Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
 
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
 
 
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122			      struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126			      unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130			     int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132				struct pipe_inode_info *pipe, size_t len,
 133				unsigned int flags);
 134
 
 
 
 
 
 
 
 
 
 
 
 
 135/*
 136 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *	in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141	.owner =	THIS_MODULE,
 142	.llseek =	no_llseek,
 143	.read_iter =	sock_read_iter,
 144	.write_iter =	sock_write_iter,
 145	.poll =		sock_poll,
 146	.unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148	.compat_ioctl = compat_sock_ioctl,
 149#endif
 150	.mmap =		sock_mmap,
 151	.release =	sock_close,
 152	.fasync =	sock_fasync,
 153	.sendpage =	sock_sendpage,
 154	.splice_write = generic_splice_sendpage,
 155	.splice_read =	sock_splice_read,
 
 156};
 157
 158/*
 159 *	The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *	Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *	move_addr_to_kernel	-	copy a socket address into kernel space
 179 *	@uaddr: Address in user space
 180 *	@kaddr: Address in kernel space
 181 *	@ulen: Length in user space
 182 *
 183 *	The address is copied into kernel space. If the provided address is
 184 *	too long an error code of -EINVAL is returned. If the copy gives
 185 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191		return -EINVAL;
 192	if (ulen == 0)
 193		return 0;
 194	if (copy_from_user(kaddr, uaddr, ulen))
 195		return -EFAULT;
 196	return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *	move_addr_to_user	-	copy an address to user space
 201 *	@kaddr: kernel space address
 202 *	@klen: length of address in kernel
 203 *	@uaddr: user space address
 204 *	@ulen: pointer to user length field
 205 *
 206 *	The value pointed to by ulen on entry is the buffer length available.
 207 *	This is overwritten with the buffer space used. -EINVAL is returned
 208 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *	is returned if either the buffer or the length field are not
 210 *	accessible.
 211 *	After copying the data up to the limit the user specifies, the true
 212 *	length of the data is written over the length limit the user
 213 *	specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217			     void __user *uaddr, int __user *ulen)
 218{
 219	int err;
 220	int len;
 221
 222	BUG_ON(klen > sizeof(struct sockaddr_storage));
 223	err = get_user(len, ulen);
 224	if (err)
 225		return err;
 226	if (len > klen)
 227		len = klen;
 228	if (len < 0)
 229		return -EINVAL;
 230	if (len) {
 231		if (audit_sockaddr(klen, kaddr))
 232			return -ENOMEM;
 233		if (copy_to_user(uaddr, kaddr, len))
 234			return -EFAULT;
 235	}
 236	/*
 237	 *      "fromlen shall refer to the value before truncation.."
 238	 *                      1003.1g
 239	 */
 240	return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247	struct socket_alloc *ei;
 248	struct socket_wq *wq;
 249
 250	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251	if (!ei)
 252		return NULL;
 253	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254	if (!wq) {
 255		kmem_cache_free(sock_inode_cachep, ei);
 256		return NULL;
 257	}
 258	init_waitqueue_head(&wq->wait);
 259	wq->fasync_list = NULL;
 260	wq->flags = 0;
 261	RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263	ei->socket.state = SS_UNCONNECTED;
 264	ei->socket.flags = 0;
 265	ei->socket.ops = NULL;
 266	ei->socket.sk = NULL;
 267	ei->socket.file = NULL;
 268
 269	return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274	struct socket_alloc *ei;
 275	struct socket_wq *wq;
 276
 277	ei = container_of(inode, struct socket_alloc, vfs_inode);
 278	wq = rcu_dereference_protected(ei->socket.wq, 1);
 279	kfree_rcu(wq, rcu);
 280	kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285	struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287	inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293					      sizeof(struct socket_alloc),
 294					      0,
 295					      (SLAB_HWCACHE_ALIGN |
 296					       SLAB_RECLAIM_ACCOUNT |
 297					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298					      init_once);
 299	if (sock_inode_cachep == NULL)
 300		return -ENOMEM;
 301	return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305	.alloc_inode	= sock_alloc_inode,
 306	.destroy_inode	= sock_destroy_inode,
 307	.statfs		= simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316				d_inode(dentry)->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320	.d_dname  = sockfs_dname,
 321};
 322
 323static int sockfs_xattr_get(const struct xattr_handler *handler,
 324			    struct dentry *dentry, struct inode *inode,
 325			    const char *suffix, void *value, size_t size)
 326{
 327	if (value) {
 328		if (dentry->d_name.len + 1 > size)
 329			return -ERANGE;
 330		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 331	}
 332	return dentry->d_name.len + 1;
 333}
 334
 335#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 336#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 337#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 338
 339static const struct xattr_handler sockfs_xattr_handler = {
 340	.name = XATTR_NAME_SOCKPROTONAME,
 341	.get = sockfs_xattr_get,
 342};
 343
 344static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 345				     struct dentry *dentry, struct inode *inode,
 346				     const char *suffix, const void *value,
 347				     size_t size, int flags)
 348{
 349	/* Handled by LSM. */
 350	return -EAGAIN;
 351}
 352
 353static const struct xattr_handler sockfs_security_xattr_handler = {
 354	.prefix = XATTR_SECURITY_PREFIX,
 355	.set = sockfs_security_xattr_set,
 356};
 357
 358static const struct xattr_handler *sockfs_xattr_handlers[] = {
 359	&sockfs_xattr_handler,
 360	&sockfs_security_xattr_handler,
 361	NULL
 362};
 363
 364static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 365			 int flags, const char *dev_name, void *data)
 366{
 367	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 368				  sockfs_xattr_handlers,
 369				  &sockfs_dentry_operations, SOCKFS_MAGIC);
 
 
 
 
 370}
 371
 372static struct vfsmount *sock_mnt __read_mostly;
 373
 374static struct file_system_type sock_fs_type = {
 375	.name =		"sockfs",
 376	.mount =	sockfs_mount,
 377	.kill_sb =	kill_anon_super,
 378};
 379
 380/*
 381 *	Obtains the first available file descriptor and sets it up for use.
 382 *
 383 *	These functions create file structures and maps them to fd space
 384 *	of the current process. On success it returns file descriptor
 385 *	and file struct implicitly stored in sock->file.
 386 *	Note that another thread may close file descriptor before we return
 387 *	from this function. We use the fact that now we do not refer
 388 *	to socket after mapping. If one day we will need it, this
 389 *	function will increment ref. count on file by 1.
 390 *
 391 *	In any case returned fd MAY BE not valid!
 392 *	This race condition is unavoidable
 393 *	with shared fd spaces, we cannot solve it inside kernel,
 394 *	but we take care of internal coherence yet.
 395 */
 396
 
 
 
 
 
 
 
 
 
 
 
 
 397struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 398{
 399	struct qstr name = { .name = "" };
 400	struct path path;
 401	struct file *file;
 402
 403	if (dname) {
 404		name.name = dname;
 405		name.len = strlen(name.name);
 406	} else if (sock->sk) {
 407		name.name = sock->sk->sk_prot_creator->name;
 408		name.len = strlen(name.name);
 409	}
 410	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 411	if (unlikely(!path.dentry))
 412		return ERR_PTR(-ENOMEM);
 413	path.mnt = mntget(sock_mnt);
 414
 415	d_instantiate(path.dentry, SOCK_INODE(sock));
 416
 417	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 418		  &socket_file_ops);
 
 419	if (IS_ERR(file)) {
 420		/* drop dentry, keep inode */
 421		ihold(d_inode(path.dentry));
 422		path_put(&path);
 423		return file;
 424	}
 425
 426	sock->file = file;
 427	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 428	file->private_data = sock;
 
 429	return file;
 430}
 431EXPORT_SYMBOL(sock_alloc_file);
 432
 433static int sock_map_fd(struct socket *sock, int flags)
 434{
 435	struct file *newfile;
 436	int fd = get_unused_fd_flags(flags);
 437	if (unlikely(fd < 0))
 
 438		return fd;
 
 439
 440	newfile = sock_alloc_file(sock, flags, NULL);
 441	if (likely(!IS_ERR(newfile))) {
 442		fd_install(fd, newfile);
 443		return fd;
 444	}
 445
 446	put_unused_fd(fd);
 447	return PTR_ERR(newfile);
 448}
 449
 
 
 
 
 
 
 
 
 450struct socket *sock_from_file(struct file *file, int *err)
 451{
 452	if (file->f_op == &socket_file_ops)
 453		return file->private_data;	/* set in sock_map_fd */
 454
 455	*err = -ENOTSOCK;
 456	return NULL;
 457}
 458EXPORT_SYMBOL(sock_from_file);
 459
 460/**
 461 *	sockfd_lookup - Go from a file number to its socket slot
 462 *	@fd: file handle
 463 *	@err: pointer to an error code return
 464 *
 465 *	The file handle passed in is locked and the socket it is bound
 466 *	too is returned. If an error occurs the err pointer is overwritten
 467 *	with a negative errno code and NULL is returned. The function checks
 468 *	for both invalid handles and passing a handle which is not a socket.
 469 *
 470 *	On a success the socket object pointer is returned.
 471 */
 472
 473struct socket *sockfd_lookup(int fd, int *err)
 474{
 475	struct file *file;
 476	struct socket *sock;
 477
 478	file = fget(fd);
 479	if (!file) {
 480		*err = -EBADF;
 481		return NULL;
 482	}
 483
 484	sock = sock_from_file(file, err);
 485	if (!sock)
 486		fput(file);
 487	return sock;
 488}
 489EXPORT_SYMBOL(sockfd_lookup);
 490
 491static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 492{
 493	struct fd f = fdget(fd);
 494	struct socket *sock;
 495
 496	*err = -EBADF;
 497	if (f.file) {
 498		sock = sock_from_file(f.file, err);
 499		if (likely(sock)) {
 500			*fput_needed = f.flags;
 501			return sock;
 502		}
 503		fdput(f);
 504	}
 505	return NULL;
 506}
 507
 508static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 509				size_t size)
 510{
 511	ssize_t len;
 512	ssize_t used = 0;
 513
 514	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 515	if (len < 0)
 516		return len;
 517	used += len;
 518	if (buffer) {
 519		if (size < used)
 520			return -ERANGE;
 521		buffer += len;
 522	}
 523
 524	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 525	used += len;
 526	if (buffer) {
 527		if (size < used)
 528			return -ERANGE;
 529		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 530		buffer += len;
 531	}
 532
 533	return used;
 534}
 535
 536static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 537{
 538	int err = simple_setattr(dentry, iattr);
 539
 540	if (!err && (iattr->ia_valid & ATTR_UID)) {
 541		struct socket *sock = SOCKET_I(d_inode(dentry));
 542
 543		sock->sk->sk_uid = iattr->ia_uid;
 
 
 
 544	}
 545
 546	return err;
 547}
 548
 549static const struct inode_operations sockfs_inode_ops = {
 550	.listxattr = sockfs_listxattr,
 551	.setattr = sockfs_setattr,
 552};
 553
 554/**
 555 *	sock_alloc	-	allocate a socket
 556 *
 557 *	Allocate a new inode and socket object. The two are bound together
 558 *	and initialised. The socket is then returned. If we are out of inodes
 559 *	NULL is returned.
 560 */
 561
 562struct socket *sock_alloc(void)
 563{
 564	struct inode *inode;
 565	struct socket *sock;
 566
 567	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 568	if (!inode)
 569		return NULL;
 570
 571	sock = SOCKET_I(inode);
 572
 573	kmemcheck_annotate_bitfield(sock, type);
 574	inode->i_ino = get_next_ino();
 575	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 576	inode->i_uid = current_fsuid();
 577	inode->i_gid = current_fsgid();
 578	inode->i_op = &sockfs_inode_ops;
 579
 580	this_cpu_add(sockets_in_use, 1);
 581	return sock;
 582}
 583EXPORT_SYMBOL(sock_alloc);
 584
 585/**
 586 *	sock_release	-	close a socket
 587 *	@sock: socket to close
 588 *
 589 *	The socket is released from the protocol stack if it has a release
 590 *	callback, and the inode is then released if the socket is bound to
 591 *	an inode not a file.
 592 */
 593
 594void sock_release(struct socket *sock)
 595{
 596	if (sock->ops) {
 597		struct module *owner = sock->ops->owner;
 598
 
 
 599		sock->ops->release(sock);
 
 
 
 600		sock->ops = NULL;
 601		module_put(owner);
 602	}
 603
 604	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 605		pr_err("%s: fasync list not empty!\n", __func__);
 606
 607	this_cpu_sub(sockets_in_use, 1);
 608	if (!sock->file) {
 609		iput(SOCK_INODE(sock));
 610		return;
 611	}
 612	sock->file = NULL;
 613}
 
 
 
 
 
 
 
 
 
 
 
 
 
 614EXPORT_SYMBOL(sock_release);
 615
 616void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 617{
 618	u8 flags = *tx_flags;
 619
 620	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 621		flags |= SKBTX_HW_TSTAMP;
 622
 623	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 624		flags |= SKBTX_SW_TSTAMP;
 625
 626	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 627		flags |= SKBTX_SCHED_TSTAMP;
 628
 629	*tx_flags = flags;
 630}
 631EXPORT_SYMBOL(__sock_tx_timestamp);
 632
 
 
 
 
 633static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 634{
 635	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 
 
 636	BUG_ON(ret == -EIOCBQUEUED);
 637	return ret;
 638}
 639
 
 
 
 
 
 
 
 
 640int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 641{
 642	int err = security_socket_sendmsg(sock, msg,
 643					  msg_data_left(msg));
 644
 645	return err ?: sock_sendmsg_nosec(sock, msg);
 646}
 647EXPORT_SYMBOL(sock_sendmsg);
 648
 
 
 
 
 
 
 
 
 
 
 
 
 649int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 650		   struct kvec *vec, size_t num, size_t size)
 651{
 652	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 653	return sock_sendmsg(sock, msg);
 654}
 655EXPORT_SYMBOL(kernel_sendmsg);
 656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657/*
 658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 659 */
 660void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 661	struct sk_buff *skb)
 662{
 663	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 664	struct scm_timestamping tss;
 665	int empty = 1;
 
 
 666	struct skb_shared_hwtstamps *shhwtstamps =
 667		skb_hwtstamps(skb);
 668
 669	/* Race occurred between timestamp enabling and packet
 670	   receiving.  Fill in the current time for now. */
 671	if (need_software_tstamp && skb->tstamp == 0)
 672		__net_timestamp(skb);
 
 
 673
 674	if (need_software_tstamp) {
 675		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 676			struct timeval tv;
 677			skb_get_timestamp(skb, &tv);
 678			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 679				 sizeof(tv), &tv);
 
 
 
 
 
 
 
 
 
 680		} else {
 681			struct timespec ts;
 682			skb_get_timestampns(skb, &ts);
 683			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 684				 sizeof(ts), &ts);
 
 
 
 
 
 
 
 
 
 685		}
 686	}
 687
 688	memset(&tss, 0, sizeof(tss));
 689	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 690	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 691		empty = 0;
 692	if (shhwtstamps &&
 693	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 694	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 
 695		empty = 0;
 
 
 
 
 696	if (!empty) {
 697		put_cmsg(msg, SOL_SOCKET,
 698			 SCM_TIMESTAMPING, sizeof(tss), &tss);
 
 
 699
 700		if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
 
 701			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 702				 skb->len, skb->data);
 703	}
 704}
 705EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 706
 707void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 708	struct sk_buff *skb)
 709{
 710	int ack;
 711
 712	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 713		return;
 714	if (!skb->wifi_acked_valid)
 715		return;
 716
 717	ack = skb->wifi_acked;
 718
 719	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 720}
 721EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 722
 723static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 724				   struct sk_buff *skb)
 725{
 726	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 727		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 728			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 729}
 730
 731void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 732	struct sk_buff *skb)
 733{
 734	sock_recv_timestamp(msg, sk, skb);
 735	sock_recv_drops(msg, sk, skb);
 736}
 737EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 738
 
 
 
 
 739static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 740				     int flags)
 741{
 742	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 
 
 743}
 744
 
 
 
 
 
 
 
 
 
 745int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 746{
 747	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 748
 749	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 750}
 751EXPORT_SYMBOL(sock_recvmsg);
 752
 753/**
 754 * kernel_recvmsg - Receive a message from a socket (kernel space)
 755 * @sock:       The socket to receive the message from
 756 * @msg:        Received message
 757 * @vec:        Input s/g array for message data
 758 * @num:        Size of input s/g array
 759 * @size:       Number of bytes to read
 760 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 761 *
 762 * On return the msg structure contains the scatter/gather array passed in the
 763 * vec argument. The array is modified so that it consists of the unfilled
 764 * portion of the original array.
 765 *
 766 * The returned value is the total number of bytes received, or an error.
 767 */
 
 768int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 769		   struct kvec *vec, size_t num, size_t size, int flags)
 770{
 771	mm_segment_t oldfs = get_fs();
 772	int result;
 773
 774	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 775	set_fs(KERNEL_DS);
 776	result = sock_recvmsg(sock, msg, flags);
 777	set_fs(oldfs);
 778	return result;
 779}
 780EXPORT_SYMBOL(kernel_recvmsg);
 781
 782static ssize_t sock_sendpage(struct file *file, struct page *page,
 783			     int offset, size_t size, loff_t *ppos, int more)
 784{
 785	struct socket *sock;
 786	int flags;
 787
 788	sock = file->private_data;
 789
 790	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 791	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 792	flags |= more;
 793
 794	return kernel_sendpage(sock, page, offset, size, flags);
 795}
 796
 797static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 798				struct pipe_inode_info *pipe, size_t len,
 799				unsigned int flags)
 800{
 801	struct socket *sock = file->private_data;
 802
 803	if (unlikely(!sock->ops->splice_read))
 804		return -EINVAL;
 805
 806	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 807}
 808
 809static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 810{
 811	struct file *file = iocb->ki_filp;
 812	struct socket *sock = file->private_data;
 813	struct msghdr msg = {.msg_iter = *to,
 814			     .msg_iocb = iocb};
 815	ssize_t res;
 816
 817	if (file->f_flags & O_NONBLOCK)
 818		msg.msg_flags = MSG_DONTWAIT;
 819
 820	if (iocb->ki_pos != 0)
 821		return -ESPIPE;
 822
 823	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 824		return 0;
 825
 826	res = sock_recvmsg(sock, &msg, msg.msg_flags);
 827	*to = msg.msg_iter;
 828	return res;
 829}
 830
 831static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 832{
 833	struct file *file = iocb->ki_filp;
 834	struct socket *sock = file->private_data;
 835	struct msghdr msg = {.msg_iter = *from,
 836			     .msg_iocb = iocb};
 837	ssize_t res;
 838
 839	if (iocb->ki_pos != 0)
 840		return -ESPIPE;
 841
 842	if (file->f_flags & O_NONBLOCK)
 843		msg.msg_flags = MSG_DONTWAIT;
 844
 845	if (sock->type == SOCK_SEQPACKET)
 846		msg.msg_flags |= MSG_EOR;
 847
 848	res = sock_sendmsg(sock, &msg);
 849	*from = msg.msg_iter;
 850	return res;
 851}
 852
 853/*
 854 * Atomic setting of ioctl hooks to avoid race
 855 * with module unload.
 856 */
 857
 858static DEFINE_MUTEX(br_ioctl_mutex);
 859static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 860
 861void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 862{
 863	mutex_lock(&br_ioctl_mutex);
 864	br_ioctl_hook = hook;
 865	mutex_unlock(&br_ioctl_mutex);
 866}
 867EXPORT_SYMBOL(brioctl_set);
 868
 869static DEFINE_MUTEX(vlan_ioctl_mutex);
 870static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 871
 872void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 873{
 874	mutex_lock(&vlan_ioctl_mutex);
 875	vlan_ioctl_hook = hook;
 876	mutex_unlock(&vlan_ioctl_mutex);
 877}
 878EXPORT_SYMBOL(vlan_ioctl_set);
 879
 880static DEFINE_MUTEX(dlci_ioctl_mutex);
 881static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 882
 883void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 884{
 885	mutex_lock(&dlci_ioctl_mutex);
 886	dlci_ioctl_hook = hook;
 887	mutex_unlock(&dlci_ioctl_mutex);
 888}
 889EXPORT_SYMBOL(dlci_ioctl_set);
 890
 891static long sock_do_ioctl(struct net *net, struct socket *sock,
 892				 unsigned int cmd, unsigned long arg)
 893{
 894	int err;
 895	void __user *argp = (void __user *)arg;
 896
 897	err = sock->ops->ioctl(sock, cmd, arg);
 898
 899	/*
 900	 * If this ioctl is unknown try to hand it down
 901	 * to the NIC driver.
 902	 */
 903	if (err == -ENOIOCTLCMD)
 904		err = dev_ioctl(net, cmd, argp);
 905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906	return err;
 907}
 908
 909/*
 910 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 911 *	what to do with it - that's up to the protocol still.
 912 */
 913
 914static struct ns_common *get_net_ns(struct ns_common *ns)
 
 
 
 
 
 
 
 915{
 916	return &get_net(container_of(ns, struct net, ns))->ns;
 917}
 
 918
 919static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 920{
 921	struct socket *sock;
 922	struct sock *sk;
 923	void __user *argp = (void __user *)arg;
 924	int pid, err;
 925	struct net *net;
 926
 927	sock = file->private_data;
 928	sk = sock->sk;
 929	net = sock_net(sk);
 930	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 931		err = dev_ioctl(net, cmd, argp);
 
 
 
 
 
 
 
 932	} else
 933#ifdef CONFIG_WEXT_CORE
 934	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 935		err = dev_ioctl(net, cmd, argp);
 936	} else
 937#endif
 938		switch (cmd) {
 939		case FIOSETOWN:
 940		case SIOCSPGRP:
 941			err = -EFAULT;
 942			if (get_user(pid, (int __user *)argp))
 943				break;
 944			f_setown(sock->file, pid, 1);
 945			err = 0;
 946			break;
 947		case FIOGETOWN:
 948		case SIOCGPGRP:
 949			err = put_user(f_getown(sock->file),
 950				       (int __user *)argp);
 951			break;
 952		case SIOCGIFBR:
 953		case SIOCSIFBR:
 954		case SIOCBRADDBR:
 955		case SIOCBRDELBR:
 956			err = -ENOPKG;
 957			if (!br_ioctl_hook)
 958				request_module("bridge");
 959
 960			mutex_lock(&br_ioctl_mutex);
 961			if (br_ioctl_hook)
 962				err = br_ioctl_hook(net, cmd, argp);
 963			mutex_unlock(&br_ioctl_mutex);
 964			break;
 965		case SIOCGIFVLAN:
 966		case SIOCSIFVLAN:
 967			err = -ENOPKG;
 968			if (!vlan_ioctl_hook)
 969				request_module("8021q");
 970
 971			mutex_lock(&vlan_ioctl_mutex);
 972			if (vlan_ioctl_hook)
 973				err = vlan_ioctl_hook(net, argp);
 974			mutex_unlock(&vlan_ioctl_mutex);
 975			break;
 976		case SIOCADDDLCI:
 977		case SIOCDELDLCI:
 978			err = -ENOPKG;
 979			if (!dlci_ioctl_hook)
 980				request_module("dlci");
 981
 982			mutex_lock(&dlci_ioctl_mutex);
 983			if (dlci_ioctl_hook)
 984				err = dlci_ioctl_hook(cmd, argp);
 985			mutex_unlock(&dlci_ioctl_mutex);
 986			break;
 987		case SIOCGSKNS:
 988			err = -EPERM;
 989			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
 990				break;
 991
 992			err = open_related_ns(&net->ns, get_net_ns);
 993			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994		default:
 995			err = sock_do_ioctl(net, sock, cmd, arg);
 996			break;
 997		}
 998	return err;
 999}
1000
 
 
 
 
 
 
 
 
 
 
 
 
 
1001int sock_create_lite(int family, int type, int protocol, struct socket **res)
1002{
1003	int err;
1004	struct socket *sock = NULL;
1005
1006	err = security_socket_create(family, type, protocol, 1);
1007	if (err)
1008		goto out;
1009
1010	sock = sock_alloc();
1011	if (!sock) {
1012		err = -ENOMEM;
1013		goto out;
1014	}
1015
1016	sock->type = type;
1017	err = security_socket_post_create(sock, family, type, protocol, 1);
1018	if (err)
1019		goto out_release;
1020
1021out:
1022	*res = sock;
1023	return err;
1024out_release:
1025	sock_release(sock);
1026	sock = NULL;
1027	goto out;
1028}
1029EXPORT_SYMBOL(sock_create_lite);
1030
1031/* No kernel lock held - perfect */
1032static unsigned int sock_poll(struct file *file, poll_table *wait)
1033{
1034	unsigned int busy_flag = 0;
1035	struct socket *sock;
1036
1037	/*
1038	 *      We can't return errors to poll, so it's either yes or no.
1039	 */
1040	sock = file->private_data;
1041
1042	if (sk_can_busy_loop(sock->sk)) {
1043		/* this socket can poll_ll so tell the system call */
1044		busy_flag = POLL_BUSY_LOOP;
1045
1046		/* once, only if requested by syscall */
1047		if (wait && (wait->_key & POLL_BUSY_LOOP))
1048			sk_busy_loop(sock->sk, 1);
 
