Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
 
 
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
 
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
 
 
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122			      struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126			      unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130			     int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132				struct pipe_inode_info *pipe, size_t len,
 133				unsigned int flags);
 134
 
 
 
 
 
 
 
 
 
 
 
 
 135/*
 136 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *	in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141	.owner =	THIS_MODULE,
 142	.llseek =	no_llseek,
 143	.read_iter =	sock_read_iter,
 144	.write_iter =	sock_write_iter,
 145	.poll =		sock_poll,
 146	.unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148	.compat_ioctl = compat_sock_ioctl,
 149#endif
 150	.mmap =		sock_mmap,
 151	.release =	sock_close,
 152	.fasync =	sock_fasync,
 153	.sendpage =	sock_sendpage,
 154	.splice_write = generic_splice_sendpage,
 155	.splice_read =	sock_splice_read,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156};
 157
 158/*
 159 *	The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *	Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *	move_addr_to_kernel	-	copy a socket address into kernel space
 179 *	@uaddr: Address in user space
 180 *	@kaddr: Address in kernel space
 181 *	@ulen: Length in user space
 182 *
 183 *	The address is copied into kernel space. If the provided address is
 184 *	too long an error code of -EINVAL is returned. If the copy gives
 185 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191		return -EINVAL;
 192	if (ulen == 0)
 193		return 0;
 194	if (copy_from_user(kaddr, uaddr, ulen))
 195		return -EFAULT;
 196	return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *	move_addr_to_user	-	copy an address to user space
 201 *	@kaddr: kernel space address
 202 *	@klen: length of address in kernel
 203 *	@uaddr: user space address
 204 *	@ulen: pointer to user length field
 205 *
 206 *	The value pointed to by ulen on entry is the buffer length available.
 207 *	This is overwritten with the buffer space used. -EINVAL is returned
 208 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *	is returned if either the buffer or the length field are not
 210 *	accessible.
 211 *	After copying the data up to the limit the user specifies, the true
 212 *	length of the data is written over the length limit the user
 213 *	specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217			     void __user *uaddr, int __user *ulen)
 218{
 219	int err;
 220	int len;
 221
 222	BUG_ON(klen > sizeof(struct sockaddr_storage));
 223	err = get_user(len, ulen);
 224	if (err)
 225		return err;
 226	if (len > klen)
 227		len = klen;
 228	if (len < 0)
 229		return -EINVAL;
 230	if (len) {
 231		if (audit_sockaddr(klen, kaddr))
 232			return -ENOMEM;
 233		if (copy_to_user(uaddr, kaddr, len))
 234			return -EFAULT;
 235	}
 236	/*
 237	 *      "fromlen shall refer to the value before truncation.."
 238	 *                      1003.1g
 239	 */
 240	return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247	struct socket_alloc *ei;
 248	struct socket_wq *wq;
 249
 250	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251	if (!ei)
 252		return NULL;
 253	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254	if (!wq) {
 255		kmem_cache_free(sock_inode_cachep, ei);
 256		return NULL;
 257	}
 258	init_waitqueue_head(&wq->wait);
 259	wq->fasync_list = NULL;
 260	wq->flags = 0;
 261	RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263	ei->socket.state = SS_UNCONNECTED;
 264	ei->socket.flags = 0;
 265	ei->socket.ops = NULL;
 266	ei->socket.sk = NULL;
 267	ei->socket.file = NULL;
 268
 269	return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274	struct socket_alloc *ei;
 275	struct socket_wq *wq;
 276
 277	ei = container_of(inode, struct socket_alloc, vfs_inode);
 278	wq = rcu_dereference_protected(ei->socket.wq, 1);
 279	kfree_rcu(wq, rcu);
 280	kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285	struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287	inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293					      sizeof(struct socket_alloc),
 294					      0,
 295					      (SLAB_HWCACHE_ALIGN |
 296					       SLAB_RECLAIM_ACCOUNT |
 297					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298					      init_once);
 299	if (sock_inode_cachep == NULL)
 300		return -ENOMEM;
 301	return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305	.alloc_inode	= sock_alloc_inode,
 306	.destroy_inode	= sock_destroy_inode,
 307	.statfs		= simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316				d_inode(dentry)->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320	.d_dname  = sockfs_dname,
 321};
 322
 323static int sockfs_xattr_get(const struct xattr_handler *handler,
 324			    struct dentry *dentry, struct inode *inode,
 325			    const char *suffix, void *value, size_t size)
 326{
 327	if (value) {
 328		if (dentry->d_name.len + 1 > size)
 329			return -ERANGE;
 330		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 331	}
 332	return dentry->d_name.len + 1;
 333}
 334
 335#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 336#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 337#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 338
 339static const struct xattr_handler sockfs_xattr_handler = {
 340	.name = XATTR_NAME_SOCKPROTONAME,
 341	.get = sockfs_xattr_get,
 342};
 343
 344static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 
 345				     struct dentry *dentry, struct inode *inode,
 346				     const char *suffix, const void *value,
 347				     size_t size, int flags)
 348{
 349	/* Handled by LSM. */
 350	return -EAGAIN;
 351}
 352
 353static const struct xattr_handler sockfs_security_xattr_handler = {
 354	.prefix = XATTR_SECURITY_PREFIX,
 355	.set = sockfs_security_xattr_set,
 356};
 357
 358static const struct xattr_handler *sockfs_xattr_handlers[] = {
 359	&sockfs_xattr_handler,
 360	&sockfs_security_xattr_handler,
 361	NULL
 362};
 363
 364static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 365			 int flags, const char *dev_name, void *data)
 366{
 367	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 368				  sockfs_xattr_handlers,
 369				  &sockfs_dentry_operations, SOCKFS_MAGIC);
 
 
 
 
 370}
 371
 372static struct vfsmount *sock_mnt __read_mostly;
 373
 374static struct file_system_type sock_fs_type = {
 375	.name =		"sockfs",
 376	.mount =	sockfs_mount,
 377	.kill_sb =	kill_anon_super,
 378};
 379
 380/*
 381 *	Obtains the first available file descriptor and sets it up for use.
 382 *
 383 *	These functions create file structures and maps them to fd space
 384 *	of the current process. On success it returns file descriptor
 385 *	and file struct implicitly stored in sock->file.
 386 *	Note that another thread may close file descriptor before we return
 387 *	from this function. We use the fact that now we do not refer
 388 *	to socket after mapping. If one day we will need it, this
 389 *	function will increment ref. count on file by 1.
 390 *
 391 *	In any case returned fd MAY BE not valid!
 392 *	This race condition is unavoidable
 393 *	with shared fd spaces, we cannot solve it inside kernel,
 394 *	but we take care of internal coherence yet.
 395 */
 396
 
 
 
 
 
 
 
 
 
 
 
 
 397struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 398{
 399	struct qstr name = { .name = "" };
 400	struct path path;
 401	struct file *file;
 402
 403	if (dname) {
 404		name.name = dname;
 405		name.len = strlen(name.name);
 406	} else if (sock->sk) {
 407		name.name = sock->sk->sk_prot_creator->name;
 408		name.len = strlen(name.name);
 409	}
 410	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 411	if (unlikely(!path.dentry))
 412		return ERR_PTR(-ENOMEM);
 413	path.mnt = mntget(sock_mnt);
 414
 415	d_instantiate(path.dentry, SOCK_INODE(sock));
 416
 417	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 418		  &socket_file_ops);
 419	if (IS_ERR(file)) {
 420		/* drop dentry, keep inode */
 421		ihold(d_inode(path.dentry));
 422		path_put(&path);
 423		return file;
 424	}
 425
 426	sock->file = file;
 427	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 428	file->private_data = sock;
 
 429	return file;
 430}
 431EXPORT_SYMBOL(sock_alloc_file);
 432
 433static int sock_map_fd(struct socket *sock, int flags)
 434{
 435	struct file *newfile;
 436	int fd = get_unused_fd_flags(flags);
 437	if (unlikely(fd < 0))
 
 438		return fd;
 
 439
 440	newfile = sock_alloc_file(sock, flags, NULL);
 441	if (likely(!IS_ERR(newfile))) {
 442		fd_install(fd, newfile);
 443		return fd;
 444	}
 445
 446	put_unused_fd(fd);
 447	return PTR_ERR(newfile);
 448}
 449
 450struct socket *sock_from_file(struct file *file, int *err)
 
 
 
 
 
 
 
 451{
 452	if (file->f_op == &socket_file_ops)
 453		return file->private_data;	/* set in sock_map_fd */
 454
 455	*err = -ENOTSOCK;
 456	return NULL;
 457}
 458EXPORT_SYMBOL(sock_from_file);
 459
 460/**
 461 *	sockfd_lookup - Go from a file number to its socket slot
 462 *	@fd: file handle
 463 *	@err: pointer to an error code return
 464 *
 465 *	The file handle passed in is locked and the socket it is bound
 466 *	too is returned. If an error occurs the err pointer is overwritten
 467 *	with a negative errno code and NULL is returned. The function checks
 468 *	for both invalid handles and passing a handle which is not a socket.
 469 *
 470 *	On a success the socket object pointer is returned.
 471 */
 472
 473struct socket *sockfd_lookup(int fd, int *err)
 474{
 475	struct file *file;
 476	struct socket *sock;
 477
 478	file = fget(fd);
 479	if (!file) {
 480		*err = -EBADF;
 481		return NULL;
 482	}
 483
 484	sock = sock_from_file(file, err);
 485	if (!sock)
 
 486		fput(file);
 
 487	return sock;
 488}
 489EXPORT_SYMBOL(sockfd_lookup);
 490
 491static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 492{
 493	struct fd f = fdget(fd);
 494	struct socket *sock;
 495
 496	*err = -EBADF;
 497	if (f.file) {
 498		sock = sock_from_file(f.file, err);
 499		if (likely(sock)) {
 500			*fput_needed = f.flags;
 501			return sock;
 502		}
 
 503		fdput(f);
 504	}
 505	return NULL;
 506}
 507
 508static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 509				size_t size)
 510{
 511	ssize_t len;
 512	ssize_t used = 0;
 513
 514	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 515	if (len < 0)
 516		return len;
 517	used += len;
 518	if (buffer) {
 519		if (size < used)
 520			return -ERANGE;
 521		buffer += len;
 522	}
 523
 524	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 525	used += len;
 526	if (buffer) {
 527		if (size < used)
 528			return -ERANGE;
 529		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 530		buffer += len;
 531	}
 532
 533	return used;
 534}
 535
 536static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 
 537{
 538	int err = simple_setattr(dentry, iattr);
 539
 540	if (!err && (iattr->ia_valid & ATTR_UID)) {
 541		struct socket *sock = SOCKET_I(d_inode(dentry));
 542
 543		sock->sk->sk_uid = iattr->ia_uid;
 
 
 
 544	}
 545
 546	return err;
 547}
 548
 549static const struct inode_operations sockfs_inode_ops = {
 550	.listxattr = sockfs_listxattr,
 551	.setattr = sockfs_setattr,
 552};
 553
 554/**
 555 *	sock_alloc	-	allocate a socket
 556 *
 557 *	Allocate a new inode and socket object. The two are bound together
 558 *	and initialised. The socket is then returned. If we are out of inodes
 559 *	NULL is returned.
 560 */
 561
 562struct socket *sock_alloc(void)
 563{
 564	struct inode *inode;
 565	struct socket *sock;
 566
 567	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 568	if (!inode)
 569		return NULL;
 570
 571	sock = SOCKET_I(inode);
 572
 573	kmemcheck_annotate_bitfield(sock, type);
 574	inode->i_ino = get_next_ino();
 575	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 576	inode->i_uid = current_fsuid();
 577	inode->i_gid = current_fsgid();
 578	inode->i_op = &sockfs_inode_ops;
 579
 580	this_cpu_add(sockets_in_use, 1);
 581	return sock;
 582}
 583EXPORT_SYMBOL(sock_alloc);
 584
 585/**
 586 *	sock_release	-	close a socket
 587 *	@sock: socket to close
 588 *
 589 *	The socket is released from the protocol stack if it has a release
 590 *	callback, and the inode is then released if the socket is bound to
 591 *	an inode not a file.
 592 */
 593
 594void sock_release(struct socket *sock)
 595{
 596	if (sock->ops) {
 597		struct module *owner = sock->ops->owner;
 598
 
 
 599		sock->ops->release(sock);
 
 
 
 600		sock->ops = NULL;
 601		module_put(owner);
 602	}
 603
 604	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 605		pr_err("%s: fasync list not empty!\n", __func__);
 606
 607	this_cpu_sub(sockets_in_use, 1);
 608	if (!sock->file) {
 609		iput(SOCK_INODE(sock));
 610		return;
 611	}
 612	sock->file = NULL;
 613}
 
 
 
 
 
 
 
 
 
 
 
 
 
 614EXPORT_SYMBOL(sock_release);
 615
 616void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 617{
 618	u8 flags = *tx_flags;
 619
 620	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 621		flags |= SKBTX_HW_TSTAMP;
 622
 
 
 
 
 
 
 
 
 
 623	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 624		flags |= SKBTX_SW_TSTAMP;
 625
 626	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 627		flags |= SKBTX_SCHED_TSTAMP;
 628
 629	*tx_flags = flags;
 630}
 631EXPORT_SYMBOL(__sock_tx_timestamp);
 632
 
 
 
 
 633static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 634{
 635	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 
 
 636	BUG_ON(ret == -EIOCBQUEUED);
 637	return ret;
 638}
 639
 
 
 
 
 
 
 
 
 640int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 641{
 642	int err = security_socket_sendmsg(sock, msg,
 643					  msg_data_left(msg));
 644
 645	return err ?: sock_sendmsg_nosec(sock, msg);
 646}
 647EXPORT_SYMBOL(sock_sendmsg);
 648
 
 
 
 
 
 
 
 
 
 
 
 
 649int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 650		   struct kvec *vec, size_t num, size_t size)
 651{
 652	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 653	return sock_sendmsg(sock, msg);
 654}
 655EXPORT_SYMBOL(kernel_sendmsg);
 656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657/*
 658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 659 */
 660void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 661	struct sk_buff *skb)
 662{
 663	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 664	struct scm_timestamping tss;
 665	int empty = 1;
 
 
 666	struct skb_shared_hwtstamps *shhwtstamps =
 667		skb_hwtstamps(skb);
 
 
 668
 669	/* Race occurred between timestamp enabling and packet
 670	   receiving.  Fill in the current time for now. */
 671	if (need_software_tstamp && skb->tstamp == 0)
 672		__net_timestamp(skb);
 
 
 673
 674	if (need_software_tstamp) {
 675		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 676			struct timeval tv;
 677			skb_get_timestamp(skb, &tv);
 678			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 679				 sizeof(tv), &tv);
 
 
 
 
 
 
 
 
 
 680		} else {
 681			struct timespec ts;
 682			skb_get_timestampns(skb, &ts);
 683			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 684				 sizeof(ts), &ts);
 
 
 
 
 
 
 
 
 
 685		}
 686	}
 687
 688	memset(&tss, 0, sizeof(tss));
 689	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 690	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 691		empty = 0;
 692	if (shhwtstamps &&
 693	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 694	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 695		empty = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696	if (!empty) {
 697		put_cmsg(msg, SOL_SOCKET,
 698			 SCM_TIMESTAMPING, sizeof(tss), &tss);
 
 
 699
 700		if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
 
 701			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 702				 skb->len, skb->data);
 703	}
 704}
 705EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 706
 707void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 708	struct sk_buff *skb)
 709{
 710	int ack;
 711
 712	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 713		return;
 714	if (!skb->wifi_acked_valid)
 715		return;
 716
 717	ack = skb->wifi_acked;
 718
 719	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 720}
 721EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 722
 723static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 724				   struct sk_buff *skb)
 725{
 726	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 727		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 728			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 729}
 730
 731void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 732	struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 733{
 734	sock_recv_timestamp(msg, sk, skb);
 735	sock_recv_drops(msg, sk, skb);
 
 736}
 737EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 738
 
 
 
 
 739static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 740				     int flags)
 741{
 742	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 
 
 743}
 744
 
 
 
 
 
 
 
 
 
 745int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 746{
 747	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 748
 749	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 750}
 751EXPORT_SYMBOL(sock_recvmsg);
 752
 753/**
 754 * kernel_recvmsg - Receive a message from a socket (kernel space)
 755 * @sock:       The socket to receive the message from
 756 * @msg:        Received message
 757 * @vec:        Input s/g array for message data
 758 * @num:        Size of input s/g array
 759 * @size:       Number of bytes to read
 760 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 761 *
 762 * On return the msg structure contains the scatter/gather array passed in the
 763 * vec argument. The array is modified so that it consists of the unfilled
 764 * portion of the original array.
 765 *
 766 * The returned value is the total number of bytes received, or an error.
 767 */
 
 768int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 769		   struct kvec *vec, size_t num, size_t size, int flags)
 770{
 771	mm_segment_t oldfs = get_fs();
 772	int result;
 773
 774	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 775	set_fs(KERNEL_DS);
 776	result = sock_recvmsg(sock, msg, flags);
 777	set_fs(oldfs);
 778	return result;
 779}
 780EXPORT_SYMBOL(kernel_recvmsg);
 781
 782static ssize_t sock_sendpage(struct file *file, struct page *page,
 783			     int offset, size_t size, loff_t *ppos, int more)
 784{
 785	struct socket *sock;
 786	int flags;
 787
 788	sock = file->private_data;
 789
 790	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 791	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 792	flags |= more;
 793
 794	return kernel_sendpage(sock, page, offset, size, flags);
 795}
 796
 797static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 798				struct pipe_inode_info *pipe, size_t len,
 799				unsigned int flags)
 800{
 801	struct socket *sock = file->private_data;
 802
 803	if (unlikely(!sock->ops->splice_read))
 804		return -EINVAL;
 805
 806	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 807}
 808
 809static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 810{
 811	struct file *file = iocb->ki_filp;
 812	struct socket *sock = file->private_data;
 813	struct msghdr msg = {.msg_iter = *to,
 814			     .msg_iocb = iocb};
 815	ssize_t res;
 816
 817	if (file->f_flags & O_NONBLOCK)
 818		msg.msg_flags = MSG_DONTWAIT;
 819
 820	if (iocb->ki_pos != 0)
 821		return -ESPIPE;
 822
 823	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 824		return 0;
 825
 826	res = sock_recvmsg(sock, &msg, msg.msg_flags);
 827	*to = msg.msg_iter;
 828	return res;
 829}
 830
 831static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 832{
 833	struct file *file = iocb->ki_filp;
 834	struct socket *sock = file->private_data;
 835	struct msghdr msg = {.msg_iter = *from,
 836			     .msg_iocb = iocb};
 837	ssize_t res;
 838
 839	if (iocb->ki_pos != 0)
 840		return -ESPIPE;
 841
 842	if (file->f_flags & O_NONBLOCK)
 843		msg.msg_flags = MSG_DONTWAIT;
 844
 845	if (sock->type == SOCK_SEQPACKET)
 846		msg.msg_flags |= MSG_EOR;
 847
 848	res = sock_sendmsg(sock, &msg);
 849	*from = msg.msg_iter;
 850	return res;
 851}
 852
 853/*
 854 * Atomic setting of ioctl hooks to avoid race
 855 * with module unload.
 856 */
 857
 858static DEFINE_MUTEX(br_ioctl_mutex);
 859static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 860
 861void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 
 
 
 
 862{
 863	mutex_lock(&br_ioctl_mutex);
 864	br_ioctl_hook = hook;
 865	mutex_unlock(&br_ioctl_mutex);
 866}
 867EXPORT_SYMBOL(brioctl_set);
 868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869static DEFINE_MUTEX(vlan_ioctl_mutex);
 870static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 871
 872void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 873{
 874	mutex_lock(&vlan_ioctl_mutex);
 875	vlan_ioctl_hook = hook;
 876	mutex_unlock(&vlan_ioctl_mutex);
 877}
 878EXPORT_SYMBOL(vlan_ioctl_set);
 879
 880static DEFINE_MUTEX(dlci_ioctl_mutex);
 881static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 882
 883void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 884{
 885	mutex_lock(&dlci_ioctl_mutex);
 886	dlci_ioctl_hook = hook;
 887	mutex_unlock(&dlci_ioctl_mutex);
 888}
 889EXPORT_SYMBOL(dlci_ioctl_set);
 890
 891static long sock_do_ioctl(struct net *net, struct socket *sock,
 892				 unsigned int cmd, unsigned long arg)
 893{
 
 
 894	int err;
 895	void __user *argp = (void __user *)arg;
 
 896
 897	err = sock->ops->ioctl(sock, cmd, arg);
 898
 899	/*
 900	 * If this ioctl is unknown try to hand it down
 901	 * to the NIC driver.
 902	 */
 903	if (err == -ENOIOCTLCMD)
 904		err = dev_ioctl(net, cmd, argp);
 
 
 
 
 
 
 
 
 
 
 905
 906	return err;
 907}
 908
 909/*
 910 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 911 *	what to do with it - that's up to the protocol still.
 912 */
 913
 914static struct ns_common *get_net_ns(struct ns_common *ns)
 915{
 916	return &get_net(container_of(ns, struct net, ns))->ns;
 917}
 918
 919static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 920{
 921	struct socket *sock;
 922	struct sock *sk;
 923	void __user *argp = (void __user *)arg;
 924	int pid, err;
 925	struct net *net;
 926
 927	sock = file->private_data;
 928	sk = sock->sk;
 929	net = sock_net(sk);
 930	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 931		err = dev_ioctl(net, cmd, argp);
 
 
 
 
 
 
 
 
 932	} else
 933#ifdef CONFIG_WEXT_CORE
 934	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 935		err = dev_ioctl(net, cmd, argp);
 936	} else
 937#endif
 938		switch (cmd) {
 939		case FIOSETOWN:
 940		case SIOCSPGRP:
 941			err = -EFAULT;
 942			if (get_user(pid, (int __user *)argp))
 943				break;
 944			f_setown(sock->file, pid, 1);
 945			err = 0;
 946			break;
 947		case FIOGETOWN:
 948		case SIOCGPGRP:
 949			err = put_user(f_getown(sock->file),
 950				       (int __user *)argp);
 951			break;
 952		case SIOCGIFBR:
 953		case SIOCSIFBR:
 954		case SIOCBRADDBR:
 955		case SIOCBRDELBR:
 956			err = -ENOPKG;
 957			if (!br_ioctl_hook)
 958				request_module("bridge");
 959
 960			mutex_lock(&br_ioctl_mutex);
 961			if (br_ioctl_hook)
 962				err = br_ioctl_hook(net, cmd, argp);
 963			mutex_unlock(&br_ioctl_mutex);
 964			break;
 965		case SIOCGIFVLAN:
 966		case SIOCSIFVLAN:
 967			err = -ENOPKG;
 968			if (!vlan_ioctl_hook)
 969				request_module("8021q");
 970
 971			mutex_lock(&vlan_ioctl_mutex);
 972			if (vlan_ioctl_hook)
 973				err = vlan_ioctl_hook(net, argp);
 974			mutex_unlock(&vlan_ioctl_mutex);
 975			break;
 976		case SIOCADDDLCI:
 977		case SIOCDELDLCI:
 978			err = -ENOPKG;
 979			if (!dlci_ioctl_hook)
 980				request_module("dlci");
 981
 982			mutex_lock(&dlci_ioctl_mutex);
 983			if (dlci_ioctl_hook)
 984				err = dlci_ioctl_hook(cmd, argp);
 985			mutex_unlock(&dlci_ioctl_mutex);
 986			break;
 987		case SIOCGSKNS:
 988			err = -EPERM;
 989			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
 990				break;
 991
 992			err = open_related_ns(&net->ns, get_net_ns);
 993			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994		default:
 995			err = sock_do_ioctl(net, sock, cmd, arg);
 996			break;
 997		}
 998	return err;
 999}
1000
 
 
 
 
 
 
 
 
 
 
 
 
 
