Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v4.10.11
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122			      struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126			      unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130			     int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132				struct pipe_inode_info *pipe, size_t len,
 133				unsigned int flags);
 134
 135/*
 136 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *	in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141	.owner =	THIS_MODULE,
 142	.llseek =	no_llseek,
 143	.read_iter =	sock_read_iter,
 144	.write_iter =	sock_write_iter,
 145	.poll =		sock_poll,
 146	.unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148	.compat_ioctl = compat_sock_ioctl,
 149#endif
 150	.mmap =		sock_mmap,
 151	.release =	sock_close,
 152	.fasync =	sock_fasync,
 153	.sendpage =	sock_sendpage,
 154	.splice_write = generic_splice_sendpage,
 155	.splice_read =	sock_splice_read,
 156};
 157
 158/*
 159 *	The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *	Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *	move_addr_to_kernel	-	copy a socket address into kernel space
 179 *	@uaddr: Address in user space
 180 *	@kaddr: Address in kernel space
 181 *	@ulen: Length in user space
 182 *
 183 *	The address is copied into kernel space. If the provided address is
 184 *	too long an error code of -EINVAL is returned. If the copy gives
 185 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191		return -EINVAL;
 192	if (ulen == 0)
 193		return 0;
 194	if (copy_from_user(kaddr, uaddr, ulen))
 195		return -EFAULT;
 196	return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *	move_addr_to_user	-	copy an address to user space
 201 *	@kaddr: kernel space address
 202 *	@klen: length of address in kernel
 203 *	@uaddr: user space address
 204 *	@ulen: pointer to user length field
 205 *
 206 *	The value pointed to by ulen on entry is the buffer length available.
 207 *	This is overwritten with the buffer space used. -EINVAL is returned
 208 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *	is returned if either the buffer or the length field are not
 210 *	accessible.
 211 *	After copying the data up to the limit the user specifies, the true
 212 *	length of the data is written over the length limit the user
 213 *	specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217			     void __user *uaddr, int __user *ulen)
 218{
 219	int err;
 220	int len;
 221
 222	BUG_ON(klen > sizeof(struct sockaddr_storage));
 223	err = get_user(len, ulen);
 224	if (err)
 225		return err;
 226	if (len > klen)
 227		len = klen;
 228	if (len < 0)
 229		return -EINVAL;
 230	if (len) {
 231		if (audit_sockaddr(klen, kaddr))
 232			return -ENOMEM;
 233		if (copy_to_user(uaddr, kaddr, len))
 234			return -EFAULT;
 235	}
 236	/*
 237	 *      "fromlen shall refer to the value before truncation.."
 238	 *                      1003.1g
 239	 */
 240	return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247	struct socket_alloc *ei;
 248	struct socket_wq *wq;
 249
 250	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251	if (!ei)
 252		return NULL;
 253	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254	if (!wq) {
 255		kmem_cache_free(sock_inode_cachep, ei);
 256		return NULL;
 257	}
 258	init_waitqueue_head(&wq->wait);
 259	wq->fasync_list = NULL;
 260	wq->flags = 0;
 261	RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263	ei->socket.state = SS_UNCONNECTED;
 264	ei->socket.flags = 0;
 265	ei->socket.ops = NULL;
 266	ei->socket.sk = NULL;
 267	ei->socket.file = NULL;
 268
 269	return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274	struct socket_alloc *ei;
 275	struct socket_wq *wq;
 276
 277	ei = container_of(inode, struct socket_alloc, vfs_inode);
 278	wq = rcu_dereference_protected(ei->socket.wq, 1);
 279	kfree_rcu(wq, rcu);
 280	kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285	struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287	inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293					      sizeof(struct socket_alloc),
 294					      0,
 295					      (SLAB_HWCACHE_ALIGN |
 296					       SLAB_RECLAIM_ACCOUNT |
 297					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298					      init_once);
 299	if (sock_inode_cachep == NULL)
 300		return -ENOMEM;
 301	return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305	.alloc_inode	= sock_alloc_inode,
 306	.destroy_inode	= sock_destroy_inode,
 307	.statfs		= simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316				d_inode(dentry)->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320	.d_dname  = sockfs_dname,
 321};
 322
 323static int sockfs_xattr_get(const struct xattr_handler *handler,
 324			    struct dentry *dentry, struct inode *inode,
 325			    const char *suffix, void *value, size_t size)
 326{
 327	if (value) {
 328		if (dentry->d_name.len + 1 > size)
 329			return -ERANGE;
 330		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 331	}
 332	return dentry->d_name.len + 1;
 333}
 334
 335#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 336#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 337#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 338
 339static const struct xattr_handler sockfs_xattr_handler = {
 340	.name = XATTR_NAME_SOCKPROTONAME,
 341	.get = sockfs_xattr_get,
 342};
 343
 344static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 345				     struct dentry *dentry, struct inode *inode,
 346				     const char *suffix, const void *value,
 347				     size_t size, int flags)
 348{
 349	/* Handled by LSM. */
 350	return -EAGAIN;
 351}
 352
 353static const struct xattr_handler sockfs_security_xattr_handler = {
 354	.prefix = XATTR_SECURITY_PREFIX,
 355	.set = sockfs_security_xattr_set,
 356};
 357
 358static const struct xattr_handler *sockfs_xattr_handlers[] = {
 359	&sockfs_xattr_handler,
 360	&sockfs_security_xattr_handler,
 361	NULL
 362};
 363
 364static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 365			 int flags, const char *dev_name, void *data)
 366{
 367	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 368				  sockfs_xattr_handlers,
 369				  &sockfs_dentry_operations, SOCKFS_MAGIC);
 370}
 371
 372static struct vfsmount *sock_mnt __read_mostly;
 373
 374static struct file_system_type sock_fs_type = {
 375	.name =		"sockfs",
 376	.mount =	sockfs_mount,
 377	.kill_sb =	kill_anon_super,
 378};
 379
 380/*
 381 *	Obtains the first available file descriptor and sets it up for use.
 382 *
 383 *	These functions create file structures and maps them to fd space
 384 *	of the current process. On success it returns file descriptor
 385 *	and file struct implicitly stored in sock->file.
 386 *	Note that another thread may close file descriptor before we return
 387 *	from this function. We use the fact that now we do not refer
 388 *	to socket after mapping. If one day we will need it, this
 389 *	function will increment ref. count on file by 1.
 390 *
 391 *	In any case returned fd MAY BE not valid!
 392 *	This race condition is unavoidable
 393 *	with shared fd spaces, we cannot solve it inside kernel,
 394 *	but we take care of internal coherence yet.
 395 */
 396
 397struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 398{
 399	struct qstr name = { .name = "" };
 400	struct path path;
 401	struct file *file;
 402
 403	if (dname) {
 404		name.name = dname;
 405		name.len = strlen(name.name);
 406	} else if (sock->sk) {
 407		name.name = sock->sk->sk_prot_creator->name;
 408		name.len = strlen(name.name);
 409	}
 410	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 411	if (unlikely(!path.dentry))
 
 412		return ERR_PTR(-ENOMEM);
 
 413	path.mnt = mntget(sock_mnt);
 414
 415	d_instantiate(path.dentry, SOCK_INODE(sock));
 416
 417	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 418		  &socket_file_ops);
 419	if (IS_ERR(file)) {
 420		/* drop dentry, keep inode */
 421		ihold(d_inode(path.dentry));
 422		path_put(&path);
 
 
 423		return file;
 424	}
 425
 426	sock->file = file;
 427	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 428	file->private_data = sock;
 429	return file;
 430}
 431EXPORT_SYMBOL(sock_alloc_file);
 432
 433static int sock_map_fd(struct socket *sock, int flags)
 434{
 435	struct file *newfile;
 436	int fd = get_unused_fd_flags(flags);
 437	if (unlikely(fd < 0))
 
 438		return fd;
 
 439
 440	newfile = sock_alloc_file(sock, flags, NULL);
 441	if (likely(!IS_ERR(newfile))) {
 442		fd_install(fd, newfile);
 443		return fd;
 444	}
 445
 446	put_unused_fd(fd);
 447	return PTR_ERR(newfile);
 448}
 449
 450struct socket *sock_from_file(struct file *file, int *err)
 451{
 452	if (file->f_op == &socket_file_ops)
 453		return file->private_data;	/* set in sock_map_fd */
 454
 455	*err = -ENOTSOCK;
 456	return NULL;
 457}
 458EXPORT_SYMBOL(sock_from_file);
 459
 460/**
 461 *	sockfd_lookup - Go from a file number to its socket slot
 462 *	@fd: file handle
 463 *	@err: pointer to an error code return
 464 *
 465 *	The file handle passed in is locked and the socket it is bound
 466 *	too is returned. If an error occurs the err pointer is overwritten
 467 *	with a negative errno code and NULL is returned. The function checks
 468 *	for both invalid handles and passing a handle which is not a socket.
 469 *
 470 *	On a success the socket object pointer is returned.
 471 */
 472
 473struct socket *sockfd_lookup(int fd, int *err)
 474{
 475	struct file *file;
 476	struct socket *sock;
 477
 478	file = fget(fd);
 479	if (!file) {
 480		*err = -EBADF;
 481		return NULL;
 482	}
 483
 484	sock = sock_from_file(file, err);
 485	if (!sock)
 486		fput(file);
 487	return sock;
 488}
 489EXPORT_SYMBOL(sockfd_lookup);
 490
 491static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 492{
 493	struct fd f = fdget(fd);
 494	struct socket *sock;
 495
 496	*err = -EBADF;
 497	if (f.file) {
 498		sock = sock_from_file(f.file, err);
 499		if (likely(sock)) {
 500			*fput_needed = f.flags;
 501			return sock;
 502		}
 503		fdput(f);
 504	}
 505	return NULL;
 506}
 507
 508static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 509				size_t size)
 510{
 511	ssize_t len;
 512	ssize_t used = 0;
 513
 514	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 515	if (len < 0)
 516		return len;
 517	used += len;
 518	if (buffer) {
 519		if (size < used)
 520			return -ERANGE;
 521		buffer += len;
 522	}
 523
 524	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 525	used += len;
 526	if (buffer) {
 527		if (size < used)
 528			return -ERANGE;
 529		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 530		buffer += len;
 531	}
 532
 533	return used;
 534}
 535
 536static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 537{
 538	int err = simple_setattr(dentry, iattr);
 539
 540	if (!err && (iattr->ia_valid & ATTR_UID)) {
 541		struct socket *sock = SOCKET_I(d_inode(dentry));
 542
 543		sock->sk->sk_uid = iattr->ia_uid;
 544	}
 545
 546	return err;
 547}
 548
 549static const struct inode_operations sockfs_inode_ops = {
 550	.listxattr = sockfs_listxattr,
 551	.setattr = sockfs_setattr,
 552};
 553
 554/**
 555 *	sock_alloc	-	allocate a socket
 556 *
 557 *	Allocate a new inode and socket object. The two are bound together
 558 *	and initialised. The socket is then returned. If we are out of inodes
 559 *	NULL is returned.
 560 */
 561
 562struct socket *sock_alloc(void)
 563{
 564	struct inode *inode;
 565	struct socket *sock;
 566
 567	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 568	if (!inode)
 569		return NULL;
 570
 571	sock = SOCKET_I(inode);
 572
 573	kmemcheck_annotate_bitfield(sock, type);
 574	inode->i_ino = get_next_ino();
 575	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 576	inode->i_uid = current_fsuid();
 577	inode->i_gid = current_fsgid();
 578	inode->i_op = &sockfs_inode_ops;
 579
 580	this_cpu_add(sockets_in_use, 1);
 581	return sock;
 582}
 583EXPORT_SYMBOL(sock_alloc);
 584
 585/**
 586 *	sock_release	-	close a socket
 587 *	@sock: socket to close
 588 *
 589 *	The socket is released from the protocol stack if it has a release
 590 *	callback, and the inode is then released if the socket is bound to
 591 *	an inode not a file.
 592 */
 593
 594void sock_release(struct socket *sock)
 595{
 596	if (sock->ops) {
 597		struct module *owner = sock->ops->owner;
 598
 599		sock->ops->release(sock);
 600		sock->ops = NULL;
 601		module_put(owner);
 602	}
 603
 604	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 605		pr_err("%s: fasync list not empty!\n", __func__);
 606
 607	this_cpu_sub(sockets_in_use, 1);
 608	if (!sock->file) {
 609		iput(SOCK_INODE(sock));
 610		return;
 611	}
 612	sock->file = NULL;
 613}
 614EXPORT_SYMBOL(sock_release);
 615
 616void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 617{
 618	u8 flags = *tx_flags;
 619
 620	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 621		flags |= SKBTX_HW_TSTAMP;
 622
 623	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 624		flags |= SKBTX_SW_TSTAMP;
 625
 626	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 627		flags |= SKBTX_SCHED_TSTAMP;
 628
 629	*tx_flags = flags;
 630}
 631EXPORT_SYMBOL(__sock_tx_timestamp);
 632
 633static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 634{
 635	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 636	BUG_ON(ret == -EIOCBQUEUED);
 637	return ret;
 638}
 639
 640int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 641{
 642	int err = security_socket_sendmsg(sock, msg,
 643					  msg_data_left(msg));
 644
 645	return err ?: sock_sendmsg_nosec(sock, msg);
 646}
 647EXPORT_SYMBOL(sock_sendmsg);
 648
 649int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 650		   struct kvec *vec, size_t num, size_t size)
 651{
 652	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 653	return sock_sendmsg(sock, msg);
 654}
 655EXPORT_SYMBOL(kernel_sendmsg);
 656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657/*
 658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 659 */
 660void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 661	struct sk_buff *skb)
 662{
 663	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 664	struct scm_timestamping tss;
 665	int empty = 1;
 666	struct skb_shared_hwtstamps *shhwtstamps =
 667		skb_hwtstamps(skb);
 668
 669	/* Race occurred between timestamp enabling and packet
 670	   receiving.  Fill in the current time for now. */
 671	if (need_software_tstamp && skb->tstamp == 0)
 672		__net_timestamp(skb);
 
 
 673
 674	if (need_software_tstamp) {
 675		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 676			struct timeval tv;
 677			skb_get_timestamp(skb, &tv);
 678			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 679				 sizeof(tv), &tv);
 680		} else {
 681			struct timespec ts;
 682			skb_get_timestampns(skb, &ts);
 683			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 684				 sizeof(ts), &ts);
 685		}
 686	}
 687
 688	memset(&tss, 0, sizeof(tss));
 689	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 690	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 691		empty = 0;
 692	if (shhwtstamps &&
 693	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 694	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 
 695		empty = 0;
 
 
 
 
 696	if (!empty) {
 697		put_cmsg(msg, SOL_SOCKET,
 698			 SCM_TIMESTAMPING, sizeof(tss), &tss);
 699
 700		if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
 
 701			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 702				 skb->len, skb->data);
 703	}
 704}
 705EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 706
 707void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 708	struct sk_buff *skb)
 709{
 710	int ack;
 711
 712	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 713		return;
 714	if (!skb->wifi_acked_valid)
 715		return;
 716
 717	ack = skb->wifi_acked;
 718
 719	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 720}
 721EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 722
 723static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 724				   struct sk_buff *skb)
 725{
 726	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 727		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 728			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 729}
 730
 731void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 732	struct sk_buff *skb)
 733{
 734	sock_recv_timestamp(msg, sk, skb);
 735	sock_recv_drops(msg, sk, skb);
 736}
 737EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 738
 739static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 740				     int flags)
 741{
 742	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 743}
 744
 745int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 746{
 747	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 748
 749	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 750}
 751EXPORT_SYMBOL(sock_recvmsg);
 752
 753/**
 754 * kernel_recvmsg - Receive a message from a socket (kernel space)
 755 * @sock:       The socket to receive the message from
 756 * @msg:        Received message
 757 * @vec:        Input s/g array for message data
 758 * @num:        Size of input s/g array
 759 * @size:       Number of bytes to read
 760 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 761 *
 762 * On return the msg structure contains the scatter/gather array passed in the
 763 * vec argument. The array is modified so that it consists of the unfilled
 764 * portion of the original array.
 765 *
 766 * The returned value is the total number of bytes received, or an error.
 767 */
 768int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 769		   struct kvec *vec, size_t num, size_t size, int flags)
 770{
 771	mm_segment_t oldfs = get_fs();
 772	int result;
 773
 774	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 775	set_fs(KERNEL_DS);
 776	result = sock_recvmsg(sock, msg, flags);
 777	set_fs(oldfs);
 778	return result;
 779}
 780EXPORT_SYMBOL(kernel_recvmsg);
 781
 782static ssize_t sock_sendpage(struct file *file, struct page *page,
 783			     int offset, size_t size, loff_t *ppos, int more)
 784{
 785	struct socket *sock;
 786	int flags;
 787
 788	sock = file->private_data;
 789
 790	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 791	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 792	flags |= more;
 793
 794	return kernel_sendpage(sock, page, offset, size, flags);
 795}
 796
 797static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 798				struct pipe_inode_info *pipe, size_t len,
 799				unsigned int flags)
 800{
 801	struct socket *sock = file->private_data;
 802
 803	if (unlikely(!sock->ops->splice_read))
 804		return -EINVAL;
 805
 806	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 807}
 808
 809static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 810{
 811	struct file *file = iocb->ki_filp;
 812	struct socket *sock = file->private_data;
 813	struct msghdr msg = {.msg_iter = *to,
 814			     .msg_iocb = iocb};
 815	ssize_t res;
 816
 817	if (file->f_flags & O_NONBLOCK)
 818		msg.msg_flags = MSG_DONTWAIT;
 819
 820	if (iocb->ki_pos != 0)
 821		return -ESPIPE;
 822
 823	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 824		return 0;
 825
 826	res = sock_recvmsg(sock, &msg, msg.msg_flags);
 827	*to = msg.msg_iter;
 828	return res;
 829}
 830
 831static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 832{
 833	struct file *file = iocb->ki_filp;
 834	struct socket *sock = file->private_data;
 835	struct msghdr msg = {.msg_iter = *from,
 836			     .msg_iocb = iocb};
 837	ssize_t res;
 838
 839	if (iocb->ki_pos != 0)
 840		return -ESPIPE;
 841
 842	if (file->f_flags & O_NONBLOCK)
 843		msg.msg_flags = MSG_DONTWAIT;
 844
 845	if (sock->type == SOCK_SEQPACKET)
 846		msg.msg_flags |= MSG_EOR;
 847
 848	res = sock_sendmsg(sock, &msg);
 849	*from = msg.msg_iter;
 850	return res;
 851}
 852
 853/*
 854 * Atomic setting of ioctl hooks to avoid race
 855 * with module unload.
 856 */
 857
 858static DEFINE_MUTEX(br_ioctl_mutex);
 859static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 860
 861void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 862{
 863	mutex_lock(&br_ioctl_mutex);
 864	br_ioctl_hook = hook;
 865	mutex_unlock(&br_ioctl_mutex);
 866}
 867EXPORT_SYMBOL(brioctl_set);
 868
 869static DEFINE_MUTEX(vlan_ioctl_mutex);
 870static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 871
 872void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 873{
 874	mutex_lock(&vlan_ioctl_mutex);
 875	vlan_ioctl_hook = hook;
 876	mutex_unlock(&vlan_ioctl_mutex);
 877}
 878EXPORT_SYMBOL(vlan_ioctl_set);
 879
 880static DEFINE_MUTEX(dlci_ioctl_mutex);
 881static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 882
 883void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 884{
 885	mutex_lock(&dlci_ioctl_mutex);
 886	dlci_ioctl_hook = hook;
 887	mutex_unlock(&dlci_ioctl_mutex);
 888}
 889EXPORT_SYMBOL(dlci_ioctl_set);
 890
 891static long sock_do_ioctl(struct net *net, struct socket *sock,
 892				 unsigned int cmd, unsigned long arg)
 893{
 894	int err;
 895	void __user *argp = (void __user *)arg;
 896
 897	err = sock->ops->ioctl(sock, cmd, arg);
 898
 899	/*
 900	 * If this ioctl is unknown try to hand it down
 901	 * to the NIC driver.
 902	 */
 903	if (err == -ENOIOCTLCMD)
 904		err = dev_ioctl(net, cmd, argp);
 905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906	return err;
 907}
 908
 909/*
 910 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 911 *	what to do with it - that's up to the protocol still.
 912 */
 913
 914static struct ns_common *get_net_ns(struct ns_common *ns)
 915{
 916	return &get_net(container_of(ns, struct net, ns))->ns;
 917}
 
 918
 919static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 920{
 921	struct socket *sock;
 922	struct sock *sk;
 923	void __user *argp = (void __user *)arg;
 924	int pid, err;
 925	struct net *net;
 926
 927	sock = file->private_data;
 928	sk = sock->sk;
 929	net = sock_net(sk);
 930	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 931		err = dev_ioctl(net, cmd, argp);
 
 
 
 
 
 
 
