Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122			      struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126			      unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130			     int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132				struct pipe_inode_info *pipe, size_t len,
 133				unsigned int flags);
 134
 135/*
 136 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *	in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141	.owner =	THIS_MODULE,
 142	.llseek =	no_llseek,
 143	.read_iter =	sock_read_iter,
 144	.write_iter =	sock_write_iter,
 145	.poll =		sock_poll,
 146	.unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148	.compat_ioctl = compat_sock_ioctl,
 149#endif
 150	.mmap =		sock_mmap,
 151	.release =	sock_close,
 152	.fasync =	sock_fasync,
 153	.sendpage =	sock_sendpage,
 154	.splice_write = generic_splice_sendpage,
 155	.splice_read =	sock_splice_read,
 156};
 157
 158/*
 159 *	The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *	Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *	move_addr_to_kernel	-	copy a socket address into kernel space
 179 *	@uaddr: Address in user space
 180 *	@kaddr: Address in kernel space
 181 *	@ulen: Length in user space
 182 *
 183 *	The address is copied into kernel space. If the provided address is
 184 *	too long an error code of -EINVAL is returned. If the copy gives
 185 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191		return -EINVAL;
 192	if (ulen == 0)
 193		return 0;
 194	if (copy_from_user(kaddr, uaddr, ulen))
 195		return -EFAULT;
 196	return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *	move_addr_to_user	-	copy an address to user space
 201 *	@kaddr: kernel space address
 202 *	@klen: length of address in kernel
 203 *	@uaddr: user space address
 204 *	@ulen: pointer to user length field
 205 *
 206 *	The value pointed to by ulen on entry is the buffer length available.
 207 *	This is overwritten with the buffer space used. -EINVAL is returned
 208 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *	is returned if either the buffer or the length field are not
 210 *	accessible.
 211 *	After copying the data up to the limit the user specifies, the true
 212 *	length of the data is written over the length limit the user
 213 *	specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217			     void __user *uaddr, int __user *ulen)
 218{
 219	int err;
 220	int len;
 221
 222	BUG_ON(klen > sizeof(struct sockaddr_storage));
 223	err = get_user(len, ulen);
 224	if (err)
 225		return err;
 226	if (len > klen)
 227		len = klen;
 228	if (len < 0)
 229		return -EINVAL;
 230	if (len) {
 231		if (audit_sockaddr(klen, kaddr))
 232			return -ENOMEM;
 233		if (copy_to_user(uaddr, kaddr, len))
 234			return -EFAULT;
 235	}
 236	/*
 237	 *      "fromlen shall refer to the value before truncation.."
 238	 *                      1003.1g
 239	 */
 240	return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247	struct socket_alloc *ei;
 248	struct socket_wq *wq;
 249
 250	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251	if (!ei)
 252		return NULL;
 253	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254	if (!wq) {
 255		kmem_cache_free(sock_inode_cachep, ei);
 256		return NULL;
 257	}
 258	init_waitqueue_head(&wq->wait);
 259	wq->fasync_list = NULL;
 260	wq->flags = 0;
 261	RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263	ei->socket.state = SS_UNCONNECTED;
 264	ei->socket.flags = 0;
 265	ei->socket.ops = NULL;
 266	ei->socket.sk = NULL;
 267	ei->socket.file = NULL;
 268
 269	return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274	struct socket_alloc *ei;
 275	struct socket_wq *wq;
 276
 277	ei = container_of(inode, struct socket_alloc, vfs_inode);
 278	wq = rcu_dereference_protected(ei->socket.wq, 1);
 279	kfree_rcu(wq, rcu);
 280	kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285	struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287	inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293					      sizeof(struct socket_alloc),
 294					      0,
 295					      (SLAB_HWCACHE_ALIGN |
 296					       SLAB_RECLAIM_ACCOUNT |
 297					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298					      init_once);
 299	if (sock_inode_cachep == NULL)
 300		return -ENOMEM;
 301	return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305	.alloc_inode	= sock_alloc_inode,
 306	.destroy_inode	= sock_destroy_inode,
 307	.statfs		= simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316				d_inode(dentry)->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320	.d_dname  = sockfs_dname,
 321};
 322
 323static int sockfs_xattr_get(const struct xattr_handler *handler,
 324			    struct dentry *dentry, struct inode *inode,
 325			    const char *suffix, void *value, size_t size)
 326{
 327	if (value) {
 328		if (dentry->d_name.len + 1 > size)
 329			return -ERANGE;
 330		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 331	}
 332	return dentry->d_name.len + 1;
 333}
 334
 335#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 336#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 337#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 338
 339static const struct xattr_handler sockfs_xattr_handler = {
 340	.name = XATTR_NAME_SOCKPROTONAME,
 341	.get = sockfs_xattr_get,
 342};
 343
 344static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 345				     struct dentry *dentry, struct inode *inode,
 346				     const char *suffix, const void *value,
 347				     size_t size, int flags)
 348{
 349	/* Handled by LSM. */
 350	return -EAGAIN;
 351}
 352
 353static const struct xattr_handler sockfs_security_xattr_handler = {
 354	.prefix = XATTR_SECURITY_PREFIX,
 355	.set = sockfs_security_xattr_set,
 356};
 357
 358static const struct xattr_handler *sockfs_xattr_handlers[] = {
 359	&sockfs_xattr_handler,
 360	&sockfs_security_xattr_handler,
 361	NULL
 362};
 363
 364static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 365			 int flags, const char *dev_name, void *data)
 366{
 367	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 368				  sockfs_xattr_handlers,
 369				  &sockfs_dentry_operations, SOCKFS_MAGIC);
 370}
 371
 372static struct vfsmount *sock_mnt __read_mostly;
 373
 374static struct file_system_type sock_fs_type = {
 375	.name =		"sockfs",
 376	.mount =	sockfs_mount,
 377	.kill_sb =	kill_anon_super,
 378};
 379
 380/*
 381 *	Obtains the first available file descriptor and sets it up for use.
 382 *
 383 *	These functions create file structures and maps them to fd space
 384 *	of the current process. On success it returns file descriptor
 385 *	and file struct implicitly stored in sock->file.
 386 *	Note that another thread may close file descriptor before we return
 387 *	from this function. We use the fact that now we do not refer
 388 *	to socket after mapping. If one day we will need it, this
 389 *	function will increment ref. count on file by 1.
 390 *
 391 *	In any case returned fd MAY BE not valid!
 392 *	This race condition is unavoidable
 393 *	with shared fd spaces, we cannot solve it inside kernel,
 394 *	but we take care of internal coherence yet.
 395 */
 396
 397struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 398{
 399	struct qstr name = { .name = "" };
 400	struct path path;
 401	struct file *file;
 402
 403	if (dname) {
 404		name.name = dname;
 405		name.len = strlen(name.name);
 406	} else if (sock->sk) {
 407		name.name = sock->sk->sk_prot_creator->name;
 408		name.len = strlen(name.name);
 409	}
 410	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 411	if (unlikely(!path.dentry))
 412		return ERR_PTR(-ENOMEM);
 413	path.mnt = mntget(sock_mnt);
 414
 415	d_instantiate(path.dentry, SOCK_INODE(sock));
 416
 417	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 418		  &socket_file_ops);
 419	if (IS_ERR(file)) {
 420		/* drop dentry, keep inode */
 421		ihold(d_inode(path.dentry));
 422		path_put(&path);
 423		return file;
 424	}
 425
 426	sock->file = file;
 427	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 428	file->private_data = sock;
 429	return file;
 430}
 431EXPORT_SYMBOL(sock_alloc_file);
 432
 433static int sock_map_fd(struct socket *sock, int flags)
 434{
 435	struct file *newfile;
 436	int fd = get_unused_fd_flags(flags);
 437	if (unlikely(fd < 0))
 438		return fd;
 439
 440	newfile = sock_alloc_file(sock, flags, NULL);
 441	if (likely(!IS_ERR(newfile))) {
 442		fd_install(fd, newfile);
 443		return fd;
 444	}
 445
 446	put_unused_fd(fd);
 447	return PTR_ERR(newfile);
 448}
 449
 450struct socket *sock_from_file(struct file *file, int *err)
 451{
 452	if (file->f_op == &socket_file_ops)
 453		return file->private_data;	/* set in sock_map_fd */
 454
 455	*err = -ENOTSOCK;
 456	return NULL;
 457}
 458EXPORT_SYMBOL(sock_from_file);
 459
 460/**
 461 *	sockfd_lookup - Go from a file number to its socket slot
 462 *	@fd: file handle
 463 *	@err: pointer to an error code return
 464 *
 465 *	The file handle passed in is locked and the socket it is bound
 466 *	too is returned. If an error occurs the err pointer is overwritten
 467 *	with a negative errno code and NULL is returned. The function checks
 468 *	for both invalid handles and passing a handle which is not a socket.
 469 *
 470 *	On a success the socket object pointer is returned.
 471 */
 472
 473struct socket *sockfd_lookup(int fd, int *err)
 474{
 475	struct file *file;
 476	struct socket *sock;
 477
 478	file = fget(fd);
 479	if (!file) {
 480		*err = -EBADF;
 481		return NULL;
 482	}
 483
 484	sock = sock_from_file(file, err);
 485	if (!sock)
 486		fput(file);
 487	return sock;
 488}
 489EXPORT_SYMBOL(sockfd_lookup);
 490
 491static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 492{
 493	struct fd f = fdget(fd);
 494	struct socket *sock;
 495
 496	*err = -EBADF;
 497	if (f.file) {
 498		sock = sock_from_file(f.file, err);
 499		if (likely(sock)) {
 500			*fput_needed = f.flags;
 501			return sock;
 502		}
 503		fdput(f);
 504	}
 505	return NULL;
 506}
 507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 509				size_t size)
 510{
 511	ssize_t len;
 512	ssize_t used = 0;
 513
 514	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 515	if (len < 0)
 516		return len;
 517	used += len;
 518	if (buffer) {
 519		if (size < used)
 520			return -ERANGE;
 521		buffer += len;
 522	}
 523
 524	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 525	used += len;
 526	if (buffer) {
 527		if (size < used)
 528			return -ERANGE;
 529		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 530		buffer += len;
 531	}
 532
 533	return used;
 534}
 535
 536static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 537{
 538	int err = simple_setattr(dentry, iattr);
 539
 540	if (!err && (iattr->ia_valid & ATTR_UID)) {
 541		struct socket *sock = SOCKET_I(d_inode(dentry));
 542
 543		sock->sk->sk_uid = iattr->ia_uid;
 544	}
 545
 546	return err;
 547}
 548
 549static const struct inode_operations sockfs_inode_ops = {
 
 550	.listxattr = sockfs_listxattr,
 551	.setattr = sockfs_setattr,
 552};
 553
 554/**
 555 *	sock_alloc	-	allocate a socket
 556 *
 557 *	Allocate a new inode and socket object. The two are bound together
 558 *	and initialised. The socket is then returned. If we are out of inodes
 559 *	NULL is returned.
