Loading...
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/ptp_classify.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90#include <linux/slab.h>
91#include <linux/xattr.h>
92
93#include <linux/uaccess.h>
94#include <asm/unistd.h>
95
96#include <net/compat.h>
97#include <net/wext.h>
98#include <net/cls_cgroup.h>
99
100#include <net/sock.h>
101#include <linux/netfilter.h>
102
103#include <linux/if_tun.h>
104#include <linux/ipv6_route.h>
105#include <linux/route.h>
106#include <linux/sockios.h>
107#include <linux/atalk.h>
108#include <net/busy_poll.h>
109#include <linux/errqueue.h>
110
111#ifdef CONFIG_NET_RX_BUSY_POLL
112unsigned int sysctl_net_busy_read __read_mostly;
113unsigned int sysctl_net_busy_poll __read_mostly;
114#endif
115
116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120static int sock_close(struct inode *inode, struct file *file);
121static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124#ifdef CONFIG_COMPAT
125static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127#endif
128static int sock_fasync(int fd, struct file *filp, int on);
129static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135/*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147#ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149#endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156};
157
158/*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162static DEFINE_SPINLOCK(net_family_lock);
163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165/*
166 * Statistics counters of the socket lists
167 */
168
169static DEFINE_PER_CPU(int, sockets_in_use);
170
171/*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177/**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189{
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197}
198
199/**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218{
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241}
242
243static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245static struct inode *sock_alloc_inode(struct super_block *sb)
246{
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270}
271
272static void sock_destroy_inode(struct inode *inode)
273{
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281}
282
283static void init_once(void *foo)
284{
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288}
289
290static int init_inodecache(void)
291{
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
302}
303
304static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
308};
309
310/*
311 * sockfs_dname() is called from d_path().
312 */
313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314{
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
317}
318
319static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
321};
322
323static int sockfs_xattr_get(const struct xattr_handler *handler,
324 struct dentry *dentry, struct inode *inode,
325 const char *suffix, void *value, size_t size)
326{
327 if (value) {
328 if (dentry->d_name.len + 1 > size)
329 return -ERANGE;
330 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
331 }
332 return dentry->d_name.len + 1;
333}
334
335#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
338
339static const struct xattr_handler sockfs_xattr_handler = {
340 .name = XATTR_NAME_SOCKPROTONAME,
341 .get = sockfs_xattr_get,
342};
343
344static int sockfs_security_xattr_set(const struct xattr_handler *handler,
345 struct dentry *dentry, struct inode *inode,
346 const char *suffix, const void *value,
347 size_t size, int flags)
348{
349 /* Handled by LSM. */
350 return -EAGAIN;
351}
352
353static const struct xattr_handler sockfs_security_xattr_handler = {
354 .prefix = XATTR_SECURITY_PREFIX,
355 .set = sockfs_security_xattr_set,
356};
357
358static const struct xattr_handler *sockfs_xattr_handlers[] = {
359 &sockfs_xattr_handler,
360 &sockfs_security_xattr_handler,
361 NULL
362};
363
364static struct dentry *sockfs_mount(struct file_system_type *fs_type,
365 int flags, const char *dev_name, void *data)
366{
367 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
368 sockfs_xattr_handlers,
369 &sockfs_dentry_operations, SOCKFS_MAGIC);
370}
371
372static struct vfsmount *sock_mnt __read_mostly;
373
374static struct file_system_type sock_fs_type = {
375 .name = "sockfs",
376 .mount = sockfs_mount,
377 .kill_sb = kill_anon_super,
378};
379
380/*
381 * Obtains the first available file descriptor and sets it up for use.
382 *
383 * These functions create file structures and maps them to fd space
384 * of the current process. On success it returns file descriptor
385 * and file struct implicitly stored in sock->file.
386 * Note that another thread may close file descriptor before we return
387 * from this function. We use the fact that now we do not refer
388 * to socket after mapping. If one day we will need it, this
389 * function will increment ref. count on file by 1.
390 *
391 * In any case returned fd MAY BE not valid!
392 * This race condition is unavoidable
393 * with shared fd spaces, we cannot solve it inside kernel,
394 * but we take care of internal coherence yet.
395 */
396
397struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
398{
399 struct qstr name = { .name = "" };
400 struct path path;
401 struct file *file;
402
403 if (dname) {
404 name.name = dname;
405 name.len = strlen(name.name);
406 } else if (sock->sk) {
407 name.name = sock->sk->sk_prot_creator->name;
408 name.len = strlen(name.name);
409 }
410 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
411 if (unlikely(!path.dentry))
412 return ERR_PTR(-ENOMEM);
413 path.mnt = mntget(sock_mnt);
414
415 d_instantiate(path.dentry, SOCK_INODE(sock));
416
417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 &socket_file_ops);
419 if (IS_ERR(file)) {
420 /* drop dentry, keep inode */
421 ihold(d_inode(path.dentry));
422 path_put(&path);
423 return file;
424 }
425
426 sock->file = file;
427 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
428 file->private_data = sock;
429 return file;
430}
431EXPORT_SYMBOL(sock_alloc_file);
432
433static int sock_map_fd(struct socket *sock, int flags)
434{
435 struct file *newfile;
436 int fd = get_unused_fd_flags(flags);
437 if (unlikely(fd < 0))
438 return fd;
439
440 newfile = sock_alloc_file(sock, flags, NULL);
441 if (likely(!IS_ERR(newfile))) {
442 fd_install(fd, newfile);
443 return fd;
444 }
445
446 put_unused_fd(fd);
447 return PTR_ERR(newfile);
448}
449
450struct socket *sock_from_file(struct file *file, int *err)
451{
452 if (file->f_op == &socket_file_ops)
453 return file->private_data; /* set in sock_map_fd */
454
455 *err = -ENOTSOCK;
456 return NULL;
457}
458EXPORT_SYMBOL(sock_from_file);
459
460/**
461 * sockfd_lookup - Go from a file number to its socket slot
462 * @fd: file handle
463 * @err: pointer to an error code return
464 *
465 * The file handle passed in is locked and the socket it is bound
466 * too is returned. If an error occurs the err pointer is overwritten
467 * with a negative errno code and NULL is returned. The function checks
468 * for both invalid handles and passing a handle which is not a socket.
469 *
470 * On a success the socket object pointer is returned.
471 */
472
473struct socket *sockfd_lookup(int fd, int *err)
474{
475 struct file *file;
476 struct socket *sock;
477
478 file = fget(fd);
479 if (!file) {
480 *err = -EBADF;
481 return NULL;
482 }
483
484 sock = sock_from_file(file, err);
485 if (!sock)
486 fput(file);
487 return sock;
488}
489EXPORT_SYMBOL(sockfd_lookup);
490
491static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
492{
493 struct fd f = fdget(fd);
494 struct socket *sock;
495
496 *err = -EBADF;
497 if (f.file) {
498 sock = sock_from_file(f.file, err);
499 if (likely(sock)) {
500 *fput_needed = f.flags;
501 return sock;
502 }
503 fdput(f);
504 }
505 return NULL;
506}
507
508static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
509 size_t size)
510{
511 ssize_t len;
512 ssize_t used = 0;
513
514 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
515 if (len < 0)
516 return len;
517 used += len;
518 if (buffer) {
519 if (size < used)
520 return -ERANGE;
521 buffer += len;
522 }
523
524 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
525 used += len;
526 if (buffer) {
527 if (size < used)
528 return -ERANGE;
529 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
530 buffer += len;
531 }
532
533 return used;
534}
535
536static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
537{
538 int err = simple_setattr(dentry, iattr);
539
540 if (!err && (iattr->ia_valid & ATTR_UID)) {
541 struct socket *sock = SOCKET_I(d_inode(dentry));
542
543 sock->sk->sk_uid = iattr->ia_uid;
544 }
545
546 return err;
547}
548
549static const struct inode_operations sockfs_inode_ops = {
550 .listxattr = sockfs_listxattr,
551 .setattr = sockfs_setattr,
552};
553
554/**
555 * sock_alloc - allocate a socket
556 *
557 * Allocate a new inode and socket object. The two are bound together
558 * and initialised. The socket is then returned. If we are out of inodes
559 * NULL is returned.
560 */
561
562struct socket *sock_alloc(void)
563{
564 struct inode *inode;
565 struct socket *sock;
566
567 inode = new_inode_pseudo(sock_mnt->mnt_sb);
568 if (!inode)
569 return NULL;
570
571 sock = SOCKET_I(inode);
572
573 kmemcheck_annotate_bitfield(sock, type);
574 inode->i_ino = get_next_ino();
575 inode->i_mode = S_IFSOCK | S_IRWXUGO;
576 inode->i_uid = current_fsuid();
577 inode->i_gid = current_fsgid();
578 inode->i_op = &sockfs_inode_ops;
579
580 this_cpu_add(sockets_in_use, 1);
581 return sock;
582}
583EXPORT_SYMBOL(sock_alloc);
584
585/**
586 * sock_release - close a socket
587 * @sock: socket to close
588 *
589 * The socket is released from the protocol stack if it has a release
590 * callback, and the inode is then released if the socket is bound to
591 * an inode not a file.
592 */
593
594void sock_release(struct socket *sock)
595{
596 if (sock->ops) {
597 struct module *owner = sock->ops->owner;
598
599 sock->ops->release(sock);
600 sock->ops = NULL;
601 module_put(owner);
602 }
603
604 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
605 pr_err("%s: fasync list not empty!\n", __func__);
606
607 this_cpu_sub(sockets_in_use, 1);
608 if (!sock->file) {
609 iput(SOCK_INODE(sock));
610 return;
611 }
612 sock->file = NULL;
613}
614EXPORT_SYMBOL(sock_release);
615
616void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
617{
618 u8 flags = *tx_flags;
619
620 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
621 flags |= SKBTX_HW_TSTAMP;
622
623 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
624 flags |= SKBTX_SW_TSTAMP;
625
626 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
627 flags |= SKBTX_SCHED_TSTAMP;
628
629 *tx_flags = flags;
630}
631EXPORT_SYMBOL(__sock_tx_timestamp);
632
633static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
634{
635 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
636 BUG_ON(ret == -EIOCBQUEUED);
637 return ret;
638}
639
640int sock_sendmsg(struct socket *sock, struct msghdr *msg)
641{
642 int err = security_socket_sendmsg(sock, msg,
643 msg_data_left(msg));
644
645 return err ?: sock_sendmsg_nosec(sock, msg);
646}
647EXPORT_SYMBOL(sock_sendmsg);
648
649int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
650 struct kvec *vec, size_t num, size_t size)
651{
652 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
653 return sock_sendmsg(sock, msg);
654}
655EXPORT_SYMBOL(kernel_sendmsg);
656
657/*
658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
659 */
660void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
661 struct sk_buff *skb)
662{
663 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
664 struct scm_timestamping tss;
665 int empty = 1;
666 struct skb_shared_hwtstamps *shhwtstamps =
667 skb_hwtstamps(skb);
668
669 /* Race occurred between timestamp enabling and packet
670 receiving. Fill in the current time for now. */
671 if (need_software_tstamp && skb->tstamp == 0)
672 __net_timestamp(skb);
673
674 if (need_software_tstamp) {
675 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
676 struct timeval tv;
677 skb_get_timestamp(skb, &tv);
678 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
679 sizeof(tv), &tv);
680 } else {
681 struct timespec ts;
682 skb_get_timestampns(skb, &ts);
683 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
684 sizeof(ts), &ts);
685 }
686 }
687
688 memset(&tss, 0, sizeof(tss));
689 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
690 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
691 empty = 0;
692 if (shhwtstamps &&
693 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
694 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
695 empty = 0;
696 if (!empty) {
697 put_cmsg(msg, SOL_SOCKET,
698 SCM_TIMESTAMPING, sizeof(tss), &tss);
699
700 if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
701 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
702 skb->len, skb->data);
703 }
704}
705EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
706
707void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
708 struct sk_buff *skb)
709{
710 int ack;
711
712 if (!sock_flag(sk, SOCK_WIFI_STATUS))
713 return;
714 if (!skb->wifi_acked_valid)
715 return;
716
717 ack = skb->wifi_acked;
718
719 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
720}
721EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
722
723static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
724 struct sk_buff *skb)
725{
726 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
727 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
728 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
729}
730
731void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
732 struct sk_buff *skb)
733{
734 sock_recv_timestamp(msg, sk, skb);
735 sock_recv_drops(msg, sk, skb);
736}
737EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
738
739static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
740 int flags)
741{
742 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
743}
744
745int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
746{
747 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
748
749 return err ?: sock_recvmsg_nosec(sock, msg, flags);
750}
751EXPORT_SYMBOL(sock_recvmsg);
752
753/**
754 * kernel_recvmsg - Receive a message from a socket (kernel space)
755 * @sock: The socket to receive the message from
756 * @msg: Received message
757 * @vec: Input s/g array for message data
758 * @num: Size of input s/g array
759 * @size: Number of bytes to read
760 * @flags: Message flags (MSG_DONTWAIT, etc...)
761 *
762 * On return the msg structure contains the scatter/gather array passed in the
763 * vec argument. The array is modified so that it consists of the unfilled
764 * portion of the original array.
765 *
766 * The returned value is the total number of bytes received, or an error.
767 */
768int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
769 struct kvec *vec, size_t num, size_t size, int flags)
770{
771 mm_segment_t oldfs = get_fs();
772 int result;
773
774 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
775 set_fs(KERNEL_DS);
776 result = sock_recvmsg(sock, msg, flags);
777 set_fs(oldfs);
778 return result;
779}
780EXPORT_SYMBOL(kernel_recvmsg);
781
782static ssize_t sock_sendpage(struct file *file, struct page *page,
783 int offset, size_t size, loff_t *ppos, int more)
784{
785 struct socket *sock;
786 int flags;
787
788 sock = file->private_data;
789
790 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
791 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
792 flags |= more;
793
794 return kernel_sendpage(sock, page, offset, size, flags);
795}
796
797static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
798 struct pipe_inode_info *pipe, size_t len,
799 unsigned int flags)
800{
801 struct socket *sock = file->private_data;
802
803 if (unlikely(!sock->ops->splice_read))
804 return -EINVAL;
805
806 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
807}
808
809static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
810{
811 struct file *file = iocb->ki_filp;
812 struct socket *sock = file->private_data;
813 struct msghdr msg = {.msg_iter = *to,
814 .msg_iocb = iocb};
815 ssize_t res;
816
817 if (file->f_flags & O_NONBLOCK)
818 msg.msg_flags = MSG_DONTWAIT;
819
820 if (iocb->ki_pos != 0)
821 return -ESPIPE;
822
823 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
824 return 0;
825
826 res = sock_recvmsg(sock, &msg, msg.msg_flags);
827 *to = msg.msg_iter;
828 return res;
829}
830
831static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
832{
833 struct file *file = iocb->ki_filp;
834 struct socket *sock = file->private_data;
835 struct msghdr msg = {.msg_iter = *from,
836 .msg_iocb = iocb};
837 ssize_t res;
838
839 if (iocb->ki_pos != 0)
840 return -ESPIPE;
841
842 if (file->f_flags & O_NONBLOCK)
843 msg.msg_flags = MSG_DONTWAIT;
844
845 if (sock->type == SOCK_SEQPACKET)
846 msg.msg_flags |= MSG_EOR;
847
848 res = sock_sendmsg(sock, &msg);
849 *from = msg.msg_iter;
850 return res;
851}
852
853/*
854 * Atomic setting of ioctl hooks to avoid race
855 * with module unload.
856 */
857
858static DEFINE_MUTEX(br_ioctl_mutex);
859static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
860
861void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
862{
863 mutex_lock(&br_ioctl_mutex);
864 br_ioctl_hook = hook;
865 mutex_unlock(&br_ioctl_mutex);
866}
867EXPORT_SYMBOL(brioctl_set);
868
869static DEFINE_MUTEX(vlan_ioctl_mutex);
870static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
871
872void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
873{
874 mutex_lock(&vlan_ioctl_mutex);
875 vlan_ioctl_hook = hook;
876 mutex_unlock(&vlan_ioctl_mutex);
877}
878EXPORT_SYMBOL(vlan_ioctl_set);
879
880static DEFINE_MUTEX(dlci_ioctl_mutex);
881static int (*dlci_ioctl_hook) (unsigned int, void __user *);
882
883void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
884{
885 mutex_lock(&dlci_ioctl_mutex);
886 dlci_ioctl_hook = hook;
887 mutex_unlock(&dlci_ioctl_mutex);
888}
889EXPORT_SYMBOL(dlci_ioctl_set);
890
891static long sock_do_ioctl(struct net *net, struct socket *sock,
892 unsigned int cmd, unsigned long arg)
893{
894 int err;
895 void __user *argp = (void __user *)arg;
896
897 err = sock->ops->ioctl(sock, cmd, arg);
898
899 /*
900 * If this ioctl is unknown try to hand it down
901 * to the NIC driver.
902 */
903 if (err == -ENOIOCTLCMD)
904 err = dev_ioctl(net, cmd, argp);
905
906 return err;
907}
908
909/*
910 * With an ioctl, arg may well be a user mode pointer, but we don't know
911 * what to do with it - that's up to the protocol still.
912 */
913
914static struct ns_common *get_net_ns(struct ns_common *ns)
915{
916 return &get_net(container_of(ns, struct net, ns))->ns;
917}
918
919static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
920{
921 struct socket *sock;
922 struct sock *sk;
923 void __user *argp = (void __user *)arg;
924 int pid, err;
925 struct net *net;
926
927 sock = file->private_data;
928 sk = sock->sk;
929 net = sock_net(sk);
930 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
931 err = dev_ioctl(net, cmd, argp);
932 } else
933#ifdef CONFIG_WEXT_CORE
934 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
935 err = dev_ioctl(net, cmd, argp);
936 } else
937#endif
938 switch (cmd) {
939 case FIOSETOWN:
940 case SIOCSPGRP:
941 err = -EFAULT;
942 if (get_user(pid, (int __user *)argp))
943 break;
944 f_setown(sock->file, pid, 1);
945 err = 0;
946 break;
947 case FIOGETOWN:
948 case SIOCGPGRP:
949 err = put_user(f_getown(sock->file),
950 (int __user *)argp);
951 break;
952 case SIOCGIFBR:
953 case SIOCSIFBR:
954 case SIOCBRADDBR:
955 case SIOCBRDELBR:
956 err = -ENOPKG;
957 if (!br_ioctl_hook)
958 request_module("bridge");
959
960 mutex_lock(&br_ioctl_mutex);
961 if (br_ioctl_hook)
962 err = br_ioctl_hook(net, cmd, argp);
963 mutex_unlock(&br_ioctl_mutex);
964 break;
965 case SIOCGIFVLAN:
966 case SIOCSIFVLAN:
967 err = -ENOPKG;
968 if (!vlan_ioctl_hook)
969 request_module("8021q");
970
971 mutex_lock(&vlan_ioctl_mutex);
972 if (vlan_ioctl_hook)
973 err = vlan_ioctl_hook(net, argp);
974 mutex_unlock(&vlan_ioctl_mutex);
975 break;
976 case SIOCADDDLCI:
977 case SIOCDELDLCI:
978 err = -ENOPKG;
979 if (!dlci_ioctl_hook)
980 request_module("dlci");
981
982 mutex_lock(&dlci_ioctl_mutex);
983 if (dlci_ioctl_hook)
984 err = dlci_ioctl_hook(cmd, argp);
985 mutex_unlock(&dlci_ioctl_mutex);
986 break;
987 case SIOCGSKNS:
988 err = -EPERM;
989 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
990 break;
991
992 err = open_related_ns(&net->ns, get_net_ns);
993 break;
994 default:
995 err = sock_do_ioctl(net, sock, cmd, arg);
996 break;
997 }
998 return err;
999}
1000
1001int sock_create_lite(int family, int type, int protocol, struct socket **res)
1002{
1003 int err;
1004 struct socket *sock = NULL;
1005
1006 err = security_socket_create(family, type, protocol, 1);
1007 if (err)
1008 goto out;
1009
1010 sock = sock_alloc();
1011 if (!sock) {
1012 err = -ENOMEM;
1013 goto out;
1014 }
1015
1016 sock->type = type;
1017 err = security_socket_post_create(sock, family, type, protocol, 1);
1018 if (err)
1019 goto out_release;
1020
1021out:
1022 *res = sock;
1023 return err;
1024out_release:
1025 sock_release(sock);
1026 sock = NULL;
1027 goto out;
1028}
1029EXPORT_SYMBOL(sock_create_lite);
1030
1031/* No kernel lock held - perfect */
1032static unsigned int sock_poll(struct file *file, poll_table *wait)
1033{
1034 unsigned int busy_flag = 0;
1035 struct socket *sock;
1036
1037 /*
1038 * We can't return errors to poll, so it's either yes or no.
1039 */
1040 sock = file->private_data;
1041
1042 if (sk_can_busy_loop(sock->sk)) {
1043 /* this socket can poll_ll so tell the system call */
1044 busy_flag = POLL_BUSY_LOOP;
1045
1046 /* once, only if requested by syscall */
1047 if (wait && (wait->_key & POLL_BUSY_LOOP))
1048 sk_busy_loop(sock->sk, 1);
1049 }
1050
1051 return busy_flag | sock->ops->poll(file, sock, wait);
1052}
1053
1054static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1055{
1056 struct socket *sock = file->private_data;
1057
1058 return sock->ops->mmap(file, sock, vma);
1059}
1060
1061static int sock_close(struct inode *inode, struct file *filp)
1062{
1063 sock_release(SOCKET_I(inode));
1064 return 0;
1065}
1066
1067/*
1068 * Update the socket async list
1069 *
1070 * Fasync_list locking strategy.
1071 *
1072 * 1. fasync_list is modified only under process context socket lock
1073 * i.e. under semaphore.
1074 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1075 * or under socket lock
1076 */
1077
1078static int sock_fasync(int fd, struct file *filp, int on)
1079{
1080 struct socket *sock = filp->private_data;
1081 struct sock *sk = sock->sk;
1082 struct socket_wq *wq;
1083
1084 if (sk == NULL)
1085 return -EINVAL;
1086
1087 lock_sock(sk);
1088 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1089 fasync_helper(fd, filp, on, &wq->fasync_list);
1090
1091 if (!wq->fasync_list)
1092 sock_reset_flag(sk, SOCK_FASYNC);
1093 else
1094 sock_set_flag(sk, SOCK_FASYNC);
1095
1096 release_sock(sk);
1097 return 0;
1098}
1099
1100/* This function may be called only under rcu_lock */
1101
1102int sock_wake_async(struct socket_wq *wq, int how, int band)
1103{
1104 if (!wq || !wq->fasync_list)
1105 return -1;
1106
1107 switch (how) {
1108 case SOCK_WAKE_WAITD:
1109 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1110 break;
1111 goto call_kill;
1112 case SOCK_WAKE_SPACE:
1113 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1114 break;
1115 /* fall through */
1116 case SOCK_WAKE_IO:
1117call_kill:
1118 kill_fasync(&wq->fasync_list, SIGIO, band);
1119 break;
1120 case SOCK_WAKE_URG:
1121 kill_fasync(&wq->fasync_list, SIGURG, band);
1122 }
1123
1124 return 0;
1125}
1126EXPORT_SYMBOL(sock_wake_async);
1127
1128int __sock_create(struct net *net, int family, int type, int protocol,
1129 struct socket **res, int kern)
1130{
1131 int err;
1132 struct socket *sock;
1133 const struct net_proto_family *pf;
1134
1135 /*
1136 * Check protocol is in range
1137 */
1138 if (family < 0 || family >= NPROTO)
1139 return -EAFNOSUPPORT;
1140 if (type < 0 || type >= SOCK_MAX)
1141 return -EINVAL;
1142
1143 /* Compatibility.