 932	} else
 933#ifdef CONFIG_WEXT_CORE
 934	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 935		err = dev_ioctl(net, cmd, argp);
 936	} else
 937#endif
 938		switch (cmd) {
 939		case FIOSETOWN:
 940		case SIOCSPGRP:
 941			err = -EFAULT;
 942			if (get_user(pid, (int __user *)argp))
 943				break;
 944			f_setown(sock->file, pid, 1);
 945			err = 0;
 946			break;
 947		case FIOGETOWN:
 948		case SIOCGPGRP:
 949			err = put_user(f_getown(sock->file),
 950				       (int __user *)argp);
 951			break;
 952		case SIOCGIFBR:
 953		case SIOCSIFBR:
 954		case SIOCBRADDBR:
 955		case SIOCBRDELBR:
 956			err = -ENOPKG;
 957			if (!br_ioctl_hook)
 958				request_module("bridge");
 959
 960			mutex_lock(&br_ioctl_mutex);
 961			if (br_ioctl_hook)
 962				err = br_ioctl_hook(net, cmd, argp);
 963			mutex_unlock(&br_ioctl_mutex);
 964			break;
 965		case SIOCGIFVLAN:
 966		case SIOCSIFVLAN:
 967			err = -ENOPKG;
 968			if (!vlan_ioctl_hook)
 969				request_module("8021q");
 970
 971			mutex_lock(&vlan_ioctl_mutex);
 972			if (vlan_ioctl_hook)
 973				err = vlan_ioctl_hook(net, argp);
 974			mutex_unlock(&vlan_ioctl_mutex);
 975			break;
 976		case SIOCADDDLCI:
 977		case SIOCDELDLCI:
 978			err = -ENOPKG;
 979			if (!dlci_ioctl_hook)
 980				request_module("dlci");
 981
 982			mutex_lock(&dlci_ioctl_mutex);
 983			if (dlci_ioctl_hook)
 984				err = dlci_ioctl_hook(cmd, argp);
 985			mutex_unlock(&dlci_ioctl_mutex);
 986			break;
 987		case SIOCGSKNS:
 988			err = -EPERM;
 989			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
 990				break;
 991
 992			err = open_related_ns(&net->ns, get_net_ns);
 993			break;
 994		default:
 995			err = sock_do_ioctl(net, sock, cmd, arg);
 996			break;
 997		}
 998	return err;
 999}
1000
1001int sock_create_lite(int family, int type, int protocol, struct socket **res)
1002{
1003	int err;
1004	struct socket *sock = NULL;
1005
1006	err = security_socket_create(family, type, protocol, 1);
1007	if (err)
1008		goto out;
1009
1010	sock = sock_alloc();
1011	if (!sock) {
1012		err = -ENOMEM;
1013		goto out;
1014	}
1015
1016	sock->type = type;
1017	err = security_socket_post_create(sock, family, type, protocol, 1);
1018	if (err)
1019		goto out_release;
1020
1021out:
1022	*res = sock;
1023	return err;
1024out_release:
1025	sock_release(sock);
1026	sock = NULL;
1027	goto out;
1028}
1029EXPORT_SYMBOL(sock_create_lite);
1030
1031/* No kernel lock held - perfect */
1032static unsigned int sock_poll(struct file *file, poll_table *wait)
1033{
1034	unsigned int busy_flag = 0;
1035	struct socket *sock;
1036
1037	/*
1038	 *      We can't return errors to poll, so it's either yes or no.
1039	 */
1040	sock = file->private_data;
1041
1042	if (sk_can_busy_loop(sock->sk)) {
1043		/* this socket can poll_ll so tell the system call */
1044		busy_flag = POLL_BUSY_LOOP;
1045
1046		/* once, only if requested by syscall */
1047		if (wait && (wait->_key & POLL_BUSY_LOOP))
1048			sk_busy_loop(sock->sk, 1);
1049	}
1050
1051	return busy_flag | sock->ops->poll(file, sock, wait);
1052}
1053
1054static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1055{
1056	struct socket *sock = file->private_data;
1057
1058	return sock->ops->mmap(file, sock, vma);
1059}
1060
1061static int sock_close(struct inode *inode, struct file *filp)
1062{
1063	sock_release(SOCKET_I(inode));
1064	return 0;
1065}
1066
1067/*
1068 *	Update the socket async list
1069 *
1070 *	Fasync_list locking strategy.
1071 *
1072 *	1. fasync_list is modified only under process context socket lock
1073 *	   i.e. under semaphore.
1074 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1075 *	   or under socket lock
1076 */
1077
1078static int sock_fasync(int fd, struct file *filp, int on)
1079{
1080	struct socket *sock = filp->private_data;
1081	struct sock *sk = sock->sk;
1082	struct socket_wq *wq;
1083
1084	if (sk == NULL)
1085		return -EINVAL;
1086
1087	lock_sock(sk);
1088	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1089	fasync_helper(fd, filp, on, &wq->fasync_list);
1090
1091	if (!wq->fasync_list)
1092		sock_reset_flag(sk, SOCK_FASYNC);
1093	else
1094		sock_set_flag(sk, SOCK_FASYNC);
1095
1096	release_sock(sk);
1097	return 0;
1098}
1099
1100/* This function may be called only under rcu_lock */
1101
1102int sock_wake_async(struct socket_wq *wq, int how, int band)
1103{
1104	if (!wq || !wq->fasync_list)
1105		return -1;
1106
1107	switch (how) {
1108	case SOCK_WAKE_WAITD:
1109		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1110			break;
1111		goto call_kill;
1112	case SOCK_WAKE_SPACE:
1113		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1114			break;
1115		/* fall through */
1116	case SOCK_WAKE_IO:
1117call_kill:
1118		kill_fasync(&wq->fasync_list, SIGIO, band);
1119		break;
1120	case SOCK_WAKE_URG:
1121		kill_fasync(&wq->fasync_list, SIGURG, band);
1122	}
1123
1124	return 0;
1125}
1126EXPORT_SYMBOL(sock_wake_async);
1127
1128int __sock_create(struct net *net, int family, int type, int protocol,
1129			 struct socket **res, int kern)
1130{
1131	int err;
1132	struct socket *sock;
1133	const struct net_proto_family *pf;
1134
1135	/*
1136	 *      Check protocol is in range
1137	 */
1138	if (family < 0 || family >= NPROTO)
1139		return -EAFNOSUPPORT;
1140	if (type < 0 || type >= SOCK_MAX)
1141		return -EINVAL;
1142
1143	/* Compatibility.
1144
1145	   This uglymoron is moved from INET layer to here to avoid
1146	   deadlock in module load.
1147	 */
1148	if (family == PF_INET && type == SOCK_PACKET) {
1149		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1150			     current->comm);
1151		family = PF_PACKET;
1152	}
1153
1154	err = security_socket_create(family, type, protocol, kern);
1155	if (err)
1156		return err;
1157
1158	/*
1159	 *	Allocate the socket and allow the family to set things up. if
1160	 *	the protocol is 0, the family is instructed to select an appropriate
1161	 *	default.
1162	 */
1163	sock = sock_alloc();
1164	if (!sock) {
1165		net_warn_ratelimited("socket: no more sockets\n");
1166		return -ENFILE;	/* Not exactly a match, but its the
1167				   closest posix thing */
1168	}
1169
1170	sock->type = type;
1171
1172#ifdef CONFIG_MODULES
1173	/* Attempt to load a protocol module if the find failed.
1174	 *
1175	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1176	 * requested real, full-featured networking support upon configuration.
1177	 * Otherwise module support will break!
1178	 */
1179	if (rcu_access_pointer(net_families[family]) == NULL)
1180		request_module("net-pf-%d", family);
1181#endif
1182
1183	rcu_read_lock();
1184	pf = rcu_dereference(net_families[family]);
1185	err = -EAFNOSUPPORT;
1186	if (!pf)
1187		goto out_release;
1188
1189	/*
1190	 * We will call the ->create function, that possibly is in a loadable
1191	 * module, so we have to bump that loadable module refcnt first.
1192	 */
1193	if (!try_module_get(pf->owner))
1194		goto out_release;
1195
1196	/* Now protected by module ref count */
1197	rcu_read_unlock();
1198
1199	err = pf->create(net, sock, protocol, kern);
1200	if (err < 0)
1201		goto out_module_put;
1202
1203	/*
1204	 * Now to bump the refcnt of the [loadable] module that owns this
1205	 * socket at sock_release time we decrement its refcnt.
1206	 */
1207	if (!try_module_get(sock->ops->owner))
1208		goto out_module_busy;
1209
1210	/*
1211	 * Now that we're done with the ->create function, the [loadable]
1212	 * module can have its refcnt decremented
1213	 */
1214	module_put(pf->owner);
1215	err = security_socket_post_create(sock, family, type, protocol, kern);
1216	if (err)
1217		goto out_sock_release;
1218	*res = sock;
1219
1220	return 0;
1221
1222out_module_busy:
1223	err = -EAFNOSUPPORT;
1224out_module_put:
1225	sock->ops = NULL;
1226	module_put(pf->owner);
1227out_sock_release:
1228	sock_release(sock);
1229	return err;
1230
1231out_release:
1232	rcu_read_unlock();
1233	goto out_sock_release;
1234}
1235EXPORT_SYMBOL(__sock_create);
1236
1237int sock_create(int family, int type, int protocol, struct socket **res)
1238{
1239	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1240}
1241EXPORT_SYMBOL(sock_create);
1242
1243int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1244{
1245	return __sock_create(net, family, type, protocol, res, 1);
1246}
1247EXPORT_SYMBOL(sock_create_kern);
1248
1249SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1250{
1251	int retval;
1252	struct socket *sock;
1253	int flags;
1254
1255	/* Check the SOCK_* constants for consistency.  */
1256	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1257	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1258	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1259	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1260
1261	flags = type & ~SOCK_TYPE_MASK;
1262	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263		return -EINVAL;
1264	type &= SOCK_TYPE_MASK;
1265
1266	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268
1269	retval = sock_create(family, type, protocol, &sock);
1270	if (retval < 0)
1271		goto out;
1272
1273	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1274	if (retval < 0)
1275		goto out_release;
1276
1277out:
1278	/* It may be already another descriptor 8) Not kernel problem. */
1279	return retval;
1280
1281out_release:
1282	sock_release(sock);
1283	return retval;
1284}
1285
1286/*
1287 *	Create a pair of connected sockets.
1288 */
1289
1290SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1291		int __user *, usockvec)
1292{
1293	struct socket *sock1, *sock2;
1294	int fd1, fd2, err;
1295	struct file *newfile1, *newfile2;
1296	int flags;
1297
1298	flags = type & ~SOCK_TYPE_MASK;
1299	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1300		return -EINVAL;
1301	type &= SOCK_TYPE_MASK;
1302
1303	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305
1306	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307	 * Obtain the first socket and check if the underlying protocol
1308	 * supports the socketpair call.
1309	 */
1310
1311	err = sock_create(family, type, protocol, &sock1);
1312	if (err < 0)
1313		goto out;
1314
1315	err = sock_create(family, type, protocol, &sock2);
1316	if (err < 0)
1317		goto out_release_1;
1318
1319	err = sock1->ops->socketpair(sock1, sock2);
1320	if (err < 0)
1321		goto out_release_both;
1322
1323	fd1 = get_unused_fd_flags(flags);
1324	if (unlikely(fd1 < 0)) {
1325		err = fd1;
1326		goto out_release_both;
1327	}
1328
1329	fd2 = get_unused_fd_flags(flags);
1330	if (unlikely(fd2 < 0)) {
1331		err = fd2;
1332		goto out_put_unused_1;
 
1333	}
1334
1335	newfile1 = sock_alloc_file(sock1, flags, NULL);
1336	if (IS_ERR(newfile1)) {
1337		err = PTR_ERR(newfile1);
1338		goto out_put_unused_both;
 
1339	}
1340
1341	newfile2 = sock_alloc_file(sock2, flags, NULL);
1342	if (IS_ERR(newfile2)) {
1343		err = PTR_ERR(newfile2);
1344		goto out_fput_1;
 
1345	}
1346
1347	err = put_user(fd1, &usockvec[0]);
1348	if (err)
1349		goto out_fput_both;
1350
1351	err = put_user(fd2, &usockvec[1]);
1352	if (err)
1353		goto out_fput_both;
1354
1355	audit_fd_pair(fd1, fd2);
1356
1357	fd_install(fd1, newfile1);
1358	fd_install(fd2, newfile2);
1359	/* fd1 and fd2 may be already another descriptors.
1360	 * Not kernel problem.
1361	 */
1362
1363	return 0;
1364
1365out_fput_both:
1366	fput(newfile2);
1367	fput(newfile1);
1368	put_unused_fd(fd2);
1369	put_unused_fd(fd1);
1370	goto out;
1371
1372out_fput_1:
1373	fput(newfile1);
1374	put_unused_fd(fd2);
1375	put_unused_fd(fd1);
1376	sock_release(sock2);
1377	goto out;
1378
1379out_put_unused_both:
1380	put_unused_fd(fd2);
1381out_put_unused_1:
1382	put_unused_fd(fd1);
1383out_release_both:
1384	sock_release(sock2);
1385out_release_1:
1386	sock_release(sock1);
1387out:
1388	return err;
1389}
1390
 
 
 
 
 
 
1391/*
1392 *	Bind a name to a socket. Nothing much to do here since it's
1393 *	the protocol's responsibility to handle the local address.
1394 *
1395 *	We move the socket address to kernel space before we call
1396 *	the protocol layer (having also checked the address is ok).
1397 */
1398
1399SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1400{
1401	struct socket *sock;
1402	struct sockaddr_storage address;
1403	int err, fput_needed;
1404
1405	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1406	if (sock) {
1407		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1408		if (err >= 0) {
1409			err = security_socket_bind(sock,
1410						   (struct sockaddr *)&address,
1411						   addrlen);
1412			if (!err)
1413				err = sock->ops->bind(sock,
1414						      (struct sockaddr *)
1415						      &address, addrlen);
1416		}
1417		fput_light(sock->file, fput_needed);
1418	}
1419	return err;
1420}
1421
 
 
 
 
 
1422/*
1423 *	Perform a listen. Basically, we allow the protocol to do anything
1424 *	necessary for a listen, and if that works, we mark the socket as
1425 *	ready for listening.
1426 */
1427
1428SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1429{
1430	struct socket *sock;
1431	int err, fput_needed;
1432	int somaxconn;
1433
1434	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1435	if (sock) {
1436		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1437		if ((unsigned int)backlog > somaxconn)
1438			backlog = somaxconn;
1439
1440		err = security_socket_listen(sock, backlog);
1441		if (!err)
1442			err = sock->ops->listen(sock, backlog);
1443
1444		fput_light(sock->file, fput_needed);
1445	}
1446	return err;
1447}
1448
 
 
 
 
 
1449/*
1450 *	For accept, we attempt to create a new socket, set up the link
1451 *	with the client, wake up the client, then return the new
1452 *	connected fd. We collect the address of the connector in kernel
1453 *	space and move it to user at the very end. This is unclean because
1454 *	we open the socket then return an error.
1455 *
1456 *	1003.1g adds the ability to recvmsg() to query connection pending
1457 *	status to recvmsg. We need to add that support in a way thats
1458 *	clean when we restucture accept also.
1459 */
1460
1461SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1462		int __user *, upeer_addrlen, int, flags)
1463{
1464	struct socket *sock, *newsock;
1465	struct file *newfile;
1466	int err, len, newfd, fput_needed;
1467	struct sockaddr_storage address;
1468
1469	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1470		return -EINVAL;
1471
1472	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1473		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1474
1475	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476	if (!sock)
1477		goto out;
1478
1479	err = -ENFILE;
1480	newsock = sock_alloc();
1481	if (!newsock)
1482		goto out_put;
1483
1484	newsock->type = sock->type;
1485	newsock->ops = sock->ops;
1486
1487	/*
1488	 * We don't need try_module_get here, as the listening socket (sock)
1489	 * has the protocol module (sock->ops->owner) held.
1490	 */
1491	__module_get(newsock->ops->owner);
1492
1493	newfd = get_unused_fd_flags(flags);
1494	if (unlikely(newfd < 0)) {
1495		err = newfd;
1496		sock_release(newsock);
1497		goto out_put;
1498	}
1499	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1500	if (IS_ERR(newfile)) {
1501		err = PTR_ERR(newfile);
1502		put_unused_fd(newfd);
1503		sock_release(newsock);
1504		goto out_put;
1505	}
1506
1507	err = security_socket_accept(sock, newsock);
1508	if (err)
1509		goto out_fd;
1510
1511	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1512	if (err < 0)
1513		goto out_fd;
1514
1515	if (upeer_sockaddr) {
1516		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1517					  &len, 2) < 0) {
 
1518			err = -ECONNABORTED;
1519			goto out_fd;
1520		}
1521		err = move_addr_to_user(&address,
1522					len, upeer_sockaddr, upeer_addrlen);
1523		if (err < 0)
1524			goto out_fd;
1525	}
1526
1527	/* File flags are not inherited via accept() unlike another OSes. */
1528
1529	fd_install(newfd, newfile);
1530	err = newfd;
1531
1532out_put:
1533	fput_light(sock->file, fput_needed);
1534out:
1535	return err;
1536out_fd:
1537	fput(newfile);
1538	put_unused_fd(newfd);
1539	goto out_put;
1540}
1541
 
 
 
 
 
 
1542SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1543		int __user *, upeer_addrlen)
1544{
1545	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1546}
1547
1548/*
1549 *	Attempt to connect to a socket with the server address.  The address
1550 *	is in user space so we verify it is OK and move it to kernel space.
1551 *
1552 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1553 *	break bindings
1554 *
1555 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1556 *	other SEQPACKET protocols that take time to connect() as it doesn't
1557 *	include the -EINPROGRESS status for such sockets.
1558 */
1559
1560SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1561		int, addrlen)
1562{
1563	struct socket *sock;
1564	struct sockaddr_storage address;
1565	int err, fput_needed;
1566
1567	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1568	if (!sock)
1569		goto out;
1570	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1571	if (err < 0)
1572		goto out_put;
1573
1574	err =
1575	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1576	if (err)
1577		goto out_put;
1578
1579	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1580				 sock->file->f_flags);
1581out_put:
1582	fput_light(sock->file, fput_needed);
1583out:
1584	return err;
1585}
1586
 
 
 
 
 
 
1587/*
1588 *	Get the local address ('name') of a socket object. Move the obtained
1589 *	name to user space.
1590 */
1591
1592SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1593		int __user *, usockaddr_len)
1594{
1595	struct socket *sock;
1596	struct sockaddr_storage address;
1597	int len, err, fput_needed;
1598
1599	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600	if (!sock)
1601		goto out;
1602
1603	err = security_socket_getsockname(sock);
1604	if (err)
1605		goto out_put;
1606
1607	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1608	if (err)
1609		goto out_put;
1610	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
 
1611
1612out_put:
1613	fput_light(sock->file, fput_needed);
1614out:
1615	return err;
1616}
1617
 
 
 
 
 
 
1618/*
1619 *	Get the remote address ('name') of a socket object. Move the obtained
1620 *	name to user space.
1621 */
1622
1623SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1624		int __user *, usockaddr_len)
1625{
1626	struct socket *sock;
1627	struct sockaddr_storage address;
1628	int len, err, fput_needed;
1629
1630	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631	if (sock != NULL) {
1632		err = security_socket_getpeername(sock);
1633		if (err) {
1634			fput_light(sock->file, fput_needed);
1635			return err;
1636		}
1637
1638		err =
1639		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1640				       1);
1641		if (!err)
1642			err = move_addr_to_user(&address, len, usockaddr,
1643						usockaddr_len);
1644		fput_light(sock->file, fput_needed);
1645	}
1646	return err;
1647}
1648
 
 
 
 
 
 
1649/*
1650 *	Send a datagram to a given address. We move the address into kernel
1651 *	space and check the user space data area is readable before invoking
1652 *	the protocol.
1653 */
1654
1655SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1656		unsigned int, flags, struct sockaddr __user *, addr,
1657		int, addr_len)
1658{
1659	struct socket *sock;
1660	struct sockaddr_storage address;
1661	int err;
1662	struct msghdr msg;
1663	struct iovec iov;
1664	int fput_needed;
1665
1666	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1667	if (unlikely(err))
1668		return err;
1669	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670	if (!sock)
1671		goto out;
1672
1673	msg.msg_name = NULL;
1674	msg.msg_control = NULL;
1675	msg.msg_controllen = 0;
1676	msg.msg_namelen = 0;
1677	if (addr) {
1678		err = move_addr_to_kernel(addr, addr_len, &address);
1679		if (err < 0)
1680			goto out_put;
1681		msg.msg_name = (struct sockaddr *)&address;
1682		msg.msg_namelen = addr_len;
1683	}
1684	if (sock->file->f_flags & O_NONBLOCK)
1685		flags |= MSG_DONTWAIT;
1686	msg.msg_flags = flags;
1687	err = sock_sendmsg(sock, &msg);
1688
1689out_put:
1690	fput_light(sock->file, fput_needed);
1691out:
1692	return err;
1693}
1694
 
 
 
 
 
 
 
1695/*
1696 *	Send a datagram down a socket.
1697 */
1698
1699SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1700		unsigned int, flags)
1701{
1702	return sys_sendto(fd, buff, len, flags, NULL, 0);
1703}
1704
1705/*
1706 *	Receive a frame from the socket and optionally record the address of the
1707 *	sender. We verify the buffers are writable and if needed move the
1708 *	sender address from kernel to user space.
1709 */
1710
1711SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1712		unsigned int, flags, struct sockaddr __user *, addr,
1713		int __user *, addr_len)
1714{
1715	struct socket *sock;
1716	struct iovec iov;
1717	struct msghdr msg;
1718	struct sockaddr_storage address;
1719	int err, err2;
1720	int fput_needed;
1721
1722	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1723	if (unlikely(err))
1724		return err;
1725	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726	if (!sock)
1727		goto out;
1728
1729	msg.msg_control = NULL;
1730	msg.msg_controllen = 0;
1731	/* Save some cycles and don't copy the address if not needed */
1732	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1733	/* We assume all kernel code knows the size of sockaddr_storage */
1734	msg.msg_namelen = 0;
1735	msg.msg_iocb = NULL;
 
1736	if (sock->file->f_flags & O_NONBLOCK)
1737		flags |= MSG_DONTWAIT;
1738	err = sock_recvmsg(sock, &msg, flags);
1739
1740	if (err >= 0 && addr != NULL) {
1741		err2 = move_addr_to_user(&address,
1742					 msg.msg_namelen, addr, addr_len);
1743		if (err2 < 0)
1744			err = err2;
1745	}
1746
1747	fput_light(sock->file, fput_needed);
1748out:
1749	return err;
1750}
1751
 
 
 
 
 
 
 
1752/*
1753 *	Receive a datagram from a socket.
1754 */
1755
1756SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1757		unsigned int, flags)
1758{
1759	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1760}
1761
1762/*
1763 *	Set a socket option. Because we don't know the option lengths we have
1764 *	to pass the user mode parameter for the protocols to sort out.
1765 */
1766
1767SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1768		char __user *, optval, int, optlen)
1769{
1770	int err, fput_needed;
1771	struct socket *sock;
1772
1773	if (optlen < 0)
1774		return -EINVAL;
1775
1776	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777	if (sock != NULL) {
1778		err = security_socket_setsockopt(sock, level, optname);
1779		if (err)
1780			goto out_put;
1781
1782		if (level == SOL_SOCKET)
1783			err =
1784			    sock_setsockopt(sock, level, optname, optval,
1785					    optlen);
1786		else
1787			err =
1788			    sock->ops->setsockopt(sock, level, optname, optval,
1789						  optlen);
1790out_put:
1791		fput_light(sock->file, fput_needed);
1792	}
1793	return err;
1794}
1795
 
 
 
 
 
