Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
 
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
 
 
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122			      struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126			      unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130			     int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132				struct pipe_inode_info *pipe, size_t len,
 133				unsigned int flags);
 134
 135/*
 136 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *	in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141	.owner =	THIS_MODULE,
 142	.llseek =	no_llseek,
 143	.read_iter =	sock_read_iter,
 144	.write_iter =	sock_write_iter,
 145	.poll =		sock_poll,
 146	.unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148	.compat_ioctl = compat_sock_ioctl,
 149#endif
 150	.mmap =		sock_mmap,
 151	.release =	sock_close,
 152	.fasync =	sock_fasync,
 153	.sendpage =	sock_sendpage,
 154	.splice_write = generic_splice_sendpage,
 155	.splice_read =	sock_splice_read,
 156};
 157
 158/*
 159 *	The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *	Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *	move_addr_to_kernel	-	copy a socket address into kernel space
 179 *	@uaddr: Address in user space
 180 *	@kaddr: Address in kernel space
 181 *	@ulen: Length in user space
 182 *
 183 *	The address is copied into kernel space. If the provided address is
 184 *	too long an error code of -EINVAL is returned. If the copy gives
 185 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191		return -EINVAL;
 192	if (ulen == 0)
 193		return 0;
 194	if (copy_from_user(kaddr, uaddr, ulen))
 195		return -EFAULT;
 196	return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *	move_addr_to_user	-	copy an address to user space
 201 *	@kaddr: kernel space address
 202 *	@klen: length of address in kernel
 203 *	@uaddr: user space address
 204 *	@ulen: pointer to user length field
 205 *
 206 *	The value pointed to by ulen on entry is the buffer length available.
 207 *	This is overwritten with the buffer space used. -EINVAL is returned
 208 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *	is returned if either the buffer or the length field are not
 210 *	accessible.
 211 *	After copying the data up to the limit the user specifies, the true
 212 *	length of the data is written over the length limit the user
 213 *	specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217			     void __user *uaddr, int __user *ulen)
 218{
 219	int err;
 220	int len;
 221
 222	BUG_ON(klen > sizeof(struct sockaddr_storage));
 223	err = get_user(len, ulen);
 224	if (err)
 225		return err;
 226	if (len > klen)
 227		len = klen;
 228	if (len < 0)
 229		return -EINVAL;
 230	if (len) {
 231		if (audit_sockaddr(klen, kaddr))
 232			return -ENOMEM;
 233		if (copy_to_user(uaddr, kaddr, len))
 234			return -EFAULT;
 235	}
 236	/*
 237	 *      "fromlen shall refer to the value before truncation.."
 238	 *                      1003.1g
 239	 */
 240	return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247	struct socket_alloc *ei;
 248	struct socket_wq *wq;
 249
 250	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251	if (!ei)
 252		return NULL;
 253	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254	if (!wq) {
 255		kmem_cache_free(sock_inode_cachep, ei);
 256		return NULL;
 257	}
 258	init_waitqueue_head(&wq->wait);
 259	wq->fasync_list = NULL;
 260	wq->flags = 0;
 261	RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263	ei->socket.state = SS_UNCONNECTED;
 264	ei->socket.flags = 0;
 265	ei->socket.ops = NULL;
 266	ei->socket.sk = NULL;
 267	ei->socket.file = NULL;
 268
 269	return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274	struct socket_alloc *ei;
 275	struct socket_wq *wq;
 276
 277	ei = container_of(inode, struct socket_alloc, vfs_inode);
 278	wq = rcu_dereference_protected(ei->socket.wq, 1);
 279	kfree_rcu(wq, rcu);
 280	kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285	struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287	inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293					      sizeof(struct socket_alloc),
 294					      0,
 295					      (SLAB_HWCACHE_ALIGN |
 296					       SLAB_RECLAIM_ACCOUNT |
 297					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298					      init_once);
 299	if (sock_inode_cachep == NULL)
 300		return -ENOMEM;
 301	return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305	.alloc_inode	= sock_alloc_inode,
 306	.destroy_inode	= sock_destroy_inode,
 307	.statfs		= simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316				d_inode(dentry)->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320	.d_dname  = sockfs_dname,
 321};
 322
 323static int sockfs_xattr_get(const struct xattr_handler *handler,
 324			    struct dentry *dentry, struct inode *inode,
 325			    const char *suffix, void *value, size_t size)
 326{
 327	if (value) {
 328		if (dentry->d_name.len + 1 > size)
 329			return -ERANGE;
 330		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 331	}
 332	return dentry->d_name.len + 1;
 333}
 334
 335#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 336#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 337#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 338
 339static const struct xattr_handler sockfs_xattr_handler = {
 340	.name = XATTR_NAME_SOCKPROTONAME,
 341	.get = sockfs_xattr_get,
 342};
 343
 344static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 345				     struct dentry *dentry, struct inode *inode,
 346				     const char *suffix, const void *value,
 347				     size_t size, int flags)
 348{
 349	/* Handled by LSM. */
 350	return -EAGAIN;
 351}
 352
 353static const struct xattr_handler sockfs_security_xattr_handler = {
 354	.prefix = XATTR_SECURITY_PREFIX,
 355	.set = sockfs_security_xattr_set,
 356};
 357
 358static const struct xattr_handler *sockfs_xattr_handlers[] = {
 359	&sockfs_xattr_handler,
 360	&sockfs_security_xattr_handler,
 361	NULL
 362};
 363
 364static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 365			 int flags, const char *dev_name, void *data)
 366{
 367	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 368				  sockfs_xattr_handlers,
 369				  &sockfs_dentry_operations, SOCKFS_MAGIC);
 
 
 
 
 370}
 371
 372static struct vfsmount *sock_mnt __read_mostly;
 373
 374static struct file_system_type sock_fs_type = {
 375	.name =		"sockfs",
 376	.mount =	sockfs_mount,
 377	.kill_sb =	kill_anon_super,
 378};
 379
 380/*
 381 *	Obtains the first available file descriptor and sets it up for use.
 382 *
 383 *	These functions create file structures and maps them to fd space
 384 *	of the current process. On success it returns file descriptor
 385 *	and file struct implicitly stored in sock->file.
 386 *	Note that another thread may close file descriptor before we return
 387 *	from this function. We use the fact that now we do not refer
 388 *	to socket after mapping. If one day we will need it, this
 389 *	function will increment ref. count on file by 1.
 390 *
 391 *	In any case returned fd MAY BE not valid!
 392 *	This race condition is unavoidable
 393 *	with shared fd spaces, we cannot solve it inside kernel,
 394 *	but we take care of internal coherence yet.
 395 */
 396
 
 
 
 
 
 
 
 
 
 
 
 
 397struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 398{
 399	struct qstr name = { .name = "" };
 400	struct path path;
 401	struct file *file;
 402
 403	if (dname) {
 404		name.name = dname;
 405		name.len = strlen(name.name);
 406	} else if (sock->sk) {
 407		name.name = sock->sk->sk_prot_creator->name;
 408		name.len = strlen(name.name);
 409	}
 410	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 411	if (unlikely(!path.dentry))
 412		return ERR_PTR(-ENOMEM);
 413	path.mnt = mntget(sock_mnt);
 414
 415	d_instantiate(path.dentry, SOCK_INODE(sock));
 416
 417	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 418		  &socket_file_ops);
 419	if (IS_ERR(file)) {
 420		/* drop dentry, keep inode */
 421		ihold(d_inode(path.dentry));
 422		path_put(&path);
 423		return file;
 424	}
 425
 426	sock->file = file;
 427	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 428	file->private_data = sock;
 429	return file;
 430}
 431EXPORT_SYMBOL(sock_alloc_file);
 432
 433static int sock_map_fd(struct socket *sock, int flags)
 434{
 435	struct file *newfile;
 436	int fd = get_unused_fd_flags(flags);
 437	if (unlikely(fd < 0))
 
 438		return fd;
 
 439
 440	newfile = sock_alloc_file(sock, flags, NULL);
 441	if (likely(!IS_ERR(newfile))) {
 442		fd_install(fd, newfile);
 443		return fd;
 444	}
 445
 446	put_unused_fd(fd);
 447	return PTR_ERR(newfile);
 448}
 449
 
 
 
 
 
 
 
 
 450struct socket *sock_from_file(struct file *file, int *err)
 451{
 452	if (file->f_op == &socket_file_ops)
 453		return file->private_data;	/* set in sock_map_fd */
 454
 455	*err = -ENOTSOCK;
 456	return NULL;
 457}
 458EXPORT_SYMBOL(sock_from_file);
 459
 460/**
 461 *	sockfd_lookup - Go from a file number to its socket slot
 462 *	@fd: file handle
 463 *	@err: pointer to an error code return
 464 *
 465 *	The file handle passed in is locked and the socket it is bound
 466 *	too is returned. If an error occurs the err pointer is overwritten
 467 *	with a negative errno code and NULL is returned. The function checks
 468 *	for both invalid handles and passing a handle which is not a socket.
 469 *
 470 *	On a success the socket object pointer is returned.
 471 */
 472
 473struct socket *sockfd_lookup(int fd, int *err)
 474{
 475	struct file *file;
 476	struct socket *sock;
 477
 478	file = fget(fd);
 479	if (!file) {
 480		*err = -EBADF;
 481		return NULL;
 482	}
 483
 484	sock = sock_from_file(file, err);
 485	if (!sock)
 486		fput(file);
 487	return sock;
 488}
 489EXPORT_SYMBOL(sockfd_lookup);
 490
 491static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 492{
 493	struct fd f = fdget(fd);
 494	struct socket *sock;
 495
 496	*err = -EBADF;
 497	if (f.file) {
 498		sock = sock_from_file(f.file, err);
 499		if (likely(sock)) {
 500			*fput_needed = f.flags;
 501			return sock;
 502		}
 503		fdput(f);
 504	}
 505	return NULL;
 506}
 507
 508static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 509				size_t size)
 510{
 511	ssize_t len;
 512	ssize_t used = 0;
 513
 514	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 515	if (len < 0)
 516		return len;
 517	used += len;
 518	if (buffer) {
 519		if (size < used)
 520			return -ERANGE;
 521		buffer += len;
 522	}
 523
 524	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 525	used += len;
 526	if (buffer) {
 527		if (size < used)
 528			return -ERANGE;
 529		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 530		buffer += len;
 531	}
 532
 533	return used;
 534}
 535
 536static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 537{
 538	int err = simple_setattr(dentry, iattr);
 539
 540	if (!err && (iattr->ia_valid & ATTR_UID)) {
 541		struct socket *sock = SOCKET_I(d_inode(dentry));
 542
 543		sock->sk->sk_uid = iattr->ia_uid;
 
 
 
 544	}
 545
 546	return err;
 547}
 548
 549static const struct inode_operations sockfs_inode_ops = {
 550	.listxattr = sockfs_listxattr,
 551	.setattr = sockfs_setattr,
 552};
 553
 554/**
 555 *	sock_alloc	-	allocate a socket
 556 *
 557 *	Allocate a new inode and socket object. The two are bound together
 558 *	and initialised. The socket is then returned. If we are out of inodes
 559 *	NULL is returned.
 560 */
 561
 562struct socket *sock_alloc(void)
 563{
 564	struct inode *inode;
 565	struct socket *sock;
 566
 567	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 568	if (!inode)
 569		return NULL;
 570
 571	sock = SOCKET_I(inode);
 572
 573	kmemcheck_annotate_bitfield(sock, type);
 574	inode->i_ino = get_next_ino();
 575	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 576	inode->i_uid = current_fsuid();
 577	inode->i_gid = current_fsgid();
 578	inode->i_op = &sockfs_inode_ops;
 579
 580	this_cpu_add(sockets_in_use, 1);
 581	return sock;
 582}
 583EXPORT_SYMBOL(sock_alloc);
 584
 585/**
 586 *	sock_release	-	close a socket
 587 *	@sock: socket to close
 588 *
 589 *	The socket is released from the protocol stack if it has a release
 590 *	callback, and the inode is then released if the socket is bound to
 591 *	an inode not a file.
 592 */
 593
 594void sock_release(struct socket *sock)
 595{
 596	if (sock->ops) {
 597		struct module *owner = sock->ops->owner;
 598
 
 
 599		sock->ops->release(sock);
 
 
 
 600		sock->ops = NULL;
 601		module_put(owner);
 602	}
 603
 604	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 605		pr_err("%s: fasync list not empty!\n", __func__);
 606
 607	this_cpu_sub(sockets_in_use, 1);
 608	if (!sock->file) {
 609		iput(SOCK_INODE(sock));
 610		return;
 611	}
 612	sock->file = NULL;
 613}
 
 
 
 
 
 614EXPORT_SYMBOL(sock_release);
 615
 616void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 617{
 618	u8 flags = *tx_flags;
 619
 620	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 621		flags |= SKBTX_HW_TSTAMP;
 622
 623	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 624		flags |= SKBTX_SW_TSTAMP;
 625
 626	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 627		flags |= SKBTX_SCHED_TSTAMP;
 628
 629	*tx_flags = flags;
 630}
 631EXPORT_SYMBOL(__sock_tx_timestamp);
 632
 
 
 
 
 633static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 634{
 635	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 
 
 636	BUG_ON(ret == -EIOCBQUEUED);
 637	return ret;
 638}
 639
 
 
 
 
 
 
 
 
 640int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 641{
 642	int err = security_socket_sendmsg(sock, msg,
 643					  msg_data_left(msg));
 644
 645	return err ?: sock_sendmsg_nosec(sock, msg);
 646}
 647EXPORT_SYMBOL(sock_sendmsg);
 648
 
 
 
 
 
 
 
 
 
 
 
 
 649int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 650		   struct kvec *vec, size_t num, size_t size)
 651{
 652	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 653	return sock_sendmsg(sock, msg);
 654}
 655EXPORT_SYMBOL(kernel_sendmsg);
 656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657/*
 658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 659 */
 660void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 661	struct sk_buff *skb)
 662{
 663	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 664	struct scm_timestamping tss;
 665	int empty = 1;
 
 
 666	struct skb_shared_hwtstamps *shhwtstamps =
 667		skb_hwtstamps(skb);
 668
 669	/* Race occurred between timestamp enabling and packet
 670	   receiving.  Fill in the current time for now. */
 671	if (need_software_tstamp && skb->tstamp == 0)
 672		__net_timestamp(skb);
 
 
 673
 674	if (need_software_tstamp) {
 675		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 676			struct timeval tv;
 677			skb_get_timestamp(skb, &tv);
 678			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 679				 sizeof(tv), &tv);
 
 
 
 
 
 
 
 
 
 680		} else {
 681			struct timespec ts;
 682			skb_get_timestampns(skb, &ts);
 683			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 684				 sizeof(ts), &ts);
 
 
 
 
 
 
 
 
 
 685		}
 686	}
 687
 688	memset(&tss, 0, sizeof(tss));
 689	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 690	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 691		empty = 0;
 692	if (shhwtstamps &&
 693	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 694	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 
 695		empty = 0;
 
 
 
 
 696	if (!empty) {
 697		put_cmsg(msg, SOL_SOCKET,
 698			 SCM_TIMESTAMPING, sizeof(tss), &tss);
 
 
 699
 700		if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
 
 701			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 702				 skb->len, skb->data);
 703	}
 704}
 705EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 706
 707void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 708	struct sk_buff *skb)
 709{
 710	int ack;
 711
 712	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 713		return;
 714	if (!skb->wifi_acked_valid)
 715		return;
 716
 717	ack = skb->wifi_acked;
 718
 719	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 720}
 721EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 722
 723static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 724				   struct sk_buff *skb)
 725{
 726	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 727		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 728			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 729}
 730
 731void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 732	struct sk_buff *skb)
 733{
 734	sock_recv_timestamp(msg, sk, skb);
 735	sock_recv_drops(msg, sk, skb);
 736}
 737EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 738
 
 
 
 
 739static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 740				     int flags)
 741{
 742	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 
 
 743}
 744
 
 
 
 
 
 
 
 
 
 745int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 746{
 747	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 748
 749	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 750}
 751EXPORT_SYMBOL(sock_recvmsg);
 752
 753/**
 754 * kernel_recvmsg - Receive a message from a socket (kernel space)
 755 * @sock:       The socket to receive the message from
 756 * @msg:        Received message
 757 * @vec:        Input s/g array for message data
 758 * @num:        Size of input s/g array
 759 * @size:       Number of bytes to read
 760 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 761 *
 762 * On return the msg structure contains the scatter/gather array passed in the
 763 * vec argument. The array is modified so that it consists of the unfilled
 764 * portion of the original array.
 765 *
 766 * The returned value is the total number of bytes received, or an error.
 767 */
 
 768int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 769		   struct kvec *vec, size_t num, size_t size, int flags)
 770{
 771	mm_segment_t oldfs = get_fs();
 772	int result;
 773
 774	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 775	set_fs(KERNEL_DS);
 776	result = sock_recvmsg(sock, msg, flags);
 777	set_fs(oldfs);
 778	return result;
 779}
 780EXPORT_SYMBOL(kernel_recvmsg);
 781
 782static ssize_t sock_sendpage(struct file *file, struct page *page,
 783			     int offset, size_t size, loff_t *ppos, int more)
 784{
 785	struct socket *sock;
 786	int flags;
 787
 788	sock = file->private_data;
 789
 790	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 791	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 792	flags |= more;
 793
 794	return kernel_sendpage(sock, page, offset, size, flags);
 795}
 796
 797static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 798				struct pipe_inode_info *pipe, size_t len,
 799				unsigned int flags)
 800{
 801	struct socket *sock = file->private_data;
 802
 803	if (unlikely(!sock->ops->splice_read))
 804		return -EINVAL;
 805
 806	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 807}
 808
 809static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 810{
 811	struct file *file = iocb->ki_filp;
 812	struct socket *sock = file->private_data;
 813	struct msghdr msg = {.msg_iter = *to,
 814			     .msg_iocb = iocb};
 815	ssize_t res;
 816
 817	if (file->f_flags & O_NONBLOCK)
 818		msg.msg_flags = MSG_DONTWAIT;
 819
 820	if (iocb->ki_pos != 0)
 821		return -ESPIPE;
 822
 823	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 824		return 0;
 825
 826	res = sock_recvmsg(sock, &msg, msg.msg_flags);
 827	*to = msg.msg_iter;
 828	return res;
 829}
 830
 831static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 832{
 833	struct file *file = iocb->ki_filp;
 834	struct socket *sock = file->private_data;
 835	struct msghdr msg = {.msg_iter = *from,
 836			     .msg_iocb = iocb};
 837	ssize_t res;
 838
 839	if (iocb->ki_pos != 0)
 840		return -ESPIPE;
 841
 842	if (file->f_flags & O_NONBLOCK)
 843		msg.msg_flags = MSG_DONTWAIT;
 844
 845	if (sock->type == SOCK_SEQPACKET)
 846		msg.msg_flags |= MSG_EOR;
 847
 848	res = sock_sendmsg(sock, &msg);
 849	*from = msg.msg_iter;
 850	return res;
 851}
 852
 853/*
 854 * Atomic setting of ioctl hooks to avoid race
 855 * with module unload.
 856 */
 857
 858static DEFINE_MUTEX(br_ioctl_mutex);
 859static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 860
 861void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 862{
 863	mutex_lock(&br_ioctl_mutex);
 864	br_ioctl_hook = hook;
 865	mutex_unlock(&br_ioctl_mutex);
 866}
 867EXPORT_SYMBOL(brioctl_set);
 868
 869static DEFINE_MUTEX(vlan_ioctl_mutex);
 870static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 871
 872void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 873{
 874	mutex_lock(&vlan_ioctl_mutex);
 875	vlan_ioctl_hook = hook;
 876	mutex_unlock(&vlan_ioctl_mutex);
 877}
 878EXPORT_SYMBOL(vlan_ioctl_set);
 879
 880static DEFINE_MUTEX(dlci_ioctl_mutex);
 881static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 882
 883void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 884{
 885	mutex_lock(&dlci_ioctl_mutex);
 886	dlci_ioctl_hook = hook;
 887	mutex_unlock(&dlci_ioctl_mutex);
 888}
 889EXPORT_SYMBOL(dlci_ioctl_set);
 890
 891static long sock_do_ioctl(struct net *net, struct socket *sock,
 892				 unsigned int cmd, unsigned long arg)
 893{
 894	int err;
 895	void __user *argp = (void __user *)arg;
 896
 897	err = sock->ops->ioctl(sock, cmd, arg);
 898
 899	/*
 900	 * If this ioctl is unknown try to hand it down
 901	 * to the NIC driver.
 902	 */
 903	if (err == -ENOIOCTLCMD)
 904		err = dev_ioctl(net, cmd, argp);
 905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906	return err;
 907}
 908
 909/*
 910 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 911 *	what to do with it - that's up to the protocol still.
 912 */
 913
 914static struct ns_common *get_net_ns(struct ns_common *ns)
 
 
 
 
 
 
 
 915{
 916	return &get_net(container_of(ns, struct net, ns))->ns;
 917}
 
 918
 919static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 920{
 921	struct socket *sock;
 922	struct sock *sk;
 923	void __user *argp = (void __user *)arg;
 924	int pid, err;
 925	struct net *net;
 926
 927	sock = file->private_data;
 928	sk = sock->sk;
 929	net = sock_net(sk);
 930	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 931		err = dev_ioctl(net, cmd, argp);
 
 
 
 
 
 
 
 932	} else
 933#ifdef CONFIG_WEXT_CORE
 934	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 935		err = dev_ioctl(net, cmd, argp);
 936	} else
 937#endif
 938		switch (cmd) {
 939		case FIOSETOWN:
 940		case SIOCSPGRP:
 941			err = -EFAULT;
 942			if (get_user(pid, (int __user *)argp))
 943				break;
 944			f_setown(sock->file, pid, 1);
 945			err = 0;
 946			break;
 947		case FIOGETOWN:
 948		case SIOCGPGRP:
 949			err = put_user(f_getown(sock->file),
 950				       (int __user *)argp);
 951			break;
 952		case SIOCGIFBR:
 953		case SIOCSIFBR:
 954		case SIOCBRADDBR:
 955		case SIOCBRDELBR:
 956			err = -ENOPKG;
 957			if (!br_ioctl_hook)
 958				request_module("bridge");
 959
 960			mutex_lock(&br_ioctl_mutex);
 961			if (br_ioctl_hook)
 962				err = br_ioctl_hook(net, cmd, argp);
 963			mutex_unlock(&br_ioctl_mutex);
 964			break;
 965		case SIOCGIFVLAN:
 966		case SIOCSIFVLAN:
 967			err = -ENOPKG;
 968			if (!vlan_ioctl_hook)
 969				request_module("8021q");
 970
 971			mutex_lock(&vlan_ioctl_mutex);
 972			if (vlan_ioctl_hook)
 973				err = vlan_ioctl_hook(net, argp);
 974			mutex_unlock(&vlan_ioctl_mutex);
 975			break;
 976		case SIOCADDDLCI:
 977		case SIOCDELDLCI:
 978			err = -ENOPKG;
 979			if (!dlci_ioctl_hook)
 980				request_module("dlci");
 981
 982			mutex_lock(&dlci_ioctl_mutex);
 983			if (dlci_ioctl_hook)
 984				err = dlci_ioctl_hook(cmd, argp);
 985			mutex_unlock(&dlci_ioctl_mutex);
 986			break;
 987		case SIOCGSKNS:
 988			err = -EPERM;
 989			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
 990				break;
 991
 992			err = open_related_ns(&net->ns, get_net_ns);
 993			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994		default:
 995			err = sock_do_ioctl(net, sock, cmd, arg);
 996			break;
 997		}
 998	return err;
 999}
1000
 
 
 
 
 
 
 
 
 
 
 
 
 
1001int sock_create_lite(int family, int type, int protocol, struct socket **res)
1002{
1003	int err;
1004	struct socket *sock = NULL;
1005
1006	err = security_socket_create(family, type, protocol, 1);
1007	if (err)
1008		goto out;
1009
1010	sock = sock_alloc();
1011	if (!sock) {
1012		err = -ENOMEM;
1013		goto out;
1014	}
1015
1016	sock->type = type;
1017	err = security_socket_post_create(sock, family, type, protocol, 1);
1018	if (err)
1019		goto out_release;
1020
1021out:
1022	*res = sock;
1023	return err;
1024out_release:
1025	sock_release(sock);
1026	sock = NULL;
1027	goto out;
1028}
1029EXPORT_SYMBOL(sock_create_lite);
1030
1031/* No kernel lock held - perfect */
1032static unsigned int sock_poll(struct file *file, poll_table *wait)
1033{
1034	unsigned int busy_flag = 0;
1035	struct socket *sock;
1036
1037	/*
1038	 *      We can't return errors to poll, so it's either yes or no.
1039	 */
1040	sock = file->private_data;
1041
1042	if (sk_can_busy_loop(sock->sk)) {
1043		/* this socket can poll_ll so tell the system call */
1044		busy_flag = POLL_BUSY_LOOP;
1045
1046		/* once, only if requested by syscall */
1047		if (wait && (wait->_key & POLL_BUSY_LOOP))
1048			sk_busy_loop(sock->sk, 1);
 