1001int sock_create_lite(int family, int type, int protocol, struct socket **res)
1002{
1003	int err;
1004	struct socket *sock = NULL;
1005
1006	err = security_socket_create(family, type, protocol, 1);
1007	if (err)
1008		goto out;
1009
1010	sock = sock_alloc();
1011	if (!sock) {
1012		err = -ENOMEM;
1013		goto out;
1014	}
1015
1016	sock->type = type;
1017	err = security_socket_post_create(sock, family, type, protocol, 1);
1018	if (err)
1019		goto out_release;
1020
1021out:
1022	*res = sock;
1023	return err;
1024out_release:
1025	sock_release(sock);
1026	sock = NULL;
1027	goto out;
1028}
1029EXPORT_SYMBOL(sock_create_lite);
1030
1031/* No kernel lock held - perfect */
1032static unsigned int sock_poll(struct file *file, poll_table *wait)
1033{
1034	unsigned int busy_flag = 0;
1035	struct socket *sock;
1036
1037	/*
1038	 *      We can't return errors to poll, so it's either yes or no.
1039	 */
1040	sock = file->private_data;
1041
1042	if (sk_can_busy_loop(sock->sk)) {
1043		/* this socket can poll_ll so tell the system call */
1044		busy_flag = POLL_BUSY_LOOP;
1045
1046		/* once, only if requested by syscall */
1047		if (wait && (wait->_key & POLL_BUSY_LOOP))
1048			sk_busy_loop(sock->sk, 1);
 
 
 
1049	}
1050
1051	return busy_flag | sock->ops->poll(file, sock, wait);
1052}
1053
1054static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1055{
1056	struct socket *sock = file->private_data;
1057
1058	return sock->ops->mmap(file, sock, vma);
1059}
1060
1061static int sock_close(struct inode *inode, struct file *filp)
1062{
1063	sock_release(SOCKET_I(inode));
1064	return 0;
1065}
1066
1067/*
1068 *	Update the socket async list
1069 *
1070 *	Fasync_list locking strategy.
1071 *
1072 *	1. fasync_list is modified only under process context socket lock
1073 *	   i.e. under semaphore.
1074 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1075 *	   or under socket lock
1076 */
1077
1078static int sock_fasync(int fd, struct file *filp, int on)
1079{
1080	struct socket *sock = filp->private_data;
1081	struct sock *sk = sock->sk;
1082	struct socket_wq *wq;
1083
1084	if (sk == NULL)
1085		return -EINVAL;
1086
1087	lock_sock(sk);
1088	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1089	fasync_helper(fd, filp, on, &wq->fasync_list);
1090
1091	if (!wq->fasync_list)
1092		sock_reset_flag(sk, SOCK_FASYNC);
1093	else
1094		sock_set_flag(sk, SOCK_FASYNC);
1095
1096	release_sock(sk);
1097	return 0;
1098}
1099
1100/* This function may be called only under rcu_lock */
1101
1102int sock_wake_async(struct socket_wq *wq, int how, int band)
1103{
1104	if (!wq || !wq->fasync_list)
1105		return -1;
1106
1107	switch (how) {
1108	case SOCK_WAKE_WAITD:
1109		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1110			break;
1111		goto call_kill;
1112	case SOCK_WAKE_SPACE:
1113		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1114			break;
1115		/* fall through */
1116	case SOCK_WAKE_IO:
1117call_kill:
1118		kill_fasync(&wq->fasync_list, SIGIO, band);
1119		break;
1120	case SOCK_WAKE_URG:
1121		kill_fasync(&wq->fasync_list, SIGURG, band);
1122	}
1123
1124	return 0;
1125}
1126EXPORT_SYMBOL(sock_wake_async);
1127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128int __sock_create(struct net *net, int family, int type, int protocol,
1129			 struct socket **res, int kern)
1130{
1131	int err;
1132	struct socket *sock;
1133	const struct net_proto_family *pf;
1134
1135	/*
1136	 *      Check protocol is in range
1137	 */
1138	if (family < 0 || family >= NPROTO)
1139		return -EAFNOSUPPORT;
1140	if (type < 0 || type >= SOCK_MAX)
1141		return -EINVAL;
1142
1143	/* Compatibility.
1144
1145	   This uglymoron is moved from INET layer to here to avoid
1146	   deadlock in module load.
1147	 */
1148	if (family == PF_INET && type == SOCK_PACKET) {
1149		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1150			     current->comm);
1151		family = PF_PACKET;
1152	}
1153
1154	err = security_socket_create(family, type, protocol, kern);
1155	if (err)
1156		return err;
1157
1158	/*
1159	 *	Allocate the socket and allow the family to set things up. if
1160	 *	the protocol is 0, the family is instructed to select an appropriate
1161	 *	default.
1162	 */
1163	sock = sock_alloc();
1164	if (!sock) {
1165		net_warn_ratelimited("socket: no more sockets\n");
1166		return -ENFILE;	/* Not exactly a match, but its the
1167				   closest posix thing */
1168	}
1169
1170	sock->type = type;
1171
1172#ifdef CONFIG_MODULES
1173	/* Attempt to load a protocol module if the find failed.
1174	 *
1175	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1176	 * requested real, full-featured networking support upon configuration.
1177	 * Otherwise module support will break!
1178	 */
1179	if (rcu_access_pointer(net_families[family]) == NULL)
1180		request_module("net-pf-%d", family);
1181#endif
1182
1183	rcu_read_lock();
1184	pf = rcu_dereference(net_families[family]);
1185	err = -EAFNOSUPPORT;
1186	if (!pf)
1187		goto out_release;
1188
1189	/*
1190	 * We will call the ->create function, that possibly is in a loadable
1191	 * module, so we have to bump that loadable module refcnt first.
1192	 */
1193	if (!try_module_get(pf->owner))
1194		goto out_release;
1195
1196	/* Now protected by module ref count */
1197	rcu_read_unlock();
1198
1199	err = pf->create(net, sock, protocol, kern);
1200	if (err < 0)
1201		goto out_module_put;
1202
1203	/*
1204	 * Now to bump the refcnt of the [loadable] module that owns this
1205	 * socket at sock_release time we decrement its refcnt.
1206	 */
1207	if (!try_module_get(sock->ops->owner))
1208		goto out_module_busy;
1209
1210	/*
1211	 * Now that we're done with the ->create function, the [loadable]
1212	 * module can have its refcnt decremented
1213	 */
1214	module_put(pf->owner);
1215	err = security_socket_post_create(sock, family, type, protocol, kern);
1216	if (err)
1217		goto out_sock_release;
1218	*res = sock;
1219
1220	return 0;
1221
1222out_module_busy:
1223	err = -EAFNOSUPPORT;
1224out_module_put:
1225	sock->ops = NULL;
1226	module_put(pf->owner);
1227out_sock_release:
1228	sock_release(sock);
1229	return err;
1230
1231out_release:
1232	rcu_read_unlock();
1233	goto out_sock_release;
1234}
1235EXPORT_SYMBOL(__sock_create);
1236
 
 
 
 
 
 
 
 
 
 
 
1237int sock_create(int family, int type, int protocol, struct socket **res)
1238{
1239	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1240}
1241EXPORT_SYMBOL(sock_create);
1242
 
 
 
 
 
 
 
 
 
 
 
 
1243int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1244{
1245	return __sock_create(net, family, type, protocol, res, 1);
1246}
1247EXPORT_SYMBOL(sock_create_kern);
1248
1249SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1250{
1251	int retval;
1252	struct socket *sock;
1253	int flags;
1254
1255	/* Check the SOCK_* constants for consistency.  */
1256	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1257	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1258	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1259	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1260
1261	flags = type & ~SOCK_TYPE_MASK;
1262	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263		return -EINVAL;
1264	type &= SOCK_TYPE_MASK;
1265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268
1269	retval = sock_create(family, type, protocol, &sock);
1270	if (retval < 0)
1271		goto out;
1272
1273	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1274	if (retval < 0)
1275		goto out_release;
1276
1277out:
1278	/* It may be already another descriptor 8) Not kernel problem. */
1279	return retval;
 
1280
1281out_release:
1282	sock_release(sock);
1283	return retval;
 
 
 
 
 
 
 
 
 
 
 
1284}
1285
1286/*
1287 *	Create a pair of connected sockets.
1288 */
1289
1290SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1291		int __user *, usockvec)
1292{
1293	struct socket *sock1, *sock2;
1294	int fd1, fd2, err;
1295	struct file *newfile1, *newfile2;
1296	int flags;
1297
1298	flags = type & ~SOCK_TYPE_MASK;
1299	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1300		return -EINVAL;
1301	type &= SOCK_TYPE_MASK;
1302
1303	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305
1306	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307	 * Obtain the first socket and check if the underlying protocol
1308	 * supports the socketpair call.
1309	 */
1310
1311	err = sock_create(family, type, protocol, &sock1);
1312	if (err < 0)
1313		goto out;
1314
1315	err = sock_create(family, type, protocol, &sock2);
1316	if (err < 0)
1317		goto out_release_1;
1318
1319	err = sock1->ops->socketpair(sock1, sock2);
1320	if (err < 0)
1321		goto out_release_both;
1322
1323	fd1 = get_unused_fd_flags(flags);
1324	if (unlikely(fd1 < 0)) {
1325		err = fd1;
1326		goto out_release_both;
 
1327	}
1328
1329	fd2 = get_unused_fd_flags(flags);
1330	if (unlikely(fd2 < 0)) {
1331		err = fd2;
1332		goto out_put_unused_1;
 
1333	}
1334
1335	newfile1 = sock_alloc_file(sock1, flags, NULL);
1336	if (IS_ERR(newfile1)) {
1337		err = PTR_ERR(newfile1);
1338		goto out_put_unused_both;
 
1339	}
1340
1341	newfile2 = sock_alloc_file(sock2, flags, NULL);
1342	if (IS_ERR(newfile2)) {
1343		err = PTR_ERR(newfile2);
1344		goto out_fput_1;
 
1345	}
1346
1347	err = put_user(fd1, &usockvec[0]);
1348	if (err)
1349		goto out_fput_both;
1350
1351	err = put_user(fd2, &usockvec[1]);
1352	if (err)
1353		goto out_fput_both;
1354
1355	audit_fd_pair(fd1, fd2);
1356
1357	fd_install(fd1, newfile1);
1358	fd_install(fd2, newfile2);
1359	/* fd1 and fd2 may be already another descriptors.
1360	 * Not kernel problem.
1361	 */
1362
1363	return 0;
1364
1365out_fput_both:
1366	fput(newfile2);
1367	fput(newfile1);
1368	put_unused_fd(fd2);
1369	put_unused_fd(fd1);
1370	goto out;
1371
1372out_fput_1:
1373	fput(newfile1);
1374	put_unused_fd(fd2);
1375	put_unused_fd(fd1);
1376	sock_release(sock2);
1377	goto out;
1378
1379out_put_unused_both:
1380	put_unused_fd(fd2);
1381out_put_unused_1:
1382	put_unused_fd(fd1);
1383out_release_both:
1384	sock_release(sock2);
1385out_release_1:
1386	sock_release(sock1);
1387out:
1388	return err;
1389}
1390
 
 
 
 
 
 
1391/*
1392 *	Bind a name to a socket. Nothing much to do here since it's
1393 *	the protocol's responsibility to handle the local address.
1394 *
1395 *	We move the socket address to kernel space before we call
1396 *	the protocol layer (having also checked the address is ok).
1397 */
1398
1399SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1400{
1401	struct socket *sock;
1402	struct sockaddr_storage address;
1403	int err, fput_needed;
1404
1405	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1406	if (sock) {
1407		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1408		if (err >= 0) {
1409			err = security_socket_bind(sock,
1410						   (struct sockaddr *)&address,
1411						   addrlen);
1412			if (!err)
1413				err = sock->ops->bind(sock,
1414						      (struct sockaddr *)
1415						      &address, addrlen);
1416		}
1417		fput_light(sock->file, fput_needed);
1418	}
1419	return err;
1420}
1421
 
 
 
 
 
1422/*
1423 *	Perform a listen. Basically, we allow the protocol to do anything
1424 *	necessary for a listen, and if that works, we mark the socket as
1425 *	ready for listening.
1426 */
1427
1428SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1429{
1430	struct socket *sock;
1431	int err, fput_needed;
1432	int somaxconn;
1433
1434	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1435	if (sock) {
1436		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1437		if ((unsigned int)backlog > somaxconn)
1438			backlog = somaxconn;
1439
1440		err = security_socket_listen(sock, backlog);
1441		if (!err)
1442			err = sock->ops->listen(sock, backlog);
1443
1444		fput_light(sock->file, fput_needed);
1445	}
1446	return err;
1447}
1448
1449/*
1450 *	For accept, we attempt to create a new socket, set up the link
1451 *	with the client, wake up the client, then return the new
1452 *	connected fd. We collect the address of the connector in kernel
1453 *	space and move it to user at the very end. This is unclean because
1454 *	we open the socket then return an error.
1455 *
1456 *	1003.1g adds the ability to recvmsg() to query connection pending
1457 *	status to recvmsg. We need to add that support in a way thats
1458 *	clean when we restucture accept also.
1459 */
1460
1461SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1462		int __user *, upeer_addrlen, int, flags)
 
1463{
1464	struct socket *sock, *newsock;
1465	struct file *newfile;
1466	int err, len, newfd, fput_needed;
1467	struct sockaddr_storage address;
1468
1469	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1470		return -EINVAL;
1471
1472	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1473		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1474
1475	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476	if (!sock)
1477		goto out;
1478
1479	err = -ENFILE;
1480	newsock = sock_alloc();
1481	if (!newsock)
1482		goto out_put;
1483
1484	newsock->type = sock->type;
1485	newsock->ops = sock->ops;
1486
1487	/*
1488	 * We don't need try_module_get here, as the listening socket (sock)
1489	 * has the protocol module (sock->ops->owner) held.
1490	 */
1491	__module_get(newsock->ops->owner);
1492
1493	newfd = get_unused_fd_flags(flags);
1494	if (unlikely(newfd < 0)) {
1495		err = newfd;
1496		sock_release(newsock);
1497		goto out_put;
1498	}
1499	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1500	if (IS_ERR(newfile)) {
1501		err = PTR_ERR(newfile);
1502		put_unused_fd(newfd);
1503		sock_release(newsock);
1504		goto out_put;
1505	}
1506
1507	err = security_socket_accept(sock, newsock);
1508	if (err)
1509		goto out_fd;
1510
1511	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
 
1512	if (err < 0)
1513		goto out_fd;
1514
1515	if (upeer_sockaddr) {
1516		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1517					  &len, 2) < 0) {
 
1518			err = -ECONNABORTED;
1519			goto out_fd;
1520		}
1521		err = move_addr_to_user(&address,
1522					len, upeer_sockaddr, upeer_addrlen);
1523		if (err < 0)
1524			goto out_fd;
1525	}
1526
1527	/* File flags are not inherited via accept() unlike another OSes. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528
 
 
 
 
 
 
1529	fd_install(newfd, newfile);
1530	err = newfd;
 
1531
1532out_put:
1533	fput_light(sock->file, fput_needed);
1534out:
1535	return err;
1536out_fd:
1537	fput(newfile);
1538	put_unused_fd(newfd);
1539	goto out_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1540}
1541
1542SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1543		int __user *, upeer_addrlen)
1544{
1545	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1546}
1547
1548/*
1549 *	Attempt to connect to a socket with the server address.  The address
1550 *	is in user space so we verify it is OK and move it to kernel space.
1551 *
1552 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1553 *	break bindings
1554 *
1555 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1556 *	other SEQPACKET protocols that take time to connect() as it doesn't
1557 *	include the -EINPROGRESS status for such sockets.
1558 */
1559
1560SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1561		int, addrlen)
1562{
1563	struct socket *sock;
1564	struct sockaddr_storage address;
1565	int err, fput_needed;
1566
1567	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1568	if (!sock)
 
1569		goto out;
1570	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1571	if (err < 0)
1572		goto out_put;
1573
1574	err =
1575	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1576	if (err)
1577		goto out_put;
1578
1579	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1580				 sock->file->f_flags);
1581out_put:
1582	fput_light(sock->file, fput_needed);
1583out:
1584	return err;
1585}
1586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1587/*
1588 *	Get the local address ('name') of a socket object. Move the obtained
1589 *	name to user space.
1590 */
1591
1592SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1593		int __user *, usockaddr_len)
1594{
1595	struct socket *sock;
1596	struct sockaddr_storage address;
1597	int len, err, fput_needed;
1598
1599	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600	if (!sock)
1601		goto out;
1602
1603	err = security_socket_getsockname(sock);
1604	if (err)
1605		goto out_put;
1606
1607	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1608	if (err)
1609		goto out_put;
1610	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
 
1611
1612out_put:
1613	fput_light(sock->file, fput_needed);
1614out:
1615	return err;
1616}
1617
 
 
 
 
 
 
1618/*
1619 *	Get the remote address ('name') of a socket object. Move the obtained
1620 *	name to user space.
1621 */
1622
1623SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1624		int __user *, usockaddr_len)
1625{
1626	struct socket *sock;
1627	struct sockaddr_storage address;
1628	int len, err, fput_needed;
1629
1630	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631	if (sock != NULL) {
1632		err = security_socket_getpeername(sock);
1633		if (err) {
1634			fput_light(sock->file, fput_needed);
1635			return err;
1636		}
1637
1638		err =
1639		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1640				       1);
1641		if (!err)
1642			err = move_addr_to_user(&address, len, usockaddr,
1643						usockaddr_len);
1644		fput_light(sock->file, fput_needed);
1645	}
1646	return err;
1647}
1648
 
 
 
 
 
 
1649/*
1650 *	Send a datagram to a given address. We move the address into kernel
1651 *	space and check the user space data area is readable before invoking
1652 *	the protocol.
1653 */
1654
1655SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1656		unsigned int, flags, struct sockaddr __user *, addr,
1657		int, addr_len)
1658{
1659	struct socket *sock;
1660	struct sockaddr_storage address;
1661	int err;
1662	struct msghdr msg;
1663	struct iovec iov;
1664	int fput_needed;
1665
1666	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1667	if (unlikely(err))
1668		return err;
1669	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670	if (!sock)
1671		goto out;
1672
1673	msg.msg_name = NULL;
1674	msg.msg_control = NULL;
1675	msg.msg_controllen = 0;
1676	msg.msg_namelen = 0;
 
1677	if (addr) {
1678		err = move_addr_to_kernel(addr, addr_len, &address);
1679		if (err < 0)
1680			goto out_put;
1681		msg.msg_name = (struct sockaddr *)&address;
1682		msg.msg_namelen = addr_len;
1683	}
1684	if (sock->file->f_flags & O_NONBLOCK)
1685		flags |= MSG_DONTWAIT;
1686	msg.msg_flags = flags;
1687	err = sock_sendmsg(sock, &msg);
1688
1689out_put:
1690	fput_light(sock->file, fput_needed);
1691out:
1692	return err;
1693}
1694
 
 
 
 
 
 
 
1695/*
1696 *	Send a datagram down a socket.
1697 */
1698
1699SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1700		unsigned int, flags)
1701{
1702	return sys_sendto(fd, buff, len, flags, NULL, 0);
1703}
1704
1705/*
1706 *	Receive a frame from the socket and optionally record the address of the
1707 *	sender. We verify the buffers are writable and if needed move the
1708 *	sender address from kernel to user space.
1709 */
1710
1711SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1712		unsigned int, flags, struct sockaddr __user *, addr,
1713		int __user *, addr_len)
1714{
 
 
 
 
 
1715	struct socket *sock;
1716	struct iovec iov;
1717	struct msghdr msg;
1718	struct sockaddr_storage address;
1719	int err, err2;
1720	int fput_needed;
1721
1722	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1723	if (unlikely(err))
1724		return err;
1725	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726	if (!sock)
1727		goto out;
1728
1729	msg.msg_control = NULL;
1730	msg.msg_controllen = 0;
1731	/* Save some cycles and don't copy the address if not needed */
1732	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1733	/* We assume all kernel code knows the size of sockaddr_storage */
1734	msg.msg_namelen = 0;
1735	msg.msg_iocb = NULL;
1736	if (sock->file->f_flags & O_NONBLOCK)
1737		flags |= MSG_DONTWAIT;
1738	err = sock_recvmsg(sock, &msg, flags);
1739
1740	if (err >= 0 && addr != NULL) {
1741		err2 = move_addr_to_user(&address,
1742					 msg.msg_namelen, addr, addr_len);
1743		if (err2 < 0)
1744			err = err2;
1745	}
1746
1747	fput_light(sock->file, fput_needed);
1748out:
1749	return err;
1750}
1751
 
 
 
 
 
 
 
1752/*
1753 *	Receive a datagram from a socket.
1754 */
1755
1756SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1757		unsigned int, flags)
1758{
1759	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
 
 
 
 
 
1760}
1761
1762/*
1763 *	Set a socket option. Because we don't know the option lengths we have
1764 *	to pass the user mode parameter for the protocols to sort out.
1765 */
1766
1767SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1768		char __user *, optval, int, optlen)
1769{
 
 
1770	int err, fput_needed;
1771	struct socket *sock;
1772
1773	if (optlen < 0)
1774		return -EINVAL;
1775
1776	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777	if (sock != NULL) {
1778		err = security_socket_setsockopt(sock, level, optname);
1779		if (err)
1780			goto out_put;
 
 
1781
1782		if (level == SOL_SOCKET)
1783			err =
1784			    sock_setsockopt(sock, level, optname, optval,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785					    optlen);
1786		else
1787			err =
1788			    sock->ops->setsockopt(sock, level, optname, optval,
1789						  optlen);
1790out_put:
1791		fput_light(sock->file, fput_needed);
1792	}
1793	return err;
1794}
1795
 
 
 
 
 
 
 
 
 
1796/*
1797 *	Get a socket option. Because we don't know the option lengths we have
1798 *	to pass a user mode parameter for the protocols to sort out.
1799 */
1800
1801SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1802		char __user *, optval, int __user *, optlen)
1803{
1804	int err, fput_needed;
1805	struct socket *sock;
 
1806
1807	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808	if (sock != NULL) {
1809		err = security_socket_getsockopt(sock, level, optname);
1810		if (err)
1811			goto out_put;
1812
1813		if (level == SOL_SOCKET)
1814			err =
1815			    sock_getsockopt(sock, level, optname, optval,
 
 
 
 
 
 
 
 
 
 
1816					    optlen);
1817		else
1818			err =
1819			    sock->ops->getsockopt(sock, level, optname, optval,
1820						  optlen);
 
1821out_put:
1822		fput_light(sock->file, fput_needed);
1823	}
1824	return err;
1825}
1826
 
 
 
 
 
 
1827/*
1828 *	Shutdown a socket.
1829 */
1830
1831SYSCALL_DEFINE2(shutdown, int, fd, int, how)
 
 
 
 
 
 
 
 
 
 
 
1832{
1833	int err, fput_needed;
1834	struct socket *sock;
1835
1836	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1837	if (sock != NULL) {
1838		err = security_socket_shutdown(sock, how);
1839		if (!err)
1840			err = sock->ops->shutdown(sock, how);
1841		fput_light(sock->file, fput_needed);
1842	}
1843	return err;
1844}
1845
 
 
 
 
 
1846/* A couple of helpful macros for getting the address of the 32/64 bit
1847 * fields which are the same type (int / unsigned) on our platforms.
1848 */
1849#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1850#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1851#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1852
1853struct used_address {
1854	struct sockaddr_storage name;
1855	unsigned int name_len;
1856};
1857
1858static int copy_msghdr_from_user(struct msghdr *kmsg,
1859				 struct user_msghdr __user *umsg,
1860				 struct sockaddr __user **save_addr,
1861				 struct iovec **iov)
1862{
1863	struct sockaddr __user *uaddr;
1864	struct iovec __user *uiov;
1865	size_t nr_segs;
1866	ssize_t err;
1867
1868	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1869	    __get_user(uaddr, &umsg->msg_name) ||
1870	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1871	    __get_user(uiov, &umsg->msg_iov) ||
1872	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1873	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1874	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1875	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1876		return -EFAULT;
1877
1878	if (!uaddr)
 
1879		kmsg->msg_namelen = 0;
1880
1881	if (kmsg->msg_namelen < 0)
1882		return -EINVAL;
1883
1884	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1885		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1886
1887	if (save_addr)
1888		*save_addr = uaddr;
1889
1890	if (uaddr && kmsg->msg_namelen) {
1891		if (!save_addr) {
1892			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
 
1893						  kmsg->msg_name);
1894			if (err < 0)
1895				return err;
1896		}
1897	} else {
1898		kmsg->msg_name = NULL;
1899		kmsg->msg_namelen = 0;
1900	}
1901
1902	if (nr_segs > UIO_MAXIOV)
1903		return -EMSGSIZE;
1904
1905	kmsg->msg_iocb = NULL;
 