 
1796/*
1797 *	Get a socket option. Because we don't know the option lengths we have
1798 *	to pass a user mode parameter for the protocols to sort out.
1799 */
1800
1801SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1802		char __user *, optval, int __user *, optlen)
1803{
1804	int err, fput_needed;
1805	struct socket *sock;
1806
1807	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808	if (sock != NULL) {
1809		err = security_socket_getsockopt(sock, level, optname);
1810		if (err)
1811			goto out_put;
1812
1813		if (level == SOL_SOCKET)
1814			err =
1815			    sock_getsockopt(sock, level, optname, optval,
1816					    optlen);
1817		else
1818			err =
1819			    sock->ops->getsockopt(sock, level, optname, optval,
1820						  optlen);
1821out_put:
1822		fput_light(sock->file, fput_needed);
1823	}
1824	return err;
1825}
1826
 
 
 
 
 
 
1827/*
1828 *	Shutdown a socket.
1829 */
1830
1831SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1832{
1833	int err, fput_needed;
1834	struct socket *sock;
1835
1836	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1837	if (sock != NULL) {
1838		err = security_socket_shutdown(sock, how);
1839		if (!err)
1840			err = sock->ops->shutdown(sock, how);
1841		fput_light(sock->file, fput_needed);
1842	}
1843	return err;
1844}
1845
 
 
 
 
 
1846/* A couple of helpful macros for getting the address of the 32/64 bit
1847 * fields which are the same type (int / unsigned) on our platforms.
1848 */
1849#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1850#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1851#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1852
1853struct used_address {
1854	struct sockaddr_storage name;
1855	unsigned int name_len;
1856};
1857
1858static int copy_msghdr_from_user(struct msghdr *kmsg,
1859				 struct user_msghdr __user *umsg,
1860				 struct sockaddr __user **save_addr,
1861				 struct iovec **iov)
1862{
1863	struct sockaddr __user *uaddr;
1864	struct iovec __user *uiov;
1865	size_t nr_segs;
1866	ssize_t err;
1867
1868	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1869	    __get_user(uaddr, &umsg->msg_name) ||
1870	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1871	    __get_user(uiov, &umsg->msg_iov) ||
1872	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1873	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1874	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1875	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1876		return -EFAULT;
1877
1878	if (!uaddr)
 
 
 
 
 
1879		kmsg->msg_namelen = 0;
1880
1881	if (kmsg->msg_namelen < 0)
1882		return -EINVAL;
1883
1884	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1885		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1886
1887	if (save_addr)
1888		*save_addr = uaddr;
1889
1890	if (uaddr && kmsg->msg_namelen) {
1891		if (!save_addr) {
1892			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
 
1893						  kmsg->msg_name);
1894			if (err < 0)
1895				return err;
1896		}
1897	} else {
1898		kmsg->msg_name = NULL;
1899		kmsg->msg_namelen = 0;
1900	}
1901
1902	if (nr_segs > UIO_MAXIOV)
1903		return -EMSGSIZE;
1904
1905	kmsg->msg_iocb = NULL;
1906
1907	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
 
1908			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1909}
1910
1911static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1912			 struct msghdr *msg_sys, unsigned int flags,
1913			 struct used_address *used_address,
1914			 unsigned int allowed_msghdr_flags)
1915{
1916	struct compat_msghdr __user *msg_compat =
1917	    (struct compat_msghdr __user *)msg;
1918	struct sockaddr_storage address;
1919	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1920	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1921				__aligned(sizeof(__kernel_size_t));
1922	/* 20 is size of ipv6_pktinfo */
1923	unsigned char *ctl_buf = ctl;
1924	int ctl_len;
1925	ssize_t err;
1926
1927	msg_sys->msg_name = &address;
1928
1929	if (MSG_CMSG_COMPAT & flags)
1930		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1931	else
1932		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1933	if (err < 0)
1934		return err;
1935
1936	err = -ENOBUFS;
1937
1938	if (msg_sys->msg_controllen > INT_MAX)
1939		goto out_freeiov;
1940	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1941	ctl_len = msg_sys->msg_controllen;
1942	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1943		err =
1944		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1945						     sizeof(ctl));
1946		if (err)
1947			goto out_freeiov;
1948		ctl_buf = msg_sys->msg_control;
1949		ctl_len = msg_sys->msg_controllen;
1950	} else if (ctl_len) {
 
 
1951		if (ctl_len > sizeof(ctl)) {
1952			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953			if (ctl_buf == NULL)
1954				goto out_freeiov;
1955		}
1956		err = -EFAULT;
1957		/*
1958		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960		 * checking falls down on this.
1961		 */
1962		if (copy_from_user(ctl_buf,
1963				   (void __user __force *)msg_sys->msg_control,
1964				   ctl_len))
1965			goto out_freectl;
1966		msg_sys->msg_control = ctl_buf;
1967	}
1968	msg_sys->msg_flags = flags;
1969
1970	if (sock->file->f_flags & O_NONBLOCK)
1971		msg_sys->msg_flags |= MSG_DONTWAIT;
1972	/*
1973	 * If this is sendmmsg() and current destination address is same as
1974	 * previously succeeded address, omit asking LSM's decision.
1975	 * used_address->name_len is initialized to UINT_MAX so that the first
1976	 * destination address never matches.
1977	 */
1978	if (used_address && msg_sys->msg_name &&
1979	    used_address->name_len == msg_sys->msg_namelen &&
1980	    !memcmp(&used_address->name, msg_sys->msg_name,
1981		    used_address->name_len)) {
1982		err = sock_sendmsg_nosec(sock, msg_sys);
1983		goto out_freectl;
1984	}
1985	err = sock_sendmsg(sock, msg_sys);
1986	/*
1987	 * If this is sendmmsg() and sending to current destination address was
1988	 * successful, remember it.
1989	 */
1990	if (used_address && err >= 0) {
1991		used_address->name_len = msg_sys->msg_namelen;
1992		if (msg_sys->msg_name)
1993			memcpy(&used_address->name, msg_sys->msg_name,
1994			       used_address->name_len);
1995	}
1996
1997out_freectl:
1998	if (ctl_buf != ctl)
1999		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2000out_freeiov:
2001	kfree(iov);
2002	return err;
2003}
2004
2005/*
2006 *	BSD sendmsg interface
2007 */
2008
2009long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
 
2010{
2011	int fput_needed, err;
2012	struct msghdr msg_sys;
2013	struct socket *sock;
2014
 
 
 
2015	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016	if (!sock)
2017		goto out;
2018
2019	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2020
2021	fput_light(sock->file, fput_needed);
2022out:
2023	return err;
2024}
2025
2026SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2027{
2028	if (flags & MSG_CMSG_COMPAT)
2029		return -EINVAL;
2030	return __sys_sendmsg(fd, msg, flags);
2031}
2032
2033/*
2034 *	Linux sendmmsg interface
2035 */
2036
2037int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038		   unsigned int flags)
2039{
2040	int fput_needed, err, datagrams;
2041	struct socket *sock;
2042	struct mmsghdr __user *entry;
2043	struct compat_mmsghdr __user *compat_entry;
2044	struct msghdr msg_sys;
2045	struct used_address used_address;
2046	unsigned int oflags = flags;
2047
 
 
 
2048	if (vlen > UIO_MAXIOV)
2049		vlen = UIO_MAXIOV;
2050
2051	datagrams = 0;
2052
2053	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054	if (!sock)
2055		return err;
2056
2057	used_address.name_len = UINT_MAX;
2058	entry = mmsg;
2059	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2060	err = 0;
2061	flags |= MSG_BATCH;
2062
2063	while (datagrams < vlen) {
2064		if (datagrams == vlen - 1)
2065			flags = oflags;
2066
2067		if (MSG_CMSG_COMPAT & flags) {
2068			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069					     &msg_sys, flags, &used_address, MSG_EOR);
2070			if (err < 0)
2071				break;
2072			err = __put_user(err, &compat_entry->msg_len);
2073			++compat_entry;
2074		} else {
2075			err = ___sys_sendmsg(sock,
2076					     (struct user_msghdr __user *)entry,
2077					     &msg_sys, flags, &used_address, MSG_EOR);
2078			if (err < 0)
2079				break;
2080			err = put_user(err, &entry->msg_len);
2081			++entry;
2082		}
2083
2084		if (err)
2085			break;
2086		++datagrams;
2087		if (msg_data_left(&msg_sys))
2088			break;
2089		cond_resched();
2090	}
2091
2092	fput_light(sock->file, fput_needed);
2093
2094	/* We only return an error if no datagrams were able to be sent */
2095	if (datagrams != 0)
2096		return datagrams;
2097
2098	return err;
2099}
2100
2101SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102		unsigned int, vlen, unsigned int, flags)
2103{
2104	if (flags & MSG_CMSG_COMPAT)
2105		return -EINVAL;
2106	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2107}
2108
2109static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2111{
2112	struct compat_msghdr __user *msg_compat =
2113	    (struct compat_msghdr __user *)msg;
2114	struct iovec iovstack[UIO_FASTIOV];
2115	struct iovec *iov = iovstack;
2116	unsigned long cmsg_ptr;
2117	int len;
2118	ssize_t err;
2119
2120	/* kernel mode address */
2121	struct sockaddr_storage addr;
2122
2123	/* user mode address pointers */
2124	struct sockaddr __user *uaddr;
2125	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2126
2127	msg_sys->msg_name = &addr;
2128
2129	if (MSG_CMSG_COMPAT & flags)
2130		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2131	else
2132		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2133	if (err < 0)
2134		return err;
2135
2136	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2138
2139	/* We assume all kernel code knows the size of sockaddr_storage */
2140	msg_sys->msg_namelen = 0;
2141
2142	if (sock->file->f_flags & O_NONBLOCK)
2143		flags |= MSG_DONTWAIT;
2144	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2145	if (err < 0)
2146		goto out_freeiov;
2147	len = err;
2148
2149	if (uaddr != NULL) {
2150		err = move_addr_to_user(&addr,
2151					msg_sys->msg_namelen, uaddr,
2152					uaddr_len);
2153		if (err < 0)
2154			goto out_freeiov;
2155	}
2156	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2157			 COMPAT_FLAGS(msg));
2158	if (err)
2159		goto out_freeiov;
2160	if (MSG_CMSG_COMPAT & flags)
2161		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162				 &msg_compat->msg_controllen);
2163	else
2164		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165				 &msg->msg_controllen);
2166	if (err)
2167		goto out_freeiov;
2168	err = len;
2169
2170out_freeiov:
2171	kfree(iov);
2172	return err;
2173}
2174
2175/*
2176 *	BSD recvmsg interface
2177 */
2178
2179long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
 
2180{
2181	int fput_needed, err;
2182	struct msghdr msg_sys;
2183	struct socket *sock;
2184
 
 
 
2185	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186	if (!sock)
2187		goto out;
2188
2189	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2190
2191	fput_light(sock->file, fput_needed);
2192out:
2193	return err;
2194}
2195
2196SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197		unsigned int, flags)
2198{
2199	if (flags & MSG_CMSG_COMPAT)
2200		return -EINVAL;
2201	return __sys_recvmsg(fd, msg, flags);
2202}
2203
2204/*
2205 *     Linux recvmmsg interface
2206 */
2207
2208int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209		   unsigned int flags, struct timespec *timeout)
2210{
2211	int fput_needed, err, datagrams;
2212	struct socket *sock;
2213	struct mmsghdr __user *entry;
2214	struct compat_mmsghdr __user *compat_entry;
2215	struct msghdr msg_sys;
2216	struct timespec64 end_time;
2217	struct timespec64 timeout64;
2218
2219	if (timeout &&
2220	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2221				    timeout->tv_nsec))
2222		return -EINVAL;
2223
2224	datagrams = 0;
2225
2226	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227	if (!sock)
2228		return err;
2229
2230	err = sock_error(sock->sk);
2231	if (err) {
2232		datagrams = err;
2233		goto out_put;
 
 
2234	}
2235
2236	entry = mmsg;
2237	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2238
2239	while (datagrams < vlen) {
2240		/*
2241		 * No need to ask LSM for more than the first datagram.
2242		 */
2243		if (MSG_CMSG_COMPAT & flags) {
2244			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2245					     &msg_sys, flags & ~MSG_WAITFORONE,
2246					     datagrams);
2247			if (err < 0)
2248				break;
2249			err = __put_user(err, &compat_entry->msg_len);
2250			++compat_entry;
2251		} else {
2252			err = ___sys_recvmsg(sock,
2253					     (struct user_msghdr __user *)entry,
2254					     &msg_sys, flags & ~MSG_WAITFORONE,
2255					     datagrams);
2256			if (err < 0)
2257				break;
2258			err = put_user(err, &entry->msg_len);
2259			++entry;
2260		}
2261
2262		if (err)
2263			break;
2264		++datagrams;
2265
2266		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2267		if (flags & MSG_WAITFORONE)
2268			flags |= MSG_DONTWAIT;
2269
2270		if (timeout) {
2271			ktime_get_ts64(&timeout64);
2272			*timeout = timespec64_to_timespec(
2273					timespec64_sub(end_time, timeout64));
2274			if (timeout->tv_sec < 0) {
2275				timeout->tv_sec = timeout->tv_nsec = 0;
2276				break;
2277			}
2278
2279			/* Timeout, return less than vlen datagrams */
2280			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2281				break;
2282		}
2283
2284		/* Out of band data, return right away */
2285		if (msg_sys.msg_flags & MSG_OOB)
2286			break;
2287		cond_resched();
2288	}
2289
2290	if (err == 0)
2291		goto out_put;
2292
2293	if (datagrams == 0) {
2294		datagrams = err;
2295		goto out_put;
2296	}
2297
2298	/*
2299	 * We may return less entries than requested (vlen) if the
2300	 * sock is non block and there aren't enough datagrams...
2301	 */
2302	if (err != -EAGAIN) {
2303		/*
2304		 * ... or  if recvmsg returns an error after we
2305		 * received some datagrams, where we record the
2306		 * error to return on the next call or if the
2307		 * app asks about it using getsockopt(SO_ERROR).
2308		 */
2309		sock->sk->sk_err = -err;
2310	}
2311out_put:
2312	fput_light(sock->file, fput_needed);
2313
2314	return datagrams;
2315}
2316
2317SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2318		unsigned int, vlen, unsigned int, flags,
2319		struct timespec __user *, timeout)
2320{
2321	int datagrams;
2322	struct timespec timeout_sys;
2323
2324	if (flags & MSG_CMSG_COMPAT)
2325		return -EINVAL;
2326
2327	if (!timeout)
2328		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2329
2330	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2331		return -EFAULT;
2332
2333	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2334
2335	if (datagrams > 0 &&
2336	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2337		datagrams = -EFAULT;
2338
2339	return datagrams;
2340}
2341
 
 
 
 
 
 
 
2342#ifdef __ARCH_WANT_SYS_SOCKETCALL
2343/* Argument list sizes for sys_socketcall */
2344#define AL(x) ((x) * sizeof(unsigned long))
2345static const unsigned char nargs[21] = {
2346	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2347	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2348	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2349	AL(4), AL(5), AL(4)
2350};
2351
2352#undef AL
2353
2354/*
2355 *	System call vectors.
2356 *
2357 *	Argument checking cleaned up. Saved 20% in size.
2358 *  This function doesn't need to set the kernel lock because
2359 *  it is set by the callees.
2360 */
2361
2362SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2363{
2364	unsigned long a[AUDITSC_ARGS];
2365	unsigned long a0, a1;
2366	int err;
2367	unsigned int len;
2368
2369	if (call < 1 || call > SYS_SENDMMSG)
2370		return -EINVAL;
2371
2372	len = nargs[call];
2373	if (len > sizeof(a))
2374		return -EINVAL;
2375
2376	/* copy_from_user should be SMP safe. */
2377	if (copy_from_user(a, args, len))
2378		return -EFAULT;
2379
2380	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2381	if (err)
2382		return err;
2383
2384	a0 = a[0];
2385	a1 = a[1];
2386
2387	switch (call) {
2388	case SYS_SOCKET:
2389		err = sys_socket(a0, a1, a[2]);
2390		break;
2391	case SYS_BIND:
2392		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2393		break;
2394	case SYS_CONNECT:
2395		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2396		break;
2397	case SYS_LISTEN:
2398		err = sys_listen(a0, a1);
2399		break;
2400	case SYS_ACCEPT:
2401		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2402				  (int __user *)a[2], 0);
2403		break;
2404	case SYS_GETSOCKNAME:
2405		err =
2406		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2407				    (int __user *)a[2]);
2408		break;
2409	case SYS_GETPEERNAME:
2410		err =
2411		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2412				    (int __user *)a[2]);
2413		break;
2414	case SYS_SOCKETPAIR:
2415		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2416		break;
2417	case SYS_SEND:
2418		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
 
2419		break;
2420	case SYS_SENDTO:
2421		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2422				 (struct sockaddr __user *)a[4], a[5]);
2423		break;
2424	case SYS_RECV:
2425		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
 
2426		break;
2427	case SYS_RECVFROM:
2428		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2429				   (struct sockaddr __user *)a[4],
2430				   (int __user *)a[5]);
2431		break;
2432	case SYS_SHUTDOWN:
2433		err = sys_shutdown(a0, a1);
2434		break;
2435	case SYS_SETSOCKOPT:
2436		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
 
2437		break;
2438	case SYS_GETSOCKOPT:
2439		err =
2440		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2441				   (int __user *)a[4]);
2442		break;
2443	case SYS_SENDMSG:
2444		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
 
2445		break;
2446	case SYS_SENDMMSG:
2447		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
 
2448		break;
2449	case SYS_RECVMSG:
2450		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
 
2451		break;
2452	case SYS_RECVMMSG:
2453		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2454				   (struct timespec __user *)a[4]);
2455		break;
2456	case SYS_ACCEPT4:
2457		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2458				  (int __user *)a[2], a[3]);
2459		break;
2460	default:
2461		err = -EINVAL;
2462		break;
2463	}
2464	return err;
2465}
2466
2467#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2468
2469/**
2470 *	sock_register - add a socket protocol handler
2471 *	@ops: description of protocol
2472 *
2473 *	This function is called by a protocol handler that wants to
2474 *	advertise its address family, and have it linked into the
2475 *	socket interface. The value ops->family corresponds to the
2476 *	socket system call protocol family.
2477 */
2478int sock_register(const struct net_proto_family *ops)
2479{
2480	int err;
2481
2482	if (ops->family >= NPROTO) {
2483		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2484		return -ENOBUFS;
2485	}
2486
2487	spin_lock(&net_family_lock);
2488	if (rcu_dereference_protected(net_families[ops->family],
2489				      lockdep_is_held(&net_family_lock)))
2490		err = -EEXIST;
2491	else {
2492		rcu_assign_pointer(net_families[ops->family], ops);
2493		err = 0;
2494	}
2495	spin_unlock(&net_family_lock);
2496
2497	pr_info("NET: Registered protocol family %d\n", ops->family);
2498	return err;
2499}
2500EXPORT_SYMBOL(sock_register);
2501
2502/**
2503 *	sock_unregister - remove a protocol handler
2504 *	@family: protocol family to remove
2505 *
2506 *	This function is called by a protocol handler that wants to
2507 *	remove its address family, and have it unlinked from the
2508 *	new socket creation.
2509 *
2510 *	If protocol handler is a module, then it can use module reference
2511 *	counts to protect against new references. If protocol handler is not
2512 *	a module then it needs to provide its own protection in
2513 *	the ops->create routine.
2514 */
2515void sock_unregister(int family)
2516{
2517	BUG_ON(family < 0 || family >= NPROTO);
2518
2519	spin_lock(&net_family_lock);
2520	RCU_INIT_POINTER(net_families[family], NULL);
2521	spin_unlock(&net_family_lock);
2522
2523	synchronize_rcu();
2524
2525	pr_info("NET: Unregistered protocol family %d\n", family);
2526}
2527EXPORT_SYMBOL(sock_unregister);
2528
 
 
 
 
 
2529static int __init sock_init(void)
2530{
2531	int err;
2532	/*
2533	 *      Initialize the network sysctl infrastructure.
2534	 */
2535	err = net_sysctl_init();
2536	if (err)
2537		goto out;
2538
2539	/*
2540	 *      Initialize skbuff SLAB cache
2541	 */
2542	skb_init();
2543
2544	/*
2545	 *      Initialize the protocols module.
2546	 */
2547
2548	init_inodecache();
2549
2550	err = register_filesystem(&sock_fs_type);
2551	if (err)
2552		goto out_fs;
2553	sock_mnt = kern_mount(&sock_fs_type);
2554	if (IS_ERR(sock_mnt)) {
2555		err = PTR_ERR(sock_mnt);
2556		goto out_mount;
2557	}
2558
2559	/* The real protocol initialization is performed in later initcalls.
2560	 */
2561
2562#ifdef CONFIG_NETFILTER
2563	err = netfilter_init();
2564	if (err)
2565		goto out;
2566#endif
2567
2568	ptp_classifier_init();
2569
2570out:
2571	return err;
2572
2573out_mount:
2574	unregister_filesystem(&sock_fs_type);
2575out_fs:
2576	goto out;
2577}
2578
2579core_initcall(sock_init);	/* early initcall */
2580
2581#ifdef CONFIG_PROC_FS
2582void socket_seq_show(struct seq_file *seq)
2583{
2584	int cpu;
2585	int counter = 0;
2586
2587	for_each_possible_cpu(cpu)
2588	    counter += per_cpu(sockets_in_use, cpu);
2589
2590	/* It can be negative, by the way. 8) */
2591	if (counter < 0)
2592		counter = 0;
2593
2594	seq_printf(seq, "sockets: used %d\n", counter);
2595}
2596#endif				/* CONFIG_PROC_FS */
2597
2598#ifdef CONFIG_COMPAT
2599static int do_siocgstamp(struct net *net, struct socket *sock,
2600			 unsigned int cmd, void __user *up)
2601{
2602	mm_segment_t old_fs = get_fs();
2603	struct timeval ktv;
2604	int err;
2605
2606	set_fs(KERNEL_DS);
2607	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2608	set_fs(old_fs);
2609	if (!err)
2610		err = compat_put_timeval(&ktv, up);
2611
2612	return err;
2613}
2614
2615static int do_siocgstampns(struct net *net, struct socket *sock,
2616			   unsigned int cmd, void __user *up)
2617{
2618	mm_segment_t old_fs = get_fs();
2619	struct timespec kts;
2620	int err;
2621
2622	set_fs(KERNEL_DS);
2623	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2624	set_fs(old_fs);
2625	if (!err)
2626		err = compat_put_timespec(&kts, up);
2627
2628	return err;
2629}
2630
2631static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2632{
2633	struct ifreq __user *uifr;
2634	int err;
2635
2636	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2637	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2638		return -EFAULT;
2639
2640	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2641	if (err)
2642		return err;
2643
2644	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2645		return -EFAULT;
2646
2647	return 0;
2648}
2649
2650static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2651{
2652	struct compat_ifconf ifc32;
2653	struct ifconf ifc;
2654	struct ifconf __user *uifc;
2655	struct compat_ifreq __user *ifr32;
2656	struct ifreq __user *ifr;
2657	unsigned int i, j;
2658	int err;
2659
2660	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2661		return -EFAULT;
2662
2663	memset(&ifc, 0, sizeof(ifc));
2664	if (ifc32.ifcbuf == 0) {
2665		ifc32.ifc_len = 0;
2666		ifc.ifc_len = 0;
2667		ifc.ifc_req = NULL;
2668		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2669	} else {
2670		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2671			sizeof(struct ifreq);
2672		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2673		ifc.ifc_len = len;
2674		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2675		ifr32 = compat_ptr(ifc32.ifcbuf);
2676		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2677			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2678				return -EFAULT;
2679			ifr++;
2680			ifr32++;
2681		}
2682	}
2683	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2684		return -EFAULT;
2685
2686	err = dev_ioctl(net, SIOCGIFCONF, uifc);
 
