Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
 
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122			      struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126			      unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130			     int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132				struct pipe_inode_info *pipe, size_t len,
 133				unsigned int flags);
 134
 135/*
 136 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *	in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141	.owner =	THIS_MODULE,
 142	.llseek =	no_llseek,
 143	.read_iter =	sock_read_iter,
 144	.write_iter =	sock_write_iter,
 145	.poll =		sock_poll,
 146	.unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148	.compat_ioctl = compat_sock_ioctl,
 149#endif
 150	.mmap =		sock_mmap,
 
 151	.release =	sock_close,
 152	.fasync =	sock_fasync,
 153	.sendpage =	sock_sendpage,
 154	.splice_write = generic_splice_sendpage,
 155	.splice_read =	sock_splice_read,
 156};
 157
 158/*
 159 *	The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *	Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *	move_addr_to_kernel	-	copy a socket address into kernel space
 179 *	@uaddr: Address in user space
 180 *	@kaddr: Address in kernel space
 181 *	@ulen: Length in user space
 182 *
 183 *	The address is copied into kernel space. If the provided address is
 184 *	too long an error code of -EINVAL is returned. If the copy gives
 185 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191		return -EINVAL;
 192	if (ulen == 0)
 193		return 0;
 194	if (copy_from_user(kaddr, uaddr, ulen))
 195		return -EFAULT;
 196	return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *	move_addr_to_user	-	copy an address to user space
 201 *	@kaddr: kernel space address
 202 *	@klen: length of address in kernel
 203 *	@uaddr: user space address
 204 *	@ulen: pointer to user length field
 205 *
 206 *	The value pointed to by ulen on entry is the buffer length available.
 207 *	This is overwritten with the buffer space used. -EINVAL is returned
 208 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *	is returned if either the buffer or the length field are not
 210 *	accessible.
 211 *	After copying the data up to the limit the user specifies, the true
 212 *	length of the data is written over the length limit the user
 213 *	specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217			     void __user *uaddr, int __user *ulen)
 218{
 219	int err;
 220	int len;
 221
 222	BUG_ON(klen > sizeof(struct sockaddr_storage));
 223	err = get_user(len, ulen);
 224	if (err)
 225		return err;
 226	if (len > klen)
 227		len = klen;
 228	if (len < 0)
 229		return -EINVAL;
 230	if (len) {
 231		if (audit_sockaddr(klen, kaddr))
 232			return -ENOMEM;
 233		if (copy_to_user(uaddr, kaddr, len))
 234			return -EFAULT;
 235	}
 236	/*
 237	 *      "fromlen shall refer to the value before truncation.."
 238	 *                      1003.1g
 239	 */
 240	return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247	struct socket_alloc *ei;
 248	struct socket_wq *wq;
 249
 250	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251	if (!ei)
 252		return NULL;
 253	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254	if (!wq) {
 255		kmem_cache_free(sock_inode_cachep, ei);
 256		return NULL;
 257	}
 258	init_waitqueue_head(&wq->wait);
 259	wq->fasync_list = NULL;
 260	wq->flags = 0;
 261	RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263	ei->socket.state = SS_UNCONNECTED;
 264	ei->socket.flags = 0;
 265	ei->socket.ops = NULL;
 266	ei->socket.sk = NULL;
 267	ei->socket.file = NULL;
 268
 269	return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274	struct socket_alloc *ei;
 275	struct socket_wq *wq;
 276
 277	ei = container_of(inode, struct socket_alloc, vfs_inode);
 278	wq = rcu_dereference_protected(ei->socket.wq, 1);
 279	kfree_rcu(wq, rcu);
 280	kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285	struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287	inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293					      sizeof(struct socket_alloc),
 294					      0,
 295					      (SLAB_HWCACHE_ALIGN |
 296					       SLAB_RECLAIM_ACCOUNT |
 297					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298					      init_once);
 299	if (sock_inode_cachep == NULL)
 300		return -ENOMEM;
 301	return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305	.alloc_inode	= sock_alloc_inode,
 306	.destroy_inode	= sock_destroy_inode,
 307	.statfs		= simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316				d_inode(dentry)->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320	.d_dname  = sockfs_dname,
 321};
 322
 323static int sockfs_xattr_get(const struct xattr_handler *handler,
 324			    struct dentry *dentry, struct inode *inode,
 325			    const char *suffix, void *value, size_t size)
 326{
 327	if (value) {
 328		if (dentry->d_name.len + 1 > size)
 329			return -ERANGE;
 330		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 331	}
 332	return dentry->d_name.len + 1;
 333}
 334
 335#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 336#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 337#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 338
 339static const struct xattr_handler sockfs_xattr_handler = {
 340	.name = XATTR_NAME_SOCKPROTONAME,
 341	.get = sockfs_xattr_get,
 342};
 343
 344static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 345				     struct dentry *dentry, struct inode *inode,
 346				     const char *suffix, const void *value,
 347				     size_t size, int flags)
 348{
 349	/* Handled by LSM. */
 350	return -EAGAIN;
 351}
 352
 353static const struct xattr_handler sockfs_security_xattr_handler = {
 354	.prefix = XATTR_SECURITY_PREFIX,
 355	.set = sockfs_security_xattr_set,
 356};
 357
 358static const struct xattr_handler *sockfs_xattr_handlers[] = {
 359	&sockfs_xattr_handler,
 360	&sockfs_security_xattr_handler,
 361	NULL
 362};
 363
 364static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 365			 int flags, const char *dev_name, void *data)
 366{
 367	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 368				  sockfs_xattr_handlers,
 369				  &sockfs_dentry_operations, SOCKFS_MAGIC);
 370}
 371
 372static struct vfsmount *sock_mnt __read_mostly;
 373
 374static struct file_system_type sock_fs_type = {
 375	.name =		"sockfs",
 376	.mount =	sockfs_mount,
 377	.kill_sb =	kill_anon_super,
 378};
 379
 380/*
 381 *	Obtains the first available file descriptor and sets it up for use.
 382 *
 383 *	These functions create file structures and maps them to fd space
 384 *	of the current process. On success it returns file descriptor
 385 *	and file struct implicitly stored in sock->file.
 386 *	Note that another thread may close file descriptor before we return
 387 *	from this function. We use the fact that now we do not refer
 388 *	to socket after mapping. If one day we will need it, this
 389 *	function will increment ref. count on file by 1.
 390 *
 391 *	In any case returned fd MAY BE not valid!
 392 *	This race condition is unavoidable
 393 *	with shared fd spaces, we cannot solve it inside kernel,
 394 *	but we take care of internal coherence yet.
 395 */
 396
 397struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 398{
 399	struct qstr name = { .name = "" };
 400	struct path path;
 401	struct file *file;
 
 
 
 
 
 402
 403	if (dname) {
 404		name.name = dname;
 405		name.len = strlen(name.name);
 406	} else if (sock->sk) {
 407		name.name = sock->sk->sk_prot_creator->name;
 408		name.len = strlen(name.name);
 409	}
 410	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 411	if (unlikely(!path.dentry))
 412		return ERR_PTR(-ENOMEM);
 
 
 413	path.mnt = mntget(sock_mnt);
 414
 415	d_instantiate(path.dentry, SOCK_INODE(sock));
 
 416
 417	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 418		  &socket_file_ops);
 419	if (IS_ERR(file)) {
 420		/* drop dentry, keep inode */
 421		ihold(d_inode(path.dentry));
 422		path_put(&path);
 423		return file;
 
 424	}
 425
 426	sock->file = file;
 427	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 
 428	file->private_data = sock;
 429	return file;
 
 
 430}
 431EXPORT_SYMBOL(sock_alloc_file);
 432
 433static int sock_map_fd(struct socket *sock, int flags)
 434{
 435	struct file *newfile;
 436	int fd = get_unused_fd_flags(flags);
 437	if (unlikely(fd < 0))
 438		return fd;
 439
 440	newfile = sock_alloc_file(sock, flags, NULL);
 441	if (likely(!IS_ERR(newfile))) {
 442		fd_install(fd, newfile);
 443		return fd;
 444	}
 445
 446	put_unused_fd(fd);
 447	return PTR_ERR(newfile);
 448}
 
 449
 450struct socket *sock_from_file(struct file *file, int *err)
 451{
 452	if (file->f_op == &socket_file_ops)
 453		return file->private_data;	/* set in sock_map_fd */
 454
 455	*err = -ENOTSOCK;
 456	return NULL;
 457}
 458EXPORT_SYMBOL(sock_from_file);
 459
 460/**
 461 *	sockfd_lookup - Go from a file number to its socket slot
 462 *	@fd: file handle
 463 *	@err: pointer to an error code return
 464 *
 465 *	The file handle passed in is locked and the socket it is bound
 466 *	too is returned. If an error occurs the err pointer is overwritten
 467 *	with a negative errno code and NULL is returned. The function checks
 468 *	for both invalid handles and passing a handle which is not a socket.
 469 *
 470 *	On a success the socket object pointer is returned.
 471 */
 472
 473struct socket *sockfd_lookup(int fd, int *err)
 474{
 475	struct file *file;
 476	struct socket *sock;
 477
 478	file = fget(fd);
 479	if (!file) {
 480		*err = -EBADF;
 481		return NULL;
 482	}
 483
 484	sock = sock_from_file(file, err);
 485	if (!sock)
 486		fput(file);
 487	return sock;
 488}
 489EXPORT_SYMBOL(sockfd_lookup);
 490
 491static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 492{
 493	struct fd f = fdget(fd);
 494	struct socket *sock;
 495
 496	*err = -EBADF;
 497	if (f.file) {
 498		sock = sock_from_file(f.file, err);
 499		if (likely(sock)) {
 500			*fput_needed = f.flags;
 501			return sock;
 502		}
 503		fdput(f);
 504	}
 505	return NULL;
 506}
 507
 508static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 509				size_t size)
 510{
 511	ssize_t len;
 512	ssize_t used = 0;
 513
 514	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 515	if (len < 0)
 516		return len;
 517	used += len;
 518	if (buffer) {
 519		if (size < used)
 520			return -ERANGE;
 521		buffer += len;
 522	}
 523
 524	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 525	used += len;
 526	if (buffer) {
 527		if (size < used)
 528			return -ERANGE;
 529		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 530		buffer += len;
 531	}
 532
 533	return used;
 534}
 535
 536static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 537{
 538	int err = simple_setattr(dentry, iattr);
 539
 540	if (!err && (iattr->ia_valid & ATTR_UID)) {
 541		struct socket *sock = SOCKET_I(d_inode(dentry));
 542
 543		sock->sk->sk_uid = iattr->ia_uid;
 544	}
 545
 546	return err;
 547}
 548
 549static const struct inode_operations sockfs_inode_ops = {
 550	.listxattr = sockfs_listxattr,
 551	.setattr = sockfs_setattr,
 552};
 553
 554/**
 555 *	sock_alloc	-	allocate a socket
 556 *
 557 *	Allocate a new inode and socket object. The two are bound together
 558 *	and initialised. The socket is then returned. If we are out of inodes
 559 *	NULL is returned.
 560 */
 561
 562struct socket *sock_alloc(void)
 563{
 564	struct inode *inode;
 565	struct socket *sock;
 566
 567	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 568	if (!inode)
 569		return NULL;
 570
 571	sock = SOCKET_I(inode);
 572
 573	kmemcheck_annotate_bitfield(sock, type);
 574	inode->i_ino = get_next_ino();
 575	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 576	inode->i_uid = current_fsuid();
 577	inode->i_gid = current_fsgid();
 578	inode->i_op = &sockfs_inode_ops;
 579
 580	this_cpu_add(sockets_in_use, 1);
 581	return sock;
 582}
 583EXPORT_SYMBOL(sock_alloc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584
 585/**
 586 *	sock_release	-	close a socket
 587 *	@sock: socket to close
 588 *
 589 *	The socket is released from the protocol stack if it has a release
 590 *	callback, and the inode is then released if the socket is bound to
 591 *	an inode not a file.
 592 */
 593
 594void sock_release(struct socket *sock)
 595{
 596	if (sock->ops) {
 597		struct module *owner = sock->ops->owner;
 598
 599		sock->ops->release(sock);
 600		sock->ops = NULL;
 601		module_put(owner);
 602	}
 603
 604	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 605		pr_err("%s: fasync list not empty!\n", __func__);
 
 
 
 606
 607	this_cpu_sub(sockets_in_use, 1);
 608	if (!sock->file) {
 609		iput(SOCK_INODE(sock));
 610		return;
 611	}
 612	sock->file = NULL;
 613}
 614EXPORT_SYMBOL(sock_release);
 615
 616void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 617{
 618	u8 flags = *tx_flags;
 
 
 
 
 
 
 
 
 
 619
 620	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 621		flags |= SKBTX_HW_TSTAMP;
 
 
 622
 623	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 624		flags |= SKBTX_SW_TSTAMP;
 625
 626	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 627		flags |= SKBTX_SCHED_TSTAMP;
 628
 629	*tx_flags = flags;
 
 
 
 
 
 630}
 631EXPORT_SYMBOL(__sock_tx_timestamp);
 632
 633static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 
 634{
 635	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 636	BUG_ON(ret == -EIOCBQUEUED);
 637	return ret;
 638}
 639
 640int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 641{
 642	int err = security_socket_sendmsg(sock, msg,
 643					  msg_data_left(msg));
 
 644
 645	return err ?: sock_sendmsg_nosec(sock, msg);
 
 
 
 
 
 646}
 647EXPORT_SYMBOL(sock_sendmsg);
 648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 650		   struct kvec *vec, size_t num, size_t size)
 651{
 652	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 653	return sock_sendmsg(sock, msg);
 
 
 
 
 
 
 
 
 
 
 
 654}
 655EXPORT_SYMBOL(kernel_sendmsg);
 656
 
 
 
 
 
 
 
 
 
 
 657/*
 658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 659 */
 660void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 661	struct sk_buff *skb)
 662{
 663	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 664	struct scm_timestamping tss;
 665	int empty = 1;
 666	struct skb_shared_hwtstamps *shhwtstamps =
 667		skb_hwtstamps(skb);
 668
 669	/* Race occurred between timestamp enabling and packet
 670	   receiving.  Fill in the current time for now. */
 671	if (need_software_tstamp && skb->tstamp == 0)
 672		__net_timestamp(skb);
 673
 674	if (need_software_tstamp) {
 675		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 676			struct timeval tv;
 677			skb_get_timestamp(skb, &tv);
 678			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 679				 sizeof(tv), &tv);
 680		} else {
 681			struct timespec ts;
 682			skb_get_timestampns(skb, &ts);
 683			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 684				 sizeof(ts), &ts);
 685		}
 686	}
 687
 688	memset(&tss, 0, sizeof(tss));
 689	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 690	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 691		empty = 0;
 692	if (shhwtstamps &&
 693	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 694	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 695		empty = 0;
 696	if (!empty) {
 697		put_cmsg(msg, SOL_SOCKET,
 698			 SCM_TIMESTAMPING, sizeof(tss), &tss);
 699
 700		if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
 701			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 702				 skb->len, skb->data);
 
 
 703	}
 
 
 
 
 
 
 
 
 
 
 
 704}
 705EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 706
 707void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 708	struct sk_buff *skb)
 709{
 710	int ack;
 711
 712	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 713		return;
 714	if (!skb->wifi_acked_valid)
 715		return;
 716
 717	ack = skb->wifi_acked;
 718
 719	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 720}
 721EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 722
 723static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 724				   struct sk_buff *skb)
 725{
 726	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 727		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 728			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 729}
 730
 731void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 732	struct sk_buff *skb)
 733{
 734	sock_recv_timestamp(msg, sk, skb);
 735	sock_recv_drops(msg, sk, skb);
 736}
 737EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 738
 739static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 740				     int flags)
 741{
 742	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 
 
 
 
 
 
 
 
 
 
 743}
 744
 745int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 
 746{
 747	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 748
 749	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750}
 751EXPORT_SYMBOL(sock_recvmsg);
 752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753/**
 754 * kernel_recvmsg - Receive a message from a socket (kernel space)
 755 * @sock:       The socket to receive the message from
 756 * @msg:        Received message
 757 * @vec:        Input s/g array for message data
 758 * @num:        Size of input s/g array
 759 * @size:       Number of bytes to read
 760 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 761 *
 762 * On return the msg structure contains the scatter/gather array passed in the
 763 * vec argument. The array is modified so that it consists of the unfilled
 764 * portion of the original array.
 765 *
 766 * The returned value is the total number of bytes received, or an error.
 767 */
 768int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 769		   struct kvec *vec, size_t num, size_t size, int flags)
 770{
 771	mm_segment_t oldfs = get_fs();
 772	int result;
 773
 774	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 775	set_fs(KERNEL_DS);
 776	result = sock_recvmsg(sock, msg, flags);
 
 
 
 
 
 777	set_fs(oldfs);
 778	return result;
 779}
 780EXPORT_SYMBOL(kernel_recvmsg);
 781
 
 
 
 
 
 782static ssize_t sock_sendpage(struct file *file, struct page *page,
 783			     int offset, size_t size, loff_t *ppos, int more)
 784{
 785	struct socket *sock;
 786	int flags;
 787
 788	sock = file->private_data;
 789
 790	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 791	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 792	flags |= more;
 793
 794	return kernel_sendpage(sock, page, offset, size, flags);
 795}
 796
 797static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 798				struct pipe_inode_info *pipe, size_t len,
 799				unsigned int flags)
 800{
 801	struct socket *sock = file->private_data;
 802
 803	if (unlikely(!sock->ops->splice_read))
 804		return -EINVAL;
 805
 
 
 806	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 807}
 808
 809static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810{
 811	struct file *file = iocb->ki_filp;
 812	struct socket *sock = file->private_data;
 813	struct msghdr msg = {.msg_iter = *to,
 814			     .msg_iocb = iocb};
 815	ssize_t res;
 
 
 816
 817	if (file->f_flags & O_NONBLOCK)
 818		msg.msg_flags = MSG_DONTWAIT;
 
 
 
 
 
 819
 820	if (iocb->ki_pos != 0)
 
 
 
 
 
 
 
 
 821		return -ESPIPE;
 822
 823	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 824		return 0;
 825
 826	res = sock_recvmsg(sock, &msg, msg.msg_flags);
 827	*to = msg.msg_iter;
 828	return res;
 
 
 829}
 830
 831static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
 
 832{
 833	struct file *file = iocb->ki_filp;
 834	struct socket *sock = file->private_data;
 835	struct msghdr msg = {.msg_iter = *from,
 836			     .msg_iocb = iocb};
 837	ssize_t res;
 838
 839	if (iocb->ki_pos != 0)
 840		return -ESPIPE;
 841
 842	if (file->f_flags & O_NONBLOCK)
 843		msg.msg_flags = MSG_DONTWAIT;
 844
 
 
 
 
 
 
 
 845	if (sock->type == SOCK_SEQPACKET)
 846		msg.msg_flags |= MSG_EOR;
 
 
 
 847
 848	res = sock_sendmsg(sock, &msg);
 849	*from = msg.msg_iter;
 850	return res;
 
 
 
 
 
 
 
 
 
 
 851}
 852
 853/*
 854 * Atomic setting of ioctl hooks to avoid race
 855 * with module unload.
 856 */
 857
 858static DEFINE_MUTEX(br_ioctl_mutex);
 859static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 860
 861void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 862{
 863	mutex_lock(&br_ioctl_mutex);
 864	br_ioctl_hook = hook;
 865	mutex_unlock(&br_ioctl_mutex);
 866}
 867EXPORT_SYMBOL(brioctl_set);
 868
 869static DEFINE_MUTEX(vlan_ioctl_mutex);
 870static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 871
 872void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 873{
 874	mutex_lock(&vlan_ioctl_mutex);
 875	vlan_ioctl_hook = hook;
 876	mutex_unlock(&vlan_ioctl_mutex);
 877}
 878EXPORT_SYMBOL(vlan_ioctl_set);
 879
 880static DEFINE_MUTEX(dlci_ioctl_mutex);
 881static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 882
 883void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 884{
 885	mutex_lock(&dlci_ioctl_mutex);
 886	dlci_ioctl_hook = hook;
 887	mutex_unlock(&dlci_ioctl_mutex);
 888}
 889EXPORT_SYMBOL(dlci_ioctl_set);
 890
 891static long sock_do_ioctl(struct net *net, struct socket *sock,
 892				 unsigned int cmd, unsigned long arg)
 893{
 894	int err;
 895	void __user *argp = (void __user *)arg;
 896
 897	err = sock->ops->ioctl(sock, cmd, arg);
 898
 899	/*
 900	 * If this ioctl is unknown try to hand it down
 901	 * to the NIC driver.
 902	 */
 903	if (err == -ENOIOCTLCMD)
 904		err = dev_ioctl(net, cmd, argp);
 905
 906	return err;
 907}
 908
 909/*
 910 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 911 *	what to do with it - that's up to the protocol still.
 912 */
 913
 914static struct ns_common *get_net_ns(struct ns_common *ns)
 915{
 916	return &get_net(container_of(ns, struct net, ns))->ns;
 917}
 918
 919static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 920{
 921	struct socket *sock;
 922	struct sock *sk;
 923	void __user *argp = (void __user *)arg;
 924	int pid, err;
 925	struct net *net;
 926
 927	sock = file->private_data;
 928	sk = sock->sk;
 929	net = sock_net(sk);
 930	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 931		err = dev_ioctl(net, cmd, argp);
 932	} else
 933#ifdef CONFIG_WEXT_CORE
 934	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 935		err = dev_ioctl(net, cmd, argp);
 936	} else
 937#endif
 938		switch (cmd) {
 939		case FIOSETOWN:
 940		case SIOCSPGRP:
 941			err = -EFAULT;
 942			if (get_user(pid, (int __user *)argp))
 943				break;
 944			f_setown(sock->file, pid, 1);
 945			err = 0;
 946			break;
 947		case FIOGETOWN:
 948		case SIOCGPGRP:
 949			err = put_user(f_getown(sock->file),
 950				       (int __user *)argp);
 951			break;
 952		case SIOCGIFBR:
 953		case SIOCSIFBR:
 954		case SIOCBRADDBR:
 955		case SIOCBRDELBR:
 956			err = -ENOPKG;
 957			if (!br_ioctl_hook)
 958				request_module("bridge");
 959
 960			mutex_lock(&br_ioctl_mutex);
 961			if (br_ioctl_hook)
 962				err = br_ioctl_hook(net, cmd, argp);
 963			mutex_unlock(&br_ioctl_mutex);
 964			break;
 965		case SIOCGIFVLAN:
 966		case SIOCSIFVLAN:
 967			err = -ENOPKG;
 968			if (!vlan_ioctl_hook)
 969				request_module("8021q");
 970
 971			mutex_lock(&vlan_ioctl_mutex);
 972			if (vlan_ioctl_hook)
 973				err = vlan_ioctl_hook(net, argp);
 974			mutex_unlock(&vlan_ioctl_mutex);
 975			break;
 976		case SIOCADDDLCI:
 977		case SIOCDELDLCI:
 978			err = -ENOPKG;
 979			if (!dlci_ioctl_hook)
 980				request_module("dlci");
 981
 982			mutex_lock(&dlci_ioctl_mutex);
 983			if (dlci_ioctl_hook)
 984				err = dlci_ioctl_hook(cmd, argp);
 985			mutex_unlock(&dlci_ioctl_mutex);
 986			break;
 987		case SIOCGSKNS:
 988			err = -EPERM;
 989			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
 990				break;
 991
 992			err = open_related_ns(&net->ns, get_net_ns);
 993			break;
 994		default:
 995			err = sock_do_ioctl(net, sock, cmd, arg);
 996			break;
 997		}
 998	return err;
 999}
1000
1001int sock_create_lite(int family, int type, int protocol, struct socket **res)
1002{
1003	int err;
1004	struct socket *sock = NULL;
1005
1006	err = security_socket_create(family, type, protocol, 1);
1007	if (err)
1008		goto out;
1009
1010	sock = sock_alloc();
1011	if (!sock) {
1012		err = -ENOMEM;
1013		goto out;
1014	}
1015
1016	sock->type = type;
1017	err = security_socket_post_create(sock, family, type, protocol, 1);
1018	if (err)
1019		goto out_release;
1020
1021out:
1022	*res = sock;
1023	return err;
1024out_release:
1025	sock_release(sock);
1026	sock = NULL;
1027	goto out;
1028}
1029EXPORT_SYMBOL(sock_create_lite);
1030
1031/* No kernel lock held - perfect */
1032static unsigned int sock_poll(struct file *file, poll_table *wait)
1033{
1034	unsigned int busy_flag = 0;
1035	struct socket *sock;
1036
1037	/*
1038	 *      We can't return errors to poll, so it's either yes or no.
1039	 */
1040	sock = file->private_data;
1041
1042	if (sk_can_busy_loop(sock->sk)) {
1043		/* this socket can poll_ll so tell the system call */
1044		busy_flag = POLL_BUSY_LOOP;
1045
1046		/* once, only if requested by syscall */
1047		if (wait && (wait->_key & POLL_BUSY_LOOP))
1048			sk_busy_loop(sock->sk, 1);
1049	}
1050
1051	return busy_flag | sock->ops->poll(file, sock, wait);
1052}
1053
1054static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1055{
1056	struct socket *sock = file->private_data;
1057
1058	return sock->ops->mmap(file, sock, vma);
1059}
1060
1061static int sock_close(struct inode *inode, struct file *filp)
1062{
 
