Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 
 
 
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122			      struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126			      unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130			     int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132				struct pipe_inode_info *pipe, size_t len,
 133				unsigned int flags);
 134
 135/*
 136 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *	in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141	.owner =	THIS_MODULE,
 142	.llseek =	no_llseek,
 143	.read_iter =	sock_read_iter,
 144	.write_iter =	sock_write_iter,
 145	.poll =		sock_poll,
 146	.unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148	.compat_ioctl = compat_sock_ioctl,
 149#endif
 150	.mmap =		sock_mmap,
 
 151	.release =	sock_close,
 152	.fasync =	sock_fasync,
 153	.sendpage =	sock_sendpage,
 154	.splice_write = generic_splice_sendpage,
 155	.splice_read =	sock_splice_read,
 156};
 157
 158/*
 159 *	The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *	Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *	move_addr_to_kernel	-	copy a socket address into kernel space
 179 *	@uaddr: Address in user space
 180 *	@kaddr: Address in kernel space
 181 *	@ulen: Length in user space
 182 *
 183 *	The address is copied into kernel space. If the provided address is
 184 *	too long an error code of -EINVAL is returned. If the copy gives
 185 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191		return -EINVAL;
 192	if (ulen == 0)
 193		return 0;
 194	if (copy_from_user(kaddr, uaddr, ulen))
 195		return -EFAULT;
 196	return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *	move_addr_to_user	-	copy an address to user space
 201 *	@kaddr: kernel space address
 202 *	@klen: length of address in kernel
 203 *	@uaddr: user space address
 204 *	@ulen: pointer to user length field
 205 *
 206 *	The value pointed to by ulen on entry is the buffer length available.
 207 *	This is overwritten with the buffer space used. -EINVAL is returned
 208 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *	is returned if either the buffer or the length field are not
 210 *	accessible.
 211 *	After copying the data up to the limit the user specifies, the true
 212 *	length of the data is written over the length limit the user
 213 *	specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217			     void __user *uaddr, int __user *ulen)
 218{
 219	int err;
 220	int len;
 221
 222	BUG_ON(klen > sizeof(struct sockaddr_storage));
 223	err = get_user(len, ulen);
 224	if (err)
 225		return err;
 226	if (len > klen)
 227		len = klen;
 228	if (len < 0)
 229		return -EINVAL;
 230	if (len) {
 231		if (audit_sockaddr(klen, kaddr))
 232			return -ENOMEM;
 233		if (copy_to_user(uaddr, kaddr, len))
 234			return -EFAULT;
 235	}
 236	/*
 237	 *      "fromlen shall refer to the value before truncation.."
 238	 *                      1003.1g
 239	 */
 240	return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247	struct socket_alloc *ei;
 248	struct socket_wq *wq;
 249
 250	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251	if (!ei)
 252		return NULL;
 253	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254	if (!wq) {
 255		kmem_cache_free(sock_inode_cachep, ei);
 256		return NULL;
 257	}
 258	init_waitqueue_head(&wq->wait);
 259	wq->fasync_list = NULL;
 260	wq->flags = 0;
 261	RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263	ei->socket.state = SS_UNCONNECTED;
 264	ei->socket.flags = 0;
 265	ei->socket.ops = NULL;
 266	ei->socket.sk = NULL;
 267	ei->socket.file = NULL;
 268
 269	return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274	struct socket_alloc *ei;
 275	struct socket_wq *wq;
 276
 277	ei = container_of(inode, struct socket_alloc, vfs_inode);
 278	wq = rcu_dereference_protected(ei->socket.wq, 1);
 279	kfree_rcu(wq, rcu);
 280	kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285	struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287	inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293					      sizeof(struct socket_alloc),
 294					      0,
 295					      (SLAB_HWCACHE_ALIGN |
 296					       SLAB_RECLAIM_ACCOUNT |
 297					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298					      init_once);
 299	if (sock_inode_cachep == NULL)
 300		return -ENOMEM;
 301	return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305	.alloc_inode	= sock_alloc_inode,
 306	.destroy_inode	= sock_destroy_inode,
 307	.statfs		= simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316				d_inode(dentry)->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320	.d_dname  = sockfs_dname,
 321};
 322
 323static int sockfs_xattr_get(const struct xattr_handler *handler,
 324			    struct dentry *dentry, struct inode *inode,
 325			    const char *suffix, void *value, size_t size)
 326{
 327	if (value) {
 328		if (dentry->d_name.len + 1 > size)
 329			return -ERANGE;
 330		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 331	}
 332	return dentry->d_name.len + 1;
 333}
 334
 335#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 336#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 337#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 338
 339static const struct xattr_handler sockfs_xattr_handler = {
 340	.name = XATTR_NAME_SOCKPROTONAME,
 341	.get = sockfs_xattr_get,
 342};
 343
 344static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 345				     struct dentry *dentry, struct inode *inode,
 346				     const char *suffix, const void *value,
 347				     size_t size, int flags)
 348{
 349	/* Handled by LSM. */
 350	return -EAGAIN;
 351}
 352
 353static const struct xattr_handler sockfs_security_xattr_handler = {
 354	.prefix = XATTR_SECURITY_PREFIX,
 355	.set = sockfs_security_xattr_set,
 356};
 357
 358static const struct xattr_handler *sockfs_xattr_handlers[] = {
 359	&sockfs_xattr_handler,
 360	&sockfs_security_xattr_handler,
 361	NULL
 362};
 363
 364static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 365			 int flags, const char *dev_name, void *data)
 366{
 367	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 368				  sockfs_xattr_handlers,
 369				  &sockfs_dentry_operations, SOCKFS_MAGIC);
 370}
 371
 372static struct vfsmount *sock_mnt __read_mostly;
 373
 374static struct file_system_type sock_fs_type = {
 375	.name =		"sockfs",
 376	.mount =	sockfs_mount,
 377	.kill_sb =	kill_anon_super,
 378};
 379
 380/*
 381 *	Obtains the first available file descriptor and sets it up for use.
 382 *
 383 *	These functions create file structures and maps them to fd space
 384 *	of the current process. On success it returns file descriptor
 385 *	and file struct implicitly stored in sock->file.
 386 *	Note that another thread may close file descriptor before we return
 387 *	from this function. We use the fact that now we do not refer
 388 *	to socket after mapping. If one day we will need it, this
 389 *	function will increment ref. count on file by 1.
 390 *
 391 *	In any case returned fd MAY BE not valid!
 392 *	This race condition is unavoidable
 393 *	with shared fd spaces, we cannot solve it inside kernel,
 394 *	but we take care of internal coherence yet.
 395 */
 396
 397struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 398{
 399	struct qstr name = { .name = "" };
 400	struct path path;
 401	struct file *file;
 402
 403	if (dname) {
 404		name.name = dname;
 405		name.len = strlen(name.name);
 406	} else if (sock->sk) {
 407		name.name = sock->sk->sk_prot_creator->name;
 408		name.len = strlen(name.name);
 409	}
 410	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 411	if (unlikely(!path.dentry))
 412		return ERR_PTR(-ENOMEM);
 413	path.mnt = mntget(sock_mnt);
 414
 415	d_instantiate(path.dentry, SOCK_INODE(sock));
 
 416
 417	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 418		  &socket_file_ops);
 419	if (IS_ERR(file)) {
 420		/* drop dentry, keep inode */
 421		ihold(d_inode(path.dentry));
 422		path_put(&path);
 423		return file;
 424	}
 425
 426	sock->file = file;
 427	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 428	file->private_data = sock;
 429	return file;
 430}
 431EXPORT_SYMBOL(sock_alloc_file);
 432
 433static int sock_map_fd(struct socket *sock, int flags)
 434{
 435	struct file *newfile;
 436	int fd = get_unused_fd_flags(flags);
 437	if (unlikely(fd < 0))
 438		return fd;
 439
 440	newfile = sock_alloc_file(sock, flags, NULL);
 441	if (likely(!IS_ERR(newfile))) {
 442		fd_install(fd, newfile);
 443		return fd;
 444	}
 445
 446	put_unused_fd(fd);
 447	return PTR_ERR(newfile);
 448}
 449
 450struct socket *sock_from_file(struct file *file, int *err)
 451{
 452	if (file->f_op == &socket_file_ops)
 453		return file->private_data;	/* set in sock_map_fd */
 454
 455	*err = -ENOTSOCK;
 456	return NULL;
 457}
 458EXPORT_SYMBOL(sock_from_file);
 459
 460/**
 461 *	sockfd_lookup - Go from a file number to its socket slot
 462 *	@fd: file handle
 463 *	@err: pointer to an error code return
 464 *
 465 *	The file handle passed in is locked and the socket it is bound
 466 *	too is returned. If an error occurs the err pointer is overwritten
 467 *	with a negative errno code and NULL is returned. The function checks
 468 *	for both invalid handles and passing a handle which is not a socket.
 469 *
 470 *	On a success the socket object pointer is returned.
 471 */
 472
 473struct socket *sockfd_lookup(int fd, int *err)
 474{
 475	struct file *file;
 476	struct socket *sock;
 477
 478	file = fget(fd);
 479	if (!file) {
 480		*err = -EBADF;
 481		return NULL;
 482	}
 483
 484	sock = sock_from_file(file, err);
 485	if (!sock)
 486		fput(file);
 487	return sock;
 488}
 489EXPORT_SYMBOL(sockfd_lookup);
 490
 491static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 492{
 493	struct fd f = fdget(fd);
 494	struct socket *sock;
 495
 496	*err = -EBADF;
 497	if (f.file) {
 498		sock = sock_from_file(f.file, err);
 499		if (likely(sock)) {
 500			*fput_needed = f.flags;
 501			return sock;
 502		}
 503		fdput(f);
 504	}
 505	return NULL;
 506}
 507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 509				size_t size)
 510{
 511	ssize_t len;
 512	ssize_t used = 0;
 513
 514	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 515	if (len < 0)
 516		return len;
 517	used += len;
 518	if (buffer) {
 519		if (size < used)
 520			return -ERANGE;
 521		buffer += len;
 522	}
 523
 524	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 525	used += len;
 526	if (buffer) {
 527		if (size < used)
 528			return -ERANGE;
 529		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 530		buffer += len;
 531	}
 532
 533	return used;
 534}
 535
 536static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 537{
 538	int err = simple_setattr(dentry, iattr);
 539
 540	if (!err && (iattr->ia_valid & ATTR_UID)) {
 541		struct socket *sock = SOCKET_I(d_inode(dentry));
 542
 543		sock->sk->sk_uid = iattr->ia_uid;
 544	}
 545
 546	return err;
 547}
 548
 549static const struct inode_operations sockfs_inode_ops = {
 
 550	.listxattr = sockfs_listxattr,
 551	.setattr = sockfs_setattr,
 552};
 553
 554/**
 555 *	sock_alloc	-	allocate a socket
 556 *
 557 *	Allocate a new inode and socket object. The two are bound together
 558 *	and initialised. The socket is then returned. If we are out of inodes
 559 *	NULL is returned.
 560 */
 561
 562struct socket *sock_alloc(void)
 563{
 564	struct inode *inode;
 565	struct socket *sock;
 566
 567	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 568	if (!inode)
 569		return NULL;
 570
 571	sock = SOCKET_I(inode);
 572
 573	kmemcheck_annotate_bitfield(sock, type);
 574	inode->i_ino = get_next_ino();
 575	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 576	inode->i_uid = current_fsuid();
 577	inode->i_gid = current_fsgid();
 578	inode->i_op = &sockfs_inode_ops;
 579
 580	this_cpu_add(sockets_in_use, 1);
 581	return sock;
 582}
 583EXPORT_SYMBOL(sock_alloc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584
 585/**
 586 *	sock_release	-	close a socket
 587 *	@sock: socket to close
 588 *
 589 *	The socket is released from the protocol stack if it has a release
 590 *	callback, and the inode is then released if the socket is bound to
 591 *	an inode not a file.
 592 */
 593
 594void sock_release(struct socket *sock)
 595{
 596	if (sock->ops) {
 597		struct module *owner = sock->ops->owner;
 598
 599		sock->ops->release(sock);
 600		sock->ops = NULL;
 601		module_put(owner);
 602	}
 603
 604	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 605		pr_err("%s: fasync list not empty!\n", __func__);
 606
 
 
 
 607	this_cpu_sub(sockets_in_use, 1);
 608	if (!sock->file) {
 609		iput(SOCK_INODE(sock));
 610		return;
 611	}
 612	sock->file = NULL;
 613}
 614EXPORT_SYMBOL(sock_release);
 615
 616void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 617{
 618	u8 flags = *tx_flags;
 
 
 
 
 
 
 
 
 619
 620	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 621		flags |= SKBTX_HW_TSTAMP;
 
 
 
 
 
 
 
 622
 623	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 624		flags |= SKBTX_SW_TSTAMP;
 625
 626	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 627		flags |= SKBTX_SCHED_TSTAMP;
 
 
 628
 629	*tx_flags = flags;
 630}
 631EXPORT_SYMBOL(__sock_tx_timestamp);
 632
 633static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 634{
 635	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 636	BUG_ON(ret == -EIOCBQUEUED);
 
 
 
 
 
 
 
 637	return ret;
 638}
 
 639
 640int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 641{
 642	int err = security_socket_sendmsg(sock, msg,
 643					  msg_data_left(msg));
 
 644
 645	return err ?: sock_sendmsg_nosec(sock, msg);
 
 
 
 
 
 646}
 647EXPORT_SYMBOL(sock_sendmsg);
 648
 649int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 650		   struct kvec *vec, size_t num, size_t size)
 651{
 652	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 653	return sock_sendmsg(sock, msg);
 
 
 
 
 
 
 
 
 
 
 
 654}
 655EXPORT_SYMBOL(kernel_sendmsg);
 656
 657/*
 658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 659 */
 660void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 661	struct sk_buff *skb)
 662{
 663	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 664	struct scm_timestamping tss;
 665	int empty = 1;
 666	struct skb_shared_hwtstamps *shhwtstamps =
 667		skb_hwtstamps(skb);
 668
 669	/* Race occurred between timestamp enabling and packet
 670	   receiving.  Fill in the current time for now. */
 671	if (need_software_tstamp && skb->tstamp == 0)
 672		__net_timestamp(skb);
 673
 674	if (need_software_tstamp) {
 675		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 676			struct timeval tv;
 677			skb_get_timestamp(skb, &tv);
 678			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 679				 sizeof(tv), &tv);
 680		} else {
 681			struct timespec ts;
 682			skb_get_timestampns(skb, &ts);
 683			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 684				 sizeof(ts), &ts);
 685		}
 686	}
 687
 688	memset(&tss, 0, sizeof(tss));
 689	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 690	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 691		empty = 0;
 692	if (shhwtstamps &&
 693	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 694	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 695		empty = 0;
 696	if (!empty) {
 697		put_cmsg(msg, SOL_SOCKET,
 698			 SCM_TIMESTAMPING, sizeof(tss), &tss);
 699
 700		if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
 701			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 702				 skb->len, skb->data);
 
 
 
 
 
 
 
 
 703	}
 
 
 
 704}
 705EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 706
 707void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 708	struct sk_buff *skb)
 709{
 710	int ack;
 711
 712	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 713		return;
 714	if (!skb->wifi_acked_valid)
 715		return;
 716
 717	ack = skb->wifi_acked;
 718
 719	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 720}
 721EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 722
 723static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 724				   struct sk_buff *skb)
 725{
 726	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 727		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 728			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 729}
 730
 731void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 732	struct sk_buff *skb)
 733{
 734	sock_recv_timestamp(msg, sk, skb);
 735	sock_recv_drops(msg, sk, skb);
 736}
 737EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 738
 739static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 740				     int flags)
 741{
 742	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743}
 744
 745int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 
 746{
 747	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 
 
 748
 749	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 
 
 
 
 
 750}
 751EXPORT_SYMBOL(sock_recvmsg);
 752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753/**
 754 * kernel_recvmsg - Receive a message from a socket (kernel space)
 755 * @sock:       The socket to receive the message from
 756 * @msg:        Received message
 757 * @vec:        Input s/g array for message data
 758 * @num:        Size of input s/g array
 759 * @size:       Number of bytes to read
 760 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 761 *
 762 * On return the msg structure contains the scatter/gather array passed in the
 763 * vec argument. The array is modified so that it consists of the unfilled
 764 * portion of the original array.
 765 *
 766 * The returned value is the total number of bytes received, or an error.
 767 */
 768int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 769		   struct kvec *vec, size_t num, size_t size, int flags)
 770{
 771	mm_segment_t oldfs = get_fs();
 772	int result;
 773
 774	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 775	set_fs(KERNEL_DS);
 776	result = sock_recvmsg(sock, msg, flags);
 
 
 
 
 
 777	set_fs(oldfs);
 778	return result;
 779}
 780EXPORT_SYMBOL(kernel_recvmsg);
 781
 782static ssize_t sock_sendpage(struct file *file, struct page *page,
 783			     int offset, size_t size, loff_t *ppos, int more)
 784{
 785	struct socket *sock;
 786	int flags;
 787
 788	sock = file->private_data;
 789
 790	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 791	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 792	flags |= more;
 793
 794	return kernel_sendpage(sock, page, offset, size, flags);
 795}
 796
 797static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 798				struct pipe_inode_info *pipe, size_t len,
 799				unsigned int flags)
 800{
 801	struct socket *sock = file->private_data;
 802
 803	if (unlikely(!sock->ops->splice_read))
 804		return -EINVAL;
 805
 806	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 807}
 808
 809static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 810{
 811	struct file *file = iocb->ki_filp;
 812	struct socket *sock = file->private_data;
 813	struct msghdr msg = {.msg_iter = *to,
 814			     .msg_iocb = iocb};
 815	ssize_t res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 816
 817	if (file->f_flags & O_NONBLOCK)
 818		msg.msg_flags = MSG_DONTWAIT;
 
 
 819
 820	if (iocb->ki_pos != 0)
 821		return -ESPIPE;
 822
 823	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 824		return 0;
 825
 826	res = sock_recvmsg(sock, &msg, msg.msg_flags);
 827	*to = msg.msg_iter;
 828	return res;
 
 
 829}
 830
 831static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
 
 832{
 833	struct file *file = iocb->ki_filp;
 834	struct socket *sock = file->private_data;
 835	struct msghdr msg = {.msg_iter = *from,
 836			     .msg_iocb = iocb};
 837	ssize_t res;
 838
 839	if (iocb->ki_pos != 0)
 840		return -ESPIPE;
 841
 842	if (file->f_flags & O_NONBLOCK)
 843		msg.msg_flags = MSG_DONTWAIT;
 844
 
 
 
 
 
 
 
 845	if (sock->type == SOCK_SEQPACKET)
 846		msg.msg_flags |= MSG_EOR;
 
 
 
 
 
 
 
 
 
 
 
 847
 848	res = sock_sendmsg(sock, &msg);
 849	*from = msg.msg_iter;
 850	return res;
 
 
 851}
 852
 853/*
 854 * Atomic setting of ioctl hooks to avoid race
 855 * with module unload.
 856 */
 857
 858static DEFINE_MUTEX(br_ioctl_mutex);
 859static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 860
 861void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 862{
 863	mutex_lock(&br_ioctl_mutex);
 864	br_ioctl_hook = hook;
 865	mutex_unlock(&br_ioctl_mutex);
 866}
 867EXPORT_SYMBOL(brioctl_set);
 868
 869static DEFINE_MUTEX(vlan_ioctl_mutex);
 870static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 871
 872void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 873{
 874	mutex_lock(&vlan_ioctl_mutex);
 875	vlan_ioctl_hook = hook;
 876	mutex_unlock(&vlan_ioctl_mutex);
 877}
 878EXPORT_SYMBOL(vlan_ioctl_set);
 879
 880static DEFINE_MUTEX(dlci_ioctl_mutex);
 881static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 882
 883void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 884{
 885	mutex_lock(&dlci_ioctl_mutex);
 886	dlci_ioctl_hook = hook;
 887	mutex_unlock(&dlci_ioctl_mutex);
 888}
 889EXPORT_SYMBOL(dlci_ioctl_set);
 890
 891static long sock_do_ioctl(struct net *net, struct socket *sock,
 892				 unsigned int cmd, unsigned long arg)
 893{
 894	int err;
 895	void __user *argp = (void __user *)arg;
 896
 897	err = sock->ops->ioctl(sock, cmd, arg);
 898
 899	/*
 900	 * If this ioctl is unknown try to hand it down
 901	 * to the NIC driver.
 902	 */
 903	if (err == -ENOIOCTLCMD)
 904		err = dev_ioctl(net, cmd, argp);
 905
 906	return err;
 907}
 908
 909/*
 910 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 911 *	what to do with it - that's up to the protocol still.
 912 */
 913
 914static struct ns_common *get_net_ns(struct ns_common *ns)
 915{
 916	return &get_net(container_of(ns, struct net, ns))->ns;
 917}
 918
 919static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 920{
 921	struct socket *sock;
 922	struct sock *sk;
 923	void __user *argp = (void __user *)arg;
 924	int pid, err;
 925	struct net *net;
 926
 927	sock = file->private_data;
 928	sk = sock->sk;
 929	net = sock_net(sk);
 930	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 931		err = dev_ioctl(net, cmd, argp);
 932	} else
 933#ifdef CONFIG_WEXT_CORE
 934	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 935		err = dev_ioctl(net, cmd, argp);
 936	} else
 937#endif
 938		switch (cmd) {
 939		case FIOSETOWN:
 940		case SIOCSPGRP:
 941			err = -EFAULT;
 942			if (get_user(pid, (int __user *)argp))
 943				break;
 944			f_setown(sock->file, pid, 1);
 945			err = 0;
 946			break;
 947		case FIOGETOWN:
 948		case SIOCGPGRP:
 949			err = put_user(f_getown(sock->file),
 950				       (int __user *)argp);
 951			break;
 952		case SIOCGIFBR:
 953		case SIOCSIFBR:
 954		case SIOCBRADDBR:
 955		case SIOCBRDELBR:
 956			err = -ENOPKG;
 957			if (!br_ioctl_hook)
 958				request_module("bridge");
 959
 960			mutex_lock(&br_ioctl_mutex);
 961			if (br_ioctl_hook)
 962				err = br_ioctl_hook(net, cmd, argp);
 963			mutex_unlock(&br_ioctl_mutex);
 964			break;
 965		case SIOCGIFVLAN:
 966		case SIOCSIFVLAN:
 967			err = -ENOPKG;
 968			if (!vlan_ioctl_hook)
 969				request_module("8021q");
 970
 971			mutex_lock(&vlan_ioctl_mutex);
 972			if (vlan_ioctl_hook)
 973				err = vlan_ioctl_hook(net, argp);
 974			mutex_unlock(&vlan_ioctl_mutex);
 975			break;
 976		case SIOCADDDLCI:
 977		case SIOCDELDLCI:
 978			err = -ENOPKG;
 979			if (!dlci_ioctl_hook)
 980				request_module("dlci");
 981
 982			mutex_lock(&dlci_ioctl_mutex);
 983			if (dlci_ioctl_hook)
 984				err = dlci_ioctl_hook(cmd, argp);
 985			mutex_unlock(&dlci_ioctl_mutex);
 986			break;
 987		case SIOCGSKNS:
 988			err = -EPERM;
 989			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
 990				break;
 991
 992			err = open_related_ns(&net->ns, get_net_ns);
 993			break;
 994		default:
 995			err = sock_do_ioctl(net, sock, cmd, arg);
 996			break;
 997		}
 998	return err;
 999}
1000
1001int sock_create_lite(int family, int type, int protocol, struct socket **res)
1002{
1003	int err;
1004	struct socket *sock = NULL;
1005
1006	err = security_socket_create(family, type, protocol, 1);
1007	if (err)
1008		goto out;
1009
1010	sock = sock_alloc();
1011	if (!sock) {
1012		err = -ENOMEM;
1013		goto out;
1014	}
1015
1016	sock->type = type;
1017	err = security_socket_post_create(sock, family, type, protocol, 1);
1018	if (err)
1019		goto out_release;
1020
1021out:
1022	*res = sock;
1023	return err;
1024out_release:
1025	sock_release(sock);
1026	sock = NULL;
1027	goto out;
1028}
1029EXPORT_SYMBOL(sock_create_lite);
1030
1031/* No kernel lock held - perfect */
1032static unsigned int sock_poll(struct file *file, poll_table *wait)
1033{
1034	unsigned int busy_flag = 0;
1035	struct socket *sock;
1036
1037	/*
1038	 *      We can't return errors to poll, so it's either yes or no.
1039	 */
1040	sock = file->private_data;
1041
1042	if (sk_can_busy_loop(sock->sk)) {
1043		/* this socket can poll_ll so tell the system call */
1044		busy_flag = POLL_BUSY_LOOP;
1045
1046		/* once, only if requested by syscall */
1047		if (wait && (wait->_key & POLL_BUSY_LOOP))
1048			sk_busy_loop(sock->sk, 1);
1049	}
1050
1051	return busy_flag | sock->ops->poll(file, sock, wait);
1052}
1053
1054static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1055{
1056	struct socket *sock = file->private_data;
1057
1058	return sock->ops->mmap(file, sock, vma);
1059}
1060
1061static int sock_close(struct inode *inode, struct file *filp)
1062{
1063	sock_release(SOCKET_I(inode));
1064	return 0;
1065}
1066
1067/*
1068 *	Update the socket async list
1069 *
1070 *	Fasync_list locking strategy.
1071 *
1072 *	1. fasync_list is modified only under process context socket lock
1073 *	   i.e. under semaphore.
1074 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1075 *	   or under socket lock
1076 */
1077
1078static int sock_fasync(int fd, struct file *filp, int on)
1079{
1080	struct socket *sock = filp->private_data;
1081	struct sock *sk = sock->sk;
1082	struct socket_wq *wq;
1083
1084	if (sk == NULL)
1085		return -EINVAL;
1086
1087	lock_sock(sk);
1088	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1089	fasync_helper(fd, filp, on, &wq->fasync_list);
1090
1091	if (!wq->fasync_list)
1092		sock_reset_flag(sk, SOCK_FASYNC);
1093	else
1094		sock_set_flag(sk, SOCK_FASYNC);
1095
1096	release_sock(sk);
1097	return 0;
1098}
1099
1100/* This function may be called only under rcu_lock */
1101
1102int sock_wake_async(struct socket_wq *wq, int how, int band)
1103{
1104	if (!wq || !wq->fasync_list)
1105		return -1;
1106
 