1144
1145 This uglymoron is moved from INET layer to here to avoid
1146 deadlock in module load.
1147 */
1148 if (family == PF_INET && type == SOCK_PACKET) {
1149 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1150 current->comm);
1151 family = PF_PACKET;
1152 }
1153
1154 err = security_socket_create(family, type, protocol, kern);
1155 if (err)
1156 return err;
1157
1158 /*
1159 * Allocate the socket and allow the family to set things up. if
1160 * the protocol is 0, the family is instructed to select an appropriate
1161 * default.
1162 */
1163 sock = sock_alloc();
1164 if (!sock) {
1165 net_warn_ratelimited("socket: no more sockets\n");
1166 return -ENFILE; /* Not exactly a match, but its the
1167 closest posix thing */
1168 }
1169
1170 sock->type = type;
1171
1172#ifdef CONFIG_MODULES
1173 /* Attempt to load a protocol module if the find failed.
1174 *
1175 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1176 * requested real, full-featured networking support upon configuration.
1177 * Otherwise module support will break!
1178 */
1179 if (rcu_access_pointer(net_families[family]) == NULL)
1180 request_module("net-pf-%d", family);
1181#endif
1182
1183 rcu_read_lock();
1184 pf = rcu_dereference(net_families[family]);
1185 err = -EAFNOSUPPORT;
1186 if (!pf)
1187 goto out_release;
1188
1189 /*
1190 * We will call the ->create function, that possibly is in a loadable
1191 * module, so we have to bump that loadable module refcnt first.
1192 */
1193 if (!try_module_get(pf->owner))
1194 goto out_release;
1195
1196 /* Now protected by module ref count */
1197 rcu_read_unlock();
1198
1199 err = pf->create(net, sock, protocol, kern);
1200 if (err < 0)
1201 goto out_module_put;
1202
1203 /*
1204 * Now to bump the refcnt of the [loadable] module that owns this
1205 * socket at sock_release time we decrement its refcnt.
1206 */
1207 if (!try_module_get(sock->ops->owner))
1208 goto out_module_busy;
1209
1210 /*
1211 * Now that we're done with the ->create function, the [loadable]
1212 * module can have its refcnt decremented
1213 */
1214 module_put(pf->owner);
1215 err = security_socket_post_create(sock, family, type, protocol, kern);
1216 if (err)
1217 goto out_sock_release;
1218 *res = sock;
1219
1220 return 0;
1221
1222out_module_busy:
1223 err = -EAFNOSUPPORT;
1224out_module_put:
1225 sock->ops = NULL;
1226 module_put(pf->owner);
1227out_sock_release:
1228 sock_release(sock);
1229 return err;
1230
1231out_release:
1232 rcu_read_unlock();
1233 goto out_sock_release;
1234}
1235EXPORT_SYMBOL(__sock_create);
1236
1237int sock_create(int family, int type, int protocol, struct socket **res)
1238{
1239 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1240}
1241EXPORT_SYMBOL(sock_create);
1242
1243int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1244{
1245 return __sock_create(net, family, type, protocol, res, 1);
1246}
1247EXPORT_SYMBOL(sock_create_kern);
1248
1249SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1250{
1251 int retval;
1252 struct socket *sock;
1253 int flags;
1254
1255 /* Check the SOCK_* constants for consistency. */
1256 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1257 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1258 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1259 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1260
1261 flags = type & ~SOCK_TYPE_MASK;
1262 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263 return -EINVAL;
1264 type &= SOCK_TYPE_MASK;
1265
1266 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268
1269 retval = sock_create(family, type, protocol, &sock);
1270 if (retval < 0)
1271 goto out;
1272
1273 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1274 if (retval < 0)
1275 goto out_release;
1276
1277out:
1278 /* It may be already another descriptor 8) Not kernel problem. */
1279 return retval;
1280
1281out_release:
1282 sock_release(sock);
1283 return retval;
1284}
1285
1286/*
1287 * Create a pair of connected sockets.
1288 */
1289
1290SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1291 int __user *, usockvec)
1292{
1293 struct socket *sock1, *sock2;
1294 int fd1, fd2, err;
1295 struct file *newfile1, *newfile2;
1296 int flags;
1297
1298 flags = type & ~SOCK_TYPE_MASK;
1299 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1300 return -EINVAL;
1301 type &= SOCK_TYPE_MASK;
1302
1303 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305
1306 /*
1307 * Obtain the first socket and check if the underlying protocol
1308 * supports the socketpair call.
1309 */
1310
1311 err = sock_create(family, type, protocol, &sock1);
1312 if (err < 0)
1313 goto out;
1314
1315 err = sock_create(family, type, protocol, &sock2);
1316 if (err < 0)
1317 goto out_release_1;
1318
1319 err = sock1->ops->socketpair(sock1, sock2);
1320 if (err < 0)
1321 goto out_release_both;
1322
1323 fd1 = get_unused_fd_flags(flags);
1324 if (unlikely(fd1 < 0)) {
1325 err = fd1;
1326 goto out_release_both;
1327 }
1328
1329 fd2 = get_unused_fd_flags(flags);
1330 if (unlikely(fd2 < 0)) {
1331 err = fd2;
1332 goto out_put_unused_1;
1333 }
1334
1335 newfile1 = sock_alloc_file(sock1, flags, NULL);
1336 if (IS_ERR(newfile1)) {
1337 err = PTR_ERR(newfile1);
1338 goto out_put_unused_both;
1339 }
1340
1341 newfile2 = sock_alloc_file(sock2, flags, NULL);
1342 if (IS_ERR(newfile2)) {
1343 err = PTR_ERR(newfile2);
1344 goto out_fput_1;
1345 }
1346
1347 err = put_user(fd1, &usockvec[0]);
1348 if (err)
1349 goto out_fput_both;
1350
1351 err = put_user(fd2, &usockvec[1]);
1352 if (err)
1353 goto out_fput_both;
1354
1355 audit_fd_pair(fd1, fd2);
1356
1357 fd_install(fd1, newfile1);
1358 fd_install(fd2, newfile2);
1359 /* fd1 and fd2 may be already another descriptors.
1360 * Not kernel problem.
1361 */
1362
1363 return 0;
1364
1365out_fput_both:
1366 fput(newfile2);
1367 fput(newfile1);
1368 put_unused_fd(fd2);
1369 put_unused_fd(fd1);
1370 goto out;
1371
1372out_fput_1:
1373 fput(newfile1);
1374 put_unused_fd(fd2);
1375 put_unused_fd(fd1);
1376 sock_release(sock2);
1377 goto out;
1378
1379out_put_unused_both:
1380 put_unused_fd(fd2);
1381out_put_unused_1:
1382 put_unused_fd(fd1);
1383out_release_both:
1384 sock_release(sock2);
1385out_release_1:
1386 sock_release(sock1);
1387out:
1388 return err;
1389}
1390
1391/*
1392 * Bind a name to a socket. Nothing much to do here since it's
1393 * the protocol's responsibility to handle the local address.
1394 *
1395 * We move the socket address to kernel space before we call
1396 * the protocol layer (having also checked the address is ok).
1397 */
1398
1399SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1400{
1401 struct socket *sock;
1402 struct sockaddr_storage address;
1403 int err, fput_needed;
1404
1405 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1406 if (sock) {
1407 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1408 if (err >= 0) {
1409 err = security_socket_bind(sock,
1410 (struct sockaddr *)&address,
1411 addrlen);
1412 if (!err)
1413 err = sock->ops->bind(sock,
1414 (struct sockaddr *)
1415 &address, addrlen);
1416 }
1417 fput_light(sock->file, fput_needed);
1418 }
1419 return err;
1420}
1421
1422/*
1423 * Perform a listen. Basically, we allow the protocol to do anything
1424 * necessary for a listen, and if that works, we mark the socket as
1425 * ready for listening.
1426 */
1427
1428SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1429{
1430 struct socket *sock;
1431 int err, fput_needed;
1432 int somaxconn;
1433
1434 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1435 if (sock) {
1436 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1437 if ((unsigned int)backlog > somaxconn)
1438 backlog = somaxconn;
1439
1440 err = security_socket_listen(sock, backlog);
1441 if (!err)
1442 err = sock->ops->listen(sock, backlog);
1443
1444 fput_light(sock->file, fput_needed);
1445 }
1446 return err;
1447}
1448
1449/*
1450 * For accept, we attempt to create a new socket, set up the link
1451 * with the client, wake up the client, then return the new
1452 * connected fd. We collect the address of the connector in kernel
1453 * space and move it to user at the very end. This is unclean because
1454 * we open the socket then return an error.
1455 *
1456 * 1003.1g adds the ability to recvmsg() to query connection pending
1457 * status to recvmsg. We need to add that support in a way thats
1458 * clean when we restucture accept also.
1459 */
1460
1461SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1462 int __user *, upeer_addrlen, int, flags)
1463{
1464 struct socket *sock, *newsock;
1465 struct file *newfile;
1466 int err, len, newfd, fput_needed;
1467 struct sockaddr_storage address;
1468
1469 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1470 return -EINVAL;
1471
1472 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1473 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1474
1475 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476 if (!sock)
1477 goto out;
1478
1479 err = -ENFILE;
1480 newsock = sock_alloc();
1481 if (!newsock)
1482 goto out_put;
1483
1484 newsock->type = sock->type;
1485 newsock->ops = sock->ops;
1486
1487 /*
1488 * We don't need try_module_get here, as the listening socket (sock)
1489 * has the protocol module (sock->ops->owner) held.
1490 */
1491 __module_get(newsock->ops->owner);
1492
1493 newfd = get_unused_fd_flags(flags);
1494 if (unlikely(newfd < 0)) {
1495 err = newfd;
1496 sock_release(newsock);
1497 goto out_put;
1498 }
1499 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1500 if (IS_ERR(newfile)) {
1501 err = PTR_ERR(newfile);
1502 put_unused_fd(newfd);
1503 sock_release(newsock);
1504 goto out_put;
1505 }
1506
1507 err = security_socket_accept(sock, newsock);
1508 if (err)
1509 goto out_fd;
1510
1511 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1512 if (err < 0)
1513 goto out_fd;
1514
1515 if (upeer_sockaddr) {
1516 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1517 &len, 2) < 0) {
1518 err = -ECONNABORTED;
1519 goto out_fd;
1520 }
1521 err = move_addr_to_user(&address,
1522 len, upeer_sockaddr, upeer_addrlen);
1523 if (err < 0)
1524 goto out_fd;
1525 }
1526
1527 /* File flags are not inherited via accept() unlike another OSes. */
1528
1529 fd_install(newfd, newfile);
1530 err = newfd;
1531
1532out_put:
1533 fput_light(sock->file, fput_needed);
1534out:
1535 return err;
1536out_fd:
1537 fput(newfile);
1538 put_unused_fd(newfd);
1539 goto out_put;
1540}
1541
1542SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1543 int __user *, upeer_addrlen)
1544{
1545 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1546}
1547
1548/*
1549 * Attempt to connect to a socket with the server address. The address
1550 * is in user space so we verify it is OK and move it to kernel space.
1551 *
1552 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1553 * break bindings
1554 *
1555 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1556 * other SEQPACKET protocols that take time to connect() as it doesn't
1557 * include the -EINPROGRESS status for such sockets.
1558 */
1559
1560SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1561 int, addrlen)
1562{
1563 struct socket *sock;
1564 struct sockaddr_storage address;
1565 int err, fput_needed;
1566
1567 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1568 if (!sock)
1569 goto out;
1570 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1571 if (err < 0)
1572 goto out_put;
1573
1574 err =
1575 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1576 if (err)
1577 goto out_put;
1578
1579 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1580 sock->file->f_flags);
1581out_put:
1582 fput_light(sock->file, fput_needed);
1583out:
1584 return err;
1585}
1586
1587/*
1588 * Get the local address ('name') of a socket object. Move the obtained
1589 * name to user space.
1590 */
1591
1592SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1593 int __user *, usockaddr_len)
1594{
1595 struct socket *sock;
1596 struct sockaddr_storage address;
1597 int len, err, fput_needed;
1598
1599 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600 if (!sock)
1601 goto out;
1602
1603 err = security_socket_getsockname(sock);
1604 if (err)
1605 goto out_put;
1606
1607 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1608 if (err)
1609 goto out_put;
1610 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1611
1612out_put:
1613 fput_light(sock->file, fput_needed);
1614out:
1615 return err;
1616}
1617
1618/*
1619 * Get the remote address ('name') of a socket object. Move the obtained
1620 * name to user space.
1621 */
1622
1623SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1624 int __user *, usockaddr_len)
1625{
1626 struct socket *sock;
1627 struct sockaddr_storage address;
1628 int len, err, fput_needed;
1629
1630 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631 if (sock != NULL) {
1632 err = security_socket_getpeername(sock);
1633 if (err) {
1634 fput_light(sock->file, fput_needed);
1635 return err;
1636 }
1637
1638 err =
1639 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1640 1);
1641 if (!err)
1642 err = move_addr_to_user(&address, len, usockaddr,
1643 usockaddr_len);
1644 fput_light(sock->file, fput_needed);
1645 }
1646 return err;
1647}
1648
1649/*
1650 * Send a datagram to a given address. We move the address into kernel
1651 * space and check the user space data area is readable before invoking
1652 * the protocol.
1653 */
1654
1655SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1656 unsigned int, flags, struct sockaddr __user *, addr,
1657 int, addr_len)
1658{
1659 struct socket *sock;
1660 struct sockaddr_storage address;
1661 int err;
1662 struct msghdr msg;
1663 struct iovec iov;
1664 int fput_needed;
1665
1666 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1667 if (unlikely(err))
1668 return err;
1669 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670 if (!sock)
1671 goto out;
1672
1673 msg.msg_name = NULL;
1674 msg.msg_control = NULL;
1675 msg.msg_controllen = 0;
1676 msg.msg_namelen = 0;
1677 if (addr) {
1678 err = move_addr_to_kernel(addr, addr_len, &address);
1679 if (err < 0)
1680 goto out_put;
1681 msg.msg_name = (struct sockaddr *)&address;
1682 msg.msg_namelen = addr_len;
1683 }
1684 if (sock->file->f_flags & O_NONBLOCK)
1685 flags |= MSG_DONTWAIT;
1686 msg.msg_flags = flags;
1687 err = sock_sendmsg(sock, &msg);
1688
1689out_put:
1690 fput_light(sock->file, fput_needed);
1691out:
1692 return err;
1693}
1694
1695/*
1696 * Send a datagram down a socket.
1697 */
1698
1699SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1700 unsigned int, flags)
1701{
1702 return sys_sendto(fd, buff, len, flags, NULL, 0);
1703}
1704
1705/*
1706 * Receive a frame from the socket and optionally record the address of the
1707 * sender. We verify the buffers are writable and if needed move the
1708 * sender address from kernel to user space.
1709 */
1710
1711SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1712 unsigned int, flags, struct sockaddr __user *, addr,
1713 int __user *, addr_len)
1714{
1715 struct socket *sock;
1716 struct iovec iov;
1717 struct msghdr msg;
1718 struct sockaddr_storage address;
1719 int err, err2;
1720 int fput_needed;
1721
1722 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1723 if (unlikely(err))
1724 return err;
1725 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726 if (!sock)
1727 goto out;
1728
1729 msg.msg_control = NULL;
1730 msg.msg_controllen = 0;
1731 /* Save some cycles and don't copy the address if not needed */
1732 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1733 /* We assume all kernel code knows the size of sockaddr_storage */
1734 msg.msg_namelen = 0;
1735 msg.msg_iocb = NULL;
1736 if (sock->file->f_flags & O_NONBLOCK)
1737 flags |= MSG_DONTWAIT;
1738 err = sock_recvmsg(sock, &msg, flags);
1739
1740 if (err >= 0 && addr != NULL) {
1741 err2 = move_addr_to_user(&address,
1742 msg.msg_namelen, addr, addr_len);
1743 if (err2 < 0)
1744 err = err2;
1745 }
1746
1747 fput_light(sock->file, fput_needed);
1748out:
1749 return err;
1750}
1751
1752/*
1753 * Receive a datagram from a socket.
1754 */
1755
1756SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1757 unsigned int, flags)
1758{
1759 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1760}
1761
1762/*
1763 * Set a socket option. Because we don't know the option lengths we have
1764 * to pass the user mode parameter for the protocols to sort out.
1765 */
1766
1767SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1768 char __user *, optval, int, optlen)
1769{
1770 int err, fput_needed;
1771 struct socket *sock;
1772
1773 if (optlen < 0)
1774 return -EINVAL;
1775
1776 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777 if (sock != NULL) {
1778 err = security_socket_setsockopt(sock, level, optname);
1779 if (err)
1780 goto out_put;
1781
1782 if (level == SOL_SOCKET)
1783 err =
1784 sock_setsockopt(sock, level, optname, optval,
1785 optlen);
1786 else
1787 err =
1788 sock->ops->setsockopt(sock, level, optname, optval,
1789 optlen);
1790out_put:
1791 fput_light(sock->file, fput_needed);
1792 }
1793 return err;
1794}
1795
1796/*
1797 * Get a socket option. Because we don't know the option lengths we have
1798 * to pass a user mode parameter for the protocols to sort out.
1799 */
1800
1801SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1802 char __user *, optval, int __user *, optlen)
1803{
1804 int err, fput_needed;
1805 struct socket *sock;
1806
1807 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808 if (sock != NULL) {
1809 err = security_socket_getsockopt(sock, level, optname);
1810 if (err)
1811 goto out_put;
1812
1813 if (level == SOL_SOCKET)
1814 err =
1815 sock_getsockopt(sock, level, optname, optval,
1816 optlen);
1817 else
1818 err =
1819 sock->ops->getsockopt(sock, level, optname, optval,
1820 optlen);
1821out_put:
1822 fput_light(sock->file, fput_needed);
1823 }
1824 return err;
1825}
1826
1827/*
1828 * Shutdown a socket.
1829 */
1830
1831SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1832{
1833 int err, fput_needed;
1834 struct socket *sock;
1835
1836 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1837 if (sock != NULL) {
1838 err = security_socket_shutdown(sock, how);
1839 if (!err)
1840 err = sock->ops->shutdown(sock, how);
1841 fput_light(sock->file, fput_needed);
1842 }
1843 return err;
1844}
1845
1846/* A couple of helpful macros for getting the address of the 32/64 bit
1847 * fields which are the same type (int / unsigned) on our platforms.
1848 */
1849#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1850#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1851#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1852
1853struct used_address {
1854 struct sockaddr_storage name;
1855 unsigned int name_len;
1856};
1857
1858static int copy_msghdr_from_user(struct msghdr *kmsg,
1859 struct user_msghdr __user *umsg,
1860 struct sockaddr __user **save_addr,
1861 struct iovec **iov)
1862{
1863 struct sockaddr __user *uaddr;
1864 struct iovec __user *uiov;
1865 size_t nr_segs;
1866 ssize_t err;
1867
1868 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1869 __get_user(uaddr, &umsg->msg_name) ||
1870 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1871 __get_user(uiov, &umsg->msg_iov) ||
1872 __get_user(nr_segs, &umsg->msg_iovlen) ||
1873 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1874 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1875 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1876 return -EFAULT;
1877
1878 if (!uaddr)
1879 kmsg->msg_namelen = 0;
1880
1881 if (kmsg->msg_namelen < 0)
1882 return -EINVAL;
1883
1884 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1885 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1886
1887 if (save_addr)
1888 *save_addr = uaddr;
1889
1890 if (uaddr && kmsg->msg_namelen) {
1891 if (!save_addr) {
1892 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1893 kmsg->msg_name);
1894 if (err < 0)
1895 return err;
1896 }
1897 } else {
1898 kmsg->msg_name = NULL;
1899 kmsg->msg_namelen = 0;
1900 }
1901
1902 if (nr_segs > UIO_MAXIOV)
1903 return -EMSGSIZE;
1904
1905 kmsg->msg_iocb = NULL;
1906
1907 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1908 UIO_FASTIOV, iov, &kmsg->msg_iter);
1909}
1910
1911static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1912 struct msghdr *msg_sys, unsigned int flags,
1913 struct used_address *used_address,
1914 unsigned int allowed_msghdr_flags)
1915{
1916 struct compat_msghdr __user *msg_compat =
1917 (struct compat_msghdr __user *)msg;
1918 struct sockaddr_storage address;
1919 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1920 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1921 __aligned(sizeof(__kernel_size_t));
1922 /* 20 is size of ipv6_pktinfo */
1923 unsigned char *ctl_buf = ctl;
1924 int ctl_len;
1925 ssize_t err;
1926
1927 msg_sys->msg_name = &address;
1928
1929 if (MSG_CMSG_COMPAT & flags)
1930 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1931 else
1932 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1933 if (err < 0)
1934 return err;
1935
1936 err = -ENOBUFS;
1937
1938 if (msg_sys->msg_controllen > INT_MAX)
1939 goto out_freeiov;
1940 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1941 ctl_len = msg_sys->msg_controllen;
1942 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1943 err =
1944 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1945 sizeof(ctl));
1946 if (err)
1947 goto out_freeiov;
1948 ctl_buf = msg_sys->msg_control;
1949 ctl_len = msg_sys->msg_controllen;
1950 } else if (ctl_len) {
1951 if (ctl_len > sizeof(ctl)) {
1952 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953 if (ctl_buf == NULL)
1954 goto out_freeiov;
1955 }
1956 err = -EFAULT;
1957 /*
1958 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960 * checking falls down on this.
1961 */
1962 if (copy_from_user(ctl_buf,
1963 (void __user __force *)msg_sys->msg_control,
1964 ctl_len))
1965 goto out_freectl;
1966 msg_sys->msg_control = ctl_buf;
1967 }
1968 msg_sys->msg_flags = flags;
1969
1970 if (sock->file->f_flags & O_NONBLOCK)
1971 msg_sys->msg_flags |= MSG_DONTWAIT;
1972 /*
1973 * If this is sendmmsg() and current destination address is same as
1974 * previously succeeded address, omit asking LSM's decision.
1975 * used_address->name_len is initialized to UINT_MAX so that the first
1976 * destination address never matches.