 
 
1049	}
1050
1051	return busy_flag | sock->ops->poll(file, sock, wait);
1052}
1053
1054static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1055{
1056	struct socket *sock = file->private_data;
1057
1058	return sock->ops->mmap(file, sock, vma);
1059}
1060
1061static int sock_close(struct inode *inode, struct file *filp)
1062{
1063	sock_release(SOCKET_I(inode));
1064	return 0;
1065}
1066
1067/*
1068 *	Update the socket async list
1069 *
1070 *	Fasync_list locking strategy.
1071 *
1072 *	1. fasync_list is modified only under process context socket lock
1073 *	   i.e. under semaphore.
1074 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1075 *	   or under socket lock
1076 */
1077
1078static int sock_fasync(int fd, struct file *filp, int on)
1079{
1080	struct socket *sock = filp->private_data;
1081	struct sock *sk = sock->sk;
1082	struct socket_wq *wq;
1083
1084	if (sk == NULL)
1085		return -EINVAL;
1086
1087	lock_sock(sk);
1088	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1089	fasync_helper(fd, filp, on, &wq->fasync_list);
1090
1091	if (!wq->fasync_list)
1092		sock_reset_flag(sk, SOCK_FASYNC);
1093	else
1094		sock_set_flag(sk, SOCK_FASYNC);
1095
1096	release_sock(sk);
1097	return 0;
1098}
1099
1100/* This function may be called only under rcu_lock */
1101
1102int sock_wake_async(struct socket_wq *wq, int how, int band)
1103{
1104	if (!wq || !wq->fasync_list)
1105		return -1;
1106
1107	switch (how) {
1108	case SOCK_WAKE_WAITD:
1109		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1110			break;
1111		goto call_kill;
1112	case SOCK_WAKE_SPACE:
1113		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1114			break;
1115		/* fall through */
1116	case SOCK_WAKE_IO:
1117call_kill:
1118		kill_fasync(&wq->fasync_list, SIGIO, band);
1119		break;
1120	case SOCK_WAKE_URG:
1121		kill_fasync(&wq->fasync_list, SIGURG, band);
1122	}
1123
1124	return 0;
1125}
1126EXPORT_SYMBOL(sock_wake_async);
1127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128int __sock_create(struct net *net, int family, int type, int protocol,
1129			 struct socket **res, int kern)
1130{
1131	int err;
1132	struct socket *sock;
1133	const struct net_proto_family *pf;
1134
1135	/*
1136	 *      Check protocol is in range
1137	 */
1138	if (family < 0 || family >= NPROTO)
1139		return -EAFNOSUPPORT;
1140	if (type < 0 || type >= SOCK_MAX)
1141		return -EINVAL;
1142
1143	/* Compatibility.
1144
1145	   This uglymoron is moved from INET layer to here to avoid
1146	   deadlock in module load.
1147	 */
1148	if (family == PF_INET && type == SOCK_PACKET) {
1149		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1150			     current->comm);
1151		family = PF_PACKET;
1152	}
1153
1154	err = security_socket_create(family, type, protocol, kern);
1155	if (err)
1156		return err;
1157
1158	/*
1159	 *	Allocate the socket and allow the family to set things up. if
1160	 *	the protocol is 0, the family is instructed to select an appropriate
1161	 *	default.
1162	 */
1163	sock = sock_alloc();
1164	if (!sock) {
1165		net_warn_ratelimited("socket: no more sockets\n");
1166		return -ENFILE;	/* Not exactly a match, but its the
1167				   closest posix thing */
1168	}
1169
1170	sock->type = type;
1171
1172#ifdef CONFIG_MODULES
1173	/* Attempt to load a protocol module if the find failed.
1174	 *
1175	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1176	 * requested real, full-featured networking support upon configuration.
1177	 * Otherwise module support will break!
1178	 */
1179	if (rcu_access_pointer(net_families[family]) == NULL)
1180		request_module("net-pf-%d", family);
1181#endif
1182
1183	rcu_read_lock();
1184	pf = rcu_dereference(net_families[family]);
1185	err = -EAFNOSUPPORT;
1186	if (!pf)
1187		goto out_release;
1188
1189	/*
1190	 * We will call the ->create function, that possibly is in a loadable
1191	 * module, so we have to bump that loadable module refcnt first.
1192	 */
1193	if (!try_module_get(pf->owner))
1194		goto out_release;
1195
1196	/* Now protected by module ref count */
1197	rcu_read_unlock();
1198
1199	err = pf->create(net, sock, protocol, kern);
1200	if (err < 0)
1201		goto out_module_put;
1202
1203	/*
1204	 * Now to bump the refcnt of the [loadable] module that owns this
1205	 * socket at sock_release time we decrement its refcnt.
1206	 */
1207	if (!try_module_get(sock->ops->owner))
1208		goto out_module_busy;
1209
1210	/*
1211	 * Now that we're done with the ->create function, the [loadable]
1212	 * module can have its refcnt decremented
1213	 */
1214	module_put(pf->owner);
1215	err = security_socket_post_create(sock, family, type, protocol, kern);
1216	if (err)
1217		goto out_sock_release;
1218	*res = sock;
1219
1220	return 0;
1221
1222out_module_busy:
1223	err = -EAFNOSUPPORT;
1224out_module_put:
1225	sock->ops = NULL;
1226	module_put(pf->owner);
1227out_sock_release:
1228	sock_release(sock);
1229	return err;
1230
1231out_release:
1232	rcu_read_unlock();
1233	goto out_sock_release;
1234}
1235EXPORT_SYMBOL(__sock_create);
1236
 
 
 
 
 
 
 
 
 
 
 
1237int sock_create(int family, int type, int protocol, struct socket **res)
1238{
1239	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1240}
1241EXPORT_SYMBOL(sock_create);
1242
 
 
 
 
 
 
 
 
 
 
 
 
1243int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1244{
1245	return __sock_create(net, family, type, protocol, res, 1);
1246}
1247EXPORT_SYMBOL(sock_create_kern);
1248
1249SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1250{
1251	int retval;
1252	struct socket *sock;
1253	int flags;
1254
1255	/* Check the SOCK_* constants for consistency.  */
1256	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1257	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1258	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1259	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1260
1261	flags = type & ~SOCK_TYPE_MASK;
1262	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263		return -EINVAL;
1264	type &= SOCK_TYPE_MASK;
1265
1266	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268
1269	retval = sock_create(family, type, protocol, &sock);
1270	if (retval < 0)
1271		goto out;
1272
1273	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1274	if (retval < 0)
1275		goto out_release;
1276
1277out:
1278	/* It may be already another descriptor 8) Not kernel problem. */
1279	return retval;
1280
1281out_release:
1282	sock_release(sock);
1283	return retval;
1284}
1285
1286/*
1287 *	Create a pair of connected sockets.
1288 */
1289
1290SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1291		int __user *, usockvec)
1292{
1293	struct socket *sock1, *sock2;
1294	int fd1, fd2, err;
1295	struct file *newfile1, *newfile2;
1296	int flags;
1297
1298	flags = type & ~SOCK_TYPE_MASK;
1299	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1300		return -EINVAL;
1301	type &= SOCK_TYPE_MASK;
1302
1303	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305
1306	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307	 * Obtain the first socket and check if the underlying protocol
1308	 * supports the socketpair call.
1309	 */
1310
1311	err = sock_create(family, type, protocol, &sock1);
1312	if (err < 0)
1313		goto out;
1314
1315	err = sock_create(family, type, protocol, &sock2);
1316	if (err < 0)
1317		goto out_release_1;
1318
1319	err = sock1->ops->socketpair(sock1, sock2);
1320	if (err < 0)
1321		goto out_release_both;
1322
1323	fd1 = get_unused_fd_flags(flags);
1324	if (unlikely(fd1 < 0)) {
1325		err = fd1;
1326		goto out_release_both;
 
1327	}
1328
1329	fd2 = get_unused_fd_flags(flags);
1330	if (unlikely(fd2 < 0)) {
1331		err = fd2;
1332		goto out_put_unused_1;
 
1333	}
1334
1335	newfile1 = sock_alloc_file(sock1, flags, NULL);
1336	if (IS_ERR(newfile1)) {
1337		err = PTR_ERR(newfile1);
1338		goto out_put_unused_both;
 
1339	}
1340
1341	newfile2 = sock_alloc_file(sock2, flags, NULL);
1342	if (IS_ERR(newfile2)) {
1343		err = PTR_ERR(newfile2);
1344		goto out_fput_1;
 
1345	}
1346
1347	err = put_user(fd1, &usockvec[0]);
1348	if (err)
1349		goto out_fput_both;
1350
1351	err = put_user(fd2, &usockvec[1]);
1352	if (err)
1353		goto out_fput_both;
1354
1355	audit_fd_pair(fd1, fd2);
1356
1357	fd_install(fd1, newfile1);
1358	fd_install(fd2, newfile2);
1359	/* fd1 and fd2 may be already another descriptors.
1360	 * Not kernel problem.
1361	 */
1362
1363	return 0;
1364
1365out_fput_both:
1366	fput(newfile2);
1367	fput(newfile1);
1368	put_unused_fd(fd2);
1369	put_unused_fd(fd1);
1370	goto out;
1371
1372out_fput_1:
1373	fput(newfile1);
1374	put_unused_fd(fd2);
1375	put_unused_fd(fd1);
1376	sock_release(sock2);
1377	goto out;
1378
1379out_put_unused_both:
1380	put_unused_fd(fd2);
1381out_put_unused_1:
1382	put_unused_fd(fd1);
1383out_release_both:
1384	sock_release(sock2);
1385out_release_1:
1386	sock_release(sock1);
1387out:
1388	return err;
1389}
1390
 
 
 
 
 
 
1391/*
1392 *	Bind a name to a socket. Nothing much to do here since it's
1393 *	the protocol's responsibility to handle the local address.
1394 *
1395 *	We move the socket address to kernel space before we call
1396 *	the protocol layer (having also checked the address is ok).
1397 */
1398
1399SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1400{
1401	struct socket *sock;
1402	struct sockaddr_storage address;
1403	int err, fput_needed;
1404
1405	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1406	if (sock) {
1407		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1408		if (err >= 0) {
1409			err = security_socket_bind(sock,
1410						   (struct sockaddr *)&address,
1411						   addrlen);
1412			if (!err)
1413				err = sock->ops->bind(sock,
1414						      (struct sockaddr *)
1415						      &address, addrlen);
1416		}
1417		fput_light(sock->file, fput_needed);
1418	}
1419	return err;
1420}
1421
 
 
 
 
 
1422/*
1423 *	Perform a listen. Basically, we allow the protocol to do anything
1424 *	necessary for a listen, and if that works, we mark the socket as
1425 *	ready for listening.
1426 */
1427
1428SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1429{
1430	struct socket *sock;
1431	int err, fput_needed;
1432	int somaxconn;
1433
1434	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1435	if (sock) {
1436		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1437		if ((unsigned int)backlog > somaxconn)
1438			backlog = somaxconn;
1439
1440		err = security_socket_listen(sock, backlog);
1441		if (!err)
1442			err = sock->ops->listen(sock, backlog);
1443
1444		fput_light(sock->file, fput_needed);
1445	}
1446	return err;
1447}
1448
 
 
 
 
 
1449/*
1450 *	For accept, we attempt to create a new socket, set up the link
1451 *	with the client, wake up the client, then return the new
1452 *	connected fd. We collect the address of the connector in kernel
1453 *	space and move it to user at the very end. This is unclean because
1454 *	we open the socket then return an error.
1455 *
1456 *	1003.1g adds the ability to recvmsg() to query connection pending
1457 *	status to recvmsg. We need to add that support in a way thats
1458 *	clean when we restucture accept also.
1459 */
1460
1461SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1462		int __user *, upeer_addrlen, int, flags)
1463{
1464	struct socket *sock, *newsock;
1465	struct file *newfile;
1466	int err, len, newfd, fput_needed;
1467	struct sockaddr_storage address;
1468
1469	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1470		return -EINVAL;
1471
1472	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1473		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1474
1475	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476	if (!sock)
1477		goto out;
1478
1479	err = -ENFILE;
1480	newsock = sock_alloc();
1481	if (!newsock)
1482		goto out_put;
1483
1484	newsock->type = sock->type;
1485	newsock->ops = sock->ops;
1486
1487	/*
1488	 * We don't need try_module_get here, as the listening socket (sock)
1489	 * has the protocol module (sock->ops->owner) held.
1490	 */
1491	__module_get(newsock->ops->owner);
1492
1493	newfd = get_unused_fd_flags(flags);
1494	if (unlikely(newfd < 0)) {
1495		err = newfd;
1496		sock_release(newsock);
1497		goto out_put;
1498	}
1499	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1500	if (IS_ERR(newfile)) {
1501		err = PTR_ERR(newfile);
1502		put_unused_fd(newfd);
1503		sock_release(newsock);
1504		goto out_put;
1505	}
1506
1507	err = security_socket_accept(sock, newsock);
1508	if (err)
1509		goto out_fd;
1510
1511	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1512	if (err < 0)
1513		goto out_fd;
1514
1515	if (upeer_sockaddr) {
1516		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1517					  &len, 2) < 0) {
 
1518			err = -ECONNABORTED;
1519			goto out_fd;
1520		}
1521		err = move_addr_to_user(&address,
1522					len, upeer_sockaddr, upeer_addrlen);
1523		if (err < 0)
1524			goto out_fd;
1525	}
1526
1527	/* File flags are not inherited via accept() unlike another OSes. */
1528
1529	fd_install(newfd, newfile);
1530	err = newfd;
1531
1532out_put:
1533	fput_light(sock->file, fput_needed);
1534out:
1535	return err;
1536out_fd:
1537	fput(newfile);
1538	put_unused_fd(newfd);
1539	goto out_put;
1540}
1541
 
 
 
 
 
 
1542SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1543		int __user *, upeer_addrlen)
1544{
1545	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1546}
1547
1548/*
1549 *	Attempt to connect to a socket with the server address.  The address
1550 *	is in user space so we verify it is OK and move it to kernel space.
1551 *
1552 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1553 *	break bindings
1554 *
1555 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1556 *	other SEQPACKET protocols that take time to connect() as it doesn't
1557 *	include the -EINPROGRESS status for such sockets.
1558 */
1559
1560SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1561		int, addrlen)
1562{
1563	struct socket *sock;
1564	struct sockaddr_storage address;
1565	int err, fput_needed;
1566
1567	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1568	if (!sock)
1569		goto out;
1570	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1571	if (err < 0)
1572		goto out_put;
1573
1574	err =
1575	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1576	if (err)
1577		goto out_put;
1578
1579	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1580				 sock->file->f_flags);
1581out_put:
1582	fput_light(sock->file, fput_needed);
1583out:
1584	return err;
1585}
1586
 
 
 
 
 
 
1587/*
1588 *	Get the local address ('name') of a socket object. Move the obtained
1589 *	name to user space.
1590 */
1591
1592SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1593		int __user *, usockaddr_len)
1594{
1595	struct socket *sock;
1596	struct sockaddr_storage address;
1597	int len, err, fput_needed;
1598
1599	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600	if (!sock)
1601		goto out;
1602
1603	err = security_socket_getsockname(sock);
1604	if (err)
1605		goto out_put;
1606
1607	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1608	if (err)
1609		goto out_put;
1610	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
 
1611
1612out_put:
1613	fput_light(sock->file, fput_needed);
1614out:
1615	return err;
1616}
1617
 
 
 
 
 
 
1618/*
1619 *	Get the remote address ('name') of a socket object. Move the obtained
1620 *	name to user space.
1621 */
1622
1623SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1624		int __user *, usockaddr_len)
1625{
1626	struct socket *sock;
1627	struct sockaddr_storage address;
1628	int len, err, fput_needed;
1629
1630	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631	if (sock != NULL) {
1632		err = security_socket_getpeername(sock);
1633		if (err) {
1634			fput_light(sock->file, fput_needed);
1635			return err;
1636		}
1637
1638		err =
1639		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1640				       1);
1641		if (!err)
1642			err = move_addr_to_user(&address, len, usockaddr,
1643						usockaddr_len);
1644		fput_light(sock->file, fput_needed);
1645	}
1646	return err;
1647}
1648
 
 
 
 
 
 
1649/*
1650 *	Send a datagram to a given address. We move the address into kernel
1651 *	space and check the user space data area is readable before invoking
1652 *	the protocol.
1653 */
1654
1655SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1656		unsigned int, flags, struct sockaddr __user *, addr,
1657		int, addr_len)
1658{
1659	struct socket *sock;
1660	struct sockaddr_storage address;
1661	int err;
1662	struct msghdr msg;
1663	struct iovec iov;
1664	int fput_needed;
1665
1666	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1667	if (unlikely(err))
1668		return err;
1669	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670	if (!sock)
1671		goto out;
1672
1673	msg.msg_name = NULL;
1674	msg.msg_control = NULL;
1675	msg.msg_controllen = 0;
1676	msg.msg_namelen = 0;
1677	if (addr) {
1678		err = move_addr_to_kernel(addr, addr_len, &address);
1679		if (err < 0)
1680			goto out_put;
1681		msg.msg_name = (struct sockaddr *)&address;
1682		msg.msg_namelen = addr_len;
1683	}
1684	if (sock->file->f_flags & O_NONBLOCK)
1685		flags |= MSG_DONTWAIT;
1686	msg.msg_flags = flags;
1687	err = sock_sendmsg(sock, &msg);
1688
1689out_put:
1690	fput_light(sock->file, fput_needed);
1691out:
1692	return err;
1693}
1694
 
 
 
 
 
 
 
1695/*
1696 *	Send a datagram down a socket.
1697 */
1698
1699SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1700		unsigned int, flags)
1701{
1702	return sys_sendto(fd, buff, len, flags, NULL, 0);
1703}
1704
1705/*
1706 *	Receive a frame from the socket and optionally record the address of the
1707 *	sender. We verify the buffers are writable and if needed move the
1708 *	sender address from kernel to user space.
1709 */
1710
1711SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1712		unsigned int, flags, struct sockaddr __user *, addr,
1713		int __user *, addr_len)
1714{
1715	struct socket *sock;
1716	struct iovec iov;
1717	struct msghdr msg;
1718	struct sockaddr_storage address;
1719	int err, err2;
1720	int fput_needed;
1721
1722	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1723	if (unlikely(err))
1724		return err;
1725	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726	if (!sock)
1727		goto out;
1728
1729	msg.msg_control = NULL;
1730	msg.msg_controllen = 0;
1731	/* Save some cycles and don't copy the address if not needed */
1732	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1733	/* We assume all kernel code knows the size of sockaddr_storage */
1734	msg.msg_namelen = 0;
1735	msg.msg_iocb = NULL;
 
1736	if (sock->file->f_flags & O_NONBLOCK)
1737		flags |= MSG_DONTWAIT;
1738	err = sock_recvmsg(sock, &msg, flags);
1739
1740	if (err >= 0 && addr != NULL) {
1741		err2 = move_addr_to_user(&address,
1742					 msg.msg_namelen, addr, addr_len);
1743		if (err2 < 0)
1744			err = err2;
1745	}
1746
1747	fput_light(sock->file, fput_needed);
1748out:
1749	return err;
1750}
1751
 
 
 
 
 
 
 
1752/*
1753 *	Receive a datagram from a socket.
1754 */
1755
1756SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1757		unsigned int, flags)
1758{
1759	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1760}
1761
1762/*
1763 *	Set a socket option. Because we don't know the option lengths we have
1764 *	to pass the user mode parameter for the protocols to sort out.
1765 */
1766
1767SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1768		char __user *, optval, int, optlen)
1769{
 
 
1770	int err, fput_needed;
1771	struct socket *sock;
1772
1773	if (optlen < 0)
1774		return -EINVAL;
1775
1776	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777	if (sock != NULL) {
1778		err = security_socket_setsockopt(sock, level, optname);
1779		if (err)
1780			goto out_put;
1781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782		if (level == SOL_SOCKET)
1783			err =
1784			    sock_setsockopt(sock, level, optname, optval,
1785					    optlen);
1786		else
1787			err =
1788			    sock->ops->setsockopt(sock, level, optname, optval,
1789						  optlen);
 
 
 
 
 
1790out_put:
1791		fput_light(sock->file, fput_needed);
1792	}
1793	return err;
1794}
1795
 
 
 
 
 
 
1796/*
1797 *	Get a socket option. Because we don't know the option lengths we have
1798 *	to pass a user mode parameter for the protocols to sort out.
1799 */
1800
1801SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1802		char __user *, optval, int __user *, optlen)
1803{
1804	int err, fput_needed;
1805	struct socket *sock;
 
1806
1807	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808	if (sock != NULL) {
1809		err = security_socket_getsockopt(sock, level, optname);
1810		if (err)
1811			goto out_put;
1812
 
 
1813		if (level == SOL_SOCKET)
1814			err =
1815			    sock_getsockopt(sock, level, optname, optval,
1816					    optlen);
1817		else
1818			err =
1819			    sock->ops->getsockopt(sock, level, optname, optval,
1820						  optlen);
 
 
 
 
1821out_put:
1822		fput_light(sock->file, fput_needed);
1823	}
1824	return err;
1825}
1826
 
 
 
 
 
 
1827/*
1828 *	Shutdown a socket.
1829 */
1830
1831SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1832{
1833	int err, fput_needed;
1834	struct socket *sock;
1835
1836	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1837	if (sock != NULL) {
1838		err = security_socket_shutdown(sock, how);
1839		if (!err)
1840			err = sock->ops->shutdown(sock, how);
1841		fput_light(sock->file, fput_needed);
1842	}
1843	return err;
1844}
1845
 
 
 
 
 
1846/* A couple of helpful macros for getting the address of the 32/64 bit
1847 * fields which are the same type (int / unsigned) on our platforms.
1848 */
1849#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1850#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1851#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1852
1853struct used_address {
1854	struct sockaddr_storage name;
1855	unsigned int name_len;
1856};
1857
1858static int copy_msghdr_from_user(struct msghdr *kmsg,
1859				 struct user_msghdr __user *umsg,
1860				 struct sockaddr __user **save_addr,
1861				 struct iovec **iov)
1862{
1863	struct sockaddr __user *uaddr;
1864	struct iovec __user *uiov;
1865	size_t nr_segs;
1866	ssize_t err;
1867
1868	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1869	    __get_user(uaddr, &umsg->msg_name) ||
1870	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1871	    __get_user(uiov, &umsg->msg_iov) ||
1872	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1873	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1874	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1875	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1876		return -EFAULT;
1877
1878	if (!uaddr)
 
 
 
 
 
1879		kmsg->msg_namelen = 0;
1880
1881	if (kmsg->msg_namelen < 0)
1882		return -EINVAL;
1883
1884	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1885		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1886
1887	if (save_addr)
1888		*save_addr = uaddr;
1889
1890	if (uaddr && kmsg->msg_namelen) {
1891		if (!save_addr) {
1892			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
 
1893						  kmsg->msg_name);
1894			if (err < 0)
1895				return err;
1896		}
1897	} else {
1898		kmsg->msg_name = NULL;
1899		kmsg->msg_namelen = 0;
1900	}
1901
1902	if (nr_segs > UIO_MAXIOV)
1903		return -EMSGSIZE;
1904
1905	kmsg->msg_iocb = NULL;
1906
1907	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
 
1908			    UIO_FASTIOV, iov, &kmsg->msg_iter);
 
1909}
1910
1911static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1912			 struct msghdr *msg_sys, unsigned int flags,
1913			 struct used_address *used_address,
1914			 unsigned int allowed_msghdr_flags)
1915{
1916	struct compat_msghdr __user *msg_compat =
1917	    (struct compat_msghdr __user *)msg;
1918	struct sockaddr_storage address;
1919	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1920	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1921				__aligned(sizeof(__kernel_size_t));
1922	/* 20 is size of ipv6_pktinfo */
1923	unsigned char *ctl_buf = ctl;
1924	int ctl_len;
1925	ssize_t err;
1926
1927	msg_sys->msg_name = &address;
1928
1929	if (MSG_CMSG_COMPAT & flags)
1930		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1931	else
1932		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1933	if (err < 0)
1934		return err;
1935
1936	err = -ENOBUFS;
1937
1938	if (msg_sys->msg_controllen > INT_MAX)
1939		goto out_freeiov;
1940	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1941	ctl_len = msg_sys->msg_controllen;
1942	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1943		err =
1944		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1945						     sizeof(ctl));
1946		if (err)
1947			goto out_freeiov;
1948		ctl_buf = msg_sys->msg_control;
1949		ctl_len = msg_sys->msg_controllen;
1950	} else if (ctl_len) {
 