 560 */
 561
 562struct socket *sock_alloc(void)
 563{
 564	struct inode *inode;
 565	struct socket *sock;
 566
 567	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 568	if (!inode)
 569		return NULL;
 570
 571	sock = SOCKET_I(inode);
 572
 573	kmemcheck_annotate_bitfield(sock, type);
 574	inode->i_ino = get_next_ino();
 575	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 576	inode->i_uid = current_fsuid();
 577	inode->i_gid = current_fsgid();
 578	inode->i_op = &sockfs_inode_ops;
 579
 580	this_cpu_add(sockets_in_use, 1);
 581	return sock;
 582}
 583EXPORT_SYMBOL(sock_alloc);
 584
 585/**
 586 *	sock_release	-	close a socket
 587 *	@sock: socket to close
 588 *
 589 *	The socket is released from the protocol stack if it has a release
 590 *	callback, and the inode is then released if the socket is bound to
 591 *	an inode not a file.
 592 */
 593
 594void sock_release(struct socket *sock)
 595{
 596	if (sock->ops) {
 597		struct module *owner = sock->ops->owner;
 598
 599		sock->ops->release(sock);
 600		sock->ops = NULL;
 601		module_put(owner);
 602	}
 603
 604	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 605		pr_err("%s: fasync list not empty!\n", __func__);
 606
 607	this_cpu_sub(sockets_in_use, 1);
 608	if (!sock->file) {
 609		iput(SOCK_INODE(sock));
 610		return;
 611	}
 612	sock->file = NULL;
 613}
 614EXPORT_SYMBOL(sock_release);
 615
 616void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 617{
 618	u8 flags = *tx_flags;
 619
 620	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 621		flags |= SKBTX_HW_TSTAMP;
 622
 623	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 624		flags |= SKBTX_SW_TSTAMP;
 625
 626	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 627		flags |= SKBTX_SCHED_TSTAMP;
 628
 
 
 
 629	*tx_flags = flags;
 630}
 631EXPORT_SYMBOL(__sock_tx_timestamp);
 632
 633static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 634{
 635	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 636	BUG_ON(ret == -EIOCBQUEUED);
 637	return ret;
 638}
 639
 640int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 641{
 642	int err = security_socket_sendmsg(sock, msg,
 643					  msg_data_left(msg));
 644
 645	return err ?: sock_sendmsg_nosec(sock, msg);
 646}
 647EXPORT_SYMBOL(sock_sendmsg);
 648
 649int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 650		   struct kvec *vec, size_t num, size_t size)
 651{
 652	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 653	return sock_sendmsg(sock, msg);
 654}
 655EXPORT_SYMBOL(kernel_sendmsg);
 656
 657/*
 658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 659 */
 660void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 661	struct sk_buff *skb)
 662{
 663	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 664	struct scm_timestamping tss;
 665	int empty = 1;
 666	struct skb_shared_hwtstamps *shhwtstamps =
 667		skb_hwtstamps(skb);
 668
 669	/* Race occurred between timestamp enabling and packet
 670	   receiving.  Fill in the current time for now. */
 671	if (need_software_tstamp && skb->tstamp == 0)
 672		__net_timestamp(skb);
 673
 674	if (need_software_tstamp) {
 675		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 676			struct timeval tv;
 677			skb_get_timestamp(skb, &tv);
 678			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 679				 sizeof(tv), &tv);
 680		} else {
 681			struct timespec ts;
 682			skb_get_timestampns(skb, &ts);
 683			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 684				 sizeof(ts), &ts);
 685		}
 686	}
 687
 688	memset(&tss, 0, sizeof(tss));
 689	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 690	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 691		empty = 0;
 692	if (shhwtstamps &&
 693	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 694	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 695		empty = 0;
 696	if (!empty) {
 697		put_cmsg(msg, SOL_SOCKET,
 698			 SCM_TIMESTAMPING, sizeof(tss), &tss);
 699
 700		if (skb->len && (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS))
 701			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 702				 skb->len, skb->data);
 703	}
 704}
 705EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 706
 707void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 708	struct sk_buff *skb)
 709{
 710	int ack;
 711
 712	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 713		return;
 714	if (!skb->wifi_acked_valid)
 715		return;
 716
 717	ack = skb->wifi_acked;
 718
 719	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 720}
 721EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 722
 723static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 724				   struct sk_buff *skb)
 725{
 726	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 727		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 728			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 729}
 730
 731void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 732	struct sk_buff *skb)
 733{
 734	sock_recv_timestamp(msg, sk, skb);
 735	sock_recv_drops(msg, sk, skb);
 736}
 737EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 738
 739static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 740				     int flags)
 741{
 742	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 743}
 744
 745int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 
 746{
 747	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 748
 749	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 750}
 751EXPORT_SYMBOL(sock_recvmsg);
 752
 753/**
 754 * kernel_recvmsg - Receive a message from a socket (kernel space)
 755 * @sock:       The socket to receive the message from
 756 * @msg:        Received message
 757 * @vec:        Input s/g array for message data
 758 * @num:        Size of input s/g array
 759 * @size:       Number of bytes to read
 760 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 761 *
 762 * On return the msg structure contains the scatter/gather array passed in the
 763 * vec argument. The array is modified so that it consists of the unfilled
 764 * portion of the original array.
 765 *
 766 * The returned value is the total number of bytes received, or an error.
 767 */
 768int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 769		   struct kvec *vec, size_t num, size_t size, int flags)
 770{
 771	mm_segment_t oldfs = get_fs();
 772	int result;
 773
 774	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 775	set_fs(KERNEL_DS);
 776	result = sock_recvmsg(sock, msg, flags);
 777	set_fs(oldfs);
 778	return result;
 779}
 780EXPORT_SYMBOL(kernel_recvmsg);
 781
 782static ssize_t sock_sendpage(struct file *file, struct page *page,
 783			     int offset, size_t size, loff_t *ppos, int more)
 784{
 785	struct socket *sock;
 786	int flags;
 787
 788	sock = file->private_data;
 789
 790	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 791	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 792	flags |= more;
 793
 794	return kernel_sendpage(sock, page, offset, size, flags);
 795}
 796
 797static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 798				struct pipe_inode_info *pipe, size_t len,
 799				unsigned int flags)
 800{
 801	struct socket *sock = file->private_data;
 802
 803	if (unlikely(!sock->ops->splice_read))
 804		return -EINVAL;
 805
 806	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 807}
 808
 809static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 810{
 811	struct file *file = iocb->ki_filp;
 812	struct socket *sock = file->private_data;
 813	struct msghdr msg = {.msg_iter = *to,
 814			     .msg_iocb = iocb};
 815	ssize_t res;
 816
 817	if (file->f_flags & O_NONBLOCK)
 818		msg.msg_flags = MSG_DONTWAIT;
 819
 820	if (iocb->ki_pos != 0)
 821		return -ESPIPE;
 822
 823	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 824		return 0;
 825
 826	res = sock_recvmsg(sock, &msg, msg.msg_flags);
 827	*to = msg.msg_iter;
 828	return res;
 829}
 830
 831static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 832{
 833	struct file *file = iocb->ki_filp;
 834	struct socket *sock = file->private_data;
 835	struct msghdr msg = {.msg_iter = *from,
 836			     .msg_iocb = iocb};
 837	ssize_t res;
 838
 839	if (iocb->ki_pos != 0)
 840		return -ESPIPE;
 841
 842	if (file->f_flags & O_NONBLOCK)
 843		msg.msg_flags = MSG_DONTWAIT;
 844
 845	if (sock->type == SOCK_SEQPACKET)
 846		msg.msg_flags |= MSG_EOR;
 847
 848	res = sock_sendmsg(sock, &msg);
 849	*from = msg.msg_iter;
 850	return res;
 851}
 852
 853/*
 854 * Atomic setting of ioctl hooks to avoid race
 855 * with module unload.
 856 */
 857
 858static DEFINE_MUTEX(br_ioctl_mutex);
 859static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 860
 861void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 862{
 863	mutex_lock(&br_ioctl_mutex);
 864	br_ioctl_hook = hook;
 865	mutex_unlock(&br_ioctl_mutex);
 866}
 867EXPORT_SYMBOL(brioctl_set);
 868
 869static DEFINE_MUTEX(vlan_ioctl_mutex);
 870static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 871
 872void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 873{
 874	mutex_lock(&vlan_ioctl_mutex);
 875	vlan_ioctl_hook = hook;
 876	mutex_unlock(&vlan_ioctl_mutex);
 877}
 878EXPORT_SYMBOL(vlan_ioctl_set);
 879
 880static DEFINE_MUTEX(dlci_ioctl_mutex);
 881static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 882
 883void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 884{
 885	mutex_lock(&dlci_ioctl_mutex);
 886	dlci_ioctl_hook = hook;
 887	mutex_unlock(&dlci_ioctl_mutex);
 888}
 889EXPORT_SYMBOL(dlci_ioctl_set);
 890
 891static long sock_do_ioctl(struct net *net, struct socket *sock,
 892				 unsigned int cmd, unsigned long arg)
 893{
 894	int err;
 895	void __user *argp = (void __user *)arg;
 896
 897	err = sock->ops->ioctl(sock, cmd, arg);
 898
 899	/*
 900	 * If this ioctl is unknown try to hand it down
 901	 * to the NIC driver.
 902	 */
 903	if (err == -ENOIOCTLCMD)
 904		err = dev_ioctl(net, cmd, argp);
 905
 906	return err;
 907}
 908
 909/*
 910 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 911 *	what to do with it - that's up to the protocol still.