 
 
1906
1907	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908			    UIO_FASTIOV, iov, &kmsg->msg_iter);
 
1909}
1910
1911static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1912			 struct msghdr *msg_sys, unsigned int flags,
1913			 struct used_address *used_address,
1914			 unsigned int allowed_msghdr_flags)
1915{
1916	struct compat_msghdr __user *msg_compat =
1917	    (struct compat_msghdr __user *)msg;
1918	struct sockaddr_storage address;
1919	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1920	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1921				__aligned(sizeof(__kernel_size_t));
1922	/* 20 is size of ipv6_pktinfo */
1923	unsigned char *ctl_buf = ctl;
1924	int ctl_len;
1925	ssize_t err;
1926
1927	msg_sys->msg_name = &address;
1928
1929	if (MSG_CMSG_COMPAT & flags)
1930		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1931	else
1932		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1933	if (err < 0)
1934		return err;
1935
1936	err = -ENOBUFS;
1937
1938	if (msg_sys->msg_controllen > INT_MAX)
1939		goto out_freeiov;
1940	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1941	ctl_len = msg_sys->msg_controllen;
1942	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1943		err =
1944		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1945						     sizeof(ctl));
1946		if (err)
1947			goto out_freeiov;
1948		ctl_buf = msg_sys->msg_control;
1949		ctl_len = msg_sys->msg_controllen;
1950	} else if (ctl_len) {
 
 
1951		if (ctl_len > sizeof(ctl)) {
1952			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953			if (ctl_buf == NULL)
1954				goto out_freeiov;
1955		}
1956		err = -EFAULT;
1957		/*
1958		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960		 * checking falls down on this.
1961		 */
1962		if (copy_from_user(ctl_buf,
1963				   (void __user __force *)msg_sys->msg_control,
1964				   ctl_len))
1965			goto out_freectl;
1966		msg_sys->msg_control = ctl_buf;
 
1967	}
1968	msg_sys->msg_flags = flags;
1969
1970	if (sock->file->f_flags & O_NONBLOCK)
1971		msg_sys->msg_flags |= MSG_DONTWAIT;
1972	/*
1973	 * If this is sendmmsg() and current destination address is same as
1974	 * previously succeeded address, omit asking LSM's decision.
1975	 * used_address->name_len is initialized to UINT_MAX so that the first
1976	 * destination address never matches.
1977	 */
1978	if (used_address && msg_sys->msg_name &&
1979	    used_address->name_len == msg_sys->msg_namelen &&
1980	    !memcmp(&used_address->name, msg_sys->msg_name,
1981		    used_address->name_len)) {
1982		err = sock_sendmsg_nosec(sock, msg_sys);
1983		goto out_freectl;
1984	}
1985	err = sock_sendmsg(sock, msg_sys);
1986	/*
1987	 * If this is sendmmsg() and sending to current destination address was
1988	 * successful, remember it.
1989	 */
1990	if (used_address && err >= 0) {
1991		used_address->name_len = msg_sys->msg_namelen;
1992		if (msg_sys->msg_name)
1993			memcpy(&used_address->name, msg_sys->msg_name,
1994			       used_address->name_len);
1995	}
1996
1997out_freectl:
1998	if (ctl_buf != ctl)
1999		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2000out_freeiov:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001	kfree(iov);
2002	return err;
2003}
2004
2005/*
2006 *	BSD sendmsg interface
2007 */
 
 
 
 
 
2008
2009long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
 
2010{
2011	int fput_needed, err;
2012	struct msghdr msg_sys;
2013	struct socket *sock;
2014
 
 
 
2015	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016	if (!sock)
2017		goto out;
2018
2019	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2020
2021	fput_light(sock->file, fput_needed);
2022out:
2023	return err;
2024}
2025
2026SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2027{
2028	if (flags & MSG_CMSG_COMPAT)
2029		return -EINVAL;
2030	return __sys_sendmsg(fd, msg, flags);
2031}
2032
2033/*
2034 *	Linux sendmmsg interface
2035 */
2036
2037int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038		   unsigned int flags)
2039{
2040	int fput_needed, err, datagrams;
2041	struct socket *sock;
2042	struct mmsghdr __user *entry;
2043	struct compat_mmsghdr __user *compat_entry;
2044	struct msghdr msg_sys;
2045	struct used_address used_address;
2046	unsigned int oflags = flags;
2047
 
 
 
2048	if (vlen > UIO_MAXIOV)
2049		vlen = UIO_MAXIOV;
2050
2051	datagrams = 0;
2052
2053	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054	if (!sock)
2055		return err;
2056
2057	used_address.name_len = UINT_MAX;
2058	entry = mmsg;
2059	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2060	err = 0;
2061	flags |= MSG_BATCH;
2062
2063	while (datagrams < vlen) {
2064		if (datagrams == vlen - 1)
2065			flags = oflags;
2066
2067		if (MSG_CMSG_COMPAT & flags) {
2068			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069					     &msg_sys, flags, &used_address, MSG_EOR);
2070			if (err < 0)
2071				break;
2072			err = __put_user(err, &compat_entry->msg_len);
2073			++compat_entry;
2074		} else {
2075			err = ___sys_sendmsg(sock,
2076					     (struct user_msghdr __user *)entry,
2077					     &msg_sys, flags, &used_address, MSG_EOR);
2078			if (err < 0)
2079				break;
2080			err = put_user(err, &entry->msg_len);
2081			++entry;
2082		}
2083
2084		if (err)
2085			break;
2086		++datagrams;
2087		if (msg_data_left(&msg_sys))
2088			break;
2089		cond_resched();
2090	}
2091
2092	fput_light(sock->file, fput_needed);
2093
2094	/* We only return an error if no datagrams were able to be sent */
2095	if (datagrams != 0)
2096		return datagrams;
2097
2098	return err;
2099}
2100
2101SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102		unsigned int, vlen, unsigned int, flags)
2103{
2104	if (flags & MSG_CMSG_COMPAT)
2105		return -EINVAL;
2106	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2107}
2108
2109static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110			 struct msghdr *msg_sys, unsigned int flags, int nosec)
 
 
2111{
2112	struct compat_msghdr __user *msg_compat =
2113	    (struct compat_msghdr __user *)msg;
2114	struct iovec iovstack[UIO_FASTIOV];
2115	struct iovec *iov = iovstack;
2116	unsigned long cmsg_ptr;
2117	int len;
2118	ssize_t err;
2119
2120	/* kernel mode address */
2121	struct sockaddr_storage addr;
2122
2123	/* user mode address pointers */
2124	struct sockaddr __user *uaddr;
2125	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2126
2127	msg_sys->msg_name = &addr;
2128
2129	if (MSG_CMSG_COMPAT & flags)
2130		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2131	else
2132		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
 
2133	if (err < 0)
2134		return err;
2135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2136	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2138
2139	/* We assume all kernel code knows the size of sockaddr_storage */
2140	msg_sys->msg_namelen = 0;
2141
2142	if (sock->file->f_flags & O_NONBLOCK)
2143		flags |= MSG_DONTWAIT;
2144	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
 
 
 
 
 
2145	if (err < 0)
2146		goto out_freeiov;
2147	len = err;
2148
2149	if (uaddr != NULL) {
2150		err = move_addr_to_user(&addr,
2151					msg_sys->msg_namelen, uaddr,
2152					uaddr_len);
2153		if (err < 0)
2154			goto out_freeiov;
2155	}
2156	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2157			 COMPAT_FLAGS(msg));
2158	if (err)
2159		goto out_freeiov;
2160	if (MSG_CMSG_COMPAT & flags)
2161		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162				 &msg_compat->msg_controllen);
2163	else
2164		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165				 &msg->msg_controllen);
2166	if (err)
2167		goto out_freeiov;
2168	err = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2169
2170out_freeiov:
2171	kfree(iov);
2172	return err;
2173}
2174
2175/*
2176 *	BSD recvmsg interface
2177 */
2178
2179long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
 
 
 
 
 
 
 
 
2180{
2181	int fput_needed, err;
2182	struct msghdr msg_sys;
2183	struct socket *sock;
2184
 
 
 
2185	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186	if (!sock)
2187		goto out;
2188
2189	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2190
2191	fput_light(sock->file, fput_needed);
2192out:
2193	return err;
2194}
2195
2196SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197		unsigned int, flags)
2198{
2199	if (flags & MSG_CMSG_COMPAT)
2200		return -EINVAL;
2201	return __sys_recvmsg(fd, msg, flags);
2202}
2203
2204/*
2205 *     Linux recvmmsg interface
2206 */
2207
2208int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209		   unsigned int flags, struct timespec *timeout)
 
2210{
2211	int fput_needed, err, datagrams;
2212	struct socket *sock;
2213	struct mmsghdr __user *entry;
2214	struct compat_mmsghdr __user *compat_entry;
2215	struct msghdr msg_sys;
2216	struct timespec64 end_time;
2217	struct timespec64 timeout64;
2218
2219	if (timeout &&
2220	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2221				    timeout->tv_nsec))
2222		return -EINVAL;
2223
2224	datagrams = 0;
2225
2226	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227	if (!sock)
2228		return err;
2229
2230	err = sock_error(sock->sk);
2231	if (err) {
2232		datagrams = err;
2233		goto out_put;
 
 
2234	}
2235
2236	entry = mmsg;
2237	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2238
2239	while (datagrams < vlen) {
2240		/*
2241		 * No need to ask LSM for more than the first datagram.
2242		 */
2243		if (MSG_CMSG_COMPAT & flags) {
2244			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2245					     &msg_sys, flags & ~MSG_WAITFORONE,
2246					     datagrams);
2247			if (err < 0)
2248				break;
2249			err = __put_user(err, &compat_entry->msg_len);
2250			++compat_entry;
2251		} else {
2252			err = ___sys_recvmsg(sock,
2253					     (struct user_msghdr __user *)entry,
2254					     &msg_sys, flags & ~MSG_WAITFORONE,
2255					     datagrams);
2256			if (err < 0)
2257				break;
2258			err = put_user(err, &entry->msg_len);
2259			++entry;
2260		}
2261
2262		if (err)
2263			break;
2264		++datagrams;
2265
2266		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2267		if (flags & MSG_WAITFORONE)
2268			flags |= MSG_DONTWAIT;
2269
2270		if (timeout) {
2271			ktime_get_ts64(&timeout64);
2272			*timeout = timespec64_to_timespec(
2273					timespec64_sub(end_time, timeout64));
2274			if (timeout->tv_sec < 0) {
2275				timeout->tv_sec = timeout->tv_nsec = 0;
2276				break;
2277			}
2278
2279			/* Timeout, return less than vlen datagrams */
2280			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2281				break;
2282		}
2283
2284		/* Out of band data, return right away */
2285		if (msg_sys.msg_flags & MSG_OOB)
2286			break;
2287		cond_resched();
2288	}
2289
2290	if (err == 0)
2291		goto out_put;
2292
2293	if (datagrams == 0) {
2294		datagrams = err;
2295		goto out_put;
2296	}
2297
2298	/*
2299	 * We may return less entries than requested (vlen) if the
2300	 * sock is non block and there aren't enough datagrams...
2301	 */
2302	if (err != -EAGAIN) {
2303		/*
2304		 * ... or  if recvmsg returns an error after we
2305		 * received some datagrams, where we record the
2306		 * error to return on the next call or if the
2307		 * app asks about it using getsockopt(SO_ERROR).
2308		 */
2309		sock->sk->sk_err = -err;
2310	}
2311out_put:
2312	fput_light(sock->file, fput_needed);
2313
2314	return datagrams;
2315}
2316
2317SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2318		unsigned int, vlen, unsigned int, flags,
2319		struct timespec __user *, timeout)
 
2320{
2321	int datagrams;
2322	struct timespec timeout_sys;
2323
2324	if (flags & MSG_CMSG_COMPAT)
2325		return -EINVAL;
2326
2327	if (!timeout)
2328		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2329
2330	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2331		return -EFAULT;
2332
2333	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
 
 
 
 
 
 
2334
2335	if (datagrams > 0 &&
2336	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
 
 
2337		datagrams = -EFAULT;
2338
2339	return datagrams;
2340}
2341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2342#ifdef __ARCH_WANT_SYS_SOCKETCALL
2343/* Argument list sizes for sys_socketcall */
2344#define AL(x) ((x) * sizeof(unsigned long))
2345static const unsigned char nargs[21] = {
2346	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2347	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2348	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2349	AL(4), AL(5), AL(4)
2350};
2351
2352#undef AL
2353
2354/*
2355 *	System call vectors.
2356 *
2357 *	Argument checking cleaned up. Saved 20% in size.
2358 *  This function doesn't need to set the kernel lock because
2359 *  it is set by the callees.
2360 */
2361
2362SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2363{
2364	unsigned long a[AUDITSC_ARGS];
2365	unsigned long a0, a1;
2366	int err;
2367	unsigned int len;
2368
2369	if (call < 1 || call > SYS_SENDMMSG)
2370		return -EINVAL;
 
2371
2372	len = nargs[call];
2373	if (len > sizeof(a))
2374		return -EINVAL;
2375
2376	/* copy_from_user should be SMP safe. */
2377	if (copy_from_user(a, args, len))
2378		return -EFAULT;
2379
2380	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2381	if (err)
2382		return err;
2383
2384	a0 = a[0];
2385	a1 = a[1];
2386
2387	switch (call) {
2388	case SYS_SOCKET:
2389		err = sys_socket(a0, a1, a[2]);
2390		break;
2391	case SYS_BIND:
2392		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2393		break;
2394	case SYS_CONNECT:
2395		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2396		break;
2397	case SYS_LISTEN:
2398		err = sys_listen(a0, a1);
2399		break;
2400	case SYS_ACCEPT:
2401		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2402				  (int __user *)a[2], 0);
2403		break;
2404	case SYS_GETSOCKNAME:
2405		err =
2406		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2407				    (int __user *)a[2]);
2408		break;
2409	case SYS_GETPEERNAME:
2410		err =
2411		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2412				    (int __user *)a[2]);
2413		break;
2414	case SYS_SOCKETPAIR:
2415		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2416		break;
2417	case SYS_SEND:
2418		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
 
2419		break;
2420	case SYS_SENDTO:
2421		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2422				 (struct sockaddr __user *)a[4], a[5]);
2423		break;
2424	case SYS_RECV:
2425		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
 
2426		break;
2427	case SYS_RECVFROM:
2428		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2429				   (struct sockaddr __user *)a[4],
2430				   (int __user *)a[5]);
2431		break;
2432	case SYS_SHUTDOWN:
2433		err = sys_shutdown(a0, a1);
2434		break;
2435	case SYS_SETSOCKOPT:
2436		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
 
2437		break;
2438	case SYS_GETSOCKOPT:
2439		err =
2440		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2441				   (int __user *)a[4]);
2442		break;
2443	case SYS_SENDMSG:
2444		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
 
2445		break;
2446	case SYS_SENDMMSG:
2447		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
 
2448		break;
2449	case SYS_RECVMSG:
2450		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
 
2451		break;
2452	case SYS_RECVMMSG:
2453		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2454				   (struct timespec __user *)a[4]);
 
 
 
 
 
 
 
2455		break;
2456	case SYS_ACCEPT4:
2457		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2458				  (int __user *)a[2], a[3]);
2459		break;
2460	default:
2461		err = -EINVAL;
2462		break;
2463	}
2464	return err;
2465}
2466
2467#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2468
2469/**
2470 *	sock_register - add a socket protocol handler
2471 *	@ops: description of protocol
2472 *
2473 *	This function is called by a protocol handler that wants to
2474 *	advertise its address family, and have it linked into the
2475 *	socket interface. The value ops->family corresponds to the
2476 *	socket system call protocol family.
2477 */
2478int sock_register(const struct net_proto_family *ops)
2479{
2480	int err;
2481
2482	if (ops->family >= NPROTO) {
2483		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2484		return -ENOBUFS;
2485	}
2486
2487	spin_lock(&net_family_lock);
2488	if (rcu_dereference_protected(net_families[ops->family],
2489				      lockdep_is_held(&net_family_lock)))
2490		err = -EEXIST;
2491	else {
2492		rcu_assign_pointer(net_families[ops->family], ops);
2493		err = 0;
2494	}
2495	spin_unlock(&net_family_lock);
2496
2497	pr_info("NET: Registered protocol family %d\n", ops->family);
2498	return err;
2499}
2500EXPORT_SYMBOL(sock_register);
2501
2502/**
2503 *	sock_unregister - remove a protocol handler
2504 *	@family: protocol family to remove
2505 *
2506 *	This function is called by a protocol handler that wants to
2507 *	remove its address family, and have it unlinked from the
2508 *	new socket creation.
2509 *
2510 *	If protocol handler is a module, then it can use module reference
2511 *	counts to protect against new references. If protocol handler is not
2512 *	a module then it needs to provide its own protection in
2513 *	the ops->create routine.
2514 */
2515void sock_unregister(int family)
2516{
2517	BUG_ON(family < 0 || family >= NPROTO);
2518
2519	spin_lock(&net_family_lock);
2520	RCU_INIT_POINTER(net_families[family], NULL);
2521	spin_unlock(&net_family_lock);
2522
2523	synchronize_rcu();
2524
2525	pr_info("NET: Unregistered protocol family %d\n", family);
2526}
2527EXPORT_SYMBOL(sock_unregister);
2528
 
 
 
 
 
2529static int __init sock_init(void)
2530{
2531	int err;
2532	/*
2533	 *      Initialize the network sysctl infrastructure.
2534	 */
2535	err = net_sysctl_init();
2536	if (err)
2537		goto out;
2538
2539	/*
2540	 *      Initialize skbuff SLAB cache
2541	 */
2542	skb_init();
2543
2544	/*
2545	 *      Initialize the protocols module.
2546	 */
2547
2548	init_inodecache();
2549
2550	err = register_filesystem(&sock_fs_type);
2551	if (err)
2552		goto out_fs;
2553	sock_mnt = kern_mount(&sock_fs_type);
2554	if (IS_ERR(sock_mnt)) {
2555		err = PTR_ERR(sock_mnt);
2556		goto out_mount;
2557	}
2558
2559	/* The real protocol initialization is performed in later initcalls.
2560	 */
2561
2562#ifdef CONFIG_NETFILTER
2563	err = netfilter_init();
2564	if (err)
2565		goto out;
2566#endif
2567
2568	ptp_classifier_init();
2569
2570out:
2571	return err;
2572
2573out_mount:
2574	unregister_filesystem(&sock_fs_type);
2575out_fs:
2576	goto out;
2577}
2578
2579core_initcall(sock_init);	/* early initcall */
2580
2581#ifdef CONFIG_PROC_FS
2582void socket_seq_show(struct seq_file *seq)
2583{
2584	int cpu;
2585	int counter = 0;
2586
2587	for_each_possible_cpu(cpu)
2588	    counter += per_cpu(sockets_in_use, cpu);
2589
2590	/* It can be negative, by the way. 8) */
2591	if (counter < 0)
2592		counter = 0;
2593
2594	seq_printf(seq, "sockets: used %d\n", counter);
2595}
2596#endif				/* CONFIG_PROC_FS */
2597
2598#ifdef CONFIG_COMPAT
2599static int do_siocgstamp(struct net *net, struct socket *sock,
2600			 unsigned int cmd, void __user *up)
2601{
2602	mm_segment_t old_fs = get_fs();
2603	struct timeval ktv;
2604	int err;
2605
2606	set_fs(KERNEL_DS);
2607	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2608	set_fs(old_fs);
2609	if (!err)
2610		err = compat_put_timeval(&ktv, up);
2611
2612	return err;
2613}
2614
2615static int do_siocgstampns(struct net *net, struct socket *sock,
2616			   unsigned int cmd, void __user *up)
2617{
2618	mm_segment_t old_fs = get_fs();
2619	struct timespec kts;
2620	int err;
2621
2622	set_fs(KERNEL_DS);
2623	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2624	set_fs(old_fs);
2625	if (!err)
2626		err = compat_put_timespec(&kts, up);
2627
2628	return err;
2629}
2630
2631static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2632{
2633	struct ifreq __user *uifr;
2634	int err;
2635
2636	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2637	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2638		return -EFAULT;
2639
2640	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2641	if (err)
2642		return err;
2643
2644	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2645		return -EFAULT;
2646
2647	return 0;
2648}
2649
2650static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2651{
2652	struct compat_ifconf ifc32;
2653	struct ifconf ifc;
2654	struct ifconf __user *uifc;
2655	struct compat_ifreq __user *ifr32;
2656	struct ifreq __user *ifr;
2657	unsigned int i, j;
2658	int err;
2659
2660	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2661		return -EFAULT;
2662
2663	memset(&ifc, 0, sizeof(ifc));
2664	if (ifc32.ifcbuf == 0) {
2665		ifc32.ifc_len = 0;
2666		ifc.ifc_len = 0;
2667		ifc.ifc_req = NULL;
2668		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2669	} else {
2670		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2671			sizeof(struct ifreq);
2672		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2673		ifc.ifc_len = len;
2674		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2675		ifr32 = compat_ptr(ifc32.ifcbuf);
2676		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2677			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2678				return -EFAULT;
2679			ifr++;
2680			ifr32++;
2681		}
2682	}
2683	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2684		return -EFAULT;
2685
2686	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2687	if (err)
2688		return err;
2689
2690	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2691		return -EFAULT;
2692
2693	ifr = ifc.ifc_req;
2694	ifr32 = compat_ptr(ifc32.ifcbuf);
2695	for (i = 0, j = 0;
2696	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2697	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2698		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2699			return -EFAULT;
2700		ifr32++;
2701		ifr++;
2702	}
2703
2704	if (ifc32.ifcbuf == 0) {
2705		/* Translate from 64-bit structure multiple to
2706		 * a 32-bit one.
2707		 */
2708		i = ifc.ifc_len;
2709		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2710		ifc32.ifc_len = i;
2711	} else {
2712		ifc32.ifc_len = i;
2713	}
2714	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2715		return -EFAULT;
2716
2717	return 0;
2718}
 
2719
2720static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2721{
2722	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2723	bool convert_in = false, convert_out = false;
2724	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2725	struct ethtool_rxnfc __user *rxnfc;
2726	struct ifreq __user *ifr;
2727	u32 rule_cnt = 0, actual_rule_cnt;
2728	u32 ethcmd;
2729	u32 data;
2730	int ret;
2731
2732	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2733		return -EFAULT;
2734
2735	compat_rxnfc = compat_ptr(data);
2736
2737	if (get_user(ethcmd, &compat_rxnfc->cmd))
2738		return -EFAULT;
2739
2740	/* Most ethtool structures are defined without padding.
2741	 * Unfortunately struct ethtool_rxnfc is an exception.
2742	 */
2743	switch (ethcmd) {
2744	default:
2745		break;
2746	case ETHTOOL_GRXCLSRLALL:
2747		/* Buffer size is variable */
2748		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2749			return -EFAULT;
2750		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2751			return -ENOMEM;
2752		buf_size += rule_cnt * sizeof(u32);
2753		/* fall through */
2754	case ETHTOOL_GRXRINGS:
2755	case ETHTOOL_GRXCLSRLCNT:
2756	case ETHTOOL_GRXCLSRULE:
2757	case ETHTOOL_SRXCLSRLINS:
2758		convert_out = true;
2759		/* fall through */
2760	case ETHTOOL_SRXCLSRLDEL:
2761		buf_size += sizeof(struct ethtool_rxnfc);
2762		convert_in = true;
2763		break;
2764	}
2765
2766	ifr = compat_alloc_user_space(buf_size);
2767	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2768
2769	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2770		return -EFAULT;
2771
2772	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2773		     &ifr->ifr_ifru.ifru_data))
2774		return -EFAULT;
2775
2776	if (convert_in) {
2777		/* We expect there to be holes between fs.m_ext and
2778		 * fs.ring_cookie and at the end of fs, but nowhere else.
2779		 */
2780		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2781			     sizeof(compat_rxnfc->fs.m_ext) !=
2782			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2783			     sizeof(rxnfc->fs.m_ext));
2784		BUILD_BUG_ON(
2785			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2786			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2787			offsetof(struct ethtool_rxnfc, fs.location) -
2788			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2789
2790		if (copy_in_user(rxnfc, compat_rxnfc,
2791				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2792				 (void __user *)rxnfc) ||
2793		    copy_in_user(&rxnfc->fs.ring_cookie,
2794				 &compat_rxnfc->fs.ring_cookie,
2795				 (void __user *)(&rxnfc->fs.location + 1) -
2796				 (void __user *)&rxnfc->fs.ring_cookie) ||
2797		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2798				 sizeof(rxnfc->rule_cnt)))
2799			return -EFAULT;
2800	}
2801
2802	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2803	if (ret)
2804		return ret;
2805
2806	if (convert_out) {
2807		if (copy_in_user(compat_rxnfc, rxnfc,
2808				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2809				 (const void __user *)rxnfc) ||
2810		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2811				 &rxnfc->fs.ring_cookie,
2812				 (const void __user *)(&rxnfc->fs.location + 1) -
2813				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2814		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2815				 sizeof(rxnfc->rule_cnt)))
2816			return -EFAULT;
2817
2818		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2819			/* As an optimisation, we only copy the actual
2820			 * number of rules that the underlying
2821			 * function returned.  Since Mallory might
2822			 * change the rule count in user memory, we
2823			 * check that it is less than the rule count
2824			 * originally given (as the user buffer size),
2825			 * which has been range-checked.
2826			 */
2827			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2828				return -EFAULT;
2829			if (actual_rule_cnt < rule_cnt)
2830				rule_cnt = actual_rule_cnt;
2831			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2832					 &rxnfc->rule_locs[0],
2833					 rule_cnt * sizeof(u32)))
2834				return -EFAULT;
2835		}
2836	}
2837
2838	return 0;
2839}
 