 
 
1049	}
1050
1051	return busy_flag | sock->ops->poll(file, sock, wait);
1052}
1053
1054static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1055{
1056	struct socket *sock = file->private_data;
1057
1058	return sock->ops->mmap(file, sock, vma);
1059}
1060
1061static int sock_close(struct inode *inode, struct file *filp)
1062{
1063	sock_release(SOCKET_I(inode));
1064	return 0;
1065}
1066
1067/*
1068 *	Update the socket async list
1069 *
1070 *	Fasync_list locking strategy.
1071 *
1072 *	1. fasync_list is modified only under process context socket lock
1073 *	   i.e. under semaphore.
1074 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1075 *	   or under socket lock
1076 */
1077
1078static int sock_fasync(int fd, struct file *filp, int on)
1079{
1080	struct socket *sock = filp->private_data;
1081	struct sock *sk = sock->sk;
1082	struct socket_wq *wq;
1083
1084	if (sk == NULL)
1085		return -EINVAL;
1086
1087	lock_sock(sk);
1088	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1089	fasync_helper(fd, filp, on, &wq->fasync_list);
1090
1091	if (!wq->fasync_list)
1092		sock_reset_flag(sk, SOCK_FASYNC);
1093	else
1094		sock_set_flag(sk, SOCK_FASYNC);
1095
1096	release_sock(sk);
1097	return 0;
1098}
1099
1100/* This function may be called only under rcu_lock */
1101
1102int sock_wake_async(struct socket_wq *wq, int how, int band)
1103{
1104	if (!wq || !wq->fasync_list)
1105		return -1;
1106
1107	switch (how) {
1108	case SOCK_WAKE_WAITD:
1109		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1110			break;
1111		goto call_kill;
1112	case SOCK_WAKE_SPACE:
1113		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1114			break;
1115		/* fall through */
1116	case SOCK_WAKE_IO:
1117call_kill:
1118		kill_fasync(&wq->fasync_list, SIGIO, band);
1119		break;
1120	case SOCK_WAKE_URG:
1121		kill_fasync(&wq->fasync_list, SIGURG, band);
1122	}
1123
1124	return 0;
1125}
1126EXPORT_SYMBOL(sock_wake_async);
1127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128int __sock_create(struct net *net, int family, int type, int protocol,
1129			 struct socket **res, int kern)
1130{
1131	int err;
1132	struct socket *sock;
1133	const struct net_proto_family *pf;
1134
1135	/*
1136	 *      Check protocol is in range
1137	 */
1138	if (family < 0 || family >= NPROTO)
1139		return -EAFNOSUPPORT;
1140	if (type < 0 || type >= SOCK_MAX)
1141		return -EINVAL;
1142
1143	/* Compatibility.
1144
1145	   This uglymoron is moved from INET layer to here to avoid
1146	   deadlock in module load.
1147	 */
1148	if (family == PF_INET && type == SOCK_PACKET) {
1149		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1150			     current->comm);
1151		family = PF_PACKET;
1152	}
1153
1154	err = security_socket_create(family, type, protocol, kern);
1155	if (err)
1156		return err;
1157
1158	/*
1159	 *	Allocate the socket and allow the family to set things up. if
1160	 *	the protocol is 0, the family is instructed to select an appropriate
1161	 *	default.
1162	 */
1163	sock = sock_alloc();
1164	if (!sock) {
1165		net_warn_ratelimited("socket: no more sockets\n");
1166		return -ENFILE;	/* Not exactly a match, but its the
1167				   closest posix thing */
1168	}
1169
1170	sock->type = type;
1171
1172#ifdef CONFIG_MODULES
1173	/* Attempt to load a protocol module if the find failed.
1174	 *
1175	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1176	 * requested real, full-featured networking support upon configuration.
1177	 * Otherwise module support will break!
1178	 */
1179	if (rcu_access_pointer(net_families[family]) == NULL)
1180		request_module("net-pf-%d", family);
1181#endif
1182
1183	rcu_read_lock();
1184	pf = rcu_dereference(net_families[family]);
1185	err = -EAFNOSUPPORT;
1186	if (!pf)
1187		goto out_release;
1188
1189	/*
1190	 * We will call the ->create function, that possibly is in a loadable
1191	 * module, so we have to bump that loadable module refcnt first.
1192	 */
1193	if (!try_module_get(pf->owner))
1194		goto out_release;
1195
1196	/* Now protected by module ref count */
1197	rcu_read_unlock();
1198
1199	err = pf->create(net, sock, protocol, kern);
1200	if (err < 0)
1201		goto out_module_put;
1202
1203	/*
1204	 * Now to bump the refcnt of the [loadable] module that owns this
1205	 * socket at sock_release time we decrement its refcnt.
1206	 */
1207	if (!try_module_get(sock->ops->owner))
1208		goto out_module_busy;
1209
1210	/*
1211	 * Now that we're done with the ->create function, the [loadable]
1212	 * module can have its refcnt decremented
1213	 */
1214	module_put(pf->owner);
1215	err = security_socket_post_create(sock, family, type, protocol, kern);
1216	if (err)
1217		goto out_sock_release;
1218	*res = sock;
1219
1220	return 0;
1221
1222out_module_busy:
1223	err = -EAFNOSUPPORT;
1224out_module_put:
1225	sock->ops = NULL;
1226	module_put(pf->owner);
1227out_sock_release:
1228	sock_release(sock);
1229	return err;
1230
1231out_release:
1232	rcu_read_unlock();
1233	goto out_sock_release;
1234}
1235EXPORT_SYMBOL(__sock_create);
1236
 
 
 
 
 
 
 
 
 
 
 
1237int sock_create(int family, int type, int protocol, struct socket **res)
1238{
1239	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1240}
1241EXPORT_SYMBOL(sock_create);
1242
 
 
 
 
 
 
 
 
 
 
 
 
1243int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1244{
1245	return __sock_create(net, family, type, protocol, res, 1);
1246}
1247EXPORT_SYMBOL(sock_create_kern);
1248
1249SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1250{
1251	int retval;
1252	struct socket *sock;
1253	int flags;
1254
1255	/* Check the SOCK_* constants for consistency.  */
1256	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1257	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1258	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1259	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1260
1261	flags = type & ~SOCK_TYPE_MASK;
1262	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263		return -EINVAL;
1264	type &= SOCK_TYPE_MASK;
1265
1266	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268
1269	retval = sock_create(family, type, protocol, &sock);
1270	if (retval < 0)
1271		goto out;
1272
1273	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1274	if (retval < 0)
1275		goto out_release;
1276
1277out:
1278	/* It may be already another descriptor 8) Not kernel problem. */
1279	return retval;
1280
1281out_release:
1282	sock_release(sock);
1283	return retval;
1284}
1285
1286/*
1287 *	Create a pair of connected sockets.
1288 */
1289
1290SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1291		int __user *, usockvec)
1292{
1293	struct socket *sock1, *sock2;
1294	int fd1, fd2, err;
1295	struct file *newfile1, *newfile2;
1296	int flags;
1297
1298	flags = type & ~SOCK_TYPE_MASK;
1299	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1300		return -EINVAL;
1301	type &= SOCK_TYPE_MASK;
1302
1303	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305
1306	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307	 * Obtain the first socket and check if the underlying protocol
1308	 * supports the socketpair call.
1309	 */
1310
1311	err = sock_create(family, type, protocol, &sock1);
1312	if (err < 0)
1313		goto out;
1314
1315	err = sock_create(family, type, protocol, &sock2);
1316	if (err < 0)
1317		goto out_release_1;
1318
1319	err = sock1->ops->socketpair(sock1, sock2);
1320	if (err < 0)
1321		goto out_release_both;
1322
1323	fd1 = get_unused_fd_flags(flags);
1324	if (unlikely(fd1 < 0)) {
1325		err = fd1;
1326		goto out_release_both;
 
1327	}
1328
1329	fd2 = get_unused_fd_flags(flags);
1330	if (unlikely(fd2 < 0)) {
1331		err = fd2;
1332		goto out_put_unused_1;
 
1333	}
1334
1335	newfile1 = sock_alloc_file(sock1, flags, NULL);
1336	if (IS_ERR(newfile1)) {
1337		err = PTR_ERR(newfile1);
1338		goto out_put_unused_both;
 
1339	}
1340
1341	newfile2 = sock_alloc_file(sock2, flags, NULL);
1342	if (IS_ERR(newfile2)) {
1343		err = PTR_ERR(newfile2);
1344		goto out_fput_1;
 
1345	}
1346
1347	err = put_user(fd1, &usockvec[0]);
1348	if (err)
1349		goto out_fput_both;
1350
1351	err = put_user(fd2, &usockvec[1]);
1352	if (err)
1353		goto out_fput_both;
1354
1355	audit_fd_pair(fd1, fd2);
1356
1357	fd_install(fd1, newfile1);
1358	fd_install(fd2, newfile2);
1359	/* fd1 and fd2 may be already another descriptors.
1360	 * Not kernel problem.
1361	 */
1362
1363	return 0;
1364
1365out_fput_both:
1366	fput(newfile2);
1367	fput(newfile1);
1368	put_unused_fd(fd2);
1369	put_unused_fd(fd1);
1370	goto out;
1371
1372out_fput_1:
1373	fput(newfile1);
1374	put_unused_fd(fd2);
1375	put_unused_fd(fd1);
1376	sock_release(sock2);
1377	goto out;
1378
1379out_put_unused_both:
1380	put_unused_fd(fd2);
1381out_put_unused_1:
1382	put_unused_fd(fd1);
1383out_release_both:
1384	sock_release(sock2);
1385out_release_1:
1386	sock_release(sock1);
1387out:
1388	return err;
1389}
1390
 
 
 
 
 
 
1391/*
1392 *	Bind a name to a socket. Nothing much to do here since it's
1393 *	the protocol's responsibility to handle the local address.
1394 *
1395 *	We move the socket address to kernel space before we call
1396 *	the protocol layer (having also checked the address is ok).
1397 */
1398
1399SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1400{
1401	struct socket *sock;
1402	struct sockaddr_storage address;
1403	int err, fput_needed;
1404
1405	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1406	if (sock) {
1407		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1408		if (err >= 0) {
1409			err = security_socket_bind(sock,
1410						   (struct sockaddr *)&address,
1411						   addrlen);
1412			if (!err)
1413				err = sock->ops->bind(sock,
1414						      (struct sockaddr *)
1415						      &address, addrlen);
1416		}
1417		fput_light(sock->file, fput_needed);
1418	}
1419	return err;
1420}
1421
 
 
 
 
 
1422/*
1423 *	Perform a listen. Basically, we allow the protocol to do anything
1424 *	necessary for a listen, and if that works, we mark the socket as
1425 *	ready for listening.
1426 */
1427
1428SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1429{
1430	struct socket *sock;
1431	int err, fput_needed;
1432	int somaxconn;
1433
1434	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1435	if (sock) {
1436		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1437		if ((unsigned int)backlog > somaxconn)
1438			backlog = somaxconn;
1439
1440		err = security_socket_listen(sock, backlog);
1441		if (!err)
1442			err = sock->ops->listen(sock, backlog);
1443
1444		fput_light(sock->file, fput_needed);
1445	}
1446	return err;
1447}
1448
1449/*
1450 *	For accept, we attempt to create a new socket, set up the link
1451 *	with the client, wake up the client, then return the new
1452 *	connected fd. We collect the address of the connector in kernel
1453 *	space and move it to user at the very end. This is unclean because
1454 *	we open the socket then return an error.
1455 *
1456 *	1003.1g adds the ability to recvmsg() to query connection pending
1457 *	status to recvmsg. We need to add that support in a way thats
1458 *	clean when we restucture accept also.
1459 */
1460
1461SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1462		int __user *, upeer_addrlen, int, flags)
 
 
1463{
1464	struct socket *sock, *newsock;
1465	struct file *newfile;
1466	int err, len, newfd, fput_needed;
1467	struct sockaddr_storage address;
1468
1469	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1470		return -EINVAL;
1471
1472	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1473		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1474
1475	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476	if (!sock)
1477		goto out;
1478
1479	err = -ENFILE;
1480	newsock = sock_alloc();
1481	if (!newsock)
1482		goto out_put;
1483
1484	newsock->type = sock->type;
1485	newsock->ops = sock->ops;
1486
1487	/*
1488	 * We don't need try_module_get here, as the listening socket (sock)
1489	 * has the protocol module (sock->ops->owner) held.
1490	 */
1491	__module_get(newsock->ops->owner);
1492
1493	newfd = get_unused_fd_flags(flags);
1494	if (unlikely(newfd < 0)) {
1495		err = newfd;
1496		sock_release(newsock);
1497		goto out_put;
1498	}
1499	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1500	if (IS_ERR(newfile)) {
1501		err = PTR_ERR(newfile);
1502		put_unused_fd(newfd);
1503		sock_release(newsock);
1504		goto out_put;
1505	}
1506
1507	err = security_socket_accept(sock, newsock);
1508	if (err)
1509		goto out_fd;
1510
1511	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
 
1512	if (err < 0)
1513		goto out_fd;
1514
1515	if (upeer_sockaddr) {
1516		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1517					  &len, 2) < 0) {
 
1518			err = -ECONNABORTED;
1519			goto out_fd;
1520		}
1521		err = move_addr_to_user(&address,
1522					len, upeer_sockaddr, upeer_addrlen);
1523		if (err < 0)
1524			goto out_fd;
1525	}
1526
1527	/* File flags are not inherited via accept() unlike another OSes. */
1528
1529	fd_install(newfd, newfile);
1530	err = newfd;
1531
1532out_put:
1533	fput_light(sock->file, fput_needed);
1534out:
1535	return err;
1536out_fd:
1537	fput(newfile);
1538	put_unused_fd(newfd);
1539	goto out_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1540}
1541
1542SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1543		int __user *, upeer_addrlen)
1544{
1545	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1546}
1547
1548/*
1549 *	Attempt to connect to a socket with the server address.  The address
1550 *	is in user space so we verify it is OK and move it to kernel space.
1551 *
1552 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1553 *	break bindings
1554 *
1555 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1556 *	other SEQPACKET protocols that take time to connect() as it doesn't
1557 *	include the -EINPROGRESS status for such sockets.
1558 */
1559
1560SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1561		int, addrlen)
1562{
1563	struct socket *sock;
1564	struct sockaddr_storage address;
1565	int err, fput_needed;
1566
1567	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1568	if (!sock)
1569		goto out;
1570	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1571	if (err < 0)
1572		goto out_put;
1573
1574	err =
1575	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1576	if (err)
1577		goto out_put;
1578
1579	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1580				 sock->file->f_flags);
1581out_put:
1582	fput_light(sock->file, fput_needed);
1583out:
1584	return err;
1585}
1586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1587/*
1588 *	Get the local address ('name') of a socket object. Move the obtained
1589 *	name to user space.
1590 */
1591
1592SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1593		int __user *, usockaddr_len)
1594{
1595	struct socket *sock;
1596	struct sockaddr_storage address;
1597	int len, err, fput_needed;
1598
1599	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600	if (!sock)
1601		goto out;
1602
1603	err = security_socket_getsockname(sock);
1604	if (err)
1605		goto out_put;
1606
1607	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1608	if (err)
1609		goto out_put;
1610	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
 
1611
1612out_put:
1613	fput_light(sock->file, fput_needed);
1614out:
1615	return err;
1616}
1617
 
 
 
 
 
 
1618/*
1619 *	Get the remote address ('name') of a socket object. Move the obtained
1620 *	name to user space.
1621 */
1622
1623SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1624		int __user *, usockaddr_len)
1625{
1626	struct socket *sock;
1627	struct sockaddr_storage address;
1628	int len, err, fput_needed;
1629
1630	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631	if (sock != NULL) {
1632		err = security_socket_getpeername(sock);
1633		if (err) {
1634			fput_light(sock->file, fput_needed);
1635			return err;
1636		}
1637
1638		err =
1639		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1640				       1);
1641		if (!err)
1642			err = move_addr_to_user(&address, len, usockaddr,
1643						usockaddr_len);
1644		fput_light(sock->file, fput_needed);
1645	}
1646	return err;
1647}
1648
 
 
 
 
 
 
1649/*
1650 *	Send a datagram to a given address. We move the address into kernel
1651 *	space and check the user space data area is readable before invoking
1652 *	the protocol.
1653 */
1654
1655SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1656		unsigned int, flags, struct sockaddr __user *, addr,
1657		int, addr_len)
1658{
1659	struct socket *sock;
1660	struct sockaddr_storage address;
1661	int err;
1662	struct msghdr msg;
1663	struct iovec iov;
1664	int fput_needed;
1665
1666	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1667	if (unlikely(err))
1668		return err;
1669	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670	if (!sock)
1671		goto out;
1672
1673	msg.msg_name = NULL;
1674	msg.msg_control = NULL;
1675	msg.msg_controllen = 0;
1676	msg.msg_namelen = 0;
1677	if (addr) {
1678		err = move_addr_to_kernel(addr, addr_len, &address);
1679		if (err < 0)
1680			goto out_put;
1681		msg.msg_name = (struct sockaddr *)&address;
1682		msg.msg_namelen = addr_len;
1683	}
1684	if (sock->file->f_flags & O_NONBLOCK)
1685		flags |= MSG_DONTWAIT;
1686	msg.msg_flags = flags;
1687	err = sock_sendmsg(sock, &msg);
1688
1689out_put:
1690	fput_light(sock->file, fput_needed);
1691out:
1692	return err;
1693}
1694
 
 
 
 
 
 
 
1695/*
1696 *	Send a datagram down a socket.
1697 */
1698
1699SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1700		unsigned int, flags)
1701{
1702	return sys_sendto(fd, buff, len, flags, NULL, 0);
1703}
1704
1705/*
1706 *	Receive a frame from the socket and optionally record the address of the
1707 *	sender. We verify the buffers are writable and if needed move the
1708 *	sender address from kernel to user space.
1709 */
1710
1711SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1712		unsigned int, flags, struct sockaddr __user *, addr,
1713		int __user *, addr_len)
1714{
1715	struct socket *sock;
1716	struct iovec iov;
1717	struct msghdr msg;
1718	struct sockaddr_storage address;
1719	int err, err2;
1720	int fput_needed;
1721
1722	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1723	if (unlikely(err))
1724		return err;
1725	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726	if (!sock)
1727		goto out;
1728
1729	msg.msg_control = NULL;
1730	msg.msg_controllen = 0;
1731	/* Save some cycles and don't copy the address if not needed */
1732	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1733	/* We assume all kernel code knows the size of sockaddr_storage */
1734	msg.msg_namelen = 0;
1735	msg.msg_iocb = NULL;
 
1736	if (sock->file->f_flags & O_NONBLOCK)
1737		flags |= MSG_DONTWAIT;
1738	err = sock_recvmsg(sock, &msg, flags);
1739
1740	if (err >= 0 && addr != NULL) {
1741		err2 = move_addr_to_user(&address,
1742					 msg.msg_namelen, addr, addr_len);
1743		if (err2 < 0)
1744			err = err2;
1745	}
1746
1747	fput_light(sock->file, fput_needed);
1748out:
1749	return err;
1750}
1751
 
 
 
 
 
 
 
1752/*
1753 *	Receive a datagram from a socket.
1754 */
1755
1756SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1757		unsigned int, flags)
1758{
1759	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
1760}
1761
1762/*
1763 *	Set a socket option. Because we don't know the option lengths we have
1764 *	to pass the user mode parameter for the protocols to sort out.
1765 */
1766
1767SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1768		char __user *, optval, int, optlen)
1769{
 
 
1770	int err, fput_needed;
1771	struct socket *sock;
1772
1773	if (optlen < 0)
1774		return -EINVAL;
1775
1776	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777	if (sock != NULL) {
1778		err = security_socket_setsockopt(sock, level, optname);
1779		if (err)
1780			goto out_put;
 
 
1781
1782		if (level == SOL_SOCKET)
1783			err =
1784			    sock_setsockopt(sock, level, optname, optval,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785					    optlen);
1786		else
1787			err =
1788			    sock->ops->setsockopt(sock, level, optname, optval,
1789						  optlen);
1790out_put:
1791		fput_light(sock->file, fput_needed);
1792	}
1793	return err;
1794}
1795
 
 
 
 
 
 
1796/*
1797 *	Get a socket option. Because we don't know the option lengths we have
1798 *	to pass a user mode parameter for the protocols to sort out.
1799 */
1800
1801SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1802		char __user *, optval, int __user *, optlen)
1803{
1804	int err, fput_needed;
1805	struct socket *sock;
 
1806
1807	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808	if (sock != NULL) {
1809		err = security_socket_getsockopt(sock, level, optname);
1810		if (err)
1811			goto out_put;
1812
1813		if (level == SOL_SOCKET)
1814			err =
1815			    sock_getsockopt(sock, level, optname, optval,
 
 
 
 
 
 
 
 
 
 
1816					    optlen);
1817		else
1818			err =
1819			    sock->ops->getsockopt(sock, level, optname, optval,
1820						  optlen);
 
1821out_put:
1822		fput_light(sock->file, fput_needed);
1823	}
1824	return err;
1825}
1826
 
 
 
 
 
 
1827/*
1828 *	Shutdown a socket.
1829 */
1830
1831SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1832{
1833	int err, fput_needed;
1834	struct socket *sock;
1835
1836	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1837	if (sock != NULL) {
1838		err = security_socket_shutdown(sock, how);
1839		if (!err)
1840			err = sock->ops->shutdown(sock, how);
1841		fput_light(sock->file, fput_needed);
1842	}
1843	return err;
1844}
1845
 
 
 
 
 
1846/* A couple of helpful macros for getting the address of the 32/64 bit
1847 * fields which are the same type (int / unsigned) on our platforms.
1848 */
1849#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1850#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1851#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1852
1853struct used_address {
1854	struct sockaddr_storage name;
1855	unsigned int name_len;
1856};
1857
1858static int copy_msghdr_from_user(struct msghdr *kmsg,
1859				 struct user_msghdr __user *umsg,
1860				 struct sockaddr __user **save_addr,
1861				 struct iovec **iov)
1862{
1863	struct sockaddr __user *uaddr;
1864	struct iovec __user *uiov;
1865	size_t nr_segs;
1866	ssize_t err;
1867
1868	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1869	    __get_user(uaddr, &umsg->msg_name) ||
1870	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1871	    __get_user(uiov, &umsg->msg_iov) ||
1872	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1873	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1874	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1875	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1876		return -EFAULT;
1877
1878	if (!uaddr)
 
 
 
 
 
 
1879		kmsg->msg_namelen = 0;
1880
1881	if (kmsg->msg_namelen < 0)
1882		return -EINVAL;
1883
1884	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1885		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1886
1887	if (save_addr)
1888		*save_addr = uaddr;
1889
1890	if (uaddr && kmsg->msg_namelen) {
1891		if (!save_addr) {
1892			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
 
1893						  kmsg->msg_name);
1894			if (err < 0)
1895				return err;
1896		}
1897	} else {
1898		kmsg->msg_name = NULL;
1899		kmsg->msg_namelen = 0;
1900	}
1901
1902	if (nr_segs > UIO_MAXIOV)
1903		return -EMSGSIZE;
1904
1905	kmsg->msg_iocb = NULL;
 
 
 
 
1906
1907	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908			    UIO_FASTIOV, iov, &kmsg->msg_iter);
 