 912 */
 913
 914static struct ns_common *get_net_ns(struct ns_common *ns)
 915{
 916	return &get_net(container_of(ns, struct net, ns))->ns;
 917}
 918
 919static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 920{
 921	struct socket *sock;
 922	struct sock *sk;
 923	void __user *argp = (void __user *)arg;
 924	int pid, err;
 925	struct net *net;
 926
 927	sock = file->private_data;
 928	sk = sock->sk;
 929	net = sock_net(sk);
 930	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 931		err = dev_ioctl(net, cmd, argp);
 932	} else
 933#ifdef CONFIG_WEXT_CORE
 934	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 935		err = dev_ioctl(net, cmd, argp);
 936	} else
 937#endif
 938		switch (cmd) {
 939		case FIOSETOWN:
 940		case SIOCSPGRP:
 941			err = -EFAULT;
 942			if (get_user(pid, (int __user *)argp))
 943				break;
 944			f_setown(sock->file, pid, 1);
 945			err = 0;
 946			break;
 947		case FIOGETOWN:
 948		case SIOCGPGRP:
 949			err = put_user(f_getown(sock->file),
 950				       (int __user *)argp);
 951			break;
 952		case SIOCGIFBR:
 953		case SIOCSIFBR:
 954		case SIOCBRADDBR:
 955		case SIOCBRDELBR:
 956			err = -ENOPKG;
 957			if (!br_ioctl_hook)
 958				request_module("bridge");
 959
 960			mutex_lock(&br_ioctl_mutex);
 961			if (br_ioctl_hook)
 962				err = br_ioctl_hook(net, cmd, argp);
 963			mutex_unlock(&br_ioctl_mutex);
 964			break;
 965		case SIOCGIFVLAN:
 966		case SIOCSIFVLAN:
 967			err = -ENOPKG;
 968			if (!vlan_ioctl_hook)
 969				request_module("8021q");
 970
 971			mutex_lock(&vlan_ioctl_mutex);
 972			if (vlan_ioctl_hook)
 973				err = vlan_ioctl_hook(net, argp);
 974			mutex_unlock(&vlan_ioctl_mutex);
 975			break;
 976		case SIOCADDDLCI:
 977		case SIOCDELDLCI:
 978			err = -ENOPKG;
 979			if (!dlci_ioctl_hook)
 980				request_module("dlci");
 981
 982			mutex_lock(&dlci_ioctl_mutex);
 983			if (dlci_ioctl_hook)
 984				err = dlci_ioctl_hook(cmd, argp);
 985			mutex_unlock(&dlci_ioctl_mutex);
 986			break;
 987		case SIOCGSKNS:
 988			err = -EPERM;
 989			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
 990				break;
 991
 992			err = open_related_ns(&net->ns, get_net_ns);
 993			break;
 994		default:
 995			err = sock_do_ioctl(net, sock, cmd, arg);
 996			break;
 997		}
 998	return err;
 999}
1000
1001int sock_create_lite(int family, int type, int protocol, struct socket **res)
1002{
1003	int err;
1004	struct socket *sock = NULL;
1005
1006	err = security_socket_create(family, type, protocol, 1);
1007	if (err)
1008		goto out;
1009
1010	sock = sock_alloc();
1011	if (!sock) {
1012		err = -ENOMEM;
1013		goto out;
1014	}
1015
1016	sock->type = type;
1017	err = security_socket_post_create(sock, family, type, protocol, 1);
1018	if (err)
1019		goto out_release;
1020
1021out:
1022	*res = sock;
1023	return err;
1024out_release:
1025	sock_release(sock);
1026	sock = NULL;
1027	goto out;
1028}
1029EXPORT_SYMBOL(sock_create_lite);
1030
1031/* No kernel lock held - perfect */
1032static unsigned int sock_poll(struct file *file, poll_table *wait)
1033{
1034	unsigned int busy_flag = 0;
1035	struct socket *sock;
1036
1037	/*
1038	 *      We can't return errors to poll, so it's either yes or no.
1039	 */
1040	sock = file->private_data;
1041
1042	if (sk_can_busy_loop(sock->sk)) {
1043		/* this socket can poll_ll so tell the system call */
1044		busy_flag = POLL_BUSY_LOOP;
1045
1046		/* once, only if requested by syscall */
1047		if (wait && (wait->_key & POLL_BUSY_LOOP))
1048			sk_busy_loop(sock->sk, 1);
1049	}
1050
1051	return busy_flag | sock->ops->poll(file, sock, wait);
1052}
1053
1054static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1055{
1056	struct socket *sock = file->private_data;
1057
1058	return sock->ops->mmap(file, sock, vma);
1059}
1060
1061static int sock_close(struct inode *inode, struct file *filp)
1062{
1063	sock_release(SOCKET_I(inode));
1064	return 0;
1065}
1066
1067/*
1068 *	Update the socket async list
1069 *
1070 *	Fasync_list locking strategy.
1071 *
1072 *	1. fasync_list is modified only under process context socket lock
1073 *	   i.e. under semaphore.
1074 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1075 *	   or under socket lock
1076 */
1077
1078static int sock_fasync(int fd, struct file *filp, int on)
1079{
1080	struct socket *sock = filp->private_data;
1081	struct sock *sk = sock->sk;
1082	struct socket_wq *wq;
1083
1084	if (sk == NULL)
1085		return -EINVAL;
1086
1087	lock_sock(sk);
1088	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1089	fasync_helper(fd, filp, on, &wq->fasync_list);
1090
1091	if (!wq->fasync_list)
1092		sock_reset_flag(sk, SOCK_FASYNC);
1093	else
1094		sock_set_flag(sk, SOCK_FASYNC);
1095
1096	release_sock(sk);
1097	return 0;
1098}
1099
1100/* This function may be called only under rcu_lock */
1101
1102int sock_wake_async(struct socket_wq *wq, int how, int band)
1103{
1104	if (!wq || !wq->fasync_list)
1105		return -1;
1106
1107	switch (how) {
1108	case SOCK_WAKE_WAITD:
1109		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1110			break;
1111		goto call_kill;
1112	case SOCK_WAKE_SPACE:
1113		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1114			break;
1115		/* fall through */
1116	case SOCK_WAKE_IO:
1117call_kill:
1118		kill_fasync(&wq->fasync_list, SIGIO, band);
1119		break;
1120	case SOCK_WAKE_URG:
1121		kill_fasync(&wq->fasync_list, SIGURG, band);
1122	}
1123
1124	return 0;
1125}
1126EXPORT_SYMBOL(sock_wake_async);
1127
1128int __sock_create(struct net *net, int family, int type, int protocol,
1129			 struct socket **res, int kern)
1130{
1131	int err;
1132	struct socket *sock;
1133	const struct net_proto_family *pf;
1134
1135	/*
1136	 *      Check protocol is in range
1137	 */
1138	if (family < 0 || family >= NPROTO)
1139		return -EAFNOSUPPORT;
1140	if (type < 0 || type >= SOCK_MAX)
1141		return -EINVAL;
1142
1143	/* Compatibility.
1144
1145	   This uglymoron is moved from INET layer to here to avoid
1146	   deadlock in module load.
1147	 */
1148	if (family == PF_INET && type == SOCK_PACKET) {
1149		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1150			     current->comm);
1151		family = PF_PACKET;
1152	}
1153
1154	err = security_socket_create(family, type, protocol, kern);
1155	if (err)
1156		return err;
1157
1158	/*
1159	 *	Allocate the socket and allow the family to set things up. if
1160	 *	the protocol is 0, the family is instructed to select an appropriate
1161	 *	default.
1162	 */
1163	sock = sock_alloc();
1164	if (!sock) {
1165		net_warn_ratelimited("socket: no more sockets\n");
1166		return -ENFILE;	/* Not exactly a match, but its the
1167				   closest posix thing */
1168	}
1169
1170	sock->type = type;
1171
1172#ifdef CONFIG_MODULES
1173	/* Attempt to load a protocol module if the find failed.
1174	 *
1175	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1176	 * requested real, full-featured networking support upon configuration.
1177	 * Otherwise module support will break!
1178	 */
1179	if (rcu_access_pointer(net_families[family]) == NULL)
1180		request_module("net-pf-%d", family);
1181#endif
1182
1183	rcu_read_lock();
1184	pf = rcu_dereference(net_families[family]);
1185	err = -EAFNOSUPPORT;
1186	if (!pf)
1187		goto out_release;
1188
1189	/*
1190	 * We will call the ->create function, that possibly is in a loadable
1191	 * module, so we have to bump that loadable module refcnt first.
1192	 */
1193	if (!try_module_get(pf->owner))
1194		goto out_release;
1195
1196	/* Now protected by module ref count */
1197	rcu_read_unlock();
1198
1199	err = pf->create(net, sock, protocol, kern);
1200	if (err < 0)
1201		goto out_module_put;
1202
1203	/*
1204	 * Now to bump the refcnt of the [loadable] module that owns this
1205	 * socket at sock_release time we decrement its refcnt.
1206	 */
1207	if (!try_module_get(sock->ops->owner))
1208		goto out_module_busy;
1209
1210	/*
1211	 * Now that we're done with the ->create function, the [loadable]
1212	 * module can have its refcnt decremented
1213	 */
1214	module_put(pf->owner);
1215	err = security_socket_post_create(sock, family, type, protocol, kern);
1216	if (err)
1217		goto out_sock_release;
1218	*res = sock;
1219
1220	return 0;
1221
1222out_module_busy:
1223	err = -EAFNOSUPPORT;
1224out_module_put:
1225	sock->ops = NULL;
1226	module_put(pf->owner);
1227out_sock_release:
1228	sock_release(sock);
1229	return err;
1230
1231out_release:
1232	rcu_read_unlock();
1233	goto out_sock_release;
1234}
1235EXPORT_SYMBOL(__sock_create);
1236
1237int sock_create(int family, int type, int protocol, struct socket **res)
1238{
1239	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1240}
1241EXPORT_SYMBOL(sock_create);
1242
1243int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1244{
1245	return __sock_create(net, family, type, protocol, res, 1);
1246}
1247EXPORT_SYMBOL(sock_create_kern);
1248
1249SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1250{
1251	int retval;
1252	struct socket *sock;
1253	int flags;
1254
1255	/* Check the SOCK_* constants for consistency.  */
1256	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1257	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1258	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1259	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1260
1261	flags = type & ~SOCK_TYPE_MASK;
1262	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263		return -EINVAL;
1264	type &= SOCK_TYPE_MASK;
1265
1266	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268
1269	retval = sock_create(family, type, protocol, &sock);
1270	if (retval < 0)
1271		goto out;
1272
1273	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1274	if (retval < 0)
1275		goto out_release;
1276
1277out:
1278	/* It may be already another descriptor 8) Not kernel problem. */
1279	return retval;
1280
1281out_release:
1282	sock_release(sock);
1283	return retval;
1284}
1285
1286/*
1287 *	Create a pair of connected sockets.
1288 */
1289
1290SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1291		int __user *, usockvec)
1292{
1293	struct socket *sock1, *sock2;
1294	int fd1, fd2, err;
1295	struct file *newfile1, *newfile2;
1296	int flags;
1297
1298	flags = type & ~SOCK_TYPE_MASK;
1299	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1300		return -EINVAL;
1301	type &= SOCK_TYPE_MASK;
1302
1303	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1304		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1305
1306	/*
1307	 * Obtain the first socket and check if the underlying protocol
1308	 * supports the socketpair call.