 
1951		if (ctl_len > sizeof(ctl)) {
1952			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953			if (ctl_buf == NULL)
1954				goto out_freeiov;
1955		}
1956		err = -EFAULT;
1957		/*
1958		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960		 * checking falls down on this.
1961		 */
1962		if (copy_from_user(ctl_buf,
1963				   (void __user __force *)msg_sys->msg_control,
1964				   ctl_len))
1965			goto out_freectl;
1966		msg_sys->msg_control = ctl_buf;
1967	}
1968	msg_sys->msg_flags = flags;
1969
1970	if (sock->file->f_flags & O_NONBLOCK)
1971		msg_sys->msg_flags |= MSG_DONTWAIT;
1972	/*
1973	 * If this is sendmmsg() and current destination address is same as
1974	 * previously succeeded address, omit asking LSM's decision.
1975	 * used_address->name_len is initialized to UINT_MAX so that the first
1976	 * destination address never matches.
1977	 */
1978	if (used_address && msg_sys->msg_name &&
1979	    used_address->name_len == msg_sys->msg_namelen &&
1980	    !memcmp(&used_address->name, msg_sys->msg_name,
1981		    used_address->name_len)) {
1982		err = sock_sendmsg_nosec(sock, msg_sys);
1983		goto out_freectl;
1984	}
1985	err = sock_sendmsg(sock, msg_sys);
1986	/*
1987	 * If this is sendmmsg() and sending to current destination address was
1988	 * successful, remember it.
1989	 */
1990	if (used_address && err >= 0) {
1991		used_address->name_len = msg_sys->msg_namelen;
1992		if (msg_sys->msg_name)
1993			memcpy(&used_address->name, msg_sys->msg_name,
1994			       used_address->name_len);
1995	}
1996
1997out_freectl:
1998	if (ctl_buf != ctl)
1999		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2000out_freeiov:
2001	kfree(iov);
2002	return err;
2003}
2004
2005/*
2006 *	BSD sendmsg interface
2007 */
 
 
 
 
2008
2009long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
 
 
 
 
2010{
2011	int fput_needed, err;
2012	struct msghdr msg_sys;
2013	struct socket *sock;
2014
 
 
 
2015	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016	if (!sock)
2017		goto out;
2018
2019	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2020
2021	fput_light(sock->file, fput_needed);
2022out:
2023	return err;
2024}
2025
2026SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2027{
2028	if (flags & MSG_CMSG_COMPAT)
2029		return -EINVAL;
2030	return __sys_sendmsg(fd, msg, flags);
2031}
2032
2033/*
2034 *	Linux sendmmsg interface
2035 */
2036
2037int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038		   unsigned int flags)
2039{
2040	int fput_needed, err, datagrams;
2041	struct socket *sock;
2042	struct mmsghdr __user *entry;
2043	struct compat_mmsghdr __user *compat_entry;
2044	struct msghdr msg_sys;
2045	struct used_address used_address;
2046	unsigned int oflags = flags;
2047
 
 
 
2048	if (vlen > UIO_MAXIOV)
2049		vlen = UIO_MAXIOV;
2050
2051	datagrams = 0;
2052
2053	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054	if (!sock)
2055		return err;
2056
2057	used_address.name_len = UINT_MAX;
2058	entry = mmsg;
2059	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2060	err = 0;
2061	flags |= MSG_BATCH;
2062
2063	while (datagrams < vlen) {
2064		if (datagrams == vlen - 1)
2065			flags = oflags;
2066
2067		if (MSG_CMSG_COMPAT & flags) {
2068			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069					     &msg_sys, flags, &used_address, MSG_EOR);
2070			if (err < 0)
2071				break;
2072			err = __put_user(err, &compat_entry->msg_len);
2073			++compat_entry;
2074		} else {
2075			err = ___sys_sendmsg(sock,
2076					     (struct user_msghdr __user *)entry,
2077					     &msg_sys, flags, &used_address, MSG_EOR);
2078			if (err < 0)
2079				break;
2080			err = put_user(err, &entry->msg_len);
2081			++entry;
2082		}
2083
2084		if (err)
2085			break;
2086		++datagrams;
2087		if (msg_data_left(&msg_sys))
2088			break;
2089		cond_resched();
2090	}
2091
2092	fput_light(sock->file, fput_needed);
2093
2094	/* We only return an error if no datagrams were able to be sent */
2095	if (datagrams != 0)
2096		return datagrams;
2097
2098	return err;
2099}
2100
2101SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102		unsigned int, vlen, unsigned int, flags)
2103{
2104	if (flags & MSG_CMSG_COMPAT)
2105		return -EINVAL;
2106	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2107}
2108
2109static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2111{
2112	struct compat_msghdr __user *msg_compat =
2113	    (struct compat_msghdr __user *)msg;
2114	struct iovec iovstack[UIO_FASTIOV];
2115	struct iovec *iov = iovstack;
2116	unsigned long cmsg_ptr;
2117	int len;
2118	ssize_t err;
2119
2120	/* kernel mode address */
2121	struct sockaddr_storage addr;
2122
2123	/* user mode address pointers */
2124	struct sockaddr __user *uaddr;
2125	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2126
2127	msg_sys->msg_name = &addr;
2128
2129	if (MSG_CMSG_COMPAT & flags)
2130		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2131	else
2132		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2133	if (err < 0)
2134		return err;
2135
2136	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2138
2139	/* We assume all kernel code knows the size of sockaddr_storage */
2140	msg_sys->msg_namelen = 0;
2141
2142	if (sock->file->f_flags & O_NONBLOCK)
2143		flags |= MSG_DONTWAIT;
2144	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2145	if (err < 0)
2146		goto out_freeiov;
2147	len = err;
2148
2149	if (uaddr != NULL) {
2150		err = move_addr_to_user(&addr,
2151					msg_sys->msg_namelen, uaddr,
2152					uaddr_len);
2153		if (err < 0)
2154			goto out_freeiov;
2155	}
2156	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2157			 COMPAT_FLAGS(msg));
2158	if (err)
2159		goto out_freeiov;
2160	if (MSG_CMSG_COMPAT & flags)
2161		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162				 &msg_compat->msg_controllen);
2163	else
2164		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165				 &msg->msg_controllen);
2166	if (err)
2167		goto out_freeiov;
2168	err = len;
2169
2170out_freeiov:
2171	kfree(iov);
2172	return err;
2173}
2174
2175/*
2176 *	BSD recvmsg interface
2177 */
2178
2179long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
 
 
 
 
 
 
 
 
 
2180{
2181	int fput_needed, err;
2182	struct msghdr msg_sys;
2183	struct socket *sock;
2184
 
 
 
2185	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186	if (!sock)
2187		goto out;
2188
2189	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2190
2191	fput_light(sock->file, fput_needed);
2192out:
2193	return err;
2194}
2195
2196SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197		unsigned int, flags)
2198{
2199	if (flags & MSG_CMSG_COMPAT)
2200		return -EINVAL;
2201	return __sys_recvmsg(fd, msg, flags);
2202}
2203
2204/*
2205 *     Linux recvmmsg interface
2206 */
2207
2208int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209		   unsigned int flags, struct timespec *timeout)
 
2210{
2211	int fput_needed, err, datagrams;
2212	struct socket *sock;
2213	struct mmsghdr __user *entry;
2214	struct compat_mmsghdr __user *compat_entry;
2215	struct msghdr msg_sys;
2216	struct timespec64 end_time;
2217	struct timespec64 timeout64;
2218
2219	if (timeout &&
2220	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2221				    timeout->tv_nsec))
2222		return -EINVAL;
2223
2224	datagrams = 0;
2225
2226	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227	if (!sock)
2228		return err;
2229
2230	err = sock_error(sock->sk);
2231	if (err) {
2232		datagrams = err;
2233		goto out_put;
 
 
2234	}
2235
2236	entry = mmsg;
2237	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2238
2239	while (datagrams < vlen) {
2240		/*
2241		 * No need to ask LSM for more than the first datagram.
2242		 */
2243		if (MSG_CMSG_COMPAT & flags) {
2244			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2245					     &msg_sys, flags & ~MSG_WAITFORONE,
2246					     datagrams);
2247			if (err < 0)
2248				break;
2249			err = __put_user(err, &compat_entry->msg_len);
2250			++compat_entry;
2251		} else {
2252			err = ___sys_recvmsg(sock,
2253					     (struct user_msghdr __user *)entry,
2254					     &msg_sys, flags & ~MSG_WAITFORONE,
2255					     datagrams);
2256			if (err < 0)
2257				break;
2258			err = put_user(err, &entry->msg_len);
2259			++entry;
2260		}
2261
2262		if (err)
2263			break;
2264		++datagrams;
2265
2266		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2267		if (flags & MSG_WAITFORONE)
2268			flags |= MSG_DONTWAIT;
2269
2270		if (timeout) {
2271			ktime_get_ts64(&timeout64);
2272			*timeout = timespec64_to_timespec(
2273					timespec64_sub(end_time, timeout64));
2274			if (timeout->tv_sec < 0) {
2275				timeout->tv_sec = timeout->tv_nsec = 0;
2276				break;
2277			}
2278
2279			/* Timeout, return less than vlen datagrams */
2280			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2281				break;
2282		}
2283
2284		/* Out of band data, return right away */
2285		if (msg_sys.msg_flags & MSG_OOB)
2286			break;
2287		cond_resched();
2288	}
2289
2290	if (err == 0)
2291		goto out_put;
2292
2293	if (datagrams == 0) {
2294		datagrams = err;
2295		goto out_put;
2296	}
2297
2298	/*
2299	 * We may return less entries than requested (vlen) if the
2300	 * sock is non block and there aren't enough datagrams...
2301	 */
2302	if (err != -EAGAIN) {
2303		/*
2304		 * ... or  if recvmsg returns an error after we
2305		 * received some datagrams, where we record the
2306		 * error to return on the next call or if the
2307		 * app asks about it using getsockopt(SO_ERROR).
2308		 */
2309		sock->sk->sk_err = -err;
2310	}
2311out_put:
2312	fput_light(sock->file, fput_needed);
2313
2314	return datagrams;
2315}
2316
2317SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2318		unsigned int, vlen, unsigned int, flags,
2319		struct timespec __user *, timeout)
 
2320{
2321	int datagrams;
2322	struct timespec timeout_sys;
2323
2324	if (flags & MSG_CMSG_COMPAT)
2325		return -EINVAL;
2326
2327	if (!timeout)
2328		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2329
2330	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2331		return -EFAULT;
2332
2333	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
 
 
 
2334
2335	if (datagrams > 0 &&
2336	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
 
 
 
 
 
2337		datagrams = -EFAULT;
2338
2339	return datagrams;
2340}
2341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2342#ifdef __ARCH_WANT_SYS_SOCKETCALL
2343/* Argument list sizes for sys_socketcall */
2344#define AL(x) ((x) * sizeof(unsigned long))
2345static const unsigned char nargs[21] = {
2346	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2347	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2348	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2349	AL(4), AL(5), AL(4)
2350};
2351
2352#undef AL
2353
2354/*
2355 *	System call vectors.
2356 *
2357 *	Argument checking cleaned up. Saved 20% in size.
2358 *  This function doesn't need to set the kernel lock because
2359 *  it is set by the callees.
2360 */
2361
2362SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2363{
2364	unsigned long a[AUDITSC_ARGS];
2365	unsigned long a0, a1;
2366	int err;
2367	unsigned int len;
2368
2369	if (call < 1 || call > SYS_SENDMMSG)
2370		return -EINVAL;
 
2371
2372	len = nargs[call];
2373	if (len > sizeof(a))
2374		return -EINVAL;
2375
2376	/* copy_from_user should be SMP safe. */
2377	if (copy_from_user(a, args, len))
2378		return -EFAULT;
2379
2380	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2381	if (err)
2382		return err;
2383
2384	a0 = a[0];
2385	a1 = a[1];
2386
2387	switch (call) {
2388	case SYS_SOCKET:
2389		err = sys_socket(a0, a1, a[2]);
2390		break;
2391	case SYS_BIND:
2392		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2393		break;
2394	case SYS_CONNECT:
2395		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2396		break;
2397	case SYS_LISTEN:
2398		err = sys_listen(a0, a1);
2399		break;
2400	case SYS_ACCEPT:
2401		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2402				  (int __user *)a[2], 0);
2403		break;
2404	case SYS_GETSOCKNAME:
2405		err =
2406		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2407				    (int __user *)a[2]);
2408		break;
2409	case SYS_GETPEERNAME:
2410		err =
2411		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2412				    (int __user *)a[2]);
2413		break;
2414	case SYS_SOCKETPAIR:
2415		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2416		break;
2417	case SYS_SEND:
2418		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
 
2419		break;
2420	case SYS_SENDTO:
2421		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2422				 (struct sockaddr __user *)a[4], a[5]);
2423		break;
2424	case SYS_RECV:
2425		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
 
2426		break;
2427	case SYS_RECVFROM:
2428		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2429				   (struct sockaddr __user *)a[4],
2430				   (int __user *)a[5]);
2431		break;
2432	case SYS_SHUTDOWN:
2433		err = sys_shutdown(a0, a1);
2434		break;
2435	case SYS_SETSOCKOPT:
2436		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
 
2437		break;
2438	case SYS_GETSOCKOPT:
2439		err =
2440		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2441				   (int __user *)a[4]);
2442		break;
2443	case SYS_SENDMSG:
2444		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
 
2445		break;
2446	case SYS_SENDMMSG:
2447		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
 
2448		break;
2449	case SYS_RECVMSG:
2450		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
 
2451		break;
2452	case SYS_RECVMMSG:
2453		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2454				   (struct timespec __user *)a[4]);
 
 
 
 
 
 
 
2455		break;
2456	case SYS_ACCEPT4:
2457		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2458				  (int __user *)a[2], a[3]);
2459		break;
2460	default:
2461		err = -EINVAL;
2462		break;
2463	}
2464	return err;
2465}
2466
2467#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2468
2469/**
2470 *	sock_register - add a socket protocol handler
2471 *	@ops: description of protocol
2472 *
2473 *	This function is called by a protocol handler that wants to
2474 *	advertise its address family, and have it linked into the
2475 *	socket interface. The value ops->family corresponds to the
2476 *	socket system call protocol family.
2477 */
2478int sock_register(const struct net_proto_family *ops)
2479{
2480	int err;
2481
2482	if (ops->family >= NPROTO) {
2483		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2484		return -ENOBUFS;
2485	}
2486
2487	spin_lock(&net_family_lock);
2488	if (rcu_dereference_protected(net_families[ops->family],
2489				      lockdep_is_held(&net_family_lock)))
2490		err = -EEXIST;
2491	else {
2492		rcu_assign_pointer(net_families[ops->family], ops);
2493		err = 0;
2494	}
2495	spin_unlock(&net_family_lock);
2496
2497	pr_info("NET: Registered protocol family %d\n", ops->family);
2498	return err;
2499}
2500EXPORT_SYMBOL(sock_register);
2501
2502/**
2503 *	sock_unregister - remove a protocol handler
2504 *	@family: protocol family to remove
2505 *
2506 *	This function is called by a protocol handler that wants to
2507 *	remove its address family, and have it unlinked from the
2508 *	new socket creation.
2509 *
2510 *	If protocol handler is a module, then it can use module reference
2511 *	counts to protect against new references. If protocol handler is not
2512 *	a module then it needs to provide its own protection in
2513 *	the ops->create routine.
2514 */
2515void sock_unregister(int family)
2516{
2517	BUG_ON(family < 0 || family >= NPROTO);
2518
2519	spin_lock(&net_family_lock);
2520	RCU_INIT_POINTER(net_families[family], NULL);
2521	spin_unlock(&net_family_lock);
2522
2523	synchronize_rcu();
2524
2525	pr_info("NET: Unregistered protocol family %d\n", family);
2526}
2527EXPORT_SYMBOL(sock_unregister);
2528
 
 
 
 
 
2529static int __init sock_init(void)
2530{
2531	int err;
2532	/*
2533	 *      Initialize the network sysctl infrastructure.
2534	 */
2535	err = net_sysctl_init();
2536	if (err)
2537		goto out;
2538
2539	/*
2540	 *      Initialize skbuff SLAB cache
2541	 */
2542	skb_init();
2543
2544	/*
2545	 *      Initialize the protocols module.
2546	 */
2547
2548	init_inodecache();
2549
2550	err = register_filesystem(&sock_fs_type);
2551	if (err)
2552		goto out_fs;
2553	sock_mnt = kern_mount(&sock_fs_type);
2554	if (IS_ERR(sock_mnt)) {
2555		err = PTR_ERR(sock_mnt);
2556		goto out_mount;
2557	}
2558
2559	/* The real protocol initialization is performed in later initcalls.
2560	 */
2561
2562#ifdef CONFIG_NETFILTER
2563	err = netfilter_init();
2564	if (err)
2565		goto out;
2566#endif
2567
2568	ptp_classifier_init();
2569
2570out:
2571	return err;
2572
2573out_mount:
2574	unregister_filesystem(&sock_fs_type);
2575out_fs:
2576	goto out;
2577}
2578
2579core_initcall(sock_init);	/* early initcall */
2580
2581#ifdef CONFIG_PROC_FS
2582void socket_seq_show(struct seq_file *seq)
2583{
2584	int cpu;
2585	int counter = 0;
2586
2587	for_each_possible_cpu(cpu)
2588	    counter += per_cpu(sockets_in_use, cpu);
2589
2590	/* It can be negative, by the way. 8) */
2591	if (counter < 0)
2592		counter = 0;
2593
2594	seq_printf(seq, "sockets: used %d\n", counter);
2595}
2596#endif				/* CONFIG_PROC_FS */
2597
2598#ifdef CONFIG_COMPAT
2599static int do_siocgstamp(struct net *net, struct socket *sock,
2600			 unsigned int cmd, void __user *up)
2601{
2602	mm_segment_t old_fs = get_fs();
2603	struct timeval ktv;
2604	int err;
2605
2606	set_fs(KERNEL_DS);
2607	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2608	set_fs(old_fs);
2609	if (!err)
2610		err = compat_put_timeval(&ktv, up);
2611
2612	return err;
2613}
2614
2615static int do_siocgstampns(struct net *net, struct socket *sock,
2616			   unsigned int cmd, void __user *up)
2617{
2618	mm_segment_t old_fs = get_fs();
2619	struct timespec kts;
2620	int err;
2621
2622	set_fs(KERNEL_DS);
2623	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2624	set_fs(old_fs);
2625	if (!err)
2626		err = compat_put_timespec(&kts, up);
2627
2628	return err;
2629}
2630
2631static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2632{
2633	struct ifreq __user *uifr;
2634	int err;
2635
2636	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2637	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2638		return -EFAULT;
2639
2640	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2641	if (err)
2642		return err;
2643
2644	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2645		return -EFAULT;
2646
2647	return 0;
2648}
2649
2650static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2651{
2652	struct compat_ifconf ifc32;
2653	struct ifconf ifc;
2654	struct ifconf __user *uifc;
2655	struct compat_ifreq __user *ifr32;
2656	struct ifreq __user *ifr;
2657	unsigned int i, j;
2658	int err;
2659
2660	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2661		return -EFAULT;
2662
2663	memset(&ifc, 0, sizeof(ifc));
2664	if (ifc32.ifcbuf == 0) {
2665		ifc32.ifc_len = 0;
2666		ifc.ifc_len = 0;
2667		ifc.ifc_req = NULL;
2668		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2669	} else {
2670		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2671			sizeof(struct ifreq);
2672		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2673		ifc.ifc_len = len;
2674		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2675		ifr32 = compat_ptr(ifc32.ifcbuf);
2676		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2677			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2678				return -EFAULT;
2679			ifr++;
2680			ifr32++;
2681		}
2682	}
2683	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2684		return -EFAULT;
2685
2686	err = dev_ioctl(net, SIOCGIFCONF, uifc);
 
 
2687	if (err)
2688		return err;
2689
2690	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2691		return -EFAULT;
2692
2693	ifr = ifc.ifc_req;
2694	ifr32 = compat_ptr(ifc32.ifcbuf);
2695	for (i = 0, j = 0;
2696	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2697	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2698		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2699			return -EFAULT;
2700		ifr32++;
2701		ifr++;
2702	}
2703
2704	if (ifc32.ifcbuf == 0) {
2705		/* Translate from 64-bit structure multiple to
2706		 * a 32-bit one.
2707		 */
2708		i = ifc.ifc_len;
2709		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2710		ifc32.ifc_len = i;
2711	} else {
2712		ifc32.ifc_len = i;
2713	}
2714	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2715		return -EFAULT;
2716
2717	return 0;
2718}
2719
2720static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2721{
2722	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2723	bool convert_in = false, convert_out = false;
2724	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2725	struct ethtool_rxnfc __user *rxnfc;
2726	struct ifreq __user *ifr;
2727	u32 rule_cnt = 0, actual_rule_cnt;
2728	u32 ethcmd;
2729	u32 data;
2730	int ret;
2731
2732	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2733		return -EFAULT;
2734
2735	compat_rxnfc = compat_ptr(data);
2736
2737	if (get_user(ethcmd, &compat_rxnfc->cmd))
2738		return -EFAULT;
2739
2740	/* Most ethtool structures are defined without padding.
2741	 * Unfortunately struct ethtool_rxnfc is an exception.
2742	 */
2743	switch (ethcmd) {
2744	default:
2745		break;
2746	case ETHTOOL_GRXCLSRLALL:
2747		/* Buffer size is variable */
2748		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2749			return -EFAULT;
2750		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2751			return -ENOMEM;
2752		buf_size += rule_cnt * sizeof(u32);
2753		/* fall through */
2754	case ETHTOOL_GRXRINGS:
2755	case ETHTOOL_GRXCLSRLCNT:
2756	case ETHTOOL_GRXCLSRULE:
2757	case ETHTOOL_SRXCLSRLINS:
2758		convert_out = true;
2759		/* fall through */
2760	case ETHTOOL_SRXCLSRLDEL:
2761		buf_size += sizeof(struct ethtool_rxnfc);
2762		convert_in = true;
 
2763		break;
2764	}
2765
2766	ifr = compat_alloc_user_space(buf_size);
2767	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2768
2769	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2770		return -EFAULT;
2771
2772	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2773		     &ifr->ifr_ifru.ifru_data))
2774		return -EFAULT;
2775
2776	if (convert_in) {
2777		/* We expect there to be holes between fs.m_ext and
2778		 * fs.ring_cookie and at the end of fs, but nowhere else.
2779		 */
2780		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2781			     sizeof(compat_rxnfc->fs.m_ext) !=
2782			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2783			     sizeof(rxnfc->fs.m_ext));
2784		BUILD_BUG_ON(
2785			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2786			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2787			offsetof(struct ethtool_rxnfc, fs.location) -
2788			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2789
2790		if (copy_in_user(rxnfc, compat_rxnfc,
2791				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2792				 (void __user *)rxnfc) ||
2793		    copy_in_user(&rxnfc->fs.ring_cookie,
2794				 &compat_rxnfc->fs.ring_cookie,
2795				 (void __user *)(&rxnfc->fs.location + 1) -
2796				 (void __user *)&rxnfc->fs.ring_cookie) ||
2797		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2798				 sizeof(rxnfc->rule_cnt)))
 
 
 
 
 
2799			return -EFAULT;
2800	}
2801
2802	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2803	if (ret)
2804		return ret;
2805
2806	if (convert_out) {
2807		if (copy_in_user(compat_rxnfc, rxnfc,
2808				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2809				 (const void __user *)rxnfc) ||
2810		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2811				 &rxnfc->fs.ring_cookie,
2812				 (const void __user *)(&rxnfc->fs.location + 1) -
2813				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2814		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2815				 sizeof(rxnfc->rule_cnt)))
2816			return -EFAULT;
2817
2818		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2819			/* As an optimisation, we only copy the actual
2820			 * number of rules that the underlying
2821			 * function returned.  Since Mallory might
2822			 * change the rule count in user memory, we
2823			 * check that it is less than the rule count
2824			 * originally given (as the user buffer size),
2825			 * which has been range-checked.
2826			 */
2827			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2828				return -EFAULT;
2829			if (actual_rule_cnt < rule_cnt)
2830				rule_cnt = actual_rule_cnt;
2831			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2832					 &rxnfc->rule_locs[0],
2833					 rule_cnt * sizeof(u32)))
2834				return -EFAULT;
2835		}
2836	}
2837
2838	return 0;
2839}
2840
2841static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2842{
2843	void __user *uptr;
2844	compat_uptr_t uptr32;
2845	struct ifreq __user *uifr;
 