 
2687	if (err)
2688		return err;
2689
2690	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2691		return -EFAULT;
2692
2693	ifr = ifc.ifc_req;
2694	ifr32 = compat_ptr(ifc32.ifcbuf);
2695	for (i = 0, j = 0;
2696	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2697	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2698		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2699			return -EFAULT;
2700		ifr32++;
2701		ifr++;
2702	}
2703
2704	if (ifc32.ifcbuf == 0) {
2705		/* Translate from 64-bit structure multiple to
2706		 * a 32-bit one.
2707		 */
2708		i = ifc.ifc_len;
2709		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2710		ifc32.ifc_len = i;
2711	} else {
2712		ifc32.ifc_len = i;
2713	}
2714	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2715		return -EFAULT;
2716
2717	return 0;
2718}
2719
2720static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2721{
2722	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2723	bool convert_in = false, convert_out = false;
2724	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2725	struct ethtool_rxnfc __user *rxnfc;
2726	struct ifreq __user *ifr;
2727	u32 rule_cnt = 0, actual_rule_cnt;
2728	u32 ethcmd;
2729	u32 data;
2730	int ret;
2731
2732	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2733		return -EFAULT;
2734
2735	compat_rxnfc = compat_ptr(data);
2736
2737	if (get_user(ethcmd, &compat_rxnfc->cmd))
2738		return -EFAULT;
2739
2740	/* Most ethtool structures are defined without padding.
2741	 * Unfortunately struct ethtool_rxnfc is an exception.
2742	 */
2743	switch (ethcmd) {
2744	default:
2745		break;
2746	case ETHTOOL_GRXCLSRLALL:
2747		/* Buffer size is variable */
2748		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2749			return -EFAULT;
2750		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2751			return -ENOMEM;
2752		buf_size += rule_cnt * sizeof(u32);
2753		/* fall through */
2754	case ETHTOOL_GRXRINGS:
2755	case ETHTOOL_GRXCLSRLCNT:
2756	case ETHTOOL_GRXCLSRULE:
2757	case ETHTOOL_SRXCLSRLINS:
2758		convert_out = true;
2759		/* fall through */
2760	case ETHTOOL_SRXCLSRLDEL:
2761		buf_size += sizeof(struct ethtool_rxnfc);
2762		convert_in = true;
 
2763		break;
2764	}
2765
2766	ifr = compat_alloc_user_space(buf_size);
2767	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2768
2769	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2770		return -EFAULT;
2771
2772	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2773		     &ifr->ifr_ifru.ifru_data))
2774		return -EFAULT;
2775
2776	if (convert_in) {
2777		/* We expect there to be holes between fs.m_ext and
2778		 * fs.ring_cookie and at the end of fs, but nowhere else.
2779		 */
2780		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2781			     sizeof(compat_rxnfc->fs.m_ext) !=
2782			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2783			     sizeof(rxnfc->fs.m_ext));
2784		BUILD_BUG_ON(
2785			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2786			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2787			offsetof(struct ethtool_rxnfc, fs.location) -
2788			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2789
2790		if (copy_in_user(rxnfc, compat_rxnfc,
2791				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2792				 (void __user *)rxnfc) ||
2793		    copy_in_user(&rxnfc->fs.ring_cookie,
2794				 &compat_rxnfc->fs.ring_cookie,
2795				 (void __user *)(&rxnfc->fs.location + 1) -
2796				 (void __user *)&rxnfc->fs.ring_cookie) ||
2797		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2798				 sizeof(rxnfc->rule_cnt)))
2799			return -EFAULT;
2800	}
2801
2802	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2803	if (ret)
2804		return ret;
2805
2806	if (convert_out) {
2807		if (copy_in_user(compat_rxnfc, rxnfc,
2808				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2809				 (const void __user *)rxnfc) ||
2810		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2811				 &rxnfc->fs.ring_cookie,
2812				 (const void __user *)(&rxnfc->fs.location + 1) -
2813				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2814		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2815				 sizeof(rxnfc->rule_cnt)))
2816			return -EFAULT;
2817
2818		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2819			/* As an optimisation, we only copy the actual
2820			 * number of rules that the underlying
2821			 * function returned.  Since Mallory might
2822			 * change the rule count in user memory, we
2823			 * check that it is less than the rule count
2824			 * originally given (as the user buffer size),
2825			 * which has been range-checked.
2826			 */
2827			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2828				return -EFAULT;
2829			if (actual_rule_cnt < rule_cnt)
2830				rule_cnt = actual_rule_cnt;
2831			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2832					 &rxnfc->rule_locs[0],
2833					 rule_cnt * sizeof(u32)))
2834				return -EFAULT;
2835		}
2836	}
2837
2838	return 0;
2839}
2840
2841static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2842{
2843	void __user *uptr;
2844	compat_uptr_t uptr32;
2845	struct ifreq __user *uifr;
 
 
2846
2847	uifr = compat_alloc_user_space(sizeof(*uifr));
2848	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2849		return -EFAULT;
2850
2851	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2852		return -EFAULT;
2853
2854	uptr = compat_ptr(uptr32);
2855
2856	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2857		return -EFAULT;
2858
2859	return dev_ioctl(net, SIOCWANDEV, uifr);
2860}
2861
2862static int bond_ioctl(struct net *net, unsigned int cmd,
2863			 struct compat_ifreq __user *ifr32)
2864{
2865	struct ifreq kifr;
2866	mm_segment_t old_fs;
2867	int err;
2868
2869	switch (cmd) {
2870	case SIOCBONDENSLAVE:
2871	case SIOCBONDRELEASE:
2872	case SIOCBONDSETHWADDR:
2873	case SIOCBONDCHANGEACTIVE:
2874		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2875			return -EFAULT;
2876
2877		old_fs = get_fs();
2878		set_fs(KERNEL_DS);
2879		err = dev_ioctl(net, cmd,
2880				(struct ifreq __user __force *) &kifr);
2881		set_fs(old_fs);
2882
2883		return err;
2884	default:
2885		return -ENOIOCTLCMD;
 
 
2886	}
 
2887}
2888
2889/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2890static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2891				 struct compat_ifreq __user *u_ifreq32)
2892{
2893	struct ifreq __user *u_ifreq64;
2894	char tmp_buf[IFNAMSIZ];
2895	void __user *data64;
2896	u32 data32;
2897
2898	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2899			   IFNAMSIZ))
2900		return -EFAULT;
2901	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2902		return -EFAULT;
2903	data64 = compat_ptr(data32);
2904
2905	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2906
2907	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2908			 IFNAMSIZ))
2909		return -EFAULT;
2910	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2911		return -EFAULT;
2912
2913	return dev_ioctl(net, cmd, u_ifreq64);
2914}
2915
2916static int dev_ifsioc(struct net *net, struct socket *sock,
2917			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2918{
2919	struct ifreq __user *uifr;
2920	int err;
2921
2922	uifr = compat_alloc_user_space(sizeof(*uifr));
2923	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2924		return -EFAULT;
2925
2926	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2927
2928	if (!err) {
2929		switch (cmd) {
2930		case SIOCGIFFLAGS:
2931		case SIOCGIFMETRIC:
2932		case SIOCGIFMTU:
2933		case SIOCGIFMEM:
2934		case SIOCGIFHWADDR:
2935		case SIOCGIFINDEX:
2936		case SIOCGIFADDR:
2937		case SIOCGIFBRDADDR:
2938		case SIOCGIFDSTADDR:
2939		case SIOCGIFNETMASK:
2940		case SIOCGIFPFLAGS:
2941		case SIOCGIFTXQLEN:
2942		case SIOCGMIIPHY:
2943		case SIOCGMIIREG:
2944			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2945				err = -EFAULT;
2946			break;
2947		}
2948	}
2949	return err;
2950}
2951
2952static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2953			struct compat_ifreq __user *uifr32)
2954{
2955	struct ifreq ifr;
2956	struct compat_ifmap __user *uifmap32;
2957	mm_segment_t old_fs;
2958	int err;
2959
2960	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2961	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2962	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2963	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2964	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2965	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2966	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2967	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2968	if (err)
2969		return -EFAULT;
2970
2971	old_fs = get_fs();
2972	set_fs(KERNEL_DS);
2973	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2974	set_fs(old_fs);
2975
2976	if (cmd == SIOCGIFMAP && !err) {
2977		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2978		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2982		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2983		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2984		if (err)
2985			err = -EFAULT;
2986	}
2987	return err;
2988}
2989
2990struct rtentry32 {
2991	u32		rt_pad1;
2992	struct sockaddr rt_dst;         /* target address               */
2993	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2994	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2995	unsigned short	rt_flags;
2996	short		rt_pad2;
2997	u32		rt_pad3;
2998	unsigned char	rt_tos;
2999	unsigned char	rt_class;
3000	short		rt_pad4;
3001	short		rt_metric;      /* +1 for binary compatibility! */
3002	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3003	u32		rt_mtu;         /* per route MTU/Window         */
3004	u32		rt_window;      /* Window clamping              */
3005	unsigned short  rt_irtt;        /* Initial RTT                  */
3006};
3007
3008struct in6_rtmsg32 {
3009	struct in6_addr		rtmsg_dst;
3010	struct in6_addr		rtmsg_src;
3011	struct in6_addr		rtmsg_gateway;
3012	u32			rtmsg_type;
3013	u16			rtmsg_dst_len;
3014	u16			rtmsg_src_len;
3015	u32			rtmsg_metric;
3016	u32			rtmsg_info;
3017	u32			rtmsg_flags;
3018	s32			rtmsg_ifindex;
3019};
3020
3021static int routing_ioctl(struct net *net, struct socket *sock,
3022			 unsigned int cmd, void __user *argp)
3023{
3024	int ret;
3025	void *r = NULL;
3026	struct in6_rtmsg r6;
3027	struct rtentry r4;
3028	char devname[16];
3029	u32 rtdev;
3030	mm_segment_t old_fs = get_fs();
3031
3032	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3033		struct in6_rtmsg32 __user *ur6 = argp;
3034		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3035			3 * sizeof(struct in6_addr));
3036		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3037		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3038		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3039		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3040		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3041		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3042		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3043
3044		r = (void *) &r6;
3045	} else { /* ipv4 */
3046		struct rtentry32 __user *ur4 = argp;
3047		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3048					3 * sizeof(struct sockaddr));
3049		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3050		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3051		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3052		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3053		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3054		ret |= get_user(rtdev, &(ur4->rt_dev));
3055		if (rtdev) {
3056			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3057			r4.rt_dev = (char __user __force *)devname;
3058			devname[15] = 0;
3059		} else
3060			r4.rt_dev = NULL;
3061
3062		r = (void *) &r4;
3063	}
3064
3065	if (ret) {
3066		ret = -EFAULT;
3067		goto out;
3068	}
3069
3070	set_fs(KERNEL_DS);
3071	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3072	set_fs(old_fs);
3073
3074out:
3075	return ret;
3076}
3077
3078/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3079 * for some operations; this forces use of the newer bridge-utils that
3080 * use compatible ioctls
3081 */
3082static int old_bridge_ioctl(compat_ulong_t __user *argp)
3083{
3084	compat_ulong_t tmp;
3085
3086	if (get_user(tmp, argp))
3087		return -EFAULT;
3088	if (tmp == BRCTL_GET_VERSION)
3089		return BRCTL_VERSION + 1;
3090	return -EINVAL;
3091}
3092
3093static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3094			 unsigned int cmd, unsigned long arg)
3095{
3096	void __user *argp = compat_ptr(arg);
3097	struct sock *sk = sock->sk;
3098	struct net *net = sock_net(sk);
3099
3100	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3101		return compat_ifr_data_ioctl(net, cmd, argp);
3102
3103	switch (cmd) {
3104	case SIOCSIFBR:
3105	case SIOCGIFBR:
3106		return old_bridge_ioctl(argp);
3107	case SIOCGIFNAME:
3108		return dev_ifname32(net, argp);
3109	case SIOCGIFCONF:
3110		return dev_ifconf(net, argp);
3111	case SIOCETHTOOL:
3112		return ethtool_ioctl(net, argp);
3113	case SIOCWANDEV:
3114		return compat_siocwandev(net, argp);
3115	case SIOCGIFMAP:
3116	case SIOCSIFMAP:
3117		return compat_sioc_ifmap(net, cmd, argp);
3118	case SIOCBONDENSLAVE:
3119	case SIOCBONDRELEASE:
3120	case SIOCBONDSETHWADDR:
3121	case SIOCBONDCHANGEACTIVE:
3122		return bond_ioctl(net, cmd, argp);
3123	case SIOCADDRT:
3124	case SIOCDELRT:
3125		return routing_ioctl(net, sock, cmd, argp);
3126	case SIOCGSTAMP:
3127		return do_siocgstamp(net, sock, cmd, argp);
3128	case SIOCGSTAMPNS:
3129		return do_siocgstampns(net, sock, cmd, argp);
3130	case SIOCBONDSLAVEINFOQUERY:
3131	case SIOCBONDINFOQUERY:
3132	case SIOCSHWTSTAMP:
3133	case SIOCGHWTSTAMP:
3134		return compat_ifr_data_ioctl(net, cmd, argp);
3135
3136	case FIOSETOWN:
3137	case SIOCSPGRP:
3138	case FIOGETOWN:
3139	case SIOCGPGRP:
3140	case SIOCBRADDBR:
3141	case SIOCBRDELBR:
3142	case SIOCGIFVLAN:
3143	case SIOCSIFVLAN:
3144	case SIOCADDDLCI:
3145	case SIOCDELDLCI:
3146	case SIOCGSKNS:
3147		return sock_ioctl(file, cmd, arg);
3148
3149	case SIOCGIFFLAGS:
3150	case SIOCSIFFLAGS:
3151	case SIOCGIFMETRIC:
3152	case SIOCSIFMETRIC:
3153	case SIOCGIFMTU:
3154	case SIOCSIFMTU:
3155	case SIOCGIFMEM:
3156	case SIOCSIFMEM:
3157	case SIOCGIFHWADDR:
3158	case SIOCSIFHWADDR:
3159	case SIOCADDMULTI:
3160	case SIOCDELMULTI:
3161	case SIOCGIFINDEX:
3162	case SIOCGIFADDR:
3163	case SIOCSIFADDR:
3164	case SIOCSIFHWBROADCAST:
3165	case SIOCDIFADDR:
3166	case SIOCGIFBRDADDR:
3167	case SIOCSIFBRDADDR:
3168	case SIOCGIFDSTADDR:
3169	case SIOCSIFDSTADDR:
3170	case SIOCGIFNETMASK:
3171	case SIOCSIFNETMASK:
3172	case SIOCSIFPFLAGS:
3173	case SIOCGIFPFLAGS:
3174	case SIOCGIFTXQLEN:
3175	case SIOCSIFTXQLEN:
3176	case SIOCBRADDIF:
3177	case SIOCBRDELIF:
3178	case SIOCSIFNAME:
3179	case SIOCGMIIPHY:
3180	case SIOCGMIIREG:
3181	case SIOCSMIIREG:
3182		return dev_ifsioc(net, sock, cmd, argp);
3183
3184	case SIOCSARP:
3185	case SIOCGARP:
3186	case SIOCDARP:
3187	case SIOCATMARK:
 
 
 
 
 
3188		return sock_do_ioctl(net, sock, cmd, arg);
3189	}
3190
3191	return -ENOIOCTLCMD;
3192}
3193
3194static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3195			      unsigned long arg)
3196{
3197	struct socket *sock = file->private_data;
3198	int ret = -ENOIOCTLCMD;
3199	struct sock *sk;
3200	struct net *net;
3201
3202	sk = sock->sk;
3203	net = sock_net(sk);
3204
3205	if (sock->ops->compat_ioctl)
3206		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3207
3208	if (ret == -ENOIOCTLCMD &&
3209	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3210		ret = compat_wext_handle_ioctl(net, cmd, arg);
3211
3212	if (ret == -ENOIOCTLCMD)
3213		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3214
3215	return ret;
3216}
3217#endif
3218
3219int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3220{
3221	return sock->ops->bind(sock, addr, addrlen);
3222}
3223EXPORT_SYMBOL(kernel_bind);
3224
3225int kernel_listen(struct socket *sock, int backlog)
3226{
3227	return sock->ops->listen(sock, backlog);
3228}
3229EXPORT_SYMBOL(kernel_listen);
3230
3231int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3232{
3233	struct sock *sk = sock->sk;
3234	int err;
3235
3236	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3237			       newsock);
3238	if (err < 0)
3239		goto done;
3240
3241	err = sock->ops->accept(sock, *newsock, flags);
3242	if (err < 0) {
3243		sock_release(*newsock);
3244		*newsock = NULL;
3245		goto done;
3246	}
3247
3248	(*newsock)->ops = sock->ops;
3249	__module_get((*newsock)->ops->owner);
3250
3251done:
3252	return err;
3253}
3254EXPORT_SYMBOL(kernel_accept);
3255
3256int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3257		   int flags)
3258{
3259	return sock->ops->connect(sock, addr, addrlen, flags);
3260}
3261EXPORT_SYMBOL(kernel_connect);
3262
3263int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3264			 int *addrlen)
3265{
3266	return sock->ops->getname(sock, addr, addrlen, 0);
3267}
3268EXPORT_SYMBOL(kernel_getsockname);
3269
3270int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3271			 int *addrlen)
3272{
3273	return sock->ops->getname(sock, addr, addrlen, 1);
3274}
3275EXPORT_SYMBOL(kernel_getpeername);
3276
3277int kernel_getsockopt(struct socket *sock, int level, int optname,
3278			char *optval, int *optlen)
3279{
3280	mm_segment_t oldfs = get_fs();
3281	char __user *uoptval;
3282	int __user *uoptlen;
3283	int err;
3284
3285	uoptval = (char __user __force *) optval;
3286	uoptlen = (int __user __force *) optlen;
3287
3288	set_fs(KERNEL_DS);
3289	if (level == SOL_SOCKET)
3290		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291	else
3292		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293					    uoptlen);
3294	set_fs(oldfs);
3295	return err;
3296}
3297EXPORT_SYMBOL(kernel_getsockopt);
3298
3299int kernel_setsockopt(struct socket *sock, int level, int optname,
3300			char *optval, unsigned int optlen)
3301{
3302	mm_segment_t oldfs = get_fs();
3303	char __user *uoptval;
3304	int err;
3305
3306	uoptval = (char __user __force *) optval;
3307
3308	set_fs(KERNEL_DS);
3309	if (level == SOL_SOCKET)
3310		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311	else
3312		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313					    optlen);
3314	set_fs(oldfs);
3315	return err;
3316}
3317EXPORT_SYMBOL(kernel_setsockopt);
3318
3319int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320		    size_t size, int flags)
3321{
3322	if (sock->ops->sendpage)
3323		return sock->ops->sendpage(sock, page, offset, size, flags);
3324
3325	return sock_no_sendpage(sock, page, offset, size, flags);
3326}
3327EXPORT_SYMBOL(kernel_sendpage);
3328
3329int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
 
3330{
3331	mm_segment_t oldfs = get_fs();
3332	int err;
3333
3334	set_fs(KERNEL_DS);
3335	err = sock->ops->ioctl(sock, cmd, arg);
3336	set_fs(oldfs);
3337
3338	return err;
3339}
3340EXPORT_SYMBOL(kernel_sock_ioctl);
3341
3342int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343{
3344	return sock->ops->shutdown(sock, how);
3345}
3346EXPORT_SYMBOL(kernel_sock_shutdown);
v4.17
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 
 107#include <net/busy_poll.h>
 108#include <linux/errqueue.h>
 109
 110#ifdef CONFIG_NET_RX_BUSY_POLL
 111unsigned int sysctl_net_busy_read __read_mostly;
 112unsigned int sysctl_net_busy_poll __read_mostly;
 113#endif
 114
 115static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 116static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 117static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 118
 119static int sock_close(struct inode *inode, struct file *file);
 120static __poll_t sock_poll(struct file *file,
 121			      struct poll_table_struct *wait);
 122static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 123#ifdef CONFIG_COMPAT
 124static long compat_sock_ioctl(struct file *file,
 125			      unsigned int cmd, unsigned long arg);
 126#endif
 127static int sock_fasync(int fd, struct file *filp, int on);
 128static ssize_t sock_sendpage(struct file *file, struct page *page,
 129			     int offset, size_t size, loff_t *ppos, int more);
 130static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 131				struct pipe_inode_info *pipe, size_t len,
 132				unsigned int flags);
 133
 134/*
 135 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 136 *	in the operation structures but are done directly via the socketcall() multiplexor.
 137 */
 138
 139static const struct file_operations socket_file_ops = {
 140	.owner =	THIS_MODULE,
 141	.llseek =	no_llseek,
 142	.read_iter =	sock_read_iter,
 143	.write_iter =	sock_write_iter,
 144	.poll =		sock_poll,
 145	.unlocked_ioctl = sock_ioctl,
 146#ifdef CONFIG_COMPAT
 147	.compat_ioctl = compat_sock_ioctl,
 148#endif
 149	.mmap =		sock_mmap,
 150	.release =	sock_close,
 151	.fasync =	sock_fasync,
 152	.sendpage =	sock_sendpage,
 153	.splice_write = generic_splice_sendpage,
 154	.splice_read =	sock_splice_read,
 155};
 156
 157/*
 158 *	The protocol list. Each protocol is registered in here.
 159 */
 160
 161static DEFINE_SPINLOCK(net_family_lock);
 162static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 163
 164/*
 
 
 
 
 