1909}
1910
1911static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1912			 struct msghdr *msg_sys, unsigned int flags,
1913			 struct used_address *used_address,
1914			 unsigned int allowed_msghdr_flags)
1915{
1916	struct compat_msghdr __user *msg_compat =
1917	    (struct compat_msghdr __user *)msg;
1918	struct sockaddr_storage address;
1919	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1920	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1921				__aligned(sizeof(__kernel_size_t));
1922	/* 20 is size of ipv6_pktinfo */
1923	unsigned char *ctl_buf = ctl;
1924	int ctl_len;
1925	ssize_t err;
1926
1927	msg_sys->msg_name = &address;
1928
1929	if (MSG_CMSG_COMPAT & flags)
1930		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1931	else
1932		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1933	if (err < 0)
1934		return err;
1935
1936	err = -ENOBUFS;
1937
1938	if (msg_sys->msg_controllen > INT_MAX)
1939		goto out_freeiov;
1940	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1941	ctl_len = msg_sys->msg_controllen;
1942	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1943		err =
1944		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1945						     sizeof(ctl));
1946		if (err)
1947			goto out_freeiov;
1948		ctl_buf = msg_sys->msg_control;
1949		ctl_len = msg_sys->msg_controllen;
1950	} else if (ctl_len) {
 
 
1951		if (ctl_len > sizeof(ctl)) {
1952			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953			if (ctl_buf == NULL)
1954				goto out_freeiov;
1955		}
1956		err = -EFAULT;
1957		/*
1958		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960		 * checking falls down on this.
1961		 */
1962		if (copy_from_user(ctl_buf,
1963				   (void __user __force *)msg_sys->msg_control,
1964				   ctl_len))
1965			goto out_freectl;
1966		msg_sys->msg_control = ctl_buf;
 
1967	}
1968	msg_sys->msg_flags = flags;
1969
1970	if (sock->file->f_flags & O_NONBLOCK)
1971		msg_sys->msg_flags |= MSG_DONTWAIT;
1972	/*
1973	 * If this is sendmmsg() and current destination address is same as
1974	 * previously succeeded address, omit asking LSM's decision.
1975	 * used_address->name_len is initialized to UINT_MAX so that the first
1976	 * destination address never matches.
1977	 */
1978	if (used_address && msg_sys->msg_name &&
1979	    used_address->name_len == msg_sys->msg_namelen &&
1980	    !memcmp(&used_address->name, msg_sys->msg_name,
1981		    used_address->name_len)) {
1982		err = sock_sendmsg_nosec(sock, msg_sys);
1983		goto out_freectl;
1984	}
1985	err = sock_sendmsg(sock, msg_sys);
1986	/*
1987	 * If this is sendmmsg() and sending to current destination address was
1988	 * successful, remember it.
1989	 */
1990	if (used_address && err >= 0) {
1991		used_address->name_len = msg_sys->msg_namelen;
1992		if (msg_sys->msg_name)
1993			memcpy(&used_address->name, msg_sys->msg_name,
1994			       used_address->name_len);
1995	}
1996
1997out_freectl:
1998	if (ctl_buf != ctl)
1999		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2000out_freeiov:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001	kfree(iov);
2002	return err;
2003}
2004
2005/*
2006 *	BSD sendmsg interface
2007 */
 
 
 
 
 
 
 
 
 
2008
2009long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
 
2010{
2011	int fput_needed, err;
2012	struct msghdr msg_sys;
2013	struct socket *sock;
2014
 
 
 
2015	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016	if (!sock)
2017		goto out;
2018
2019	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2020
2021	fput_light(sock->file, fput_needed);
2022out:
2023	return err;
2024}
2025
2026SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2027{
2028	if (flags & MSG_CMSG_COMPAT)
2029		return -EINVAL;
2030	return __sys_sendmsg(fd, msg, flags);
2031}
2032
2033/*
2034 *	Linux sendmmsg interface
2035 */
2036
2037int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038		   unsigned int flags)
2039{
2040	int fput_needed, err, datagrams;
2041	struct socket *sock;
2042	struct mmsghdr __user *entry;
2043	struct compat_mmsghdr __user *compat_entry;
2044	struct msghdr msg_sys;
2045	struct used_address used_address;
2046	unsigned int oflags = flags;
2047
 
 
 
2048	if (vlen > UIO_MAXIOV)
2049		vlen = UIO_MAXIOV;
2050
2051	datagrams = 0;
2052
2053	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054	if (!sock)
2055		return err;
2056
2057	used_address.name_len = UINT_MAX;
2058	entry = mmsg;
2059	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2060	err = 0;
2061	flags |= MSG_BATCH;
2062
2063	while (datagrams < vlen) {
2064		if (datagrams == vlen - 1)
2065			flags = oflags;
2066
2067		if (MSG_CMSG_COMPAT & flags) {
2068			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069					     &msg_sys, flags, &used_address, MSG_EOR);
2070			if (err < 0)
2071				break;
2072			err = __put_user(err, &compat_entry->msg_len);
2073			++compat_entry;
2074		} else {
2075			err = ___sys_sendmsg(sock,
2076					     (struct user_msghdr __user *)entry,
2077					     &msg_sys, flags, &used_address, MSG_EOR);
2078			if (err < 0)
2079				break;
2080			err = put_user(err, &entry->msg_len);
2081			++entry;
2082		}
2083
2084		if (err)
2085			break;
2086		++datagrams;
2087		if (msg_data_left(&msg_sys))
2088			break;
2089		cond_resched();
2090	}
2091
2092	fput_light(sock->file, fput_needed);
2093
2094	/* We only return an error if no datagrams were able to be sent */
2095	if (datagrams != 0)
2096		return datagrams;
2097
2098	return err;
2099}
2100
2101SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102		unsigned int, vlen, unsigned int, flags)
2103{
2104	if (flags & MSG_CMSG_COMPAT)
2105		return -EINVAL;
2106	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2107}
2108
2109static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110			 struct msghdr *msg_sys, unsigned int flags, int nosec)
 
 
2111{
2112	struct compat_msghdr __user *msg_compat =
2113	    (struct compat_msghdr __user *)msg;
2114	struct iovec iovstack[UIO_FASTIOV];
2115	struct iovec *iov = iovstack;
2116	unsigned long cmsg_ptr;
2117	int len;
2118	ssize_t err;
2119
2120	/* kernel mode address */
2121	struct sockaddr_storage addr;
2122
2123	/* user mode address pointers */
2124	struct sockaddr __user *uaddr;
2125	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2126
2127	msg_sys->msg_name = &addr;
2128
2129	if (MSG_CMSG_COMPAT & flags)
2130		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2131	else
2132		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
 
2133	if (err < 0)
2134		return err;
2135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2136	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2138
2139	/* We assume all kernel code knows the size of sockaddr_storage */
2140	msg_sys->msg_namelen = 0;
2141
2142	if (sock->file->f_flags & O_NONBLOCK)
2143		flags |= MSG_DONTWAIT;
2144	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
 
 
 
 
 
2145	if (err < 0)
2146		goto out_freeiov;
2147	len = err;
2148
2149	if (uaddr != NULL) {
2150		err = move_addr_to_user(&addr,
2151					msg_sys->msg_namelen, uaddr,
2152					uaddr_len);
2153		if (err < 0)
2154			goto out_freeiov;
2155	}
2156	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2157			 COMPAT_FLAGS(msg));
2158	if (err)
2159		goto out_freeiov;
2160	if (MSG_CMSG_COMPAT & flags)
2161		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162				 &msg_compat->msg_controllen);
2163	else
2164		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165				 &msg->msg_controllen);
2166	if (err)
2167		goto out_freeiov;
2168	err = len;
 
 
 
 
 
 
 
 
 
 
 
2169
2170out_freeiov:
 
 
 
 
2171	kfree(iov);
2172	return err;
2173}
2174
2175/*
2176 *	BSD recvmsg interface
2177 */
2178
2179long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
 
 
 
 
 
 
 
 
 
 
 
 
2180{
2181	int fput_needed, err;
2182	struct msghdr msg_sys;
2183	struct socket *sock;
2184
 
 
 
2185	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186	if (!sock)
2187		goto out;
2188
2189	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2190
2191	fput_light(sock->file, fput_needed);
2192out:
2193	return err;
2194}
2195
2196SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197		unsigned int, flags)
2198{
2199	if (flags & MSG_CMSG_COMPAT)
2200		return -EINVAL;
2201	return __sys_recvmsg(fd, msg, flags);
2202}
2203
2204/*
2205 *     Linux recvmmsg interface
2206 */
2207
2208int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209		   unsigned int flags, struct timespec *timeout)
 
2210{
2211	int fput_needed, err, datagrams;
2212	struct socket *sock;
2213	struct mmsghdr __user *entry;
2214	struct compat_mmsghdr __user *compat_entry;
2215	struct msghdr msg_sys;
2216	struct timespec64 end_time;
2217	struct timespec64 timeout64;
2218
2219	if (timeout &&
2220	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2221				    timeout->tv_nsec))
2222		return -EINVAL;
2223
2224	datagrams = 0;
2225
2226	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227	if (!sock)
2228		return err;
2229
2230	err = sock_error(sock->sk);
2231	if (err) {
2232		datagrams = err;
2233		goto out_put;
 
 
2234	}
2235
2236	entry = mmsg;
2237	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2238
2239	while (datagrams < vlen) {
2240		/*
2241		 * No need to ask LSM for more than the first datagram.
2242		 */
2243		if (MSG_CMSG_COMPAT & flags) {
2244			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2245					     &msg_sys, flags & ~MSG_WAITFORONE,
2246					     datagrams);
2247			if (err < 0)
2248				break;
2249			err = __put_user(err, &compat_entry->msg_len);
2250			++compat_entry;
2251		} else {
2252			err = ___sys_recvmsg(sock,
2253					     (struct user_msghdr __user *)entry,
2254					     &msg_sys, flags & ~MSG_WAITFORONE,
2255					     datagrams);
2256			if (err < 0)
2257				break;
2258			err = put_user(err, &entry->msg_len);
2259			++entry;
2260		}
2261
2262		if (err)
2263			break;
2264		++datagrams;
2265
2266		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2267		if (flags & MSG_WAITFORONE)
2268			flags |= MSG_DONTWAIT;
2269
2270		if (timeout) {
2271			ktime_get_ts64(&timeout64);
2272			*timeout = timespec64_to_timespec(
2273					timespec64_sub(end_time, timeout64));
2274			if (timeout->tv_sec < 0) {
2275				timeout->tv_sec = timeout->tv_nsec = 0;
2276				break;
2277			}
2278
2279			/* Timeout, return less than vlen datagrams */
2280			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2281				break;
2282		}
2283
2284		/* Out of band data, return right away */
2285		if (msg_sys.msg_flags & MSG_OOB)
2286			break;
2287		cond_resched();
2288	}
2289
2290	if (err == 0)
2291		goto out_put;
2292
2293	if (datagrams == 0) {
2294		datagrams = err;
2295		goto out_put;
2296	}
2297
2298	/*
2299	 * We may return less entries than requested (vlen) if the
2300	 * sock is non block and there aren't enough datagrams...
2301	 */
2302	if (err != -EAGAIN) {
2303		/*
2304		 * ... or  if recvmsg returns an error after we
2305		 * received some datagrams, where we record the
2306		 * error to return on the next call or if the
2307		 * app asks about it using getsockopt(SO_ERROR).
2308		 */
2309		sock->sk->sk_err = -err;
2310	}
2311out_put:
2312	fput_light(sock->file, fput_needed);
2313
2314	return datagrams;
2315}
2316
2317SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2318		unsigned int, vlen, unsigned int, flags,
2319		struct timespec __user *, timeout)
 
2320{
2321	int datagrams;
2322	struct timespec timeout_sys;
2323
2324	if (flags & MSG_CMSG_COMPAT)
2325		return -EINVAL;
2326
2327	if (!timeout)
2328		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2329
2330	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2331		return -EFAULT;
2332
2333	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
 
2334
2335	if (datagrams > 0 &&
2336	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
 
 
 
 
 
 
 
2337		datagrams = -EFAULT;
2338
2339	return datagrams;
2340}
2341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2342#ifdef __ARCH_WANT_SYS_SOCKETCALL
2343/* Argument list sizes for sys_socketcall */
2344#define AL(x) ((x) * sizeof(unsigned long))
2345static const unsigned char nargs[21] = {
2346	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2347	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2348	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2349	AL(4), AL(5), AL(4)
2350};
2351
2352#undef AL
2353
2354/*
2355 *	System call vectors.
2356 *
2357 *	Argument checking cleaned up. Saved 20% in size.
2358 *  This function doesn't need to set the kernel lock because
2359 *  it is set by the callees.
2360 */
2361
2362SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2363{
2364	unsigned long a[AUDITSC_ARGS];
2365	unsigned long a0, a1;
2366	int err;
2367	unsigned int len;
2368
2369	if (call < 1 || call > SYS_SENDMMSG)
2370		return -EINVAL;
 
2371
2372	len = nargs[call];
2373	if (len > sizeof(a))
2374		return -EINVAL;
2375
2376	/* copy_from_user should be SMP safe. */
2377	if (copy_from_user(a, args, len))
2378		return -EFAULT;
2379
2380	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2381	if (err)
2382		return err;
2383
2384	a0 = a[0];
2385	a1 = a[1];
2386
2387	switch (call) {
2388	case SYS_SOCKET:
2389		err = sys_socket(a0, a1, a[2]);
2390		break;
2391	case SYS_BIND:
2392		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2393		break;
2394	case SYS_CONNECT:
2395		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2396		break;
2397	case SYS_LISTEN:
2398		err = sys_listen(a0, a1);
2399		break;
2400	case SYS_ACCEPT:
2401		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2402				  (int __user *)a[2], 0);
2403		break;
2404	case SYS_GETSOCKNAME:
2405		err =
2406		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2407				    (int __user *)a[2]);
2408		break;
2409	case SYS_GETPEERNAME:
2410		err =
2411		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2412				    (int __user *)a[2]);
2413		break;
2414	case SYS_SOCKETPAIR:
2415		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2416		break;
2417	case SYS_SEND:
2418		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
 
2419		break;
2420	case SYS_SENDTO:
2421		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2422				 (struct sockaddr __user *)a[4], a[5]);
2423		break;
2424	case SYS_RECV:
2425		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
 
2426		break;
2427	case SYS_RECVFROM:
2428		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2429				   (struct sockaddr __user *)a[4],
2430				   (int __user *)a[5]);
2431		break;
2432	case SYS_SHUTDOWN:
2433		err = sys_shutdown(a0, a1);
2434		break;
2435	case SYS_SETSOCKOPT:
2436		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
 
2437		break;
2438	case SYS_GETSOCKOPT:
2439		err =
2440		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2441				   (int __user *)a[4]);
2442		break;
2443	case SYS_SENDMSG:
2444		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
 
2445		break;
2446	case SYS_SENDMMSG:
2447		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
 
2448		break;
2449	case SYS_RECVMSG:
2450		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
 
2451		break;
2452	case SYS_RECVMMSG:
2453		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2454				   (struct timespec __user *)a[4]);
 
 
 
 
 
 
 
2455		break;
2456	case SYS_ACCEPT4:
2457		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2458				  (int __user *)a[2], a[3]);
2459		break;
2460	default:
2461		err = -EINVAL;
2462		break;
2463	}
2464	return err;
2465}
2466
2467#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2468
2469/**
2470 *	sock_register - add a socket protocol handler
2471 *	@ops: description of protocol
2472 *
2473 *	This function is called by a protocol handler that wants to
2474 *	advertise its address family, and have it linked into the
2475 *	socket interface. The value ops->family corresponds to the
2476 *	socket system call protocol family.
2477 */
2478int sock_register(const struct net_proto_family *ops)
2479{
2480	int err;
2481
2482	if (ops->family >= NPROTO) {
2483		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2484		return -ENOBUFS;
2485	}
2486
2487	spin_lock(&net_family_lock);
2488	if (rcu_dereference_protected(net_families[ops->family],
2489				      lockdep_is_held(&net_family_lock)))
2490		err = -EEXIST;
2491	else {
2492		rcu_assign_pointer(net_families[ops->family], ops);
2493		err = 0;
2494	}
2495	spin_unlock(&net_family_lock);
2496
2497	pr_info("NET: Registered protocol family %d\n", ops->family);
2498	return err;
2499}
2500EXPORT_SYMBOL(sock_register);
2501
2502/**
2503 *	sock_unregister - remove a protocol handler
2504 *	@family: protocol family to remove
2505 *
2506 *	This function is called by a protocol handler that wants to
2507 *	remove its address family, and have it unlinked from the
2508 *	new socket creation.
2509 *
2510 *	If protocol handler is a module, then it can use module reference
2511 *	counts to protect against new references. If protocol handler is not
2512 *	a module then it needs to provide its own protection in
2513 *	the ops->create routine.
2514 */
2515void sock_unregister(int family)
2516{
2517	BUG_ON(family < 0 || family >= NPROTO);
2518
2519	spin_lock(&net_family_lock);
2520	RCU_INIT_POINTER(net_families[family], NULL);
2521	spin_unlock(&net_family_lock);
2522
2523	synchronize_rcu();
2524
2525	pr_info("NET: Unregistered protocol family %d\n", family);
2526}
2527EXPORT_SYMBOL(sock_unregister);
2528
 
 
 
 
 
2529static int __init sock_init(void)
2530{
2531	int err;
2532	/*
2533	 *      Initialize the network sysctl infrastructure.
2534	 */
2535	err = net_sysctl_init();
2536	if (err)
2537		goto out;
2538
2539	/*
2540	 *      Initialize skbuff SLAB cache
2541	 */
2542	skb_init();
2543
2544	/*
2545	 *      Initialize the protocols module.
2546	 */
2547
2548	init_inodecache();
2549
2550	err = register_filesystem(&sock_fs_type);
2551	if (err)
2552		goto out_fs;
2553	sock_mnt = kern_mount(&sock_fs_type);
2554	if (IS_ERR(sock_mnt)) {
2555		err = PTR_ERR(sock_mnt);
2556		goto out_mount;
2557	}
2558
2559	/* The real protocol initialization is performed in later initcalls.
2560	 */
2561
2562#ifdef CONFIG_NETFILTER
2563	err = netfilter_init();
2564	if (err)
2565		goto out;
2566#endif
2567
2568	ptp_classifier_init();
2569
2570out:
2571	return err;
2572
2573out_mount:
2574	unregister_filesystem(&sock_fs_type);
2575out_fs:
2576	goto out;
2577}
2578
2579core_initcall(sock_init);	/* early initcall */
2580
2581#ifdef CONFIG_PROC_FS
2582void socket_seq_show(struct seq_file *seq)
2583{
2584	int cpu;
2585	int counter = 0;
2586
2587	for_each_possible_cpu(cpu)
2588	    counter += per_cpu(sockets_in_use, cpu);
2589
2590	/* It can be negative, by the way. 8) */
2591	if (counter < 0)
2592		counter = 0;
2593
2594	seq_printf(seq, "sockets: used %d\n", counter);
2595}
2596#endif				/* CONFIG_PROC_FS */
2597
2598#ifdef CONFIG_COMPAT
2599static int do_siocgstamp(struct net *net, struct socket *sock,
2600			 unsigned int cmd, void __user *up)
2601{
2602	mm_segment_t old_fs = get_fs();
2603	struct timeval ktv;
2604	int err;
2605
2606	set_fs(KERNEL_DS);
2607	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2608	set_fs(old_fs);
2609	if (!err)
2610		err = compat_put_timeval(&ktv, up);
2611
2612	return err;
2613}
2614
2615static int do_siocgstampns(struct net *net, struct socket *sock,
2616			   unsigned int cmd, void __user *up)
2617{
2618	mm_segment_t old_fs = get_fs();
2619	struct timespec kts;
2620	int err;
2621
2622	set_fs(KERNEL_DS);
2623	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2624	set_fs(old_fs);
2625	if (!err)
2626		err = compat_put_timespec(&kts, up);
2627
2628	return err;
2629}
2630
2631static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2632{
2633	struct ifreq __user *uifr;
2634	int err;
2635
2636	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2637	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2638		return -EFAULT;
2639
2640	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2641	if (err)
2642		return err;
2643
2644	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2645		return -EFAULT;
2646
2647	return 0;
2648}
2649
2650static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2651{
2652	struct compat_ifconf ifc32;
2653	struct ifconf ifc;
2654	struct ifconf __user *uifc;
2655	struct compat_ifreq __user *ifr32;
2656	struct ifreq __user *ifr;
2657	unsigned int i, j;
2658	int err;
2659
2660	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2661		return -EFAULT;
2662
2663	memset(&ifc, 0, sizeof(ifc));
2664	if (ifc32.ifcbuf == 0) {
2665		ifc32.ifc_len = 0;
2666		ifc.ifc_len = 0;
2667		ifc.ifc_req = NULL;
2668		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2669	} else {
2670		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2671			sizeof(struct ifreq);
2672		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2673		ifc.ifc_len = len;
2674		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2675		ifr32 = compat_ptr(ifc32.ifcbuf);
2676		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2677			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2678				return -EFAULT;
2679			ifr++;
2680			ifr32++;
2681		}
2682	}
2683	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2684		return -EFAULT;
2685
2686	err = dev_ioctl(net, SIOCGIFCONF, uifc);
 
 
2687	if (err)
2688		return err;
2689
2690	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2691		return -EFAULT;
2692
2693	ifr = ifc.ifc_req;
2694	ifr32 = compat_ptr(ifc32.ifcbuf);
2695	for (i = 0, j = 0;
2696	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2697	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2698		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2699			return -EFAULT;
2700		ifr32++;
2701		ifr++;
2702	}
2703
2704	if (ifc32.ifcbuf == 0) {
2705		/* Translate from 64-bit structure multiple to
2706		 * a 32-bit one.
2707		 */
2708		i = ifc.ifc_len;
2709		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2710		ifc32.ifc_len = i;
2711	} else {
2712		ifc32.ifc_len = i;
2713	}
2714	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2715		return -EFAULT;
2716
2717	return 0;
2718}
2719
2720static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2721{
2722	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2723	bool convert_in = false, convert_out = false;
2724	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2725	struct ethtool_rxnfc __user *rxnfc;
2726	struct ifreq __user *ifr;
2727	u32 rule_cnt = 0, actual_rule_cnt;
2728	u32 ethcmd;
2729	u32 data;
2730	int ret;
2731
2732	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2733		return -EFAULT;
2734
2735	compat_rxnfc = compat_ptr(data);
2736
2737	if (get_user(ethcmd, &compat_rxnfc->cmd))
2738		return -EFAULT;
2739
2740	/* Most ethtool structures are defined without padding.
2741	 * Unfortunately struct ethtool_rxnfc is an exception.
2742	 */
2743	switch (ethcmd) {
2744	default:
2745		break;
2746	case ETHTOOL_GRXCLSRLALL:
2747		/* Buffer size is variable */
2748		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2749			return -EFAULT;
2750		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2751			return -ENOMEM;
2752		buf_size += rule_cnt * sizeof(u32);
2753		/* fall through */
2754	case ETHTOOL_GRXRINGS:
2755	case ETHTOOL_GRXCLSRLCNT:
2756	case ETHTOOL_GRXCLSRULE:
2757	case ETHTOOL_SRXCLSRLINS:
2758		convert_out = true;
2759		/* fall through */
2760	case ETHTOOL_SRXCLSRLDEL:
2761		buf_size += sizeof(struct ethtool_rxnfc);
2762		convert_in = true;
 
2763		break;
2764	}
2765
2766	ifr = compat_alloc_user_space(buf_size);
2767	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2768
2769	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2770		return -EFAULT;
2771
2772	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2773		     &ifr->ifr_ifru.ifru_data))
2774		return -EFAULT;
2775
2776	if (convert_in) {
2777		/* We expect there to be holes between fs.m_ext and
2778		 * fs.ring_cookie and at the end of fs, but nowhere else.
2779		 */
2780		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2781			     sizeof(compat_rxnfc->fs.m_ext) !=
2782			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2783			     sizeof(rxnfc->fs.m_ext));
2784		BUILD_BUG_ON(
2785			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2786			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2787			offsetof(struct ethtool_rxnfc, fs.location) -
2788			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2789
2790		if (copy_in_user(rxnfc, compat_rxnfc,
2791				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2792				 (void __user *)rxnfc) ||
2793		    copy_in_user(&rxnfc->fs.ring_cookie,
2794				 &compat_rxnfc->fs.ring_cookie,
2795				 (void __user *)(&rxnfc->fs.location + 1) -
2796				 (void __user *)&rxnfc->fs.ring_cookie) ||
2797		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2798				 sizeof(rxnfc->rule_cnt)))
 
 
 
 
 