 
2846
2847	uifr = compat_alloc_user_space(sizeof(*uifr));
2848	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2849		return -EFAULT;
2850
2851	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2852		return -EFAULT;
2853
2854	uptr = compat_ptr(uptr32);
 
2855
2856	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2857		return -EFAULT;
2858
2859	return dev_ioctl(net, SIOCWANDEV, uifr);
2860}
2861
2862static int bond_ioctl(struct net *net, unsigned int cmd,
2863			 struct compat_ifreq __user *ifr32)
2864{
2865	struct ifreq kifr;
2866	mm_segment_t old_fs;
2867	int err;
2868
2869	switch (cmd) {
2870	case SIOCBONDENSLAVE:
2871	case SIOCBONDRELEASE:
2872	case SIOCBONDSETHWADDR:
2873	case SIOCBONDCHANGEACTIVE:
2874		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2875			return -EFAULT;
2876
2877		old_fs = get_fs();
2878		set_fs(KERNEL_DS);
2879		err = dev_ioctl(net, cmd,
2880				(struct ifreq __user __force *) &kifr);
2881		set_fs(old_fs);
2882
2883		return err;
2884	default:
2885		return -ENOIOCTLCMD;
2886	}
 
2887}
2888
2889/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2890static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2891				 struct compat_ifreq __user *u_ifreq32)
2892{
2893	struct ifreq __user *u_ifreq64;
2894	char tmp_buf[IFNAMSIZ];
2895	void __user *data64;
2896	u32 data32;
2897
2898	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2899			   IFNAMSIZ))
2900		return -EFAULT;
2901	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2902		return -EFAULT;
2903	data64 = compat_ptr(data32);
2904
2905	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2906
2907	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2908			 IFNAMSIZ))
2909		return -EFAULT;
2910	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2911		return -EFAULT;
 
2912
2913	return dev_ioctl(net, cmd, u_ifreq64);
2914}
2915
2916static int dev_ifsioc(struct net *net, struct socket *sock,
2917			 unsigned int cmd, struct compat_ifreq __user *uifr32)
 
2918{
2919	struct ifreq __user *uifr;
2920	int err;
2921
 
 
 
 
 
 
 
 
 
 
2922	uifr = compat_alloc_user_space(sizeof(*uifr));
2923	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2924		return -EFAULT;
2925
2926	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2927
2928	if (!err) {
2929		switch (cmd) {
2930		case SIOCGIFFLAGS:
2931		case SIOCGIFMETRIC:
2932		case SIOCGIFMTU:
2933		case SIOCGIFMEM:
2934		case SIOCGIFHWADDR:
2935		case SIOCGIFINDEX:
2936		case SIOCGIFADDR:
2937		case SIOCGIFBRDADDR:
2938		case SIOCGIFDSTADDR:
2939		case SIOCGIFNETMASK:
2940		case SIOCGIFPFLAGS:
2941		case SIOCGIFTXQLEN:
2942		case SIOCGMIIPHY:
2943		case SIOCGMIIREG:
 
2944			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2945				err = -EFAULT;
2946			break;
2947		}
2948	}
2949	return err;
2950}
2951
2952static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2953			struct compat_ifreq __user *uifr32)
2954{
2955	struct ifreq ifr;
2956	struct compat_ifmap __user *uifmap32;
2957	mm_segment_t old_fs;
2958	int err;
2959
2960	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2961	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2962	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2963	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2964	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2965	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2966	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2967	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2968	if (err)
2969		return -EFAULT;
2970
2971	old_fs = get_fs();
2972	set_fs(KERNEL_DS);
2973	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2974	set_fs(old_fs);
2975
2976	if (cmd == SIOCGIFMAP && !err) {
2977		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2978		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2982		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2983		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2984		if (err)
2985			err = -EFAULT;
2986	}
2987	return err;
2988}
2989
2990struct rtentry32 {
2991	u32		rt_pad1;
2992	struct sockaddr rt_dst;         /* target address               */
2993	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2994	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2995	unsigned short	rt_flags;
2996	short		rt_pad2;
2997	u32		rt_pad3;
2998	unsigned char	rt_tos;
2999	unsigned char	rt_class;
3000	short		rt_pad4;
3001	short		rt_metric;      /* +1 for binary compatibility! */
3002	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3003	u32		rt_mtu;         /* per route MTU/Window         */
3004	u32		rt_window;      /* Window clamping              */
3005	unsigned short  rt_irtt;        /* Initial RTT                  */
3006};
3007
3008struct in6_rtmsg32 {
3009	struct in6_addr		rtmsg_dst;
3010	struct in6_addr		rtmsg_src;
3011	struct in6_addr		rtmsg_gateway;
3012	u32			rtmsg_type;
3013	u16			rtmsg_dst_len;
3014	u16			rtmsg_src_len;
3015	u32			rtmsg_metric;
3016	u32			rtmsg_info;
3017	u32			rtmsg_flags;
3018	s32			rtmsg_ifindex;
3019};
3020
3021static int routing_ioctl(struct net *net, struct socket *sock,
3022			 unsigned int cmd, void __user *argp)
3023{
3024	int ret;
3025	void *r = NULL;
3026	struct in6_rtmsg r6;
3027	struct rtentry r4;
3028	char devname[16];
3029	u32 rtdev;
3030	mm_segment_t old_fs = get_fs();
3031
3032	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3033		struct in6_rtmsg32 __user *ur6 = argp;
3034		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3035			3 * sizeof(struct in6_addr));
3036		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3037		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3038		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3039		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3040		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3041		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3042		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3043
3044		r = (void *) &r6;
3045	} else { /* ipv4 */
3046		struct rtentry32 __user *ur4 = argp;
3047		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3048					3 * sizeof(struct sockaddr));
3049		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3050		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3051		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3052		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3053		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3054		ret |= get_user(rtdev, &(ur4->rt_dev));
3055		if (rtdev) {
3056			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3057			r4.rt_dev = (char __user __force *)devname;
3058			devname[15] = 0;
3059		} else
3060			r4.rt_dev = NULL;
3061
3062		r = (void *) &r4;
3063	}
3064
3065	if (ret) {
3066		ret = -EFAULT;
3067		goto out;
3068	}
3069
3070	set_fs(KERNEL_DS);
3071	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3072	set_fs(old_fs);
3073
3074out:
3075	return ret;
3076}
3077
3078/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3079 * for some operations; this forces use of the newer bridge-utils that
3080 * use compatible ioctls
3081 */
3082static int old_bridge_ioctl(compat_ulong_t __user *argp)
3083{
3084	compat_ulong_t tmp;
3085
3086	if (get_user(tmp, argp))
3087		return -EFAULT;
3088	if (tmp == BRCTL_GET_VERSION)
3089		return BRCTL_VERSION + 1;
3090	return -EINVAL;
3091}
3092
3093static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3094			 unsigned int cmd, unsigned long arg)
3095{
3096	void __user *argp = compat_ptr(arg);
3097	struct sock *sk = sock->sk;
3098	struct net *net = sock_net(sk);
3099
3100	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3101		return compat_ifr_data_ioctl(net, cmd, argp);
3102
3103	switch (cmd) {
3104	case SIOCSIFBR:
3105	case SIOCGIFBR:
3106		return old_bridge_ioctl(argp);
3107	case SIOCGIFNAME:
3108		return dev_ifname32(net, argp);
3109	case SIOCGIFCONF:
3110		return dev_ifconf(net, argp);
3111	case SIOCETHTOOL:
3112		return ethtool_ioctl(net, argp);
3113	case SIOCWANDEV:
3114		return compat_siocwandev(net, argp);
3115	case SIOCGIFMAP:
3116	case SIOCSIFMAP:
3117		return compat_sioc_ifmap(net, cmd, argp);
3118	case SIOCBONDENSLAVE:
3119	case SIOCBONDRELEASE:
3120	case SIOCBONDSETHWADDR:
3121	case SIOCBONDCHANGEACTIVE:
3122		return bond_ioctl(net, cmd, argp);
3123	case SIOCADDRT:
3124	case SIOCDELRT:
3125		return routing_ioctl(net, sock, cmd, argp);
3126	case SIOCGSTAMP:
3127		return do_siocgstamp(net, sock, cmd, argp);
3128	case SIOCGSTAMPNS:
3129		return do_siocgstampns(net, sock, cmd, argp);
 
 
 
3130	case SIOCBONDSLAVEINFOQUERY:
3131	case SIOCBONDINFOQUERY:
3132	case SIOCSHWTSTAMP:
3133	case SIOCGHWTSTAMP:
3134		return compat_ifr_data_ioctl(net, cmd, argp);
3135
3136	case FIOSETOWN:
3137	case SIOCSPGRP:
3138	case FIOGETOWN:
3139	case SIOCGPGRP:
3140	case SIOCBRADDBR:
3141	case SIOCBRDELBR:
3142	case SIOCGIFVLAN:
3143	case SIOCSIFVLAN:
3144	case SIOCADDDLCI:
3145	case SIOCDELDLCI:
3146	case SIOCGSKNS:
 
 
3147		return sock_ioctl(file, cmd, arg);
3148
3149	case SIOCGIFFLAGS:
3150	case SIOCSIFFLAGS:
3151	case SIOCGIFMETRIC:
3152	case SIOCSIFMETRIC:
3153	case SIOCGIFMTU:
3154	case SIOCSIFMTU:
3155	case SIOCGIFMEM:
3156	case SIOCSIFMEM:
3157	case SIOCGIFHWADDR:
3158	case SIOCSIFHWADDR:
3159	case SIOCADDMULTI:
3160	case SIOCDELMULTI:
3161	case SIOCGIFINDEX:
3162	case SIOCGIFADDR:
3163	case SIOCSIFADDR:
3164	case SIOCSIFHWBROADCAST:
3165	case SIOCDIFADDR:
3166	case SIOCGIFBRDADDR:
3167	case SIOCSIFBRDADDR:
3168	case SIOCGIFDSTADDR:
3169	case SIOCSIFDSTADDR:
3170	case SIOCGIFNETMASK:
3171	case SIOCSIFNETMASK:
3172	case SIOCSIFPFLAGS:
3173	case SIOCGIFPFLAGS:
3174	case SIOCGIFTXQLEN:
3175	case SIOCSIFTXQLEN:
3176	case SIOCBRADDIF:
3177	case SIOCBRDELIF:
 
3178	case SIOCSIFNAME:
3179	case SIOCGMIIPHY:
3180	case SIOCGMIIREG:
3181	case SIOCSMIIREG:
3182		return dev_ifsioc(net, sock, cmd, argp);
 
 
 
 
3183
3184	case SIOCSARP:
3185	case SIOCGARP:
3186	case SIOCDARP:
3187	case SIOCATMARK:
3188		return sock_do_ioctl(net, sock, cmd, arg);
3189	}
3190
3191	return -ENOIOCTLCMD;
3192}
3193
3194static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3195			      unsigned long arg)
3196{
3197	struct socket *sock = file->private_data;
3198	int ret = -ENOIOCTLCMD;
3199	struct sock *sk;
3200	struct net *net;
3201
3202	sk = sock->sk;
3203	net = sock_net(sk);
3204
3205	if (sock->ops->compat_ioctl)
3206		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3207
3208	if (ret == -ENOIOCTLCMD &&
3209	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3210		ret = compat_wext_handle_ioctl(net, cmd, arg);
3211
3212	if (ret == -ENOIOCTLCMD)
3213		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3214
3215	return ret;
3216}
3217#endif
3218
 
 
 
 
 
 
 
 
 
3219int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3220{
3221	return sock->ops->bind(sock, addr, addrlen);
3222}
3223EXPORT_SYMBOL(kernel_bind);
3224
 
 
 
 
 
 
 
 
3225int kernel_listen(struct socket *sock, int backlog)
3226{
3227	return sock->ops->listen(sock, backlog);
3228}
3229EXPORT_SYMBOL(kernel_listen);
3230
 
 
 
 
 
 
 
 
 
 
 
3231int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3232{
3233	struct sock *sk = sock->sk;
3234	int err;
3235
3236	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3237			       newsock);
3238	if (err < 0)
3239		goto done;
3240
3241	err = sock->ops->accept(sock, *newsock, flags);
3242	if (err < 0) {
3243		sock_release(*newsock);
3244		*newsock = NULL;
3245		goto done;
3246	}
3247
3248	(*newsock)->ops = sock->ops;
3249	__module_get((*newsock)->ops->owner);
3250
3251done:
3252	return err;
3253}
3254EXPORT_SYMBOL(kernel_accept);
3255
 
 
 
 
 
 
 
 
 
 
 
 
 
3256int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3257		   int flags)
3258{
3259	return sock->ops->connect(sock, addr, addrlen, flags);
3260}
3261EXPORT_SYMBOL(kernel_connect);
3262
3263int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3264			 int *addrlen)
 
 
 
 
 
 
 
 
3265{
3266	return sock->ops->getname(sock, addr, addrlen, 0);
3267}
3268EXPORT_SYMBOL(kernel_getsockname);
3269
3270int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3271			 int *addrlen)
 
 
 
 
 
 
 
 
3272{
3273	return sock->ops->getname(sock, addr, addrlen, 1);
3274}
3275EXPORT_SYMBOL(kernel_getpeername);
3276
 
 
 
 
 
 
 
 
 
 
 
 
3277int kernel_getsockopt(struct socket *sock, int level, int optname,
3278			char *optval, int *optlen)
3279{
3280	mm_segment_t oldfs = get_fs();
3281	char __user *uoptval;
3282	int __user *uoptlen;
3283	int err;
3284
3285	uoptval = (char __user __force *) optval;
3286	uoptlen = (int __user __force *) optlen;
3287
3288	set_fs(KERNEL_DS);
3289	if (level == SOL_SOCKET)
3290		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291	else
3292		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293					    uoptlen);
3294	set_fs(oldfs);
3295	return err;
3296}
3297EXPORT_SYMBOL(kernel_getsockopt);
3298
 
 
 
 
 
 
 
 
 
 
 
3299int kernel_setsockopt(struct socket *sock, int level, int optname,
3300			char *optval, unsigned int optlen)
3301{
3302	mm_segment_t oldfs = get_fs();
3303	char __user *uoptval;
3304	int err;
3305
3306	uoptval = (char __user __force *) optval;
3307
3308	set_fs(KERNEL_DS);
3309	if (level == SOL_SOCKET)
3310		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311	else
3312		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313					    optlen);
3314	set_fs(oldfs);
3315	return err;
3316}
3317EXPORT_SYMBOL(kernel_setsockopt);
3318
 
 
 
 
 
 
 
 
 
 
 
3319int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320		    size_t size, int flags)
3321{
3322	if (sock->ops->sendpage)
3323		return sock->ops->sendpage(sock, page, offset, size, flags);
3324
3325	return sock_no_sendpage(sock, page, offset, size, flags);
3326}
3327EXPORT_SYMBOL(kernel_sendpage);
3328
3329int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
3330{
3331	mm_segment_t oldfs = get_fs();
3332	int err;
3333
3334	set_fs(KERNEL_DS);
3335	err = sock->ops->ioctl(sock, cmd, arg);
3336	set_fs(oldfs);
3337
3338	return err;
3339}
3340EXPORT_SYMBOL(kernel_sock_ioctl);
 
 
 
 
 
 
 
 
3341
3342int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343{
3344	return sock->ops->shutdown(sock, how);
3345}
3346EXPORT_SYMBOL(kernel_sock_shutdown);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET		An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:	@(#)socket.c	1.1.93	18/02/95
   6 *
   7 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   8 *		Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  13 *					shutdown()
  14 *		Alan Cox	:	verify_area() fixes
  15 *		Alan Cox	:	Removed DDI
  16 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  17 *		Alan Cox	:	Moved a load of checks to the very
  18 *					top level.
  19 *		Alan Cox	:	Move address structures to/from user
  20 *					mode above the protocol layers.
  21 *		Rob Janssen	:	Allow 0 length sends.
  22 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  23 *					tty drivers).
  24 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  25 *		Jeff Uphoff	:	Made max number of sockets command-line
  26 *					configurable.
  27 *		Matti Aarnio	:	Made the number of sockets dynamic,
  28 *					to be allocated when needed, and mr.
  29 *					Uphoff's max is used as max to be
  30 *					allowed to allocate.
  31 *		Linus		:	Argh. removed all the socket allocation
  32 *					altogether: it's in the inode now.
  33 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  34 *					for NetROM and future kernel nfsd type
  35 *					stuff.
  36 *		Alan Cox	:	sendmsg/recvmsg basics.
  37 *		Tom Dyas	:	Export net symbols.
  38 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  39 *		Alan Cox	:	Added thread locking to sys_* calls
  40 *					for sockets. May have errors at the
  41 *					moment.
  42 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  43 *		Andi Kleen	:	Some small cleanups, optimizations,
  44 *					and fixed a copy_from_user() bug.
  45 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  47 *					protocol-independent
  48 *
 
 
 
 
 
 
 
  49 *	This module is effectively the top level interface to the BSD socket
  50 *	paradigm.
  51 *
  52 *	Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/mm.h>
  56#include <linux/socket.h>
  57#include <linux/file.h>
  58#include <linux/net.h>
  59#include <linux/interrupt.h>
  60#include <linux/thread_info.h>
  61#include <linux/rcupdate.h>
  62#include <linux/netdevice.h>
  63#include <linux/proc_fs.h>
  64#include <linux/seq_file.h>
  65#include <linux/mutex.h>
  66#include <linux/if_bridge.h>
  67#include <linux/if_frad.h>
  68#include <linux/if_vlan.h>
  69#include <linux/ptp_classify.h>
  70#include <linux/init.h>
  71#include <linux/poll.h>
  72#include <linux/cache.h>
  73#include <linux/module.h>
  74#include <linux/highmem.h>
  75#include <linux/mount.h>
  76#include <linux/pseudo_fs.h>
  77#include <linux/security.h>
  78#include <linux/syscalls.h>
  79#include <linux/compat.h>
  80#include <linux/kmod.h>
  81#include <linux/audit.h>
  82#include <linux/wireless.h>
  83#include <linux/nsproxy.h>
  84#include <linux/magic.h>
  85#include <linux/slab.h>
  86#include <linux/xattr.h>
  87#include <linux/nospec.h>
  88#include <linux/indirect_call_wrapper.h>
  89
  90#include <linux/uaccess.h>
  91#include <asm/unistd.h>
  92
  93#include <net/compat.h>
  94#include <net/wext.h>
  95#include <net/cls_cgroup.h>
  96
  97#include <net/sock.h>
  98#include <linux/netfilter.h>
  99
 100#include <linux/if_tun.h>
 101#include <linux/ipv6_route.h>
 102#include <linux/route.h>
 103#include <linux/sockios.h>
 
 104#include <net/busy_poll.h>
 105#include <linux/errqueue.h>
 106
 107#ifdef CONFIG_NET_RX_BUSY_POLL
 108unsigned int sysctl_net_busy_read __read_mostly;
 109unsigned int sysctl_net_busy_poll __read_mostly;
 110#endif
 111
 112static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 113static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 114static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 115
 116static int sock_close(struct inode *inode, struct file *file);
 117static __poll_t sock_poll(struct file *file,
 118			      struct poll_table_struct *wait);
 119static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 120#ifdef CONFIG_COMPAT
 121static long compat_sock_ioctl(struct file *file,
 122			      unsigned int cmd, unsigned long arg);
 123#endif
 124static int sock_fasync(int fd, struct file *filp, int on);
 125static ssize_t sock_sendpage(struct file *file, struct page *page,
 126			     int offset, size_t size, loff_t *ppos, int more);
 127static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 128				struct pipe_inode_info *pipe, size_t len,
 129				unsigned int flags);
 130
 131/*
 132 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 133 *	in the operation structures but are done directly via the socketcall() multiplexor.
 134 */
 135
 136static const struct file_operations socket_file_ops = {
 137	.owner =	THIS_MODULE,
 138	.llseek =	no_llseek,
 139	.read_iter =	sock_read_iter,
 140	.write_iter =	sock_write_iter,
 141	.poll =		sock_poll,
 142	.unlocked_ioctl = sock_ioctl,
 143#ifdef CONFIG_COMPAT
 144	.compat_ioctl = compat_sock_ioctl,
 145#endif
 146	.mmap =		sock_mmap,
 147	.release =	sock_close,
 148	.fasync =	sock_fasync,
 149	.sendpage =	sock_sendpage,
 150	.splice_write = generic_splice_sendpage,
 151	.splice_read =	sock_splice_read,
 152};
 153
 154/*
 155 *	The protocol list. Each protocol is registered in here.
 156 */
 157
 158static DEFINE_SPINLOCK(net_family_lock);
 159static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 160
 161/*
 
 
 
 
 
 
 162 * Support routines.
 163 * Move socket addresses back and forth across the kernel/user
 164 * divide and look after the messy bits.
 165 */
 166
 167/**
 168 *	move_addr_to_kernel	-	copy a socket address into kernel space
 169 *	@uaddr: Address in user space
 170 *	@kaddr: Address in kernel space
 171 *	@ulen: Length in user space
 172 *
 173 *	The address is copied into kernel space. If the provided address is
 174 *	too long an error code of -EINVAL is returned. If the copy gives
 175 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 176 */
 177
 178int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 179{
 180	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 181		return -EINVAL;
 182	if (ulen == 0)
 183		return 0;
 184	if (copy_from_user(kaddr, uaddr, ulen))
 185		return -EFAULT;
 186	return audit_sockaddr(ulen, kaddr);
 187}
 188
 189/**
 190 *	move_addr_to_user	-	copy an address to user space
 191 *	@kaddr: kernel space address
 192 *	@klen: length of address in kernel
 193 *	@uaddr: user space address
 194 *	@ulen: pointer to user length field
 195 *
 196 *	The value pointed to by ulen on entry is the buffer length available.
 197 *	This is overwritten with the buffer space used. -EINVAL is returned
 198 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 199 *	is returned if either the buffer or the length field are not
 200 *	accessible.
 201 *	After copying the data up to the limit the user specifies, the true
 202 *	length of the data is written over the length limit the user
 203 *	specified. Zero is returned for a success.
 204 */
 205
 206static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 207			     void __user *uaddr, int __user *ulen)
 208{
 209	int err;
 210	int len;
 211
 212	BUG_ON(klen > sizeof(struct sockaddr_storage));
 213	err = get_user(len, ulen);
 214	if (err)
 215		return err;
 216	if (len > klen)
 217		len = klen;
 218	if (len < 0)
 219		return -EINVAL;
 220	if (len) {
 221		if (audit_sockaddr(klen, kaddr))
 222			return -ENOMEM;
 223		if (copy_to_user(uaddr, kaddr, len))
 224			return -EFAULT;
 225	}
 226	/*
 227	 *      "fromlen shall refer to the value before truncation.."
 228	 *                      1003.1g
 229	 */
 230	return __put_user(klen, ulen);
 231}
 232
 233static struct kmem_cache *sock_inode_cachep __ro_after_init;
 234
 235static struct inode *sock_alloc_inode(struct super_block *sb)
 236{
 237	struct socket_alloc *ei;
 
 238
 239	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 240	if (!ei)
 241		return NULL;
 242	init_waitqueue_head(&ei->socket.wq.wait);
 243	ei->socket.wq.fasync_list = NULL;
 244	ei->socket.wq.flags = 0;
 
 
 
 
 
 
 245
 246	ei->socket.state = SS_UNCONNECTED;
 247	ei->socket.flags = 0;
 248	ei->socket.ops = NULL;
 249	ei->socket.sk = NULL;
 250	ei->socket.file = NULL;
 251
 252	return &ei->vfs_inode;
 253}
 254
 255static void sock_free_inode(struct inode *inode)
 256{
 257	struct socket_alloc *ei;
 
 258
 259	ei = container_of(inode, struct socket_alloc, vfs_inode);
 
 
 260	kmem_cache_free(sock_inode_cachep, ei);
 261}
 262
 263static void init_once(void *foo)
 264{
 265	struct socket_alloc *ei = (struct socket_alloc *)foo;
 266
 267	inode_init_once(&ei->vfs_inode);
 268}
 269
 270static void init_inodecache(void)
 271{
 272	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 273					      sizeof(struct socket_alloc),
 274					      0,
 275					      (SLAB_HWCACHE_ALIGN |
 276					       SLAB_RECLAIM_ACCOUNT |
 277					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 278					      init_once);
 279	BUG_ON(sock_inode_cachep == NULL);
 