 
 165 * Support routines.
 166 * Move socket addresses back and forth across the kernel/user
 167 * divide and look after the messy bits.
 168 */
 169
 170/**
 171 *	move_addr_to_kernel	-	copy a socket address into kernel space
 172 *	@uaddr: Address in user space
 173 *	@kaddr: Address in kernel space
 174 *	@ulen: Length in user space
 175 *
 176 *	The address is copied into kernel space. If the provided address is
 177 *	too long an error code of -EINVAL is returned. If the copy gives
 178 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 179 */
 180
 181int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 182{
 183	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 184		return -EINVAL;
 185	if (ulen == 0)
 186		return 0;
 187	if (copy_from_user(kaddr, uaddr, ulen))
 188		return -EFAULT;
 189	return audit_sockaddr(ulen, kaddr);
 190}
 191
 192/**
 193 *	move_addr_to_user	-	copy an address to user space
 194 *	@kaddr: kernel space address
 195 *	@klen: length of address in kernel
 196 *	@uaddr: user space address
 197 *	@ulen: pointer to user length field
 198 *
 199 *	The value pointed to by ulen on entry is the buffer length available.
 200 *	This is overwritten with the buffer space used. -EINVAL is returned
 201 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 202 *	is returned if either the buffer or the length field are not
 203 *	accessible.
 204 *	After copying the data up to the limit the user specifies, the true
 205 *	length of the data is written over the length limit the user
 206 *	specified. Zero is returned for a success.
 207 */
 208
 209static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 210			     void __user *uaddr, int __user *ulen)
 211{
 212	int err;
 213	int len;
 214
 215	BUG_ON(klen > sizeof(struct sockaddr_storage));
 216	err = get_user(len, ulen);
 217	if (err)
 218		return err;
 219	if (len > klen)
 220		len = klen;
 221	if (len < 0)
 222		return -EINVAL;
 223	if (len) {
 224		if (audit_sockaddr(klen, kaddr))
 225			return -ENOMEM;
 226		if (copy_to_user(uaddr, kaddr, len))
 227			return -EFAULT;
 228	}
 229	/*
 230	 *      "fromlen shall refer to the value before truncation.."
 231	 *                      1003.1g
 232	 */
 233	return __put_user(klen, ulen);
 234}
 235
 236static struct kmem_cache *sock_inode_cachep __ro_after_init;
 237
 238static struct inode *sock_alloc_inode(struct super_block *sb)
 239{
 240	struct socket_alloc *ei;
 241	struct socket_wq *wq;
 242
 243	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 244	if (!ei)
 245		return NULL;
 246	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 247	if (!wq) {
 248		kmem_cache_free(sock_inode_cachep, ei);
 249		return NULL;
 250	}
 251	init_waitqueue_head(&wq->wait);
 252	wq->fasync_list = NULL;
 253	wq->flags = 0;
 254	RCU_INIT_POINTER(ei->socket.wq, wq);
 255
 256	ei->socket.state = SS_UNCONNECTED;
 257	ei->socket.flags = 0;
 258	ei->socket.ops = NULL;
 259	ei->socket.sk = NULL;
 260	ei->socket.file = NULL;
 261
 262	return &ei->vfs_inode;
 263}
 264
 265static void sock_destroy_inode(struct inode *inode)
 266{
 267	struct socket_alloc *ei;
 268	struct socket_wq *wq;
 269
 270	ei = container_of(inode, struct socket_alloc, vfs_inode);
 271	wq = rcu_dereference_protected(ei->socket.wq, 1);
 272	kfree_rcu(wq, rcu);
 273	kmem_cache_free(sock_inode_cachep, ei);
 274}
 275
 276static void init_once(void *foo)
 277{
 278	struct socket_alloc *ei = (struct socket_alloc *)foo;
 279
 280	inode_init_once(&ei->vfs_inode);
 281}
 282
 283static void init_inodecache(void)
 284{
 285	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 286					      sizeof(struct socket_alloc),
 287					      0,
 288					      (SLAB_HWCACHE_ALIGN |
 289					       SLAB_RECLAIM_ACCOUNT |
 290					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 291					      init_once);
 292	BUG_ON(sock_inode_cachep == NULL);
 
 
 293}
 294
 295static const struct super_operations sockfs_ops = {
 296	.alloc_inode	= sock_alloc_inode,
 297	.destroy_inode	= sock_destroy_inode,
 298	.statfs		= simple_statfs,
 299};
 300
 301/*
 302 * sockfs_dname() is called from d_path().
 303 */
 304static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 305{
 306	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 307				d_inode(dentry)->i_ino);
 308}
 309
 310static const struct dentry_operations sockfs_dentry_operations = {
 311	.d_dname  = sockfs_dname,
 312};
 313
 314static int sockfs_xattr_get(const struct xattr_handler *handler,
 315			    struct dentry *dentry, struct inode *inode,
 316			    const char *suffix, void *value, size_t size)
 317{
 318	if (value) {
 319		if (dentry->d_name.len + 1 > size)
 320			return -ERANGE;
 321		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 322	}
 323	return dentry->d_name.len + 1;
 324}
 325
 326#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 327#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 328#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 329
 330static const struct xattr_handler sockfs_xattr_handler = {
 331	.name = XATTR_NAME_SOCKPROTONAME,
 332	.get = sockfs_xattr_get,
 333};
 334
 335static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 336				     struct dentry *dentry, struct inode *inode,
 337				     const char *suffix, const void *value,
 338				     size_t size, int flags)
 339{
 340	/* Handled by LSM. */
 341	return -EAGAIN;
 342}
 343
 344static const struct xattr_handler sockfs_security_xattr_handler = {
 345	.prefix = XATTR_SECURITY_PREFIX,
 346	.set = sockfs_security_xattr_set,
 347};
 348
 349static const struct xattr_handler *sockfs_xattr_handlers[] = {
 350	&sockfs_xattr_handler,
 351	&sockfs_security_xattr_handler,
 352	NULL
 353};
 354
 355static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 356			 int flags, const char *dev_name, void *data)
 357{
 358	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 359				  sockfs_xattr_handlers,
 360				  &sockfs_dentry_operations, SOCKFS_MAGIC);
 361}
 362
 363static struct vfsmount *sock_mnt __read_mostly;
 364
 365static struct file_system_type sock_fs_type = {
 366	.name =		"sockfs",
 367	.mount =	sockfs_mount,
 368	.kill_sb =	kill_anon_super,
 369};
 370
 371/*
 372 *	Obtains the first available file descriptor and sets it up for use.
 373 *
 374 *	These functions create file structures and maps them to fd space
 375 *	of the current process. On success it returns file descriptor
 376 *	and file struct implicitly stored in sock->file.
 377 *	Note that another thread may close file descriptor before we return
 378 *	from this function. We use the fact that now we do not refer
 379 *	to socket after mapping. If one day we will need it, this
 380 *	function will increment ref. count on file by 1.
 381 *
 382 *	In any case returned fd MAY BE not valid!
 383 *	This race condition is unavoidable
 384 *	with shared fd spaces, we cannot solve it inside kernel,
 385 *	but we take care of internal coherence yet.
 386 */
 387
 388struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 389{
 390	struct qstr name = { .name = "" };
 391	struct path path;
 392	struct file *file;
 393
 394	if (dname) {
 395		name.name = dname;
 396		name.len = strlen(name.name);
 397	} else if (sock->sk) {
 398		name.name = sock->sk->sk_prot_creator->name;
 399		name.len = strlen(name.name);
 400	}
 401	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 402	if (unlikely(!path.dentry)) {
 403		sock_release(sock);
 404		return ERR_PTR(-ENOMEM);
 405	}
 406	path.mnt = mntget(sock_mnt);
 407
 408	d_instantiate(path.dentry, SOCK_INODE(sock));
 409
 410	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 411		  &socket_file_ops);
 412	if (IS_ERR(file)) {
 413		/* drop dentry, keep inode for a bit */
 414		ihold(d_inode(path.dentry));
 415		path_put(&path);
 416		/* ... and now kill it properly */
 417		sock_release(sock);
 418		return file;
 419	}
 420
 421	sock->file = file;
 422	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 423	file->private_data = sock;
 424	return file;
 425}
 426EXPORT_SYMBOL(sock_alloc_file);
 427
 428static int sock_map_fd(struct socket *sock, int flags)
 429{
 430	struct file *newfile;
 431	int fd = get_unused_fd_flags(flags);
 432	if (unlikely(fd < 0)) {
 433		sock_release(sock);
 434		return fd;
 435	}
 436
 437	newfile = sock_alloc_file(sock, flags, NULL);
 438	if (likely(!IS_ERR(newfile))) {
 439		fd_install(fd, newfile);
 440		return fd;
 441	}
 442
 443	put_unused_fd(fd);
 444	return PTR_ERR(newfile);
 445}
 446
 447struct socket *sock_from_file(struct file *file, int *err)
 448{
 449	if (file->f_op == &socket_file_ops)
 450		return file->private_data;	/* set in sock_map_fd */
 451
 452	*err = -ENOTSOCK;
 453	return NULL;
 454}
 455EXPORT_SYMBOL(sock_from_file);
 456
 457/**
 458 *	sockfd_lookup - Go from a file number to its socket slot
 459 *	@fd: file handle
 460 *	@err: pointer to an error code return
 461 *
 462 *	The file handle passed in is locked and the socket it is bound
 463 *	to is returned. If an error occurs the err pointer is overwritten
 464 *	with a negative errno code and NULL is returned. The function checks
 465 *	for both invalid handles and passing a handle which is not a socket.
 466 *
 467 *	On a success the socket object pointer is returned.
 468 */
 469
 470struct socket *sockfd_lookup(int fd, int *err)
 471{
 472	struct file *file;
 473	struct socket *sock;
 474
 475	file = fget(fd);
 476	if (!file) {
 477		*err = -EBADF;
 478		return NULL;
 479	}
 480
 481	sock = sock_from_file(file, err);
 482	if (!sock)
 483		fput(file);
 484	return sock;
 485}
 486EXPORT_SYMBOL(sockfd_lookup);
 487
 488static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 489{
 490	struct fd f = fdget(fd);
 491	struct socket *sock;
 492
 493	*err = -EBADF;
 494	if (f.file) {
 495		sock = sock_from_file(f.file, err);
 496		if (likely(sock)) {
 497			*fput_needed = f.flags;
 498			return sock;
 499		}
 500		fdput(f);
 501	}
 502	return NULL;
 503}
 504
 505static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 506				size_t size)
 507{
 508	ssize_t len;
 509	ssize_t used = 0;
 510
 511	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 512	if (len < 0)
 513		return len;
 514	used += len;
 515	if (buffer) {
 516		if (size < used)
 517			return -ERANGE;
 518		buffer += len;
 519	}
 520
 521	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 522	used += len;
 523	if (buffer) {
 524		if (size < used)
 525			return -ERANGE;
 526		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 527		buffer += len;
 528	}
 529
 530	return used;
 531}
 532
 533static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 534{
 535	int err = simple_setattr(dentry, iattr);
 536
 537	if (!err && (iattr->ia_valid & ATTR_UID)) {
 538		struct socket *sock = SOCKET_I(d_inode(dentry));
 539
 540		sock->sk->sk_uid = iattr->ia_uid;
 541	}
 542
 543	return err;
 544}
 545
 546static const struct inode_operations sockfs_inode_ops = {
 547	.listxattr = sockfs_listxattr,
 548	.setattr = sockfs_setattr,
 549};
 550
 551/**
 552 *	sock_alloc	-	allocate a socket
 553 *
 554 *	Allocate a new inode and socket object. The two are bound together
 555 *	and initialised. The socket is then returned. If we are out of inodes
 556 *	NULL is returned.
 557 */
 558
 559struct socket *sock_alloc(void)
 560{
 561	struct inode *inode;
 562	struct socket *sock;
 563
 564	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 565	if (!inode)
 566		return NULL;
 567
 568	sock = SOCKET_I(inode);
 569
 
 570	inode->i_ino = get_next_ino();
 571	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 572	inode->i_uid = current_fsuid();
 573	inode->i_gid = current_fsgid();
 574	inode->i_op = &sockfs_inode_ops;
 575
 
 576	return sock;
 577}
 578EXPORT_SYMBOL(sock_alloc);
 579
 580/**
 581 *	sock_release	-	close a socket
 582 *	@sock: socket to close
 583 *
 584 *	The socket is released from the protocol stack if it has a release
 585 *	callback, and the inode is then released if the socket is bound to
 586 *	an inode not a file.
 587 */
 588
 589void sock_release(struct socket *sock)
 590{
 591	if (sock->ops) {
 592		struct module *owner = sock->ops->owner;
 593
 594		sock->ops->release(sock);
 595		sock->ops = NULL;
 596		module_put(owner);
 597	}
 598
 599	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 600		pr_err("%s: fasync list not empty!\n", __func__);
 601
 
 602	if (!sock->file) {
 603		iput(SOCK_INODE(sock));
 604		return;
 605	}
 606	sock->file = NULL;
 607}
 608EXPORT_SYMBOL(sock_release);
 609
 610void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 611{
 612	u8 flags = *tx_flags;
 613
 614	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 615		flags |= SKBTX_HW_TSTAMP;
 616
 617	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 618		flags |= SKBTX_SW_TSTAMP;
 619
 620	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 621		flags |= SKBTX_SCHED_TSTAMP;
 622
 623	*tx_flags = flags;
 624}
 625EXPORT_SYMBOL(__sock_tx_timestamp);
 626
 627static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 628{
 629	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 630	BUG_ON(ret == -EIOCBQUEUED);
 631	return ret;
 632}
 633
 634int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 635{
 636	int err = security_socket_sendmsg(sock, msg,
 637					  msg_data_left(msg));
 638
 639	return err ?: sock_sendmsg_nosec(sock, msg);
 640}
 641EXPORT_SYMBOL(sock_sendmsg);
 642
 643int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 644		   struct kvec *vec, size_t num, size_t size)
 645{
 646	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 647	return sock_sendmsg(sock, msg);
 648}
 649EXPORT_SYMBOL(kernel_sendmsg);
 650
 651int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 652			  struct kvec *vec, size_t num, size_t size)
 653{
 654	struct socket *sock = sk->sk_socket;
 655
 656	if (!sock->ops->sendmsg_locked)
 657		return sock_no_sendmsg_locked(sk, msg, size);
 658
 659	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 660
 661	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 662}
 663EXPORT_SYMBOL(kernel_sendmsg_locked);
 664
 665static bool skb_is_err_queue(const struct sk_buff *skb)
 666{
 667	/* pkt_type of skbs enqueued on the error queue are set to
 668	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 669	 * in recvmsg, since skbs received on a local socket will never
 670	 * have a pkt_type of PACKET_OUTGOING.
 671	 */
 672	return skb->pkt_type == PACKET_OUTGOING;
 673}
 674
 675/* On transmit, software and hardware timestamps are returned independently.
 676 * As the two skb clones share the hardware timestamp, which may be updated
 677 * before the software timestamp is received, a hardware TX timestamp may be
 678 * returned only if there is no software TX timestamp. Ignore false software
 679 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 680 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
 681 * hardware timestamp.
 682 */
 683static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 684{
 685	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 686}
 687
 688static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 689{
 690	struct scm_ts_pktinfo ts_pktinfo;
 691	struct net_device *orig_dev;
 692
 693	if (!skb_mac_header_was_set(skb))
 694		return;
 695
 696	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 697
 698	rcu_read_lock();
 699	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 700	if (orig_dev)
 701		ts_pktinfo.if_index = orig_dev->ifindex;
 702	rcu_read_unlock();
 703
 704	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 705	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 706		 sizeof(ts_pktinfo), &ts_pktinfo);
 707}
 708
 709/*
 710 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 711 */
 712void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 713	struct sk_buff *skb)
 714{
 715	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 716	struct scm_timestamping tss;
 717	int empty = 1, false_tstamp = 0;
 718	struct skb_shared_hwtstamps *shhwtstamps =
 719		skb_hwtstamps(skb);
 720
 721	/* Race occurred between timestamp enabling and packet
 722	   receiving.  Fill in the current time for now. */
 723	if (need_software_tstamp && skb->tstamp == 0) {
 724		__net_timestamp(skb);
 725		false_tstamp = 1;
 726	}
 727
 728	if (need_software_tstamp) {
 729		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 730			struct timeval tv;
 731			skb_get_timestamp(skb, &tv);
 732			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 733				 sizeof(tv), &tv);
 734		} else {
 735			struct timespec ts;
 736			skb_get_timestampns(skb, &ts);
 737			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 738				 sizeof(ts), &ts);
 739		}
 740	}
 741
 742	memset(&tss, 0, sizeof(tss));
 743	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 744	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 745		empty = 0;
 746	if (shhwtstamps &&
 747	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 748	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
 749	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
 750		empty = 0;
 751		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 752		    !skb_is_err_queue(skb))
 753			put_ts_pktinfo(msg, skb);
 754	}
 755	if (!empty) {
 756		put_cmsg(msg, SOL_SOCKET,
 757			 SCM_TIMESTAMPING, sizeof(tss), &tss);
 758
 759		if (skb_is_err_queue(skb) && skb->len &&
 760		    SKB_EXT_ERR(skb)->opt_stats)
 761			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 762				 skb->len, skb->data);
 763	}
 764}
 765EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 766
 767void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 768	struct sk_buff *skb)
 769{
 770	int ack;
 771
 772	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 773		return;
 774	if (!skb->wifi_acked_valid)
 775		return;
 776
 777	ack = skb->wifi_acked;
 778
 779	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 780}
 781EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 782
 783static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 784				   struct sk_buff *skb)
 785{
 786	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 787		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 788			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 789}
 790
 791void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 792	struct sk_buff *skb)
 793{
 794	sock_recv_timestamp(msg, sk, skb);
 795	sock_recv_drops(msg, sk, skb);
 796}
 797EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 798
 799static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 800				     int flags)
 801{
 802	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 803}
 804
 805int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 806{
 807	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 808
 809	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 810}
 811EXPORT_SYMBOL(sock_recvmsg);
 812
 813/**
 814 * kernel_recvmsg - Receive a message from a socket (kernel space)
 815 * @sock:       The socket to receive the message from
 816 * @msg:        Received message
 817 * @vec:        Input s/g array for message data
 818 * @num:        Size of input s/g array
 819 * @size:       Number of bytes to read
 820 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 821 *
 822 * On return the msg structure contains the scatter/gather array passed in the
 823 * vec argument. The array is modified so that it consists of the unfilled
 824 * portion of the original array.
 825 *
 826 * The returned value is the total number of bytes received, or an error.
 827 */
 828int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 829		   struct kvec *vec, size_t num, size_t size, int flags)
 830{
 831	mm_segment_t oldfs = get_fs();
 832	int result;
 833
 834	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 835	set_fs(KERNEL_DS);
 836	result = sock_recvmsg(sock, msg, flags);
 837	set_fs(oldfs);
 838	return result;
 839}
 840EXPORT_SYMBOL(kernel_recvmsg);
 841
 842static ssize_t sock_sendpage(struct file *file, struct page *page,
 843			     int offset, size_t size, loff_t *ppos, int more)
 844{
 845	struct socket *sock;
 846	int flags;
 847
 848	sock = file->private_data;
 849
 850	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 851	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 852	flags |= more;
 853
 854	return kernel_sendpage(sock, page, offset, size, flags);
 855}
 856
 857static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 858				struct pipe_inode_info *pipe, size_t len,
 859				unsigned int flags)
 860{
 861	struct socket *sock = file->private_data;
 862
 863	if (unlikely(!sock->ops->splice_read))
 864		return -EINVAL;
 865
 866	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 867}
 868
 869static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 870{
 871	struct file *file = iocb->ki_filp;
 872	struct socket *sock = file->private_data;
 873	struct msghdr msg = {.msg_iter = *to,
 874			     .msg_iocb = iocb};
 875	ssize_t res;
 876
 877	if (file->f_flags & O_NONBLOCK)
 878		msg.msg_flags = MSG_DONTWAIT;
 879
 880	if (iocb->ki_pos != 0)
 881		return -ESPIPE;
 882
 883	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 884		return 0;
 885
 886	res = sock_recvmsg(sock, &msg, msg.msg_flags);
 887	*to = msg.msg_iter;
 888	return res;
 889}
 890
 891static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 892{
 893	struct file *file = iocb->ki_filp;
 894	struct socket *sock = file->private_data;
 895	struct msghdr msg = {.msg_iter = *from,
 896			     .msg_iocb = iocb};
 897	ssize_t res;
 898
 899	if (iocb->ki_pos != 0)
 900		return -ESPIPE;
 901
 902	if (file->f_flags & O_NONBLOCK)
 903		msg.msg_flags = MSG_DONTWAIT;
 904
 905	if (sock->type == SOCK_SEQPACKET)
 906		msg.msg_flags |= MSG_EOR;
 907
 908	res = sock_sendmsg(sock, &msg);
 909	*from = msg.msg_iter;
 910	return res;
 911}
 912
 913/*
 914 * Atomic setting of ioctl hooks to avoid race
 915 * with module unload.
 916 */
 917
 918static DEFINE_MUTEX(br_ioctl_mutex);
 919static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 920
 921void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 922{
 923	mutex_lock(&br_ioctl_mutex);
 924	br_ioctl_hook = hook;
 925	mutex_unlock(&br_ioctl_mutex);
 926}
 927EXPORT_SYMBOL(brioctl_set);
 928
 929static DEFINE_MUTEX(vlan_ioctl_mutex);
 930static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 931
 932void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 933{
 934	mutex_lock(&vlan_ioctl_mutex);
 935	vlan_ioctl_hook = hook;
 936	mutex_unlock(&vlan_ioctl_mutex);
 937}
 938EXPORT_SYMBOL(vlan_ioctl_set);
 939
 940static DEFINE_MUTEX(dlci_ioctl_mutex);
 941static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 942
 943void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 944{
 945	mutex_lock(&dlci_ioctl_mutex);
 946	dlci_ioctl_hook = hook;
 947	mutex_unlock(&dlci_ioctl_mutex);
 948}
 949EXPORT_SYMBOL(dlci_ioctl_set);
 950
 951static long sock_do_ioctl(struct net *net, struct socket *sock,
 952				 unsigned int cmd, unsigned long arg)
 953{
 954	int err;
 955	void __user *argp = (void __user *)arg;
 956
 957	err = sock->ops->ioctl(sock, cmd, arg);
 958
 959	/*
 960	 * If this ioctl is unknown try to hand it down
 961	 * to the NIC driver.
 962	 */
 963	if (err != -ENOIOCTLCMD)
 964		return err;
 965
 966	if (cmd == SIOCGIFCONF) {
 967		struct ifconf ifc;
 968		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
 969			return -EFAULT;
 970		rtnl_lock();
 971		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
 972		rtnl_unlock();
 973		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
 974			err = -EFAULT;
 975	} else {
 976		struct ifreq ifr;
 977		bool need_copyout;
 978		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
 979			return -EFAULT;
 980		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
 981		if (!err && need_copyout)
 982			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
 983				return -EFAULT;
 984	}
 985	return err;
 986}
 987
 988/*
 989 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 990 *	what to do with it - that's up to the protocol still.
 991 */
 992
 993struct ns_common *get_net_ns(struct ns_common *ns)
 994{
 995	return &get_net(container_of(ns, struct net, ns))->ns;
 996}
 997EXPORT_SYMBOL_GPL(get_net_ns);
 998
 999static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1000{
1001	struct socket *sock;
1002	struct sock *sk;
1003	void __user *argp = (void __user *)arg;
1004	int pid, err;
1005	struct net *net;
1006
1007	sock = file->private_data;
1008	sk = sock->sk;
1009	net = sock_net(sk);
1010	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1011		struct ifreq ifr;
1012		bool need_copyout;
1013		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1014			return -EFAULT;
1015		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1016		if (!err && need_copyout)
1017			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1018				return -EFAULT;
1019	} else
1020#ifdef CONFIG_WEXT_CORE
1021	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1022		err = wext_handle_ioctl(net, cmd, argp);
1023	} else
1024#endif
1025		switch (cmd) {
1026		case FIOSETOWN:
1027		case SIOCSPGRP:
1028			err = -EFAULT;
1029			if (get_user(pid, (int __user *)argp))
1030				break;
1031			err = f_setown(sock->file, pid, 1);
 