 
 
 
 
 
 
 
1107	switch (how) {
1108	case SOCK_WAKE_WAITD:
1109		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1110			break;
1111		goto call_kill;
1112	case SOCK_WAKE_SPACE:
1113		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1114			break;
1115		/* fall through */
1116	case SOCK_WAKE_IO:
1117call_kill:
1118		kill_fasync(&wq->fasync_list, SIGIO, band);
1119		break;
1120	case SOCK_WAKE_URG:
1121		kill_fasync(&wq->fasync_list, SIGURG, band);
1122	}
1123
1124	return 0;
1125}
1126EXPORT_SYMBOL(sock_wake_async);
1127
1128int __sock_create(struct net *net, int family, int type, int protocol,
1129			 struct socket **res, int kern)
1130{
1131	int err;
1132	struct socket *sock;
1133	const struct net_proto_family *pf;
1134
1135	/*
1136	 *      Check protocol is in range
1137	 */
1138	if (family < 0 || family >= NPROTO)
1139		return -EAFNOSUPPORT;
1140	if (type < 0 || type >= SOCK_MAX)
1141		return -EINVAL;
1142
1143	/* Compatibility.
1144
1145	   This uglymoron is moved from INET layer to here to avoid
1146	   deadlock in module load.
1147	 */
1148	if (family == PF_INET && type == SOCK_PACKET) {
1149		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1150			     current->comm);
 
 
 
 
1151		family = PF_PACKET;
1152	}
1153
1154	err = security_socket_create(family, type, protocol, kern);
1155	if (err)
1156		return err;
1157
1158	/*
1159	 *	Allocate the socket and allow the family to set things up. if
1160	 *	the protocol is 0, the family is instructed to select an appropriate
1161	 *	default.
1162	 */
1163	sock = sock_alloc();
1164	if (!sock) {
1165		net_warn_ratelimited("socket: no more sockets\n");
1166		return -ENFILE;	/* Not exactly a match, but its the
1167				   closest posix thing */
1168	}
1169
1170	sock->type = type;
1171
1172#ifdef CONFIG_MODULES
1173	/* Attempt to load a protocol module if the find failed.
1174	 *
1175	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1176	 * requested real, full-featured networking support upon configuration.
1177	 * Otherwise module support will break!
1178	 */
1179	if (rcu_access_pointer(net_families[family]) == NULL)
1180		request_module("net-pf-%d", family);
1181#endif
1182
1183	rcu_read_lock();
1184	pf = rcu_dereference(net_families[family]);
1185	err = -EAFNOSUPPORT;
1186	if (!pf)
1187		goto out_release;
1188
1189	/*
1190	 * We will call the ->create function, that possibly is in a loadable
1191	 * module, so we have to bump that loadable module refcnt first.
1192	 */
1193	if (!try_module_get(pf->owner))
1194		goto out_release;
1195
1196	/* Now protected by module ref count */
1197	rcu_read_unlock();
1198
1199	err = pf->create(net, sock, protocol, kern);
1200	if (err < 0)
1201		goto out_module_put;
1202
1203	/*
1204	 * Now to bump the refcnt of the [loadable] module that owns this
1205	 * socket at sock_release time we decrement its refcnt.
1206	 */
1207	if (!try_module_get(sock->ops->owner))
1208		goto out_module_busy;
1209
1210	/*
1211	 * Now that we're done with the ->create function, the [loadable]
1212	 * module can have its refcnt decremented
1213	 */
1214	module_put(pf->owner);
1215	err = security_socket_post_create(sock, family, type, protocol, kern);
1216	if (err)
1217		goto out_sock_release;
1218	*res = sock;
1219
1220	return 0;
1221
1222out_module_busy:
1223	err = -EAFNOSUPPORT;
1224out_module_put:
1225	sock->ops = NULL;
1226	module_put(pf->owner);
1227out_sock_release:
1228	sock_release(sock);
1229	return err;
1230
1231out_release:
1232	rcu_read_unlock();
1233	goto out_sock_release;
1234}
1235EXPORT_SYMBOL(__sock_create);
1236
1237int sock_create(int family, int type, int protocol, struct socket **res)
1238{
1239	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1240}
1241EXPORT_SYMBOL(sock_create);
1242
1243int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1244{
1245	return __sock_create(net, family, type, protocol, res, 1);
1246}
1247EXPORT_SYMBOL(sock_create_kern);
1248
1249SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1250{
1251	int retval;
1252	struct socket *sock;
1253	int flags;
1254
1255	/* Check the SOCK_* constants for consistency.  */
1256	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1257	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1258	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1259	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1260
1261	flags = type & ~SOCK_TYPE_MASK;
1262	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263		return -EINVAL;
1264	type &= SOCK_TYPE_MASK;
1265
1266	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268
1269	retval = sock_create(family, type, protocol, &sock);
1270	if (retval < 0)
1271		goto out;
1272
1273	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1274	if (retval < 0)
1275		goto out_release;
1276
1277out:
1278	/* It may be already another descriptor 8) Not kernel problem. */
1279	return retval;
1280
1281out_release:
1282	sock_release(sock);
1283	return retval;
1284}
1285
1286/*
1287 *	Create a pair of connected sockets.
1288 */
1289
1290SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1291		int __user *, usockvec)
1292{
1293	struct socket *sock1, *sock2;
1294	int fd1, fd2, err;
1295	struct file *newfile1, *newfile2;
1296	int flags;
1297
1298	flags = type & ~SOCK_TYPE_MASK;
1299	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1300		return -EINVAL;
1301	type &= SOCK_TYPE_MASK;
1302
1303	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305
1306	/*
1307	 * Obtain the first socket and check if the underlying protocol
1308	 * supports the socketpair call.
1309	 */
1310
1311	err = sock_create(family, type, protocol, &sock1);
1312	if (err < 0)
1313		goto out;
1314
1315	err = sock_create(family, type, protocol, &sock2);
1316	if (err < 0)
1317		goto out_release_1;
1318
1319	err = sock1->ops->socketpair(sock1, sock2);
1320	if (err < 0)
1321		goto out_release_both;
1322
1323	fd1 = get_unused_fd_flags(flags);
1324	if (unlikely(fd1 < 0)) {
1325		err = fd1;
1326		goto out_release_both;
1327	}
1328
1329	fd2 = get_unused_fd_flags(flags);
1330	if (unlikely(fd2 < 0)) {
1331		err = fd2;
1332		goto out_put_unused_1;
1333	}
1334
1335	newfile1 = sock_alloc_file(sock1, flags, NULL);
1336	if (IS_ERR(newfile1)) {
1337		err = PTR_ERR(newfile1);
1338		goto out_put_unused_both;
1339	}
1340
1341	newfile2 = sock_alloc_file(sock2, flags, NULL);
1342	if (IS_ERR(newfile2)) {
1343		err = PTR_ERR(newfile2);
1344		goto out_fput_1;
1345	}
1346
1347	err = put_user(fd1, &usockvec[0]);
1348	if (err)
1349		goto out_fput_both;
1350
1351	err = put_user(fd2, &usockvec[1]);
1352	if (err)
1353		goto out_fput_both;
1354
1355	audit_fd_pair(fd1, fd2);
1356
1357	fd_install(fd1, newfile1);
1358	fd_install(fd2, newfile2);
1359	/* fd1 and fd2 may be already another descriptors.
1360	 * Not kernel problem.
1361	 */
1362
1363	return 0;
1364
1365out_fput_both:
1366	fput(newfile2);
1367	fput(newfile1);
1368	put_unused_fd(fd2);
1369	put_unused_fd(fd1);
1370	goto out;
1371
1372out_fput_1:
1373	fput(newfile1);
1374	put_unused_fd(fd2);
1375	put_unused_fd(fd1);
1376	sock_release(sock2);
1377	goto out;
1378
1379out_put_unused_both:
1380	put_unused_fd(fd2);
1381out_put_unused_1:
1382	put_unused_fd(fd1);
1383out_release_both:
1384	sock_release(sock2);
1385out_release_1:
1386	sock_release(sock1);
1387out:
1388	return err;
1389}
1390
1391/*
1392 *	Bind a name to a socket. Nothing much to do here since it's
1393 *	the protocol's responsibility to handle the local address.
1394 *
1395 *	We move the socket address to kernel space before we call
1396 *	the protocol layer (having also checked the address is ok).
1397 */
1398
1399SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1400{
1401	struct socket *sock;
1402	struct sockaddr_storage address;
1403	int err, fput_needed;
1404
1405	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1406	if (sock) {
1407		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1408		if (err >= 0) {
1409			err = security_socket_bind(sock,
1410						   (struct sockaddr *)&address,
1411						   addrlen);
1412			if (!err)
1413				err = sock->ops->bind(sock,
1414						      (struct sockaddr *)
1415						      &address, addrlen);
1416		}
1417		fput_light(sock->file, fput_needed);
1418	}
1419	return err;
1420}
1421
1422/*
1423 *	Perform a listen. Basically, we allow the protocol to do anything
1424 *	necessary for a listen, and if that works, we mark the socket as
1425 *	ready for listening.
1426 */
1427
1428SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1429{
1430	struct socket *sock;
1431	int err, fput_needed;
1432	int somaxconn;
1433
1434	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1435	if (sock) {
1436		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1437		if ((unsigned int)backlog > somaxconn)
1438			backlog = somaxconn;
1439
1440		err = security_socket_listen(sock, backlog);
1441		if (!err)
1442			err = sock->ops->listen(sock, backlog);
1443
1444		fput_light(sock->file, fput_needed);
1445	}
1446	return err;
1447}
1448
1449/*
1450 *	For accept, we attempt to create a new socket, set up the link
1451 *	with the client, wake up the client, then return the new
1452 *	connected fd. We collect the address of the connector in kernel
1453 *	space and move it to user at the very end. This is unclean because
1454 *	we open the socket then return an error.
1455 *
1456 *	1003.1g adds the ability to recvmsg() to query connection pending
1457 *	status to recvmsg. We need to add that support in a way thats
1458 *	clean when we restucture accept also.
1459 */
1460
1461SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1462		int __user *, upeer_addrlen, int, flags)
1463{
1464	struct socket *sock, *newsock;
1465	struct file *newfile;
1466	int err, len, newfd, fput_needed;
1467	struct sockaddr_storage address;
1468
1469	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1470		return -EINVAL;
1471
1472	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1473		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1474
1475	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476	if (!sock)
1477		goto out;
1478
1479	err = -ENFILE;
1480	newsock = sock_alloc();
1481	if (!newsock)
1482		goto out_put;
1483
1484	newsock->type = sock->type;
1485	newsock->ops = sock->ops;
1486
1487	/*
1488	 * We don't need try_module_get here, as the listening socket (sock)
1489	 * has the protocol module (sock->ops->owner) held.
1490	 */
1491	__module_get(newsock->ops->owner);
1492
1493	newfd = get_unused_fd_flags(flags);
1494	if (unlikely(newfd < 0)) {
1495		err = newfd;
1496		sock_release(newsock);
1497		goto out_put;
1498	}
1499	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1500	if (IS_ERR(newfile)) {
1501		err = PTR_ERR(newfile);
1502		put_unused_fd(newfd);
1503		sock_release(newsock);
1504		goto out_put;
1505	}
1506
1507	err = security_socket_accept(sock, newsock);
1508	if (err)
1509		goto out_fd;
1510
1511	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1512	if (err < 0)
1513		goto out_fd;
1514
1515	if (upeer_sockaddr) {
1516		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1517					  &len, 2) < 0) {
1518			err = -ECONNABORTED;
1519			goto out_fd;
1520		}
1521		err = move_addr_to_user(&address,
1522					len, upeer_sockaddr, upeer_addrlen);
1523		if (err < 0)
1524			goto out_fd;
1525	}
1526
1527	/* File flags are not inherited via accept() unlike another OSes. */
1528
1529	fd_install(newfd, newfile);
1530	err = newfd;
1531
1532out_put:
1533	fput_light(sock->file, fput_needed);
1534out:
1535	return err;
1536out_fd:
1537	fput(newfile);
1538	put_unused_fd(newfd);
1539	goto out_put;
1540}
1541
1542SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1543		int __user *, upeer_addrlen)
1544{
1545	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1546}
1547
1548/*
1549 *	Attempt to connect to a socket with the server address.  The address
1550 *	is in user space so we verify it is OK and move it to kernel space.
1551 *
1552 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1553 *	break bindings
1554 *
1555 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1556 *	other SEQPACKET protocols that take time to connect() as it doesn't
1557 *	include the -EINPROGRESS status for such sockets.
1558 */
1559
1560SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1561		int, addrlen)
1562{
1563	struct socket *sock;
1564	struct sockaddr_storage address;
1565	int err, fput_needed;
1566
1567	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1568	if (!sock)
1569		goto out;
1570	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1571	if (err < 0)
1572		goto out_put;
1573
1574	err =
1575	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1576	if (err)
1577		goto out_put;
1578
1579	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1580				 sock->file->f_flags);
1581out_put:
1582	fput_light(sock->file, fput_needed);
1583out:
1584	return err;
1585}
1586
1587/*
1588 *	Get the local address ('name') of a socket object. Move the obtained
1589 *	name to user space.
1590 */
1591
1592SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1593		int __user *, usockaddr_len)
1594{
1595	struct socket *sock;
1596	struct sockaddr_storage address;
1597	int len, err, fput_needed;
1598
1599	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600	if (!sock)
1601		goto out;
1602
1603	err = security_socket_getsockname(sock);
1604	if (err)
1605		goto out_put;
1606
1607	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1608	if (err)
1609		goto out_put;
1610	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1611
1612out_put:
1613	fput_light(sock->file, fput_needed);
1614out:
1615	return err;
1616}
1617
1618/*
1619 *	Get the remote address ('name') of a socket object. Move the obtained
1620 *	name to user space.
1621 */
1622
1623SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1624		int __user *, usockaddr_len)
1625{
1626	struct socket *sock;
1627	struct sockaddr_storage address;
1628	int len, err, fput_needed;
1629
1630	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631	if (sock != NULL) {
1632		err = security_socket_getpeername(sock);
1633		if (err) {
1634			fput_light(sock->file, fput_needed);
1635			return err;
1636		}
1637
1638		err =
1639		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1640				       1);
1641		if (!err)
1642			err = move_addr_to_user(&address, len, usockaddr,
1643						usockaddr_len);
1644		fput_light(sock->file, fput_needed);
1645	}
1646	return err;
1647}
1648
1649/*
1650 *	Send a datagram to a given address. We move the address into kernel
1651 *	space and check the user space data area is readable before invoking
1652 *	the protocol.
1653 */
1654
1655SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1656		unsigned int, flags, struct sockaddr __user *, addr,
1657		int, addr_len)
1658{
1659	struct socket *sock;
1660	struct sockaddr_storage address;
1661	int err;
1662	struct msghdr msg;
1663	struct iovec iov;
1664	int fput_needed;
1665
1666	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1667	if (unlikely(err))
1668		return err;
1669	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670	if (!sock)
1671		goto out;
1672
 
 
1673	msg.msg_name = NULL;
 
 
1674	msg.msg_control = NULL;
1675	msg.msg_controllen = 0;
1676	msg.msg_namelen = 0;
1677	if (addr) {
1678		err = move_addr_to_kernel(addr, addr_len, &address);
1679		if (err < 0)
1680			goto out_put;
1681		msg.msg_name = (struct sockaddr *)&address;
1682		msg.msg_namelen = addr_len;
1683	}
1684	if (sock->file->f_flags & O_NONBLOCK)
1685		flags |= MSG_DONTWAIT;
1686	msg.msg_flags = flags;
1687	err = sock_sendmsg(sock, &msg);
1688
1689out_put:
1690	fput_light(sock->file, fput_needed);
1691out:
1692	return err;
1693}
1694
1695/*
1696 *	Send a datagram down a socket.
1697 */
1698
1699SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1700		unsigned int, flags)
1701{
1702	return sys_sendto(fd, buff, len, flags, NULL, 0);
1703}
1704
1705/*
1706 *	Receive a frame from the socket and optionally record the address of the
1707 *	sender. We verify the buffers are writable and if needed move the
1708 *	sender address from kernel to user space.
1709 */
1710
1711SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1712		unsigned int, flags, struct sockaddr __user *, addr,
1713		int __user *, addr_len)
1714{
1715	struct socket *sock;
1716	struct iovec iov;
1717	struct msghdr msg;
1718	struct sockaddr_storage address;
1719	int err, err2;
1720	int fput_needed;
1721
1722	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1723	if (unlikely(err))
1724		return err;
1725	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726	if (!sock)
1727		goto out;
1728
1729	msg.msg_control = NULL;
1730	msg.msg_controllen = 0;
 
 
 
