These functions create file structures and maps them to fd space
 384 *	of the current process. On success it returns file descriptor
 385 *	and file struct implicitly stored in sock->file.
 386 *	Note that another thread may close file descriptor before we return
 387 *	from this function. We use the fact that now we do not refer
 388 *	to socket after mapping. If one day we will need it, this
 389 *	function will increment ref. count on file by 1.
 390 *
 391 *	In any case returned fd MAY BE not valid!
 392 *	This race condition is unavoidable
 393 *	with shared fd spaces, we cannot solve it inside kernel,
 394 *	but we take care of internal coherence yet.
 395 */
 396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 398{
 399	struct qstr name = { .name = "" };
 400	struct path path;
 401	struct file *file;
 402
 403	if (dname) {
 404		name.name = dname;
 405		name.len = strlen(name.name);
 406	} else if (sock->sk) {
 407		name.name = sock->sk->sk_prot_creator->name;
 408		name.len = strlen(name.name);
 409	}
 410	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 411	if (unlikely(!path.dentry))
 412		return ERR_PTR(-ENOMEM);
 413	path.mnt = mntget(sock_mnt);
 414
 415	d_instantiate(path.dentry, SOCK_INODE(sock));
 416
 417	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 418		  &socket_file_ops);
 
 419	if (IS_ERR(file)) {
 420		/* drop dentry, keep inode */
 421		ihold(d_inode(path.dentry));
 422		path_put(&path);
 423		return file;
 424	}
 425
 
 426	sock->file = file;
 427	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 428	file->private_data = sock;
 
 429	return file;
 430}
 431EXPORT_SYMBOL(sock_alloc_file);
 432
 433static int sock_map_fd(struct socket *sock, int flags)
 434{
 435	struct file *newfile;
 436	int fd = get_unused_fd_flags(flags);
 437	if (unlikely(fd < 0))
 
 438		return fd;
 
 439
 440	newfile = sock_alloc_file(sock, flags, NULL);
 441	if (likely(!IS_ERR(newfile))) {
 442		fd_install(fd, newfile);
 443		return fd;
 444	}
 445
 446	put_unused_fd(fd);
 447	return PTR_ERR(newfile);
 448}
 449
 450struct socket *sock_from_file(struct file *file, int *err)
 
 
 
 
 
 
 
 451{
 452	if (file->f_op == &socket_file_ops)
 453		return file->private_data;	/* set in sock_map_fd */
 454
 455	*err = -ENOTSOCK;
 456	return NULL;
 457}
 458EXPORT_SYMBOL(sock_from_file);
 459
 460/**
 461 *	sockfd_lookup - Go from a file number to its socket slot
 462 *	@fd: file handle
 463 *	@err: pointer to an error code return
 464 *
 465 *	The file handle passed in is locked and the socket it is bound
 466 *	too is returned. If an error occurs the err pointer is overwritten
 467 *	with a negative errno code and NULL is returned. The function checks
 468 *	for both invalid handles and passing a handle which is not a socket.
 469 *
 470 *	On a success the socket object pointer is returned.
 471 */
 472
 473struct socket *sockfd_lookup(int fd, int *err)
 474{
 475	struct file *file;
 476	struct socket *sock;
 477
 478	file = fget(fd);
 479	if (!file) {
 480		*err = -EBADF;
 481		return NULL;
 482	}
 483
 484	sock = sock_from_file(file, err);
 485	if (!sock)
 
 486		fput(file);
 
 487	return sock;
 488}
 489EXPORT_SYMBOL(sockfd_lookup);
 490
 491static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 492{
 493	struct fd f = fdget(fd);
 494	struct socket *sock;
 495
 496	*err = -EBADF;
 497	if (f.file) {
 498		sock = sock_from_file(f.file, err);
 499		if (likely(sock)) {
 500			*fput_needed = f.flags;
 501			return sock;
 502		}
 
 503		fdput(f);
 504	}
 505	return NULL;
 506}
 507
 508static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 509				size_t size)
 510{
 511	ssize_t len;
 512	ssize_t used = 0;
 513
 514	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 515	if (len < 0)
 516		return len;
 517	used += len;
 518	if (buffer) {
 519		if (size < used)
 520			return -ERANGE;
 521		buffer += len;
 522	}
 523
 524	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 525	used += len;
 526	if (buffer) {
 527		if (size < used)
 528			return -ERANGE;
 529		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 530		buffer += len;
 531	}
 532
 533	return used;
 534}
 535
 536static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 
 537{
 538	int err = simple_setattr(dentry, iattr);
 539
 540	if (!err && (iattr->ia_valid & ATTR_UID)) {
 541		struct socket *sock = SOCKET_I(d_inode(dentry));
 542
 543		sock->sk->sk_uid = iattr->ia_uid;
 
 
 
 544	}
 545
 546	return err;
 547}
 548
 549static const struct inode_operations sockfs_inode_ops = {
 550	.listxattr = sockfs_listxattr,
 551	.setattr = sockfs_setattr,
 552};
 553
 554/**
 555 *	sock_alloc	-	allocate a socket
 556 *
 557 *	Allocate a new inode and socket object. The two are bound together
 558 *	and initialised. The socket is then returned. If we are out of inodes
 559 *	NULL is returned.
 560 */
 561
 562struct socket *sock_alloc(void)
 563{
 564	struct inode *inode;
 565	struct socket *sock;
 566
 567	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 568	if (!inode)
 569		return NULL;
 570
 571	sock = SOCKET_I(inode);
 572
 573	kmemcheck_annotate_bitfield(sock, type);
 574	inode->i_ino = get_next_ino();
 575	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 576	inode->i_uid = current_fsuid();
 577	inode->i_gid = current_fsgid();
 578	inode->i_op = &sockfs_inode_ops;
 579
 580	this_cpu_add(sockets_in_use, 1);
 581	return sock;
 582}
 583EXPORT_SYMBOL(sock_alloc);
 584
 585/**
 586 *	sock_release	-	close a socket
 587 *	@sock: socket to close
 588 *
 589 *	The socket is released from the protocol stack if it has a release
 590 *	callback, and the inode is then released if the socket is bound to
 591 *	an inode not a file.
 592 */
 593
 594void sock_release(struct socket *sock)
 595{
 596	if (sock->ops) {
 597		struct module *owner = sock->ops->owner;
 
 
 598
 599		sock->ops->release(sock);
 
 
 
 
 
 600		sock->ops = NULL;
 601		module_put(owner);
 602	}
 603
 604	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 605		pr_err("%s: fasync list not empty!\n", __func__);
 606
 607	this_cpu_sub(sockets_in_use, 1);
 608	if (!sock->file) {
 609		iput(SOCK_INODE(sock));
 610		return;
 611	}
 612	sock->file = NULL;
 613}
 
 
 
 
 
 
 
 
 
 
 
 
 
 614EXPORT_SYMBOL(sock_release);
 615
 616void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 617{
 618	u8 flags = *tx_flags;
 619
 620	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 621		flags |= SKBTX_HW_TSTAMP;
 622
 
 
 
 
 
 
 
 
 
 623	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 624		flags |= SKBTX_SW_TSTAMP;
 625
 626	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 627		flags |= SKBTX_SCHED_TSTAMP;
 628
 629	*tx_flags = flags;
 630}
 631EXPORT_SYMBOL(__sock_tx_timestamp);
 632
 
 
 
 
 
 
 
 
 
 
 
 633static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 634{
 635	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 
 
 636	BUG_ON(ret == -EIOCBQUEUED);
 
 
 
 637	return ret;
 638}
 639
 640int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 641{
 642	int err = security_socket_sendmsg(sock, msg,
 643					  msg_data_left(msg));
 644
 645	return err ?: sock_sendmsg_nosec(sock, msg);
 646}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647EXPORT_SYMBOL(sock_sendmsg);
 648
 
 
 
 
 
 
 
 
 
 
 
 
 649int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 650		   struct kvec *vec, size_t num, size_t size)
 651{
 652	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 653	return sock_sendmsg(sock, msg);
 654}
 655EXPORT_SYMBOL(kernel_sendmsg);
 656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657/*
 658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 659 */
 660void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 661	struct sk_buff *skb)
 662{
 663	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 664	struct scm_timestamping tss;
 665	int empty = 1;
 
 666	struct skb_shared_hwtstamps *shhwtstamps =
 667		skb_hwtstamps(skb);
 
 
 
 668
 669	/* Race occurred between timestamp enabling and packet
 670	   receiving.  Fill in the current time for now. */
 671	if (need_software_tstamp && skb->tstamp == 0)
 672		__net_timestamp(skb);
 
 
 673
 674	if (need_software_tstamp) {
 675		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 676			struct timeval tv;
 677			skb_get_timestamp(skb, &tv);
 678			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 679				 sizeof(tv), &tv);
 
 
 
 
 
 
 
 
 
 680		} else {
 681			struct timespec ts;
 682			skb_get_timestampns(skb, &ts);
 683			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 684				 sizeof(ts), &ts);
 
 
 
 
 
 
 
 
 
 685		}
 686	}
 687
 688	memset(&tss, 0, sizeof(tss));
 689	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 690	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 
 691		empty = 0;
 692	if (shhwtstamps &&
 693	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 694	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 695		empty = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696	if (!empty) {
 697		put_cmsg(msg, SOL_SOCKET,
 698			 SCM_TIMESTAMPING, sizeof(tss), &tss);
 
 
 699
 700		if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
 
 701			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 702				 skb->len, skb->data);
 703	}
 704}
 705EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 706
 
 707void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 708	struct sk_buff *skb)
 709{
 710	int ack;
 711
 712	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 713		return;
 714	if (!skb->wifi_acked_valid)
 715		return;
 716
 717	ack = skb->wifi_acked;
 718
 719	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 720}
 721EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 
 722
 723static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 724				   struct sk_buff *skb)
 725{
 726	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 727		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 728			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 729}
 730
 731void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 732	struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 733{
 734	sock_recv_timestamp(msg, sk, skb);
 735	sock_recv_drops(msg, sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 736}
 737EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 738
 739static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 740				     int flags)
 741{
 742	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 
 
 
 
 
 
 743}
 744
 
 
 
 
 
 
 
 
 
 745int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 746{
 747	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 748
 749	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 750}
 751EXPORT_SYMBOL(sock_recvmsg);
 752
 753/**
 754 * kernel_recvmsg - Receive a message from a socket (kernel space)
 755 * @sock:       The socket to receive the message from
 756 * @msg:        Received message
 757 * @vec:        Input s/g array for message data
 758 * @num:        Size of input s/g array
 759 * @size:       Number of bytes to read
 760 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 761 *
 762 * On return the msg structure contains the scatter/gather array passed in the
 763 * vec argument. The array is modified so that it consists of the unfilled
 764 * portion of the original array.
 765 *
 766 * The returned value is the total number of bytes received, or an error.
 767 */
 
 768int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 769		   struct kvec *vec, size_t num, size_t size, int flags)
 770{
 771	mm_segment_t oldfs = get_fs();
 772	int result;
 773
 774	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 775	set_fs(KERNEL_DS);
 776	result = sock_recvmsg(sock, msg, flags);
 777	set_fs(oldfs);
 778	return result;
 779}
 780EXPORT_SYMBOL(kernel_recvmsg);
 781
 782static ssize_t sock_sendpage(struct file *file, struct page *page,
 783			     int offset, size_t size, loff_t *ppos, int more)
 
 784{
 785	struct socket *sock;
 786	int flags;
 787
 788	sock = file->private_data;
 789
 790	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 791	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 792	flags |= more;
 793
 794	return kernel_sendpage(sock, page, offset, size, flags);
 795}
 796
 797static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 798				struct pipe_inode_info *pipe, size_t len,
 799				unsigned int flags)
 800{
 801	struct socket *sock = file->private_data;
 
 802
 803	if (unlikely(!sock->ops->splice_read))
 804		return -EINVAL;
 805
 806	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 807}
 808
 809static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 810{
 811	struct file *file = iocb->ki_filp;
 812	struct socket *sock = file->private_data;
 813	struct msghdr msg = {.msg_iter = *to,
 814			     .msg_iocb = iocb};
 815	ssize_t res;
 816
 817	if (file->f_flags & O_NONBLOCK)
 818		msg.msg_flags = MSG_DONTWAIT;
 819
 820	if (iocb->ki_pos != 0)
 821		return -ESPIPE;
 822
 823	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 824		return 0;
 825
 826	res = sock_recvmsg(sock, &msg, msg.msg_flags);
 827	*to = msg.msg_iter;
 828	return res;
 829}
 830
 831static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 832{
 833	struct file *file = iocb->ki_filp;
 834	struct socket *sock = file->private_data;
 835	struct msghdr msg = {.msg_iter = *from,
 836			     .msg_iocb = iocb};
 837	ssize_t res;
 838
 839	if (iocb->ki_pos != 0)
 840		return -ESPIPE;
 841
 842	if (file->f_flags & O_NONBLOCK)
 843		msg.msg_flags = MSG_DONTWAIT;
 844
 845	if (sock->type == SOCK_SEQPACKET)
 846		msg.msg_flags |= MSG_EOR;
 847
 848	res = sock_sendmsg(sock, &msg);
 849	*from = msg.msg_iter;
 850	return res;
 851}
 852
 853/*
 854 * Atomic setting of ioctl hooks to avoid race
 855 * with module unload.
 856 */
 857
 858static DEFINE_MUTEX(br_ioctl_mutex);
 859static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 860
 861void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 
 
 
 
 862{
 863	mutex_lock(&br_ioctl_mutex);
 864	br_ioctl_hook = hook;
 865	mutex_unlock(&br_ioctl_mutex);
 866}
 867EXPORT_SYMBOL(brioctl_set);
 868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869static DEFINE_MUTEX(vlan_ioctl_mutex);
 870static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 871
 872void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 873{
 874	mutex_lock(&vlan_ioctl_mutex);
 875	vlan_ioctl_hook = hook;
 876	mutex_unlock(&vlan_ioctl_mutex);
 877}
 878EXPORT_SYMBOL(vlan_ioctl_set);
 879
 880static DEFINE_MUTEX(dlci_ioctl_mutex);
 881static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 882
 883void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 884{
 885	mutex_lock(&dlci_ioctl_mutex);
 886	dlci_ioctl_hook = hook;
 887	mutex_unlock(&dlci_ioctl_mutex);
 888}
 889EXPORT_SYMBOL(dlci_ioctl_set);
 890
 891static long sock_do_ioctl(struct net *net, struct socket *sock,
 892				 unsigned int cmd, unsigned long arg)
 893{
 
 
 
 894	int err;
 895	void __user *argp = (void __user *)arg;
 
 896
 897	err = sock->ops->ioctl(sock, cmd, arg);
 898
 899	/*
 900	 * If this ioctl is unknown try to hand it down
 901	 * to the NIC driver.
 902	 */
 903	if (err == -ENOIOCTLCMD)
 904		err = dev_ioctl(net, cmd, argp);
 
 
 
 
 
 
 
 
 
 
 905
 906	return err;
 907}
 908
 909/*
 910 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 911 *	what to do with it - that's up to the protocol still.
 912 */
 913
 914static struct ns_common *get_net_ns(struct ns_common *ns)
 915{
 916	return &get_net(container_of(ns, struct net, ns))->ns;
 917}
 918
 919static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 920{
 
 921	struct socket *sock;
 922	struct sock *sk;
 923	void __user *argp = (void __user *)arg;
 924	int pid, err;
 925	struct net *net;
 926
 927	sock = file->private_data;
 
 928	sk = sock->sk;
 929	net = sock_net(sk);
 930	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 931		err = dev_ioctl(net, cmd, argp);
 
 
 
 
 
 
 
 
 932	} else
 933#ifdef CONFIG_WEXT_CORE
 934	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 935		err = dev_ioctl(net, cmd, argp);
 936	} else
 937#endif
 938		switch (cmd) {
 939		case FIOSETOWN:
 940		case SIOCSPGRP:
 941			err = -EFAULT;
 942			if (get_user(pid, (int __user *)argp))
 943				break;
 944			f_setown(sock->file, pid, 1);
 945			err = 0;
 946			break;
 947		case FIOGETOWN:
 948		case SIOCGPGRP:
 949			err = put_user(f_getown(sock->file),
 950				       (int __user *)argp);
 951			break;
 952		case SIOCGIFBR:
 953		case SIOCSIFBR:
 954		case SIOCBRADDBR:
 955		case SIOCBRDELBR:
 956			err = -ENOPKG;
 957			if (!br_ioctl_hook)
 958				request_module("bridge");
 959
 960			mutex_lock(&br_ioctl_mutex);
 961			if (br_ioctl_hook)
 962				err = br_ioctl_hook(net, cmd, argp);
 963			mutex_unlock(&br_ioctl_mutex);
 964			break;
 965		case SIOCGIFVLAN:
 966		case SIOCSIFVLAN:
 967			err = -ENOPKG;
 968			if (!vlan_ioctl_hook)
 969				request_module("8021q");
 970
 971			mutex_lock(&vlan_ioctl_mutex);
 972			if (vlan_ioctl_hook)
 973				err = vlan_ioctl_hook(net, argp);
 974			mutex_unlock(&vlan_ioctl_mutex);
 975			break;
 976		case SIOCADDDLCI:
 977		case SIOCDELDLCI:
 978			err = -ENOPKG;
 979			if (!dlci_ioctl_hook)
 980				request_module("dlci");
 981
 982			mutex_lock(&dlci_ioctl_mutex);
 983			if (dlci_ioctl_hook)
 984				err = dlci_ioctl_hook(cmd, argp);
 985			mutex_unlock(&dlci_ioctl_mutex);
 986			break;
 987		case SIOCGSKNS:
 988			err = -EPERM;
 989			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
 990				break;
 991
 992			err = open_related_ns(&net->ns, get_net_ns);
 993			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994		default:
 995			err = sock_do_ioctl(net, sock, cmd, arg);
 996			break;
 997		}
 998	return err;
 999}
1000
 
 
 
 
 
 
 
 
 
 
 
 
 
1001int sock_create_lite(int family, int type, int protocol, struct socket **res)
1002{
1003	int err;
1004	struct socket *sock = NULL;
1005
1006	err = security_socket_create(family, type, protocol, 1);
1007	if (err)
1008		goto out;
1009
1010	sock = sock_alloc();
1011	if (!sock) {
1012		err = -ENOMEM;
1013		goto out;
1014	}
1015
1016	sock->type = type;
1017	err = security_socket_post_create(sock, family, type, protocol, 1);
1018	if (err)
1019		goto out_release;
1020
1021out:
1022	*res = sock;
1023	return err;
1024out_release:
1025	sock_release(sock);
1026	sock = NULL;
1027	goto out;
1028}
1029EXPORT_SYMBOL(sock_create_lite);
1030
1031/* No kernel lock held - perfect */
1032static unsigned int sock_poll(struct file *file, poll_table *wait)
1033{
1034	unsigned int busy_flag = 0;
1035	struct socket *sock;
 
1036
1037	/*
1038	 *      We can't return errors to poll, so it's either yes or no.
1039	 */
1040	sock = file->private_data;
1041
1042	if (sk_can_busy_loop(sock->sk)) {
1043		/* this socket can poll_ll so tell the system call */
1044		busy_flag = POLL_BUSY_LOOP;
1045
1046		/* once, only if requested by syscall */
1047		if (wait && (wait->_key & POLL_BUSY_LOOP))
1048			sk_busy_loop(sock->sk, 1);
 
 
 
1049	}
1050
1051	return busy_flag | sock->ops->poll(file, sock, wait);
1052}
1053
1054static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1055{
1056	struct socket *sock = file->private_data;
1057
1058	return sock->ops->mmap(file, sock, vma);
1059}
1060
1061static int sock_close(struct inode *inode, struct file *filp)
1062{
1063	sock_release(SOCKET_I(inode));
1064	return 0;
1065}
1066
1067/*
1068 *	Update the socket async list
1069 *
1070 *	Fasync_list locking strategy.
1071 *
1072 *	1. fasync_list is modified only under process context socket lock
1073 *	   i.e. under semaphore.
1074 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1075 *	   or under socket lock
1076 */
1077
1078static int sock_fasync(int fd, struct file *filp, int on)
1079{
1080	struct socket *sock = filp->private_data;
1081	struct sock *sk = sock->sk;
1082	struct socket_wq *wq;
1083
1084	if (sk == NULL)
1085		return -EINVAL;
1086
1087	lock_sock(sk);
1088	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1089	fasync_helper(fd, filp, on, &wq->fasync_list);
1090
1091	if (!wq->fasync_list)
1092		sock_reset_flag(sk, SOCK_FASYNC);
1093	else
1094		sock_set_flag(sk, SOCK_FASYNC);
1095
1096	release_sock(sk);
1097	return 0;
1098}
1099
1100/* This function may be called only under rcu_lock */
1101
1102int sock_wake_async(struct socket_wq *wq, int how, int band)
1103{
1104	if (!wq || !wq->fasync_list)
1105		return -1;
1106
1107	switch (how) {
1108	case SOCK_WAKE_WAITD:
1109		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1110			break;
1111		goto call_kill;
1112	case SOCK_WAKE_SPACE:
1113		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1114			break;
1115		/* fall through */
1116	case SOCK_WAKE_IO:
1117call_kill:
1118		kill_fasync(&wq->fasync_list, SIGIO, band);
1119		break;
1120	case SOCK_WAKE_URG:
1121		kill_fasync(&wq->fasync_list, SIGURG, band);
1122	}
1123
1124	return 0;
1125}
1126EXPORT_SYMBOL(sock_wake_async);
1127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128int __sock_create(struct net *net, int family, int type, int protocol,
1129			 struct socket **res, int kern)
1130{
1131	int err;
1132	struct socket *sock;
1133	const struct net_proto_family *pf;
1134
1135	/*
1136	 *      Check protocol is in range
1137	 */
1138	if (family < 0 || family >= NPROTO)
1139		return -EAFNOSUPPORT;
1140	if (type < 0 || type >= SOCK_MAX)
1141		return -EINVAL;
1142
1143	/* Compatibility.
1144
1145	   This uglymoron is moved from INET layer to here to avoid
1146	   deadlock in module load.
1147	 */
1148	if (family == PF_INET && type == SOCK_PACKET) {
1149		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1150			     current->comm);
1151		family = PF_PACKET;
1152	}
1153
1154	err = security_socket_create(family, type, protocol, kern);
1155	if (err)
1156		return err;
1157
1158	/*
1159	 *	Allocate the socket and allow the family to set things up. if
1160	 *	the protocol is 0, the family is instructed to select an appropriate
1161	 *	default.
1162	 */
1163	sock = sock_alloc();
1164	if (!sock) {
1165		net_warn_ratelimited("socket: no more sockets\n");
1166		return -ENFILE;	/* Not exactly a match, but its the
1167				   closest posix thing */
1168	}
1169
1170	sock->type = type;
1171
1172#ifdef CONFIG_MODULES
1173	/* Attempt to load a protocol module if the find failed.
1174	 *
1175	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1176	 * requested real, full-featured networking support upon configuration.
1177	 * Otherwise module support will break!
1178	 */
1179	if (rcu_access_pointer(net_families[family]) == NULL)
1180		request_module("net-pf-%d", family);
1181#endif
1182
1183	rcu_read_lock();
1184	pf = rcu_dereference(net_families[family]);
1185	err = -EAFNOSUPPORT;
1186	if (!pf)
1187		goto out_release;
1188
1189	/*
1190	 * We will call the ->create function, that possibly is in a loadable
1191	 * module, so we have to bump that loadable module refcnt first.
1192	 */
1193	if (!try_module_get(pf->owner))
1194		goto out_release;
1195
1196	/* Now protected by module ref count */
1197	rcu_read_unlock();
1198
1199	err = pf->create(net, sock, protocol, kern);
1200	if (err < 0)
1201		goto out_module_put;
1202
1203	/*
1204	 * Now to bump the refcnt of the [loadable] module that owns this
1205	 * socket at sock_release time we decrement its refcnt.
1206	 */
1207	if (!try_module_get(sock->ops->owner))
1208		goto out_module_busy;
1209
1210	/*
1211	 * Now that we're done with the ->create function, the [loadable]
1212	 * module can have its refcnt decremented
1213	 */
1214	module_put(pf->owner);
1215	err = security_socket_post_create(sock, family, type, protocol, kern);
1216	if (err)
1217		goto out_sock_release;
1218	*res = sock;
1219
1220	return 0;
1221
1222out_module_busy:
1223	err = -EAFNOSUPPORT;
1224out_module_put:
1225	sock->ops = NULL;
1226	module_put(pf->owner);
1227out_sock_release:
1228	sock_release(sock);
1229	return err;
1230
1231out_release:
1232	rcu_read_unlock();
1233	goto out_sock_release;
1234}
1235EXPORT_SYMBOL(__sock_create);
1236
 