1032			break;
1033		case FIOGETOWN:
1034		case SIOCGPGRP:
1035			err = put_user(f_getown(sock->file),
1036				       (int __user *)argp);
1037			break;
1038		case SIOCGIFBR:
1039		case SIOCSIFBR:
1040		case SIOCBRADDBR:
1041		case SIOCBRDELBR:
1042			err = -ENOPKG;
1043			if (!br_ioctl_hook)
1044				request_module("bridge");
1045
1046			mutex_lock(&br_ioctl_mutex);
1047			if (br_ioctl_hook)
1048				err = br_ioctl_hook(net, cmd, argp);
1049			mutex_unlock(&br_ioctl_mutex);
1050			break;
1051		case SIOCGIFVLAN:
1052		case SIOCSIFVLAN:
1053			err = -ENOPKG;
1054			if (!vlan_ioctl_hook)
1055				request_module("8021q");
1056
1057			mutex_lock(&vlan_ioctl_mutex);
1058			if (vlan_ioctl_hook)
1059				err = vlan_ioctl_hook(net, argp);
1060			mutex_unlock(&vlan_ioctl_mutex);
1061			break;
1062		case SIOCADDDLCI:
1063		case SIOCDELDLCI:
1064			err = -ENOPKG;
1065			if (!dlci_ioctl_hook)
1066				request_module("dlci");
1067
1068			mutex_lock(&dlci_ioctl_mutex);
1069			if (dlci_ioctl_hook)
1070				err = dlci_ioctl_hook(cmd, argp);
1071			mutex_unlock(&dlci_ioctl_mutex);
1072			break;
1073		case SIOCGSKNS:
1074			err = -EPERM;
1075			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1076				break;
1077
1078			err = open_related_ns(&net->ns, get_net_ns);
1079			break;
1080		default:
1081			err = sock_do_ioctl(net, sock, cmd, arg);
1082			break;
1083		}
1084	return err;
1085}
1086
1087int sock_create_lite(int family, int type, int protocol, struct socket **res)
1088{
1089	int err;
1090	struct socket *sock = NULL;
1091
1092	err = security_socket_create(family, type, protocol, 1);
1093	if (err)
1094		goto out;
1095
1096	sock = sock_alloc();
1097	if (!sock) {
1098		err = -ENOMEM;
1099		goto out;
1100	}
1101
1102	sock->type = type;
1103	err = security_socket_post_create(sock, family, type, protocol, 1);
1104	if (err)
1105		goto out_release;
1106
1107out:
1108	*res = sock;
1109	return err;
1110out_release:
1111	sock_release(sock);
1112	sock = NULL;
1113	goto out;
1114}
1115EXPORT_SYMBOL(sock_create_lite);
1116
1117/* No kernel lock held - perfect */
1118static __poll_t sock_poll(struct file *file, poll_table *wait)
1119{
1120	__poll_t busy_flag = 0;
1121	struct socket *sock;
1122
1123	/*
1124	 *      We can't return errors to poll, so it's either yes or no.
1125	 */
1126	sock = file->private_data;
1127
1128	if (sk_can_busy_loop(sock->sk)) {
1129		/* this socket can poll_ll so tell the system call */
1130		busy_flag = POLL_BUSY_LOOP;
1131
1132		/* once, only if requested by syscall */
1133		if (wait && (wait->_key & POLL_BUSY_LOOP))
1134			sk_busy_loop(sock->sk, 1);
1135	}
1136
1137	return busy_flag | sock->ops->poll(file, sock, wait);
1138}
1139
1140static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1141{
1142	struct socket *sock = file->private_data;
1143
1144	return sock->ops->mmap(file, sock, vma);
1145}
1146
1147static int sock_close(struct inode *inode, struct file *filp)
1148{
1149	sock_release(SOCKET_I(inode));
1150	return 0;
1151}
1152
1153/*
1154 *	Update the socket async list
1155 *
1156 *	Fasync_list locking strategy.
1157 *
1158 *	1. fasync_list is modified only under process context socket lock
1159 *	   i.e. under semaphore.
1160 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1161 *	   or under socket lock
1162 */
1163
1164static int sock_fasync(int fd, struct file *filp, int on)
1165{
1166	struct socket *sock = filp->private_data;
1167	struct sock *sk = sock->sk;
1168	struct socket_wq *wq;
1169
1170	if (sk == NULL)
1171		return -EINVAL;
1172
1173	lock_sock(sk);
1174	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1175	fasync_helper(fd, filp, on, &wq->fasync_list);
1176
1177	if (!wq->fasync_list)
1178		sock_reset_flag(sk, SOCK_FASYNC);
1179	else
1180		sock_set_flag(sk, SOCK_FASYNC);
1181
1182	release_sock(sk);
1183	return 0;
1184}
1185
1186/* This function may be called only under rcu_lock */
1187
1188int sock_wake_async(struct socket_wq *wq, int how, int band)
1189{
1190	if (!wq || !wq->fasync_list)
1191		return -1;
1192
1193	switch (how) {
1194	case SOCK_WAKE_WAITD:
1195		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1196			break;
1197		goto call_kill;
1198	case SOCK_WAKE_SPACE:
1199		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1200			break;
1201		/* fall through */
1202	case SOCK_WAKE_IO:
1203call_kill:
1204		kill_fasync(&wq->fasync_list, SIGIO, band);
1205		break;
1206	case SOCK_WAKE_URG:
1207		kill_fasync(&wq->fasync_list, SIGURG, band);
1208	}
1209
1210	return 0;
1211}
1212EXPORT_SYMBOL(sock_wake_async);
1213
1214int __sock_create(struct net *net, int family, int type, int protocol,
1215			 struct socket **res, int kern)
1216{
1217	int err;
1218	struct socket *sock;
1219	const struct net_proto_family *pf;
1220
1221	/*
1222	 *      Check protocol is in range
1223	 */
1224	if (family < 0 || family >= NPROTO)
1225		return -EAFNOSUPPORT;
1226	if (type < 0 || type >= SOCK_MAX)
1227		return -EINVAL;
1228
1229	/* Compatibility.
1230
1231	   This uglymoron is moved from INET layer to here to avoid
1232	   deadlock in module load.
1233	 */
1234	if (family == PF_INET && type == SOCK_PACKET) {
1235		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1236			     current->comm);
1237		family = PF_PACKET;
1238	}
1239
1240	err = security_socket_create(family, type, protocol, kern);
1241	if (err)
1242		return err;
1243
1244	/*
1245	 *	Allocate the socket and allow the family to set things up. if
1246	 *	the protocol is 0, the family is instructed to select an appropriate
1247	 *	default.
1248	 */
1249	sock = sock_alloc();
1250	if (!sock) {
1251		net_warn_ratelimited("socket: no more sockets\n");
1252		return -ENFILE;	/* Not exactly a match, but its the
1253				   closest posix thing */
1254	}
1255
1256	sock->type = type;
1257
1258#ifdef CONFIG_MODULES
1259	/* Attempt to load a protocol module if the find failed.
1260	 *
1261	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1262	 * requested real, full-featured networking support upon configuration.
1263	 * Otherwise module support will break!
1264	 */
1265	if (rcu_access_pointer(net_families[family]) == NULL)
1266		request_module("net-pf-%d", family);
1267#endif
1268
1269	rcu_read_lock();
1270	pf = rcu_dereference(net_families[family]);
1271	err = -EAFNOSUPPORT;
1272	if (!pf)
1273		goto out_release;
1274
1275	/*
1276	 * We will call the ->create function, that possibly is in a loadable
1277	 * module, so we have to bump that loadable module refcnt first.
1278	 */
1279	if (!try_module_get(pf->owner))
1280		goto out_release;
1281
1282	/* Now protected by module ref count */
1283	rcu_read_unlock();
1284
1285	err = pf->create(net, sock, protocol, kern);
1286	if (err < 0)
1287		goto out_module_put;
1288
1289	/*
1290	 * Now to bump the refcnt of the [loadable] module that owns this
1291	 * socket at sock_release time we decrement its refcnt.
1292	 */
1293	if (!try_module_get(sock->ops->owner))
1294		goto out_module_busy;
1295
1296	/*
1297	 * Now that we're done with the ->create function, the [loadable]
1298	 * module can have its refcnt decremented
1299	 */
1300	module_put(pf->owner);
1301	err = security_socket_post_create(sock, family, type, protocol, kern);
1302	if (err)
1303		goto out_sock_release;
1304	*res = sock;
1305
1306	return 0;
1307
1308out_module_busy:
1309	err = -EAFNOSUPPORT;
1310out_module_put:
1311	sock->ops = NULL;
1312	module_put(pf->owner);
1313out_sock_release:
1314	sock_release(sock);
1315	return err;
1316
1317out_release:
1318	rcu_read_unlock();
1319	goto out_sock_release;
1320}
1321EXPORT_SYMBOL(__sock_create);
1322
1323int sock_create(int family, int type, int protocol, struct socket **res)
1324{
1325	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1326}
1327EXPORT_SYMBOL(sock_create);
1328
1329int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1330{
1331	return __sock_create(net, family, type, protocol, res, 1);
1332}
1333EXPORT_SYMBOL(sock_create_kern);
1334
1335int __sys_socket(int family, int type, int protocol)
1336{
1337	int retval;
1338	struct socket *sock;
1339	int flags;
1340
1341	/* Check the SOCK_* constants for consistency.  */
1342	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1343	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1344	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1345	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1346
1347	flags = type & ~SOCK_TYPE_MASK;
1348	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349		return -EINVAL;
1350	type &= SOCK_TYPE_MASK;
1351
1352	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354
1355	retval = sock_create(family, type, protocol, &sock);
1356	if (retval < 0)
1357		return retval;
 
 
 
 
1358
1359	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1360}
 
1361
1362SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1363{
1364	return __sys_socket(family, type, protocol);
1365}
1366
1367/*
1368 *	Create a pair of connected sockets.
1369 */
1370
1371int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
 
1372{
1373	struct socket *sock1, *sock2;
1374	int fd1, fd2, err;
1375	struct file *newfile1, *newfile2;
1376	int flags;
1377
1378	flags = type & ~SOCK_TYPE_MASK;
1379	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1380		return -EINVAL;
1381	type &= SOCK_TYPE_MASK;
1382
1383	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1384		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1385
1386	/*
1387	 * reserve descriptors and make sure we won't fail
1388	 * to return them to userland.
1389	 */
1390	fd1 = get_unused_fd_flags(flags);
1391	if (unlikely(fd1 < 0))
1392		return fd1;
1393
1394	fd2 = get_unused_fd_flags(flags);
1395	if (unlikely(fd2 < 0)) {
1396		put_unused_fd(fd1);
1397		return fd2;
1398	}
1399
1400	err = put_user(fd1, &usockvec[0]);
1401	if (err)
1402		goto out;
1403
1404	err = put_user(fd2, &usockvec[1]);
1405	if (err)
1406		goto out;
1407
1408	/*
1409	 * Obtain the first socket and check if the underlying protocol
1410	 * supports the socketpair call.
1411	 */
1412
1413	err = sock_create(family, type, protocol, &sock1);
1414	if (unlikely(err < 0))
1415		goto out;
1416
1417	err = sock_create(family, type, protocol, &sock2);
1418	if (unlikely(err < 0)) {
1419		sock_release(sock1);
1420		goto out;
 
 
 
 
 
 
 
 
1421	}
1422
1423	err = sock1->ops->socketpair(sock1, sock2);
1424	if (unlikely(err < 0)) {
1425		sock_release(sock2);
1426		sock_release(sock1);
1427		goto out;
1428	}
1429
1430	newfile1 = sock_alloc_file(sock1, flags, NULL);
1431	if (IS_ERR(newfile1)) {
1432		err = PTR_ERR(newfile1);
1433		sock_release(sock2);
1434		goto out;
1435	}
1436
1437	newfile2 = sock_alloc_file(sock2, flags, NULL);
1438	if (IS_ERR(newfile2)) {
1439		err = PTR_ERR(newfile2);
1440		fput(newfile1);
1441		goto out;
1442	}
1443
 
 
 
 
 
 
 
 
1444	audit_fd_pair(fd1, fd2);
1445
1446	fd_install(fd1, newfile1);
1447	fd_install(fd2, newfile2);
 
 
 
 
1448	return 0;
1449
1450out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451	put_unused_fd(fd2);
 
1452	put_unused_fd(fd1);
 
 
 
 
 
1453	return err;
1454}
1455
1456SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1457		int __user *, usockvec)
1458{
1459	return __sys_socketpair(family, type, protocol, usockvec);
1460}
1461
1462/*
1463 *	Bind a name to a socket. Nothing much to do here since it's
1464 *	the protocol's responsibility to handle the local address.
1465 *
1466 *	We move the socket address to kernel space before we call
1467 *	the protocol layer (having also checked the address is ok).
1468 */
1469
1470int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1471{
1472	struct socket *sock;
1473	struct sockaddr_storage address;
1474	int err, fput_needed;
1475
1476	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1477	if (sock) {
1478		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1479		if (err >= 0) {
1480			err = security_socket_bind(sock,
1481						   (struct sockaddr *)&address,
1482						   addrlen);
1483			if (!err)
1484				err = sock->ops->bind(sock,
1485						      (struct sockaddr *)
1486						      &address, addrlen);
1487		}
1488		fput_light(sock->file, fput_needed);
1489	}
1490	return err;
1491}
1492
1493SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1494{
1495	return __sys_bind(fd, umyaddr, addrlen);
1496}
1497
1498/*
1499 *	Perform a listen. Basically, we allow the protocol to do anything
1500 *	necessary for a listen, and if that works, we mark the socket as
1501 *	ready for listening.
1502 */
1503
1504int __sys_listen(int fd, int backlog)
1505{
1506	struct socket *sock;
1507	int err, fput_needed;
1508	int somaxconn;
1509
1510	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1511	if (sock) {
1512		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1513		if ((unsigned int)backlog > somaxconn)
1514			backlog = somaxconn;
1515
1516		err = security_socket_listen(sock, backlog);
1517		if (!err)
1518			err = sock->ops->listen(sock, backlog);
1519
1520		fput_light(sock->file, fput_needed);
1521	}
1522	return err;
1523}
1524
1525SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1526{
1527	return __sys_listen(fd, backlog);
1528}
1529
1530/*
1531 *	For accept, we attempt to create a new socket, set up the link
1532 *	with the client, wake up the client, then return the new
1533 *	connected fd. We collect the address of the connector in kernel
1534 *	space and move it to user at the very end. This is unclean because
1535 *	we open the socket then return an error.
1536 *
1537 *	1003.1g adds the ability to recvmsg() to query connection pending
1538 *	status to recvmsg. We need to add that support in a way thats
1539 *	clean when we restructure accept also.
1540 */
1541
1542int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1543		  int __user *upeer_addrlen, int flags)
1544{
1545	struct socket *sock, *newsock;
1546	struct file *newfile;
1547	int err, len, newfd, fput_needed;
1548	struct sockaddr_storage address;
1549
1550	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1551		return -EINVAL;
1552
1553	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1554		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1555
1556	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557	if (!sock)
1558		goto out;
1559
1560	err = -ENFILE;
1561	newsock = sock_alloc();
1562	if (!newsock)
1563		goto out_put;
1564
1565	newsock->type = sock->type;
1566	newsock->ops = sock->ops;
1567
1568	/*
1569	 * We don't need try_module_get here, as the listening socket (sock)
1570	 * has the protocol module (sock->ops->owner) held.
1571	 */
1572	__module_get(newsock->ops->owner);
1573
1574	newfd = get_unused_fd_flags(flags);
1575	if (unlikely(newfd < 0)) {
1576		err = newfd;
1577		sock_release(newsock);
1578		goto out_put;
1579	}
1580	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1581	if (IS_ERR(newfile)) {
1582		err = PTR_ERR(newfile);
1583		put_unused_fd(newfd);
 
1584		goto out_put;
1585	}
1586
1587	err = security_socket_accept(sock, newsock);
1588	if (err)
1589		goto out_fd;
1590
1591	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1592	if (err < 0)
1593		goto out_fd;
1594
1595	if (upeer_sockaddr) {
1596		len = newsock->ops->getname(newsock,
1597					(struct sockaddr *)&address, 2);
1598		if (len < 0) {
1599			err = -ECONNABORTED;
1600			goto out_fd;
1601		}
1602		err = move_addr_to_user(&address,
1603					len, upeer_sockaddr, upeer_addrlen);
1604		if (err < 0)
1605			goto out_fd;
1606	}
1607
1608	/* File flags are not inherited via accept() unlike another OSes. */
1609
1610	fd_install(newfd, newfile);
1611	err = newfd;
1612
1613out_put:
1614	fput_light(sock->file, fput_needed);
1615out:
1616	return err;
1617out_fd:
1618	fput(newfile);
1619	put_unused_fd(newfd);
1620	goto out_put;
1621}
1622
1623SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1624		int __user *, upeer_addrlen, int, flags)
1625{
1626	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1627}
1628
1629SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1630		int __user *, upeer_addrlen)
1631{
1632	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1633}
1634
1635/*
1636 *	Attempt to connect to a socket with the server address.  The address
1637 *	is in user space so we verify it is OK and move it to kernel space.
1638 *
1639 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1640 *	break bindings
1641 *
1642 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1643 *	other SEQPACKET protocols that take time to connect() as it doesn't
1644 *	include the -EINPROGRESS status for such sockets.
1645 */
1646
1647int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
 
1648{
1649	struct socket *sock;
1650	struct sockaddr_storage address;
1651	int err, fput_needed;
1652
1653	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654	if (!sock)
1655		goto out;
1656	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1657	if (err < 0)
1658		goto out_put;
1659
1660	err =
1661	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1662	if (err)
1663		goto out_put;
1664
1665	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1666				 sock->file->f_flags);
1667out_put:
1668	fput_light(sock->file, fput_needed);
1669out:
1670	return err;
1671}
1672
1673SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1674		int, addrlen)
1675{
1676	return __sys_connect(fd, uservaddr, addrlen);
1677}
1678
1679/*
1680 *	Get the local address ('name') of a socket object. Move the obtained
1681 *	name to user space.
1682 */
1683
1684int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1685		      int __user *usockaddr_len)
1686{
1687	struct socket *sock;
1688	struct sockaddr_storage address;
1689	int err, fput_needed;
1690
1691	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1692	if (!sock)
1693		goto out;
1694
1695	err = security_socket_getsockname(sock);
1696	if (err)
1697		goto out_put;
1698
1699	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1700	if (err < 0)
1701		goto out_put;
1702        /* "err" is actually length in this case */
1703	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1704
1705out_put:
1706	fput_light(sock->file, fput_needed);
1707out:
1708	return err;
1709}
1710
1711SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1712		int __user *, usockaddr_len)
1713{
1714	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1715}
1716
1717/*
1718 *	Get the remote address ('name') of a socket object. Move the obtained
1719 *	name to user space.
1720 */
1721
1722int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1723		      int __user *usockaddr_len)
1724{
1725	struct socket *sock;
1726	struct sockaddr_storage address;
1727	int err, fput_needed;
1728
1729	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730	if (sock != NULL) {
1731		err = security_socket_getpeername(sock);
1732		if (err) {
1733			fput_light(sock->file, fput_needed);
1734			return err;
1735		}
1736
1737		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1738		if (err >= 0)
1739			/* "err" is actually length in this case */
1740			err = move_addr_to_user(&address, err, usockaddr,
 
1741						usockaddr_len);
1742		fput_light(sock->file, fput_needed);
1743	}
1744	return err;
1745}
1746
1747SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1748		int __user *, usockaddr_len)
1749{
1750	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1751}
1752
1753/*
1754 *	Send a datagram to a given address. We move the address into kernel
1755 *	space and check the user space data area is readable before invoking
1756 *	the protocol.
1757 */
1758int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1759		 struct sockaddr __user *addr,  int addr_len)
 
 
1760{
1761	struct socket *sock;
1762	struct sockaddr_storage address;
1763	int err;
1764	struct msghdr msg;
1765	struct iovec iov;
1766	int fput_needed;
1767
1768	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1769	if (unlikely(err))
1770		return err;
1771	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772	if (!sock)
1773		goto out;
1774
1775	msg.msg_name = NULL;
1776	msg.msg_control = NULL;
1777	msg.msg_controllen = 0;
1778	msg.msg_namelen = 0;
1779	if (addr) {
1780		err = move_addr_to_kernel(addr, addr_len, &address);
1781		if (err < 0)
1782			goto out_put;
1783		msg.msg_name = (struct sockaddr *)&address;
1784		msg.msg_namelen = addr_len;
1785	}
1786	if (sock->file->f_flags & O_NONBLOCK)
1787		flags |= MSG_DONTWAIT;
1788	msg.msg_flags = flags;
1789	err = sock_sendmsg(sock, &msg);
1790
1791out_put:
1792	fput_light(sock->file, fput_needed);
1793out:
1794	return err;
1795}
1796
1797SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1798		unsigned int, flags, struct sockaddr __user *, addr,
1799		int, addr_len)
1800{
1801	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1802}
1803
1804/*
1805 *	Send a datagram down a socket.
1806 */
1807
1808SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1809		unsigned int, flags)
1810{
1811	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1812}
1813
1814/*
1815 *	Receive a frame from the socket and optionally record the address of the
1816 *	sender. We verify the buffers are writable and if needed move the
1817 *	sender address from kernel to user space.
1818 */
1819int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1820		   struct sockaddr __user *addr, int __user *addr_len)
 