 
1731	/* Save some cycles and don't copy the address if not needed */
1732	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1733	/* We assume all kernel code knows the size of sockaddr_storage */
1734	msg.msg_namelen = 0;
1735	msg.msg_iocb = NULL;
1736	if (sock->file->f_flags & O_NONBLOCK)
1737		flags |= MSG_DONTWAIT;
1738	err = sock_recvmsg(sock, &msg, flags);
1739
1740	if (err >= 0 && addr != NULL) {
1741		err2 = move_addr_to_user(&address,
1742					 msg.msg_namelen, addr, addr_len);
1743		if (err2 < 0)
1744			err = err2;
1745	}
1746
1747	fput_light(sock->file, fput_needed);
1748out:
1749	return err;
1750}
1751
1752/*
1753 *	Receive a datagram from a socket.
1754 */
1755
1756SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1757		unsigned int, flags)
1758{
1759	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1760}
1761
1762/*
1763 *	Set a socket option. Because we don't know the option lengths we have
1764 *	to pass the user mode parameter for the protocols to sort out.
1765 */
1766
1767SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1768		char __user *, optval, int, optlen)
1769{
1770	int err, fput_needed;
1771	struct socket *sock;
1772
1773	if (optlen < 0)
1774		return -EINVAL;
1775
1776	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777	if (sock != NULL) {
1778		err = security_socket_setsockopt(sock, level, optname);
1779		if (err)
1780			goto out_put;
1781
1782		if (level == SOL_SOCKET)
1783			err =
1784			    sock_setsockopt(sock, level, optname, optval,
1785					    optlen);
1786		else
1787			err =
1788			    sock->ops->setsockopt(sock, level, optname, optval,
1789						  optlen);
1790out_put:
1791		fput_light(sock->file, fput_needed);
1792	}
1793	return err;
1794}
1795
1796/*
1797 *	Get a socket option. Because we don't know the option lengths we have
1798 *	to pass a user mode parameter for the protocols to sort out.
1799 */
1800
1801SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1802		char __user *, optval, int __user *, optlen)
1803{
1804	int err, fput_needed;
1805	struct socket *sock;
1806
1807	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808	if (sock != NULL) {
1809		err = security_socket_getsockopt(sock, level, optname);
1810		if (err)
1811			goto out_put;
1812
1813		if (level == SOL_SOCKET)
1814			err =
1815			    sock_getsockopt(sock, level, optname, optval,
1816					    optlen);
1817		else
1818			err =
1819			    sock->ops->getsockopt(sock, level, optname, optval,
1820						  optlen);
1821out_put:
1822		fput_light(sock->file, fput_needed);
1823	}
1824	return err;
1825}
1826
1827/*
1828 *	Shutdown a socket.
1829 */
1830
1831SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1832{
1833	int err, fput_needed;
1834	struct socket *sock;
1835
1836	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1837	if (sock != NULL) {
1838		err = security_socket_shutdown(sock, how);
1839		if (!err)
1840			err = sock->ops->shutdown(sock, how);
1841		fput_light(sock->file, fput_needed);
1842	}
1843	return err;
1844}
1845
1846/* A couple of helpful macros for getting the address of the 32/64 bit
1847 * fields which are the same type (int / unsigned) on our platforms.
1848 */
1849#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1850#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1851#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1852
1853struct used_address {
1854	struct sockaddr_storage name;
1855	unsigned int name_len;
1856};
1857
1858static int copy_msghdr_from_user(struct msghdr *kmsg,
1859				 struct user_msghdr __user *umsg,
1860				 struct sockaddr __user **save_addr,
1861				 struct iovec **iov)
1862{
1863	struct sockaddr __user *uaddr;
1864	struct iovec __user *uiov;
1865	size_t nr_segs;
1866	ssize_t err;
1867
1868	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1869	    __get_user(uaddr, &umsg->msg_name) ||
1870	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1871	    __get_user(uiov, &umsg->msg_iov) ||
1872	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1873	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1874	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1875	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1876		return -EFAULT;
1877
1878	if (!uaddr)
1879		kmsg->msg_namelen = 0;
1880
1881	if (kmsg->msg_namelen < 0)
1882		return -EINVAL;
1883
1884	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1885		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1886
1887	if (save_addr)
1888		*save_addr = uaddr;
1889
1890	if (uaddr && kmsg->msg_namelen) {
1891		if (!save_addr) {
1892			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1893						  kmsg->msg_name);
1894			if (err < 0)
1895				return err;
1896		}
1897	} else {
1898		kmsg->msg_name = NULL;
1899		kmsg->msg_namelen = 0;
1900	}
1901
1902	if (nr_segs > UIO_MAXIOV)
1903		return -EMSGSIZE;
1904
1905	kmsg->msg_iocb = NULL;
1906
1907	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1908			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1909}
1910
1911static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1912			 struct msghdr *msg_sys, unsigned int flags,
1913			 struct used_address *used_address,
1914			 unsigned int allowed_msghdr_flags)
1915{
1916	struct compat_msghdr __user *msg_compat =
1917	    (struct compat_msghdr __user *)msg;
1918	struct sockaddr_storage address;
1919	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1920	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1921				__aligned(sizeof(__kernel_size_t));
1922	/* 20 is size of ipv6_pktinfo */
1923	unsigned char *ctl_buf = ctl;
1924	int ctl_len;
1925	ssize_t err;
1926
1927	msg_sys->msg_name = &address;
 
 
 
 
 
 
 
 
1928
1929	if (MSG_CMSG_COMPAT & flags)
1930		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1931	else
1932		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
 
 
 
 
 
 
 
 
 
 
 
 
1933	if (err < 0)
1934		return err;
 
1935
1936	err = -ENOBUFS;
1937
1938	if (msg_sys->msg_controllen > INT_MAX)
1939		goto out_freeiov;
1940	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1941	ctl_len = msg_sys->msg_controllen;
1942	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1943		err =
1944		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1945						     sizeof(ctl));
1946		if (err)
1947			goto out_freeiov;
1948		ctl_buf = msg_sys->msg_control;
1949		ctl_len = msg_sys->msg_controllen;
1950	} else if (ctl_len) {
1951		if (ctl_len > sizeof(ctl)) {
1952			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953			if (ctl_buf == NULL)
1954				goto out_freeiov;
1955		}
1956		err = -EFAULT;
1957		/*
1958		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960		 * checking falls down on this.
1961		 */
1962		if (copy_from_user(ctl_buf,
1963				   (void __user __force *)msg_sys->msg_control,
1964				   ctl_len))
1965			goto out_freectl;
1966		msg_sys->msg_control = ctl_buf;
1967	}
1968	msg_sys->msg_flags = flags;
1969
1970	if (sock->file->f_flags & O_NONBLOCK)
1971		msg_sys->msg_flags |= MSG_DONTWAIT;
1972	/*
1973	 * If this is sendmmsg() and current destination address is same as
1974	 * previously succeeded address, omit asking LSM's decision.
1975	 * used_address->name_len is initialized to UINT_MAX so that the first
1976	 * destination address never matches.
1977	 */
1978	if (used_address && msg_sys->msg_name &&
1979	    used_address->name_len == msg_sys->msg_namelen &&
1980	    !memcmp(&used_address->name, msg_sys->msg_name,
1981		    used_address->name_len)) {
1982		err = sock_sendmsg_nosec(sock, msg_sys);
1983		goto out_freectl;
1984	}
1985	err = sock_sendmsg(sock, msg_sys);
1986	/*
1987	 * If this is sendmmsg() and sending to current destination address was
1988	 * successful, remember it.
1989	 */
1990	if (used_address && err >= 0) {
1991		used_address->name_len = msg_sys->msg_namelen;
1992		if (msg_sys->msg_name)
1993			memcpy(&used_address->name, msg_sys->msg_name,
1994			       used_address->name_len);
1995	}
1996
1997out_freectl:
1998	if (ctl_buf != ctl)
1999		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2000out_freeiov:
2001	kfree(iov);
 
 
2002	return err;
2003}
2004
2005/*
2006 *	BSD sendmsg interface
2007 */
2008
2009long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2010{
2011	int fput_needed, err;
2012	struct msghdr msg_sys;
2013	struct socket *sock;
2014
2015	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016	if (!sock)
2017		goto out;
2018
2019	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2020
2021	fput_light(sock->file, fput_needed);
2022out:
2023	return err;
2024}
2025
2026SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2027{
2028	if (flags & MSG_CMSG_COMPAT)
2029		return -EINVAL;
2030	return __sys_sendmsg(fd, msg, flags);
2031}
2032
2033/*
2034 *	Linux sendmmsg interface
2035 */
2036
2037int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038		   unsigned int flags)
2039{
2040	int fput_needed, err, datagrams;
2041	struct socket *sock;
2042	struct mmsghdr __user *entry;
2043	struct compat_mmsghdr __user *compat_entry;
2044	struct msghdr msg_sys;
2045	struct used_address used_address;
2046	unsigned int oflags = flags;
2047
2048	if (vlen > UIO_MAXIOV)
2049		vlen = UIO_MAXIOV;
2050
2051	datagrams = 0;
2052
2053	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054	if (!sock)
2055		return err;
2056
2057	used_address.name_len = UINT_MAX;
2058	entry = mmsg;
2059	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2060	err = 0;
2061	flags |= MSG_BATCH;
2062
2063	while (datagrams < vlen) {
2064		if (datagrams == vlen - 1)
2065			flags = oflags;
2066
2067		if (MSG_CMSG_COMPAT & flags) {
2068			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069					     &msg_sys, flags, &used_address, MSG_EOR);
2070			if (err < 0)
2071				break;
2072			err = __put_user(err, &compat_entry->msg_len);
2073			++compat_entry;
2074		} else {
2075			err = ___sys_sendmsg(sock,
2076					     (struct user_msghdr __user *)entry,
2077					     &msg_sys, flags, &used_address, MSG_EOR);
2078			if (err < 0)
2079				break;
2080			err = put_user(err, &entry->msg_len);
2081			++entry;
2082		}
2083
2084		if (err)
2085			break;
2086		++datagrams;
2087		if (msg_data_left(&msg_sys))
2088			break;
2089		cond_resched();
2090	}
2091
2092	fput_light(sock->file, fput_needed);
2093
2094	/* We only return an error if no datagrams were able to be sent */
2095	if (datagrams != 0)
2096		return datagrams;
2097
2098	return err;
2099}
2100
2101SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102		unsigned int, vlen, unsigned int, flags)
2103{
2104	if (flags & MSG_CMSG_COMPAT)
2105		return -EINVAL;
2106	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2107}
2108
2109static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2111{
2112	struct compat_msghdr __user *msg_compat =
2113	    (struct compat_msghdr __user *)msg;
2114	struct iovec iovstack[UIO_FASTIOV];
2115	struct iovec *iov = iovstack;
2116	unsigned long cmsg_ptr;
2117	int len;
2118	ssize_t err;
2119
2120	/* kernel mode address */
2121	struct sockaddr_storage addr;
2122
2123	/* user mode address pointers */
2124	struct sockaddr __user *uaddr;
2125	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2126
2127	msg_sys->msg_name = &addr;
 
 
 
 
 
 
 
2128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2129	if (MSG_CMSG_COMPAT & flags)
2130		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2131	else
2132		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2133	if (err < 0)
2134		return err;
 
2135
2136	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2138
2139	/* We assume all kernel code knows the size of sockaddr_storage */
2140	msg_sys->msg_namelen = 0;
2141
2142	if (sock->file->f_flags & O_NONBLOCK)
2143		flags |= MSG_DONTWAIT;
2144	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
 
2145	if (err < 0)
2146		goto out_freeiov;
2147	len = err;
2148
2149	if (uaddr != NULL) {
2150		err = move_addr_to_user(&addr,
2151					msg_sys->msg_namelen, uaddr,
2152					uaddr_len);
2153		if (err < 0)
2154			goto out_freeiov;
2155	}
2156	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2157			 COMPAT_FLAGS(msg));
2158	if (err)
2159		goto out_freeiov;
2160	if (MSG_CMSG_COMPAT & flags)
2161		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162				 &msg_compat->msg_controllen);
2163	else
2164		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165				 &msg->msg_controllen);
2166	if (err)
2167		goto out_freeiov;
2168	err = len;
2169
2170out_freeiov:
2171	kfree(iov);
 
 
2172	return err;
2173}
2174
2175/*
2176 *	BSD recvmsg interface
2177 */
2178
2179long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2180{
2181	int fput_needed, err;
2182	struct msghdr msg_sys;
2183	struct socket *sock;
2184
2185	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186	if (!sock)
2187		goto out;
2188
2189	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2190
2191	fput_light(sock->file, fput_needed);
2192out:
2193	return err;
2194}
2195
2196SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197		unsigned int, flags)
2198{
2199	if (flags & MSG_CMSG_COMPAT)
2200		return -EINVAL;
2201	return __sys_recvmsg(fd, msg, flags);
2202}
2203
2204/*
2205 *     Linux recvmmsg interface
2206 */
2207
2208int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209		   unsigned int flags, struct timespec *timeout)
2210{
2211	int fput_needed, err, datagrams;
2212	struct socket *sock;
2213	struct mmsghdr __user *entry;
2214	struct compat_mmsghdr __user *compat_entry;
2215	struct msghdr msg_sys;
2216	struct timespec64 end_time;
2217	struct timespec64 timeout64;
2218
2219	if (timeout &&
2220	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2221				    timeout->tv_nsec))
2222		return -EINVAL;
2223
2224	datagrams = 0;
2225
2226	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227	if (!sock)
2228		return err;
2229
2230	err = sock_error(sock->sk);
2231	if (err) {
2232		datagrams = err;
2233		goto out_put;
2234	}
2235
2236	entry = mmsg;
2237	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2238
2239	while (datagrams < vlen) {
2240		/*
2241		 * No need to ask LSM for more than the first datagram.
2242		 */
2243		if (MSG_CMSG_COMPAT & flags) {
2244			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2245					     &msg_sys, flags & ~MSG_WAITFORONE,
2246					     datagrams);
2247			if (err < 0)
2248				break;
2249			err = __put_user(err, &compat_entry->msg_len);
2250			++compat_entry;
2251		} else {
2252			err = ___sys_recvmsg(sock,
2253					     (struct user_msghdr __user *)entry,
2254					     &msg_sys, flags & ~MSG_WAITFORONE,
2255					     datagrams);
2256			if (err < 0)
2257				break;
2258			err = put_user(err, &entry->msg_len);
2259			++entry;
2260		}
2261
2262		if (err)
2263			break;
2264		++datagrams;
2265
2266		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2267		if (flags & MSG_WAITFORONE)
2268			flags |= MSG_DONTWAIT;
2269
2270		if (timeout) {
2271			ktime_get_ts64(&timeout64);
2272			*timeout = timespec64_to_timespec(
2273					timespec64_sub(end_time, timeout64));
2274			if (timeout->tv_sec < 0) {
2275				timeout->tv_sec = timeout->tv_nsec = 0;
2276				break;
2277			}
2278
2279			/* Timeout, return less than vlen datagrams */
2280			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2281				break;
2282		}
2283
2284		/* Out of band data, return right away */
2285		if (msg_sys.msg_flags & MSG_OOB)
2286			break;
2287		cond_resched();
2288	}
2289
2290	if (err == 0)
2291		goto out_put;
2292
2293	if (datagrams == 0) {
2294		datagrams = err;
2295		goto out_put;
2296	}
2297
2298	/*
2299	 * We may return less entries than requested (vlen) if the
2300	 * sock is non block and there aren't enough datagrams...
2301	 */
2302	if (err != -EAGAIN) {
2303		/*
2304		 * ... or  if recvmsg returns an error after we
2305		 * received some datagrams, where we record the
2306		 * error to return on the next call or if the
2307		 * app asks about it using getsockopt(SO_ERROR).
2308		 */
2309		sock->sk->sk_err = -err;
 
 
 
 
 
 
 
 
 