1309	 */
1310
1311	err = sock_create(family, type, protocol, &sock1);
1312	if (err < 0)
1313		goto out;
1314
1315	err = sock_create(family, type, protocol, &sock2);
1316	if (err < 0)
1317		goto out_release_1;
1318
1319	err = sock1->ops->socketpair(sock1, sock2);
1320	if (err < 0)
1321		goto out_release_both;
1322
1323	fd1 = get_unused_fd_flags(flags);
1324	if (unlikely(fd1 < 0)) {
1325		err = fd1;
1326		goto out_release_both;
1327	}
1328
1329	fd2 = get_unused_fd_flags(flags);
1330	if (unlikely(fd2 < 0)) {
1331		err = fd2;
1332		goto out_put_unused_1;
1333	}
1334
1335	newfile1 = sock_alloc_file(sock1, flags, NULL);
1336	if (IS_ERR(newfile1)) {
1337		err = PTR_ERR(newfile1);
1338		goto out_put_unused_both;
1339	}
1340
1341	newfile2 = sock_alloc_file(sock2, flags, NULL);
1342	if (IS_ERR(newfile2)) {
1343		err = PTR_ERR(newfile2);
1344		goto out_fput_1;
1345	}
1346
1347	err = put_user(fd1, &usockvec[0]);
1348	if (err)
1349		goto out_fput_both;
1350
1351	err = put_user(fd2, &usockvec[1]);
1352	if (err)
1353		goto out_fput_both;
1354
1355	audit_fd_pair(fd1, fd2);
1356
1357	fd_install(fd1, newfile1);
1358	fd_install(fd2, newfile2);
1359	/* fd1 and fd2 may be already another descriptors.
1360	 * Not kernel problem.
1361	 */
1362
1363	return 0;
1364
1365out_fput_both:
1366	fput(newfile2);
1367	fput(newfile1);
1368	put_unused_fd(fd2);
1369	put_unused_fd(fd1);
1370	goto out;
1371
1372out_fput_1:
1373	fput(newfile1);
1374	put_unused_fd(fd2);
1375	put_unused_fd(fd1);
1376	sock_release(sock2);
1377	goto out;
1378
1379out_put_unused_both:
1380	put_unused_fd(fd2);
1381out_put_unused_1:
1382	put_unused_fd(fd1);
1383out_release_both:
1384	sock_release(sock2);
1385out_release_1:
1386	sock_release(sock1);
1387out:
1388	return err;
1389}
1390
1391/*
1392 *	Bind a name to a socket. Nothing much to do here since it's
1393 *	the protocol's responsibility to handle the local address.
1394 *
1395 *	We move the socket address to kernel space before we call
1396 *	the protocol layer (having also checked the address is ok).
1397 */
1398
1399SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1400{
1401	struct socket *sock;
1402	struct sockaddr_storage address;
1403	int err, fput_needed;
1404
1405	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1406	if (sock) {
1407		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1408		if (err >= 0) {
1409			err = security_socket_bind(sock,
1410						   (struct sockaddr *)&address,
1411						   addrlen);
1412			if (!err)
1413				err = sock->ops->bind(sock,
1414						      (struct sockaddr *)
1415						      &address, addrlen);
1416		}
1417		fput_light(sock->file, fput_needed);
1418	}
1419	return err;
1420}
1421
1422/*
1423 *	Perform a listen. Basically, we allow the protocol to do anything
1424 *	necessary for a listen, and if that works, we mark the socket as
1425 *	ready for listening.
1426 */
1427
1428SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1429{
1430	struct socket *sock;
1431	int err, fput_needed;
1432	int somaxconn;
1433
1434	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1435	if (sock) {
1436		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1437		if ((unsigned int)backlog > somaxconn)
1438			backlog = somaxconn;
1439
1440		err = security_socket_listen(sock, backlog);
1441		if (!err)
1442			err = sock->ops->listen(sock, backlog);
1443
1444		fput_light(sock->file, fput_needed);
1445	}
1446	return err;
1447}
1448
1449/*
1450 *	For accept, we attempt to create a new socket, set up the link
1451 *	with the client, wake up the client, then return the new
1452 *	connected fd. We collect the address of the connector in kernel
1453 *	space and move it to user at the very end. This is unclean because
1454 *	we open the socket then return an error.
1455 *
1456 *	1003.1g adds the ability to recvmsg() to query connection pending
1457 *	status to recvmsg. We need to add that support in a way thats
1458 *	clean when we restucture accept also.
1459 */
1460
1461SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1462		int __user *, upeer_addrlen, int, flags)
1463{
1464	struct socket *sock, *newsock;
1465	struct file *newfile;
1466	int err, len, newfd, fput_needed;
1467	struct sockaddr_storage address;
1468
1469	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1470		return -EINVAL;
1471
1472	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1473		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1474
1475	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1476	if (!sock)
1477		goto out;
1478
1479	err = -ENFILE;
1480	newsock = sock_alloc();
1481	if (!newsock)
1482		goto out_put;
1483
1484	newsock->type = sock->type;
1485	newsock->ops = sock->ops;
1486
1487	/*
1488	 * We don't need try_module_get here, as the listening socket (sock)
1489	 * has the protocol module (sock->ops->owner) held.
1490	 */
1491	__module_get(newsock->ops->owner);
1492
1493	newfd = get_unused_fd_flags(flags);
1494	if (unlikely(newfd < 0)) {
1495		err = newfd;
1496		sock_release(newsock);
1497		goto out_put;
1498	}
1499	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1500	if (IS_ERR(newfile)) {
1501		err = PTR_ERR(newfile);
1502		put_unused_fd(newfd);
1503		sock_release(newsock);
1504		goto out_put;
1505	}
1506
1507	err = security_socket_accept(sock, newsock);
1508	if (err)
1509		goto out_fd;
1510
1511	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1512	if (err < 0)
1513		goto out_fd;
1514
1515	if (upeer_sockaddr) {
1516		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1517					  &len, 2) < 0) {
1518			err = -ECONNABORTED;
1519			goto out_fd;
1520		}
1521		err = move_addr_to_user(&address,
1522					len, upeer_sockaddr, upeer_addrlen);
1523		if (err < 0)
1524			goto out_fd;
1525	}
1526
1527	/* File flags are not inherited via accept() unlike another OSes. */
1528
1529	fd_install(newfd, newfile);
1530	err = newfd;
1531
1532out_put:
1533	fput_light(sock->file, fput_needed);
1534out:
1535	return err;
1536out_fd:
1537	fput(newfile);
1538	put_unused_fd(newfd);
1539	goto out_put;
1540}
1541
1542SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1543		int __user *, upeer_addrlen)
1544{
1545	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1546}
1547
1548/*
1549 *	Attempt to connect to a socket with the server address.  The address
1550 *	is in user space so we verify it is OK and move it to kernel space.
1551 *
1552 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1553 *	break bindings
1554 *
1555 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1556 *	other SEQPACKET protocols that take time to connect() as it doesn't
1557 *	include the -EINPROGRESS status for such sockets.
1558 */
1559
1560SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1561		int, addrlen)
1562{
1563	struct socket *sock;
1564	struct sockaddr_storage address;
1565	int err, fput_needed;
1566
1567	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1568	if (!sock)
1569		goto out;
1570	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1571	if (err < 0)
1572		goto out_put;
1573
1574	err =
1575	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1576	if (err)
1577		goto out_put;
1578
1579	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1580				 sock->file->f_flags);
1581out_put:
1582	fput_light(sock->file, fput_needed);
1583out:
1584	return err;
1585}
1586
1587/*
1588 *	Get the local address ('name') of a socket object. Move the obtained
1589 *	name to user space.
1590 */
1591
1592SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1593		int __user *, usockaddr_len)
1594{
1595	struct socket *sock;
1596	struct sockaddr_storage address;
1597	int len, err, fput_needed;
1598
1599	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600	if (!sock)
1601		goto out;
1602
1603	err = security_socket_getsockname(sock);
1604	if (err)
1605		goto out_put;
1606
1607	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1608	if (err)
1609		goto out_put;
1610	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1611
1612out_put:
1613	fput_light(sock->file, fput_needed);
1614out:
1615	return err;
1616}
1617
1618/*
1619 *	Get the remote address ('name') of a socket object. Move the obtained
1620 *	name to user space.
1621 */
1622
1623SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1624		int __user *, usockaddr_len)
1625{
1626	struct socket *sock;
1627	struct sockaddr_storage address;
1628	int len, err, fput_needed;
1629
1630	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631	if (sock != NULL) {
1632		err = security_socket_getpeername(sock);
1633		if (err) {
1634			fput_light(sock->file, fput_needed);
1635			return err;
1636		}
1637
1638		err =
1639		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1640				       1);
1641		if (!err)
1642			err = move_addr_to_user(&address, len, usockaddr,
1643						usockaddr_len);
1644		fput_light(sock->file, fput_needed);
1645	}
1646	return err;
1647}
1648
1649/*
1650 *	Send a datagram to a given address. We move the address into kernel
1651 *	space and check the user space data area is readable before invoking
1652 *	the protocol.
1653 */
1654
1655SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1656		unsigned int, flags, struct sockaddr __user *, addr,
1657		int, addr_len)
1658{
1659	struct socket *sock;
1660	struct sockaddr_storage address;
1661	int err;
1662	struct msghdr msg;
1663	struct iovec iov;
1664	int fput_needed;
1665
1666	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1667	if (unlikely(err))
1668		return err;
1669	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670	if (!sock)
1671		goto out;
1672
1673	msg.msg_name = NULL;
1674	msg.msg_control = NULL;
1675	msg.msg_controllen = 0;
1676	msg.msg_namelen = 0;
1677	if (addr) {
1678		err = move_addr_to_kernel(addr, addr_len, &address);
1679		if (err < 0)
1680			goto out_put;
1681		msg.msg_name = (struct sockaddr *)&address;
1682		msg.msg_namelen = addr_len;
1683	}
1684	if (sock->file->f_flags & O_NONBLOCK)
1685		flags |= MSG_DONTWAIT;
1686	msg.msg_flags = flags;
1687	err = sock_sendmsg(sock, &msg);
1688
1689out_put:
1690	fput_light(sock->file, fput_needed);
1691out:
1692	return err;
1693}
1694
1695/*
1696 *	Send a datagram down a socket.
1697 */
1698
1699SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1700		unsigned int, flags)
1701{
1702	return sys_sendto(fd, buff, len, flags, NULL, 0);
1703}
1704
1705/*
1706 *	Receive a frame from the socket and optionally record the address of the
1707 *	sender. We verify the buffers are writable and if needed move the
1708 *	sender address from kernel to user space.