2799			return -EFAULT;
2800	}
2801
2802	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2803	if (ret)
2804		return ret;
2805
2806	if (convert_out) {
2807		if (copy_in_user(compat_rxnfc, rxnfc,
2808				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2809				 (const void __user *)rxnfc) ||
2810		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2811				 &rxnfc->fs.ring_cookie,
2812				 (const void __user *)(&rxnfc->fs.location + 1) -
2813				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2814		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2815				 sizeof(rxnfc->rule_cnt)))
2816			return -EFAULT;
2817
2818		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2819			/* As an optimisation, we only copy the actual
2820			 * number of rules that the underlying
2821			 * function returned.  Since Mallory might
2822			 * change the rule count in user memory, we
2823			 * check that it is less than the rule count
2824			 * originally given (as the user buffer size),
2825			 * which has been range-checked.
2826			 */
2827			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2828				return -EFAULT;
2829			if (actual_rule_cnt < rule_cnt)
2830				rule_cnt = actual_rule_cnt;
2831			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2832					 &rxnfc->rule_locs[0],
2833					 rule_cnt * sizeof(u32)))
2834				return -EFAULT;
2835		}
2836	}
2837
2838	return 0;
2839}
2840
2841static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2842{
2843	void __user *uptr;
2844	compat_uptr_t uptr32;
2845	struct ifreq __user *uifr;
 
 
2846
2847	uifr = compat_alloc_user_space(sizeof(*uifr));
2848	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2849		return -EFAULT;
2850
2851	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2852		return -EFAULT;
2853
2854	uptr = compat_ptr(uptr32);
2855
2856	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2857		return -EFAULT;
2858
2859	return dev_ioctl(net, SIOCWANDEV, uifr);
2860}
2861
2862static int bond_ioctl(struct net *net, unsigned int cmd,
2863			 struct compat_ifreq __user *ifr32)
2864{
2865	struct ifreq kifr;
2866	mm_segment_t old_fs;
2867	int err;
2868
2869	switch (cmd) {
2870	case SIOCBONDENSLAVE:
2871	case SIOCBONDRELEASE:
2872	case SIOCBONDSETHWADDR:
2873	case SIOCBONDCHANGEACTIVE:
2874		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2875			return -EFAULT;
2876
2877		old_fs = get_fs();
2878		set_fs(KERNEL_DS);
2879		err = dev_ioctl(net, cmd,
2880				(struct ifreq __user __force *) &kifr);
2881		set_fs(old_fs);
2882
2883		return err;
2884	default:
2885		return -ENOIOCTLCMD;
 
 
2886	}
 
2887}
2888
2889/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2890static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2891				 struct compat_ifreq __user *u_ifreq32)
2892{
2893	struct ifreq __user *u_ifreq64;
2894	char tmp_buf[IFNAMSIZ];
2895	void __user *data64;
2896	u32 data32;
2897
2898	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2899			   IFNAMSIZ))
2900		return -EFAULT;
2901	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2902		return -EFAULT;
2903	data64 = compat_ptr(data32);
2904
2905	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2906
2907	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2908			 IFNAMSIZ))
2909		return -EFAULT;
2910	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2911		return -EFAULT;
 
2912
2913	return dev_ioctl(net, cmd, u_ifreq64);
2914}
2915
2916static int dev_ifsioc(struct net *net, struct socket *sock,
2917			 unsigned int cmd, struct compat_ifreq __user *uifr32)
 
2918{
2919	struct ifreq __user *uifr;
2920	int err;
2921
 
 
 
 
 
 
 
 
 
 
2922	uifr = compat_alloc_user_space(sizeof(*uifr));
2923	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2924		return -EFAULT;
2925
2926	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2927
2928	if (!err) {
2929		switch (cmd) {
2930		case SIOCGIFFLAGS:
2931		case SIOCGIFMETRIC:
2932		case SIOCGIFMTU:
2933		case SIOCGIFMEM:
2934		case SIOCGIFHWADDR:
2935		case SIOCGIFINDEX:
2936		case SIOCGIFADDR:
2937		case SIOCGIFBRDADDR:
2938		case SIOCGIFDSTADDR:
2939		case SIOCGIFNETMASK:
2940		case SIOCGIFPFLAGS:
2941		case SIOCGIFTXQLEN:
2942		case SIOCGMIIPHY:
2943		case SIOCGMIIREG:
 
2944			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2945				err = -EFAULT;
2946			break;
2947		}
2948	}
2949	return err;
2950}
2951
2952static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2953			struct compat_ifreq __user *uifr32)
2954{
2955	struct ifreq ifr;
2956	struct compat_ifmap __user *uifmap32;
2957	mm_segment_t old_fs;
2958	int err;
2959
2960	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2961	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2962	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2963	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2964	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2965	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2966	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2967	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2968	if (err)
2969		return -EFAULT;
2970
2971	old_fs = get_fs();
2972	set_fs(KERNEL_DS);
2973	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2974	set_fs(old_fs);
2975
2976	if (cmd == SIOCGIFMAP && !err) {
2977		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2978		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2982		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2983		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2984		if (err)
2985			err = -EFAULT;
2986	}
2987	return err;
2988}
2989
2990struct rtentry32 {
2991	u32		rt_pad1;
2992	struct sockaddr rt_dst;         /* target address               */
2993	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2994	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2995	unsigned short	rt_flags;
2996	short		rt_pad2;
2997	u32		rt_pad3;
2998	unsigned char	rt_tos;
2999	unsigned char	rt_class;
3000	short		rt_pad4;
3001	short		rt_metric;      /* +1 for binary compatibility! */
3002	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3003	u32		rt_mtu;         /* per route MTU/Window         */
3004	u32		rt_window;      /* Window clamping              */
3005	unsigned short  rt_irtt;        /* Initial RTT                  */
3006};
3007
3008struct in6_rtmsg32 {
3009	struct in6_addr		rtmsg_dst;
3010	struct in6_addr		rtmsg_src;
3011	struct in6_addr		rtmsg_gateway;
3012	u32			rtmsg_type;
3013	u16			rtmsg_dst_len;
3014	u16			rtmsg_src_len;
3015	u32			rtmsg_metric;
3016	u32			rtmsg_info;
3017	u32			rtmsg_flags;
3018	s32			rtmsg_ifindex;
3019};
3020
3021static int routing_ioctl(struct net *net, struct socket *sock,
3022			 unsigned int cmd, void __user *argp)
3023{
3024	int ret;
3025	void *r = NULL;
3026	struct in6_rtmsg r6;
3027	struct rtentry r4;
3028	char devname[16];
3029	u32 rtdev;
3030	mm_segment_t old_fs = get_fs();
3031
3032	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3033		struct in6_rtmsg32 __user *ur6 = argp;
3034		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3035			3 * sizeof(struct in6_addr));
3036		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3037		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3038		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3039		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3040		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3041		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3042		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3043
3044		r = (void *) &r6;
3045	} else { /* ipv4 */
3046		struct rtentry32 __user *ur4 = argp;
3047		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3048					3 * sizeof(struct sockaddr));
3049		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3050		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3051		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3052		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3053		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3054		ret |= get_user(rtdev, &(ur4->rt_dev));
3055		if (rtdev) {
3056			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3057			r4.rt_dev = (char __user __force *)devname;
3058			devname[15] = 0;
3059		} else
3060			r4.rt_dev = NULL;
3061
3062		r = (void *) &r4;
3063	}
3064
3065	if (ret) {
3066		ret = -EFAULT;
3067		goto out;
3068	}
3069
3070	set_fs(KERNEL_DS);
3071	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3072	set_fs(old_fs);
3073
3074out:
3075	return ret;
3076}
3077
3078/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3079 * for some operations; this forces use of the newer bridge-utils that
3080 * use compatible ioctls
3081 */
3082static int old_bridge_ioctl(compat_ulong_t __user *argp)
3083{
3084	compat_ulong_t tmp;
3085
3086	if (get_user(tmp, argp))
3087		return -EFAULT;
3088	if (tmp == BRCTL_GET_VERSION)
3089		return BRCTL_VERSION + 1;
3090	return -EINVAL;
3091}
3092
3093static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3094			 unsigned int cmd, unsigned long arg)
3095{
3096	void __user *argp = compat_ptr(arg);
3097	struct sock *sk = sock->sk;
3098	struct net *net = sock_net(sk);
3099
3100	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3101		return compat_ifr_data_ioctl(net, cmd, argp);
3102
3103	switch (cmd) {
3104	case SIOCSIFBR:
3105	case SIOCGIFBR:
3106		return old_bridge_ioctl(argp);
3107	case SIOCGIFNAME:
3108		return dev_ifname32(net, argp);
3109	case SIOCGIFCONF:
3110		return dev_ifconf(net, argp);
3111	case SIOCETHTOOL:
3112		return ethtool_ioctl(net, argp);
3113	case SIOCWANDEV:
3114		return compat_siocwandev(net, argp);
3115	case SIOCGIFMAP:
3116	case SIOCSIFMAP:
3117		return compat_sioc_ifmap(net, cmd, argp);
3118	case SIOCBONDENSLAVE:
3119	case SIOCBONDRELEASE:
3120	case SIOCBONDSETHWADDR:
3121	case SIOCBONDCHANGEACTIVE:
3122		return bond_ioctl(net, cmd, argp);
3123	case SIOCADDRT:
3124	case SIOCDELRT:
3125		return routing_ioctl(net, sock, cmd, argp);
3126	case SIOCGSTAMP:
3127		return do_siocgstamp(net, sock, cmd, argp);
3128	case SIOCGSTAMPNS:
3129		return do_siocgstampns(net, sock, cmd, argp);
3130	case SIOCBONDSLAVEINFOQUERY:
3131	case SIOCBONDINFOQUERY:
3132	case SIOCSHWTSTAMP:
3133	case SIOCGHWTSTAMP:
3134		return compat_ifr_data_ioctl(net, cmd, argp);
3135
3136	case FIOSETOWN:
3137	case SIOCSPGRP:
3138	case FIOGETOWN:
3139	case SIOCGPGRP:
3140	case SIOCBRADDBR:
3141	case SIOCBRDELBR:
3142	case SIOCGIFVLAN:
3143	case SIOCSIFVLAN:
3144	case SIOCADDDLCI:
3145	case SIOCDELDLCI:
3146	case SIOCGSKNS:
 
 
3147		return sock_ioctl(file, cmd, arg);
3148
3149	case SIOCGIFFLAGS:
3150	case SIOCSIFFLAGS:
3151	case SIOCGIFMETRIC:
3152	case SIOCSIFMETRIC:
3153	case SIOCGIFMTU:
3154	case SIOCSIFMTU:
3155	case SIOCGIFMEM:
3156	case SIOCSIFMEM:
3157	case SIOCGIFHWADDR:
3158	case SIOCSIFHWADDR:
3159	case SIOCADDMULTI:
3160	case SIOCDELMULTI:
3161	case SIOCGIFINDEX:
3162	case SIOCGIFADDR:
3163	case SIOCSIFADDR:
3164	case SIOCSIFHWBROADCAST:
3165	case SIOCDIFADDR:
3166	case SIOCGIFBRDADDR:
3167	case SIOCSIFBRDADDR:
3168	case SIOCGIFDSTADDR:
3169	case SIOCSIFDSTADDR:
3170	case SIOCGIFNETMASK:
3171	case SIOCSIFNETMASK:
3172	case SIOCSIFPFLAGS:
3173	case SIOCGIFPFLAGS:
3174	case SIOCGIFTXQLEN:
3175	case SIOCSIFTXQLEN:
3176	case SIOCBRADDIF:
3177	case SIOCBRDELIF:
 
3178	case SIOCSIFNAME:
3179	case SIOCGMIIPHY:
3180	case SIOCGMIIREG:
3181	case SIOCSMIIREG:
3182		return dev_ifsioc(net, sock, cmd, argp);
 
 
 
 
3183
3184	case SIOCSARP:
3185	case SIOCGARP:
3186	case SIOCDARP:
 
 
3187	case SIOCATMARK:
3188		return sock_do_ioctl(net, sock, cmd, arg);
3189	}
3190
3191	return -ENOIOCTLCMD;
3192}
3193
3194static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3195			      unsigned long arg)
3196{
3197	struct socket *sock = file->private_data;
3198	int ret = -ENOIOCTLCMD;
3199	struct sock *sk;
3200	struct net *net;
3201
3202	sk = sock->sk;
3203	net = sock_net(sk);
3204
3205	if (sock->ops->compat_ioctl)
3206		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3207
3208	if (ret == -ENOIOCTLCMD &&
3209	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3210		ret = compat_wext_handle_ioctl(net, cmd, arg);
3211
3212	if (ret == -ENOIOCTLCMD)
3213		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3214
3215	return ret;
3216}
3217#endif
3218
 
 
 
 
 
 
 
 
 
3219int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3220{
3221	return sock->ops->bind(sock, addr, addrlen);
3222}
3223EXPORT_SYMBOL(kernel_bind);
3224
 
 
 
 
 
 
 
 
3225int kernel_listen(struct socket *sock, int backlog)
3226{
3227	return sock->ops->listen(sock, backlog);
3228}
3229EXPORT_SYMBOL(kernel_listen);
3230
 
 
 
 
 
 
 
 
 
 
 
3231int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3232{
3233	struct sock *sk = sock->sk;
3234	int err;
3235
3236	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3237			       newsock);
3238	if (err < 0)
3239		goto done;
3240
3241	err = sock->ops->accept(sock, *newsock, flags);
3242	if (err < 0) {
3243		sock_release(*newsock);
3244		*newsock = NULL;
3245		goto done;
3246	}
3247
3248	(*newsock)->ops = sock->ops;
3249	__module_get((*newsock)->ops->owner);
3250
3251done:
3252	return err;
3253}
3254EXPORT_SYMBOL(kernel_accept);
3255
 
 
 
 
 
 
 
 
 
 
 
 
 
3256int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3257		   int flags)
3258{
3259	return sock->ops->connect(sock, addr, addrlen, flags);
3260}
3261EXPORT_SYMBOL(kernel_connect);
3262
3263int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3264			 int *addrlen)
 
 
 
 
 
 
 
 
3265{
3266	return sock->ops->getname(sock, addr, addrlen, 0);
3267}
3268EXPORT_SYMBOL(kernel_getsockname);
3269
3270int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3271			 int *addrlen)
3272{
3273	return sock->ops->getname(sock, addr, addrlen, 1);
3274}
3275EXPORT_SYMBOL(kernel_getpeername);
 
 
3276
3277int kernel_getsockopt(struct socket *sock, int level, int optname,
3278			char *optval, int *optlen)
3279{
3280	mm_segment_t oldfs = get_fs();
3281	char __user *uoptval;
3282	int __user *uoptlen;
3283	int err;
3284
3285	uoptval = (char __user __force *) optval;
3286	uoptlen = (int __user __force *) optlen;
3287
3288	set_fs(KERNEL_DS);
3289	if (level == SOL_SOCKET)
3290		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291	else
3292		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293					    uoptlen);
3294	set_fs(oldfs);
3295	return err;
3296}
3297EXPORT_SYMBOL(kernel_getsockopt);
3298
3299int kernel_setsockopt(struct socket *sock, int level, int optname,
3300			char *optval, unsigned int optlen)
3301{
3302	mm_segment_t oldfs = get_fs();
3303	char __user *uoptval;
3304	int err;
3305
3306	uoptval = (char __user __force *) optval;
3307
3308	set_fs(KERNEL_DS);
3309	if (level == SOL_SOCKET)
3310		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311	else
3312		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313					    optlen);
3314	set_fs(oldfs);
3315	return err;
3316}
3317EXPORT_SYMBOL(kernel_setsockopt);
3318
3319int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320		    size_t size, int flags)
3321{
3322	if (sock->ops->sendpage)
 
 
3323		return sock->ops->sendpage(sock, page, offset, size, flags);
3324
3325	return sock_no_sendpage(sock, page, offset, size, flags);
3326}
3327EXPORT_SYMBOL(kernel_sendpage);
3328
3329int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
3330{
3331	mm_segment_t oldfs = get_fs();
3332	int err;
3333
3334	set_fs(KERNEL_DS);
3335	err = sock->ops->ioctl(sock, cmd, arg);
3336	set_fs(oldfs);
3337
3338	return err;
3339}
3340EXPORT_SYMBOL(kernel_sock_ioctl);
 
 
 
 
 
 
 
 
3341
3342int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343{
3344	return sock->ops->shutdown(sock, how);
3345}
3346EXPORT_SYMBOL(kernel_sock_shutdown);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET		An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:	@(#)socket.c	1.1.93	18/02/95
   6 *
   7 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   8 *		Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  13 *					shutdown()
  14 *		Alan Cox	:	verify_area() fixes
  15 *		Alan Cox	:	Removed DDI
  16 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  17 *		Alan Cox	:	Moved a load of checks to the very
  18 *					top level.
  19 *		Alan Cox	:	Move address structures to/from user
  20 *					mode above the protocol layers.
  21 *		Rob Janssen	:	Allow 0 length sends.
  22 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  23 *					tty drivers).
  24 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  25 *		Jeff Uphoff	:	Made max number of sockets command-line
  26 *					configurable.
  27 *		Matti Aarnio	:	Made the number of sockets dynamic,
  28 *					to be allocated when needed, and mr.
  29 *					Uphoff's max is used as max to be
  30 *					allowed to allocate.
  31 *		Linus		:	Argh. removed all the socket allocation
  32 *					altogether: it's in the inode now.
  33 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  34 *					for NetROM and future kernel nfsd type
  35 *					stuff.
  36 *		Alan Cox	:	sendmsg/recvmsg basics.
  37 *		Tom Dyas	:	Export net symbols.
  38 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  39 *		Alan Cox	:	Added thread locking to sys_* calls
  40 *					for sockets. May have errors at the
  41 *					moment.
  42 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  43 *		Andi Kleen	:	Some small cleanups, optimizations,
  44 *					and fixed a copy_from_user() bug.
  45 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  47 *					protocol-independent
  48 *
 
 
 
 
 
 
 
  49 *	This module is effectively the top level interface to the BSD socket
  50 *	paradigm.
  51 *
  52 *	Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/mm.h>
  56#include <linux/socket.h>
  57#include <linux/file.h>
  58#include <linux/net.h>
  59#include <linux/interrupt.h>
  60#include <linux/thread_info.h>
  61#include <linux/rcupdate.h>
  62#include <linux/netdevice.h>
  63#include <linux/proc_fs.h>
  64#include <linux/seq_file.h>
  65#include <linux/mutex.h>
  66#include <linux/if_bridge.h>
  67#include <linux/if_frad.h>
  68#include <linux/if_vlan.h>
  69#include <linux/ptp_classify.h>
  70#include <linux/init.h>
  71#include <linux/poll.h>
  72#include <linux/cache.h>
  73#include <linux/module.h>
  74#include <linux/highmem.h>
  75#include <linux/mount.h>
  76#include <linux/pseudo_fs.h>
  77#include <linux/security.h>
  78#include <linux/syscalls.h>
  79#include <linux/compat.h>
  80#include <linux/kmod.h>
  81#include <linux/audit.h>
  82#include <linux/wireless.h>
  83#include <linux/nsproxy.h>
  84#include <linux/magic.h>
  85#include <linux/slab.h>
  86#include <linux/xattr.h>
  87#include <linux/nospec.h>
  88#include <linux/indirect_call_wrapper.h>
  89
  90#include <linux/uaccess.h>
  91#include <asm/unistd.h>
  92
  93#include <net/compat.h>
  94#include <net/wext.h>
  95#include <net/cls_cgroup.h>
  96
  97#include <net/sock.h>
  98#include <linux/netfilter.h>
  99
 100#include <linux/if_tun.h>
 101#include <linux/ipv6_route.h>
 102#include <linux/route.h>
 103#include <linux/termios.h>
 104#include <linux/sockios.h>
 
 105#include <net/busy_poll.h>
 106#include <linux/errqueue.h>
 107
 108#ifdef CONFIG_NET_RX_BUSY_POLL
 109unsigned int sysctl_net_busy_read __read_mostly;
 110unsigned int sysctl_net_busy_poll __read_mostly;
 111#endif
 112
 113static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 114static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 115static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 116
 117static int sock_close(struct inode *inode, struct file *file);
 118static __poll_t sock_poll(struct file *file,
 119			      struct poll_table_struct *wait);
 120static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 121#ifdef CONFIG_COMPAT
 122static long compat_sock_ioctl(struct file *file,
 123			      unsigned int cmd, unsigned long arg);
 124#endif
 125static int sock_fasync(int fd, struct file *filp, int on);
 126static ssize_t sock_sendpage(struct file *file, struct page *page,
 127			     int offset, size_t size, loff_t *ppos, int more);
 128static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 129				struct pipe_inode_info *pipe, size_t len,
 130				unsigned int flags);
 131
 132#ifdef CONFIG_PROC_FS
 133static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 134{
 135	struct socket *sock = f->private_data;
 136
 137	if (sock->ops->show_fdinfo)
 138		sock->ops->show_fdinfo(m, sock);
 139}
 140#else
 141#define sock_show_fdinfo NULL
 142#endif
 143
 144/*
 145 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 146 *	in the operation structures but are done directly via the socketcall() multiplexor.
 147 */
 148
 149static const struct file_operations socket_file_ops = {
 150	.owner =	THIS_MODULE,
 151	.llseek =	no_llseek,
 152	.read_iter =	sock_read_iter,
 153	.write_iter =	sock_write_iter,
 154	.poll =		sock_poll,
 155	.unlocked_ioctl = sock_ioctl,
 156#ifdef CONFIG_COMPAT
 157	.compat_ioctl = compat_sock_ioctl,
 158#endif
 159	.mmap =		sock_mmap,
 160	.release =	sock_close,
 161	.fasync =	sock_fasync,
 162	.sendpage =	sock_sendpage,
 163	.splice_write = generic_splice_sendpage,
 164	.splice_read =	sock_splice_read,
 165	.show_fdinfo =	sock_show_fdinfo,
 166};
 167
 168/*
 169 *	The protocol list. Each protocol is registered in here.
 170 */
 171
 172static DEFINE_SPINLOCK(net_family_lock);
 173static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 174
 175/*
 
 
 
 
 
 
 176 * Support routines.
 177 * Move socket addresses back and forth across the kernel/user
 178 * divide and look after the messy bits.
 179 */
 180
 181/**
 182 *	move_addr_to_kernel	-	copy a socket address into kernel space
 183 *	@uaddr: Address in user space
 184 *	@kaddr: Address in kernel space
 185 *	@ulen: Length in user space
 186 *
 187 *	The address is copied into kernel space. If the provided address is
 188 *	too long an error code of -EINVAL is returned. If the copy gives
 189 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 190 */
 191
 192int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 193{
 194	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 195		return -EINVAL;
 196	if (ulen == 0)
 197		return 0;
 198	if (copy_from_user(kaddr, uaddr, ulen))
 199		return -EFAULT;
 200	return audit_sockaddr(ulen, kaddr);
 201}
 202
 203/**
 204 *	move_addr_to_user	-	copy an address to user space
 205 *	@kaddr: kernel space address
 206 *	@klen: length of address in kernel
 207 *	@uaddr: user space address
 208 *	@ulen: pointer to user length field
 209 *
 210 *	The value pointed to by ulen on entry is the buffer length available.
 211 *	This is overwritten with the buffer space used. -EINVAL is returned
 212 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 213 *	is returned if either the buffer or the length field are not
 214 *	accessible.
 215 *	After copying the data up to the limit the user specifies, the true
 216 *	length of the data is written over the length limit the user
 217 *	specified. Zero is returned for a success.
 218 */
 219
 220static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 221			     void __user *uaddr, int __user *ulen)
 222{
 223	int err;
 224	int len;
 225
 226	BUG_ON(klen > sizeof(struct sockaddr_storage));
 227	err = get_user(len, ulen);
 228	if (err)
 229		return err;
 230	if (len > klen)
 231		len = klen;
 232	if (len < 0)
 233		return -EINVAL;
 234	if (len) {
 235		if (audit_sockaddr(klen, kaddr))
 236			return -ENOMEM;
 237		if (copy_to_user(uaddr, kaddr, len))
 238			return -EFAULT;
 239	}
 240	/*
 241	 *      "fromlen shall refer to the value before truncation.."
 242	 *                      1003.1g
 243	 */
 244	return __put_user(klen, ulen);
 245}
 246
 247static struct kmem_cache *sock_inode_cachep __ro_after_init;
 248
 249static struct inode *sock_alloc_inode(struct super_block *sb)
 250{
 251	struct socket_alloc *ei;
 
 252
 253	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 254	if (!ei)
 255		return NULL;
 256	init_waitqueue_head(&ei->socket.wq.wait);
 257	ei->socket.wq.fasync_list = NULL;
 258	ei->socket.wq.flags = 0;
 
 
 
 
 