1977 */
1978 if (used_address && msg_sys->msg_name &&
1979 used_address->name_len == msg_sys->msg_namelen &&
1980 !memcmp(&used_address->name, msg_sys->msg_name,
1981 used_address->name_len)) {
1982 err = sock_sendmsg_nosec(sock, msg_sys);
1983 goto out_freectl;
1984 }
1985 err = sock_sendmsg(sock, msg_sys);
1986 /*
1987 * If this is sendmmsg() and sending to current destination address was
1988 * successful, remember it.
1989 */
1990 if (used_address && err >= 0) {
1991 used_address->name_len = msg_sys->msg_namelen;
1992 if (msg_sys->msg_name)
1993 memcpy(&used_address->name, msg_sys->msg_name,
1994 used_address->name_len);
1995 }
1996
1997out_freectl:
1998 if (ctl_buf != ctl)
1999 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2000out_freeiov:
2001 kfree(iov);
2002 return err;
2003}
2004
2005/*
2006 * BSD sendmsg interface
2007 */
2008
2009long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2010{
2011 int fput_needed, err;
2012 struct msghdr msg_sys;
2013 struct socket *sock;
2014
2015 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016 if (!sock)
2017 goto out;
2018
2019 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2020
2021 fput_light(sock->file, fput_needed);
2022out:
2023 return err;
2024}
2025
2026SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2027{
2028 if (flags & MSG_CMSG_COMPAT)
2029 return -EINVAL;
2030 return __sys_sendmsg(fd, msg, flags);
2031}
2032
2033/*
2034 * Linux sendmmsg interface
2035 */
2036
2037int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038 unsigned int flags)
2039{
2040 int fput_needed, err, datagrams;
2041 struct socket *sock;
2042 struct mmsghdr __user *entry;
2043 struct compat_mmsghdr __user *compat_entry;
2044 struct msghdr msg_sys;
2045 struct used_address used_address;
2046 unsigned int oflags = flags;
2047
2048 if (vlen > UIO_MAXIOV)
2049 vlen = UIO_MAXIOV;
2050
2051 datagrams = 0;
2052
2053 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054 if (!sock)
2055 return err;
2056
2057 used_address.name_len = UINT_MAX;
2058 entry = mmsg;
2059 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2060 err = 0;
2061 flags |= MSG_BATCH;
2062
2063 while (datagrams < vlen) {
2064 if (datagrams == vlen - 1)
2065 flags = oflags;
2066
2067 if (MSG_CMSG_COMPAT & flags) {
2068 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069 &msg_sys, flags, &used_address, MSG_EOR);
2070 if (err < 0)
2071 break;
2072 err = __put_user(err, &compat_entry->msg_len);
2073 ++compat_entry;
2074 } else {
2075 err = ___sys_sendmsg(sock,
2076 (struct user_msghdr __user *)entry,
2077 &msg_sys, flags, &used_address, MSG_EOR);
2078 if (err < 0)
2079 break;
2080 err = put_user(err, &entry->msg_len);
2081 ++entry;
2082 }
2083
2084 if (err)
2085 break;
2086 ++datagrams;
2087 if (msg_data_left(&msg_sys))
2088 break;
2089 cond_resched();
2090 }
2091
2092 fput_light(sock->file, fput_needed);
2093
2094 /* We only return an error if no datagrams were able to be sent */
2095 if (datagrams != 0)
2096 return datagrams;
2097
2098 return err;
2099}
2100
2101SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102 unsigned int, vlen, unsigned int, flags)
2103{
2104 if (flags & MSG_CMSG_COMPAT)
2105 return -EINVAL;
2106 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2107}
2108
2109static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110 struct msghdr *msg_sys, unsigned int flags, int nosec)
2111{
2112 struct compat_msghdr __user *msg_compat =
2113 (struct compat_msghdr __user *)msg;
2114 struct iovec iovstack[UIO_FASTIOV];
2115 struct iovec *iov = iovstack;
2116 unsigned long cmsg_ptr;
2117 int len;
2118 ssize_t err;
2119
2120 /* kernel mode address */
2121 struct sockaddr_storage addr;
2122
2123 /* user mode address pointers */
2124 struct sockaddr __user *uaddr;
2125 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2126
2127 msg_sys->msg_name = &addr;
2128
2129 if (MSG_CMSG_COMPAT & flags)
2130 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2131 else
2132 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2133 if (err < 0)
2134 return err;
2135
2136 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2138
2139 /* We assume all kernel code knows the size of sockaddr_storage */
2140 msg_sys->msg_namelen = 0;
2141
2142 if (sock->file->f_flags & O_NONBLOCK)
2143 flags |= MSG_DONTWAIT;
2144 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2145 if (err < 0)
2146 goto out_freeiov;
2147 len = err;
2148
2149 if (uaddr != NULL) {
2150 err = move_addr_to_user(&addr,
2151 msg_sys->msg_namelen, uaddr,
2152 uaddr_len);
2153 if (err < 0)
2154 goto out_freeiov;
2155 }
2156 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2157 COMPAT_FLAGS(msg));
2158 if (err)
2159 goto out_freeiov;
2160 if (MSG_CMSG_COMPAT & flags)
2161 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162 &msg_compat->msg_controllen);
2163 else
2164 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165 &msg->msg_controllen);
2166 if (err)
2167 goto out_freeiov;
2168 err = len;
2169
2170out_freeiov:
2171 kfree(iov);
2172 return err;
2173}
2174
2175/*
2176 * BSD recvmsg interface
2177 */
2178
2179long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2180{
2181 int fput_needed, err;
2182 struct msghdr msg_sys;
2183 struct socket *sock;
2184
2185 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186 if (!sock)
2187 goto out;
2188
2189 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2190
2191 fput_light(sock->file, fput_needed);
2192out:
2193 return err;
2194}
2195
2196SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197 unsigned int, flags)
2198{
2199 if (flags & MSG_CMSG_COMPAT)
2200 return -EINVAL;
2201 return __sys_recvmsg(fd, msg, flags);
2202}
2203
2204/*
2205 * Linux recvmmsg interface
2206 */
2207
2208int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209 unsigned int flags, struct timespec *timeout)
2210{
2211 int fput_needed, err, datagrams;
2212 struct socket *sock;
2213 struct mmsghdr __user *entry;
2214 struct compat_mmsghdr __user *compat_entry;
2215 struct msghdr msg_sys;
2216 struct timespec64 end_time;
2217 struct timespec64 timeout64;
2218
2219 if (timeout &&
2220 poll_select_set_timeout(&end_time, timeout->tv_sec,
2221 timeout->tv_nsec))
2222 return -EINVAL;
2223
2224 datagrams = 0;
2225
2226 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227 if (!sock)
2228 return err;
2229
2230 err = sock_error(sock->sk);
2231 if (err) {
2232 datagrams = err;
2233 goto out_put;
2234 }
2235
2236 entry = mmsg;
2237 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2238
2239 while (datagrams < vlen) {
2240 /*
2241 * No need to ask LSM for more than the first datagram.
2242 */
2243 if (MSG_CMSG_COMPAT & flags) {
2244 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2245 &msg_sys, flags & ~MSG_WAITFORONE,
2246 datagrams);
2247 if (err < 0)
2248 break;
2249 err = __put_user(err, &compat_entry->msg_len);
2250 ++compat_entry;
2251 } else {
2252 err = ___sys_recvmsg(sock,
2253 (struct user_msghdr __user *)entry,
2254 &msg_sys, flags & ~MSG_WAITFORONE,
2255 datagrams);
2256 if (err < 0)
2257 break;
2258 err = put_user(err, &entry->msg_len);
2259 ++entry;
2260 }
2261
2262 if (err)
2263 break;
2264 ++datagrams;
2265
2266 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2267 if (flags & MSG_WAITFORONE)
2268 flags |= MSG_DONTWAIT;
2269
2270 if (timeout) {
2271 ktime_get_ts64(&timeout64);
2272 *timeout = timespec64_to_timespec(
2273 timespec64_sub(end_time, timeout64));
2274 if (timeout->tv_sec < 0) {
2275 timeout->tv_sec = timeout->tv_nsec = 0;
2276 break;
2277 }
2278
2279 /* Timeout, return less than vlen datagrams */
2280 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2281 break;
2282 }
2283
2284 /* Out of band data, return right away */
2285 if (msg_sys.msg_flags & MSG_OOB)
2286 break;
2287 cond_resched();
2288 }
2289
2290 if (err == 0)
2291 goto out_put;
2292
2293 if (datagrams == 0) {
2294 datagrams = err;
2295 goto out_put;
2296 }
2297
2298 /*
2299 * We may return less entries than requested (vlen) if the
2300 * sock is non block and there aren't enough datagrams...
2301 */
2302 if (err != -EAGAIN) {
2303 /*
2304 * ... or if recvmsg returns an error after we
2305 * received some datagrams, where we record the
2306 * error to return on the next call or if the
2307 * app asks about it using getsockopt(SO_ERROR).
2308 */
2309 sock->sk->sk_err = -err;
2310 }
2311out_put:
2312 fput_light(sock->file, fput_needed);
2313
2314 return datagrams;
2315}
2316
2317SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2318 unsigned int, vlen, unsigned int, flags,
2319 struct timespec __user *, timeout)
2320{
2321 int datagrams;
2322 struct timespec timeout_sys;
2323
2324 if (flags & MSG_CMSG_COMPAT)
2325 return -EINVAL;
2326
2327 if (!timeout)
2328 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2329
2330 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2331 return -EFAULT;
2332
2333 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2334
2335 if (datagrams > 0 &&
2336 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2337 datagrams = -EFAULT;
2338
2339 return datagrams;
2340}
2341
2342#ifdef __ARCH_WANT_SYS_SOCKETCALL
2343/* Argument list sizes for sys_socketcall */
2344#define AL(x) ((x) * sizeof(unsigned long))
2345static const unsigned char nargs[21] = {
2346 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2347 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2348 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2349 AL(4), AL(5), AL(4)
2350};
2351
2352#undef AL
2353
2354/*
2355 * System call vectors.
2356 *
2357 * Argument checking cleaned up. Saved 20% in size.
2358 * This function doesn't need to set the kernel lock because
2359 * it is set by the callees.
2360 */
2361
2362SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2363{
2364 unsigned long a[AUDITSC_ARGS];
2365 unsigned long a0, a1;
2366 int err;
2367 unsigned int len;
2368
2369 if (call < 1 || call > SYS_SENDMMSG)
2370 return -EINVAL;
2371
2372 len = nargs[call];
2373 if (len > sizeof(a))
2374 return -EINVAL;
2375
2376 /* copy_from_user should be SMP safe. */
2377 if (copy_from_user(a, args, len))
2378 return -EFAULT;
2379
2380 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2381 if (err)
2382 return err;
2383
2384 a0 = a[0];
2385 a1 = a[1];
2386
2387 switch (call) {
2388 case SYS_SOCKET:
2389 err = sys_socket(a0, a1, a[2]);
2390 break;
2391 case SYS_BIND:
2392 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2393 break;
2394 case SYS_CONNECT:
2395 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2396 break;
2397 case SYS_LISTEN:
2398 err = sys_listen(a0, a1);
2399 break;
2400 case SYS_ACCEPT:
2401 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2402 (int __user *)a[2], 0);
2403 break;
2404 case SYS_GETSOCKNAME:
2405 err =
2406 sys_getsockname(a0, (struct sockaddr __user *)a1,
2407 (int __user *)a[2]);
2408 break;
2409 case SYS_GETPEERNAME:
2410 err =
2411 sys_getpeername(a0, (struct sockaddr __user *)a1,
2412 (int __user *)a[2]);
2413 break;
2414 case SYS_SOCKETPAIR:
2415 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2416 break;
2417 case SYS_SEND:
2418 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2419 break;
2420 case SYS_SENDTO:
2421 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2422 (struct sockaddr __user *)a[4], a[5]);
2423 break;
2424 case SYS_RECV:
2425 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2426 break;
2427 case SYS_RECVFROM:
2428 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2429 (struct sockaddr __user *)a[4],
2430 (int __user *)a[5]);
2431 break;
2432 case SYS_SHUTDOWN:
2433 err = sys_shutdown(a0, a1);
2434 break;
2435 case SYS_SETSOCKOPT:
2436 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2437 break;
2438 case SYS_GETSOCKOPT:
2439 err =
2440 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2441 (int __user *)a[4]);
2442 break;
2443 case SYS_SENDMSG:
2444 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2445 break;
2446 case SYS_SENDMMSG:
2447 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2448 break;
2449 case SYS_RECVMSG:
2450 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2451 break;
2452 case SYS_RECVMMSG:
2453 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2454 (struct timespec __user *)a[4]);
2455 break;
2456 case SYS_ACCEPT4:
2457 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2458 (int __user *)a[2], a[3]);
2459 break;
2460 default:
2461 err = -EINVAL;
2462 break;
2463 }
2464 return err;
2465}
2466
2467#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2468
2469/**
2470 * sock_register - add a socket protocol handler
2471 * @ops: description of protocol
2472 *
2473 * This function is called by a protocol handler that wants to
2474 * advertise its address family, and have it linked into the
2475 * socket interface. The value ops->family corresponds to the
2476 * socket system call protocol family.
2477 */
2478int sock_register(const struct net_proto_family *ops)
2479{
2480 int err;
2481
2482 if (ops->family >= NPROTO) {
2483 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2484 return -ENOBUFS;
2485 }
2486
2487 spin_lock(&net_family_lock);
2488 if (rcu_dereference_protected(net_families[ops->family],
2489 lockdep_is_held(&net_family_lock)))
2490 err = -EEXIST;
2491 else {
2492 rcu_assign_pointer(net_families[ops->family], ops);
2493 err = 0;
2494 }
2495 spin_unlock(&net_family_lock);
2496
2497 pr_info("NET: Registered protocol family %d\n", ops->family);
2498 return err;
2499}
2500EXPORT_SYMBOL(sock_register);
2501
2502/**
2503 * sock_unregister - remove a protocol handler
2504 * @family: protocol family to remove
2505 *
2506 * This function is called by a protocol handler that wants to
2507 * remove its address family, and have it unlinked from the
2508 * new socket creation.
2509 *
2510 * If protocol handler is a module, then it can use module reference
2511 * counts to protect against new references. If protocol handler is not
2512 * a module then it needs to provide its own protection in
2513 * the ops->create routine.
2514 */
2515void sock_unregister(int family)
2516{
2517 BUG_ON(family < 0 || family >= NPROTO);
2518
2519 spin_lock(&net_family_lock);
2520 RCU_INIT_POINTER(net_families[family], NULL);
2521 spin_unlock(&net_family_lock);
2522
2523 synchronize_rcu();
2524
2525 pr_info("NET: Unregistered protocol family %d\n", family);
2526}
2527EXPORT_SYMBOL(sock_unregister);
2528
2529static int __init sock_init(void)
2530{
2531 int err;
2532 /*
2533 * Initialize the network sysctl infrastructure.
2534 */
2535 err = net_sysctl_init();
2536 if (err)
2537 goto out;
2538
2539 /*
2540 * Initialize skbuff SLAB cache
2541 */
2542 skb_init();
2543
2544 /*
2545 * Initialize the protocols module.
2546 */
2547
2548 init_inodecache();
2549
2550 err = register_filesystem(&sock_fs_type);
2551 if (err)
2552 goto out_fs;
2553 sock_mnt = kern_mount(&sock_fs_type);
2554 if (IS_ERR(sock_mnt)) {
2555 err = PTR_ERR(sock_mnt);
2556 goto out_mount;
2557 }
2558
2559 /* The real protocol initialization is performed in later initcalls.
2560 */
2561
2562#ifdef CONFIG_NETFILTER
2563 err = netfilter_init();
2564 if (err)
2565 goto out;
2566#endif
2567
2568 ptp_classifier_init();
2569
2570out:
2571 return err;
2572
2573out_mount:
2574 unregister_filesystem(&sock_fs_type);
2575out_fs:
2576 goto out;
2577}
2578
2579core_initcall(sock_init); /* early initcall */
2580
2581#ifdef CONFIG_PROC_FS
2582void socket_seq_show(struct seq_file *seq)
2583{
2584 int cpu;
2585 int counter = 0;
2586
2587 for_each_possible_cpu(cpu)
2588 counter += per_cpu(sockets_in_use, cpu);
2589
2590 /* It can be negative, by the way. 8) */
2591 if (counter < 0)
2592 counter = 0;
2593
2594 seq_printf(seq, "sockets: used %d\n", counter);
2595}
2596#endif /* CONFIG_PROC_FS */
2597
2598#ifdef CONFIG_COMPAT
2599static int do_siocgstamp(struct net *net, struct socket *sock,
2600 unsigned int cmd, void __user *up)
2601{
2602 mm_segment_t old_fs = get_fs();
2603 struct timeval ktv;
2604 int err;
2605
2606 set_fs(KERNEL_DS);
2607 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2608 set_fs(old_fs);
2609 if (!err)
2610 err = compat_put_timeval(&ktv, up);
2611
2612 return err;
2613}
2614
2615static int do_siocgstampns(struct net *net, struct socket *sock,
2616 unsigned int cmd, void __user *up)
2617{
2618 mm_segment_t old_fs = get_fs();
2619 struct timespec kts;
2620 int err;
2621
2622 set_fs(KERNEL_DS);
2623 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2624 set_fs(old_fs);
2625 if (!err)
2626 err = compat_put_timespec(&kts, up);
2627
2628 return err;
2629}
2630
2631static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2632{
2633 struct ifreq __user *uifr;
2634 int err;
2635
2636 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2637 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2638 return -EFAULT;
2639
2640 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2641 if (err)
2642 return err;
2643
2644 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2645 return -EFAULT;
2646
2647 return 0;
2648}
2649
2650static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2651{
2652 struct compat_ifconf ifc32;
2653 struct ifconf ifc;
2654 struct ifconf __user *uifc;
2655 struct compat_ifreq __user *ifr32;
2656 struct ifreq __user *ifr;
2657 unsigned int i, j;
2658 int err;
2659
2660 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2661 return -EFAULT;
2662
2663 memset(&ifc, 0, sizeof(ifc));
2664 if (ifc32.ifcbuf == 0) {
2665 ifc32.ifc_len = 0;
2666 ifc.ifc_len = 0;
2667 ifc.ifc_req = NULL;
2668 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2669 } else {
2670 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2671 sizeof(struct ifreq);
2672 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2673 ifc.ifc_len = len;
2674 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2675 ifr32 = compat_ptr(ifc32.ifcbuf);
2676 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2677 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2678 return -EFAULT;
2679 ifr++;
2680 ifr32++;
2681 }
2682 }
2683 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2684 return -EFAULT;
2685
2686 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2687 if (err)
2688 return err;
2689
2690 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2691 return -EFAULT;
2692
2693 ifr = ifc.ifc_req;
2694 ifr32 = compat_ptr(ifc32.ifcbuf);
2695 for (i = 0, j = 0;
2696 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2697 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2698 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2699 return -EFAULT;
2700 ifr32++;
2701 ifr++;
2702 }
2703
2704 if (ifc32.ifcbuf == 0) {
2705 /* Translate from 64-bit structure multiple to
2706 * a 32-bit one.
2707 */
2708 i = ifc.ifc_len;
2709 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2710 ifc32.ifc_len = i;
2711 } else {
2712 ifc32.ifc_len = i;
2713 }
2714 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2715 return -EFAULT;
2716
2717 return 0;
2718}
2719
2720static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2721{
2722 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2723 bool convert_in = false, convert_out = false;
2724 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2725 struct ethtool_rxnfc __user *rxnfc;
2726 struct ifreq __user *ifr;
2727 u32 rule_cnt = 0, actual_rule_cnt;
2728 u32 ethcmd;
2729 u32 data;
2730 int ret;
2731
2732 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2733 return -EFAULT;
2734
2735 compat_rxnfc = compat_ptr(data);
2736
2737 if (get_user(ethcmd, &compat_rxnfc->cmd))
2738 return -EFAULT;
2739
2740 /* Most ethtool structures are defined without padding.
2741 * Unfortunately struct ethtool_rxnfc is an exception.
2742 */
2743 switch (ethcmd) {
2744 default:
2745 break;
2746 case ETHTOOL_GRXCLSRLALL:
2747 /* Buffer size is variable */
2748 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2749 return -EFAULT;
2750 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2751 return -ENOMEM;
2752 buf_size += rule_cnt * sizeof(u32);
2753 /* fall through */
2754 case ETHTOOL_GRXRINGS:
2755 case ETHTOOL_GRXCLSRLCNT:
2756 case ETHTOOL_GRXCLSRULE:
2757 case ETHTOOL_SRXCLSRLINS:
2758 convert_out = true;
2759 /* fall through */
2760 case ETHTOOL_SRXCLSRLDEL:
2761 buf_size += sizeof(struct ethtool_rxnfc);
2762 convert_in = true;
2763 break;
2764 }
2765
2766 ifr = compat_alloc_user_space(buf_size);
2767 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2768
2769 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2770 return -EFAULT;
2771
2772 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2773 &ifr->ifr_ifru.ifru_data))
2774 return -EFAULT;
2775
2776 if (convert_in) {
2777 /* We expect there to be holes between fs.m_ext and
2778 * fs.ring_cookie and at the end of fs, but nowhere else.
2779 */
2780 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2781 sizeof(compat_rxnfc->fs.m_ext) !=
2782 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2783 sizeof(rxnfc->fs.m_ext));
2784 BUILD_BUG_ON(
2785 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2786 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2787 offsetof(struct ethtool_rxnfc, fs.location) -
2788 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2789
2790 if (copy_in_user(rxnfc, compat_rxnfc,
2791 (void __user *)(&rxnfc->fs.m_ext + 1) -
2792 (void __user *)rxnfc) ||
2793 copy_in_user(&rxnfc->fs.ring_cookie,
2794 &compat_rxnfc->fs.ring_cookie,
2795 (void __user *)(&rxnfc->fs.location + 1) -
2796 (void __user *)&rxnfc->fs.ring_cookie) ||
2797 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2798 sizeof(rxnfc->rule_cnt)))
2799 return -EFAULT;
2800 }
2801
2802 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2803 if (ret)
2804 return ret;
2805
2806 if (convert_out) {
2807 if (copy_in_user(compat_rxnfc, rxnfc,
2808 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2809 (const void __user *)rxnfc) ||
2810 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2811 &rxnfc->fs.ring_cookie,
2812 (const void __user *)(&rxnfc->fs.location + 1) -
2813 (const void __user *)&rxnfc->fs.ring_cookie) ||
2814 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2815 sizeof(rxnfc->rule_cnt)))
2816 return -EFAULT;
2817
2818 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2819 /* As an optimisation, we only copy the actual
2820 * number of rules that the underlying
2821 * function returned. Since Mallory might
2822 * change the rule count in user memory, we
2823 * check that it is less than the rule count
2824 * originally given (as the user buffer size),
2825 * which has been range-checked.