1709 */
1710
1711SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1712		unsigned int, flags, struct sockaddr __user *, addr,
1713		int __user *, addr_len)
1714{
1715	struct socket *sock;
1716	struct iovec iov;
1717	struct msghdr msg;
1718	struct sockaddr_storage address;
1719	int err, err2;
1720	int fput_needed;
1721
1722	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1723	if (unlikely(err))
1724		return err;
1725	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726	if (!sock)
1727		goto out;
1728
1729	msg.msg_control = NULL;
1730	msg.msg_controllen = 0;
1731	/* Save some cycles and don't copy the address if not needed */
1732	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1733	/* We assume all kernel code knows the size of sockaddr_storage */
1734	msg.msg_namelen = 0;
1735	msg.msg_iocb = NULL;
1736	if (sock->file->f_flags & O_NONBLOCK)
1737		flags |= MSG_DONTWAIT;
1738	err = sock_recvmsg(sock, &msg, flags);
1739
1740	if (err >= 0 && addr != NULL) {
1741		err2 = move_addr_to_user(&address,
1742					 msg.msg_namelen, addr, addr_len);
1743		if (err2 < 0)
1744			err = err2;
1745	}
1746
1747	fput_light(sock->file, fput_needed);
1748out:
1749	return err;
1750}
1751
1752/*
1753 *	Receive a datagram from a socket.
1754 */
1755
1756SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1757		unsigned int, flags)
1758{
1759	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1760}
1761
1762/*
1763 *	Set a socket option. Because we don't know the option lengths we have
1764 *	to pass the user mode parameter for the protocols to sort out.
1765 */
1766
1767SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1768		char __user *, optval, int, optlen)
1769{
1770	int err, fput_needed;
1771	struct socket *sock;
1772
1773	if (optlen < 0)
1774		return -EINVAL;
1775
1776	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777	if (sock != NULL) {
1778		err = security_socket_setsockopt(sock, level, optname);
1779		if (err)
1780			goto out_put;
1781
1782		if (level == SOL_SOCKET)
1783			err =
1784			    sock_setsockopt(sock, level, optname, optval,
1785					    optlen);
1786		else
1787			err =
1788			    sock->ops->setsockopt(sock, level, optname, optval,
1789						  optlen);
1790out_put:
1791		fput_light(sock->file, fput_needed);
1792	}
1793	return err;
1794}
1795
1796/*
1797 *	Get a socket option. Because we don't know the option lengths we have
1798 *	to pass a user mode parameter for the protocols to sort out.
1799 */
1800
1801SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1802		char __user *, optval, int __user *, optlen)
1803{
1804	int err, fput_needed;
1805	struct socket *sock;
1806
1807	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808	if (sock != NULL) {
1809		err = security_socket_getsockopt(sock, level, optname);
1810		if (err)
1811			goto out_put;
1812
1813		if (level == SOL_SOCKET)
1814			err =
1815			    sock_getsockopt(sock, level, optname, optval,
1816					    optlen);
1817		else
1818			err =
1819			    sock->ops->getsockopt(sock, level, optname, optval,
1820						  optlen);
1821out_put:
1822		fput_light(sock->file, fput_needed);
1823	}
1824	return err;
1825}
1826
1827/*
1828 *	Shutdown a socket.
1829 */
1830
1831SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1832{
1833	int err, fput_needed;
1834	struct socket *sock;
1835
1836	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1837	if (sock != NULL) {
1838		err = security_socket_shutdown(sock, how);
1839		if (!err)
1840			err = sock->ops->shutdown(sock, how);
1841		fput_light(sock->file, fput_needed);
1842	}
1843	return err;
1844}
1845
1846/* A couple of helpful macros for getting the address of the 32/64 bit
1847 * fields which are the same type (int / unsigned) on our platforms.
1848 */
1849#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1850#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1851#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1852
1853struct used_address {
1854	struct sockaddr_storage name;
1855	unsigned int name_len;
1856};
1857
1858static int copy_msghdr_from_user(struct msghdr *kmsg,
1859				 struct user_msghdr __user *umsg,
1860				 struct sockaddr __user **save_addr,
1861				 struct iovec **iov)
1862{
1863	struct sockaddr __user *uaddr;
1864	struct iovec __user *uiov;
1865	size_t nr_segs;
1866	ssize_t err;
1867
1868	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1869	    __get_user(uaddr, &umsg->msg_name) ||
1870	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1871	    __get_user(uiov, &umsg->msg_iov) ||
1872	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1873	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1874	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1875	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1876		return -EFAULT;
1877
1878	if (!uaddr)
1879		kmsg->msg_namelen = 0;
1880
1881	if (kmsg->msg_namelen < 0)
1882		return -EINVAL;
1883
1884	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1885		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1886
1887	if (save_addr)
1888		*save_addr = uaddr;
1889
1890	if (uaddr && kmsg->msg_namelen) {
1891		if (!save_addr) {
1892			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1893						  kmsg->msg_name);
1894			if (err < 0)
1895				return err;
1896		}
1897	} else {
1898		kmsg->msg_name = NULL;
1899		kmsg->msg_namelen = 0;
1900	}
1901
1902	if (nr_segs > UIO_MAXIOV)
1903		return -EMSGSIZE;
1904
1905	kmsg->msg_iocb = NULL;
1906
1907	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1908			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1909}
1910
1911static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1912			 struct msghdr *msg_sys, unsigned int flags,
1913			 struct used_address *used_address,
1914			 unsigned int allowed_msghdr_flags)
1915{
1916	struct compat_msghdr __user *msg_compat =
1917	    (struct compat_msghdr __user *)msg;
1918	struct sockaddr_storage address;
1919	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1920	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1921				__aligned(sizeof(__kernel_size_t));
1922	/* 20 is size of ipv6_pktinfo */
1923	unsigned char *ctl_buf = ctl;
1924	int ctl_len;
1925	ssize_t err;
1926
1927	msg_sys->msg_name = &address;
1928
1929	if (MSG_CMSG_COMPAT & flags)
1930		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1931	else
1932		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1933	if (err < 0)
1934		return err;
1935
1936	err = -ENOBUFS;
1937
1938	if (msg_sys->msg_controllen > INT_MAX)
1939		goto out_freeiov;
1940	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1941	ctl_len = msg_sys->msg_controllen;
1942	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1943		err =
1944		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1945						     sizeof(ctl));
1946		if (err)
1947			goto out_freeiov;
1948		ctl_buf = msg_sys->msg_control;
1949		ctl_len = msg_sys->msg_controllen;
1950	} else if (ctl_len) {
1951		if (ctl_len > sizeof(ctl)) {
1952			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1953			if (ctl_buf == NULL)
1954				goto out_freeiov;
1955		}
1956		err = -EFAULT;
1957		/*
1958		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960		 * checking falls down on this.
1961		 */
1962		if (copy_from_user(ctl_buf,
1963				   (void __user __force *)msg_sys->msg_control,
1964				   ctl_len))
1965			goto out_freectl;
1966		msg_sys->msg_control = ctl_buf;
1967	}
1968	msg_sys->msg_flags = flags;
1969
1970	if (sock->file->f_flags & O_NONBLOCK)
1971		msg_sys->msg_flags |= MSG_DONTWAIT;
1972	/*
1973	 * If this is sendmmsg() and current destination address is same as
1974	 * previously succeeded address, omit asking LSM's decision.
1975	 * used_address->name_len is initialized to UINT_MAX so that the first
1976	 * destination address never matches.
1977	 */
1978	if (used_address && msg_sys->msg_name &&
1979	    used_address->name_len == msg_sys->msg_namelen &&
1980	    !memcmp(&used_address->name, msg_sys->msg_name,
1981		    used_address->name_len)) {
1982		err = sock_sendmsg_nosec(sock, msg_sys);
1983		goto out_freectl;
1984	}
1985	err = sock_sendmsg(sock, msg_sys);
1986	/*
1987	 * If this is sendmmsg() and sending to current destination address was
1988	 * successful, remember it.