 
 259
 260	ei->socket.state = SS_UNCONNECTED;
 261	ei->socket.flags = 0;
 262	ei->socket.ops = NULL;
 263	ei->socket.sk = NULL;
 264	ei->socket.file = NULL;
 265
 266	return &ei->vfs_inode;
 267}
 268
 269static void sock_free_inode(struct inode *inode)
 270{
 271	struct socket_alloc *ei;
 
 272
 273	ei = container_of(inode, struct socket_alloc, vfs_inode);
 
 
 274	kmem_cache_free(sock_inode_cachep, ei);
 275}
 276
 277static void init_once(void *foo)
 278{
 279	struct socket_alloc *ei = (struct socket_alloc *)foo;
 280
 281	inode_init_once(&ei->vfs_inode);
 282}
 283
 284static void init_inodecache(void)
 285{
 286	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 287					      sizeof(struct socket_alloc),
 288					      0,
 289					      (SLAB_HWCACHE_ALIGN |
 290					       SLAB_RECLAIM_ACCOUNT |
 291					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 292					      init_once);
 293	BUG_ON(sock_inode_cachep == NULL);
 
 
 294}
 295
 296static const struct super_operations sockfs_ops = {
 297	.alloc_inode	= sock_alloc_inode,
 298	.free_inode	= sock_free_inode,
 299	.statfs		= simple_statfs,
 300};
 301
 302/*
 303 * sockfs_dname() is called from d_path().
 304 */
 305static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 306{
 307	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 308				d_inode(dentry)->i_ino);
 309}
 310
 311static const struct dentry_operations sockfs_dentry_operations = {
 312	.d_dname  = sockfs_dname,
 313};
 314
 315static int sockfs_xattr_get(const struct xattr_handler *handler,
 316			    struct dentry *dentry, struct inode *inode,
 317			    const char *suffix, void *value, size_t size)
 318{
 319	if (value) {
 320		if (dentry->d_name.len + 1 > size)
 321			return -ERANGE;
 322		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 323	}
 324	return dentry->d_name.len + 1;
 325}
 326
 327#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 328#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 329#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 330
 331static const struct xattr_handler sockfs_xattr_handler = {
 332	.name = XATTR_NAME_SOCKPROTONAME,
 333	.get = sockfs_xattr_get,
 334};
 335
 336static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 337				     struct dentry *dentry, struct inode *inode,
 338				     const char *suffix, const void *value,
 339				     size_t size, int flags)
 340{
 341	/* Handled by LSM. */
 342	return -EAGAIN;
 343}
 344
 345static const struct xattr_handler sockfs_security_xattr_handler = {
 346	.prefix = XATTR_SECURITY_PREFIX,
 347	.set = sockfs_security_xattr_set,
 348};
 349
 350static const struct xattr_handler *sockfs_xattr_handlers[] = {
 351	&sockfs_xattr_handler,
 352	&sockfs_security_xattr_handler,
 353	NULL
 354};
 355
 356static int sockfs_init_fs_context(struct fs_context *fc)
 
 357{
 358	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 359	if (!ctx)
 360		return -ENOMEM;
 361	ctx->ops = &sockfs_ops;
 362	ctx->dops = &sockfs_dentry_operations;
 363	ctx->xattr = sockfs_xattr_handlers;
 364	return 0;
 365}
 366
 367static struct vfsmount *sock_mnt __read_mostly;
 368
 369static struct file_system_type sock_fs_type = {
 370	.name =		"sockfs",
 371	.init_fs_context = sockfs_init_fs_context,
 372	.kill_sb =	kill_anon_super,
 373};
 374
 375/*
 376 *	Obtains the first available file descriptor and sets it up for use.
 377 *
 378 *	These functions create file structures and maps them to fd space
 379 *	of the current process. On success it returns file descriptor
 380 *	and file struct implicitly stored in sock->file.
 381 *	Note that another thread may close file descriptor before we return
 382 *	from this function. We use the fact that now we do not refer
 383 *	to socket after mapping. If one day we will need it, this
 384 *	function will increment ref. count on file by 1.
 385 *
 386 *	In any case returned fd MAY BE not valid!
 387 *	This race condition is unavoidable
 388 *	with shared fd spaces, we cannot solve it inside kernel,
 389 *	but we take care of internal coherence yet.
 390 */
 391
 392/**
 393 *	sock_alloc_file - Bind a &socket to a &file
 394 *	@sock: socket
 395 *	@flags: file status flags
 396 *	@dname: protocol name
 397 *
 398 *	Returns the &file bound with @sock, implicitly storing it
 399 *	in sock->file. If dname is %NULL, sets to "".
 400 *	On failure the return is a ERR pointer (see linux/err.h).
 401 *	This function uses GFP_KERNEL internally.
 402 */
 403
 404struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 405{
 
 
 406	struct file *file;
 407
 408	if (!dname)
 409		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 
 
 
 
 
 
 
 
 
 
 
 410
 411	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 412				O_RDWR | (flags & O_NONBLOCK),
 413				&socket_file_ops);
 414	if (IS_ERR(file)) {
 415		sock_release(sock);
 
 
 416		return file;
 417	}
 418
 419	sock->file = file;
 
 420	file->private_data = sock;
 421	stream_open(SOCK_INODE(sock), file);
 422	return file;
 423}
 424EXPORT_SYMBOL(sock_alloc_file);
 425
 426static int sock_map_fd(struct socket *sock, int flags)
 427{
 428	struct file *newfile;
 429	int fd = get_unused_fd_flags(flags);
 430	if (unlikely(fd < 0)) {
 431		sock_release(sock);
 432		return fd;
 433	}
 434
 435	newfile = sock_alloc_file(sock, flags, NULL);
 436	if (!IS_ERR(newfile)) {
 437		fd_install(fd, newfile);
 438		return fd;
 439	}
 440
 441	put_unused_fd(fd);
 442	return PTR_ERR(newfile);
 443}
 444
 445/**
 446 *	sock_from_file - Return the &socket bounded to @file.
 447 *	@file: file
 448 *	@err: pointer to an error code return
 449 *
 450 *	On failure returns %NULL and assigns -ENOTSOCK to @err.
 451 */
 452
 453struct socket *sock_from_file(struct file *file, int *err)
 454{
 455	if (file->f_op == &socket_file_ops)
 456		return file->private_data;	/* set in sock_map_fd */
 457
 458	*err = -ENOTSOCK;
 459	return NULL;
 460}
 461EXPORT_SYMBOL(sock_from_file);
 462
 463/**
 464 *	sockfd_lookup - Go from a file number to its socket slot
 465 *	@fd: file handle
 466 *	@err: pointer to an error code return
 467 *
 468 *	The file handle passed in is locked and the socket it is bound
 469 *	to is returned. If an error occurs the err pointer is overwritten
 470 *	with a negative errno code and NULL is returned. The function checks
 471 *	for both invalid handles and passing a handle which is not a socket.
 472 *
 473 *	On a success the socket object pointer is returned.
 474 */
 475
 476struct socket *sockfd_lookup(int fd, int *err)
 477{
 478	struct file *file;
 479	struct socket *sock;
 480
 481	file = fget(fd);
 482	if (!file) {
 483		*err = -EBADF;
 484		return NULL;
 485	}
 486
 487	sock = sock_from_file(file, err);
 488	if (!sock)
 489		fput(file);
 490	return sock;
 491}
 492EXPORT_SYMBOL(sockfd_lookup);
 493
 494static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 495{
 496	struct fd f = fdget(fd);
 497	struct socket *sock;
 498
 499	*err = -EBADF;
 500	if (f.file) {
 501		sock = sock_from_file(f.file, err);
 502		if (likely(sock)) {
 503			*fput_needed = f.flags & FDPUT_FPUT;
 504			return sock;
 505		}
 506		fdput(f);
 507	}
 508	return NULL;
 509}
 510
 511static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 512				size_t size)
 513{
 514	ssize_t len;
 515	ssize_t used = 0;
 516
 517	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 518	if (len < 0)
 519		return len;
 520	used += len;
 521	if (buffer) {
 522		if (size < used)
 523			return -ERANGE;
 524		buffer += len;
 525	}
 526
 527	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 528	used += len;
 529	if (buffer) {
 530		if (size < used)
 531			return -ERANGE;
 532		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 533		buffer += len;
 534	}
 535
 536	return used;
 537}
 538
 539static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 540{
 541	int err = simple_setattr(dentry, iattr);
 542
 543	if (!err && (iattr->ia_valid & ATTR_UID)) {
 544		struct socket *sock = SOCKET_I(d_inode(dentry));
 545
 546		if (sock->sk)
 547			sock->sk->sk_uid = iattr->ia_uid;
 548		else
 549			err = -ENOENT;
 550	}
 551
 552	return err;
 553}
 554
 555static const struct inode_operations sockfs_inode_ops = {
 556	.listxattr = sockfs_listxattr,
 557	.setattr = sockfs_setattr,
 558};
 559
 560/**
 561 *	sock_alloc - allocate a socket
 562 *
 563 *	Allocate a new inode and socket object. The two are bound together
 564 *	and initialised. The socket is then returned. If we are out of inodes
 565 *	NULL is returned. This functions uses GFP_KERNEL internally.
 566 */
 567
 568struct socket *sock_alloc(void)
 569{
 570	struct inode *inode;
 571	struct socket *sock;
 572
 573	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 574	if (!inode)
 575		return NULL;
 576
 577	sock = SOCKET_I(inode);
 578
 
 579	inode->i_ino = get_next_ino();
 580	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 581	inode->i_uid = current_fsuid();
 582	inode->i_gid = current_fsgid();
 583	inode->i_op = &sockfs_inode_ops;
 584
 
 585	return sock;
 586}
 587EXPORT_SYMBOL(sock_alloc);
 588
 589static void __sock_release(struct socket *sock, struct inode *inode)
 
 
 
 
 
 
 
 
 
 590{
 591	if (sock->ops) {
 592		struct module *owner = sock->ops->owner;
 593
 594		if (inode)
 595			inode_lock(inode);
 596		sock->ops->release(sock);
 597		sock->sk = NULL;
 598		if (inode)
 599			inode_unlock(inode);
 600		sock->ops = NULL;
 601		module_put(owner);
 602	}
 603
 604	if (sock->wq.fasync_list)
 605		pr_err("%s: fasync list not empty!\n", __func__);
 606
 
 607	if (!sock->file) {
 608		iput(SOCK_INODE(sock));
 609		return;
 610	}
 611	sock->file = NULL;
 612}
 613
 614/**
 615 *	sock_release - close a socket
 616 *	@sock: socket to close
 617 *
 618 *	The socket is released from the protocol stack if it has a release
 619 *	callback, and the inode is then released if the socket is bound to
 620 *	an inode not a file.
 621 */
 622void sock_release(struct socket *sock)
 623{
 624	__sock_release(sock, NULL);
 625}
 626EXPORT_SYMBOL(sock_release);
 627
 628void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 629{
 630	u8 flags = *tx_flags;
 631
 632	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 633		flags |= SKBTX_HW_TSTAMP;
 634
 635	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 636		flags |= SKBTX_SW_TSTAMP;
 637
 638	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 639		flags |= SKBTX_SCHED_TSTAMP;
 640
 641	*tx_flags = flags;
 642}
 643EXPORT_SYMBOL(__sock_tx_timestamp);
 644
 645INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 646					   size_t));
 647INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 648					    size_t));
 649static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 650{
 651	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 652				     inet_sendmsg, sock, msg,
 653				     msg_data_left(msg));
 654	BUG_ON(ret == -EIOCBQUEUED);
 655	return ret;
 656}
 657
 658/**
 659 *	sock_sendmsg - send a message through @sock
 660 *	@sock: socket
 661 *	@msg: message to send
 662 *
 663 *	Sends @msg through @sock, passing through LSM.
 664 *	Returns the number of bytes sent, or an error code.
 665 */
 666int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 667{
 668	int err = security_socket_sendmsg(sock, msg,
 669					  msg_data_left(msg));
 670
 671	return err ?: sock_sendmsg_nosec(sock, msg);
 672}
 673EXPORT_SYMBOL(sock_sendmsg);
 674
 675/**
 676 *	kernel_sendmsg - send a message through @sock (kernel-space)
 677 *	@sock: socket
 678 *	@msg: message header
 679 *	@vec: kernel vec
 680 *	@num: vec array length
 681 *	@size: total message data size
 682 *
 683 *	Builds the message data with @vec and sends it through @sock.
 684 *	Returns the number of bytes sent, or an error code.
 685 */
 686
 687int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 688		   struct kvec *vec, size_t num, size_t size)
 689{
 690	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 691	return sock_sendmsg(sock, msg);
 692}
 693EXPORT_SYMBOL(kernel_sendmsg);
 694
 695/**
 696 *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
 697 *	@sk: sock
 698 *	@msg: message header
 699 *	@vec: output s/g array
 700 *	@num: output s/g array length
 701 *	@size: total message data size
 702 *
 703 *	Builds the message data with @vec and sends it through @sock.
 704 *	Returns the number of bytes sent, or an error code.
 705 *	Caller must hold @sk.
 706 */
 707
 708int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 709			  struct kvec *vec, size_t num, size_t size)
 710{
 711	struct socket *sock = sk->sk_socket;
 712
 713	if (!sock->ops->sendmsg_locked)
 714		return sock_no_sendmsg_locked(sk, msg, size);
 715
 716	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 717
 718	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 719}
 720EXPORT_SYMBOL(kernel_sendmsg_locked);
 721
 722static bool skb_is_err_queue(const struct sk_buff *skb)
 723{
 724	/* pkt_type of skbs enqueued on the error queue are set to
 725	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 726	 * in recvmsg, since skbs received on a local socket will never
 727	 * have a pkt_type of PACKET_OUTGOING.
 728	 */
 729	return skb->pkt_type == PACKET_OUTGOING;
 730}
 731
 732/* On transmit, software and hardware timestamps are returned independently.
 733 * As the two skb clones share the hardware timestamp, which may be updated
 734 * before the software timestamp is received, a hardware TX timestamp may be
 735 * returned only if there is no software TX timestamp. Ignore false software
 736 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 737 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 738 * hardware timestamp.
 739 */
 740static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 741{
 742	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 743}
 744
 745static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 746{
 747	struct scm_ts_pktinfo ts_pktinfo;
 748	struct net_device *orig_dev;
 749
 750	if (!skb_mac_header_was_set(skb))
 751		return;
 752
 753	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 754
 755	rcu_read_lock();
 756	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 757	if (orig_dev)
 758		ts_pktinfo.if_index = orig_dev->ifindex;
 759	rcu_read_unlock();
 760
 761	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 762	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 763		 sizeof(ts_pktinfo), &ts_pktinfo);
 764}
 765
 766/*
 767 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 768 */
 769void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 770	struct sk_buff *skb)
 771{
 772	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 773	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 774	struct scm_timestamping_internal tss;
 775
 776	int empty = 1, false_tstamp = 0;
 777	struct skb_shared_hwtstamps *shhwtstamps =
 778		skb_hwtstamps(skb);
 779
 780	/* Race occurred between timestamp enabling and packet
 781	   receiving.  Fill in the current time for now. */
 782	if (need_software_tstamp && skb->tstamp == 0) {
 783		__net_timestamp(skb);
 784		false_tstamp = 1;
 785	}
 786
 787	if (need_software_tstamp) {
 788		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 789			if (new_tstamp) {
 790				struct __kernel_sock_timeval tv;
 791
 792				skb_get_new_timestamp(skb, &tv);
 793				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 794					 sizeof(tv), &tv);
 795			} else {
 796				struct __kernel_old_timeval tv;
 797
 798				skb_get_timestamp(skb, &tv);
 799				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 800					 sizeof(tv), &tv);
 801			}
 802		} else {
 803			if (new_tstamp) {
 804				struct __kernel_timespec ts;
 805
 806				skb_get_new_timestampns(skb, &ts);
 807				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 808					 sizeof(ts), &ts);
 809			} else {
 810				struct __kernel_old_timespec ts;
 811
 812				skb_get_timestampns(skb, &ts);
 813				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 814					 sizeof(ts), &ts);
 815			}
 816		}
 817	}
 818
 819	memset(&tss, 0, sizeof(tss));
 820	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 821	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 822		empty = 0;
 823	if (shhwtstamps &&
 824	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 825	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
 826	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
 827		empty = 0;
 828		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 829		    !skb_is_err_queue(skb))
 830			put_ts_pktinfo(msg, skb);
 831	}
 832	if (!empty) {
 833		if (sock_flag(sk, SOCK_TSTAMP_NEW))
 834			put_cmsg_scm_timestamping64(msg, &tss);
 835		else
 836			put_cmsg_scm_timestamping(msg, &tss);
 837
 838		if (skb_is_err_queue(skb) && skb->len &&
 839		    SKB_EXT_ERR(skb)->opt_stats)
 840			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 841				 skb->len, skb->data);
 842	}
 843}
 844EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 845
 846void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 847	struct sk_buff *skb)
 848{
 849	int ack;
 850
 851	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 852		return;
 853	if (!skb->wifi_acked_valid)
 854		return;
 855
 856	ack = skb->wifi_acked;
 857
 858	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 859}
 860EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 861
 862static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 863				   struct sk_buff *skb)
 864{
 865	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 866		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 867			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 868}
 869
 870void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 871	struct sk_buff *skb)
 872{
 873	sock_recv_timestamp(msg, sk, skb);
 874	sock_recv_drops(msg, sk, skb);
 875}
 876EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 877
 878INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 879					   size_t, int));
 880INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 881					    size_t, int));
 882static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 883				     int flags)
 884{
 885	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 886				  inet_recvmsg, sock, msg, msg_data_left(msg),
 887				  flags);
 888}
 889
 890/**
 891 *	sock_recvmsg - receive a message from @sock
 892 *	@sock: socket
 893 *	@msg: message to receive
 894 *	@flags: message flags
 895 *
 896 *	Receives @msg from @sock, passing through LSM. Returns the total number
 897 *	of bytes received, or an error.
 898 */
 899int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 900{
 901	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 902
 903	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 904}
 905EXPORT_SYMBOL(sock_recvmsg);
 906
 907/**
 908 *	kernel_recvmsg - Receive a message from a socket (kernel space)
 909 *	@sock: The socket to receive the message from
 910 *	@msg: Received message
 911 *	@vec: Input s/g array for message data
 912 *	@num: Size of input s/g array
 913 *	@size: Number of bytes to read
 914 *	@flags: Message flags (MSG_DONTWAIT, etc...)
 915 *
 916 *	On return the msg structure contains the scatter/gather array passed in the
 917 *	vec argument. The array is modified so that it consists of the unfilled
 918 *	portion of the original array.
 919 *
 920 *	The returned value is the total number of bytes received, or an error.
 921 */
 922
 923int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 924		   struct kvec *vec, size_t num, size_t size, int flags)
 925{
 926	msg->msg_control_is_user = false;
 927	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
 928	return sock_recvmsg(sock, msg, flags);
 
 
 
 
 
 929}
 930EXPORT_SYMBOL(kernel_recvmsg);
 931
 932static ssize_t sock_sendpage(struct file *file, struct page *page,
 933			     int offset, size_t size, loff_t *ppos, int more)
 934{
 935	struct socket *sock;
 936	int flags;
 937
 938	sock = file->private_data;
 939
 940	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 941	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 942	flags |= more;
 943
 944	return kernel_sendpage(sock, page, offset, size, flags);
 945}
 946
 947static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 948				struct pipe_inode_info *pipe, size_t len,
 949				unsigned int flags)
 950{
 951	struct socket *sock = file->private_data;
 952
 953	if (unlikely(!sock->ops->splice_read))
 954		return generic_file_splice_read(file, ppos, pipe, len, flags);
 955
 956	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 957}
 958
 959static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 960{
 961	struct file *file = iocb->ki_filp;
 962	struct socket *sock = file->private_data;
 963	struct msghdr msg = {.msg_iter = *to,
 964			     .msg_iocb = iocb};
 965	ssize_t res;
 966
 967	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
 968		msg.msg_flags = MSG_DONTWAIT;
 969
 970	if (iocb->ki_pos != 0)
 971		return -ESPIPE;
 972
 973	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 974		return 0;
 975
 976	res = sock_recvmsg(sock, &msg, msg.msg_flags);
 977	*to = msg.msg_iter;
 978	return res;
 979}
 980
 981static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 982{
 983	struct file *file = iocb->ki_filp;
 984	struct socket *sock = file->private_data;
 985	struct msghdr msg = {.msg_iter = *from,
 986			     .msg_iocb = iocb};
 987	ssize_t res;
 988
 989	if (iocb->ki_pos != 0)
 990		return -ESPIPE;
 991
 992	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
 993		msg.msg_flags = MSG_DONTWAIT;
 994
 995	if (sock->type == SOCK_SEQPACKET)
 996		msg.msg_flags |= MSG_EOR;
 997
 998	res = sock_sendmsg(sock, &msg);
 999	*from = msg.msg_iter;
1000	return res;
1001}
1002
1003/*
1004 * Atomic setting of ioctl hooks to avoid race
1005 * with module unload.
1006 */
1007
1008static DEFINE_MUTEX(br_ioctl_mutex);
1009static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1010
1011void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1012{
1013	mutex_lock(&br_ioctl_mutex);
1014	br_ioctl_hook = hook;
1015	mutex_unlock(&br_ioctl_mutex);
1016}
1017EXPORT_SYMBOL(brioctl_set);
1018
1019static DEFINE_MUTEX(vlan_ioctl_mutex);
1020static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1021
1022void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1023{
1024	mutex_lock(&vlan_ioctl_mutex);
1025	vlan_ioctl_hook = hook;
1026	mutex_unlock(&vlan_ioctl_mutex);
1027}
1028EXPORT_SYMBOL(vlan_ioctl_set);
1029
1030static DEFINE_MUTEX(dlci_ioctl_mutex);
1031static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1032
1033void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1034{
1035	mutex_lock(&dlci_ioctl_mutex);
1036	dlci_ioctl_hook = hook;
1037	mutex_unlock(&dlci_ioctl_mutex);
1038}
1039EXPORT_SYMBOL(dlci_ioctl_set);
1040
1041static long sock_do_ioctl(struct net *net, struct socket *sock,
1042			  unsigned int cmd, unsigned long arg)
1043{
1044	int err;
1045	void __user *argp = (void __user *)arg;
1046
1047	err = sock->ops->ioctl(sock, cmd, arg);
1048
1049	/*
1050	 * If this ioctl is unknown try to hand it down
1051	 * to the NIC driver.
1052	 */
1053	if (err != -ENOIOCTLCMD)
1054		return err;
1055
1056	if (cmd == SIOCGIFCONF) {
1057		struct ifconf ifc;
1058		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1059			return -EFAULT;
1060		rtnl_lock();
1061		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1062		rtnl_unlock();
1063		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1064			err = -EFAULT;
1065	} else {
1066		struct ifreq ifr;
1067		bool need_copyout;
1068		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1069			return -EFAULT;
1070		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1071		if (!err && need_copyout)
1072			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1073				return -EFAULT;
1074	}
1075	return err;
1076}
1077
1078/*
1079 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1080 *	what to do with it - that's up to the protocol still.
1081 */
1082
1083/**
1084 *	get_net_ns - increment the refcount of the network namespace
1085 *	@ns: common namespace (net)
1086 *
1087 *	Returns the net's common namespace.
1088 */
1089
1090struct ns_common *get_net_ns(struct ns_common *ns)
1091{
1092	return &get_net(container_of(ns, struct net, ns))->ns;
1093}
1094EXPORT_SYMBOL_GPL(get_net_ns);
1095
1096static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1097{
1098	struct socket *sock;
1099	struct sock *sk;
1100	void __user *argp = (void __user *)arg;
1101	int pid, err;
1102	struct net *net;
1103
1104	sock = file->private_data;
1105	sk = sock->sk;
1106	net = sock_net(sk);
1107	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1108		struct ifreq ifr;
1109		bool need_copyout;
1110		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1111			return -EFAULT;
1112		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1113		if (!err && need_copyout)
1114			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1115				return -EFAULT;
1116	} else
1117#ifdef CONFIG_WEXT_CORE
1118	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1119		err = wext_handle_ioctl(net, cmd, argp);
1120	} else
1121#endif
1122		switch (cmd) {
1123		case FIOSETOWN:
1124		case SIOCSPGRP:
1125			err = -EFAULT;
1126			if (get_user(pid, (int __user *)argp))
1127				break;
1128			err = f_setown(sock->file, pid, 1);
 