2826 */
2827 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2828 return -EFAULT;
2829 if (actual_rule_cnt < rule_cnt)
2830 rule_cnt = actual_rule_cnt;
2831 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2832 &rxnfc->rule_locs[0],
2833 rule_cnt * sizeof(u32)))
2834 return -EFAULT;
2835 }
2836 }
2837
2838 return 0;
2839}
2840
2841static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2842{
2843 void __user *uptr;
2844 compat_uptr_t uptr32;
2845 struct ifreq __user *uifr;
2846
2847 uifr = compat_alloc_user_space(sizeof(*uifr));
2848 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2849 return -EFAULT;
2850
2851 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2852 return -EFAULT;
2853
2854 uptr = compat_ptr(uptr32);
2855
2856 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2857 return -EFAULT;
2858
2859 return dev_ioctl(net, SIOCWANDEV, uifr);
2860}
2861
2862static int bond_ioctl(struct net *net, unsigned int cmd,
2863 struct compat_ifreq __user *ifr32)
2864{
2865 struct ifreq kifr;
2866 mm_segment_t old_fs;
2867 int err;
2868
2869 switch (cmd) {
2870 case SIOCBONDENSLAVE:
2871 case SIOCBONDRELEASE:
2872 case SIOCBONDSETHWADDR:
2873 case SIOCBONDCHANGEACTIVE:
2874 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2875 return -EFAULT;
2876
2877 old_fs = get_fs();
2878 set_fs(KERNEL_DS);
2879 err = dev_ioctl(net, cmd,
2880 (struct ifreq __user __force *) &kifr);
2881 set_fs(old_fs);
2882
2883 return err;
2884 default:
2885 return -ENOIOCTLCMD;
2886 }
2887}
2888
2889/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2890static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2891 struct compat_ifreq __user *u_ifreq32)
2892{
2893 struct ifreq __user *u_ifreq64;
2894 char tmp_buf[IFNAMSIZ];
2895 void __user *data64;
2896 u32 data32;
2897
2898 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2899 IFNAMSIZ))
2900 return -EFAULT;
2901 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2902 return -EFAULT;
2903 data64 = compat_ptr(data32);
2904
2905 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2906
2907 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2908 IFNAMSIZ))
2909 return -EFAULT;
2910 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2911 return -EFAULT;
2912
2913 return dev_ioctl(net, cmd, u_ifreq64);
2914}
2915
2916static int dev_ifsioc(struct net *net, struct socket *sock,
2917 unsigned int cmd, struct compat_ifreq __user *uifr32)
2918{
2919 struct ifreq __user *uifr;
2920 int err;
2921
2922 uifr = compat_alloc_user_space(sizeof(*uifr));
2923 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2924 return -EFAULT;
2925
2926 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2927
2928 if (!err) {
2929 switch (cmd) {
2930 case SIOCGIFFLAGS:
2931 case SIOCGIFMETRIC:
2932 case SIOCGIFMTU:
2933 case SIOCGIFMEM:
2934 case SIOCGIFHWADDR:
2935 case SIOCGIFINDEX:
2936 case SIOCGIFADDR:
2937 case SIOCGIFBRDADDR:
2938 case SIOCGIFDSTADDR:
2939 case SIOCGIFNETMASK:
2940 case SIOCGIFPFLAGS:
2941 case SIOCGIFTXQLEN:
2942 case SIOCGMIIPHY:
2943 case SIOCGMIIREG:
2944 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2945 err = -EFAULT;
2946 break;
2947 }
2948 }
2949 return err;
2950}
2951
2952static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2953 struct compat_ifreq __user *uifr32)
2954{
2955 struct ifreq ifr;
2956 struct compat_ifmap __user *uifmap32;
2957 mm_segment_t old_fs;
2958 int err;
2959
2960 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2961 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2962 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2963 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2964 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2965 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2966 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2967 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2968 if (err)
2969 return -EFAULT;
2970
2971 old_fs = get_fs();
2972 set_fs(KERNEL_DS);
2973 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2974 set_fs(old_fs);
2975
2976 if (cmd == SIOCGIFMAP && !err) {
2977 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2978 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2982 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2983 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2984 if (err)
2985 err = -EFAULT;
2986 }
2987 return err;
2988}
2989
2990struct rtentry32 {
2991 u32 rt_pad1;
2992 struct sockaddr rt_dst; /* target address */
2993 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2994 struct sockaddr rt_genmask; /* target network mask (IP) */
2995 unsigned short rt_flags;
2996 short rt_pad2;
2997 u32 rt_pad3;
2998 unsigned char rt_tos;
2999 unsigned char rt_class;
3000 short rt_pad4;
3001 short rt_metric; /* +1 for binary compatibility! */
3002 /* char * */ u32 rt_dev; /* forcing the device at add */
3003 u32 rt_mtu; /* per route MTU/Window */
3004 u32 rt_window; /* Window clamping */
3005 unsigned short rt_irtt; /* Initial RTT */
3006};
3007
3008struct in6_rtmsg32 {
3009 struct in6_addr rtmsg_dst;
3010 struct in6_addr rtmsg_src;
3011 struct in6_addr rtmsg_gateway;
3012 u32 rtmsg_type;
3013 u16 rtmsg_dst_len;
3014 u16 rtmsg_src_len;
3015 u32 rtmsg_metric;
3016 u32 rtmsg_info;
3017 u32 rtmsg_flags;
3018 s32 rtmsg_ifindex;
3019};
3020
3021static int routing_ioctl(struct net *net, struct socket *sock,
3022 unsigned int cmd, void __user *argp)
3023{
3024 int ret;
3025 void *r = NULL;
3026 struct in6_rtmsg r6;
3027 struct rtentry r4;
3028 char devname[16];
3029 u32 rtdev;
3030 mm_segment_t old_fs = get_fs();
3031
3032 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3033 struct in6_rtmsg32 __user *ur6 = argp;
3034 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3035 3 * sizeof(struct in6_addr));
3036 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3037 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3038 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3039 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3040 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3041 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3042 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3043
3044 r = (void *) &r6;
3045 } else { /* ipv4 */
3046 struct rtentry32 __user *ur4 = argp;
3047 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3048 3 * sizeof(struct sockaddr));
3049 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3050 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3051 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3052 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3053 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3054 ret |= get_user(rtdev, &(ur4->rt_dev));
3055 if (rtdev) {
3056 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3057 r4.rt_dev = (char __user __force *)devname;
3058 devname[15] = 0;
3059 } else
3060 r4.rt_dev = NULL;
3061
3062 r = (void *) &r4;
3063 }
3064
3065 if (ret) {
3066 ret = -EFAULT;
3067 goto out;
3068 }
3069
3070 set_fs(KERNEL_DS);
3071 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3072 set_fs(old_fs);
3073
3074out:
3075 return ret;
3076}
3077
3078/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3079 * for some operations; this forces use of the newer bridge-utils that
3080 * use compatible ioctls
3081 */
3082static int old_bridge_ioctl(compat_ulong_t __user *argp)
3083{
3084 compat_ulong_t tmp;
3085
3086 if (get_user(tmp, argp))
3087 return -EFAULT;
3088 if (tmp == BRCTL_GET_VERSION)
3089 return BRCTL_VERSION + 1;
3090 return -EINVAL;
3091}
3092
3093static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3094 unsigned int cmd, unsigned long arg)
3095{
3096 void __user *argp = compat_ptr(arg);
3097 struct sock *sk = sock->sk;
3098 struct net *net = sock_net(sk);
3099
3100 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3101 return compat_ifr_data_ioctl(net, cmd, argp);
3102
3103 switch (cmd) {
3104 case SIOCSIFBR:
3105 case SIOCGIFBR:
3106 return old_bridge_ioctl(argp);
3107 case SIOCGIFNAME:
3108 return dev_ifname32(net, argp);
3109 case SIOCGIFCONF:
3110 return dev_ifconf(net, argp);
3111 case SIOCETHTOOL:
3112 return ethtool_ioctl(net, argp);
3113 case SIOCWANDEV:
3114 return compat_siocwandev(net, argp);
3115 case SIOCGIFMAP:
3116 case SIOCSIFMAP:
3117 return compat_sioc_ifmap(net, cmd, argp);
3118 case SIOCBONDENSLAVE:
3119 case SIOCBONDRELEASE:
3120 case SIOCBONDSETHWADDR:
3121 case SIOCBONDCHANGEACTIVE:
3122 return bond_ioctl(net, cmd, argp);
3123 case SIOCADDRT:
3124 case SIOCDELRT:
3125 return routing_ioctl(net, sock, cmd, argp);
3126 case SIOCGSTAMP:
3127 return do_siocgstamp(net, sock, cmd, argp);
3128 case SIOCGSTAMPNS:
3129 return do_siocgstampns(net, sock, cmd, argp);
3130 case SIOCBONDSLAVEINFOQUERY:
3131 case SIOCBONDINFOQUERY:
3132 case SIOCSHWTSTAMP:
3133 case SIOCGHWTSTAMP:
3134 return compat_ifr_data_ioctl(net, cmd, argp);
3135
3136 case FIOSETOWN:
3137 case SIOCSPGRP:
3138 case FIOGETOWN:
3139 case SIOCGPGRP:
3140 case SIOCBRADDBR:
3141 case SIOCBRDELBR:
3142 case SIOCGIFVLAN:
3143 case SIOCSIFVLAN:
3144 case SIOCADDDLCI:
3145 case SIOCDELDLCI:
3146 case SIOCGSKNS:
3147 return sock_ioctl(file, cmd, arg);
3148
3149 case SIOCGIFFLAGS:
3150 case SIOCSIFFLAGS:
3151 case SIOCGIFMETRIC:
3152 case SIOCSIFMETRIC:
3153 case SIOCGIFMTU:
3154 case SIOCSIFMTU:
3155 case SIOCGIFMEM:
3156 case SIOCSIFMEM:
3157 case SIOCGIFHWADDR:
3158 case SIOCSIFHWADDR:
3159 case SIOCADDMULTI:
3160 case SIOCDELMULTI:
3161 case SIOCGIFINDEX:
3162 case SIOCGIFADDR:
3163 case SIOCSIFADDR:
3164 case SIOCSIFHWBROADCAST:
3165 case SIOCDIFADDR:
3166 case SIOCGIFBRDADDR:
3167 case SIOCSIFBRDADDR:
3168 case SIOCGIFDSTADDR:
3169 case SIOCSIFDSTADDR:
3170 case SIOCGIFNETMASK:
3171 case SIOCSIFNETMASK:
3172 case SIOCSIFPFLAGS:
3173 case SIOCGIFPFLAGS:
3174 case SIOCGIFTXQLEN:
3175 case SIOCSIFTXQLEN:
3176 case SIOCBRADDIF:
3177 case SIOCBRDELIF:
3178 case SIOCSIFNAME:
3179 case SIOCGMIIPHY:
3180 case SIOCGMIIREG:
3181 case SIOCSMIIREG:
3182 return dev_ifsioc(net, sock, cmd, argp);
3183
3184 case SIOCSARP:
3185 case SIOCGARP:
3186 case SIOCDARP:
3187 case SIOCATMARK:
3188 return sock_do_ioctl(net, sock, cmd, arg);
3189 }
3190
3191 return -ENOIOCTLCMD;
3192}
3193
3194static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3195 unsigned long arg)
3196{
3197 struct socket *sock = file->private_data;
3198 int ret = -ENOIOCTLCMD;
3199 struct sock *sk;
3200 struct net *net;
3201
3202 sk = sock->sk;
3203 net = sock_net(sk);
3204
3205 if (sock->ops->compat_ioctl)
3206 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3207
3208 if (ret == -ENOIOCTLCMD &&
3209 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3210 ret = compat_wext_handle_ioctl(net, cmd, arg);
3211
3212 if (ret == -ENOIOCTLCMD)
3213 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3214
3215 return ret;
3216}
3217#endif
3218
3219int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3220{
3221 return sock->ops->bind(sock, addr, addrlen);
3222}
3223EXPORT_SYMBOL(kernel_bind);
3224
3225int kernel_listen(struct socket *sock, int backlog)
3226{
3227 return sock->ops->listen(sock, backlog);
3228}
3229EXPORT_SYMBOL(kernel_listen);
3230
3231int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3232{
3233 struct sock *sk = sock->sk;
3234 int err;
3235
3236 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3237 newsock);
3238 if (err < 0)
3239 goto done;
3240
3241 err = sock->ops->accept(sock, *newsock, flags);
3242 if (err < 0) {
3243 sock_release(*newsock);
3244 *newsock = NULL;
3245 goto done;
3246 }
3247
3248 (*newsock)->ops = sock->ops;
3249 __module_get((*newsock)->ops->owner);
3250
3251done:
3252 return err;
3253}
3254EXPORT_SYMBOL(kernel_accept);
3255
3256int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3257 int flags)
3258{
3259 return sock->ops->connect(sock, addr, addrlen, flags);
3260}
3261EXPORT_SYMBOL(kernel_connect);
3262
3263int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3264 int *addrlen)
3265{
3266 return sock->ops->getname(sock, addr, addrlen, 0);
3267}
3268EXPORT_SYMBOL(kernel_getsockname);
3269
3270int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3271 int *addrlen)
3272{
3273 return sock->ops->getname(sock, addr, addrlen, 1);
3274}
3275EXPORT_SYMBOL(kernel_getpeername);
3276
3277int kernel_getsockopt(struct socket *sock, int level, int optname,
3278 char *optval, int *optlen)
3279{
3280 mm_segment_t oldfs = get_fs();
3281 char __user *uoptval;
3282 int __user *uoptlen;
3283 int err;
3284
3285 uoptval = (char __user __force *) optval;
3286 uoptlen = (int __user __force *) optlen;
3287
3288 set_fs(KERNEL_DS);
3289 if (level == SOL_SOCKET)
3290 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291 else
3292 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293 uoptlen);
3294 set_fs(oldfs);
3295 return err;
3296}
3297EXPORT_SYMBOL(kernel_getsockopt);
3298
3299int kernel_setsockopt(struct socket *sock, int level, int optname,
3300 char *optval, unsigned int optlen)
3301{
3302 mm_segment_t oldfs = get_fs();
3303 char __user *uoptval;
3304 int err;
3305
3306 uoptval = (char __user __force *) optval;
3307
3308 set_fs(KERNEL_DS);
3309 if (level == SOL_SOCKET)
3310 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311 else
3312 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313 optlen);
3314 set_fs(oldfs);
3315 return err;
3316}
3317EXPORT_SYMBOL(kernel_setsockopt);
3318
3319int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320 size_t size, int flags)
3321{
3322 if (sock->ops->sendpage)
3323 return sock->ops->sendpage(sock, page, offset, size, flags);
3324
3325 return sock_no_sendpage(sock, page, offset, size, flags);
3326}
3327EXPORT_SYMBOL(kernel_sendpage);
3328
3329int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3330{
3331 mm_segment_t oldfs = get_fs();
3332 int err;
3333
3334 set_fs(KERNEL_DS);
3335 err = sock->ops->ioctl(sock, cmd, arg);
3336 set_fs(oldfs);
3337
3338 return err;
3339}
3340EXPORT_SYMBOL(kernel_sock_ioctl);
3341
3342int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343{
3344 return sock->ops->shutdown(sock, how);
3345}
3346EXPORT_SYMBOL(kernel_sock_shutdown);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55#include <linux/bpf-cgroup.h>
56#include <linux/ethtool.h>
57#include <linux/mm.h>
58#include <linux/socket.h>
59#include <linux/file.h>
60#include <linux/net.h>
61#include <linux/interrupt.h>
62#include <linux/thread_info.h>
63#include <linux/rcupdate.h>
64#include <linux/netdevice.h>
65#include <linux/proc_fs.h>
66#include <linux/seq_file.h>
67#include <linux/mutex.h>
68#include <linux/if_bridge.h>
69#include <linux/if_vlan.h>
70#include <linux/ptp_classify.h>
71#include <linux/init.h>
72#include <linux/poll.h>
73#include <linux/cache.h>
74#include <linux/module.h>
75#include <linux/highmem.h>
76#include <linux/mount.h>
77#include <linux/pseudo_fs.h>
78#include <linux/security.h>
79#include <linux/syscalls.h>
80#include <linux/compat.h>
81#include <linux/kmod.h>
82#include <linux/audit.h>
83#include <linux/wireless.h>
84#include <linux/nsproxy.h>
85#include <linux/magic.h>
86#include <linux/slab.h>
87#include <linux/xattr.h>
88#include <linux/nospec.h>
89#include <linux/indirect_call_wrapper.h>
90
91#include <linux/uaccess.h>
92#include <asm/unistd.h>
93
94#include <net/compat.h>
95#include <net/wext.h>
96#include <net/cls_cgroup.h>
97
98#include <net/sock.h>
99#include <linux/netfilter.h>
100
101#include <linux/if_tun.h>
102#include <linux/ipv6_route.h>
103#include <linux/route.h>
104#include <linux/termios.h>
105#include <linux/sockios.h>
106#include <net/busy_poll.h>
107#include <linux/errqueue.h>
108#include <linux/ptp_clock_kernel.h>
109
110#ifdef CONFIG_NET_RX_BUSY_POLL
111unsigned int sysctl_net_busy_read __read_mostly;
112unsigned int sysctl_net_busy_poll __read_mostly;
113#endif
114
115static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118
119static int sock_close(struct inode *inode, struct file *file);
120static __poll_t sock_poll(struct file *file,
121 struct poll_table_struct *wait);
122static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123#ifdef CONFIG_COMPAT
124static long compat_sock_ioctl(struct file *file,
125 unsigned int cmd, unsigned long arg);
126#endif
127static int sock_fasync(int fd, struct file *filp, int on);
128static ssize_t sock_sendpage(struct file *file, struct page *page,
129 int offset, size_t size, loff_t *ppos, int more);
130static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 struct pipe_inode_info *pipe, size_t len,
132 unsigned int flags);
133
134#ifdef CONFIG_PROC_FS
135static void sock_show_fdinfo(struct seq_file *m, struct file *f)
136{
137 struct socket *sock = f->private_data;
138
139 if (sock->ops->show_fdinfo)
140 sock->ops->show_fdinfo(m, sock);
141}
142#else
143#define sock_show_fdinfo NULL
144#endif
145
146/*
147 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
148 * in the operation structures but are done directly via the socketcall() multiplexor.
149 */
150
151static const struct file_operations socket_file_ops = {
152 .owner = THIS_MODULE,
153 .llseek = no_llseek,
154 .read_iter = sock_read_iter,
155 .write_iter = sock_write_iter,
156 .poll = sock_poll,
157 .unlocked_ioctl = sock_ioctl,
158#ifdef CONFIG_COMPAT
159 .compat_ioctl = compat_sock_ioctl,
160#endif
161 .mmap = sock_mmap,
162 .release = sock_close,
163 .fasync = sock_fasync,
164 .sendpage = sock_sendpage,
165 .splice_write = generic_splice_sendpage,
166 .splice_read = sock_splice_read,
167 .show_fdinfo = sock_show_fdinfo,
168};
169
170static const char * const pf_family_names[] = {
171 [PF_UNSPEC] = "PF_UNSPEC",
172 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
173 [PF_INET] = "PF_INET",
174 [PF_AX25] = "PF_AX25",
175 [PF_IPX] = "PF_IPX",
176 [PF_APPLETALK] = "PF_APPLETALK",
177 [PF_NETROM] = "PF_NETROM",
178 [PF_BRIDGE] = "PF_BRIDGE",
179 [PF_ATMPVC] = "PF_ATMPVC",
180 [PF_X25] = "PF_X25",
181 [PF_INET6] = "PF_INET6",
182 [PF_ROSE] = "PF_ROSE",
183 [PF_DECnet] = "PF_DECnet",
184 [PF_NETBEUI] = "PF_NETBEUI",
185 [PF_SECURITY] = "PF_SECURITY",
186 [PF_KEY] = "PF_KEY",
187 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
188 [PF_PACKET] = "PF_PACKET",
189 [PF_ASH] = "PF_ASH",
190 [PF_ECONET] = "PF_ECONET",
191 [PF_ATMSVC] = "PF_ATMSVC",
192 [PF_RDS] = "PF_RDS",
193 [PF_SNA] = "PF_SNA",
194 [PF_IRDA] = "PF_IRDA",
195 [PF_PPPOX] = "PF_PPPOX",
196 [PF_WANPIPE] = "PF_WANPIPE",
197 [PF_LLC] = "PF_LLC",
198 [PF_IB] = "PF_IB",
199 [PF_MPLS] = "PF_MPLS",
200 [PF_CAN] = "PF_CAN",
201 [PF_TIPC] = "PF_TIPC",
202 [PF_BLUETOOTH] = "PF_BLUETOOTH",
203 [PF_IUCV] = "PF_IUCV",
204 [PF_RXRPC] = "PF_RXRPC",
205 [PF_ISDN] = "PF_ISDN",
206 [PF_PHONET] = "PF_PHONET",
207 [PF_IEEE802154] = "PF_IEEE802154",
208 [PF_CAIF] = "PF_CAIF",
209 [PF_ALG] = "PF_ALG",
210 [PF_NFC] = "PF_NFC",
211 [PF_VSOCK] = "PF_VSOCK",
212 [PF_KCM] = "PF_KCM",
213 [PF_QIPCRTR] = "PF_QIPCRTR",
214 [PF_SMC] = "PF_SMC",
215 [PF_XDP] = "PF_XDP",
216 [PF_MCTP] = "PF_MCTP",
217};
218
219/*
220 * The protocol list. Each protocol is registered in here.
221 */
222
223static DEFINE_SPINLOCK(net_family_lock);
224static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
225
226/*
227 * Support routines.
228 * Move socket addresses back and forth across the kernel/user
229 * divide and look after the messy bits.
230 */
231
232/**
233 * move_addr_to_kernel - copy a socket address into kernel space
234 * @uaddr: Address in user space
235 * @kaddr: Address in kernel space
236 * @ulen: Length in user space
237 *
238 * The address is copied into kernel space. If the provided address is
239 * too long an error code of -EINVAL is returned. If the copy gives
240 * invalid addresses -EFAULT is returned. On a success 0 is returned.
241 */
242
243int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
244{
245 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
246 return -EINVAL;
247 if (ulen == 0)
248 return 0;
249 if (copy_from_user(kaddr, uaddr, ulen))
250 return -EFAULT;
251 return audit_sockaddr(ulen, kaddr);
252}
253
254/**
255 * move_addr_to_user - copy an address to user space
256 * @kaddr: kernel space address
257 * @klen: length of address in kernel
258 * @uaddr: user space address
259 * @ulen: pointer to user length field
260 *
261 * The value pointed to by ulen on entry is the buffer length available.
262 * This is overwritten with the buffer space used. -EINVAL is returned
263 * if an overlong buffer is specified or a negative buffer size. -EFAULT
264 * is returned if either the buffer or the length field are not
265 * accessible.
266 * After copying the data up to the limit the user specifies, the true
267 * length of the data is written over the length limit the user
268 * specified. Zero is returned for a success.