 
 
 
 
 
 
 
 
 
 
1237int sock_create(int family, int type, int protocol, struct socket **res)
1238{
1239	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1240}
1241EXPORT_SYMBOL(sock_create);
1242
 
 
 
 
 
 
 
 
 
 
 
 
1243int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1244{
1245	return __sock_create(net, family, type, protocol, res, 1);
1246}
1247EXPORT_SYMBOL(sock_create_kern);
1248
1249SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1250{
1251	int retval;
1252	struct socket *sock;
1253	int flags;
1254
1255	/* Check the SOCK_* constants for consistency.  */
1256	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1257	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1258	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1259	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1260
1261	flags = type & ~SOCK_TYPE_MASK;
1262	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263		return -EINVAL;
1264	type &= SOCK_TYPE_MASK;
1265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268
1269	retval = sock_create(family, type, protocol, &sock);
1270	if (retval < 0)
1271		goto out;
1272
1273	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1274	if (retval < 0)
1275		goto out_release;
 
 
 
 
 
 
1276
1277out:
1278	/* It may be already another descriptor 8) Not kernel problem. */
1279	return retval;
1280
1281out_release:
1282	sock_release(sock);
1283	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284}
1285
1286/*
1287 *	Create a pair of connected sockets.
1288 */
1289
1290SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1291		int __user *, usockvec)
1292{
1293	struct socket *sock1, *sock2;
1294	int fd1, fd2, err;
1295	struct file *newfile1, *newfile2;
1296	int flags;
1297
1298	flags = type & ~SOCK_TYPE_MASK;
1299	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1300		return -EINVAL;
1301	type &= SOCK_TYPE_MASK;
1302
1303	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305
1306	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307	 * Obtain the first socket and check if the underlying protocol
1308	 * supports the socketpair call.
1309	 */
1310
1311	err = sock_create(family, type, protocol, &sock1);
1312	if (err < 0)
1313		goto out;
1314
1315	err = sock_create(family, type, protocol, &sock2);
1316	if (err < 0)
1317		goto out_release_1;
1318
1319	err = sock1->ops->socketpair(sock1, sock2);
1320	if (err < 0)
1321		goto out_release_both;
1322
1323	fd1 = get_unused_fd_flags(flags);
1324	if (unlikely(fd1 < 0)) {
1325		err = fd1;
1326		goto out_release_both;
 
1327	}
1328
1329	fd2 = get_unused_fd_flags(flags);
1330	if (unlikely(fd2 < 0)) {
1331		err = fd2;
1332		goto out_put_unused_1;
 
1333	}
1334
1335	newfile1 = sock_alloc_file(sock1, flags, NULL);
1336	if (IS_ERR(newfile1)) {
1337		err = PTR_ERR(newfile1);
1338		goto out_put_unused_both;
 
1339	}
1340
1341	newfile2 = sock_alloc_file(sock2, flags, NULL);
1342	if (IS_ERR(newfile2)) {
1343		err = PTR_ERR(newfile2);
1344		goto out_fput_1;
 
1345	}
1346
1347	err = put_user(fd1, &usockvec[0]);
1348	if (err)
1349		goto out_fput_both;
1350
1351	err = put_user(fd2, &usockvec[1]);
1352	if (err)
1353		goto out_fput_both;
1354
1355	audit_fd_pair(fd1, fd2);
1356
1357	fd_install(fd1, newfile1);
1358	fd_install(fd2, newfile2);
1359	/* fd1 and fd2 may be already another descriptors.
1360	 * Not kernel problem.
1361	 */
1362
1363	return 0;
1364
1365out_fput_both:
1366	fput(newfile2);
1367	fput(newfile1);
1368	put_unused_fd(fd2);
1369	put_unused_fd(fd1);
1370	goto out;
1371
1372out_fput_1:
1373	fput(newfile1);
1374	put_unused_fd(fd2);
1375	put_unused_fd(fd1);
1376	sock_release(sock2);
1377	goto out;
1378
1379out_put_unused_both:
1380	put_unused_fd(fd2);
1381out_put_unused_1:
1382	put_unused_fd(fd1);
1383out_release_both:
1384	sock_release(sock2);
1385out_release_1:
1386	sock_release(sock1);
1387out:
1388	return err;
1389}
1390
 
 
 
 
 
 
1391/*
1392 *	Bind a name to a socket. Nothing much to do here since it's
1393 *	the protocol's responsibility to handle the local address.
1394 *
1395 *	We move the socket address to kernel space before we call
1396 *	the protocol layer (having also checked the address is ok).
1397 */
1398
1399SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1400{
1401	struct socket *sock;
1402	struct sockaddr_storage address;
1403	int err, fput_needed;
1404
1405	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1406	if (sock) {
1407		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1408		if (err >= 0) {
1409			err = security_socket_bind(sock,
1410						   (struct sockaddr *)&address,
1411						   addrlen);
1412			if (!err)
1413				err = sock->ops->bind(sock,
1414						      (struct sockaddr *)
1415						      &address, addrlen);
1416		}
1417		fput_light(sock->file, fput_needed);
1418	}
1419	return err;
1420}
1421
 
 
 
 
 
1422/*
1423 *	Perform a listen. Basically, we allow the protocol to do anything
1424 *	necessary for a listen, and if that works, we mark the socket as
1425 *	ready for listening.
1426 */
1427
1428SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1429{
1430	struct socket *sock;
1431	int err, fput_needed;
1432	int somaxconn;
1433
1434	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1435	if (sock) {
1436		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1437		if ((unsigned int)backlog > somaxconn)
1438			backlog = somaxconn;
1439
1440		err = security_socket_listen(sock, backlog);
1441		if (!err)
1442			err = sock->ops->listen(sock, backlog);
1443
1444		fput_light(sock->file, fput_needed);
1445	}
1446	return err;
1447}
1448
1449/*
1450 *	For accept, we attempt to create a new socket, set up the link
1451 *	with the client, wake up the client, then return the new
1452 *	connected fd. We collect the address of the connector in kernel
1453 *	space and move it to user at the very end. This is unclean because
1454 *	we open the socket then return an error.
1455 *
1456 *	1003.1g adds the ability to recvmsg() to query connection pending
1457 *	status to recvmsg. We need to add that support in a way thats
1458 *	clean when we restucture accept also.
1459 */
1460
1461SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1462		int __user *, upeer_addrlen, int, flags)
 
1463{
1464	struct socket *sock, *newsock;
1465	struct file *newfile;
1466	int err, len, newfd, fput_needed;
1467	struct sockaddr_storage address;
 
1468
1469	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1470		return -EINVAL;
1471
1472	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1473		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1474
1475	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476	if (!sock)
1477		goto out;
1478
1479	err = -ENFILE;
1480	newsock = sock_alloc();
1481	if (!newsock)
1482		goto out_put;
 
1483
1484	newsock->type = sock->type;
1485	newsock->ops = sock->ops;
1486
1487	/*
1488	 * We don't need try_module_get here, as the listening socket (sock)
1489	 * has the protocol module (sock->ops->owner) held.
1490	 */
1491	__module_get(newsock->ops->owner);
1492
1493	newfd = get_unused_fd_flags(flags);
1494	if (unlikely(newfd < 0)) {
1495		err = newfd;
1496		sock_release(newsock);
1497		goto out_put;
1498	}
1499	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1500	if (IS_ERR(newfile)) {
1501		err = PTR_ERR(newfile);
1502		put_unused_fd(newfd);
1503		sock_release(newsock);
1504		goto out_put;
1505	}
1506
1507	err = security_socket_accept(sock, newsock);
1508	if (err)
1509		goto out_fd;
1510
1511	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
 
1512	if (err < 0)
1513		goto out_fd;
1514
1515	if (upeer_sockaddr) {
1516		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1517					  &len, 2) < 0) {
1518			err = -ECONNABORTED;
1519			goto out_fd;
1520		}
1521		err = move_addr_to_user(&address,
1522					len, upeer_sockaddr, upeer_addrlen);
1523		if (err < 0)
1524			goto out_fd;
1525	}
1526
1527	/* File flags are not inherited via accept() unlike another OSes. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528
 
 
 
 
 
 
1529	fd_install(newfd, newfile);
1530	err = newfd;
 
1531
1532out_put:
1533	fput_light(sock->file, fput_needed);
1534out:
1535	return err;
1536out_fd:
1537	fput(newfile);
1538	put_unused_fd(newfd);
1539	goto out_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1540}
1541
1542SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1543		int __user *, upeer_addrlen)
1544{
1545	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1546}
1547
1548/*
1549 *	Attempt to connect to a socket with the server address.  The address
1550 *	is in user space so we verify it is OK and move it to kernel space.
1551 *
1552 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1553 *	break bindings
1554 *
1555 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1556 *	other SEQPACKET protocols that take time to connect() as it doesn't
1557 *	include the -EINPROGRESS status for such sockets.
1558 */
1559
1560SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1561		int, addrlen)
1562{
1563	struct socket *sock;
1564	struct sockaddr_storage address;
1565	int err, fput_needed;
1566
1567	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1568	if (!sock)
 
1569		goto out;
1570	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1571	if (err < 0)
1572		goto out_put;
1573
1574	err =
1575	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1576	if (err)
1577		goto out_put;
1578
1579	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1580				 sock->file->f_flags);
1581out_put:
1582	fput_light(sock->file, fput_needed);
1583out:
1584	return err;
1585}
1586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1587/*
1588 *	Get the local address ('name') of a socket object. Move the obtained
1589 *	name to user space.
1590 */
1591
1592SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1593		int __user *, usockaddr_len)
1594{
1595	struct socket *sock;
1596	struct sockaddr_storage address;
1597	int len, err, fput_needed;
1598
1599	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600	if (!sock)
1601		goto out;
1602
1603	err = security_socket_getsockname(sock);
1604	if (err)
1605		goto out_put;
1606
1607	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1608	if (err)
1609		goto out_put;
1610	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
 
1611
1612out_put:
1613	fput_light(sock->file, fput_needed);
1614out:
1615	return err;
1616}
1617
 
 
 
 
 
 
1618/*
1619 *	Get the remote address ('name') of a socket object. Move the obtained
1620 *	name to user space.
1621 */
1622
1623SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1624		int __user *, usockaddr_len)
1625{
1626	struct socket *sock;
1627	struct sockaddr_storage address;
1628	int len, err, fput_needed;
1629
1630	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631	if (sock != NULL) {
 
 
1632		err = security_socket_getpeername(sock);
1633		if (err) {
1634			fput_light(sock->file, fput_needed);
1635			return err;
1636		}
1637
1638		err =
1639		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1640				       1);
1641		if (!err)
1642			err = move_addr_to_user(&address, len, usockaddr,
1643						usockaddr_len);
1644		fput_light(sock->file, fput_needed);
1645	}
1646	return err;
1647}
1648
 
 
 
 
 
 
1649/*
1650 *	Send a datagram to a given address. We move the address into kernel
1651 *	space and check the user space data area is readable before invoking
1652 *	the protocol.
1653 */
1654
1655SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1656		unsigned int, flags, struct sockaddr __user *, addr,
1657		int, addr_len)
1658{
1659	struct socket *sock;
1660	struct sockaddr_storage address;
1661	int err;
1662	struct msghdr msg;
1663	struct iovec iov;
1664	int fput_needed;
1665
1666	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1667	if (unlikely(err))
1668		return err;
1669	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670	if (!sock)
1671		goto out;
1672
1673	msg.msg_name = NULL;
1674	msg.msg_control = NULL;
1675	msg.msg_controllen = 0;
1676	msg.msg_namelen = 0;
 
1677	if (addr) {
1678		err = move_addr_to_kernel(addr, addr_len, &address);
1679		if (err < 0)
1680			goto out_put;
1681		msg.msg_name = (struct sockaddr *)&address;
1682		msg.msg_namelen = addr_len;
1683	}
 
1684	if (sock->file->f_flags & O_NONBLOCK)
1685		flags |= MSG_DONTWAIT;
1686	msg.msg_flags = flags;
1687	err = sock_sendmsg(sock, &msg);
1688
1689out_put:
1690	fput_light(sock->file, fput_needed);
1691out:
1692	return err;
1693}
1694
 
 
 
 
 
 
 
1695/*
1696 *	Send a datagram down a socket.
1697 */
1698
1699SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1700		unsigned int, flags)
1701{
1702	return sys_sendto(fd, buff, len, flags, NULL, 0);
1703}
1704
1705/*
1706 *	Receive a frame from the socket and optionally record the address of the
1707 *	sender. We verify the buffers are writable and if needed move the
1708 *	sender address from kernel to user space.
1709 */
1710
1711SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1712		unsigned int, flags, struct sockaddr __user *, addr,
1713		int __user *, addr_len)
1714{
1715	struct socket *sock;
1716	struct iovec iov;
1717	struct msghdr msg;
1718	struct sockaddr_storage address;
 
 
 
 
 
1719	int err, err2;
1720	int fput_needed;
1721
1722	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1723	if (unlikely(err))
1724		return err;
1725	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726	if (!sock)
1727		goto out;
1728
1729	msg.msg_control = NULL;
1730	msg.msg_controllen = 0;
1731	/* Save some cycles and don't copy the address if not needed */
1732	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1733	/* We assume all kernel code knows the size of sockaddr_storage */
1734	msg.msg_namelen = 0;
1735	msg.msg_iocb = NULL;
1736	if (sock->file->f_flags & O_NONBLOCK)
1737		flags |= MSG_DONTWAIT;
1738	err = sock_recvmsg(sock, &msg, flags);
1739
1740	if (err >= 0 && addr != NULL) {
1741		err2 = move_addr_to_user(&address,
1742					 msg.msg_namelen, addr, addr_len);
1743		if (err2 < 0)
1744			err = err2;
1745	}
1746
1747	fput_light(sock->file, fput_needed);
1748out:
1749	return err;
1750}
1751
 
 
 
 
 
 
 
1752/*
1753 *	Receive a datagram from a socket.
1754 */
1755
1756SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1757		unsigned int, flags)
1758{
1759	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1760}
1761
1762/*
1763 *	Set a socket option. Because we don't know the option lengths we have
1764 *	to pass the user mode parameter for the protocols to sort out.
1765 */
1766
1767SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1768		char __user *, optval, int, optlen)
1769{
1770	int err, fput_needed;
1771	struct socket *sock;
 
1772
1773	if (optlen < 0)
1774		return -EINVAL;
1775
1776	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777	if (sock != NULL) {
1778		err = security_socket_setsockopt(sock, level, optname);
1779		if (err)
1780			goto out_put;
 
 
 
 
 
 
 
 
 
1781
1782		if (level == SOL_SOCKET)
1783			err =
1784			    sock_setsockopt(sock, level, optname, optval,
 
 
 
 
 
 
1785					    optlen);
1786		else
1787			err =
1788			    sock->ops->setsockopt(sock, level, optname, optval,
1789						  optlen);
1790out_put:
1791		fput_light(sock->file, fput_needed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1792	}
 
 
 
 
 
 
1793	return err;
1794}
 
1795
1796/*
1797 *	Get a socket option. Because we don't know the option lengths we have
1798 *	to pass a user mode parameter for the protocols to sort out.
1799 */
1800
1801SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1802		char __user *, optval, int __user *, optlen)
1803{
1804	int err, fput_needed;
1805	struct socket *sock;
 
1806
1807	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808	if (sock != NULL) {
1809		err = security_socket_getsockopt(sock, level, optname);
1810		if (err)
1811			goto out_put;
1812
1813		if (level == SOL_SOCKET)
1814			err =
1815			    sock_getsockopt(sock, level, optname, optval,
1816					    optlen);
1817		else
1818			err =
1819			    sock->ops->getsockopt(sock, level, optname, optval,
1820						  optlen);
1821out_put:
1822		fput_light(sock->file, fput_needed);
1823	}
1824	return err;
1825}
1826
 
 
 
 
 
 
1827/*
1828 *	Shutdown a socket.
1829 */
1830
1831SYSCALL_DEFINE2(shutdown, int, fd, int, how)
 
 
 
 
 
 
 
 
 
 
 
1832{
1833	int err, fput_needed;
1834	struct socket *sock;
1835
1836	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1837	if (sock != NULL) {
1838		err = security_socket_shutdown(sock, how);
1839		if (!err)
1840			err = sock->ops->shutdown(sock, how);
1841		fput_light(sock->file, fput_needed);
1842	}
1843	return err;
1844}
1845
 
 
 
 
 
1846/* A couple of helpful macros for getting the address of the 32/64 bit
1847 * fields which are the same type (int / unsigned) on our platforms.
1848 */
1849#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1850#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1851#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1852
1853struct used_address {
1854	struct sockaddr_storage name;
1855	unsigned int name_len;
1856};
1857
1858static int copy_msghdr_from_user(struct msghdr *kmsg,
1859				 struct user_msghdr __user *umsg,
1860				 struct sockaddr __user **save_addr,
1861				 struct iovec **iov)
1862{
1863	struct sockaddr __user *uaddr;
1864	struct iovec __user *uiov;
1865	size_t nr_segs;
1866	ssize_t err;
1867
1868	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1869	    __get_user(uaddr, &umsg->msg_name) ||
1870	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1871	    __get_user(uiov, &umsg->msg_iov) ||
1872	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1873	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1874	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1875	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1876		return -EFAULT;
1877
1878	if (!uaddr)
 
1879		kmsg->msg_namelen = 0;
1880
1881	if (kmsg->msg_namelen < 0)
1882		return -EINVAL;
1883
1884	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1885		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1886
1887	if (save_addr)
1888		*save_addr = uaddr;
1889
1890	if (uaddr && kmsg->msg_namelen) {
1891		if (!save_addr) {
1892			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
 
1893						  kmsg->msg_name);
1894			if (err < 0)
1895				return err;
1896		}
1897	} else {
1898		kmsg->msg_name = NULL;
1899		kmsg->msg_namelen = 0;
1900	}
1901
1902	if (nr_segs > UIO_MAXIOV)
1903		return -EMSGSIZE;
1904
1905	kmsg->msg_iocb = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1906
1907	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
 
1908			    UIO_FASTIOV, iov, &kmsg->msg_iter);
 
1909}
1910
1911static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1912			 struct msghdr *msg_sys, unsigned int flags,
1913			 struct used_address *used_address,
1914			 unsigned int allowed_msghdr_flags)
1915{
1916	struct compat_msghdr __user *msg_compat =
1917	    (struct compat_msghdr __user *)msg;
1918	struct sockaddr_storage address;
1919	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1920	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1921				__aligned(sizeof(__kernel_size_t));
1922	/* 20 is size of ipv6_pktinfo */
1923	unsigned char *ctl_buf = ctl;
1924	int ctl_len;
1925	ssize_t err;
1926
1927	msg_sys->msg_name = &address;
1928
1929	if (MSG_CMSG_COMPAT & flags)
1930		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1931	else
1932		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1933	if (err < 0)
1934		return err;
1935
1936	err = -ENOBUFS;
1937
1938	if (msg_sys->msg_controllen > INT_MAX)
1939		goto out_freeiov;
1940	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1941	ctl_len = msg_sys->msg_controllen;
1942	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1943		err =
1944		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1945						     sizeof(ctl));
1946		if (err)
1947			goto out_freeiov;
1948		ctl_buf = msg_sys->msg_control;
1949		ctl_len = msg_sys->msg_controllen;
1950	} else if (ctl_len) {
 
 
1951		if (ctl_len > sizeof(ctl)) {
1952			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953			if (ctl_buf == NULL)
1954				goto out_freeiov;
1955		}
1956		err = -EFAULT;
1957		/*
1958		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960		 * checking falls down on this.
1961		 */
1962		if (copy_from_user(ctl_buf,
1963				   (void __user __force *)msg_sys->msg_control,
1964				   ctl_len))
1965			goto out_freectl;
1966		msg_sys->msg_control = ctl_buf;
 
1967	}
 
1968	msg_sys->msg_flags = flags;
1969
1970	if (sock->file->f_flags & O_NONBLOCK)
1971		msg_sys->msg_flags |= MSG_DONTWAIT;
1972	/*
1973	 * If this is sendmmsg() and current destination address is same as
1974	 * previously succeeded address, omit asking LSM's decision.
1975	 * used_address->name_len is initialized to UINT_MAX so that the first
1976	 * destination address never matches.
1977	 */
1978	if (used_address && msg_sys->msg_name &&
1979	    used_address->name_len == msg_sys->msg_namelen &&
1980	    !memcmp(&used_address->name, msg_sys->msg_name,
1981		    used_address->name_len)) {
1982		err = sock_sendmsg_nosec(sock, msg_sys);
1983		goto out_freectl;
1984	}
1985	err = sock_sendmsg(sock, msg_sys);
1986	/*
1987	 * If this is sendmmsg() and sending to current destination address was
1988	 * successful, remember it.
1989	 */
1990	if (used_address && err >= 0) {
1991		used_address->name_len = msg_sys->msg_namelen;
1992		if (msg_sys->msg_name)
1993			memcpy(&used_address->name, msg_sys->msg_name,
1994			       used_address->name_len);
1995	}
1996
1997out_freectl:
1998	if (ctl_buf != ctl)
1999		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2000out_freeiov:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001	kfree(iov);
2002	return err;
2003}
2004
2005/*
2006 *	BSD sendmsg interface
2007 */
 
 
 
 
 
2008
2009long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
 
2010{
2011	int fput_needed, err;
2012	struct msghdr msg_sys;
2013	struct socket *sock;
2014
 
 
 
2015	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016	if (!sock)
2017		goto out;
2018
2019	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2020
2021	fput_light(sock->file, fput_needed);
2022out:
2023	return err;
2024}
2025
2026SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2027{
2028	if (flags & MSG_CMSG_COMPAT)
2029		return -EINVAL;
2030	return __sys_sendmsg(fd, msg, flags);
2031}
2032
2033/*
2034 *	Linux sendmmsg interface
2035 */
2036
2037int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038		   unsigned int flags)
2039{
2040	int fput_needed, err, datagrams;
2041	struct socket *sock;
2042	struct mmsghdr __user *entry;
2043	struct compat_mmsghdr __user *compat_entry;
2044	struct msghdr msg_sys;
2045	struct used_address used_address;
2046	unsigned int oflags = flags;
2047
 
 
 