 
1821{
1822	struct socket *sock;
1823	struct iovec iov;
1824	struct msghdr msg;
1825	struct sockaddr_storage address;
1826	int err, err2;
1827	int fput_needed;
1828
1829	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1830	if (unlikely(err))
1831		return err;
1832	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1833	if (!sock)
1834		goto out;
1835
1836	msg.msg_control = NULL;
1837	msg.msg_controllen = 0;
1838	/* Save some cycles and don't copy the address if not needed */
1839	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1840	/* We assume all kernel code knows the size of sockaddr_storage */
1841	msg.msg_namelen = 0;
1842	msg.msg_iocb = NULL;
1843	msg.msg_flags = 0;
1844	if (sock->file->f_flags & O_NONBLOCK)
1845		flags |= MSG_DONTWAIT;
1846	err = sock_recvmsg(sock, &msg, flags);
1847
1848	if (err >= 0 && addr != NULL) {
1849		err2 = move_addr_to_user(&address,
1850					 msg.msg_namelen, addr, addr_len);
1851		if (err2 < 0)
1852			err = err2;
1853	}
1854
1855	fput_light(sock->file, fput_needed);
1856out:
1857	return err;
1858}
1859
1860SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1861		unsigned int, flags, struct sockaddr __user *, addr,
1862		int __user *, addr_len)
1863{
1864	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1865}
1866
1867/*
1868 *	Receive a datagram from a socket.
1869 */
1870
1871SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1872		unsigned int, flags)
1873{
1874	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1875}
1876
1877/*
1878 *	Set a socket option. Because we don't know the option lengths we have
1879 *	to pass the user mode parameter for the protocols to sort out.
1880 */
1881
1882static int __sys_setsockopt(int fd, int level, int optname,
1883			    char __user *optval, int optlen)
1884{
1885	int err, fput_needed;
1886	struct socket *sock;
1887
1888	if (optlen < 0)
1889		return -EINVAL;
1890
1891	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1892	if (sock != NULL) {
1893		err = security_socket_setsockopt(sock, level, optname);
1894		if (err)
1895			goto out_put;
1896
1897		if (level == SOL_SOCKET)
1898			err =
1899			    sock_setsockopt(sock, level, optname, optval,
1900					    optlen);
1901		else
1902			err =
1903			    sock->ops->setsockopt(sock, level, optname, optval,
1904						  optlen);
1905out_put:
1906		fput_light(sock->file, fput_needed);
1907	}
1908	return err;
1909}
1910
1911SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1912		char __user *, optval, int, optlen)
1913{
1914	return __sys_setsockopt(fd, level, optname, optval, optlen);
1915}
1916
1917/*
1918 *	Get a socket option. Because we don't know the option lengths we have
1919 *	to pass a user mode parameter for the protocols to sort out.
1920 */
1921
1922static int __sys_getsockopt(int fd, int level, int optname,
1923			    char __user *optval, int __user *optlen)
1924{
1925	int err, fput_needed;
1926	struct socket *sock;
1927
1928	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1929	if (sock != NULL) {
1930		err = security_socket_getsockopt(sock, level, optname);
1931		if (err)
1932			goto out_put;
1933
1934		if (level == SOL_SOCKET)
1935			err =
1936			    sock_getsockopt(sock, level, optname, optval,
1937					    optlen);
1938		else
1939			err =
1940			    sock->ops->getsockopt(sock, level, optname, optval,
1941						  optlen);
1942out_put:
1943		fput_light(sock->file, fput_needed);
1944	}
1945	return err;
1946}
1947
1948SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1949		char __user *, optval, int __user *, optlen)
1950{
1951	return __sys_getsockopt(fd, level, optname, optval, optlen);
1952}
1953
1954/*
1955 *	Shutdown a socket.
1956 */
1957
1958int __sys_shutdown(int fd, int how)
1959{
1960	int err, fput_needed;
1961	struct socket *sock;
1962
1963	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964	if (sock != NULL) {
1965		err = security_socket_shutdown(sock, how);
1966		if (!err)
1967			err = sock->ops->shutdown(sock, how);
1968		fput_light(sock->file, fput_needed);
1969	}
1970	return err;
1971}
1972
1973SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1974{
1975	return __sys_shutdown(fd, how);
1976}
1977
1978/* A couple of helpful macros for getting the address of the 32/64 bit
1979 * fields which are the same type (int / unsigned) on our platforms.
1980 */
1981#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1982#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1983#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1984
1985struct used_address {
1986	struct sockaddr_storage name;
1987	unsigned int name_len;
1988};
1989
1990static int copy_msghdr_from_user(struct msghdr *kmsg,
1991				 struct user_msghdr __user *umsg,
1992				 struct sockaddr __user **save_addr,
1993				 struct iovec **iov)
1994{
1995	struct user_msghdr msg;
 
 
1996	ssize_t err;
1997
1998	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
 
 
 
 
 
 
 
1999		return -EFAULT;
2000
2001	kmsg->msg_control = (void __force *)msg.msg_control;
2002	kmsg->msg_controllen = msg.msg_controllen;
2003	kmsg->msg_flags = msg.msg_flags;
2004
2005	kmsg->msg_namelen = msg.msg_namelen;
2006	if (!msg.msg_name)
2007		kmsg->msg_namelen = 0;
2008
2009	if (kmsg->msg_namelen < 0)
2010		return -EINVAL;
2011
2012	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2013		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2014
2015	if (save_addr)
2016		*save_addr = msg.msg_name;
2017
2018	if (msg.msg_name && kmsg->msg_namelen) {
2019		if (!save_addr) {
2020			err = move_addr_to_kernel(msg.msg_name,
2021						  kmsg->msg_namelen,
2022						  kmsg->msg_name);
2023			if (err < 0)
2024				return err;
2025		}
2026	} else {
2027		kmsg->msg_name = NULL;
2028		kmsg->msg_namelen = 0;
2029	}
2030
2031	if (msg.msg_iovlen > UIO_MAXIOV)
2032		return -EMSGSIZE;
2033
2034	kmsg->msg_iocb = NULL;
2035
2036	return import_iovec(save_addr ? READ : WRITE,
2037			    msg.msg_iov, msg.msg_iovlen,
2038			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2039}
2040
2041static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2042			 struct msghdr *msg_sys, unsigned int flags,
2043			 struct used_address *used_address,
2044			 unsigned int allowed_msghdr_flags)
2045{
2046	struct compat_msghdr __user *msg_compat =
2047	    (struct compat_msghdr __user *)msg;
2048	struct sockaddr_storage address;
2049	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2050	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2051				__aligned(sizeof(__kernel_size_t));
2052	/* 20 is size of ipv6_pktinfo */
2053	unsigned char *ctl_buf = ctl;
2054	int ctl_len;
2055	ssize_t err;
2056
2057	msg_sys->msg_name = &address;
2058
2059	if (MSG_CMSG_COMPAT & flags)
2060		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2061	else
2062		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2063	if (err < 0)
2064		return err;
2065
2066	err = -ENOBUFS;
2067
2068	if (msg_sys->msg_controllen > INT_MAX)
2069		goto out_freeiov;
2070	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2071	ctl_len = msg_sys->msg_controllen;
2072	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2073		err =
2074		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2075						     sizeof(ctl));
2076		if (err)
2077			goto out_freeiov;
2078		ctl_buf = msg_sys->msg_control;
2079		ctl_len = msg_sys->msg_controllen;
2080	} else if (ctl_len) {
2081		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2082			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2083		if (ctl_len > sizeof(ctl)) {
2084			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2085			if (ctl_buf == NULL)
2086				goto out_freeiov;
2087		}
2088		err = -EFAULT;
2089		/*
2090		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2091		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2092		 * checking falls down on this.
2093		 */
2094		if (copy_from_user(ctl_buf,
2095				   (void __user __force *)msg_sys->msg_control,
2096				   ctl_len))
2097			goto out_freectl;
2098		msg_sys->msg_control = ctl_buf;
2099	}
2100	msg_sys->msg_flags = flags;
2101
2102	if (sock->file->f_flags & O_NONBLOCK)
2103		msg_sys->msg_flags |= MSG_DONTWAIT;
2104	/*
2105	 * If this is sendmmsg() and current destination address is same as
2106	 * previously succeeded address, omit asking LSM's decision.
2107	 * used_address->name_len is initialized to UINT_MAX so that the first
2108	 * destination address never matches.
2109	 */
2110	if (used_address && msg_sys->msg_name &&
2111	    used_address->name_len == msg_sys->msg_namelen &&
2112	    !memcmp(&used_address->name, msg_sys->msg_name,
2113		    used_address->name_len)) {
2114		err = sock_sendmsg_nosec(sock, msg_sys);
2115		goto out_freectl;
2116	}
2117	err = sock_sendmsg(sock, msg_sys);
2118	/*
2119	 * If this is sendmmsg() and sending to current destination address was
2120	 * successful, remember it.
2121	 */
2122	if (used_address && err >= 0) {
2123		used_address->name_len = msg_sys->msg_namelen;
2124		if (msg_sys->msg_name)
2125			memcpy(&used_address->name, msg_sys->msg_name,
2126			       used_address->name_len);
2127	}
2128
2129out_freectl:
2130	if (ctl_buf != ctl)
2131		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2132out_freeiov:
2133	kfree(iov);
2134	return err;
2135}
2136
2137/*
2138 *	BSD sendmsg interface
2139 */
2140
2141long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2142		   bool forbid_cmsg_compat)
2143{
2144	int fput_needed, err;
2145	struct msghdr msg_sys;
2146	struct socket *sock;
2147
2148	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2149		return -EINVAL;
2150
2151	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2152	if (!sock)
2153		goto out;
2154
2155	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2156
2157	fput_light(sock->file, fput_needed);
2158out:
2159	return err;
2160}
2161
2162SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2163{
2164	return __sys_sendmsg(fd, msg, flags, true);
 
 
2165}
2166
2167/*
2168 *	Linux sendmmsg interface
2169 */
2170
2171int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2172		   unsigned int flags, bool forbid_cmsg_compat)
2173{
2174	int fput_needed, err, datagrams;
2175	struct socket *sock;
2176	struct mmsghdr __user *entry;
2177	struct compat_mmsghdr __user *compat_entry;
2178	struct msghdr msg_sys;
2179	struct used_address used_address;
2180	unsigned int oflags = flags;
2181
2182	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2183		return -EINVAL;
2184
2185	if (vlen > UIO_MAXIOV)
2186		vlen = UIO_MAXIOV;
2187
2188	datagrams = 0;
2189
2190	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2191	if (!sock)
2192		return err;
2193
2194	used_address.name_len = UINT_MAX;
2195	entry = mmsg;
2196	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2197	err = 0;
2198	flags |= MSG_BATCH;
2199
2200	while (datagrams < vlen) {
2201		if (datagrams == vlen - 1)
2202			flags = oflags;
2203
2204		if (MSG_CMSG_COMPAT & flags) {
2205			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2206					     &msg_sys, flags, &used_address, MSG_EOR);
2207			if (err < 0)
2208				break;
2209			err = __put_user(err, &compat_entry->msg_len);
2210			++compat_entry;
2211		} else {
2212			err = ___sys_sendmsg(sock,
2213					     (struct user_msghdr __user *)entry,
2214					     &msg_sys, flags, &used_address, MSG_EOR);
2215			if (err < 0)
2216				break;
2217			err = put_user(err, &entry->msg_len);
2218			++entry;
2219		}
2220
2221		if (err)
2222			break;
2223		++datagrams;
2224		if (msg_data_left(&msg_sys))
2225			break;
2226		cond_resched();
2227	}
2228
2229	fput_light(sock->file, fput_needed);
2230
2231	/* We only return an error if no datagrams were able to be sent */
2232	if (datagrams != 0)
2233		return datagrams;
2234
2235	return err;
2236}
2237
2238SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2239		unsigned int, vlen, unsigned int, flags)
2240{
2241	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
 
 
2242}
2243
2244static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2245			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2246{
2247	struct compat_msghdr __user *msg_compat =
2248	    (struct compat_msghdr __user *)msg;
2249	struct iovec iovstack[UIO_FASTIOV];
2250	struct iovec *iov = iovstack;
2251	unsigned long cmsg_ptr;
2252	int len;
2253	ssize_t err;
2254
2255	/* kernel mode address */
2256	struct sockaddr_storage addr;
2257
2258	/* user mode address pointers */
2259	struct sockaddr __user *uaddr;
2260	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2261
2262	msg_sys->msg_name = &addr;
2263
2264	if (MSG_CMSG_COMPAT & flags)
2265		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2266	else
2267		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2268	if (err < 0)
2269		return err;
2270
2271	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2272	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2273
2274	/* We assume all kernel code knows the size of sockaddr_storage */
2275	msg_sys->msg_namelen = 0;
2276
2277	if (sock->file->f_flags & O_NONBLOCK)
2278		flags |= MSG_DONTWAIT;
2279	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2280	if (err < 0)
2281		goto out_freeiov;
2282	len = err;
2283
2284	if (uaddr != NULL) {
2285		err = move_addr_to_user(&addr,
2286					msg_sys->msg_namelen, uaddr,
2287					uaddr_len);
2288		if (err < 0)
2289			goto out_freeiov;
2290	}
2291	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2292			 COMPAT_FLAGS(msg));
2293	if (err)
2294		goto out_freeiov;
2295	if (MSG_CMSG_COMPAT & flags)
2296		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2297				 &msg_compat->msg_controllen);
2298	else
2299		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2300				 &msg->msg_controllen);
2301	if (err)
2302		goto out_freeiov;
2303	err = len;
2304
2305out_freeiov:
2306	kfree(iov);
2307	return err;
2308}
2309
2310/*
2311 *	BSD recvmsg interface
2312 */
2313
2314long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2315		   bool forbid_cmsg_compat)
2316{
2317	int fput_needed, err;
2318	struct msghdr msg_sys;
2319	struct socket *sock;
2320
2321	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2322		return -EINVAL;
2323
2324	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2325	if (!sock)
2326		goto out;
2327
2328	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2329
2330	fput_light(sock->file, fput_needed);
2331out:
2332	return err;
2333}
2334
2335SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2336		unsigned int, flags)
2337{
2338	return __sys_recvmsg(fd, msg, flags, true);
 
 
2339}
2340
2341/*
2342 *     Linux recvmmsg interface
2343 */
2344
2345int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2346		   unsigned int flags, struct timespec *timeout)
2347{
2348	int fput_needed, err, datagrams;
2349	struct socket *sock;
2350	struct mmsghdr __user *entry;
2351	struct compat_mmsghdr __user *compat_entry;
2352	struct msghdr msg_sys;
2353	struct timespec64 end_time;
2354	struct timespec64 timeout64;
2355
2356	if (timeout &&
2357	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2358				    timeout->tv_nsec))
2359		return -EINVAL;
2360
2361	datagrams = 0;
2362
2363	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2364	if (!sock)
2365		return err;
2366
2367	if (likely(!(flags & MSG_ERRQUEUE))) {
2368		err = sock_error(sock->sk);
2369		if (err) {
2370			datagrams = err;
2371			goto out_put;
2372		}
2373	}
2374
2375	entry = mmsg;
2376	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2377
2378	while (datagrams < vlen) {
2379		/*
2380		 * No need to ask LSM for more than the first datagram.
2381		 */
2382		if (MSG_CMSG_COMPAT & flags) {
2383			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2384					     &msg_sys, flags & ~MSG_WAITFORONE,
2385					     datagrams);
2386			if (err < 0)
2387				break;
2388			err = __put_user(err, &compat_entry->msg_len);
2389			++compat_entry;
2390		} else {
2391			err = ___sys_recvmsg(sock,
2392					     (struct user_msghdr __user *)entry,
2393					     &msg_sys, flags & ~MSG_WAITFORONE,
2394					     datagrams);
2395			if (err < 0)
2396				break;
2397			err = put_user(err, &entry->msg_len);
2398			++entry;
2399		}
2400
2401		if (err)
2402			break;
2403		++datagrams;
2404
2405		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2406		if (flags & MSG_WAITFORONE)
2407			flags |= MSG_DONTWAIT;
2408
2409		if (timeout) {
2410			ktime_get_ts64(&timeout64);
2411			*timeout = timespec64_to_timespec(
2412					timespec64_sub(end_time, timeout64));
2413			if (timeout->tv_sec < 0) {
2414				timeout->tv_sec = timeout->tv_nsec = 0;
2415				break;
2416			}
2417
2418			/* Timeout, return less than vlen datagrams */
2419			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2420				break;
2421		}
2422
2423		/* Out of band data, return right away */
2424		if (msg_sys.msg_flags & MSG_OOB)
2425			break;
2426		cond_resched();
2427	}
2428
2429	if (err == 0)
2430		goto out_put;
2431
2432	if (datagrams == 0) {
2433		datagrams = err;
2434		goto out_put;
2435	}
2436
2437	/*
2438	 * We may return less entries than requested (vlen) if the
2439	 * sock is non block and there aren't enough datagrams...
2440	 */
2441	if (err != -EAGAIN) {
2442		/*
2443		 * ... or  if recvmsg returns an error after we
2444		 * received some datagrams, where we record the
2445		 * error to return on the next call or if the
2446		 * app asks about it using getsockopt(SO_ERROR).
2447		 */
2448		sock->sk->sk_err = -err;
2449	}
2450out_put:
2451	fput_light(sock->file, fput_needed);
2452
2453	return datagrams;
2454}
2455
2456static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2457			   unsigned int vlen, unsigned int flags,
2458			   struct timespec __user *timeout)
2459{
2460	int datagrams;
2461	struct timespec timeout_sys;
2462
2463	if (flags & MSG_CMSG_COMPAT)
2464		return -EINVAL;
2465
2466	if (!timeout)
2467		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2468
2469	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2470		return -EFAULT;
2471
2472	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2473
2474	if (datagrams > 0 &&
2475	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2476		datagrams = -EFAULT;
2477
2478	return datagrams;
2479}
2480
2481SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2482		unsigned int, vlen, unsigned int, flags,
2483		struct timespec __user *, timeout)
2484{
2485	return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2486}
2487
2488#ifdef __ARCH_WANT_SYS_SOCKETCALL
2489/* Argument list sizes for sys_socketcall */
2490#define AL(x) ((x) * sizeof(unsigned long))
2491static const unsigned char nargs[21] = {
2492	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2493	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2494	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2495	AL(4), AL(5), AL(4)
2496};
2497
2498#undef AL
2499
2500/*
2501 *	System call vectors.
2502 *
2503 *	Argument checking cleaned up. Saved 20% in size.
2504 *  This function doesn't need to set the kernel lock because
2505 *  it is set by the callees.
2506 */
2507
2508SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2509{
2510	unsigned long a[AUDITSC_ARGS];
2511	unsigned long a0, a1;
2512	int err;
2513	unsigned int len;
2514
2515	if (call < 1 || call > SYS_SENDMMSG)
2516		return -EINVAL;
2517
2518	len = nargs[call];
2519	if (len > sizeof(a))
2520		return -EINVAL;
2521
2522	/* copy_from_user should be SMP safe. */
2523	if (copy_from_user(a, args, len))
2524		return -EFAULT;
2525
2526	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2527	if (err)
2528		return err;
2529
2530	a0 = a[0];
2531	a1 = a[1];
2532
2533	switch (call) {
2534	case SYS_SOCKET:
2535		err = __sys_socket(a0, a1, a[2]);
2536		break;
2537	case SYS_BIND:
2538		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2539		break;
2540	case SYS_CONNECT:
2541		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2542		break;
2543	case SYS_LISTEN:
2544		err = __sys_listen(a0, a1);
2545		break;
2546	case SYS_ACCEPT:
2547		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2548				    (int __user *)a[2], 0);
2549		break;
2550	case SYS_GETSOCKNAME:
2551		err =
2552		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2553				      (int __user *)a[2]);
2554		break;
2555	case SYS_GETPEERNAME:
2556		err =
2557		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2558				      (int __user *)a[2]);
2559		break;
2560	case SYS_SOCKETPAIR:
2561		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2562		break;
2563	case SYS_SEND:
2564		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2565				   NULL, 0);
2566		break;
2567	case SYS_SENDTO:
2568		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2569				   (struct sockaddr __user *)a[4], a[5]);
2570		break;
2571	case SYS_RECV:
2572		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2573				     NULL, NULL);
2574		break;
2575	case SYS_RECVFROM:
2576		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2577				     (struct sockaddr __user *)a[4],
2578				     (int __user *)a[5]);
2579		break;
2580	case SYS_SHUTDOWN:
2581		err = __sys_shutdown(a0, a1);
2582		break;
2583	case SYS_SETSOCKOPT:
2584		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2585				       a[4]);
2586		break;
2587	case SYS_GETSOCKOPT:
2588		err =
2589		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2590				     (int __user *)a[4]);
2591		break;
2592	case SYS_SENDMSG:
2593		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2594				    a[2], true);
2595		break;
2596	case SYS_SENDMMSG:
2597		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2598				     a[3], true);
2599		break;
2600	case SYS_RECVMSG:
2601		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2602				    a[2], true);
2603		break;
2604	case SYS_RECVMMSG:
2605		err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2606				      a[3], (struct timespec __user *)a[4]);
2607		break;
2608	case SYS_ACCEPT4:
2609		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2610				    (int __user *)a[2], a[3]);
2611		break;
2612	default:
2613		err = -EINVAL;
2614		break;
2615	}
2616	return err;
2617}
2618
2619#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2620
2621/**
2622 *	sock_register - add a socket protocol handler
2623 *	@ops: description of protocol
2624 *
2625 *	This function is called by a protocol handler that wants to
2626 *	advertise its address family, and have it linked into the
2627 *	socket interface. The value ops->family corresponds to the
2628 *	socket system call protocol family.
2629 */
2630int sock_register(const struct net_proto_family *ops)
2631{
2632	int err;
2633
2634	if (ops->family >= NPROTO) {
2635		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2636		return -ENOBUFS;
2637	}
2638
2639	spin_lock(&net_family_lock);
2640	if (rcu_dereference_protected(net_families[ops->family],
2641				      lockdep_is_held(&net_family_lock)))
2642		err = -EEXIST;
2643	else {
2644		rcu_assign_pointer(net_families[ops->family], ops);
2645		err = 0;
2646	}
2647	spin_unlock(&net_family_lock);
2648
2649	pr_info("NET: Registered protocol family %d\n", ops->family);
2650	return err;
2651}
2652EXPORT_SYMBOL(sock_register);
2653
2654/**
2655 *	sock_unregister - remove a protocol handler
2656 *	@family: protocol family to remove
2657 *
2658 *	This function is called by a protocol handler that wants to
2659 *	remove its address family, and have it unlinked from the
2660 *	new socket creation.
2661 *
2662 *	If protocol handler is a module, then it can use module reference
2663 *	counts to protect against new references. If protocol handler is not
2664 *	a module then it needs to provide its own protection in
2665 *	the ops->create routine.
2666 */
2667void sock_unregister(int family)
2668{
2669	BUG_ON(family < 0 || family >= NPROTO);
2670
2671	spin_lock(&net_family_lock);
2672	RCU_INIT_POINTER(net_families[family], NULL);
2673	spin_unlock(&net_family_lock);
2674
2675	synchronize_rcu();
2676
2677	pr_info("NET: Unregistered protocol family %d\n", family);
2678}
2679EXPORT_SYMBOL(sock_unregister);
2680
2681bool sock_is_registered(int family)
2682{
2683	return family < NPROTO && rcu_access_pointer(net_families[family]);
2684}
2685
2686static int __init sock_init(void)
2687{
2688	int err;
2689	/*
2690	 *      Initialize the network sysctl infrastructure.
2691	 */
2692	err = net_sysctl_init();
2693	if (err)
2694		goto out;
2695
2696	/*
2697	 *      Initialize skbuff SLAB cache
2698	 */
2699	skb_init();
2700
2701	/*
2702	 *      Initialize the protocols module.
2703	 */
2704
2705	init_inodecache();
2706
2707	err = register_filesystem(&sock_fs_type);
2708	if (err)
2709		goto out_fs;
2710	sock_mnt = kern_mount(&sock_fs_type);
2711	if (IS_ERR(sock_mnt)) {
2712		err = PTR_ERR(sock_mnt);
2713		goto out_mount;
2714	}
2715
2716	/* The real protocol initialization is performed in later initcalls.
2717	 */
2718
2719#ifdef CONFIG_NETFILTER
2720	err = netfilter_init();
2721	if (err)
2722		goto out;
2723#endif
2724
2725	ptp_classifier_init();
2726
2727out:
2728	return err;
2729
2730out_mount:
2731	unregister_filesystem(&sock_fs_type);
2732out_fs:
2733	goto out;
2734}
2735
2736core_initcall(sock_init);	/* early initcall */
2737
2738#ifdef CONFIG_PROC_FS
2739void socket_seq_show(struct seq_file *seq)
2740{
2741	seq_printf(seq, "sockets: used %d\n",
2742		   sock_inuse_get(seq->private));
 