269 */
270
271static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
272 void __user *uaddr, int __user *ulen)
273{
274 int err;
275 int len;
276
277 BUG_ON(klen > sizeof(struct sockaddr_storage));
278 err = get_user(len, ulen);
279 if (err)
280 return err;
281 if (len > klen)
282 len = klen;
283 if (len < 0)
284 return -EINVAL;
285 if (len) {
286 if (audit_sockaddr(klen, kaddr))
287 return -ENOMEM;
288 if (copy_to_user(uaddr, kaddr, len))
289 return -EFAULT;
290 }
291 /*
292 * "fromlen shall refer to the value before truncation.."
293 * 1003.1g
294 */
295 return __put_user(klen, ulen);
296}
297
298static struct kmem_cache *sock_inode_cachep __ro_after_init;
299
300static struct inode *sock_alloc_inode(struct super_block *sb)
301{
302 struct socket_alloc *ei;
303
304 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
305 if (!ei)
306 return NULL;
307 init_waitqueue_head(&ei->socket.wq.wait);
308 ei->socket.wq.fasync_list = NULL;
309 ei->socket.wq.flags = 0;
310
311 ei->socket.state = SS_UNCONNECTED;
312 ei->socket.flags = 0;
313 ei->socket.ops = NULL;
314 ei->socket.sk = NULL;
315 ei->socket.file = NULL;
316
317 return &ei->vfs_inode;
318}
319
320static void sock_free_inode(struct inode *inode)
321{
322 struct socket_alloc *ei;
323
324 ei = container_of(inode, struct socket_alloc, vfs_inode);
325 kmem_cache_free(sock_inode_cachep, ei);
326}
327
328static void init_once(void *foo)
329{
330 struct socket_alloc *ei = (struct socket_alloc *)foo;
331
332 inode_init_once(&ei->vfs_inode);
333}
334
335static void init_inodecache(void)
336{
337 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
338 sizeof(struct socket_alloc),
339 0,
340 (SLAB_HWCACHE_ALIGN |
341 SLAB_RECLAIM_ACCOUNT |
342 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
343 init_once);
344 BUG_ON(sock_inode_cachep == NULL);
345}
346
347static const struct super_operations sockfs_ops = {
348 .alloc_inode = sock_alloc_inode,
349 .free_inode = sock_free_inode,
350 .statfs = simple_statfs,
351};
352
353/*
354 * sockfs_dname() is called from d_path().
355 */
356static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
357{
358 return dynamic_dname(buffer, buflen, "socket:[%lu]",
359 d_inode(dentry)->i_ino);
360}
361
362static const struct dentry_operations sockfs_dentry_operations = {
363 .d_dname = sockfs_dname,
364};
365
366static int sockfs_xattr_get(const struct xattr_handler *handler,
367 struct dentry *dentry, struct inode *inode,
368 const char *suffix, void *value, size_t size)
369{
370 if (value) {
371 if (dentry->d_name.len + 1 > size)
372 return -ERANGE;
373 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
374 }
375 return dentry->d_name.len + 1;
376}
377
378#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
379#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
380#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
381
382static const struct xattr_handler sockfs_xattr_handler = {
383 .name = XATTR_NAME_SOCKPROTONAME,
384 .get = sockfs_xattr_get,
385};
386
387static int sockfs_security_xattr_set(const struct xattr_handler *handler,
388 struct user_namespace *mnt_userns,
389 struct dentry *dentry, struct inode *inode,
390 const char *suffix, const void *value,
391 size_t size, int flags)
392{
393 /* Handled by LSM. */
394 return -EAGAIN;
395}
396
397static const struct xattr_handler sockfs_security_xattr_handler = {
398 .prefix = XATTR_SECURITY_PREFIX,
399 .set = sockfs_security_xattr_set,
400};
401
402static const struct xattr_handler *sockfs_xattr_handlers[] = {
403 &sockfs_xattr_handler,
404 &sockfs_security_xattr_handler,
405 NULL
406};
407
408static int sockfs_init_fs_context(struct fs_context *fc)
409{
410 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
411 if (!ctx)
412 return -ENOMEM;
413 ctx->ops = &sockfs_ops;
414 ctx->dops = &sockfs_dentry_operations;
415 ctx->xattr = sockfs_xattr_handlers;
416 return 0;
417}
418
419static struct vfsmount *sock_mnt __read_mostly;
420
421static struct file_system_type sock_fs_type = {
422 .name = "sockfs",
423 .init_fs_context = sockfs_init_fs_context,
424 .kill_sb = kill_anon_super,
425};
426
427/*
428 * Obtains the first available file descriptor and sets it up for use.
429 *
430 * These functions create file structures and maps them to fd space
431 * of the current process. On success it returns file descriptor
432 * and file struct implicitly stored in sock->file.
433 * Note that another thread may close file descriptor before we return
434 * from this function. We use the fact that now we do not refer
435 * to socket after mapping. If one day we will need it, this
436 * function will increment ref. count on file by 1.
437 *
438 * In any case returned fd MAY BE not valid!
439 * This race condition is unavoidable
440 * with shared fd spaces, we cannot solve it inside kernel,
441 * but we take care of internal coherence yet.
442 */
443
444/**
445 * sock_alloc_file - Bind a &socket to a &file
446 * @sock: socket
447 * @flags: file status flags
448 * @dname: protocol name
449 *
450 * Returns the &file bound with @sock, implicitly storing it
451 * in sock->file. If dname is %NULL, sets to "".
452 * On failure the return is a ERR pointer (see linux/err.h).
453 * This function uses GFP_KERNEL internally.
454 */
455
456struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
457{
458 struct file *file;
459
460 if (!dname)
461 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
462
463 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
464 O_RDWR | (flags & O_NONBLOCK),
465 &socket_file_ops);
466 if (IS_ERR(file)) {
467 sock_release(sock);
468 return file;
469 }
470
471 sock->file = file;
472 file->private_data = sock;
473 stream_open(SOCK_INODE(sock), file);
474 return file;
475}
476EXPORT_SYMBOL(sock_alloc_file);
477
478static int sock_map_fd(struct socket *sock, int flags)
479{
480 struct file *newfile;
481 int fd = get_unused_fd_flags(flags);
482 if (unlikely(fd < 0)) {
483 sock_release(sock);
484 return fd;
485 }
486
487 newfile = sock_alloc_file(sock, flags, NULL);
488 if (!IS_ERR(newfile)) {
489 fd_install(fd, newfile);
490 return fd;
491 }
492
493 put_unused_fd(fd);
494 return PTR_ERR(newfile);
495}
496
497/**
498 * sock_from_file - Return the &socket bounded to @file.
499 * @file: file
500 *
501 * On failure returns %NULL.
502 */
503
504struct socket *sock_from_file(struct file *file)
505{
506 if (file->f_op == &socket_file_ops)
507 return file->private_data; /* set in sock_alloc_file */
508
509 return NULL;
510}
511EXPORT_SYMBOL(sock_from_file);
512
513/**
514 * sockfd_lookup - Go from a file number to its socket slot
515 * @fd: file handle
516 * @err: pointer to an error code return
517 *
518 * The file handle passed in is locked and the socket it is bound
519 * to is returned. If an error occurs the err pointer is overwritten
520 * with a negative errno code and NULL is returned. The function checks
521 * for both invalid handles and passing a handle which is not a socket.
522 *
523 * On a success the socket object pointer is returned.
524 */
525
526struct socket *sockfd_lookup(int fd, int *err)
527{
528 struct file *file;
529 struct socket *sock;
530
531 file = fget(fd);
532 if (!file) {
533 *err = -EBADF;
534 return NULL;
535 }
536
537 sock = sock_from_file(file);
538 if (!sock) {
539 *err = -ENOTSOCK;
540 fput(file);
541 }
542 return sock;
543}
544EXPORT_SYMBOL(sockfd_lookup);
545
546static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
547{
548 struct fd f = fdget(fd);
549 struct socket *sock;
550
551 *err = -EBADF;
552 if (f.file) {
553 sock = sock_from_file(f.file);
554 if (likely(sock)) {
555 *fput_needed = f.flags & FDPUT_FPUT;
556 return sock;
557 }
558 *err = -ENOTSOCK;
559 fdput(f);
560 }
561 return NULL;
562}
563
564static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
565 size_t size)
566{
567 ssize_t len;
568 ssize_t used = 0;
569
570 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
571 if (len < 0)
572 return len;
573 used += len;
574 if (buffer) {
575 if (size < used)
576 return -ERANGE;
577 buffer += len;
578 }
579
580 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
581 used += len;
582 if (buffer) {
583 if (size < used)
584 return -ERANGE;
585 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
586 buffer += len;
587 }
588
589 return used;
590}
591
592static int sockfs_setattr(struct user_namespace *mnt_userns,
593 struct dentry *dentry, struct iattr *iattr)
594{
595 int err = simple_setattr(&init_user_ns, dentry, iattr);
596
597 if (!err && (iattr->ia_valid & ATTR_UID)) {
598 struct socket *sock = SOCKET_I(d_inode(dentry));
599
600 if (sock->sk)
601 sock->sk->sk_uid = iattr->ia_uid;
602 else
603 err = -ENOENT;
604 }
605
606 return err;
607}
608
609static const struct inode_operations sockfs_inode_ops = {
610 .listxattr = sockfs_listxattr,
611 .setattr = sockfs_setattr,
612};
613
614/**
615 * sock_alloc - allocate a socket
616 *
617 * Allocate a new inode and socket object. The two are bound together
618 * and initialised. The socket is then returned. If we are out of inodes
619 * NULL is returned. This functions uses GFP_KERNEL internally.
620 */
621
622struct socket *sock_alloc(void)
623{
624 struct inode *inode;
625 struct socket *sock;
626
627 inode = new_inode_pseudo(sock_mnt->mnt_sb);
628 if (!inode)
629 return NULL;
630
631 sock = SOCKET_I(inode);
632
633 inode->i_ino = get_next_ino();
634 inode->i_mode = S_IFSOCK | S_IRWXUGO;
635 inode->i_uid = current_fsuid();
636 inode->i_gid = current_fsgid();
637 inode->i_op = &sockfs_inode_ops;
638
639 return sock;
640}
641EXPORT_SYMBOL(sock_alloc);
642
643static void __sock_release(struct socket *sock, struct inode *inode)
644{
645 if (sock->ops) {
646 struct module *owner = sock->ops->owner;
647
648 if (inode)
649 inode_lock(inode);
650 sock->ops->release(sock);
651 sock->sk = NULL;
652 if (inode)
653 inode_unlock(inode);
654 sock->ops = NULL;
655 module_put(owner);
656 }
657
658 if (sock->wq.fasync_list)
659 pr_err("%s: fasync list not empty!\n", __func__);
660
661 if (!sock->file) {
662 iput(SOCK_INODE(sock));
663 return;
664 }
665 sock->file = NULL;
666}
667
668/**
669 * sock_release - close a socket
670 * @sock: socket to close
671 *
672 * The socket is released from the protocol stack if it has a release
673 * callback, and the inode is then released if the socket is bound to
674 * an inode not a file.
675 */
676void sock_release(struct socket *sock)
677{
678 __sock_release(sock, NULL);
679}
680EXPORT_SYMBOL(sock_release);
681
682void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
683{
684 u8 flags = *tx_flags;
685
686 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
687 flags |= SKBTX_HW_TSTAMP;
688
689 /* PTP hardware clocks can provide a free running cycle counter
690 * as a time base for virtual clocks. Tell driver to use the
691 * free running cycle counter for timestamp if socket is bound
692 * to virtual clock.
693 */
694 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
695 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
696 }
697
698 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
699 flags |= SKBTX_SW_TSTAMP;
700
701 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
702 flags |= SKBTX_SCHED_TSTAMP;
703
704 *tx_flags = flags;
705}
706EXPORT_SYMBOL(__sock_tx_timestamp);
707
708INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
709 size_t));
710INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
711 size_t));
712static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
713{
714 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
715 inet_sendmsg, sock, msg,
716 msg_data_left(msg));
717 BUG_ON(ret == -EIOCBQUEUED);
718 return ret;
719}
720
721/**
722 * sock_sendmsg - send a message through @sock
723 * @sock: socket
724 * @msg: message to send
725 *
726 * Sends @msg through @sock, passing through LSM.
727 * Returns the number of bytes sent, or an error code.
728 */
729int sock_sendmsg(struct socket *sock, struct msghdr *msg)
730{
731 int err = security_socket_sendmsg(sock, msg,
732 msg_data_left(msg));
733
734 return err ?: sock_sendmsg_nosec(sock, msg);
735}
736EXPORT_SYMBOL(sock_sendmsg);
737
738/**
739 * kernel_sendmsg - send a message through @sock (kernel-space)
740 * @sock: socket
741 * @msg: message header
742 * @vec: kernel vec
743 * @num: vec array length
744 * @size: total message data size
745 *
746 * Builds the message data with @vec and sends it through @sock.
747 * Returns the number of bytes sent, or an error code.
748 */
749
750int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
751 struct kvec *vec, size_t num, size_t size)
752{
753 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
754 return sock_sendmsg(sock, msg);
755}
756EXPORT_SYMBOL(kernel_sendmsg);
757
758/**
759 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
760 * @sk: sock
761 * @msg: message header
762 * @vec: output s/g array
763 * @num: output s/g array length
764 * @size: total message data size
765 *
766 * Builds the message data with @vec and sends it through @sock.
767 * Returns the number of bytes sent, or an error code.
768 * Caller must hold @sk.
769 */
770
771int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
772 struct kvec *vec, size_t num, size_t size)
773{
774 struct socket *sock = sk->sk_socket;
775
776 if (!sock->ops->sendmsg_locked)
777 return sock_no_sendmsg_locked(sk, msg, size);
778
779 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
780
781 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
782}
783EXPORT_SYMBOL(kernel_sendmsg_locked);
784
785static bool skb_is_err_queue(const struct sk_buff *skb)
786{
787 /* pkt_type of skbs enqueued on the error queue are set to
788 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
789 * in recvmsg, since skbs received on a local socket will never
790 * have a pkt_type of PACKET_OUTGOING.
791 */
792 return skb->pkt_type == PACKET_OUTGOING;
793}
794
795/* On transmit, software and hardware timestamps are returned independently.
796 * As the two skb clones share the hardware timestamp, which may be updated
797 * before the software timestamp is received, a hardware TX timestamp may be
798 * returned only if there is no software TX timestamp. Ignore false software
799 * timestamps, which may be made in the __sock_recv_timestamp() call when the
800 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
801 * hardware timestamp.
802 */
803static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
804{
805 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
806}
807
808static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
809{
810 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
811 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
812 struct net_device *orig_dev;
813 ktime_t hwtstamp;
814
815 rcu_read_lock();
816 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
817 if (orig_dev) {
818 *if_index = orig_dev->ifindex;
819 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
820 } else {
821 hwtstamp = shhwtstamps->hwtstamp;
822 }
823 rcu_read_unlock();
824
825 return hwtstamp;
826}
827
828static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
829 int if_index)
830{
831 struct scm_ts_pktinfo ts_pktinfo;
832 struct net_device *orig_dev;
833
834 if (!skb_mac_header_was_set(skb))
835 return;
836
837 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
838
839 if (!if_index) {
840 rcu_read_lock();
841 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
842 if (orig_dev)
843 if_index = orig_dev->ifindex;
844 rcu_read_unlock();
845 }
846 ts_pktinfo.if_index = if_index;
847
848 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
849 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
850 sizeof(ts_pktinfo), &ts_pktinfo);
851}
852
853/*
854 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
855 */
856void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
857 struct sk_buff *skb)
858{
859 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
860 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
861 struct scm_timestamping_internal tss;
862
863 int empty = 1, false_tstamp = 0;
864 struct skb_shared_hwtstamps *shhwtstamps =
865 skb_hwtstamps(skb);
866 int if_index;
867 ktime_t hwtstamp;
868
869 /* Race occurred between timestamp enabling and packet
870 receiving. Fill in the current time for now. */
871 if (need_software_tstamp && skb->tstamp == 0) {
872 __net_timestamp(skb);
873 false_tstamp = 1;
874 }
875
876 if (need_software_tstamp) {
877 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
878 if (new_tstamp) {
879 struct __kernel_sock_timeval tv;
880
881 skb_get_new_timestamp(skb, &tv);
882 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
883 sizeof(tv), &tv);
884 } else {
885 struct __kernel_old_timeval tv;
886
887 skb_get_timestamp(skb, &tv);
888 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
889 sizeof(tv), &tv);
890 }
891 } else {
892 if (new_tstamp) {
893 struct __kernel_timespec ts;
894
895 skb_get_new_timestampns(skb, &ts);
896 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
897 sizeof(ts), &ts);
898 } else {
899 struct __kernel_old_timespec ts;
900
901 skb_get_timestampns(skb, &ts);
902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
903 sizeof(ts), &ts);
904 }
905 }
906 }
907
908 memset(&tss, 0, sizeof(tss));
909 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
910 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
911 empty = 0;
912 if (shhwtstamps &&
913 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
914 !skb_is_swtx_tstamp(skb, false_tstamp)) {
915 if_index = 0;
916 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
917 hwtstamp = get_timestamp(sk, skb, &if_index);
918 else
919 hwtstamp = shhwtstamps->hwtstamp;
920
921 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
922 hwtstamp = ptp_convert_timestamp(&hwtstamp,
923 sk->sk_bind_phc);
924
925 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
926 empty = 0;
927
928 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
929 !skb_is_err_queue(skb))
930 put_ts_pktinfo(msg, skb, if_index);
931 }
932 }
933 if (!empty) {
934 if (sock_flag(sk, SOCK_TSTAMP_NEW))
935 put_cmsg_scm_timestamping64(msg, &tss);
936 else
937 put_cmsg_scm_timestamping(msg, &tss);
938
939 if (skb_is_err_queue(skb) && skb->len &&
940 SKB_EXT_ERR(skb)->opt_stats)
941 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
942 skb->len, skb->data);
943 }
944}
945EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
946
947void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
948 struct sk_buff *skb)
949{
950 int ack;
951
952 if (!sock_flag(sk, SOCK_WIFI_STATUS))
953 return;
954 if (!skb->wifi_acked_valid)
955 return;
956
957 ack = skb->wifi_acked;
958
959 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
960}
961EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
962
963static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
964 struct sk_buff *skb)
965{
966 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
967 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
968 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
969}
970
971static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
972 struct sk_buff *skb)
973{
974 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
975 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
976 __u32 mark = skb->mark;
977
978 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
979 }
980}
981
982void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
983 struct sk_buff *skb)
984{
985 sock_recv_timestamp(msg, sk, skb);
986 sock_recv_drops(msg, sk, skb);
987 sock_recv_mark(msg, sk, skb);
988}
989EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
990
991INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
992 size_t, int));
993INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
994 size_t, int));
995static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
996 int flags)
997{
998 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
999 inet_recvmsg, sock, msg, msg_data_left(msg),
1000 flags);
1001}
1002
1003/**
1004 * sock_recvmsg - receive a message from @sock
1005 * @sock: socket
1006 * @msg: message to receive
1007 * @flags: message flags
1008 *
1009 * Receives @msg from @sock, passing through LSM. Returns the total number
1010 * of bytes received, or an error.
1011 */
1012int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1013{
1014 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1015
1016 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1017}
1018EXPORT_SYMBOL(sock_recvmsg);
1019
1020/**
1021 * kernel_recvmsg - Receive a message from a socket (kernel space)
1022 * @sock: The socket to receive the message from
1023 * @msg: Received message
1024 * @vec: Input s/g array for message data
1025 * @num: Size of input s/g array
1026 * @size: Number of bytes to read
1027 * @flags: Message flags (MSG_DONTWAIT, etc...)
1028 *
1029 * On return the msg structure contains the scatter/gather array passed in the
1030 * vec argument. The array is modified so that it consists of the unfilled
1031 * portion of the original array.
1032 *
1033 * The returned value is the total number of bytes received, or an error.
1034 */
1035
1036int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1037 struct kvec *vec, size_t num, size_t size, int flags)
1038{
1039 msg->msg_control_is_user = false;
1040 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1041 return sock_recvmsg(sock, msg, flags);
1042}
1043EXPORT_SYMBOL(kernel_recvmsg);
1044
1045static ssize_t sock_sendpage(struct file *file, struct page *page,
1046 int offset, size_t size, loff_t *ppos, int more)
1047{
1048 struct socket *sock;
1049 int flags;
1050
1051 sock = file->private_data;
1052
1053 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1054 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1055 flags |= more;
1056
1057 return kernel_sendpage(sock, page, offset, size, flags);
1058}
1059
1060static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1061 struct pipe_inode_info *pipe, size_t len,
1062 unsigned int flags)
1063{
1064 struct socket *sock = file->private_data;
1065
1066 if (unlikely(!sock->ops->splice_read))
1067 return generic_file_splice_read(file, ppos, pipe, len, flags);
1068
1069 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1070}
1071
1072static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1073{
1074 struct file *file = iocb->ki_filp;
1075 struct socket *sock = file->private_data;
1076 struct msghdr msg = {.msg_iter = *to,
1077 .msg_iocb = iocb};
1078 ssize_t res;
1079
1080 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1081 msg.msg_flags = MSG_DONTWAIT;
1082
1083 if (iocb->ki_pos != 0)
1084 return -ESPIPE;
1085
1086 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1087 return 0;
1088
1089 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1090 *to = msg.msg_iter;
1091 return res;
1092}
1093
1094static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1095{
1096 struct file *file = iocb->ki_filp;
1097 struct socket *sock = file->private_data;
1098 struct msghdr msg = {.msg_iter = *from,
1099 .msg_iocb = iocb};
1100 ssize_t res;
1101
1102 if (iocb->ki_pos != 0)
1103 return -ESPIPE;
1104
1105 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1106 msg.msg_flags = MSG_DONTWAIT;
1107
1108 if (sock->type == SOCK_SEQPACKET)
1109 msg.msg_flags |= MSG_EOR;
1110
1111 res = sock_sendmsg(sock, &msg);
1112 *from = msg.msg_iter;
1113 return res;
1114}
1115
1116/*
1117 * Atomic setting of ioctl hooks to avoid race
1118 * with module unload.