2048	if (vlen > UIO_MAXIOV)
2049		vlen = UIO_MAXIOV;
2050
2051	datagrams = 0;
2052
2053	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054	if (!sock)
2055		return err;
2056
2057	used_address.name_len = UINT_MAX;
2058	entry = mmsg;
2059	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2060	err = 0;
2061	flags |= MSG_BATCH;
2062
2063	while (datagrams < vlen) {
2064		if (datagrams == vlen - 1)
2065			flags = oflags;
2066
2067		if (MSG_CMSG_COMPAT & flags) {
2068			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069					     &msg_sys, flags, &used_address, MSG_EOR);
2070			if (err < 0)
2071				break;
2072			err = __put_user(err, &compat_entry->msg_len);
2073			++compat_entry;
2074		} else {
2075			err = ___sys_sendmsg(sock,
2076					     (struct user_msghdr __user *)entry,
2077					     &msg_sys, flags, &used_address, MSG_EOR);
2078			if (err < 0)
2079				break;
2080			err = put_user(err, &entry->msg_len);
2081			++entry;
2082		}
2083
2084		if (err)
2085			break;
2086		++datagrams;
2087		if (msg_data_left(&msg_sys))
2088			break;
2089		cond_resched();
2090	}
2091
2092	fput_light(sock->file, fput_needed);
2093
2094	/* We only return an error if no datagrams were able to be sent */
2095	if (datagrams != 0)
2096		return datagrams;
2097
2098	return err;
2099}
2100
2101SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102		unsigned int, vlen, unsigned int, flags)
2103{
2104	if (flags & MSG_CMSG_COMPAT)
2105		return -EINVAL;
2106	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2107}
2108
2109static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110			 struct msghdr *msg_sys, unsigned int flags, int nosec)
 
 
2111{
2112	struct compat_msghdr __user *msg_compat =
2113	    (struct compat_msghdr __user *)msg;
2114	struct iovec iovstack[UIO_FASTIOV];
2115	struct iovec *iov = iovstack;
2116	unsigned long cmsg_ptr;
2117	int len;
2118	ssize_t err;
2119
2120	/* kernel mode address */
2121	struct sockaddr_storage addr;
2122
2123	/* user mode address pointers */
2124	struct sockaddr __user *uaddr;
2125	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2126
2127	msg_sys->msg_name = &addr;
2128
2129	if (MSG_CMSG_COMPAT & flags)
2130		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2131	else
2132		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2133	if (err < 0)
2134		return err;
2135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2136	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2138
2139	/* We assume all kernel code knows the size of sockaddr_storage */
2140	msg_sys->msg_namelen = 0;
2141
2142	if (sock->file->f_flags & O_NONBLOCK)
2143		flags |= MSG_DONTWAIT;
2144	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
 
 
 
 
 
2145	if (err < 0)
2146		goto out_freeiov;
2147	len = err;
2148
2149	if (uaddr != NULL) {
2150		err = move_addr_to_user(&addr,
2151					msg_sys->msg_namelen, uaddr,
2152					uaddr_len);
2153		if (err < 0)
2154			goto out_freeiov;
2155	}
2156	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2157			 COMPAT_FLAGS(msg));
2158	if (err)
2159		goto out_freeiov;
2160	if (MSG_CMSG_COMPAT & flags)
2161		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162				 &msg_compat->msg_controllen);
2163	else
2164		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165				 &msg->msg_controllen);
2166	if (err)
2167		goto out_freeiov;
2168	err = len;
 
 
 
2169
2170out_freeiov:
 
 
 
 
 
 
 
 
 
 
 
 
2171	kfree(iov);
2172	return err;
2173}
2174
2175/*
2176 *	BSD recvmsg interface
2177 */
2178
2179long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
 
 
 
 
 
 
 
 
2180{
2181	int fput_needed, err;
2182	struct msghdr msg_sys;
2183	struct socket *sock;
2184
 
 
 
2185	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186	if (!sock)
2187		goto out;
2188
2189	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2190
2191	fput_light(sock->file, fput_needed);
2192out:
2193	return err;
2194}
2195
2196SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197		unsigned int, flags)
2198{
2199	if (flags & MSG_CMSG_COMPAT)
2200		return -EINVAL;
2201	return __sys_recvmsg(fd, msg, flags);
2202}
2203
2204/*
2205 *     Linux recvmmsg interface
2206 */
2207
2208int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209		   unsigned int flags, struct timespec *timeout)
 
2210{
2211	int fput_needed, err, datagrams;
2212	struct socket *sock;
2213	struct mmsghdr __user *entry;
2214	struct compat_mmsghdr __user *compat_entry;
2215	struct msghdr msg_sys;
2216	struct timespec64 end_time;
2217	struct timespec64 timeout64;
2218
2219	if (timeout &&
2220	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2221				    timeout->tv_nsec))
2222		return -EINVAL;
2223
2224	datagrams = 0;
2225
2226	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227	if (!sock)
2228		return err;
2229
2230	err = sock_error(sock->sk);
2231	if (err) {
2232		datagrams = err;
2233		goto out_put;
 
 
2234	}
2235
2236	entry = mmsg;
2237	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2238
2239	while (datagrams < vlen) {
2240		/*
2241		 * No need to ask LSM for more than the first datagram.
2242		 */
2243		if (MSG_CMSG_COMPAT & flags) {
2244			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2245					     &msg_sys, flags & ~MSG_WAITFORONE,
2246					     datagrams);
2247			if (err < 0)
2248				break;
2249			err = __put_user(err, &compat_entry->msg_len);
2250			++compat_entry;
2251		} else {
2252			err = ___sys_recvmsg(sock,
2253					     (struct user_msghdr __user *)entry,
2254					     &msg_sys, flags & ~MSG_WAITFORONE,
2255					     datagrams);
2256			if (err < 0)
2257				break;
2258			err = put_user(err, &entry->msg_len);
2259			++entry;
2260		}
2261
2262		if (err)
2263			break;
2264		++datagrams;
2265
2266		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2267		if (flags & MSG_WAITFORONE)
2268			flags |= MSG_DONTWAIT;
2269
2270		if (timeout) {
2271			ktime_get_ts64(&timeout64);
2272			*timeout = timespec64_to_timespec(
2273					timespec64_sub(end_time, timeout64));
2274			if (timeout->tv_sec < 0) {
2275				timeout->tv_sec = timeout->tv_nsec = 0;
2276				break;
2277			}
2278
2279			/* Timeout, return less than vlen datagrams */
2280			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2281				break;
2282		}
2283
2284		/* Out of band data, return right away */
2285		if (msg_sys.msg_flags & MSG_OOB)
2286			break;
2287		cond_resched();
2288	}
2289
2290	if (err == 0)
2291		goto out_put;
2292
2293	if (datagrams == 0) {
2294		datagrams = err;
2295		goto out_put;
2296	}
2297
2298	/*
2299	 * We may return less entries than requested (vlen) if the
2300	 * sock is non block and there aren't enough datagrams...
2301	 */
2302	if (err != -EAGAIN) {
2303		/*
2304		 * ... or  if recvmsg returns an error after we
2305		 * received some datagrams, where we record the
2306		 * error to return on the next call or if the
2307		 * app asks about it using getsockopt(SO_ERROR).
2308		 */
2309		sock->sk->sk_err = -err;
2310	}
2311out_put:
2312	fput_light(sock->file, fput_needed);
2313
2314	return datagrams;
2315}
2316
2317SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2318		unsigned int, vlen, unsigned int, flags,
2319		struct timespec __user *, timeout)
 
2320{
2321	int datagrams;
2322	struct timespec timeout_sys;
2323
2324	if (flags & MSG_CMSG_COMPAT)
2325		return -EINVAL;
2326
2327	if (!timeout)
2328		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2329
2330	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2331		return -EFAULT;
2332
2333	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
 
 
 
 
 
 
2334
2335	if (datagrams > 0 &&
2336	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
 
 
2337		datagrams = -EFAULT;
2338
2339	return datagrams;
2340}
2341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2342#ifdef __ARCH_WANT_SYS_SOCKETCALL
2343/* Argument list sizes for sys_socketcall */
2344#define AL(x) ((x) * sizeof(unsigned long))
2345static const unsigned char nargs[21] = {
2346	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2347	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2348	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2349	AL(4), AL(5), AL(4)
2350};
2351
2352#undef AL
2353
2354/*
2355 *	System call vectors.
2356 *
2357 *	Argument checking cleaned up. Saved 20% in size.
2358 *  This function doesn't need to set the kernel lock because
2359 *  it is set by the callees.
2360 */
2361
2362SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2363{
2364	unsigned long a[AUDITSC_ARGS];
2365	unsigned long a0, a1;
2366	int err;
2367	unsigned int len;
2368
2369	if (call < 1 || call > SYS_SENDMMSG)
2370		return -EINVAL;
 
2371
2372	len = nargs[call];
2373	if (len > sizeof(a))
2374		return -EINVAL;
2375
2376	/* copy_from_user should be SMP safe. */
2377	if (copy_from_user(a, args, len))
2378		return -EFAULT;
2379
2380	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2381	if (err)
2382		return err;
2383
2384	a0 = a[0];
2385	a1 = a[1];
2386
2387	switch (call) {
2388	case SYS_SOCKET:
2389		err = sys_socket(a0, a1, a[2]);
2390		break;
2391	case SYS_BIND:
2392		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2393		break;
2394	case SYS_CONNECT:
2395		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2396		break;
2397	case SYS_LISTEN:
2398		err = sys_listen(a0, a1);
2399		break;
2400	case SYS_ACCEPT:
2401		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2402				  (int __user *)a[2], 0);
2403		break;
2404	case SYS_GETSOCKNAME:
2405		err =
2406		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2407				    (int __user *)a[2]);
2408		break;
2409	case SYS_GETPEERNAME:
2410		err =
2411		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2412				    (int __user *)a[2]);
2413		break;
2414	case SYS_SOCKETPAIR:
2415		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2416		break;
2417	case SYS_SEND:
2418		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
 
2419		break;
2420	case SYS_SENDTO:
2421		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2422				 (struct sockaddr __user *)a[4], a[5]);
2423		break;
2424	case SYS_RECV:
2425		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
 
2426		break;
2427	case SYS_RECVFROM:
2428		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2429				   (struct sockaddr __user *)a[4],
2430				   (int __user *)a[5]);
2431		break;
2432	case SYS_SHUTDOWN:
2433		err = sys_shutdown(a0, a1);
2434		break;
2435	case SYS_SETSOCKOPT:
2436		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
 
2437		break;
2438	case SYS_GETSOCKOPT:
2439		err =
2440		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2441				   (int __user *)a[4]);
2442		break;
2443	case SYS_SENDMSG:
2444		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
 
2445		break;
2446	case SYS_SENDMMSG:
2447		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
 
2448		break;
2449	case SYS_RECVMSG:
2450		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
 
2451		break;
2452	case SYS_RECVMMSG:
2453		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2454				   (struct timespec __user *)a[4]);
 
 
 
 
 
 
 
2455		break;
2456	case SYS_ACCEPT4:
2457		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2458				  (int __user *)a[2], a[3]);
2459		break;
2460	default:
2461		err = -EINVAL;
2462		break;
2463	}
2464	return err;
2465}
2466
2467#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2468
2469/**
2470 *	sock_register - add a socket protocol handler
2471 *	@ops: description of protocol
2472 *
2473 *	This function is called by a protocol handler that wants to
2474 *	advertise its address family, and have it linked into the
2475 *	socket interface. The value ops->family corresponds to the
2476 *	socket system call protocol family.
2477 */
2478int sock_register(const struct net_proto_family *ops)
2479{
2480	int err;
2481
2482	if (ops->family >= NPROTO) {
2483		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2484		return -ENOBUFS;
2485	}
2486
2487	spin_lock(&net_family_lock);
2488	if (rcu_dereference_protected(net_families[ops->family],
2489				      lockdep_is_held(&net_family_lock)))
2490		err = -EEXIST;
2491	else {
2492		rcu_assign_pointer(net_families[ops->family], ops);
2493		err = 0;
2494	}
2495	spin_unlock(&net_family_lock);
2496
2497	pr_info("NET: Registered protocol family %d\n", ops->family);
2498	return err;
2499}
2500EXPORT_SYMBOL(sock_register);
2501
2502/**
2503 *	sock_unregister - remove a protocol handler
2504 *	@family: protocol family to remove
2505 *
2506 *	This function is called by a protocol handler that wants to
2507 *	remove its address family, and have it unlinked from the
2508 *	new socket creation.
2509 *
2510 *	If protocol handler is a module, then it can use module reference
2511 *	counts to protect against new references. If protocol handler is not
2512 *	a module then it needs to provide its own protection in
2513 *	the ops->create routine.
2514 */
2515void sock_unregister(int family)
2516{
2517	BUG_ON(family < 0 || family >= NPROTO);
2518
2519	spin_lock(&net_family_lock);
2520	RCU_INIT_POINTER(net_families[family], NULL);
2521	spin_unlock(&net_family_lock);
2522
2523	synchronize_rcu();
2524
2525	pr_info("NET: Unregistered protocol family %d\n", family);
2526}
2527EXPORT_SYMBOL(sock_unregister);
2528
 
 
 
 
 
2529static int __init sock_init(void)
2530{
2531	int err;
2532	/*
2533	 *      Initialize the network sysctl infrastructure.
2534	 */
2535	err = net_sysctl_init();
2536	if (err)
2537		goto out;
2538
2539	/*
2540	 *      Initialize skbuff SLAB cache
2541	 */
2542	skb_init();
2543
2544	/*
2545	 *      Initialize the protocols module.
2546	 */
2547
2548	init_inodecache();
2549
2550	err = register_filesystem(&sock_fs_type);
2551	if (err)
2552		goto out_fs;
2553	sock_mnt = kern_mount(&sock_fs_type);
2554	if (IS_ERR(sock_mnt)) {
2555		err = PTR_ERR(sock_mnt);
2556		goto out_mount;
2557	}
2558
2559	/* The real protocol initialization is performed in later initcalls.
2560	 */
2561
2562#ifdef CONFIG_NETFILTER
2563	err = netfilter_init();
2564	if (err)
2565		goto out;
2566#endif
2567
2568	ptp_classifier_init();
2569
2570out:
2571	return err;
2572
2573out_mount:
2574	unregister_filesystem(&sock_fs_type);
2575out_fs:
2576	goto out;
2577}
2578
2579core_initcall(sock_init);	/* early initcall */
2580
2581#ifdef CONFIG_PROC_FS
2582void socket_seq_show(struct seq_file *seq)
2583{
2584	int cpu;
2585	int counter = 0;
2586
2587	for_each_possible_cpu(cpu)
2588	    counter += per_cpu(sockets_in_use, cpu);
2589
2590	/* It can be negative, by the way. 8) */
2591	if (counter < 0)
2592		counter = 0;
2593
2594	seq_printf(seq, "sockets: used %d\n", counter);
2595}
2596#endif				/* CONFIG_PROC_FS */
2597
2598#ifdef CONFIG_COMPAT
2599static int do_siocgstamp(struct net *net, struct socket *sock,
2600			 unsigned int cmd, void __user *up)
2601{
2602	mm_segment_t old_fs = get_fs();
2603	struct timeval ktv;
2604	int err;
2605
2606	set_fs(KERNEL_DS);
2607	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2608	set_fs(old_fs);
2609	if (!err)
2610		err = compat_put_timeval(&ktv, up);
2611
2612	return err;
2613}
2614
2615static int do_siocgstampns(struct net *net, struct socket *sock,
2616			   unsigned int cmd, void __user *up)
2617{
2618	mm_segment_t old_fs = get_fs();
2619	struct timespec kts;
2620	int err;
2621
2622	set_fs(KERNEL_DS);
2623	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2624	set_fs(old_fs);
2625	if (!err)
2626		err = compat_put_timespec(&kts, up);
2627
2628	return err;
2629}
2630
2631static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2632{
2633	struct ifreq __user *uifr;
2634	int err;
2635
2636	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2637	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2638		return -EFAULT;
2639
2640	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2641	if (err)
2642		return err;
2643
2644	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2645		return -EFAULT;
2646
2647	return 0;
2648}
2649
2650static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2651{
2652	struct compat_ifconf ifc32;
2653	struct ifconf ifc;
2654	struct ifconf __user *uifc;
2655	struct compat_ifreq __user *ifr32;
2656	struct ifreq __user *ifr;
2657	unsigned int i, j;
2658	int err;
2659
2660	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2661		return -EFAULT;
2662
2663	memset(&ifc, 0, sizeof(ifc));
2664	if (ifc32.ifcbuf == 0) {
2665		ifc32.ifc_len = 0;
2666		ifc.ifc_len = 0;
2667		ifc.ifc_req = NULL;
2668		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2669	} else {
2670		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2671			sizeof(struct ifreq);
2672		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2673		ifc.ifc_len = len;
2674		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2675		ifr32 = compat_ptr(ifc32.ifcbuf);
2676		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2677			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2678				return -EFAULT;
2679			ifr++;
2680			ifr32++;
2681		}
2682	}
2683	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2684		return -EFAULT;
2685
2686	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2687	if (err)
2688		return err;
2689
2690	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2691		return -EFAULT;
2692
2693	ifr = ifc.ifc_req;
2694	ifr32 = compat_ptr(ifc32.ifcbuf);
2695	for (i = 0, j = 0;
2696	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2697	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2698		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2699			return -EFAULT;
2700		ifr32++;
2701		ifr++;
2702	}
2703
2704	if (ifc32.ifcbuf == 0) {
2705		/* Translate from 64-bit structure multiple to
2706		 * a 32-bit one.
2707		 */
2708		i = ifc.ifc_len;
2709		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2710		ifc32.ifc_len = i;
2711	} else {
2712		ifc32.ifc_len = i;
2713	}
2714	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2715		return -EFAULT;
2716
2717	return 0;
2718}
 
2719
2720static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2721{
2722	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2723	bool convert_in = false, convert_out = false;
2724	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2725	struct ethtool_rxnfc __user *rxnfc;
2726	struct ifreq __user *ifr;
2727	u32 rule_cnt = 0, actual_rule_cnt;
2728	u32 ethcmd;
2729	u32 data;
2730	int ret;
2731
2732	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2733		return -EFAULT;
2734
2735	compat_rxnfc = compat_ptr(data);
 
2736
2737	if (get_user(ethcmd, &compat_rxnfc->cmd))
2738		return -EFAULT;
2739
2740	/* Most ethtool structures are defined without padding.
2741	 * Unfortunately struct ethtool_rxnfc is an exception.
2742	 */
2743	switch (ethcmd) {
2744	default:
2745		break;
2746	case ETHTOOL_GRXCLSRLALL:
2747		/* Buffer size is variable */
2748		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2749			return -EFAULT;
2750		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2751			return -ENOMEM;
2752		buf_size += rule_cnt * sizeof(u32);
2753		/* fall through */
2754	case ETHTOOL_GRXRINGS:
2755	case ETHTOOL_GRXCLSRLCNT:
2756	case ETHTOOL_GRXCLSRULE:
2757	case ETHTOOL_SRXCLSRLINS:
2758		convert_out = true;
2759		/* fall through */
2760	case ETHTOOL_SRXCLSRLDEL:
2761		buf_size += sizeof(struct ethtool_rxnfc);
2762		convert_in = true;
2763		break;
2764	}
2765
2766	ifr = compat_alloc_user_space(buf_size);
2767	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2768
2769	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2770		return -EFAULT;
2771
2772	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2773		     &ifr->ifr_ifru.ifru_data))
2774		return -EFAULT;
2775
2776	if (convert_in) {
2777		/* We expect there to be holes between fs.m_ext and
2778		 * fs.ring_cookie and at the end of fs, but nowhere else.
2779		 */
2780		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2781			     sizeof(compat_rxnfc->fs.m_ext) !=
2782			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2783			     sizeof(rxnfc->fs.m_ext));
2784		BUILD_BUG_ON(
2785			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2786			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2787			offsetof(struct ethtool_rxnfc, fs.location) -
2788			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2789
2790		if (copy_in_user(rxnfc, compat_rxnfc,
2791				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2792				 (void __user *)rxnfc) ||
2793		    copy_in_user(&rxnfc->fs.ring_cookie,
2794				 &compat_rxnfc->fs.ring_cookie,
2795				 (void __user *)(&rxnfc->fs.location + 1) -
2796				 (void __user *)&rxnfc->fs.ring_cookie) ||
2797		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2798				 sizeof(rxnfc->rule_cnt)))
2799			return -EFAULT;
2800	}
2801
2802	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2803	if (ret)
2804		return ret;
2805
2806	if (convert_out) {
2807		if (copy_in_user(compat_rxnfc, rxnfc,
2808				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2809				 (const void __user *)rxnfc) ||
2810		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2811				 &rxnfc->fs.ring_cookie,
2812				 (const void __user *)(&rxnfc->fs.location + 1) -
2813				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2814		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2815				 sizeof(rxnfc->rule_cnt)))
2816			return -EFAULT;
2817
2818		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2819			/* As an optimisation, we only copy the actual
2820			 * number of rules that the underlying
2821			 * function returned.  Since Mallory might
2822			 * change the rule count in user memory, we
2823			 * check that it is less than the rule count
2824			 * originally given (as the user buffer size),
2825			 * which has been range-checked.
2826			 */
2827			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2828				return -EFAULT;
2829			if (actual_rule_cnt < rule_cnt)
2830				rule_cnt = actual_rule_cnt;
2831			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2832					 &rxnfc->rule_locs[0],
2833					 rule_cnt * sizeof(u32)))
2834				return -EFAULT;
2835		}
2836	}
2837
2838	return 0;
2839}
 
2840
 
2841static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2842{
2843	void __user *uptr;
2844	compat_uptr_t uptr32;
2845	struct ifreq __user *uifr;
 
 
2846
2847	uifr = compat_alloc_user_space(sizeof(*uifr));
2848	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2849		return -EFAULT;
2850
2851	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2852		return -EFAULT;
2853
2854	uptr = compat_ptr(uptr32);
2855
2856	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2857		return -EFAULT;
2858
2859	return dev_ioctl(net, SIOCWANDEV, uifr);
2860}
2861
2862static int bond_ioctl(struct net *net, unsigned int cmd,
2863			 struct compat_ifreq __user *ifr32)
2864{
2865	struct ifreq kifr;
2866	mm_segment_t old_fs;
2867	int err;
2868
2869	switch (cmd) {
2870	case SIOCBONDENSLAVE:
2871	case SIOCBONDRELEASE:
2872	case SIOCBONDSETHWADDR:
2873	case SIOCBONDCHANGEACTIVE:
2874		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2875			return -EFAULT;
2876
2877		old_fs = get_fs();
2878		set_fs(KERNEL_DS);
2879		err = dev_ioctl(net, cmd,
2880				(struct ifreq __user __force *) &kifr);
2881		set_fs(old_fs);
2882
2883		return err;
2884	default:
2885		return -ENOIOCTLCMD;
2886	}
 
2887}
2888
2889/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2890static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2891				 struct compat_ifreq __user *u_ifreq32)
2892{
2893	struct ifreq __user *u_ifreq64;
2894	char tmp_buf[IFNAMSIZ];
2895	void __user *data64;
2896	u32 data32;
2897
2898	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2899			   IFNAMSIZ))
2900		return -EFAULT;
2901	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2902		return -EFAULT;
2903	data64 = compat_ptr(data32);
2904
2905	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2906
2907	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2908			 IFNAMSIZ))
2909		return -EFAULT;
2910	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2911		return -EFAULT;
2912
2913	return dev_ioctl(net, cmd, u_ifreq64);
2914}
2915
2916static int dev_ifsioc(struct net *net, struct socket *sock,
2917			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2918{
2919	struct ifreq __user *uifr;
2920	int err;
2921
2922	uifr = compat_alloc_user_space(sizeof(*uifr));
2923	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2924		return -EFAULT;
2925
2926	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2927
2928	if (!err) {
2929		switch (cmd) {
2930		case SIOCGIFFLAGS:
2931		case SIOCGIFMETRIC:
2932		case SIOCGIFMTU:
2933		case SIOCGIFMEM:
2934		case SIOCGIFHWADDR:
2935		case SIOCGIFINDEX:
2936		case SIOCGIFADDR:
2937		case SIOCGIFBRDADDR:
2938		case SIOCGIFDSTADDR:
2939		case SIOCGIFNETMASK:
2940		case SIOCGIFPFLAGS:
2941		case SIOCGIFTXQLEN:
2942		case SIOCGMIIPHY:
2943		case SIOCGMIIREG:
2944			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2945				err = -EFAULT;
2946			break;
2947		}
2948	}
2949	return err;
2950}
2951
2952static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2953			struct compat_ifreq __user *uifr32)
2954{
2955	struct ifreq ifr;
2956	struct compat_ifmap __user *uifmap32;
2957	mm_segment_t old_fs;
2958	int err;
2959
2960	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2961	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2962	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2963	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2964	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2965	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2966	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2967	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2968	if (err)
2969		return -EFAULT;
 