 
2310	}
2311out_put:
2312	fput_light(sock->file, fput_needed);
2313
2314	return datagrams;
2315}
2316
2317SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2318		unsigned int, vlen, unsigned int, flags,
2319		struct timespec __user *, timeout)
2320{
2321	int datagrams;
2322	struct timespec timeout_sys;
2323
2324	if (flags & MSG_CMSG_COMPAT)
2325		return -EINVAL;
2326
2327	if (!timeout)
2328		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2329
2330	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2331		return -EFAULT;
2332
2333	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2334
2335	if (datagrams > 0 &&
2336	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2337		datagrams = -EFAULT;
2338
2339	return datagrams;
2340}
2341
2342#ifdef __ARCH_WANT_SYS_SOCKETCALL
2343/* Argument list sizes for sys_socketcall */
2344#define AL(x) ((x) * sizeof(unsigned long))
2345static const unsigned char nargs[21] = {
2346	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2347	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2348	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2349	AL(4), AL(5), AL(4)
2350};
2351
2352#undef AL
2353
2354/*
2355 *	System call vectors.
2356 *
2357 *	Argument checking cleaned up. Saved 20% in size.
2358 *  This function doesn't need to set the kernel lock because
2359 *  it is set by the callees.
2360 */
2361
2362SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2363{
2364	unsigned long a[AUDITSC_ARGS];
2365	unsigned long a0, a1;
2366	int err;
2367	unsigned int len;
2368
2369	if (call < 1 || call > SYS_SENDMMSG)
2370		return -EINVAL;
2371
2372	len = nargs[call];
2373	if (len > sizeof(a))
2374		return -EINVAL;
2375
2376	/* copy_from_user should be SMP safe. */
2377	if (copy_from_user(a, args, len))
2378		return -EFAULT;
2379
2380	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2381	if (err)
2382		return err;
2383
2384	a0 = a[0];
2385	a1 = a[1];
2386
2387	switch (call) {
2388	case SYS_SOCKET:
2389		err = sys_socket(a0, a1, a[2]);
2390		break;
2391	case SYS_BIND:
2392		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2393		break;
2394	case SYS_CONNECT:
2395		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2396		break;
2397	case SYS_LISTEN:
2398		err = sys_listen(a0, a1);
2399		break;
2400	case SYS_ACCEPT:
2401		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2402				  (int __user *)a[2], 0);
2403		break;
2404	case SYS_GETSOCKNAME:
2405		err =
2406		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2407				    (int __user *)a[2]);
2408		break;
2409	case SYS_GETPEERNAME:
2410		err =
2411		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2412				    (int __user *)a[2]);
2413		break;
2414	case SYS_SOCKETPAIR:
2415		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2416		break;
2417	case SYS_SEND:
2418		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2419		break;
2420	case SYS_SENDTO:
2421		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2422				 (struct sockaddr __user *)a[4], a[5]);
2423		break;
2424	case SYS_RECV:
2425		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2426		break;
2427	case SYS_RECVFROM:
2428		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2429				   (struct sockaddr __user *)a[4],
2430				   (int __user *)a[5]);
2431		break;
2432	case SYS_SHUTDOWN:
2433		err = sys_shutdown(a0, a1);
2434		break;
2435	case SYS_SETSOCKOPT:
2436		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2437		break;
2438	case SYS_GETSOCKOPT:
2439		err =
2440		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2441				   (int __user *)a[4]);
2442		break;
2443	case SYS_SENDMSG:
2444		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2445		break;
2446	case SYS_SENDMMSG:
2447		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2448		break;
2449	case SYS_RECVMSG:
2450		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2451		break;
2452	case SYS_RECVMMSG:
2453		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2454				   (struct timespec __user *)a[4]);
2455		break;
2456	case SYS_ACCEPT4:
2457		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2458				  (int __user *)a[2], a[3]);
2459		break;
2460	default:
2461		err = -EINVAL;
2462		break;
2463	}
2464	return err;
2465}
2466
2467#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2468
2469/**
2470 *	sock_register - add a socket protocol handler
2471 *	@ops: description of protocol
2472 *
2473 *	This function is called by a protocol handler that wants to
2474 *	advertise its address family, and have it linked into the
2475 *	socket interface. The value ops->family corresponds to the
2476 *	socket system call protocol family.
2477 */
2478int sock_register(const struct net_proto_family *ops)
2479{
2480	int err;
2481
2482	if (ops->family >= NPROTO) {
2483		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2484		return -ENOBUFS;
2485	}
2486
2487	spin_lock(&net_family_lock);
2488	if (rcu_dereference_protected(net_families[ops->family],
2489				      lockdep_is_held(&net_family_lock)))
2490		err = -EEXIST;
2491	else {
2492		rcu_assign_pointer(net_families[ops->family], ops);
2493		err = 0;
2494	}
2495	spin_unlock(&net_family_lock);
2496
2497	pr_info("NET: Registered protocol family %d\n", ops->family);
2498	return err;
2499}
2500EXPORT_SYMBOL(sock_register);
2501
2502/**
2503 *	sock_unregister - remove a protocol handler
2504 *	@family: protocol family to remove
2505 *
2506 *	This function is called by a protocol handler that wants to
2507 *	remove its address family, and have it unlinked from the
2508 *	new socket creation.
2509 *
2510 *	If protocol handler is a module, then it can use module reference
2511 *	counts to protect against new references. If protocol handler is not
2512 *	a module then it needs to provide its own protection in
2513 *	the ops->create routine.
2514 */
2515void sock_unregister(int family)
2516{
2517	BUG_ON(family < 0 || family >= NPROTO);
2518
2519	spin_lock(&net_family_lock);
2520	RCU_INIT_POINTER(net_families[family], NULL);
2521	spin_unlock(&net_family_lock);
2522
2523	synchronize_rcu();
2524
2525	pr_info("NET: Unregistered protocol family %d\n", family);
2526}
2527EXPORT_SYMBOL(sock_unregister);
2528
2529static int __init sock_init(void)
2530{
2531	int err;
2532	/*
2533	 *      Initialize the network sysctl infrastructure.
2534	 */
2535	err = net_sysctl_init();
2536	if (err)
2537		goto out;
2538
2539	/*
2540	 *      Initialize skbuff SLAB cache
2541	 */
2542	skb_init();
2543
2544	/*
2545	 *      Initialize the protocols module.
2546	 */
2547
2548	init_inodecache();
2549
2550	err = register_filesystem(&sock_fs_type);
2551	if (err)
2552		goto out_fs;
2553	sock_mnt = kern_mount(&sock_fs_type);
2554	if (IS_ERR(sock_mnt)) {
2555		err = PTR_ERR(sock_mnt);
2556		goto out_mount;
2557	}
2558
2559	/* The real protocol initialization is performed in later initcalls.
2560	 */
2561
2562#ifdef CONFIG_NETFILTER
2563	err = netfilter_init();
2564	if (err)
2565		goto out;
2566#endif
2567
2568	ptp_classifier_init();
2569
2570out:
2571	return err;
2572
2573out_mount:
2574	unregister_filesystem(&sock_fs_type);
2575out_fs:
2576	goto out;
2577}
2578
2579core_initcall(sock_init);	/* early initcall */
2580
2581#ifdef CONFIG_PROC_FS
2582void socket_seq_show(struct seq_file *seq)
2583{
2584	int cpu;
2585	int counter = 0;
2586
2587	for_each_possible_cpu(cpu)
2588	    counter += per_cpu(sockets_in_use, cpu);
2589
2590	/* It can be negative, by the way. 8) */
2591	if (counter < 0)
2592		counter = 0;
2593
2594	seq_printf(seq, "sockets: used %d\n", counter);
2595}
2596#endif				/* CONFIG_PROC_FS */
2597
2598#ifdef CONFIG_COMPAT
2599static int do_siocgstamp(struct net *net, struct socket *sock,
2600			 unsigned int cmd, void __user *up)
2601{
2602	mm_segment_t old_fs = get_fs();
2603	struct timeval ktv;
2604	int err;
2605
2606	set_fs(KERNEL_DS);
2607	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2608	set_fs(old_fs);
2609	if (!err)
2610		err = compat_put_timeval(&ktv, up);
2611
2612	return err;
2613}
2614
2615static int do_siocgstampns(struct net *net, struct socket *sock,
2616			   unsigned int cmd, void __user *up)
2617{
2618	mm_segment_t old_fs = get_fs();
2619	struct timespec kts;
2620	int err;
2621
2622	set_fs(KERNEL_DS);
2623	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2624	set_fs(old_fs);
2625	if (!err)
2626		err = compat_put_timespec(&kts, up);
2627
2628	return err;
2629}
2630
2631static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2632{
2633	struct ifreq __user *uifr;
2634	int err;
2635
2636	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2637	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2638		return -EFAULT;
2639
2640	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2641	if (err)
2642		return err;
2643
2644	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2645		return -EFAULT;
2646
2647	return 0;
2648}
2649
2650static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2651{
2652	struct compat_ifconf ifc32;
2653	struct ifconf ifc;
2654	struct ifconf __user *uifc;
2655	struct compat_ifreq __user *ifr32;
2656	struct ifreq __user *ifr;
2657	unsigned int i, j;
2658	int err;
2659
2660	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2661		return -EFAULT;
2662
2663	memset(&ifc, 0, sizeof(ifc));
2664	if (ifc32.ifcbuf == 0) {
2665		ifc32.ifc_len = 0;
2666		ifc.ifc_len = 0;
2667		ifc.ifc_req = NULL;
2668		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2669	} else {
2670		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2671			sizeof(struct ifreq);
2672		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2673		ifc.ifc_len = len;
2674		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2675		ifr32 = compat_ptr(ifc32.ifcbuf);
2676		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2677			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2678				return -EFAULT;
2679			ifr++;
2680			ifr32++;
2681		}
2682	}
2683	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2684		return -EFAULT;
2685
2686	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2687	if (err)
2688		return err;
2689
2690	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2691		return -EFAULT;
2692
2693	ifr = ifc.ifc_req;
2694	ifr32 = compat_ptr(ifc32.ifcbuf);
2695	for (i = 0, j = 0;
2696	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2697	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2698		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2699			return -EFAULT;
2700		ifr32++;
2701		ifr++;
2702	}
2703
2704	if (ifc32.ifcbuf == 0) {
2705		/* Translate from 64-bit structure multiple to
2706		 * a 32-bit one.
2707		 */
2708		i = ifc.ifc_len;
2709		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2710		ifc32.ifc_len = i;
2711	} else {
2712		ifc32.ifc_len = i;
2713	}
2714	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2715		return -EFAULT;
2716
2717	return 0;
2718}
2719
2720static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2721{
2722	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2723	bool convert_in = false, convert_out = false;
2724	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2725	struct ethtool_rxnfc __user *rxnfc;
2726	struct ifreq __user *ifr;
2727	u32 rule_cnt = 0, actual_rule_cnt;
2728	u32 ethcmd;
2729	u32 data;
2730	int ret;
2731
2732	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2733		return -EFAULT;
2734
2735	compat_rxnfc = compat_ptr(data);
2736
2737	if (get_user(ethcmd, &compat_rxnfc->cmd))
2738		return -EFAULT;
2739
2740	/* Most ethtool structures are defined without padding.
2741	 * Unfortunately struct ethtool_rxnfc is an exception.
2742	 */
2743	switch (ethcmd) {
2744	default:
2745		break;
2746	case ETHTOOL_GRXCLSRLALL:
2747		/* Buffer size is variable */
2748		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2749			return -EFAULT;
2750		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2751			return -ENOMEM;
2752		buf_size += rule_cnt * sizeof(u32);
2753		/* fall through */
2754	case ETHTOOL_GRXRINGS:
2755	case ETHTOOL_GRXCLSRLCNT:
2756	case ETHTOOL_GRXCLSRULE:
2757	case ETHTOOL_SRXCLSRLINS:
2758		convert_out = true;
2759		/* fall through */
2760	case ETHTOOL_SRXCLSRLDEL:
2761		buf_size += sizeof(struct ethtool_rxnfc);
2762		convert_in = true;
2763		break;
2764	}
2765
2766	ifr = compat_alloc_user_space(buf_size);
2767	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2768
2769	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2770		return -EFAULT;
2771
2772	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2773		     &ifr->ifr_ifru.ifru_data))
2774		return -EFAULT;
2775
2776	if (convert_in) {
2777		/* We expect there to be holes between fs.m_ext and
2778		 * fs.ring_cookie and at the end of fs, but nowhere else.
2779		 */
2780		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2781			     sizeof(compat_rxnfc->fs.m_ext) !=
2782			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2783			     sizeof(rxnfc->fs.m_ext));
2784		BUILD_BUG_ON(
2785			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2786			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2787			offsetof(struct ethtool_rxnfc, fs.location) -
2788			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2789
2790		if (copy_in_user(rxnfc, compat_rxnfc,
2791				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2792				 (void __user *)rxnfc) ||
2793		    copy_in_user(&rxnfc->fs.ring_cookie,
2794				 &compat_rxnfc->fs.ring_cookie,
2795				 (void __user *)(&rxnfc->fs.location + 1) -
2796				 (void __user *)&rxnfc->fs.ring_cookie) ||
2797		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2798				 sizeof(rxnfc->rule_cnt)))
2799			return -EFAULT;
2800	}
2801
2802	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2803	if (ret)
2804		return ret;
2805
2806	if (convert_out) {
2807		if (copy_in_user(compat_rxnfc, rxnfc,
2808				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2809				 (const void __user *)rxnfc) ||
2810		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2811				 &rxnfc->fs.ring_cookie,
2812				 (const void __user *)(&rxnfc->fs.location + 1) -
2813				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2814		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2815				 sizeof(rxnfc->rule_cnt)))
2816			return -EFAULT;
2817
2818		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2819			/* As an optimisation, we only copy the actual
2820			 * number of rules that the underlying
2821			 * function returned.  Since Mallory might
2822			 * change the rule count in user memory, we
2823			 * check that it is less than the rule count
2824			 * originally given (as the user buffer size),
2825			 * which has been range-checked.
2826			 */
2827			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2828				return -EFAULT;
2829			if (actual_rule_cnt < rule_cnt)
2830				rule_cnt = actual_rule_cnt;
2831			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2832					 &rxnfc->rule_locs[0],
2833					 rule_cnt * sizeof(u32)))
2834				return -EFAULT;
2835		}
2836	}
2837
2838	return 0;
2839}
2840
2841static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2842{
2843	void __user *uptr;
2844	compat_uptr_t uptr32;
2845	struct ifreq __user *uifr;
2846
2847	uifr = compat_alloc_user_space(sizeof(*uifr));
2848	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2849		return -EFAULT;
2850
2851	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2852		return -EFAULT;
2853
2854	uptr = compat_ptr(uptr32);
2855
2856	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2857		return -EFAULT;
2858
2859	return dev_ioctl(net, SIOCWANDEV, uifr);
2860}
2861
2862static int bond_ioctl(struct net *net, unsigned int cmd,
2863			 struct compat_ifreq __user *ifr32)
2864{
2865	struct ifreq kifr;
2866	mm_segment_t old_fs;
2867	int err;
2868
2869	switch (cmd) {
2870	case SIOCBONDENSLAVE:
2871	case SIOCBONDRELEASE:
2872	case SIOCBONDSETHWADDR:
2873	case SIOCBONDCHANGEACTIVE:
2874		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2875			return -EFAULT;
2876
2877		old_fs = get_fs();
2878		set_fs(KERNEL_DS);
2879		err = dev_ioctl(net, cmd,
2880				(struct ifreq __user __force *) &kifr);
2881		set_fs(old_fs);
2882
2883		return err;
2884	default:
2885		return -ENOIOCTLCMD;
2886	}
2887}
2888
2889/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2890static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2891				 struct compat_ifreq __user *u_ifreq32)
2892{
2893	struct ifreq __user *u_ifreq64;
2894	char tmp_buf[IFNAMSIZ];
2895	void __user *data64;
2896	u32 data32;
2897
2898	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2899			   IFNAMSIZ))
2900		return -EFAULT;
2901	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2902		return -EFAULT;
2903	data64 = compat_ptr(data32);
2904
2905	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2906
2907	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2908			 IFNAMSIZ))
2909		return -EFAULT;
2910	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2911		return -EFAULT;
2912
2913	return dev_ioctl(net, cmd, u_ifreq64);
2914}
2915
2916static int dev_ifsioc(struct net *net, struct socket *sock,
2917			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2918{
2919	struct ifreq __user *uifr;
2920	int err;
2921
2922	uifr = compat_alloc_user_space(sizeof(*uifr));
2923	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2924		return -EFAULT;
2925
2926	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2927
2928	if (!err) {
2929		switch (cmd) {
2930		case SIOCGIFFLAGS:
2931		case SIOCGIFMETRIC:
2932		case SIOCGIFMTU:
2933		case SIOCGIFMEM:
2934		case SIOCGIFHWADDR:
2935		case SIOCGIFINDEX:
2936		case SIOCGIFADDR:
2937		case SIOCGIFBRDADDR:
2938		case SIOCGIFDSTADDR:
2939		case SIOCGIFNETMASK:
2940		case SIOCGIFPFLAGS:
2941		case SIOCGIFTXQLEN:
2942		case SIOCGMIIPHY:
2943		case SIOCGMIIREG:
2944			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2945				err = -EFAULT;
2946			break;
2947		}
2948	}
2949	return err;
2950}
2951
2952static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2953			struct compat_ifreq __user *uifr32)
2954{
2955	struct ifreq ifr;
2956	struct compat_ifmap __user *uifmap32;
2957	mm_segment_t old_fs;
2958	int err;
2959
2960	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2961	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2962	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2963	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2964	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2965	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2966	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2967	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2968	if (err)
2969		return -EFAULT;
2970
2971	old_fs = get_fs();
2972	set_fs(KERNEL_DS);
2973	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2974	set_fs(old_fs);
2975
2976	if (cmd == SIOCGIFMAP && !err) {
2977		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2978		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2982		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2983		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2984		if (err)
2985			err = -EFAULT;
2986	}
2987	return err;
2988}
2989
2990struct rtentry32 {
2991	u32		rt_pad1;
2992	struct sockaddr rt_dst;         /* target address               */
2993	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2994	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2995	unsigned short	rt_flags;
2996	short		rt_pad2;
2997	u32		rt_pad3;
2998	unsigned char	rt_tos;
2999	unsigned char	rt_class;
3000	short		rt_pad4;
3001	short		rt_metric;      /* +1 for binary compatibility! */
3002	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3003	u32		rt_mtu;         /* per route MTU/Window         */
3004	u32		rt_window;      /* Window clamping              */
3005	unsigned short  rt_irtt;        /* Initial RTT                  */
3006};
3007
3008struct in6_rtmsg32 {
3009	struct in6_addr		rtmsg_dst;
3010	struct in6_addr		rtmsg_src;
3011	struct in6_addr		rtmsg_gateway;
3012	u32			rtmsg_type;
3013	u16			rtmsg_dst_len;
3014	u16			rtmsg_src_len;
3015	u32			rtmsg_metric;
3016	u32			rtmsg_info;
3017	u32			rtmsg_flags;
3018	s32			rtmsg_ifindex;
3019};
3020
3021static int routing_ioctl(struct net *net, struct socket *sock,
3022			 unsigned int cmd, void __user *argp)
3023{
3024	int ret;
3025	void *r = NULL;
3026	struct in6_rtmsg r6;
3027	struct rtentry r4;
3028	char devname[16];
3029	u32 rtdev;
3030	mm_segment_t old_fs = get_fs();
3031
3032	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3033		struct in6_rtmsg32 __user *ur6 = argp;
3034		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3035			3 * sizeof(struct in6_addr));
3036		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3037		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3038		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3039		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3040		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3041		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3042		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3043
3044		r = (void *) &r6;
3045	} else { /* ipv4 */
3046		struct rtentry32 __user *ur4 = argp;
3047		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3048					3 * sizeof(struct sockaddr));
3049		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3050		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3051		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3052		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3053		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3054		ret |= get_user(rtdev, &(ur4->rt_dev));
3055		if (rtdev) {
3056			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3057			r4.rt_dev = (char __user __force *)devname;
3058			devname[15] = 0;
3059		} else
3060			r4.rt_dev = NULL;
3061
3062		r = (void *) &r4;
3063	}
3064
3065	if (ret) {
3066		ret = -EFAULT;
3067		goto out;
3068	}
3069
3070	set_fs(KERNEL_DS);
3071	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3072	set_fs(old_fs);
3073
3074out:
3075	return ret;
3076}
3077
3078/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3079 * for some operations; this forces use of the newer bridge-utils that
3080 * use compatible ioctls
3081 */
3082static int old_bridge_ioctl(compat_ulong_t __user *argp)
3083{
3084	compat_ulong_t tmp;
3085
3086	if (get_user(tmp, argp))
3087		return -EFAULT;
3088	if (tmp == BRCTL_GET_VERSION)
3089		return BRCTL_VERSION + 1;
3090	return -EINVAL;
3091}
3092
3093static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3094			 unsigned int cmd, unsigned long arg)
3095{
3096	void __user *argp = compat_ptr(arg);
3097	struct sock *sk = sock->sk;
3098	struct net *net = sock_net(sk);
3099
3100	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3101		return compat_ifr_data_ioctl(net, cmd, argp);
3102
3103	switch (cmd) {
3104	case SIOCSIFBR:
3105	case SIOCGIFBR:
3106		return old_bridge_ioctl(argp);
3107	case SIOCGIFNAME:
3108		return dev_ifname32(net, argp);
3109	case SIOCGIFCONF:
3110		return dev_ifconf(net, argp);
3111	case SIOCETHTOOL:
3112		return ethtool_ioctl(net, argp);
3113	case SIOCWANDEV:
3114		return compat_siocwandev(net, argp);
3115	case SIOCGIFMAP:
3116	case SIOCSIFMAP:
3117		return compat_sioc_ifmap(net, cmd, argp);
3118	case SIOCBONDENSLAVE:
3119	case SIOCBONDRELEASE:
3120	case SIOCBONDSETHWADDR:
3121	case SIOCBONDCHANGEACTIVE:
3122		return bond_ioctl(net, cmd, argp);
3123	case SIOCADDRT:
3124	case SIOCDELRT:
3125		return routing_ioctl(net, sock, cmd, argp);
3126	case SIOCGSTAMP:
3127		return do_siocgstamp(net, sock, cmd, argp);
3128	case SIOCGSTAMPNS:
3129		return do_siocgstampns(net, sock, cmd, argp);
3130	case SIOCBONDSLAVEINFOQUERY:
3131	case SIOCBONDINFOQUERY:
3132	case SIOCSHWTSTAMP:
3133	case SIOCGHWTSTAMP:
3134		return compat_ifr_data_ioctl(net, cmd, argp);
3135
3136	case FIOSETOWN:
3137	case SIOCSPGRP:
3138	case FIOGETOWN:
3139	case SIOCGPGRP:
3140	case SIOCBRADDBR:
3141	case SIOCBRDELBR:
3142	case SIOCGIFVLAN:
3143	case SIOCSIFVLAN:
3144	case SIOCADDDLCI:
3145	case SIOCDELDLCI:
3146	case SIOCGSKNS:
3147		return sock_ioctl(file, cmd, arg);
3148
3149	case SIOCGIFFLAGS:
3150	case SIOCSIFFLAGS:
3151	case SIOCGIFMETRIC:
3152	case SIOCSIFMETRIC:
3153	case SIOCGIFMTU:
3154	case SIOCSIFMTU:
3155	case SIOCGIFMEM:
3156	case SIOCSIFMEM:
3157	case SIOCGIFHWADDR:
3158	case SIOCSIFHWADDR:
3159	case SIOCADDMULTI:
3160	case SIOCDELMULTI:
3161	case SIOCGIFINDEX:
3162	case SIOCGIFADDR:
3163	case SIOCSIFADDR:
3164	case SIOCSIFHWBROADCAST:
3165	case SIOCDIFADDR:
3166	case SIOCGIFBRDADDR:
3167	case SIOCSIFBRDADDR:
3168	case SIOCGIFDSTADDR:
3169	case SIOCSIFDSTADDR:
3170	case SIOCGIFNETMASK:
3171	case SIOCSIFNETMASK:
3172	case SIOCSIFPFLAGS:
3173	case SIOCGIFPFLAGS:
3174	case SIOCGIFTXQLEN:
3175	case SIOCSIFTXQLEN:
3176	case SIOCBRADDIF:
3177	case SIOCBRDELIF:
3178	case SIOCSIFNAME:
3179	case SIOCGMIIPHY:
3180	case SIOCGMIIREG:
3181	case SIOCSMIIREG:
3182		return dev_ifsioc(net, sock, cmd, argp);
3183
3184	case SIOCSARP:
3185	case SIOCGARP:
3186	case SIOCDARP:
3187	case SIOCATMARK:
3188		return sock_do_ioctl(net, sock, cmd, arg);
3189	}
3190
3191	return -ENOIOCTLCMD;
3192}
3193
3194static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3195			      unsigned long arg)
3196{
3197	struct socket *sock = file->private_data;
3198	int ret = -ENOIOCTLCMD;
3199	struct sock *sk;
3200	struct net *net;
3201
3202	sk = sock->sk;
3203	net = sock_net(sk);
3204
3205	if (sock->ops->compat_ioctl)
3206		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3207
3208	if (ret == -ENOIOCTLCMD &&
3209	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3210		ret = compat_wext_handle_ioctl(net, cmd, arg);
3211
3212	if (ret == -ENOIOCTLCMD)
3213		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3214
3215	return ret;
3216}
3217#endif
3218
3219int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3220{
3221	return sock->ops->bind(sock, addr, addrlen);
3222}
3223EXPORT_SYMBOL(kernel_bind);
3224
3225int kernel_listen(struct socket *sock, int backlog)
3226{
3227	return sock->ops->listen(sock, backlog);
3228}
3229EXPORT_SYMBOL(kernel_listen);
3230
3231int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3232{
3233	struct sock *sk = sock->sk;
3234	int err;
3235
3236	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3237			       newsock);
3238	if (err < 0)
3239		goto done;
3240
3241	err = sock->ops->accept(sock, *newsock, flags);
3242	if (err < 0) {
3243		sock_release(*newsock);
3244		*newsock = NULL;
3245		goto done;
3246	}
3247
3248	(*newsock)->ops = sock->ops;
3249	__module_get((*newsock)->ops->owner);
3250
3251done:
3252	return err;
3253}
3254EXPORT_SYMBOL(kernel_accept);
3255
3256int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3257		   int flags)
3258{
3259	return sock->ops->connect(sock, addr, addrlen, flags);
3260}
3261EXPORT_SYMBOL(kernel_connect);
3262
3263int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3264			 int *addrlen)
3265{
3266	return sock->ops->getname(sock, addr, addrlen, 0);
3267}
3268EXPORT_SYMBOL(kernel_getsockname);
3269
3270int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3271			 int *addrlen)
3272{
3273	return sock->ops->getname(sock, addr, addrlen, 1);
3274}
3275EXPORT_SYMBOL(kernel_getpeername);
3276
3277int kernel_getsockopt(struct socket *sock, int level, int optname,
3278			char *optval, int *optlen)
3279{
3280	mm_segment_t oldfs = get_fs();
3281	char __user *uoptval;
3282	int __user *uoptlen;
3283	int err;
3284
3285	uoptval = (char __user __force *) optval;
3286	uoptlen = (int __user __force *) optlen;
3287
3288	set_fs(KERNEL_DS);
3289	if (level == SOL_SOCKET)
3290		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291	else
3292		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293					    uoptlen);
3294	set_fs(oldfs);
3295	return err;
3296}
3297EXPORT_SYMBOL(kernel_getsockopt);
3298
3299int kernel_setsockopt(struct socket *sock, int level, int optname,
3300			char *optval, unsigned int optlen)
3301{
3302	mm_segment_t oldfs = get_fs();
3303	char __user *uoptval;
3304	int err;
3305
3306	uoptval = (char __user __force *) optval;
3307
3308	set_fs(KERNEL_DS);
3309	if (level == SOL_SOCKET)
3310		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311	else
3312		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313					    optlen);
3314	set_fs(oldfs);
3315	return err;
3316}
3317EXPORT_SYMBOL(kernel_setsockopt);
3318
3319int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320		    size_t size, int flags)
3321{
3322	if (sock->ops->sendpage)
3323		return sock->ops->sendpage(sock, page, offset, size, flags);
3324
3325	return sock_no_sendpage(sock, page, offset, size, flags);
3326}
3327EXPORT_SYMBOL(kernel_sendpage);
3328
3329int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3330{
3331	mm_segment_t oldfs = get_fs();
3332	int err;
3333
3334	set_fs(KERNEL_DS);
3335	err = sock->ops->ioctl(sock, cmd, arg);
3336	set_fs(oldfs);
3337
3338	return err;
3339}
3340EXPORT_SYMBOL(kernel_sock_ioctl);
3341
3342int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343{
3344	return sock->ops->shutdown(sock, how);
3345}
3346EXPORT_SYMBOL(kernel_sock_shutdown);
v3.15
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <asm/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 
 109
 110#ifdef CONFIG_NET_RX_BUSY_POLL
 111unsigned int sysctl_net_busy_read __read_mostly;
 112unsigned int sysctl_net_busy_poll __read_mostly;
 113#endif
 114
 115static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
 116static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 117			 unsigned long nr_segs, loff_t pos);
 118static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 119			  unsigned long nr_segs, loff_t pos);
 120static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 121
 122static int sock_close(struct inode *inode, struct file *file);
 123static unsigned int sock_poll(struct file *file,
 124			      struct poll_table_struct *wait);
 125static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 126#ifdef CONFIG_COMPAT
 127static long compat_sock_ioctl(struct file *file,
 128			      unsigned int cmd, unsigned long arg);
 129#endif
 130static int sock_fasync(int fd, struct file *filp, int on);
 131static ssize_t sock_sendpage(struct file *file, struct page *page,
 132			     int offset, size_t size, loff_t *ppos, int more);
 133static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 134				struct pipe_inode_info *pipe, size_t len,
 135				unsigned int flags);
 136
 137/*
 138 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 139 *	in the operation structures but are done directly via the socketcall() multiplexor.
 140 */
 141
 142static const struct file_operations socket_file_ops = {
 143	.owner =	THIS_MODULE,
 144	.llseek =	no_llseek,
 145	.aio_read =	sock_aio_read,
 146	.aio_write =	sock_aio_write,
 147	.poll =		sock_poll,
 148	.unlocked_ioctl = sock_ioctl,
 149#ifdef CONFIG_COMPAT
 150	.compat_ioctl = compat_sock_ioctl,
 151#endif
 152	.mmap =		sock_mmap,
 153	.open =		sock_no_open,	/* special open code to disallow open via /proc */
 154	.release =	sock_close,
 155	.fasync =	sock_fasync,
 156	.sendpage =	sock_sendpage,
 157	.splice_write = generic_splice_sendpage,
 158	.splice_read =	sock_splice_read,
 159};
 160
 161/*
 162 *	The protocol list. Each protocol is registered in here.
 163 */
 164
 165static DEFINE_SPINLOCK(net_family_lock);
 166static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 167
 168/*
 169 *	Statistics counters of the socket lists
 170 */
 171
 172static DEFINE_PER_CPU(int, sockets_in_use);
 173
 174/*
 175 * Support routines.
 176 * Move socket addresses back and forth across the kernel/user
 177 * divide and look after the messy bits.
 178 */
 179
 180/**
 181 *	move_addr_to_kernel	-	copy a socket address into kernel space
 182 *	@uaddr: Address in user space
 183 *	@kaddr: Address in kernel space
 184 *	@ulen: Length in user space
 185 *
 186 *	The address is copied into kernel space. If the provided address is
 187 *	too long an error code of -EINVAL is returned. If the copy gives
 188 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 189 */
 190
 191int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 192{
 193	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 194		return -EINVAL;
 195	if (ulen == 0)
 196		return 0;
 197	if (copy_from_user(kaddr, uaddr, ulen))
 198		return -EFAULT;
 199	return audit_sockaddr(ulen, kaddr);
 200}
 201
 202/**
 203 *	move_addr_to_user	-	copy an address to user space
 204 *	@kaddr: kernel space address
 205 *	@klen: length of address in kernel
 206 *	@uaddr: user space address
 207 *	@ulen: pointer to user length field
 208 *
 209 *	The value pointed to by ulen on entry is the buffer length available.
 210 *	This is overwritten with the buffer space used. -EINVAL is returned
 211 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 212 *	is returned if either the buffer or the length field are not
 213 *	accessible.
 214 *	After copying the data up to the limit the user specifies, the true
 215 *	length of the data is written over the length limit the user
 216 *	specified. Zero is returned for a success.
 217 */
 218
 219static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 220			     void __user *uaddr, int __user *ulen)
 221{
 222	int err;
 223	int len;
 224
 225	BUG_ON(klen > sizeof(struct sockaddr_storage));
 226	err = get_user(len, ulen);
 227	if (err)
 228		return err;
 229	if (len > klen)
 230		len = klen;
 231	if (len < 0)
 232		return -EINVAL;
 233	if (len) {
 234		if (audit_sockaddr(klen, kaddr))
 235			return -ENOMEM;
 236		if (copy_to_user(uaddr, kaddr, len))
 237			return -EFAULT;
 238	}
 239	/*
 240	 *      "fromlen shall refer to the value before truncation.."
 241	 *                      1003.1g
 242	 */
 243	return __put_user(klen, ulen);
 244}
 245
 246static struct kmem_cache *sock_inode_cachep __read_mostly;
 247
 248static struct inode *sock_alloc_inode(struct super_block *sb)
 249{
 250	struct socket_alloc *ei;
 251	struct socket_wq *wq;
 252
 253	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 254	if (!ei)
 255		return NULL;
 256	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 257	if (!wq) {
 258		kmem_cache_free(sock_inode_cachep, ei);
 259		return NULL;
 260	}
 261	init_waitqueue_head(&wq->wait);
 262	wq->fasync_list = NULL;
 