1989	 */
1990	if (used_address && err >= 0) {
1991		used_address->name_len = msg_sys->msg_namelen;
1992		if (msg_sys->msg_name)
1993			memcpy(&used_address->name, msg_sys->msg_name,
1994			       used_address->name_len);
1995	}
1996
1997out_freectl:
1998	if (ctl_buf != ctl)
1999		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2000out_freeiov:
2001	kfree(iov);
2002	return err;
2003}
2004
2005/*
2006 *	BSD sendmsg interface
2007 */
2008
2009long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2010{
2011	int fput_needed, err;
2012	struct msghdr msg_sys;
2013	struct socket *sock;
2014
2015	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016	if (!sock)
2017		goto out;
2018
2019	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2020
2021	fput_light(sock->file, fput_needed);
2022out:
2023	return err;
2024}
2025
2026SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2027{
2028	if (flags & MSG_CMSG_COMPAT)
2029		return -EINVAL;
2030	return __sys_sendmsg(fd, msg, flags);
2031}
2032
2033/*
2034 *	Linux sendmmsg interface
2035 */
2036
2037int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2038		   unsigned int flags)
2039{
2040	int fput_needed, err, datagrams;
2041	struct socket *sock;
2042	struct mmsghdr __user *entry;
2043	struct compat_mmsghdr __user *compat_entry;
2044	struct msghdr msg_sys;
2045	struct used_address used_address;
2046	unsigned int oflags = flags;
2047
2048	if (vlen > UIO_MAXIOV)
2049		vlen = UIO_MAXIOV;
2050
2051	datagrams = 0;
2052
2053	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2054	if (!sock)
2055		return err;
2056
2057	used_address.name_len = UINT_MAX;
2058	entry = mmsg;
2059	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2060	err = 0;
2061	flags |= MSG_BATCH;
2062
2063	while (datagrams < vlen) {
2064		if (datagrams == vlen - 1)
2065			flags = oflags;
2066
2067		if (MSG_CMSG_COMPAT & flags) {
2068			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2069					     &msg_sys, flags, &used_address, MSG_EOR);
2070			if (err < 0)
2071				break;
2072			err = __put_user(err, &compat_entry->msg_len);
2073			++compat_entry;
2074		} else {
2075			err = ___sys_sendmsg(sock,
2076					     (struct user_msghdr __user *)entry,
2077					     &msg_sys, flags, &used_address, MSG_EOR);
2078			if (err < 0)
2079				break;
2080			err = put_user(err, &entry->msg_len);
2081			++entry;
2082		}
2083
2084		if (err)
2085			break;
2086		++datagrams;
2087		if (msg_data_left(&msg_sys))
2088			break;
2089		cond_resched();
2090	}
2091
2092	fput_light(sock->file, fput_needed);
2093
2094	/* We only return an error if no datagrams were able to be sent */
2095	if (datagrams != 0)
2096		return datagrams;
2097
2098	return err;
2099}
2100
2101SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2102		unsigned int, vlen, unsigned int, flags)
2103{
2104	if (flags & MSG_CMSG_COMPAT)
2105		return -EINVAL;
2106	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2107}
2108
2109static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2110			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2111{
2112	struct compat_msghdr __user *msg_compat =
2113	    (struct compat_msghdr __user *)msg;
2114	struct iovec iovstack[UIO_FASTIOV];
2115	struct iovec *iov = iovstack;
2116	unsigned long cmsg_ptr;
2117	int len;
2118	ssize_t err;
2119
2120	/* kernel mode address */
2121	struct sockaddr_storage addr;
2122
2123	/* user mode address pointers */
2124	struct sockaddr __user *uaddr;
2125	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2126
2127	msg_sys->msg_name = &addr;
2128
2129	if (MSG_CMSG_COMPAT & flags)
2130		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2131	else
2132		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2133	if (err < 0)
2134		return err;
 
2135
2136	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2137	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2138
2139	/* We assume all kernel code knows the size of sockaddr_storage */
2140	msg_sys->msg_namelen = 0;
2141
2142	if (sock->file->f_flags & O_NONBLOCK)
2143		flags |= MSG_DONTWAIT;
2144	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
 
2145	if (err < 0)
2146		goto out_freeiov;
2147	len = err;
2148
2149	if (uaddr != NULL) {
2150		err = move_addr_to_user(&addr,
2151					msg_sys->msg_namelen, uaddr,
2152					uaddr_len);
2153		if (err < 0)
2154			goto out_freeiov;
2155	}
2156	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2157			 COMPAT_FLAGS(msg));
2158	if (err)
2159		goto out_freeiov;
2160	if (MSG_CMSG_COMPAT & flags)
2161		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2162				 &msg_compat->msg_controllen);
2163	else
2164		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2165				 &msg->msg_controllen);
2166	if (err)
2167		goto out_freeiov;
2168	err = len;
2169
2170out_freeiov:
2171	kfree(iov);
2172	return err;
2173}
2174
2175/*
2176 *	BSD recvmsg interface
2177 */
2178
2179long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2180{
2181	int fput_needed, err;
2182	struct msghdr msg_sys;
2183	struct socket *sock;
2184
2185	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2186	if (!sock)
2187		goto out;
2188
2189	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2190
2191	fput_light(sock->file, fput_needed);
2192out:
2193	return err;
2194}
2195
2196SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2197		unsigned int, flags)
2198{
2199	if (flags & MSG_CMSG_COMPAT)
2200		return -EINVAL;
2201	return __sys_recvmsg(fd, msg, flags);
2202}
2203
2204/*
2205 *     Linux recvmmsg interface
2206 */
2207
2208int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2209		   unsigned int flags, struct timespec *timeout)
2210{
2211	int fput_needed, err, datagrams;
2212	struct socket *sock;
2213	struct mmsghdr __user *entry;
2214	struct compat_mmsghdr __user *compat_entry;
2215	struct msghdr msg_sys;
2216	struct timespec64 end_time;
2217	struct timespec64 timeout64;
2218
2219	if (timeout &&
2220	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2221				    timeout->tv_nsec))
2222		return -EINVAL;
2223
2224	datagrams = 0;
2225
2226	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227	if (!sock)
2228		return err;
2229
2230	err = sock_error(sock->sk);
2231	if (err) {
2232		datagrams = err;
2233		goto out_put;
2234	}
2235
2236	entry = mmsg;
2237	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2238
2239	while (datagrams < vlen) {
2240		/*
2241		 * No need to ask LSM for more than the first datagram.
2242		 */
2243		if (MSG_CMSG_COMPAT & flags) {
2244			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2245					     &msg_sys, flags & ~MSG_WAITFORONE,
2246					     datagrams);
2247			if (err < 0)
2248				break;
2249			err = __put_user(err, &compat_entry->msg_len);
2250			++compat_entry;
2251		} else {
2252			err = ___sys_recvmsg(sock,
2253					     (struct user_msghdr __user *)entry,
2254					     &msg_sys, flags & ~MSG_WAITFORONE,
2255					     datagrams);
2256			if (err < 0)
2257				break;
2258			err = put_user(err, &entry->msg_len);
2259			++entry;
2260		}
2261
2262		if (err)
2263			break;
2264		++datagrams;
2265
2266		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2267		if (flags & MSG_WAITFORONE)
2268			flags |= MSG_DONTWAIT;
2269
2270		if (timeout) {
2271			ktime_get_ts64(&timeout64);
2272			*timeout = timespec64_to_timespec(
2273					timespec64_sub(end_time, timeout64));
2274			if (timeout->tv_sec < 0) {
2275				timeout->tv_sec = timeout->tv_nsec = 0;
2276				break;
2277			}
2278
2279			/* Timeout, return less than vlen datagrams */
2280			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2281				break;
2282		}
2283
2284		/* Out of band data, return right away */
2285		if (msg_sys.msg_flags & MSG_OOB)
2286			break;
2287		cond_resched();
2288	}
2289
2290	if (err == 0)
2291		goto out_put;
2292
2293	if (datagrams == 0) {
2294		datagrams = err;
2295		goto out_put;
2296	}
2297
2298	/*
2299	 * We may return less entries than requested (vlen) if the
2300	 * sock is non block and there aren't enough datagrams...
2301	 */
2302	if (err != -EAGAIN) {
2303		/*
2304		 * ... or  if recvmsg returns an error after we
2305		 * received some datagrams, where we record the
2306		 * error to return on the next call or if the
2307		 * app asks about it using getsockopt(SO_ERROR).
2308		 */
2309		sock->sk->sk_err = -err;
2310	}
2311out_put:
2312	fput_light(sock->file, fput_needed);
2313
2314	return datagrams;
2315}
2316
2317SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2318		unsigned int, vlen, unsigned int, flags,
2319		struct timespec __user *, timeout)
2320{
2321	int datagrams;
2322	struct timespec timeout_sys;
2323
2324	if (flags & MSG_CMSG_COMPAT)
2325		return -EINVAL;
2326
2327	if (!timeout)
2328		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2329
2330	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2331		return -EFAULT;
2332
2333	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2334
2335	if (datagrams > 0 &&
2336	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2337		datagrams = -EFAULT;
2338
2339	return datagrams;
2340}
2341
2342#ifdef __ARCH_WANT_SYS_SOCKETCALL
2343/* Argument list sizes for sys_socketcall */
2344#define AL(x) ((x) * sizeof(unsigned long))
2345static const unsigned char nargs[21] = {
2346	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2347	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2348	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2349	AL(4), AL(5), AL(4)
2350};
2351
2352#undef AL
2353
2354/*
2355 *	System call vectors.
2356 *
2357 *	Argument checking cleaned up. Saved 20% in size.
2358 *  This function doesn't need to set the kernel lock because
2359 *  it is set by the callees.
2360 */
2361
2362SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2363{
2364	unsigned long a[AUDITSC_ARGS];
2365	unsigned long a0, a1;
2366	int err;
2367	unsigned int len;
2368
2369	if (call < 1 || call > SYS_SENDMMSG)
2370		return -EINVAL;
2371
2372	len = nargs[call];
2373	if (len > sizeof(a))
2374		return -EINVAL;
2375
2376	/* copy_from_user should be SMP safe. */
2377	if (copy_from_user(a, args, len))
2378		return -EFAULT;
2379
2380	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2381	if (err)
2382		return err;
2383
2384	a0 = a[0];
2385	a1 = a[1];
2386
2387	switch (call) {
2388	case SYS_SOCKET:
2389		err = sys_socket(a0, a1, a[2]);
2390		break;
2391	case SYS_BIND:
2392		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2393		break;
2394	case SYS_CONNECT:
2395		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2396		break;
2397	case SYS_LISTEN:
2398		err = sys_listen(a0, a1);
2399		break;
2400	case SYS_ACCEPT:
2401		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2402				  (int __user *)a[2], 0);
2403		break;
2404	case SYS_GETSOCKNAME:
2405		err =
2406		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2407				    (int __user *)a[2]);
2408		break;
2409	case SYS_GETPEERNAME:
2410		err =
2411		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2412				    (int __user *)a[2]);
2413		break;
2414	case SYS_SOCKETPAIR:
2415		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2416		break;
2417	case SYS_SEND:
2418		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2419		break;
2420	case SYS_SENDTO:
2421		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2422				 (struct sockaddr __user *)a[4], a[5]);
2423		break;
2424	case SYS_RECV:
2425		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2426		break;
2427	case SYS_RECVFROM:
2428		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2429				   (struct sockaddr __user *)a[4],
2430				   (int __user *)a[5]);
2431		break;
2432	case SYS_SHUTDOWN:
2433		err = sys_shutdown(a0, a1);
2434		break;
2435	case SYS_SETSOCKOPT:
2436		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2437		break;
2438	case SYS_GETSOCKOPT:
2439		err =
2440		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2441				   (int __user *)a[4]);
2442		break;
2443	case SYS_SENDMSG:
2444		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2445		break;
2446	case SYS_SENDMMSG:
2447		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2448		break;
2449	case SYS_RECVMSG:
2450		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2451		break;
2452	case SYS_RECVMMSG:
2453		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2454				   (struct timespec __user *)a[4]);
2455		break;
2456	case SYS_ACCEPT4:
2457		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2458				  (int __user *)a[2], a[3]);
2459		break;
2460	default:
2461		err = -EINVAL;
2462		break;
2463	}
2464	return err;
2465}
2466
2467#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2468
2469/**
2470 *	sock_register - add a socket protocol handler
2471 *	@ops: description of protocol
2472 *
2473 *	This function is called by a protocol handler that wants to
2474 *	advertise its address family, and have it linked into the
2475 *	socket interface. The value ops->family corresponds to the
2476 *	socket system call protocol family.
2477 */
2478int sock_register(const struct net_proto_family *ops)
2479{
2480	int err;
2481
2482	if (ops->family >= NPROTO) {
2483		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2484		return -ENOBUFS;
2485	}
2486
2487	spin_lock(&net_family_lock);
2488	if (rcu_dereference_protected(net_families[ops->family],
2489				      lockdep_is_held(&net_family_lock)))
2490		err = -EEXIST;
2491	else {
2492		rcu_assign_pointer(net_families[ops->family], ops);
2493		err = 0;
2494	}
2495	spin_unlock(&net_family_lock);
2496
2497	pr_info("NET: Registered protocol family %d\n", ops->family);
2498	return err;
2499}
2500EXPORT_SYMBOL(sock_register);
2501
2502/**
2503 *	sock_unregister - remove a protocol handler
2504 *	@family: protocol family to remove
2505 *
2506 *	This function is called by a protocol handler that wants to
2507 *	remove its address family, and have it unlinked from the
2508 *	new socket creation.
2509 *
2510 *	If protocol handler is a module, then it can use module reference
2511 *	counts to protect against new references. If protocol handler is not
2512 *	a module then it needs to provide its own protection in
2513 *	the ops->create routine.