2970
2971	old_fs = get_fs();
2972	set_fs(KERNEL_DS);
2973	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2974	set_fs(old_fs);
2975
2976	if (cmd == SIOCGIFMAP && !err) {
2977		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2978		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2982		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2983		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2984		if (err)
2985			err = -EFAULT;
2986	}
2987	return err;
2988}
2989
2990struct rtentry32 {
2991	u32		rt_pad1;
2992	struct sockaddr rt_dst;         /* target address               */
2993	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2994	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2995	unsigned short	rt_flags;
2996	short		rt_pad2;
2997	u32		rt_pad3;
2998	unsigned char	rt_tos;
2999	unsigned char	rt_class;
3000	short		rt_pad4;
3001	short		rt_metric;      /* +1 for binary compatibility! */
3002	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3003	u32		rt_mtu;         /* per route MTU/Window         */
3004	u32		rt_window;      /* Window clamping              */
3005	unsigned short  rt_irtt;        /* Initial RTT                  */
3006};
3007
3008struct in6_rtmsg32 {
3009	struct in6_addr		rtmsg_dst;
3010	struct in6_addr		rtmsg_src;
3011	struct in6_addr		rtmsg_gateway;
3012	u32			rtmsg_type;
3013	u16			rtmsg_dst_len;
3014	u16			rtmsg_src_len;
3015	u32			rtmsg_metric;
3016	u32			rtmsg_info;
3017	u32			rtmsg_flags;
3018	s32			rtmsg_ifindex;
3019};
3020
3021static int routing_ioctl(struct net *net, struct socket *sock,
3022			 unsigned int cmd, void __user *argp)
3023{
3024	int ret;
3025	void *r = NULL;
3026	struct in6_rtmsg r6;
3027	struct rtentry r4;
3028	char devname[16];
3029	u32 rtdev;
3030	mm_segment_t old_fs = get_fs();
3031
3032	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3033		struct in6_rtmsg32 __user *ur6 = argp;
3034		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3035			3 * sizeof(struct in6_addr));
3036		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3037		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3038		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3039		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3040		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3041		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3042		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3043
3044		r = (void *) &r6;
3045	} else { /* ipv4 */
3046		struct rtentry32 __user *ur4 = argp;
3047		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3048					3 * sizeof(struct sockaddr));
3049		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3050		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3051		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3052		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3053		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3054		ret |= get_user(rtdev, &(ur4->rt_dev));
3055		if (rtdev) {
3056			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3057			r4.rt_dev = (char __user __force *)devname;
3058			devname[15] = 0;
3059		} else
3060			r4.rt_dev = NULL;
3061
3062		r = (void *) &r4;
3063	}
3064
3065	if (ret) {
3066		ret = -EFAULT;
3067		goto out;
3068	}
3069
3070	set_fs(KERNEL_DS);
3071	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3072	set_fs(old_fs);
3073
3074out:
3075	return ret;
3076}
3077
3078/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3079 * for some operations; this forces use of the newer bridge-utils that
3080 * use compatible ioctls
3081 */
3082static int old_bridge_ioctl(compat_ulong_t __user *argp)
3083{
3084	compat_ulong_t tmp;
3085
3086	if (get_user(tmp, argp))
3087		return -EFAULT;
3088	if (tmp == BRCTL_GET_VERSION)
3089		return BRCTL_VERSION + 1;
3090	return -EINVAL;
3091}
3092
3093static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3094			 unsigned int cmd, unsigned long arg)
3095{
3096	void __user *argp = compat_ptr(arg);
3097	struct sock *sk = sock->sk;
3098	struct net *net = sock_net(sk);
 
3099
3100	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3101		return compat_ifr_data_ioctl(net, cmd, argp);
3102
3103	switch (cmd) {
3104	case SIOCSIFBR:
3105	case SIOCGIFBR:
3106		return old_bridge_ioctl(argp);
3107	case SIOCGIFNAME:
3108		return dev_ifname32(net, argp);
3109	case SIOCGIFCONF:
3110		return dev_ifconf(net, argp);
3111	case SIOCETHTOOL:
3112		return ethtool_ioctl(net, argp);
3113	case SIOCWANDEV:
3114		return compat_siocwandev(net, argp);
3115	case SIOCGIFMAP:
3116	case SIOCSIFMAP:
3117		return compat_sioc_ifmap(net, cmd, argp);
3118	case SIOCBONDENSLAVE:
3119	case SIOCBONDRELEASE:
3120	case SIOCBONDSETHWADDR:
3121	case SIOCBONDCHANGEACTIVE:
3122		return bond_ioctl(net, cmd, argp);
3123	case SIOCADDRT:
3124	case SIOCDELRT:
3125		return routing_ioctl(net, sock, cmd, argp);
3126	case SIOCGSTAMP:
3127		return do_siocgstamp(net, sock, cmd, argp);
3128	case SIOCGSTAMPNS:
3129		return do_siocgstampns(net, sock, cmd, argp);
3130	case SIOCBONDSLAVEINFOQUERY:
3131	case SIOCBONDINFOQUERY:
3132	case SIOCSHWTSTAMP:
3133	case SIOCGHWTSTAMP:
3134		return compat_ifr_data_ioctl(net, cmd, argp);
3135
3136	case FIOSETOWN:
3137	case SIOCSPGRP:
3138	case FIOGETOWN:
3139	case SIOCGPGRP:
3140	case SIOCBRADDBR:
3141	case SIOCBRDELBR:
3142	case SIOCGIFVLAN:
3143	case SIOCSIFVLAN:
3144	case SIOCADDDLCI:
3145	case SIOCDELDLCI:
3146	case SIOCGSKNS:
 
 
 
 
 
3147		return sock_ioctl(file, cmd, arg);
3148
3149	case SIOCGIFFLAGS:
3150	case SIOCSIFFLAGS:
 
 
3151	case SIOCGIFMETRIC:
3152	case SIOCSIFMETRIC:
3153	case SIOCGIFMTU:
3154	case SIOCSIFMTU:
3155	case SIOCGIFMEM:
3156	case SIOCSIFMEM:
3157	case SIOCGIFHWADDR:
3158	case SIOCSIFHWADDR:
3159	case SIOCADDMULTI:
3160	case SIOCDELMULTI:
3161	case SIOCGIFINDEX:
3162	case SIOCGIFADDR:
3163	case SIOCSIFADDR:
3164	case SIOCSIFHWBROADCAST:
3165	case SIOCDIFADDR:
3166	case SIOCGIFBRDADDR:
3167	case SIOCSIFBRDADDR:
3168	case SIOCGIFDSTADDR:
3169	case SIOCSIFDSTADDR:
3170	case SIOCGIFNETMASK:
3171	case SIOCSIFNETMASK:
3172	case SIOCSIFPFLAGS:
3173	case SIOCGIFPFLAGS:
3174	case SIOCGIFTXQLEN:
3175	case SIOCSIFTXQLEN:
3176	case SIOCBRADDIF:
3177	case SIOCBRDELIF:
 
3178	case SIOCSIFNAME:
3179	case SIOCGMIIPHY:
3180	case SIOCGMIIREG:
3181	case SIOCSMIIREG:
3182		return dev_ifsioc(net, sock, cmd, argp);
3183
 
 
3184	case SIOCSARP:
3185	case SIOCGARP:
3186	case SIOCDARP:
 
 
3187	case SIOCATMARK:
3188		return sock_do_ioctl(net, sock, cmd, arg);
3189	}
3190
3191	return -ENOIOCTLCMD;
3192}
3193
3194static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3195			      unsigned long arg)
3196{
3197	struct socket *sock = file->private_data;
 
3198	int ret = -ENOIOCTLCMD;
3199	struct sock *sk;
3200	struct net *net;
3201
3202	sk = sock->sk;
3203	net = sock_net(sk);
3204
3205	if (sock->ops->compat_ioctl)
3206		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3207
3208	if (ret == -ENOIOCTLCMD &&
3209	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3210		ret = compat_wext_handle_ioctl(net, cmd, arg);
3211
3212	if (ret == -ENOIOCTLCMD)
3213		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3214
3215	return ret;
3216}
3217#endif
3218
 
 
 
 
 
 
 
 
 
3219int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3220{
3221	return sock->ops->bind(sock, addr, addrlen);
 
 
 
 
 
3222}
3223EXPORT_SYMBOL(kernel_bind);
3224
 
 
 
 
 
 
 
 
3225int kernel_listen(struct socket *sock, int backlog)
3226{
3227	return sock->ops->listen(sock, backlog);
3228}
3229EXPORT_SYMBOL(kernel_listen);
3230
 
 
 
 
 
 
 
 
 
 
 
3231int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3232{
3233	struct sock *sk = sock->sk;
 
3234	int err;
3235
3236	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3237			       newsock);
3238	if (err < 0)
3239		goto done;
3240
3241	err = sock->ops->accept(sock, *newsock, flags);
3242	if (err < 0) {
3243		sock_release(*newsock);
3244		*newsock = NULL;
3245		goto done;
3246	}
3247
3248	(*newsock)->ops = sock->ops;
3249	__module_get((*newsock)->ops->owner);
3250
3251done:
3252	return err;
3253}
3254EXPORT_SYMBOL(kernel_accept);
3255
 
 
 
 
 
 
 
 
 
 
 
 
 
3256int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3257		   int flags)
3258{
3259	return sock->ops->connect(sock, addr, addrlen, flags);
3260}
3261EXPORT_SYMBOL(kernel_connect);
3262
3263int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3264			 int *addrlen)
3265{
3266	return sock->ops->getname(sock, addr, addrlen, 0);
3267}
3268EXPORT_SYMBOL(kernel_getsockname);
3269
3270int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3271			 int *addrlen)
3272{
3273	return sock->ops->getname(sock, addr, addrlen, 1);
3274}
3275EXPORT_SYMBOL(kernel_getpeername);
3276
3277int kernel_getsockopt(struct socket *sock, int level, int optname,
3278			char *optval, int *optlen)
3279{
3280	mm_segment_t oldfs = get_fs();
3281	char __user *uoptval;
3282	int __user *uoptlen;
3283	int err;
3284
3285	uoptval = (char __user __force *) optval;
3286	uoptlen = (int __user __force *) optlen;
3287
3288	set_fs(KERNEL_DS);
3289	if (level == SOL_SOCKET)
3290		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291	else
3292		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293					    uoptlen);
3294	set_fs(oldfs);
3295	return err;
3296}
3297EXPORT_SYMBOL(kernel_getsockopt);
3298
3299int kernel_setsockopt(struct socket *sock, int level, int optname,
3300			char *optval, unsigned int optlen)
3301{
3302	mm_segment_t oldfs = get_fs();
3303	char __user *uoptval;
3304	int err;
3305
3306	uoptval = (char __user __force *) optval;
3307
3308	set_fs(KERNEL_DS);
3309	if (level == SOL_SOCKET)
3310		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311	else
3312		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313					    optlen);
3314	set_fs(oldfs);
3315	return err;
3316}
3317EXPORT_SYMBOL(kernel_setsockopt);
3318
3319int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320		    size_t size, int flags)
3321{
3322	if (sock->ops->sendpage)
3323		return sock->ops->sendpage(sock, page, offset, size, flags);
3324
3325	return sock_no_sendpage(sock, page, offset, size, flags);
3326}
3327EXPORT_SYMBOL(kernel_sendpage);
 
 
 
 
 
3328
3329int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3330{
3331	mm_segment_t oldfs = get_fs();
3332	int err;
3333
3334	set_fs(KERNEL_DS);
3335	err = sock->ops->ioctl(sock, cmd, arg);
3336	set_fs(oldfs);
3337
3338	return err;
3339}
3340EXPORT_SYMBOL(kernel_sock_ioctl);
 
 
 
 
 
 
 
 
3341
3342int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343{
3344	return sock->ops->shutdown(sock, how);
3345}
3346EXPORT_SYMBOL(kernel_sock_shutdown);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET		An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:	@(#)socket.c	1.1.93	18/02/95
   6 *
   7 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   8 *		Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  13 *					shutdown()
  14 *		Alan Cox	:	verify_area() fixes
  15 *		Alan Cox	:	Removed DDI
  16 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  17 *		Alan Cox	:	Moved a load of checks to the very
  18 *					top level.
  19 *		Alan Cox	:	Move address structures to/from user
  20 *					mode above the protocol layers.
  21 *		Rob Janssen	:	Allow 0 length sends.
  22 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  23 *					tty drivers).
  24 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  25 *		Jeff Uphoff	:	Made max number of sockets command-line
  26 *					configurable.
  27 *		Matti Aarnio	:	Made the number of sockets dynamic,
  28 *					to be allocated when needed, and mr.
  29 *					Uphoff's max is used as max to be
  30 *					allowed to allocate.
  31 *		Linus		:	Argh. removed all the socket allocation
  32 *					altogether: it's in the inode now.
  33 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  34 *					for NetROM and future kernel nfsd type
  35 *					stuff.
  36 *		Alan Cox	:	sendmsg/recvmsg basics.
  37 *		Tom Dyas	:	Export net symbols.
  38 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  39 *		Alan Cox	:	Added thread locking to sys_* calls
  40 *					for sockets. May have errors at the
  41 *					moment.
  42 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  43 *		Andi Kleen	:	Some small cleanups, optimizations,
  44 *					and fixed a copy_from_user() bug.
  45 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  47 *					protocol-independent
  48 *
 
 
 
 
 
 
 
  49 *	This module is effectively the top level interface to the BSD socket
  50 *	paradigm.
  51 *
  52 *	Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/bpf-cgroup.h>
  56#include <linux/ethtool.h>
  57#include <linux/mm.h>
  58#include <linux/socket.h>
  59#include <linux/file.h>
  60#include <linux/splice.h>
  61#include <linux/net.h>
  62#include <linux/interrupt.h>
  63#include <linux/thread_info.h>
  64#include <linux/rcupdate.h>
  65#include <linux/netdevice.h>
  66#include <linux/proc_fs.h>
  67#include <linux/seq_file.h>
  68#include <linux/mutex.h>
  69#include <linux/if_bridge.h>
 
  70#include <linux/if_vlan.h>
  71#include <linux/ptp_classify.h>
  72#include <linux/init.h>
  73#include <linux/poll.h>
  74#include <linux/cache.h>
  75#include <linux/module.h>
  76#include <linux/highmem.h>
  77#include <linux/mount.h>
  78#include <linux/pseudo_fs.h>
  79#include <linux/security.h>
  80#include <linux/syscalls.h>
  81#include <linux/compat.h>
  82#include <linux/kmod.h>
  83#include <linux/audit.h>
  84#include <linux/wireless.h>
  85#include <linux/nsproxy.h>
  86#include <linux/magic.h>
  87#include <linux/slab.h>
  88#include <linux/xattr.h>
  89#include <linux/nospec.h>
  90#include <linux/indirect_call_wrapper.h>
  91#include <linux/io_uring.h>
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/termios.h>
 107#include <linux/sockios.h>
 
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110#include <linux/ptp_clock_kernel.h>
 111#include <trace/events/sock.h>
 112
 113#ifdef CONFIG_NET_RX_BUSY_POLL
 114unsigned int sysctl_net_busy_read __read_mostly;
 115unsigned int sysctl_net_busy_poll __read_mostly;
 116#endif
 117
 118static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 119static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 120static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 121
 122static int sock_close(struct inode *inode, struct file *file);
 123static __poll_t sock_poll(struct file *file,
 124			      struct poll_table_struct *wait);
 125static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 126#ifdef CONFIG_COMPAT
 127static long compat_sock_ioctl(struct file *file,
 128			      unsigned int cmd, unsigned long arg);
 129#endif
 130static int sock_fasync(int fd, struct file *filp, int on);
 
 
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132				struct pipe_inode_info *pipe, size_t len,
 133				unsigned int flags);
 134static void sock_splice_eof(struct file *file);
 135
 136#ifdef CONFIG_PROC_FS
 137static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 138{
 139	struct socket *sock = f->private_data;
 140	const struct proto_ops *ops = READ_ONCE(sock->ops);
 141
 142	if (ops->show_fdinfo)
 143		ops->show_fdinfo(m, sock);
 144}
 145#else
 146#define sock_show_fdinfo NULL
 147#endif
 148
 149/*
 150 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 151 *	in the operation structures but are done directly via the socketcall() multiplexor.
 152 */
 153
 154static const struct file_operations socket_file_ops = {
 155	.owner =	THIS_MODULE,
 156	.llseek =	no_llseek,
 157	.read_iter =	sock_read_iter,
 158	.write_iter =	sock_write_iter,
 159	.poll =		sock_poll,
 160	.unlocked_ioctl = sock_ioctl,
 161#ifdef CONFIG_COMPAT
 162	.compat_ioctl = compat_sock_ioctl,
 163#endif
 164	.uring_cmd =    io_uring_cmd_sock,
 165	.mmap =		sock_mmap,
 166	.release =	sock_close,
 167	.fasync =	sock_fasync,
 168	.splice_write = splice_to_socket,
 
 169	.splice_read =	sock_splice_read,
 170	.splice_eof =	sock_splice_eof,
 171	.show_fdinfo =	sock_show_fdinfo,
 172};
 173
 174static const char * const pf_family_names[] = {
 175	[PF_UNSPEC]	= "PF_UNSPEC",
 176	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
 177	[PF_INET]	= "PF_INET",
 178	[PF_AX25]	= "PF_AX25",
 179	[PF_IPX]	= "PF_IPX",
 180	[PF_APPLETALK]	= "PF_APPLETALK",
 181	[PF_NETROM]	= "PF_NETROM",
 182	[PF_BRIDGE]	= "PF_BRIDGE",
 183	[PF_ATMPVC]	= "PF_ATMPVC",
 184	[PF_X25]	= "PF_X25",
 185	[PF_INET6]	= "PF_INET6",
 186	[PF_ROSE]	= "PF_ROSE",
 187	[PF_DECnet]	= "PF_DECnet",
 188	[PF_NETBEUI]	= "PF_NETBEUI",
 189	[PF_SECURITY]	= "PF_SECURITY",
 190	[PF_KEY]	= "PF_KEY",
 191	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
 192	[PF_PACKET]	= "PF_PACKET",
 193	[PF_ASH]	= "PF_ASH",
 194	[PF_ECONET]	= "PF_ECONET",
 195	[PF_ATMSVC]	= "PF_ATMSVC",
 196	[PF_RDS]	= "PF_RDS",
 197	[PF_SNA]	= "PF_SNA",
 198	[PF_IRDA]	= "PF_IRDA",
 199	[PF_PPPOX]	= "PF_PPPOX",
 200	[PF_WANPIPE]	= "PF_WANPIPE",
 201	[PF_LLC]	= "PF_LLC",
 202	[PF_IB]		= "PF_IB",
 203	[PF_MPLS]	= "PF_MPLS",
 204	[PF_CAN]	= "PF_CAN",
 205	[PF_TIPC]	= "PF_TIPC",
 206	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
 207	[PF_IUCV]	= "PF_IUCV",
 208	[PF_RXRPC]	= "PF_RXRPC",
 209	[PF_ISDN]	= "PF_ISDN",
 210	[PF_PHONET]	= "PF_PHONET",
 211	[PF_IEEE802154]	= "PF_IEEE802154",
 212	[PF_CAIF]	= "PF_CAIF",
 213	[PF_ALG]	= "PF_ALG",
 214	[PF_NFC]	= "PF_NFC",
 215	[PF_VSOCK]	= "PF_VSOCK",
 216	[PF_KCM]	= "PF_KCM",
 217	[PF_QIPCRTR]	= "PF_QIPCRTR",
 218	[PF_SMC]	= "PF_SMC",
 219	[PF_XDP]	= "PF_XDP",
 220	[PF_MCTP]	= "PF_MCTP",
 221};
 222
 223/*
 224 *	The protocol list. Each protocol is registered in here.
 225 */
 226
 227static DEFINE_SPINLOCK(net_family_lock);
 228static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 229
 230/*
 
 
 
 
 
 
 231 * Support routines.
 232 * Move socket addresses back and forth across the kernel/user
 233 * divide and look after the messy bits.
 234 */
 235
 236/**
 237 *	move_addr_to_kernel	-	copy a socket address into kernel space
 238 *	@uaddr: Address in user space
 239 *	@kaddr: Address in kernel space
 240 *	@ulen: Length in user space
 241 *
 242 *	The address is copied into kernel space. If the provided address is
 243 *	too long an error code of -EINVAL is returned. If the copy gives
 244 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 245 */
 246
 247int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 248{
 249	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 250		return -EINVAL;
 251	if (ulen == 0)
 252		return 0;
 253	if (copy_from_user(kaddr, uaddr, ulen))
 254		return -EFAULT;
 255	return audit_sockaddr(ulen, kaddr);
 256}
 257
 258/**
 259 *	move_addr_to_user	-	copy an address to user space
 260 *	@kaddr: kernel space address
 261 *	@klen: length of address in kernel
 262 *	@uaddr: user space address
 263 *	@ulen: pointer to user length field
 264 *
 265 *	The value pointed to by ulen on entry is the buffer length available.
 266 *	This is overwritten with the buffer space used. -EINVAL is returned
 267 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 268 *	is returned if either the buffer or the length field are not
 269 *	accessible.
 270 *	After copying the data up to the limit the user specifies, the true
 271 *	length of the data is written over the length limit the user
 272 *	specified. Zero is returned for a success.
 273 */
 274
 275static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 276			     void __user *uaddr, int __user *ulen)
 277{
 278	int err;
 279	int len;
 280
 281	BUG_ON(klen > sizeof(struct sockaddr_storage));
 282	err = get_user(len, ulen);
 283	if (err)
 284		return err;
 285	if (len > klen)
 286		len = klen;
 287	if (len < 0)
 288		return -EINVAL;
 289	if (len) {
 290		if (audit_sockaddr(klen, kaddr))
 291			return -ENOMEM;
 292		if (copy_to_user(uaddr, kaddr, len))
 293			return -EFAULT;
 294	}
 295	/*
 296	 *      "fromlen shall refer to the value before truncation.."
 297	 *                      1003.1g
 298	 */
 299	return __put_user(klen, ulen);
 300}
 301
 302static struct kmem_cache *sock_inode_cachep __ro_after_init;
 303
 304static struct inode *sock_alloc_inode(struct super_block *sb)
 305{
 306	struct socket_alloc *ei;
 
 307
 308	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
 309	if (!ei)
 310		return NULL;
 311	init_waitqueue_head(&ei->socket.wq.wait);
 312	ei->socket.wq.fasync_list = NULL;
 313	ei->socket.wq.flags = 0;
 
 
 
 
 
 
 314
 315	ei->socket.state = SS_UNCONNECTED;
 316	ei->socket.flags = 0;
 317	ei->socket.ops = NULL;
 318	ei->socket.sk = NULL;
 319	ei->socket.file = NULL;
 320
 321	return &ei->vfs_inode;
 322}
 323
 324static void sock_free_inode(struct inode *inode)
 325{
 326	struct socket_alloc *ei;
 
 327
 328	ei = container_of(inode, struct socket_alloc, vfs_inode);
 
 
 329	kmem_cache_free(sock_inode_cachep, ei);
 330}
 331
 332static void init_once(void *foo)
 333{
 334	struct socket_alloc *ei = (struct socket_alloc *)foo;
 335
 336	inode_init_once(&ei->vfs_inode);
 337}
 338
 339static void init_inodecache(void)
 340{
 341	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 342					      sizeof(struct socket_alloc),
 343					      0,
 344					      (SLAB_HWCACHE_ALIGN |
 345					       SLAB_RECLAIM_ACCOUNT |
 346					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 347					      init_once);
 348	BUG_ON(sock_inode_cachep == NULL);
 