2840
 
2841static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2842{
2843	void __user *uptr;
2844	compat_uptr_t uptr32;
2845	struct ifreq __user *uifr;
 
 
2846
2847	uifr = compat_alloc_user_space(sizeof(*uifr));
2848	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2849		return -EFAULT;
2850
2851	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2852		return -EFAULT;
2853
2854	uptr = compat_ptr(uptr32);
2855
2856	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2857		return -EFAULT;
2858
2859	return dev_ioctl(net, SIOCWANDEV, uifr);
2860}
2861
2862static int bond_ioctl(struct net *net, unsigned int cmd,
2863			 struct compat_ifreq __user *ifr32)
2864{
2865	struct ifreq kifr;
2866	mm_segment_t old_fs;
2867	int err;
2868
2869	switch (cmd) {
2870	case SIOCBONDENSLAVE:
2871	case SIOCBONDRELEASE:
2872	case SIOCBONDSETHWADDR:
2873	case SIOCBONDCHANGEACTIVE:
2874		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2875			return -EFAULT;
2876
2877		old_fs = get_fs();
2878		set_fs(KERNEL_DS);
2879		err = dev_ioctl(net, cmd,
2880				(struct ifreq __user __force *) &kifr);
2881		set_fs(old_fs);
2882
2883		return err;
2884	default:
2885		return -ENOIOCTLCMD;
 
 
2886	}
 
2887}
2888
2889/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2890static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2891				 struct compat_ifreq __user *u_ifreq32)
2892{
2893	struct ifreq __user *u_ifreq64;
2894	char tmp_buf[IFNAMSIZ];
2895	void __user *data64;
2896	u32 data32;
2897
2898	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2899			   IFNAMSIZ))
2900		return -EFAULT;
2901	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2902		return -EFAULT;
2903	data64 = compat_ptr(data32);
2904
2905	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2906
2907	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2908			 IFNAMSIZ))
2909		return -EFAULT;
2910	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2911		return -EFAULT;
2912
2913	return dev_ioctl(net, cmd, u_ifreq64);
2914}
2915
2916static int dev_ifsioc(struct net *net, struct socket *sock,
2917			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2918{
2919	struct ifreq __user *uifr;
2920	int err;
2921
2922	uifr = compat_alloc_user_space(sizeof(*uifr));
2923	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
 
2924		return -EFAULT;
 
2925
2926	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2927
2928	if (!err) {
2929		switch (cmd) {
2930		case SIOCGIFFLAGS:
2931		case SIOCGIFMETRIC:
2932		case SIOCGIFMTU:
2933		case SIOCGIFMEM:
2934		case SIOCGIFHWADDR:
2935		case SIOCGIFINDEX:
2936		case SIOCGIFADDR:
2937		case SIOCGIFBRDADDR:
2938		case SIOCGIFDSTADDR:
2939		case SIOCGIFNETMASK:
2940		case SIOCGIFPFLAGS:
2941		case SIOCGIFTXQLEN:
2942		case SIOCGMIIPHY:
2943		case SIOCGMIIREG:
2944			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2945				err = -EFAULT;
2946			break;
2947		}
2948	}
2949	return err;
2950}
2951
2952static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2953			struct compat_ifreq __user *uifr32)
2954{
2955	struct ifreq ifr;
2956	struct compat_ifmap __user *uifmap32;
2957	mm_segment_t old_fs;
2958	int err;
2959
2960	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2961	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2962	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2963	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2964	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2965	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2966	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2967	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2968	if (err)
2969		return -EFAULT;
2970
2971	old_fs = get_fs();
2972	set_fs(KERNEL_DS);
2973	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2974	set_fs(old_fs);
2975
2976	if (cmd == SIOCGIFMAP && !err) {
2977		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2978		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2982		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2983		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2984		if (err)
2985			err = -EFAULT;
2986	}
2987	return err;
2988}
2989
2990struct rtentry32 {
2991	u32		rt_pad1;
2992	struct sockaddr rt_dst;         /* target address               */
2993	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2994	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2995	unsigned short	rt_flags;
2996	short		rt_pad2;
2997	u32		rt_pad3;
2998	unsigned char	rt_tos;
2999	unsigned char	rt_class;
3000	short		rt_pad4;
3001	short		rt_metric;      /* +1 for binary compatibility! */
3002	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3003	u32		rt_mtu;         /* per route MTU/Window         */
3004	u32		rt_window;      /* Window clamping              */
3005	unsigned short  rt_irtt;        /* Initial RTT                  */
3006};
3007
3008struct in6_rtmsg32 {
3009	struct in6_addr		rtmsg_dst;
3010	struct in6_addr		rtmsg_src;
3011	struct in6_addr		rtmsg_gateway;
3012	u32			rtmsg_type;
3013	u16			rtmsg_dst_len;
3014	u16			rtmsg_src_len;
3015	u32			rtmsg_metric;
3016	u32			rtmsg_info;
3017	u32			rtmsg_flags;
3018	s32			rtmsg_ifindex;
3019};
3020
3021static int routing_ioctl(struct net *net, struct socket *sock,
3022			 unsigned int cmd, void __user *argp)
3023{
3024	int ret;
3025	void *r = NULL;
3026	struct in6_rtmsg r6;
3027	struct rtentry r4;
3028	char devname[16];
3029	u32 rtdev;
3030	mm_segment_t old_fs = get_fs();
3031
3032	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3033		struct in6_rtmsg32 __user *ur6 = argp;
3034		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3035			3 * sizeof(struct in6_addr));
3036		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3037		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3038		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3039		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3040		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3041		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3042		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3043
3044		r = (void *) &r6;
3045	} else { /* ipv4 */
3046		struct rtentry32 __user *ur4 = argp;
3047		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3048					3 * sizeof(struct sockaddr));
3049		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3050		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3051		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3052		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3053		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3054		ret |= get_user(rtdev, &(ur4->rt_dev));
3055		if (rtdev) {
3056			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3057			r4.rt_dev = (char __user __force *)devname;
3058			devname[15] = 0;
3059		} else
3060			r4.rt_dev = NULL;
3061
3062		r = (void *) &r4;
3063	}
3064
3065	if (ret) {
3066		ret = -EFAULT;
3067		goto out;
3068	}
3069
3070	set_fs(KERNEL_DS);
3071	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3072	set_fs(old_fs);
3073
3074out:
3075	return ret;
3076}
3077
3078/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3079 * for some operations; this forces use of the newer bridge-utils that
3080 * use compatible ioctls
3081 */
3082static int old_bridge_ioctl(compat_ulong_t __user *argp)
3083{
3084	compat_ulong_t tmp;
3085
3086	if (get_user(tmp, argp))
3087		return -EFAULT;
3088	if (tmp == BRCTL_GET_VERSION)
3089		return BRCTL_VERSION + 1;
3090	return -EINVAL;
3091}
3092
3093static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3094			 unsigned int cmd, unsigned long arg)
3095{
3096	void __user *argp = compat_ptr(arg);
3097	struct sock *sk = sock->sk;
3098	struct net *net = sock_net(sk);
3099
3100	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3101		return compat_ifr_data_ioctl(net, cmd, argp);
3102
3103	switch (cmd) {
3104	case SIOCSIFBR:
3105	case SIOCGIFBR:
3106		return old_bridge_ioctl(argp);
3107	case SIOCGIFNAME:
3108		return dev_ifname32(net, argp);
3109	case SIOCGIFCONF:
3110		return dev_ifconf(net, argp);
3111	case SIOCETHTOOL:
3112		return ethtool_ioctl(net, argp);
3113	case SIOCWANDEV:
3114		return compat_siocwandev(net, argp);
3115	case SIOCGIFMAP:
3116	case SIOCSIFMAP:
3117		return compat_sioc_ifmap(net, cmd, argp);
3118	case SIOCBONDENSLAVE:
3119	case SIOCBONDRELEASE:
3120	case SIOCBONDSETHWADDR:
3121	case SIOCBONDCHANGEACTIVE:
3122		return bond_ioctl(net, cmd, argp);
3123	case SIOCADDRT:
3124	case SIOCDELRT:
3125		return routing_ioctl(net, sock, cmd, argp);
3126	case SIOCGSTAMP:
3127		return do_siocgstamp(net, sock, cmd, argp);
3128	case SIOCGSTAMPNS:
3129		return do_siocgstampns(net, sock, cmd, argp);
3130	case SIOCBONDSLAVEINFOQUERY:
3131	case SIOCBONDINFOQUERY:
3132	case SIOCSHWTSTAMP:
3133	case SIOCGHWTSTAMP:
3134		return compat_ifr_data_ioctl(net, cmd, argp);
3135
3136	case FIOSETOWN:
3137	case SIOCSPGRP:
3138	case FIOGETOWN:
3139	case SIOCGPGRP:
3140	case SIOCBRADDBR:
3141	case SIOCBRDELBR:
3142	case SIOCGIFVLAN:
3143	case SIOCSIFVLAN:
3144	case SIOCADDDLCI:
3145	case SIOCDELDLCI:
3146	case SIOCGSKNS:
 
 
 
 
 
3147		return sock_ioctl(file, cmd, arg);
3148
3149	case SIOCGIFFLAGS:
3150	case SIOCSIFFLAGS:
 
 
3151	case SIOCGIFMETRIC:
3152	case SIOCSIFMETRIC:
3153	case SIOCGIFMTU:
3154	case SIOCSIFMTU:
3155	case SIOCGIFMEM:
3156	case SIOCSIFMEM:
3157	case SIOCGIFHWADDR:
3158	case SIOCSIFHWADDR:
3159	case SIOCADDMULTI:
3160	case SIOCDELMULTI:
3161	case SIOCGIFINDEX:
3162	case SIOCGIFADDR:
3163	case SIOCSIFADDR:
3164	case SIOCSIFHWBROADCAST:
3165	case SIOCDIFADDR:
3166	case SIOCGIFBRDADDR:
3167	case SIOCSIFBRDADDR:
3168	case SIOCGIFDSTADDR:
3169	case SIOCSIFDSTADDR:
3170	case SIOCGIFNETMASK:
3171	case SIOCSIFNETMASK:
3172	case SIOCSIFPFLAGS:
3173	case SIOCGIFPFLAGS:
3174	case SIOCGIFTXQLEN:
3175	case SIOCSIFTXQLEN:
3176	case SIOCBRADDIF:
3177	case SIOCBRDELIF:
 
3178	case SIOCSIFNAME:
3179	case SIOCGMIIPHY:
3180	case SIOCGMIIREG:
3181	case SIOCSMIIREG:
3182		return dev_ifsioc(net, sock, cmd, argp);
3183
 
 
3184	case SIOCSARP:
3185	case SIOCGARP:
3186	case SIOCDARP:
 
 
3187	case SIOCATMARK:
3188		return sock_do_ioctl(net, sock, cmd, arg);
3189	}
3190
3191	return -ENOIOCTLCMD;
3192}
3193
3194static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3195			      unsigned long arg)
3196{
3197	struct socket *sock = file->private_data;
3198	int ret = -ENOIOCTLCMD;
3199	struct sock *sk;
3200	struct net *net;
3201
3202	sk = sock->sk;
3203	net = sock_net(sk);
3204
3205	if (sock->ops->compat_ioctl)
3206		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3207
3208	if (ret == -ENOIOCTLCMD &&
3209	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3210		ret = compat_wext_handle_ioctl(net, cmd, arg);
3211
3212	if (ret == -ENOIOCTLCMD)
3213		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3214
3215	return ret;
3216}
3217#endif
3218
 
 
 
 
 
 
 
 
 
3219int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3220{
3221	return sock->ops->bind(sock, addr, addrlen);
3222}
3223EXPORT_SYMBOL(kernel_bind);
3224
 
 
 
 
 
 
 
 
3225int kernel_listen(struct socket *sock, int backlog)
3226{
3227	return sock->ops->listen(sock, backlog);
3228}
3229EXPORT_SYMBOL(kernel_listen);
3230
 
 
 
 
 
 
 
 
 
 
 
3231int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3232{
3233	struct sock *sk = sock->sk;
3234	int err;
3235
3236	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3237			       newsock);
3238	if (err < 0)
3239		goto done;
3240
3241	err = sock->ops->accept(sock, *newsock, flags);
3242	if (err < 0) {
3243		sock_release(*newsock);
3244		*newsock = NULL;
3245		goto done;
3246	}
3247
3248	(*newsock)->ops = sock->ops;
3249	__module_get((*newsock)->ops->owner);
3250
3251done:
3252	return err;
3253}
3254EXPORT_SYMBOL(kernel_accept);
3255
 
 
 
 
 
 
 
 
 
 
 
 
 
3256int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3257		   int flags)
3258{
3259	return sock->ops->connect(sock, addr, addrlen, flags);
3260}
3261EXPORT_SYMBOL(kernel_connect);
3262
3263int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3264			 int *addrlen)
 
 
 
 
 
 
 
 
3265{
3266	return sock->ops->getname(sock, addr, addrlen, 0);
3267}
3268EXPORT_SYMBOL(kernel_getsockname);
3269
3270int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3271			 int *addrlen)
3272{
3273	return sock->ops->getname(sock, addr, addrlen, 1);
3274}
3275EXPORT_SYMBOL(kernel_getpeername);
 
 
3276
3277int kernel_getsockopt(struct socket *sock, int level, int optname,
3278			char *optval, int *optlen)
3279{
3280	mm_segment_t oldfs = get_fs();
3281	char __user *uoptval;
3282	int __user *uoptlen;
3283	int err;
3284
3285	uoptval = (char __user __force *) optval;
3286	uoptlen = (int __user __force *) optlen;
3287
3288	set_fs(KERNEL_DS);
3289	if (level == SOL_SOCKET)
3290		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291	else
3292		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293					    uoptlen);
3294	set_fs(oldfs);
3295	return err;
3296}
3297EXPORT_SYMBOL(kernel_getsockopt);
3298
3299int kernel_setsockopt(struct socket *sock, int level, int optname,
3300			char *optval, unsigned int optlen)
3301{
3302	mm_segment_t oldfs = get_fs();
3303	char __user *uoptval;
3304	int err;
3305
3306	uoptval = (char __user __force *) optval;
3307
3308	set_fs(KERNEL_DS);
3309	if (level == SOL_SOCKET)
3310		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311	else
3312		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313					    optlen);
3314	set_fs(oldfs);
3315	return err;
3316}
3317EXPORT_SYMBOL(kernel_setsockopt);
3318
3319int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320		    size_t size, int flags)
3321{
3322	if (sock->ops->sendpage)
 
 
3323		return sock->ops->sendpage(sock, page, offset, size, flags);
3324
3325	return sock_no_sendpage(sock, page, offset, size, flags);
3326}
3327EXPORT_SYMBOL(kernel_sendpage);
3328
3329int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
3330{
3331	mm_segment_t oldfs = get_fs();
3332	int err;
3333
3334	set_fs(KERNEL_DS);
3335	err = sock->ops->ioctl(sock, cmd, arg);
3336	set_fs(oldfs);
3337
3338	return err;
3339}
3340EXPORT_SYMBOL(kernel_sock_ioctl);
 
 
 
 
 
 
 
 
3341
3342int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343{
3344	return sock->ops->shutdown(sock, how);
3345}
3346EXPORT_SYMBOL(kernel_sock_shutdown);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET		An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:	@(#)socket.c	1.1.93	18/02/95
   6 *
   7 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   8 *		Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  13 *					shutdown()
  14 *		Alan Cox	:	verify_area() fixes
  15 *		Alan Cox	:	Removed DDI
  16 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  17 *		Alan Cox	:	Moved a load of checks to the very
  18 *					top level.
  19 *		Alan Cox	:	Move address structures to/from user
  20 *					mode above the protocol layers.
  21 *		Rob Janssen	:	Allow 0 length sends.
  22 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  23 *					tty drivers).
  24 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  25 *		Jeff Uphoff	:	Made max number of sockets command-line
  26 *					configurable.
  27 *		Matti Aarnio	:	Made the number of sockets dynamic,
  28 *					to be allocated when needed, and mr.
  29 *					Uphoff's max is used as max to be
  30 *					allowed to allocate.
  31 *		Linus		:	Argh. removed all the socket allocation
  32 *					altogether: it's in the inode now.
  33 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  34 *					for NetROM and future kernel nfsd type
  35 *					stuff.
  36 *		Alan Cox	:	sendmsg/recvmsg basics.
  37 *		Tom Dyas	:	Export net symbols.
  38 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  39 *		Alan Cox	:	Added thread locking to sys_* calls
  40 *					for sockets. May have errors at the
  41 *					moment.
  42 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  43 *		Andi Kleen	:	Some small cleanups, optimizations,
  44 *					and fixed a copy_from_user() bug.
  45 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  47 *					protocol-independent
  48 *
 
 
 
 
 
 
 
  49 *	This module is effectively the top level interface to the BSD socket
  50 *	paradigm.
  51 *
  52 *	Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/bpf-cgroup.h>
  56#include <linux/ethtool.h>
  57#include <linux/mm.h>
  58#include <linux/socket.h>
  59#include <linux/file.h>
  60#include <linux/net.h>
  61#include <linux/interrupt.h>
  62#include <linux/thread_info.h>
  63#include <linux/rcupdate.h>
  64#include <linux/netdevice.h>
  65#include <linux/proc_fs.h>
  66#include <linux/seq_file.h>
  67#include <linux/mutex.h>
  68#include <linux/if_bridge.h>
 
  69#include <linux/if_vlan.h>
  70#include <linux/ptp_classify.h>
  71#include <linux/init.h>
  72#include <linux/poll.h>
  73#include <linux/cache.h>
  74#include <linux/module.h>
  75#include <linux/highmem.h>
  76#include <linux/mount.h>
  77#include <linux/pseudo_fs.h>
  78#include <linux/security.h>
  79#include <linux/syscalls.h>
  80#include <linux/compat.h>
  81#include <linux/kmod.h>
  82#include <linux/audit.h>
  83#include <linux/wireless.h>
  84#include <linux/nsproxy.h>
  85#include <linux/magic.h>
  86#include <linux/slab.h>
  87#include <linux/xattr.h>
  88#include <linux/nospec.h>
  89#include <linux/indirect_call_wrapper.h>
  90
  91#include <linux/uaccess.h>
  92#include <asm/unistd.h>
  93
  94#include <net/compat.h>
  95#include <net/wext.h>
  96#include <net/cls_cgroup.h>
  97
  98#include <net/sock.h>
  99#include <linux/netfilter.h>
 100
 101#include <linux/if_tun.h>
 102#include <linux/ipv6_route.h>
 103#include <linux/route.h>
 104#include <linux/termios.h>
 105#include <linux/sockios.h>
 
 106#include <net/busy_poll.h>
 107#include <linux/errqueue.h>
 108#include <linux/ptp_clock_kernel.h>
 109
 110#ifdef CONFIG_NET_RX_BUSY_POLL
 111unsigned int sysctl_net_busy_read __read_mostly;
 112unsigned int sysctl_net_busy_poll __read_mostly;
 113#endif
 114
 115static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 116static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 117static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 118
 119static int sock_close(struct inode *inode, struct file *file);
 120static __poll_t sock_poll(struct file *file,
 121			      struct poll_table_struct *wait);
 122static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 123#ifdef CONFIG_COMPAT
 124static long compat_sock_ioctl(struct file *file,
 125			      unsigned int cmd, unsigned long arg);
 126#endif
 127static int sock_fasync(int fd, struct file *filp, int on);
 128static ssize_t sock_sendpage(struct file *file, struct page *page,
 129			     int offset, size_t size, loff_t *ppos, int more);
 130static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 131				struct pipe_inode_info *pipe, size_t len,
 132				unsigned int flags);
 133
 134#ifdef CONFIG_PROC_FS
 135static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 136{
 137	struct socket *sock = f->private_data;
 138
 139	if (sock->ops->show_fdinfo)
 140		sock->ops->show_fdinfo(m, sock);
 141}
 142#else
 143#define sock_show_fdinfo NULL
 144#endif
 145
 146/*
 147 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 148 *	in the operation structures but are done directly via the socketcall() multiplexor.
 149 */
 150
 151static const struct file_operations socket_file_ops = {
 152	.owner =	THIS_MODULE,
 153	.llseek =	no_llseek,
 154	.read_iter =	sock_read_iter,
 155	.write_iter =	sock_write_iter,
 156	.poll =		sock_poll,
 157	.unlocked_ioctl = sock_ioctl,
 158#ifdef CONFIG_COMPAT
 159	.compat_ioctl = compat_sock_ioctl,
 160#endif
 161	.mmap =		sock_mmap,
 162	.release =	sock_close,
 163	.fasync =	sock_fasync,
 164	.sendpage =	sock_sendpage,
 165	.splice_write = generic_splice_sendpage,
 166	.splice_read =	sock_splice_read,
 167	.show_fdinfo =	sock_show_fdinfo,
 168};
 169
 170static const char * const pf_family_names[] = {
 171	[PF_UNSPEC]	= "PF_UNSPEC",
 172	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
 173	[PF_INET]	= "PF_INET",
 174	[PF_AX25]	= "PF_AX25",
 175	[PF_IPX]	= "PF_IPX",
 176	[PF_APPLETALK]	= "PF_APPLETALK",
 177	[PF_NETROM]	= "PF_NETROM",
 178	[PF_BRIDGE]	= "PF_BRIDGE",
 179	[PF_ATMPVC]	= "PF_ATMPVC",
 180	[PF_X25]	= "PF_X25",
 181	[PF_INET6]	= "PF_INET6",
 182	[PF_ROSE]	= "PF_ROSE",
 183	[PF_DECnet]	= "PF_DECnet",
 184	[PF_NETBEUI]	= "PF_NETBEUI",
 185	[PF_SECURITY]	= "PF_SECURITY",
 186	[PF_KEY]	= "PF_KEY",
 187	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
 188	[PF_PACKET]	= "PF_PACKET",
 189	[PF_ASH]	= "PF_ASH",
 190	[PF_ECONET]	= "PF_ECONET",
 191	[PF_ATMSVC]	= "PF_ATMSVC",
 192	[PF_RDS]	= "PF_RDS",
 193	[PF_SNA]	= "PF_SNA",
 194	[PF_IRDA]	= "PF_IRDA",
 195	[PF_PPPOX]	= "PF_PPPOX",
 196	[PF_WANPIPE]	= "PF_WANPIPE",
 197	[PF_LLC]	= "PF_LLC",
 198	[PF_IB]		= "PF_IB",
 199	[PF_MPLS]	= "PF_MPLS",
 200	[PF_CAN]	= "PF_CAN",
 201	[PF_TIPC]	= "PF_TIPC",
 202	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
 203	[PF_IUCV]	= "PF_IUCV",
 204	[PF_RXRPC]	= "PF_RXRPC",
 205	[PF_ISDN]	= "PF_ISDN",
 206	[PF_PHONET]	= "PF_PHONET",
 207	[PF_IEEE802154]	= "PF_IEEE802154",
 208	[PF_CAIF]	= "PF_CAIF",
 209	[PF_ALG]	= "PF_ALG",
 210	[PF_NFC]	= "PF_NFC",
 211	[PF_VSOCK]	= "PF_VSOCK",
 212	[PF_KCM]	= "PF_KCM",
 213	[PF_QIPCRTR]	= "PF_QIPCRTR",
 214	[PF_SMC]	= "PF_SMC",
 215	[PF_XDP]	= "PF_XDP",
 216	[PF_MCTP]	= "PF_MCTP",
 217};
 218
 219/*
 220 *	The protocol list. Each protocol is registered in here.
 221 */
 222
 223static DEFINE_SPINLOCK(net_family_lock);
 224static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 225
 226/*
 