 
 
 
 
 
 
 
 
1063	sock_release(SOCKET_I(inode));
1064	return 0;
1065}
1066
1067/*
1068 *	Update the socket async list
1069 *
1070 *	Fasync_list locking strategy.
1071 *
1072 *	1. fasync_list is modified only under process context socket lock
1073 *	   i.e. under semaphore.
1074 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1075 *	   or under socket lock
1076 */
1077
1078static int sock_fasync(int fd, struct file *filp, int on)
1079{
1080	struct socket *sock = filp->private_data;
1081	struct sock *sk = sock->sk;
1082	struct socket_wq *wq;
1083
1084	if (sk == NULL)
1085		return -EINVAL;
1086
1087	lock_sock(sk);
1088	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1089	fasync_helper(fd, filp, on, &wq->fasync_list);
1090
1091	if (!wq->fasync_list)
1092		sock_reset_flag(sk, SOCK_FASYNC);
1093	else
1094		sock_set_flag(sk, SOCK_FASYNC);
1095
1096	release_sock(sk);
1097	return 0;
1098}
1099
1100/* This function may be called only under rcu_lock */
1101
1102int sock_wake_async(struct socket_wq *wq, int how, int band)
1103{
1104	if (!wq || !wq->fasync_list)
1105		return -1;
1106
 
 
 
 
 
 
 
 
1107	switch (how) {
1108	case SOCK_WAKE_WAITD:
1109		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1110			break;
1111		goto call_kill;
1112	case SOCK_WAKE_SPACE:
1113		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1114			break;
1115		/* fall through */
1116	case SOCK_WAKE_IO:
1117call_kill:
1118		kill_fasync(&wq->fasync_list, SIGIO, band);
1119		break;
1120	case SOCK_WAKE_URG:
1121		kill_fasync(&wq->fasync_list, SIGURG, band);
1122	}
1123
1124	return 0;
1125}
1126EXPORT_SYMBOL(sock_wake_async);
1127
1128int __sock_create(struct net *net, int family, int type, int protocol,
1129			 struct socket **res, int kern)
1130{
1131	int err;
1132	struct socket *sock;
1133	const struct net_proto_family *pf;
1134
1135	/*
1136	 *      Check protocol is in range
1137	 */
1138	if (family < 0 || family >= NPROTO)
1139		return -EAFNOSUPPORT;
1140	if (type < 0 || type >= SOCK_MAX)
1141		return -EINVAL;
1142
1143	/* Compatibility.
1144
1145	   This uglymoron is moved from INET layer to here to avoid
1146	   deadlock in module load.
1147	 */
1148	if (family == PF_INET && type == SOCK_PACKET) {
1149		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1150			     current->comm);
 
 
 
 
1151		family = PF_PACKET;
1152	}
1153
1154	err = security_socket_create(family, type, protocol, kern);
1155	if (err)
1156		return err;
1157
1158	/*
1159	 *	Allocate the socket and allow the family to set things up. if
1160	 *	the protocol is 0, the family is instructed to select an appropriate
1161	 *	default.
1162	 */
1163	sock = sock_alloc();
1164	if (!sock) {
1165		net_warn_ratelimited("socket: no more sockets\n");
1166		return -ENFILE;	/* Not exactly a match, but its the
1167				   closest posix thing */
1168	}
1169
1170	sock->type = type;
1171
1172#ifdef CONFIG_MODULES
1173	/* Attempt to load a protocol module if the find failed.
1174	 *
1175	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1176	 * requested real, full-featured networking support upon configuration.
1177	 * Otherwise module support will break!
1178	 */
1179	if (rcu_access_pointer(net_families[family]) == NULL)
1180		request_module("net-pf-%d", family);
1181#endif
1182
1183	rcu_read_lock();
1184	pf = rcu_dereference(net_families[family]);
1185	err = -EAFNOSUPPORT;
1186	if (!pf)
1187		goto out_release;
1188
1189	/*
1190	 * We will call the ->create function, that possibly is in a loadable
1191	 * module, so we have to bump that loadable module refcnt first.
1192	 */
1193	if (!try_module_get(pf->owner))
1194		goto out_release;
1195
1196	/* Now protected by module ref count */
1197	rcu_read_unlock();
1198
1199	err = pf->create(net, sock, protocol, kern);
1200	if (err < 0)
1201		goto out_module_put;
1202
1203	/*
1204	 * Now to bump the refcnt of the [loadable] module that owns this
1205	 * socket at sock_release time we decrement its refcnt.
1206	 */
1207	if (!try_module_get(sock->ops->owner))
1208		goto out_module_busy;
1209
1210	/*
1211	 * Now that we're done with the ->create function, the [loadable]
1212	 * module can have its refcnt decremented
1213	 */
1214	module_put(pf->owner);
1215	err = security_socket_post_create(sock, family, type, protocol, kern);
1216	if (err)
1217		goto out_sock_release;
1218	*res = sock;
1219
1220	return 0;
1221
1222out_module_busy:
1223	err = -EAFNOSUPPORT;
1224out_module_put:
1225	sock->ops = NULL;
1226	module_put(pf->owner);
1227out_sock_release:
1228	sock_release(sock);
1229	return err;
1230
1231out_release:
1232	rcu_read_unlock();
1233	goto out_sock_release;
1234}
1235EXPORT_SYMBOL(__sock_create);
1236
1237int sock_create(int family, int type, int protocol, struct socket **res)
1238{
1239	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1240}
1241EXPORT_SYMBOL(sock_create);
1242
1243int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1244{
1245	return __sock_create(net, family, type, protocol, res, 1);
1246}
1247EXPORT_SYMBOL(sock_create_kern);
1248
1249SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1250{
1251	int retval;
1252	struct socket *sock;
1253	int flags;
1254
1255	/* Check the SOCK_* constants for consistency.  */
1256	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1257	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1258	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1259	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1260
1261	flags = type & ~SOCK_TYPE_MASK;
1262	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263		return -EINVAL;
1264	type &= SOCK_TYPE_MASK;
1265
1266	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268
1269	retval = sock_create(family, type, protocol, &sock);
1270	if (retval < 0)
1271		goto out;
1272
1273	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1274	if (retval < 0)
1275		goto out_release;
1276
1277out:
1278	/* It may be already another descriptor 8) Not kernel problem. */
1279	return retval;
1280
1281out_release:
1282	sock_release(sock);
1283	return retval;
1284}
1285
1286/*
1287 *	Create a pair of connected sockets.
1288 */
1289
1290SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1291		int __user *, usockvec)
1292{
1293	struct socket *sock1, *sock2;
1294	int fd1, fd2, err;
1295	struct file *newfile1, *newfile2;
1296	int flags;
1297
1298	flags = type & ~SOCK_TYPE_MASK;
1299	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1300		return -EINVAL;
1301	type &= SOCK_TYPE_MASK;
1302
1303	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305
1306	/*
1307	 * Obtain the first socket and check if the underlying protocol
1308	 * supports the socketpair call.
1309	 */
1310
1311	err = sock_create(family, type, protocol, &sock1);
1312	if (err < 0)
1313		goto out;
1314
1315	err = sock_create(family, type, protocol, &sock2);
1316	if (err < 0)
1317		goto out_release_1;
1318
1319	err = sock1->ops->socketpair(sock1, sock2);
1320	if (err < 0)
1321		goto out_release_both;
1322
1323	fd1 = get_unused_fd_flags(flags);
1324	if (unlikely(fd1 < 0)) {
1325		err = fd1;
1326		goto out_release_both;
1327	}
1328
1329	fd2 = get_unused_fd_flags(flags);
1330	if (unlikely(fd2 < 0)) {
1331		err = fd2;
1332		goto out_put_unused_1;
1333	}
1334
1335	newfile1 = sock_alloc_file(sock1, flags, NULL);
1336	if (IS_ERR(newfile1)) {
1337		err = PTR_ERR(newfile1);
1338		goto out_put_unused_both;
1339	}
1340
1341	newfile2 = sock_alloc_file(sock2, flags, NULL);
1342	if (IS_ERR(newfile2)) {
1343		err = PTR_ERR(newfile2);
1344		goto out_fput_1;
1345	}
1346
1347	err = put_user(fd1, &usockvec[0]);
1348	if (err)
1349		goto out_fput_both;
1350
1351	err = put_user(fd2, &usockvec[1]);
1352	if (err)
1353		goto out_fput_both;
1354
1355	audit_fd_pair(fd1, fd2);
1356
1357	fd_install(fd1, newfile1);
1358	fd_install(fd2, newfile2);
1359	/* fd1 and fd2 may be already another descriptors.
1360	 * Not kernel problem.
1361	 */
1362
1363	return 0;
1364
1365out_fput_both:
1366	fput(newfile2);
1367	fput(newfile1);
1368	put_unused_fd(fd2);
1369	put_unused_fd(fd1);
1370	goto out;
1371
1372out_fput_1:
1373	fput(newfile1);
1374	put_unused_fd(fd2);
1375	put_unused_fd(fd1);
1376	sock_release(sock2);
1377	goto out;
1378
1379out_put_unused_both:
1380	put_unused_fd(fd2);
1381out_put_unused_1:
1382	put_unused_fd(fd1);
1383out_release_both:
1384	sock_release(sock2);
1385out_release_1:
1386	sock_release(sock1);
1387out:
1388	return err;
1389}
1390
1391/*
1392 *	Bind a name to a socket. Nothing much to do here since it's
1393 *	the protocol's responsibility to handle the local address.
1394 *
1395 *	We move the socket address to kernel space before we call
1396 *	the protocol layer (having also checked the address is ok).
1397 */
1398
1399SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1400{
1401	struct socket *sock;
1402	struct sockaddr_storage address;
1403	int err, fput_needed;
1404
1405	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1406	if (sock) {
1407		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1408		if (err >= 0) {
1409			err = security_socket_bind(sock,
1410						   (struct sockaddr *)&address,
1411						   addrlen);
1412			if (!err)
1413				err = sock->ops->bind(sock,
1414						      (struct sockaddr *)
1415						      &address, addrlen);
1416		}
1417		fput_light(sock->file, fput_needed);
1418	}
1419	return err;
1420}
1421
1422/*
1423 *	Perform a listen. Basically, we allow the protocol to do anything
1424 *	necessary for a listen, and if that works, we mark the socket as
1425 *	ready for listening.
1426 */
1427
1428SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1429{
1430	struct socket *sock;
1431	int err, fput_needed;
1432	int somaxconn;
1433
1434	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1435	if (sock) {
1436		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1437		if ((unsigned int)backlog > somaxconn)
1438			backlog = somaxconn;
1439
1440		err = security_socket_listen(sock, backlog);
1441		if (!err)
1442			err = sock->ops->listen(sock, backlog);
1443
1444		fput_light(sock->file, fput_needed);
1445	}
1446	return err;
1447}
1448
1449/*
1450 *	For accept, we attempt to create a new socket, set up the link
1451 *	with the client, wake up the client, then return the new
1452 *	connected fd. We collect the address of the connector in kernel
1453 *	space and move it to user at the very end. This is unclean because
1454 *	we open the socket then return an error.
1455 *
1456 *	1003.1g adds the ability to recvmsg() to query connection pending
1457 *	status to recvmsg. We need to add that support in a way thats
1458 *	clean when we restucture accept also.
1459 */
1460
1461SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1462		int __user *, upeer_addrlen, int, flags)
1463{
1464	struct socket *sock, *newsock;
1465	struct file *newfile;
1466	int err, len, newfd, fput_needed;
1467	struct sockaddr_storage address;
1468
1469	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1470		return -EINVAL;
1471
1472	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1473		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1474
1475	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476	if (!sock)
1477		goto out;
1478
1479	err = -ENFILE;
1480	newsock = sock_alloc();
1481	if (!newsock)
1482		goto out_put;
1483
1484	newsock->type = sock->type;
1485	newsock->ops = sock->ops;
1486
1487	/*
1488	 * We don't need try_module_get here, as the listening socket (sock)
1489	 * has the protocol module (sock->ops->owner) held.
1490	 */
1491	__module_get(newsock->ops->owner);
1492
1493	newfd = get_unused_fd_flags(flags);
1494	if (unlikely(newfd < 0)) {
1495		err = newfd;
1496		sock_release(newsock);
1497		goto out_put;
1498	}
1499	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1500	if (IS_ERR(newfile)) {
1501		err = PTR_ERR(newfile);
1502		put_unused_fd(newfd);
1503		sock_release(newsock);
1504		goto out_put;
1505	}
1506
1507	err = security_socket_accept(sock, newsock);
1508	if (err)
1509		goto out_fd;
1510
1511	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1512	if (err < 0)
1513		goto out_fd;
1514
1515	if (upeer_sockaddr) {
1516		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1517					  &len, 2) < 0) {
1518			err = -ECONNABORTED;
1519			goto out_fd;
1520		}
1521		err = move_addr_to_user(&address,
1522					len, upeer_sockaddr, upeer_addrlen);
1523		if (err < 0)
1524			goto out_fd;
1525	}
1526
1527	/* File flags are not inherited via accept() unlike another OSes. */
1528
1529	fd_install(newfd, newfile);
1530	err = newfd;
1531
1532out_put:
1533	fput_light(sock->file, fput_needed);
1534out:
1535	return err;
1536out_fd:
1537	fput(newfile);
1538	put_unused_fd(newfd);
1539	goto out_put;
1540}
1541
1542SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1543		int __user *, upeer_addrlen)
1544{
1545	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1546}
1547
1548/*
1549 *	Attempt to connect to a socket with the server address.  The address
1550 *	is in user space so we verify it is OK and move it to kernel space.
1551 *
1552 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1553 *	break bindings
1554 *
1555 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1556 *	other SEQPACKET protocols that take time to connect() as it doesn't
1557 *	include the -EINPROGRESS status for such sockets.
1558 */
1559
1560SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1561		int, addrlen)
1562{
1563	struct socket *sock;
1564	struct sockaddr_storage address;
1565	int err, fput_needed;
1566
1567	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1568	if (!sock)
1569		goto out;
1570	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1571	if (err < 0)
1572		goto out_put;
1573
1574	err =
1575	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1576	if (err)
1577		goto out_put;
1578
1579	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1580				 sock->file->f_flags);
1581out_put:
1582	fput_light(sock->file, fput_needed);
1583out:
1584	return err;
1585}
1586
1587/*
1588 *	Get the local address ('name') of a socket object. Move the obtained
1589 *	name to user space.
1590 */
1591
1592SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1593		int __user *, usockaddr_len)
1594{
1595	struct socket *sock;
1596	struct sockaddr_storage address;
1597	int len, err, fput_needed;
1598
1599	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600	if (!sock)
1601		goto out;
1602
1603	err = security_socket_getsockname(sock);
1604	if (err)
1605		goto out_put;
1606
1607	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1608	if (err)
1609		goto out_put;
1610	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1611
1612out_put:
1613	fput_light(sock->file, fput_needed);
1614out:
1615	return err;
1616}
1617
1618/*
1619 *	Get the remote address ('name') of a socket object. Move the obtained
1620 *	name to user space.
1621 */
1622
1623SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1624		int __user *, usockaddr_len)
1625{
1626	struct socket *sock;
1627	struct sockaddr_storage address;
1628	int len, err, fput_needed;
1629
1630	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631	if (sock != NULL) {
1632		err = security_socket_getpeername(sock);
1633		if (err) {
1634			fput_light(sock->file, fput_needed);
1635			return err;
1636		}
1637
1638		err =
1639		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1640				       1);
1641		if (!err)
1642			err = move_addr_to_user(&address, len, usockaddr,
1643						usockaddr_len);
1644		fput_light(sock->file, fput_needed);
1645	}
1646	return err;
1647}
1648
1649/*
1650 *	Send a datagram to a given address. We move the address into kernel
1651 *	space and check the user space data area is readable before invoking
1652 *	the protocol.
1653 */
1654
1655SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1656		unsigned int, flags, struct sockaddr __user *, addr,
1657		int, addr_len)
1658{
1659	struct socket *sock;
1660	struct sockaddr_storage address;
1661	int err;
1662	struct msghdr msg;
1663	struct iovec iov;
1664	int fput_needed;
1665
1666	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1667	if (unlikely(err))
1668		return err;
1669	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670	if (!sock)
1671		goto out;
1672
 
 
1673	msg.msg_name = NULL;
 
 
1674	msg.msg_control = NULL;
1675	msg.msg_controllen = 0;
1676	msg.msg_namelen = 0;
1677	if (addr) {
1678		err = move_addr_to_kernel(addr, addr_len, &address);
1679		if (err < 0)
1680			goto out_put;
1681		msg.msg_name = (struct sockaddr *)&address;
1682		msg.msg_namelen = addr_len;
1683	}
1684	if (sock->file->f_flags & O_NONBLOCK)
1685		flags |= MSG_DONTWAIT;
1686	msg.msg_flags = flags;
1687	err = sock_sendmsg(sock, &msg);
1688
1689out_put:
1690	fput_light(sock->file, fput_needed);
1691out:
1692	return err;
1693}
1694
1695/*
1696 *	Send a datagram down a socket.
1697 */
1698
1699SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1700		unsigned int, flags)
1701{
1702	return sys_sendto(fd, buff, len, flags, NULL, 0);
1703}
1704
1705/*
1706 *	Receive a frame from the socket and optionally record the address of the
1707 *	sender. We verify the buffers are writable and if needed move the
1708 *	sender address from kernel to user space.
1709 */
1710
1711SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1712		unsigned int, flags, struct sockaddr __user *, addr,
1713		int __user *, addr_len)
1714{
1715	struct socket *sock;
1716	struct iovec iov;
1717	struct msghdr msg;
1718	struct sockaddr_storage address;
1719	int err, err2;
1720	int fput_needed;
1721
1722	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1723	if (unlikely(err))
1724		return err;
1725	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726	if (!sock)
1727		goto out;
1728
1729	msg.msg_control = NULL;
1730	msg.msg_controllen = 0;
1731	/* Save some cycles and don't copy the address if not needed */
1732	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1733	/* We assume all kernel code knows the size of sockaddr_storage */
1734	msg.msg_namelen = 0;
1735	msg.msg_iocb = NULL;
 