1129			break;
1130		case FIOGETOWN:
1131		case SIOCGPGRP:
1132			err = put_user(f_getown(sock->file),
1133				       (int __user *)argp);
1134			break;
1135		case SIOCGIFBR:
1136		case SIOCSIFBR:
1137		case SIOCBRADDBR:
1138		case SIOCBRDELBR:
1139			err = -ENOPKG;
1140			if (!br_ioctl_hook)
1141				request_module("bridge");
1142
1143			mutex_lock(&br_ioctl_mutex);
1144			if (br_ioctl_hook)
1145				err = br_ioctl_hook(net, cmd, argp);
1146			mutex_unlock(&br_ioctl_mutex);
1147			break;
1148		case SIOCGIFVLAN:
1149		case SIOCSIFVLAN:
1150			err = -ENOPKG;
1151			if (!vlan_ioctl_hook)
1152				request_module("8021q");
1153
1154			mutex_lock(&vlan_ioctl_mutex);
1155			if (vlan_ioctl_hook)
1156				err = vlan_ioctl_hook(net, argp);
1157			mutex_unlock(&vlan_ioctl_mutex);
1158			break;
1159		case SIOCADDDLCI:
1160		case SIOCDELDLCI:
1161			err = -ENOPKG;
1162			if (!dlci_ioctl_hook)
1163				request_module("dlci");
1164
1165			mutex_lock(&dlci_ioctl_mutex);
1166			if (dlci_ioctl_hook)
1167				err = dlci_ioctl_hook(cmd, argp);
1168			mutex_unlock(&dlci_ioctl_mutex);
1169			break;
1170		case SIOCGSKNS:
1171			err = -EPERM;
1172			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1173				break;
1174
1175			err = open_related_ns(&net->ns, get_net_ns);
1176			break;
1177		case SIOCGSTAMP_OLD:
1178		case SIOCGSTAMPNS_OLD:
1179			if (!sock->ops->gettstamp) {
1180				err = -ENOIOCTLCMD;
1181				break;
1182			}
1183			err = sock->ops->gettstamp(sock, argp,
1184						   cmd == SIOCGSTAMP_OLD,
1185						   !IS_ENABLED(CONFIG_64BIT));
1186			break;
1187		case SIOCGSTAMP_NEW:
1188		case SIOCGSTAMPNS_NEW:
1189			if (!sock->ops->gettstamp) {
1190				err = -ENOIOCTLCMD;
1191				break;
1192			}
1193			err = sock->ops->gettstamp(sock, argp,
1194						   cmd == SIOCGSTAMP_NEW,
1195						   false);
1196			break;
1197		default:
1198			err = sock_do_ioctl(net, sock, cmd, arg);
1199			break;
1200		}
1201	return err;
1202}
1203
1204/**
1205 *	sock_create_lite - creates a socket
1206 *	@family: protocol family (AF_INET, ...)
1207 *	@type: communication type (SOCK_STREAM, ...)
1208 *	@protocol: protocol (0, ...)
1209 *	@res: new socket
1210 *
1211 *	Creates a new socket and assigns it to @res, passing through LSM.
1212 *	The new socket initialization is not complete, see kernel_accept().
1213 *	Returns 0 or an error. On failure @res is set to %NULL.
1214 *	This function internally uses GFP_KERNEL.
1215 */
1216
1217int sock_create_lite(int family, int type, int protocol, struct socket **res)
1218{
1219	int err;
1220	struct socket *sock = NULL;
1221
1222	err = security_socket_create(family, type, protocol, 1);
1223	if (err)
1224		goto out;
1225
1226	sock = sock_alloc();
1227	if (!sock) {
1228		err = -ENOMEM;
1229		goto out;
1230	}
1231
1232	sock->type = type;
1233	err = security_socket_post_create(sock, family, type, protocol, 1);
1234	if (err)
1235		goto out_release;
1236
1237out:
1238	*res = sock;
1239	return err;
1240out_release:
1241	sock_release(sock);
1242	sock = NULL;
1243	goto out;
1244}
1245EXPORT_SYMBOL(sock_create_lite);
1246
1247/* No kernel lock held - perfect */
1248static __poll_t sock_poll(struct file *file, poll_table *wait)
1249{
1250	struct socket *sock = file->private_data;
1251	__poll_t events = poll_requested_events(wait), flag = 0;
1252
1253	if (!sock->ops->poll)
1254		return 0;
 
 
1255
1256	if (sk_can_busy_loop(sock->sk)) {
1257		/* poll once if requested by the syscall */
1258		if (events & POLL_BUSY_LOOP)
 
 
 
1259			sk_busy_loop(sock->sk, 1);
1260
1261		/* if this socket can poll_ll, tell the system call */
1262		flag = POLL_BUSY_LOOP;
1263	}
1264
1265	return sock->ops->poll(file, sock, wait) | flag;
1266}
1267
1268static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1269{
1270	struct socket *sock = file->private_data;
1271
1272	return sock->ops->mmap(file, sock, vma);
1273}
1274
1275static int sock_close(struct inode *inode, struct file *filp)
1276{
1277	__sock_release(SOCKET_I(inode), inode);
1278	return 0;
1279}
1280
1281/*
1282 *	Update the socket async list
1283 *
1284 *	Fasync_list locking strategy.
1285 *
1286 *	1. fasync_list is modified only under process context socket lock
1287 *	   i.e. under semaphore.
1288 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1289 *	   or under socket lock
1290 */
1291
1292static int sock_fasync(int fd, struct file *filp, int on)
1293{
1294	struct socket *sock = filp->private_data;
1295	struct sock *sk = sock->sk;
1296	struct socket_wq *wq = &sock->wq;
1297
1298	if (sk == NULL)
1299		return -EINVAL;
1300
1301	lock_sock(sk);
 
1302	fasync_helper(fd, filp, on, &wq->fasync_list);
1303
1304	if (!wq->fasync_list)
1305		sock_reset_flag(sk, SOCK_FASYNC);
1306	else
1307		sock_set_flag(sk, SOCK_FASYNC);
1308
1309	release_sock(sk);
1310	return 0;
1311}
1312
1313/* This function may be called only under rcu_lock */
1314
1315int sock_wake_async(struct socket_wq *wq, int how, int band)
1316{
1317	if (!wq || !wq->fasync_list)
1318		return -1;
1319
1320	switch (how) {
1321	case SOCK_WAKE_WAITD:
1322		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1323			break;
1324		goto call_kill;
1325	case SOCK_WAKE_SPACE:
1326		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1327			break;
1328		fallthrough;
1329	case SOCK_WAKE_IO:
1330call_kill:
1331		kill_fasync(&wq->fasync_list, SIGIO, band);
1332		break;
1333	case SOCK_WAKE_URG:
1334		kill_fasync(&wq->fasync_list, SIGURG, band);
1335	}
1336
1337	return 0;
1338}
1339EXPORT_SYMBOL(sock_wake_async);
1340
1341/**
1342 *	__sock_create - creates a socket
1343 *	@net: net namespace
1344 *	@family: protocol family (AF_INET, ...)
1345 *	@type: communication type (SOCK_STREAM, ...)
1346 *	@protocol: protocol (0, ...)
1347 *	@res: new socket
1348 *	@kern: boolean for kernel space sockets
1349 *
1350 *	Creates a new socket and assigns it to @res, passing through LSM.
1351 *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1352 *	be set to true if the socket resides in kernel space.
1353 *	This function internally uses GFP_KERNEL.
1354 */
1355
1356int __sock_create(struct net *net, int family, int type, int protocol,
1357			 struct socket **res, int kern)
1358{
1359	int err;
1360	struct socket *sock;
1361	const struct net_proto_family *pf;
1362
1363	/*
1364	 *      Check protocol is in range
1365	 */
1366	if (family < 0 || family >= NPROTO)
1367		return -EAFNOSUPPORT;
1368	if (type < 0 || type >= SOCK_MAX)
1369		return -EINVAL;
1370
1371	/* Compatibility.
1372
1373	   This uglymoron is moved from INET layer to here to avoid
1374	   deadlock in module load.
1375	 */
1376	if (family == PF_INET && type == SOCK_PACKET) {
1377		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1378			     current->comm);
1379		family = PF_PACKET;
1380	}
1381
1382	err = security_socket_create(family, type, protocol, kern);
1383	if (err)
1384		return err;
1385
1386	/*
1387	 *	Allocate the socket and allow the family to set things up. if
1388	 *	the protocol is 0, the family is instructed to select an appropriate
1389	 *	default.
1390	 */
1391	sock = sock_alloc();
1392	if (!sock) {
1393		net_warn_ratelimited("socket: no more sockets\n");
1394		return -ENFILE;	/* Not exactly a match, but its the
1395				   closest posix thing */
1396	}
1397
1398	sock->type = type;
1399
1400#ifdef CONFIG_MODULES
1401	/* Attempt to load a protocol module if the find failed.
1402	 *
1403	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1404	 * requested real, full-featured networking support upon configuration.
1405	 * Otherwise module support will break!
1406	 */
1407	if (rcu_access_pointer(net_families[family]) == NULL)
1408		request_module("net-pf-%d", family);
1409#endif
1410
1411	rcu_read_lock();
1412	pf = rcu_dereference(net_families[family]);
1413	err = -EAFNOSUPPORT;
1414	if (!pf)
1415		goto out_release;
1416
1417	/*
1418	 * We will call the ->create function, that possibly is in a loadable
1419	 * module, so we have to bump that loadable module refcnt first.
1420	 */
1421	if (!try_module_get(pf->owner))
1422		goto out_release;
1423
1424	/* Now protected by module ref count */
1425	rcu_read_unlock();
1426
1427	err = pf->create(net, sock, protocol, kern);
1428	if (err < 0)
1429		goto out_module_put;
1430
1431	/*
1432	 * Now to bump the refcnt of the [loadable] module that owns this
1433	 * socket at sock_release time we decrement its refcnt.
1434	 */
1435	if (!try_module_get(sock->ops->owner))
1436		goto out_module_busy;
1437
1438	/*
1439	 * Now that we're done with the ->create function, the [loadable]
1440	 * module can have its refcnt decremented
1441	 */
1442	module_put(pf->owner);
1443	err = security_socket_post_create(sock, family, type, protocol, kern);
1444	if (err)
1445		goto out_sock_release;
1446	*res = sock;
1447
1448	return 0;
1449
1450out_module_busy:
1451	err = -EAFNOSUPPORT;
1452out_module_put:
1453	sock->ops = NULL;
1454	module_put(pf->owner);
1455out_sock_release:
1456	sock_release(sock);
1457	return err;
1458
1459out_release:
1460	rcu_read_unlock();
1461	goto out_sock_release;
1462}
1463EXPORT_SYMBOL(__sock_create);
1464
1465/**
1466 *	sock_create - creates a socket
1467 *	@family: protocol family (AF_INET, ...)
1468 *	@type: communication type (SOCK_STREAM, ...)
1469 *	@protocol: protocol (0, ...)
1470 *	@res: new socket
1471 *
1472 *	A wrapper around __sock_create().
1473 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1474 */
1475
1476int sock_create(int family, int type, int protocol, struct socket **res)
1477{
1478	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1479}
1480EXPORT_SYMBOL(sock_create);
1481
1482/**
1483 *	sock_create_kern - creates a socket (kernel space)
1484 *	@net: net namespace
1485 *	@family: protocol family (AF_INET, ...)
1486 *	@type: communication type (SOCK_STREAM, ...)
1487 *	@protocol: protocol (0, ...)
1488 *	@res: new socket
1489 *
1490 *	A wrapper around __sock_create().
1491 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1492 */
1493
1494int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1495{
1496	return __sock_create(net, family, type, protocol, res, 1);
1497}
1498EXPORT_SYMBOL(sock_create_kern);
1499
1500int __sys_socket(int family, int type, int protocol)
1501{
1502	int retval;
1503	struct socket *sock;
1504	int flags;
1505
1506	/* Check the SOCK_* constants for consistency.  */
1507	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1508	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1509	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1510	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1511
1512	flags = type & ~SOCK_TYPE_MASK;
1513	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1514		return -EINVAL;
1515	type &= SOCK_TYPE_MASK;
1516
1517	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1518		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1519
1520	retval = sock_create(family, type, protocol, &sock);
1521	if (retval < 0)
1522		return retval;
 
 
 
 
1523
1524	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1525}
 
1526
1527SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1528{
1529	return __sys_socket(family, type, protocol);
1530}
1531
1532/*
1533 *	Create a pair of connected sockets.
1534 */
1535
1536int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
 
1537{
1538	struct socket *sock1, *sock2;
1539	int fd1, fd2, err;
1540	struct file *newfile1, *newfile2;
1541	int flags;
1542
1543	flags = type & ~SOCK_TYPE_MASK;
1544	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1545		return -EINVAL;
1546	type &= SOCK_TYPE_MASK;
1547
1548	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1549		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1550
1551	/*
1552	 * reserve descriptors and make sure we won't fail
1553	 * to return them to userland.
1554	 */
1555	fd1 = get_unused_fd_flags(flags);
1556	if (unlikely(fd1 < 0))
1557		return fd1;
1558
1559	fd2 = get_unused_fd_flags(flags);
1560	if (unlikely(fd2 < 0)) {
1561		put_unused_fd(fd1);
1562		return fd2;
1563	}
1564
1565	err = put_user(fd1, &usockvec[0]);
1566	if (err)
1567		goto out;
1568
1569	err = put_user(fd2, &usockvec[1]);
1570	if (err)
1571		goto out;
1572
1573	/*
1574	 * Obtain the first socket and check if the underlying protocol
1575	 * supports the socketpair call.
1576	 */
1577
1578	err = sock_create(family, type, protocol, &sock1);
1579	if (unlikely(err < 0))
1580		goto out;
1581
1582	err = sock_create(family, type, protocol, &sock2);
1583	if (unlikely(err < 0)) {
1584		sock_release(sock1);
1585		goto out;
1586	}
 
 
1587
1588	err = security_socket_socketpair(sock1, sock2);
1589	if (unlikely(err)) {
1590		sock_release(sock2);
1591		sock_release(sock1);
1592		goto out;
1593	}
1594
1595	err = sock1->ops->socketpair(sock1, sock2);
1596	if (unlikely(err < 0)) {
1597		sock_release(sock2);
1598		sock_release(sock1);
1599		goto out;
1600	}
1601
1602	newfile1 = sock_alloc_file(sock1, flags, NULL);
1603	if (IS_ERR(newfile1)) {
1604		err = PTR_ERR(newfile1);
1605		sock_release(sock2);
1606		goto out;
1607	}
1608
1609	newfile2 = sock_alloc_file(sock2, flags, NULL);
1610	if (IS_ERR(newfile2)) {
1611		err = PTR_ERR(newfile2);
1612		fput(newfile1);
1613		goto out;
1614	}
1615
 
 
 
 
 
 
 
 
1616	audit_fd_pair(fd1, fd2);
1617
1618	fd_install(fd1, newfile1);
1619	fd_install(fd2, newfile2);
 
 
 
 
1620	return 0;
1621
1622out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623	put_unused_fd(fd2);
 
1624	put_unused_fd(fd1);
 
 
 
 
 
1625	return err;
1626}
1627
1628SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1629		int __user *, usockvec)
1630{
1631	return __sys_socketpair(family, type, protocol, usockvec);
1632}
1633
1634/*
1635 *	Bind a name to a socket. Nothing much to do here since it's
1636 *	the protocol's responsibility to handle the local address.
1637 *
1638 *	We move the socket address to kernel space before we call
1639 *	the protocol layer (having also checked the address is ok).
1640 */
1641
1642int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1643{
1644	struct socket *sock;
1645	struct sockaddr_storage address;
1646	int err, fput_needed;
1647
1648	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1649	if (sock) {
1650		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1651		if (!err) {
1652			err = security_socket_bind(sock,
1653						   (struct sockaddr *)&address,
1654						   addrlen);
1655			if (!err)
1656				err = sock->ops->bind(sock,
1657						      (struct sockaddr *)
1658						      &address, addrlen);
1659		}
1660		fput_light(sock->file, fput_needed);
1661	}
1662	return err;
1663}
1664
1665SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1666{
1667	return __sys_bind(fd, umyaddr, addrlen);
1668}
1669
1670/*
1671 *	Perform a listen. Basically, we allow the protocol to do anything
1672 *	necessary for a listen, and if that works, we mark the socket as
1673 *	ready for listening.
1674 */
1675
1676int __sys_listen(int fd, int backlog)
1677{
1678	struct socket *sock;
1679	int err, fput_needed;
1680	int somaxconn;
1681
1682	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1683	if (sock) {
1684		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1685		if ((unsigned int)backlog > somaxconn)
1686			backlog = somaxconn;
1687
1688		err = security_socket_listen(sock, backlog);
1689		if (!err)
1690			err = sock->ops->listen(sock, backlog);
1691
1692		fput_light(sock->file, fput_needed);
1693	}
1694	return err;
1695}
1696
1697SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1698{
1699	return __sys_listen(fd, backlog);
1700}
 
 
 
 
 
 
 
1701
1702int __sys_accept4_file(struct file *file, unsigned file_flags,
1703		       struct sockaddr __user *upeer_sockaddr,
1704		       int __user *upeer_addrlen, int flags,
1705		       unsigned long nofile)
1706{
1707	struct socket *sock, *newsock;
1708	struct file *newfile;
1709	int err, len, newfd;
1710	struct sockaddr_storage address;
1711
1712	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1713		return -EINVAL;
1714
1715	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1716		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1717
1718	sock = sock_from_file(file, &err);
1719	if (!sock)
1720		goto out;
1721
1722	err = -ENFILE;
1723	newsock = sock_alloc();
1724	if (!newsock)
1725		goto out;
1726
1727	newsock->type = sock->type;
1728	newsock->ops = sock->ops;
1729
1730	/*
1731	 * We don't need try_module_get here, as the listening socket (sock)
1732	 * has the protocol module (sock->ops->owner) held.
1733	 */
1734	__module_get(newsock->ops->owner);
1735
1736	newfd = __get_unused_fd_flags(flags, nofile);
1737	if (unlikely(newfd < 0)) {
1738		err = newfd;
1739		sock_release(newsock);
1740		goto out;
1741	}
1742	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1743	if (IS_ERR(newfile)) {
1744		err = PTR_ERR(newfile);
1745		put_unused_fd(newfd);
1746		goto out;
 
1747	}
1748
1749	err = security_socket_accept(sock, newsock);
1750	if (err)
1751		goto out_fd;
1752
1753	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1754					false);
1755	if (err < 0)
1756		goto out_fd;
1757
1758	if (upeer_sockaddr) {
1759		len = newsock->ops->getname(newsock,
1760					(struct sockaddr *)&address, 2);
1761		if (len < 0) {
1762			err = -ECONNABORTED;
1763			goto out_fd;
1764		}
1765		err = move_addr_to_user(&address,
1766					len, upeer_sockaddr, upeer_addrlen);
1767		if (err < 0)
1768			goto out_fd;
1769	}
1770
1771	/* File flags are not inherited via accept() unlike another OSes. */
1772
1773	fd_install(newfd, newfile);
1774	err = newfd;
 
 
 
1775out:
1776	return err;
1777out_fd:
1778	fput(newfile);
1779	put_unused_fd(newfd);
1780	goto out;
1781
1782}
1783
1784/*
1785 *	For accept, we attempt to create a new socket, set up the link
1786 *	with the client, wake up the client, then return the new
1787 *	connected fd. We collect the address of the connector in kernel
1788 *	space and move it to user at the very end. This is unclean because
1789 *	we open the socket then return an error.
1790 *
1791 *	1003.1g adds the ability to recvmsg() to query connection pending
1792 *	status to recvmsg. We need to add that support in a way thats
1793 *	clean when we restructure accept also.
1794 */
1795
1796int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1797		  int __user *upeer_addrlen, int flags)
1798{
1799	int ret = -EBADF;
1800	struct fd f;
1801
1802	f = fdget(fd);
1803	if (f.file) {
1804		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1805						upeer_addrlen, flags,
1806						rlimit(RLIMIT_NOFILE));
1807		fdput(f);
1808	}
1809
1810	return ret;
1811}
1812
1813SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1814		int __user *, upeer_addrlen, int, flags)
1815{
1816	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1817}
1818
1819SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1820		int __user *, upeer_addrlen)
1821{
1822	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1823}
1824
1825/*
1826 *	Attempt to connect to a socket with the server address.  The address
1827 *	is in user space so we verify it is OK and move it to kernel space.
1828 *
1829 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1830 *	break bindings
1831 *
1832 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1833 *	other SEQPACKET protocols that take time to connect() as it doesn't
1834 *	include the -EINPROGRESS status for such sockets.
1835 */
1836
1837int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1838		       int addrlen, int file_flags)
1839{
1840	struct socket *sock;
1841	int err;
 
1842
1843	sock = sock_from_file(file, &err);
1844	if (!sock)
1845		goto out;
 
 
 
1846
1847	err =
1848	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1849	if (err)
1850		goto out;
1851
1852	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1853				 sock->file->f_flags | file_flags);
 
 
1854out:
1855	return err;
1856}
1857
1858int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1859{
1860	int ret = -EBADF;
1861	struct fd f;
1862
1863	f = fdget(fd);
1864	if (f.file) {
1865		struct sockaddr_storage address;
1866
1867		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1868		if (!ret)
1869			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1870		fdput(f);
1871	}
1872
1873	return ret;
1874}
1875
1876SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1877		int, addrlen)
1878{
1879	return __sys_connect(fd, uservaddr, addrlen);
1880}
1881
1882/*
1883 *	Get the local address ('name') of a socket object. Move the obtained
1884 *	name to user space.
1885 */
1886
1887int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1888		      int __user *usockaddr_len)
1889{
1890	struct socket *sock;
1891	struct sockaddr_storage address;
1892	int err, fput_needed;
1893
1894	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1895	if (!sock)
1896		goto out;
1897
1898	err = security_socket_getsockname(sock);
1899	if (err)
1900		goto out_put;
1901
1902	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1903	if (err < 0)
1904		goto out_put;
1905        /* "err" is actually length in this case */
1906	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1907
1908out_put:
1909	fput_light(sock->file, fput_needed);
1910out:
1911	return err;
1912}
1913
1914SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1915		int __user *, usockaddr_len)
1916{
1917	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1918}
1919
1920/*
1921 *	Get the remote address ('name') of a socket object. Move the obtained
1922 *	name to user space.
1923 */
1924
1925int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1926		      int __user *usockaddr_len)
1927{
1928	struct socket *sock;
1929	struct sockaddr_storage address;
1930	int err, fput_needed;
1931
1932	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1933	if (sock != NULL) {
1934		err = security_socket_getpeername(sock);
1935		if (err) {
1936			fput_light(sock->file, fput_needed);
1937			return err;
1938		}
1939
1940		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1941		if (err >= 0)
1942			/* "err" is actually length in this case */
1943			err = move_addr_to_user(&address, err, usockaddr,
 
1944						usockaddr_len);
1945		fput_light(sock->file, fput_needed);
1946	}
1947	return err;
1948}
1949
1950SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1951		int __user *, usockaddr_len)
1952{
1953	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1954}
1955
1956/*
1957 *	Send a datagram to a given address. We move the address into kernel
1958 *	space and check the user space data area is readable before invoking
1959 *	the protocol.
1960 */
1961int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1962		 struct sockaddr __user *addr,  int addr_len)
 
 
1963{
1964	struct socket *sock;
1965	struct sockaddr_storage address;
1966	int err;
1967	struct msghdr msg;
1968	struct iovec iov;
1969	int fput_needed;
1970
1971	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1972	if (unlikely(err))
1973		return err;
1974	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1975	if (!sock)
1976		goto out;
1977
1978	msg.msg_name = NULL;
1979	msg.msg_control = NULL;
1980	msg.msg_controllen = 0;
1981	msg.msg_namelen = 0;
1982	if (addr) {
1983		err = move_addr_to_kernel(addr, addr_len, &address);
1984		if (err < 0)
1985			goto out_put;
1986		msg.msg_name = (struct sockaddr *)&address;
1987		msg.msg_namelen = addr_len;
1988	}
1989	if (sock->file->f_flags & O_NONBLOCK)
1990		flags |= MSG_DONTWAIT;
1991	msg.msg_flags = flags;
1992	err = sock_sendmsg(sock, &msg);
1993
1994out_put:
1995	fput_light(sock->file, fput_needed);
1996out:
1997	return err;
1998}
1999
2000SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2001		unsigned int, flags, struct sockaddr __user *, addr,
2002		int, addr_len)
2003{
2004	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2005}
2006
2007/*
2008 *	Send a datagram down a socket.
2009 */
2010
2011SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2012		unsigned int, flags)
2013{
2014	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2015}
2016
2017/*
2018 *	Receive a frame from the socket and optionally record the address of the
2019 *	sender. We verify the buffers are writable and if needed move the
2020 *	sender address from kernel to user space.
2021 */
2022int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2023		   struct sockaddr __user *addr, int __user *addr_len)
 