 
 
 
 
 
 
 
 
2743}
2744#endif				/* CONFIG_PROC_FS */
2745
2746#ifdef CONFIG_COMPAT
2747static int do_siocgstamp(struct net *net, struct socket *sock,
2748			 unsigned int cmd, void __user *up)
2749{
2750	mm_segment_t old_fs = get_fs();
2751	struct timeval ktv;
2752	int err;
2753
2754	set_fs(KERNEL_DS);
2755	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2756	set_fs(old_fs);
2757	if (!err)
2758		err = compat_put_timeval(&ktv, up);
2759
2760	return err;
2761}
2762
2763static int do_siocgstampns(struct net *net, struct socket *sock,
2764			   unsigned int cmd, void __user *up)
2765{
2766	mm_segment_t old_fs = get_fs();
2767	struct timespec kts;
2768	int err;
2769
2770	set_fs(KERNEL_DS);
2771	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2772	set_fs(old_fs);
2773	if (!err)
2774		err = compat_put_timespec(&kts, up);
2775
2776	return err;
2777}
2778
2779static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2780{
2781	struct compat_ifconf ifc32;
2782	struct ifconf ifc;
 
 
 
 
2783	int err;
2784
2785	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2786		return -EFAULT;
2787
2788	ifc.ifc_len = ifc32.ifc_len;
2789	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2790
2791	rtnl_lock();
2792	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2793	rtnl_unlock();
2794	if (err)
2795		return err;
2796
2797	ifc32.ifc_len = ifc.ifc_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2798	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2799		return -EFAULT;
2800
2801	return 0;
2802}
2803
2804static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2805{
2806	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2807	bool convert_in = false, convert_out = false;
2808	size_t buf_size = 0;
2809	struct ethtool_rxnfc __user *rxnfc = NULL;
2810	struct ifreq ifr;
2811	u32 rule_cnt = 0, actual_rule_cnt;
2812	u32 ethcmd;
2813	u32 data;
2814	int ret;
2815
2816	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2817		return -EFAULT;
2818
2819	compat_rxnfc = compat_ptr(data);
2820
2821	if (get_user(ethcmd, &compat_rxnfc->cmd))
2822		return -EFAULT;
2823
2824	/* Most ethtool structures are defined without padding.
2825	 * Unfortunately struct ethtool_rxnfc is an exception.
2826	 */
2827	switch (ethcmd) {
2828	default:
2829		break;
2830	case ETHTOOL_GRXCLSRLALL:
2831		/* Buffer size is variable */
2832		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2833			return -EFAULT;
2834		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2835			return -ENOMEM;
2836		buf_size += rule_cnt * sizeof(u32);
2837		/* fall through */
2838	case ETHTOOL_GRXRINGS:
2839	case ETHTOOL_GRXCLSRLCNT:
2840	case ETHTOOL_GRXCLSRULE:
2841	case ETHTOOL_SRXCLSRLINS:
2842		convert_out = true;
2843		/* fall through */
2844	case ETHTOOL_SRXCLSRLDEL:
2845		buf_size += sizeof(struct ethtool_rxnfc);
2846		convert_in = true;
2847		rxnfc = compat_alloc_user_space(buf_size);
2848		break;
2849	}
2850
2851	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
 
 
 
2852		return -EFAULT;
2853
2854	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
 
 
2855
2856	if (convert_in) {
2857		/* We expect there to be holes between fs.m_ext and
2858		 * fs.ring_cookie and at the end of fs, but nowhere else.
2859		 */
2860		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2861			     sizeof(compat_rxnfc->fs.m_ext) !=
2862			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2863			     sizeof(rxnfc->fs.m_ext));
2864		BUILD_BUG_ON(
2865			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2866			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2867			offsetof(struct ethtool_rxnfc, fs.location) -
2868			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2869
2870		if (copy_in_user(rxnfc, compat_rxnfc,
2871				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2872				 (void __user *)rxnfc) ||
2873		    copy_in_user(&rxnfc->fs.ring_cookie,
2874				 &compat_rxnfc->fs.ring_cookie,
2875				 (void __user *)(&rxnfc->fs.location + 1) -
2876				 (void __user *)&rxnfc->fs.ring_cookie) ||
2877		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2878				 sizeof(rxnfc->rule_cnt)))
2879			return -EFAULT;
2880	}
2881
2882	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2883	if (ret)
2884		return ret;
2885
2886	if (convert_out) {
2887		if (copy_in_user(compat_rxnfc, rxnfc,
2888				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2889				 (const void __user *)rxnfc) ||
2890		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2891				 &rxnfc->fs.ring_cookie,
2892				 (const void __user *)(&rxnfc->fs.location + 1) -
2893				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2894		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2895				 sizeof(rxnfc->rule_cnt)))
2896			return -EFAULT;
2897
2898		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2899			/* As an optimisation, we only copy the actual
2900			 * number of rules that the underlying
2901			 * function returned.  Since Mallory might
2902			 * change the rule count in user memory, we
2903			 * check that it is less than the rule count
2904			 * originally given (as the user buffer size),
2905			 * which has been range-checked.
2906			 */
2907			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2908				return -EFAULT;
2909			if (actual_rule_cnt < rule_cnt)
2910				rule_cnt = actual_rule_cnt;
2911			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2912					 &rxnfc->rule_locs[0],
2913					 rule_cnt * sizeof(u32)))
2914				return -EFAULT;
2915		}
2916	}
2917
2918	return 0;
2919}
2920
2921static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2922{
 
2923	compat_uptr_t uptr32;
2924	struct ifreq ifr;
2925	void __user *saved;
2926	int err;
2927
2928	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
 
2929		return -EFAULT;
2930
2931	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2932		return -EFAULT;
2933
2934	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2935	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2936
2937	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2938	if (!err) {
2939		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2940		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2941			err = -EFAULT;
2942	}
2943	return err;
2944}
2945
2946/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2947static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2948				 struct compat_ifreq __user *u_ifreq32)
2949{
2950	struct ifreq ifreq;
 
 
2951	u32 data32;
2952
2953	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
 
2954		return -EFAULT;
2955	if (get_user(data32, &u_ifreq32->ifr_data))
2956		return -EFAULT;
2957	ifreq.ifr_data = compat_ptr(data32);
 
 
2958
2959	return dev_ioctl(net, cmd, &ifreq, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2960}
2961
2962static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2963			struct compat_ifreq __user *uifr32)
2964{
2965	struct ifreq ifr;
2966	struct compat_ifmap __user *uifmap32;
 
2967	int err;
2968
2969	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2970	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2971	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2972	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2973	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2974	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2975	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2976	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2977	if (err)
2978		return -EFAULT;
2979
2980	err = dev_ioctl(net, cmd, &ifr, NULL);
 
 
 
2981
2982	if (cmd == SIOCGIFMAP && !err) {
2983		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2984		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2985		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2986		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2987		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2988		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2989		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2990		if (err)
2991			err = -EFAULT;
2992	}
2993	return err;
2994}
2995
2996struct rtentry32 {
2997	u32		rt_pad1;
2998	struct sockaddr rt_dst;         /* target address               */
2999	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3000	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3001	unsigned short	rt_flags;
3002	short		rt_pad2;
3003	u32		rt_pad3;
3004	unsigned char	rt_tos;
3005	unsigned char	rt_class;
3006	short		rt_pad4;
3007	short		rt_metric;      /* +1 for binary compatibility! */
3008	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3009	u32		rt_mtu;         /* per route MTU/Window         */
3010	u32		rt_window;      /* Window clamping              */
3011	unsigned short  rt_irtt;        /* Initial RTT                  */
3012};
3013
3014struct in6_rtmsg32 {
3015	struct in6_addr		rtmsg_dst;
3016	struct in6_addr		rtmsg_src;
3017	struct in6_addr		rtmsg_gateway;
3018	u32			rtmsg_type;
3019	u16			rtmsg_dst_len;
3020	u16			rtmsg_src_len;
3021	u32			rtmsg_metric;
3022	u32			rtmsg_info;
3023	u32			rtmsg_flags;
3024	s32			rtmsg_ifindex;
3025};
3026
3027static int routing_ioctl(struct net *net, struct socket *sock,
3028			 unsigned int cmd, void __user *argp)
3029{
3030	int ret;
3031	void *r = NULL;
3032	struct in6_rtmsg r6;
3033	struct rtentry r4;
3034	char devname[16];
3035	u32 rtdev;
3036	mm_segment_t old_fs = get_fs();
3037
3038	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3039		struct in6_rtmsg32 __user *ur6 = argp;
3040		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3041			3 * sizeof(struct in6_addr));
3042		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3043		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3044		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3045		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3046		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3047		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3048		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3049
3050		r = (void *) &r6;
3051	} else { /* ipv4 */
3052		struct rtentry32 __user *ur4 = argp;
3053		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3054					3 * sizeof(struct sockaddr));
3055		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3056		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3057		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3058		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3059		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3060		ret |= get_user(rtdev, &(ur4->rt_dev));
3061		if (rtdev) {
3062			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3063			r4.rt_dev = (char __user __force *)devname;
3064			devname[15] = 0;
3065		} else
3066			r4.rt_dev = NULL;
3067
3068		r = (void *) &r4;
3069	}
3070
3071	if (ret) {
3072		ret = -EFAULT;
3073		goto out;
3074	}
3075
3076	set_fs(KERNEL_DS);
3077	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3078	set_fs(old_fs);
3079
3080out:
3081	return ret;
3082}
3083
3084/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3085 * for some operations; this forces use of the newer bridge-utils that
3086 * use compatible ioctls
3087 */
3088static int old_bridge_ioctl(compat_ulong_t __user *argp)
3089{
3090	compat_ulong_t tmp;
3091
3092	if (get_user(tmp, argp))
3093		return -EFAULT;
3094	if (tmp == BRCTL_GET_VERSION)
3095		return BRCTL_VERSION + 1;
3096	return -EINVAL;
3097}
3098
3099static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3100			 unsigned int cmd, unsigned long arg)
3101{
3102	void __user *argp = compat_ptr(arg);
3103	struct sock *sk = sock->sk;
3104	struct net *net = sock_net(sk);
3105
3106	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3107		return compat_ifr_data_ioctl(net, cmd, argp);
3108
3109	switch (cmd) {
3110	case SIOCSIFBR:
3111	case SIOCGIFBR:
3112		return old_bridge_ioctl(argp);
 
 
3113	case SIOCGIFCONF:
3114		return compat_dev_ifconf(net, argp);
3115	case SIOCETHTOOL:
3116		return ethtool_ioctl(net, argp);
3117	case SIOCWANDEV:
3118		return compat_siocwandev(net, argp);
3119	case SIOCGIFMAP:
3120	case SIOCSIFMAP:
3121		return compat_sioc_ifmap(net, cmd, argp);
 
 
 
 
 
3122	case SIOCADDRT:
3123	case SIOCDELRT:
3124		return routing_ioctl(net, sock, cmd, argp);
3125	case SIOCGSTAMP:
3126		return do_siocgstamp(net, sock, cmd, argp);
3127	case SIOCGSTAMPNS:
3128		return do_siocgstampns(net, sock, cmd, argp);
3129	case SIOCBONDSLAVEINFOQUERY:
3130	case SIOCBONDINFOQUERY:
3131	case SIOCSHWTSTAMP:
3132	case SIOCGHWTSTAMP:
3133		return compat_ifr_data_ioctl(net, cmd, argp);
3134
3135	case FIOSETOWN:
3136	case SIOCSPGRP:
3137	case FIOGETOWN:
3138	case SIOCGPGRP:
3139	case SIOCBRADDBR:
3140	case SIOCBRDELBR:
3141	case SIOCGIFVLAN:
3142	case SIOCSIFVLAN:
3143	case SIOCADDDLCI:
3144	case SIOCDELDLCI:
3145	case SIOCGSKNS:
3146		return sock_ioctl(file, cmd, arg);
3147
3148	case SIOCGIFFLAGS:
3149	case SIOCSIFFLAGS:
3150	case SIOCGIFMETRIC:
3151	case SIOCSIFMETRIC:
3152	case SIOCGIFMTU:
3153	case SIOCSIFMTU:
3154	case SIOCGIFMEM:
3155	case SIOCSIFMEM:
3156	case SIOCGIFHWADDR:
3157	case SIOCSIFHWADDR:
3158	case SIOCADDMULTI:
3159	case SIOCDELMULTI:
3160	case SIOCGIFINDEX:
3161	case SIOCGIFADDR:
3162	case SIOCSIFADDR:
3163	case SIOCSIFHWBROADCAST:
3164	case SIOCDIFADDR:
3165	case SIOCGIFBRDADDR:
3166	case SIOCSIFBRDADDR:
3167	case SIOCGIFDSTADDR:
3168	case SIOCSIFDSTADDR:
3169	case SIOCGIFNETMASK:
3170	case SIOCSIFNETMASK:
3171	case SIOCSIFPFLAGS:
3172	case SIOCGIFPFLAGS:
3173	case SIOCGIFTXQLEN:
3174	case SIOCSIFTXQLEN:
3175	case SIOCBRADDIF:
3176	case SIOCBRDELIF:
3177	case SIOCSIFNAME:
3178	case SIOCGMIIPHY:
3179	case SIOCGMIIREG:
3180	case SIOCSMIIREG:
 
 
3181	case SIOCSARP:
3182	case SIOCGARP:
3183	case SIOCDARP:
3184	case SIOCATMARK:
3185	case SIOCBONDENSLAVE:
3186	case SIOCBONDRELEASE:
3187	case SIOCBONDSETHWADDR:
3188	case SIOCBONDCHANGEACTIVE:
3189	case SIOCGIFNAME:
3190		return sock_do_ioctl(net, sock, cmd, arg);
3191	}
3192
3193	return -ENOIOCTLCMD;
3194}
3195
3196static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3197			      unsigned long arg)
3198{
3199	struct socket *sock = file->private_data;
3200	int ret = -ENOIOCTLCMD;
3201	struct sock *sk;
3202	struct net *net;
3203
3204	sk = sock->sk;
3205	net = sock_net(sk);
3206
3207	if (sock->ops->compat_ioctl)
3208		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3209
3210	if (ret == -ENOIOCTLCMD &&
3211	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3212		ret = compat_wext_handle_ioctl(net, cmd, arg);
3213
3214	if (ret == -ENOIOCTLCMD)
3215		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3216
3217	return ret;
3218}
3219#endif
3220
3221int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3222{
3223	return sock->ops->bind(sock, addr, addrlen);
3224}
3225EXPORT_SYMBOL(kernel_bind);
3226
3227int kernel_listen(struct socket *sock, int backlog)
3228{
3229	return sock->ops->listen(sock, backlog);
3230}
3231EXPORT_SYMBOL(kernel_listen);
3232
3233int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3234{
3235	struct sock *sk = sock->sk;
3236	int err;
3237
3238	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3239			       newsock);
3240	if (err < 0)
3241		goto done;
3242
3243	err = sock->ops->accept(sock, *newsock, flags, true);
3244	if (err < 0) {
3245		sock_release(*newsock);
3246		*newsock = NULL;
3247		goto done;
3248	}
3249
3250	(*newsock)->ops = sock->ops;
3251	__module_get((*newsock)->ops->owner);
3252
3253done:
3254	return err;
3255}
3256EXPORT_SYMBOL(kernel_accept);
3257
3258int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3259		   int flags)
3260{
3261	return sock->ops->connect(sock, addr, addrlen, flags);
3262}
3263EXPORT_SYMBOL(kernel_connect);
3264
3265int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
 
3266{
3267	return sock->ops->getname(sock, addr, 0);
3268}
3269EXPORT_SYMBOL(kernel_getsockname);
3270
3271int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
 
3272{
3273	return sock->ops->getname(sock, addr, 1);
3274}
3275EXPORT_SYMBOL(kernel_getpeername);
3276
3277int kernel_getsockopt(struct socket *sock, int level, int optname,
3278			char *optval, int *optlen)
3279{
3280	mm_segment_t oldfs = get_fs();
3281	char __user *uoptval;
3282	int __user *uoptlen;
3283	int err;
3284
3285	uoptval = (char __user __force *) optval;
3286	uoptlen = (int __user __force *) optlen;
3287
3288	set_fs(KERNEL_DS);
3289	if (level == SOL_SOCKET)
3290		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291	else
3292		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293					    uoptlen);
3294	set_fs(oldfs);
3295	return err;
3296}
3297EXPORT_SYMBOL(kernel_getsockopt);
3298
3299int kernel_setsockopt(struct socket *sock, int level, int optname,
3300			char *optval, unsigned int optlen)
3301{
3302	mm_segment_t oldfs = get_fs();
3303	char __user *uoptval;
3304	int err;
3305
3306	uoptval = (char __user __force *) optval;
3307
3308	set_fs(KERNEL_DS);
3309	if (level == SOL_SOCKET)
3310		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311	else
3312		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313					    optlen);
3314	set_fs(oldfs);
3315	return err;
3316}
3317EXPORT_SYMBOL(kernel_setsockopt);
3318
3319int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320		    size_t size, int flags)
3321{
3322	if (sock->ops->sendpage)
3323		return sock->ops->sendpage(sock, page, offset, size, flags);
3324
3325	return sock_no_sendpage(sock, page, offset, size, flags);
3326}
3327EXPORT_SYMBOL(kernel_sendpage);
3328
3329int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3330			   size_t size, int flags)
3331{
3332	struct socket *sock = sk->sk_socket;
 
3333
3334	if (sock->ops->sendpage_locked)
3335		return sock->ops->sendpage_locked(sk, page, offset, size,
3336						  flags);
3337
3338	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3339}
3340EXPORT_SYMBOL(kernel_sendpage_locked);
3341
3342int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343{
3344	return sock->ops->shutdown(sock, how);
3345}
3346EXPORT_SYMBOL(kernel_sock_shutdown);
3347
3348/* This routine returns the IP overhead imposed by a socket i.e.
3349 * the length of the underlying IP header, depending on whether
3350 * this is an IPv4 or IPv6 socket and the length from IP options turned
3351 * on at the socket. Assumes that the caller has a lock on the socket.
3352 */
3353u32 kernel_sock_ip_overhead(struct sock *sk)
3354{
3355	struct inet_sock *inet;
3356	struct ip_options_rcu *opt;
3357	u32 overhead = 0;
3358#if IS_ENABLED(CONFIG_IPV6)
3359	struct ipv6_pinfo *np;
3360	struct ipv6_txoptions *optv6 = NULL;
3361#endif /* IS_ENABLED(CONFIG_IPV6) */
3362
3363	if (!sk)
3364		return overhead;
3365
3366	switch (sk->sk_family) {
3367	case AF_INET:
3368		inet = inet_sk(sk);
3369		overhead += sizeof(struct iphdr);
3370		opt = rcu_dereference_protected(inet->inet_opt,
3371						sock_owned_by_user(sk));
3372		if (opt)
3373			overhead += opt->opt.optlen;
3374		return overhead;
3375#if IS_ENABLED(CONFIG_IPV6)
3376	case AF_INET6:
3377		np = inet6_sk(sk);
3378		overhead += sizeof(struct ipv6hdr);
3379		if (np)
3380			optv6 = rcu_dereference_protected(np->opt,
3381							  sock_owned_by_user(sk));
3382		if (optv6)
3383			overhead += (optv6->opt_flen + optv6->opt_nflen);
3384		return overhead;
3385#endif /* IS_ENABLED(CONFIG_IPV6) */
3386	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3387		return overhead;
3388	}
3389}
3390EXPORT_SYMBOL(kernel_sock_ip_overhead);