1736	if (sock->file->f_flags & O_NONBLOCK)
1737		flags |= MSG_DONTWAIT;
1738	err = sock_recvmsg(sock, &msg, flags);
1739
1740	if (err >= 0 && addr != NULL) {
1741		err2 = move_addr_to_user(&address,
1742					 msg.msg_namelen, addr, addr_len);
1743		if (err2 < 0)
1744			err = err2;
1745	}
1746
1747	fput_light(sock->file, fput_needed);
1748out:
1749	return err;
1750}
1751
1752/*
1753 *	Receive a datagram from a socket.
1754 */
1755
1756SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1757		unsigned int, flags)
1758{
1759	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1760}
1761
1762/*
1763 *	Set a socket option. Because we don't know the option lengths we have
1764 *	to pass the user mode parameter for the protocols to sort out.
1765 */
1766
1767SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1768		char __user *, optval, int, optlen)
1769{
1770	int err, fput_needed;
1771	struct socket *sock;
1772
1773	if (optlen < 0)
1774		return -EINVAL;
1775
1776	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777	if (sock != NULL) {
1778		err = security_socket_setsockopt(sock, level, optname);
1779		if (err)
1780			goto out_put;
1781
1782		if (level == SOL_SOCKET)
1783			err =
1784			    sock_setsockopt(sock, level, optname, optval,
1785					    optlen);
1786		else
1787			err =
1788			    sock->ops->setsockopt(sock, level, optname, optval,
1789						  optlen);
1790out_put:
1791		fput_light(sock->file, fput_needed);
1792	}
1793	return err;
1794}
1795
1796/*
1797 *	Get a socket option. Because we don't know the option lengths we have
1798 *	to pass a user mode parameter for the protocols to sort out.
1799 */
1800
1801SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1802		char __user *, optval, int __user *, optlen)
1803{
1804	int err, fput_needed;
1805	struct socket *sock;
1806
1807	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808	if (sock != NULL) {
1809		err = security_socket_getsockopt(sock, level, optname);
1810		if (err)
1811			goto out_put;
1812
1813		if (level == SOL_SOCKET)
1814			err =
1815			    sock_getsockopt(sock, level, optname, optval,
1816					    optlen);
1817		else
1818			err =
1819			    sock->ops->getsockopt(sock, level, optname, optval,
1820						  optlen);
1821out_put:
1822		fput_light(sock->file, fput_needed);
1823	}
1824	return err;
1825}
1826
1827/*
1828 *	Shutdown a socket.
1829 */
1830
1831SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1832{
1833	int err, fput_needed;
1834	struct socket *sock;
1835
1836	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1837	if (sock != NULL) {
1838		err = security_socket_shutdown(sock, how);
1839		if (!err)
1840			err = sock->ops->shutdown(sock, how);
1841		fput_light(sock->file, fput_needed);
1842	}
1843	return err;
1844}
1845
1846/* A couple of helpful macros for getting the address of the 32/64 bit
1847 * fields which are the same type (int / unsigned) on our platforms.
1848 */
1849#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1850#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1851#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1852
1853struct used_address {
1854	struct sockaddr_storage name;
1855	unsigned int name_len;
1856};
1857
1858static int copy_msghdr_from_user(struct msghdr *kmsg,
1859				 struct user_msghdr __user *umsg,
1860				 struct sockaddr __user **save_addr,
1861				 struct iovec **iov)
1862{
1863	struct sockaddr __user *uaddr;
1864	struct iovec __user *uiov;
1865	size_t nr_segs;
1866	ssize_t err;
1867
1868	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1869	    __get_user(uaddr, &umsg->msg_name) ||
1870	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1871	    __get_user(uiov, &umsg->msg_iov) ||
1872	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1873	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1874	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1875	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1876		return -EFAULT;
1877
1878	if (!uaddr)
1879		kmsg->msg_namelen = 0;
1880
1881	if (kmsg->msg_namelen < 0)
1882		return -EINVAL;
1883
1884	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1885		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1886
1887	if (save_addr)
1888		*save_addr = uaddr;
1889
1890	if (uaddr && kmsg->msg_namelen) {
1891		if (!save_addr) {
1892			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1893						  kmsg->msg_name);
1894			if (err < 0)
1895				return err;
1896		}
1897	} else {
1898		kmsg->msg_name = NULL;
1899		kmsg->msg_namelen = 0;
1900	}
1901
1902	if (nr_segs > UIO_MAXIOV)
1903		return -EMSGSIZE;
1904
1905	kmsg->msg_iocb = NULL;
1906
1907	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1908			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1909}
1910
1911static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1912			 struct msghdr *msg_sys, unsigned int flags,
1913			 struct used_address *used_address,
1914			 unsigned int allowed_msghdr_flags)
1915{
1916	struct compat_msghdr __user *msg_compat =
1917	    (struct compat_msghdr __user *)msg;
1918	struct sockaddr_storage address;
1919	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1920	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1921				__aligned(sizeof(__kernel_size_t));
1922	/* 20 is size of ipv6_pktinfo */
1923	unsigned char *ctl_buf = ctl;
1924	int ctl_len;
1925	ssize_t err;
 
 
 
 
 
 
1926
1927	msg_sys->msg_name = &address;
 
 
 
 
 
 
 
 
 
1928
1929	if (MSG_CMSG_COMPAT & flags)
1930		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1931	else
1932		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
 
1933	if (err < 0)
1934		return err;
 
1935
1936	err = -ENOBUFS;
1937
1938	if (msg_sys->msg_controllen > INT_MAX)
1939		goto out_freeiov;
1940	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1941	ctl_len = msg_sys->msg_controllen;
1942	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1943		err =
1944		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1945						     sizeof(ctl));
1946		if (err)
1947			goto out_freeiov;
1948		ctl_buf = msg_sys->msg_control;
1949		ctl_len = msg_sys->msg_controllen;
1950	} else if (ctl_len) {
1951		if (ctl_len > sizeof(ctl)) {
1952			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953			if (ctl_buf == NULL)
1954				goto out_freeiov;
1955		}
1956		err = -EFAULT;
1957		/*
1958		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960		 * checking falls down on this.
1961		 */
1962		if (copy_from_user(ctl_buf,
1963				   (void __user __force *)msg_sys->msg_control,
1964				   ctl_len))
1965			goto out_freectl;
1966		msg_sys->msg_control = ctl_buf;
1967	}
1968	msg_sys->msg_flags = flags;
1969
1970	if (sock->file->f_flags & O_NONBLOCK)
1971		msg_sys->msg_flags |= MSG_DONTWAIT;
1972	/*
1973	 * If this is sendmmsg() and current destination address is same as
1974	 * previously succeeded address, omit asking LSM's decision.
1975	 * used_address->name_len is initialized to UINT_MAX so that the first
1976	 * destination address never matches.
1977	 */
1978	if (used_address && msg_sys->msg_name &&
1979	    used_address->name_len == msg_sys->msg_namelen &&
1980	    !memcmp(&used_address->name, msg_sys->msg_name,
1981		    used_address->name_len)) {
1982		err = sock_sendmsg_nosec(sock, msg_sys);
1983		goto out_freectl;
1984	}
1985	err = sock_sendmsg(sock, msg_sys);
1986	/*
1987	 * If this is sendmmsg() and sending to current destination address was
1988	 * successful, remember it.
1989	 */
1990	if (used_address && err >= 0) {
1991		used_address->name_len = msg_sys->msg_namelen;
1992		if (msg_sys->msg_name)
1993			memcpy(&used_address->name, msg_sys->msg_name,
1994			       used_address->name_len);
1995	}
1996
1997out_freectl:
1998	if (ctl_buf != ctl)
1999		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2000out_freeiov:
2001	kfree(iov);
 
 
2002	return err;
2003}
2004
2005/*
2006 *	BSD sendmsg interface
2007 */
2008
2009long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2010{
2011	int fput_needed, err;
2012	struct msghdr msg_sys;
2013	struct socket *sock;
2014
2015	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016	if (!sock)
2017		goto out;
2018
2019	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2020
2021	fput_light(sock->file, fput_needed);
2022out:
2023	return err;
2024}
2025
2026SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2027{
2028	if (flags & MSG_CMSG_COMPAT)
2029		return -EINVAL;
2030	return __sys_sendmsg(fd, msg, flags);
2031}
2032
2033/*
2034 *	Linux sendmmsg interface
2035 */
2036
2037int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038		   unsigned int flags)
2039{
2040	int fput_needed, err, datagrams;
2041	struct socket *sock;
2042	struct mmsghdr __user *entry;
2043	struct compat_mmsghdr __user *compat_entry;
2044	struct msghdr msg_sys;
2045	struct used_address used_address;
2046	unsigned int oflags = flags;
2047
2048	if (vlen > UIO_MAXIOV)
2049		vlen = UIO_MAXIOV;
2050
2051	datagrams = 0;
2052
2053	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054	if (!sock)
2055		return err;
2056
2057	used_address.name_len = UINT_MAX;
2058	entry = mmsg;
2059	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2060	err = 0;
2061	flags |= MSG_BATCH;
2062
2063	while (datagrams < vlen) {
2064		if (datagrams == vlen - 1)
2065			flags = oflags;
2066
2067		if (MSG_CMSG_COMPAT & flags) {
2068			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069					     &msg_sys, flags, &used_address, MSG_EOR);
2070			if (err < 0)
2071				break;
2072			err = __put_user(err, &compat_entry->msg_len);
2073			++compat_entry;
2074		} else {
2075			err = ___sys_sendmsg(sock,
2076					     (struct user_msghdr __user *)entry,
2077					     &msg_sys, flags, &used_address, MSG_EOR);
2078			if (err < 0)
2079				break;
2080			err = put_user(err, &entry->msg_len);
2081			++entry;
2082		}
2083
2084		if (err)
2085			break;
2086		++datagrams;
2087		if (msg_data_left(&msg_sys))
2088			break;
2089		cond_resched();
2090	}
2091
2092	fput_light(sock->file, fput_needed);
2093
2094	/* We only return an error if no datagrams were able to be sent */
2095	if (datagrams != 0)
2096		return datagrams;
2097
2098	return err;
2099}
2100
2101SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102		unsigned int, vlen, unsigned int, flags)
2103{
2104	if (flags & MSG_CMSG_COMPAT)
2105		return -EINVAL;
2106	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2107}
2108
2109static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2111{
2112	struct compat_msghdr __user *msg_compat =
2113	    (struct compat_msghdr __user *)msg;
2114	struct iovec iovstack[UIO_FASTIOV];
2115	struct iovec *iov = iovstack;
2116	unsigned long cmsg_ptr;
2117	int len;
2118	ssize_t err;
2119
2120	/* kernel mode address */
2121	struct sockaddr_storage addr;
2122
2123	/* user mode address pointers */
2124	struct sockaddr __user *uaddr;
2125	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2126
2127	msg_sys->msg_name = &addr;
 
 
 
 
2128
2129	if (MSG_CMSG_COMPAT & flags)
2130		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2131	else
2132		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133	if (err < 0)
2134		return err;
 
2135
2136	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2138
2139	/* We assume all kernel code knows the size of sockaddr_storage */
2140	msg_sys->msg_namelen = 0;
2141
2142	if (sock->file->f_flags & O_NONBLOCK)
2143		flags |= MSG_DONTWAIT;
2144	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
 
2145	if (err < 0)
2146		goto out_freeiov;
2147	len = err;
2148
2149	if (uaddr != NULL) {
2150		err = move_addr_to_user(&addr,
2151					msg_sys->msg_namelen, uaddr,
2152					uaddr_len);
2153		if (err < 0)
2154			goto out_freeiov;
2155	}
2156	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2157			 COMPAT_FLAGS(msg));
2158	if (err)
2159		goto out_freeiov;
2160	if (MSG_CMSG_COMPAT & flags)
2161		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162				 &msg_compat->msg_controllen);
2163	else
2164		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165				 &msg->msg_controllen);
2166	if (err)
2167		goto out_freeiov;
2168	err = len;
2169
2170out_freeiov:
2171	kfree(iov);
 
 
2172	return err;
2173}
2174
2175/*
2176 *	BSD recvmsg interface
2177 */
2178
2179long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
 
2180{
2181	int fput_needed, err;
2182	struct msghdr msg_sys;
2183	struct socket *sock;
2184
2185	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186	if (!sock)
2187		goto out;
2188
2189	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2190
2191	fput_light(sock->file, fput_needed);
2192out:
2193	return err;
2194}
2195
2196SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197		unsigned int, flags)
2198{
2199	if (flags & MSG_CMSG_COMPAT)
2200		return -EINVAL;
2201	return __sys_recvmsg(fd, msg, flags);
2202}
2203
2204/*
2205 *     Linux recvmmsg interface
2206 */
2207
2208int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209		   unsigned int flags, struct timespec *timeout)
2210{
2211	int fput_needed, err, datagrams;
2212	struct socket *sock;
2213	struct mmsghdr __user *entry;
2214	struct compat_mmsghdr __user *compat_entry;
2215	struct msghdr msg_sys;
2216	struct timespec64 end_time;
2217	struct timespec64 timeout64;
2218
2219	if (timeout &&
2220	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2221				    timeout->tv_nsec))
2222		return -EINVAL;
2223
2224	datagrams = 0;
2225
2226	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227	if (!sock)
2228		return err;
2229
2230	err = sock_error(sock->sk);
2231	if (err) {
2232		datagrams = err;
2233		goto out_put;
2234	}
2235
2236	entry = mmsg;
2237	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2238
2239	while (datagrams < vlen) {
2240		/*
2241		 * No need to ask LSM for more than the first datagram.
2242		 */
2243		if (MSG_CMSG_COMPAT & flags) {
2244			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2245					     &msg_sys, flags & ~MSG_WAITFORONE,
2246					     datagrams);
2247			if (err < 0)
2248				break;
2249			err = __put_user(err, &compat_entry->msg_len);
2250			++compat_entry;
2251		} else {
2252			err = ___sys_recvmsg(sock,
2253					     (struct user_msghdr __user *)entry,
2254					     &msg_sys, flags & ~MSG_WAITFORONE,
2255					     datagrams);
2256			if (err < 0)
2257				break;
2258			err = put_user(err, &entry->msg_len);
2259			++entry;
2260		}
2261
2262		if (err)
2263			break;
2264		++datagrams;
2265
2266		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2267		if (flags & MSG_WAITFORONE)
2268			flags |= MSG_DONTWAIT;
2269
2270		if (timeout) {
2271			ktime_get_ts64(&timeout64);
2272			*timeout = timespec64_to_timespec(
2273					timespec64_sub(end_time, timeout64));
2274			if (timeout->tv_sec < 0) {
2275				timeout->tv_sec = timeout->tv_nsec = 0;
2276				break;
2277			}
2278
2279			/* Timeout, return less than vlen datagrams */
2280			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2281				break;
2282		}
2283
2284		/* Out of band data, return right away */
2285		if (msg_sys.msg_flags & MSG_OOB)
2286			break;
2287		cond_resched();
2288	}
2289
2290	if (err == 0)
2291		goto out_put;
2292
2293	if (datagrams == 0) {
2294		datagrams = err;
2295		goto out_put;
2296	}
2297
2298	/*
2299	 * We may return less entries than requested (vlen) if the
2300	 * sock is non block and there aren't enough datagrams...
2301	 */
2302	if (err != -EAGAIN) {
2303		/*
2304		 * ... or  if recvmsg returns an error after we
2305		 * received some datagrams, where we record the
2306		 * error to return on the next call or if the
2307		 * app asks about it using getsockopt(SO_ERROR).
2308		 */
2309		sock->sk->sk_err = -err;
 
 
 
 
 
 
 
 
 
 
2310	}
2311out_put:
2312	fput_light(sock->file, fput_needed);
2313
2314	return datagrams;
2315}
2316
2317SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2318		unsigned int, vlen, unsigned int, flags,
2319		struct timespec __user *, timeout)
2320{
2321	int datagrams;
2322	struct timespec timeout_sys;
2323
2324	if (flags & MSG_CMSG_COMPAT)
2325		return -EINVAL;
2326
2327	if (!timeout)
2328		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2329
2330	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2331		return -EFAULT;
2332
2333	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2334
2335	if (datagrams > 0 &&
2336	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2337		datagrams = -EFAULT;
2338
2339	return datagrams;
2340}
2341
2342#ifdef __ARCH_WANT_SYS_SOCKETCALL
2343/* Argument list sizes for sys_socketcall */
2344#define AL(x) ((x) * sizeof(unsigned long))
2345static const unsigned char nargs[21] = {
2346	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2347	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2348	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2349	AL(4), AL(5), AL(4)
2350};
2351
2352#undef AL
2353
2354/*
2355 *	System call vectors.
2356 *
2357 *	Argument checking cleaned up. Saved 20% in size.
2358 *  This function doesn't need to set the kernel lock because
2359 *  it is set by the callees.
2360 */
2361
2362SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2363{
2364	unsigned long a[AUDITSC_ARGS];
2365	unsigned long a0, a1;
2366	int err;
2367	unsigned int len;
2368
2369	if (call < 1 || call > SYS_SENDMMSG)
2370		return -EINVAL;
2371
2372	len = nargs[call];
2373	if (len > sizeof(a))
2374		return -EINVAL;
2375
2376	/* copy_from_user should be SMP safe. */
2377	if (copy_from_user(a, args, len))
2378		return -EFAULT;
2379
2380	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2381	if (err)
2382		return err;
2383
2384	a0 = a[0];
2385	a1 = a[1];
2386
2387	switch (call) {
2388	case SYS_SOCKET:
2389		err = sys_socket(a0, a1, a[2]);
2390		break;
2391	case SYS_BIND:
2392		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2393		break;
2394	case SYS_CONNECT:
2395		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2396		break;
2397	case SYS_LISTEN:
2398		err = sys_listen(a0, a1);
2399		break;
2400	case SYS_ACCEPT:
2401		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2402				  (int __user *)a[2], 0);
2403		break;
2404	case SYS_GETSOCKNAME:
2405		err =
2406		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2407				    (int __user *)a[2]);
2408		break;
2409	case SYS_GETPEERNAME:
2410		err =
2411		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2412				    (int __user *)a[2]);
2413		break;
2414	case SYS_SOCKETPAIR:
2415		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2416		break;
2417	case SYS_SEND:
2418		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2419		break;
2420	case SYS_SENDTO:
2421		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2422				 (struct sockaddr __user *)a[4], a[5]);
2423		break;
2424	case SYS_RECV:
2425		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2426		break;
2427	case SYS_RECVFROM:
2428		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2429				   (struct sockaddr __user *)a[4],
2430				   (int __user *)a[5]);
2431		break;
2432	case SYS_SHUTDOWN:
2433		err = sys_shutdown(a0, a1);
2434		break;
2435	case SYS_SETSOCKOPT:
2436		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2437		break;
2438	case SYS_GETSOCKOPT:
2439		err =
2440		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2441				   (int __user *)a[4]);
2442		break;
2443	case SYS_SENDMSG:
2444		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2445		break;
2446	case SYS_SENDMMSG:
2447		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2448		break;
2449	case SYS_RECVMSG:
2450		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2451		break;
2452	case SYS_RECVMMSG:
2453		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2454				   (struct timespec __user *)a[4]);
2455		break;
2456	case SYS_ACCEPT4:
2457		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2458				  (int __user *)a[2], a[3]);
2459		break;
2460	default:
2461		err = -EINVAL;
2462		break;
2463	}
2464	return err;
2465}
2466
2467#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2468
2469/**
2470 *	sock_register - add a socket protocol handler
2471 *	@ops: description of protocol
2472 *
2473 *	This function is called by a protocol handler that wants to
2474 *	advertise its address family, and have it linked into the
2475 *	socket interface. The value ops->family corresponds to the
2476 *	socket system call protocol family.
2477 */
2478int sock_register(const struct net_proto_family *ops)
2479{
2480	int err;
2481
2482	if (ops->family >= NPROTO) {
2483		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
 
2484		return -ENOBUFS;
2485	}
2486
2487	spin_lock(&net_family_lock);
2488	if (rcu_dereference_protected(net_families[ops->family],
2489				      lockdep_is_held(&net_family_lock)))
2490		err = -EEXIST;
2491	else {
2492		rcu_assign_pointer(net_families[ops->family], ops);
2493		err = 0;
2494	}
2495	spin_unlock(&net_family_lock);
2496
2497	pr_info("NET: Registered protocol family %d\n", ops->family);
2498	return err;
2499}
2500EXPORT_SYMBOL(sock_register);
2501
2502/**
2503 *	sock_unregister - remove a protocol handler
2504 *	@family: protocol family to remove
2505 *
2506 *	This function is called by a protocol handler that wants to
2507 *	remove its address family, and have it unlinked from the
2508 *	new socket creation.
2509 *
2510 *	If protocol handler is a module, then it can use module reference
2511 *	counts to protect against new references. If protocol handler is not
2512 *	a module then it needs to provide its own protection in
2513 *	the ops->create routine.
2514 */
2515void sock_unregister(int family)
2516{
2517	BUG_ON(family < 0 || family >= NPROTO);
2518
2519	spin_lock(&net_family_lock);
2520	RCU_INIT_POINTER(net_families[family], NULL);
2521	spin_unlock(&net_family_lock);
2522
2523	synchronize_rcu();
2524
2525	pr_info("NET: Unregistered protocol family %d\n", family);
2526}
2527EXPORT_SYMBOL(sock_unregister);
2528
2529static int __init sock_init(void)
2530{
2531	int err;
2532	/*
2533	 *      Initialize the network sysctl infrastructure.
2534	 */
2535	err = net_sysctl_init();
2536	if (err)
2537		goto out;
2538
2539	/*
 
 
 
 
 
 
2540	 *      Initialize skbuff SLAB cache
2541	 */
2542	skb_init();
2543
2544	/*
2545	 *      Initialize the protocols module.
2546	 */
2547
2548	init_inodecache();
2549
2550	err = register_filesystem(&sock_fs_type);
2551	if (err)
2552		goto out_fs;
2553	sock_mnt = kern_mount(&sock_fs_type);
2554	if (IS_ERR(sock_mnt)) {
2555		err = PTR_ERR(sock_mnt);
2556		goto out_mount;
2557	}
2558
2559	/* The real protocol initialization is performed in later initcalls.
2560	 */
2561
2562#ifdef CONFIG_NETFILTER
2563	err = netfilter_init();
2564	if (err)
2565		goto out;
2566#endif
2567
2568	ptp_classifier_init();
 