1119 */
1120
1121static DEFINE_MUTEX(br_ioctl_mutex);
1122static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1123 unsigned int cmd, struct ifreq *ifr,
1124 void __user *uarg);
1125
1126void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1127 unsigned int cmd, struct ifreq *ifr,
1128 void __user *uarg))
1129{
1130 mutex_lock(&br_ioctl_mutex);
1131 br_ioctl_hook = hook;
1132 mutex_unlock(&br_ioctl_mutex);
1133}
1134EXPORT_SYMBOL(brioctl_set);
1135
1136int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1137 struct ifreq *ifr, void __user *uarg)
1138{
1139 int err = -ENOPKG;
1140
1141 if (!br_ioctl_hook)
1142 request_module("bridge");
1143
1144 mutex_lock(&br_ioctl_mutex);
1145 if (br_ioctl_hook)
1146 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1147 mutex_unlock(&br_ioctl_mutex);
1148
1149 return err;
1150}
1151
1152static DEFINE_MUTEX(vlan_ioctl_mutex);
1153static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1154
1155void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1156{
1157 mutex_lock(&vlan_ioctl_mutex);
1158 vlan_ioctl_hook = hook;
1159 mutex_unlock(&vlan_ioctl_mutex);
1160}
1161EXPORT_SYMBOL(vlan_ioctl_set);
1162
1163static long sock_do_ioctl(struct net *net, struct socket *sock,
1164 unsigned int cmd, unsigned long arg)
1165{
1166 struct ifreq ifr;
1167 bool need_copyout;
1168 int err;
1169 void __user *argp = (void __user *)arg;
1170 void __user *data;
1171
1172 err = sock->ops->ioctl(sock, cmd, arg);
1173
1174 /*
1175 * If this ioctl is unknown try to hand it down
1176 * to the NIC driver.
1177 */
1178 if (err != -ENOIOCTLCMD)
1179 return err;
1180
1181 if (!is_socket_ioctl_cmd(cmd))
1182 return -ENOTTY;
1183
1184 if (get_user_ifreq(&ifr, &data, argp))
1185 return -EFAULT;
1186 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1187 if (!err && need_copyout)
1188 if (put_user_ifreq(&ifr, argp))
1189 return -EFAULT;
1190
1191 return err;
1192}
1193
1194/*
1195 * With an ioctl, arg may well be a user mode pointer, but we don't know
1196 * what to do with it - that's up to the protocol still.
1197 */
1198
1199static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1200{
1201 struct socket *sock;
1202 struct sock *sk;
1203 void __user *argp = (void __user *)arg;
1204 int pid, err;
1205 struct net *net;
1206
1207 sock = file->private_data;
1208 sk = sock->sk;
1209 net = sock_net(sk);
1210 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1211 struct ifreq ifr;
1212 void __user *data;
1213 bool need_copyout;
1214 if (get_user_ifreq(&ifr, &data, argp))
1215 return -EFAULT;
1216 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1217 if (!err && need_copyout)
1218 if (put_user_ifreq(&ifr, argp))
1219 return -EFAULT;
1220 } else
1221#ifdef CONFIG_WEXT_CORE
1222 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1223 err = wext_handle_ioctl(net, cmd, argp);
1224 } else
1225#endif
1226 switch (cmd) {
1227 case FIOSETOWN:
1228 case SIOCSPGRP:
1229 err = -EFAULT;
1230 if (get_user(pid, (int __user *)argp))
1231 break;
1232 err = f_setown(sock->file, pid, 1);
1233 break;
1234 case FIOGETOWN:
1235 case SIOCGPGRP:
1236 err = put_user(f_getown(sock->file),
1237 (int __user *)argp);
1238 break;
1239 case SIOCGIFBR:
1240 case SIOCSIFBR:
1241 case SIOCBRADDBR:
1242 case SIOCBRDELBR:
1243 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1244 break;
1245 case SIOCGIFVLAN:
1246 case SIOCSIFVLAN:
1247 err = -ENOPKG;
1248 if (!vlan_ioctl_hook)
1249 request_module("8021q");
1250
1251 mutex_lock(&vlan_ioctl_mutex);
1252 if (vlan_ioctl_hook)
1253 err = vlan_ioctl_hook(net, argp);
1254 mutex_unlock(&vlan_ioctl_mutex);
1255 break;
1256 case SIOCGSKNS:
1257 err = -EPERM;
1258 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1259 break;
1260
1261 err = open_related_ns(&net->ns, get_net_ns);
1262 break;
1263 case SIOCGSTAMP_OLD:
1264 case SIOCGSTAMPNS_OLD:
1265 if (!sock->ops->gettstamp) {
1266 err = -ENOIOCTLCMD;
1267 break;
1268 }
1269 err = sock->ops->gettstamp(sock, argp,
1270 cmd == SIOCGSTAMP_OLD,
1271 !IS_ENABLED(CONFIG_64BIT));
1272 break;
1273 case SIOCGSTAMP_NEW:
1274 case SIOCGSTAMPNS_NEW:
1275 if (!sock->ops->gettstamp) {
1276 err = -ENOIOCTLCMD;
1277 break;
1278 }
1279 err = sock->ops->gettstamp(sock, argp,
1280 cmd == SIOCGSTAMP_NEW,
1281 false);
1282 break;
1283
1284 case SIOCGIFCONF:
1285 err = dev_ifconf(net, argp);
1286 break;
1287
1288 default:
1289 err = sock_do_ioctl(net, sock, cmd, arg);
1290 break;
1291 }
1292 return err;
1293}
1294
1295/**
1296 * sock_create_lite - creates a socket
1297 * @family: protocol family (AF_INET, ...)
1298 * @type: communication type (SOCK_STREAM, ...)
1299 * @protocol: protocol (0, ...)
1300 * @res: new socket
1301 *
1302 * Creates a new socket and assigns it to @res, passing through LSM.
1303 * The new socket initialization is not complete, see kernel_accept().
1304 * Returns 0 or an error. On failure @res is set to %NULL.
1305 * This function internally uses GFP_KERNEL.
1306 */
1307
1308int sock_create_lite(int family, int type, int protocol, struct socket **res)
1309{
1310 int err;
1311 struct socket *sock = NULL;
1312
1313 err = security_socket_create(family, type, protocol, 1);
1314 if (err)
1315 goto out;
1316
1317 sock = sock_alloc();
1318 if (!sock) {
1319 err = -ENOMEM;
1320 goto out;
1321 }
1322
1323 sock->type = type;
1324 err = security_socket_post_create(sock, family, type, protocol, 1);
1325 if (err)
1326 goto out_release;
1327
1328out:
1329 *res = sock;
1330 return err;
1331out_release:
1332 sock_release(sock);
1333 sock = NULL;
1334 goto out;
1335}
1336EXPORT_SYMBOL(sock_create_lite);
1337
1338/* No kernel lock held - perfect */
1339static __poll_t sock_poll(struct file *file, poll_table *wait)
1340{
1341 struct socket *sock = file->private_data;
1342 __poll_t events = poll_requested_events(wait), flag = 0;
1343
1344 if (!sock->ops->poll)
1345 return 0;
1346
1347 if (sk_can_busy_loop(sock->sk)) {
1348 /* poll once if requested by the syscall */
1349 if (events & POLL_BUSY_LOOP)
1350 sk_busy_loop(sock->sk, 1);
1351
1352 /* if this socket can poll_ll, tell the system call */
1353 flag = POLL_BUSY_LOOP;
1354 }
1355
1356 return sock->ops->poll(file, sock, wait) | flag;
1357}
1358
1359static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1360{
1361 struct socket *sock = file->private_data;
1362
1363 return sock->ops->mmap(file, sock, vma);
1364}
1365
1366static int sock_close(struct inode *inode, struct file *filp)
1367{
1368 __sock_release(SOCKET_I(inode), inode);
1369 return 0;
1370}
1371
1372/*
1373 * Update the socket async list
1374 *
1375 * Fasync_list locking strategy.
1376 *
1377 * 1. fasync_list is modified only under process context socket lock
1378 * i.e. under semaphore.
1379 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1380 * or under socket lock
1381 */
1382
1383static int sock_fasync(int fd, struct file *filp, int on)
1384{
1385 struct socket *sock = filp->private_data;
1386 struct sock *sk = sock->sk;
1387 struct socket_wq *wq = &sock->wq;
1388
1389 if (sk == NULL)
1390 return -EINVAL;
1391
1392 lock_sock(sk);
1393 fasync_helper(fd, filp, on, &wq->fasync_list);
1394
1395 if (!wq->fasync_list)
1396 sock_reset_flag(sk, SOCK_FASYNC);
1397 else
1398 sock_set_flag(sk, SOCK_FASYNC);
1399
1400 release_sock(sk);
1401 return 0;
1402}
1403
1404/* This function may be called only under rcu_lock */
1405
1406int sock_wake_async(struct socket_wq *wq, int how, int band)
1407{
1408 if (!wq || !wq->fasync_list)
1409 return -1;
1410
1411 switch (how) {
1412 case SOCK_WAKE_WAITD:
1413 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1414 break;
1415 goto call_kill;
1416 case SOCK_WAKE_SPACE:
1417 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1418 break;
1419 fallthrough;
1420 case SOCK_WAKE_IO:
1421call_kill:
1422 kill_fasync(&wq->fasync_list, SIGIO, band);
1423 break;
1424 case SOCK_WAKE_URG:
1425 kill_fasync(&wq->fasync_list, SIGURG, band);
1426 }
1427
1428 return 0;
1429}
1430EXPORT_SYMBOL(sock_wake_async);
1431
1432/**
1433 * __sock_create - creates a socket
1434 * @net: net namespace
1435 * @family: protocol family (AF_INET, ...)
1436 * @type: communication type (SOCK_STREAM, ...)
1437 * @protocol: protocol (0, ...)
1438 * @res: new socket
1439 * @kern: boolean for kernel space sockets
1440 *
1441 * Creates a new socket and assigns it to @res, passing through LSM.
1442 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1443 * be set to true if the socket resides in kernel space.
1444 * This function internally uses GFP_KERNEL.
1445 */
1446
1447int __sock_create(struct net *net, int family, int type, int protocol,
1448 struct socket **res, int kern)
1449{
1450 int err;
1451 struct socket *sock;
1452 const struct net_proto_family *pf;
1453
1454 /*
1455 * Check protocol is in range
1456 */
1457 if (family < 0 || family >= NPROTO)
1458 return -EAFNOSUPPORT;
1459 if (type < 0 || type >= SOCK_MAX)
1460 return -EINVAL;
1461
1462 /* Compatibility.
1463
1464 This uglymoron is moved from INET layer to here to avoid
1465 deadlock in module load.
1466 */
1467 if (family == PF_INET && type == SOCK_PACKET) {
1468 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1469 current->comm);
1470 family = PF_PACKET;
1471 }
1472
1473 err = security_socket_create(family, type, protocol, kern);
1474 if (err)
1475 return err;
1476
1477 /*
1478 * Allocate the socket and allow the family to set things up. if
1479 * the protocol is 0, the family is instructed to select an appropriate
1480 * default.
1481 */
1482 sock = sock_alloc();
1483 if (!sock) {
1484 net_warn_ratelimited("socket: no more sockets\n");
1485 return -ENFILE; /* Not exactly a match, but its the
1486 closest posix thing */
1487 }
1488
1489 sock->type = type;
1490
1491#ifdef CONFIG_MODULES
1492 /* Attempt to load a protocol module if the find failed.
1493 *
1494 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1495 * requested real, full-featured networking support upon configuration.
1496 * Otherwise module support will break!
1497 */
1498 if (rcu_access_pointer(net_families[family]) == NULL)
1499 request_module("net-pf-%d", family);
1500#endif
1501
1502 rcu_read_lock();
1503 pf = rcu_dereference(net_families[family]);
1504 err = -EAFNOSUPPORT;
1505 if (!pf)
1506 goto out_release;
1507
1508 /*
1509 * We will call the ->create function, that possibly is in a loadable
1510 * module, so we have to bump that loadable module refcnt first.
1511 */
1512 if (!try_module_get(pf->owner))
1513 goto out_release;
1514
1515 /* Now protected by module ref count */
1516 rcu_read_unlock();
1517
1518 err = pf->create(net, sock, protocol, kern);
1519 if (err < 0)
1520 goto out_module_put;
1521
1522 /*
1523 * Now to bump the refcnt of the [loadable] module that owns this
1524 * socket at sock_release time we decrement its refcnt.
1525 */
1526 if (!try_module_get(sock->ops->owner))
1527 goto out_module_busy;
1528
1529 /*
1530 * Now that we're done with the ->create function, the [loadable]
1531 * module can have its refcnt decremented
1532 */
1533 module_put(pf->owner);
1534 err = security_socket_post_create(sock, family, type, protocol, kern);
1535 if (err)
1536 goto out_sock_release;
1537 *res = sock;
1538
1539 return 0;
1540
1541out_module_busy:
1542 err = -EAFNOSUPPORT;
1543out_module_put:
1544 sock->ops = NULL;
1545 module_put(pf->owner);
1546out_sock_release:
1547 sock_release(sock);
1548 return err;
1549
1550out_release:
1551 rcu_read_unlock();
1552 goto out_sock_release;
1553}
1554EXPORT_SYMBOL(__sock_create);
1555
1556/**
1557 * sock_create - creates a socket
1558 * @family: protocol family (AF_INET, ...)
1559 * @type: communication type (SOCK_STREAM, ...)
1560 * @protocol: protocol (0, ...)
1561 * @res: new socket
1562 *
1563 * A wrapper around __sock_create().
1564 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1565 */
1566
1567int sock_create(int family, int type, int protocol, struct socket **res)
1568{
1569 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1570}
1571EXPORT_SYMBOL(sock_create);
1572
1573/**
1574 * sock_create_kern - creates a socket (kernel space)
1575 * @net: net namespace
1576 * @family: protocol family (AF_INET, ...)
1577 * @type: communication type (SOCK_STREAM, ...)
1578 * @protocol: protocol (0, ...)
1579 * @res: new socket
1580 *
1581 * A wrapper around __sock_create().
1582 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1583 */
1584
1585int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1586{
1587 return __sock_create(net, family, type, protocol, res, 1);
1588}
1589EXPORT_SYMBOL(sock_create_kern);
1590
1591static struct socket *__sys_socket_create(int family, int type, int protocol)
1592{
1593 struct socket *sock;
1594 int retval;
1595
1596 /* Check the SOCK_* constants for consistency. */
1597 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1598 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1599 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1600 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1601
1602 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1603 return ERR_PTR(-EINVAL);
1604 type &= SOCK_TYPE_MASK;
1605
1606 retval = sock_create(family, type, protocol, &sock);
1607 if (retval < 0)
1608 return ERR_PTR(retval);
1609
1610 return sock;
1611}
1612
1613struct file *__sys_socket_file(int family, int type, int protocol)
1614{
1615 struct socket *sock;
1616 struct file *file;
1617 int flags;
1618
1619 sock = __sys_socket_create(family, type, protocol);
1620 if (IS_ERR(sock))
1621 return ERR_CAST(sock);
1622
1623 flags = type & ~SOCK_TYPE_MASK;
1624 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1625 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1626
1627 file = sock_alloc_file(sock, flags, NULL);
1628 if (IS_ERR(file))
1629 sock_release(sock);
1630
1631 return file;
1632}
1633
1634int __sys_socket(int family, int type, int protocol)
1635{
1636 struct socket *sock;
1637 int flags;
1638
1639 sock = __sys_socket_create(family, type, protocol);
1640 if (IS_ERR(sock))
1641 return PTR_ERR(sock);
1642
1643 flags = type & ~SOCK_TYPE_MASK;
1644 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1645 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1646
1647 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1648}
1649
1650SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1651{
1652 return __sys_socket(family, type, protocol);
1653}
1654
1655/*
1656 * Create a pair of connected sockets.
1657 */
1658
1659int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1660{
1661 struct socket *sock1, *sock2;
1662 int fd1, fd2, err;
1663 struct file *newfile1, *newfile2;
1664 int flags;
1665
1666 flags = type & ~SOCK_TYPE_MASK;
1667 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1668 return -EINVAL;
1669 type &= SOCK_TYPE_MASK;
1670
1671 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1672 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1673
1674 /*
1675 * reserve descriptors and make sure we won't fail
1676 * to return them to userland.
1677 */
1678 fd1 = get_unused_fd_flags(flags);
1679 if (unlikely(fd1 < 0))
1680 return fd1;
1681
1682 fd2 = get_unused_fd_flags(flags);
1683 if (unlikely(fd2 < 0)) {
1684 put_unused_fd(fd1);
1685 return fd2;
1686 }
1687
1688 err = put_user(fd1, &usockvec[0]);
1689 if (err)
1690 goto out;
1691
1692 err = put_user(fd2, &usockvec[1]);
1693 if (err)
1694 goto out;
1695
1696 /*
1697 * Obtain the first socket and check if the underlying protocol
1698 * supports the socketpair call.
1699 */
1700
1701 err = sock_create(family, type, protocol, &sock1);
1702 if (unlikely(err < 0))
1703 goto out;
1704
1705 err = sock_create(family, type, protocol, &sock2);
1706 if (unlikely(err < 0)) {
1707 sock_release(sock1);
1708 goto out;
1709 }
1710
1711 err = security_socket_socketpair(sock1, sock2);
1712 if (unlikely(err)) {
1713 sock_release(sock2);
1714 sock_release(sock1);
1715 goto out;
1716 }
1717
1718 err = sock1->ops->socketpair(sock1, sock2);
1719 if (unlikely(err < 0)) {
1720 sock_release(sock2);
1721 sock_release(sock1);
1722 goto out;
1723 }
1724
1725 newfile1 = sock_alloc_file(sock1, flags, NULL);
1726 if (IS_ERR(newfile1)) {
1727 err = PTR_ERR(newfile1);
1728 sock_release(sock2);
1729 goto out;
1730 }
1731
1732 newfile2 = sock_alloc_file(sock2, flags, NULL);
1733 if (IS_ERR(newfile2)) {
1734 err = PTR_ERR(newfile2);
1735 fput(newfile1);
1736 goto out;
1737 }
1738
1739 audit_fd_pair(fd1, fd2);
1740
1741 fd_install(fd1, newfile1);
1742 fd_install(fd2, newfile2);
1743 return 0;
1744
1745out:
1746 put_unused_fd(fd2);
1747 put_unused_fd(fd1);
1748 return err;
1749}
1750
1751SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1752 int __user *, usockvec)
1753{
1754 return __sys_socketpair(family, type, protocol, usockvec);
1755}
1756
1757/*
1758 * Bind a name to a socket. Nothing much to do here since it's
1759 * the protocol's responsibility to handle the local address.
1760 *
1761 * We move the socket address to kernel space before we call
1762 * the protocol layer (having also checked the address is ok).
1763 */
1764
1765int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1766{
1767 struct socket *sock;
1768 struct sockaddr_storage address;
1769 int err, fput_needed;
1770
1771 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772 if (sock) {
1773 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1774 if (!err) {
1775 err = security_socket_bind(sock,
1776 (struct sockaddr *)&address,
1777 addrlen);
1778 if (!err)
1779 err = sock->ops->bind(sock,
1780 (struct sockaddr *)
1781 &address, addrlen);
1782 }
1783 fput_light(sock->file, fput_needed);
1784 }
1785 return err;
1786}
1787
1788SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1789{
1790 return __sys_bind(fd, umyaddr, addrlen);
1791}
1792
1793/*
1794 * Perform a listen. Basically, we allow the protocol to do anything
1795 * necessary for a listen, and if that works, we mark the socket as
1796 * ready for listening.
1797 */
1798
1799int __sys_listen(int fd, int backlog)
1800{
1801 struct socket *sock;
1802 int err, fput_needed;
1803 int somaxconn;
1804
1805 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806 if (sock) {
1807 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1808 if ((unsigned int)backlog > somaxconn)
1809 backlog = somaxconn;
1810
1811 err = security_socket_listen(sock, backlog);
1812 if (!err)
1813 err = sock->ops->listen(sock, backlog);
1814
1815 fput_light(sock->file, fput_needed);
1816 }
1817 return err;
1818}
1819
1820SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1821{
1822 return __sys_listen(fd, backlog);
1823}
1824
1825struct file *do_accept(struct file *file, unsigned file_flags,
1826 struct sockaddr __user *upeer_sockaddr,
1827 int __user *upeer_addrlen, int flags)
1828{
1829 struct socket *sock, *newsock;
1830 struct file *newfile;
1831 int err, len;
1832 struct sockaddr_storage address;
1833
1834 sock = sock_from_file(file);
1835 if (!sock)
1836 return ERR_PTR(-ENOTSOCK);
1837
1838 newsock = sock_alloc();
1839 if (!newsock)
1840 return ERR_PTR(-ENFILE);
1841
1842 newsock->type = sock->type;
1843 newsock->ops = sock->ops;
1844
1845 /*
1846 * We don't need try_module_get here, as the listening socket (sock)
1847 * has the protocol module (sock->ops->owner) held.
1848 */
1849 __module_get(newsock->ops->owner);
1850
1851 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1852 if (IS_ERR(newfile))
1853 return newfile;
1854
1855 err = security_socket_accept(sock, newsock);
1856 if (err)
1857 goto out_fd;
1858
1859 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1860 false);
1861 if (err < 0)
1862 goto out_fd;
1863
1864 if (upeer_sockaddr) {
1865 len = newsock->ops->getname(newsock,
1866 (struct sockaddr *)&address, 2);
1867 if (len < 0) {
1868 err = -ECONNABORTED;
1869 goto out_fd;
1870 }
1871 err = move_addr_to_user(&address,
1872 len, upeer_sockaddr, upeer_addrlen);
1873 if (err < 0)
1874 goto out_fd;
1875 }
1876
1877 /* File flags are not inherited via accept() unlike another OSes. */
1878 return newfile;
1879out_fd:
1880 fput(newfile);
1881 return ERR_PTR(err);
1882}
1883
1884static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1885 int __user *upeer_addrlen, int flags)
1886{
1887 struct file *newfile;
1888 int newfd;
1889
1890 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1891 return -EINVAL;
1892
1893 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1894 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1895
1896 newfd = get_unused_fd_flags(flags);
1897 if (unlikely(newfd < 0))
1898 return newfd;
1899
1900 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1901 flags);
1902 if (IS_ERR(newfile)) {
1903 put_unused_fd(newfd);
1904 return PTR_ERR(newfile);
1905 }
1906 fd_install(newfd, newfile);
1907 return newfd;
1908}
1909
1910/*
1911 * For accept, we attempt to create a new socket, set up the link
1912 * with the client, wake up the client, then return the new
1913 * connected fd. We collect the address of the connector in kernel
1914 * space and move it to user at the very end. This is unclean because
1915 * we open the socket then return an error.
1916 *
1917 * 1003.1g adds the ability to recvmsg() to query connection pending
1918 * status to recvmsg. We need to add that support in a way thats
1919 * clean when we restructure accept also.
1920 */
1921
1922int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1923 int __user *upeer_addrlen, int flags)
1924{
1925 int ret = -EBADF;
1926 struct fd f;
1927
1928 f = fdget(fd);
1929 if (f.file) {
1930 ret = __sys_accept4_file(f.file, upeer_sockaddr,
1931 upeer_addrlen, flags);
1932 fdput(f);
1933 }
1934
1935 return ret;
1936}
1937
1938SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1939 int __user *, upeer_addrlen, int, flags)
1940{
1941 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1942}
1943
1944SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1945 int __user *, upeer_addrlen)
1946{
1947 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1948}
1949
1950/*
1951 * Attempt to connect to a socket with the server address. The address
1952 * is in user space so we verify it is OK and move it to kernel space.