 263	RCU_INIT_POINTER(ei->socket.wq, wq);
 264
 265	ei->socket.state = SS_UNCONNECTED;
 266	ei->socket.flags = 0;
 267	ei->socket.ops = NULL;
 268	ei->socket.sk = NULL;
 269	ei->socket.file = NULL;
 270
 271	return &ei->vfs_inode;
 272}
 273
 274static void sock_destroy_inode(struct inode *inode)
 275{
 276	struct socket_alloc *ei;
 277	struct socket_wq *wq;
 278
 279	ei = container_of(inode, struct socket_alloc, vfs_inode);
 280	wq = rcu_dereference_protected(ei->socket.wq, 1);
 281	kfree_rcu(wq, rcu);
 282	kmem_cache_free(sock_inode_cachep, ei);
 283}
 284
 285static void init_once(void *foo)
 286{
 287	struct socket_alloc *ei = (struct socket_alloc *)foo;
 288
 289	inode_init_once(&ei->vfs_inode);
 290}
 291
 292static int init_inodecache(void)
 293{
 294	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 295					      sizeof(struct socket_alloc),
 296					      0,
 297					      (SLAB_HWCACHE_ALIGN |
 298					       SLAB_RECLAIM_ACCOUNT |
 299					       SLAB_MEM_SPREAD),
 300					      init_once);
 301	if (sock_inode_cachep == NULL)
 302		return -ENOMEM;
 303	return 0;
 304}
 305
 306static const struct super_operations sockfs_ops = {
 307	.alloc_inode	= sock_alloc_inode,
 308	.destroy_inode	= sock_destroy_inode,
 309	.statfs		= simple_statfs,
 310};
 311
 312/*
 313 * sockfs_dname() is called from d_path().
 314 */
 315static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 316{
 317	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 318				dentry->d_inode->i_ino);
 319}
 320
 321static const struct dentry_operations sockfs_dentry_operations = {
 322	.d_dname  = sockfs_dname,
 323};
 324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 326			 int flags, const char *dev_name, void *data)
 327{
 328	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 329		&sockfs_dentry_operations, SOCKFS_MAGIC);
 
 330}
 331
 332static struct vfsmount *sock_mnt __read_mostly;
 333
 334static struct file_system_type sock_fs_type = {
 335	.name =		"sockfs",
 336	.mount =	sockfs_mount,
 337	.kill_sb =	kill_anon_super,
 338};
 339
 340/*
 341 *	Obtains the first available file descriptor and sets it up for use.
 342 *
 343 *	These functions create file structures and maps them to fd space
 344 *	of the current process. On success it returns file descriptor
 345 *	and file struct implicitly stored in sock->file.
 346 *	Note that another thread may close file descriptor before we return
 347 *	from this function. We use the fact that now we do not refer
 348 *	to socket after mapping. If one day we will need it, this
 349 *	function will increment ref. count on file by 1.
 350 *
 351 *	In any case returned fd MAY BE not valid!
 352 *	This race condition is unavoidable
 353 *	with shared fd spaces, we cannot solve it inside kernel,
 354 *	but we take care of internal coherence yet.
 355 */
 356
 357struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 358{
 359	struct qstr name = { .name = "" };
 360	struct path path;
 361	struct file *file;
 362
 363	if (dname) {
 364		name.name = dname;
 365		name.len = strlen(name.name);
 366	} else if (sock->sk) {
 367		name.name = sock->sk->sk_prot_creator->name;
 368		name.len = strlen(name.name);
 369	}
 370	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 371	if (unlikely(!path.dentry))
 372		return ERR_PTR(-ENOMEM);
 373	path.mnt = mntget(sock_mnt);
 374
 375	d_instantiate(path.dentry, SOCK_INODE(sock));
 376	SOCK_INODE(sock)->i_fop = &socket_file_ops;
 377
 378	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 379		  &socket_file_ops);
 380	if (unlikely(IS_ERR(file))) {
 381		/* drop dentry, keep inode */
 382		ihold(path.dentry->d_inode);
 383		path_put(&path);
 384		return file;
 385	}
 386
 387	sock->file = file;
 388	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 389	file->private_data = sock;
 390	return file;
 391}
 392EXPORT_SYMBOL(sock_alloc_file);
 393
 394static int sock_map_fd(struct socket *sock, int flags)
 395{
 396	struct file *newfile;
 397	int fd = get_unused_fd_flags(flags);
 398	if (unlikely(fd < 0))
 399		return fd;
 400
 401	newfile = sock_alloc_file(sock, flags, NULL);
 402	if (likely(!IS_ERR(newfile))) {
 403		fd_install(fd, newfile);
 404		return fd;
 405	}
 406
 407	put_unused_fd(fd);
 408	return PTR_ERR(newfile);
 409}
 410
 411struct socket *sock_from_file(struct file *file, int *err)
 412{
 413	if (file->f_op == &socket_file_ops)
 414		return file->private_data;	/* set in sock_map_fd */
 415
 416	*err = -ENOTSOCK;
 417	return NULL;
 418}
 419EXPORT_SYMBOL(sock_from_file);
 420
 421/**
 422 *	sockfd_lookup - Go from a file number to its socket slot
 423 *	@fd: file handle
 424 *	@err: pointer to an error code return
 425 *
 426 *	The file handle passed in is locked and the socket it is bound
 427 *	too is returned. If an error occurs the err pointer is overwritten
 428 *	with a negative errno code and NULL is returned. The function checks
 429 *	for both invalid handles and passing a handle which is not a socket.
 430 *
 431 *	On a success the socket object pointer is returned.
 432 */
 433
 434struct socket *sockfd_lookup(int fd, int *err)
 435{
 436	struct file *file;
 437	struct socket *sock;
 438
 439	file = fget(fd);
 440	if (!file) {
 441		*err = -EBADF;
 442		return NULL;
 443	}
 444
 445	sock = sock_from_file(file, err);
 446	if (!sock)
 447		fput(file);
 448	return sock;
 449}
 450EXPORT_SYMBOL(sockfd_lookup);
 451
 452static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 453{
 454	struct fd f = fdget(fd);
 455	struct socket *sock;
 456
 457	*err = -EBADF;
 458	if (f.file) {
 459		sock = sock_from_file(f.file, err);
 460		if (likely(sock)) {
 461			*fput_needed = f.flags;
 462			return sock;
 463		}
 464		fdput(f);
 465	}
 466	return NULL;
 467}
 468
 469#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 470#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 471#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 472static ssize_t sockfs_getxattr(struct dentry *dentry,
 473			       const char *name, void *value, size_t size)
 474{
 475	const char *proto_name;
 476	size_t proto_size;
 477	int error;
 478
 479	error = -ENODATA;
 480	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
 481		proto_name = dentry->d_name.name;
 482		proto_size = strlen(proto_name);
 483
 484		if (value) {
 485			error = -ERANGE;
 486			if (proto_size + 1 > size)
 487				goto out;
 488
 489			strncpy(value, proto_name, proto_size + 1);
 490		}
 491		error = proto_size + 1;
 492	}
 493
 494out:
 495	return error;
 496}
 497
 498static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 499				size_t size)
 500{
 501	ssize_t len;
 502	ssize_t used = 0;
 503
 504	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
 505	if (len < 0)
 506		return len;
 507	used += len;
 508	if (buffer) {
 509		if (size < used)
 510			return -ERANGE;
 511		buffer += len;
 512	}
 513
 514	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 515	used += len;
 516	if (buffer) {
 517		if (size < used)
 518			return -ERANGE;
 519		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 520		buffer += len;
 521	}
 522
 523	return used;
 524}
 525
 
 
 
 
 
 
 
 
 
 
 
 
 
 526static const struct inode_operations sockfs_inode_ops = {
 527	.getxattr = sockfs_getxattr,
 528	.listxattr = sockfs_listxattr,
 
 529};
 530
 531/**
 532 *	sock_alloc	-	allocate a socket
 533 *
 534 *	Allocate a new inode and socket object. The two are bound together
 535 *	and initialised. The socket is then returned. If we are out of inodes
 536 *	NULL is returned.
 537 */
 538
 539static struct socket *sock_alloc(void)
 540{
 541	struct inode *inode;
 542	struct socket *sock;
 543
 544	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 545	if (!inode)
 546		return NULL;
 547
 548	sock = SOCKET_I(inode);
 549
 550	kmemcheck_annotate_bitfield(sock, type);
 551	inode->i_ino = get_next_ino();
 552	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 553	inode->i_uid = current_fsuid();
 554	inode->i_gid = current_fsgid();
 555	inode->i_op = &sockfs_inode_ops;
 556
 557	this_cpu_add(sockets_in_use, 1);
 558	return sock;
 559}
 560
 561/*
 562 *	In theory you can't get an open on this inode, but /proc provides
 563 *	a back door. Remember to keep it shut otherwise you'll let the
 564 *	creepy crawlies in.
 565 */
 566
 567static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
 568{
 569	return -ENXIO;
 570}
 571
 572const struct file_operations bad_sock_fops = {
 573	.owner = THIS_MODULE,
 574	.open = sock_no_open,
 575	.llseek = noop_llseek,
 576};
 577
 578/**
 579 *	sock_release	-	close a socket
 580 *	@sock: socket to close
 581 *
 582 *	The socket is released from the protocol stack if it has a release
 583 *	callback, and the inode is then released if the socket is bound to
 584 *	an inode not a file.
 585 */
 586
 587void sock_release(struct socket *sock)
 588{
 589	if (sock->ops) {
 590		struct module *owner = sock->ops->owner;
 591
 592		sock->ops->release(sock);
 593		sock->ops = NULL;
 594		module_put(owner);
 595	}
 596
 597	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 598		pr_err("%s: fasync list not empty!\n", __func__);
 599
 600	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
 601		return;
 602
 603	this_cpu_sub(sockets_in_use, 1);
 604	if (!sock->file) {
 605		iput(SOCK_INODE(sock));
 606		return;
 607	}
 608	sock->file = NULL;
 609}
 610EXPORT_SYMBOL(sock_release);
 611
 612void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
 613{
 614	*tx_flags = 0;
 615	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 616		*tx_flags |= SKBTX_HW_TSTAMP;
 617	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 618		*tx_flags |= SKBTX_SW_TSTAMP;
 619	if (sock_flag(sk, SOCK_WIFI_STATUS))
 620		*tx_flags |= SKBTX_WIFI_STATUS;
 621}
 622EXPORT_SYMBOL(sock_tx_timestamp);
 623
 624static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
 625				       struct msghdr *msg, size_t size)
 626{
 627	struct sock_iocb *si = kiocb_to_siocb(iocb);
 628
 629	si->sock = sock;
 630	si->scm = NULL;
 631	si->msg = msg;
 632	si->size = size;
 633
 634	return sock->ops->sendmsg(iocb, sock, msg, size);
 635}
 636
 637static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
 638				 struct msghdr *msg, size_t size)
 639{
 640	int err = security_socket_sendmsg(sock, msg, size);
 641
 642	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
 643}
 
 644
 645int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 646{
 647	struct kiocb iocb;
 648	struct sock_iocb siocb;
 649	int ret;
 650
 651	init_sync_kiocb(&iocb, NULL);
 652	iocb.private = &siocb;
 653	ret = __sock_sendmsg(&iocb, sock, msg, size);
 654	if (-EIOCBQUEUED == ret)
 655		ret = wait_on_sync_kiocb(&iocb);
 656	return ret;
 657}
 658EXPORT_SYMBOL(sock_sendmsg);
 659
 660static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
 661{
 662	struct kiocb iocb;
 663	struct sock_iocb siocb;
 664	int ret;
 665
 666	init_sync_kiocb(&iocb, NULL);
 667	iocb.private = &siocb;
 668	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
 669	if (-EIOCBQUEUED == ret)
 670		ret = wait_on_sync_kiocb(&iocb);
 671	return ret;
 672}
 
 673
 674int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 675		   struct kvec *vec, size_t num, size_t size)
 676{
 677	mm_segment_t oldfs = get_fs();
 678	int result;
 679
 680	set_fs(KERNEL_DS);
 681	/*
 682	 * the following is safe, since for compiler definitions of kvec and
 683	 * iovec are identical, yielding the same in-core layout and alignment
 684	 */
 685	msg->msg_iov = (struct iovec *)vec;
 686	msg->msg_iovlen = num;
 687	result = sock_sendmsg(sock, msg, size);
 688	set_fs(oldfs);
 689	return result;
 690}
 691EXPORT_SYMBOL(kernel_sendmsg);
 692
 693/*
 694 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 695 */
 696void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 697	struct sk_buff *skb)
 698{
 699	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 700	struct timespec ts[3];
 701	int empty = 1;
 702	struct skb_shared_hwtstamps *shhwtstamps =
 703		skb_hwtstamps(skb);
 704
 705	/* Race occurred between timestamp enabling and packet
 706	   receiving.  Fill in the current time for now. */
 707	if (need_software_tstamp && skb->tstamp.tv64 == 0)
 708		__net_timestamp(skb);
 709
 710	if (need_software_tstamp) {
 711		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 712			struct timeval tv;
 713			skb_get_timestamp(skb, &tv);
 714			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 715				 sizeof(tv), &tv);
 716		} else {
 717			skb_get_timestampns(skb, &ts[0]);
 
 718			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 719				 sizeof(ts[0]), &ts[0]);
 720		}
 721	}
 722
 
 
 
 
 
 
 
 
 
 
 
 723
 724	memset(ts, 0, sizeof(ts));
 725	if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
 726	    ktime_to_timespec_cond(skb->tstamp, ts + 0))
 727		empty = 0;
 728	if (shhwtstamps) {
 729		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
 730		    ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
 731			empty = 0;
 732		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
 733		    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
 734			empty = 0;
 735	}
 736	if (!empty)
 737		put_cmsg(msg, SOL_SOCKET,
 738			 SCM_TIMESTAMPING, sizeof(ts), &ts);
 739}
 740EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 741
 742void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 743	struct sk_buff *skb)
 744{
 745	int ack;
 746
 747	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 748		return;
 749	if (!skb->wifi_acked_valid)
 750		return;
 751
 752	ack = skb->wifi_acked;
 753
 754	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 755}
 756EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 757
 758static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 759				   struct sk_buff *skb)
 760{
 761	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
 762		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 763			sizeof(__u32), &skb->dropcount);
 764}
 765
 766void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 767	struct sk_buff *skb)
 768{
 769	sock_recv_timestamp(msg, sk, skb);
 770	sock_recv_drops(msg, sk, skb);
 771}
 772EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 773
 774static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
 775				       struct msghdr *msg, size_t size, int flags)
 776{
 777	struct sock_iocb *si = kiocb_to_siocb(iocb);
 778
 779	si->sock = sock;
 780	si->scm = NULL;
 781	si->msg = msg;
 782	si->size = size;
 783	si->flags = flags;
 784
 785	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
 786}
 787
 788static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
 789				 struct msghdr *msg, size_t size, int flags)
 790{
 791	int err = security_socket_recvmsg(sock, msg, size, flags);
 792
 793	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
 794}
 795
 796int sock_recvmsg(struct socket *sock, struct msghdr *msg,
 797		 size_t size, int flags)
 798{
 799	struct kiocb iocb;
 800	struct sock_iocb siocb;
 801	int ret;
 802
 803	init_sync_kiocb(&iocb, NULL);
 804	iocb.private = &siocb;
 805	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
 806	if (-EIOCBQUEUED == ret)
 807		ret = wait_on_sync_kiocb(&iocb);
 808	return ret;
 809}
 810EXPORT_SYMBOL(sock_recvmsg);
 811
 812static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 813			      size_t size, int flags)
 814{
 815	struct kiocb iocb;
 816	struct sock_iocb siocb;
 817	int ret;
 818
 819	init_sync_kiocb(&iocb, NULL);
 820	iocb.private = &siocb;
 821	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
 822	if (-EIOCBQUEUED == ret)
 823		ret = wait_on_sync_kiocb(&iocb);
 824	return ret;
 825}
 826
 827/**
 828 * kernel_recvmsg - Receive a message from a socket (kernel space)
 829 * @sock:       The socket to receive the message from
 830 * @msg:        Received message
 831 * @vec:        Input s/g array for message data
 832 * @num:        Size of input s/g array
 833 * @size:       Number of bytes to read
 834 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 835 *
 836 * On return the msg structure contains the scatter/gather array passed in the
 837 * vec argument. The array is modified so that it consists of the unfilled
 838 * portion of the original array.
 839 *
 840 * The returned value is the total number of bytes received, or an error.
 841 */
 842int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 843		   struct kvec *vec, size_t num, size_t size, int flags)
 844{
 845	mm_segment_t oldfs = get_fs();
 846	int result;
 847
 
 848	set_fs(KERNEL_DS);
 849	/*
 850	 * the following is safe, since for compiler definitions of kvec and
 851	 * iovec are identical, yielding the same in-core layout and alignment
 852	 */
 853	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
 854	result = sock_recvmsg(sock, msg, size, flags);
 855	set_fs(oldfs);
 856	return result;
 857}
 858EXPORT_SYMBOL(kernel_recvmsg);
 859
 860static ssize_t sock_sendpage(struct file *file, struct page *page,
 861			     int offset, size_t size, loff_t *ppos, int more)
 862{
 863	struct socket *sock;
 864	int flags;
 865
 866	sock = file->private_data;
 867
 868	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 869	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 870	flags |= more;
 871
 872	return kernel_sendpage(sock, page, offset, size, flags);
 873}
 874
 875static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 876				struct pipe_inode_info *pipe, size_t len,
 877				unsigned int flags)
 878{
 879	struct socket *sock = file->private_data;
 880
 881	if (unlikely(!sock->ops->splice_read))
 882		return -EINVAL;
 883
 884	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 885}
 886
 887static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
 888					 struct sock_iocb *siocb)
 889{
 890	if (!is_sync_kiocb(iocb))
 891		BUG();
 892
 893	siocb->kiocb = iocb;
 894	iocb->private = siocb;
 895	return siocb;
 896}
 897
 898static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
 899		struct file *file, const struct iovec *iov,
 900		unsigned long nr_segs)
 901{
 
 902	struct socket *sock = file->private_data;
 903	size_t size = 0;
 904	int i;
 905
 906	for (i = 0; i < nr_segs; i++)
 907		size += iov[i].iov_len;
 908
 909	msg->msg_name = NULL;
 910	msg->msg_namelen = 0;
 911	msg->msg_control = NULL;
 912	msg->msg_controllen = 0;
 913	msg->msg_iov = (struct iovec *)iov;
 914	msg->msg_iovlen = nr_segs;
 915	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 916
 917	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
 918}
 919
 920static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 921				unsigned long nr_segs, loff_t pos)
 922{
 923	struct sock_iocb siocb, *x;
 924
 925	if (pos != 0)
 926		return -ESPIPE;
 927
 928	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
 929		return 0;
 930
 931
 932	x = alloc_sock_iocb(iocb, &siocb);
 933	if (!x)
 934		return -ENOMEM;
 935	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 936}
 937
 938static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
 939			struct file *file, const struct iovec *iov,
 940			unsigned long nr_segs)
 941{
 
 942	struct socket *sock = file->private_data;
 943	size_t size = 0;
 944	int i;
 
 
 
 
 945
 946	for (i = 0; i < nr_segs; i++)
 947		size += iov[i].iov_len;
 948
 949	msg->msg_name = NULL;
 950	msg->msg_namelen = 0;
 951	msg->msg_control = NULL;
 952	msg->msg_controllen = 0;
 953	msg->msg_iov = (struct iovec *)iov;
 954	msg->msg_iovlen = nr_segs;
 955	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 956	if (sock->type == SOCK_SEQPACKET)
 957		msg->msg_flags |= MSG_EOR;
 958
 959	return __sock_sendmsg(iocb, sock, msg, size);
 960}
 961
 962static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 963			  unsigned long nr_segs, loff_t pos)
 964{
 965	struct sock_iocb siocb, *x;
 966
 967	if (pos != 0)
 968		return -ESPIPE;
 969
 970	x = alloc_sock_iocb(iocb, &siocb);
 971	if (!x)
 972		return -ENOMEM;
 973
 974	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 975}
 976
 977/*
 978 * Atomic setting of ioctl hooks to avoid race
 979 * with module unload.
 980 */
 981
 982static DEFINE_MUTEX(br_ioctl_mutex);
 983static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 984
 985void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 986{
 987	mutex_lock(&br_ioctl_mutex);
 988	br_ioctl_hook = hook;
 989	mutex_unlock(&br_ioctl_mutex);
 990}
 991EXPORT_SYMBOL(brioctl_set);
 992
 993static DEFINE_MUTEX(vlan_ioctl_mutex);
 994static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 995
 996void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 997{
 998	mutex_lock(&vlan_ioctl_mutex);
 999	vlan_ioctl_hook = hook;
1000	mutex_unlock(&vlan_ioctl_mutex);
1001}
1002EXPORT_SYMBOL(vlan_ioctl_set);
1003
1004static DEFINE_MUTEX(dlci_ioctl_mutex);
1005static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1006
1007void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1008{
1009	mutex_lock(&dlci_ioctl_mutex);
1010	dlci_ioctl_hook = hook;
1011	mutex_unlock(&dlci_ioctl_mutex);
1012}
1013EXPORT_SYMBOL(dlci_ioctl_set);
1014
1015static long sock_do_ioctl(struct net *net, struct socket *sock,
1016				 unsigned int cmd, unsigned long arg)
1017{
1018	int err;
1019	void __user *argp = (void __user *)arg;
1020
1021	err = sock->ops->ioctl(sock, cmd, arg);
1022
1023	/*
1024	 * If this ioctl is unknown try to hand it down
1025	 * to the NIC driver.
1026	 */
1027	if (err == -ENOIOCTLCMD)
1028		err = dev_ioctl(net, cmd, argp);
1029
1030	return err;
1031}
1032
1033/*
1034 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1035 *	what to do with it - that's up to the protocol still.
1036 */
1037
 