 
 
 
 
 
 227 * Support routines.
 228 * Move socket addresses back and forth across the kernel/user
 229 * divide and look after the messy bits.
 230 */
 231
 232/**
 233 *	move_addr_to_kernel	-	copy a socket address into kernel space
 234 *	@uaddr: Address in user space
 235 *	@kaddr: Address in kernel space
 236 *	@ulen: Length in user space
 237 *
 238 *	The address is copied into kernel space. If the provided address is
 239 *	too long an error code of -EINVAL is returned. If the copy gives
 240 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 241 */
 242
 243int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 244{
 245	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 246		return -EINVAL;
 247	if (ulen == 0)
 248		return 0;
 249	if (copy_from_user(kaddr, uaddr, ulen))
 250		return -EFAULT;
 251	return audit_sockaddr(ulen, kaddr);
 252}
 253
 254/**
 255 *	move_addr_to_user	-	copy an address to user space
 256 *	@kaddr: kernel space address
 257 *	@klen: length of address in kernel
 258 *	@uaddr: user space address
 259 *	@ulen: pointer to user length field
 260 *
 261 *	The value pointed to by ulen on entry is the buffer length available.
 262 *	This is overwritten with the buffer space used. -EINVAL is returned
 263 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 264 *	is returned if either the buffer or the length field are not
 265 *	accessible.
 266 *	After copying the data up to the limit the user specifies, the true
 267 *	length of the data is written over the length limit the user
 268 *	specified. Zero is returned for a success.
 269 */
 270
 271static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 272			     void __user *uaddr, int __user *ulen)
 273{
 274	int err;
 275	int len;
 276
 277	BUG_ON(klen > sizeof(struct sockaddr_storage));
 278	err = get_user(len, ulen);
 279	if (err)
 280		return err;
 281	if (len > klen)
 282		len = klen;
 283	if (len < 0)
 284		return -EINVAL;
 285	if (len) {
 286		if (audit_sockaddr(klen, kaddr))
 287			return -ENOMEM;
 288		if (copy_to_user(uaddr, kaddr, len))
 289			return -EFAULT;
 290	}
 291	/*
 292	 *      "fromlen shall refer to the value before truncation.."
 293	 *                      1003.1g
 294	 */
 295	return __put_user(klen, ulen);
 296}
 297
 298static struct kmem_cache *sock_inode_cachep __ro_after_init;
 299
 300static struct inode *sock_alloc_inode(struct super_block *sb)
 301{
 302	struct socket_alloc *ei;
 
 303
 304	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
 305	if (!ei)
 306		return NULL;
 307	init_waitqueue_head(&ei->socket.wq.wait);
 308	ei->socket.wq.fasync_list = NULL;
 309	ei->socket.wq.flags = 0;
 
 
 
 
 
 
 310
 311	ei->socket.state = SS_UNCONNECTED;
 312	ei->socket.flags = 0;
 313	ei->socket.ops = NULL;
 314	ei->socket.sk = NULL;
 315	ei->socket.file = NULL;
 316
 317	return &ei->vfs_inode;
 318}
 319
 320static void sock_free_inode(struct inode *inode)
 321{
 322	struct socket_alloc *ei;
 
 323
 324	ei = container_of(inode, struct socket_alloc, vfs_inode);
 
 
 325	kmem_cache_free(sock_inode_cachep, ei);
 326}
 327
 328static void init_once(void *foo)
 329{
 330	struct socket_alloc *ei = (struct socket_alloc *)foo;
 331
 332	inode_init_once(&ei->vfs_inode);
 333}
 334
 335static void init_inodecache(void)
 336{
 337	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 338					      sizeof(struct socket_alloc),
 339					      0,
 340					      (SLAB_HWCACHE_ALIGN |
 341					       SLAB_RECLAIM_ACCOUNT |
 342					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 343					      init_once);
 344	BUG_ON(sock_inode_cachep == NULL);
 
 
 345}
 346
 347static const struct super_operations sockfs_ops = {
 348	.alloc_inode	= sock_alloc_inode,
 349	.free_inode	= sock_free_inode,
 350	.statfs		= simple_statfs,
 351};
 352
 353/*
 354 * sockfs_dname() is called from d_path().
 355 */
 356static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 357{
 358	return dynamic_dname(buffer, buflen, "socket:[%lu]",
 359				d_inode(dentry)->i_ino);
 360}
 361
 362static const struct dentry_operations sockfs_dentry_operations = {
 363	.d_dname  = sockfs_dname,
 364};
 365
 366static int sockfs_xattr_get(const struct xattr_handler *handler,
 367			    struct dentry *dentry, struct inode *inode,
 368			    const char *suffix, void *value, size_t size)
 369{
 370	if (value) {
 371		if (dentry->d_name.len + 1 > size)
 372			return -ERANGE;
 373		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 374	}
 375	return dentry->d_name.len + 1;
 376}
 377
 378#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 379#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 380#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 381
 382static const struct xattr_handler sockfs_xattr_handler = {
 383	.name = XATTR_NAME_SOCKPROTONAME,
 384	.get = sockfs_xattr_get,
 385};
 386
 387static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 388				     struct user_namespace *mnt_userns,
 389				     struct dentry *dentry, struct inode *inode,
 390				     const char *suffix, const void *value,
 391				     size_t size, int flags)
 392{
 393	/* Handled by LSM. */
 394	return -EAGAIN;
 395}
 396
 397static const struct xattr_handler sockfs_security_xattr_handler = {
 398	.prefix = XATTR_SECURITY_PREFIX,
 399	.set = sockfs_security_xattr_set,
 400};
 401
 402static const struct xattr_handler *sockfs_xattr_handlers[] = {
 403	&sockfs_xattr_handler,
 404	&sockfs_security_xattr_handler,
 405	NULL
 406};
 407
 408static int sockfs_init_fs_context(struct fs_context *fc)
 
 409{
 410	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 411	if (!ctx)
 412		return -ENOMEM;
 413	ctx->ops = &sockfs_ops;
 414	ctx->dops = &sockfs_dentry_operations;
 415	ctx->xattr = sockfs_xattr_handlers;
 416	return 0;
 417}
 418
 419static struct vfsmount *sock_mnt __read_mostly;
 420
 421static struct file_system_type sock_fs_type = {
 422	.name =		"sockfs",
 423	.init_fs_context = sockfs_init_fs_context,
 424	.kill_sb =	kill_anon_super,
 425};
 426
 427/*
 428 *	Obtains the first available file descriptor and sets it up for use.
 429 *
 430 *	These functions create file structures and maps them to fd space
 431 *	of the current process. On success it returns file descriptor
 432 *	and file struct implicitly stored in sock->file.
 433 *	Note that another thread may close file descriptor before we return
 434 *	from this function. We use the fact that now we do not refer
 435 *	to socket after mapping. If one day we will need it, this
 436 *	function will increment ref. count on file by 1.
 437 *
 438 *	In any case returned fd MAY BE not valid!
 439 *	This race condition is unavoidable
 440 *	with shared fd spaces, we cannot solve it inside kernel,
 441 *	but we take care of internal coherence yet.
 442 */
 443
 444/**
 445 *	sock_alloc_file - Bind a &socket to a &file
 446 *	@sock: socket
 447 *	@flags: file status flags
 448 *	@dname: protocol name
 449 *
 450 *	Returns the &file bound with @sock, implicitly storing it
 451 *	in sock->file. If dname is %NULL, sets to "".
 452 *	On failure the return is a ERR pointer (see linux/err.h).
 453 *	This function uses GFP_KERNEL internally.
 454 */
 455
 456struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 457{
 
 
 458	struct file *file;
 459
 460	if (!dname)
 461		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 
 
 
 
 
 
 
 
 
 462
 463	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 464				O_RDWR | (flags & O_NONBLOCK),
 465				&socket_file_ops);
 
 466	if (IS_ERR(file)) {
 467		sock_release(sock);
 
 
 468		return file;
 469	}
 470
 471	sock->file = file;
 
 472	file->private_data = sock;
 473	stream_open(SOCK_INODE(sock), file);
 474	return file;
 475}
 476EXPORT_SYMBOL(sock_alloc_file);
 477
 478static int sock_map_fd(struct socket *sock, int flags)
 479{
 480	struct file *newfile;
 481	int fd = get_unused_fd_flags(flags);
 482	if (unlikely(fd < 0)) {
 483		sock_release(sock);
 484		return fd;
 485	}
 486
 487	newfile = sock_alloc_file(sock, flags, NULL);
 488	if (!IS_ERR(newfile)) {
 489		fd_install(fd, newfile);
 490		return fd;
 491	}
 492
 493	put_unused_fd(fd);
 494	return PTR_ERR(newfile);
 495}
 496
 497/**
 498 *	sock_from_file - Return the &socket bounded to @file.
 499 *	@file: file
 500 *
 501 *	On failure returns %NULL.
 502 */
 503
 504struct socket *sock_from_file(struct file *file)
 505{
 506	if (file->f_op == &socket_file_ops)
 507		return file->private_data;	/* set in sock_alloc_file */
 508
 
 509	return NULL;
 510}
 511EXPORT_SYMBOL(sock_from_file);
 512
 513/**
 514 *	sockfd_lookup - Go from a file number to its socket slot
 515 *	@fd: file handle
 516 *	@err: pointer to an error code return
 517 *
 518 *	The file handle passed in is locked and the socket it is bound
 519 *	to is returned. If an error occurs the err pointer is overwritten
 520 *	with a negative errno code and NULL is returned. The function checks
 521 *	for both invalid handles and passing a handle which is not a socket.
 522 *
 523 *	On a success the socket object pointer is returned.
 524 */
 525
 526struct socket *sockfd_lookup(int fd, int *err)
 527{
 528	struct file *file;
 529	struct socket *sock;
 530
 531	file = fget(fd);
 532	if (!file) {
 533		*err = -EBADF;
 534		return NULL;
 535	}
 536
 537	sock = sock_from_file(file);
 538	if (!sock) {
 539		*err = -ENOTSOCK;
 540		fput(file);
 541	}
 542	return sock;
 543}
 544EXPORT_SYMBOL(sockfd_lookup);
 545
 546static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 547{
 548	struct fd f = fdget(fd);
 549	struct socket *sock;
 550
 551	*err = -EBADF;
 552	if (f.file) {
 553		sock = sock_from_file(f.file);
 554		if (likely(sock)) {
 555			*fput_needed = f.flags & FDPUT_FPUT;
 556			return sock;
 557		}
 558		*err = -ENOTSOCK;
 559		fdput(f);
 560	}
 561	return NULL;
 562}
 563
 564static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 565				size_t size)
 566{
 567	ssize_t len;
 568	ssize_t used = 0;
 569
 570	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 571	if (len < 0)
 572		return len;
 573	used += len;
 574	if (buffer) {
 575		if (size < used)
 576			return -ERANGE;
 577		buffer += len;
 578	}
 579
 580	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 581	used += len;
 582	if (buffer) {
 583		if (size < used)
 584			return -ERANGE;
 585		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 586		buffer += len;
 587	}
 588
 589	return used;
 590}
 591
 592static int sockfs_setattr(struct user_namespace *mnt_userns,
 593			  struct dentry *dentry, struct iattr *iattr)
 594{
 595	int err = simple_setattr(&init_user_ns, dentry, iattr);
 596
 597	if (!err && (iattr->ia_valid & ATTR_UID)) {
 598		struct socket *sock = SOCKET_I(d_inode(dentry));
 599
 600		if (sock->sk)
 601			sock->sk->sk_uid = iattr->ia_uid;
 602		else
 603			err = -ENOENT;
 604	}
 605
 606	return err;
 607}
 608
 609static const struct inode_operations sockfs_inode_ops = {
 610	.listxattr = sockfs_listxattr,
 611	.setattr = sockfs_setattr,
 612};
 613
 614/**
 615 *	sock_alloc - allocate a socket
 616 *
 617 *	Allocate a new inode and socket object. The two are bound together
 618 *	and initialised. The socket is then returned. If we are out of inodes
 619 *	NULL is returned. This functions uses GFP_KERNEL internally.
 620 */
 621
 622struct socket *sock_alloc(void)
 623{
 624	struct inode *inode;
 625	struct socket *sock;
 626
 627	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 628	if (!inode)
 629		return NULL;
 630
 631	sock = SOCKET_I(inode);
 632
 
 633	inode->i_ino = get_next_ino();
 634	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 635	inode->i_uid = current_fsuid();
 636	inode->i_gid = current_fsgid();
 637	inode->i_op = &sockfs_inode_ops;
 638
 
 639	return sock;
 640}
 641EXPORT_SYMBOL(sock_alloc);
 642
 643static void __sock_release(struct socket *sock, struct inode *inode)
 
 
 
 
 
 
 
 
 
 644{
 645	if (sock->ops) {
 646		struct module *owner = sock->ops->owner;
 647
 648		if (inode)
 649			inode_lock(inode);
 650		sock->ops->release(sock);
 651		sock->sk = NULL;
 652		if (inode)
 653			inode_unlock(inode);
 654		sock->ops = NULL;
 655		module_put(owner);
 656	}
 657
 658	if (sock->wq.fasync_list)
 659		pr_err("%s: fasync list not empty!\n", __func__);
 660
 
 661	if (!sock->file) {
 662		iput(SOCK_INODE(sock));
 663		return;
 664	}
 665	sock->file = NULL;
 666}
 667
 668/**
 669 *	sock_release - close a socket
 670 *	@sock: socket to close
 671 *
 672 *	The socket is released from the protocol stack if it has a release
 673 *	callback, and the inode is then released if the socket is bound to
 674 *	an inode not a file.
 675 */
 676void sock_release(struct socket *sock)
 677{
 678	__sock_release(sock, NULL);
 679}
 680EXPORT_SYMBOL(sock_release);
 681
 682void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 683{
 684	u8 flags = *tx_flags;
 685
 686	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
 687		flags |= SKBTX_HW_TSTAMP;
 688
 689		/* PTP hardware clocks can provide a free running cycle counter
 690		 * as a time base for virtual clocks. Tell driver to use the
 691		 * free running cycle counter for timestamp if socket is bound
 692		 * to virtual clock.
 693		 */
 694		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
 695			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
 696	}
 697
 698	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 699		flags |= SKBTX_SW_TSTAMP;
 700
 701	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 702		flags |= SKBTX_SCHED_TSTAMP;
 703
 704	*tx_flags = flags;
 705}
 706EXPORT_SYMBOL(__sock_tx_timestamp);
 707
 708INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 709					   size_t));
 710INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 711					    size_t));
 712static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 713{
 714	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 715				     inet_sendmsg, sock, msg,
 716				     msg_data_left(msg));
 717	BUG_ON(ret == -EIOCBQUEUED);
 718	return ret;
 719}
 720
 721/**
 722 *	sock_sendmsg - send a message through @sock
 723 *	@sock: socket
 724 *	@msg: message to send
 725 *
 726 *	Sends @msg through @sock, passing through LSM.
 727 *	Returns the number of bytes sent, or an error code.
 728 */
 729int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 730{
 731	int err = security_socket_sendmsg(sock, msg,
 732					  msg_data_left(msg));
 733
 734	return err ?: sock_sendmsg_nosec(sock, msg);
 735}
 736EXPORT_SYMBOL(sock_sendmsg);
 737
 738/**
 739 *	kernel_sendmsg - send a message through @sock (kernel-space)
 740 *	@sock: socket
 741 *	@msg: message header
 742 *	@vec: kernel vec
 743 *	@num: vec array length
 744 *	@size: total message data size
 745 *
 746 *	Builds the message data with @vec and sends it through @sock.
 747 *	Returns the number of bytes sent, or an error code.
 748 */
 749
 750int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 751		   struct kvec *vec, size_t num, size_t size)
 752{
 753	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
 754	return sock_sendmsg(sock, msg);
 755}
 756EXPORT_SYMBOL(kernel_sendmsg);
 757
 758/**
 759 *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
 760 *	@sk: sock
 761 *	@msg: message header
 762 *	@vec: output s/g array
 763 *	@num: output s/g array length
 764 *	@size: total message data size
 765 *
 766 *	Builds the message data with @vec and sends it through @sock.
 767 *	Returns the number of bytes sent, or an error code.
 768 *	Caller must hold @sk.
 769 */
 770
 771int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 772			  struct kvec *vec, size_t num, size_t size)
 773{
 774	struct socket *sock = sk->sk_socket;
 775
 776	if (!sock->ops->sendmsg_locked)
 777		return sock_no_sendmsg_locked(sk, msg, size);
 778
 779	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
 780
 781	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 782}
 783EXPORT_SYMBOL(kernel_sendmsg_locked);
 784
 785static bool skb_is_err_queue(const struct sk_buff *skb)
 786{
 787	/* pkt_type of skbs enqueued on the error queue are set to
 788	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 789	 * in recvmsg, since skbs received on a local socket will never
 790	 * have a pkt_type of PACKET_OUTGOING.
 791	 */
 792	return skb->pkt_type == PACKET_OUTGOING;
 793}
 794
 795/* On transmit, software and hardware timestamps are returned independently.
 796 * As the two skb clones share the hardware timestamp, which may be updated
 797 * before the software timestamp is received, a hardware TX timestamp may be
 798 * returned only if there is no software TX timestamp. Ignore false software
 799 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 800 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 801 * hardware timestamp.
 802 */
 803static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 804{
 805	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 806}
 807
 808static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
 809{
 810	bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
 811	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
 812	struct net_device *orig_dev;
 813	ktime_t hwtstamp;
 814
 815	rcu_read_lock();
 816	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 817	if (orig_dev) {
 818		*if_index = orig_dev->ifindex;
 819		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
 820	} else {
 821		hwtstamp = shhwtstamps->hwtstamp;
 822	}
 823	rcu_read_unlock();
 824
 825	return hwtstamp;
 826}
 827
 828static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
 829			   int if_index)
 830{
 831	struct scm_ts_pktinfo ts_pktinfo;
 832	struct net_device *orig_dev;
 833
 834	if (!skb_mac_header_was_set(skb))
 835		return;
 836
 837	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 838
 839	if (!if_index) {
 840		rcu_read_lock();
 841		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 842		if (orig_dev)
 843			if_index = orig_dev->ifindex;
 844		rcu_read_unlock();
 845	}
 846	ts_pktinfo.if_index = if_index;
 847
 848	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 849	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 850		 sizeof(ts_pktinfo), &ts_pktinfo);
 851}
 852
 853/*
 854 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 855 */
 856void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 857	struct sk_buff *skb)
 858{
 859	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 860	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 861	struct scm_timestamping_internal tss;
 862
 863	int empty = 1, false_tstamp = 0;
 864	struct skb_shared_hwtstamps *shhwtstamps =
 865		skb_hwtstamps(skb);
 866	int if_index;
 867	ktime_t hwtstamp;
 868
 869	/* Race occurred between timestamp enabling and packet
 870	   receiving.  Fill in the current time for now. */
 871	if (need_software_tstamp && skb->tstamp == 0) {
 872		__net_timestamp(skb);
 873		false_tstamp = 1;
 874	}
 875
 876	if (need_software_tstamp) {
 877		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 878			if (new_tstamp) {
 879				struct __kernel_sock_timeval tv;
 880
 881				skb_get_new_timestamp(skb, &tv);
 882				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 883					 sizeof(tv), &tv);
 884			} else {
 885				struct __kernel_old_timeval tv;
 886
 887				skb_get_timestamp(skb, &tv);
 888				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 889					 sizeof(tv), &tv);
 890			}
 891		} else {
 892			if (new_tstamp) {
 893				struct __kernel_timespec ts;
 894
 895				skb_get_new_timestampns(skb, &ts);
 896				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 897					 sizeof(ts), &ts);
 898			} else {
 899				struct __kernel_old_timespec ts;
 900
 901				skb_get_timestampns(skb, &ts);
 902				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 903					 sizeof(ts), &ts);
 904			}
 905		}
 906	}
 907
 908	memset(&tss, 0, sizeof(tss));
 909	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 910	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 911		empty = 0;
 912	if (shhwtstamps &&
 913	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 914	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
 915		if_index = 0;
 916		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
 917			hwtstamp = get_timestamp(sk, skb, &if_index);
 918		else
 919			hwtstamp = shhwtstamps->hwtstamp;
 920
 921		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
 922			hwtstamp = ptp_convert_timestamp(&hwtstamp,
 923							 sk->sk_bind_phc);
 924
 925		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
 926			empty = 0;
 927
 928			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 929			    !skb_is_err_queue(skb))
 930				put_ts_pktinfo(msg, skb, if_index);
 931		}
 932	}
 933	if (!empty) {
 934		if (sock_flag(sk, SOCK_TSTAMP_NEW))
 935			put_cmsg_scm_timestamping64(msg, &tss);
 936		else
 937			put_cmsg_scm_timestamping(msg, &tss);
 938
 939		if (skb_is_err_queue(skb) && skb->len &&
 940		    SKB_EXT_ERR(skb)->opt_stats)
 941			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 942				 skb->len, skb->data);
 943	}
 944}
 945EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 946
 947void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 948	struct sk_buff *skb)
 949{
 950	int ack;
 951
 952	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 953		return;
 954	if (!skb->wifi_acked_valid)
 955		return;
 956
 957	ack = skb->wifi_acked;
 958
 959	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 960}
 961EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 962
 963static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 964				   struct sk_buff *skb)
 965{
 966	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 967		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 968			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 969}
 970
 971static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
 972			   struct sk_buff *skb)
 973{
 974	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
 975		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
 976		__u32 mark = skb->mark;
 977
 978		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
 979	}
 980}
 981
 982void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
 983		       struct sk_buff *skb)
 984{
 985	sock_recv_timestamp(msg, sk, skb);
 986	sock_recv_drops(msg, sk, skb);
 987	sock_recv_mark(msg, sk, skb);
 988}
 989EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
 990
 991INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 992					   size_t, int));
 993INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 994					    size_t, int));
 995static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 996				     int flags)
 997{
 998	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 999				  inet_recvmsg, sock, msg, msg_data_left(msg),
1000				  flags);
1001}
1002
1003/**
1004 *	sock_recvmsg - receive a message from @sock
1005 *	@sock: socket
1006 *	@msg: message to receive
1007 *	@flags: message flags
1008 *
1009 *	Receives @msg from @sock, passing through LSM. Returns the total number
1010 *	of bytes received, or an error.
1011 */
1012int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1013{
1014	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1015
1016	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1017}
1018EXPORT_SYMBOL(sock_recvmsg);
1019
1020/**
1021 *	kernel_recvmsg - Receive a message from a socket (kernel space)
1022 *	@sock: The socket to receive the message from
1023 *	@msg: Received message
1024 *	@vec: Input s/g array for message data
1025 *	@num: Size of input s/g array
1026 *	@size: Number of bytes to read
1027 *	@flags: Message flags (MSG_DONTWAIT, etc...)
1028 *
1029 *	On return the msg structure contains the scatter/gather array passed in the
1030 *	vec argument. The array is modified so that it consists of the unfilled
1031 *	portion of the original array.
1032 *
1033 *	The returned value is the total number of bytes received, or an error.
1034 */
1035
1036int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1037		   struct kvec *vec, size_t num, size_t size, int flags)
1038{
1039	msg->msg_control_is_user = false;
1040	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1041	return sock_recvmsg(sock, msg, flags);
 
 
 
 
 