 
2024{
2025	struct socket *sock;
2026	struct iovec iov;
2027	struct msghdr msg;
2028	struct sockaddr_storage address;
2029	int err, err2;
2030	int fput_needed;
2031
2032	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2033	if (unlikely(err))
2034		return err;
2035	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2036	if (!sock)
2037		goto out;
2038
2039	msg.msg_control = NULL;
2040	msg.msg_controllen = 0;
2041	/* Save some cycles and don't copy the address if not needed */
2042	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2043	/* We assume all kernel code knows the size of sockaddr_storage */
2044	msg.msg_namelen = 0;
2045	msg.msg_iocb = NULL;
2046	msg.msg_flags = 0;
2047	if (sock->file->f_flags & O_NONBLOCK)
2048		flags |= MSG_DONTWAIT;
2049	err = sock_recvmsg(sock, &msg, flags);
2050
2051	if (err >= 0 && addr != NULL) {
2052		err2 = move_addr_to_user(&address,
2053					 msg.msg_namelen, addr, addr_len);
2054		if (err2 < 0)
2055			err = err2;
2056	}
2057
2058	fput_light(sock->file, fput_needed);
2059out:
2060	return err;
2061}
2062
2063SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2064		unsigned int, flags, struct sockaddr __user *, addr,
2065		int __user *, addr_len)
2066{
2067	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2068}
2069
2070/*
2071 *	Receive a datagram from a socket.
2072 */
2073
2074SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2075		unsigned int, flags)
2076{
2077	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2078}
2079
2080static bool sock_use_custom_sol_socket(const struct socket *sock)
2081{
2082	const struct sock *sk = sock->sk;
2083
2084	/* Use sock->ops->setsockopt() for MPTCP */
2085	return IS_ENABLED(CONFIG_MPTCP) &&
2086	       sk->sk_protocol == IPPROTO_MPTCP &&
2087	       sk->sk_type == SOCK_STREAM &&
2088	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2089}
2090
2091/*
2092 *	Set a socket option. Because we don't know the option lengths we have
2093 *	to pass the user mode parameter for the protocols to sort out.
2094 */
2095int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2096		int optlen)
 
2097{
2098	sockptr_t optval = USER_SOCKPTR(user_optval);
2099	char *kernel_optval = NULL;
2100	int err, fput_needed;
2101	struct socket *sock;
2102
2103	if (optlen < 0)
2104		return -EINVAL;
2105
2106	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2107	if (!sock)
2108		return err;
2109
2110	err = security_socket_setsockopt(sock, level, optname);
2111	if (err)
2112		goto out_put;
2113
2114	if (!in_compat_syscall())
2115		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2116						     user_optval, &optlen,
2117						     &kernel_optval);
2118	if (err < 0)
2119		goto out_put;
2120	if (err > 0) {
2121		err = 0;
2122		goto out_put;
2123	}
2124
2125	if (kernel_optval)
2126		optval = KERNEL_SOCKPTR(kernel_optval);
2127	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2128		err = sock_setsockopt(sock, level, optname, optval, optlen);
2129	else if (unlikely(!sock->ops->setsockopt))
2130		err = -EOPNOTSUPP;
2131	else
2132		err = sock->ops->setsockopt(sock, level, optname, optval,
2133					    optlen);
2134	kfree(kernel_optval);
 
 
 
2135out_put:
2136	fput_light(sock->file, fput_needed);
 
2137	return err;
2138}
2139
2140SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2141		char __user *, optval, int, optlen)
2142{
2143	return __sys_setsockopt(fd, level, optname, optval, optlen);
2144}
2145
2146/*
2147 *	Get a socket option. Because we don't know the option lengths we have
2148 *	to pass a user mode parameter for the protocols to sort out.
2149 */
2150int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2151		int __user *optlen)
 
2152{
2153	int err, fput_needed;
2154	struct socket *sock;
2155	int max_optlen;
2156
2157	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2158	if (!sock)
2159		return err;
 
 
2160
2161	err = security_socket_getsockopt(sock, level, optname);
2162	if (err)
2163		goto out_put;
2164
2165	if (!in_compat_syscall())
2166		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2167
2168	if (level == SOL_SOCKET)
2169		err = sock_getsockopt(sock, level, optname, optval, optlen);
2170	else if (unlikely(!sock->ops->getsockopt))
2171		err = -EOPNOTSUPP;
2172	else
2173		err = sock->ops->getsockopt(sock, level, optname, optval,
2174					    optlen);
2175
2176	if (!in_compat_syscall())
2177		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2178						     optval, optlen, max_optlen,
2179						     err);
2180out_put:
2181	fput_light(sock->file, fput_needed);
 
2182	return err;
2183}
2184
2185SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2186		char __user *, optval, int __user *, optlen)
2187{
2188	return __sys_getsockopt(fd, level, optname, optval, optlen);
2189}
2190
2191/*
2192 *	Shutdown a socket.
2193 */
2194
2195int __sys_shutdown(int fd, int how)
2196{
2197	int err, fput_needed;
2198	struct socket *sock;
2199
2200	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2201	if (sock != NULL) {
2202		err = security_socket_shutdown(sock, how);
2203		if (!err)
2204			err = sock->ops->shutdown(sock, how);
2205		fput_light(sock->file, fput_needed);
2206	}
2207	return err;
2208}
2209
2210SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2211{
2212	return __sys_shutdown(fd, how);
2213}
2214
2215/* A couple of helpful macros for getting the address of the 32/64 bit
2216 * fields which are the same type (int / unsigned) on our platforms.
2217 */
2218#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2219#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2220#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2221
2222struct used_address {
2223	struct sockaddr_storage name;
2224	unsigned int name_len;
2225};
2226
2227int __copy_msghdr_from_user(struct msghdr *kmsg,
2228			    struct user_msghdr __user *umsg,
2229			    struct sockaddr __user **save_addr,
2230			    struct iovec __user **uiov, size_t *nsegs)
2231{
2232	struct user_msghdr msg;
 
 
2233	ssize_t err;
2234
2235	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
 
 
 
 
 
 
 
2236		return -EFAULT;
2237
2238	kmsg->msg_control_is_user = true;
2239	kmsg->msg_control_user = msg.msg_control;
2240	kmsg->msg_controllen = msg.msg_controllen;
2241	kmsg->msg_flags = msg.msg_flags;
2242
2243	kmsg->msg_namelen = msg.msg_namelen;
2244	if (!msg.msg_name)
2245		kmsg->msg_namelen = 0;
2246
2247	if (kmsg->msg_namelen < 0)
2248		return -EINVAL;
2249
2250	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2251		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2252
2253	if (save_addr)
2254		*save_addr = msg.msg_name;
2255
2256	if (msg.msg_name && kmsg->msg_namelen) {
2257		if (!save_addr) {
2258			err = move_addr_to_kernel(msg.msg_name,
2259						  kmsg->msg_namelen,
2260						  kmsg->msg_name);
2261			if (err < 0)
2262				return err;
2263		}
2264	} else {
2265		kmsg->msg_name = NULL;
2266		kmsg->msg_namelen = 0;
2267	}
2268
2269	if (msg.msg_iovlen > UIO_MAXIOV)
2270		return -EMSGSIZE;
2271
2272	kmsg->msg_iocb = NULL;
2273	*uiov = msg.msg_iov;
2274	*nsegs = msg.msg_iovlen;
2275	return 0;
2276}
2277
2278static int copy_msghdr_from_user(struct msghdr *kmsg,
2279				 struct user_msghdr __user *umsg,
2280				 struct sockaddr __user **save_addr,
2281				 struct iovec **iov)
2282{
2283	struct user_msghdr msg;
2284	ssize_t err;
2285
2286	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2287					&msg.msg_iovlen);
2288	if (err)
2289		return err;
2290
2291	err = import_iovec(save_addr ? READ : WRITE,
2292			    msg.msg_iov, msg.msg_iovlen,
2293			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2294	return err < 0 ? err : 0;
2295}
2296
2297static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2298			   unsigned int flags, struct used_address *used_address,
2299			   unsigned int allowed_msghdr_flags)
 
2300{
 
 
 
 
2301	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2302				__aligned(sizeof(__kernel_size_t));
2303	/* 20 is size of ipv6_pktinfo */
2304	unsigned char *ctl_buf = ctl;
2305	int ctl_len;
2306	ssize_t err;
2307
 
 
 
 
 
 
 
 
 
2308	err = -ENOBUFS;
2309
2310	if (msg_sys->msg_controllen > INT_MAX)
2311		goto out;
2312	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2313	ctl_len = msg_sys->msg_controllen;
2314	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2315		err =
2316		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2317						     sizeof(ctl));
2318		if (err)
2319			goto out;
2320		ctl_buf = msg_sys->msg_control;
2321		ctl_len = msg_sys->msg_controllen;
2322	} else if (ctl_len) {
2323		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2324			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2325		if (ctl_len > sizeof(ctl)) {
2326			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2327			if (ctl_buf == NULL)
2328				goto out;
2329		}
2330		err = -EFAULT;
2331		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
 
 
 
 
 
 
 
2332			goto out_freectl;
2333		msg_sys->msg_control = ctl_buf;
2334		msg_sys->msg_control_is_user = false;
2335	}
2336	msg_sys->msg_flags = flags;
2337
2338	if (sock->file->f_flags & O_NONBLOCK)
2339		msg_sys->msg_flags |= MSG_DONTWAIT;
2340	/*
2341	 * If this is sendmmsg() and current destination address is same as
2342	 * previously succeeded address, omit asking LSM's decision.
2343	 * used_address->name_len is initialized to UINT_MAX so that the first
2344	 * destination address never matches.
2345	 */
2346	if (used_address && msg_sys->msg_name &&
2347	    used_address->name_len == msg_sys->msg_namelen &&
2348	    !memcmp(&used_address->name, msg_sys->msg_name,
2349		    used_address->name_len)) {
2350		err = sock_sendmsg_nosec(sock, msg_sys);
2351		goto out_freectl;
2352	}
2353	err = sock_sendmsg(sock, msg_sys);
2354	/*
2355	 * If this is sendmmsg() and sending to current destination address was
2356	 * successful, remember it.
2357	 */
2358	if (used_address && err >= 0) {
2359		used_address->name_len = msg_sys->msg_namelen;
2360		if (msg_sys->msg_name)
2361			memcpy(&used_address->name, msg_sys->msg_name,
2362			       used_address->name_len);
2363	}
2364
2365out_freectl:
2366	if (ctl_buf != ctl)
2367		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2368out:
2369	return err;
2370}
2371
2372int sendmsg_copy_msghdr(struct msghdr *msg,
2373			struct user_msghdr __user *umsg, unsigned flags,
2374			struct iovec **iov)
2375{
2376	int err;
2377
2378	if (flags & MSG_CMSG_COMPAT) {
2379		struct compat_msghdr __user *msg_compat;
2380
2381		msg_compat = (struct compat_msghdr __user *) umsg;
2382		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2383	} else {
2384		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2385	}
2386	if (err < 0)
2387		return err;
2388
2389	return 0;
2390}
2391
2392static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2393			 struct msghdr *msg_sys, unsigned int flags,
2394			 struct used_address *used_address,
2395			 unsigned int allowed_msghdr_flags)
2396{
2397	struct sockaddr_storage address;
2398	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2399	ssize_t err;
2400
2401	msg_sys->msg_name = &address;
2402
2403	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2404	if (err < 0)
2405		return err;
2406
2407	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2408				allowed_msghdr_flags);
2409	kfree(iov);
2410	return err;
2411}
2412
2413/*
2414 *	BSD sendmsg interface
2415 */
2416long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2417			unsigned int flags)
2418{
2419	/* disallow ancillary data requests from this path */
2420	if (msg->msg_control || msg->msg_controllen)
2421		return -EINVAL;
2422
2423	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2424}
2425
2426long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2427		   bool forbid_cmsg_compat)
2428{
2429	int fput_needed, err;
2430	struct msghdr msg_sys;
2431	struct socket *sock;
2432
2433	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2434		return -EINVAL;
2435
2436	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2437	if (!sock)
2438		goto out;
2439
2440	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2441
2442	fput_light(sock->file, fput_needed);
2443out:
2444	return err;
2445}
2446
2447SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2448{
2449	return __sys_sendmsg(fd, msg, flags, true);
 
 
2450}
2451
2452/*
2453 *	Linux sendmmsg interface
2454 */
2455
2456int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2457		   unsigned int flags, bool forbid_cmsg_compat)
2458{
2459	int fput_needed, err, datagrams;
2460	struct socket *sock;
2461	struct mmsghdr __user *entry;
2462	struct compat_mmsghdr __user *compat_entry;
2463	struct msghdr msg_sys;
2464	struct used_address used_address;
2465	unsigned int oflags = flags;
2466
2467	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2468		return -EINVAL;
2469
2470	if (vlen > UIO_MAXIOV)
2471		vlen = UIO_MAXIOV;
2472
2473	datagrams = 0;
2474
2475	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2476	if (!sock)
2477		return err;
2478
2479	used_address.name_len = UINT_MAX;
2480	entry = mmsg;
2481	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2482	err = 0;
2483	flags |= MSG_BATCH;
2484
2485	while (datagrams < vlen) {
2486		if (datagrams == vlen - 1)
2487			flags = oflags;
2488
2489		if (MSG_CMSG_COMPAT & flags) {
2490			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2491					     &msg_sys, flags, &used_address, MSG_EOR);
2492			if (err < 0)
2493				break;
2494			err = __put_user(err, &compat_entry->msg_len);
2495			++compat_entry;
2496		} else {
2497			err = ___sys_sendmsg(sock,
2498					     (struct user_msghdr __user *)entry,
2499					     &msg_sys, flags, &used_address, MSG_EOR);
2500			if (err < 0)
2501				break;
2502			err = put_user(err, &entry->msg_len);
2503			++entry;
2504		}
2505
2506		if (err)
2507			break;
2508		++datagrams;
2509		if (msg_data_left(&msg_sys))
2510			break;
2511		cond_resched();
2512	}
2513
2514	fput_light(sock->file, fput_needed);
2515
2516	/* We only return an error if no datagrams were able to be sent */
2517	if (datagrams != 0)
2518		return datagrams;
2519
2520	return err;
2521}
2522
2523SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2524		unsigned int, vlen, unsigned int, flags)
2525{
2526	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
 
 
2527}
2528
2529int recvmsg_copy_msghdr(struct msghdr *msg,
2530			struct user_msghdr __user *umsg, unsigned flags,
2531			struct sockaddr __user **uaddr,
2532			struct iovec **iov)
2533{
 
 
 
 
 
 
2534	ssize_t err;
2535
2536	if (MSG_CMSG_COMPAT & flags) {
2537		struct compat_msghdr __user *msg_compat;
 
 
 
 
 
 
2538
2539		msg_compat = (struct compat_msghdr __user *) umsg;
2540		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2541	} else {
2542		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2543	}
2544	if (err < 0)
2545		return err;
2546
2547	return 0;
2548}
2549
2550static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2551			   struct user_msghdr __user *msg,
2552			   struct sockaddr __user *uaddr,
2553			   unsigned int flags, int nosec)
2554{
2555	struct compat_msghdr __user *msg_compat =
2556					(struct compat_msghdr __user *) msg;
2557	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2558	struct sockaddr_storage addr;
2559	unsigned long cmsg_ptr;
2560	int len;
2561	ssize_t err;
2562
2563	msg_sys->msg_name = &addr;
2564	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2565	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2566
2567	/* We assume all kernel code knows the size of sockaddr_storage */
2568	msg_sys->msg_namelen = 0;
2569
2570	if (sock->file->f_flags & O_NONBLOCK)
2571		flags |= MSG_DONTWAIT;
2572
2573	if (unlikely(nosec))
2574		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2575	else
2576		err = sock_recvmsg(sock, msg_sys, flags);
2577
2578	if (err < 0)
2579		goto out;
2580	len = err;
2581
2582	if (uaddr != NULL) {
2583		err = move_addr_to_user(&addr,
2584					msg_sys->msg_namelen, uaddr,
2585					uaddr_len);
2586		if (err < 0)
2587			goto out;
2588	}
2589	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2590			 COMPAT_FLAGS(msg));
2591	if (err)
2592		goto out;
2593	if (MSG_CMSG_COMPAT & flags)
2594		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2595				 &msg_compat->msg_controllen);
2596	else
2597		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2598				 &msg->msg_controllen);
2599	if (err)
2600		goto out;
2601	err = len;
2602out:
2603	return err;
2604}
2605
2606static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2607			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2608{
2609	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2610	/* user mode address pointers */
2611	struct sockaddr __user *uaddr;
2612	ssize_t err;
2613
2614	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2615	if (err < 0)
2616		return err;
2617
2618	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2619	kfree(iov);
2620	return err;
2621}
2622
2623/*
2624 *	BSD recvmsg interface
2625 */
2626
2627long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2628			struct user_msghdr __user *umsg,
2629			struct sockaddr __user *uaddr, unsigned int flags)
2630{
2631	/* disallow ancillary data requests from this path */
2632	if (msg->msg_control || msg->msg_controllen)
2633		return -EINVAL;
2634
2635	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2636}
2637
2638long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2639		   bool forbid_cmsg_compat)
2640{
2641	int fput_needed, err;
2642	struct msghdr msg_sys;
2643	struct socket *sock;
2644
2645	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2646		return -EINVAL;
2647
2648	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2649	if (!sock)
2650		goto out;
2651
2652	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2653
2654	fput_light(sock->file, fput_needed);
2655out:
2656	return err;
2657}
2658
2659SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2660		unsigned int, flags)
2661{
2662	return __sys_recvmsg(fd, msg, flags, true);
 
 
2663}
2664
2665/*
2666 *     Linux recvmmsg interface
2667 */
2668
2669static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2670			  unsigned int vlen, unsigned int flags,
2671			  struct timespec64 *timeout)
2672{
2673	int fput_needed, err, datagrams;
2674	struct socket *sock;
2675	struct mmsghdr __user *entry;
2676	struct compat_mmsghdr __user *compat_entry;
2677	struct msghdr msg_sys;
2678	struct timespec64 end_time;
2679	struct timespec64 timeout64;
2680
2681	if (timeout &&
2682	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2683				    timeout->tv_nsec))
2684		return -EINVAL;
2685
2686	datagrams = 0;
2687
2688	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2689	if (!sock)
2690		return err;
2691
2692	if (likely(!(flags & MSG_ERRQUEUE))) {
2693		err = sock_error(sock->sk);
2694		if (err) {
2695			datagrams = err;
2696			goto out_put;
2697		}
2698	}
2699
2700	entry = mmsg;
2701	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2702
2703	while (datagrams < vlen) {
2704		/*
2705		 * No need to ask LSM for more than the first datagram.
2706		 */
2707		if (MSG_CMSG_COMPAT & flags) {
2708			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2709					     &msg_sys, flags & ~MSG_WAITFORONE,
2710					     datagrams);
2711			if (err < 0)
2712				break;
2713			err = __put_user(err, &compat_entry->msg_len);
2714			++compat_entry;
2715		} else {
2716			err = ___sys_recvmsg(sock,
2717					     (struct user_msghdr __user *)entry,
2718					     &msg_sys, flags & ~MSG_WAITFORONE,
2719					     datagrams);
2720			if (err < 0)
2721				break;
2722			err = put_user(err, &entry->msg_len);
2723			++entry;
2724		}
2725
2726		if (err)
2727			break;
2728		++datagrams;
2729
2730		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2731		if (flags & MSG_WAITFORONE)
2732			flags |= MSG_DONTWAIT;
2733
2734		if (timeout) {
2735			ktime_get_ts64(&timeout64);
2736			*timeout = timespec64_sub(end_time, timeout64);
 
2737			if (timeout->tv_sec < 0) {
2738				timeout->tv_sec = timeout->tv_nsec = 0;
2739				break;
2740			}
2741
2742			/* Timeout, return less than vlen datagrams */
2743			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2744				break;
2745		}
2746
2747		/* Out of band data, return right away */
2748		if (msg_sys.msg_flags & MSG_OOB)
2749			break;
2750		cond_resched();
2751	}
2752
2753	if (err == 0)
2754		goto out_put;
2755
2756	if (datagrams == 0) {
2757		datagrams = err;
2758		goto out_put;
2759	}
2760
2761	/*
2762	 * We may return less entries than requested (vlen) if the
2763	 * sock is non block and there aren't enough datagrams...
2764	 */
2765	if (err != -EAGAIN) {
2766		/*
2767		 * ... or  if recvmsg returns an error after we
2768		 * received some datagrams, where we record the
2769		 * error to return on the next call or if the
2770		 * app asks about it using getsockopt(SO_ERROR).
2771		 */
2772		sock->sk->sk_err = -err;
2773	}
2774out_put:
2775	fput_light(sock->file, fput_needed);
2776
2777	return datagrams;
2778}
2779
2780int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2781		   unsigned int vlen, unsigned int flags,
2782		   struct __kernel_timespec __user *timeout,
2783		   struct old_timespec32 __user *timeout32)
2784{
2785	int datagrams;
2786	struct timespec64 timeout_sys;
2787
2788	if (timeout && get_timespec64(&timeout_sys, timeout))
2789		return -EFAULT;
 
 
 