 
 280}
 281
 282static const struct super_operations sockfs_ops = {
 283	.alloc_inode	= sock_alloc_inode,
 284	.free_inode	= sock_free_inode,
 285	.statfs		= simple_statfs,
 286};
 287
 288/*
 289 * sockfs_dname() is called from d_path().
 290 */
 291static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 292{
 293	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 294				d_inode(dentry)->i_ino);
 295}
 296
 297static const struct dentry_operations sockfs_dentry_operations = {
 298	.d_dname  = sockfs_dname,
 299};
 300
 301static int sockfs_xattr_get(const struct xattr_handler *handler,
 302			    struct dentry *dentry, struct inode *inode,
 303			    const char *suffix, void *value, size_t size)
 304{
 305	if (value) {
 306		if (dentry->d_name.len + 1 > size)
 307			return -ERANGE;
 308		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 309	}
 310	return dentry->d_name.len + 1;
 311}
 312
 313#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 314#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 315#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 316
 317static const struct xattr_handler sockfs_xattr_handler = {
 318	.name = XATTR_NAME_SOCKPROTONAME,
 319	.get = sockfs_xattr_get,
 320};
 321
 322static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 323				     struct dentry *dentry, struct inode *inode,
 324				     const char *suffix, const void *value,
 325				     size_t size, int flags)
 326{
 327	/* Handled by LSM. */
 328	return -EAGAIN;
 329}
 330
 331static const struct xattr_handler sockfs_security_xattr_handler = {
 332	.prefix = XATTR_SECURITY_PREFIX,
 333	.set = sockfs_security_xattr_set,
 334};
 335
 336static const struct xattr_handler *sockfs_xattr_handlers[] = {
 337	&sockfs_xattr_handler,
 338	&sockfs_security_xattr_handler,
 339	NULL
 340};
 341
 342static int sockfs_init_fs_context(struct fs_context *fc)
 
 343{
 344	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 345	if (!ctx)
 346		return -ENOMEM;
 347	ctx->ops = &sockfs_ops;
 348	ctx->dops = &sockfs_dentry_operations;
 349	ctx->xattr = sockfs_xattr_handlers;
 350	return 0;
 351}
 352
 353static struct vfsmount *sock_mnt __read_mostly;
 354
 355static struct file_system_type sock_fs_type = {
 356	.name =		"sockfs",
 357	.init_fs_context = sockfs_init_fs_context,
 358	.kill_sb =	kill_anon_super,
 359};
 360
 361/*
 362 *	Obtains the first available file descriptor and sets it up for use.
 363 *
 364 *	These functions create file structures and maps them to fd space
 365 *	of the current process. On success it returns file descriptor
 366 *	and file struct implicitly stored in sock->file.
 367 *	Note that another thread may close file descriptor before we return
 368 *	from this function. We use the fact that now we do not refer
 369 *	to socket after mapping. If one day we will need it, this
 370 *	function will increment ref. count on file by 1.
 371 *
 372 *	In any case returned fd MAY BE not valid!
 373 *	This race condition is unavoidable
 374 *	with shared fd spaces, we cannot solve it inside kernel,
 375 *	but we take care of internal coherence yet.
 376 */
 377
 378/**
 379 *	sock_alloc_file - Bind a &socket to a &file
 380 *	@sock: socket
 381 *	@flags: file status flags
 382 *	@dname: protocol name
 383 *
 384 *	Returns the &file bound with @sock, implicitly storing it
 385 *	in sock->file. If dname is %NULL, sets to "".
 386 *	On failure the return is a ERR pointer (see linux/err.h).
 387 *	This function uses GFP_KERNEL internally.
 388 */
 389
 390struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 391{
 
 
 392	struct file *file;
 393
 394	if (!dname)
 395		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 
 
 
 
 
 
 
 
 
 396
 397	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 398				O_RDWR | (flags & O_NONBLOCK),
 399				&socket_file_ops);
 
 400	if (IS_ERR(file)) {
 401		sock_release(sock);
 
 
 402		return file;
 403	}
 404
 405	sock->file = file;
 
 406	file->private_data = sock;
 407	return file;
 408}
 409EXPORT_SYMBOL(sock_alloc_file);
 410
 411static int sock_map_fd(struct socket *sock, int flags)
 412{
 413	struct file *newfile;
 414	int fd = get_unused_fd_flags(flags);
 415	if (unlikely(fd < 0)) {
 416		sock_release(sock);
 417		return fd;
 418	}
 419
 420	newfile = sock_alloc_file(sock, flags, NULL);
 421	if (!IS_ERR(newfile)) {
 422		fd_install(fd, newfile);
 423		return fd;
 424	}
 425
 426	put_unused_fd(fd);
 427	return PTR_ERR(newfile);
 428}
 429
 430/**
 431 *	sock_from_file - Return the &socket bounded to @file.
 432 *	@file: file
 433 *	@err: pointer to an error code return
 434 *
 435 *	On failure returns %NULL and assigns -ENOTSOCK to @err.
 436 */
 437
 438struct socket *sock_from_file(struct file *file, int *err)
 439{
 440	if (file->f_op == &socket_file_ops)
 441		return file->private_data;	/* set in sock_map_fd */
 442
 443	*err = -ENOTSOCK;
 444	return NULL;
 445}
 446EXPORT_SYMBOL(sock_from_file);
 447
 448/**
 449 *	sockfd_lookup - Go from a file number to its socket slot
 450 *	@fd: file handle
 451 *	@err: pointer to an error code return
 452 *
 453 *	The file handle passed in is locked and the socket it is bound
 454 *	to is returned. If an error occurs the err pointer is overwritten
 455 *	with a negative errno code and NULL is returned. The function checks
 456 *	for both invalid handles and passing a handle which is not a socket.
 457 *
 458 *	On a success the socket object pointer is returned.
 459 */
 460
 461struct socket *sockfd_lookup(int fd, int *err)
 462{
 463	struct file *file;
 464	struct socket *sock;
 465
 466	file = fget(fd);
 467	if (!file) {
 468		*err = -EBADF;
 469		return NULL;
 470	}
 471
 472	sock = sock_from_file(file, err);
 473	if (!sock)
 474		fput(file);
 475	return sock;
 476}
 477EXPORT_SYMBOL(sockfd_lookup);
 478
 479static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 480{
 481	struct fd f = fdget(fd);
 482	struct socket *sock;
 483
 484	*err = -EBADF;
 485	if (f.file) {
 486		sock = sock_from_file(f.file, err);
 487		if (likely(sock)) {
 488			*fput_needed = f.flags;
 489			return sock;
 490		}
 491		fdput(f);
 492	}
 493	return NULL;
 494}
 495
 496static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 497				size_t size)
 498{
 499	ssize_t len;
 500	ssize_t used = 0;
 501
 502	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 503	if (len < 0)
 504		return len;
 505	used += len;
 506	if (buffer) {
 507		if (size < used)
 508			return -ERANGE;
 509		buffer += len;
 510	}
 511
 512	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 513	used += len;
 514	if (buffer) {
 515		if (size < used)
 516			return -ERANGE;
 517		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 518		buffer += len;
 519	}
 520
 521	return used;
 522}
 523
 524static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 525{
 526	int err = simple_setattr(dentry, iattr);
 527
 528	if (!err && (iattr->ia_valid & ATTR_UID)) {
 529		struct socket *sock = SOCKET_I(d_inode(dentry));
 530
 531		if (sock->sk)
 532			sock->sk->sk_uid = iattr->ia_uid;
 533		else
 534			err = -ENOENT;
 535	}
 536
 537	return err;
 538}
 539
 540static const struct inode_operations sockfs_inode_ops = {
 541	.listxattr = sockfs_listxattr,
 542	.setattr = sockfs_setattr,
 543};
 544
 545/**
 546 *	sock_alloc - allocate a socket
 547 *
 548 *	Allocate a new inode and socket object. The two are bound together
 549 *	and initialised. The socket is then returned. If we are out of inodes
 550 *	NULL is returned. This functions uses GFP_KERNEL internally.
 551 */
 552
 553struct socket *sock_alloc(void)
 554{
 555	struct inode *inode;
 556	struct socket *sock;
 557
 558	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 559	if (!inode)
 560		return NULL;
 561
 562	sock = SOCKET_I(inode);
 563
 
 564	inode->i_ino = get_next_ino();
 565	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 566	inode->i_uid = current_fsuid();
 567	inode->i_gid = current_fsgid();
 568	inode->i_op = &sockfs_inode_ops;
 569
 
 570	return sock;
 571}
 572EXPORT_SYMBOL(sock_alloc);
 573
 574/**
 575 *	sock_release - close a socket
 576 *	@sock: socket to close
 577 *
 578 *	The socket is released from the protocol stack if it has a release
 579 *	callback, and the inode is then released if the socket is bound to
 580 *	an inode not a file.
 581 */
 582
 583static void __sock_release(struct socket *sock, struct inode *inode)
 584{
 585	if (sock->ops) {
 586		struct module *owner = sock->ops->owner;
 587
 588		if (inode)
 589			inode_lock(inode);
 590		sock->ops->release(sock);
 591		sock->sk = NULL;
 592		if (inode)
 593			inode_unlock(inode);
 594		sock->ops = NULL;
 595		module_put(owner);
 596	}
 597
 598	if (sock->wq.fasync_list)
 599		pr_err("%s: fasync list not empty!\n", __func__);
 600
 
 601	if (!sock->file) {
 602		iput(SOCK_INODE(sock));
 603		return;
 604	}
 605	sock->file = NULL;
 606}
 607
 608void sock_release(struct socket *sock)
 609{
 610	__sock_release(sock, NULL);
 611}
 612EXPORT_SYMBOL(sock_release);
 613
 614void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 615{
 616	u8 flags = *tx_flags;
 617
 618	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 619		flags |= SKBTX_HW_TSTAMP;
 620
 621	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 622		flags |= SKBTX_SW_TSTAMP;
 623
 624	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 625		flags |= SKBTX_SCHED_TSTAMP;
 626
 627	*tx_flags = flags;
 628}
 629EXPORT_SYMBOL(__sock_tx_timestamp);
 630
 631INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 632					   size_t));
 633INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 634					    size_t));
 635static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 636{
 637	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 638				     inet_sendmsg, sock, msg,
 639				     msg_data_left(msg));
 640	BUG_ON(ret == -EIOCBQUEUED);
 641	return ret;
 642}
 643
 644/**
 645 *	sock_sendmsg - send a message through @sock
 646 *	@sock: socket
 647 *	@msg: message to send
 648 *
 649 *	Sends @msg through @sock, passing through LSM.
 650 *	Returns the number of bytes sent, or an error code.
 651 */
 652int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 653{
 654	int err = security_socket_sendmsg(sock, msg,
 655					  msg_data_left(msg));
 656
 657	return err ?: sock_sendmsg_nosec(sock, msg);
 658}
 659EXPORT_SYMBOL(sock_sendmsg);
 660
 661/**
 662 *	kernel_sendmsg - send a message through @sock (kernel-space)
 663 *	@sock: socket
 664 *	@msg: message header
 665 *	@vec: kernel vec
 666 *	@num: vec array length
 667 *	@size: total message data size
 668 *
 669 *	Builds the message data with @vec and sends it through @sock.
 670 *	Returns the number of bytes sent, or an error code.
 671 */
 672
 673int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 674		   struct kvec *vec, size_t num, size_t size)
 675{
 676	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 677	return sock_sendmsg(sock, msg);
 678}
 679EXPORT_SYMBOL(kernel_sendmsg);
 680
 681/**
 682 *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
 683 *	@sk: sock
 684 *	@msg: message header
 685 *	@vec: output s/g array
 686 *	@num: output s/g array length
 687 *	@size: total message data size
 688 *
 689 *	Builds the message data with @vec and sends it through @sock.
 690 *	Returns the number of bytes sent, or an error code.
 691 *	Caller must hold @sk.
 692 */
 693
 694int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 695			  struct kvec *vec, size_t num, size_t size)
 696{
 697	struct socket *sock = sk->sk_socket;
 698
 699	if (!sock->ops->sendmsg_locked)
 700		return sock_no_sendmsg_locked(sk, msg, size);
 701
 702	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 703
 704	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 705}
 706EXPORT_SYMBOL(kernel_sendmsg_locked);
 707
 708static bool skb_is_err_queue(const struct sk_buff *skb)
 709{
 710	/* pkt_type of skbs enqueued on the error queue are set to
 711	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 712	 * in recvmsg, since skbs received on a local socket will never
 713	 * have a pkt_type of PACKET_OUTGOING.
 714	 */
 715	return skb->pkt_type == PACKET_OUTGOING;
 716}
 717
 718/* On transmit, software and hardware timestamps are returned independently.
 719 * As the two skb clones share the hardware timestamp, which may be updated
 720 * before the software timestamp is received, a hardware TX timestamp may be
 721 * returned only if there is no software TX timestamp. Ignore false software
 722 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 723 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 724 * hardware timestamp.
 725 */
 726static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 727{
 728	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 729}
 730
 731static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 732{
 733	struct scm_ts_pktinfo ts_pktinfo;
 734	struct net_device *orig_dev;
 735
 736	if (!skb_mac_header_was_set(skb))
 737		return;
 738
 739	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 740
 741	rcu_read_lock();
 742	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 743	if (orig_dev)
 744		ts_pktinfo.if_index = orig_dev->ifindex;
 745	rcu_read_unlock();
 746
 747	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 748	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 749		 sizeof(ts_pktinfo), &ts_pktinfo);
 750}
 751
 752/*
 753 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 754 */
 755void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 756	struct sk_buff *skb)
 757{
 758	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 759	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 760	struct scm_timestamping_internal tss;
 761
 762	int empty = 1, false_tstamp = 0;
 763	struct skb_shared_hwtstamps *shhwtstamps =
 764		skb_hwtstamps(skb);
 765
 766	/* Race occurred between timestamp enabling and packet
 767	   receiving.  Fill in the current time for now. */
 768	if (need_software_tstamp && skb->tstamp == 0) {
 769		__net_timestamp(skb);
 770		false_tstamp = 1;
 771	}
 772
 773	if (need_software_tstamp) {
 774		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 775			if (new_tstamp) {
 776				struct __kernel_sock_timeval tv;
 777
 778				skb_get_new_timestamp(skb, &tv);
 779				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 780					 sizeof(tv), &tv);
 781			} else {
 782				struct __kernel_old_timeval tv;
 783
 784				skb_get_timestamp(skb, &tv);
 785				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 786					 sizeof(tv), &tv);
 787			}
 788		} else {
 789			if (new_tstamp) {
 790				struct __kernel_timespec ts;
 791
 792				skb_get_new_timestampns(skb, &ts);
 793				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 794					 sizeof(ts), &ts);
 795			} else {
 796				struct timespec ts;
 797
 798				skb_get_timestampns(skb, &ts);
 799				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 800					 sizeof(ts), &ts);
 801			}
 802		}
 803	}
 804
 805	memset(&tss, 0, sizeof(tss));
 806	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 807	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 808		empty = 0;
 809	if (shhwtstamps &&
 810	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 811	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
 812	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
 813		empty = 0;
 814		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 815		    !skb_is_err_queue(skb))
 816			put_ts_pktinfo(msg, skb);
 817	}
 818	if (!empty) {
 819		if (sock_flag(sk, SOCK_TSTAMP_NEW))
 820			put_cmsg_scm_timestamping64(msg, &tss);
 821		else
 822			put_cmsg_scm_timestamping(msg, &tss);
 823
 824		if (skb_is_err_queue(skb) && skb->len &&
 825		    SKB_EXT_ERR(skb)->opt_stats)
 826			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 827				 skb->len, skb->data);
 828	}
 829}
 830EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 831
 832void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 833	struct sk_buff *skb)
 834{
 835	int ack;
 836
 837	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 838		return;
 839	if (!skb->wifi_acked_valid)
 840		return;
 841
 842	ack = skb->wifi_acked;
 843
 844	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 845}
 846EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 847
 848static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 849				   struct sk_buff *skb)
 850{
 851	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 852		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 853			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 854}
 855
 856void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 857	struct sk_buff *skb)
 858{
 859	sock_recv_timestamp(msg, sk, skb);
 860	sock_recv_drops(msg, sk, skb);
 861}
 862EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 863
 864INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 865					   size_t, int));
 866INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 867					    size_t, int));
 868static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 869				     int flags)
 870{
 871	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 872				  inet_recvmsg, sock, msg, msg_data_left(msg),
 873				  flags);
 874}
 875
 876/**
 877 *	sock_recvmsg - receive a message from @sock
 878 *	@sock: socket
 879 *	@msg: message to receive
 880 *	@flags: message flags
 881 *
 882 *	Receives @msg from @sock, passing through LSM. Returns the total number
 883 *	of bytes received, or an error.
 884 */
 885int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 886{
 887	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 888
 889	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 890}
 891EXPORT_SYMBOL(sock_recvmsg);
 892
 893/**
 894 *	kernel_recvmsg - Receive a message from a socket (kernel space)
 895 *	@sock: The socket to receive the message from
 896 *	@msg: Received message
 897 *	@vec: Input s/g array for message data
 898 *	@num: Size of input s/g array
 899 *	@size: Number of bytes to read
 900 *	@flags: Message flags (MSG_DONTWAIT, etc...)
 901 *
 902 *	On return the msg structure contains the scatter/gather array passed in the
 903 *	vec argument. The array is modified so that it consists of the unfilled
 904 *	portion of the original array.
 905 *
 906 *	The returned value is the total number of bytes received, or an error.
 907 */
 908
 909int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 910		   struct kvec *vec, size_t num, size_t size, int flags)
 911{
 912	mm_segment_t oldfs = get_fs();
 913	int result;
 914
 915	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
 916	set_fs(KERNEL_DS);
 917	result = sock_recvmsg(sock, msg, flags);
 918	set_fs(oldfs);
 919	return result;
 920}
 921EXPORT_SYMBOL(kernel_recvmsg);
 922
 923static ssize_t sock_sendpage(struct file *file, struct page *page,
 924			     int offset, size_t size, loff_t *ppos, int more)
 925{
 926	struct socket *sock;
 927	int flags;
 928
 929	sock = file->private_data;
 930
 931	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 932	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 933	flags |= more;
 934
 935	return kernel_sendpage(sock, page, offset, size, flags);
 936}
 937
 938static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 939				struct pipe_inode_info *pipe, size_t len,
 940				unsigned int flags)
 941{
 942	struct socket *sock = file->private_data;
 943
 944	if (unlikely(!sock->ops->splice_read))
 945		return generic_file_splice_read(file, ppos, pipe, len, flags);
 946
 947	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 948}
 949
 950static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 951{
 952	struct file *file = iocb->ki_filp;
 953	struct socket *sock = file->private_data;
 954	struct msghdr msg = {.msg_iter = *to,
 955			     .msg_iocb = iocb};
 956	ssize_t res;
 957
 958	if (file->f_flags & O_NONBLOCK)
 959		msg.msg_flags = MSG_DONTWAIT;
 960
 961	if (iocb->ki_pos != 0)
 962		return -ESPIPE;
 963
 964	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 965		return 0;
 966
 967	res = sock_recvmsg(sock, &msg, msg.msg_flags);
 968	*to = msg.msg_iter;
 969	return res;
 970}
 971
 972static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 973{
 974	struct file *file = iocb->ki_filp;
 975	struct socket *sock = file->private_data;
 976	struct msghdr msg = {.msg_iter = *from,
 977			     .msg_iocb = iocb};
 978	ssize_t res;
 979
 980	if (iocb->ki_pos != 0)
 981		return -ESPIPE;
 982
 983	if (file->f_flags & O_NONBLOCK)
 984		msg.msg_flags = MSG_DONTWAIT;
 985
 986	if (sock->type == SOCK_SEQPACKET)
 987		msg.msg_flags |= MSG_EOR;
 988
 989	res = sock_sendmsg(sock, &msg);
 990	*from = msg.msg_iter;
 991	return res;
 992}
 993
 994/*
 995 * Atomic setting of ioctl hooks to avoid race
 996 * with module unload.
 997 */
 998
 999static DEFINE_MUTEX(br_ioctl_mutex);
1000static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1001
1002void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1003{
1004	mutex_lock(&br_ioctl_mutex);
1005	br_ioctl_hook = hook;
1006	mutex_unlock(&br_ioctl_mutex);
1007}
1008EXPORT_SYMBOL(brioctl_set);
1009
1010static DEFINE_MUTEX(vlan_ioctl_mutex);
1011static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1012
1013void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1014{
1015	mutex_lock(&vlan_ioctl_mutex);
1016	vlan_ioctl_hook = hook;
1017	mutex_unlock(&vlan_ioctl_mutex);
1018}
1019EXPORT_SYMBOL(vlan_ioctl_set);
1020
1021static DEFINE_MUTEX(dlci_ioctl_mutex);
1022static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1023
1024void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1025{
1026	mutex_lock(&dlci_ioctl_mutex);
1027	dlci_ioctl_hook = hook;
1028	mutex_unlock(&dlci_ioctl_mutex);
1029}
1030EXPORT_SYMBOL(dlci_ioctl_set);
1031
1032static long sock_do_ioctl(struct net *net, struct socket *sock,
1033			  unsigned int cmd, unsigned long arg)
1034{
1035	int err;
1036	void __user *argp = (void __user *)arg;
1037
1038	err = sock->ops->ioctl(sock, cmd, arg);
1039
1040	/*
1041	 * If this ioctl is unknown try to hand it down
1042	 * to the NIC driver.
1043	 */
1044	if (err != -ENOIOCTLCMD)
1045		return err;
1046
1047	if (cmd == SIOCGIFCONF) {
1048		struct ifconf ifc;
1049		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1050			return -EFAULT;
1051		rtnl_lock();
1052		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1053		rtnl_unlock();
1054		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1055			err = -EFAULT;
1056	} else {
1057		struct ifreq ifr;
1058		bool need_copyout;
1059		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1060			return -EFAULT;
1061		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1062		if (!err && need_copyout)
1063			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1064				return -EFAULT;
1065	}
1066	return err;
1067}
1068
1069/*
1070 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1071 *	what to do with it - that's up to the protocol still.
1072 */
1073
1074/**
1075 *	get_net_ns - increment the refcount of the network namespace
1076 *	@ns: common namespace (net)
1077 *
1078 *	Returns the net's common namespace.
1079 */
1080
1081struct ns_common *get_net_ns(struct ns_common *ns)
1082{
1083	return &get_net(container_of(ns, struct net, ns))->ns;
1084}
1085EXPORT_SYMBOL_GPL(get_net_ns);
1086
1087static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1088{
1089	struct socket *sock;
1090	struct sock *sk;
1091	void __user *argp = (void __user *)arg;
1092	int pid, err;
1093	struct net *net;
1094
1095	sock = file->private_data;
1096	sk = sock->sk;
1097	net = sock_net(sk);
1098	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1099		struct ifreq ifr;
1100		bool need_copyout;
1101		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1102			return -EFAULT;
1103		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1104		if (!err && need_copyout)
1105			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1106				return -EFAULT;
1107	} else
1108#ifdef CONFIG_WEXT_CORE
1109	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1110		err = wext_handle_ioctl(net, cmd, argp);
1111	} else
1112#endif
1113		switch (cmd) {
1114		case FIOSETOWN:
1115		case SIOCSPGRP:
1116			err = -EFAULT;
1117			if (get_user(pid, (int __user *)argp))
1118				break;
1119			err = f_setown(sock->file, pid, 1);
 