2514 */
2515void sock_unregister(int family)
2516{
2517	BUG_ON(family < 0 || family >= NPROTO);
2518
2519	spin_lock(&net_family_lock);
2520	RCU_INIT_POINTER(net_families[family], NULL);
2521	spin_unlock(&net_family_lock);
2522
2523	synchronize_rcu();
2524
2525	pr_info("NET: Unregistered protocol family %d\n", family);
2526}
2527EXPORT_SYMBOL(sock_unregister);
2528
2529static int __init sock_init(void)
2530{
2531	int err;
2532	/*
2533	 *      Initialize the network sysctl infrastructure.
2534	 */
2535	err = net_sysctl_init();
2536	if (err)
2537		goto out;
2538
2539	/*
2540	 *      Initialize skbuff SLAB cache
2541	 */
2542	skb_init();
2543
2544	/*
2545	 *      Initialize the protocols module.
2546	 */
2547
2548	init_inodecache();
2549
2550	err = register_filesystem(&sock_fs_type);
2551	if (err)
2552		goto out_fs;
2553	sock_mnt = kern_mount(&sock_fs_type);
2554	if (IS_ERR(sock_mnt)) {
2555		err = PTR_ERR(sock_mnt);
2556		goto out_mount;
2557	}
2558
2559	/* The real protocol initialization is performed in later initcalls.
2560	 */
2561
2562#ifdef CONFIG_NETFILTER
2563	err = netfilter_init();
2564	if (err)
2565		goto out;
2566#endif
2567
2568	ptp_classifier_init();
2569
2570out:
2571	return err;
2572
2573out_mount:
2574	unregister_filesystem(&sock_fs_type);
2575out_fs:
2576	goto out;
2577}
2578
2579core_initcall(sock_init);	/* early initcall */
2580
2581#ifdef CONFIG_PROC_FS
2582void socket_seq_show(struct seq_file *seq)
2583{
2584	int cpu;
2585	int counter = 0;
2586
2587	for_each_possible_cpu(cpu)
2588	    counter += per_cpu(sockets_in_use, cpu);
2589
2590	/* It can be negative, by the way. 8) */
2591	if (counter < 0)
2592		counter = 0;
2593
2594	seq_printf(seq, "sockets: used %d\n", counter);
2595}
2596#endif				/* CONFIG_PROC_FS */
2597
2598#ifdef CONFIG_COMPAT
2599static int do_siocgstamp(struct net *net, struct socket *sock,
2600			 unsigned int cmd, void __user *up)
2601{
2602	mm_segment_t old_fs = get_fs();
2603	struct timeval ktv;
2604	int err;
2605
2606	set_fs(KERNEL_DS);
2607	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2608	set_fs(old_fs);
2609	if (!err)
2610		err = compat_put_timeval(&ktv, up);
2611
2612	return err;
2613}
2614
2615static int do_siocgstampns(struct net *net, struct socket *sock,
2616			   unsigned int cmd, void __user *up)
2617{
2618	mm_segment_t old_fs = get_fs();
2619	struct timespec kts;
2620	int err;
2621
2622	set_fs(KERNEL_DS);
2623	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2624	set_fs(old_fs);
2625	if (!err)
2626		err = compat_put_timespec(&kts, up);
2627
2628	return err;
2629}
2630
2631static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2632{
2633	struct ifreq __user *uifr;
2634	int err;
2635
2636	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2637	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2638		return -EFAULT;
2639
2640	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2641	if (err)
2642		return err;
2643
2644	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2645		return -EFAULT;
2646
2647	return 0;
2648}
2649
2650static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2651{
2652	struct compat_ifconf ifc32;
2653	struct ifconf ifc;
2654	struct ifconf __user *uifc;
2655	struct compat_ifreq __user *ifr32;
2656	struct ifreq __user *ifr;
2657	unsigned int i, j;
2658	int err;
2659
2660	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2661		return -EFAULT;
2662
2663	memset(&ifc, 0, sizeof(ifc));
2664	if (ifc32.ifcbuf == 0) {
2665		ifc32.ifc_len = 0;
2666		ifc.ifc_len = 0;
2667		ifc.ifc_req = NULL;
2668		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2669	} else {
2670		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2671			sizeof(struct ifreq);
2672		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2673		ifc.ifc_len = len;
2674		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2675		ifr32 = compat_ptr(ifc32.ifcbuf);
2676		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2677			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2678				return -EFAULT;
2679			ifr++;
2680			ifr32++;
2681		}
2682	}
2683	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2684		return -EFAULT;
2685
2686	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2687	if (err)
2688		return err;
2689
2690	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2691		return -EFAULT;
2692
2693	ifr = ifc.ifc_req;
2694	ifr32 = compat_ptr(ifc32.ifcbuf);
2695	for (i = 0, j = 0;
2696	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2697	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2698		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2699			return -EFAULT;
2700		ifr32++;
2701		ifr++;
2702	}
2703
2704	if (ifc32.ifcbuf == 0) {
2705		/* Translate from 64-bit structure multiple to
2706		 * a 32-bit one.
2707		 */
2708		i = ifc.ifc_len;
2709		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2710		ifc32.ifc_len = i;
2711	} else {
2712		ifc32.ifc_len = i;
2713	}
2714	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2715		return -EFAULT;
2716
2717	return 0;
2718}
2719
2720static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2721{
2722	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2723	bool convert_in = false, convert_out = false;
2724	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2725	struct ethtool_rxnfc __user *rxnfc;
2726	struct ifreq __user *ifr;
2727	u32 rule_cnt = 0, actual_rule_cnt;
2728	u32 ethcmd;
2729	u32 data;
2730	int ret;
2731
2732	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2733		return -EFAULT;
2734
2735	compat_rxnfc = compat_ptr(data);
2736
2737	if (get_user(ethcmd, &compat_rxnfc->cmd))
2738		return -EFAULT;
2739
2740	/* Most ethtool structures are defined without padding.
2741	 * Unfortunately struct ethtool_rxnfc is an exception.
2742	 */
2743	switch (ethcmd) {
2744	default:
2745		break;
2746	case ETHTOOL_GRXCLSRLALL:
2747		/* Buffer size is variable */
2748		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2749			return -EFAULT;
2750		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2751			return -ENOMEM;
2752		buf_size += rule_cnt * sizeof(u32);
2753		/* fall through */
2754	case ETHTOOL_GRXRINGS:
2755	case ETHTOOL_GRXCLSRLCNT:
2756	case ETHTOOL_GRXCLSRULE:
2757	case ETHTOOL_SRXCLSRLINS:
2758		convert_out = true;
2759		/* fall through */
2760	case ETHTOOL_SRXCLSRLDEL:
2761		buf_size += sizeof(struct ethtool_rxnfc);
2762		convert_in = true;
2763		break;
2764	}
2765
2766	ifr = compat_alloc_user_space(buf_size);
2767	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2768
2769	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2770		return -EFAULT;
2771
2772	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2773		     &ifr->ifr_ifru.ifru_data))
2774		return -EFAULT;
2775
2776	if (convert_in) {
2777		/* We expect there to be holes between fs.m_ext and
2778		 * fs.ring_cookie and at the end of fs, but nowhere else.
2779		 */
2780		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2781			     sizeof(compat_rxnfc->fs.m_ext) !=
2782			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2783			     sizeof(rxnfc->fs.m_ext));
2784		BUILD_BUG_ON(
2785			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2786			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2787			offsetof(struct ethtool_rxnfc, fs.location) -
2788			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2789
2790		if (copy_in_user(rxnfc, compat_rxnfc,
2791				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2792				 (void __user *)rxnfc) ||
2793		    copy_in_user(&rxnfc->fs.ring_cookie,
2794				 &compat_rxnfc->fs.ring_cookie,
2795				 (void __user *)(&rxnfc->fs.location + 1) -
2796				 (void __user *)&rxnfc->fs.ring_cookie) ||
2797		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2798				 sizeof(rxnfc->rule_cnt)))
2799			return -EFAULT;
2800	}
2801
2802	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2803	if (ret)
2804		return ret;
2805
2806	if (convert_out) {
2807		if (copy_in_user(compat_rxnfc, rxnfc,
2808				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2809				 (const void __user *)rxnfc) ||
2810		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2811				 &rxnfc->fs.ring_cookie,
2812				 (const void __user *)(&rxnfc->fs.location + 1) -
2813				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2814		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2815				 sizeof(rxnfc->rule_cnt)))
2816			return -EFAULT;
2817
2818		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2819			/* As an optimisation, we only copy the actual
2820			 * number of rules that the underlying
2821			 * function returned.  Since Mallory might
2822			 * change the rule count in user memory, we
2823			 * check that it is less than the rule count
2824			 * originally given (as the user buffer size),
2825			 * which has been range-checked.