2790
2791	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2792		return -EFAULT;
2793
2794	if (!timeout && !timeout32)
2795		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2796
2797	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2798
2799	if (datagrams <= 0)
2800		return datagrams;
2801
2802	if (timeout && put_timespec64(&timeout_sys, timeout))
2803		datagrams = -EFAULT;
2804
2805	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2806		datagrams = -EFAULT;
2807
2808	return datagrams;
2809}
2810
2811SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2812		unsigned int, vlen, unsigned int, flags,
2813		struct __kernel_timespec __user *, timeout)
2814{
2815	if (flags & MSG_CMSG_COMPAT)
2816		return -EINVAL;
2817
2818	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2819}
2820
2821#ifdef CONFIG_COMPAT_32BIT_TIME
2822SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2823		unsigned int, vlen, unsigned int, flags,
2824		struct old_timespec32 __user *, timeout)
2825{
2826	if (flags & MSG_CMSG_COMPAT)
2827		return -EINVAL;
2828
2829	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2830}
2831#endif
2832
2833#ifdef __ARCH_WANT_SYS_SOCKETCALL
2834/* Argument list sizes for sys_socketcall */
2835#define AL(x) ((x) * sizeof(unsigned long))
2836static const unsigned char nargs[21] = {
2837	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2838	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2839	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2840	AL(4), AL(5), AL(4)
2841};
2842
2843#undef AL
2844
2845/*
2846 *	System call vectors.
2847 *
2848 *	Argument checking cleaned up. Saved 20% in size.
2849 *  This function doesn't need to set the kernel lock because
2850 *  it is set by the callees.
2851 */
2852
2853SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2854{
2855	unsigned long a[AUDITSC_ARGS];
2856	unsigned long a0, a1;
2857	int err;
2858	unsigned int len;
2859
2860	if (call < 1 || call > SYS_SENDMMSG)
2861		return -EINVAL;
2862	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2863
2864	len = nargs[call];
2865	if (len > sizeof(a))
2866		return -EINVAL;
2867
2868	/* copy_from_user should be SMP safe. */
2869	if (copy_from_user(a, args, len))
2870		return -EFAULT;
2871
2872	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2873	if (err)
2874		return err;
2875
2876	a0 = a[0];
2877	a1 = a[1];
2878
2879	switch (call) {
2880	case SYS_SOCKET:
2881		err = __sys_socket(a0, a1, a[2]);
2882		break;
2883	case SYS_BIND:
2884		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2885		break;
2886	case SYS_CONNECT:
2887		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2888		break;
2889	case SYS_LISTEN:
2890		err = __sys_listen(a0, a1);
2891		break;
2892	case SYS_ACCEPT:
2893		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2894				    (int __user *)a[2], 0);
2895		break;
2896	case SYS_GETSOCKNAME:
2897		err =
2898		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2899				      (int __user *)a[2]);
2900		break;
2901	case SYS_GETPEERNAME:
2902		err =
2903		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2904				      (int __user *)a[2]);
2905		break;
2906	case SYS_SOCKETPAIR:
2907		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2908		break;
2909	case SYS_SEND:
2910		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2911				   NULL, 0);
2912		break;
2913	case SYS_SENDTO:
2914		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2915				   (struct sockaddr __user *)a[4], a[5]);
2916		break;
2917	case SYS_RECV:
2918		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2919				     NULL, NULL);
2920		break;
2921	case SYS_RECVFROM:
2922		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2923				     (struct sockaddr __user *)a[4],
2924				     (int __user *)a[5]);
2925		break;
2926	case SYS_SHUTDOWN:
2927		err = __sys_shutdown(a0, a1);
2928		break;
2929	case SYS_SETSOCKOPT:
2930		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2931				       a[4]);
2932		break;
2933	case SYS_GETSOCKOPT:
2934		err =
2935		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2936				     (int __user *)a[4]);
2937		break;
2938	case SYS_SENDMSG:
2939		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2940				    a[2], true);
2941		break;
2942	case SYS_SENDMMSG:
2943		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2944				     a[3], true);
2945		break;
2946	case SYS_RECVMSG:
2947		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2948				    a[2], true);
2949		break;
2950	case SYS_RECVMMSG:
2951		if (IS_ENABLED(CONFIG_64BIT))
2952			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2953					     a[2], a[3],
2954					     (struct __kernel_timespec __user *)a[4],
2955					     NULL);
2956		else
2957			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2958					     a[2], a[3], NULL,
2959					     (struct old_timespec32 __user *)a[4]);
2960		break;
2961	case SYS_ACCEPT4:
2962		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2963				    (int __user *)a[2], a[3]);
2964		break;
2965	default:
2966		err = -EINVAL;
2967		break;
2968	}
2969	return err;
2970}
2971
2972#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2973
2974/**
2975 *	sock_register - add a socket protocol handler
2976 *	@ops: description of protocol
2977 *
2978 *	This function is called by a protocol handler that wants to
2979 *	advertise its address family, and have it linked into the
2980 *	socket interface. The value ops->family corresponds to the
2981 *	socket system call protocol family.
2982 */
2983int sock_register(const struct net_proto_family *ops)
2984{
2985	int err;
2986
2987	if (ops->family >= NPROTO) {
2988		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2989		return -ENOBUFS;
2990	}
2991
2992	spin_lock(&net_family_lock);
2993	if (rcu_dereference_protected(net_families[ops->family],
2994				      lockdep_is_held(&net_family_lock)))
2995		err = -EEXIST;
2996	else {
2997		rcu_assign_pointer(net_families[ops->family], ops);
2998		err = 0;
2999	}
3000	spin_unlock(&net_family_lock);
3001
3002	pr_info("NET: Registered protocol family %d\n", ops->family);
3003	return err;
3004}
3005EXPORT_SYMBOL(sock_register);
3006
3007/**
3008 *	sock_unregister - remove a protocol handler
3009 *	@family: protocol family to remove
3010 *
3011 *	This function is called by a protocol handler that wants to
3012 *	remove its address family, and have it unlinked from the
3013 *	new socket creation.
3014 *
3015 *	If protocol handler is a module, then it can use module reference
3016 *	counts to protect against new references. If protocol handler is not
3017 *	a module then it needs to provide its own protection in
3018 *	the ops->create routine.
3019 */
3020void sock_unregister(int family)
3021{
3022	BUG_ON(family < 0 || family >= NPROTO);
3023
3024	spin_lock(&net_family_lock);
3025	RCU_INIT_POINTER(net_families[family], NULL);
3026	spin_unlock(&net_family_lock);
3027
3028	synchronize_rcu();
3029
3030	pr_info("NET: Unregistered protocol family %d\n", family);
3031}
3032EXPORT_SYMBOL(sock_unregister);
3033
3034bool sock_is_registered(int family)
3035{
3036	return family < NPROTO && rcu_access_pointer(net_families[family]);
3037}
3038
3039static int __init sock_init(void)
3040{
3041	int err;
3042	/*
3043	 *      Initialize the network sysctl infrastructure.
3044	 */
3045	err = net_sysctl_init();
3046	if (err)
3047		goto out;
3048
3049	/*
3050	 *      Initialize skbuff SLAB cache
3051	 */
3052	skb_init();
3053
3054	/*
3055	 *      Initialize the protocols module.
3056	 */
3057
3058	init_inodecache();
3059
3060	err = register_filesystem(&sock_fs_type);
3061	if (err)
3062		goto out;
3063	sock_mnt = kern_mount(&sock_fs_type);
3064	if (IS_ERR(sock_mnt)) {
3065		err = PTR_ERR(sock_mnt);
3066		goto out_mount;
3067	}
3068
3069	/* The real protocol initialization is performed in later initcalls.
3070	 */
3071
3072#ifdef CONFIG_NETFILTER
3073	err = netfilter_init();
3074	if (err)
3075		goto out;
3076#endif
3077
3078	ptp_classifier_init();
3079
3080out:
3081	return err;
3082
3083out_mount:
3084	unregister_filesystem(&sock_fs_type);
 
3085	goto out;
3086}
3087
3088core_initcall(sock_init);	/* early initcall */
3089
3090#ifdef CONFIG_PROC_FS
3091void socket_seq_show(struct seq_file *seq)
3092{
3093	seq_printf(seq, "sockets: used %d\n",
3094		   sock_inuse_get(seq->private));
 
 
 
 
 
 
 
 
 
3095}
3096#endif				/* CONFIG_PROC_FS */
3097
3098#ifdef CONFIG_COMPAT
3099static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3100{
3101	struct compat_ifconf ifc32;
3102	struct ifconf ifc;
 
 
 
 
3103	int err;
3104
3105	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3106		return -EFAULT;
3107
3108	ifc.ifc_len = ifc32.ifc_len;
3109	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3110
3111	rtnl_lock();
3112	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3113	rtnl_unlock();
3114	if (err)
3115		return err;
3116
3117	ifc32.ifc_len = ifc.ifc_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3118	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3119		return -EFAULT;
3120
3121	return 0;
3122}
3123
3124static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3125{
3126	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3127	bool convert_in = false, convert_out = false;
3128	size_t buf_size = 0;
3129	struct ethtool_rxnfc __user *rxnfc = NULL;
3130	struct ifreq ifr;
3131	u32 rule_cnt = 0, actual_rule_cnt;
3132	u32 ethcmd;
3133	u32 data;
3134	int ret;
3135
3136	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3137		return -EFAULT;
3138
3139	compat_rxnfc = compat_ptr(data);
3140
3141	if (get_user(ethcmd, &compat_rxnfc->cmd))
3142		return -EFAULT;
3143
3144	/* Most ethtool structures are defined without padding.
3145	 * Unfortunately struct ethtool_rxnfc is an exception.
3146	 */
3147	switch (ethcmd) {
3148	default:
3149		break;
3150	case ETHTOOL_GRXCLSRLALL:
3151		/* Buffer size is variable */
3152		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3153			return -EFAULT;
3154		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3155			return -ENOMEM;
3156		buf_size += rule_cnt * sizeof(u32);
3157		fallthrough;
3158	case ETHTOOL_GRXRINGS:
3159	case ETHTOOL_GRXCLSRLCNT:
3160	case ETHTOOL_GRXCLSRULE:
3161	case ETHTOOL_SRXCLSRLINS:
3162		convert_out = true;
3163		fallthrough;
3164	case ETHTOOL_SRXCLSRLDEL:
3165		buf_size += sizeof(struct ethtool_rxnfc);
3166		convert_in = true;
3167		rxnfc = compat_alloc_user_space(buf_size);
3168		break;
3169	}
3170
3171	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
 
 
 
3172		return -EFAULT;
3173
3174	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
 
 
3175
3176	if (convert_in) {
3177		/* We expect there to be holes between fs.m_ext and
3178		 * fs.ring_cookie and at the end of fs, but nowhere else.
3179		 */
3180		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3181			     sizeof(compat_rxnfc->fs.m_ext) !=
3182			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3183			     sizeof(rxnfc->fs.m_ext));
3184		BUILD_BUG_ON(
3185			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3186			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3187			offsetof(struct ethtool_rxnfc, fs.location) -
3188			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3189
3190		if (copy_in_user(rxnfc, compat_rxnfc,
3191				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3192				 (void __user *)rxnfc) ||
3193		    copy_in_user(&rxnfc->fs.ring_cookie,
3194				 &compat_rxnfc->fs.ring_cookie,
3195				 (void __user *)(&rxnfc->fs.location + 1) -
3196				 (void __user *)&rxnfc->fs.ring_cookie))
3197			return -EFAULT;
3198		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3199			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3200				return -EFAULT;
3201		} else if (copy_in_user(&rxnfc->rule_cnt,
3202					&compat_rxnfc->rule_cnt,
3203					sizeof(rxnfc->rule_cnt)))
3204			return -EFAULT;
3205	}
3206
3207	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3208	if (ret)
3209		return ret;
3210
3211	if (convert_out) {
3212		if (copy_in_user(compat_rxnfc, rxnfc,
3213				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3214				 (const void __user *)rxnfc) ||
3215		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3216				 &rxnfc->fs.ring_cookie,
3217				 (const void __user *)(&rxnfc->fs.location + 1) -
3218				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3219		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3220				 sizeof(rxnfc->rule_cnt)))
3221			return -EFAULT;
3222
3223		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3224			/* As an optimisation, we only copy the actual
3225			 * number of rules that the underlying
3226			 * function returned.  Since Mallory might
3227			 * change the rule count in user memory, we
3228			 * check that it is less than the rule count
3229			 * originally given (as the user buffer size),
3230			 * which has been range-checked.
3231			 */
3232			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3233				return -EFAULT;
3234			if (actual_rule_cnt < rule_cnt)
3235				rule_cnt = actual_rule_cnt;
3236			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3237					 &rxnfc->rule_locs[0],
3238					 rule_cnt * sizeof(u32)))
3239				return -EFAULT;
3240		}
3241	}
3242
3243	return 0;
3244}
3245
3246static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3247{
 
3248	compat_uptr_t uptr32;
3249	struct ifreq ifr;
3250	void __user *saved;
3251	int err;
3252
3253	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
 
3254		return -EFAULT;
3255
3256	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3257		return -EFAULT;
3258
3259	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3260	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3261
3262	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3263	if (!err) {
3264		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3265		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3266			err = -EFAULT;
3267	}
3268	return err;
3269}
3270
3271/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3272static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3273				 struct compat_ifreq __user *u_ifreq32)
3274{
3275	struct ifreq ifreq;
 
 
3276	u32 data32;
3277
3278	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
 
 
 
 
 
 
 
 
 
 
3279		return -EFAULT;
3280	if (get_user(data32, &u_ifreq32->ifr_data))
3281		return -EFAULT;
3282	ifreq.ifr_data = compat_ptr(data32);
3283
3284	return dev_ioctl(net, cmd, &ifreq, NULL);
3285}
3286
3287static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3288			      unsigned int cmd,
3289			      struct compat_ifreq __user *uifr32)
3290{
3291	struct ifreq __user *uifr;
3292	int err;
3293
3294	/* Handle the fact that while struct ifreq has the same *layout* on
3295	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3296	 * which are handled elsewhere, it still has different *size* due to
3297	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3298	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3299	 * As a result, if the struct happens to be at the end of a page and
3300	 * the next page isn't readable/writable, we get a fault. To prevent
3301	 * that, copy back and forth to the full size.
3302	 */
3303
3304	uifr = compat_alloc_user_space(sizeof(*uifr));
3305	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3306		return -EFAULT;
3307
3308	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3309
3310	if (!err) {
3311		switch (cmd) {
3312		case SIOCGIFFLAGS:
3313		case SIOCGIFMETRIC:
3314		case SIOCGIFMTU:
3315		case SIOCGIFMEM:
3316		case SIOCGIFHWADDR:
3317		case SIOCGIFINDEX:
3318		case SIOCGIFADDR:
3319		case SIOCGIFBRDADDR:
3320		case SIOCGIFDSTADDR:
3321		case SIOCGIFNETMASK:
3322		case SIOCGIFPFLAGS:
3323		case SIOCGIFTXQLEN:
3324		case SIOCGMIIPHY:
3325		case SIOCGMIIREG:
3326		case SIOCGIFNAME:
3327			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3328				err = -EFAULT;
3329			break;
3330		}
3331	}
3332	return err;
3333}
3334
3335static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3336			struct compat_ifreq __user *uifr32)
3337{
3338	struct ifreq ifr;
3339	struct compat_ifmap __user *uifmap32;
 
3340	int err;
3341
3342	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3343	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3344	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3345	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3346	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3347	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3348	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3349	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3350	if (err)
3351		return -EFAULT;
3352
3353	err = dev_ioctl(net, cmd, &ifr, NULL);
 
 
 
3354
3355	if (cmd == SIOCGIFMAP && !err) {
3356		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3357		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3358		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3359		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3360		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3361		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3362		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3363		if (err)
3364			err = -EFAULT;
3365	}
3366	return err;
3367}
3368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3369/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3370 * for some operations; this forces use of the newer bridge-utils that
3371 * use compatible ioctls
3372 */
3373static int old_bridge_ioctl(compat_ulong_t __user *argp)
3374{
3375	compat_ulong_t tmp;
3376
3377	if (get_user(tmp, argp))
3378		return -EFAULT;
3379	if (tmp == BRCTL_GET_VERSION)
3380		return BRCTL_VERSION + 1;
3381	return -EINVAL;
3382}
3383
3384static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3385			 unsigned int cmd, unsigned long arg)
3386{
3387	void __user *argp = compat_ptr(arg);
3388	struct sock *sk = sock->sk;
3389	struct net *net = sock_net(sk);
3390
3391	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3392		return compat_ifr_data_ioctl(net, cmd, argp);
3393
3394	switch (cmd) {
3395	case SIOCSIFBR:
3396	case SIOCGIFBR:
3397		return old_bridge_ioctl(argp);
 
 
3398	case SIOCGIFCONF:
3399		return compat_dev_ifconf(net, argp);
3400	case SIOCETHTOOL:
3401		return ethtool_ioctl(net, argp);
3402	case SIOCWANDEV:
3403		return compat_siocwandev(net, argp);
3404	case SIOCGIFMAP:
3405	case SIOCSIFMAP:
3406		return compat_sioc_ifmap(net, cmd, argp);
3407	case SIOCGSTAMP_OLD:
3408	case SIOCGSTAMPNS_OLD:
3409		if (!sock->ops->gettstamp)
3410			return -ENOIOCTLCMD;
3411		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3412					    !COMPAT_USE_64BIT_TIME);
3413
 
 
 
 
 
3414	case SIOCBONDSLAVEINFOQUERY:
3415	case SIOCBONDINFOQUERY:
3416	case SIOCSHWTSTAMP:
3417	case SIOCGHWTSTAMP:
3418		return compat_ifr_data_ioctl(net, cmd, argp);
3419
3420	case FIOSETOWN:
3421	case SIOCSPGRP:
3422	case FIOGETOWN:
3423	case SIOCGPGRP:
3424	case SIOCBRADDBR:
3425	case SIOCBRDELBR:
3426	case SIOCGIFVLAN:
3427	case SIOCSIFVLAN:
3428	case SIOCADDDLCI:
3429	case SIOCDELDLCI:
3430	case SIOCGSKNS:
3431	case SIOCGSTAMP_NEW:
3432	case SIOCGSTAMPNS_NEW:
3433		return sock_ioctl(file, cmd, arg);
3434
3435	case SIOCGIFFLAGS:
3436	case SIOCSIFFLAGS:
3437	case SIOCGIFMETRIC:
3438	case SIOCSIFMETRIC:
3439	case SIOCGIFMTU:
3440	case SIOCSIFMTU:
3441	case SIOCGIFMEM:
3442	case SIOCSIFMEM:
3443	case SIOCGIFHWADDR:
3444	case SIOCSIFHWADDR:
3445	case SIOCADDMULTI:
3446	case SIOCDELMULTI:
3447	case SIOCGIFINDEX:
3448	case SIOCGIFADDR:
3449	case SIOCSIFADDR:
3450	case SIOCSIFHWBROADCAST:
3451	case SIOCDIFADDR:
3452	case SIOCGIFBRDADDR:
3453	case SIOCSIFBRDADDR:
3454	case SIOCGIFDSTADDR:
3455	case SIOCSIFDSTADDR:
3456	case SIOCGIFNETMASK:
3457	case SIOCSIFNETMASK:
3458	case SIOCSIFPFLAGS:
3459	case SIOCGIFPFLAGS:
3460	case SIOCGIFTXQLEN:
3461	case SIOCSIFTXQLEN:
3462	case SIOCBRADDIF:
3463	case SIOCBRDELIF:
3464	case SIOCGIFNAME:
3465	case SIOCSIFNAME:
3466	case SIOCGMIIPHY:
3467	case SIOCGMIIREG:
3468	case SIOCSMIIREG:
3469	case SIOCBONDENSLAVE:
3470	case SIOCBONDRELEASE:
3471	case SIOCBONDSETHWADDR:
3472	case SIOCBONDCHANGEACTIVE:
3473		return compat_ifreq_ioctl(net, sock, cmd, argp);
3474
3475	case SIOCSARP:
3476	case SIOCGARP:
3477	case SIOCDARP:
3478	case SIOCOUTQ:
3479	case SIOCOUTQNSD:
3480	case SIOCATMARK:
3481		return sock_do_ioctl(net, sock, cmd, arg);
3482	}
3483
3484	return -ENOIOCTLCMD;
3485}
3486
3487static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3488			      unsigned long arg)
3489{
3490	struct socket *sock = file->private_data;
3491	int ret = -ENOIOCTLCMD;
3492	struct sock *sk;
3493	struct net *net;
3494
3495	sk = sock->sk;
3496	net = sock_net(sk);
3497
3498	if (sock->ops->compat_ioctl)
3499		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3500
3501	if (ret == -ENOIOCTLCMD &&
3502	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3503		ret = compat_wext_handle_ioctl(net, cmd, arg);
3504
3505	if (ret == -ENOIOCTLCMD)
3506		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3507
3508	return ret;
3509}
3510#endif
3511
3512/**
3513 *	kernel_bind - bind an address to a socket (kernel space)
3514 *	@sock: socket
3515 *	@addr: address
3516 *	@addrlen: length of address
3517 *
3518 *	Returns 0 or an error.
3519 */
3520
3521int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3522{
3523	return sock->ops->bind(sock, addr, addrlen);
3524}
3525EXPORT_SYMBOL(kernel_bind);
3526
3527/**
3528 *	kernel_listen - move socket to listening state (kernel space)
3529 *	@sock: socket
3530 *	@backlog: pending connections queue size
3531 *
3532 *	Returns 0 or an error.
3533 */
3534
3535int kernel_listen(struct socket *sock, int backlog)
3536{
3537	return sock->ops->listen(sock, backlog);
3538}
3539EXPORT_SYMBOL(kernel_listen);
3540
3541/**
3542 *	kernel_accept - accept a connection (kernel space)
3543 *	@sock: listening socket
3544 *	@newsock: new connected socket
3545 *	@flags: flags
3546 *
3547 *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3548 *	If it fails, @newsock is guaranteed to be %NULL.
3549 *	Returns 0 or an error.
3550 */
3551
3552int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3553{
3554	struct sock *sk = sock->sk;
3555	int err;
3556
3557	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3558			       newsock);
3559	if (err < 0)
3560		goto done;
3561
3562	err = sock->ops->accept(sock, *newsock, flags, true);
3563	if (err < 0) {
3564		sock_release(*newsock);
3565		*newsock = NULL;
3566		goto done;
3567	}
3568
3569	(*newsock)->ops = sock->ops;
3570	__module_get((*newsock)->ops->owner);
3571
3572done:
3573	return err;
3574}
3575EXPORT_SYMBOL(kernel_accept);
3576
3577/**
3578 *	kernel_connect - connect a socket (kernel space)
3579 *	@sock: socket
3580 *	@addr: address
3581 *	@addrlen: address length
3582 *	@flags: flags (O_NONBLOCK, ...)
3583 *
3584 *	For datagram sockets, @addr is the addres to which datagrams are sent
3585 *	by default, and the only address from which datagrams are received.
3586 *	For stream sockets, attempts to connect to @addr.
3587 *	Returns 0 or an error code.
3588 */
3589
3590int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3591		   int flags)
3592{
3593	return sock->ops->connect(sock, addr, addrlen, flags);
3594}
3595EXPORT_SYMBOL(kernel_connect);
3596
3597/**
3598 *	kernel_getsockname - get the address which the socket is bound (kernel space)
3599 *	@sock: socket
3600 *	@addr: address holder
3601 *
3602 * 	Fills the @addr pointer with the address which the socket is bound.
3603 *	Returns 0 or an error code.
3604 */
3605
3606int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3607{
3608	return sock->ops->getname(sock, addr, 0);
3609}
3610EXPORT_SYMBOL(kernel_getsockname);
3611
3612/**
3613 *	kernel_getpeername - get the address which the socket is connected (kernel space)
3614 *	@sock: socket
3615 *	@addr: address holder
3616 *
3617 * 	Fills the @addr pointer with the address which the socket is connected.
3618 *	Returns 0 or an error code.
3619 */
3620
3621int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
 
3622{
3623	return sock->ops->getname(sock, addr, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3624}
3625EXPORT_SYMBOL(kernel_getpeername);
 
 
 
 
 
 
 
 
 
3626
3627/**
3628 *	kernel_sendpage - send a &page through a socket (kernel space)
3629 *	@sock: socket
3630 *	@page: page
3631 *	@offset: page offset
3632 *	@size: total size in bytes
3633 *	@flags: flags (MSG_DONTWAIT, ...)
3634 *
3635 *	Returns the total amount sent in bytes or an error.
3636 */
3637
3638int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3639		    size_t size, int flags)
3640{
3641	if (sock->ops->sendpage) {
3642		/* Warn in case the improper page to zero-copy send */
3643		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3644		return sock->ops->sendpage(sock, page, offset, size, flags);
3645	}
3646	return sock_no_sendpage(sock, page, offset, size, flags);
3647}
3648EXPORT_SYMBOL(kernel_sendpage);
3649
3650/**
3651 *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3652 *	@sk: sock
3653 *	@page: page
3654 *	@offset: page offset
3655 *	@size: total size in bytes
3656 *	@flags: flags (MSG_DONTWAIT, ...)
3657 *
3658 *	Returns the total amount sent in bytes or an error.
3659 *	Caller must hold @sk.
3660 */
3661
3662int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3663			   size_t size, int flags)
3664{
3665	struct socket *sock = sk->sk_socket;
 
3666
3667	if (sock->ops->sendpage_locked)
3668		return sock->ops->sendpage_locked(sk, page, offset, size,
3669						  flags);
3670
3671	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3672}
3673EXPORT_SYMBOL(kernel_sendpage_locked);
3674
3675/**
3676 *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3677 *	@sock: socket
3678 *	@how: connection part
3679 *
3680 *	Returns 0 or an error.
3681 */
3682
3683int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3684{
3685	return sock->ops->shutdown(sock, how);
3686}
3687EXPORT_SYMBOL(kernel_sock_shutdown);
3688
3689/**
3690 *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3691 *	@sk: socket
3692 *
3693 *	This routine returns the IP overhead imposed by a socket i.e.
3694 *	the length of the underlying IP header, depending on whether
3695 *	this is an IPv4 or IPv6 socket and the length from IP options turned
3696 *	on at the socket. Assumes that the caller has a lock on the socket.
3697 */
3698
3699u32 kernel_sock_ip_overhead(struct sock *sk)
3700{
3701	struct inet_sock *inet;
3702	struct ip_options_rcu *opt;
3703	u32 overhead = 0;
3704#if IS_ENABLED(CONFIG_IPV6)
3705	struct ipv6_pinfo *np;
3706	struct ipv6_txoptions *optv6 = NULL;
3707#endif /* IS_ENABLED(CONFIG_IPV6) */
3708
3709	if (!sk)
3710		return overhead;
3711
3712	switch (sk->sk_family) {
3713	case AF_INET:
3714		inet = inet_sk(sk);
3715		overhead += sizeof(struct iphdr);
3716		opt = rcu_dereference_protected(inet->inet_opt,
3717						sock_owned_by_user(sk));
3718		if (opt)
3719			overhead += opt->opt.optlen;
3720		return overhead;
3721#if IS_ENABLED(CONFIG_IPV6)
3722	case AF_INET6:
3723		np = inet6_sk(sk);
3724		overhead += sizeof(struct ipv6hdr);
3725		if (np)
3726			optv6 = rcu_dereference_protected(np->opt,
3727							  sock_owned_by_user(sk));
3728		if (optv6)
3729			overhead += (optv6->opt_flen + optv6->opt_nflen);
3730		return overhead;
3731#endif /* IS_ENABLED(CONFIG_IPV6) */
3732	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3733		return overhead;
3734	}
3735}
3736EXPORT_SYMBOL(kernel_sock_ip_overhead);