 
 349}
 350
 351static const struct super_operations sockfs_ops = {
 352	.alloc_inode	= sock_alloc_inode,
 353	.free_inode	= sock_free_inode,
 354	.statfs		= simple_statfs,
 355};
 356
 357/*
 358 * sockfs_dname() is called from d_path().
 359 */
 360static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 361{
 362	return dynamic_dname(buffer, buflen, "socket:[%lu]",
 363				d_inode(dentry)->i_ino);
 364}
 365
 366static const struct dentry_operations sockfs_dentry_operations = {
 367	.d_dname  = sockfs_dname,
 368};
 369
 370static int sockfs_xattr_get(const struct xattr_handler *handler,
 371			    struct dentry *dentry, struct inode *inode,
 372			    const char *suffix, void *value, size_t size)
 373{
 374	if (value) {
 375		if (dentry->d_name.len + 1 > size)
 376			return -ERANGE;
 377		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 378	}
 379	return dentry->d_name.len + 1;
 380}
 381
 382#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 383#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 384#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 385
 386static const struct xattr_handler sockfs_xattr_handler = {
 387	.name = XATTR_NAME_SOCKPROTONAME,
 388	.get = sockfs_xattr_get,
 389};
 390
 391static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 392				     struct mnt_idmap *idmap,
 393				     struct dentry *dentry, struct inode *inode,
 394				     const char *suffix, const void *value,
 395				     size_t size, int flags)
 396{
 397	/* Handled by LSM. */
 398	return -EAGAIN;
 399}
 400
 401static const struct xattr_handler sockfs_security_xattr_handler = {
 402	.prefix = XATTR_SECURITY_PREFIX,
 403	.set = sockfs_security_xattr_set,
 404};
 405
 406static const struct xattr_handler * const sockfs_xattr_handlers[] = {
 407	&sockfs_xattr_handler,
 408	&sockfs_security_xattr_handler,
 409	NULL
 410};
 411
 412static int sockfs_init_fs_context(struct fs_context *fc)
 
 413{
 414	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 415	if (!ctx)
 416		return -ENOMEM;
 417	ctx->ops = &sockfs_ops;
 418	ctx->dops = &sockfs_dentry_operations;
 419	ctx->xattr = sockfs_xattr_handlers;
 420	return 0;
 421}
 422
 423static struct vfsmount *sock_mnt __read_mostly;
 424
 425static struct file_system_type sock_fs_type = {
 426	.name =		"sockfs",
 427	.init_fs_context = sockfs_init_fs_context,
 428	.kill_sb =	kill_anon_super,
 429};
 430
 431/*
 432 *	Obtains the first available file descriptor and sets it up for use.
 433 *
 434 *	These functions create file structures and maps them to fd space
 435 *	of the current process. On success it returns file descriptor
 436 *	and file struct implicitly stored in sock->file.
 437 *	Note that another thread may close file descriptor before we return
 438 *	from this function. We use the fact that now we do not refer
 439 *	to socket after mapping. If one day we will need it, this
 440 *	function will increment ref. count on file by 1.
 441 *
 442 *	In any case returned fd MAY BE not valid!
 443 *	This race condition is unavoidable
 444 *	with shared fd spaces, we cannot solve it inside kernel,
 445 *	but we take care of internal coherence yet.
 446 */
 447
 448/**
 449 *	sock_alloc_file - Bind a &socket to a &file
 450 *	@sock: socket
 451 *	@flags: file status flags
 452 *	@dname: protocol name
 453 *
 454 *	Returns the &file bound with @sock, implicitly storing it
 455 *	in sock->file. If dname is %NULL, sets to "".
 456 *
 457 *	On failure @sock is released, and an ERR pointer is returned.
 458 *
 459 *	This function uses GFP_KERNEL internally.
 460 */
 461
 462struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 463{
 
 
 464	struct file *file;
 465
 466	if (!dname)
 467		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 
 
 
 
 
 
 
 
 
 
 
 468
 469	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 470				O_RDWR | (flags & O_NONBLOCK),
 471				&socket_file_ops);
 472	if (IS_ERR(file)) {
 473		sock_release(sock);
 
 
 474		return file;
 475	}
 476
 477	file->f_mode |= FMODE_NOWAIT;
 478	sock->file = file;
 
 479	file->private_data = sock;
 480	stream_open(SOCK_INODE(sock), file);
 481	return file;
 482}
 483EXPORT_SYMBOL(sock_alloc_file);
 484
 485static int sock_map_fd(struct socket *sock, int flags)
 486{
 487	struct file *newfile;
 488	int fd = get_unused_fd_flags(flags);
 489	if (unlikely(fd < 0)) {
 490		sock_release(sock);
 491		return fd;
 492	}
 493
 494	newfile = sock_alloc_file(sock, flags, NULL);
 495	if (!IS_ERR(newfile)) {
 496		fd_install(fd, newfile);
 497		return fd;
 498	}
 499
 500	put_unused_fd(fd);
 501	return PTR_ERR(newfile);
 502}
 503
 504/**
 505 *	sock_from_file - Return the &socket bounded to @file.
 506 *	@file: file
 507 *
 508 *	On failure returns %NULL.
 509 */
 510
 511struct socket *sock_from_file(struct file *file)
 512{
 513	if (file->f_op == &socket_file_ops)
 514		return file->private_data;	/* set in sock_alloc_file */
 515
 
 516	return NULL;
 517}
 518EXPORT_SYMBOL(sock_from_file);
 519
 520/**
 521 *	sockfd_lookup - Go from a file number to its socket slot
 522 *	@fd: file handle
 523 *	@err: pointer to an error code return
 524 *
 525 *	The file handle passed in is locked and the socket it is bound
 526 *	to is returned. If an error occurs the err pointer is overwritten
 527 *	with a negative errno code and NULL is returned. The function checks
 528 *	for both invalid handles and passing a handle which is not a socket.
 529 *
 530 *	On a success the socket object pointer is returned.
 531 */
 532
 533struct socket *sockfd_lookup(int fd, int *err)
 534{
 535	struct file *file;
 536	struct socket *sock;
 537
 538	file = fget(fd);
 539	if (!file) {
 540		*err = -EBADF;
 541		return NULL;
 542	}
 543
 544	sock = sock_from_file(file);
 545	if (!sock) {
 546		*err = -ENOTSOCK;
 547		fput(file);
 548	}
 549	return sock;
 550}
 551EXPORT_SYMBOL(sockfd_lookup);
 552
 553static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 554{
 555	struct fd f = fdget(fd);
 556	struct socket *sock;
 557
 558	*err = -EBADF;
 559	if (f.file) {
 560		sock = sock_from_file(f.file);
 561		if (likely(sock)) {
 562			*fput_needed = f.flags & FDPUT_FPUT;
 563			return sock;
 564		}
 565		*err = -ENOTSOCK;
 566		fdput(f);
 567	}
 568	return NULL;
 569}
 570
 571static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 572				size_t size)
 573{
 574	ssize_t len;
 575	ssize_t used = 0;
 576
 577	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 578	if (len < 0)
 579		return len;
 580	used += len;
 581	if (buffer) {
 582		if (size < used)
 583			return -ERANGE;
 584		buffer += len;
 585	}
 586
 587	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 588	used += len;
 589	if (buffer) {
 590		if (size < used)
 591			return -ERANGE;
 592		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 593		buffer += len;
 594	}
 595
 596	return used;
 597}
 598
 599static int sockfs_setattr(struct mnt_idmap *idmap,
 600			  struct dentry *dentry, struct iattr *iattr)
 601{
 602	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
 603
 604	if (!err && (iattr->ia_valid & ATTR_UID)) {
 605		struct socket *sock = SOCKET_I(d_inode(dentry));
 606
 607		if (sock->sk)
 608			sock->sk->sk_uid = iattr->ia_uid;
 609		else
 610			err = -ENOENT;
 611	}
 612
 613	return err;
 614}
 615
 616static const struct inode_operations sockfs_inode_ops = {
 617	.listxattr = sockfs_listxattr,
 618	.setattr = sockfs_setattr,
 619};
 620
 621/**
 622 *	sock_alloc - allocate a socket
 623 *
 624 *	Allocate a new inode and socket object. The two are bound together
 625 *	and initialised. The socket is then returned. If we are out of inodes
 626 *	NULL is returned. This functions uses GFP_KERNEL internally.
 627 */
 628
 629struct socket *sock_alloc(void)
 630{
 631	struct inode *inode;
 632	struct socket *sock;
 633
 634	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 635	if (!inode)
 636		return NULL;
 637
 638	sock = SOCKET_I(inode);
 639
 
 640	inode->i_ino = get_next_ino();
 641	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 642	inode->i_uid = current_fsuid();
 643	inode->i_gid = current_fsgid();
 644	inode->i_op = &sockfs_inode_ops;
 645
 
 646	return sock;
 647}
 648EXPORT_SYMBOL(sock_alloc);
 649
 650static void __sock_release(struct socket *sock, struct inode *inode)
 
 
 
 
 
 
 
 
 
 651{
 652	const struct proto_ops *ops = READ_ONCE(sock->ops);
 653
 654	if (ops) {
 655		struct module *owner = ops->owner;
 656
 657		if (inode)
 658			inode_lock(inode);
 659		ops->release(sock);
 660		sock->sk = NULL;
 661		if (inode)
 662			inode_unlock(inode);
 663		sock->ops = NULL;
 664		module_put(owner);
 665	}
 666
 667	if (sock->wq.fasync_list)
 668		pr_err("%s: fasync list not empty!\n", __func__);
 669
 
 670	if (!sock->file) {
 671		iput(SOCK_INODE(sock));
 672		return;
 673	}
 674	sock->file = NULL;
 675}
 676
 677/**
 678 *	sock_release - close a socket
 679 *	@sock: socket to close
 680 *
 681 *	The socket is released from the protocol stack if it has a release
 682 *	callback, and the inode is then released if the socket is bound to
 683 *	an inode not a file.
 684 */
 685void sock_release(struct socket *sock)
 686{
 687	__sock_release(sock, NULL);
 688}
 689EXPORT_SYMBOL(sock_release);
 690
 691void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 692{
 693	u8 flags = *tx_flags;
 694
 695	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
 696		flags |= SKBTX_HW_TSTAMP;
 697
 698		/* PTP hardware clocks can provide a free running cycle counter
 699		 * as a time base for virtual clocks. Tell driver to use the
 700		 * free running cycle counter for timestamp if socket is bound
 701		 * to virtual clock.
 702		 */
 703		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
 704			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
 705	}
 706
 707	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 708		flags |= SKBTX_SW_TSTAMP;
 709
 710	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 711		flags |= SKBTX_SCHED_TSTAMP;
 712
 713	*tx_flags = flags;
 714}
 715EXPORT_SYMBOL(__sock_tx_timestamp);
 716
 717INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 718					   size_t));
 719INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 720					    size_t));
 721
 722static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
 723						 int flags)
 724{
 725	trace_sock_send_length(sk, ret, 0);
 726}
 727
 728static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 729{
 730	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
 731				     inet_sendmsg, sock, msg,
 732				     msg_data_left(msg));
 733	BUG_ON(ret == -EIOCBQUEUED);
 734
 735	if (trace_sock_send_length_enabled())
 736		call_trace_sock_send_length(sock->sk, ret, 0);
 737	return ret;
 738}
 739
 740static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
 741{
 742	int err = security_socket_sendmsg(sock, msg,
 743					  msg_data_left(msg));
 744
 745	return err ?: sock_sendmsg_nosec(sock, msg);
 746}
 747
 748/**
 749 *	sock_sendmsg - send a message through @sock
 750 *	@sock: socket
 751 *	@msg: message to send
 752 *
 753 *	Sends @msg through @sock, passing through LSM.
 754 *	Returns the number of bytes sent, or an error code.
 755 */
 756int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 757{
 758	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
 759	struct sockaddr_storage address;
 760	int save_len = msg->msg_namelen;
 761	int ret;
 762
 763	if (msg->msg_name) {
 764		memcpy(&address, msg->msg_name, msg->msg_namelen);
 765		msg->msg_name = &address;
 766	}
 767
 768	ret = __sock_sendmsg(sock, msg);
 769	msg->msg_name = save_addr;
 770	msg->msg_namelen = save_len;
 771
 772	return ret;
 773}
 774EXPORT_SYMBOL(sock_sendmsg);
 775
 776/**
 777 *	kernel_sendmsg - send a message through @sock (kernel-space)
 778 *	@sock: socket
 779 *	@msg: message header
 780 *	@vec: kernel vec
 781 *	@num: vec array length
 782 *	@size: total message data size
 783 *
 784 *	Builds the message data with @vec and sends it through @sock.
 785 *	Returns the number of bytes sent, or an error code.
 786 */
 787
 788int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 789		   struct kvec *vec, size_t num, size_t size)
 790{
 791	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
 792	return sock_sendmsg(sock, msg);
 793}
 794EXPORT_SYMBOL(kernel_sendmsg);
 795
 796/**
 797 *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
 798 *	@sk: sock
 799 *	@msg: message header
 800 *	@vec: output s/g array
 801 *	@num: output s/g array length
 802 *	@size: total message data size
 803 *
 804 *	Builds the message data with @vec and sends it through @sock.
 805 *	Returns the number of bytes sent, or an error code.
 806 *	Caller must hold @sk.
 807 */
 808
 809int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 810			  struct kvec *vec, size_t num, size_t size)
 811{
 812	struct socket *sock = sk->sk_socket;
 813	const struct proto_ops *ops = READ_ONCE(sock->ops);
 814
 815	if (!ops->sendmsg_locked)
 816		return sock_no_sendmsg_locked(sk, msg, size);
 817
 818	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
 819
 820	return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 821}
 822EXPORT_SYMBOL(kernel_sendmsg_locked);
 823
 824static bool skb_is_err_queue(const struct sk_buff *skb)
 825{
 826	/* pkt_type of skbs enqueued on the error queue are set to
 827	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 828	 * in recvmsg, since skbs received on a local socket will never
 829	 * have a pkt_type of PACKET_OUTGOING.
 830	 */
 831	return skb->pkt_type == PACKET_OUTGOING;
 832}
 833
 834/* On transmit, software and hardware timestamps are returned independently.
 835 * As the two skb clones share the hardware timestamp, which may be updated
 836 * before the software timestamp is received, a hardware TX timestamp may be
 837 * returned only if there is no software TX timestamp. Ignore false software
 838 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 839 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 840 * hardware timestamp.
 841 */
 842static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 843{
 844	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 845}
 846
 847static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
 848{
 849	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
 850	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
 851	struct net_device *orig_dev;
 852	ktime_t hwtstamp;
 853
 854	rcu_read_lock();
 855	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 856	if (orig_dev) {
 857		*if_index = orig_dev->ifindex;
 858		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
 859	} else {
 860		hwtstamp = shhwtstamps->hwtstamp;
 861	}
 862	rcu_read_unlock();
 863
 864	return hwtstamp;
 865}
 866
 867static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
 868			   int if_index)
 869{
 870	struct scm_ts_pktinfo ts_pktinfo;
 871	struct net_device *orig_dev;
 872
 873	if (!skb_mac_header_was_set(skb))
 874		return;
 875
 876	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 877
 878	if (!if_index) {
 879		rcu_read_lock();
 880		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 881		if (orig_dev)
 882			if_index = orig_dev->ifindex;
 883		rcu_read_unlock();
 884	}
 885	ts_pktinfo.if_index = if_index;
 886
 887	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 888	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 889		 sizeof(ts_pktinfo), &ts_pktinfo);
 890}
 891
 892/*
 893 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 894 */
 895void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 896	struct sk_buff *skb)
 897{
 898	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 899	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 900	struct scm_timestamping_internal tss;
 901	int empty = 1, false_tstamp = 0;
 902	struct skb_shared_hwtstamps *shhwtstamps =
 903		skb_hwtstamps(skb);
 904	int if_index;
 905	ktime_t hwtstamp;
 906	u32 tsflags;
 907
 908	/* Race occurred between timestamp enabling and packet
 909	   receiving.  Fill in the current time for now. */
 910	if (need_software_tstamp && skb->tstamp == 0) {
 911		__net_timestamp(skb);
 912		false_tstamp = 1;
 913	}
 914
 915	if (need_software_tstamp) {
 916		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 917			if (new_tstamp) {
 918				struct __kernel_sock_timeval tv;
 919
 920				skb_get_new_timestamp(skb, &tv);
 921				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 922					 sizeof(tv), &tv);
 923			} else {
 924				struct __kernel_old_timeval tv;
 925
 926				skb_get_timestamp(skb, &tv);
 927				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 928					 sizeof(tv), &tv);
 929			}
 930		} else {
 931			if (new_tstamp) {
 932				struct __kernel_timespec ts;
 933
 934				skb_get_new_timestampns(skb, &ts);
 935				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 936					 sizeof(ts), &ts);
 937			} else {
 938				struct __kernel_old_timespec ts;
 939
 940				skb_get_timestampns(skb, &ts);
 941				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 942					 sizeof(ts), &ts);
 943			}
 944		}
 945	}
 946
 947	memset(&tss, 0, sizeof(tss));
 948	tsflags = READ_ONCE(sk->sk_tsflags);
 949	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 950	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 951		empty = 0;
 952	if (shhwtstamps &&
 953	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 954	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
 955		if_index = 0;
 956		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
 957			hwtstamp = get_timestamp(sk, skb, &if_index);
 958		else
 959			hwtstamp = shhwtstamps->hwtstamp;
 960
 961		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
 962			hwtstamp = ptp_convert_timestamp(&hwtstamp,
 963							 READ_ONCE(sk->sk_bind_phc));
 964
 965		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
 966			empty = 0;
 967
 968			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 969			    !skb_is_err_queue(skb))
 970				put_ts_pktinfo(msg, skb, if_index);
 971		}
 972	}
 973	if (!empty) {
 974		if (sock_flag(sk, SOCK_TSTAMP_NEW))
 975			put_cmsg_scm_timestamping64(msg, &tss);
 976		else
 977			put_cmsg_scm_timestamping(msg, &tss);
 978
 979		if (skb_is_err_queue(skb) && skb->len &&
 980		    SKB_EXT_ERR(skb)->opt_stats)
 981			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 982				 skb->len, skb->data);
 983	}
 984}
 985EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 986
 987#ifdef CONFIG_WIRELESS
 988void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 989	struct sk_buff *skb)
 990{
 991	int ack;
 992
 993	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 994		return;
 995	if (!skb->wifi_acked_valid)
 996		return;
 997
 998	ack = skb->wifi_acked;
 999
1000	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1001}
1002EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1003#endif
1004
1005static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1006				   struct sk_buff *skb)
1007{
1008	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1009		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1010			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1011}
1012
1013static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1014			   struct sk_buff *skb)
1015{
1016	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1017		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1018		__u32 mark = skb->mark;
1019
1020		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1021	}
1022}
1023
1024void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1025		       struct sk_buff *skb)
1026{
1027	sock_recv_timestamp(msg, sk, skb);
1028	sock_recv_drops(msg, sk, skb);
1029	sock_recv_mark(msg, sk, skb);
1030}
1031EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1032
1033INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1034					   size_t, int));
1035INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1036					    size_t, int));
1037
1038static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1039{
1040	trace_sock_recv_length(sk, ret, flags);
1041}
 
1042
1043static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1044				     int flags)
1045{
1046	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1047				     inet6_recvmsg,
1048				     inet_recvmsg, sock, msg,
1049				     msg_data_left(msg), flags);
1050	if (trace_sock_recv_length_enabled())
1051		call_trace_sock_recv_length(sock->sk, ret, flags);
1052	return ret;
1053}
1054
1055/**
1056 *	sock_recvmsg - receive a message from @sock
1057 *	@sock: socket
1058 *	@msg: message to receive
1059 *	@flags: message flags
1060 *
1061 *	Receives @msg from @sock, passing through LSM. Returns the total number
1062 *	of bytes received, or an error.
1063 */
1064int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1065{
1066	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1067
1068	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1069}
1070EXPORT_SYMBOL(sock_recvmsg);
1071
1072/**
1073 *	kernel_recvmsg - Receive a message from a socket (kernel space)
1074 *	@sock: The socket to receive the message from
1075 *	@msg: Received message
1076 *	@vec: Input s/g array for message data
1077 *	@num: Size of input s/g array
1078 *	@size: Number of bytes to read
1079 *	@flags: Message flags (MSG_DONTWAIT, etc...)
1080 *
1081 *	On return the msg structure contains the scatter/gather array passed in the
1082 *	vec argument. The array is modified so that it consists of the unfilled
1083 *	portion of the original array.
1084 *
1085 *	The returned value is the total number of bytes received, or an error.
1086 */
1087
1088int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1089		   struct kvec *vec, size_t num, size_t size, int flags)
1090{
1091	msg->msg_control_is_user = false;
1092	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1093	return sock_recvmsg(sock, msg, flags);
 
 
 
 
 
1094}
1095EXPORT_SYMBOL(kernel_recvmsg);
1096
1097static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1098				struct pipe_inode_info *pipe, size_t len,
1099				unsigned int flags)
1100{
1101	struct socket *sock = file->private_data;
1102	const struct proto_ops *ops;
 
 
1103
1104	ops = READ_ONCE(sock->ops);
1105	if (unlikely(!ops->splice_read))
1106		return copy_splice_read(file, ppos, pipe, len, flags);
1107
1108	return ops->splice_read(sock, ppos, pipe, len, flags);
1109}
1110
1111static void sock_splice_eof(struct file *file)
 
 
1112{
1113	struct socket *sock = file->private_data;
1114	const struct proto_ops *ops;
1115
1116	ops = READ_ONCE(sock->ops);
1117	if (ops->splice_eof)
1118		ops->splice_eof(sock);
 
1119}
1120
1121static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1122{
1123	struct file *file = iocb->ki_filp;
1124	struct socket *sock = file->private_data;
1125	struct msghdr msg = {.msg_iter = *to,
1126			     .msg_iocb = iocb};
1127	ssize_t res;
1128
1129	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1130		msg.msg_flags = MSG_DONTWAIT;
1131
1132	if (iocb->ki_pos != 0)
1133		return -ESPIPE;
1134
1135	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1136		return 0;
1137
1138	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1139	*to = msg.msg_iter;
1140	return res;
1141}
1142
1143static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1144{
1145	struct file *file = iocb->ki_filp;
1146	struct socket *sock = file->private_data;
1147	struct msghdr msg = {.msg_iter = *from,
1148			     .msg_iocb = iocb};
1149	ssize_t res;
1150
1151	if (iocb->ki_pos != 0)
1152		return -ESPIPE;
1153
1154	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1155		msg.msg_flags = MSG_DONTWAIT;
1156
1157	if (sock->type == SOCK_SEQPACKET)
1158		msg.msg_flags |= MSG_EOR;
1159
1160	res = __sock_sendmsg(sock, &msg);
1161	*from = msg.msg_iter;
1162	return res;
1163}
1164
1165/*
1166 * Atomic setting of ioctl hooks to avoid race
1167 * with module unload.
1168 */
1169
1170static DEFINE_MUTEX(br_ioctl_mutex);
1171static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1172			    unsigned int cmd, struct ifreq *ifr,
1173			    void __user *uarg);
1174
1175void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1176			     unsigned int cmd, struct ifreq *ifr,
1177			     void __user *uarg))
1178{
1179	mutex_lock(&br_ioctl_mutex);
1180	br_ioctl_hook = hook;
1181	mutex_unlock(&br_ioctl_mutex);
1182}
1183EXPORT_SYMBOL(brioctl_set);
1184
1185int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1186		  struct ifreq *ifr, void __user *uarg)
1187{
1188	int err = -ENOPKG;
1189
1190	if (!br_ioctl_hook)
1191		request_module("bridge");
1192
1193	mutex_lock(&br_ioctl_mutex);
1194	if (br_ioctl_hook)
1195		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1196	mutex_unlock(&br_ioctl_mutex);
1197
1198	return err;
1199}
1200
1201static DEFINE_MUTEX(vlan_ioctl_mutex);
1202static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1203
1204void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1205{
1206	mutex_lock(&vlan_ioctl_mutex);
1207	vlan_ioctl_hook = hook;
1208	mutex_unlock(&vlan_ioctl_mutex);
1209}
1210EXPORT_SYMBOL(vlan_ioctl_set);
1211
 