 
 
 
 
1038static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1039{
1040	struct socket *sock;
1041	struct sock *sk;
1042	void __user *argp = (void __user *)arg;
1043	int pid, err;
1044	struct net *net;
1045
1046	sock = file->private_data;
1047	sk = sock->sk;
1048	net = sock_net(sk);
1049	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050		err = dev_ioctl(net, cmd, argp);
1051	} else
1052#ifdef CONFIG_WEXT_CORE
1053	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054		err = dev_ioctl(net, cmd, argp);
1055	} else
1056#endif
1057		switch (cmd) {
1058		case FIOSETOWN:
1059		case SIOCSPGRP:
1060			err = -EFAULT;
1061			if (get_user(pid, (int __user *)argp))
1062				break;
1063			err = f_setown(sock->file, pid, 1);
 
1064			break;
1065		case FIOGETOWN:
1066		case SIOCGPGRP:
1067			err = put_user(f_getown(sock->file),
1068				       (int __user *)argp);
1069			break;
1070		case SIOCGIFBR:
1071		case SIOCSIFBR:
1072		case SIOCBRADDBR:
1073		case SIOCBRDELBR:
1074			err = -ENOPKG;
1075			if (!br_ioctl_hook)
1076				request_module("bridge");
1077
1078			mutex_lock(&br_ioctl_mutex);
1079			if (br_ioctl_hook)
1080				err = br_ioctl_hook(net, cmd, argp);
1081			mutex_unlock(&br_ioctl_mutex);
1082			break;
1083		case SIOCGIFVLAN:
1084		case SIOCSIFVLAN:
1085			err = -ENOPKG;
1086			if (!vlan_ioctl_hook)
1087				request_module("8021q");
1088
1089			mutex_lock(&vlan_ioctl_mutex);
1090			if (vlan_ioctl_hook)
1091				err = vlan_ioctl_hook(net, argp);
1092			mutex_unlock(&vlan_ioctl_mutex);
1093			break;
1094		case SIOCADDDLCI:
1095		case SIOCDELDLCI:
1096			err = -ENOPKG;
1097			if (!dlci_ioctl_hook)
1098				request_module("dlci");
1099
1100			mutex_lock(&dlci_ioctl_mutex);
1101			if (dlci_ioctl_hook)
1102				err = dlci_ioctl_hook(cmd, argp);
1103			mutex_unlock(&dlci_ioctl_mutex);
1104			break;
 
 
 
 
 
 
 
1105		default:
1106			err = sock_do_ioctl(net, sock, cmd, arg);
1107			break;
1108		}
1109	return err;
1110}
1111
1112int sock_create_lite(int family, int type, int protocol, struct socket **res)
1113{
1114	int err;
1115	struct socket *sock = NULL;
1116
1117	err = security_socket_create(family, type, protocol, 1);
1118	if (err)
1119		goto out;
1120
1121	sock = sock_alloc();
1122	if (!sock) {
1123		err = -ENOMEM;
1124		goto out;
1125	}
1126
1127	sock->type = type;
1128	err = security_socket_post_create(sock, family, type, protocol, 1);
1129	if (err)
1130		goto out_release;
1131
1132out:
1133	*res = sock;
1134	return err;
1135out_release:
1136	sock_release(sock);
1137	sock = NULL;
1138	goto out;
1139}
1140EXPORT_SYMBOL(sock_create_lite);
1141
1142/* No kernel lock held - perfect */
1143static unsigned int sock_poll(struct file *file, poll_table *wait)
1144{
1145	unsigned int busy_flag = 0;
1146	struct socket *sock;
1147
1148	/*
1149	 *      We can't return errors to poll, so it's either yes or no.
1150	 */
1151	sock = file->private_data;
1152
1153	if (sk_can_busy_loop(sock->sk)) {
1154		/* this socket can poll_ll so tell the system call */
1155		busy_flag = POLL_BUSY_LOOP;
1156
1157		/* once, only if requested by syscall */
1158		if (wait && (wait->_key & POLL_BUSY_LOOP))
1159			sk_busy_loop(sock->sk, 1);
1160	}
1161
1162	return busy_flag | sock->ops->poll(file, sock, wait);
1163}
1164
1165static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1166{
1167	struct socket *sock = file->private_data;
1168
1169	return sock->ops->mmap(file, sock, vma);
1170}
1171
1172static int sock_close(struct inode *inode, struct file *filp)
1173{
1174	sock_release(SOCKET_I(inode));
1175	return 0;
1176}
1177
1178/*
1179 *	Update the socket async list
1180 *
1181 *	Fasync_list locking strategy.
1182 *
1183 *	1. fasync_list is modified only under process context socket lock
1184 *	   i.e. under semaphore.
1185 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1186 *	   or under socket lock
1187 */
1188
1189static int sock_fasync(int fd, struct file *filp, int on)
1190{
1191	struct socket *sock = filp->private_data;
1192	struct sock *sk = sock->sk;
1193	struct socket_wq *wq;
1194
1195	if (sk == NULL)
1196		return -EINVAL;
1197
1198	lock_sock(sk);
1199	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1200	fasync_helper(fd, filp, on, &wq->fasync_list);
1201
1202	if (!wq->fasync_list)
1203		sock_reset_flag(sk, SOCK_FASYNC);
1204	else
1205		sock_set_flag(sk, SOCK_FASYNC);
1206
1207	release_sock(sk);
1208	return 0;
1209}
1210
1211/* This function may be called only under socket lock or callback_lock or rcu_lock */
1212
1213int sock_wake_async(struct socket *sock, int how, int band)
1214{
1215	struct socket_wq *wq;
 
1216
1217	if (!sock)
1218		return -1;
1219	rcu_read_lock();
1220	wq = rcu_dereference(sock->wq);
1221	if (!wq || !wq->fasync_list) {
1222		rcu_read_unlock();
1223		return -1;
1224	}
1225	switch (how) {
1226	case SOCK_WAKE_WAITD:
1227		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1228			break;
1229		goto call_kill;
1230	case SOCK_WAKE_SPACE:
1231		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1232			break;
1233		/* fall through */
1234	case SOCK_WAKE_IO:
1235call_kill:
1236		kill_fasync(&wq->fasync_list, SIGIO, band);
1237		break;
1238	case SOCK_WAKE_URG:
1239		kill_fasync(&wq->fasync_list, SIGURG, band);
1240	}
1241	rcu_read_unlock();
1242	return 0;
1243}
1244EXPORT_SYMBOL(sock_wake_async);
1245
1246int __sock_create(struct net *net, int family, int type, int protocol,
1247			 struct socket **res, int kern)
1248{
1249	int err;
1250	struct socket *sock;
1251	const struct net_proto_family *pf;
1252
1253	/*
1254	 *      Check protocol is in range
1255	 */
1256	if (family < 0 || family >= NPROTO)
1257		return -EAFNOSUPPORT;
1258	if (type < 0 || type >= SOCK_MAX)
1259		return -EINVAL;
1260
1261	/* Compatibility.
1262
1263	   This uglymoron is moved from INET layer to here to avoid
1264	   deadlock in module load.
1265	 */
1266	if (family == PF_INET && type == SOCK_PACKET) {
1267		static int warned;
1268		if (!warned) {
1269			warned = 1;
1270			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1271				current->comm);
1272		}
1273		family = PF_PACKET;
1274	}
1275
1276	err = security_socket_create(family, type, protocol, kern);
1277	if (err)
1278		return err;
1279
1280	/*
1281	 *	Allocate the socket and allow the family to set things up. if
1282	 *	the protocol is 0, the family is instructed to select an appropriate
1283	 *	default.
1284	 */
1285	sock = sock_alloc();
1286	if (!sock) {
1287		net_warn_ratelimited("socket: no more sockets\n");
1288		return -ENFILE;	/* Not exactly a match, but its the
1289				   closest posix thing */
1290	}
1291
1292	sock->type = type;
1293
1294#ifdef CONFIG_MODULES
1295	/* Attempt to load a protocol module if the find failed.
1296	 *
1297	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1298	 * requested real, full-featured networking support upon configuration.
1299	 * Otherwise module support will break!
1300	 */
1301	if (rcu_access_pointer(net_families[family]) == NULL)
1302		request_module("net-pf-%d", family);
1303#endif
1304
1305	rcu_read_lock();
1306	pf = rcu_dereference(net_families[family]);
1307	err = -EAFNOSUPPORT;
1308	if (!pf)
1309		goto out_release;
1310
1311	/*
1312	 * We will call the ->create function, that possibly is in a loadable
1313	 * module, so we have to bump that loadable module refcnt first.
1314	 */
1315	if (!try_module_get(pf->owner))
1316		goto out_release;
1317
1318	/* Now protected by module ref count */
1319	rcu_read_unlock();
1320
1321	err = pf->create(net, sock, protocol, kern);
1322	if (err < 0)
1323		goto out_module_put;
1324
1325	/*
1326	 * Now to bump the refcnt of the [loadable] module that owns this
1327	 * socket at sock_release time we decrement its refcnt.
1328	 */
1329	if (!try_module_get(sock->ops->owner))
1330		goto out_module_busy;
1331
1332	/*
1333	 * Now that we're done with the ->create function, the [loadable]
1334	 * module can have its refcnt decremented
1335	 */
1336	module_put(pf->owner);
1337	err = security_socket_post_create(sock, family, type, protocol, kern);
1338	if (err)
1339		goto out_sock_release;
1340	*res = sock;
1341
1342	return 0;
1343
1344out_module_busy:
1345	err = -EAFNOSUPPORT;
1346out_module_put:
1347	sock->ops = NULL;
1348	module_put(pf->owner);
1349out_sock_release:
1350	sock_release(sock);
1351	return err;
1352
1353out_release:
1354	rcu_read_unlock();
1355	goto out_sock_release;
1356}
1357EXPORT_SYMBOL(__sock_create);
1358
1359int sock_create(int family, int type, int protocol, struct socket **res)
1360{
1361	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1362}
1363EXPORT_SYMBOL(sock_create);
1364
1365int sock_create_kern(int family, int type, int protocol, struct socket **res)
1366{
1367	return __sock_create(&init_net, family, type, protocol, res, 1);
1368}
1369EXPORT_SYMBOL(sock_create_kern);
1370
1371SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1372{
1373	int retval;
1374	struct socket *sock;
1375	int flags;
1376
1377	/* Check the SOCK_* constants for consistency.  */
1378	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1379	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1380	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1381	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1382
1383	flags = type & ~SOCK_TYPE_MASK;
1384	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1385		return -EINVAL;
1386	type &= SOCK_TYPE_MASK;
1387
1388	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1389		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1390
1391	retval = sock_create(family, type, protocol, &sock);
1392	if (retval < 0)
1393		goto out;
1394
1395	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1396	if (retval < 0)
1397		goto out_release;
1398
1399out:
1400	/* It may be already another descriptor 8) Not kernel problem. */
1401	return retval;
1402
1403out_release:
1404	sock_release(sock);
1405	return retval;
1406}
1407
1408/*
1409 *	Create a pair of connected sockets.
1410 */
1411
1412SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1413		int __user *, usockvec)
1414{
1415	struct socket *sock1, *sock2;
1416	int fd1, fd2, err;
1417	struct file *newfile1, *newfile2;
1418	int flags;
1419
1420	flags = type & ~SOCK_TYPE_MASK;
1421	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1422		return -EINVAL;
1423	type &= SOCK_TYPE_MASK;
1424
1425	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1426		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1427
1428	/*
1429	 * Obtain the first socket and check if the underlying protocol
1430	 * supports the socketpair call.
1431	 */
1432
1433	err = sock_create(family, type, protocol, &sock1);
1434	if (err < 0)
1435		goto out;
1436
1437	err = sock_create(family, type, protocol, &sock2);
1438	if (err < 0)
1439		goto out_release_1;
1440
1441	err = sock1->ops->socketpair(sock1, sock2);
1442	if (err < 0)
1443		goto out_release_both;
1444
1445	fd1 = get_unused_fd_flags(flags);
1446	if (unlikely(fd1 < 0)) {
1447		err = fd1;
1448		goto out_release_both;
1449	}
1450
1451	fd2 = get_unused_fd_flags(flags);
1452	if (unlikely(fd2 < 0)) {
1453		err = fd2;
1454		goto out_put_unused_1;
1455	}
1456
1457	newfile1 = sock_alloc_file(sock1, flags, NULL);
1458	if (unlikely(IS_ERR(newfile1))) {
1459		err = PTR_ERR(newfile1);
1460		goto out_put_unused_both;
1461	}
1462
1463	newfile2 = sock_alloc_file(sock2, flags, NULL);
1464	if (IS_ERR(newfile2)) {
1465		err = PTR_ERR(newfile2);
1466		goto out_fput_1;
1467	}
1468
1469	err = put_user(fd1, &usockvec[0]);
1470	if (err)
1471		goto out_fput_both;
1472
1473	err = put_user(fd2, &usockvec[1]);
1474	if (err)
1475		goto out_fput_both;
1476
1477	audit_fd_pair(fd1, fd2);
1478
1479	fd_install(fd1, newfile1);
1480	fd_install(fd2, newfile2);
1481	/* fd1 and fd2 may be already another descriptors.
1482	 * Not kernel problem.
1483	 */
1484
1485	return 0;
1486
1487out_fput_both:
1488	fput(newfile2);
1489	fput(newfile1);
1490	put_unused_fd(fd2);
1491	put_unused_fd(fd1);
1492	goto out;
1493
1494out_fput_1:
1495	fput(newfile1);
1496	put_unused_fd(fd2);
1497	put_unused_fd(fd1);
1498	sock_release(sock2);
1499	goto out;
1500
1501out_put_unused_both:
1502	put_unused_fd(fd2);
1503out_put_unused_1:
1504	put_unused_fd(fd1);
1505out_release_both:
1506	sock_release(sock2);
1507out_release_1:
1508	sock_release(sock1);
1509out:
1510	return err;
1511}
1512
1513/*
1514 *	Bind a name to a socket. Nothing much to do here since it's
1515 *	the protocol's responsibility to handle the local address.
1516 *
1517 *	We move the socket address to kernel space before we call
1518 *	the protocol layer (having also checked the address is ok).
1519 */
1520
1521SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1522{
1523	struct socket *sock;
1524	struct sockaddr_storage address;
1525	int err, fput_needed;
1526
1527	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1528	if (sock) {
1529		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1530		if (err >= 0) {
1531			err = security_socket_bind(sock,
1532						   (struct sockaddr *)&address,
1533						   addrlen);
1534			if (!err)
1535				err = sock->ops->bind(sock,
1536						      (struct sockaddr *)
1537						      &address, addrlen);
1538		}
1539		fput_light(sock->file, fput_needed);
1540	}
1541	return err;
1542}
1543
1544/*
1545 *	Perform a listen. Basically, we allow the protocol to do anything
1546 *	necessary for a listen, and if that works, we mark the socket as
1547 *	ready for listening.
1548 */
1549
1550SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1551{
1552	struct socket *sock;
1553	int err, fput_needed;
1554	int somaxconn;
1555
1556	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557	if (sock) {
1558		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1559		if ((unsigned int)backlog > somaxconn)
1560			backlog = somaxconn;
1561
1562		err = security_socket_listen(sock, backlog);
1563		if (!err)
1564			err = sock->ops->listen(sock, backlog);
1565
1566		fput_light(sock->file, fput_needed);
1567	}
1568	return err;
1569}
1570
1571/*
1572 *	For accept, we attempt to create a new socket, set up the link
1573 *	with the client, wake up the client, then return the new
1574 *	connected fd. We collect the address of the connector in kernel
1575 *	space and move it to user at the very end. This is unclean because
1576 *	we open the socket then return an error.
1577 *
1578 *	1003.1g adds the ability to recvmsg() to query connection pending
1579 *	status to recvmsg. We need to add that support in a way thats
1580 *	clean when we restucture accept also.
1581 */
1582
1583SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1584		int __user *, upeer_addrlen, int, flags)
1585{
1586	struct socket *sock, *newsock;
1587	struct file *newfile;
1588	int err, len, newfd, fput_needed;
1589	struct sockaddr_storage address;
1590
1591	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1592		return -EINVAL;
1593
1594	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1595		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1596
1597	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598	if (!sock)
1599		goto out;
1600
1601	err = -ENFILE;
1602	newsock = sock_alloc();
1603	if (!newsock)
1604		goto out_put;
1605
1606	newsock->type = sock->type;
1607	newsock->ops = sock->ops;
1608
1609	/*
1610	 * We don't need try_module_get here, as the listening socket (sock)
1611	 * has the protocol module (sock->ops->owner) held.
1612	 */
1613	__module_get(newsock->ops->owner);
1614
1615	newfd = get_unused_fd_flags(flags);
1616	if (unlikely(newfd < 0)) {
1617		err = newfd;
1618		sock_release(newsock);
1619		goto out_put;
1620	}
1621	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1622	if (unlikely(IS_ERR(newfile))) {
1623		err = PTR_ERR(newfile);
1624		put_unused_fd(newfd);
1625		sock_release(newsock);
1626		goto out_put;
1627	}
1628
1629	err = security_socket_accept(sock, newsock);
1630	if (err)
1631		goto out_fd;
1632
1633	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1634	if (err < 0)
1635		goto out_fd;
1636
1637	if (upeer_sockaddr) {
1638		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1639					  &len, 2) < 0) {
1640			err = -ECONNABORTED;
1641			goto out_fd;
1642		}
1643		err = move_addr_to_user(&address,
1644					len, upeer_sockaddr, upeer_addrlen);
1645		if (err < 0)
1646			goto out_fd;
1647	}
1648
1649	/* File flags are not inherited via accept() unlike another OSes. */
1650
1651	fd_install(newfd, newfile);
1652	err = newfd;
1653
1654out_put:
1655	fput_light(sock->file, fput_needed);
1656out:
1657	return err;
1658out_fd:
1659	fput(newfile);
1660	put_unused_fd(newfd);
1661	goto out_put;
1662}
1663
1664SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1665		int __user *, upeer_addrlen)
1666{
1667	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1668}
1669
1670/*
1671 *	Attempt to connect to a socket with the server address.  The address
1672 *	is in user space so we verify it is OK and move it to kernel space.
1673 *
1674 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1675 *	break bindings
1676 *
1677 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1678 *	other SEQPACKET protocols that take time to connect() as it doesn't
1679 *	include the -EINPROGRESS status for such sockets.
1680 */
1681
1682SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1683		int, addrlen)
1684{
1685	struct socket *sock;
1686	struct sockaddr_storage address;
1687	int err, fput_needed;
1688
1689	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690	if (!sock)
1691		goto out;
1692	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1693	if (err < 0)
1694		goto out_put;
1695
1696	err =
1697	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1698	if (err)
1699		goto out_put;
1700
1701	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1702				 sock->file->f_flags);
1703out_put:
1704	fput_light(sock->file, fput_needed);
1705out:
1706	return err;
1707}
1708
1709/*
1710 *	Get the local address ('name') of a socket object. Move the obtained
1711 *	name to user space.
1712 */
1713
1714SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1715		int __user *, usockaddr_len)
1716{
1717	struct socket *sock;
1718	struct sockaddr_storage address;
1719	int len, err, fput_needed;
1720
1721	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1722	if (!sock)
1723		goto out;
1724
1725	err = security_socket_getsockname(sock);
1726	if (err)
1727		goto out_put;
1728
1729	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1730	if (err)
1731		goto out_put;
1732	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1733
1734out_put:
1735	fput_light(sock->file, fput_needed);
1736out:
1737	return err;
1738}
1739
1740/*
1741 *	Get the remote address ('name') of a socket object. Move the obtained
1742 *	name to user space.
1743 */
1744
1745SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1746		int __user *, usockaddr_len)
1747{
1748	struct socket *sock;
1749	struct sockaddr_storage address;
1750	int len, err, fput_needed;
1751
1752	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1753	if (sock != NULL) {
1754		err = security_socket_getpeername(sock);
1755		if (err) {
1756			fput_light(sock->file, fput_needed);
1757			return err;
1758		}
1759
1760		err =
1761		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1762				       1);
1763		if (!err)
1764			err = move_addr_to_user(&address, len, usockaddr,
1765						usockaddr_len);
1766		fput_light(sock->file, fput_needed);
1767	}
1768	return err;
1769}
1770
1771/*
1772 *	Send a datagram to a given address. We move the address into kernel
1773 *	space and check the user space data area is readable before invoking
1774 *	the protocol.
1775 */
1776
1777SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1778		unsigned int, flags, struct sockaddr __user *, addr,
1779		int, addr_len)
1780{
1781	struct socket *sock;
1782	struct sockaddr_storage address;
1783	int err;
1784	struct msghdr msg;
1785	struct iovec iov;
1786	int fput_needed;
1787
1788	if (len > INT_MAX)
1789		len = INT_MAX;
 
1790	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1791	if (!sock)
1792		goto out;
1793
1794	iov.iov_base = buff;
1795	iov.iov_len = len;
1796	msg.msg_name = NULL;
1797	msg.msg_iov = &iov;
1798	msg.msg_iovlen = 1;
1799	msg.msg_control = NULL;
1800	msg.msg_controllen = 0;
1801	msg.msg_namelen = 0;
1802	if (addr) {
1803		err = move_addr_to_kernel(addr, addr_len, &address);
1804		if (err < 0)
1805			goto out_put;
1806		msg.msg_name = (struct sockaddr *)&address;
1807		msg.msg_namelen = addr_len;
1808	}
1809	if (sock->file->f_flags & O_NONBLOCK)
1810		flags |= MSG_DONTWAIT;
1811	msg.msg_flags = flags;
1812	err = sock_sendmsg(sock, &msg, len);
1813
1814out_put:
1815	fput_light(sock->file, fput_needed);
1816out:
1817	return err;
1818}
1819
1820/*
1821 *	Send a datagram down a socket.
1822 */
1823
1824SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825		unsigned int, flags)
1826{
1827	return sys_sendto(fd, buff, len, flags, NULL, 0);
1828}
1829
1830/*
1831 *	Receive a frame from the socket and optionally record the address of the
1832 *	sender. We verify the buffers are writable and if needed move the
1833 *	sender address from kernel to user space.
1834 */
1835
1836SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1837		unsigned int, flags, struct sockaddr __user *, addr,
1838		int __user *, addr_len)
1839{
1840	struct socket *sock;
1841	struct iovec iov;
1842	struct msghdr msg;
1843	struct sockaddr_storage address;
1844	int err, err2;
1845	int fput_needed;
1846
1847	if (size > INT_MAX)
1848		size = INT_MAX;
 