 
2569
2570out:
2571	return err;
2572
2573out_mount:
2574	unregister_filesystem(&sock_fs_type);
2575out_fs:
2576	goto out;
2577}
2578
2579core_initcall(sock_init);	/* early initcall */
2580
2581#ifdef CONFIG_PROC_FS
2582void socket_seq_show(struct seq_file *seq)
2583{
2584	int cpu;
2585	int counter = 0;
2586
2587	for_each_possible_cpu(cpu)
2588	    counter += per_cpu(sockets_in_use, cpu);
2589
2590	/* It can be negative, by the way. 8) */
2591	if (counter < 0)
2592		counter = 0;
2593
2594	seq_printf(seq, "sockets: used %d\n", counter);
2595}
2596#endif				/* CONFIG_PROC_FS */
2597
2598#ifdef CONFIG_COMPAT
2599static int do_siocgstamp(struct net *net, struct socket *sock,
2600			 unsigned int cmd, void __user *up)
2601{
2602	mm_segment_t old_fs = get_fs();
2603	struct timeval ktv;
2604	int err;
2605
2606	set_fs(KERNEL_DS);
2607	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2608	set_fs(old_fs);
2609	if (!err)
2610		err = compat_put_timeval(&ktv, up);
2611
2612	return err;
2613}
2614
2615static int do_siocgstampns(struct net *net, struct socket *sock,
2616			   unsigned int cmd, void __user *up)
2617{
2618	mm_segment_t old_fs = get_fs();
2619	struct timespec kts;
2620	int err;
2621
2622	set_fs(KERNEL_DS);
2623	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2624	set_fs(old_fs);
2625	if (!err)
2626		err = compat_put_timespec(&kts, up);
2627
2628	return err;
2629}
2630
2631static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2632{
2633	struct ifreq __user *uifr;
2634	int err;
2635
2636	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2637	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2638		return -EFAULT;
2639
2640	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2641	if (err)
2642		return err;
2643
2644	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2645		return -EFAULT;
2646
2647	return 0;
2648}
2649
2650static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2651{
2652	struct compat_ifconf ifc32;
2653	struct ifconf ifc;
2654	struct ifconf __user *uifc;
2655	struct compat_ifreq __user *ifr32;
2656	struct ifreq __user *ifr;
2657	unsigned int i, j;
2658	int err;
2659
2660	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2661		return -EFAULT;
2662
2663	memset(&ifc, 0, sizeof(ifc));
2664	if (ifc32.ifcbuf == 0) {
2665		ifc32.ifc_len = 0;
2666		ifc.ifc_len = 0;
2667		ifc.ifc_req = NULL;
2668		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2669	} else {
2670		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2671			sizeof(struct ifreq);
2672		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2673		ifc.ifc_len = len;
2674		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2675		ifr32 = compat_ptr(ifc32.ifcbuf);
2676		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2677			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2678				return -EFAULT;
2679			ifr++;
2680			ifr32++;
2681		}
2682	}
2683	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2684		return -EFAULT;
2685
2686	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2687	if (err)
2688		return err;
2689
2690	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2691		return -EFAULT;
2692
2693	ifr = ifc.ifc_req;
2694	ifr32 = compat_ptr(ifc32.ifcbuf);
2695	for (i = 0, j = 0;
2696	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2697	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2698		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2699			return -EFAULT;
2700		ifr32++;
2701		ifr++;
2702	}
2703
2704	if (ifc32.ifcbuf == 0) {
2705		/* Translate from 64-bit structure multiple to
2706		 * a 32-bit one.
2707		 */
2708		i = ifc.ifc_len;
2709		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2710		ifc32.ifc_len = i;
2711	} else {
2712		ifc32.ifc_len = i;
2713	}
2714	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2715		return -EFAULT;
2716
2717	return 0;
2718}
2719
2720static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2721{
2722	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2723	bool convert_in = false, convert_out = false;
2724	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2725	struct ethtool_rxnfc __user *rxnfc;
2726	struct ifreq __user *ifr;
2727	u32 rule_cnt = 0, actual_rule_cnt;
2728	u32 ethcmd;
2729	u32 data;
2730	int ret;
2731
2732	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2733		return -EFAULT;
2734
2735	compat_rxnfc = compat_ptr(data);
2736
2737	if (get_user(ethcmd, &compat_rxnfc->cmd))
2738		return -EFAULT;
2739
2740	/* Most ethtool structures are defined without padding.
2741	 * Unfortunately struct ethtool_rxnfc is an exception.
2742	 */
2743	switch (ethcmd) {
2744	default:
2745		break;
2746	case ETHTOOL_GRXCLSRLALL:
2747		/* Buffer size is variable */
2748		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2749			return -EFAULT;
2750		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2751			return -ENOMEM;
2752		buf_size += rule_cnt * sizeof(u32);
2753		/* fall through */
2754	case ETHTOOL_GRXRINGS:
2755	case ETHTOOL_GRXCLSRLCNT:
2756	case ETHTOOL_GRXCLSRULE:
2757	case ETHTOOL_SRXCLSRLINS:
2758		convert_out = true;
2759		/* fall through */
2760	case ETHTOOL_SRXCLSRLDEL:
2761		buf_size += sizeof(struct ethtool_rxnfc);
2762		convert_in = true;
2763		break;
2764	}
2765
2766	ifr = compat_alloc_user_space(buf_size);
2767	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2768
2769	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2770		return -EFAULT;
2771
2772	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2773		     &ifr->ifr_ifru.ifru_data))
2774		return -EFAULT;
2775
2776	if (convert_in) {
2777		/* We expect there to be holes between fs.m_ext and
2778		 * fs.ring_cookie and at the end of fs, but nowhere else.
2779		 */
2780		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2781			     sizeof(compat_rxnfc->fs.m_ext) !=
2782			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2783			     sizeof(rxnfc->fs.m_ext));
2784		BUILD_BUG_ON(
2785			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2786			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2787			offsetof(struct ethtool_rxnfc, fs.location) -
2788			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2789
2790		if (copy_in_user(rxnfc, compat_rxnfc,
2791				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2792				 (void __user *)rxnfc) ||
2793		    copy_in_user(&rxnfc->fs.ring_cookie,
2794				 &compat_rxnfc->fs.ring_cookie,
2795				 (void __user *)(&rxnfc->fs.location + 1) -
2796				 (void __user *)&rxnfc->fs.ring_cookie) ||
2797		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2798				 sizeof(rxnfc->rule_cnt)))
2799			return -EFAULT;
2800	}
2801
2802	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2803	if (ret)
2804		return ret;
2805
2806	if (convert_out) {
2807		if (copy_in_user(compat_rxnfc, rxnfc,
2808				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2809				 (const void __user *)rxnfc) ||
2810		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2811				 &rxnfc->fs.ring_cookie,
2812				 (const void __user *)(&rxnfc->fs.location + 1) -
2813				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2814		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2815				 sizeof(rxnfc->rule_cnt)))
2816			return -EFAULT;
2817
2818		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2819			/* As an optimisation, we only copy the actual
2820			 * number of rules that the underlying
2821			 * function returned.  Since Mallory might
2822			 * change the rule count in user memory, we
2823			 * check that it is less than the rule count
2824			 * originally given (as the user buffer size),
2825			 * which has been range-checked.
2826			 */
2827			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2828				return -EFAULT;
2829			if (actual_rule_cnt < rule_cnt)
2830				rule_cnt = actual_rule_cnt;
2831			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2832					 &rxnfc->rule_locs[0],
2833					 rule_cnt * sizeof(u32)))
2834				return -EFAULT;
2835		}
2836	}
2837
2838	return 0;
2839}
2840
2841static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2842{
2843	void __user *uptr;
2844	compat_uptr_t uptr32;
2845	struct ifreq __user *uifr;
2846
2847	uifr = compat_alloc_user_space(sizeof(*uifr));
2848	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2849		return -EFAULT;
2850
2851	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2852		return -EFAULT;
2853
2854	uptr = compat_ptr(uptr32);
2855
2856	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2857		return -EFAULT;
2858
2859	return dev_ioctl(net, SIOCWANDEV, uifr);
2860}
2861
2862static int bond_ioctl(struct net *net, unsigned int cmd,
2863			 struct compat_ifreq __user *ifr32)
2864{
2865	struct ifreq kifr;
 
2866	mm_segment_t old_fs;
2867	int err;
 
 
2868
2869	switch (cmd) {
2870	case SIOCBONDENSLAVE:
2871	case SIOCBONDRELEASE:
2872	case SIOCBONDSETHWADDR:
2873	case SIOCBONDCHANGEACTIVE:
2874		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2875			return -EFAULT;
2876
2877		old_fs = get_fs();
2878		set_fs(KERNEL_DS);
2879		err = dev_ioctl(net, cmd,
2880				(struct ifreq __user __force *) &kifr);
2881		set_fs(old_fs);
2882
2883		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2884	default:
2885		return -ENOIOCTLCMD;
2886	}
2887}
2888
2889/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2890static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2891				 struct compat_ifreq __user *u_ifreq32)
2892{
2893	struct ifreq __user *u_ifreq64;
2894	char tmp_buf[IFNAMSIZ];
2895	void __user *data64;
2896	u32 data32;
2897
2898	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2899			   IFNAMSIZ))
2900		return -EFAULT;
2901	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2902		return -EFAULT;
2903	data64 = compat_ptr(data32);
2904
2905	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2906
 
 
 
2907	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2908			 IFNAMSIZ))
2909		return -EFAULT;
2910	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2911		return -EFAULT;
2912
2913	return dev_ioctl(net, cmd, u_ifreq64);
2914}
2915
2916static int dev_ifsioc(struct net *net, struct socket *sock,
2917			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2918{
2919	struct ifreq __user *uifr;
2920	int err;
2921
2922	uifr = compat_alloc_user_space(sizeof(*uifr));
2923	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2924		return -EFAULT;
2925
2926	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2927
2928	if (!err) {
2929		switch (cmd) {
2930		case SIOCGIFFLAGS:
2931		case SIOCGIFMETRIC:
2932		case SIOCGIFMTU:
2933		case SIOCGIFMEM:
2934		case SIOCGIFHWADDR:
2935		case SIOCGIFINDEX:
2936		case SIOCGIFADDR:
2937		case SIOCGIFBRDADDR:
2938		case SIOCGIFDSTADDR:
2939		case SIOCGIFNETMASK:
2940		case SIOCGIFPFLAGS:
2941		case SIOCGIFTXQLEN:
2942		case SIOCGMIIPHY:
2943		case SIOCGMIIREG:
2944			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2945				err = -EFAULT;
2946			break;
2947		}
2948	}
2949	return err;
2950}
2951
2952static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2953			struct compat_ifreq __user *uifr32)
2954{
2955	struct ifreq ifr;
2956	struct compat_ifmap __user *uifmap32;
2957	mm_segment_t old_fs;
2958	int err;
2959
2960	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2961	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2962	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2963	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2964	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2965	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2966	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2967	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2968	if (err)
2969		return -EFAULT;
2970
2971	old_fs = get_fs();
2972	set_fs(KERNEL_DS);
2973	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2974	set_fs(old_fs);
2975
2976	if (cmd == SIOCGIFMAP && !err) {
2977		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2978		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2982		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2983		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2984		if (err)
2985			err = -EFAULT;
2986	}
2987	return err;
2988}
2989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2990struct rtentry32 {
2991	u32		rt_pad1;
2992	struct sockaddr rt_dst;         /* target address               */
2993	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2994	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2995	unsigned short	rt_flags;
2996	short		rt_pad2;
2997	u32		rt_pad3;
2998	unsigned char	rt_tos;
2999	unsigned char	rt_class;
3000	short		rt_pad4;
3001	short		rt_metric;      /* +1 for binary compatibility! */
3002	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3003	u32		rt_mtu;         /* per route MTU/Window         */
3004	u32		rt_window;      /* Window clamping              */
3005	unsigned short  rt_irtt;        /* Initial RTT                  */
3006};
3007
3008struct in6_rtmsg32 {
3009	struct in6_addr		rtmsg_dst;
3010	struct in6_addr		rtmsg_src;
3011	struct in6_addr		rtmsg_gateway;
3012	u32			rtmsg_type;
3013	u16			rtmsg_dst_len;
3014	u16			rtmsg_src_len;
3015	u32			rtmsg_metric;
3016	u32			rtmsg_info;
3017	u32			rtmsg_flags;
3018	s32			rtmsg_ifindex;
3019};
3020
3021static int routing_ioctl(struct net *net, struct socket *sock,
3022			 unsigned int cmd, void __user *argp)
3023{
3024	int ret;
3025	void *r = NULL;
3026	struct in6_rtmsg r6;
3027	struct rtentry r4;
3028	char devname[16];
3029	u32 rtdev;
3030	mm_segment_t old_fs = get_fs();
3031
3032	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3033		struct in6_rtmsg32 __user *ur6 = argp;
3034		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3035			3 * sizeof(struct in6_addr));
3036		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3037		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3038		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3039		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3040		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3041		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3042		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3043
3044		r = (void *) &r6;
3045	} else { /* ipv4 */
3046		struct rtentry32 __user *ur4 = argp;
3047		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3048					3 * sizeof(struct sockaddr));
3049		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3050		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3051		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3052		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3053		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3054		ret |= get_user(rtdev, &(ur4->rt_dev));
3055		if (rtdev) {
3056			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3057			r4.rt_dev = (char __user __force *)devname;
3058			devname[15] = 0;
3059		} else
3060			r4.rt_dev = NULL;
3061
3062		r = (void *) &r4;
3063	}
3064
3065	if (ret) {
3066		ret = -EFAULT;
3067		goto out;
3068	}
3069
3070	set_fs(KERNEL_DS);
3071	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3072	set_fs(old_fs);
3073
3074out:
3075	return ret;
3076}
3077
3078/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3079 * for some operations; this forces use of the newer bridge-utils that
3080 * use compatible ioctls
3081 */
3082static int old_bridge_ioctl(compat_ulong_t __user *argp)
3083{
3084	compat_ulong_t tmp;
3085
3086	if (get_user(tmp, argp))
3087		return -EFAULT;
3088	if (tmp == BRCTL_GET_VERSION)
3089		return BRCTL_VERSION + 1;
3090	return -EINVAL;
3091}
3092
3093static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3094			 unsigned int cmd, unsigned long arg)
3095{
3096	void __user *argp = compat_ptr(arg);
3097	struct sock *sk = sock->sk;
3098	struct net *net = sock_net(sk);
3099
3100	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3101		return compat_ifr_data_ioctl(net, cmd, argp);
3102
3103	switch (cmd) {
3104	case SIOCSIFBR:
3105	case SIOCGIFBR:
3106		return old_bridge_ioctl(argp);
3107	case SIOCGIFNAME:
3108		return dev_ifname32(net, argp);
3109	case SIOCGIFCONF:
3110		return dev_ifconf(net, argp);
3111	case SIOCETHTOOL:
3112		return ethtool_ioctl(net, argp);
3113	case SIOCWANDEV:
3114		return compat_siocwandev(net, argp);
3115	case SIOCGIFMAP:
3116	case SIOCSIFMAP:
3117		return compat_sioc_ifmap(net, cmd, argp);
3118	case SIOCBONDENSLAVE:
3119	case SIOCBONDRELEASE:
3120	case SIOCBONDSETHWADDR:
 
 
3121	case SIOCBONDCHANGEACTIVE:
3122		return bond_ioctl(net, cmd, argp);
3123	case SIOCADDRT:
3124	case SIOCDELRT:
3125		return routing_ioctl(net, sock, cmd, argp);
3126	case SIOCGSTAMP:
3127		return do_siocgstamp(net, sock, cmd, argp);
3128	case SIOCGSTAMPNS:
3129		return do_siocgstampns(net, sock, cmd, argp);
3130	case SIOCBONDSLAVEINFOQUERY:
3131	case SIOCBONDINFOQUERY:
3132	case SIOCSHWTSTAMP:
3133	case SIOCGHWTSTAMP:
3134		return compat_ifr_data_ioctl(net, cmd, argp);
3135
3136	case FIOSETOWN:
3137	case SIOCSPGRP:
3138	case FIOGETOWN:
3139	case SIOCGPGRP:
3140	case SIOCBRADDBR:
3141	case SIOCBRDELBR:
3142	case SIOCGIFVLAN:
3143	case SIOCSIFVLAN:
3144	case SIOCADDDLCI:
3145	case SIOCDELDLCI:
3146	case SIOCGSKNS:
3147		return sock_ioctl(file, cmd, arg);
3148
3149	case SIOCGIFFLAGS:
3150	case SIOCSIFFLAGS:
3151	case SIOCGIFMETRIC:
3152	case SIOCSIFMETRIC:
3153	case SIOCGIFMTU:
3154	case SIOCSIFMTU:
3155	case SIOCGIFMEM:
3156	case SIOCSIFMEM:
3157	case SIOCGIFHWADDR:
3158	case SIOCSIFHWADDR:
3159	case SIOCADDMULTI:
3160	case SIOCDELMULTI:
3161	case SIOCGIFINDEX:
3162	case SIOCGIFADDR:
3163	case SIOCSIFADDR:
3164	case SIOCSIFHWBROADCAST:
3165	case SIOCDIFADDR:
3166	case SIOCGIFBRDADDR:
3167	case SIOCSIFBRDADDR:
3168	case SIOCGIFDSTADDR:
3169	case SIOCSIFDSTADDR:
3170	case SIOCGIFNETMASK:
3171	case SIOCSIFNETMASK:
3172	case SIOCSIFPFLAGS:
3173	case SIOCGIFPFLAGS:
3174	case SIOCGIFTXQLEN:
3175	case SIOCSIFTXQLEN:
3176	case SIOCBRADDIF:
3177	case SIOCBRDELIF:
3178	case SIOCSIFNAME:
3179	case SIOCGMIIPHY:
3180	case SIOCGMIIREG:
3181	case SIOCSMIIREG:
3182		return dev_ifsioc(net, sock, cmd, argp);
3183
3184	case SIOCSARP:
3185	case SIOCGARP:
3186	case SIOCDARP:
3187	case SIOCATMARK:
3188		return sock_do_ioctl(net, sock, cmd, arg);
3189	}
3190
3191	return -ENOIOCTLCMD;
3192}
3193
3194static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3195			      unsigned long arg)
3196{
3197	struct socket *sock = file->private_data;
3198	int ret = -ENOIOCTLCMD;
3199	struct sock *sk;
3200	struct net *net;
3201
3202	sk = sock->sk;
3203	net = sock_net(sk);
3204
3205	if (sock->ops->compat_ioctl)
3206		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3207
3208	if (ret == -ENOIOCTLCMD &&
3209	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3210		ret = compat_wext_handle_ioctl(net, cmd, arg);
3211
3212	if (ret == -ENOIOCTLCMD)
3213		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3214
3215	return ret;
3216}
3217#endif
3218
3219int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3220{
3221	return sock->ops->bind(sock, addr, addrlen);
3222}
3223EXPORT_SYMBOL(kernel_bind);
3224
3225int kernel_listen(struct socket *sock, int backlog)
3226{
3227	return sock->ops->listen(sock, backlog);
3228}
3229EXPORT_SYMBOL(kernel_listen);
3230
3231int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3232{
3233	struct sock *sk = sock->sk;
3234	int err;
3235
3236	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3237			       newsock);
3238	if (err < 0)
3239		goto done;
3240
3241	err = sock->ops->accept(sock, *newsock, flags);
3242	if (err < 0) {
3243		sock_release(*newsock);
3244		*newsock = NULL;
3245		goto done;
3246	}
3247
3248	(*newsock)->ops = sock->ops;
3249	__module_get((*newsock)->ops->owner);
3250
3251done:
3252	return err;
3253}
3254EXPORT_SYMBOL(kernel_accept);
3255
3256int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3257		   int flags)
3258{
3259	return sock->ops->connect(sock, addr, addrlen, flags);
3260}
3261EXPORT_SYMBOL(kernel_connect);
3262
3263int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3264			 int *addrlen)
3265{
3266	return sock->ops->getname(sock, addr, addrlen, 0);
3267}
3268EXPORT_SYMBOL(kernel_getsockname);
3269
3270int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3271			 int *addrlen)
3272{
3273	return sock->ops->getname(sock, addr, addrlen, 1);
3274}
3275EXPORT_SYMBOL(kernel_getpeername);
3276
3277int kernel_getsockopt(struct socket *sock, int level, int optname,
3278			char *optval, int *optlen)
3279{
3280	mm_segment_t oldfs = get_fs();
3281	char __user *uoptval;
3282	int __user *uoptlen;
3283	int err;
3284
3285	uoptval = (char __user __force *) optval;
3286	uoptlen = (int __user __force *) optlen;
3287
3288	set_fs(KERNEL_DS);
3289	if (level == SOL_SOCKET)
3290		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291	else
3292		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293					    uoptlen);
3294	set_fs(oldfs);
3295	return err;
3296}
3297EXPORT_SYMBOL(kernel_getsockopt);
3298
3299int kernel_setsockopt(struct socket *sock, int level, int optname,
3300			char *optval, unsigned int optlen)
3301{
3302	mm_segment_t oldfs = get_fs();
3303	char __user *uoptval;
3304	int err;
3305
3306	uoptval = (char __user __force *) optval;
3307
3308	set_fs(KERNEL_DS);
3309	if (level == SOL_SOCKET)
3310		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311	else
3312		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313					    optlen);
3314	set_fs(oldfs);
3315	return err;
3316}
3317EXPORT_SYMBOL(kernel_setsockopt);
3318
3319int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320		    size_t size, int flags)
3321{
 
 
3322	if (sock->ops->sendpage)
3323		return sock->ops->sendpage(sock, page, offset, size, flags);
3324
3325	return sock_no_sendpage(sock, page, offset, size, flags);
3326}
3327EXPORT_SYMBOL(kernel_sendpage);
3328
3329int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3330{
3331	mm_segment_t oldfs = get_fs();
3332	int err;
3333
3334	set_fs(KERNEL_DS);
3335	err = sock->ops->ioctl(sock, cmd, arg);
3336	set_fs(oldfs);
3337
3338	return err;
3339}
3340EXPORT_SYMBOL(kernel_sock_ioctl);
3341
3342int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343{
3344	return sock->ops->shutdown(sock, how);
3345}
3346EXPORT_SYMBOL(kernel_sock_shutdown);
v3.5.6
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/wanrouter.h>
  73#include <linux/if_bridge.h>
  74#include <linux/if_frad.h>
  75#include <linux/if_vlan.h>
 
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
 
  91
  92#include <asm/uaccess.h>
  93#include <asm/unistd.h>
  94
  95#include <net/compat.h>
  96#include <net/wext.h>
  97#include <net/cls_cgroup.h>
  98
  99#include <net/sock.h>
 100#include <linux/netfilter.h>
 101
 102#include <linux/if_tun.h>
 103#include <linux/ipv6_route.h>
 104#include <linux/route.h>
 105#include <linux/sockios.h>
 106#include <linux/atalk.h>
 
 
 107
 108static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
 109static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 110			 unsigned long nr_segs, loff_t pos);
 111static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 112			  unsigned long nr_segs, loff_t pos);
 