 
 
 
 
 
 
 
 
 
 
1212static long sock_do_ioctl(struct net *net, struct socket *sock,
1213			  unsigned int cmd, unsigned long arg)
1214{
1215	const struct proto_ops *ops = READ_ONCE(sock->ops);
1216	struct ifreq ifr;
1217	bool need_copyout;
1218	int err;
1219	void __user *argp = (void __user *)arg;
1220	void __user *data;
1221
1222	err = ops->ioctl(sock, cmd, arg);
1223
1224	/*
1225	 * If this ioctl is unknown try to hand it down
1226	 * to the NIC driver.
1227	 */
1228	if (err != -ENOIOCTLCMD)
1229		return err;
1230
1231	if (!is_socket_ioctl_cmd(cmd))
1232		return -ENOTTY;
1233
1234	if (get_user_ifreq(&ifr, &data, argp))
1235		return -EFAULT;
1236	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1237	if (!err && need_copyout)
1238		if (put_user_ifreq(&ifr, argp))
1239			return -EFAULT;
1240
1241	return err;
1242}
1243
1244/*
1245 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1246 *	what to do with it - that's up to the protocol still.
1247 */
1248
 
 
 
 
 
1249static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1250{
1251	const struct proto_ops  *ops;
1252	struct socket *sock;
1253	struct sock *sk;
1254	void __user *argp = (void __user *)arg;
1255	int pid, err;
1256	struct net *net;
1257
1258	sock = file->private_data;
1259	ops = READ_ONCE(sock->ops);
1260	sk = sock->sk;
1261	net = sock_net(sk);
1262	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1263		struct ifreq ifr;
1264		void __user *data;
1265		bool need_copyout;
1266		if (get_user_ifreq(&ifr, &data, argp))
1267			return -EFAULT;
1268		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1269		if (!err && need_copyout)
1270			if (put_user_ifreq(&ifr, argp))
1271				return -EFAULT;
1272	} else
1273#ifdef CONFIG_WEXT_CORE
1274	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1275		err = wext_handle_ioctl(net, cmd, argp);
1276	} else
1277#endif
1278		switch (cmd) {
1279		case FIOSETOWN:
1280		case SIOCSPGRP:
1281			err = -EFAULT;
1282			if (get_user(pid, (int __user *)argp))
1283				break;
1284			err = f_setown(sock->file, pid, 1);
 
1285			break;
1286		case FIOGETOWN:
1287		case SIOCGPGRP:
1288			err = put_user(f_getown(sock->file),
1289				       (int __user *)argp);
1290			break;
1291		case SIOCGIFBR:
1292		case SIOCSIFBR:
1293		case SIOCBRADDBR:
1294		case SIOCBRDELBR:
1295			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
 
 
 
 
 
 
 
1296			break;
1297		case SIOCGIFVLAN:
1298		case SIOCSIFVLAN:
1299			err = -ENOPKG;
1300			if (!vlan_ioctl_hook)
1301				request_module("8021q");
1302
1303			mutex_lock(&vlan_ioctl_mutex);
1304			if (vlan_ioctl_hook)
1305				err = vlan_ioctl_hook(net, argp);
1306			mutex_unlock(&vlan_ioctl_mutex);
1307			break;
 
 
 
 
 
 
 
 
 
 
 
1308		case SIOCGSKNS:
1309			err = -EPERM;
1310			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1311				break;
1312
1313			err = open_related_ns(&net->ns, get_net_ns);
1314			break;
1315		case SIOCGSTAMP_OLD:
1316		case SIOCGSTAMPNS_OLD:
1317			if (!ops->gettstamp) {
1318				err = -ENOIOCTLCMD;
1319				break;
1320			}
1321			err = ops->gettstamp(sock, argp,
1322					     cmd == SIOCGSTAMP_OLD,
1323					     !IS_ENABLED(CONFIG_64BIT));
1324			break;
1325		case SIOCGSTAMP_NEW:
1326		case SIOCGSTAMPNS_NEW:
1327			if (!ops->gettstamp) {
1328				err = -ENOIOCTLCMD;
1329				break;
1330			}
1331			err = ops->gettstamp(sock, argp,
1332					     cmd == SIOCGSTAMP_NEW,
1333					     false);
1334			break;
1335
1336		case SIOCGIFCONF:
1337			err = dev_ifconf(net, argp);
1338			break;
1339
1340		default:
1341			err = sock_do_ioctl(net, sock, cmd, arg);
1342			break;
1343		}
1344	return err;
1345}
1346
1347/**
1348 *	sock_create_lite - creates a socket
1349 *	@family: protocol family (AF_INET, ...)
1350 *	@type: communication type (SOCK_STREAM, ...)
1351 *	@protocol: protocol (0, ...)
1352 *	@res: new socket
1353 *
1354 *	Creates a new socket and assigns it to @res, passing through LSM.
1355 *	The new socket initialization is not complete, see kernel_accept().
1356 *	Returns 0 or an error. On failure @res is set to %NULL.
1357 *	This function internally uses GFP_KERNEL.
1358 */
1359
1360int sock_create_lite(int family, int type, int protocol, struct socket **res)
1361{
1362	int err;
1363	struct socket *sock = NULL;
1364
1365	err = security_socket_create(family, type, protocol, 1);
1366	if (err)
1367		goto out;
1368
1369	sock = sock_alloc();
1370	if (!sock) {
1371		err = -ENOMEM;
1372		goto out;
1373	}
1374
1375	sock->type = type;
1376	err = security_socket_post_create(sock, family, type, protocol, 1);
1377	if (err)
1378		goto out_release;
1379
1380out:
1381	*res = sock;
1382	return err;
1383out_release:
1384	sock_release(sock);
1385	sock = NULL;
1386	goto out;
1387}
1388EXPORT_SYMBOL(sock_create_lite);
1389
1390/* No kernel lock held - perfect */
1391static __poll_t sock_poll(struct file *file, poll_table *wait)
1392{
1393	struct socket *sock = file->private_data;
1394	const struct proto_ops *ops = READ_ONCE(sock->ops);
1395	__poll_t events = poll_requested_events(wait), flag = 0;
1396
1397	if (!ops->poll)
1398		return 0;
 
 
1399
1400	if (sk_can_busy_loop(sock->sk)) {
1401		/* poll once if requested by the syscall */
1402		if (events & POLL_BUSY_LOOP)
 
 
 
1403			sk_busy_loop(sock->sk, 1);
1404
1405		/* if this socket can poll_ll, tell the system call */
1406		flag = POLL_BUSY_LOOP;
1407	}
1408
1409	return ops->poll(file, sock, wait) | flag;
1410}
1411
1412static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1413{
1414	struct socket *sock = file->private_data;
1415
1416	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1417}
1418
1419static int sock_close(struct inode *inode, struct file *filp)
1420{
1421	__sock_release(SOCKET_I(inode), inode);
1422	return 0;
1423}
1424
1425/*
1426 *	Update the socket async list
1427 *
1428 *	Fasync_list locking strategy.
1429 *
1430 *	1. fasync_list is modified only under process context socket lock
1431 *	   i.e. under semaphore.
1432 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1433 *	   or under socket lock
1434 */
1435
1436static int sock_fasync(int fd, struct file *filp, int on)
1437{
1438	struct socket *sock = filp->private_data;
1439	struct sock *sk = sock->sk;
1440	struct socket_wq *wq = &sock->wq;
1441
1442	if (sk == NULL)
1443		return -EINVAL;
1444
1445	lock_sock(sk);
 
1446	fasync_helper(fd, filp, on, &wq->fasync_list);
1447
1448	if (!wq->fasync_list)
1449		sock_reset_flag(sk, SOCK_FASYNC);
1450	else
1451		sock_set_flag(sk, SOCK_FASYNC);
1452
1453	release_sock(sk);
1454	return 0;
1455}
1456
1457/* This function may be called only under rcu_lock */
1458
1459int sock_wake_async(struct socket_wq *wq, int how, int band)
1460{
1461	if (!wq || !wq->fasync_list)
1462		return -1;
1463
1464	switch (how) {
1465	case SOCK_WAKE_WAITD:
1466		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1467			break;
1468		goto call_kill;
1469	case SOCK_WAKE_SPACE:
1470		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1471			break;
1472		fallthrough;
1473	case SOCK_WAKE_IO:
1474call_kill:
1475		kill_fasync(&wq->fasync_list, SIGIO, band);
1476		break;
1477	case SOCK_WAKE_URG:
1478		kill_fasync(&wq->fasync_list, SIGURG, band);
1479	}
1480
1481	return 0;
1482}
1483EXPORT_SYMBOL(sock_wake_async);
1484
1485/**
1486 *	__sock_create - creates a socket
1487 *	@net: net namespace
1488 *	@family: protocol family (AF_INET, ...)
1489 *	@type: communication type (SOCK_STREAM, ...)
1490 *	@protocol: protocol (0, ...)
1491 *	@res: new socket
1492 *	@kern: boolean for kernel space sockets
1493 *
1494 *	Creates a new socket and assigns it to @res, passing through LSM.
1495 *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1496 *	be set to true if the socket resides in kernel space.
1497 *	This function internally uses GFP_KERNEL.
1498 */
1499
1500int __sock_create(struct net *net, int family, int type, int protocol,
1501			 struct socket **res, int kern)
1502{
1503	int err;
1504	struct socket *sock;
1505	const struct net_proto_family *pf;
1506
1507	/*
1508	 *      Check protocol is in range
1509	 */
1510	if (family < 0 || family >= NPROTO)
1511		return -EAFNOSUPPORT;
1512	if (type < 0 || type >= SOCK_MAX)
1513		return -EINVAL;
1514
1515	/* Compatibility.
1516
1517	   This uglymoron is moved from INET layer to here to avoid
1518	   deadlock in module load.
1519	 */
1520	if (family == PF_INET && type == SOCK_PACKET) {
1521		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1522			     current->comm);
1523		family = PF_PACKET;
1524	}
1525
1526	err = security_socket_create(family, type, protocol, kern);
1527	if (err)
1528		return err;
1529
1530	/*
1531	 *	Allocate the socket and allow the family to set things up. if
1532	 *	the protocol is 0, the family is instructed to select an appropriate
1533	 *	default.
1534	 */
1535	sock = sock_alloc();
1536	if (!sock) {
1537		net_warn_ratelimited("socket: no more sockets\n");
1538		return -ENFILE;	/* Not exactly a match, but its the
1539				   closest posix thing */
1540	}
1541
1542	sock->type = type;
1543
1544#ifdef CONFIG_MODULES
1545	/* Attempt to load a protocol module if the find failed.
1546	 *
1547	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1548	 * requested real, full-featured networking support upon configuration.
1549	 * Otherwise module support will break!
1550	 */
1551	if (rcu_access_pointer(net_families[family]) == NULL)
1552		request_module("net-pf-%d", family);
1553#endif
1554
1555	rcu_read_lock();
1556	pf = rcu_dereference(net_families[family]);
1557	err = -EAFNOSUPPORT;
1558	if (!pf)
1559		goto out_release;
1560
1561	/*
1562	 * We will call the ->create function, that possibly is in a loadable
1563	 * module, so we have to bump that loadable module refcnt first.
1564	 */
1565	if (!try_module_get(pf->owner))
1566		goto out_release;
1567
1568	/* Now protected by module ref count */
1569	rcu_read_unlock();
1570
1571	err = pf->create(net, sock, protocol, kern);
1572	if (err < 0)
1573		goto out_module_put;
1574
1575	/*
1576	 * Now to bump the refcnt of the [loadable] module that owns this
1577	 * socket at sock_release time we decrement its refcnt.
1578	 */
1579	if (!try_module_get(sock->ops->owner))
1580		goto out_module_busy;
1581
1582	/*
1583	 * Now that we're done with the ->create function, the [loadable]
1584	 * module can have its refcnt decremented
1585	 */
1586	module_put(pf->owner);
1587	err = security_socket_post_create(sock, family, type, protocol, kern);
1588	if (err)
1589		goto out_sock_release;
1590	*res = sock;
1591
1592	return 0;
1593
1594out_module_busy:
1595	err = -EAFNOSUPPORT;
1596out_module_put:
1597	sock->ops = NULL;
1598	module_put(pf->owner);
1599out_sock_release:
1600	sock_release(sock);
1601	return err;
1602
1603out_release:
1604	rcu_read_unlock();
1605	goto out_sock_release;
1606}
1607EXPORT_SYMBOL(__sock_create);
1608
1609/**
1610 *	sock_create - creates a socket
1611 *	@family: protocol family (AF_INET, ...)
1612 *	@type: communication type (SOCK_STREAM, ...)
1613 *	@protocol: protocol (0, ...)
1614 *	@res: new socket
1615 *
1616 *	A wrapper around __sock_create().
1617 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1618 */
1619
1620int sock_create(int family, int type, int protocol, struct socket **res)
1621{
1622	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1623}
1624EXPORT_SYMBOL(sock_create);
1625
1626/**
1627 *	sock_create_kern - creates a socket (kernel space)
1628 *	@net: net namespace
1629 *	@family: protocol family (AF_INET, ...)
1630 *	@type: communication type (SOCK_STREAM, ...)
1631 *	@protocol: protocol (0, ...)
1632 *	@res: new socket
1633 *
1634 *	A wrapper around __sock_create().
1635 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1636 */
1637
1638int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1639{
1640	return __sock_create(net, family, type, protocol, res, 1);
1641}
1642EXPORT_SYMBOL(sock_create_kern);
1643
1644static struct socket *__sys_socket_create(int family, int type, int protocol)
1645{
 
1646	struct socket *sock;
1647	int retval;
1648
1649	/* Check the SOCK_* constants for consistency.  */
1650	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1651	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1652	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1653	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1654
1655	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1656		return ERR_PTR(-EINVAL);
 
1657	type &= SOCK_TYPE_MASK;
1658
1659	retval = sock_create(family, type, protocol, &sock);
1660	if (retval < 0)
1661		return ERR_PTR(retval);
1662
1663	return sock;
1664}
1665
1666struct file *__sys_socket_file(int family, int type, int protocol)
1667{
1668	struct socket *sock;
1669	int flags;
1670
1671	sock = __sys_socket_create(family, type, protocol);
1672	if (IS_ERR(sock))
1673		return ERR_CAST(sock);
1674
1675	flags = type & ~SOCK_TYPE_MASK;
1676	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1677		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1678
1679	return sock_alloc_file(sock, flags, NULL);
1680}
 
1681
1682/*	A hook for bpf progs to attach to and update socket protocol.
1683 *
1684 *	A static noinline declaration here could cause the compiler to
1685 *	optimize away the function. A global noinline declaration will
1686 *	keep the definition, but may optimize away the callsite.
1687 *	Therefore, __weak is needed to ensure that the call is still
1688 *	emitted, by telling the compiler that we don't know what the
1689 *	function might eventually be.
1690 */
1691
1692__bpf_hook_start();
 
 
1693
1694__weak noinline int update_socket_protocol(int family, int type, int protocol)
1695{
1696	return protocol;
1697}
1698
1699__bpf_hook_end();
1700
1701int __sys_socket(int family, int type, int protocol)
1702{
1703	struct socket *sock;
1704	int flags;
1705
1706	sock = __sys_socket_create(family, type,
1707				   update_socket_protocol(family, type, protocol));
1708	if (IS_ERR(sock))
1709		return PTR_ERR(sock);
1710
1711	flags = type & ~SOCK_TYPE_MASK;
1712	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1713		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1714
1715	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1716}
1717
1718SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1719{
1720	return __sys_socket(family, type, protocol);
1721}
1722
1723/*
1724 *	Create a pair of connected sockets.
1725 */
1726
1727int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
 
1728{
1729	struct socket *sock1, *sock2;
1730	int fd1, fd2, err;
1731	struct file *newfile1, *newfile2;
1732	int flags;
1733
1734	flags = type & ~SOCK_TYPE_MASK;
1735	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1736		return -EINVAL;
1737	type &= SOCK_TYPE_MASK;
1738
1739	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1740		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1741
1742	/*
1743	 * reserve descriptors and make sure we won't fail
1744	 * to return them to userland.
1745	 */
1746	fd1 = get_unused_fd_flags(flags);
1747	if (unlikely(fd1 < 0))
1748		return fd1;
1749
1750	fd2 = get_unused_fd_flags(flags);
1751	if (unlikely(fd2 < 0)) {
1752		put_unused_fd(fd1);
1753		return fd2;
1754	}
1755
1756	err = put_user(fd1, &usockvec[0]);
1757	if (err)
1758		goto out;
1759
1760	err = put_user(fd2, &usockvec[1]);
1761	if (err)
1762		goto out;
1763
1764	/*
1765	 * Obtain the first socket and check if the underlying protocol
1766	 * supports the socketpair call.
1767	 */
1768
1769	err = sock_create(family, type, protocol, &sock1);
1770	if (unlikely(err < 0))
1771		goto out;
1772
1773	err = sock_create(family, type, protocol, &sock2);
1774	if (unlikely(err < 0)) {
1775		sock_release(sock1);
1776		goto out;
1777	}
 
 
1778
1779	err = security_socket_socketpair(sock1, sock2);
1780	if (unlikely(err)) {
1781		sock_release(sock2);
1782		sock_release(sock1);
1783		goto out;
1784	}
1785
1786	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1787	if (unlikely(err < 0)) {
1788		sock_release(sock2);
1789		sock_release(sock1);
1790		goto out;
1791	}
1792
1793	newfile1 = sock_alloc_file(sock1, flags, NULL);
1794	if (IS_ERR(newfile1)) {
1795		err = PTR_ERR(newfile1);
1796		sock_release(sock2);
1797		goto out;
1798	}
1799
1800	newfile2 = sock_alloc_file(sock2, flags, NULL);
1801	if (IS_ERR(newfile2)) {
1802		err = PTR_ERR(newfile2);
1803		fput(newfile1);
1804		goto out;
1805	}
1806
 
 
 
 
 
 
 
 
1807	audit_fd_pair(fd1, fd2);
1808
1809	fd_install(fd1, newfile1);
1810	fd_install(fd2, newfile2);
 
 
 
 
1811	return 0;
1812
1813out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1814	put_unused_fd(fd2);
 
1815	put_unused_fd(fd1);
 
 
 
 
 
1816	return err;
1817}
1818
1819SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1820		int __user *, usockvec)
1821{
1822	return __sys_socketpair(family, type, protocol, usockvec);
1823}
1824
1825/*
1826 *	Bind a name to a socket. Nothing much to do here since it's
1827 *	the protocol's responsibility to handle the local address.
1828 *
1829 *	We move the socket address to kernel space before we call
1830 *	the protocol layer (having also checked the address is ok).
1831 */
1832
1833int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1834{
1835	struct socket *sock;
1836	struct sockaddr_storage address;
1837	int err, fput_needed;
1838
1839	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1840	if (sock) {
1841		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1842		if (!err) {
1843			err = security_socket_bind(sock,
1844						   (struct sockaddr *)&address,
1845						   addrlen);
1846			if (!err)
1847				err = READ_ONCE(sock->ops)->bind(sock,
1848						      (struct sockaddr *)
1849						      &address, addrlen);
1850		}
1851		fput_light(sock->file, fput_needed);
1852	}
1853	return err;
1854}
1855
1856SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1857{
1858	return __sys_bind(fd, umyaddr, addrlen);
1859}
1860
1861/*
1862 *	Perform a listen. Basically, we allow the protocol to do anything
1863 *	necessary for a listen, and if that works, we mark the socket as
1864 *	ready for listening.
1865 */
1866
1867int __sys_listen(int fd, int backlog)
1868{
1869	struct socket *sock;
1870	int err, fput_needed;
1871	int somaxconn;
1872
1873	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1874	if (sock) {
1875		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1876		if ((unsigned int)backlog > somaxconn)
1877			backlog = somaxconn;
1878
1879		err = security_socket_listen(sock, backlog);
1880		if (!err)
1881			err = READ_ONCE(sock->ops)->listen(sock, backlog);
1882
1883		fput_light(sock->file, fput_needed);
1884	}
1885	return err;
1886}
1887
1888SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1889{
1890	return __sys_listen(fd, backlog);
1891}
 
 
 
 
 
 
 
1892
1893struct file *do_accept(struct file *file, unsigned file_flags,
1894		       struct sockaddr __user *upeer_sockaddr,
1895		       int __user *upeer_addrlen, int flags)
1896{
1897	struct socket *sock, *newsock;
1898	struct file *newfile;
1899	int err, len;
1900	struct sockaddr_storage address;
1901	const struct proto_ops *ops;
1902
1903	sock = sock_from_file(file);
 
 
 
 
 
 
1904	if (!sock)
1905		return ERR_PTR(-ENOTSOCK);
1906
 
1907	newsock = sock_alloc();
1908	if (!newsock)
1909		return ERR_PTR(-ENFILE);
1910	ops = READ_ONCE(sock->ops);
1911
1912	newsock->type = sock->type;
1913	newsock->ops = ops;
1914
1915	/*
1916	 * We don't need try_module_get here, as the listening socket (sock)
1917	 * has the protocol module (sock->ops->owner) held.
1918	 */
1919	__module_get(ops->owner);
1920
 
 
 
 
 
 
1921	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1922	if (IS_ERR(newfile))
1923		return newfile;
 
 
 
 
1924
1925	err = security_socket_accept(sock, newsock);
1926	if (err)
1927		goto out_fd;
1928
1929	err = ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1930					false);
1931	if (err < 0)
1932		goto out_fd;
1933
1934	if (upeer_sockaddr) {
1935		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1936		if (len < 0) {
1937			err = -ECONNABORTED;
1938			goto out_fd;
1939		}
1940		err = move_addr_to_user(&address,
1941					len, upeer_sockaddr, upeer_addrlen);
1942		if (err < 0)
1943			goto out_fd;
1944	}
1945
1946	/* File flags are not inherited via accept() unlike another OSes. */
1947	return newfile;
1948out_fd:
1949	fput(newfile);
1950	return ERR_PTR(err);
1951}
1952
1953static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1954			      int __user *upeer_addrlen, int flags)
1955{
1956	struct file *newfile;
1957	int newfd;
1958
1959	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1960		return -EINVAL;
1961
1962	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1963		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1964
1965	newfd = get_unused_fd_flags(flags);
1966	if (unlikely(newfd < 0))
1967		return newfd;
1968
1969	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1970			    flags);
1971	if (IS_ERR(newfile)) {
1972		put_unused_fd(newfd);
1973		return PTR_ERR(newfile);
1974	}
1975	fd_install(newfd, newfile);
1976	return newfd;
1977}
1978
1979/*
1980 *	For accept, we attempt to create a new socket, set up the link
1981 *	with the client, wake up the client, then return the new
1982 *	connected fd. We collect the address of the connector in kernel
1983 *	space and move it to user at the very end. This is unclean because
1984 *	we open the socket then return an error.
1985 *
1986 *	1003.1g adds the ability to recvmsg() to query connection pending
1987 *	status to recvmsg. We need to add that support in a way thats
1988 *	clean when we restructure accept also.
1989 */
1990
1991int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1992		  int __user *upeer_addrlen, int flags)
1993{
1994	int ret = -EBADF;
1995	struct fd f;
1996
1997	f = fdget(fd);
1998	if (f.file) {
1999		ret = __sys_accept4_file(f.file, upeer_sockaddr,
2000					 upeer_addrlen, flags);
2001		fdput(f);
2002	}
2003
2004	return ret;
2005}
2006
2007SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2008		int __user *, upeer_addrlen, int, flags)
2009{
2010	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2011}
2012
2013SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2014		int __user *, upeer_addrlen)
2015{
2016	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2017}
2018
2019/*
2020 *	Attempt to connect to a socket with the server address.  The address
2021 *	is in user space so we verify it is OK and move it to kernel space.
2022 *
2023 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2024 *	break bindings
2025 *
2026 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2027 *	other SEQPACKET protocols that take time to connect() as it doesn't
2028 *	include the -EINPROGRESS status for such sockets.
2029 */
2030
2031int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2032		       int addrlen, int file_flags)
2033{
2034	struct socket *sock;
2035	int err;
 