1849	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850	if (!sock)
1851		goto out;
1852
1853	msg.msg_control = NULL;
1854	msg.msg_controllen = 0;
1855	msg.msg_iovlen = 1;
1856	msg.msg_iov = &iov;
1857	iov.iov_len = size;
1858	iov.iov_base = ubuf;
1859	/* Save some cycles and don't copy the address if not needed */
1860	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1861	/* We assume all kernel code knows the size of sockaddr_storage */
1862	msg.msg_namelen = 0;
 
1863	if (sock->file->f_flags & O_NONBLOCK)
1864		flags |= MSG_DONTWAIT;
1865	err = sock_recvmsg(sock, &msg, size, flags);
1866
1867	if (err >= 0 && addr != NULL) {
1868		err2 = move_addr_to_user(&address,
1869					 msg.msg_namelen, addr, addr_len);
1870		if (err2 < 0)
1871			err = err2;
1872	}
1873
1874	fput_light(sock->file, fput_needed);
1875out:
1876	return err;
1877}
1878
1879/*
1880 *	Receive a datagram from a socket.
1881 */
1882
1883SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1884		unsigned int, flags)
1885{
1886	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1887}
1888
1889/*
1890 *	Set a socket option. Because we don't know the option lengths we have
1891 *	to pass the user mode parameter for the protocols to sort out.
1892 */
1893
1894SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1895		char __user *, optval, int, optlen)
1896{
1897	int err, fput_needed;
1898	struct socket *sock;
1899
1900	if (optlen < 0)
1901		return -EINVAL;
1902
1903	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1904	if (sock != NULL) {
1905		err = security_socket_setsockopt(sock, level, optname);
1906		if (err)
1907			goto out_put;
1908
1909		if (level == SOL_SOCKET)
1910			err =
1911			    sock_setsockopt(sock, level, optname, optval,
1912					    optlen);
1913		else
1914			err =
1915			    sock->ops->setsockopt(sock, level, optname, optval,
1916						  optlen);
1917out_put:
1918		fput_light(sock->file, fput_needed);
1919	}
1920	return err;
1921}
1922
1923/*
1924 *	Get a socket option. Because we don't know the option lengths we have
1925 *	to pass a user mode parameter for the protocols to sort out.
1926 */
1927
1928SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1929		char __user *, optval, int __user *, optlen)
1930{
1931	int err, fput_needed;
1932	struct socket *sock;
1933
1934	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935	if (sock != NULL) {
1936		err = security_socket_getsockopt(sock, level, optname);
1937		if (err)
1938			goto out_put;
1939
1940		if (level == SOL_SOCKET)
1941			err =
1942			    sock_getsockopt(sock, level, optname, optval,
1943					    optlen);
1944		else
1945			err =
1946			    sock->ops->getsockopt(sock, level, optname, optval,
1947						  optlen);
1948out_put:
1949		fput_light(sock->file, fput_needed);
1950	}
1951	return err;
1952}
1953
1954/*
1955 *	Shutdown a socket.
1956 */
1957
1958SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1959{
1960	int err, fput_needed;
1961	struct socket *sock;
1962
1963	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964	if (sock != NULL) {
1965		err = security_socket_shutdown(sock, how);
1966		if (!err)
1967			err = sock->ops->shutdown(sock, how);
1968		fput_light(sock->file, fput_needed);
1969	}
1970	return err;
1971}
1972
1973/* A couple of helpful macros for getting the address of the 32/64 bit
1974 * fields which are the same type (int / unsigned) on our platforms.
1975 */
1976#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1977#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1978#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1979
1980struct used_address {
1981	struct sockaddr_storage name;
1982	unsigned int name_len;
1983};
1984
1985static int copy_msghdr_from_user(struct msghdr *kmsg,
1986				 struct msghdr __user *umsg)
 
 
1987{
1988	if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
 
 
 
 
 
 
 
 
 
 
 
 
1989		return -EFAULT;
1990
 
 
 
1991	if (kmsg->msg_namelen < 0)
1992		return -EINVAL;
1993
1994	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1995		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1996	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997}
1998
1999static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2000			 struct msghdr *msg_sys, unsigned int flags,
2001			 struct used_address *used_address)
 
2002{
2003	struct compat_msghdr __user *msg_compat =
2004	    (struct compat_msghdr __user *)msg;
2005	struct sockaddr_storage address;
2006	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2007	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2008	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
2009	/* 20 is size of ipv6_pktinfo */
2010	unsigned char *ctl_buf = ctl;
2011	int err, ctl_len, total_len;
 
2012
2013	err = -EFAULT;
2014	if (MSG_CMSG_COMPAT & flags) {
2015		if (get_compat_msghdr(msg_sys, msg_compat))
2016			return -EFAULT;
2017	} else {
2018		err = copy_msghdr_from_user(msg_sys, msg);
2019		if (err)
2020			return err;
2021	}
2022
2023	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2024		err = -EMSGSIZE;
2025		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2026			goto out;
2027		err = -ENOMEM;
2028		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2029			      GFP_KERNEL);
2030		if (!iov)
2031			goto out;
2032	}
2033
2034	/* This will also move the address data into kernel space */
2035	if (MSG_CMSG_COMPAT & flags) {
2036		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2037	} else
2038		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2039	if (err < 0)
2040		goto out_freeiov;
2041	total_len = err;
2042
2043	err = -ENOBUFS;
2044
2045	if (msg_sys->msg_controllen > INT_MAX)
2046		goto out_freeiov;
 
2047	ctl_len = msg_sys->msg_controllen;
2048	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2049		err =
2050		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2051						     sizeof(ctl));
2052		if (err)
2053			goto out_freeiov;
2054		ctl_buf = msg_sys->msg_control;
2055		ctl_len = msg_sys->msg_controllen;
2056	} else if (ctl_len) {
2057		if (ctl_len > sizeof(ctl)) {
2058			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2059			if (ctl_buf == NULL)
2060				goto out_freeiov;
2061		}
2062		err = -EFAULT;
2063		/*
2064		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2065		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2066		 * checking falls down on this.
2067		 */
2068		if (copy_from_user(ctl_buf,
2069				   (void __user __force *)msg_sys->msg_control,
2070				   ctl_len))
2071			goto out_freectl;
2072		msg_sys->msg_control = ctl_buf;
2073	}
2074	msg_sys->msg_flags = flags;
2075
2076	if (sock->file->f_flags & O_NONBLOCK)
2077		msg_sys->msg_flags |= MSG_DONTWAIT;
2078	/*
2079	 * If this is sendmmsg() and current destination address is same as
2080	 * previously succeeded address, omit asking LSM's decision.
2081	 * used_address->name_len is initialized to UINT_MAX so that the first
2082	 * destination address never matches.
2083	 */
2084	if (used_address && msg_sys->msg_name &&
2085	    used_address->name_len == msg_sys->msg_namelen &&
2086	    !memcmp(&used_address->name, msg_sys->msg_name,
2087		    used_address->name_len)) {
2088		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2089		goto out_freectl;
2090	}
2091	err = sock_sendmsg(sock, msg_sys, total_len);
2092	/*
2093	 * If this is sendmmsg() and sending to current destination address was
2094	 * successful, remember it.
2095	 */
2096	if (used_address && err >= 0) {
2097		used_address->name_len = msg_sys->msg_namelen;
2098		if (msg_sys->msg_name)
2099			memcpy(&used_address->name, msg_sys->msg_name,
2100			       used_address->name_len);
2101	}
2102
2103out_freectl:
2104	if (ctl_buf != ctl)
2105		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2106out_freeiov:
2107	if (iov != iovstack)
2108		kfree(iov);
2109out:
2110	return err;
2111}
2112
2113/*
2114 *	BSD sendmsg interface
2115 */
2116
2117long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2118{
2119	int fput_needed, err;
2120	struct msghdr msg_sys;
2121	struct socket *sock;
2122
2123	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2124	if (!sock)
2125		goto out;
2126
2127	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2128
2129	fput_light(sock->file, fput_needed);
2130out:
2131	return err;
2132}
2133
2134SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2135{
2136	if (flags & MSG_CMSG_COMPAT)
2137		return -EINVAL;
2138	return __sys_sendmsg(fd, msg, flags);
2139}
2140
2141/*
2142 *	Linux sendmmsg interface
2143 */
2144
2145int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2146		   unsigned int flags)
2147{
2148	int fput_needed, err, datagrams;
2149	struct socket *sock;
2150	struct mmsghdr __user *entry;
2151	struct compat_mmsghdr __user *compat_entry;
2152	struct msghdr msg_sys;
2153	struct used_address used_address;
 
2154
2155	if (vlen > UIO_MAXIOV)
2156		vlen = UIO_MAXIOV;
2157
2158	datagrams = 0;
2159
2160	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2161	if (!sock)
2162		return err;
2163
2164	used_address.name_len = UINT_MAX;
2165	entry = mmsg;
2166	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2167	err = 0;
 
2168
2169	while (datagrams < vlen) {
 
 
 
2170		if (MSG_CMSG_COMPAT & flags) {
2171			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2172					     &msg_sys, flags, &used_address);
2173			if (err < 0)
2174				break;
2175			err = __put_user(err, &compat_entry->msg_len);
2176			++compat_entry;
2177		} else {
2178			err = ___sys_sendmsg(sock,
2179					     (struct msghdr __user *)entry,
2180					     &msg_sys, flags, &used_address);
2181			if (err < 0)
2182				break;
2183			err = put_user(err, &entry->msg_len);
2184			++entry;
2185		}
2186
2187		if (err)
2188			break;
2189		++datagrams;
 
 
 
2190	}
2191
2192	fput_light(sock->file, fput_needed);
2193
2194	/* We only return an error if no datagrams were able to be sent */
2195	if (datagrams != 0)
2196		return datagrams;
2197
2198	return err;
2199}
2200
2201SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2202		unsigned int, vlen, unsigned int, flags)
2203{
2204	if (flags & MSG_CMSG_COMPAT)
2205		return -EINVAL;
2206	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2207}
2208
2209static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2210			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2211{
2212	struct compat_msghdr __user *msg_compat =
2213	    (struct compat_msghdr __user *)msg;
2214	struct iovec iovstack[UIO_FASTIOV];
2215	struct iovec *iov = iovstack;
2216	unsigned long cmsg_ptr;
2217	int err, total_len, len;
 
2218
2219	/* kernel mode address */
2220	struct sockaddr_storage addr;
2221
2222	/* user mode address pointers */
2223	struct sockaddr __user *uaddr;
2224	int __user *uaddr_len;
2225
2226	if (MSG_CMSG_COMPAT & flags) {
2227		if (get_compat_msghdr(msg_sys, msg_compat))
2228			return -EFAULT;
2229	} else {
2230		err = copy_msghdr_from_user(msg_sys, msg);
2231		if (err)
2232			return err;
2233	}
2234
2235	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2236		err = -EMSGSIZE;
2237		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2238			goto out;
2239		err = -ENOMEM;
2240		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2241			      GFP_KERNEL);
2242		if (!iov)
2243			goto out;
2244	}
2245
2246	/* Save the user-mode address (verify_iovec will change the
2247	 * kernel msghdr to use the kernel address space)
2248	 */
2249	uaddr = (__force void __user *)msg_sys->msg_name;
2250	uaddr_len = COMPAT_NAMELEN(msg);
2251	if (MSG_CMSG_COMPAT & flags)
2252		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2253	else
2254		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2255	if (err < 0)
2256		goto out_freeiov;
2257	total_len = err;
2258
2259	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2260	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2261
2262	/* We assume all kernel code knows the size of sockaddr_storage */
2263	msg_sys->msg_namelen = 0;
2264
2265	if (sock->file->f_flags & O_NONBLOCK)
2266		flags |= MSG_DONTWAIT;
2267	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2268							  total_len, flags);
2269	if (err < 0)
2270		goto out_freeiov;
2271	len = err;
2272
2273	if (uaddr != NULL) {
2274		err = move_addr_to_user(&addr,
2275					msg_sys->msg_namelen, uaddr,
2276					uaddr_len);
2277		if (err < 0)
2278			goto out_freeiov;
2279	}
2280	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2281			 COMPAT_FLAGS(msg));
2282	if (err)
2283		goto out_freeiov;
2284	if (MSG_CMSG_COMPAT & flags)
2285		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2286				 &msg_compat->msg_controllen);
2287	else
2288		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2289				 &msg->msg_controllen);
2290	if (err)
2291		goto out_freeiov;
2292	err = len;
2293
2294out_freeiov:
2295	if (iov != iovstack)
2296		kfree(iov);
2297out:
2298	return err;
2299}
2300
2301/*
2302 *	BSD recvmsg interface
2303 */
2304
2305long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2306{
2307	int fput_needed, err;
2308	struct msghdr msg_sys;
2309	struct socket *sock;
2310
2311	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2312	if (!sock)
2313		goto out;
2314
2315	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2316
2317	fput_light(sock->file, fput_needed);
2318out:
2319	return err;
2320}
2321
2322SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2323		unsigned int, flags)
2324{
2325	if (flags & MSG_CMSG_COMPAT)
2326		return -EINVAL;
2327	return __sys_recvmsg(fd, msg, flags);
2328}
2329
2330/*
2331 *     Linux recvmmsg interface
2332 */
2333
2334int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2335		   unsigned int flags, struct timespec *timeout)
2336{
2337	int fput_needed, err, datagrams;
2338	struct socket *sock;
2339	struct mmsghdr __user *entry;
2340	struct compat_mmsghdr __user *compat_entry;
2341	struct msghdr msg_sys;
2342	struct timespec end_time;
 
2343
2344	if (timeout &&
2345	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2346				    timeout->tv_nsec))
2347		return -EINVAL;
2348
2349	datagrams = 0;
2350
2351	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2352	if (!sock)
2353		return err;
2354
2355	err = sock_error(sock->sk);
2356	if (err)
 
2357		goto out_put;
 
2358
2359	entry = mmsg;
2360	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2361
2362	while (datagrams < vlen) {
2363		/*
2364		 * No need to ask LSM for more than the first datagram.
2365		 */
2366		if (MSG_CMSG_COMPAT & flags) {
2367			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2368					     &msg_sys, flags & ~MSG_WAITFORONE,
2369					     datagrams);
2370			if (err < 0)
2371				break;
2372			err = __put_user(err, &compat_entry->msg_len);
2373			++compat_entry;
2374		} else {
2375			err = ___sys_recvmsg(sock,
2376					     (struct msghdr __user *)entry,
2377					     &msg_sys, flags & ~MSG_WAITFORONE,
2378					     datagrams);
2379			if (err < 0)
2380				break;
2381			err = put_user(err, &entry->msg_len);
2382			++entry;
2383		}
2384
2385		if (err)
2386			break;
2387		++datagrams;
2388
2389		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2390		if (flags & MSG_WAITFORONE)
2391			flags |= MSG_DONTWAIT;
2392
2393		if (timeout) {
2394			ktime_get_ts(timeout);
2395			*timeout = timespec_sub(end_time, *timeout);
 
2396			if (timeout->tv_sec < 0) {
2397				timeout->tv_sec = timeout->tv_nsec = 0;
2398				break;
2399			}
2400
2401			/* Timeout, return less than vlen datagrams */
2402			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2403				break;
2404		}
2405
2406		/* Out of band data, return right away */
2407		if (msg_sys.msg_flags & MSG_OOB)
2408			break;
 
2409	}
2410
2411out_put:
2412	fput_light(sock->file, fput_needed);
2413
2414	if (err == 0)
2415		return datagrams;
 
 
2416
2417	if (datagrams != 0) {
 
 
 
 
2418		/*
2419		 * We may return less entries than requested (vlen) if the
2420		 * sock is non block and there aren't enough datagrams...
 
 
2421		 */
2422		if (err != -EAGAIN) {
2423			/*
2424			 * ... or  if recvmsg returns an error after we
2425			 * received some datagrams, where we record the
2426			 * error to return on the next call or if the
2427			 * app asks about it using getsockopt(SO_ERROR).
2428			 */
2429			sock->sk->sk_err = -err;
2430		}
2431
2432		return datagrams;
2433	}
 