 
 113static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 114
 115static int sock_close(struct inode *inode, struct file *file);
 116static unsigned int sock_poll(struct file *file,
 117			      struct poll_table_struct *wait);
 118static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 119#ifdef CONFIG_COMPAT
 120static long compat_sock_ioctl(struct file *file,
 121			      unsigned int cmd, unsigned long arg);
 122#endif
 123static int sock_fasync(int fd, struct file *filp, int on);
 124static ssize_t sock_sendpage(struct file *file, struct page *page,
 125			     int offset, size_t size, loff_t *ppos, int more);
 126static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 127				struct pipe_inode_info *pipe, size_t len,
 128				unsigned int flags);
 129
 130/*
 131 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 132 *	in the operation structures but are done directly via the socketcall() multiplexor.
 133 */
 134
 135static const struct file_operations socket_file_ops = {
 136	.owner =	THIS_MODULE,
 137	.llseek =	no_llseek,
 138	.aio_read =	sock_aio_read,
 139	.aio_write =	sock_aio_write,
 140	.poll =		sock_poll,
 141	.unlocked_ioctl = sock_ioctl,
 142#ifdef CONFIG_COMPAT
 143	.compat_ioctl = compat_sock_ioctl,
 144#endif
 145	.mmap =		sock_mmap,
 146	.open =		sock_no_open,	/* special open code to disallow open via /proc */
 147	.release =	sock_close,
 148	.fasync =	sock_fasync,
 149	.sendpage =	sock_sendpage,
 150	.splice_write = generic_splice_sendpage,
 151	.splice_read =	sock_splice_read,
 152};
 153
 154/*
 155 *	The protocol list. Each protocol is registered in here.
 156 */
 157
 158static DEFINE_SPINLOCK(net_family_lock);
 159static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 160
 161/*
 162 *	Statistics counters of the socket lists
 163 */
 164
 165static DEFINE_PER_CPU(int, sockets_in_use);
 166
 167/*
 168 * Support routines.
 169 * Move socket addresses back and forth across the kernel/user
 170 * divide and look after the messy bits.
 171 */
 172
 173/**
 174 *	move_addr_to_kernel	-	copy a socket address into kernel space
 175 *	@uaddr: Address in user space
 176 *	@kaddr: Address in kernel space
 177 *	@ulen: Length in user space
 178 *
 179 *	The address is copied into kernel space. If the provided address is
 180 *	too long an error code of -EINVAL is returned. If the copy gives
 181 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 182 */
 183
 184int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 185{
 186	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 187		return -EINVAL;
 188	if (ulen == 0)
 189		return 0;
 190	if (copy_from_user(kaddr, uaddr, ulen))
 191		return -EFAULT;
 192	return audit_sockaddr(ulen, kaddr);
 193}
 194
 195/**
 196 *	move_addr_to_user	-	copy an address to user space
 197 *	@kaddr: kernel space address
 198 *	@klen: length of address in kernel
 199 *	@uaddr: user space address
 200 *	@ulen: pointer to user length field
 201 *
 202 *	The value pointed to by ulen on entry is the buffer length available.
 203 *	This is overwritten with the buffer space used. -EINVAL is returned
 204 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 205 *	is returned if either the buffer or the length field are not
 206 *	accessible.
 207 *	After copying the data up to the limit the user specifies, the true
 208 *	length of the data is written over the length limit the user
 209 *	specified. Zero is returned for a success.
 210 */
 211
 212static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 213			     void __user *uaddr, int __user *ulen)
 214{
 215	int err;
 216	int len;
 217
 
 218	err = get_user(len, ulen);
 219	if (err)
 220		return err;
 221	if (len > klen)
 222		len = klen;
 223	if (len < 0 || len > sizeof(struct sockaddr_storage))
 224		return -EINVAL;
 225	if (len) {
 226		if (audit_sockaddr(klen, kaddr))
 227			return -ENOMEM;
 228		if (copy_to_user(uaddr, kaddr, len))
 229			return -EFAULT;
 230	}
 231	/*
 232	 *      "fromlen shall refer to the value before truncation.."
 233	 *                      1003.1g
 234	 */
 235	return __put_user(klen, ulen);
 236}
 237
 238static struct kmem_cache *sock_inode_cachep __read_mostly;
 239
 240static struct inode *sock_alloc_inode(struct super_block *sb)
 241{
 242	struct socket_alloc *ei;
 243	struct socket_wq *wq;
 244
 245	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 246	if (!ei)
 247		return NULL;
 248	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 249	if (!wq) {
 250		kmem_cache_free(sock_inode_cachep, ei);
 251		return NULL;
 252	}
 253	init_waitqueue_head(&wq->wait);
 254	wq->fasync_list = NULL;
 
 255	RCU_INIT_POINTER(ei->socket.wq, wq);
 256
 257	ei->socket.state = SS_UNCONNECTED;
 258	ei->socket.flags = 0;
 259	ei->socket.ops = NULL;
 260	ei->socket.sk = NULL;
 261	ei->socket.file = NULL;
 262
 263	return &ei->vfs_inode;
 264}
 265
 266static void sock_destroy_inode(struct inode *inode)
 267{
 268	struct socket_alloc *ei;
 269	struct socket_wq *wq;
 270
 271	ei = container_of(inode, struct socket_alloc, vfs_inode);
 272	wq = rcu_dereference_protected(ei->socket.wq, 1);
 273	kfree_rcu(wq, rcu);
 274	kmem_cache_free(sock_inode_cachep, ei);
 275}
 276
 277static void init_once(void *foo)
 278{
 279	struct socket_alloc *ei = (struct socket_alloc *)foo;
 280
 281	inode_init_once(&ei->vfs_inode);
 282}
 283
 284static int init_inodecache(void)
 285{
 286	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 287					      sizeof(struct socket_alloc),
 288					      0,
 289					      (SLAB_HWCACHE_ALIGN |
 290					       SLAB_RECLAIM_ACCOUNT |
 291					       SLAB_MEM_SPREAD),
 292					      init_once);
 293	if (sock_inode_cachep == NULL)
 294		return -ENOMEM;
 295	return 0;
 296}
 297
 298static const struct super_operations sockfs_ops = {
 299	.alloc_inode	= sock_alloc_inode,
 300	.destroy_inode	= sock_destroy_inode,
 301	.statfs		= simple_statfs,
 302};
 303
 304/*
 305 * sockfs_dname() is called from d_path().
 306 */
 307static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 308{
 309	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 310				dentry->d_inode->i_ino);
 311}
 312
 313static const struct dentry_operations sockfs_dentry_operations = {
 314	.d_dname  = sockfs_dname,
 315};
 316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 318			 int flags, const char *dev_name, void *data)
 319{
 320	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 321		&sockfs_dentry_operations, SOCKFS_MAGIC);
 
 322}
 323
 324static struct vfsmount *sock_mnt __read_mostly;
 325
 326static struct file_system_type sock_fs_type = {
 327	.name =		"sockfs",
 328	.mount =	sockfs_mount,
 329	.kill_sb =	kill_anon_super,
 330};
 331
 332/*
 333 *	Obtains the first available file descriptor and sets it up for use.
 334 *
 335 *	These functions create file structures and maps them to fd space
 336 *	of the current process. On success it returns file descriptor
 337 *	and file struct implicitly stored in sock->file.
 338 *	Note that another thread may close file descriptor before we return
 339 *	from this function. We use the fact that now we do not refer
 340 *	to socket after mapping. If one day we will need it, this
 341 *	function will increment ref. count on file by 1.
 342 *
 343 *	In any case returned fd MAY BE not valid!
 344 *	This race condition is unavoidable
 345 *	with shared fd spaces, we cannot solve it inside kernel,
 346 *	but we take care of internal coherence yet.
 347 */
 348
 349static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
 350{
 351	struct qstr name = { .name = "" };
 352	struct path path;
 353	struct file *file;
 354	int fd;
 355
 356	fd = get_unused_fd_flags(flags);
 357	if (unlikely(fd < 0))
 358		return fd;
 359
 
 
 
 
 
 
 
 360	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 361	if (unlikely(!path.dentry)) {
 362		put_unused_fd(fd);
 363		return -ENOMEM;
 364	}
 365	path.mnt = mntget(sock_mnt);
 366
 367	d_instantiate(path.dentry, SOCK_INODE(sock));
 368	SOCK_INODE(sock)->i_fop = &socket_file_ops;
 369
 370	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 371		  &socket_file_ops);
 372	if (unlikely(!file)) {
 373		/* drop dentry, keep inode */
 374		ihold(path.dentry->d_inode);
 375		path_put(&path);
 376		put_unused_fd(fd);
 377		return -ENFILE;
 378	}
 379
 380	sock->file = file;
 381	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 382	file->f_pos = 0;
 383	file->private_data = sock;
 384
 385	*f = file;
 386	return fd;
 387}
 
 388
 389int sock_map_fd(struct socket *sock, int flags)
 390{
 391	struct file *newfile;
 392	int fd = sock_alloc_file(sock, &newfile, flags);
 
 
 393
 394	if (likely(fd >= 0))
 
 395		fd_install(fd, newfile);
 
 
 396
 397	return fd;
 
 398}
 399EXPORT_SYMBOL(sock_map_fd);
 400
 401static struct socket *sock_from_file(struct file *file, int *err)
 402{
 403	if (file->f_op == &socket_file_ops)
 404		return file->private_data;	/* set in sock_map_fd */
 405
 406	*err = -ENOTSOCK;
 407	return NULL;
 408}
 
 409
 410/**
 411 *	sockfd_lookup - Go from a file number to its socket slot
 412 *	@fd: file handle
 413 *	@err: pointer to an error code return
 414 *
 415 *	The file handle passed in is locked and the socket it is bound
 416 *	too is returned. If an error occurs the err pointer is overwritten
 417 *	with a negative errno code and NULL is returned. The function checks
 418 *	for both invalid handles and passing a handle which is not a socket.
 419 *
 420 *	On a success the socket object pointer is returned.
 421 */
 422
 423struct socket *sockfd_lookup(int fd, int *err)
 424{
 425	struct file *file;
 426	struct socket *sock;
 427
 428	file = fget(fd);
 429	if (!file) {
 430		*err = -EBADF;
 431		return NULL;
 432	}
 433
 434	sock = sock_from_file(file, err);
 435	if (!sock)
 436		fput(file);
 437	return sock;
 438}
 439EXPORT_SYMBOL(sockfd_lookup);
 440
 441static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 442{
 443	struct file *file;
 444	struct socket *sock;
 445
 446	*err = -EBADF;
 447	file = fget_light(fd, fput_needed);
 448	if (file) {
 449		sock = sock_from_file(file, err);
 450		if (sock)
 451			return sock;
 452		fput_light(file, *fput_needed);
 
 453	}
 454	return NULL;
 455}
 456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457/**
 458 *	sock_alloc	-	allocate a socket
 459 *
 460 *	Allocate a new inode and socket object. The two are bound together
 461 *	and initialised. The socket is then returned. If we are out of inodes
 462 *	NULL is returned.
 463 */
 464
 465static struct socket *sock_alloc(void)
 466{
 467	struct inode *inode;
 468	struct socket *sock;
 469
 470	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 471	if (!inode)
 472		return NULL;
 473
 474	sock = SOCKET_I(inode);
 475
 476	kmemcheck_annotate_bitfield(sock, type);
 477	inode->i_ino = get_next_ino();
 478	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 479	inode->i_uid = current_fsuid();
 480	inode->i_gid = current_fsgid();
 
 481
 482	this_cpu_add(sockets_in_use, 1);
 483	return sock;
 484}
 485
 486/*
 487 *	In theory you can't get an open on this inode, but /proc provides
 488 *	a back door. Remember to keep it shut otherwise you'll let the
 489 *	creepy crawlies in.
 490 */
 491
 492static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
 493{
 494	return -ENXIO;
 495}
 496
 497const struct file_operations bad_sock_fops = {
 498	.owner = THIS_MODULE,
 499	.open = sock_no_open,
 500	.llseek = noop_llseek,
 501};
 502
 503/**
 504 *	sock_release	-	close a socket
 505 *	@sock: socket to close
 506 *
 507 *	The socket is released from the protocol stack if it has a release
 508 *	callback, and the inode is then released if the socket is bound to
 509 *	an inode not a file.
 510 */
 511
 512void sock_release(struct socket *sock)
 513{
 514	if (sock->ops) {
 515		struct module *owner = sock->ops->owner;
 516
 517		sock->ops->release(sock);
 518		sock->ops = NULL;
 519		module_put(owner);
 520	}
 521
 522	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 523		printk(KERN_ERR "sock_release: fasync list not empty!\n");
 524
 525	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
 526		return;
 527
 528	this_cpu_sub(sockets_in_use, 1);
 529	if (!sock->file) {
 530		iput(SOCK_INODE(sock));
 531		return;
 532	}
 533	sock->file = NULL;
 534}
 535EXPORT_SYMBOL(sock_release);
 536
 537int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
 538{
 539	*tx_flags = 0;
 540	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 541		*tx_flags |= SKBTX_HW_TSTAMP;
 542	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 543		*tx_flags |= SKBTX_SW_TSTAMP;
 544	if (sock_flag(sk, SOCK_WIFI_STATUS))
 545		*tx_flags |= SKBTX_WIFI_STATUS;
 546	return 0;
 547}
 548EXPORT_SYMBOL(sock_tx_timestamp);
 549
 550static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
 551				       struct msghdr *msg, size_t size)
 552{
 553	struct sock_iocb *si = kiocb_to_siocb(iocb);
 554
 555	sock_update_classid(sock->sk);
 
 556
 557	sock_update_netprioidx(sock->sk);
 
 558
 559	si->sock = sock;
 560	si->scm = NULL;
 561	si->msg = msg;
 562	si->size = size;
 563
 564	return sock->ops->sendmsg(iocb, sock, msg, size);
 565}
 
 566
 567static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
 568				 struct msghdr *msg, size_t size)
 569{
 570	int err = security_socket_sendmsg(sock, msg, size);
 571
 572	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
 573}
 574
 575int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 576{
 577	struct kiocb iocb;
 578	struct sock_iocb siocb;
 579	int ret;
 580
 581	init_sync_kiocb(&iocb, NULL);
 582	iocb.private = &siocb;
 583	ret = __sock_sendmsg(&iocb, sock, msg, size);
 584	if (-EIOCBQUEUED == ret)
 585		ret = wait_on_sync_kiocb(&iocb);
 586	return ret;
 587}
 588EXPORT_SYMBOL(sock_sendmsg);
 589
 590static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
 591{
 592	struct kiocb iocb;
 593	struct sock_iocb siocb;
 594	int ret;
 595
 596	init_sync_kiocb(&iocb, NULL);
 597	iocb.private = &siocb;
 598	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
 599	if (-EIOCBQUEUED == ret)
 600		ret = wait_on_sync_kiocb(&iocb);
 601	return ret;
 602}
 603
 604int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 605		   struct kvec *vec, size_t num, size_t size)
 606{
 607	mm_segment_t oldfs = get_fs();
 608	int result;
 609
 610	set_fs(KERNEL_DS);
 611	/*
 612	 * the following is safe, since for compiler definitions of kvec and
 613	 * iovec are identical, yielding the same in-core layout and alignment
 614	 */
 615	msg->msg_iov = (struct iovec *)vec;
 616	msg->msg_iovlen = num;
 617	result = sock_sendmsg(sock, msg, size);
 618	set_fs(oldfs);
 619	return result;
 620}
 621EXPORT_SYMBOL(kernel_sendmsg);
 622
 623static int ktime2ts(ktime_t kt, struct timespec *ts)
 624{
 625	if (kt.tv64) {
 626		*ts = ktime_to_timespec(kt);
 627		return 1;
 628	} else {
 629		return 0;
 630	}
 631}
 632
 633/*
 634 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 635 */
 636void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 637	struct sk_buff *skb)
 638{
 639	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 640	struct timespec ts[3];
 641	int empty = 1;
 642	struct skb_shared_hwtstamps *shhwtstamps =
 643		skb_hwtstamps(skb);
 644
 645	/* Race occurred between timestamp enabling and packet
 646	   receiving.  Fill in the current time for now. */
 647	if (need_software_tstamp && skb->tstamp.tv64 == 0)
 648		__net_timestamp(skb);
 649
 650	if (need_software_tstamp) {
 651		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 652			struct timeval tv;
 653			skb_get_timestamp(skb, &tv);
 654			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 655				 sizeof(tv), &tv);
 656		} else {
 657			skb_get_timestampns(skb, &ts[0]);
 
 658			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 659				 sizeof(ts[0]), &ts[0]);
 660		}
 661	}
 662
 
 
 
 
 
 
 
 
 
 
 
 663
 664	memset(ts, 0, sizeof(ts));
 665	if (skb->tstamp.tv64 &&
 666	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
 667		skb_get_timestampns(skb, ts + 0);
 668		empty = 0;
 669	}
 670	if (shhwtstamps) {
 671		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
 672		    ktime2ts(shhwtstamps->syststamp, ts + 1))
 673			empty = 0;
 674		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
 675		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
 676			empty = 0;
 677	}
 678	if (!empty)
 679		put_cmsg(msg, SOL_SOCKET,
 680			 SCM_TIMESTAMPING, sizeof(ts), &ts);
 681}
 682EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 683
 684void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 685	struct sk_buff *skb)
 686{
 687	int ack;
 688
 689	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 690		return;
 691	if (!skb->wifi_acked_valid)
 692		return;
 693
 694	ack = skb->wifi_acked;
 695
 696	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 697}
 698EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 699
 700static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 701				   struct sk_buff *skb)
 702{
 703	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
 704		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 705			sizeof(__u32), &skb->dropcount);
 706}
 707
 708void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 709	struct sk_buff *skb)
 710{
 711	sock_recv_timestamp(msg, sk, skb);
 712	sock_recv_drops(msg, sk, skb);
 713}
 714EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 715
 716static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
 717				       struct msghdr *msg, size_t size, int flags)
 718{
 719	struct sock_iocb *si = kiocb_to_siocb(iocb);
 720
 721	sock_update_classid(sock->sk);
 722
 723	si->sock = sock;
 724	si->scm = NULL;
 725	si->msg = msg;
 726	si->size = size;
 727	si->flags = flags;
 728
 729	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
 730}
 731
 732static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
 733				 struct msghdr *msg, size_t size, int flags)
 734{
 735	int err = security_socket_recvmsg(sock, msg, size, flags);
 736
 737	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
 738}
 739
 740int sock_recvmsg(struct socket *sock, struct msghdr *msg,
 741		 size_t size, int flags)
 742{
 743	struct kiocb iocb;
 744	struct sock_iocb siocb;
 745	int ret;
 746
 747	init_sync_kiocb(&iocb, NULL);
 748	iocb.private = &siocb;
 749	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
 750	if (-EIOCBQUEUED == ret)
 751		ret = wait_on_sync_kiocb(&iocb);
 752	return ret;
 753}
 754EXPORT_SYMBOL(sock_recvmsg);
 755
 756static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 757			      size_t size, int flags)
 758{
 759	struct kiocb iocb;
 760	struct sock_iocb siocb;
 761	int ret;
 762
 763	init_sync_kiocb(&iocb, NULL);
 764	iocb.private = &siocb;
 765	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
 766	if (-EIOCBQUEUED == ret)
 767		ret = wait_on_sync_kiocb(&iocb);
 768	return ret;
 769}
 770
 771/**
 772 * kernel_recvmsg - Receive a message from a socket (kernel space)
 773 * @sock:       The socket to receive the message from
 774 * @msg:        Received message
 775 * @vec:        Input s/g array for message data
 776 * @num:        Size of input s/g array
 777 * @size:       Number of bytes to read
 778 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 779 *
 780 * On return the msg structure contains the scatter/gather array passed in the
 781 * vec argument. The array is modified so that it consists of the unfilled
 782 * portion of the original array.
 783 *
 784 * The returned value is the total number of bytes received, or an error.
 785 */
 786int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 787		   struct kvec *vec, size_t num, size_t size, int flags)
 788{
 789	mm_segment_t oldfs = get_fs();
 790	int result;
 791
 
 792	set_fs(KERNEL_DS);
 793	/*
 794	 * the following is safe, since for compiler definitions of kvec and
 795	 * iovec are identical, yielding the same in-core layout and alignment
 796	 */
 797	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
 798	result = sock_recvmsg(sock, msg, size, flags);
 799	set_fs(oldfs);
 800	return result;
 801}
 802EXPORT_SYMBOL(kernel_recvmsg);
 803
 804static void sock_aio_dtor(struct kiocb *iocb)
 805{
 806	kfree(iocb->private);
 807}
 808
 809static ssize_t sock_sendpage(struct file *file, struct page *page,
 810			     int offset, size_t size, loff_t *ppos, int more)
 811{
 812	struct socket *sock;
 813	int flags;
 814
 815	sock = file->private_data;
 816
 817	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 818	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 819	flags |= more;
 820
 821	return kernel_sendpage(sock, page, offset, size, flags);
 822}
 823
 824static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 825				struct pipe_inode_info *pipe, size_t len,
 826				unsigned int flags)
 827{
 828	struct socket *sock = file->private_data;
 829
 830	if (unlikely(!sock->ops->splice_read))
 831		return -EINVAL;
 832
 833	sock_update_classid(sock->sk);
 834
 835	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 836}
 837
 838static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
 839					 struct sock_iocb *siocb)
 840{
 841	if (!is_sync_kiocb(iocb)) {
 842		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
 843		if (!siocb)
 844			return NULL;
 845		iocb->ki_dtor = sock_aio_dtor;
 846	}
 847
 848	siocb->kiocb = iocb;
 849	iocb->private = siocb;
 850	return siocb;
 851}
 852
 853static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
 854		struct file *file, const struct iovec *iov,
 855		unsigned long nr_segs)
 856{
 
 857	struct socket *sock = file->private_data;
 858	size_t size = 0;
 859	int i;
 860
 861	for (i = 0; i < nr_segs; i++)
 862		size += iov[i].iov_len;
 863
 864	msg->msg_name = NULL;
 865	msg->msg_namelen = 0;
 866	msg->msg_control = NULL;
 867	msg->msg_controllen = 0;
 868	msg->msg_iov = (struct iovec *)iov;
 869	msg->msg_iovlen = nr_segs;
 870	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 871
 872	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
 873}
 874
 875static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 876				unsigned long nr_segs, loff_t pos)
 877{
 878	struct sock_iocb siocb, *x;
 879
 880	if (pos != 0)
 881		return -ESPIPE;
 882
 883	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
 884		return 0;
 885
 886
 887	x = alloc_sock_iocb(iocb, &siocb);
 888	if (!x)
 889		return -ENOMEM;
 890	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 891}
 892
 893static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
 894			struct file *file, const struct iovec *iov,
 895			unsigned long nr_segs)
 896{
 
 897	struct socket *sock = file->private_data;
 898	size_t size = 0;
 899	int i;
 
 
 