2036
2037	sock = sock_from_file(file);
2038	if (!sock) {
2039		err = -ENOTSOCK;
2040		goto out;
2041	}
 
 
2042
2043	err =
2044	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2045	if (err)
2046		goto out;
2047
2048	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2049				addrlen, sock->file->f_flags | file_flags);
 
 
2050out:
2051	return err;
2052}
2053
2054int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2055{
2056	int ret = -EBADF;
2057	struct fd f;
2058
2059	f = fdget(fd);
2060	if (f.file) {
2061		struct sockaddr_storage address;
2062
2063		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2064		if (!ret)
2065			ret = __sys_connect_file(f.file, &address, addrlen, 0);
2066		fdput(f);
2067	}
2068
2069	return ret;
2070}
2071
2072SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2073		int, addrlen)
2074{
2075	return __sys_connect(fd, uservaddr, addrlen);
2076}
2077
2078/*
2079 *	Get the local address ('name') of a socket object. Move the obtained
2080 *	name to user space.
2081 */
2082
2083int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2084		      int __user *usockaddr_len)
2085{
2086	struct socket *sock;
2087	struct sockaddr_storage address;
2088	int err, fput_needed;
2089
2090	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2091	if (!sock)
2092		goto out;
2093
2094	err = security_socket_getsockname(sock);
2095	if (err)
2096		goto out_put;
2097
2098	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2099	if (err < 0)
2100		goto out_put;
2101	/* "err" is actually length in this case */
2102	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2103
2104out_put:
2105	fput_light(sock->file, fput_needed);
2106out:
2107	return err;
2108}
2109
2110SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2111		int __user *, usockaddr_len)
2112{
2113	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2114}
2115
2116/*
2117 *	Get the remote address ('name') of a socket object. Move the obtained
2118 *	name to user space.
2119 */
2120
2121int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2122		      int __user *usockaddr_len)
2123{
2124	struct socket *sock;
2125	struct sockaddr_storage address;
2126	int err, fput_needed;
2127
2128	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2129	if (sock != NULL) {
2130		const struct proto_ops *ops = READ_ONCE(sock->ops);
2131
2132		err = security_socket_getpeername(sock);
2133		if (err) {
2134			fput_light(sock->file, fput_needed);
2135			return err;
2136		}
2137
2138		err = ops->getname(sock, (struct sockaddr *)&address, 1);
2139		if (err >= 0)
2140			/* "err" is actually length in this case */
2141			err = move_addr_to_user(&address, err, usockaddr,
 
2142						usockaddr_len);
2143		fput_light(sock->file, fput_needed);
2144	}
2145	return err;
2146}
2147
2148SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2149		int __user *, usockaddr_len)
2150{
2151	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2152}
2153
2154/*
2155 *	Send a datagram to a given address. We move the address into kernel
2156 *	space and check the user space data area is readable before invoking
2157 *	the protocol.
2158 */
2159int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2160		 struct sockaddr __user *addr,  int addr_len)
 
 
2161{
2162	struct socket *sock;
2163	struct sockaddr_storage address;
2164	int err;
2165	struct msghdr msg;
 
2166	int fput_needed;
2167
2168	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2169	if (unlikely(err))
2170		return err;
2171	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2172	if (!sock)
2173		goto out;
2174
2175	msg.msg_name = NULL;
2176	msg.msg_control = NULL;
2177	msg.msg_controllen = 0;
2178	msg.msg_namelen = 0;
2179	msg.msg_ubuf = NULL;
2180	if (addr) {
2181		err = move_addr_to_kernel(addr, addr_len, &address);
2182		if (err < 0)
2183			goto out_put;
2184		msg.msg_name = (struct sockaddr *)&address;
2185		msg.msg_namelen = addr_len;
2186	}
2187	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2188	if (sock->file->f_flags & O_NONBLOCK)
2189		flags |= MSG_DONTWAIT;
2190	msg.msg_flags = flags;
2191	err = __sock_sendmsg(sock, &msg);
2192
2193out_put:
2194	fput_light(sock->file, fput_needed);
2195out:
2196	return err;
2197}
2198
2199SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2200		unsigned int, flags, struct sockaddr __user *, addr,
2201		int, addr_len)
2202{
2203	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2204}
2205
2206/*
2207 *	Send a datagram down a socket.
2208 */
2209
2210SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2211		unsigned int, flags)
2212{
2213	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2214}
2215
2216/*
2217 *	Receive a frame from the socket and optionally record the address of the
2218 *	sender. We verify the buffers are writable and if needed move the
2219 *	sender address from kernel to user space.
2220 */
2221int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2222		   struct sockaddr __user *addr, int __user *addr_len)
 
 
2223{
 
 
 
2224	struct sockaddr_storage address;
2225	struct msghdr msg = {
2226		/* Save some cycles and don't copy the address if not needed */
2227		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2228	};
2229	struct socket *sock;
2230	int err, err2;
2231	int fput_needed;
2232
2233	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2234	if (unlikely(err))
2235		return err;
2236	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2237	if (!sock)
2238		goto out;
2239
 
 
 
 
 
 
 
2240	if (sock->file->f_flags & O_NONBLOCK)
2241		flags |= MSG_DONTWAIT;
2242	err = sock_recvmsg(sock, &msg, flags);
2243
2244	if (err >= 0 && addr != NULL) {
2245		err2 = move_addr_to_user(&address,
2246					 msg.msg_namelen, addr, addr_len);
2247		if (err2 < 0)
2248			err = err2;
2249	}
2250
2251	fput_light(sock->file, fput_needed);
2252out:
2253	return err;
2254}
2255
2256SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2257		unsigned int, flags, struct sockaddr __user *, addr,
2258		int __user *, addr_len)
2259{
2260	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2261}
2262
2263/*
2264 *	Receive a datagram from a socket.
2265 */
2266
2267SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2268		unsigned int, flags)
2269{
2270	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2271}
2272
2273static bool sock_use_custom_sol_socket(const struct socket *sock)
2274{
2275	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2276}
2277
2278int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2279		       int optname, sockptr_t optval, int optlen)
2280{
2281	const struct proto_ops *ops;
2282	char *kernel_optval = NULL;
2283	int err;
2284
2285	if (optlen < 0)
2286		return -EINVAL;
2287
2288	err = security_socket_setsockopt(sock, level, optname);
2289	if (err)
2290		goto out_put;
2291
2292	if (!compat)
2293		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2294						     optval, &optlen,
2295						     &kernel_optval);
2296	if (err < 0)
2297		goto out_put;
2298	if (err > 0) {
2299		err = 0;
2300		goto out_put;
2301	}
2302
2303	if (kernel_optval)
2304		optval = KERNEL_SOCKPTR(kernel_optval);
2305	ops = READ_ONCE(sock->ops);
2306	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2307		err = sock_setsockopt(sock, level, optname, optval, optlen);
2308	else if (unlikely(!ops->setsockopt))
2309		err = -EOPNOTSUPP;
2310	else
2311		err = ops->setsockopt(sock, level, optname, optval,
2312					    optlen);
2313	kfree(kernel_optval);
 
 
 
2314out_put:
2315	return err;
2316}
2317EXPORT_SYMBOL(do_sock_setsockopt);
2318
2319/* Set a socket option. Because we don't know the option lengths we have
2320 * to pass the user mode parameter for the protocols to sort out.
2321 */
2322int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2323		     int optlen)
2324{
2325	sockptr_t optval = USER_SOCKPTR(user_optval);
2326	bool compat = in_compat_syscall();
2327	int err, fput_needed;
2328	struct socket *sock;
2329
2330	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2331	if (!sock)
2332		return err;
2333
2334	err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2335
2336	fput_light(sock->file, fput_needed);
2337	return err;
2338}
2339
2340SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2341		char __user *, optval, int, optlen)
2342{
2343	return __sys_setsockopt(fd, level, optname, optval, optlen);
2344}
2345
2346INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2347							 int optname));
2348
2349int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2350		       int optname, sockptr_t optval, sockptr_t optlen)
2351{
2352	int max_optlen __maybe_unused;
2353	const struct proto_ops *ops;
2354	int err;
2355
2356	err = security_socket_getsockopt(sock, level, optname);
2357	if (err)
2358		return err;
2359
2360	if (!compat)
2361		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2362
2363	ops = READ_ONCE(sock->ops);
2364	if (level == SOL_SOCKET) {
2365		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2366	} else if (unlikely(!ops->getsockopt)) {
2367		err = -EOPNOTSUPP;
2368	} else {
2369		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2370			      "Invalid argument type"))
2371			return -EOPNOTSUPP;
2372
2373		err = ops->getsockopt(sock, level, optname, optval.user,
2374				      optlen.user);
2375	}
2376
2377	if (!compat)
2378		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2379						     optval, optlen, max_optlen,
2380						     err);
2381
2382	return err;
2383}
2384EXPORT_SYMBOL(do_sock_getsockopt);
2385
2386/*
2387 *	Get a socket option. Because we don't know the option lengths we have
2388 *	to pass a user mode parameter for the protocols to sort out.
2389 */
2390int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2391		int __user *optlen)
 
2392{
2393	int err, fput_needed;
2394	struct socket *sock;
2395	bool compat;
2396
2397	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2398	if (!sock)
2399		return err;
 
 
2400
2401	compat = in_compat_syscall();
2402	err = do_sock_getsockopt(sock, compat, level, optname,
2403				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2404
2405	fput_light(sock->file, fput_needed);
 
 
 
 
 
 
2406	return err;
2407}
2408
2409SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2410		char __user *, optval, int __user *, optlen)
2411{
2412	return __sys_getsockopt(fd, level, optname, optval, optlen);
2413}
2414
2415/*
2416 *	Shutdown a socket.
2417 */
2418
2419int __sys_shutdown_sock(struct socket *sock, int how)
2420{
2421	int err;
2422
2423	err = security_socket_shutdown(sock, how);
2424	if (!err)
2425		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2426
2427	return err;
2428}
2429
2430int __sys_shutdown(int fd, int how)
2431{
2432	int err, fput_needed;
2433	struct socket *sock;
2434
2435	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2436	if (sock != NULL) {
2437		err = __sys_shutdown_sock(sock, how);
 
 
2438		fput_light(sock->file, fput_needed);
2439	}
2440	return err;
2441}
2442
2443SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2444{
2445	return __sys_shutdown(fd, how);
2446}
2447
2448/* A couple of helpful macros for getting the address of the 32/64 bit
2449 * fields which are the same type (int / unsigned) on our platforms.
2450 */
2451#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2452#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2453#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2454
2455struct used_address {
2456	struct sockaddr_storage name;
2457	unsigned int name_len;
2458};
2459
2460int __copy_msghdr(struct msghdr *kmsg,
2461		  struct user_msghdr *msg,
2462		  struct sockaddr __user **save_addr)
 
2463{
 
 
 
2464	ssize_t err;
2465
2466	kmsg->msg_control_is_user = true;
2467	kmsg->msg_get_inq = 0;
2468	kmsg->msg_control_user = msg->msg_control;
2469	kmsg->msg_controllen = msg->msg_controllen;
2470	kmsg->msg_flags = msg->msg_flags;
 
 
 
 
2471
2472	kmsg->msg_namelen = msg->msg_namelen;
2473	if (!msg->msg_name)
2474		kmsg->msg_namelen = 0;
2475
2476	if (kmsg->msg_namelen < 0)
2477		return -EINVAL;
2478
2479	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2480		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2481
2482	if (save_addr)
2483		*save_addr = msg->msg_name;
2484
2485	if (msg->msg_name && kmsg->msg_namelen) {
2486		if (!save_addr) {
2487			err = move_addr_to_kernel(msg->msg_name,
2488						  kmsg->msg_namelen,
2489						  kmsg->msg_name);
2490			if (err < 0)
2491				return err;
2492		}
2493	} else {
2494		kmsg->msg_name = NULL;
2495		kmsg->msg_namelen = 0;
2496	}
2497
2498	if (msg->msg_iovlen > UIO_MAXIOV)
2499		return -EMSGSIZE;
2500
2501	kmsg->msg_iocb = NULL;
2502	kmsg->msg_ubuf = NULL;
2503	return 0;
2504}
2505
2506static int copy_msghdr_from_user(struct msghdr *kmsg,
2507				 struct user_msghdr __user *umsg,
2508				 struct sockaddr __user **save_addr,
2509				 struct iovec **iov)
2510{
2511	struct user_msghdr msg;
2512	ssize_t err;
2513
2514	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2515		return -EFAULT;
2516
2517	err = __copy_msghdr(kmsg, &msg, save_addr);
2518	if (err)
2519		return err;
2520
2521	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2522			    msg.msg_iov, msg.msg_iovlen,
2523			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2524	return err < 0 ? err : 0;
2525}
2526
2527static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2528			   unsigned int flags, struct used_address *used_address,
2529			   unsigned int allowed_msghdr_flags)
 
2530{
 
 
 
 
2531	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2532				__aligned(sizeof(__kernel_size_t));
2533	/* 20 is size of ipv6_pktinfo */
2534	unsigned char *ctl_buf = ctl;
2535	int ctl_len;
2536	ssize_t err;
2537
 
 
 
 
 
 
 
 
 
2538	err = -ENOBUFS;
2539
2540	if (msg_sys->msg_controllen > INT_MAX)
2541		goto out;
2542	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2543	ctl_len = msg_sys->msg_controllen;
2544	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2545		err =
2546		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2547						     sizeof(ctl));
2548		if (err)
2549			goto out;
2550		ctl_buf = msg_sys->msg_control;
2551		ctl_len = msg_sys->msg_controllen;
2552	} else if (ctl_len) {
2553		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2554			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2555		if (ctl_len > sizeof(ctl)) {
2556			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2557			if (ctl_buf == NULL)
2558				goto out;
2559		}
2560		err = -EFAULT;
2561		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
 
 
 
 
 
 
 
2562			goto out_freectl;
2563		msg_sys->msg_control = ctl_buf;
2564		msg_sys->msg_control_is_user = false;
2565	}
2566	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2567	msg_sys->msg_flags = flags;
2568
2569	if (sock->file->f_flags & O_NONBLOCK)
2570		msg_sys->msg_flags |= MSG_DONTWAIT;
2571	/*
2572	 * If this is sendmmsg() and current destination address is same as
2573	 * previously succeeded address, omit asking LSM's decision.
2574	 * used_address->name_len is initialized to UINT_MAX so that the first
2575	 * destination address never matches.
2576	 */
2577	if (used_address && msg_sys->msg_name &&
2578	    used_address->name_len == msg_sys->msg_namelen &&
2579	    !memcmp(&used_address->name, msg_sys->msg_name,
2580		    used_address->name_len)) {
2581		err = sock_sendmsg_nosec(sock, msg_sys);
2582		goto out_freectl;
2583	}
2584	err = __sock_sendmsg(sock, msg_sys);
2585	/*
2586	 * If this is sendmmsg() and sending to current destination address was
2587	 * successful, remember it.
2588	 */
2589	if (used_address && err >= 0) {
2590		used_address->name_len = msg_sys->msg_namelen;
2591		if (msg_sys->msg_name)
2592			memcpy(&used_address->name, msg_sys->msg_name,
2593			       used_address->name_len);
2594	}
2595
2596out_freectl:
2597	if (ctl_buf != ctl)
2598		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2599out:
2600	return err;
2601}
2602
2603int sendmsg_copy_msghdr(struct msghdr *msg,
2604			struct user_msghdr __user *umsg, unsigned flags,
2605			struct iovec **iov)
2606{
2607	int err;
2608
2609	if (flags & MSG_CMSG_COMPAT) {
2610		struct compat_msghdr __user *msg_compat;
2611
2612		msg_compat = (struct compat_msghdr __user *) umsg;
2613		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2614	} else {
2615		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2616	}
2617	if (err < 0)
2618		return err;
2619
2620	return 0;
2621}
2622
2623static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2624			 struct msghdr *msg_sys, unsigned int flags,
2625			 struct used_address *used_address,
2626			 unsigned int allowed_msghdr_flags)
2627{
2628	struct sockaddr_storage address;
2629	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2630	ssize_t err;
2631
2632	msg_sys->msg_name = &address;
2633
2634	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2635	if (err < 0)
2636		return err;
2637
2638	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2639				allowed_msghdr_flags);
2640	kfree(iov);
2641	return err;
2642}
2643
2644/*
2645 *	BSD sendmsg interface
2646 */
2647long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2648			unsigned int flags)
2649{
2650	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2651}
2652
2653long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2654		   bool forbid_cmsg_compat)
2655{
2656	int fput_needed, err;
2657	struct msghdr msg_sys;
2658	struct socket *sock;
2659
2660	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2661		return -EINVAL;
2662
2663	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2664	if (!sock)
2665		goto out;
2666
2667	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2668
2669	fput_light(sock->file, fput_needed);
2670out:
2671	return err;
2672}
2673
2674SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2675{
2676	return __sys_sendmsg(fd, msg, flags, true);
 
 
2677}
2678
2679/*
2680 *	Linux sendmmsg interface
2681 */
2682
2683int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2684		   unsigned int flags, bool forbid_cmsg_compat)
2685{
2686	int fput_needed, err, datagrams;
2687	struct socket *sock;
2688	struct mmsghdr __user *entry;
2689	struct compat_mmsghdr __user *compat_entry;
2690	struct msghdr msg_sys;
2691	struct used_address used_address;
2692	unsigned int oflags = flags;
2693
2694	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2695		return -EINVAL;
2696
2697	if (vlen > UIO_MAXIOV)
2698		vlen = UIO_MAXIOV;
2699
2700	datagrams = 0;
2701
2702	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2703	if (!sock)
2704		return err;
2705
2706	used_address.name_len = UINT_MAX;
2707	entry = mmsg;
2708	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2709	err = 0;
2710	flags |= MSG_BATCH;
2711
2712	while (datagrams < vlen) {
2713		if (datagrams == vlen - 1)
2714			flags = oflags;
2715
2716		if (MSG_CMSG_COMPAT & flags) {
2717			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2718					     &msg_sys, flags, &used_address, MSG_EOR);
2719			if (err < 0)
2720				break;
2721			err = __put_user(err, &compat_entry->msg_len);
2722			++compat_entry;
2723		} else {
2724			err = ___sys_sendmsg(sock,
2725					     (struct user_msghdr __user *)entry,
2726					     &msg_sys, flags, &used_address, MSG_EOR);
2727			if (err < 0)
2728				break;
2729			err = put_user(err, &entry->msg_len);
2730			++entry;
2731		}
2732
2733		if (err)
2734			break;
2735		++datagrams;
2736		if (msg_data_left(&msg_sys))
2737			break;
2738		cond_resched();
2739	}
2740
2741	fput_light(sock->file, fput_needed);
2742
2743	/* We only return an error if no datagrams were able to be sent */
2744	if (datagrams != 0)
2745		return datagrams;
2746
2747	return err;
2748}
2749
2750SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2751		unsigned int, vlen, unsigned int, flags)
2752{
2753	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
 
 
2754}
2755
2756int recvmsg_copy_msghdr(struct msghdr *msg,
2757			struct user_msghdr __user *umsg, unsigned flags,
2758			struct sockaddr __user **uaddr,
2759			struct iovec **iov)
2760{
 
 
 
 
 
 
2761	ssize_t err;
2762
2763	if (MSG_CMSG_COMPAT & flags) {
2764		struct compat_msghdr __user *msg_compat;
 
 
 
 
2765
2766		msg_compat = (struct compat_msghdr __user *) umsg;
2767		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2768	} else {
2769		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2770	}
 
2771	if (err < 0)
2772		return err;
2773
2774	return 0;
2775}
2776
2777static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2778			   struct user_msghdr __user *msg,
2779			   struct sockaddr __user *uaddr,
2780			   unsigned int flags, int nosec)
2781{
2782	struct compat_msghdr __user *msg_compat =
2783					(struct compat_msghdr __user *) msg;
2784	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2785	struct sockaddr_storage addr;
2786	unsigned long cmsg_ptr;
2787	int len;
2788	ssize_t err;
2789
2790	msg_sys->msg_name = &addr;
2791	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2792	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2793
2794	/* We assume all kernel code knows the size of sockaddr_storage */
2795	msg_sys->msg_namelen = 0;
2796
2797	if (sock->file->f_flags & O_NONBLOCK)
2798		flags |= MSG_DONTWAIT;
2799
2800	if (unlikely(nosec))
2801		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2802	else
2803		err = sock_recvmsg(sock, msg_sys, flags);
2804
2805	if (err < 0)
2806		goto out;
2807	len = err;
2808
2809	if (uaddr != NULL) {
2810		err = move_addr_to_user(&addr,
2811					msg_sys->msg_namelen, uaddr,
2812					uaddr_len);
2813		if (err < 0)
2814			goto out;
2815	}
2816	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2817			 COMPAT_FLAGS(msg));
2818	if (err)
2819		goto out;
2820	if (MSG_CMSG_COMPAT & flags)
2821		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2822				 &msg_compat->msg_controllen);
2823	else
2824		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2825				 &msg->msg_controllen);
2826	if (err)
2827		goto out;
2828	err = len;
2829out:
2830	return err;
2831}
2832
2833static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2834			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2835{
2836	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2837	/* user mode address pointers */
2838	struct sockaddr __user *uaddr;
2839	ssize_t err;
2840
2841	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2842	if (err < 0)
2843		return err;
2844
2845	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2846	kfree(iov);
2847	return err;
2848}
2849
2850/*
2851 *	BSD recvmsg interface
2852 */
2853
2854long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2855			struct user_msghdr __user *umsg,
2856			struct sockaddr __user *uaddr, unsigned int flags)
2857{
2858	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2859}
2860
2861long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2862		   bool forbid_cmsg_compat)
2863{
2864	int fput_needed, err;
2865	struct msghdr msg_sys;
2866	struct socket *sock;
2867
2868	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2869		return -EINVAL;
2870
2871	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2872	if (!sock)
2873		goto out;
2874
2875	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2876
2877	fput_light(sock->file, fput_needed);
2878out:
2879	return err;
2880}
2881
2882SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2883		unsigned int, flags)
2884{
2885	return __sys_recvmsg(fd, msg, flags, true);
 