1120			break;
1121		case FIOGETOWN:
1122		case SIOCGPGRP:
1123			err = put_user(f_getown(sock->file),
1124				       (int __user *)argp);
1125			break;
1126		case SIOCGIFBR:
1127		case SIOCSIFBR:
1128		case SIOCBRADDBR:
1129		case SIOCBRDELBR:
1130			err = -ENOPKG;
1131			if (!br_ioctl_hook)
1132				request_module("bridge");
1133
1134			mutex_lock(&br_ioctl_mutex);
1135			if (br_ioctl_hook)
1136				err = br_ioctl_hook(net, cmd, argp);
1137			mutex_unlock(&br_ioctl_mutex);
1138			break;
1139		case SIOCGIFVLAN:
1140		case SIOCSIFVLAN:
1141			err = -ENOPKG;
1142			if (!vlan_ioctl_hook)
1143				request_module("8021q");
1144
1145			mutex_lock(&vlan_ioctl_mutex);
1146			if (vlan_ioctl_hook)
1147				err = vlan_ioctl_hook(net, argp);
1148			mutex_unlock(&vlan_ioctl_mutex);
1149			break;
1150		case SIOCADDDLCI:
1151		case SIOCDELDLCI:
1152			err = -ENOPKG;
1153			if (!dlci_ioctl_hook)
1154				request_module("dlci");
1155
1156			mutex_lock(&dlci_ioctl_mutex);
1157			if (dlci_ioctl_hook)
1158				err = dlci_ioctl_hook(cmd, argp);
1159			mutex_unlock(&dlci_ioctl_mutex);
1160			break;
1161		case SIOCGSKNS:
1162			err = -EPERM;
1163			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1164				break;
1165
1166			err = open_related_ns(&net->ns, get_net_ns);
1167			break;
1168		case SIOCGSTAMP_OLD:
1169		case SIOCGSTAMPNS_OLD:
1170			if (!sock->ops->gettstamp) {
1171				err = -ENOIOCTLCMD;
1172				break;
1173			}
1174			err = sock->ops->gettstamp(sock, argp,
1175						   cmd == SIOCGSTAMP_OLD,
1176						   !IS_ENABLED(CONFIG_64BIT));
1177			break;
1178		case SIOCGSTAMP_NEW:
1179		case SIOCGSTAMPNS_NEW:
1180			if (!sock->ops->gettstamp) {
1181				err = -ENOIOCTLCMD;
1182				break;
1183			}
1184			err = sock->ops->gettstamp(sock, argp,
1185						   cmd == SIOCGSTAMP_NEW,
1186						   false);
1187			break;
1188		default:
1189			err = sock_do_ioctl(net, sock, cmd, arg);
1190			break;
1191		}
1192	return err;
1193}
1194
1195/**
1196 *	sock_create_lite - creates a socket
1197 *	@family: protocol family (AF_INET, ...)
1198 *	@type: communication type (SOCK_STREAM, ...)
1199 *	@protocol: protocol (0, ...)
1200 *	@res: new socket
1201 *
1202 *	Creates a new socket and assigns it to @res, passing through LSM.
1203 *	The new socket initialization is not complete, see kernel_accept().
1204 *	Returns 0 or an error. On failure @res is set to %NULL.
1205 *	This function internally uses GFP_KERNEL.
1206 */
1207
1208int sock_create_lite(int family, int type, int protocol, struct socket **res)
1209{
1210	int err;
1211	struct socket *sock = NULL;
1212
1213	err = security_socket_create(family, type, protocol, 1);
1214	if (err)
1215		goto out;
1216
1217	sock = sock_alloc();
1218	if (!sock) {
1219		err = -ENOMEM;
1220		goto out;
1221	}
1222
1223	sock->type = type;
1224	err = security_socket_post_create(sock, family, type, protocol, 1);
1225	if (err)
1226		goto out_release;
1227
1228out:
1229	*res = sock;
1230	return err;
1231out_release:
1232	sock_release(sock);
1233	sock = NULL;
1234	goto out;
1235}
1236EXPORT_SYMBOL(sock_create_lite);
1237
1238/* No kernel lock held - perfect */
1239static __poll_t sock_poll(struct file *file, poll_table *wait)
1240{
1241	struct socket *sock = file->private_data;
1242	__poll_t events = poll_requested_events(wait), flag = 0;
1243
1244	if (!sock->ops->poll)
1245		return 0;
 
 
1246
1247	if (sk_can_busy_loop(sock->sk)) {
1248		/* poll once if requested by the syscall */
1249		if (events & POLL_BUSY_LOOP)
 
 
 
1250			sk_busy_loop(sock->sk, 1);
1251
1252		/* if this socket can poll_ll, tell the system call */
1253		flag = POLL_BUSY_LOOP;
1254	}
1255
1256	return sock->ops->poll(file, sock, wait) | flag;
1257}
1258
1259static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1260{
1261	struct socket *sock = file->private_data;
1262
1263	return sock->ops->mmap(file, sock, vma);
1264}
1265
1266static int sock_close(struct inode *inode, struct file *filp)
1267{
1268	__sock_release(SOCKET_I(inode), inode);
1269	return 0;
1270}
1271
1272/*
1273 *	Update the socket async list
1274 *
1275 *	Fasync_list locking strategy.
1276 *
1277 *	1. fasync_list is modified only under process context socket lock
1278 *	   i.e. under semaphore.
1279 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1280 *	   or under socket lock
1281 */
1282
1283static int sock_fasync(int fd, struct file *filp, int on)
1284{
1285	struct socket *sock = filp->private_data;
1286	struct sock *sk = sock->sk;
1287	struct socket_wq *wq = &sock->wq;
1288
1289	if (sk == NULL)
1290		return -EINVAL;
1291
1292	lock_sock(sk);
 
1293	fasync_helper(fd, filp, on, &wq->fasync_list);
1294
1295	if (!wq->fasync_list)
1296		sock_reset_flag(sk, SOCK_FASYNC);
1297	else
1298		sock_set_flag(sk, SOCK_FASYNC);
1299
1300	release_sock(sk);
1301	return 0;
1302}
1303
1304/* This function may be called only under rcu_lock */
1305
1306int sock_wake_async(struct socket_wq *wq, int how, int band)
1307{
1308	if (!wq || !wq->fasync_list)
1309		return -1;
1310
1311	switch (how) {
1312	case SOCK_WAKE_WAITD:
1313		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1314			break;
1315		goto call_kill;
1316	case SOCK_WAKE_SPACE:
1317		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1318			break;
1319		/* fall through */
1320	case SOCK_WAKE_IO:
1321call_kill:
1322		kill_fasync(&wq->fasync_list, SIGIO, band);
1323		break;
1324	case SOCK_WAKE_URG:
1325		kill_fasync(&wq->fasync_list, SIGURG, band);
1326	}
1327
1328	return 0;
1329}
1330EXPORT_SYMBOL(sock_wake_async);
1331
1332/**
1333 *	__sock_create - creates a socket
1334 *	@net: net namespace
1335 *	@family: protocol family (AF_INET, ...)
1336 *	@type: communication type (SOCK_STREAM, ...)
1337 *	@protocol: protocol (0, ...)
1338 *	@res: new socket
1339 *	@kern: boolean for kernel space sockets
1340 *
1341 *	Creates a new socket and assigns it to @res, passing through LSM.
1342 *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1343 *	be set to true if the socket resides in kernel space.
1344 *	This function internally uses GFP_KERNEL.
1345 */
1346
1347int __sock_create(struct net *net, int family, int type, int protocol,
1348			 struct socket **res, int kern)
1349{
1350	int err;
1351	struct socket *sock;
1352	const struct net_proto_family *pf;
1353
1354	/*
1355	 *      Check protocol is in range
1356	 */
1357	if (family < 0 || family >= NPROTO)
1358		return -EAFNOSUPPORT;
1359	if (type < 0 || type >= SOCK_MAX)
1360		return -EINVAL;
1361
1362	/* Compatibility.
1363
1364	   This uglymoron is moved from INET layer to here to avoid
1365	   deadlock in module load.
1366	 */
1367	if (family == PF_INET && type == SOCK_PACKET) {
1368		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1369			     current->comm);
1370		family = PF_PACKET;
1371	}
1372
1373	err = security_socket_create(family, type, protocol, kern);
1374	if (err)
1375		return err;
1376
1377	/*
1378	 *	Allocate the socket and allow the family to set things up. if
1379	 *	the protocol is 0, the family is instructed to select an appropriate
1380	 *	default.
1381	 */
1382	sock = sock_alloc();
1383	if (!sock) {
1384		net_warn_ratelimited("socket: no more sockets\n");
1385		return -ENFILE;	/* Not exactly a match, but its the
1386				   closest posix thing */
1387	}
1388
1389	sock->type = type;
1390
1391#ifdef CONFIG_MODULES
1392	/* Attempt to load a protocol module if the find failed.
1393	 *
1394	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1395	 * requested real, full-featured networking support upon configuration.
1396	 * Otherwise module support will break!
1397	 */
1398	if (rcu_access_pointer(net_families[family]) == NULL)
1399		request_module("net-pf-%d", family);
1400#endif
1401
1402	rcu_read_lock();
1403	pf = rcu_dereference(net_families[family]);
1404	err = -EAFNOSUPPORT;
1405	if (!pf)
1406		goto out_release;
1407
1408	/*
1409	 * We will call the ->create function, that possibly is in a loadable
1410	 * module, so we have to bump that loadable module refcnt first.
1411	 */
1412	if (!try_module_get(pf->owner))
1413		goto out_release;
1414
1415	/* Now protected by module ref count */
1416	rcu_read_unlock();
1417
1418	err = pf->create(net, sock, protocol, kern);
1419	if (err < 0)
1420		goto out_module_put;
1421
1422	/*
1423	 * Now to bump the refcnt of the [loadable] module that owns this
1424	 * socket at sock_release time we decrement its refcnt.
1425	 */
1426	if (!try_module_get(sock->ops->owner))
1427		goto out_module_busy;
1428
1429	/*
1430	 * Now that we're done with the ->create function, the [loadable]
1431	 * module can have its refcnt decremented
1432	 */
1433	module_put(pf->owner);
1434	err = security_socket_post_create(sock, family, type, protocol, kern);
1435	if (err)
1436		goto out_sock_release;
1437	*res = sock;
1438
1439	return 0;
1440
1441out_module_busy:
1442	err = -EAFNOSUPPORT;
1443out_module_put:
1444	sock->ops = NULL;
1445	module_put(pf->owner);
1446out_sock_release:
1447	sock_release(sock);
1448	return err;
1449
1450out_release:
1451	rcu_read_unlock();
1452	goto out_sock_release;
1453}
1454EXPORT_SYMBOL(__sock_create);
1455
1456/**
1457 *	sock_create - creates a socket
1458 *	@family: protocol family (AF_INET, ...)
1459 *	@type: communication type (SOCK_STREAM, ...)
1460 *	@protocol: protocol (0, ...)
1461 *	@res: new socket
1462 *
1463 *	A wrapper around __sock_create().
1464 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1465 */
1466
1467int sock_create(int family, int type, int protocol, struct socket **res)
1468{
1469	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1470}
1471EXPORT_SYMBOL(sock_create);
1472
1473/**
1474 *	sock_create_kern - creates a socket (kernel space)
1475 *	@net: net namespace
1476 *	@family: protocol family (AF_INET, ...)
1477 *	@type: communication type (SOCK_STREAM, ...)
1478 *	@protocol: protocol (0, ...)
1479 *	@res: new socket
1480 *
1481 *	A wrapper around __sock_create().
1482 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1483 */
1484
1485int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1486{
1487	return __sock_create(net, family, type, protocol, res, 1);
1488}
1489EXPORT_SYMBOL(sock_create_kern);
1490
1491int __sys_socket(int family, int type, int protocol)
1492{
1493	int retval;
1494	struct socket *sock;
1495	int flags;
1496
1497	/* Check the SOCK_* constants for consistency.  */
1498	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1499	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1500	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1501	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1502
1503	flags = type & ~SOCK_TYPE_MASK;
1504	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1505		return -EINVAL;
1506	type &= SOCK_TYPE_MASK;
1507
1508	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1509		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1510
1511	retval = sock_create(family, type, protocol, &sock);
1512	if (retval < 0)
1513		return retval;
 
 
 
 
1514
1515	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1516}
 
1517
1518SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1519{
1520	return __sys_socket(family, type, protocol);
1521}
1522
1523/*
1524 *	Create a pair of connected sockets.
1525 */
1526
1527int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
 
1528{
1529	struct socket *sock1, *sock2;
1530	int fd1, fd2, err;
1531	struct file *newfile1, *newfile2;
1532	int flags;
1533
1534	flags = type & ~SOCK_TYPE_MASK;
1535	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1536		return -EINVAL;
1537	type &= SOCK_TYPE_MASK;
1538
1539	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1540		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1541
1542	/*
1543	 * reserve descriptors and make sure we won't fail
1544	 * to return them to userland.
1545	 */
1546	fd1 = get_unused_fd_flags(flags);
1547	if (unlikely(fd1 < 0))
1548		return fd1;
1549
1550	fd2 = get_unused_fd_flags(flags);
1551	if (unlikely(fd2 < 0)) {
1552		put_unused_fd(fd1);
1553		return fd2;
1554	}
1555
1556	err = put_user(fd1, &usockvec[0]);
1557	if (err)
1558		goto out;
1559
1560	err = put_user(fd2, &usockvec[1]);
1561	if (err)
1562		goto out;
1563
1564	/*
1565	 * Obtain the first socket and check if the underlying protocol
1566	 * supports the socketpair call.
1567	 */
1568
1569	err = sock_create(family, type, protocol, &sock1);
1570	if (unlikely(err < 0))
1571		goto out;
1572
1573	err = sock_create(family, type, protocol, &sock2);
1574	if (unlikely(err < 0)) {
1575		sock_release(sock1);
1576		goto out;
1577	}
 
 
1578
1579	err = security_socket_socketpair(sock1, sock2);
1580	if (unlikely(err)) {
1581		sock_release(sock2);
1582		sock_release(sock1);
1583		goto out;
1584	}
1585
1586	err = sock1->ops->socketpair(sock1, sock2);
1587	if (unlikely(err < 0)) {
1588		sock_release(sock2);
1589		sock_release(sock1);
1590		goto out;
1591	}
1592
1593	newfile1 = sock_alloc_file(sock1, flags, NULL);
1594	if (IS_ERR(newfile1)) {
1595		err = PTR_ERR(newfile1);
1596		sock_release(sock2);
1597		goto out;
1598	}
1599
1600	newfile2 = sock_alloc_file(sock2, flags, NULL);
1601	if (IS_ERR(newfile2)) {
1602		err = PTR_ERR(newfile2);
1603		fput(newfile1);
1604		goto out;
1605	}
1606
 
 
 
 
 
 
 
 
1607	audit_fd_pair(fd1, fd2);
1608
1609	fd_install(fd1, newfile1);
1610	fd_install(fd2, newfile2);
 
 
 
 
1611	return 0;
1612
1613out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1614	put_unused_fd(fd2);
 
1615	put_unused_fd(fd1);
 
 
 
 
 
1616	return err;
1617}
1618
1619SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1620		int __user *, usockvec)
1621{
1622	return __sys_socketpair(family, type, protocol, usockvec);
1623}
1624
1625/*
1626 *	Bind a name to a socket. Nothing much to do here since it's
1627 *	the protocol's responsibility to handle the local address.
1628 *
1629 *	We move the socket address to kernel space before we call
1630 *	the protocol layer (having also checked the address is ok).
1631 */
1632
1633int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1634{
1635	struct socket *sock;
1636	struct sockaddr_storage address;
1637	int err, fput_needed;
1638
1639	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640	if (sock) {
1641		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1642		if (!err) {
1643			err = security_socket_bind(sock,
1644						   (struct sockaddr *)&address,
1645						   addrlen);
1646			if (!err)
1647				err = sock->ops->bind(sock,
1648						      (struct sockaddr *)
1649						      &address, addrlen);
1650		}
1651		fput_light(sock->file, fput_needed);
1652	}
1653	return err;
1654}
1655
1656SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1657{
1658	return __sys_bind(fd, umyaddr, addrlen);
1659}
1660
1661/*
1662 *	Perform a listen. Basically, we allow the protocol to do anything
1663 *	necessary for a listen, and if that works, we mark the socket as
1664 *	ready for listening.
1665 */
1666
1667int __sys_listen(int fd, int backlog)
1668{
1669	struct socket *sock;
1670	int err, fput_needed;
1671	int somaxconn;
1672
1673	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674	if (sock) {
1675		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1676		if ((unsigned int)backlog > somaxconn)
1677			backlog = somaxconn;
1678
1679		err = security_socket_listen(sock, backlog);
1680		if (!err)
1681			err = sock->ops->listen(sock, backlog);
1682
1683		fput_light(sock->file, fput_needed);
1684	}
1685	return err;
1686}
1687
1688SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1689{
1690	return __sys_listen(fd, backlog);
1691}
1692
1693/*
1694 *	For accept, we attempt to create a new socket, set up the link
1695 *	with the client, wake up the client, then return the new
1696 *	connected fd. We collect the address of the connector in kernel
1697 *	space and move it to user at the very end. This is unclean because
1698 *	we open the socket then return an error.
1699 *
1700 *	1003.1g adds the ability to recvmsg() to query connection pending
1701 *	status to recvmsg. We need to add that support in a way thats
1702 *	clean when we restructure accept also.
1703 */
1704
1705int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1706		  int __user *upeer_addrlen, int flags)
1707{
1708	struct socket *sock, *newsock;
1709	struct file *newfile;
1710	int err, len, newfd, fput_needed;
1711	struct sockaddr_storage address;
1712
1713	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1714		return -EINVAL;
1715
1716	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1717		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1718
1719	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720	if (!sock)
1721		goto out;
1722
1723	err = -ENFILE;
1724	newsock = sock_alloc();
1725	if (!newsock)
1726		goto out_put;
1727
1728	newsock->type = sock->type;
1729	newsock->ops = sock->ops;
1730
1731	/*
1732	 * We don't need try_module_get here, as the listening socket (sock)
1733	 * has the protocol module (sock->ops->owner) held.
1734	 */
1735	__module_get(newsock->ops->owner);
1736
1737	newfd = get_unused_fd_flags(flags);
1738	if (unlikely(newfd < 0)) {
1739		err = newfd;
1740		sock_release(newsock);
1741		goto out_put;
1742	}
1743	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1744	if (IS_ERR(newfile)) {
1745		err = PTR_ERR(newfile);
1746		put_unused_fd(newfd);
 
1747		goto out_put;
1748	}
1749
1750	err = security_socket_accept(sock, newsock);
1751	if (err)
1752		goto out_fd;
1753
1754	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1755	if (err < 0)
1756		goto out_fd;
1757
1758	if (upeer_sockaddr) {
1759		len = newsock->ops->getname(newsock,
1760					(struct sockaddr *)&address, 2);
1761		if (len < 0) {
1762			err = -ECONNABORTED;
1763			goto out_fd;
1764		}
1765		err = move_addr_to_user(&address,
1766					len, upeer_sockaddr, upeer_addrlen);
1767		if (err < 0)
1768			goto out_fd;
1769	}
1770
1771	/* File flags are not inherited via accept() unlike another OSes. */
1772
1773	fd_install(newfd, newfile);
1774	err = newfd;
1775
1776out_put:
1777	fput_light(sock->file, fput_needed);
1778out:
1779	return err;
1780out_fd:
1781	fput(newfile);
1782	put_unused_fd(newfd);
1783	goto out_put;
1784}
1785
1786SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1787		int __user *, upeer_addrlen, int, flags)
1788{
1789	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1790}
1791
1792SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1793		int __user *, upeer_addrlen)
1794{
1795	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1796}
1797
1798/*
1799 *	Attempt to connect to a socket with the server address.  The address
1800 *	is in user space so we verify it is OK and move it to kernel space.
1801 *
1802 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1803 *	break bindings
1804 *
1805 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1806 *	other SEQPACKET protocols that take time to connect() as it doesn't
1807 *	include the -EINPROGRESS status for such sockets.
1808 */
1809
1810int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
 
1811{
1812	struct socket *sock;
1813	struct sockaddr_storage address;
1814	int err, fput_needed;
1815
1816	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1817	if (!sock)
1818		goto out;
1819	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1820	if (err < 0)
1821		goto out_put;
1822
1823	err =
1824	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1825	if (err)
1826		goto out_put;
1827
1828	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1829				 sock->file->f_flags);
1830out_put:
1831	fput_light(sock->file, fput_needed);
1832out:
1833	return err;
1834}
1835
1836SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1837		int, addrlen)
1838{
1839	return __sys_connect(fd, uservaddr, addrlen);
1840}
1841
1842/*
1843 *	Get the local address ('name') of a socket object. Move the obtained
1844 *	name to user space.
1845 */
1846
1847int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1848		      int __user *usockaddr_len)
1849{
1850	struct socket *sock;
1851	struct sockaddr_storage address;
1852	int err, fput_needed;
1853
1854	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1855	if (!sock)
1856		goto out;
1857
1858	err = security_socket_getsockname(sock);
1859	if (err)
1860		goto out_put;
1861
1862	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1863	if (err < 0)
1864		goto out_put;
1865        /* "err" is actually length in this case */
1866	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1867
1868out_put:
1869	fput_light(sock->file, fput_needed);
1870out:
1871	return err;
1872}
1873
1874SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1875		int __user *, usockaddr_len)
1876{
1877	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1878}
1879
1880/*
1881 *	Get the remote address ('name') of a socket object. Move the obtained
1882 *	name to user space.
1883 */
1884
1885int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1886		      int __user *usockaddr_len)
1887{
1888	struct socket *sock;
1889	struct sockaddr_storage address;
1890	int err, fput_needed;
1891
1892	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1893	if (sock != NULL) {
1894		err = security_socket_getpeername(sock);
1895		if (err) {
1896			fput_light(sock->file, fput_needed);
1897			return err;
1898		}
1899
1900		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1901		if (err >= 0)
1902			/* "err" is actually length in this case */
1903			err = move_addr_to_user(&address, err, usockaddr,
 
1904						usockaddr_len);
1905		fput_light(sock->file, fput_needed);
1906	}
1907	return err;
1908}
1909
1910SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1911		int __user *, usockaddr_len)
1912{
1913	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1914}
1915
1916/*
1917 *	Send a datagram to a given address. We move the address into kernel
1918 *	space and check the user space data area is readable before invoking
1919 *	the protocol.
1920 */
1921int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1922		 struct sockaddr __user *addr,  int addr_len)
 
 
1923{
1924	struct socket *sock;
1925	struct sockaddr_storage address;
1926	int err;
1927	struct msghdr msg;
1928	struct iovec iov;
1929	int fput_needed;
1930
1931	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1932	if (unlikely(err))
1933		return err;
1934	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935	if (!sock)
1936		goto out;
1937
1938	msg.msg_name = NULL;
1939	msg.msg_control = NULL;
1940	msg.msg_controllen = 0;
1941	msg.msg_namelen = 0;
1942	if (addr) {
1943		err = move_addr_to_kernel(addr, addr_len, &address);
1944		if (err < 0)
1945			goto out_put;
1946		msg.msg_name = (struct sockaddr *)&address;
1947		msg.msg_namelen = addr_len;
1948	}
1949	if (sock->file->f_flags & O_NONBLOCK)
1950		flags |= MSG_DONTWAIT;
1951	msg.msg_flags = flags;
1952	err = sock_sendmsg(sock, &msg);
1953
1954out_put:
1955	fput_light(sock->file, fput_needed);
1956out:
1957	return err;
1958}
1959
1960SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1961		unsigned int, flags, struct sockaddr __user *, addr,
1962		int, addr_len)
1963{
1964	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1965}
1966
1967/*
1968 *	Send a datagram down a socket.
1969 */
1970
1971SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1972		unsigned int, flags)
1973{
1974	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1975}
1976
1977/*
1978 *	Receive a frame from the socket and optionally record the address of the
1979 *	sender. We verify the buffers are writable and if needed move the
1980 *	sender address from kernel to user space.
1981 */
1982int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1983		   struct sockaddr __user *addr, int __user *addr_len)
 