 
 900
 901	for (i = 0; i < nr_segs; i++)
 902		size += iov[i].iov_len;
 903
 904	msg->msg_name = NULL;
 905	msg->msg_namelen = 0;
 906	msg->msg_control = NULL;
 907	msg->msg_controllen = 0;
 908	msg->msg_iov = (struct iovec *)iov;
 909	msg->msg_iovlen = nr_segs;
 910	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 911	if (sock->type == SOCK_SEQPACKET)
 912		msg->msg_flags |= MSG_EOR;
 913
 914	return __sock_sendmsg(iocb, sock, msg, size);
 915}
 916
 917static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 918			  unsigned long nr_segs, loff_t pos)
 919{
 920	struct sock_iocb siocb, *x;
 921
 922	if (pos != 0)
 923		return -ESPIPE;
 924
 925	x = alloc_sock_iocb(iocb, &siocb);
 926	if (!x)
 927		return -ENOMEM;
 928
 929	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 930}
 931
 932/*
 933 * Atomic setting of ioctl hooks to avoid race
 934 * with module unload.
 935 */
 936
 937static DEFINE_MUTEX(br_ioctl_mutex);
 938static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 939
 940void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 941{
 942	mutex_lock(&br_ioctl_mutex);
 943	br_ioctl_hook = hook;
 944	mutex_unlock(&br_ioctl_mutex);
 945}
 946EXPORT_SYMBOL(brioctl_set);
 947
 948static DEFINE_MUTEX(vlan_ioctl_mutex);
 949static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 950
 951void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 952{
 953	mutex_lock(&vlan_ioctl_mutex);
 954	vlan_ioctl_hook = hook;
 955	mutex_unlock(&vlan_ioctl_mutex);
 956}
 957EXPORT_SYMBOL(vlan_ioctl_set);
 958
 959static DEFINE_MUTEX(dlci_ioctl_mutex);
 960static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 961
 962void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 963{
 964	mutex_lock(&dlci_ioctl_mutex);
 965	dlci_ioctl_hook = hook;
 966	mutex_unlock(&dlci_ioctl_mutex);
 967}
 968EXPORT_SYMBOL(dlci_ioctl_set);
 969
 970static long sock_do_ioctl(struct net *net, struct socket *sock,
 971				 unsigned int cmd, unsigned long arg)
 972{
 973	int err;
 974	void __user *argp = (void __user *)arg;
 975
 976	err = sock->ops->ioctl(sock, cmd, arg);
 977
 978	/*
 979	 * If this ioctl is unknown try to hand it down
 980	 * to the NIC driver.
 981	 */
 982	if (err == -ENOIOCTLCMD)
 983		err = dev_ioctl(net, cmd, argp);
 984
 985	return err;
 986}
 987
 988/*
 989 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 990 *	what to do with it - that's up to the protocol still.
 991 */
 992
 
 
 
 
 
 993static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 994{
 995	struct socket *sock;
 996	struct sock *sk;
 997	void __user *argp = (void __user *)arg;
 998	int pid, err;
 999	struct net *net;
1000
1001	sock = file->private_data;
1002	sk = sock->sk;
1003	net = sock_net(sk);
1004	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1005		err = dev_ioctl(net, cmd, argp);
1006	} else
1007#ifdef CONFIG_WEXT_CORE
1008	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1009		err = dev_ioctl(net, cmd, argp);
1010	} else
1011#endif
1012		switch (cmd) {
1013		case FIOSETOWN:
1014		case SIOCSPGRP:
1015			err = -EFAULT;
1016			if (get_user(pid, (int __user *)argp))
1017				break;
1018			err = f_setown(sock->file, pid, 1);
 
1019			break;
1020		case FIOGETOWN:
1021		case SIOCGPGRP:
1022			err = put_user(f_getown(sock->file),
1023				       (int __user *)argp);
1024			break;
1025		case SIOCGIFBR:
1026		case SIOCSIFBR:
1027		case SIOCBRADDBR:
1028		case SIOCBRDELBR:
1029			err = -ENOPKG;
1030			if (!br_ioctl_hook)
1031				request_module("bridge");
1032
1033			mutex_lock(&br_ioctl_mutex);
1034			if (br_ioctl_hook)
1035				err = br_ioctl_hook(net, cmd, argp);
1036			mutex_unlock(&br_ioctl_mutex);
1037			break;
1038		case SIOCGIFVLAN:
1039		case SIOCSIFVLAN:
1040			err = -ENOPKG;
1041			if (!vlan_ioctl_hook)
1042				request_module("8021q");
1043
1044			mutex_lock(&vlan_ioctl_mutex);
1045			if (vlan_ioctl_hook)
1046				err = vlan_ioctl_hook(net, argp);
1047			mutex_unlock(&vlan_ioctl_mutex);
1048			break;
1049		case SIOCADDDLCI:
1050		case SIOCDELDLCI:
1051			err = -ENOPKG;
1052			if (!dlci_ioctl_hook)
1053				request_module("dlci");
1054
1055			mutex_lock(&dlci_ioctl_mutex);
1056			if (dlci_ioctl_hook)
1057				err = dlci_ioctl_hook(cmd, argp);
1058			mutex_unlock(&dlci_ioctl_mutex);
1059			break;
 
 
 
 
 
 
 
1060		default:
1061			err = sock_do_ioctl(net, sock, cmd, arg);
1062			break;
1063		}
1064	return err;
1065}
1066
1067int sock_create_lite(int family, int type, int protocol, struct socket **res)
1068{
1069	int err;
1070	struct socket *sock = NULL;
1071
1072	err = security_socket_create(family, type, protocol, 1);
1073	if (err)
1074		goto out;
1075
1076	sock = sock_alloc();
1077	if (!sock) {
1078		err = -ENOMEM;
1079		goto out;
1080	}
1081
1082	sock->type = type;
1083	err = security_socket_post_create(sock, family, type, protocol, 1);
1084	if (err)
1085		goto out_release;
1086
1087out:
1088	*res = sock;
1089	return err;
1090out_release:
1091	sock_release(sock);
1092	sock = NULL;
1093	goto out;
1094}
1095EXPORT_SYMBOL(sock_create_lite);
1096
1097/* No kernel lock held - perfect */
1098static unsigned int sock_poll(struct file *file, poll_table *wait)
1099{
 
1100	struct socket *sock;
1101
1102	/*
1103	 *      We can't return errors to poll, so it's either yes or no.
1104	 */
1105	sock = file->private_data;
1106	return sock->ops->poll(file, sock, wait);
 
 
 
 
 
 
 
 
 
 
1107}
1108
1109static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1110{
1111	struct socket *sock = file->private_data;
1112
1113	return sock->ops->mmap(file, sock, vma);
1114}
1115
1116static int sock_close(struct inode *inode, struct file *filp)
1117{
1118	/*
1119	 *      It was possible the inode is NULL we were
1120	 *      closing an unfinished socket.
1121	 */
1122
1123	if (!inode) {
1124		printk(KERN_DEBUG "sock_close: NULL inode\n");
1125		return 0;
1126	}
1127	sock_release(SOCKET_I(inode));
1128	return 0;
1129}
1130
1131/*
1132 *	Update the socket async list
1133 *
1134 *	Fasync_list locking strategy.
1135 *
1136 *	1. fasync_list is modified only under process context socket lock
1137 *	   i.e. under semaphore.
1138 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1139 *	   or under socket lock
1140 */
1141
1142static int sock_fasync(int fd, struct file *filp, int on)
1143{
1144	struct socket *sock = filp->private_data;
1145	struct sock *sk = sock->sk;
1146	struct socket_wq *wq;
1147
1148	if (sk == NULL)
1149		return -EINVAL;
1150
1151	lock_sock(sk);
1152	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1153	fasync_helper(fd, filp, on, &wq->fasync_list);
1154
1155	if (!wq->fasync_list)
1156		sock_reset_flag(sk, SOCK_FASYNC);
1157	else
1158		sock_set_flag(sk, SOCK_FASYNC);
1159
1160	release_sock(sk);
1161	return 0;
1162}
1163
1164/* This function may be called only under socket lock or callback_lock or rcu_lock */
1165
1166int sock_wake_async(struct socket *sock, int how, int band)
1167{
1168	struct socket_wq *wq;
 
1169
1170	if (!sock)
1171		return -1;
1172	rcu_read_lock();
1173	wq = rcu_dereference(sock->wq);
1174	if (!wq || !wq->fasync_list) {
1175		rcu_read_unlock();
1176		return -1;
1177	}
1178	switch (how) {
1179	case SOCK_WAKE_WAITD:
1180		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1181			break;
1182		goto call_kill;
1183	case SOCK_WAKE_SPACE:
1184		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1185			break;
1186		/* fall through */
1187	case SOCK_WAKE_IO:
1188call_kill:
1189		kill_fasync(&wq->fasync_list, SIGIO, band);
1190		break;
1191	case SOCK_WAKE_URG:
1192		kill_fasync(&wq->fasync_list, SIGURG, band);
1193	}
1194	rcu_read_unlock();
1195	return 0;
1196}
1197EXPORT_SYMBOL(sock_wake_async);
1198
1199int __sock_create(struct net *net, int family, int type, int protocol,
1200			 struct socket **res, int kern)
1201{
1202	int err;
1203	struct socket *sock;
1204	const struct net_proto_family *pf;
1205
1206	/*
1207	 *      Check protocol is in range
1208	 */
1209	if (family < 0 || family >= NPROTO)
1210		return -EAFNOSUPPORT;
1211	if (type < 0 || type >= SOCK_MAX)
1212		return -EINVAL;
1213
1214	/* Compatibility.
1215
1216	   This uglymoron is moved from INET layer to here to avoid
1217	   deadlock in module load.
1218	 */
1219	if (family == PF_INET && type == SOCK_PACKET) {
1220		static int warned;
1221		if (!warned) {
1222			warned = 1;
1223			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1224			       current->comm);
1225		}
1226		family = PF_PACKET;
1227	}
1228
1229	err = security_socket_create(family, type, protocol, kern);
1230	if (err)
1231		return err;
1232
1233	/*
1234	 *	Allocate the socket and allow the family to set things up. if
1235	 *	the protocol is 0, the family is instructed to select an appropriate
1236	 *	default.
1237	 */
1238	sock = sock_alloc();
1239	if (!sock) {
1240		net_warn_ratelimited("socket: no more sockets\n");
1241		return -ENFILE;	/* Not exactly a match, but its the
1242				   closest posix thing */
1243	}
1244
1245	sock->type = type;
1246
1247#ifdef CONFIG_MODULES
1248	/* Attempt to load a protocol module if the find failed.
1249	 *
1250	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1251	 * requested real, full-featured networking support upon configuration.
1252	 * Otherwise module support will break!
1253	 */
1254	if (rcu_access_pointer(net_families[family]) == NULL)
1255		request_module("net-pf-%d", family);
1256#endif
1257
1258	rcu_read_lock();
1259	pf = rcu_dereference(net_families[family]);
1260	err = -EAFNOSUPPORT;
1261	if (!pf)
1262		goto out_release;
1263
1264	/*
1265	 * We will call the ->create function, that possibly is in a loadable
1266	 * module, so we have to bump that loadable module refcnt first.
1267	 */
1268	if (!try_module_get(pf->owner))
1269		goto out_release;
1270
1271	/* Now protected by module ref count */
1272	rcu_read_unlock();
1273
1274	err = pf->create(net, sock, protocol, kern);
1275	if (err < 0)
1276		goto out_module_put;
1277
1278	/*
1279	 * Now to bump the refcnt of the [loadable] module that owns this
1280	 * socket at sock_release time we decrement its refcnt.
1281	 */
1282	if (!try_module_get(sock->ops->owner))
1283		goto out_module_busy;
1284
1285	/*
1286	 * Now that we're done with the ->create function, the [loadable]
1287	 * module can have its refcnt decremented
1288	 */
1289	module_put(pf->owner);
1290	err = security_socket_post_create(sock, family, type, protocol, kern);
1291	if (err)
1292		goto out_sock_release;
1293	*res = sock;
1294
1295	return 0;
1296
1297out_module_busy:
1298	err = -EAFNOSUPPORT;
1299out_module_put:
1300	sock->ops = NULL;
1301	module_put(pf->owner);
1302out_sock_release:
1303	sock_release(sock);
1304	return err;
1305
1306out_release:
1307	rcu_read_unlock();
1308	goto out_sock_release;
1309}
1310EXPORT_SYMBOL(__sock_create);
1311
1312int sock_create(int family, int type, int protocol, struct socket **res)
1313{
1314	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1315}
1316EXPORT_SYMBOL(sock_create);
1317
1318int sock_create_kern(int family, int type, int protocol, struct socket **res)
1319{
1320	return __sock_create(&init_net, family, type, protocol, res, 1);
1321}
1322EXPORT_SYMBOL(sock_create_kern);
1323
1324SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1325{
1326	int retval;
1327	struct socket *sock;
1328	int flags;
1329
1330	/* Check the SOCK_* constants for consistency.  */
1331	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1332	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1333	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1334	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1335
1336	flags = type & ~SOCK_TYPE_MASK;
1337	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1338		return -EINVAL;
1339	type &= SOCK_TYPE_MASK;
1340
1341	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1342		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1343
1344	retval = sock_create(family, type, protocol, &sock);
1345	if (retval < 0)
1346		goto out;
1347
1348	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1349	if (retval < 0)
1350		goto out_release;
1351
1352out:
1353	/* It may be already another descriptor 8) Not kernel problem. */
1354	return retval;
1355
1356out_release:
1357	sock_release(sock);
1358	return retval;
1359}
1360
1361/*
1362 *	Create a pair of connected sockets.
1363 */
1364
1365SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1366		int __user *, usockvec)
1367{
1368	struct socket *sock1, *sock2;
1369	int fd1, fd2, err;
1370	struct file *newfile1, *newfile2;
1371	int flags;
1372
1373	flags = type & ~SOCK_TYPE_MASK;
1374	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1375		return -EINVAL;
1376	type &= SOCK_TYPE_MASK;
1377
1378	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1379		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1380
1381	/*
1382	 * Obtain the first socket and check if the underlying protocol
1383	 * supports the socketpair call.
1384	 */
1385
1386	err = sock_create(family, type, protocol, &sock1);
1387	if (err < 0)
1388		goto out;
1389
1390	err = sock_create(family, type, protocol, &sock2);
1391	if (err < 0)
1392		goto out_release_1;
1393
1394	err = sock1->ops->socketpair(sock1, sock2);
1395	if (err < 0)
1396		goto out_release_both;
1397
1398	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1399	if (unlikely(fd1 < 0)) {
1400		err = fd1;
1401		goto out_release_both;
1402	}
1403
1404	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1405	if (unlikely(fd2 < 0)) {
1406		err = fd2;
1407		fput(newfile1);
1408		put_unused_fd(fd1);
1409		sock_release(sock2);
1410		goto out;
 
 
 
 
 
 
 
 
 
1411	}
1412
 
 
 
 
 
 
 
 
1413	audit_fd_pair(fd1, fd2);
 
1414	fd_install(fd1, newfile1);
1415	fd_install(fd2, newfile2);
1416	/* fd1 and fd2 may be already another descriptors.
1417	 * Not kernel problem.
1418	 */
1419
1420	err = put_user(fd1, &usockvec[0]);
1421	if (!err)
1422		err = put_user(fd2, &usockvec[1]);
1423	if (!err)
1424		return 0;
 
 
 
1425
1426	sys_close(fd2);
1427	sys_close(fd1);
1428	return err;
 
 
 
1429
 
 
 
 
1430out_release_both:
1431	sock_release(sock2);
1432out_release_1:
1433	sock_release(sock1);
1434out:
1435	return err;
1436}
1437
1438/*
1439 *	Bind a name to a socket. Nothing much to do here since it's
1440 *	the protocol's responsibility to handle the local address.
1441 *
1442 *	We move the socket address to kernel space before we call
1443 *	the protocol layer (having also checked the address is ok).
1444 */
1445
1446SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1447{
1448	struct socket *sock;
1449	struct sockaddr_storage address;
1450	int err, fput_needed;
1451
1452	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1453	if (sock) {
1454		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1455		if (err >= 0) {
1456			err = security_socket_bind(sock,
1457						   (struct sockaddr *)&address,
1458						   addrlen);
1459			if (!err)
1460				err = sock->ops->bind(sock,
1461						      (struct sockaddr *)
1462						      &address, addrlen);
1463		}
1464		fput_light(sock->file, fput_needed);
1465	}
1466	return err;
1467}
1468
1469/*
1470 *	Perform a listen. Basically, we allow the protocol to do anything
1471 *	necessary for a listen, and if that works, we mark the socket as
1472 *	ready for listening.
1473 */
1474
1475SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1476{
1477	struct socket *sock;
1478	int err, fput_needed;
1479	int somaxconn;
1480
1481	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1482	if (sock) {
1483		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1484		if ((unsigned int)backlog > somaxconn)
1485			backlog = somaxconn;
1486
1487		err = security_socket_listen(sock, backlog);
1488		if (!err)
1489			err = sock->ops->listen(sock, backlog);
1490
1491		fput_light(sock->file, fput_needed);
1492	}
1493	return err;
1494}
1495
1496/*
1497 *	For accept, we attempt to create a new socket, set up the link
1498 *	with the client, wake up the client, then return the new
1499 *	connected fd. We collect the address of the connector in kernel
1500 *	space and move it to user at the very end. This is unclean because
1501 *	we open the socket then return an error.
1502 *
1503 *	1003.1g adds the ability to recvmsg() to query connection pending
1504 *	status to recvmsg. We need to add that support in a way thats
1505 *	clean when we restucture accept also.
1506 */
1507
1508SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1509		int __user *, upeer_addrlen, int, flags)
1510{
1511	struct socket *sock, *newsock;
1512	struct file *newfile;
1513	int err, len, newfd, fput_needed;
1514	struct sockaddr_storage address;
1515
1516	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1517		return -EINVAL;
1518
1519	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1520		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1521
1522	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1523	if (!sock)
1524		goto out;
1525
1526	err = -ENFILE;
1527	newsock = sock_alloc();
1528	if (!newsock)
1529		goto out_put;
1530
1531	newsock->type = sock->type;
1532	newsock->ops = sock->ops;
1533
1534	/*
1535	 * We don't need try_module_get here, as the listening socket (sock)
1536	 * has the protocol module (sock->ops->owner) held.
1537	 */
1538	__module_get(newsock->ops->owner);
1539
1540	newfd = sock_alloc_file(newsock, &newfile, flags);
1541	if (unlikely(newfd < 0)) {
1542		err = newfd;
1543		sock_release(newsock);
1544		goto out_put;
1545	}
 
 
 
 
 
 
 
1546
1547	err = security_socket_accept(sock, newsock);
1548	if (err)
1549		goto out_fd;
1550
1551	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1552	if (err < 0)
1553		goto out_fd;
1554
1555	if (upeer_sockaddr) {
1556		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1557					  &len, 2) < 0) {
1558			err = -ECONNABORTED;
1559			goto out_fd;
1560		}
1561		err = move_addr_to_user(&address,
1562					len, upeer_sockaddr, upeer_addrlen);
1563		if (err < 0)
1564			goto out_fd;
1565	}
1566
1567	/* File flags are not inherited via accept() unlike another OSes. */
1568
1569	fd_install(newfd, newfile);
1570	err = newfd;
1571
1572out_put:
1573	fput_light(sock->file, fput_needed);
1574out:
1575	return err;
1576out_fd:
1577	fput(newfile);
1578	put_unused_fd(newfd);
1579	goto out_put;
1580}
1581
1582SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1583		int __user *, upeer_addrlen)
1584{
1585	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1586}
1587
1588/*
1589 *	Attempt to connect to a socket with the server address.  The address
1590 *	is in user space so we verify it is OK and move it to kernel space.
1591 *
1592 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1593 *	break bindings
1594 *
1595 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1596 *	other SEQPACKET protocols that take time to connect() as it doesn't
1597 *	include the -EINPROGRESS status for such sockets.
1598 */
1599
1600SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1601		int, addrlen)
1602{
1603	struct socket *sock;
1604	struct sockaddr_storage address;
1605	int err, fput_needed;
1606
1607	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1608	if (!sock)
1609		goto out;
1610	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1611	if (err < 0)
1612		goto out_put;
1613
1614	err =
1615	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1616	if (err)
1617		goto out_put;
1618
1619	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1620				 sock->file->f_flags);
1621out_put:
1622	fput_light(sock->file, fput_needed);
1623out:
1624	return err;
1625}
1626
1627/*
1628 *	Get the local address ('name') of a socket object. Move the obtained
1629 *	name to user space.
1630 */
1631
1632SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1633		int __user *, usockaddr_len)
1634{
1635	struct socket *sock;
1636	struct sockaddr_storage address;
1637	int len, err, fput_needed;
1638
1639	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640	if (!sock)
1641		goto out;
1642
1643	err = security_socket_getsockname(sock);
1644	if (err)
1645		goto out_put;
1646
1647	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1648	if (err)
1649		goto out_put;
1650	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1651
1652out_put:
1653	fput_light(sock->file, fput_needed);
1654out:
1655	return err;
1656}
1657
1658/*
1659 *	Get the remote address ('name') of a socket object. Move the obtained
1660 *	name to user space.
1661 */
1662
1663SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1664		int __user *, usockaddr_len)
1665{
1666	struct socket *sock;
1667	struct sockaddr_storage address;
1668	int len, err, fput_needed;
1669
1670	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1671	if (sock != NULL) {
1672		err = security_socket_getpeername(sock);
1673		if (err) {
1674			fput_light(sock->file, fput_needed);
1675			return err;
1676		}
1677
1678		err =
1679		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1680				       1);
1681		if (!err)
1682			err = move_addr_to_user(&address, len, usockaddr,
1683						usockaddr_len);
1684		fput_light(sock->file, fput_needed);
1685	}
1686	return err;
1687}
1688
1689/*
1690 *	Send a datagram to a given address. We move the address into kernel
1691 *	space and check the user space data area is readable before invoking
1692 *	the protocol.
1693 */
1694
1695SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1696		unsigned int, flags, struct sockaddr __user *, addr,
1697		int, addr_len)
1698{
1699	struct socket *sock;
1700	struct sockaddr_storage address;
1701	int err;
1702	struct msghdr msg;
1703	struct iovec iov;
1704	int fput_needed;
1705
1706	if (len > INT_MAX)
1707		len = INT_MAX;
 
1708	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1709	if (!sock)
1710		goto out;
1711
1712	iov.iov_base = buff;
1713	iov.iov_len = len;
1714	msg.msg_name = NULL;
1715	msg.msg_iov = &iov;
1716	msg.msg_iovlen = 1;
1717	msg.msg_control = NULL;
1718	msg.msg_controllen = 0;
1719	msg.msg_namelen = 0;
1720	if (addr) {
1721		err = move_addr_to_kernel(addr, addr_len, &address);
1722		if (err < 0)
1723			goto out_put;
1724		msg.msg_name = (struct sockaddr *)&address;
1725		msg.msg_namelen = addr_len;
1726	}
1727	if (sock->file->f_flags & O_NONBLOCK)
1728		flags |= MSG_DONTWAIT;
1729	msg.msg_flags = flags;
1730	err = sock_sendmsg(sock, &msg, len);
1731
1732out_put:
1733	fput_light(sock->file, fput_needed);
1734out:
1735	return err;
1736}
1737
1738/*
1739 *	Send a datagram down a socket.
1740 */
1741
1742SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1743		unsigned int, flags)
1744{
1745	return sys_sendto(fd, buff, len, flags, NULL, 0);
1746}
1747
1748/*
1749 *	Receive a frame from the socket and optionally record the address of the
1750 *	sender. We verify the buffers are writable and if needed move the
1751 *	sender address from kernel to user space.
1752 */
1753
1754SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1755		unsigned int, flags, struct sockaddr __user *, addr,
1756		int __user *, addr_len)
1757{
1758	struct socket *sock;
1759	struct iovec iov;
1760	struct msghdr msg;
1761	struct sockaddr_storage address;
1762	int err, err2;
1763	int fput_needed;
1764
1765	if (size > INT_MAX)
1766		size = INT_MAX;
 