 
2886}
2887
2888/*
2889 *     Linux recvmmsg interface
2890 */
2891
2892static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2893			  unsigned int vlen, unsigned int flags,
2894			  struct timespec64 *timeout)
2895{
2896	int fput_needed, err, datagrams;
2897	struct socket *sock;
2898	struct mmsghdr __user *entry;
2899	struct compat_mmsghdr __user *compat_entry;
2900	struct msghdr msg_sys;
2901	struct timespec64 end_time;
2902	struct timespec64 timeout64;
2903
2904	if (timeout &&
2905	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2906				    timeout->tv_nsec))
2907		return -EINVAL;
2908
2909	datagrams = 0;
2910
2911	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2912	if (!sock)
2913		return err;
2914
2915	if (likely(!(flags & MSG_ERRQUEUE))) {
2916		err = sock_error(sock->sk);
2917		if (err) {
2918			datagrams = err;
2919			goto out_put;
2920		}
2921	}
2922
2923	entry = mmsg;
2924	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2925
2926	while (datagrams < vlen) {
2927		/*
2928		 * No need to ask LSM for more than the first datagram.
2929		 */
2930		if (MSG_CMSG_COMPAT & flags) {
2931			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2932					     &msg_sys, flags & ~MSG_WAITFORONE,
2933					     datagrams);
2934			if (err < 0)
2935				break;
2936			err = __put_user(err, &compat_entry->msg_len);
2937			++compat_entry;
2938		} else {
2939			err = ___sys_recvmsg(sock,
2940					     (struct user_msghdr __user *)entry,
2941					     &msg_sys, flags & ~MSG_WAITFORONE,
2942					     datagrams);
2943			if (err < 0)
2944				break;
2945			err = put_user(err, &entry->msg_len);
2946			++entry;
2947		}
2948
2949		if (err)
2950			break;
2951		++datagrams;
2952
2953		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2954		if (flags & MSG_WAITFORONE)
2955			flags |= MSG_DONTWAIT;
2956
2957		if (timeout) {
2958			ktime_get_ts64(&timeout64);
2959			*timeout = timespec64_sub(end_time, timeout64);
 
2960			if (timeout->tv_sec < 0) {
2961				timeout->tv_sec = timeout->tv_nsec = 0;
2962				break;
2963			}
2964
2965			/* Timeout, return less than vlen datagrams */
2966			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2967				break;
2968		}
2969
2970		/* Out of band data, return right away */
2971		if (msg_sys.msg_flags & MSG_OOB)
2972			break;
2973		cond_resched();
2974	}
2975
2976	if (err == 0)
2977		goto out_put;
2978
2979	if (datagrams == 0) {
2980		datagrams = err;
2981		goto out_put;
2982	}
2983
2984	/*
2985	 * We may return less entries than requested (vlen) if the
2986	 * sock is non block and there aren't enough datagrams...
2987	 */
2988	if (err != -EAGAIN) {
2989		/*
2990		 * ... or  if recvmsg returns an error after we
2991		 * received some datagrams, where we record the
2992		 * error to return on the next call or if the
2993		 * app asks about it using getsockopt(SO_ERROR).
2994		 */
2995		WRITE_ONCE(sock->sk->sk_err, -err);
2996	}
2997out_put:
2998	fput_light(sock->file, fput_needed);
2999
3000	return datagrams;
3001}
3002
3003int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3004		   unsigned int vlen, unsigned int flags,
3005		   struct __kernel_timespec __user *timeout,
3006		   struct old_timespec32 __user *timeout32)
3007{
3008	int datagrams;
3009	struct timespec64 timeout_sys;
 
 
 
3010
3011	if (timeout && get_timespec64(&timeout_sys, timeout))
3012		return -EFAULT;
3013
3014	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3015		return -EFAULT;
3016
3017	if (!timeout && !timeout32)
3018		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3019
3020	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3021
3022	if (datagrams <= 0)
3023		return datagrams;
3024
3025	if (timeout && put_timespec64(&timeout_sys, timeout))
3026		datagrams = -EFAULT;
3027
3028	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3029		datagrams = -EFAULT;
3030
3031	return datagrams;
3032}
3033
3034SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3035		unsigned int, vlen, unsigned int, flags,
3036		struct __kernel_timespec __user *, timeout)
3037{
3038	if (flags & MSG_CMSG_COMPAT)
3039		return -EINVAL;
3040
3041	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3042}
3043
3044#ifdef CONFIG_COMPAT_32BIT_TIME
3045SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3046		unsigned int, vlen, unsigned int, flags,
3047		struct old_timespec32 __user *, timeout)
3048{
3049	if (flags & MSG_CMSG_COMPAT)
3050		return -EINVAL;
3051
3052	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3053}
3054#endif
3055
3056#ifdef __ARCH_WANT_SYS_SOCKETCALL
3057/* Argument list sizes for sys_socketcall */
3058#define AL(x) ((x) * sizeof(unsigned long))
3059static const unsigned char nargs[21] = {
3060	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3061	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3062	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3063	AL(4), AL(5), AL(4)
3064};
3065
3066#undef AL
3067
3068/*
3069 *	System call vectors.
3070 *
3071 *	Argument checking cleaned up. Saved 20% in size.
3072 *  This function doesn't need to set the kernel lock because
3073 *  it is set by the callees.
3074 */
3075
3076SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3077{
3078	unsigned long a[AUDITSC_ARGS];
3079	unsigned long a0, a1;
3080	int err;
3081	unsigned int len;
3082
3083	if (call < 1 || call > SYS_SENDMMSG)
3084		return -EINVAL;
3085	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3086
3087	len = nargs[call];
3088	if (len > sizeof(a))
3089		return -EINVAL;
3090
3091	/* copy_from_user should be SMP safe. */
3092	if (copy_from_user(a, args, len))
3093		return -EFAULT;
3094
3095	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3096	if (err)
3097		return err;
3098
3099	a0 = a[0];
3100	a1 = a[1];
3101
3102	switch (call) {
3103	case SYS_SOCKET:
3104		err = __sys_socket(a0, a1, a[2]);
3105		break;
3106	case SYS_BIND:
3107		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3108		break;
3109	case SYS_CONNECT:
3110		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3111		break;
3112	case SYS_LISTEN:
3113		err = __sys_listen(a0, a1);
3114		break;
3115	case SYS_ACCEPT:
3116		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3117				    (int __user *)a[2], 0);
3118		break;
3119	case SYS_GETSOCKNAME:
3120		err =
3121		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3122				      (int __user *)a[2]);
3123		break;
3124	case SYS_GETPEERNAME:
3125		err =
3126		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3127				      (int __user *)a[2]);
3128		break;
3129	case SYS_SOCKETPAIR:
3130		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3131		break;
3132	case SYS_SEND:
3133		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3134				   NULL, 0);
3135		break;
3136	case SYS_SENDTO:
3137		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3138				   (struct sockaddr __user *)a[4], a[5]);
3139		break;
3140	case SYS_RECV:
3141		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3142				     NULL, NULL);
3143		break;
3144	case SYS_RECVFROM:
3145		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3146				     (struct sockaddr __user *)a[4],
3147				     (int __user *)a[5]);
3148		break;
3149	case SYS_SHUTDOWN:
3150		err = __sys_shutdown(a0, a1);
3151		break;
3152	case SYS_SETSOCKOPT:
3153		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3154				       a[4]);
3155		break;
3156	case SYS_GETSOCKOPT:
3157		err =
3158		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3159				     (int __user *)a[4]);
3160		break;
3161	case SYS_SENDMSG:
3162		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3163				    a[2], true);
3164		break;
3165	case SYS_SENDMMSG:
3166		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3167				     a[3], true);
3168		break;
3169	case SYS_RECVMSG:
3170		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3171				    a[2], true);
3172		break;
3173	case SYS_RECVMMSG:
3174		if (IS_ENABLED(CONFIG_64BIT))
3175			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3176					     a[2], a[3],
3177					     (struct __kernel_timespec __user *)a[4],
3178					     NULL);
3179		else
3180			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3181					     a[2], a[3], NULL,
3182					     (struct old_timespec32 __user *)a[4]);
3183		break;
3184	case SYS_ACCEPT4:
3185		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3186				    (int __user *)a[2], a[3]);
3187		break;
3188	default:
3189		err = -EINVAL;
3190		break;
3191	}
3192	return err;
3193}
3194
3195#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3196
3197/**
3198 *	sock_register - add a socket protocol handler
3199 *	@ops: description of protocol
3200 *
3201 *	This function is called by a protocol handler that wants to
3202 *	advertise its address family, and have it linked into the
3203 *	socket interface. The value ops->family corresponds to the
3204 *	socket system call protocol family.
3205 */
3206int sock_register(const struct net_proto_family *ops)
3207{
3208	int err;
3209
3210	if (ops->family >= NPROTO) {
3211		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3212		return -ENOBUFS;
3213	}
3214
3215	spin_lock(&net_family_lock);
3216	if (rcu_dereference_protected(net_families[ops->family],
3217				      lockdep_is_held(&net_family_lock)))
3218		err = -EEXIST;
3219	else {
3220		rcu_assign_pointer(net_families[ops->family], ops);
3221		err = 0;
3222	}
3223	spin_unlock(&net_family_lock);
3224
3225	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3226	return err;
3227}
3228EXPORT_SYMBOL(sock_register);
3229
3230/**
3231 *	sock_unregister - remove a protocol handler
3232 *	@family: protocol family to remove
3233 *
3234 *	This function is called by a protocol handler that wants to
3235 *	remove its address family, and have it unlinked from the
3236 *	new socket creation.
3237 *
3238 *	If protocol handler is a module, then it can use module reference
3239 *	counts to protect against new references. If protocol handler is not
3240 *	a module then it needs to provide its own protection in
3241 *	the ops->create routine.
3242 */
3243void sock_unregister(int family)
3244{
3245	BUG_ON(family < 0 || family >= NPROTO);
3246
3247	spin_lock(&net_family_lock);
3248	RCU_INIT_POINTER(net_families[family], NULL);
3249	spin_unlock(&net_family_lock);
3250
3251	synchronize_rcu();
3252
3253	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3254}
3255EXPORT_SYMBOL(sock_unregister);
3256
3257bool sock_is_registered(int family)
3258{
3259	return family < NPROTO && rcu_access_pointer(net_families[family]);
3260}
3261
3262static int __init sock_init(void)
3263{
3264	int err;
3265	/*
3266	 *      Initialize the network sysctl infrastructure.
3267	 */
3268	err = net_sysctl_init();
3269	if (err)
3270		goto out;
3271
3272	/*
3273	 *      Initialize skbuff SLAB cache
3274	 */
3275	skb_init();
3276
3277	/*
3278	 *      Initialize the protocols module.
3279	 */
3280
3281	init_inodecache();
3282
3283	err = register_filesystem(&sock_fs_type);
3284	if (err)
3285		goto out;
3286	sock_mnt = kern_mount(&sock_fs_type);
3287	if (IS_ERR(sock_mnt)) {
3288		err = PTR_ERR(sock_mnt);
3289		goto out_mount;
3290	}
3291
3292	/* The real protocol initialization is performed in later initcalls.
3293	 */
3294
3295#ifdef CONFIG_NETFILTER
3296	err = netfilter_init();
3297	if (err)
3298		goto out;
3299#endif
3300
3301	ptp_classifier_init();
3302
3303out:
3304	return err;
3305
3306out_mount:
3307	unregister_filesystem(&sock_fs_type);
 
3308	goto out;
3309}
3310
3311core_initcall(sock_init);	/* early initcall */
3312
3313#ifdef CONFIG_PROC_FS
3314void socket_seq_show(struct seq_file *seq)
3315{
3316	seq_printf(seq, "sockets: used %d\n",
3317		   sock_inuse_get(seq->private));
 
 
 
 
 
 
 
 
 
3318}
3319#endif				/* CONFIG_PROC_FS */
3320
3321/* Handle the fact that while struct ifreq has the same *layout* on
3322 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3323 * which are handled elsewhere, it still has different *size* due to
3324 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3325 * resulting in struct ifreq being 32 and 40 bytes respectively).
3326 * As a result, if the struct happens to be at the end of a page and
3327 * the next page isn't readable/writable, we get a fault. To prevent
3328 * that, copy back and forth to the full size.
3329 */
3330int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3331{
3332	if (in_compat_syscall()) {
3333		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3334
3335		memset(ifr, 0, sizeof(*ifr));
3336		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3337			return -EFAULT;
 
 
 
 
 
 
3338
3339		if (ifrdata)
3340			*ifrdata = compat_ptr(ifr32->ifr_data);
3341
3342		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3343	}
 
 
3344
3345	if (copy_from_user(ifr, arg, sizeof(*ifr)))
 
 
 
 
3346		return -EFAULT;
3347
3348	if (ifrdata)
3349		*ifrdata = ifr->ifr_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3350
3351	return 0;
3352}
3353EXPORT_SYMBOL(get_user_ifreq);
3354
3355int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3356{
3357	size_t size = sizeof(*ifr);
 
 
 
 
 
 
 
 
 
 
 
3358
3359	if (in_compat_syscall())
3360		size = sizeof(struct compat_ifreq);
3361
3362	if (copy_to_user(arg, ifr, size))
3363		return -EFAULT;
3364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3365	return 0;
3366}
3367EXPORT_SYMBOL(put_user_ifreq);
3368
3369#ifdef CONFIG_COMPAT
3370static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3371{
 
3372	compat_uptr_t uptr32;
3373	struct ifreq ifr;
3374	void __user *saved;
3375	int err;
3376
3377	if (get_user_ifreq(&ifr, NULL, uifr32))
 
3378		return -EFAULT;
3379
3380	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3381		return -EFAULT;
3382
3383	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3384	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
 
 
 
 
 
 
 
 
 
 
 
 
3385
3386	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3387	if (!err) {
3388		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3389		if (put_user_ifreq(&ifr, uifr32))
3390			err = -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
3391	}
3392	return err;
3393}
3394
3395/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3396static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3397				 struct compat_ifreq __user *u_ifreq32)
3398{
3399	struct ifreq ifreq;
3400	void __user *data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3401
3402	if (!is_socket_ioctl_cmd(cmd))
3403		return -ENOTTY;
3404	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
 
 
 
 
 
 
3405		return -EFAULT;
3406	ifreq.ifr_data = data;
3407
3408	return dev_ioctl(net, cmd, &ifreq, data, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3409}
3410
3411static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3412			 unsigned int cmd, unsigned long arg)
3413{
3414	void __user *argp = compat_ptr(arg);
3415	struct sock *sk = sock->sk;
3416	struct net *net = sock_net(sk);
3417	const struct proto_ops *ops;
3418
3419	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3420		return sock_ioctl(file, cmd, (unsigned long)argp);
3421
3422	switch (cmd) {
 
 
 
 
 
 
 
 
 
3423	case SIOCWANDEV:
3424		return compat_siocwandev(net, argp);
3425	case SIOCGSTAMP_OLD:
3426	case SIOCGSTAMPNS_OLD:
3427		ops = READ_ONCE(sock->ops);
3428		if (!ops->gettstamp)
3429			return -ENOIOCTLCMD;
3430		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3431				      !COMPAT_USE_64BIT_TIME);
3432
3433	case SIOCETHTOOL:
 
 
 
 
 
 
3434	case SIOCBONDSLAVEINFOQUERY:
3435	case SIOCBONDINFOQUERY:
3436	case SIOCSHWTSTAMP:
3437	case SIOCGHWTSTAMP:
3438		return compat_ifr_data_ioctl(net, cmd, argp);
3439
3440	case FIOSETOWN:
3441	case SIOCSPGRP:
3442	case FIOGETOWN:
3443	case SIOCGPGRP:
3444	case SIOCBRADDBR:
3445	case SIOCBRDELBR:
3446	case SIOCGIFVLAN:
3447	case SIOCSIFVLAN:
 
 
3448	case SIOCGSKNS:
3449	case SIOCGSTAMP_NEW:
3450	case SIOCGSTAMPNS_NEW:
3451	case SIOCGIFCONF:
3452	case SIOCSIFBR:
3453	case SIOCGIFBR:
3454		return sock_ioctl(file, cmd, arg);
3455
3456	case SIOCGIFFLAGS:
3457	case SIOCSIFFLAGS:
3458	case SIOCGIFMAP:
3459	case SIOCSIFMAP:
3460	case SIOCGIFMETRIC:
3461	case SIOCSIFMETRIC:
3462	case SIOCGIFMTU:
3463	case SIOCSIFMTU:
3464	case SIOCGIFMEM:
3465	case SIOCSIFMEM:
3466	case SIOCGIFHWADDR:
3467	case SIOCSIFHWADDR:
3468	case SIOCADDMULTI:
3469	case SIOCDELMULTI:
3470	case SIOCGIFINDEX:
3471	case SIOCGIFADDR:
3472	case SIOCSIFADDR:
3473	case SIOCSIFHWBROADCAST:
3474	case SIOCDIFADDR:
3475	case SIOCGIFBRDADDR:
3476	case SIOCSIFBRDADDR:
3477	case SIOCGIFDSTADDR:
3478	case SIOCSIFDSTADDR:
3479	case SIOCGIFNETMASK:
3480	case SIOCSIFNETMASK:
3481	case SIOCSIFPFLAGS:
3482	case SIOCGIFPFLAGS:
3483	case SIOCGIFTXQLEN:
3484	case SIOCSIFTXQLEN:
3485	case SIOCBRADDIF:
3486	case SIOCBRDELIF:
3487	case SIOCGIFNAME:
3488	case SIOCSIFNAME:
3489	case SIOCGMIIPHY:
3490	case SIOCGMIIREG:
3491	case SIOCSMIIREG:
3492	case SIOCBONDENSLAVE:
3493	case SIOCBONDRELEASE:
3494	case SIOCBONDSETHWADDR:
3495	case SIOCBONDCHANGEACTIVE:
3496	case SIOCSARP:
3497	case SIOCGARP:
3498	case SIOCDARP:
3499	case SIOCOUTQ:
3500	case SIOCOUTQNSD:
3501	case SIOCATMARK:
3502		return sock_do_ioctl(net, sock, cmd, arg);
3503	}
3504
3505	return -ENOIOCTLCMD;
3506}
3507
3508static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3509			      unsigned long arg)
3510{
3511	struct socket *sock = file->private_data;
3512	const struct proto_ops *ops = READ_ONCE(sock->ops);
3513	int ret = -ENOIOCTLCMD;
3514	struct sock *sk;
3515	struct net *net;
3516
3517	sk = sock->sk;
3518	net = sock_net(sk);
3519
3520	if (ops->compat_ioctl)
3521		ret = ops->compat_ioctl(sock, cmd, arg);
3522
3523	if (ret == -ENOIOCTLCMD &&
3524	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3525		ret = compat_wext_handle_ioctl(net, cmd, arg);
3526
3527	if (ret == -ENOIOCTLCMD)
3528		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3529
3530	return ret;
3531}
3532#endif
3533
3534/**
3535 *	kernel_bind - bind an address to a socket (kernel space)
3536 *	@sock: socket
3537 *	@addr: address
3538 *	@addrlen: length of address
3539 *
3540 *	Returns 0 or an error.
3541 */
3542
3543int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3544{
3545	struct sockaddr_storage address;
3546
3547	memcpy(&address, addr, addrlen);
3548
3549	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3550					  addrlen);
3551}
3552EXPORT_SYMBOL(kernel_bind);
3553
3554/**
3555 *	kernel_listen - move socket to listening state (kernel space)
3556 *	@sock: socket
3557 *	@backlog: pending connections queue size
3558 *
3559 *	Returns 0 or an error.
3560 */
3561
3562int kernel_listen(struct socket *sock, int backlog)
3563{
3564	return READ_ONCE(sock->ops)->listen(sock, backlog);
3565}
3566EXPORT_SYMBOL(kernel_listen);
3567
3568/**
3569 *	kernel_accept - accept a connection (kernel space)
3570 *	@sock: listening socket
3571 *	@newsock: new connected socket
3572 *	@flags: flags
3573 *
3574 *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3575 *	If it fails, @newsock is guaranteed to be %NULL.
3576 *	Returns 0 or an error.
3577 */
3578
3579int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3580{
3581	struct sock *sk = sock->sk;
3582	const struct proto_ops *ops = READ_ONCE(sock->ops);
3583	int err;
3584
3585	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3586			       newsock);
3587	if (err < 0)
3588		goto done;
3589
3590	err = ops->accept(sock, *newsock, flags, true);
3591	if (err < 0) {
3592		sock_release(*newsock);
3593		*newsock = NULL;
3594		goto done;
3595	}
3596
3597	(*newsock)->ops = ops;
3598	__module_get(ops->owner);
3599
3600done:
3601	return err;
3602}
3603EXPORT_SYMBOL(kernel_accept);
3604
3605/**
3606 *	kernel_connect - connect a socket (kernel space)
3607 *	@sock: socket
3608 *	@addr: address
3609 *	@addrlen: address length
3610 *	@flags: flags (O_NONBLOCK, ...)
3611 *
3612 *	For datagram sockets, @addr is the address to which datagrams are sent
3613 *	by default, and the only address from which datagrams are received.
3614 *	For stream sockets, attempts to connect to @addr.
3615 *	Returns 0 or an error code.
3616 */
3617
3618int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3619		   int flags)
3620{
3621	struct sockaddr_storage address;
 
 
3622
3623	memcpy(&address, addr, addrlen);
 
 
 
 
 
3624
3625	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3626					     addrlen, flags);
 
 
3627}
3628EXPORT_SYMBOL(kernel_connect);
 
 
 
 
 
 
 
 
 
 
 
3629
3630/**
3631 *	kernel_getsockname - get the address which the socket is bound (kernel space)
3632 *	@sock: socket
3633 *	@addr: address holder
3634 *
3635 * 	Fills the @addr pointer with the address which the socket is bound.
3636 *	Returns the length of the address in bytes or an error code.
3637 */
 
 
3638
3639int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
 
3640{
3641	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
3642}
3643EXPORT_SYMBOL(kernel_getsockname);
 
 
 
 
 
 
3644
3645/**
3646 *	kernel_getpeername - get the address which the socket is connected (kernel space)
3647 *	@sock: socket
3648 *	@addr: address holder
3649 *
3650 * 	Fills the @addr pointer with the address which the socket is connected.
3651 *	Returns the length of the address in bytes or an error code.
3652 */
3653
3654int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3655{
3656	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
 
 
 
 
 
 
 
3657}
3658EXPORT_SYMBOL(kernel_getpeername);
3659
3660/**
3661 *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3662 *	@sock: socket
3663 *	@how: connection part
3664 *
3665 *	Returns 0 or an error.
3666 */
3667
3668int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3669{
3670	return READ_ONCE(sock->ops)->shutdown(sock, how);
3671}
3672EXPORT_SYMBOL(kernel_sock_shutdown);
3673
3674/**
3675 *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3676 *	@sk: socket
3677 *
3678 *	This routine returns the IP overhead imposed by a socket i.e.
3679 *	the length of the underlying IP header, depending on whether
3680 *	this is an IPv4 or IPv6 socket and the length from IP options turned
3681 *	on at the socket. Assumes that the caller has a lock on the socket.
3682 */
3683
3684u32 kernel_sock_ip_overhead(struct sock *sk)
3685{
3686	struct inet_sock *inet;
3687	struct ip_options_rcu *opt;
3688	u32 overhead = 0;
3689#if IS_ENABLED(CONFIG_IPV6)
3690	struct ipv6_pinfo *np;
3691	struct ipv6_txoptions *optv6 = NULL;
3692#endif /* IS_ENABLED(CONFIG_IPV6) */
3693
3694	if (!sk)
3695		return overhead;
3696
3697	switch (sk->sk_family) {
3698	case AF_INET:
3699		inet = inet_sk(sk);
3700		overhead += sizeof(struct iphdr);
3701		opt = rcu_dereference_protected(inet->inet_opt,
3702						sock_owned_by_user(sk));
3703		if (opt)
3704			overhead += opt->opt.optlen;
3705		return overhead;
3706#if IS_ENABLED(CONFIG_IPV6)
3707	case AF_INET6:
3708		np = inet6_sk(sk);
3709		overhead += sizeof(struct ipv6hdr);
3710		if (np)
3711			optv6 = rcu_dereference_protected(np->opt,
3712							  sock_owned_by_user(sk));
3713		if (optv6)
3714			overhead += (optv6->opt_flen + optv6->opt_nflen);
3715		return overhead;
3716#endif /* IS_ENABLED(CONFIG_IPV6) */
3717	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3718		return overhead;
3719	}
3720}
3721EXPORT_SYMBOL(kernel_sock_ip_overhead);