1042}
1043EXPORT_SYMBOL(kernel_recvmsg);
1044
1045static ssize_t sock_sendpage(struct file *file, struct page *page,
1046			     int offset, size_t size, loff_t *ppos, int more)
1047{
1048	struct socket *sock;
1049	int flags;
1050
1051	sock = file->private_data;
1052
1053	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1054	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1055	flags |= more;
1056
1057	return kernel_sendpage(sock, page, offset, size, flags);
1058}
1059
1060static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1061				struct pipe_inode_info *pipe, size_t len,
1062				unsigned int flags)
1063{
1064	struct socket *sock = file->private_data;
1065
1066	if (unlikely(!sock->ops->splice_read))
1067		return generic_file_splice_read(file, ppos, pipe, len, flags);
1068
1069	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1070}
1071
1072static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1073{
1074	struct file *file = iocb->ki_filp;
1075	struct socket *sock = file->private_data;
1076	struct msghdr msg = {.msg_iter = *to,
1077			     .msg_iocb = iocb};
1078	ssize_t res;
1079
1080	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1081		msg.msg_flags = MSG_DONTWAIT;
1082
1083	if (iocb->ki_pos != 0)
1084		return -ESPIPE;
1085
1086	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1087		return 0;
1088
1089	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1090	*to = msg.msg_iter;
1091	return res;
1092}
1093
1094static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1095{
1096	struct file *file = iocb->ki_filp;
1097	struct socket *sock = file->private_data;
1098	struct msghdr msg = {.msg_iter = *from,
1099			     .msg_iocb = iocb};
1100	ssize_t res;
1101
1102	if (iocb->ki_pos != 0)
1103		return -ESPIPE;
1104
1105	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1106		msg.msg_flags = MSG_DONTWAIT;
1107
1108	if (sock->type == SOCK_SEQPACKET)
1109		msg.msg_flags |= MSG_EOR;
1110
1111	res = sock_sendmsg(sock, &msg);
1112	*from = msg.msg_iter;
1113	return res;
1114}
1115
1116/*
1117 * Atomic setting of ioctl hooks to avoid race
1118 * with module unload.
1119 */
1120
1121static DEFINE_MUTEX(br_ioctl_mutex);
1122static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1123			    unsigned int cmd, struct ifreq *ifr,
1124			    void __user *uarg);
1125
1126void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1127			     unsigned int cmd, struct ifreq *ifr,
1128			     void __user *uarg))
1129{
1130	mutex_lock(&br_ioctl_mutex);
1131	br_ioctl_hook = hook;
1132	mutex_unlock(&br_ioctl_mutex);
1133}
1134EXPORT_SYMBOL(brioctl_set);
1135
1136int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1137		  struct ifreq *ifr, void __user *uarg)
1138{
1139	int err = -ENOPKG;
1140
1141	if (!br_ioctl_hook)
1142		request_module("bridge");
1143
1144	mutex_lock(&br_ioctl_mutex);
1145	if (br_ioctl_hook)
1146		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1147	mutex_unlock(&br_ioctl_mutex);
1148
1149	return err;
1150}
1151
1152static DEFINE_MUTEX(vlan_ioctl_mutex);
1153static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1154
1155void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1156{
1157	mutex_lock(&vlan_ioctl_mutex);
1158	vlan_ioctl_hook = hook;
1159	mutex_unlock(&vlan_ioctl_mutex);
1160}
1161EXPORT_SYMBOL(vlan_ioctl_set);
1162
 
 
 
 
 
 
 
 
 
 
 
1163static long sock_do_ioctl(struct net *net, struct socket *sock,
1164			  unsigned int cmd, unsigned long arg)
1165{
1166	struct ifreq ifr;
1167	bool need_copyout;
1168	int err;
1169	void __user *argp = (void __user *)arg;
1170	void __user *data;
1171
1172	err = sock->ops->ioctl(sock, cmd, arg);
1173
1174	/*
1175	 * If this ioctl is unknown try to hand it down
1176	 * to the NIC driver.
1177	 */
1178	if (err != -ENOIOCTLCMD)
1179		return err;
1180
1181	if (!is_socket_ioctl_cmd(cmd))
1182		return -ENOTTY;
1183
1184	if (get_user_ifreq(&ifr, &data, argp))
1185		return -EFAULT;
1186	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1187	if (!err && need_copyout)
1188		if (put_user_ifreq(&ifr, argp))
1189			return -EFAULT;
1190
1191	return err;
1192}
1193
1194/*
1195 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1196 *	what to do with it - that's up to the protocol still.
1197 */
1198
 
 
 
 
 
1199static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1200{
1201	struct socket *sock;
1202	struct sock *sk;
1203	void __user *argp = (void __user *)arg;
1204	int pid, err;
1205	struct net *net;
1206
1207	sock = file->private_data;
1208	sk = sock->sk;
1209	net = sock_net(sk);
1210	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1211		struct ifreq ifr;
1212		void __user *data;
1213		bool need_copyout;
1214		if (get_user_ifreq(&ifr, &data, argp))
1215			return -EFAULT;
1216		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1217		if (!err && need_copyout)
1218			if (put_user_ifreq(&ifr, argp))
1219				return -EFAULT;
1220	} else
1221#ifdef CONFIG_WEXT_CORE
1222	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1223		err = wext_handle_ioctl(net, cmd, argp);
1224	} else
1225#endif
1226		switch (cmd) {
1227		case FIOSETOWN:
1228		case SIOCSPGRP:
1229			err = -EFAULT;
1230			if (get_user(pid, (int __user *)argp))
1231				break;
1232			err = f_setown(sock->file, pid, 1);
 
1233			break;
1234		case FIOGETOWN:
1235		case SIOCGPGRP:
1236			err = put_user(f_getown(sock->file),
1237				       (int __user *)argp);
1238			break;
1239		case SIOCGIFBR:
1240		case SIOCSIFBR:
1241		case SIOCBRADDBR:
1242		case SIOCBRDELBR:
1243			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
 
 
 
 
 
 
 
1244			break;
1245		case SIOCGIFVLAN:
1246		case SIOCSIFVLAN:
1247			err = -ENOPKG;
1248			if (!vlan_ioctl_hook)
1249				request_module("8021q");
1250
1251			mutex_lock(&vlan_ioctl_mutex);
1252			if (vlan_ioctl_hook)
1253				err = vlan_ioctl_hook(net, argp);
1254			mutex_unlock(&vlan_ioctl_mutex);
1255			break;
 
 
 
 
 
 
 
 
 
 
 
1256		case SIOCGSKNS:
1257			err = -EPERM;
1258			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1259				break;
1260
1261			err = open_related_ns(&net->ns, get_net_ns);
1262			break;
1263		case SIOCGSTAMP_OLD:
1264		case SIOCGSTAMPNS_OLD:
1265			if (!sock->ops->gettstamp) {
1266				err = -ENOIOCTLCMD;
1267				break;
1268			}
1269			err = sock->ops->gettstamp(sock, argp,
1270						   cmd == SIOCGSTAMP_OLD,
1271						   !IS_ENABLED(CONFIG_64BIT));
1272			break;
1273		case SIOCGSTAMP_NEW:
1274		case SIOCGSTAMPNS_NEW:
1275			if (!sock->ops->gettstamp) {
1276				err = -ENOIOCTLCMD;
1277				break;
1278			}
1279			err = sock->ops->gettstamp(sock, argp,
1280						   cmd == SIOCGSTAMP_NEW,
1281						   false);
1282			break;
1283
1284		case SIOCGIFCONF:
1285			err = dev_ifconf(net, argp);
1286			break;
1287
1288		default:
1289			err = sock_do_ioctl(net, sock, cmd, arg);
1290			break;
1291		}
1292	return err;
1293}
1294
1295/**
1296 *	sock_create_lite - creates a socket
1297 *	@family: protocol family (AF_INET, ...)
1298 *	@type: communication type (SOCK_STREAM, ...)
1299 *	@protocol: protocol (0, ...)
1300 *	@res: new socket
1301 *
1302 *	Creates a new socket and assigns it to @res, passing through LSM.
1303 *	The new socket initialization is not complete, see kernel_accept().
1304 *	Returns 0 or an error. On failure @res is set to %NULL.
1305 *	This function internally uses GFP_KERNEL.
1306 */
1307
1308int sock_create_lite(int family, int type, int protocol, struct socket **res)
1309{
1310	int err;
1311	struct socket *sock = NULL;
1312
1313	err = security_socket_create(family, type, protocol, 1);
1314	if (err)
1315		goto out;
1316
1317	sock = sock_alloc();
1318	if (!sock) {
1319		err = -ENOMEM;
1320		goto out;
1321	}
1322
1323	sock->type = type;
1324	err = security_socket_post_create(sock, family, type, protocol, 1);
1325	if (err)
1326		goto out_release;
1327
1328out:
1329	*res = sock;
1330	return err;
1331out_release:
1332	sock_release(sock);
1333	sock = NULL;
1334	goto out;
1335}
1336EXPORT_SYMBOL(sock_create_lite);
1337
1338/* No kernel lock held - perfect */
1339static __poll_t sock_poll(struct file *file, poll_table *wait)
1340{
1341	struct socket *sock = file->private_data;
1342	__poll_t events = poll_requested_events(wait), flag = 0;
1343
1344	if (!sock->ops->poll)
1345		return 0;
 
 
1346
1347	if (sk_can_busy_loop(sock->sk)) {
1348		/* poll once if requested by the syscall */
1349		if (events & POLL_BUSY_LOOP)
 
 
 
1350			sk_busy_loop(sock->sk, 1);
1351
1352		/* if this socket can poll_ll, tell the system call */
1353		flag = POLL_BUSY_LOOP;
1354	}
1355
1356	return sock->ops->poll(file, sock, wait) | flag;
1357}
1358
1359static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1360{
1361	struct socket *sock = file->private_data;
1362
1363	return sock->ops->mmap(file, sock, vma);
1364}
1365
1366static int sock_close(struct inode *inode, struct file *filp)
1367{
1368	__sock_release(SOCKET_I(inode), inode);
1369	return 0;
1370}
1371
1372/*
1373 *	Update the socket async list
1374 *
1375 *	Fasync_list locking strategy.
1376 *
1377 *	1. fasync_list is modified only under process context socket lock
1378 *	   i.e. under semaphore.
1379 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1380 *	   or under socket lock
1381 */
1382
1383static int sock_fasync(int fd, struct file *filp, int on)
1384{
1385	struct socket *sock = filp->private_data;
1386	struct sock *sk = sock->sk;
1387	struct socket_wq *wq = &sock->wq;
1388
1389	if (sk == NULL)
1390		return -EINVAL;
1391
1392	lock_sock(sk);
 
1393	fasync_helper(fd, filp, on, &wq->fasync_list);
1394
1395	if (!wq->fasync_list)
1396		sock_reset_flag(sk, SOCK_FASYNC);
1397	else
1398		sock_set_flag(sk, SOCK_FASYNC);
1399
1400	release_sock(sk);
1401	return 0;
1402}
1403
1404/* This function may be called only under rcu_lock */
1405
1406int sock_wake_async(struct socket_wq *wq, int how, int band)
1407{
1408	if (!wq || !wq->fasync_list)
1409		return -1;
1410
1411	switch (how) {
1412	case SOCK_WAKE_WAITD:
1413		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1414			break;
1415		goto call_kill;
1416	case SOCK_WAKE_SPACE:
1417		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1418			break;
1419		fallthrough;
1420	case SOCK_WAKE_IO:
1421call_kill:
1422		kill_fasync(&wq->fasync_list, SIGIO, band);
1423		break;
1424	case SOCK_WAKE_URG:
1425		kill_fasync(&wq->fasync_list, SIGURG, band);
1426	}
1427
1428	return 0;
1429}
1430EXPORT_SYMBOL(sock_wake_async);
1431
1432/**
1433 *	__sock_create - creates a socket
1434 *	@net: net namespace
1435 *	@family: protocol family (AF_INET, ...)
1436 *	@type: communication type (SOCK_STREAM, ...)
1437 *	@protocol: protocol (0, ...)
1438 *	@res: new socket
1439 *	@kern: boolean for kernel space sockets
1440 *
1441 *	Creates a new socket and assigns it to @res, passing through LSM.
1442 *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1443 *	be set to true if the socket resides in kernel space.
1444 *	This function internally uses GFP_KERNEL.
1445 */
1446
1447int __sock_create(struct net *net, int family, int type, int protocol,
1448			 struct socket **res, int kern)
1449{
1450	int err;
1451	struct socket *sock;
1452	const struct net_proto_family *pf;
1453
1454	/*
1455	 *      Check protocol is in range
1456	 */
1457	if (family < 0 || family >= NPROTO)
1458		return -EAFNOSUPPORT;
1459	if (type < 0 || type >= SOCK_MAX)
1460		return -EINVAL;
1461
1462	/* Compatibility.
1463
1464	   This uglymoron is moved from INET layer to here to avoid
1465	   deadlock in module load.
1466	 */
1467	if (family == PF_INET && type == SOCK_PACKET) {
1468		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1469			     current->comm);
1470		family = PF_PACKET;
1471	}
1472
1473	err = security_socket_create(family, type, protocol, kern);
1474	if (err)
1475		return err;
1476
1477	/*
1478	 *	Allocate the socket and allow the family to set things up. if
1479	 *	the protocol is 0, the family is instructed to select an appropriate
1480	 *	default.
1481	 */
1482	sock = sock_alloc();
1483	if (!sock) {
1484		net_warn_ratelimited("socket: no more sockets\n");
1485		return -ENFILE;	/* Not exactly a match, but its the
1486				   closest posix thing */
1487	}
1488
1489	sock->type = type;
1490
1491#ifdef CONFIG_MODULES
1492	/* Attempt to load a protocol module if the find failed.
1493	 *
1494	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1495	 * requested real, full-featured networking support upon configuration.
1496	 * Otherwise module support will break!
1497	 */
1498	if (rcu_access_pointer(net_families[family]) == NULL)
1499		request_module("net-pf-%d", family);
1500#endif
1501
1502	rcu_read_lock();
1503	pf = rcu_dereference(net_families[family]);
1504	err = -EAFNOSUPPORT;
1505	if (!pf)
1506		goto out_release;
1507
1508	/*
1509	 * We will call the ->create function, that possibly is in a loadable
1510	 * module, so we have to bump that loadable module refcnt first.
1511	 */
1512	if (!try_module_get(pf->owner))
1513		goto out_release;
1514
1515	/* Now protected by module ref count */
1516	rcu_read_unlock();
1517
1518	err = pf->create(net, sock, protocol, kern);
1519	if (err < 0)
1520		goto out_module_put;
1521
1522	/*
1523	 * Now to bump the refcnt of the [loadable] module that owns this
1524	 * socket at sock_release time we decrement its refcnt.
1525	 */
1526	if (!try_module_get(sock->ops->owner))
1527		goto out_module_busy;
1528
1529	/*
1530	 * Now that we're done with the ->create function, the [loadable]
1531	 * module can have its refcnt decremented
1532	 */
1533	module_put(pf->owner);
1534	err = security_socket_post_create(sock, family, type, protocol, kern);
1535	if (err)
1536		goto out_sock_release;
1537	*res = sock;
1538
1539	return 0;
1540
1541out_module_busy:
1542	err = -EAFNOSUPPORT;
1543out_module_put:
1544	sock->ops = NULL;
1545	module_put(pf->owner);
1546out_sock_release:
1547	sock_release(sock);
1548	return err;
1549
1550out_release:
1551	rcu_read_unlock();
1552	goto out_sock_release;
1553}
1554EXPORT_SYMBOL(__sock_create);
1555
1556/**
1557 *	sock_create - creates a socket
1558 *	@family: protocol family (AF_INET, ...)
1559 *	@type: communication type (SOCK_STREAM, ...)
1560 *	@protocol: protocol (0, ...)
1561 *	@res: new socket
1562 *
1563 *	A wrapper around __sock_create().
1564 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1565 */
1566
1567int sock_create(int family, int type, int protocol, struct socket **res)
1568{
1569	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1570}
1571EXPORT_SYMBOL(sock_create);
1572
1573/**
1574 *	sock_create_kern - creates a socket (kernel space)
1575 *	@net: net namespace
1576 *	@family: protocol family (AF_INET, ...)
1577 *	@type: communication type (SOCK_STREAM, ...)
1578 *	@protocol: protocol (0, ...)
1579 *	@res: new socket
1580 *
1581 *	A wrapper around __sock_create().
1582 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1583 */
1584
1585int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1586{
1587	return __sock_create(net, family, type, protocol, res, 1);
1588}
1589EXPORT_SYMBOL(sock_create_kern);
1590
1591static struct socket *__sys_socket_create(int family, int type, int protocol)
1592{
 
1593	struct socket *sock;
1594	int retval;
1595
1596	/* Check the SOCK_* constants for consistency.  */
1597	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1598	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1599	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1600	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1601
1602	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1603		return ERR_PTR(-EINVAL);
 
1604	type &= SOCK_TYPE_MASK;
1605
1606	retval = sock_create(family, type, protocol, &sock);
1607	if (retval < 0)
1608		return ERR_PTR(retval);
1609
1610	return sock;
1611}
1612
1613struct file *__sys_socket_file(int family, int type, int protocol)
1614{
1615	struct socket *sock;
1616	struct file *file;
1617	int flags;
1618
1619	sock = __sys_socket_create(family, type, protocol);
1620	if (IS_ERR(sock))
1621		return ERR_CAST(sock);
1622
1623	flags = type & ~SOCK_TYPE_MASK;
1624	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1625		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1626
1627	file = sock_alloc_file(sock, flags, NULL);
1628	if (IS_ERR(file))
1629		sock_release(sock);
1630
1631	return file;
1632}
 
1633
1634int __sys_socket(int family, int type, int protocol)
1635{
1636	struct socket *sock;
1637	int flags;
1638
1639	sock = __sys_socket_create(family, type, protocol);
1640	if (IS_ERR(sock))
1641		return PTR_ERR(sock);
1642
1643	flags = type & ~SOCK_TYPE_MASK;
1644	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1645		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1646
1647	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1648}
1649
1650SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1651{
1652	return __sys_socket(family, type, protocol);
1653}
1654
1655/*
1656 *	Create a pair of connected sockets.
1657 */
1658
1659int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
 
1660{
1661	struct socket *sock1, *sock2;
1662	int fd1, fd2, err;
1663	struct file *newfile1, *newfile2;
1664	int flags;
1665
1666	flags = type & ~SOCK_TYPE_MASK;
1667	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1668		return -EINVAL;
1669	type &= SOCK_TYPE_MASK;
1670
1671	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1672		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1673
1674	/*
1675	 * reserve descriptors and make sure we won't fail
1676	 * to return them to userland.
1677	 */
1678	fd1 = get_unused_fd_flags(flags);
1679	if (unlikely(fd1 < 0))
1680		return fd1;
1681
1682	fd2 = get_unused_fd_flags(flags);
1683	if (unlikely(fd2 < 0)) {
1684		put_unused_fd(fd1);
1685		return fd2;
1686	}
1687
1688	err = put_user(fd1, &usockvec[0]);
1689	if (err)
1690		goto out;
1691
1692	err = put_user(fd2, &usockvec[1]);
1693	if (err)
1694		goto out;
1695
1696	/*
1697	 * Obtain the first socket and check if the underlying protocol
1698	 * supports the socketpair call.
1699	 */
1700
1701	err = sock_create(family, type, protocol, &sock1);
1702	if (unlikely(err < 0))
1703		goto out;
1704
1705	err = sock_create(family, type, protocol, &sock2);
1706	if (unlikely(err < 0)) {
1707		sock_release(sock1);
1708		goto out;
1709	}
 
 
1710
1711	err = security_socket_socketpair(sock1, sock2);
1712	if (unlikely(err)) {
1713		sock_release(sock2);
1714		sock_release(sock1);
1715		goto out;
1716	}
1717
1718	err = sock1->ops->socketpair(sock1, sock2);
1719	if (unlikely(err < 0)) {
1720		sock_release(sock2);
1721		sock_release(sock1);
1722		goto out;
1723	}
1724
1725	newfile1 = sock_alloc_file(sock1, flags, NULL);
1726	if (IS_ERR(newfile1)) {
1727		err = PTR_ERR(newfile1);
1728		sock_release(sock2);
1729		goto out;
1730	}
1731
1732	newfile2 = sock_alloc_file(sock2, flags, NULL);
1733	if (IS_ERR(newfile2)) {
1734		err = PTR_ERR(newfile2);
1735		fput(newfile1);
1736		goto out;
1737	}
1738
 
 
 
 
 
 
 
 
1739	audit_fd_pair(fd1, fd2);
1740
1741	fd_install(fd1, newfile1);
1742	fd_install(fd2, newfile2);
 
 
 
 
1743	return 0;
1744
1745out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1746	put_unused_fd(fd2);
 
1747	put_unused_fd(fd1);
 
 
 
 
 
1748	return err;
1749}
1750
1751SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1752		int __user *, usockvec)
1753{
1754	return __sys_socketpair(family, type, protocol, usockvec);
1755}
1756
1757/*
1758 *	Bind a name to a socket. Nothing much to do here since it's
1759 *	the protocol's responsibility to handle the local address.
1760 *
1761 *	We move the socket address to kernel space before we call
1762 *	the protocol layer (having also checked the address is ok).
1763 */
1764
1765int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1766{
1767	struct socket *sock;
1768	struct sockaddr_storage address;
1769	int err, fput_needed;
1770
1771	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772	if (sock) {
1773		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1774		if (!err) {
1775			err = security_socket_bind(sock,
1776						   (struct sockaddr *)&address,
1777						   addrlen);
1778			if (!err)
1779				err = sock->ops->bind(sock,
1780						      (struct sockaddr *)
1781						      &address, addrlen);
1782		}
1783		fput_light(sock->file, fput_needed);
1784	}
1785	return err;
1786}
1787
1788SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1789{
1790	return __sys_bind(fd, umyaddr, addrlen);
1791}
1792
1793/*
1794 *	Perform a listen. Basically, we allow the protocol to do anything
1795 *	necessary for a listen, and if that works, we mark the socket as
1796 *	ready for listening.
1797 */
1798
1799int __sys_listen(int fd, int backlog)
1800{
1801	struct socket *sock;
1802	int err, fput_needed;
1803	int somaxconn;
1804
1805	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806	if (sock) {
1807		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1808		if ((unsigned int)backlog > somaxconn)
1809			backlog = somaxconn;
1810
1811		err = security_socket_listen(sock, backlog);
1812		if (!err)
1813			err = sock->ops->listen(sock, backlog);
1814
1815		fput_light(sock->file, fput_needed);
1816	}
1817	return err;
1818}
1819
1820SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1821{
1822	return __sys_listen(fd, backlog);
1823}
 
 
 
 
 
 
 
1824
1825struct file *do_accept(struct file *file, unsigned file_flags,
1826		       struct sockaddr __user *upeer_sockaddr,
1827		       int __user *upeer_addrlen, int flags)
1828{
1829	struct socket *sock, *newsock;
1830	struct file *newfile;
1831	int err, len;
1832	struct sockaddr_storage address;
1833
1834	sock = sock_from_file(file);
 
 
 
 
 
 
1835	if (!sock)
1836		return ERR_PTR(-ENOTSOCK);
1837
 
1838	newsock = sock_alloc();
1839	if (!newsock)
1840		return ERR_PTR(-ENFILE);
1841
1842	newsock->type = sock->type;
1843	newsock->ops = sock->ops;
1844
1845	/*
1846	 * We don't need try_module_get here, as the listening socket (sock)
1847	 * has the protocol module (sock->ops->owner) held.
1848	 */
1849	__module_get(newsock->ops->owner);
1850
 
 
 
 
 
 
1851	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1852	if (IS_ERR(newfile))
1853		return newfile;
 
 
 