 
1984{
1985	struct socket *sock;
1986	struct iovec iov;
1987	struct msghdr msg;
1988	struct sockaddr_storage address;
1989	int err, err2;
1990	int fput_needed;
1991
1992	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1993	if (unlikely(err))
1994		return err;
1995	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1996	if (!sock)
1997		goto out;
1998
1999	msg.msg_control = NULL;
2000	msg.msg_controllen = 0;
2001	/* Save some cycles and don't copy the address if not needed */
2002	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2003	/* We assume all kernel code knows the size of sockaddr_storage */
2004	msg.msg_namelen = 0;
2005	msg.msg_iocb = NULL;
2006	msg.msg_flags = 0;
2007	if (sock->file->f_flags & O_NONBLOCK)
2008		flags |= MSG_DONTWAIT;
2009	err = sock_recvmsg(sock, &msg, flags);
2010
2011	if (err >= 0 && addr != NULL) {
2012		err2 = move_addr_to_user(&address,
2013					 msg.msg_namelen, addr, addr_len);
2014		if (err2 < 0)
2015			err = err2;
2016	}
2017
2018	fput_light(sock->file, fput_needed);
2019out:
2020	return err;
2021}
2022
2023SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2024		unsigned int, flags, struct sockaddr __user *, addr,
2025		int __user *, addr_len)
2026{
2027	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2028}
2029
2030/*
2031 *	Receive a datagram from a socket.
2032 */
2033
2034SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2035		unsigned int, flags)
2036{
2037	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2038}
2039
2040/*
2041 *	Set a socket option. Because we don't know the option lengths we have
2042 *	to pass the user mode parameter for the protocols to sort out.
2043 */
2044
2045static int __sys_setsockopt(int fd, int level, int optname,
2046			    char __user *optval, int optlen)
2047{
2048	mm_segment_t oldfs = get_fs();
2049	char *kernel_optval = NULL;
2050	int err, fput_needed;
2051	struct socket *sock;
2052
2053	if (optlen < 0)
2054		return -EINVAL;
2055
2056	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2057	if (sock != NULL) {
2058		err = security_socket_setsockopt(sock, level, optname);
2059		if (err)
2060			goto out_put;
2061
2062		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2063						     &optname, optval, &optlen,
2064						     &kernel_optval);
2065
2066		if (err < 0) {
2067			goto out_put;
2068		} else if (err > 0) {
2069			err = 0;
2070			goto out_put;
2071		}
2072
2073		if (kernel_optval) {
2074			set_fs(KERNEL_DS);
2075			optval = (char __user __force *)kernel_optval;
2076		}
2077
2078		if (level == SOL_SOCKET)
2079			err =
2080			    sock_setsockopt(sock, level, optname, optval,
2081					    optlen);
2082		else
2083			err =
2084			    sock->ops->setsockopt(sock, level, optname, optval,
2085						  optlen);
2086
2087		if (kernel_optval) {
2088			set_fs(oldfs);
2089			kfree(kernel_optval);
2090		}
2091out_put:
2092		fput_light(sock->file, fput_needed);
2093	}
2094	return err;
2095}
2096
2097SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2098		char __user *, optval, int, optlen)
2099{
2100	return __sys_setsockopt(fd, level, optname, optval, optlen);
2101}
2102
2103/*
2104 *	Get a socket option. Because we don't know the option lengths we have
2105 *	to pass a user mode parameter for the protocols to sort out.
2106 */
2107
2108static int __sys_getsockopt(int fd, int level, int optname,
2109			    char __user *optval, int __user *optlen)
2110{
2111	int err, fput_needed;
2112	struct socket *sock;
2113	int max_optlen;
2114
2115	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2116	if (sock != NULL) {
2117		err = security_socket_getsockopt(sock, level, optname);
2118		if (err)
2119			goto out_put;
2120
2121		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2122
2123		if (level == SOL_SOCKET)
2124			err =
2125			    sock_getsockopt(sock, level, optname, optval,
2126					    optlen);
2127		else
2128			err =
2129			    sock->ops->getsockopt(sock, level, optname, optval,
2130						  optlen);
2131
2132		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2133						     optval, optlen,
2134						     max_optlen, err);
2135out_put:
2136		fput_light(sock->file, fput_needed);
2137	}
2138	return err;
2139}
2140
2141SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2142		char __user *, optval, int __user *, optlen)
2143{
2144	return __sys_getsockopt(fd, level, optname, optval, optlen);
2145}
2146
2147/*
2148 *	Shutdown a socket.
2149 */
2150
2151int __sys_shutdown(int fd, int how)
2152{
2153	int err, fput_needed;
2154	struct socket *sock;
2155
2156	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2157	if (sock != NULL) {
2158		err = security_socket_shutdown(sock, how);
2159		if (!err)
2160			err = sock->ops->shutdown(sock, how);
2161		fput_light(sock->file, fput_needed);
2162	}
2163	return err;
2164}
2165
2166SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2167{
2168	return __sys_shutdown(fd, how);
2169}
2170
2171/* A couple of helpful macros for getting the address of the 32/64 bit
2172 * fields which are the same type (int / unsigned) on our platforms.
2173 */
2174#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2175#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2176#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2177
2178struct used_address {
2179	struct sockaddr_storage name;
2180	unsigned int name_len;
2181};
2182
2183static int copy_msghdr_from_user(struct msghdr *kmsg,
2184				 struct user_msghdr __user *umsg,
2185				 struct sockaddr __user **save_addr,
2186				 struct iovec **iov)
2187{
2188	struct user_msghdr msg;
 
 
2189	ssize_t err;
2190
2191	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
 
 
 
 
 
 
 
2192		return -EFAULT;
2193
2194	kmsg->msg_control = (void __force *)msg.msg_control;
2195	kmsg->msg_controllen = msg.msg_controllen;
2196	kmsg->msg_flags = msg.msg_flags;
2197
2198	kmsg->msg_namelen = msg.msg_namelen;
2199	if (!msg.msg_name)
2200		kmsg->msg_namelen = 0;
2201
2202	if (kmsg->msg_namelen < 0)
2203		return -EINVAL;
2204
2205	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2206		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2207
2208	if (save_addr)
2209		*save_addr = msg.msg_name;
2210
2211	if (msg.msg_name && kmsg->msg_namelen) {
2212		if (!save_addr) {
2213			err = move_addr_to_kernel(msg.msg_name,
2214						  kmsg->msg_namelen,
2215						  kmsg->msg_name);
2216			if (err < 0)
2217				return err;
2218		}
2219	} else {
2220		kmsg->msg_name = NULL;
2221		kmsg->msg_namelen = 0;
2222	}
2223
2224	if (msg.msg_iovlen > UIO_MAXIOV)
2225		return -EMSGSIZE;
2226
2227	kmsg->msg_iocb = NULL;
2228
2229	err = import_iovec(save_addr ? READ : WRITE,
2230			    msg.msg_iov, msg.msg_iovlen,
2231			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2232	return err < 0 ? err : 0;
2233}
2234
2235static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2236			 struct msghdr *msg_sys, unsigned int flags,
2237			 struct used_address *used_address,
2238			 unsigned int allowed_msghdr_flags)
2239{
2240	struct compat_msghdr __user *msg_compat =
2241	    (struct compat_msghdr __user *)msg;
2242	struct sockaddr_storage address;
2243	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2244	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2245				__aligned(sizeof(__kernel_size_t));
2246	/* 20 is size of ipv6_pktinfo */
2247	unsigned char *ctl_buf = ctl;
2248	int ctl_len;
2249	ssize_t err;
2250
2251	msg_sys->msg_name = &address;
2252
2253	if (MSG_CMSG_COMPAT & flags)
2254		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2255	else
2256		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2257	if (err < 0)
2258		return err;
2259
2260	err = -ENOBUFS;
2261
2262	if (msg_sys->msg_controllen > INT_MAX)
2263		goto out_freeiov;
2264	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2265	ctl_len = msg_sys->msg_controllen;
2266	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2267		err =
2268		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2269						     sizeof(ctl));
2270		if (err)
2271			goto out_freeiov;
2272		ctl_buf = msg_sys->msg_control;
2273		ctl_len = msg_sys->msg_controllen;
2274	} else if (ctl_len) {
2275		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2276			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2277		if (ctl_len > sizeof(ctl)) {
2278			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2279			if (ctl_buf == NULL)
2280				goto out_freeiov;
2281		}
2282		err = -EFAULT;
2283		/*
2284		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2285		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2286		 * checking falls down on this.
2287		 */
2288		if (copy_from_user(ctl_buf,
2289				   (void __user __force *)msg_sys->msg_control,
2290				   ctl_len))
2291			goto out_freectl;
2292		msg_sys->msg_control = ctl_buf;
2293	}
2294	msg_sys->msg_flags = flags;
2295
2296	if (sock->file->f_flags & O_NONBLOCK)
2297		msg_sys->msg_flags |= MSG_DONTWAIT;
2298	/*
2299	 * If this is sendmmsg() and current destination address is same as
2300	 * previously succeeded address, omit asking LSM's decision.
2301	 * used_address->name_len is initialized to UINT_MAX so that the first
2302	 * destination address never matches.
2303	 */
2304	if (used_address && msg_sys->msg_name &&
2305	    used_address->name_len == msg_sys->msg_namelen &&
2306	    !memcmp(&used_address->name, msg_sys->msg_name,
2307		    used_address->name_len)) {
2308		err = sock_sendmsg_nosec(sock, msg_sys);
2309		goto out_freectl;
2310	}
2311	err = sock_sendmsg(sock, msg_sys);
2312	/*
2313	 * If this is sendmmsg() and sending to current destination address was
2314	 * successful, remember it.
2315	 */
2316	if (used_address && err >= 0) {
2317		used_address->name_len = msg_sys->msg_namelen;
2318		if (msg_sys->msg_name)
2319			memcpy(&used_address->name, msg_sys->msg_name,
2320			       used_address->name_len);
2321	}
2322
2323out_freectl:
2324	if (ctl_buf != ctl)
2325		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2326out_freeiov:
2327	kfree(iov);
2328	return err;
2329}
2330
2331/*
2332 *	BSD sendmsg interface
2333 */
2334long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *msg,
2335			unsigned int flags)
2336{
2337	struct msghdr msg_sys;
2338
2339	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2340}
2341
2342long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2343		   bool forbid_cmsg_compat)
2344{
2345	int fput_needed, err;
2346	struct msghdr msg_sys;
2347	struct socket *sock;
2348
2349	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2350		return -EINVAL;
2351
2352	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2353	if (!sock)
2354		goto out;
2355
2356	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2357
2358	fput_light(sock->file, fput_needed);
2359out:
2360	return err;
2361}
2362
2363SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2364{
2365	return __sys_sendmsg(fd, msg, flags, true);
 
 
2366}
2367
2368/*
2369 *	Linux sendmmsg interface
2370 */
2371
2372int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2373		   unsigned int flags, bool forbid_cmsg_compat)
2374{
2375	int fput_needed, err, datagrams;
2376	struct socket *sock;
2377	struct mmsghdr __user *entry;
2378	struct compat_mmsghdr __user *compat_entry;
2379	struct msghdr msg_sys;
2380	struct used_address used_address;
2381	unsigned int oflags = flags;
2382
2383	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2384		return -EINVAL;
2385
2386	if (vlen > UIO_MAXIOV)
2387		vlen = UIO_MAXIOV;
2388
2389	datagrams = 0;
2390
2391	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2392	if (!sock)
2393		return err;
2394
2395	used_address.name_len = UINT_MAX;
2396	entry = mmsg;
2397	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2398	err = 0;
2399	flags |= MSG_BATCH;
2400
2401	while (datagrams < vlen) {
2402		if (datagrams == vlen - 1)
2403			flags = oflags;
2404
2405		if (MSG_CMSG_COMPAT & flags) {
2406			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2407					     &msg_sys, flags, &used_address, MSG_EOR);
2408			if (err < 0)
2409				break;
2410			err = __put_user(err, &compat_entry->msg_len);
2411			++compat_entry;
2412		} else {
2413			err = ___sys_sendmsg(sock,
2414					     (struct user_msghdr __user *)entry,
2415					     &msg_sys, flags, &used_address, MSG_EOR);
2416			if (err < 0)
2417				break;
2418			err = put_user(err, &entry->msg_len);
2419			++entry;
2420		}
2421
2422		if (err)
2423			break;
2424		++datagrams;
2425		if (msg_data_left(&msg_sys))
2426			break;
2427		cond_resched();
2428	}
2429
2430	fput_light(sock->file, fput_needed);
2431
2432	/* We only return an error if no datagrams were able to be sent */
2433	if (datagrams != 0)
2434		return datagrams;
2435
2436	return err;
2437}
2438
2439SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2440		unsigned int, vlen, unsigned int, flags)
2441{
2442	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
 
 
2443}
2444
2445static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2446			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2447{
2448	struct compat_msghdr __user *msg_compat =
2449	    (struct compat_msghdr __user *)msg;
2450	struct iovec iovstack[UIO_FASTIOV];
2451	struct iovec *iov = iovstack;
2452	unsigned long cmsg_ptr;
2453	int len;
2454	ssize_t err;
2455
2456	/* kernel mode address */
2457	struct sockaddr_storage addr;
2458
2459	/* user mode address pointers */
2460	struct sockaddr __user *uaddr;
2461	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2462
2463	msg_sys->msg_name = &addr;
2464
2465	if (MSG_CMSG_COMPAT & flags)
2466		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2467	else
2468		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2469	if (err < 0)
2470		return err;
2471
2472	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2473	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2474
2475	/* We assume all kernel code knows the size of sockaddr_storage */
2476	msg_sys->msg_namelen = 0;
2477
2478	if (sock->file->f_flags & O_NONBLOCK)
2479		flags |= MSG_DONTWAIT;
2480	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2481	if (err < 0)
2482		goto out_freeiov;
2483	len = err;
2484
2485	if (uaddr != NULL) {
2486		err = move_addr_to_user(&addr,
2487					msg_sys->msg_namelen, uaddr,
2488					uaddr_len);
2489		if (err < 0)
2490			goto out_freeiov;
2491	}
2492	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2493			 COMPAT_FLAGS(msg));
2494	if (err)
2495		goto out_freeiov;
2496	if (MSG_CMSG_COMPAT & flags)
2497		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2498				 &msg_compat->msg_controllen);
2499	else
2500		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2501				 &msg->msg_controllen);
2502	if (err)
2503		goto out_freeiov;
2504	err = len;
2505
2506out_freeiov:
2507	kfree(iov);
2508	return err;
2509}
2510
2511/*
2512 *	BSD recvmsg interface
2513 */
2514
2515long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *msg,
2516			unsigned int flags)
2517{
2518	struct msghdr msg_sys;
2519
2520	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2521}
2522
2523long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2524		   bool forbid_cmsg_compat)
2525{
2526	int fput_needed, err;
2527	struct msghdr msg_sys;
2528	struct socket *sock;
2529
2530	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2531		return -EINVAL;
2532
2533	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2534	if (!sock)
2535		goto out;
2536
2537	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2538
2539	fput_light(sock->file, fput_needed);
2540out:
2541	return err;
2542}
2543
2544SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2545		unsigned int, flags)
2546{
2547	return __sys_recvmsg(fd, msg, flags, true);
 
 
2548}
2549
2550/*
2551 *     Linux recvmmsg interface
2552 */
2553
2554static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2555			  unsigned int vlen, unsigned int flags,
2556			  struct timespec64 *timeout)
2557{
2558	int fput_needed, err, datagrams;
2559	struct socket *sock;
2560	struct mmsghdr __user *entry;
2561	struct compat_mmsghdr __user *compat_entry;
2562	struct msghdr msg_sys;
2563	struct timespec64 end_time;
2564	struct timespec64 timeout64;
2565
2566	if (timeout &&
2567	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2568				    timeout->tv_nsec))
2569		return -EINVAL;
2570
2571	datagrams = 0;
2572
2573	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2574	if (!sock)
2575		return err;
2576
2577	if (likely(!(flags & MSG_ERRQUEUE))) {
2578		err = sock_error(sock->sk);
2579		if (err) {
2580			datagrams = err;
2581			goto out_put;
2582		}
2583	}
2584
2585	entry = mmsg;
2586	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2587
2588	while (datagrams < vlen) {
2589		/*
2590		 * No need to ask LSM for more than the first datagram.
2591		 */
2592		if (MSG_CMSG_COMPAT & flags) {
2593			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2594					     &msg_sys, flags & ~MSG_WAITFORONE,
2595					     datagrams);
2596			if (err < 0)
2597				break;
2598			err = __put_user(err, &compat_entry->msg_len);
2599			++compat_entry;
2600		} else {
2601			err = ___sys_recvmsg(sock,
2602					     (struct user_msghdr __user *)entry,
2603					     &msg_sys, flags & ~MSG_WAITFORONE,
2604					     datagrams);
2605			if (err < 0)
2606				break;
2607			err = put_user(err, &entry->msg_len);
2608			++entry;
2609		}
2610
2611		if (err)
2612			break;
2613		++datagrams;
2614
2615		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2616		if (flags & MSG_WAITFORONE)
2617			flags |= MSG_DONTWAIT;
2618
2619		if (timeout) {
2620			ktime_get_ts64(&timeout64);
2621			*timeout = timespec64_sub(end_time, timeout64);
 
2622			if (timeout->tv_sec < 0) {
2623				timeout->tv_sec = timeout->tv_nsec = 0;
2624				break;
2625			}
2626
2627			/* Timeout, return less than vlen datagrams */
2628			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2629				break;
2630		}
2631
2632		/* Out of band data, return right away */
2633		if (msg_sys.msg_flags & MSG_OOB)
2634			break;
2635		cond_resched();
2636	}
2637
2638	if (err == 0)
2639		goto out_put;
2640
2641	if (datagrams == 0) {
2642		datagrams = err;
2643		goto out_put;
2644	}
2645
2646	/*
2647	 * We may return less entries than requested (vlen) if the
2648	 * sock is non block and there aren't enough datagrams...
2649	 */
2650	if (err != -EAGAIN) {
2651		/*
2652		 * ... or  if recvmsg returns an error after we
2653		 * received some datagrams, where we record the
2654		 * error to return on the next call or if the
2655		 * app asks about it using getsockopt(SO_ERROR).
2656		 */
2657		sock->sk->sk_err = -err;
2658	}
2659out_put:
2660	fput_light(sock->file, fput_needed);
2661
2662	return datagrams;
2663}
2664
2665int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2666		   unsigned int vlen, unsigned int flags,
2667		   struct __kernel_timespec __user *timeout,
2668		   struct old_timespec32 __user *timeout32)
2669{
2670	int datagrams;
2671	struct timespec64 timeout_sys;
 
 
 
2672
2673	if (timeout && get_timespec64(&timeout_sys, timeout))
2674		return -EFAULT;
2675
2676	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2677		return -EFAULT;
2678
2679	if (!timeout && !timeout32)
2680		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2681
2682	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2683
2684	if (datagrams <= 0)
2685		return datagrams;
2686
2687	if (timeout && put_timespec64(&timeout_sys, timeout))
2688		datagrams = -EFAULT;
2689
2690	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2691		datagrams = -EFAULT;
2692
2693	return datagrams;
2694}
2695
2696SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2697		unsigned int, vlen, unsigned int, flags,
2698		struct __kernel_timespec __user *, timeout)
2699{
2700	if (flags & MSG_CMSG_COMPAT)
2701		return -EINVAL;
2702
2703	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2704}
2705
2706#ifdef CONFIG_COMPAT_32BIT_TIME
2707SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2708		unsigned int, vlen, unsigned int, flags,
2709		struct old_timespec32 __user *, timeout)
2710{
2711	if (flags & MSG_CMSG_COMPAT)
2712		return -EINVAL;
2713
2714	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2715}
2716#endif
2717
2718#ifdef __ARCH_WANT_SYS_SOCKETCALL
2719/* Argument list sizes for sys_socketcall */
2720#define AL(x) ((x) * sizeof(unsigned long))
2721static const unsigned char nargs[21] = {
2722	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2723	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2724	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2725	AL(4), AL(5), AL(4)
2726};
2727
2728#undef AL
2729
2730/*
2731 *	System call vectors.
2732 *
2733 *	Argument checking cleaned up. Saved 20% in size.
2734 *  This function doesn't need to set the kernel lock because
2735 *  it is set by the callees.
2736 */
2737
2738SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2739{
2740	unsigned long a[AUDITSC_ARGS];
2741	unsigned long a0, a1;
2742	int err;
2743	unsigned int len;
2744
2745	if (call < 1 || call > SYS_SENDMMSG)
2746		return -EINVAL;
2747	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2748
2749	len = nargs[call];
2750	if (len > sizeof(a))
2751		return -EINVAL;
2752
2753	/* copy_from_user should be SMP safe. */
2754	if (copy_from_user(a, args, len))
2755		return -EFAULT;
2756
2757	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2758	if (err)
2759		return err;
2760
2761	a0 = a[0];
2762	a1 = a[1];
2763
2764	switch (call) {
2765	case SYS_SOCKET:
2766		err = __sys_socket(a0, a1, a[2]);
2767		break;
2768	case SYS_BIND:
2769		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2770		break;
2771	case SYS_CONNECT:
2772		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2773		break;
2774	case SYS_LISTEN:
2775		err = __sys_listen(a0, a1);
2776		break;
2777	case SYS_ACCEPT:
2778		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2779				    (int __user *)a[2], 0);
2780		break;
2781	case SYS_GETSOCKNAME:
2782		err =
2783		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2784				      (int __user *)a[2]);
2785		break;
2786	case SYS_GETPEERNAME:
2787		err =
2788		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2789				      (int __user *)a[2]);
2790		break;
2791	case SYS_SOCKETPAIR:
2792		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2793		break;
2794	case SYS_SEND:
2795		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2796				   NULL, 0);
2797		break;
2798	case SYS_SENDTO:
2799		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2800				   (struct sockaddr __user *)a[4], a[5]);
2801		break;
2802	case SYS_RECV:
2803		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2804				     NULL, NULL);
2805		break;
2806	case SYS_RECVFROM:
2807		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2808				     (struct sockaddr __user *)a[4],
2809				     (int __user *)a[5]);
2810		break;
2811	case SYS_SHUTDOWN:
2812		err = __sys_shutdown(a0, a1);
2813		break;
2814	case SYS_SETSOCKOPT:
2815		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2816				       a[4]);
2817		break;
2818	case SYS_GETSOCKOPT:
2819		err =
2820		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2821				     (int __user *)a[4]);
2822		break;
2823	case SYS_SENDMSG:
2824		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2825				    a[2], true);
2826		break;
2827	case SYS_SENDMMSG:
2828		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2829				     a[3], true);
2830		break;
2831	case SYS_RECVMSG:
2832		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2833				    a[2], true);
2834		break;
2835	case SYS_RECVMMSG:
2836		if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2837			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2838					     a[2], a[3],
2839					     (struct __kernel_timespec __user *)a[4],
2840					     NULL);
2841		else
2842			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2843					     a[2], a[3], NULL,
2844					     (struct old_timespec32 __user *)a[4]);
2845		break;
2846	case SYS_ACCEPT4:
2847		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2848				    (int __user *)a[2], a[3]);
2849		break;
2850	default:
2851		err = -EINVAL;
2852		break;
2853	}
2854	return err;
2855}
2856
2857#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2858
2859/**
2860 *	sock_register - add a socket protocol handler
2861 *	@ops: description of protocol
2862 *
2863 *	This function is called by a protocol handler that wants to
2864 *	advertise its address family, and have it linked into the
2865 *	socket interface. The value ops->family corresponds to the
2866 *	socket system call protocol family.
2867 */
2868int sock_register(const struct net_proto_family *ops)
2869{
2870	int err;
2871
2872	if (ops->family >= NPROTO) {
2873		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2874		return -ENOBUFS;
2875	}
2876
2877	spin_lock(&net_family_lock);
2878	if (rcu_dereference_protected(net_families[ops->family],
2879				      lockdep_is_held(&net_family_lock)))
2880		err = -EEXIST;
2881	else {
2882		rcu_assign_pointer(net_families[ops->family], ops);
2883		err = 0;
2884	}
2885	spin_unlock(&net_family_lock);
2886
2887	pr_info("NET: Registered protocol family %d\n", ops->family);
2888	return err;
2889}
2890EXPORT_SYMBOL(sock_register);
2891
2892/**
2893 *	sock_unregister - remove a protocol handler
2894 *	@family: protocol family to remove
2895 *
2896 *	This function is called by a protocol handler that wants to
2897 *	remove its address family, and have it unlinked from the
2898 *	new socket creation.
2899 *
2900 *	If protocol handler is a module, then it can use module reference
2901 *	counts to protect against new references. If protocol handler is not
2902 *	a module then it needs to provide its own protection in
2903 *	the ops->create routine.
2904 */
2905void sock_unregister(int family)
2906{
2907	BUG_ON(family < 0 || family >= NPROTO);
2908
2909	spin_lock(&net_family_lock);
2910	RCU_INIT_POINTER(net_families[family], NULL);
2911	spin_unlock(&net_family_lock);
2912
2913	synchronize_rcu();
2914
2915	pr_info("NET: Unregistered protocol family %d\n", family);
2916}
2917EXPORT_SYMBOL(sock_unregister);
2918
2919bool sock_is_registered(int family)
2920{
2921	return family < NPROTO && rcu_access_pointer(net_families[family]);
2922}
2923
2924static int __init sock_init(void)
2925{
2926	int err;
2927	/*
2928	 *      Initialize the network sysctl infrastructure.
2929	 */
2930	err = net_sysctl_init();
2931	if (err)
2932		goto out;
2933
2934	/*
2935	 *      Initialize skbuff SLAB cache
2936	 */
2937	skb_init();
2938
2939	/*
2940	 *      Initialize the protocols module.
2941	 */
2942
2943	init_inodecache();
2944
2945	err = register_filesystem(&sock_fs_type);
2946	if (err)
2947		goto out_fs;
2948	sock_mnt = kern_mount(&sock_fs_type);
2949	if (IS_ERR(sock_mnt)) {
2950		err = PTR_ERR(sock_mnt);
2951		goto out_mount;
2952	}
2953
2954	/* The real protocol initialization is performed in later initcalls.
2955	 */
2956
2957#ifdef CONFIG_NETFILTER
2958	err = netfilter_init();
2959	if (err)
2960		goto out;
2961#endif
2962
2963	ptp_classifier_init();
2964
2965out:
2966	return err;
2967
2968out_mount:
2969	unregister_filesystem(&sock_fs_type);
2970out_fs:
2971	goto out;
2972}
2973
2974core_initcall(sock_init);	/* early initcall */
2975
2976#ifdef CONFIG_PROC_FS
2977void socket_seq_show(struct seq_file *seq)
2978{
2979	seq_printf(seq, "sockets: used %d\n",
2980		   sock_inuse_get(seq->private));
 