1953 *
1954 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1955 * break bindings
1956 *
1957 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1958 * other SEQPACKET protocols that take time to connect() as it doesn't
1959 * include the -EINPROGRESS status for such sockets.
1960 */
1961
1962int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1963 int addrlen, int file_flags)
1964{
1965 struct socket *sock;
1966 int err;
1967
1968 sock = sock_from_file(file);
1969 if (!sock) {
1970 err = -ENOTSOCK;
1971 goto out;
1972 }
1973
1974 err =
1975 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1976 if (err)
1977 goto out;
1978
1979 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1980 sock->file->f_flags | file_flags);
1981out:
1982 return err;
1983}
1984
1985int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1986{
1987 int ret = -EBADF;
1988 struct fd f;
1989
1990 f = fdget(fd);
1991 if (f.file) {
1992 struct sockaddr_storage address;
1993
1994 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1995 if (!ret)
1996 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1997 fdput(f);
1998 }
1999
2000 return ret;
2001}
2002
2003SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2004 int, addrlen)
2005{
2006 return __sys_connect(fd, uservaddr, addrlen);
2007}
2008
2009/*
2010 * Get the local address ('name') of a socket object. Move the obtained
2011 * name to user space.
2012 */
2013
2014int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2015 int __user *usockaddr_len)
2016{
2017 struct socket *sock;
2018 struct sockaddr_storage address;
2019 int err, fput_needed;
2020
2021 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2022 if (!sock)
2023 goto out;
2024
2025 err = security_socket_getsockname(sock);
2026 if (err)
2027 goto out_put;
2028
2029 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2030 if (err < 0)
2031 goto out_put;
2032 /* "err" is actually length in this case */
2033 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2034
2035out_put:
2036 fput_light(sock->file, fput_needed);
2037out:
2038 return err;
2039}
2040
2041SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2042 int __user *, usockaddr_len)
2043{
2044 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2045}
2046
2047/*
2048 * Get the remote address ('name') of a socket object. Move the obtained
2049 * name to user space.
2050 */
2051
2052int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2053 int __user *usockaddr_len)
2054{
2055 struct socket *sock;
2056 struct sockaddr_storage address;
2057 int err, fput_needed;
2058
2059 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2060 if (sock != NULL) {
2061 err = security_socket_getpeername(sock);
2062 if (err) {
2063 fput_light(sock->file, fput_needed);
2064 return err;
2065 }
2066
2067 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2068 if (err >= 0)
2069 /* "err" is actually length in this case */
2070 err = move_addr_to_user(&address, err, usockaddr,
2071 usockaddr_len);
2072 fput_light(sock->file, fput_needed);
2073 }
2074 return err;
2075}
2076
2077SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2078 int __user *, usockaddr_len)
2079{
2080 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2081}
2082
2083/*
2084 * Send a datagram to a given address. We move the address into kernel
2085 * space and check the user space data area is readable before invoking
2086 * the protocol.
2087 */
2088int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2089 struct sockaddr __user *addr, int addr_len)
2090{
2091 struct socket *sock;
2092 struct sockaddr_storage address;
2093 int err;
2094 struct msghdr msg;
2095 struct iovec iov;
2096 int fput_needed;
2097
2098 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2099 if (unlikely(err))
2100 return err;
2101 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2102 if (!sock)
2103 goto out;
2104
2105 msg.msg_name = NULL;
2106 msg.msg_control = NULL;
2107 msg.msg_controllen = 0;
2108 msg.msg_namelen = 0;
2109 msg.msg_ubuf = NULL;
2110 if (addr) {
2111 err = move_addr_to_kernel(addr, addr_len, &address);
2112 if (err < 0)
2113 goto out_put;
2114 msg.msg_name = (struct sockaddr *)&address;
2115 msg.msg_namelen = addr_len;
2116 }
2117 if (sock->file->f_flags & O_NONBLOCK)
2118 flags |= MSG_DONTWAIT;
2119 msg.msg_flags = flags;
2120 err = sock_sendmsg(sock, &msg);
2121
2122out_put:
2123 fput_light(sock->file, fput_needed);
2124out:
2125 return err;
2126}
2127
2128SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2129 unsigned int, flags, struct sockaddr __user *, addr,
2130 int, addr_len)
2131{
2132 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2133}
2134
2135/*
2136 * Send a datagram down a socket.
2137 */
2138
2139SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2140 unsigned int, flags)
2141{
2142 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2143}
2144
2145/*
2146 * Receive a frame from the socket and optionally record the address of the
2147 * sender. We verify the buffers are writable and if needed move the
2148 * sender address from kernel to user space.
2149 */
2150int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2151 struct sockaddr __user *addr, int __user *addr_len)
2152{
2153 struct sockaddr_storage address;
2154 struct msghdr msg = {
2155 /* Save some cycles and don't copy the address if not needed */
2156 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2157 };
2158 struct socket *sock;
2159 struct iovec iov;
2160 int err, err2;
2161 int fput_needed;
2162
2163 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2164 if (unlikely(err))
2165 return err;
2166 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2167 if (!sock)
2168 goto out;
2169
2170 if (sock->file->f_flags & O_NONBLOCK)
2171 flags |= MSG_DONTWAIT;
2172 err = sock_recvmsg(sock, &msg, flags);
2173
2174 if (err >= 0 && addr != NULL) {
2175 err2 = move_addr_to_user(&address,
2176 msg.msg_namelen, addr, addr_len);
2177 if (err2 < 0)
2178 err = err2;
2179 }
2180
2181 fput_light(sock->file, fput_needed);
2182out:
2183 return err;
2184}
2185
2186SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2187 unsigned int, flags, struct sockaddr __user *, addr,
2188 int __user *, addr_len)
2189{
2190 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2191}
2192
2193/*
2194 * Receive a datagram from a socket.
2195 */
2196
2197SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2198 unsigned int, flags)
2199{
2200 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2201}
2202
2203static bool sock_use_custom_sol_socket(const struct socket *sock)
2204{
2205 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2206}
2207
2208/*
2209 * Set a socket option. Because we don't know the option lengths we have
2210 * to pass the user mode parameter for the protocols to sort out.
2211 */
2212int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2213 int optlen)
2214{
2215 sockptr_t optval = USER_SOCKPTR(user_optval);
2216 char *kernel_optval = NULL;
2217 int err, fput_needed;
2218 struct socket *sock;
2219
2220 if (optlen < 0)
2221 return -EINVAL;
2222
2223 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2224 if (!sock)
2225 return err;
2226
2227 err = security_socket_setsockopt(sock, level, optname);
2228 if (err)
2229 goto out_put;
2230
2231 if (!in_compat_syscall())
2232 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2233 user_optval, &optlen,
2234 &kernel_optval);
2235 if (err < 0)
2236 goto out_put;
2237 if (err > 0) {
2238 err = 0;
2239 goto out_put;
2240 }
2241
2242 if (kernel_optval)
2243 optval = KERNEL_SOCKPTR(kernel_optval);
2244 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2245 err = sock_setsockopt(sock, level, optname, optval, optlen);
2246 else if (unlikely(!sock->ops->setsockopt))
2247 err = -EOPNOTSUPP;
2248 else
2249 err = sock->ops->setsockopt(sock, level, optname, optval,
2250 optlen);
2251 kfree(kernel_optval);
2252out_put:
2253 fput_light(sock->file, fput_needed);
2254 return err;
2255}
2256
2257SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2258 char __user *, optval, int, optlen)
2259{
2260 return __sys_setsockopt(fd, level, optname, optval, optlen);
2261}
2262
2263INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2264 int optname));
2265
2266/*
2267 * Get a socket option. Because we don't know the option lengths we have
2268 * to pass a user mode parameter for the protocols to sort out.
2269 */
2270int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2271 int __user *optlen)
2272{
2273 int err, fput_needed;
2274 struct socket *sock;
2275 int max_optlen;
2276
2277 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2278 if (!sock)
2279 return err;
2280
2281 err = security_socket_getsockopt(sock, level, optname);
2282 if (err)
2283 goto out_put;
2284
2285 if (!in_compat_syscall())
2286 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2287
2288 if (level == SOL_SOCKET)
2289 err = sock_getsockopt(sock, level, optname, optval, optlen);
2290 else if (unlikely(!sock->ops->getsockopt))
2291 err = -EOPNOTSUPP;
2292 else
2293 err = sock->ops->getsockopt(sock, level, optname, optval,
2294 optlen);
2295
2296 if (!in_compat_syscall())
2297 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2298 optval, optlen, max_optlen,
2299 err);
2300out_put:
2301 fput_light(sock->file, fput_needed);
2302 return err;
2303}
2304
2305SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2306 char __user *, optval, int __user *, optlen)
2307{
2308 return __sys_getsockopt(fd, level, optname, optval, optlen);
2309}
2310
2311/*
2312 * Shutdown a socket.
2313 */
2314
2315int __sys_shutdown_sock(struct socket *sock, int how)
2316{
2317 int err;
2318
2319 err = security_socket_shutdown(sock, how);
2320 if (!err)
2321 err = sock->ops->shutdown(sock, how);
2322
2323 return err;
2324}
2325
2326int __sys_shutdown(int fd, int how)
2327{
2328 int err, fput_needed;
2329 struct socket *sock;
2330
2331 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2332 if (sock != NULL) {
2333 err = __sys_shutdown_sock(sock, how);
2334 fput_light(sock->file, fput_needed);
2335 }
2336 return err;
2337}
2338
2339SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2340{
2341 return __sys_shutdown(fd, how);
2342}
2343
2344/* A couple of helpful macros for getting the address of the 32/64 bit
2345 * fields which are the same type (int / unsigned) on our platforms.
2346 */
2347#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2348#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2349#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2350
2351struct used_address {
2352 struct sockaddr_storage name;
2353 unsigned int name_len;
2354};
2355
2356int __copy_msghdr(struct msghdr *kmsg,
2357 struct user_msghdr *msg,
2358 struct sockaddr __user **save_addr)
2359{
2360 ssize_t err;
2361
2362 kmsg->msg_control_is_user = true;
2363 kmsg->msg_get_inq = 0;
2364 kmsg->msg_control_user = msg->msg_control;
2365 kmsg->msg_controllen = msg->msg_controllen;
2366 kmsg->msg_flags = msg->msg_flags;
2367
2368 kmsg->msg_namelen = msg->msg_namelen;
2369 if (!msg->msg_name)
2370 kmsg->msg_namelen = 0;
2371
2372 if (kmsg->msg_namelen < 0)
2373 return -EINVAL;
2374
2375 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2376 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2377
2378 if (save_addr)
2379 *save_addr = msg->msg_name;
2380
2381 if (msg->msg_name && kmsg->msg_namelen) {
2382 if (!save_addr) {
2383 err = move_addr_to_kernel(msg->msg_name,
2384 kmsg->msg_namelen,
2385 kmsg->msg_name);
2386 if (err < 0)
2387 return err;
2388 }
2389 } else {
2390 kmsg->msg_name = NULL;
2391 kmsg->msg_namelen = 0;
2392 }
2393
2394 if (msg->msg_iovlen > UIO_MAXIOV)
2395 return -EMSGSIZE;
2396
2397 kmsg->msg_iocb = NULL;
2398 kmsg->msg_ubuf = NULL;
2399 return 0;
2400}
2401
2402static int copy_msghdr_from_user(struct msghdr *kmsg,
2403 struct user_msghdr __user *umsg,
2404 struct sockaddr __user **save_addr,
2405 struct iovec **iov)
2406{
2407 struct user_msghdr msg;
2408 ssize_t err;
2409
2410 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2411 return -EFAULT;
2412
2413 err = __copy_msghdr(kmsg, &msg, save_addr);
2414 if (err)
2415 return err;
2416
2417 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2418 msg.msg_iov, msg.msg_iovlen,
2419 UIO_FASTIOV, iov, &kmsg->msg_iter);
2420 return err < 0 ? err : 0;
2421}
2422
2423static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2424 unsigned int flags, struct used_address *used_address,
2425 unsigned int allowed_msghdr_flags)
2426{
2427 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2428 __aligned(sizeof(__kernel_size_t));
2429 /* 20 is size of ipv6_pktinfo */
2430 unsigned char *ctl_buf = ctl;
2431 int ctl_len;
2432 ssize_t err;
2433
2434 err = -ENOBUFS;
2435
2436 if (msg_sys->msg_controllen > INT_MAX)
2437 goto out;
2438 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2439 ctl_len = msg_sys->msg_controllen;
2440 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2441 err =
2442 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2443 sizeof(ctl));
2444 if (err)
2445 goto out;
2446 ctl_buf = msg_sys->msg_control;
2447 ctl_len = msg_sys->msg_controllen;
2448 } else if (ctl_len) {
2449 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2450 CMSG_ALIGN(sizeof(struct cmsghdr)));
2451 if (ctl_len > sizeof(ctl)) {
2452 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2453 if (ctl_buf == NULL)
2454 goto out;
2455 }
2456 err = -EFAULT;
2457 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2458 goto out_freectl;
2459 msg_sys->msg_control = ctl_buf;
2460 msg_sys->msg_control_is_user = false;
2461 }
2462 msg_sys->msg_flags = flags;
2463
2464 if (sock->file->f_flags & O_NONBLOCK)
2465 msg_sys->msg_flags |= MSG_DONTWAIT;
2466 /*
2467 * If this is sendmmsg() and current destination address is same as
2468 * previously succeeded address, omit asking LSM's decision.
2469 * used_address->name_len is initialized to UINT_MAX so that the first
2470 * destination address never matches.
2471 */
2472 if (used_address && msg_sys->msg_name &&
2473 used_address->name_len == msg_sys->msg_namelen &&
2474 !memcmp(&used_address->name, msg_sys->msg_name,
2475 used_address->name_len)) {
2476 err = sock_sendmsg_nosec(sock, msg_sys);
2477 goto out_freectl;
2478 }
2479 err = sock_sendmsg(sock, msg_sys);
2480 /*
2481 * If this is sendmmsg() and sending to current destination address was
2482 * successful, remember it.
2483 */
2484 if (used_address && err >= 0) {
2485 used_address->name_len = msg_sys->msg_namelen;
2486 if (msg_sys->msg_name)
2487 memcpy(&used_address->name, msg_sys->msg_name,
2488 used_address->name_len);
2489 }
2490
2491out_freectl:
2492 if (ctl_buf != ctl)
2493 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2494out:
2495 return err;
2496}
2497
2498int sendmsg_copy_msghdr(struct msghdr *msg,
2499 struct user_msghdr __user *umsg, unsigned flags,
2500 struct iovec **iov)
2501{
2502 int err;
2503
2504 if (flags & MSG_CMSG_COMPAT) {
2505 struct compat_msghdr __user *msg_compat;
2506
2507 msg_compat = (struct compat_msghdr __user *) umsg;
2508 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2509 } else {
2510 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2511 }
2512 if (err < 0)
2513 return err;
2514
2515 return 0;
2516}
2517
2518static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2519 struct msghdr *msg_sys, unsigned int flags,
2520 struct used_address *used_address,
2521 unsigned int allowed_msghdr_flags)
2522{
2523 struct sockaddr_storage address;
2524 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2525 ssize_t err;
2526
2527 msg_sys->msg_name = &address;
2528
2529 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2530 if (err < 0)
2531 return err;
2532
2533 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2534 allowed_msghdr_flags);
2535 kfree(iov);
2536 return err;
2537}
2538
2539/*
2540 * BSD sendmsg interface
2541 */
2542long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2543 unsigned int flags)
2544{
2545 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2546}
2547
2548long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2549 bool forbid_cmsg_compat)
2550{
2551 int fput_needed, err;
2552 struct msghdr msg_sys;
2553 struct socket *sock;
2554
2555 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2556 return -EINVAL;
2557
2558 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2559 if (!sock)
2560 goto out;
2561
2562 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2563
2564 fput_light(sock->file, fput_needed);
2565out:
2566 return err;
2567}
2568
2569SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2570{
2571 return __sys_sendmsg(fd, msg, flags, true);
2572}
2573
2574/*
2575 * Linux sendmmsg interface
2576 */
2577
2578int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2579 unsigned int flags, bool forbid_cmsg_compat)
2580{
2581 int fput_needed, err, datagrams;
2582 struct socket *sock;
2583 struct mmsghdr __user *entry;
2584 struct compat_mmsghdr __user *compat_entry;
2585 struct msghdr msg_sys;
2586 struct used_address used_address;
2587 unsigned int oflags = flags;
2588
2589 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2590 return -EINVAL;
2591
2592 if (vlen > UIO_MAXIOV)
2593 vlen = UIO_MAXIOV;
2594
2595 datagrams = 0;
2596
2597 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2598 if (!sock)
2599 return err;
2600
2601 used_address.name_len = UINT_MAX;
2602 entry = mmsg;
2603 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2604 err = 0;
2605 flags |= MSG_BATCH;
2606
2607 while (datagrams < vlen) {
2608 if (datagrams == vlen - 1)
2609 flags = oflags;
2610
2611 if (MSG_CMSG_COMPAT & flags) {
2612 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2613 &msg_sys, flags, &used_address, MSG_EOR);
2614 if (err < 0)
2615 break;
2616 err = __put_user(err, &compat_entry->msg_len);
2617 ++compat_entry;
2618 } else {
2619 err = ___sys_sendmsg(sock,
2620 (struct user_msghdr __user *)entry,
2621 &msg_sys, flags, &used_address, MSG_EOR);
2622 if (err < 0)
2623 break;
2624 err = put_user(err, &entry->msg_len);
2625 ++entry;
2626 }
2627
2628 if (err)
2629 break;
2630 ++datagrams;
2631 if (msg_data_left(&msg_sys))
2632 break;
2633 cond_resched();
2634 }
2635
2636 fput_light(sock->file, fput_needed);
2637
2638 /* We only return an error if no datagrams were able to be sent */
2639 if (datagrams != 0)
2640 return datagrams;
2641
2642 return err;
2643}
2644
2645SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2646 unsigned int, vlen, unsigned int, flags)
2647{
2648 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2649}
2650
2651int recvmsg_copy_msghdr(struct msghdr *msg,
2652 struct user_msghdr __user *umsg, unsigned flags,
2653 struct sockaddr __user **uaddr,
2654 struct iovec **iov)
2655{
2656 ssize_t err;
2657
2658 if (MSG_CMSG_COMPAT & flags) {
2659 struct compat_msghdr __user *msg_compat;
2660
2661 msg_compat = (struct compat_msghdr __user *) umsg;
2662 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2663 } else {
2664 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2665 }
2666 if (err < 0)
2667 return err;
2668
2669 return 0;
2670}
2671
2672static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2673 struct user_msghdr __user *msg,
2674 struct sockaddr __user *uaddr,
2675 unsigned int flags, int nosec)
2676{
2677 struct compat_msghdr __user *msg_compat =
2678 (struct compat_msghdr __user *) msg;
2679 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2680 struct sockaddr_storage addr;
2681 unsigned long cmsg_ptr;
2682 int len;
2683 ssize_t err;
2684
2685 msg_sys->msg_name = &addr;
2686 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2687 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2688
2689 /* We assume all kernel code knows the size of sockaddr_storage */
2690 msg_sys->msg_namelen = 0;
2691
2692 if (sock->file->f_flags & O_NONBLOCK)
2693 flags |= MSG_DONTWAIT;
2694
2695 if (unlikely(nosec))
2696 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2697 else
2698 err = sock_recvmsg(sock, msg_sys, flags);
2699
2700 if (err < 0)
2701 goto out;
2702 len = err;
2703
2704 if (uaddr != NULL) {
2705 err = move_addr_to_user(&addr,
2706 msg_sys->msg_namelen, uaddr,
2707 uaddr_len);
2708 if (err < 0)
2709 goto out;
2710 }
2711 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2712 COMPAT_FLAGS(msg));
2713 if (err)
2714 goto out;
2715 if (MSG_CMSG_COMPAT & flags)
2716 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2717 &msg_compat->msg_controllen);
2718 else
2719 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2720 &msg->msg_controllen);
2721 if (err)
2722 goto out;
2723 err = len;
2724out:
2725 return err;
2726}
2727
2728static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2729 struct msghdr *msg_sys, unsigned int flags, int nosec)
2730{
2731 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2732 /* user mode address pointers */
2733 struct sockaddr __user *uaddr;
2734 ssize_t err;
2735
2736 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2737 if (err < 0)
2738 return err;
2739
2740 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2741 kfree(iov);
2742 return err;
2743}
2744
2745/*
2746 * BSD recvmsg interface
2747 */
2748
2749long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2750 struct user_msghdr __user *umsg,
2751 struct sockaddr __user *uaddr, unsigned int flags)
2752{
2753 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2754}
2755
2756long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2757 bool forbid_cmsg_compat)
2758{
2759 int fput_needed, err;
2760 struct msghdr msg_sys;
2761 struct socket *sock;
2762
2763 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2764 return -EINVAL;
2765
2766 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2767 if (!sock)
2768 goto out;
2769
2770 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2771
2772 fput_light(sock->file, fput_needed);
2773out:
2774 return err;
2775}
2776
2777SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2778 unsigned int, flags)
2779{
2780 return __sys_recvmsg(fd, msg, flags, true);
2781}
2782
2783/*
2784 * Linux recvmmsg interface
2785 */
2786
2787static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2788 unsigned int vlen, unsigned int flags,
2789 struct timespec64 *timeout)
2790{
2791 int fput_needed, err, datagrams;
2792 struct socket *sock;
2793 struct mmsghdr __user *entry;
2794 struct compat_mmsghdr __user *compat_entry;
2795 struct msghdr msg_sys;
2796 struct timespec64 end_time;
2797 struct timespec64 timeout64;
2798
2799 if (timeout &&
2800 poll_select_set_timeout(&end_time, timeout->tv_sec,
2801 timeout->tv_nsec))
2802 return -EINVAL;
2803
2804 datagrams = 0;
2805
2806 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2807 if (!sock)
2808 return err;
2809
2810 if (likely(!(flags & MSG_ERRQUEUE))) {
2811 err = sock_error(sock->sk);
2812 if (err) {
2813 datagrams = err;
2814 goto out_put;
2815 }
2816 }
2817
2818 entry = mmsg;
2819 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2820
2821 while (datagrams < vlen) {
2822 /*
2823 * No need to ask LSM for more than the first datagram.