 
1854
1855	err = security_socket_accept(sock, newsock);
1856	if (err)
1857		goto out_fd;
1858
1859	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1860					false);
1861	if (err < 0)
1862		goto out_fd;
1863
1864	if (upeer_sockaddr) {
1865		len = newsock->ops->getname(newsock,
1866					(struct sockaddr *)&address, 2);
1867		if (len < 0) {
1868			err = -ECONNABORTED;
1869			goto out_fd;
1870		}
1871		err = move_addr_to_user(&address,
1872					len, upeer_sockaddr, upeer_addrlen);
1873		if (err < 0)
1874			goto out_fd;
1875	}
1876
1877	/* File flags are not inherited via accept() unlike another OSes. */
1878	return newfile;
1879out_fd:
1880	fput(newfile);
1881	return ERR_PTR(err);
1882}
1883
1884static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1885			      int __user *upeer_addrlen, int flags)
1886{
1887	struct file *newfile;
1888	int newfd;
1889
1890	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1891		return -EINVAL;
1892
1893	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1894		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1895
1896	newfd = get_unused_fd_flags(flags);
1897	if (unlikely(newfd < 0))
1898		return newfd;
1899
1900	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1901			    flags);
1902	if (IS_ERR(newfile)) {
1903		put_unused_fd(newfd);
1904		return PTR_ERR(newfile);
1905	}
1906	fd_install(newfd, newfile);
1907	return newfd;
1908}
1909
1910/*
1911 *	For accept, we attempt to create a new socket, set up the link
1912 *	with the client, wake up the client, then return the new
1913 *	connected fd. We collect the address of the connector in kernel
1914 *	space and move it to user at the very end. This is unclean because
1915 *	we open the socket then return an error.
1916 *
1917 *	1003.1g adds the ability to recvmsg() to query connection pending
1918 *	status to recvmsg. We need to add that support in a way thats
1919 *	clean when we restructure accept also.
1920 */
1921
1922int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1923		  int __user *upeer_addrlen, int flags)
1924{
1925	int ret = -EBADF;
1926	struct fd f;
1927
1928	f = fdget(fd);
1929	if (f.file) {
1930		ret = __sys_accept4_file(f.file, upeer_sockaddr,
1931					 upeer_addrlen, flags);
1932		fdput(f);
1933	}
1934
1935	return ret;
1936}
1937
1938SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1939		int __user *, upeer_addrlen, int, flags)
1940{
1941	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1942}
1943
1944SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1945		int __user *, upeer_addrlen)
1946{
1947	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1948}
1949
1950/*
1951 *	Attempt to connect to a socket with the server address.  The address
1952 *	is in user space so we verify it is OK and move it to kernel space.
1953 *
1954 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1955 *	break bindings
1956 *
1957 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1958 *	other SEQPACKET protocols that take time to connect() as it doesn't
1959 *	include the -EINPROGRESS status for such sockets.
1960 */
1961
1962int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1963		       int addrlen, int file_flags)
1964{
1965	struct socket *sock;
1966	int err;
 
1967
1968	sock = sock_from_file(file);
1969	if (!sock) {
1970		err = -ENOTSOCK;
1971		goto out;
1972	}
 
 
1973
1974	err =
1975	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1976	if (err)
1977		goto out;
1978
1979	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1980				 sock->file->f_flags | file_flags);
 
 
1981out:
1982	return err;
1983}
1984
1985int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1986{
1987	int ret = -EBADF;
1988	struct fd f;
1989
1990	f = fdget(fd);
1991	if (f.file) {
1992		struct sockaddr_storage address;
1993
1994		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1995		if (!ret)
1996			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1997		fdput(f);
1998	}
1999
2000	return ret;
2001}
2002
2003SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2004		int, addrlen)
2005{
2006	return __sys_connect(fd, uservaddr, addrlen);
2007}
2008
2009/*
2010 *	Get the local address ('name') of a socket object. Move the obtained
2011 *	name to user space.
2012 */
2013
2014int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2015		      int __user *usockaddr_len)
2016{
2017	struct socket *sock;
2018	struct sockaddr_storage address;
2019	int err, fput_needed;
2020
2021	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2022	if (!sock)
2023		goto out;
2024
2025	err = security_socket_getsockname(sock);
2026	if (err)
2027		goto out_put;
2028
2029	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2030	if (err < 0)
2031		goto out_put;
2032	/* "err" is actually length in this case */
2033	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2034
2035out_put:
2036	fput_light(sock->file, fput_needed);
2037out:
2038	return err;
2039}
2040
2041SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2042		int __user *, usockaddr_len)
2043{
2044	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2045}
2046
2047/*
2048 *	Get the remote address ('name') of a socket object. Move the obtained
2049 *	name to user space.
2050 */
2051
2052int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2053		      int __user *usockaddr_len)
2054{
2055	struct socket *sock;
2056	struct sockaddr_storage address;
2057	int err, fput_needed;
2058
2059	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2060	if (sock != NULL) {
2061		err = security_socket_getpeername(sock);
2062		if (err) {
2063			fput_light(sock->file, fput_needed);
2064			return err;
2065		}
2066
2067		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2068		if (err >= 0)
2069			/* "err" is actually length in this case */
2070			err = move_addr_to_user(&address, err, usockaddr,
 
2071						usockaddr_len);
2072		fput_light(sock->file, fput_needed);
2073	}
2074	return err;
2075}
2076
2077SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2078		int __user *, usockaddr_len)
2079{
2080	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2081}
2082
2083/*
2084 *	Send a datagram to a given address. We move the address into kernel
2085 *	space and check the user space data area is readable before invoking
2086 *	the protocol.
2087 */
2088int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2089		 struct sockaddr __user *addr,  int addr_len)
 
 
2090{
2091	struct socket *sock;
2092	struct sockaddr_storage address;
2093	int err;
2094	struct msghdr msg;
2095	struct iovec iov;
2096	int fput_needed;
2097
2098	err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2099	if (unlikely(err))
2100		return err;
2101	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2102	if (!sock)
2103		goto out;
2104
2105	msg.msg_name = NULL;
2106	msg.msg_control = NULL;
2107	msg.msg_controllen = 0;
2108	msg.msg_namelen = 0;
2109	msg.msg_ubuf = NULL;
2110	if (addr) {
2111		err = move_addr_to_kernel(addr, addr_len, &address);
2112		if (err < 0)
2113			goto out_put;
2114		msg.msg_name = (struct sockaddr *)&address;
2115		msg.msg_namelen = addr_len;
2116	}
2117	if (sock->file->f_flags & O_NONBLOCK)
2118		flags |= MSG_DONTWAIT;
2119	msg.msg_flags = flags;
2120	err = sock_sendmsg(sock, &msg);
2121
2122out_put:
2123	fput_light(sock->file, fput_needed);
2124out:
2125	return err;
2126}
2127
2128SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2129		unsigned int, flags, struct sockaddr __user *, addr,
2130		int, addr_len)
2131{
2132	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2133}
2134
2135/*
2136 *	Send a datagram down a socket.
2137 */
2138
2139SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2140		unsigned int, flags)
2141{
2142	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2143}
2144
2145/*
2146 *	Receive a frame from the socket and optionally record the address of the
2147 *	sender. We verify the buffers are writable and if needed move the
2148 *	sender address from kernel to user space.
2149 */
2150int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2151		   struct sockaddr __user *addr, int __user *addr_len)
 
 
2152{
2153	struct sockaddr_storage address;
2154	struct msghdr msg = {
2155		/* Save some cycles and don't copy the address if not needed */
2156		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2157	};
2158	struct socket *sock;
2159	struct iovec iov;
 
 
2160	int err, err2;
2161	int fput_needed;
2162
2163	err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2164	if (unlikely(err))
2165		return err;
2166	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2167	if (!sock)
2168		goto out;
2169
 
 
 
 
 
 
 
2170	if (sock->file->f_flags & O_NONBLOCK)
2171		flags |= MSG_DONTWAIT;
2172	err = sock_recvmsg(sock, &msg, flags);
2173
2174	if (err >= 0 && addr != NULL) {
2175		err2 = move_addr_to_user(&address,
2176					 msg.msg_namelen, addr, addr_len);
2177		if (err2 < 0)
2178			err = err2;
2179	}
2180
2181	fput_light(sock->file, fput_needed);
2182out:
2183	return err;
2184}
2185
2186SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2187		unsigned int, flags, struct sockaddr __user *, addr,
2188		int __user *, addr_len)
2189{
2190	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2191}
2192
2193/*
2194 *	Receive a datagram from a socket.
2195 */
2196
2197SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2198		unsigned int, flags)
2199{
2200	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2201}
2202
2203static bool sock_use_custom_sol_socket(const struct socket *sock)
2204{
2205	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2206}
2207
2208/*
2209 *	Set a socket option. Because we don't know the option lengths we have
2210 *	to pass the user mode parameter for the protocols to sort out.
2211 */
2212int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2213		int optlen)
 
2214{
2215	sockptr_t optval = USER_SOCKPTR(user_optval);
2216	char *kernel_optval = NULL;
2217	int err, fput_needed;
2218	struct socket *sock;
2219
2220	if (optlen < 0)
2221		return -EINVAL;
2222
2223	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2224	if (!sock)
2225		return err;
2226
2227	err = security_socket_setsockopt(sock, level, optname);
2228	if (err)
2229		goto out_put;
2230
2231	if (!in_compat_syscall())
2232		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2233						     user_optval, &optlen,
2234						     &kernel_optval);
2235	if (err < 0)
2236		goto out_put;
2237	if (err > 0) {
2238		err = 0;
2239		goto out_put;
2240	}
2241
2242	if (kernel_optval)
2243		optval = KERNEL_SOCKPTR(kernel_optval);
2244	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2245		err = sock_setsockopt(sock, level, optname, optval, optlen);
2246	else if (unlikely(!sock->ops->setsockopt))
2247		err = -EOPNOTSUPP;
2248	else
2249		err = sock->ops->setsockopt(sock, level, optname, optval,
2250					    optlen);
2251	kfree(kernel_optval);
 
 
 
2252out_put:
2253	fput_light(sock->file, fput_needed);
 
2254	return err;
2255}
2256
2257SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2258		char __user *, optval, int, optlen)
2259{
2260	return __sys_setsockopt(fd, level, optname, optval, optlen);
2261}
2262
2263INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2264							 int optname));
2265
2266/*
2267 *	Get a socket option. Because we don't know the option lengths we have
2268 *	to pass a user mode parameter for the protocols to sort out.
2269 */
2270int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2271		int __user *optlen)
 
2272{
2273	int err, fput_needed;
2274	struct socket *sock;
2275	int max_optlen;
2276
2277	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2278	if (!sock)
2279		return err;
 
 
2280
2281	err = security_socket_getsockopt(sock, level, optname);
2282	if (err)
2283		goto out_put;
2284
2285	if (!in_compat_syscall())
2286		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2287
2288	if (level == SOL_SOCKET)
2289		err = sock_getsockopt(sock, level, optname, optval, optlen);
2290	else if (unlikely(!sock->ops->getsockopt))
2291		err = -EOPNOTSUPP;
2292	else
2293		err = sock->ops->getsockopt(sock, level, optname, optval,
2294					    optlen);
2295
2296	if (!in_compat_syscall())
2297		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2298						     optval, optlen, max_optlen,
2299						     err);
2300out_put:
2301	fput_light(sock->file, fput_needed);
 
2302	return err;
2303}
2304
2305SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2306		char __user *, optval, int __user *, optlen)
2307{
2308	return __sys_getsockopt(fd, level, optname, optval, optlen);
2309}
2310
2311/*
2312 *	Shutdown a socket.
2313 */
2314
2315int __sys_shutdown_sock(struct socket *sock, int how)
2316{
2317	int err;
2318
2319	err = security_socket_shutdown(sock, how);
2320	if (!err)
2321		err = sock->ops->shutdown(sock, how);
2322
2323	return err;
2324}
2325
2326int __sys_shutdown(int fd, int how)
2327{
2328	int err, fput_needed;
2329	struct socket *sock;
2330
2331	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2332	if (sock != NULL) {
2333		err = __sys_shutdown_sock(sock, how);
 
 
2334		fput_light(sock->file, fput_needed);
2335	}
2336	return err;
2337}
2338
2339SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2340{
2341	return __sys_shutdown(fd, how);
2342}
2343
2344/* A couple of helpful macros for getting the address of the 32/64 bit
2345 * fields which are the same type (int / unsigned) on our platforms.
2346 */
2347#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2348#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2349#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2350
2351struct used_address {
2352	struct sockaddr_storage name;
2353	unsigned int name_len;
2354};
2355
2356int __copy_msghdr(struct msghdr *kmsg,
2357		  struct user_msghdr *msg,
2358		  struct sockaddr __user **save_addr)
 
2359{
 
 
 
2360	ssize_t err;
2361
2362	kmsg->msg_control_is_user = true;
2363	kmsg->msg_get_inq = 0;
2364	kmsg->msg_control_user = msg->msg_control;
2365	kmsg->msg_controllen = msg->msg_controllen;
2366	kmsg->msg_flags = msg->msg_flags;
 
 
 
 
2367
2368	kmsg->msg_namelen = msg->msg_namelen;
2369	if (!msg->msg_name)
2370		kmsg->msg_namelen = 0;
2371
2372	if (kmsg->msg_namelen < 0)
2373		return -EINVAL;
2374
2375	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2376		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2377
2378	if (save_addr)
2379		*save_addr = msg->msg_name;
2380
2381	if (msg->msg_name && kmsg->msg_namelen) {
2382		if (!save_addr) {
2383			err = move_addr_to_kernel(msg->msg_name,
2384						  kmsg->msg_namelen,
2385						  kmsg->msg_name);
2386			if (err < 0)
2387				return err;
2388		}
2389	} else {
2390		kmsg->msg_name = NULL;
2391		kmsg->msg_namelen = 0;
2392	}
2393
2394	if (msg->msg_iovlen > UIO_MAXIOV)
2395		return -EMSGSIZE;
2396
2397	kmsg->msg_iocb = NULL;
2398	kmsg->msg_ubuf = NULL;
2399	return 0;
2400}
2401
2402static int copy_msghdr_from_user(struct msghdr *kmsg,
2403				 struct user_msghdr __user *umsg,
2404				 struct sockaddr __user **save_addr,
2405				 struct iovec **iov)
2406{
2407	struct user_msghdr msg;
2408	ssize_t err;
2409
2410	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2411		return -EFAULT;
2412
2413	err = __copy_msghdr(kmsg, &msg, save_addr);
2414	if (err)
2415		return err;
2416
2417	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2418			    msg.msg_iov, msg.msg_iovlen,
2419			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2420	return err < 0 ? err : 0;
2421}
2422
2423static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2424			   unsigned int flags, struct used_address *used_address,
2425			   unsigned int allowed_msghdr_flags)
 
2426{
 
 
 
 
2427	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2428				__aligned(sizeof(__kernel_size_t));
2429	/* 20 is size of ipv6_pktinfo */
2430	unsigned char *ctl_buf = ctl;
2431	int ctl_len;
2432	ssize_t err;
2433
 
 
 
 
 
 
 
 
 
2434	err = -ENOBUFS;
2435
2436	if (msg_sys->msg_controllen > INT_MAX)
2437		goto out;
2438	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2439	ctl_len = msg_sys->msg_controllen;
2440	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2441		err =
2442		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2443						     sizeof(ctl));
2444		if (err)
2445			goto out;
2446		ctl_buf = msg_sys->msg_control;
2447		ctl_len = msg_sys->msg_controllen;
2448	} else if (ctl_len) {
2449		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2450			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2451		if (ctl_len > sizeof(ctl)) {
2452			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2453			if (ctl_buf == NULL)
2454				goto out;
2455		}
2456		err = -EFAULT;
2457		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
 
 
 
 
 
 
 
2458			goto out_freectl;
2459		msg_sys->msg_control = ctl_buf;
2460		msg_sys->msg_control_is_user = false;
2461	}
2462	msg_sys->msg_flags = flags;
2463
2464	if (sock->file->f_flags & O_NONBLOCK)
2465		msg_sys->msg_flags |= MSG_DONTWAIT;
2466	/*
2467	 * If this is sendmmsg() and current destination address is same as
2468	 * previously succeeded address, omit asking LSM's decision.
2469	 * used_address->name_len is initialized to UINT_MAX so that the first
2470	 * destination address never matches.
2471	 */
2472	if (used_address && msg_sys->msg_name &&
2473	    used_address->name_len == msg_sys->msg_namelen &&
2474	    !memcmp(&used_address->name, msg_sys->msg_name,
2475		    used_address->name_len)) {
2476		err = sock_sendmsg_nosec(sock, msg_sys);
2477		goto out_freectl;
2478	}
2479	err = sock_sendmsg(sock, msg_sys);
2480	/*
2481	 * If this is sendmmsg() and sending to current destination address was
2482	 * successful, remember it.
2483	 */
2484	if (used_address && err >= 0) {
2485		used_address->name_len = msg_sys->msg_namelen;
2486		if (msg_sys->msg_name)
2487			memcpy(&used_address->name, msg_sys->msg_name,
2488			       used_address->name_len);
2489	}
2490
2491out_freectl:
2492	if (ctl_buf != ctl)
2493		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2494out:
2495	return err;
2496}
2497
2498int sendmsg_copy_msghdr(struct msghdr *msg,
2499			struct user_msghdr __user *umsg, unsigned flags,
2500			struct iovec **iov)
2501{
2502	int err;
2503
2504	if (flags & MSG_CMSG_COMPAT) {
2505		struct compat_msghdr __user *msg_compat;
2506
2507		msg_compat = (struct compat_msghdr __user *) umsg;
2508		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2509	} else {
2510		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2511	}
2512	if (err < 0)
2513		return err;
2514
2515	return 0;
2516}
2517
2518static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2519			 struct msghdr *msg_sys, unsigned int flags,
2520			 struct used_address *used_address,
2521			 unsigned int allowed_msghdr_flags)
2522{
2523	struct sockaddr_storage address;
2524	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2525	ssize_t err;
2526
2527	msg_sys->msg_name = &address;
2528
2529	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2530	if (err < 0)
2531		return err;
2532
2533	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2534				allowed_msghdr_flags);
2535	kfree(iov);
2536	return err;
2537}
2538
2539/*
2540 *	BSD sendmsg interface
2541 */
2542long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2543			unsigned int flags)
2544{
2545	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2546}
2547
2548long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2549		   bool forbid_cmsg_compat)
2550{
2551	int fput_needed, err;
2552	struct msghdr msg_sys;
2553	struct socket *sock;
2554
2555	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2556		return -EINVAL;
2557
2558	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2559	if (!sock)
2560		goto out;
2561
2562	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2563
2564	fput_light(sock->file, fput_needed);
2565out:
2566	return err;
2567}
2568
2569SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2570{
2571	return __sys_sendmsg(fd, msg, flags, true);
 
 
2572}
2573
2574/*
2575 *	Linux sendmmsg interface
2576 */
2577
2578int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2579		   unsigned int flags, bool forbid_cmsg_compat)
2580{
2581	int fput_needed, err, datagrams;
2582	struct socket *sock;
2583	struct mmsghdr __user *entry;
2584	struct compat_mmsghdr __user *compat_entry;
2585	struct msghdr msg_sys;
2586	struct used_address used_address;
2587	unsigned int oflags = flags;
2588
2589	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2590		return -EINVAL;
2591
2592	if (vlen > UIO_MAXIOV)
2593		vlen = UIO_MAXIOV;
2594
2595	datagrams = 0;
2596
2597	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2598	if (!sock)
2599		return err;
2600
2601	used_address.name_len = UINT_MAX;
2602	entry = mmsg;
2603	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2604	err = 0;
2605	flags |= MSG_BATCH;
2606
2607	while (datagrams < vlen) {
2608		if (datagrams == vlen - 1)
2609			flags = oflags;
2610
2611		if (MSG_CMSG_COMPAT & flags) {
2612			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2613					     &msg_sys, flags, &used_address, MSG_EOR);
2614			if (err < 0)
2615				break;
2616			err = __put_user(err, &compat_entry->msg_len);
2617			++compat_entry;
2618		} else {
2619			err = ___sys_sendmsg(sock,
2620					     (struct user_msghdr __user *)entry,
2621					     &msg_sys, flags, &used_address, MSG_EOR);
2622			if (err < 0)
2623				break;
2624			err = put_user(err, &entry->msg_len);
2625			++entry;
2626		}
2627
2628		if (err)
2629			break;
2630		++datagrams;
2631		if (msg_data_left(&msg_sys))
2632			break;
2633		cond_resched();
2634	}
2635
2636	fput_light(sock->file, fput_needed);
2637
2638	/* We only return an error if no datagrams were able to be sent */
2639	if (datagrams != 0)
2640		return datagrams;
2641
2642	return err;
2643}
2644
2645SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2646		unsigned int, vlen, unsigned int, flags)
2647{
2648	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
 
 
2649}
2650
2651int recvmsg_copy_msghdr(struct msghdr *msg,
2652			struct user_msghdr __user *umsg, unsigned flags,
2653			struct sockaddr __user **uaddr,
2654			struct iovec **iov)
2655{
 
 
 
 
 
 
2656	ssize_t err;
2657
2658	if (MSG_CMSG_COMPAT & flags) {
2659		struct compat_msghdr __user *msg_compat;
 
 
 
 
 
 
2660
2661		msg_compat = (struct compat_msghdr __user *) umsg;
2662		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2663	} else {
2664		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2665	}
2666	if (err < 0)
2667		return err;
2668
2669	return 0;
2670}
2671
2672static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2673			   struct user_msghdr __user *msg,
2674			   struct sockaddr __user *uaddr,
2675			   unsigned int flags, int nosec)
2676{
2677	struct compat_msghdr __user *msg_compat =
2678					(struct compat_msghdr __user *) msg;
2679	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2680	struct sockaddr_storage addr;
2681	unsigned long cmsg_ptr;
2682	int len;
2683	ssize_t err;
2684
2685	msg_sys->msg_name = &addr;
2686	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2687	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2688
2689	/* We assume all kernel code knows the size of sockaddr_storage */
2690	msg_sys->msg_namelen = 0;
2691
2692	if (sock->file->f_flags & O_NONBLOCK)
2693		flags |= MSG_DONTWAIT;
2694
2695	if (unlikely(nosec))
2696		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2697	else
2698		err = sock_recvmsg(sock, msg_sys, flags);
2699
2700	if (err < 0)
2701		goto out;
2702	len = err;
2703
2704	if (uaddr != NULL) {
2705		err = move_addr_to_user(&addr,
2706					msg_sys->msg_namelen, uaddr,
2707					uaddr_len);
2708		if (err < 0)
2709			goto out;
2710	}
2711	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2712			 COMPAT_FLAGS(msg));
2713	if (err)
2714		goto out;
2715	if (MSG_CMSG_COMPAT & flags)
2716		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2717				 &msg_compat->msg_controllen);
2718	else
2719		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2720				 &msg->msg_controllen);
2721	if (err)
2722		goto out;
2723	err = len;
2724out:
2725	return err;
2726}
2727
2728static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2729			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2730{
2731	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2732	/* user mode address pointers */
2733	struct sockaddr __user *uaddr;
2734	ssize_t err;
2735
2736	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2737	if (err < 0)
2738		return err;
2739
2740	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2741	kfree(iov);
2742	return err;
2743}
2744
2745/*
2746 *	BSD recvmsg interface
2747 */
2748
2749long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2750			struct user_msghdr __user *umsg,
2751			struct sockaddr __user *uaddr, unsigned int flags)
2752{
2753	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2754}
2755
2756long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2757		   bool forbid_cmsg_compat)
2758{
2759	int fput_needed, err;
2760	struct msghdr msg_sys;
2761	struct socket *sock;
2762
2763	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2764		return -EINVAL;
2765
2766	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2767	if (!sock)
2768		goto out;
2769
2770	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2771
2772	fput_light(sock->file, fput_needed);
2773out:
2774	return err;
2775}
2776
2777SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2778		unsigned int, flags)
2779{
2780	return __sys_recvmsg(fd, msg, flags, true);
 
 
2781}
2782
2783/*
2784 *     Linux recvmmsg interface
2785 */
2786
2787static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2788			  unsigned int vlen, unsigned int flags,
2789			  struct timespec64 *timeout)
2790{
2791	int fput_needed, err, datagrams;
2792	struct socket *sock;
2793	struct mmsghdr __user *entry;
2794	struct compat_mmsghdr __user *compat_entry;
2795	struct msghdr msg_sys;
2796	struct timespec64 end_time;
2797	struct timespec64 timeout64;
2798
2799	if (timeout &&
2800	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2801				    timeout->tv_nsec))
2802		return -EINVAL;
2803
2804	datagrams = 0;
2805
2806	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2807	if (!sock)
2808		return err;
2809
2810	if (likely(!(flags & MSG_ERRQUEUE))) {
2811		err = sock_error(sock->sk);
2812		if (err) {
2813			datagrams = err;
2814			goto out_put;
2815		}
2816	}
2817
2818	entry = mmsg;
2819	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2820
2821	while (datagrams < vlen) {
2822		/*
2823		 * No need to ask LSM for more than the first datagram.
2824		 */
2825		if (MSG_CMSG_COMPAT & flags) {
2826			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2827					     &msg_sys, flags & ~MSG_WAITFORONE,
2828					     datagrams);
2829			if (err < 0)
2830				break;
2831			err = __put_user(err, &compat_entry->msg_len);
2832			++compat_entry;
2833		} else {
2834			err = ___sys_recvmsg(sock,
2835					     (struct user_msghdr __user *)entry,
2836					     &msg_sys, flags & ~MSG_WAITFORONE,
2837					     datagrams);
2838			if (err < 0)
2839				break;
2840			err = put_user(err, &entry->msg_len);
2841			++entry;
2842		}
2843
2844		if (err)
2845			break;
2846		++datagrams;
2847
2848		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2849		if (flags & MSG_WAITFORONE)
2850			flags |= MSG_DONTWAIT;
2851
2852		if (timeout) {
2853			ktime_get_ts64(&timeout64);
2854			*timeout = timespec64_sub(end_time, timeout64);
 