 
 
 
 
 
 
 
 
2981}
2982#endif				/* CONFIG_PROC_FS */
2983
2984#ifdef CONFIG_COMPAT
2985static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2986{
2987	struct compat_ifconf ifc32;
2988	struct ifconf ifc;
 
 
 
 
2989	int err;
2990
2991	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2992		return -EFAULT;
2993
2994	ifc.ifc_len = ifc32.ifc_len;
2995	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2996
2997	rtnl_lock();
2998	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2999	rtnl_unlock();
3000	if (err)
3001		return err;
3002
3003	ifc32.ifc_len = ifc.ifc_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3004	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3005		return -EFAULT;
3006
3007	return 0;
3008}
3009
3010static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3011{
3012	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3013	bool convert_in = false, convert_out = false;
3014	size_t buf_size = 0;
3015	struct ethtool_rxnfc __user *rxnfc = NULL;
3016	struct ifreq ifr;
3017	u32 rule_cnt = 0, actual_rule_cnt;
3018	u32 ethcmd;
3019	u32 data;
3020	int ret;
3021
3022	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3023		return -EFAULT;
3024
3025	compat_rxnfc = compat_ptr(data);
3026
3027	if (get_user(ethcmd, &compat_rxnfc->cmd))
3028		return -EFAULT;
3029
3030	/* Most ethtool structures are defined without padding.
3031	 * Unfortunately struct ethtool_rxnfc is an exception.
3032	 */
3033	switch (ethcmd) {
3034	default:
3035		break;
3036	case ETHTOOL_GRXCLSRLALL:
3037		/* Buffer size is variable */
3038		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3039			return -EFAULT;
3040		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3041			return -ENOMEM;
3042		buf_size += rule_cnt * sizeof(u32);
3043		/* fall through */
3044	case ETHTOOL_GRXRINGS:
3045	case ETHTOOL_GRXCLSRLCNT:
3046	case ETHTOOL_GRXCLSRULE:
3047	case ETHTOOL_SRXCLSRLINS:
3048		convert_out = true;
3049		/* fall through */
3050	case ETHTOOL_SRXCLSRLDEL:
3051		buf_size += sizeof(struct ethtool_rxnfc);
3052		convert_in = true;
3053		rxnfc = compat_alloc_user_space(buf_size);
3054		break;
3055	}
3056
3057	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
 
 
 
3058		return -EFAULT;
3059
3060	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
 
 
3061
3062	if (convert_in) {
3063		/* We expect there to be holes between fs.m_ext and
3064		 * fs.ring_cookie and at the end of fs, but nowhere else.
3065		 */
3066		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3067			     sizeof(compat_rxnfc->fs.m_ext) !=
3068			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3069			     sizeof(rxnfc->fs.m_ext));
3070		BUILD_BUG_ON(
3071			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3072			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3073			offsetof(struct ethtool_rxnfc, fs.location) -
3074			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3075
3076		if (copy_in_user(rxnfc, compat_rxnfc,
3077				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3078				 (void __user *)rxnfc) ||
3079		    copy_in_user(&rxnfc->fs.ring_cookie,
3080				 &compat_rxnfc->fs.ring_cookie,
3081				 (void __user *)(&rxnfc->fs.location + 1) -
3082				 (void __user *)&rxnfc->fs.ring_cookie))
3083			return -EFAULT;
3084		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3085			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3086				return -EFAULT;
3087		} else if (copy_in_user(&rxnfc->rule_cnt,
3088					&compat_rxnfc->rule_cnt,
3089					sizeof(rxnfc->rule_cnt)))
3090			return -EFAULT;
3091	}
3092
3093	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3094	if (ret)
3095		return ret;
3096
3097	if (convert_out) {
3098		if (copy_in_user(compat_rxnfc, rxnfc,
3099				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3100				 (const void __user *)rxnfc) ||
3101		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3102				 &rxnfc->fs.ring_cookie,
3103				 (const void __user *)(&rxnfc->fs.location + 1) -
3104				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3105		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3106				 sizeof(rxnfc->rule_cnt)))
3107			return -EFAULT;
3108
3109		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3110			/* As an optimisation, we only copy the actual
3111			 * number of rules that the underlying
3112			 * function returned.  Since Mallory might
3113			 * change the rule count in user memory, we
3114			 * check that it is less than the rule count
3115			 * originally given (as the user buffer size),
3116			 * which has been range-checked.
3117			 */
3118			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3119				return -EFAULT;
3120			if (actual_rule_cnt < rule_cnt)
3121				rule_cnt = actual_rule_cnt;
3122			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3123					 &rxnfc->rule_locs[0],
3124					 rule_cnt * sizeof(u32)))
3125				return -EFAULT;
3126		}
3127	}
3128
3129	return 0;
3130}
3131
3132static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3133{
 
3134	compat_uptr_t uptr32;
3135	struct ifreq ifr;
3136	void __user *saved;
3137	int err;
3138
3139	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
 
3140		return -EFAULT;
3141
3142	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3143		return -EFAULT;
3144
3145	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3146	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3147
3148	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3149	if (!err) {
3150		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3151		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3152			err = -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3153	}
3154	return err;
3155}
3156
3157/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3158static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3159				 struct compat_ifreq __user *u_ifreq32)
3160{
3161	struct ifreq ifreq;
 
 
3162	u32 data32;
3163
3164	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
 
 
 
 
 
 
 
 
 
 
3165		return -EFAULT;
3166	if (get_user(data32, &u_ifreq32->ifr_data))
3167		return -EFAULT;
3168	ifreq.ifr_data = compat_ptr(data32);
3169
3170	return dev_ioctl(net, cmd, &ifreq, NULL);
3171}
3172
3173static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3174			      unsigned int cmd,
3175			      struct compat_ifreq __user *uifr32)
3176{
3177	struct ifreq __user *uifr;
3178	int err;
3179
3180	/* Handle the fact that while struct ifreq has the same *layout* on
3181	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3182	 * which are handled elsewhere, it still has different *size* due to
3183	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3184	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3185	 * As a result, if the struct happens to be at the end of a page and
3186	 * the next page isn't readable/writable, we get a fault. To prevent
3187	 * that, copy back and forth to the full size.
3188	 */
3189
3190	uifr = compat_alloc_user_space(sizeof(*uifr));
3191	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3192		return -EFAULT;
3193
3194	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3195
3196	if (!err) {
3197		switch (cmd) {
3198		case SIOCGIFFLAGS:
3199		case SIOCGIFMETRIC:
3200		case SIOCGIFMTU:
3201		case SIOCGIFMEM:
3202		case SIOCGIFHWADDR:
3203		case SIOCGIFINDEX:
3204		case SIOCGIFADDR:
3205		case SIOCGIFBRDADDR:
3206		case SIOCGIFDSTADDR:
3207		case SIOCGIFNETMASK:
3208		case SIOCGIFPFLAGS:
3209		case SIOCGIFTXQLEN:
3210		case SIOCGMIIPHY:
3211		case SIOCGMIIREG:
3212		case SIOCGIFNAME:
3213			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3214				err = -EFAULT;
3215			break;
3216		}
3217	}
3218	return err;
3219}
3220
3221static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3222			struct compat_ifreq __user *uifr32)
3223{
3224	struct ifreq ifr;
3225	struct compat_ifmap __user *uifmap32;
 
3226	int err;
3227
3228	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3229	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3230	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3231	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3232	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3233	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3234	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3235	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3236	if (err)
3237		return -EFAULT;
3238
3239	err = dev_ioctl(net, cmd, &ifr, NULL);
 
 
 
3240
3241	if (cmd == SIOCGIFMAP && !err) {
3242		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3243		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3244		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3245		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3246		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3247		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3248		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3249		if (err)
3250			err = -EFAULT;
3251	}
3252	return err;
3253}
3254
3255struct rtentry32 {
3256	u32		rt_pad1;
3257	struct sockaddr rt_dst;         /* target address               */
3258	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3259	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3260	unsigned short	rt_flags;
3261	short		rt_pad2;
3262	u32		rt_pad3;
3263	unsigned char	rt_tos;
3264	unsigned char	rt_class;
3265	short		rt_pad4;
3266	short		rt_metric;      /* +1 for binary compatibility! */
3267	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3268	u32		rt_mtu;         /* per route MTU/Window         */
3269	u32		rt_window;      /* Window clamping              */
3270	unsigned short  rt_irtt;        /* Initial RTT                  */
3271};
3272
3273struct in6_rtmsg32 {
3274	struct in6_addr		rtmsg_dst;
3275	struct in6_addr		rtmsg_src;
3276	struct in6_addr		rtmsg_gateway;
3277	u32			rtmsg_type;
3278	u16			rtmsg_dst_len;
3279	u16			rtmsg_src_len;
3280	u32			rtmsg_metric;
3281	u32			rtmsg_info;
3282	u32			rtmsg_flags;
3283	s32			rtmsg_ifindex;
3284};
3285
3286static int routing_ioctl(struct net *net, struct socket *sock,
3287			 unsigned int cmd, void __user *argp)
3288{
3289	int ret;
3290	void *r = NULL;
3291	struct in6_rtmsg r6;
3292	struct rtentry r4;
3293	char devname[16];
3294	u32 rtdev;
3295	mm_segment_t old_fs = get_fs();
3296
3297	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3298		struct in6_rtmsg32 __user *ur6 = argp;
3299		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3300			3 * sizeof(struct in6_addr));
3301		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3302		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3303		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3304		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3305		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3306		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3307		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3308
3309		r = (void *) &r6;
3310	} else { /* ipv4 */
3311		struct rtentry32 __user *ur4 = argp;
3312		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3313					3 * sizeof(struct sockaddr));
3314		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3315		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3316		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3317		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3318		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3319		ret |= get_user(rtdev, &(ur4->rt_dev));
3320		if (rtdev) {
3321			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3322			r4.rt_dev = (char __user __force *)devname;
3323			devname[15] = 0;
3324		} else
3325			r4.rt_dev = NULL;
3326
3327		r = (void *) &r4;
3328	}
3329
3330	if (ret) {
3331		ret = -EFAULT;
3332		goto out;
3333	}
3334
3335	set_fs(KERNEL_DS);
3336	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3337	set_fs(old_fs);
3338
3339out:
3340	return ret;
3341}
3342
3343/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3344 * for some operations; this forces use of the newer bridge-utils that
3345 * use compatible ioctls
3346 */
3347static int old_bridge_ioctl(compat_ulong_t __user *argp)
3348{
3349	compat_ulong_t tmp;
3350
3351	if (get_user(tmp, argp))
3352		return -EFAULT;
3353	if (tmp == BRCTL_GET_VERSION)
3354		return BRCTL_VERSION + 1;
3355	return -EINVAL;
3356}
3357
3358static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3359			 unsigned int cmd, unsigned long arg)
3360{
3361	void __user *argp = compat_ptr(arg);
3362	struct sock *sk = sock->sk;
3363	struct net *net = sock_net(sk);
3364
3365	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3366		return compat_ifr_data_ioctl(net, cmd, argp);
3367
3368	switch (cmd) {
3369	case SIOCSIFBR:
3370	case SIOCGIFBR:
3371		return old_bridge_ioctl(argp);
 
 
3372	case SIOCGIFCONF:
3373		return compat_dev_ifconf(net, argp);
3374	case SIOCETHTOOL:
3375		return ethtool_ioctl(net, argp);
3376	case SIOCWANDEV:
3377		return compat_siocwandev(net, argp);
3378	case SIOCGIFMAP:
3379	case SIOCSIFMAP:
3380		return compat_sioc_ifmap(net, cmd, argp);
 
 
 
 
 
3381	case SIOCADDRT:
3382	case SIOCDELRT:
3383		return routing_ioctl(net, sock, cmd, argp);
3384	case SIOCGSTAMP_OLD:
3385	case SIOCGSTAMPNS_OLD:
3386		if (!sock->ops->gettstamp)
3387			return -ENOIOCTLCMD;
3388		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3389					    !COMPAT_USE_64BIT_TIME);
3390
3391	case SIOCBONDSLAVEINFOQUERY:
3392	case SIOCBONDINFOQUERY:
3393	case SIOCSHWTSTAMP:
3394	case SIOCGHWTSTAMP:
3395		return compat_ifr_data_ioctl(net, cmd, argp);
3396
3397	case FIOSETOWN:
3398	case SIOCSPGRP:
3399	case FIOGETOWN:
3400	case SIOCGPGRP:
3401	case SIOCBRADDBR:
3402	case SIOCBRDELBR:
3403	case SIOCGIFVLAN:
3404	case SIOCSIFVLAN:
3405	case SIOCADDDLCI:
3406	case SIOCDELDLCI:
3407	case SIOCGSKNS:
3408	case SIOCGSTAMP_NEW:
3409	case SIOCGSTAMPNS_NEW:
3410		return sock_ioctl(file, cmd, arg);
3411
3412	case SIOCGIFFLAGS:
3413	case SIOCSIFFLAGS:
3414	case SIOCGIFMETRIC:
3415	case SIOCSIFMETRIC:
3416	case SIOCGIFMTU:
3417	case SIOCSIFMTU:
3418	case SIOCGIFMEM:
3419	case SIOCSIFMEM:
3420	case SIOCGIFHWADDR:
3421	case SIOCSIFHWADDR:
3422	case SIOCADDMULTI:
3423	case SIOCDELMULTI:
3424	case SIOCGIFINDEX:
3425	case SIOCGIFADDR:
3426	case SIOCSIFADDR:
3427	case SIOCSIFHWBROADCAST:
3428	case SIOCDIFADDR:
3429	case SIOCGIFBRDADDR:
3430	case SIOCSIFBRDADDR:
3431	case SIOCGIFDSTADDR:
3432	case SIOCSIFDSTADDR:
3433	case SIOCGIFNETMASK:
3434	case SIOCSIFNETMASK:
3435	case SIOCSIFPFLAGS:
3436	case SIOCGIFPFLAGS:
3437	case SIOCGIFTXQLEN:
3438	case SIOCSIFTXQLEN:
3439	case SIOCBRADDIF:
3440	case SIOCBRDELIF:
3441	case SIOCGIFNAME:
3442	case SIOCSIFNAME:
3443	case SIOCGMIIPHY:
3444	case SIOCGMIIREG:
3445	case SIOCSMIIREG:
3446	case SIOCBONDENSLAVE:
3447	case SIOCBONDRELEASE:
3448	case SIOCBONDSETHWADDR:
3449	case SIOCBONDCHANGEACTIVE:
3450		return compat_ifreq_ioctl(net, sock, cmd, argp);
3451
3452	case SIOCSARP:
3453	case SIOCGARP:
3454	case SIOCDARP:
3455	case SIOCATMARK:
3456		return sock_do_ioctl(net, sock, cmd, arg);
3457	}
3458
3459	return -ENOIOCTLCMD;
3460}
3461
3462static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3463			      unsigned long arg)
3464{
3465	struct socket *sock = file->private_data;
3466	int ret = -ENOIOCTLCMD;
3467	struct sock *sk;
3468	struct net *net;
3469
3470	sk = sock->sk;
3471	net = sock_net(sk);
3472
3473	if (sock->ops->compat_ioctl)
3474		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3475
3476	if (ret == -ENOIOCTLCMD &&
3477	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3478		ret = compat_wext_handle_ioctl(net, cmd, arg);
3479
3480	if (ret == -ENOIOCTLCMD)
3481		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3482
3483	return ret;
3484}
3485#endif
3486
3487/**
3488 *	kernel_bind - bind an address to a socket (kernel space)
3489 *	@sock: socket
3490 *	@addr: address
3491 *	@addrlen: length of address
3492 *
3493 *	Returns 0 or an error.
3494 */
3495
3496int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3497{
3498	return sock->ops->bind(sock, addr, addrlen);
3499}
3500EXPORT_SYMBOL(kernel_bind);
3501
3502/**
3503 *	kernel_listen - move socket to listening state (kernel space)
3504 *	@sock: socket
3505 *	@backlog: pending connections queue size
3506 *
3507 *	Returns 0 or an error.
3508 */
3509
3510int kernel_listen(struct socket *sock, int backlog)
3511{
3512	return sock->ops->listen(sock, backlog);
3513}
3514EXPORT_SYMBOL(kernel_listen);
3515
3516/**
3517 *	kernel_accept - accept a connection (kernel space)
3518 *	@sock: listening socket
3519 *	@newsock: new connected socket
3520 *	@flags: flags
3521 *
3522 *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3523 *	If it fails, @newsock is guaranteed to be %NULL.
3524 *	Returns 0 or an error.
3525 */
3526
3527int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3528{
3529	struct sock *sk = sock->sk;
3530	int err;
3531
3532	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3533			       newsock);
3534	if (err < 0)
3535		goto done;
3536
3537	err = sock->ops->accept(sock, *newsock, flags, true);
3538	if (err < 0) {
3539		sock_release(*newsock);
3540		*newsock = NULL;
3541		goto done;
3542	}
3543
3544	(*newsock)->ops = sock->ops;
3545	__module_get((*newsock)->ops->owner);
3546
3547done:
3548	return err;
3549}
3550EXPORT_SYMBOL(kernel_accept);
3551
3552/**
3553 *	kernel_connect - connect a socket (kernel space)
3554 *	@sock: socket
3555 *	@addr: address
3556 *	@addrlen: address length
3557 *	@flags: flags (O_NONBLOCK, ...)
3558 *
3559 *	For datagram sockets, @addr is the addres to which datagrams are sent
3560 *	by default, and the only address from which datagrams are received.
3561 *	For stream sockets, attempts to connect to @addr.
3562 *	Returns 0 or an error code.
3563 */
3564
3565int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3566		   int flags)
3567{
3568	return sock->ops->connect(sock, addr, addrlen, flags);
3569}
3570EXPORT_SYMBOL(kernel_connect);
3571
3572/**
3573 *	kernel_getsockname - get the address which the socket is bound (kernel space)
3574 *	@sock: socket
3575 *	@addr: address holder
3576 *
3577 * 	Fills the @addr pointer with the address which the socket is bound.
3578 *	Returns 0 or an error code.
3579 */
3580
3581int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3582{
3583	return sock->ops->getname(sock, addr, 0);
3584}
3585EXPORT_SYMBOL(kernel_getsockname);
3586
3587/**
3588 *	kernel_peername - get the address which the socket is connected (kernel space)
3589 *	@sock: socket
3590 *	@addr: address holder
3591 *
3592 * 	Fills the @addr pointer with the address which the socket is connected.
3593 *	Returns 0 or an error code.
3594 */
3595
3596int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3597{
3598	return sock->ops->getname(sock, addr, 1);
3599}
3600EXPORT_SYMBOL(kernel_getpeername);
3601
3602/**
3603 *	kernel_getsockopt - get a socket option (kernel space)
3604 *	@sock: socket
3605 *	@level: API level (SOL_SOCKET, ...)
3606 *	@optname: option tag
3607 *	@optval: option value
3608 *	@optlen: option length
3609 *
3610 *	Assigns the option length to @optlen.
3611 *	Returns 0 or an error.
3612 */
3613
3614int kernel_getsockopt(struct socket *sock, int level, int optname,
3615			char *optval, int *optlen)
3616{
3617	mm_segment_t oldfs = get_fs();
3618	char __user *uoptval;
3619	int __user *uoptlen;
3620	int err;
3621
3622	uoptval = (char __user __force *) optval;
3623	uoptlen = (int __user __force *) optlen;
3624
3625	set_fs(KERNEL_DS);
3626	if (level == SOL_SOCKET)
3627		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3628	else
3629		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3630					    uoptlen);
3631	set_fs(oldfs);
3632	return err;
3633}
3634EXPORT_SYMBOL(kernel_getsockopt);
3635
3636/**
3637 *	kernel_setsockopt - set a socket option (kernel space)
3638 *	@sock: socket
3639 *	@level: API level (SOL_SOCKET, ...)
3640 *	@optname: option tag
3641 *	@optval: option value
3642 *	@optlen: option length
3643 *
3644 *	Returns 0 or an error.
3645 */
3646
3647int kernel_setsockopt(struct socket *sock, int level, int optname,
3648			char *optval, unsigned int optlen)
3649{
3650	mm_segment_t oldfs = get_fs();
3651	char __user *uoptval;
3652	int err;
3653
3654	uoptval = (char __user __force *) optval;
3655
3656	set_fs(KERNEL_DS);
3657	if (level == SOL_SOCKET)
3658		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3659	else
3660		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3661					    optlen);
3662	set_fs(oldfs);
3663	return err;
3664}
3665EXPORT_SYMBOL(kernel_setsockopt);
3666
3667/**
3668 *	kernel_sendpage - send a &page through a socket (kernel space)
3669 *	@sock: socket
3670 *	@page: page
3671 *	@offset: page offset
3672 *	@size: total size in bytes
3673 *	@flags: flags (MSG_DONTWAIT, ...)
3674 *
3675 *	Returns the total amount sent in bytes or an error.
3676 */
3677
3678int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3679		    size_t size, int flags)
3680{
3681	if (sock->ops->sendpage)
3682		return sock->ops->sendpage(sock, page, offset, size, flags);
3683
3684	return sock_no_sendpage(sock, page, offset, size, flags);
3685}
3686EXPORT_SYMBOL(kernel_sendpage);
3687
3688/**
3689 *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3690 *	@sk: sock
3691 *	@page: page
3692 *	@offset: page offset
3693 *	@size: total size in bytes
3694 *	@flags: flags (MSG_DONTWAIT, ...)
3695 *
3696 *	Returns the total amount sent in bytes or an error.
3697 *	Caller must hold @sk.
3698 */
3699
3700int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3701			   size_t size, int flags)
3702{
3703	struct socket *sock = sk->sk_socket;
 
3704
3705	if (sock->ops->sendpage_locked)
3706		return sock->ops->sendpage_locked(sk, page, offset, size,
3707						  flags);
3708
3709	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3710}
3711EXPORT_SYMBOL(kernel_sendpage_locked);
3712
3713/**
3714 *	kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3715 *	@sock: socket
3716 *	@how: connection part
3717 *
3718 *	Returns 0 or an error.
3719 */
3720
3721int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3722{
3723	return sock->ops->shutdown(sock, how);
3724}
3725EXPORT_SYMBOL(kernel_sock_shutdown);
3726
3727/**
3728 *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3729 *	@sk: socket
3730 *
3731 *	This routine returns the IP overhead imposed by a socket i.e.
3732 *	the length of the underlying IP header, depending on whether
3733 *	this is an IPv4 or IPv6 socket and the length from IP options turned
3734 *	on at the socket. Assumes that the caller has a lock on the socket.
3735 */
3736
3737u32 kernel_sock_ip_overhead(struct sock *sk)
3738{
3739	struct inet_sock *inet;
3740	struct ip_options_rcu *opt;
3741	u32 overhead = 0;
3742#if IS_ENABLED(CONFIG_IPV6)
3743	struct ipv6_pinfo *np;
3744	struct ipv6_txoptions *optv6 = NULL;
3745#endif /* IS_ENABLED(CONFIG_IPV6) */
3746
3747	if (!sk)
3748		return overhead;
3749
3750	switch (sk->sk_family) {
3751	case AF_INET:
3752		inet = inet_sk(sk);
3753		overhead += sizeof(struct iphdr);
3754		opt = rcu_dereference_protected(inet->inet_opt,
3755						sock_owned_by_user(sk));
3756		if (opt)
3757			overhead += opt->opt.optlen;
3758		return overhead;
3759#if IS_ENABLED(CONFIG_IPV6)
3760	case AF_INET6:
3761		np = inet6_sk(sk);
3762		overhead += sizeof(struct ipv6hdr);
3763		if (np)
3764			optv6 = rcu_dereference_protected(np->opt,
3765							  sock_owned_by_user(sk));
3766		if (optv6)
3767			overhead += (optv6->opt_flen + optv6->opt_nflen);
3768		return overhead;
3769#endif /* IS_ENABLED(CONFIG_IPV6) */
3770	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3771		return overhead;
3772	}
3773}
3774EXPORT_SYMBOL(kernel_sock_ip_overhead);