2824 */
2825 if (MSG_CMSG_COMPAT & flags) {
2826 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2827 &msg_sys, flags & ~MSG_WAITFORONE,
2828 datagrams);
2829 if (err < 0)
2830 break;
2831 err = __put_user(err, &compat_entry->msg_len);
2832 ++compat_entry;
2833 } else {
2834 err = ___sys_recvmsg(sock,
2835 (struct user_msghdr __user *)entry,
2836 &msg_sys, flags & ~MSG_WAITFORONE,
2837 datagrams);
2838 if (err < 0)
2839 break;
2840 err = put_user(err, &entry->msg_len);
2841 ++entry;
2842 }
2843
2844 if (err)
2845 break;
2846 ++datagrams;
2847
2848 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2849 if (flags & MSG_WAITFORONE)
2850 flags |= MSG_DONTWAIT;
2851
2852 if (timeout) {
2853 ktime_get_ts64(&timeout64);
2854 *timeout = timespec64_sub(end_time, timeout64);
2855 if (timeout->tv_sec < 0) {
2856 timeout->tv_sec = timeout->tv_nsec = 0;
2857 break;
2858 }
2859
2860 /* Timeout, return less than vlen datagrams */
2861 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2862 break;
2863 }
2864
2865 /* Out of band data, return right away */
2866 if (msg_sys.msg_flags & MSG_OOB)
2867 break;
2868 cond_resched();
2869 }
2870
2871 if (err == 0)
2872 goto out_put;
2873
2874 if (datagrams == 0) {
2875 datagrams = err;
2876 goto out_put;
2877 }
2878
2879 /*
2880 * We may return less entries than requested (vlen) if the
2881 * sock is non block and there aren't enough datagrams...
2882 */
2883 if (err != -EAGAIN) {
2884 /*
2885 * ... or if recvmsg returns an error after we
2886 * received some datagrams, where we record the
2887 * error to return on the next call or if the
2888 * app asks about it using getsockopt(SO_ERROR).
2889 */
2890 sock->sk->sk_err = -err;
2891 }
2892out_put:
2893 fput_light(sock->file, fput_needed);
2894
2895 return datagrams;
2896}
2897
2898int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2899 unsigned int vlen, unsigned int flags,
2900 struct __kernel_timespec __user *timeout,
2901 struct old_timespec32 __user *timeout32)
2902{
2903 int datagrams;
2904 struct timespec64 timeout_sys;
2905
2906 if (timeout && get_timespec64(&timeout_sys, timeout))
2907 return -EFAULT;
2908
2909 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2910 return -EFAULT;
2911
2912 if (!timeout && !timeout32)
2913 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2914
2915 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2916
2917 if (datagrams <= 0)
2918 return datagrams;
2919
2920 if (timeout && put_timespec64(&timeout_sys, timeout))
2921 datagrams = -EFAULT;
2922
2923 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2924 datagrams = -EFAULT;
2925
2926 return datagrams;
2927}
2928
2929SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2930 unsigned int, vlen, unsigned int, flags,
2931 struct __kernel_timespec __user *, timeout)
2932{
2933 if (flags & MSG_CMSG_COMPAT)
2934 return -EINVAL;
2935
2936 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2937}
2938
2939#ifdef CONFIG_COMPAT_32BIT_TIME
2940SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2941 unsigned int, vlen, unsigned int, flags,
2942 struct old_timespec32 __user *, timeout)
2943{
2944 if (flags & MSG_CMSG_COMPAT)
2945 return -EINVAL;
2946
2947 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2948}
2949#endif
2950
2951#ifdef __ARCH_WANT_SYS_SOCKETCALL
2952/* Argument list sizes for sys_socketcall */
2953#define AL(x) ((x) * sizeof(unsigned long))
2954static const unsigned char nargs[21] = {
2955 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2956 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2957 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2958 AL(4), AL(5), AL(4)
2959};
2960
2961#undef AL
2962
2963/*
2964 * System call vectors.
2965 *
2966 * Argument checking cleaned up. Saved 20% in size.
2967 * This function doesn't need to set the kernel lock because
2968 * it is set by the callees.
2969 */
2970
2971SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2972{
2973 unsigned long a[AUDITSC_ARGS];
2974 unsigned long a0, a1;
2975 int err;
2976 unsigned int len;
2977
2978 if (call < 1 || call > SYS_SENDMMSG)
2979 return -EINVAL;
2980 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2981
2982 len = nargs[call];
2983 if (len > sizeof(a))
2984 return -EINVAL;
2985
2986 /* copy_from_user should be SMP safe. */
2987 if (copy_from_user(a, args, len))
2988 return -EFAULT;
2989
2990 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2991 if (err)
2992 return err;
2993
2994 a0 = a[0];
2995 a1 = a[1];
2996
2997 switch (call) {
2998 case SYS_SOCKET:
2999 err = __sys_socket(a0, a1, a[2]);
3000 break;
3001 case SYS_BIND:
3002 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3003 break;
3004 case SYS_CONNECT:
3005 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3006 break;
3007 case SYS_LISTEN:
3008 err = __sys_listen(a0, a1);
3009 break;
3010 case SYS_ACCEPT:
3011 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3012 (int __user *)a[2], 0);
3013 break;
3014 case SYS_GETSOCKNAME:
3015 err =
3016 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3017 (int __user *)a[2]);
3018 break;
3019 case SYS_GETPEERNAME:
3020 err =
3021 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3022 (int __user *)a[2]);
3023 break;
3024 case SYS_SOCKETPAIR:
3025 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3026 break;
3027 case SYS_SEND:
3028 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3029 NULL, 0);
3030 break;
3031 case SYS_SENDTO:
3032 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3033 (struct sockaddr __user *)a[4], a[5]);
3034 break;
3035 case SYS_RECV:
3036 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3037 NULL, NULL);
3038 break;
3039 case SYS_RECVFROM:
3040 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3041 (struct sockaddr __user *)a[4],
3042 (int __user *)a[5]);
3043 break;
3044 case SYS_SHUTDOWN:
3045 err = __sys_shutdown(a0, a1);
3046 break;
3047 case SYS_SETSOCKOPT:
3048 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3049 a[4]);
3050 break;
3051 case SYS_GETSOCKOPT:
3052 err =
3053 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3054 (int __user *)a[4]);
3055 break;
3056 case SYS_SENDMSG:
3057 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3058 a[2], true);
3059 break;
3060 case SYS_SENDMMSG:
3061 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3062 a[3], true);
3063 break;
3064 case SYS_RECVMSG:
3065 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3066 a[2], true);
3067 break;
3068 case SYS_RECVMMSG:
3069 if (IS_ENABLED(CONFIG_64BIT))
3070 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3071 a[2], a[3],
3072 (struct __kernel_timespec __user *)a[4],
3073 NULL);
3074 else
3075 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3076 a[2], a[3], NULL,
3077 (struct old_timespec32 __user *)a[4]);
3078 break;
3079 case SYS_ACCEPT4:
3080 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3081 (int __user *)a[2], a[3]);
3082 break;
3083 default:
3084 err = -EINVAL;
3085 break;
3086 }
3087 return err;
3088}
3089
3090#endif /* __ARCH_WANT_SYS_SOCKETCALL */
3091
3092/**
3093 * sock_register - add a socket protocol handler
3094 * @ops: description of protocol
3095 *
3096 * This function is called by a protocol handler that wants to
3097 * advertise its address family, and have it linked into the
3098 * socket interface. The value ops->family corresponds to the
3099 * socket system call protocol family.
3100 */
3101int sock_register(const struct net_proto_family *ops)
3102{
3103 int err;
3104
3105 if (ops->family >= NPROTO) {
3106 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3107 return -ENOBUFS;
3108 }
3109
3110 spin_lock(&net_family_lock);
3111 if (rcu_dereference_protected(net_families[ops->family],
3112 lockdep_is_held(&net_family_lock)))
3113 err = -EEXIST;
3114 else {
3115 rcu_assign_pointer(net_families[ops->family], ops);
3116 err = 0;
3117 }
3118 spin_unlock(&net_family_lock);
3119
3120 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3121 return err;
3122}
3123EXPORT_SYMBOL(sock_register);
3124
3125/**
3126 * sock_unregister - remove a protocol handler
3127 * @family: protocol family to remove
3128 *
3129 * This function is called by a protocol handler that wants to
3130 * remove its address family, and have it unlinked from the
3131 * new socket creation.
3132 *
3133 * If protocol handler is a module, then it can use module reference
3134 * counts to protect against new references. If protocol handler is not
3135 * a module then it needs to provide its own protection in
3136 * the ops->create routine.
3137 */
3138void sock_unregister(int family)
3139{
3140 BUG_ON(family < 0 || family >= NPROTO);
3141
3142 spin_lock(&net_family_lock);
3143 RCU_INIT_POINTER(net_families[family], NULL);
3144 spin_unlock(&net_family_lock);
3145
3146 synchronize_rcu();
3147
3148 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3149}
3150EXPORT_SYMBOL(sock_unregister);
3151
3152bool sock_is_registered(int family)
3153{
3154 return family < NPROTO && rcu_access_pointer(net_families[family]);
3155}
3156
3157static int __init sock_init(void)
3158{
3159 int err;
3160 /*
3161 * Initialize the network sysctl infrastructure.
3162 */
3163 err = net_sysctl_init();
3164 if (err)
3165 goto out;
3166
3167 /*
3168 * Initialize skbuff SLAB cache
3169 */
3170 skb_init();
3171
3172 /*
3173 * Initialize the protocols module.
3174 */
3175
3176 init_inodecache();
3177
3178 err = register_filesystem(&sock_fs_type);
3179 if (err)
3180 goto out;
3181 sock_mnt = kern_mount(&sock_fs_type);
3182 if (IS_ERR(sock_mnt)) {
3183 err = PTR_ERR(sock_mnt);
3184 goto out_mount;
3185 }
3186
3187 /* The real protocol initialization is performed in later initcalls.
3188 */
3189
3190#ifdef CONFIG_NETFILTER
3191 err = netfilter_init();
3192 if (err)
3193 goto out;
3194#endif
3195
3196 ptp_classifier_init();
3197
3198out:
3199 return err;
3200
3201out_mount:
3202 unregister_filesystem(&sock_fs_type);
3203 goto out;
3204}
3205
3206core_initcall(sock_init); /* early initcall */
3207
3208#ifdef CONFIG_PROC_FS
3209void socket_seq_show(struct seq_file *seq)
3210{
3211 seq_printf(seq, "sockets: used %d\n",
3212 sock_inuse_get(seq->private));
3213}
3214#endif /* CONFIG_PROC_FS */
3215
3216/* Handle the fact that while struct ifreq has the same *layout* on
3217 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3218 * which are handled elsewhere, it still has different *size* due to
3219 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3220 * resulting in struct ifreq being 32 and 40 bytes respectively).
3221 * As a result, if the struct happens to be at the end of a page and
3222 * the next page isn't readable/writable, we get a fault. To prevent
3223 * that, copy back and forth to the full size.
3224 */
3225int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3226{
3227 if (in_compat_syscall()) {
3228 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3229
3230 memset(ifr, 0, sizeof(*ifr));
3231 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3232 return -EFAULT;
3233
3234 if (ifrdata)
3235 *ifrdata = compat_ptr(ifr32->ifr_data);
3236
3237 return 0;
3238 }
3239
3240 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3241 return -EFAULT;
3242
3243 if (ifrdata)
3244 *ifrdata = ifr->ifr_data;
3245
3246 return 0;
3247}
3248EXPORT_SYMBOL(get_user_ifreq);
3249
3250int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3251{
3252 size_t size = sizeof(*ifr);
3253
3254 if (in_compat_syscall())
3255 size = sizeof(struct compat_ifreq);
3256
3257 if (copy_to_user(arg, ifr, size))
3258 return -EFAULT;
3259
3260 return 0;
3261}
3262EXPORT_SYMBOL(put_user_ifreq);
3263
3264#ifdef CONFIG_COMPAT
3265static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3266{
3267 compat_uptr_t uptr32;
3268 struct ifreq ifr;
3269 void __user *saved;
3270 int err;
3271
3272 if (get_user_ifreq(&ifr, NULL, uifr32))
3273 return -EFAULT;
3274
3275 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3276 return -EFAULT;
3277
3278 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3279 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3280
3281 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3282 if (!err) {
3283 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3284 if (put_user_ifreq(&ifr, uifr32))
3285 err = -EFAULT;
3286 }
3287 return err;
3288}
3289
3290/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3291static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3292 struct compat_ifreq __user *u_ifreq32)
3293{
3294 struct ifreq ifreq;
3295 void __user *data;
3296
3297 if (!is_socket_ioctl_cmd(cmd))
3298 return -ENOTTY;
3299 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3300 return -EFAULT;
3301 ifreq.ifr_data = data;
3302
3303 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3304}
3305
3306static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3307 unsigned int cmd, unsigned long arg)
3308{
3309 void __user *argp = compat_ptr(arg);
3310 struct sock *sk = sock->sk;
3311 struct net *net = sock_net(sk);
3312
3313 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3314 return sock_ioctl(file, cmd, (unsigned long)argp);
3315
3316 switch (cmd) {
3317 case SIOCWANDEV:
3318 return compat_siocwandev(net, argp);
3319 case SIOCGSTAMP_OLD:
3320 case SIOCGSTAMPNS_OLD:
3321 if (!sock->ops->gettstamp)
3322 return -ENOIOCTLCMD;
3323 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3324 !COMPAT_USE_64BIT_TIME);
3325
3326 case SIOCETHTOOL:
3327 case SIOCBONDSLAVEINFOQUERY:
3328 case SIOCBONDINFOQUERY:
3329 case SIOCSHWTSTAMP:
3330 case SIOCGHWTSTAMP:
3331 return compat_ifr_data_ioctl(net, cmd, argp);
3332
3333 case FIOSETOWN:
3334 case SIOCSPGRP:
3335 case FIOGETOWN:
3336 case SIOCGPGRP:
3337 case SIOCBRADDBR:
3338 case SIOCBRDELBR:
3339 case SIOCGIFVLAN:
3340 case SIOCSIFVLAN:
3341 case SIOCGSKNS:
3342 case SIOCGSTAMP_NEW:
3343 case SIOCGSTAMPNS_NEW:
3344 case SIOCGIFCONF:
3345 case SIOCSIFBR:
3346 case SIOCGIFBR:
3347 return sock_ioctl(file, cmd, arg);
3348
3349 case SIOCGIFFLAGS:
3350 case SIOCSIFFLAGS:
3351 case SIOCGIFMAP:
3352 case SIOCSIFMAP:
3353 case SIOCGIFMETRIC:
3354 case SIOCSIFMETRIC:
3355 case SIOCGIFMTU:
3356 case SIOCSIFMTU:
3357 case SIOCGIFMEM:
3358 case SIOCSIFMEM:
3359 case SIOCGIFHWADDR:
3360 case SIOCSIFHWADDR:
3361 case SIOCADDMULTI:
3362 case SIOCDELMULTI:
3363 case SIOCGIFINDEX:
3364 case SIOCGIFADDR:
3365 case SIOCSIFADDR:
3366 case SIOCSIFHWBROADCAST:
3367 case SIOCDIFADDR:
3368 case SIOCGIFBRDADDR:
3369 case SIOCSIFBRDADDR:
3370 case SIOCGIFDSTADDR:
3371 case SIOCSIFDSTADDR:
3372 case SIOCGIFNETMASK:
3373 case SIOCSIFNETMASK:
3374 case SIOCSIFPFLAGS:
3375 case SIOCGIFPFLAGS:
3376 case SIOCGIFTXQLEN:
3377 case SIOCSIFTXQLEN:
3378 case SIOCBRADDIF:
3379 case SIOCBRDELIF:
3380 case SIOCGIFNAME:
3381 case SIOCSIFNAME:
3382 case SIOCGMIIPHY:
3383 case SIOCGMIIREG:
3384 case SIOCSMIIREG:
3385 case SIOCBONDENSLAVE:
3386 case SIOCBONDRELEASE:
3387 case SIOCBONDSETHWADDR:
3388 case SIOCBONDCHANGEACTIVE:
3389 case SIOCSARP:
3390 case SIOCGARP:
3391 case SIOCDARP:
3392 case SIOCOUTQ:
3393 case SIOCOUTQNSD:
3394 case SIOCATMARK:
3395 return sock_do_ioctl(net, sock, cmd, arg);
3396 }
3397
3398 return -ENOIOCTLCMD;
3399}
3400
3401static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3402 unsigned long arg)
3403{
3404 struct socket *sock = file->private_data;
3405 int ret = -ENOIOCTLCMD;
3406 struct sock *sk;
3407 struct net *net;
3408
3409 sk = sock->sk;
3410 net = sock_net(sk);
3411
3412 if (sock->ops->compat_ioctl)
3413 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3414
3415 if (ret == -ENOIOCTLCMD &&
3416 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3417 ret = compat_wext_handle_ioctl(net, cmd, arg);
3418
3419 if (ret == -ENOIOCTLCMD)
3420 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3421
3422 return ret;
3423}
3424#endif
3425
3426/**
3427 * kernel_bind - bind an address to a socket (kernel space)
3428 * @sock: socket
3429 * @addr: address
3430 * @addrlen: length of address
3431 *
3432 * Returns 0 or an error.
3433 */
3434
3435int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3436{
3437 return sock->ops->bind(sock, addr, addrlen);
3438}
3439EXPORT_SYMBOL(kernel_bind);
3440
3441/**
3442 * kernel_listen - move socket to listening state (kernel space)
3443 * @sock: socket
3444 * @backlog: pending connections queue size
3445 *
3446 * Returns 0 or an error.
3447 */
3448
3449int kernel_listen(struct socket *sock, int backlog)
3450{
3451 return sock->ops->listen(sock, backlog);
3452}
3453EXPORT_SYMBOL(kernel_listen);
3454
3455/**
3456 * kernel_accept - accept a connection (kernel space)
3457 * @sock: listening socket
3458 * @newsock: new connected socket
3459 * @flags: flags
3460 *
3461 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3462 * If it fails, @newsock is guaranteed to be %NULL.
3463 * Returns 0 or an error.
3464 */
3465
3466int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3467{
3468 struct sock *sk = sock->sk;
3469 int err;
3470
3471 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3472 newsock);
3473 if (err < 0)
3474 goto done;
3475
3476 err = sock->ops->accept(sock, *newsock, flags, true);
3477 if (err < 0) {
3478 sock_release(*newsock);
3479 *newsock = NULL;
3480 goto done;
3481 }
3482
3483 (*newsock)->ops = sock->ops;
3484 __module_get((*newsock)->ops->owner);
3485
3486done:
3487 return err;
3488}
3489EXPORT_SYMBOL(kernel_accept);
3490
3491/**
3492 * kernel_connect - connect a socket (kernel space)
3493 * @sock: socket
3494 * @addr: address
3495 * @addrlen: address length
3496 * @flags: flags (O_NONBLOCK, ...)
3497 *
3498 * For datagram sockets, @addr is the address to which datagrams are sent
3499 * by default, and the only address from which datagrams are received.
3500 * For stream sockets, attempts to connect to @addr.
3501 * Returns 0 or an error code.
3502 */
3503
3504int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3505 int flags)
3506{
3507 return sock->ops->connect(sock, addr, addrlen, flags);
3508}
3509EXPORT_SYMBOL(kernel_connect);
3510
3511/**
3512 * kernel_getsockname - get the address which the socket is bound (kernel space)
3513 * @sock: socket
3514 * @addr: address holder
3515 *
3516 * Fills the @addr pointer with the address which the socket is bound.
3517 * Returns the length of the address in bytes or an error code.
3518 */
3519
3520int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3521{
3522 return sock->ops->getname(sock, addr, 0);
3523}
3524EXPORT_SYMBOL(kernel_getsockname);
3525
3526/**
3527 * kernel_getpeername - get the address which the socket is connected (kernel space)
3528 * @sock: socket
3529 * @addr: address holder
3530 *
3531 * Fills the @addr pointer with the address which the socket is connected.
3532 * Returns the length of the address in bytes or an error code.
3533 */
3534
3535int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3536{
3537 return sock->ops->getname(sock, addr, 1);
3538}
3539EXPORT_SYMBOL(kernel_getpeername);
3540
3541/**
3542 * kernel_sendpage - send a &page through a socket (kernel space)
3543 * @sock: socket
3544 * @page: page
3545 * @offset: page offset
3546 * @size: total size in bytes
3547 * @flags: flags (MSG_DONTWAIT, ...)
3548 *
3549 * Returns the total amount sent in bytes or an error.
3550 */
3551
3552int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3553 size_t size, int flags)
3554{
3555 if (sock->ops->sendpage) {
3556 /* Warn in case the improper page to zero-copy send */
3557 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3558 return sock->ops->sendpage(sock, page, offset, size, flags);
3559 }
3560 return sock_no_sendpage(sock, page, offset, size, flags);
3561}
3562EXPORT_SYMBOL(kernel_sendpage);
3563
3564/**
3565 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3566 * @sk: sock
3567 * @page: page
3568 * @offset: page offset
3569 * @size: total size in bytes
3570 * @flags: flags (MSG_DONTWAIT, ...)
3571 *
3572 * Returns the total amount sent in bytes or an error.
3573 * Caller must hold @sk.
3574 */
3575
3576int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3577 size_t size, int flags)
3578{
3579 struct socket *sock = sk->sk_socket;
3580
3581 if (sock->ops->sendpage_locked)
3582 return sock->ops->sendpage_locked(sk, page, offset, size,
3583 flags);
3584
3585 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3586}
3587EXPORT_SYMBOL(kernel_sendpage_locked);
3588
3589/**
3590 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3591 * @sock: socket
3592 * @how: connection part
3593 *
3594 * Returns 0 or an error.
3595 */
3596
3597int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3598{
3599 return sock->ops->shutdown(sock, how);
3600}
3601EXPORT_SYMBOL(kernel_sock_shutdown);
3602
3603/**
3604 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3605 * @sk: socket
3606 *
3607 * This routine returns the IP overhead imposed by a socket i.e.
3608 * the length of the underlying IP header, depending on whether
3609 * this is an IPv4 or IPv6 socket and the length from IP options turned
3610 * on at the socket. Assumes that the caller has a lock on the socket.
3611 */
3612
3613u32 kernel_sock_ip_overhead(struct sock *sk)
3614{
3615 struct inet_sock *inet;
3616 struct ip_options_rcu *opt;
3617 u32 overhead = 0;
3618#if IS_ENABLED(CONFIG_IPV6)
3619 struct ipv6_pinfo *np;
3620 struct ipv6_txoptions *optv6 = NULL;
3621#endif /* IS_ENABLED(CONFIG_IPV6) */
3622
3623 if (!sk)
3624 return overhead;
3625
3626 switch (sk->sk_family) {
3627 case AF_INET:
3628 inet = inet_sk(sk);
3629 overhead += sizeof(struct iphdr);
3630 opt = rcu_dereference_protected(inet->inet_opt,
3631 sock_owned_by_user(sk));
3632 if (opt)
3633 overhead += opt->opt.optlen;
3634 return overhead;
3635#if IS_ENABLED(CONFIG_IPV6)
3636 case AF_INET6:
3637 np = inet6_sk(sk);
3638 overhead += sizeof(struct ipv6hdr);
3639 if (np)
3640 optv6 = rcu_dereference_protected(np->opt,
3641 sock_owned_by_user(sk));
3642 if (optv6)
3643 overhead += (optv6->opt_flen + optv6->opt_nflen);
3644 return overhead;
3645#endif /* IS_ENABLED(CONFIG_IPV6) */
3646 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3647 return overhead;
3648 }
3649}
3650EXPORT_SYMBOL(kernel_sock_ip_overhead);