2855			if (timeout->tv_sec < 0) {
2856				timeout->tv_sec = timeout->tv_nsec = 0;
2857				break;
2858			}
2859
2860			/* Timeout, return less than vlen datagrams */
2861			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2862				break;
2863		}
2864
2865		/* Out of band data, return right away */
2866		if (msg_sys.msg_flags & MSG_OOB)
2867			break;
2868		cond_resched();
2869	}
2870
2871	if (err == 0)
2872		goto out_put;
2873
2874	if (datagrams == 0) {
2875		datagrams = err;
2876		goto out_put;
2877	}
2878
2879	/*
2880	 * We may return less entries than requested (vlen) if the
2881	 * sock is non block and there aren't enough datagrams...
2882	 */
2883	if (err != -EAGAIN) {
2884		/*
2885		 * ... or  if recvmsg returns an error after we
2886		 * received some datagrams, where we record the
2887		 * error to return on the next call or if the
2888		 * app asks about it using getsockopt(SO_ERROR).
2889		 */
2890		sock->sk->sk_err = -err;
2891	}
2892out_put:
2893	fput_light(sock->file, fput_needed);
2894
2895	return datagrams;
2896}
2897
2898int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2899		   unsigned int vlen, unsigned int flags,
2900		   struct __kernel_timespec __user *timeout,
2901		   struct old_timespec32 __user *timeout32)
2902{
2903	int datagrams;
2904	struct timespec64 timeout_sys;
 
 
 
2905
2906	if (timeout && get_timespec64(&timeout_sys, timeout))
2907		return -EFAULT;
2908
2909	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2910		return -EFAULT;
2911
2912	if (!timeout && !timeout32)
2913		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2914
2915	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2916
2917	if (datagrams <= 0)
2918		return datagrams;
2919
2920	if (timeout && put_timespec64(&timeout_sys, timeout))
2921		datagrams = -EFAULT;
2922
2923	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2924		datagrams = -EFAULT;
2925
2926	return datagrams;
2927}
2928
2929SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2930		unsigned int, vlen, unsigned int, flags,
2931		struct __kernel_timespec __user *, timeout)
2932{
2933	if (flags & MSG_CMSG_COMPAT)
2934		return -EINVAL;
2935
2936	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2937}
2938
2939#ifdef CONFIG_COMPAT_32BIT_TIME
2940SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2941		unsigned int, vlen, unsigned int, flags,
2942		struct old_timespec32 __user *, timeout)
2943{
2944	if (flags & MSG_CMSG_COMPAT)
2945		return -EINVAL;
2946
2947	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2948}
2949#endif
2950
2951#ifdef __ARCH_WANT_SYS_SOCKETCALL
2952/* Argument list sizes for sys_socketcall */
2953#define AL(x) ((x) * sizeof(unsigned long))
2954static const unsigned char nargs[21] = {
2955	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2956	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2957	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2958	AL(4), AL(5), AL(4)
2959};
2960
2961#undef AL
2962
2963/*
2964 *	System call vectors.
2965 *
2966 *	Argument checking cleaned up. Saved 20% in size.
2967 *  This function doesn't need to set the kernel lock because
2968 *  it is set by the callees.
2969 */
2970
2971SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2972{
2973	unsigned long a[AUDITSC_ARGS];
2974	unsigned long a0, a1;
2975	int err;
2976	unsigned int len;
2977
2978	if (call < 1 || call > SYS_SENDMMSG)
2979		return -EINVAL;
2980	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2981
2982	len = nargs[call];
2983	if (len > sizeof(a))
2984		return -EINVAL;
2985
2986	/* copy_from_user should be SMP safe. */
2987	if (copy_from_user(a, args, len))
2988		return -EFAULT;
2989
2990	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2991	if (err)
2992		return err;
2993
2994	a0 = a[0];
2995	a1 = a[1];
2996
2997	switch (call) {
2998	case SYS_SOCKET:
2999		err = __sys_socket(a0, a1, a[2]);
3000		break;
3001	case SYS_BIND:
3002		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3003		break;
3004	case SYS_CONNECT:
3005		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3006		break;
3007	case SYS_LISTEN:
3008		err = __sys_listen(a0, a1);
3009		break;
3010	case SYS_ACCEPT:
3011		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3012				    (int __user *)a[2], 0);
3013		break;
3014	case SYS_GETSOCKNAME:
3015		err =
3016		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3017				      (int __user *)a[2]);
3018		break;
3019	case SYS_GETPEERNAME:
3020		err =
3021		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3022				      (int __user *)a[2]);
3023		break;
3024	case SYS_SOCKETPAIR:
3025		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3026		break;
3027	case SYS_SEND:
3028		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3029				   NULL, 0);
3030		break;
3031	case SYS_SENDTO:
3032		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3033				   (struct sockaddr __user *)a[4], a[5]);
3034		break;
3035	case SYS_RECV:
3036		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3037				     NULL, NULL);
3038		break;
3039	case SYS_RECVFROM:
3040		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3041				     (struct sockaddr __user *)a[4],
3042				     (int __user *)a[5]);
3043		break;
3044	case SYS_SHUTDOWN:
3045		err = __sys_shutdown(a0, a1);
3046		break;
3047	case SYS_SETSOCKOPT:
3048		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3049				       a[4]);
3050		break;
3051	case SYS_GETSOCKOPT:
3052		err =
3053		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3054				     (int __user *)a[4]);
3055		break;
3056	case SYS_SENDMSG:
3057		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3058				    a[2], true);
3059		break;
3060	case SYS_SENDMMSG:
3061		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3062				     a[3], true);
3063		break;
3064	case SYS_RECVMSG:
3065		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3066				    a[2], true);
3067		break;
3068	case SYS_RECVMMSG:
3069		if (IS_ENABLED(CONFIG_64BIT))
3070			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3071					     a[2], a[3],
3072					     (struct __kernel_timespec __user *)a[4],
3073					     NULL);
3074		else
3075			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3076					     a[2], a[3], NULL,
3077					     (struct old_timespec32 __user *)a[4]);
3078		break;
3079	case SYS_ACCEPT4:
3080		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3081				    (int __user *)a[2], a[3]);
3082		break;
3083	default:
3084		err = -EINVAL;
3085		break;
3086	}
3087	return err;
3088}
3089
3090#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3091
3092/**
3093 *	sock_register - add a socket protocol handler
3094 *	@ops: description of protocol
3095 *
3096 *	This function is called by a protocol handler that wants to
3097 *	advertise its address family, and have it linked into the
3098 *	socket interface. The value ops->family corresponds to the
3099 *	socket system call protocol family.
3100 */
3101int sock_register(const struct net_proto_family *ops)
3102{
3103	int err;
3104
3105	if (ops->family >= NPROTO) {
3106		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3107		return -ENOBUFS;
3108	}
3109
3110	spin_lock(&net_family_lock);
3111	if (rcu_dereference_protected(net_families[ops->family],
3112				      lockdep_is_held(&net_family_lock)))
3113		err = -EEXIST;
3114	else {
3115		rcu_assign_pointer(net_families[ops->family], ops);
3116		err = 0;
3117	}
3118	spin_unlock(&net_family_lock);
3119
3120	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3121	return err;
3122}
3123EXPORT_SYMBOL(sock_register);
3124
3125/**
3126 *	sock_unregister - remove a protocol handler
3127 *	@family: protocol family to remove
3128 *
3129 *	This function is called by a protocol handler that wants to
3130 *	remove its address family, and have it unlinked from the
3131 *	new socket creation.
3132 *
3133 *	If protocol handler is a module, then it can use module reference
3134 *	counts to protect against new references. If protocol handler is not
3135 *	a module then it needs to provide its own protection in
3136 *	the ops->create routine.
3137 */
3138void sock_unregister(int family)
3139{
3140	BUG_ON(family < 0 || family >= NPROTO);
3141
3142	spin_lock(&net_family_lock);
3143	RCU_INIT_POINTER(net_families[family], NULL);
3144	spin_unlock(&net_family_lock);
3145
3146	synchronize_rcu();
3147
3148	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3149}
3150EXPORT_SYMBOL(sock_unregister);
3151
3152bool sock_is_registered(int family)
3153{
3154	return family < NPROTO && rcu_access_pointer(net_families[family]);
3155}
3156
3157static int __init sock_init(void)
3158{
3159	int err;
3160	/*
3161	 *      Initialize the network sysctl infrastructure.
3162	 */
3163	err = net_sysctl_init();
3164	if (err)
3165		goto out;
3166
3167	/*
3168	 *      Initialize skbuff SLAB cache
3169	 */
3170	skb_init();
3171
3172	/*
3173	 *      Initialize the protocols module.
3174	 */
3175
3176	init_inodecache();
3177
3178	err = register_filesystem(&sock_fs_type);
3179	if (err)
3180		goto out;
3181	sock_mnt = kern_mount(&sock_fs_type);
3182	if (IS_ERR(sock_mnt)) {
3183		err = PTR_ERR(sock_mnt);
3184		goto out_mount;
3185	}
3186
3187	/* The real protocol initialization is performed in later initcalls.
3188	 */
3189
3190#ifdef CONFIG_NETFILTER
3191	err = netfilter_init();
3192	if (err)
3193		goto out;
3194#endif
3195
3196	ptp_classifier_init();
3197
3198out:
3199	return err;
3200
3201out_mount:
3202	unregister_filesystem(&sock_fs_type);
 
3203	goto out;
3204}
3205
3206core_initcall(sock_init);	/* early initcall */
3207
3208#ifdef CONFIG_PROC_FS
3209void socket_seq_show(struct seq_file *seq)
3210{
3211	seq_printf(seq, "sockets: used %d\n",
3212		   sock_inuse_get(seq->private));
 
 
 
 
 
 
 
 
 
3213}
3214#endif				/* CONFIG_PROC_FS */
3215
3216/* Handle the fact that while struct ifreq has the same *layout* on
3217 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3218 * which are handled elsewhere, it still has different *size* due to
3219 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3220 * resulting in struct ifreq being 32 and 40 bytes respectively).
3221 * As a result, if the struct happens to be at the end of a page and
3222 * the next page isn't readable/writable, we get a fault. To prevent
3223 * that, copy back and forth to the full size.
3224 */
3225int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3226{
3227	if (in_compat_syscall()) {
3228		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3229
3230		memset(ifr, 0, sizeof(*ifr));
3231		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3232			return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233
3234		if (ifrdata)
3235			*ifrdata = compat_ptr(ifr32->ifr_data);
3236
3237		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3238	}
 
 
3239
3240	if (copy_from_user(ifr, arg, sizeof(*ifr)))
 
 
 
 
3241		return -EFAULT;
3242
3243	if (ifrdata)
3244		*ifrdata = ifr->ifr_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3245
3246	return 0;
3247}
3248EXPORT_SYMBOL(get_user_ifreq);
3249
3250int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3251{
3252	size_t size = sizeof(*ifr);
 
 
 
 
 
 
 
 
3253
3254	if (in_compat_syscall())
3255		size = sizeof(struct compat_ifreq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3256
3257	if (copy_to_user(arg, ifr, size))
 
3258		return -EFAULT;
3259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3260	return 0;
3261}
3262EXPORT_SYMBOL(put_user_ifreq);
3263
3264#ifdef CONFIG_COMPAT
3265static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3266{
 
3267	compat_uptr_t uptr32;
3268	struct ifreq ifr;
3269	void __user *saved;
3270	int err;
3271
3272	if (get_user_ifreq(&ifr, NULL, uifr32))
 
3273		return -EFAULT;
3274
3275	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3276		return -EFAULT;
3277
3278	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3279	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3280
3281	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3282	if (!err) {
3283		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3284		if (put_user_ifreq(&ifr, uifr32))
3285			err = -EFAULT;
3286	}
3287	return err;
3288}
3289
3290/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3291static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3292				 struct compat_ifreq __user *u_ifreq32)
3293{
3294	struct ifreq ifreq;
3295	void __user *data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3296
3297	if (!is_socket_ioctl_cmd(cmd))
3298		return -ENOTTY;
3299	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3300		return -EFAULT;
3301	ifreq.ifr_data = data;
3302
3303	return dev_ioctl(net, cmd, &ifreq, data, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3304}
3305
3306static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3307			 unsigned int cmd, unsigned long arg)
3308{
3309	void __user *argp = compat_ptr(arg);
3310	struct sock *sk = sock->sk;
3311	struct net *net = sock_net(sk);
3312
3313	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3314		return sock_ioctl(file, cmd, (unsigned long)argp);
3315
3316	switch (cmd) {
 
 
 
 
 
 
 
 
 
3317	case SIOCWANDEV:
3318		return compat_siocwandev(net, argp);
3319	case SIOCGSTAMP_OLD:
3320	case SIOCGSTAMPNS_OLD:
3321		if (!sock->ops->gettstamp)
3322			return -ENOIOCTLCMD;
3323		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3324					    !COMPAT_USE_64BIT_TIME);
3325
3326	case SIOCETHTOOL:
 
 
 
 
 
 
 
3327	case SIOCBONDSLAVEINFOQUERY:
3328	case SIOCBONDINFOQUERY:
3329	case SIOCSHWTSTAMP:
3330	case SIOCGHWTSTAMP:
3331		return compat_ifr_data_ioctl(net, cmd, argp);
3332
3333	case FIOSETOWN:
3334	case SIOCSPGRP:
3335	case FIOGETOWN:
3336	case SIOCGPGRP:
3337	case SIOCBRADDBR:
3338	case SIOCBRDELBR:
3339	case SIOCGIFVLAN:
3340	case SIOCSIFVLAN:
 
 
3341	case SIOCGSKNS:
3342	case SIOCGSTAMP_NEW:
3343	case SIOCGSTAMPNS_NEW:
3344	case SIOCGIFCONF:
3345	case SIOCSIFBR:
3346	case SIOCGIFBR:
3347		return sock_ioctl(file, cmd, arg);
3348
3349	case SIOCGIFFLAGS:
3350	case SIOCSIFFLAGS:
3351	case SIOCGIFMAP:
3352	case SIOCSIFMAP:
3353	case SIOCGIFMETRIC:
3354	case SIOCSIFMETRIC:
3355	case SIOCGIFMTU:
3356	case SIOCSIFMTU:
3357	case SIOCGIFMEM:
3358	case SIOCSIFMEM:
3359	case SIOCGIFHWADDR:
3360	case SIOCSIFHWADDR:
3361	case SIOCADDMULTI:
3362	case SIOCDELMULTI:
3363	case SIOCGIFINDEX:
3364	case SIOCGIFADDR:
3365	case SIOCSIFADDR:
3366	case SIOCSIFHWBROADCAST:
3367	case SIOCDIFADDR:
3368	case SIOCGIFBRDADDR:
3369	case SIOCSIFBRDADDR:
3370	case SIOCGIFDSTADDR:
3371	case SIOCSIFDSTADDR:
3372	case SIOCGIFNETMASK:
3373	case SIOCSIFNETMASK:
3374	case SIOCSIFPFLAGS:
3375	case SIOCGIFPFLAGS:
3376	case SIOCGIFTXQLEN:
3377	case SIOCSIFTXQLEN:
3378	case SIOCBRADDIF:
3379	case SIOCBRDELIF:
3380	case SIOCGIFNAME:
3381	case SIOCSIFNAME:
3382	case SIOCGMIIPHY:
3383	case SIOCGMIIREG:
3384	case SIOCSMIIREG:
3385	case SIOCBONDENSLAVE:
3386	case SIOCBONDRELEASE:
3387	case SIOCBONDSETHWADDR:
3388	case SIOCBONDCHANGEACTIVE:
3389	case SIOCSARP:
3390	case SIOCGARP:
3391	case SIOCDARP:
3392	case SIOCOUTQ:
3393	case SIOCOUTQNSD:
3394	case SIOCATMARK:
3395		return sock_do_ioctl(net, sock, cmd, arg);
3396	}
3397
3398	return -ENOIOCTLCMD;
3399}
3400
3401static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3402			      unsigned long arg)
3403{
3404	struct socket *sock = file->private_data;
3405	int ret = -ENOIOCTLCMD;
3406	struct sock *sk;
3407	struct net *net;
3408
3409	sk = sock->sk;
3410	net = sock_net(sk);
3411
3412	if (sock->ops->compat_ioctl)
3413		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3414
3415	if (ret == -ENOIOCTLCMD &&
3416	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3417		ret = compat_wext_handle_ioctl(net, cmd, arg);
3418
3419	if (ret == -ENOIOCTLCMD)
3420		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3421
3422	return ret;
3423}
3424#endif
3425
3426/**
3427 *	kernel_bind - bind an address to a socket (kernel space)
3428 *	@sock: socket
3429 *	@addr: address
3430 *	@addrlen: length of address
3431 *
3432 *	Returns 0 or an error.
3433 */
3434
3435int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3436{
3437	return sock->ops->bind(sock, addr, addrlen);
3438}
3439EXPORT_SYMBOL(kernel_bind);
3440
3441/**
3442 *	kernel_listen - move socket to listening state (kernel space)
3443 *	@sock: socket
3444 *	@backlog: pending connections queue size
3445 *
3446 *	Returns 0 or an error.
3447 */
3448
3449int kernel_listen(struct socket *sock, int backlog)
3450{
3451	return sock->ops->listen(sock, backlog);
3452}
3453EXPORT_SYMBOL(kernel_listen);
3454
3455/**
3456 *	kernel_accept - accept a connection (kernel space)
3457 *	@sock: listening socket
3458 *	@newsock: new connected socket
3459 *	@flags: flags
3460 *
3461 *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3462 *	If it fails, @newsock is guaranteed to be %NULL.
3463 *	Returns 0 or an error.
3464 */
3465
3466int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3467{
3468	struct sock *sk = sock->sk;
3469	int err;
3470
3471	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3472			       newsock);
3473	if (err < 0)
3474		goto done;
3475
3476	err = sock->ops->accept(sock, *newsock, flags, true);
3477	if (err < 0) {
3478		sock_release(*newsock);
3479		*newsock = NULL;
3480		goto done;
3481	}
3482
3483	(*newsock)->ops = sock->ops;
3484	__module_get((*newsock)->ops->owner);
3485
3486done:
3487	return err;
3488}
3489EXPORT_SYMBOL(kernel_accept);
3490
3491/**
3492 *	kernel_connect - connect a socket (kernel space)
3493 *	@sock: socket
3494 *	@addr: address
3495 *	@addrlen: address length
3496 *	@flags: flags (O_NONBLOCK, ...)
3497 *
3498 *	For datagram sockets, @addr is the address to which datagrams are sent
3499 *	by default, and the only address from which datagrams are received.
3500 *	For stream sockets, attempts to connect to @addr.
3501 *	Returns 0 or an error code.
3502 */
3503
3504int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3505		   int flags)
3506{
3507	return sock->ops->connect(sock, addr, addrlen, flags);
3508}
3509EXPORT_SYMBOL(kernel_connect);
3510
3511/**
3512 *	kernel_getsockname - get the address which the socket is bound (kernel space)
3513 *	@sock: socket
3514 *	@addr: address holder
3515 *
3516 * 	Fills the @addr pointer with the address which the socket is bound.
3517 *	Returns the length of the address in bytes or an error code.
3518 */
3519
3520int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3521{
3522	return sock->ops->getname(sock, addr, 0);
3523}
3524EXPORT_SYMBOL(kernel_getsockname);
3525
3526/**
3527 *	kernel_getpeername - get the address which the socket is connected (kernel space)
3528 *	@sock: socket
3529 *	@addr: address holder
3530 *
3531 * 	Fills the @addr pointer with the address which the socket is connected.
3532 *	Returns the length of the address in bytes or an error code.
3533 */
3534
3535int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
 
3536{
3537	return sock->ops->getname(sock, addr, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3538}
3539EXPORT_SYMBOL(kernel_getpeername);
 
 
 
 
 
 
 
 
 
3540
3541/**
3542 *	kernel_sendpage - send a &page through a socket (kernel space)
3543 *	@sock: socket
3544 *	@page: page
3545 *	@offset: page offset
3546 *	@size: total size in bytes
3547 *	@flags: flags (MSG_DONTWAIT, ...)
3548 *
3549 *	Returns the total amount sent in bytes or an error.
3550 */
3551
3552int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3553		    size_t size, int flags)
3554{
3555	if (sock->ops->sendpage) {
3556		/* Warn in case the improper page to zero-copy send */
3557		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3558		return sock->ops->sendpage(sock, page, offset, size, flags);
3559	}
3560	return sock_no_sendpage(sock, page, offset, size, flags);
3561}
3562EXPORT_SYMBOL(kernel_sendpage);
3563
3564/**
3565 *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3566 *	@sk: sock
3567 *	@page: page
3568 *	@offset: page offset
3569 *	@size: total size in bytes
3570 *	@flags: flags (MSG_DONTWAIT, ...)
3571 *
3572 *	Returns the total amount sent in bytes or an error.
3573 *	Caller must hold @sk.
3574 */
3575
3576int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3577			   size_t size, int flags)
3578{
3579	struct socket *sock = sk->sk_socket;
 
3580
3581	if (sock->ops->sendpage_locked)
3582		return sock->ops->sendpage_locked(sk, page, offset, size,
3583						  flags);
3584
3585	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3586}
3587EXPORT_SYMBOL(kernel_sendpage_locked);
3588
3589/**
3590 *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3591 *	@sock: socket
3592 *	@how: connection part
3593 *
3594 *	Returns 0 or an error.
3595 */
3596
3597int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3598{
3599	return sock->ops->shutdown(sock, how);
3600}
3601EXPORT_SYMBOL(kernel_sock_shutdown);
3602
3603/**
3604 *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3605 *	@sk: socket
3606 *
3607 *	This routine returns the IP overhead imposed by a socket i.e.
3608 *	the length of the underlying IP header, depending on whether
3609 *	this is an IPv4 or IPv6 socket and the length from IP options turned
3610 *	on at the socket. Assumes that the caller has a lock on the socket.
3611 */
3612
3613u32 kernel_sock_ip_overhead(struct sock *sk)
3614{
3615	struct inet_sock *inet;
3616	struct ip_options_rcu *opt;
3617	u32 overhead = 0;
3618#if IS_ENABLED(CONFIG_IPV6)
3619	struct ipv6_pinfo *np;
3620	struct ipv6_txoptions *optv6 = NULL;
3621#endif /* IS_ENABLED(CONFIG_IPV6) */
3622
3623	if (!sk)
3624		return overhead;
3625
3626	switch (sk->sk_family) {
3627	case AF_INET:
3628		inet = inet_sk(sk);
3629		overhead += sizeof(struct iphdr);
3630		opt = rcu_dereference_protected(inet->inet_opt,
3631						sock_owned_by_user(sk));
3632		if (opt)
3633			overhead += opt->opt.optlen;
3634		return overhead;
3635#if IS_ENABLED(CONFIG_IPV6)
3636	case AF_INET6:
3637		np = inet6_sk(sk);
3638		overhead += sizeof(struct ipv6hdr);
3639		if (np)
3640			optv6 = rcu_dereference_protected(np->opt,
3641							  sock_owned_by_user(sk));
3642		if (optv6)
3643			overhead += (optv6->opt_flen + optv6->opt_nflen);
3644		return overhead;
3645#endif /* IS_ENABLED(CONFIG_IPV6) */
3646	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3647		return overhead;
3648	}
3649}
3650EXPORT_SYMBOL(kernel_sock_ip_overhead);