1767	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1768	if (!sock)
1769		goto out;
1770
1771	msg.msg_control = NULL;
1772	msg.msg_controllen = 0;
1773	msg.msg_iovlen = 1;
1774	msg.msg_iov = &iov;
1775	iov.iov_len = size;
1776	iov.iov_base = ubuf;
1777	msg.msg_name = (struct sockaddr *)&address;
1778	msg.msg_namelen = sizeof(address);
1779	if (sock->file->f_flags & O_NONBLOCK)
1780		flags |= MSG_DONTWAIT;
1781	err = sock_recvmsg(sock, &msg, size, flags);
1782
1783	if (err >= 0 && addr != NULL) {
1784		err2 = move_addr_to_user(&address,
1785					 msg.msg_namelen, addr, addr_len);
1786		if (err2 < 0)
1787			err = err2;
1788	}
1789
1790	fput_light(sock->file, fput_needed);
1791out:
1792	return err;
1793}
1794
1795/*
1796 *	Receive a datagram from a socket.
1797 */
1798
1799asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1800			 unsigned int flags)
1801{
1802	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1803}
1804
1805/*
1806 *	Set a socket option. Because we don't know the option lengths we have
1807 *	to pass the user mode parameter for the protocols to sort out.
1808 */
1809
1810SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1811		char __user *, optval, int, optlen)
1812{
1813	int err, fput_needed;
1814	struct socket *sock;
1815
1816	if (optlen < 0)
1817		return -EINVAL;
1818
1819	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1820	if (sock != NULL) {
1821		err = security_socket_setsockopt(sock, level, optname);
1822		if (err)
1823			goto out_put;
1824
1825		if (level == SOL_SOCKET)
1826			err =
1827			    sock_setsockopt(sock, level, optname, optval,
1828					    optlen);
1829		else
1830			err =
1831			    sock->ops->setsockopt(sock, level, optname, optval,
1832						  optlen);
1833out_put:
1834		fput_light(sock->file, fput_needed);
1835	}
1836	return err;
1837}
1838
1839/*
1840 *	Get a socket option. Because we don't know the option lengths we have
1841 *	to pass a user mode parameter for the protocols to sort out.
1842 */
1843
1844SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1845		char __user *, optval, int __user *, optlen)
1846{
1847	int err, fput_needed;
1848	struct socket *sock;
1849
1850	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1851	if (sock != NULL) {
1852		err = security_socket_getsockopt(sock, level, optname);
1853		if (err)
1854			goto out_put;
1855
1856		if (level == SOL_SOCKET)
1857			err =
1858			    sock_getsockopt(sock, level, optname, optval,
1859					    optlen);
1860		else
1861			err =
1862			    sock->ops->getsockopt(sock, level, optname, optval,
1863						  optlen);
1864out_put:
1865		fput_light(sock->file, fput_needed);
1866	}
1867	return err;
1868}
1869
1870/*
1871 *	Shutdown a socket.
1872 */
1873
1874SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1875{
1876	int err, fput_needed;
1877	struct socket *sock;
1878
1879	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1880	if (sock != NULL) {
1881		err = security_socket_shutdown(sock, how);
1882		if (!err)
1883			err = sock->ops->shutdown(sock, how);
1884		fput_light(sock->file, fput_needed);
1885	}
1886	return err;
1887}
1888
1889/* A couple of helpful macros for getting the address of the 32/64 bit
1890 * fields which are the same type (int / unsigned) on our platforms.
1891 */
1892#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1893#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1894#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1895
1896struct used_address {
1897	struct sockaddr_storage name;
1898	unsigned int name_len;
1899};
1900
1901static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1902			 struct msghdr *msg_sys, unsigned int flags,
1903			 struct used_address *used_address)
 
1904{
1905	struct compat_msghdr __user *msg_compat =
1906	    (struct compat_msghdr __user *)msg;
1907	struct sockaddr_storage address;
1908	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1909	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1910	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1911	/* 20 is size of ipv6_pktinfo */
1912	unsigned char *ctl_buf = ctl;
1913	int err, ctl_len, total_len;
1914
1915	err = -EFAULT;
1916	if (MSG_CMSG_COMPAT & flags) {
1917		if (get_compat_msghdr(msg_sys, msg_compat))
1918			return -EFAULT;
1919	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1920		return -EFAULT;
1921
1922	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1923		err = -EMSGSIZE;
1924		if (msg_sys->msg_iovlen > UIO_MAXIOV)
1925			goto out;
1926		err = -ENOMEM;
1927		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1928			      GFP_KERNEL);
1929		if (!iov)
1930			goto out;
1931	}
1932
1933	/* This will also move the address data into kernel space */
1934	if (MSG_CMSG_COMPAT & flags) {
1935		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1936	} else
1937		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1938	if (err < 0)
1939		goto out_freeiov;
1940	total_len = err;
1941
1942	err = -ENOBUFS;
1943
1944	if (msg_sys->msg_controllen > INT_MAX)
1945		goto out_freeiov;
 
1946	ctl_len = msg_sys->msg_controllen;
1947	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1948		err =
1949		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1950						     sizeof(ctl));
1951		if (err)
1952			goto out_freeiov;
1953		ctl_buf = msg_sys->msg_control;
1954		ctl_len = msg_sys->msg_controllen;
1955	} else if (ctl_len) {
1956		if (ctl_len > sizeof(ctl)) {
1957			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1958			if (ctl_buf == NULL)
1959				goto out_freeiov;
1960		}
1961		err = -EFAULT;
1962		/*
1963		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1964		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1965		 * checking falls down on this.
1966		 */
1967		if (copy_from_user(ctl_buf,
1968				   (void __user __force *)msg_sys->msg_control,
1969				   ctl_len))
1970			goto out_freectl;
1971		msg_sys->msg_control = ctl_buf;
1972	}
1973	msg_sys->msg_flags = flags;
1974
1975	if (sock->file->f_flags & O_NONBLOCK)
1976		msg_sys->msg_flags |= MSG_DONTWAIT;
1977	/*
1978	 * If this is sendmmsg() and current destination address is same as
1979	 * previously succeeded address, omit asking LSM's decision.
1980	 * used_address->name_len is initialized to UINT_MAX so that the first
1981	 * destination address never matches.
1982	 */
1983	if (used_address && msg_sys->msg_name &&
1984	    used_address->name_len == msg_sys->msg_namelen &&
1985	    !memcmp(&used_address->name, msg_sys->msg_name,
1986		    used_address->name_len)) {
1987		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1988		goto out_freectl;
1989	}
1990	err = sock_sendmsg(sock, msg_sys, total_len);
1991	/*
1992	 * If this is sendmmsg() and sending to current destination address was
1993	 * successful, remember it.
1994	 */
1995	if (used_address && err >= 0) {
1996		used_address->name_len = msg_sys->msg_namelen;
1997		if (msg_sys->msg_name)
1998			memcpy(&used_address->name, msg_sys->msg_name,
1999			       used_address->name_len);
2000	}
2001
2002out_freectl:
2003	if (ctl_buf != ctl)
2004		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2005out_freeiov:
2006	if (iov != iovstack)
2007		kfree(iov);
2008out:
2009	return err;
2010}
2011
2012/*
2013 *	BSD sendmsg interface
2014 */
2015
2016SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2017{
2018	int fput_needed, err;
2019	struct msghdr msg_sys;
2020	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2021
 
2022	if (!sock)
2023		goto out;
2024
2025	err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2026
2027	fput_light(sock->file, fput_needed);
2028out:
2029	return err;
2030}
2031
 
 
 
 
 
 
 
2032/*
2033 *	Linux sendmmsg interface
2034 */
2035
2036int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2037		   unsigned int flags)
2038{
2039	int fput_needed, err, datagrams;
2040	struct socket *sock;
2041	struct mmsghdr __user *entry;
2042	struct compat_mmsghdr __user *compat_entry;
2043	struct msghdr msg_sys;
2044	struct used_address used_address;
 
2045
2046	if (vlen > UIO_MAXIOV)
2047		vlen = UIO_MAXIOV;
2048
2049	datagrams = 0;
2050
2051	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2052	if (!sock)
2053		return err;
2054
2055	used_address.name_len = UINT_MAX;
2056	entry = mmsg;
2057	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2058	err = 0;
 
2059
2060	while (datagrams < vlen) {
 
 
 
2061		if (MSG_CMSG_COMPAT & flags) {
2062			err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2063					    &msg_sys, flags, &used_address);
2064			if (err < 0)
2065				break;
2066			err = __put_user(err, &compat_entry->msg_len);
2067			++compat_entry;
2068		} else {
2069			err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2070					    &msg_sys, flags, &used_address);
 
2071			if (err < 0)
2072				break;
2073			err = put_user(err, &entry->msg_len);
2074			++entry;
2075		}
2076
2077		if (err)
2078			break;
2079		++datagrams;
 
 
 
2080	}
2081
2082	fput_light(sock->file, fput_needed);
2083
2084	/* We only return an error if no datagrams were able to be sent */
2085	if (datagrams != 0)
2086		return datagrams;
2087
2088	return err;
2089}
2090
2091SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2092		unsigned int, vlen, unsigned int, flags)
2093{
 
 
2094	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2095}
2096
2097static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2098			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2099{
2100	struct compat_msghdr __user *msg_compat =
2101	    (struct compat_msghdr __user *)msg;
2102	struct iovec iovstack[UIO_FASTIOV];
2103	struct iovec *iov = iovstack;
2104	unsigned long cmsg_ptr;
2105	int err, total_len, len;
 
2106
2107	/* kernel mode address */
2108	struct sockaddr_storage addr;
2109
2110	/* user mode address pointers */
2111	struct sockaddr __user *uaddr;
2112	int __user *uaddr_len;
2113
2114	if (MSG_CMSG_COMPAT & flags) {
2115		if (get_compat_msghdr(msg_sys, msg_compat))
2116			return -EFAULT;
2117	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2118		return -EFAULT;
2119
2120	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2121		err = -EMSGSIZE;
2122		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2123			goto out;
2124		err = -ENOMEM;
2125		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2126			      GFP_KERNEL);
2127		if (!iov)
2128			goto out;
2129	}
2130
2131	/*
2132	 *      Save the user-mode address (verify_iovec will change the
2133	 *      kernel msghdr to use the kernel address space)
2134	 */
2135
2136	uaddr = (__force void __user *)msg_sys->msg_name;
2137	uaddr_len = COMPAT_NAMELEN(msg);
2138	if (MSG_CMSG_COMPAT & flags) {
2139		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2140	} else
2141		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2142	if (err < 0)
2143		goto out_freeiov;
2144	total_len = err;
2145
2146	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2147	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2148
 
 
 
2149	if (sock->file->f_flags & O_NONBLOCK)
2150		flags |= MSG_DONTWAIT;
2151	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2152							  total_len, flags);
2153	if (err < 0)
2154		goto out_freeiov;
2155	len = err;
2156
2157	if (uaddr != NULL) {
2158		err = move_addr_to_user(&addr,
2159					msg_sys->msg_namelen, uaddr,
2160					uaddr_len);
2161		if (err < 0)
2162			goto out_freeiov;
2163	}
2164	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2165			 COMPAT_FLAGS(msg));
2166	if (err)
2167		goto out_freeiov;
2168	if (MSG_CMSG_COMPAT & flags)
2169		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2170				 &msg_compat->msg_controllen);
2171	else
2172		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2173				 &msg->msg_controllen);
2174	if (err)
2175		goto out_freeiov;
2176	err = len;
2177
2178out_freeiov:
2179	if (iov != iovstack)
2180		kfree(iov);
2181out:
2182	return err;
2183}
2184
2185/*
2186 *	BSD recvmsg interface
2187 */
2188
2189SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2190		unsigned int, flags)
2191{
2192	int fput_needed, err;
2193	struct msghdr msg_sys;
2194	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2195
 
2196	if (!sock)
2197		goto out;
2198
2199	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2200
2201	fput_light(sock->file, fput_needed);
2202out:
2203	return err;
2204}
2205
 
 
 
 
 
 
 
 
2206/*
2207 *     Linux recvmmsg interface
2208 */
2209
2210int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2211		   unsigned int flags, struct timespec *timeout)
2212{
2213	int fput_needed, err, datagrams;
2214	struct socket *sock;
2215	struct mmsghdr __user *entry;
2216	struct compat_mmsghdr __user *compat_entry;
2217	struct msghdr msg_sys;
2218	struct timespec end_time;
 
2219
2220	if (timeout &&
2221	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2222				    timeout->tv_nsec))
2223		return -EINVAL;
2224
2225	datagrams = 0;
2226
2227	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2228	if (!sock)
2229		return err;
2230
2231	err = sock_error(sock->sk);
2232	if (err)
 
2233		goto out_put;
 
2234
2235	entry = mmsg;
2236	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2237
2238	while (datagrams < vlen) {
2239		/*
2240		 * No need to ask LSM for more than the first datagram.
2241		 */
2242		if (MSG_CMSG_COMPAT & flags) {
2243			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2244					    &msg_sys, flags & ~MSG_WAITFORONE,
2245					    datagrams);
2246			if (err < 0)
2247				break;
2248			err = __put_user(err, &compat_entry->msg_len);
2249			++compat_entry;
2250		} else {
2251			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2252					    &msg_sys, flags & ~MSG_WAITFORONE,
2253					    datagrams);
 
2254			if (err < 0)
2255				break;
2256			err = put_user(err, &entry->msg_len);
2257			++entry;
2258		}
2259
2260		if (err)
2261			break;
2262		++datagrams;
2263
2264		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2265		if (flags & MSG_WAITFORONE)
2266			flags |= MSG_DONTWAIT;
2267
2268		if (timeout) {
2269			ktime_get_ts(timeout);
2270			*timeout = timespec_sub(end_time, *timeout);
 
2271			if (timeout->tv_sec < 0) {
2272				timeout->tv_sec = timeout->tv_nsec = 0;
2273				break;
2274			}
2275
2276			/* Timeout, return less than vlen datagrams */
2277			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2278				break;
2279		}
2280
2281		/* Out of band data, return right away */
2282		if (msg_sys.msg_flags & MSG_OOB)
2283			break;
 
2284	}
2285
2286out_put:
2287	fput_light(sock->file, fput_needed);
2288
2289	if (err == 0)
2290		return datagrams;
 
 
2291
2292	if (datagrams != 0) {
 
 
 
 
2293		/*
2294		 * We may return less entries than requested (vlen) if the
2295		 * sock is non block and there aren't enough datagrams...
 
 
2296		 */
2297		if (err != -EAGAIN) {
2298			/*
2299			 * ... or  if recvmsg returns an error after we
2300			 * received some datagrams, where we record the
2301			 * error to return on the next call or if the
2302			 * app asks about it using getsockopt(SO_ERROR).
2303			 */
2304			sock->sk->sk_err = -err;
2305		}
2306
2307		return datagrams;
2308	}
 
 
2309
2310	return err;
2311}
2312
2313SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2314		unsigned int, vlen, unsigned int, flags,
2315		struct timespec __user *, timeout)
2316{
2317	int datagrams;
2318	struct timespec timeout_sys;
2319
 
 
 
2320	if (!timeout)
2321		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2322
2323	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2324		return -EFAULT;
2325
2326	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2327
2328	if (datagrams > 0 &&
2329	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2330		datagrams = -EFAULT;
2331
2332	return datagrams;
2333}
2334
2335#ifdef __ARCH_WANT_SYS_SOCKETCALL
2336/* Argument list sizes for sys_socketcall */
2337#define AL(x) ((x) * sizeof(unsigned long))
2338static const unsigned char nargs[21] = {
2339	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2340	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2341	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2342	AL(4), AL(5), AL(4)
2343};
2344
2345#undef AL
2346
2347/*
2348 *	System call vectors.
2349 *
2350 *	Argument checking cleaned up. Saved 20% in size.
2351 *  This function doesn't need to set the kernel lock because
2352 *  it is set by the callees.
2353 */
2354
2355SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2356{
2357	unsigned long a[6];
2358	unsigned long a0, a1;
2359	int err;
2360	unsigned int len;
2361
2362	if (call < 1 || call > SYS_SENDMMSG)
2363		return -EINVAL;
2364
2365	len = nargs[call];
2366	if (len > sizeof(a))
2367		return -EINVAL;
2368
2369	/* copy_from_user should be SMP safe. */
2370	if (copy_from_user(a, args, len))
2371		return -EFAULT;
2372
2373	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
 
 
2374
2375	a0 = a[0];
2376	a1 = a[1];
2377
2378	switch (call) {
2379	case SYS_SOCKET:
2380		err = sys_socket(a0, a1, a[2]);
2381		break;
2382	case SYS_BIND:
2383		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2384		break;
2385	case SYS_CONNECT:
2386		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2387		break;
2388	case SYS_LISTEN:
2389		err = sys_listen(a0, a1);
2390		break;
2391	case SYS_ACCEPT:
2392		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2393				  (int __user *)a[2], 0);
2394		break;
2395	case SYS_GETSOCKNAME:
2396		err =
2397		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2398				    (int __user *)a[2]);
2399		break;
2400	case SYS_GETPEERNAME:
2401		err =
2402		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2403				    (int __user *)a[2]);
2404		break;
2405	case SYS_SOCKETPAIR:
2406		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2407		break;
2408	case SYS_SEND:
2409		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2410		break;
2411	case SYS_SENDTO:
2412		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2413				 (struct sockaddr __user *)a[4], a[5]);
2414		break;
2415	case SYS_RECV:
2416		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2417		break;
2418	case SYS_RECVFROM:
2419		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2420				   (struct sockaddr __user *)a[4],
2421				   (int __user *)a[5]);
2422		break;
2423	case SYS_SHUTDOWN:
2424		err = sys_shutdown(a0, a1);
2425		break;
2426	case SYS_SETSOCKOPT:
2427		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2428		break;
2429	case SYS_GETSOCKOPT:
2430		err =
2431		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2432				   (int __user *)a[4]);
2433		break;
2434	case SYS_SENDMSG:
2435		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2436		break;
2437	case SYS_SENDMMSG:
2438		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2439		break;
2440	case SYS_RECVMSG:
2441		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2442		break;
2443	case SYS_RECVMMSG:
2444		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2445				   (struct timespec __user *)a[4]);
2446		break;
2447	case SYS_ACCEPT4:
2448		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2449				  (int __user *)a[2], a[3]);
2450		break;
2451	default:
2452		err = -EINVAL;
2453		break;
2454	}
2455	return err;
2456}
2457
2458#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2459
2460/**
2461 *	sock_register - add a socket protocol handler
2462 *	@ops: description of protocol
2463 *
2464 *	This function is called by a protocol handler that wants to
2465 *	advertise its address family, and have it linked into the
2466 *	socket interface. The value ops->family coresponds to the
2467 *	socket system call protocol family.
2468 */
2469int sock_register(const struct net_proto_family *ops)
2470{
2471	int err;
2472
2473	if (ops->family >= NPROTO) {
2474		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2475		       NPROTO);
2476		return -ENOBUFS;
2477	}
2478
2479	spin_lock(&net_family_lock);
2480	if (rcu_dereference_protected(net_families[ops->family],
2481				      lockdep_is_held(&net_family_lock)))
2482		err = -EEXIST;
2483	else {
2484		rcu_assign_pointer(net_families[ops->family], ops);
2485		err = 0;
2486	}
2487	spin_unlock(&net_family_lock);
2488
2489	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2490	return err;
2491}
2492EXPORT_SYMBOL(sock_register);
2493
2494/**
2495 *	sock_unregister - remove a protocol handler
2496 *	@family: protocol family to remove
2497 *
2498 *	This function is called by a protocol handler that wants to
2499 *	remove its address family, and have it unlinked from the
2500 *	new socket creation.
2501 *
2502 *	If protocol handler is a module, then it can use module reference
2503 *	counts to protect against new references. If protocol handler is not
2504 *	a module then it needs to provide its own protection in
2505 *	the ops->create routine.
2506 */
2507void sock_unregister(int family)
2508{
2509	BUG_ON(family < 0 || family >= NPROTO);
2510
2511	spin_lock(&net_family_lock);
2512	RCU_INIT_POINTER(net_families[family], NULL);
2513	spin_unlock(&net_family_lock);
2514
2515	synchronize_rcu();
2516
2517	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2518}
2519EXPORT_SYMBOL(sock_unregister);
2520
2521static int __init sock_init(void)
2522{
2523	int err;
2524	/*
2525	 *      Initialize the network sysctl infrastructure.
2526	 */
2527	err = net_sysctl_init();
2528	if (err)
2529		goto out;
2530
2531	/*
2532	 *      Initialize sock SLAB cache.
2533	 */
2534
2535	sk_init();
2536
2537	/*
2538	 *      Initialize skbuff SLAB cache
2539	 */
2540	skb_init();
2541
2542	/*
2543	 *      Initialize the protocols module.
2544	 */
2545
2546	init_inodecache();
2547
2548	err = register_filesystem(&sock_fs_type);
2549	if (err)
2550		goto out_fs;
2551	sock_mnt = kern_mount(&sock_fs_type);
2552	if (IS_ERR(sock_mnt)) {
2553		err = PTR_ERR(sock_mnt);
2554		goto out_mount;
2555	}
2556
2557	/* The real protocol initialization is performed in later initcalls.
2558	 */
2559
2560#ifdef CONFIG_NETFILTER
2561	netfilter_init();
 