 
2434
2435	return err;
2436}
2437
2438SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2439		unsigned int, vlen, unsigned int, flags,
2440		struct timespec __user *, timeout)
2441{
2442	int datagrams;
2443	struct timespec timeout_sys;
2444
2445	if (flags & MSG_CMSG_COMPAT)
2446		return -EINVAL;
2447
2448	if (!timeout)
2449		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2450
2451	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2452		return -EFAULT;
2453
2454	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2455
2456	if (datagrams > 0 &&
2457	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2458		datagrams = -EFAULT;
2459
2460	return datagrams;
2461}
2462
2463#ifdef __ARCH_WANT_SYS_SOCKETCALL
2464/* Argument list sizes for sys_socketcall */
2465#define AL(x) ((x) * sizeof(unsigned long))
2466static const unsigned char nargs[21] = {
2467	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2468	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2469	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2470	AL(4), AL(5), AL(4)
2471};
2472
2473#undef AL
2474
2475/*
2476 *	System call vectors.
2477 *
2478 *	Argument checking cleaned up. Saved 20% in size.
2479 *  This function doesn't need to set the kernel lock because
2480 *  it is set by the callees.
2481 */
2482
2483SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2484{
2485	unsigned long a[AUDITSC_ARGS];
2486	unsigned long a0, a1;
2487	int err;
2488	unsigned int len;
2489
2490	if (call < 1 || call > SYS_SENDMMSG)
2491		return -EINVAL;
2492
2493	len = nargs[call];
2494	if (len > sizeof(a))
2495		return -EINVAL;
2496
2497	/* copy_from_user should be SMP safe. */
2498	if (copy_from_user(a, args, len))
2499		return -EFAULT;
2500
2501	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2502	if (err)
2503		return err;
2504
2505	a0 = a[0];
2506	a1 = a[1];
2507
2508	switch (call) {
2509	case SYS_SOCKET:
2510		err = sys_socket(a0, a1, a[2]);
2511		break;
2512	case SYS_BIND:
2513		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2514		break;
2515	case SYS_CONNECT:
2516		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2517		break;
2518	case SYS_LISTEN:
2519		err = sys_listen(a0, a1);
2520		break;
2521	case SYS_ACCEPT:
2522		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2523				  (int __user *)a[2], 0);
2524		break;
2525	case SYS_GETSOCKNAME:
2526		err =
2527		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2528				    (int __user *)a[2]);
2529		break;
2530	case SYS_GETPEERNAME:
2531		err =
2532		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2533				    (int __user *)a[2]);
2534		break;
2535	case SYS_SOCKETPAIR:
2536		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2537		break;
2538	case SYS_SEND:
2539		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2540		break;
2541	case SYS_SENDTO:
2542		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2543				 (struct sockaddr __user *)a[4], a[5]);
2544		break;
2545	case SYS_RECV:
2546		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2547		break;
2548	case SYS_RECVFROM:
2549		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2550				   (struct sockaddr __user *)a[4],
2551				   (int __user *)a[5]);
2552		break;
2553	case SYS_SHUTDOWN:
2554		err = sys_shutdown(a0, a1);
2555		break;
2556	case SYS_SETSOCKOPT:
2557		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2558		break;
2559	case SYS_GETSOCKOPT:
2560		err =
2561		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2562				   (int __user *)a[4]);
2563		break;
2564	case SYS_SENDMSG:
2565		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2566		break;
2567	case SYS_SENDMMSG:
2568		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2569		break;
2570	case SYS_RECVMSG:
2571		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2572		break;
2573	case SYS_RECVMMSG:
2574		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2575				   (struct timespec __user *)a[4]);
2576		break;
2577	case SYS_ACCEPT4:
2578		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2579				  (int __user *)a[2], a[3]);
2580		break;
2581	default:
2582		err = -EINVAL;
2583		break;
2584	}
2585	return err;
2586}
2587
2588#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2589
2590/**
2591 *	sock_register - add a socket protocol handler
2592 *	@ops: description of protocol
2593 *
2594 *	This function is called by a protocol handler that wants to
2595 *	advertise its address family, and have it linked into the
2596 *	socket interface. The value ops->family coresponds to the
2597 *	socket system call protocol family.
2598 */
2599int sock_register(const struct net_proto_family *ops)
2600{
2601	int err;
2602
2603	if (ops->family >= NPROTO) {
2604		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2605		return -ENOBUFS;
2606	}
2607
2608	spin_lock(&net_family_lock);
2609	if (rcu_dereference_protected(net_families[ops->family],
2610				      lockdep_is_held(&net_family_lock)))
2611		err = -EEXIST;
2612	else {
2613		rcu_assign_pointer(net_families[ops->family], ops);
2614		err = 0;
2615	}
2616	spin_unlock(&net_family_lock);
2617
2618	pr_info("NET: Registered protocol family %d\n", ops->family);
2619	return err;
2620}
2621EXPORT_SYMBOL(sock_register);
2622
2623/**
2624 *	sock_unregister - remove a protocol handler
2625 *	@family: protocol family to remove
2626 *
2627 *	This function is called by a protocol handler that wants to
2628 *	remove its address family, and have it unlinked from the
2629 *	new socket creation.
2630 *
2631 *	If protocol handler is a module, then it can use module reference
2632 *	counts to protect against new references. If protocol handler is not
2633 *	a module then it needs to provide its own protection in
2634 *	the ops->create routine.
2635 */
2636void sock_unregister(int family)
2637{
2638	BUG_ON(family < 0 || family >= NPROTO);
2639
2640	spin_lock(&net_family_lock);
2641	RCU_INIT_POINTER(net_families[family], NULL);
2642	spin_unlock(&net_family_lock);
2643
2644	synchronize_rcu();
2645
2646	pr_info("NET: Unregistered protocol family %d\n", family);
2647}
2648EXPORT_SYMBOL(sock_unregister);
2649
2650static int __init sock_init(void)
2651{
2652	int err;
2653	/*
2654	 *      Initialize the network sysctl infrastructure.
2655	 */
2656	err = net_sysctl_init();
2657	if (err)
2658		goto out;
2659
2660	/*
2661	 *      Initialize skbuff SLAB cache
2662	 */
2663	skb_init();
2664
2665	/*
2666	 *      Initialize the protocols module.
2667	 */
2668
2669	init_inodecache();
2670
2671	err = register_filesystem(&sock_fs_type);
2672	if (err)
2673		goto out_fs;
2674	sock_mnt = kern_mount(&sock_fs_type);
2675	if (IS_ERR(sock_mnt)) {
2676		err = PTR_ERR(sock_mnt);
2677		goto out_mount;
2678	}
2679
2680	/* The real protocol initialization is performed in later initcalls.
2681	 */
2682
2683#ifdef CONFIG_NETFILTER
2684	err = netfilter_init();
2685	if (err)
2686		goto out;
2687#endif
2688
2689	ptp_classifier_init();
2690
2691out:
2692	return err;
2693
2694out_mount:
2695	unregister_filesystem(&sock_fs_type);
2696out_fs:
2697	goto out;
2698}
2699
2700core_initcall(sock_init);	/* early initcall */
2701
2702#ifdef CONFIG_PROC_FS
2703void socket_seq_show(struct seq_file *seq)
2704{
2705	int cpu;
2706	int counter = 0;
2707
2708	for_each_possible_cpu(cpu)
2709	    counter += per_cpu(sockets_in_use, cpu);
2710
2711	/* It can be negative, by the way. 8) */
2712	if (counter < 0)
2713		counter = 0;
2714
2715	seq_printf(seq, "sockets: used %d\n", counter);
2716}
2717#endif				/* CONFIG_PROC_FS */
2718
2719#ifdef CONFIG_COMPAT
2720static int do_siocgstamp(struct net *net, struct socket *sock,
2721			 unsigned int cmd, void __user *up)
2722{
2723	mm_segment_t old_fs = get_fs();
2724	struct timeval ktv;
2725	int err;
2726
2727	set_fs(KERNEL_DS);
2728	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2729	set_fs(old_fs);
2730	if (!err)
2731		err = compat_put_timeval(&ktv, up);
2732
2733	return err;
2734}
2735
2736static int do_siocgstampns(struct net *net, struct socket *sock,
2737			   unsigned int cmd, void __user *up)
2738{
2739	mm_segment_t old_fs = get_fs();
2740	struct timespec kts;
2741	int err;
2742
2743	set_fs(KERNEL_DS);
2744	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2745	set_fs(old_fs);
2746	if (!err)
2747		err = compat_put_timespec(&kts, up);
2748
2749	return err;
2750}
2751
2752static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2753{
2754	struct ifreq __user *uifr;
2755	int err;
2756
2757	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2758	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2759		return -EFAULT;
2760
2761	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2762	if (err)
2763		return err;
2764
2765	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2766		return -EFAULT;
2767
2768	return 0;
2769}
2770
2771static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2772{
2773	struct compat_ifconf ifc32;
2774	struct ifconf ifc;
2775	struct ifconf __user *uifc;
2776	struct compat_ifreq __user *ifr32;
2777	struct ifreq __user *ifr;
2778	unsigned int i, j;
2779	int err;
2780
2781	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2782		return -EFAULT;
2783
2784	memset(&ifc, 0, sizeof(ifc));
2785	if (ifc32.ifcbuf == 0) {
2786		ifc32.ifc_len = 0;
2787		ifc.ifc_len = 0;
2788		ifc.ifc_req = NULL;
2789		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2790	} else {
2791		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2792			sizeof(struct ifreq);
2793		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2794		ifc.ifc_len = len;
2795		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2796		ifr32 = compat_ptr(ifc32.ifcbuf);
2797		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2798			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2799				return -EFAULT;
2800			ifr++;
2801			ifr32++;
2802		}
2803	}
2804	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2805		return -EFAULT;
2806
2807	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2808	if (err)
2809		return err;
2810
2811	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2812		return -EFAULT;
2813
2814	ifr = ifc.ifc_req;
2815	ifr32 = compat_ptr(ifc32.ifcbuf);
2816	for (i = 0, j = 0;
2817	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2818	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2819		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2820			return -EFAULT;
2821		ifr32++;
2822		ifr++;
2823	}
2824
2825	if (ifc32.ifcbuf == 0) {
2826		/* Translate from 64-bit structure multiple to
2827		 * a 32-bit one.
2828		 */
2829		i = ifc.ifc_len;
2830		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2831		ifc32.ifc_len = i;
2832	} else {
2833		ifc32.ifc_len = i;
2834	}
2835	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2836		return -EFAULT;
2837
2838	return 0;
2839}
2840
2841static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2842{
2843	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2844	bool convert_in = false, convert_out = false;
2845	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2846	struct ethtool_rxnfc __user *rxnfc;
2847	struct ifreq __user *ifr;
2848	u32 rule_cnt = 0, actual_rule_cnt;
2849	u32 ethcmd;
2850	u32 data;
2851	int ret;
2852
2853	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2854		return -EFAULT;
2855
2856	compat_rxnfc = compat_ptr(data);
2857
2858	if (get_user(ethcmd, &compat_rxnfc->cmd))
2859		return -EFAULT;
2860
2861	/* Most ethtool structures are defined without padding.
2862	 * Unfortunately struct ethtool_rxnfc is an exception.
2863	 */
2864	switch (ethcmd) {
2865	default:
2866		break;
2867	case ETHTOOL_GRXCLSRLALL:
2868		/* Buffer size is variable */
2869		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2870			return -EFAULT;
2871		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2872			return -ENOMEM;
2873		buf_size += rule_cnt * sizeof(u32);
2874		/* fall through */
2875	case ETHTOOL_GRXRINGS:
2876	case ETHTOOL_GRXCLSRLCNT:
2877	case ETHTOOL_GRXCLSRULE:
2878	case ETHTOOL_SRXCLSRLINS:
2879		convert_out = true;
2880		/* fall through */
2881	case ETHTOOL_SRXCLSRLDEL:
2882		buf_size += sizeof(struct ethtool_rxnfc);
2883		convert_in = true;
2884		break;
2885	}
2886
2887	ifr = compat_alloc_user_space(buf_size);
2888	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2889
2890	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2891		return -EFAULT;
2892
2893	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2894		     &ifr->ifr_ifru.ifru_data))
2895		return -EFAULT;
2896
2897	if (convert_in) {
2898		/* We expect there to be holes between fs.m_ext and
2899		 * fs.ring_cookie and at the end of fs, but nowhere else.
2900		 */
2901		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2902			     sizeof(compat_rxnfc->fs.m_ext) !=
2903			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2904			     sizeof(rxnfc->fs.m_ext));
2905		BUILD_BUG_ON(
2906			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2907			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2908			offsetof(struct ethtool_rxnfc, fs.location) -
2909			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2910
2911		if (copy_in_user(rxnfc, compat_rxnfc,
2912				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2913				 (void __user *)rxnfc) ||
2914		    copy_in_user(&rxnfc->fs.ring_cookie,
2915				 &compat_rxnfc->fs.ring_cookie,
2916				 (void __user *)(&rxnfc->fs.location + 1) -
2917				 (void __user *)&rxnfc->fs.ring_cookie) ||
2918		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2919				 sizeof(rxnfc->rule_cnt)))
2920			return -EFAULT;
2921	}
2922
2923	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2924	if (ret)
2925		return ret;
2926
2927	if (convert_out) {
2928		if (copy_in_user(compat_rxnfc, rxnfc,
2929				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2930				 (const void __user *)rxnfc) ||
2931		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2932				 &rxnfc->fs.ring_cookie,
2933				 (const void __user *)(&rxnfc->fs.location + 1) -
2934				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2935		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2936				 sizeof(rxnfc->rule_cnt)))
2937			return -EFAULT;
2938
2939		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2940			/* As an optimisation, we only copy the actual
2941			 * number of rules that the underlying
2942			 * function returned.  Since Mallory might
2943			 * change the rule count in user memory, we
2944			 * check that it is less than the rule count
2945			 * originally given (as the user buffer size),
2946			 * which has been range-checked.
2947			 */
2948			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2949				return -EFAULT;
2950			if (actual_rule_cnt < rule_cnt)
2951				rule_cnt = actual_rule_cnt;
2952			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2953					 &rxnfc->rule_locs[0],
2954					 rule_cnt * sizeof(u32)))
2955				return -EFAULT;
2956		}
2957	}
2958
2959	return 0;
2960}
2961
2962static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2963{
2964	void __user *uptr;
2965	compat_uptr_t uptr32;
2966	struct ifreq __user *uifr;
2967
2968	uifr = compat_alloc_user_space(sizeof(*uifr));
2969	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2970		return -EFAULT;
2971
2972	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2973		return -EFAULT;
2974
2975	uptr = compat_ptr(uptr32);
2976
2977	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2978		return -EFAULT;
2979
2980	return dev_ioctl(net, SIOCWANDEV, uifr);
2981}
2982
2983static int bond_ioctl(struct net *net, unsigned int cmd,
2984			 struct compat_ifreq __user *ifr32)
2985{
2986	struct ifreq kifr;
2987	mm_segment_t old_fs;
2988	int err;
2989
2990	switch (cmd) {
2991	case SIOCBONDENSLAVE:
2992	case SIOCBONDRELEASE:
2993	case SIOCBONDSETHWADDR:
2994	case SIOCBONDCHANGEACTIVE:
2995		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2996			return -EFAULT;
2997
2998		old_fs = get_fs();
2999		set_fs(KERNEL_DS);
3000		err = dev_ioctl(net, cmd,
3001				(struct ifreq __user __force *) &kifr);
3002		set_fs(old_fs);
3003
3004		return err;
3005	default:
3006		return -ENOIOCTLCMD;
3007	}
3008}
3009
3010/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3011static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3012				 struct compat_ifreq __user *u_ifreq32)
3013{
3014	struct ifreq __user *u_ifreq64;
3015	char tmp_buf[IFNAMSIZ];
3016	void __user *data64;
3017	u32 data32;
3018
3019	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3020			   IFNAMSIZ))
3021		return -EFAULT;
3022	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3023		return -EFAULT;
3024	data64 = compat_ptr(data32);
3025
3026	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3027
3028	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3029			 IFNAMSIZ))
3030		return -EFAULT;
3031	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3032		return -EFAULT;
3033
3034	return dev_ioctl(net, cmd, u_ifreq64);
3035}
3036
3037static int dev_ifsioc(struct net *net, struct socket *sock,
3038			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3039{
3040	struct ifreq __user *uifr;
3041	int err;
3042
3043	uifr = compat_alloc_user_space(sizeof(*uifr));
3044	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3045		return -EFAULT;
3046
3047	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3048
3049	if (!err) {
3050		switch (cmd) {
3051		case SIOCGIFFLAGS:
3052		case SIOCGIFMETRIC:
3053		case SIOCGIFMTU:
3054		case SIOCGIFMEM:
3055		case SIOCGIFHWADDR:
3056		case SIOCGIFINDEX:
3057		case SIOCGIFADDR:
3058		case SIOCGIFBRDADDR:
3059		case SIOCGIFDSTADDR:
3060		case SIOCGIFNETMASK:
3061		case SIOCGIFPFLAGS:
3062		case SIOCGIFTXQLEN:
3063		case SIOCGMIIPHY:
3064		case SIOCGMIIREG:
3065			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3066				err = -EFAULT;
3067			break;
3068		}
3069	}
3070	return err;
3071}
3072
3073static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3074			struct compat_ifreq __user *uifr32)
3075{
3076	struct ifreq ifr;
3077	struct compat_ifmap __user *uifmap32;
3078	mm_segment_t old_fs;
3079	int err;
3080
3081	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3082	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3083	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3084	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3085	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3086	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3087	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3088	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3089	if (err)
3090		return -EFAULT;
3091
3092	old_fs = get_fs();
3093	set_fs(KERNEL_DS);
3094	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3095	set_fs(old_fs);
3096
3097	if (cmd == SIOCGIFMAP && !err) {
3098		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3099		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3100		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3101		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3102		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3103		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3104		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3105		if (err)
3106			err = -EFAULT;
3107	}
3108	return err;
3109}
3110
3111struct rtentry32 {
3112	u32		rt_pad1;
3113	struct sockaddr rt_dst;         /* target address               */
3114	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3115	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3116	unsigned short	rt_flags;
3117	short		rt_pad2;
3118	u32		rt_pad3;
3119	unsigned char	rt_tos;
3120	unsigned char	rt_class;
3121	short		rt_pad4;
3122	short		rt_metric;      /* +1 for binary compatibility! */
3123	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3124	u32		rt_mtu;         /* per route MTU/Window         */
3125	u32		rt_window;      /* Window clamping              */
3126	unsigned short  rt_irtt;        /* Initial RTT                  */
3127};
3128
3129struct in6_rtmsg32 {
3130	struct in6_addr		rtmsg_dst;
3131	struct in6_addr		rtmsg_src;
3132	struct in6_addr		rtmsg_gateway;
3133	u32			rtmsg_type;
3134	u16			rtmsg_dst_len;
3135	u16			rtmsg_src_len;
3136	u32			rtmsg_metric;
3137	u32			rtmsg_info;
3138	u32			rtmsg_flags;
3139	s32			rtmsg_ifindex;
3140};
3141
3142static int routing_ioctl(struct net *net, struct socket *sock,
3143			 unsigned int cmd, void __user *argp)
3144{
3145	int ret;
3146	void *r = NULL;
3147	struct in6_rtmsg r6;
3148	struct rtentry r4;
3149	char devname[16];
3150	u32 rtdev;
3151	mm_segment_t old_fs = get_fs();
3152
3153	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3154		struct in6_rtmsg32 __user *ur6 = argp;
3155		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3156			3 * sizeof(struct in6_addr));
3157		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3158		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3159		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3160		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3161		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3162		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3163		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3164
3165		r = (void *) &r6;
3166	} else { /* ipv4 */
3167		struct rtentry32 __user *ur4 = argp;
3168		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3169					3 * sizeof(struct sockaddr));
3170		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3171		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3172		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3173		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3174		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3175		ret |= get_user(rtdev, &(ur4->rt_dev));
3176		if (rtdev) {
3177			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3178			r4.rt_dev = (char __user __force *)devname;
3179			devname[15] = 0;
3180		} else
3181			r4.rt_dev = NULL;
3182
3183		r = (void *) &r4;
3184	}
3185
3186	if (ret) {
3187		ret = -EFAULT;
3188		goto out;
3189	}
3190
3191	set_fs(KERNEL_DS);
3192	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3193	set_fs(old_fs);
3194
3195out:
3196	return ret;
3197}
3198
3199/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3200 * for some operations; this forces use of the newer bridge-utils that
3201 * use compatible ioctls
3202 */
3203static int old_bridge_ioctl(compat_ulong_t __user *argp)
3204{
3205	compat_ulong_t tmp;
3206
3207	if (get_user(tmp, argp))
3208		return -EFAULT;
3209	if (tmp == BRCTL_GET_VERSION)
3210		return BRCTL_VERSION + 1;
3211	return -EINVAL;
3212}
3213
3214static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3215			 unsigned int cmd, unsigned long arg)
3216{
3217	void __user *argp = compat_ptr(arg);
3218	struct sock *sk = sock->sk;
3219	struct net *net = sock_net(sk);
3220
3221	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3222		return compat_ifr_data_ioctl(net, cmd, argp);
3223
3224	switch (cmd) {
3225	case SIOCSIFBR:
3226	case SIOCGIFBR:
3227		return old_bridge_ioctl(argp);
3228	case SIOCGIFNAME:
3229		return dev_ifname32(net, argp);
3230	case SIOCGIFCONF:
3231		return dev_ifconf(net, argp);
3232	case SIOCETHTOOL:
3233		return ethtool_ioctl(net, argp);
3234	case SIOCWANDEV:
3235		return compat_siocwandev(net, argp);
3236	case SIOCGIFMAP:
3237	case SIOCSIFMAP:
3238		return compat_sioc_ifmap(net, cmd, argp);
3239	case SIOCBONDENSLAVE:
3240	case SIOCBONDRELEASE:
3241	case SIOCBONDSETHWADDR:
3242	case SIOCBONDCHANGEACTIVE:
3243		return bond_ioctl(net, cmd, argp);
3244	case SIOCADDRT:
3245	case SIOCDELRT:
3246		return routing_ioctl(net, sock, cmd, argp);
3247	case SIOCGSTAMP:
3248		return do_siocgstamp(net, sock, cmd, argp);
3249	case SIOCGSTAMPNS:
3250		return do_siocgstampns(net, sock, cmd, argp);
3251	case SIOCBONDSLAVEINFOQUERY:
3252	case SIOCBONDINFOQUERY:
3253	case SIOCSHWTSTAMP:
3254	case SIOCGHWTSTAMP:
3255		return compat_ifr_data_ioctl(net, cmd, argp);
3256
3257	case FIOSETOWN:
3258	case SIOCSPGRP:
3259	case FIOGETOWN:
3260	case SIOCGPGRP:
3261	case SIOCBRADDBR:
3262	case SIOCBRDELBR:
3263	case SIOCGIFVLAN:
3264	case SIOCSIFVLAN:
3265	case SIOCADDDLCI:
3266	case SIOCDELDLCI:
 
3267		return sock_ioctl(file, cmd, arg);
3268
3269	case SIOCGIFFLAGS:
3270	case SIOCSIFFLAGS:
3271	case SIOCGIFMETRIC:
3272	case SIOCSIFMETRIC:
3273	case SIOCGIFMTU:
3274	case SIOCSIFMTU:
3275	case SIOCGIFMEM:
3276	case SIOCSIFMEM:
3277	case SIOCGIFHWADDR:
3278	case SIOCSIFHWADDR:
3279	case SIOCADDMULTI:
3280	case SIOCDELMULTI:
3281	case SIOCGIFINDEX:
3282	case SIOCGIFADDR:
3283	case SIOCSIFADDR:
3284	case SIOCSIFHWBROADCAST:
3285	case SIOCDIFADDR:
3286	case SIOCGIFBRDADDR:
3287	case SIOCSIFBRDADDR:
3288	case SIOCGIFDSTADDR:
3289	case SIOCSIFDSTADDR:
3290	case SIOCGIFNETMASK:
3291	case SIOCSIFNETMASK:
3292	case SIOCSIFPFLAGS:
3293	case SIOCGIFPFLAGS:
3294	case SIOCGIFTXQLEN:
3295	case SIOCSIFTXQLEN:
3296	case SIOCBRADDIF:
3297	case SIOCBRDELIF:
3298	case SIOCSIFNAME:
3299	case SIOCGMIIPHY:
3300	case SIOCGMIIREG:
3301	case SIOCSMIIREG:
3302		return dev_ifsioc(net, sock, cmd, argp);
3303
3304	case SIOCSARP:
3305	case SIOCGARP:
3306	case SIOCDARP:
3307	case SIOCATMARK:
3308		return sock_do_ioctl(net, sock, cmd, arg);
3309	}
3310
3311	return -ENOIOCTLCMD;
3312}
3313
3314static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3315			      unsigned long arg)
3316{
3317	struct socket *sock = file->private_data;
3318	int ret = -ENOIOCTLCMD;
3319	struct sock *sk;
3320	struct net *net;
3321
3322	sk = sock->sk;
3323	net = sock_net(sk);
3324
3325	if (sock->ops->compat_ioctl)
3326		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3327
3328	if (ret == -ENOIOCTLCMD &&
3329	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3330		ret = compat_wext_handle_ioctl(net, cmd, arg);
3331
3332	if (ret == -ENOIOCTLCMD)
3333		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3334
3335	return ret;
3336}
3337#endif
3338
3339int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3340{
3341	return sock->ops->bind(sock, addr, addrlen);
3342}
3343EXPORT_SYMBOL(kernel_bind);
3344
3345int kernel_listen(struct socket *sock, int backlog)
3346{
3347	return sock->ops->listen(sock, backlog);
3348}
3349EXPORT_SYMBOL(kernel_listen);
3350
3351int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3352{
3353	struct sock *sk = sock->sk;
3354	int err;
3355
3356	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3357			       newsock);
3358	if (err < 0)
3359		goto done;
3360
3361	err = sock->ops->accept(sock, *newsock, flags);
3362	if (err < 0) {
3363		sock_release(*newsock);
3364		*newsock = NULL;
3365		goto done;
3366	}
3367
3368	(*newsock)->ops = sock->ops;
3369	__module_get((*newsock)->ops->owner);
3370
3371done:
3372	return err;
3373}
3374EXPORT_SYMBOL(kernel_accept);
3375
3376int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3377		   int flags)
3378{
3379	return sock->ops->connect(sock, addr, addrlen, flags);
3380}
3381EXPORT_SYMBOL(kernel_connect);
3382
3383int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3384			 int *addrlen)
3385{
3386	return sock->ops->getname(sock, addr, addrlen, 0);
3387}
3388EXPORT_SYMBOL(kernel_getsockname);
3389
3390int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3391			 int *addrlen)
3392{
3393	return sock->ops->getname(sock, addr, addrlen, 1);
3394}
3395EXPORT_SYMBOL(kernel_getpeername);
3396
3397int kernel_getsockopt(struct socket *sock, int level, int optname,
3398			char *optval, int *optlen)
3399{
3400	mm_segment_t oldfs = get_fs();
3401	char __user *uoptval;
3402	int __user *uoptlen;
3403	int err;
3404
3405	uoptval = (char __user __force *) optval;
3406	uoptlen = (int __user __force *) optlen;
3407
3408	set_fs(KERNEL_DS);
3409	if (level == SOL_SOCKET)
3410		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3411	else
3412		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3413					    uoptlen);
3414	set_fs(oldfs);
3415	return err;
3416}
3417EXPORT_SYMBOL(kernel_getsockopt);
3418
3419int kernel_setsockopt(struct socket *sock, int level, int optname,
3420			char *optval, unsigned int optlen)
3421{
3422	mm_segment_t oldfs = get_fs();
3423	char __user *uoptval;
3424	int err;
3425
3426	uoptval = (char __user __force *) optval;
3427
3428	set_fs(KERNEL_DS);
3429	if (level == SOL_SOCKET)
3430		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3431	else
3432		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3433					    optlen);
3434	set_fs(oldfs);
3435	return err;
3436}
3437EXPORT_SYMBOL(kernel_setsockopt);
3438
3439int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3440		    size_t size, int flags)
3441{
3442	if (sock->ops->sendpage)
3443		return sock->ops->sendpage(sock, page, offset, size, flags);
3444
3445	return sock_no_sendpage(sock, page, offset, size, flags);
3446}
3447EXPORT_SYMBOL(kernel_sendpage);
3448
3449int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3450{
3451	mm_segment_t oldfs = get_fs();
3452	int err;
3453
3454	set_fs(KERNEL_DS);
3455	err = sock->ops->ioctl(sock, cmd, arg);
3456	set_fs(oldfs);
3457
3458	return err;
3459}
3460EXPORT_SYMBOL(kernel_sock_ioctl);
3461
3462int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3463{
3464	return sock->ops->shutdown(sock, how);
3465}
3466EXPORT_SYMBOL(kernel_sock_shutdown);