 
2562#endif
2563
2564#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2565	skb_timestamping_init();
2566#endif
2567
2568out:
2569	return err;
2570
2571out_mount:
2572	unregister_filesystem(&sock_fs_type);
2573out_fs:
2574	goto out;
2575}
2576
2577core_initcall(sock_init);	/* early initcall */
2578
2579#ifdef CONFIG_PROC_FS
2580void socket_seq_show(struct seq_file *seq)
2581{
2582	int cpu;
2583	int counter = 0;
2584
2585	for_each_possible_cpu(cpu)
2586	    counter += per_cpu(sockets_in_use, cpu);
2587
2588	/* It can be negative, by the way. 8) */
2589	if (counter < 0)
2590		counter = 0;
2591
2592	seq_printf(seq, "sockets: used %d\n", counter);
2593}
2594#endif				/* CONFIG_PROC_FS */
2595
2596#ifdef CONFIG_COMPAT
2597static int do_siocgstamp(struct net *net, struct socket *sock,
2598			 unsigned int cmd, void __user *up)
2599{
2600	mm_segment_t old_fs = get_fs();
2601	struct timeval ktv;
2602	int err;
2603
2604	set_fs(KERNEL_DS);
2605	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2606	set_fs(old_fs);
2607	if (!err)
2608		err = compat_put_timeval(&ktv, up);
2609
2610	return err;
2611}
2612
2613static int do_siocgstampns(struct net *net, struct socket *sock,
2614			   unsigned int cmd, void __user *up)
2615{
2616	mm_segment_t old_fs = get_fs();
2617	struct timespec kts;
2618	int err;
2619
2620	set_fs(KERNEL_DS);
2621	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2622	set_fs(old_fs);
2623	if (!err)
2624		err = compat_put_timespec(&kts, up);
2625
2626	return err;
2627}
2628
2629static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2630{
2631	struct ifreq __user *uifr;
2632	int err;
2633
2634	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2635	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2636		return -EFAULT;
2637
2638	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2639	if (err)
2640		return err;
2641
2642	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2643		return -EFAULT;
2644
2645	return 0;
2646}
2647
2648static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2649{
2650	struct compat_ifconf ifc32;
2651	struct ifconf ifc;
2652	struct ifconf __user *uifc;
2653	struct compat_ifreq __user *ifr32;
2654	struct ifreq __user *ifr;
2655	unsigned int i, j;
2656	int err;
2657
2658	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2659		return -EFAULT;
2660
2661	memset(&ifc, 0, sizeof(ifc));
2662	if (ifc32.ifcbuf == 0) {
2663		ifc32.ifc_len = 0;
2664		ifc.ifc_len = 0;
2665		ifc.ifc_req = NULL;
2666		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2667	} else {
2668		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2669			sizeof(struct ifreq);
2670		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2671		ifc.ifc_len = len;
2672		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2673		ifr32 = compat_ptr(ifc32.ifcbuf);
2674		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2675			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2676				return -EFAULT;
2677			ifr++;
2678			ifr32++;
2679		}
2680	}
2681	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2682		return -EFAULT;
2683
2684	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2685	if (err)
2686		return err;
2687
2688	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2689		return -EFAULT;
2690
2691	ifr = ifc.ifc_req;
2692	ifr32 = compat_ptr(ifc32.ifcbuf);
2693	for (i = 0, j = 0;
2694	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2695	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2696		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2697			return -EFAULT;
2698		ifr32++;
2699		ifr++;
2700	}
2701
2702	if (ifc32.ifcbuf == 0) {
2703		/* Translate from 64-bit structure multiple to
2704		 * a 32-bit one.
2705		 */
2706		i = ifc.ifc_len;
2707		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2708		ifc32.ifc_len = i;
2709	} else {
2710		ifc32.ifc_len = i;
2711	}
2712	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2713		return -EFAULT;
2714
2715	return 0;
2716}
2717
2718static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2719{
2720	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2721	bool convert_in = false, convert_out = false;
2722	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2723	struct ethtool_rxnfc __user *rxnfc;
2724	struct ifreq __user *ifr;
2725	u32 rule_cnt = 0, actual_rule_cnt;
2726	u32 ethcmd;
2727	u32 data;
2728	int ret;
2729
2730	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2731		return -EFAULT;
2732
2733	compat_rxnfc = compat_ptr(data);
2734
2735	if (get_user(ethcmd, &compat_rxnfc->cmd))
2736		return -EFAULT;
2737
2738	/* Most ethtool structures are defined without padding.
2739	 * Unfortunately struct ethtool_rxnfc is an exception.
2740	 */
2741	switch (ethcmd) {
2742	default:
2743		break;
2744	case ETHTOOL_GRXCLSRLALL:
2745		/* Buffer size is variable */
2746		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2747			return -EFAULT;
2748		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2749			return -ENOMEM;
2750		buf_size += rule_cnt * sizeof(u32);
2751		/* fall through */
2752	case ETHTOOL_GRXRINGS:
2753	case ETHTOOL_GRXCLSRLCNT:
2754	case ETHTOOL_GRXCLSRULE:
2755	case ETHTOOL_SRXCLSRLINS:
2756		convert_out = true;
2757		/* fall through */
2758	case ETHTOOL_SRXCLSRLDEL:
2759		buf_size += sizeof(struct ethtool_rxnfc);
2760		convert_in = true;
2761		break;
2762	}
2763
2764	ifr = compat_alloc_user_space(buf_size);
2765	rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2766
2767	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2768		return -EFAULT;
2769
2770	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2771		     &ifr->ifr_ifru.ifru_data))
2772		return -EFAULT;
2773
2774	if (convert_in) {
2775		/* We expect there to be holes between fs.m_ext and
2776		 * fs.ring_cookie and at the end of fs, but nowhere else.
2777		 */
2778		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2779			     sizeof(compat_rxnfc->fs.m_ext) !=
2780			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2781			     sizeof(rxnfc->fs.m_ext));
2782		BUILD_BUG_ON(
2783			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2784			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2785			offsetof(struct ethtool_rxnfc, fs.location) -
2786			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2787
2788		if (copy_in_user(rxnfc, compat_rxnfc,
2789				 (void *)(&rxnfc->fs.m_ext + 1) -
2790				 (void *)rxnfc) ||
2791		    copy_in_user(&rxnfc->fs.ring_cookie,
2792				 &compat_rxnfc->fs.ring_cookie,
2793				 (void *)(&rxnfc->fs.location + 1) -
2794				 (void *)&rxnfc->fs.ring_cookie) ||
2795		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2796				 sizeof(rxnfc->rule_cnt)))
2797			return -EFAULT;
2798	}
2799
2800	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2801	if (ret)
2802		return ret;
2803
2804	if (convert_out) {
2805		if (copy_in_user(compat_rxnfc, rxnfc,
2806				 (const void *)(&rxnfc->fs.m_ext + 1) -
2807				 (const void *)rxnfc) ||
2808		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2809				 &rxnfc->fs.ring_cookie,
2810				 (const void *)(&rxnfc->fs.location + 1) -
2811				 (const void *)&rxnfc->fs.ring_cookie) ||
2812		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2813				 sizeof(rxnfc->rule_cnt)))
2814			return -EFAULT;
2815
2816		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2817			/* As an optimisation, we only copy the actual
2818			 * number of rules that the underlying
2819			 * function returned.  Since Mallory might
2820			 * change the rule count in user memory, we
2821			 * check that it is less than the rule count
2822			 * originally given (as the user buffer size),
2823			 * which has been range-checked.
2824			 */
2825			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2826				return -EFAULT;
2827			if (actual_rule_cnt < rule_cnt)
2828				rule_cnt = actual_rule_cnt;
2829			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2830					 &rxnfc->rule_locs[0],
2831					 rule_cnt * sizeof(u32)))
2832				return -EFAULT;
2833		}
2834	}
2835
2836	return 0;
2837}
2838
2839static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2840{
2841	void __user *uptr;
2842	compat_uptr_t uptr32;
2843	struct ifreq __user *uifr;
2844
2845	uifr = compat_alloc_user_space(sizeof(*uifr));
2846	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2847		return -EFAULT;
2848
2849	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2850		return -EFAULT;
2851
2852	uptr = compat_ptr(uptr32);
2853
2854	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2855		return -EFAULT;
2856
2857	return dev_ioctl(net, SIOCWANDEV, uifr);
2858}
2859
2860static int bond_ioctl(struct net *net, unsigned int cmd,
2861			 struct compat_ifreq __user *ifr32)
2862{
2863	struct ifreq kifr;
2864	struct ifreq __user *uifr;
2865	mm_segment_t old_fs;
2866	int err;
2867	u32 data;
2868	void __user *datap;
2869
2870	switch (cmd) {
2871	case SIOCBONDENSLAVE:
2872	case SIOCBONDRELEASE:
2873	case SIOCBONDSETHWADDR:
2874	case SIOCBONDCHANGEACTIVE:
2875		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2876			return -EFAULT;
2877
2878		old_fs = get_fs();
2879		set_fs(KERNEL_DS);
2880		err = dev_ioctl(net, cmd,
2881				(struct ifreq __user __force *) &kifr);
2882		set_fs(old_fs);
2883
2884		return err;
2885	case SIOCBONDSLAVEINFOQUERY:
2886	case SIOCBONDINFOQUERY:
2887		uifr = compat_alloc_user_space(sizeof(*uifr));
2888		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2889			return -EFAULT;
2890
2891		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2892			return -EFAULT;
2893
2894		datap = compat_ptr(data);
2895		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2896			return -EFAULT;
2897
2898		return dev_ioctl(net, cmd, uifr);
2899	default:
2900		return -ENOIOCTLCMD;
2901	}
2902}
2903
2904static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
 
2905				 struct compat_ifreq __user *u_ifreq32)
2906{
2907	struct ifreq __user *u_ifreq64;
2908	char tmp_buf[IFNAMSIZ];
2909	void __user *data64;
2910	u32 data32;
2911
2912	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2913			   IFNAMSIZ))
2914		return -EFAULT;
2915	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2916		return -EFAULT;
2917	data64 = compat_ptr(data32);
2918
2919	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2920
2921	/* Don't check these user accesses, just let that get trapped
2922	 * in the ioctl handler instead.
2923	 */
2924	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2925			 IFNAMSIZ))
2926		return -EFAULT;
2927	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2928		return -EFAULT;
2929
2930	return dev_ioctl(net, cmd, u_ifreq64);
2931}
2932
2933static int dev_ifsioc(struct net *net, struct socket *sock,
2934			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2935{
2936	struct ifreq __user *uifr;
2937	int err;
2938
2939	uifr = compat_alloc_user_space(sizeof(*uifr));
2940	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2941		return -EFAULT;
2942
2943	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2944
2945	if (!err) {
2946		switch (cmd) {
2947		case SIOCGIFFLAGS:
2948		case SIOCGIFMETRIC:
2949		case SIOCGIFMTU:
2950		case SIOCGIFMEM:
2951		case SIOCGIFHWADDR:
2952		case SIOCGIFINDEX:
2953		case SIOCGIFADDR:
2954		case SIOCGIFBRDADDR:
2955		case SIOCGIFDSTADDR:
2956		case SIOCGIFNETMASK:
2957		case SIOCGIFPFLAGS:
2958		case SIOCGIFTXQLEN:
2959		case SIOCGMIIPHY:
2960		case SIOCGMIIREG:
2961			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2962				err = -EFAULT;
2963			break;
2964		}
2965	}
2966	return err;
2967}
2968
2969static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2970			struct compat_ifreq __user *uifr32)
2971{
2972	struct ifreq ifr;
2973	struct compat_ifmap __user *uifmap32;
2974	mm_segment_t old_fs;
2975	int err;
2976
2977	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2978	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2979	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2980	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2981	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2982	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2983	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2984	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2985	if (err)
2986		return -EFAULT;
2987
2988	old_fs = get_fs();
2989	set_fs(KERNEL_DS);
2990	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2991	set_fs(old_fs);
2992
2993	if (cmd == SIOCGIFMAP && !err) {
2994		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2995		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2996		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2997		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2998		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2999		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3000		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3001		if (err)
3002			err = -EFAULT;
3003	}
3004	return err;
3005}
3006
3007static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3008{
3009	void __user *uptr;
3010	compat_uptr_t uptr32;
3011	struct ifreq __user *uifr;
3012
3013	uifr = compat_alloc_user_space(sizeof(*uifr));
3014	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3015		return -EFAULT;
3016
3017	if (get_user(uptr32, &uifr32->ifr_data))
3018		return -EFAULT;
3019
3020	uptr = compat_ptr(uptr32);
3021
3022	if (put_user(uptr, &uifr->ifr_data))
3023		return -EFAULT;
3024
3025	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3026}
3027
3028struct rtentry32 {
3029	u32		rt_pad1;
3030	struct sockaddr rt_dst;         /* target address               */
3031	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3032	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3033	unsigned short	rt_flags;
3034	short		rt_pad2;
3035	u32		rt_pad3;
3036	unsigned char	rt_tos;
3037	unsigned char	rt_class;
3038	short		rt_pad4;
3039	short		rt_metric;      /* +1 for binary compatibility! */
3040	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3041	u32		rt_mtu;         /* per route MTU/Window         */
3042	u32		rt_window;      /* Window clamping              */
3043	unsigned short  rt_irtt;        /* Initial RTT                  */
3044};
3045
3046struct in6_rtmsg32 {
3047	struct in6_addr		rtmsg_dst;
3048	struct in6_addr		rtmsg_src;
3049	struct in6_addr		rtmsg_gateway;
3050	u32			rtmsg_type;
3051	u16			rtmsg_dst_len;
3052	u16			rtmsg_src_len;
3053	u32			rtmsg_metric;
3054	u32			rtmsg_info;
3055	u32			rtmsg_flags;
3056	s32			rtmsg_ifindex;
3057};
3058
3059static int routing_ioctl(struct net *net, struct socket *sock,
3060			 unsigned int cmd, void __user *argp)
3061{
3062	int ret;
3063	void *r = NULL;
3064	struct in6_rtmsg r6;
3065	struct rtentry r4;
3066	char devname[16];
3067	u32 rtdev;
3068	mm_segment_t old_fs = get_fs();
3069
3070	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3071		struct in6_rtmsg32 __user *ur6 = argp;
3072		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3073			3 * sizeof(struct in6_addr));
3074		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3075		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3076		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3077		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3078		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3079		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3080		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3081
3082		r = (void *) &r6;
3083	} else { /* ipv4 */
3084		struct rtentry32 __user *ur4 = argp;
3085		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3086					3 * sizeof(struct sockaddr));
3087		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3088		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3089		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3090		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3091		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3092		ret |= __get_user(rtdev, &(ur4->rt_dev));
3093		if (rtdev) {
3094			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3095			r4.rt_dev = (char __user __force *)devname;
3096			devname[15] = 0;
3097		} else
3098			r4.rt_dev = NULL;
3099
3100		r = (void *) &r4;
3101	}
3102
3103	if (ret) {
3104		ret = -EFAULT;
3105		goto out;
3106	}
3107
3108	set_fs(KERNEL_DS);
3109	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3110	set_fs(old_fs);
3111
3112out:
3113	return ret;
3114}
3115
3116/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3117 * for some operations; this forces use of the newer bridge-utils that
3118 * use compatible ioctls
3119 */
3120static int old_bridge_ioctl(compat_ulong_t __user *argp)
3121{
3122	compat_ulong_t tmp;
3123
3124	if (get_user(tmp, argp))
3125		return -EFAULT;
3126	if (tmp == BRCTL_GET_VERSION)
3127		return BRCTL_VERSION + 1;
3128	return -EINVAL;
3129}
3130
3131static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3132			 unsigned int cmd, unsigned long arg)
3133{
3134	void __user *argp = compat_ptr(arg);
3135	struct sock *sk = sock->sk;
3136	struct net *net = sock_net(sk);
3137
3138	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3139		return siocdevprivate_ioctl(net, cmd, argp);
3140
3141	switch (cmd) {
3142	case SIOCSIFBR:
3143	case SIOCGIFBR:
3144		return old_bridge_ioctl(argp);
3145	case SIOCGIFNAME:
3146		return dev_ifname32(net, argp);
3147	case SIOCGIFCONF:
3148		return dev_ifconf(net, argp);
3149	case SIOCETHTOOL:
3150		return ethtool_ioctl(net, argp);
3151	case SIOCWANDEV:
3152		return compat_siocwandev(net, argp);
3153	case SIOCGIFMAP:
3154	case SIOCSIFMAP:
3155		return compat_sioc_ifmap(net, cmd, argp);
3156	case SIOCBONDENSLAVE:
3157	case SIOCBONDRELEASE:
3158	case SIOCBONDSETHWADDR:
3159	case SIOCBONDSLAVEINFOQUERY:
3160	case SIOCBONDINFOQUERY:
3161	case SIOCBONDCHANGEACTIVE:
3162		return bond_ioctl(net, cmd, argp);
3163	case SIOCADDRT:
3164	case SIOCDELRT:
3165		return routing_ioctl(net, sock, cmd, argp);
3166	case SIOCGSTAMP:
3167		return do_siocgstamp(net, sock, cmd, argp);
3168	case SIOCGSTAMPNS:
3169		return do_siocgstampns(net, sock, cmd, argp);
 
 
3170	case SIOCSHWTSTAMP:
3171		return compat_siocshwtstamp(net, argp);
 
3172
3173	case FIOSETOWN:
3174	case SIOCSPGRP:
3175	case FIOGETOWN:
3176	case SIOCGPGRP:
3177	case SIOCBRADDBR:
3178	case SIOCBRDELBR:
3179	case SIOCGIFVLAN:
3180	case SIOCSIFVLAN:
3181	case SIOCADDDLCI:
3182	case SIOCDELDLCI:
 
3183		return sock_ioctl(file, cmd, arg);
3184
3185	case SIOCGIFFLAGS:
3186	case SIOCSIFFLAGS:
3187	case SIOCGIFMETRIC:
3188	case SIOCSIFMETRIC:
3189	case SIOCGIFMTU:
3190	case SIOCSIFMTU:
3191	case SIOCGIFMEM:
3192	case SIOCSIFMEM:
3193	case SIOCGIFHWADDR:
3194	case SIOCSIFHWADDR:
3195	case SIOCADDMULTI:
3196	case SIOCDELMULTI:
3197	case SIOCGIFINDEX:
3198	case SIOCGIFADDR:
3199	case SIOCSIFADDR:
3200	case SIOCSIFHWBROADCAST:
3201	case SIOCDIFADDR:
3202	case SIOCGIFBRDADDR:
3203	case SIOCSIFBRDADDR:
3204	case SIOCGIFDSTADDR:
3205	case SIOCSIFDSTADDR:
3206	case SIOCGIFNETMASK:
3207	case SIOCSIFNETMASK:
3208	case SIOCSIFPFLAGS:
3209	case SIOCGIFPFLAGS:
3210	case SIOCGIFTXQLEN:
3211	case SIOCSIFTXQLEN:
3212	case SIOCBRADDIF:
3213	case SIOCBRDELIF:
3214	case SIOCSIFNAME:
3215	case SIOCGMIIPHY:
3216	case SIOCGMIIREG:
3217	case SIOCSMIIREG:
3218		return dev_ifsioc(net, sock, cmd, argp);
3219
3220	case SIOCSARP:
3221	case SIOCGARP:
3222	case SIOCDARP:
3223	case SIOCATMARK:
3224		return sock_do_ioctl(net, sock, cmd, arg);
3225	}
3226
3227	return -ENOIOCTLCMD;
3228}
3229
3230static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3231			      unsigned long arg)
3232{
3233	struct socket *sock = file->private_data;
3234	int ret = -ENOIOCTLCMD;
3235	struct sock *sk;
3236	struct net *net;
3237
3238	sk = sock->sk;
3239	net = sock_net(sk);
3240
3241	if (sock->ops->compat_ioctl)
3242		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3243
3244	if (ret == -ENOIOCTLCMD &&
3245	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3246		ret = compat_wext_handle_ioctl(net, cmd, arg);
3247
3248	if (ret == -ENOIOCTLCMD)
3249		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3250
3251	return ret;
3252}
3253#endif
3254
3255int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3256{
3257	return sock->ops->bind(sock, addr, addrlen);
3258}
3259EXPORT_SYMBOL(kernel_bind);
3260
3261int kernel_listen(struct socket *sock, int backlog)
3262{
3263	return sock->ops->listen(sock, backlog);
3264}
3265EXPORT_SYMBOL(kernel_listen);
3266
3267int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3268{
3269	struct sock *sk = sock->sk;
3270	int err;
3271
3272	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3273			       newsock);
3274	if (err < 0)
3275		goto done;
3276
3277	err = sock->ops->accept(sock, *newsock, flags);
3278	if (err < 0) {
3279		sock_release(*newsock);
3280		*newsock = NULL;
3281		goto done;
3282	}
3283
3284	(*newsock)->ops = sock->ops;
3285	__module_get((*newsock)->ops->owner);
3286
3287done:
3288	return err;
3289}
3290EXPORT_SYMBOL(kernel_accept);
3291
3292int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3293		   int flags)
3294{
3295	return sock->ops->connect(sock, addr, addrlen, flags);
3296}
3297EXPORT_SYMBOL(kernel_connect);
3298
3299int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3300			 int *addrlen)
3301{
3302	return sock->ops->getname(sock, addr, addrlen, 0);
3303}
3304EXPORT_SYMBOL(kernel_getsockname);
3305
3306int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3307			 int *addrlen)
3308{
3309	return sock->ops->getname(sock, addr, addrlen, 1);
3310}
3311EXPORT_SYMBOL(kernel_getpeername);
3312
3313int kernel_getsockopt(struct socket *sock, int level, int optname,
3314			char *optval, int *optlen)
3315{
3316	mm_segment_t oldfs = get_fs();
3317	char __user *uoptval;
3318	int __user *uoptlen;
3319	int err;
3320
3321	uoptval = (char __user __force *) optval;
3322	uoptlen = (int __user __force *) optlen;
3323
3324	set_fs(KERNEL_DS);
3325	if (level == SOL_SOCKET)
3326		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3327	else
3328		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3329					    uoptlen);
3330	set_fs(oldfs);
3331	return err;
3332}
3333EXPORT_SYMBOL(kernel_getsockopt);
3334
3335int kernel_setsockopt(struct socket *sock, int level, int optname,
3336			char *optval, unsigned int optlen)
3337{
3338	mm_segment_t oldfs = get_fs();
3339	char __user *uoptval;
3340	int err;
3341
3342	uoptval = (char __user __force *) optval;
3343
3344	set_fs(KERNEL_DS);
3345	if (level == SOL_SOCKET)
3346		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3347	else
3348		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3349					    optlen);
3350	set_fs(oldfs);
3351	return err;
3352}
3353EXPORT_SYMBOL(kernel_setsockopt);
3354
3355int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3356		    size_t size, int flags)
3357{
3358	sock_update_classid(sock->sk);
3359
3360	if (sock->ops->sendpage)
3361		return sock->ops->sendpage(sock, page, offset, size, flags);
3362
3363	return sock_no_sendpage(sock, page, offset, size, flags);
3364}
3365EXPORT_SYMBOL(kernel_sendpage);
3366
3367int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3368{
3369	mm_segment_t oldfs = get_fs();
3370	int err;
3371
3372	set_fs(KERNEL_DS);
3373	err = sock->ops->ioctl(sock, cmd, arg);
3374	set_fs(oldfs);
3375
3376	return err;
3377}
3378EXPORT_SYMBOL(kernel_sock_ioctl);
3379
3380int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3381{
3382	return sock->ops->shutdown(sock, how);
3383}
3384EXPORT_SYMBOL(kernel_sock_shutdown);