2826			 */
2827			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2828				return -EFAULT;
2829			if (actual_rule_cnt < rule_cnt)
2830				rule_cnt = actual_rule_cnt;
2831			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2832					 &rxnfc->rule_locs[0],
2833					 rule_cnt * sizeof(u32)))
2834				return -EFAULT;
2835		}
2836	}
2837
2838	return 0;
2839}
2840
2841static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2842{
2843	void __user *uptr;
2844	compat_uptr_t uptr32;
2845	struct ifreq __user *uifr;
2846
2847	uifr = compat_alloc_user_space(sizeof(*uifr));
2848	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2849		return -EFAULT;
2850
2851	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2852		return -EFAULT;
2853
2854	uptr = compat_ptr(uptr32);
2855
2856	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2857		return -EFAULT;
2858
2859	return dev_ioctl(net, SIOCWANDEV, uifr);
2860}
2861
2862static int bond_ioctl(struct net *net, unsigned int cmd,
2863			 struct compat_ifreq __user *ifr32)
2864{
2865	struct ifreq kifr;
2866	mm_segment_t old_fs;
2867	int err;
2868
2869	switch (cmd) {
2870	case SIOCBONDENSLAVE:
2871	case SIOCBONDRELEASE:
2872	case SIOCBONDSETHWADDR:
2873	case SIOCBONDCHANGEACTIVE:
2874		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2875			return -EFAULT;
2876
2877		old_fs = get_fs();
2878		set_fs(KERNEL_DS);
2879		err = dev_ioctl(net, cmd,
2880				(struct ifreq __user __force *) &kifr);
2881		set_fs(old_fs);
2882
2883		return err;
2884	default:
2885		return -ENOIOCTLCMD;
2886	}
2887}
2888
2889/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2890static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2891				 struct compat_ifreq __user *u_ifreq32)
2892{
2893	struct ifreq __user *u_ifreq64;
2894	char tmp_buf[IFNAMSIZ];
2895	void __user *data64;
2896	u32 data32;
2897
2898	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2899			   IFNAMSIZ))
2900		return -EFAULT;
2901	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2902		return -EFAULT;
2903	data64 = compat_ptr(data32);
2904
2905	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2906
2907	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2908			 IFNAMSIZ))
2909		return -EFAULT;
2910	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2911		return -EFAULT;
2912
2913	return dev_ioctl(net, cmd, u_ifreq64);
2914}
2915
2916static int dev_ifsioc(struct net *net, struct socket *sock,
2917			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2918{
2919	struct ifreq __user *uifr;
2920	int err;
2921
2922	uifr = compat_alloc_user_space(sizeof(*uifr));
2923	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2924		return -EFAULT;
2925
2926	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2927
2928	if (!err) {
2929		switch (cmd) {
2930		case SIOCGIFFLAGS:
2931		case SIOCGIFMETRIC:
2932		case SIOCGIFMTU:
2933		case SIOCGIFMEM:
2934		case SIOCGIFHWADDR:
2935		case SIOCGIFINDEX:
2936		case SIOCGIFADDR:
2937		case SIOCGIFBRDADDR:
2938		case SIOCGIFDSTADDR:
2939		case SIOCGIFNETMASK:
2940		case SIOCGIFPFLAGS:
2941		case SIOCGIFTXQLEN:
2942		case SIOCGMIIPHY:
2943		case SIOCGMIIREG:
2944			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2945				err = -EFAULT;
2946			break;
2947		}
2948	}
2949	return err;
2950}
2951
2952static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2953			struct compat_ifreq __user *uifr32)
2954{
2955	struct ifreq ifr;
2956	struct compat_ifmap __user *uifmap32;
2957	mm_segment_t old_fs;
2958	int err;
2959
2960	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2961	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2962	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2963	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2964	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2965	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2966	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2967	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2968	if (err)
2969		return -EFAULT;
2970
2971	old_fs = get_fs();
2972	set_fs(KERNEL_DS);
2973	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2974	set_fs(old_fs);
2975
2976	if (cmd == SIOCGIFMAP && !err) {
2977		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2978		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2982		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2983		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2984		if (err)
2985			err = -EFAULT;
2986	}
2987	return err;
2988}
2989
2990struct rtentry32 {
2991	u32		rt_pad1;
2992	struct sockaddr rt_dst;         /* target address               */
2993	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2994	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2995	unsigned short	rt_flags;
2996	short		rt_pad2;
2997	u32		rt_pad3;
2998	unsigned char	rt_tos;
2999	unsigned char	rt_class;
3000	short		rt_pad4;
3001	short		rt_metric;      /* +1 for binary compatibility! */
3002	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3003	u32		rt_mtu;         /* per route MTU/Window         */
3004	u32		rt_window;      /* Window clamping              */
3005	unsigned short  rt_irtt;        /* Initial RTT                  */
3006};
3007
3008struct in6_rtmsg32 {
3009	struct in6_addr		rtmsg_dst;
3010	struct in6_addr		rtmsg_src;
3011	struct in6_addr		rtmsg_gateway;
3012	u32			rtmsg_type;
3013	u16			rtmsg_dst_len;
3014	u16			rtmsg_src_len;
3015	u32			rtmsg_metric;
3016	u32			rtmsg_info;
3017	u32			rtmsg_flags;
3018	s32			rtmsg_ifindex;
3019};
3020
3021static int routing_ioctl(struct net *net, struct socket *sock,
3022			 unsigned int cmd, void __user *argp)
3023{
3024	int ret;
3025	void *r = NULL;
3026	struct in6_rtmsg r6;
3027	struct rtentry r4;
3028	char devname[16];
3029	u32 rtdev;
3030	mm_segment_t old_fs = get_fs();
3031
3032	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3033		struct in6_rtmsg32 __user *ur6 = argp;
3034		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3035			3 * sizeof(struct in6_addr));
3036		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3037		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3038		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3039		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3040		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3041		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3042		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3043
3044		r = (void *) &r6;
3045	} else { /* ipv4 */
3046		struct rtentry32 __user *ur4 = argp;
3047		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3048					3 * sizeof(struct sockaddr));
3049		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3050		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3051		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3052		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3053		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3054		ret |= get_user(rtdev, &(ur4->rt_dev));
3055		if (rtdev) {
3056			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3057			r4.rt_dev = (char __user __force *)devname;
3058			devname[15] = 0;
3059		} else
3060			r4.rt_dev = NULL;
3061
3062		r = (void *) &r4;
3063	}
3064
3065	if (ret) {
3066		ret = -EFAULT;
3067		goto out;
3068	}
3069
3070	set_fs(KERNEL_DS);
3071	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3072	set_fs(old_fs);
3073
3074out:
3075	return ret;
3076}
3077
3078/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3079 * for some operations; this forces use of the newer bridge-utils that
3080 * use compatible ioctls
3081 */
3082static int old_bridge_ioctl(compat_ulong_t __user *argp)
3083{
3084	compat_ulong_t tmp;
3085
3086	if (get_user(tmp, argp))
3087		return -EFAULT;
3088	if (tmp == BRCTL_GET_VERSION)
3089		return BRCTL_VERSION + 1;
3090	return -EINVAL;
3091}
3092
3093static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3094			 unsigned int cmd, unsigned long arg)
3095{
3096	void __user *argp = compat_ptr(arg);
3097	struct sock *sk = sock->sk;
3098	struct net *net = sock_net(sk);
3099
3100	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3101		return compat_ifr_data_ioctl(net, cmd, argp);
3102
3103	switch (cmd) {
3104	case SIOCSIFBR:
3105	case SIOCGIFBR:
3106		return old_bridge_ioctl(argp);
3107	case SIOCGIFNAME:
3108		return dev_ifname32(net, argp);
3109	case SIOCGIFCONF:
3110		return dev_ifconf(net, argp);
3111	case SIOCETHTOOL:
3112		return ethtool_ioctl(net, argp);
3113	case SIOCWANDEV:
3114		return compat_siocwandev(net, argp);
3115	case SIOCGIFMAP:
3116	case SIOCSIFMAP:
3117		return compat_sioc_ifmap(net, cmd, argp);
3118	case SIOCBONDENSLAVE:
3119	case SIOCBONDRELEASE:
3120	case SIOCBONDSETHWADDR:
3121	case SIOCBONDCHANGEACTIVE:
3122		return bond_ioctl(net, cmd, argp);
3123	case SIOCADDRT:
3124	case SIOCDELRT:
3125		return routing_ioctl(net, sock, cmd, argp);
3126	case SIOCGSTAMP:
3127		return do_siocgstamp(net, sock, cmd, argp);
3128	case SIOCGSTAMPNS:
3129		return do_siocgstampns(net, sock, cmd, argp);
3130	case SIOCBONDSLAVEINFOQUERY:
3131	case SIOCBONDINFOQUERY:
3132	case SIOCSHWTSTAMP:
3133	case SIOCGHWTSTAMP:
3134		return compat_ifr_data_ioctl(net, cmd, argp);
3135
3136	case FIOSETOWN:
3137	case SIOCSPGRP:
3138	case FIOGETOWN:
3139	case SIOCGPGRP:
3140	case SIOCBRADDBR:
3141	case SIOCBRDELBR:
3142	case SIOCGIFVLAN:
3143	case SIOCSIFVLAN:
3144	case SIOCADDDLCI:
3145	case SIOCDELDLCI:
3146	case SIOCGSKNS:
3147		return sock_ioctl(file, cmd, arg);
3148
3149	case SIOCGIFFLAGS:
3150	case SIOCSIFFLAGS:
3151	case SIOCGIFMETRIC:
3152	case SIOCSIFMETRIC:
3153	case SIOCGIFMTU:
3154	case SIOCSIFMTU:
3155	case SIOCGIFMEM:
3156	case SIOCSIFMEM:
3157	case SIOCGIFHWADDR:
3158	case SIOCSIFHWADDR:
3159	case SIOCADDMULTI:
3160	case SIOCDELMULTI:
3161	case SIOCGIFINDEX:
3162	case SIOCGIFADDR:
3163	case SIOCSIFADDR:
3164	case SIOCSIFHWBROADCAST:
3165	case SIOCDIFADDR:
3166	case SIOCGIFBRDADDR:
3167	case SIOCSIFBRDADDR:
3168	case SIOCGIFDSTADDR:
3169	case SIOCSIFDSTADDR:
3170	case SIOCGIFNETMASK:
3171	case SIOCSIFNETMASK:
3172	case SIOCSIFPFLAGS:
3173	case SIOCGIFPFLAGS:
3174	case SIOCGIFTXQLEN:
3175	case SIOCSIFTXQLEN:
3176	case SIOCBRADDIF:
3177	case SIOCBRDELIF:
3178	case SIOCSIFNAME:
3179	case SIOCGMIIPHY:
3180	case SIOCGMIIREG:
3181	case SIOCSMIIREG:
3182		return dev_ifsioc(net, sock, cmd, argp);
3183
3184	case SIOCSARP:
3185	case SIOCGARP:
3186	case SIOCDARP:
3187	case SIOCATMARK:
3188		return sock_do_ioctl(net, sock, cmd, arg);
3189	}
3190
3191	return -ENOIOCTLCMD;
3192}
3193
3194static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3195			      unsigned long arg)
3196{
3197	struct socket *sock = file->private_data;
3198	int ret = -ENOIOCTLCMD;
3199	struct sock *sk;
3200	struct net *net;
3201
3202	sk = sock->sk;
3203	net = sock_net(sk);
3204
3205	if (sock->ops->compat_ioctl)
3206		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3207
3208	if (ret == -ENOIOCTLCMD &&
3209	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3210		ret = compat_wext_handle_ioctl(net, cmd, arg);
3211
3212	if (ret == -ENOIOCTLCMD)
3213		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3214
3215	return ret;
3216}
3217#endif
3218
3219int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3220{
3221	return sock->ops->bind(sock, addr, addrlen);
3222}
3223EXPORT_SYMBOL(kernel_bind);
3224
3225int kernel_listen(struct socket *sock, int backlog)
3226{
3227	return sock->ops->listen(sock, backlog);
3228}
3229EXPORT_SYMBOL(kernel_listen);
3230
3231int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3232{
3233	struct sock *sk = sock->sk;
3234	int err;
3235
3236	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3237			       newsock);
3238	if (err < 0)
3239		goto done;
3240
3241	err = sock->ops->accept(sock, *newsock, flags);
3242	if (err < 0) {
3243		sock_release(*newsock);
3244		*newsock = NULL;
3245		goto done;
3246	}
3247
3248	(*newsock)->ops = sock->ops;
3249	__module_get((*newsock)->ops->owner);
3250
3251done:
3252	return err;
3253}
3254EXPORT_SYMBOL(kernel_accept);
3255
3256int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3257		   int flags)
3258{
3259	return sock->ops->connect(sock, addr, addrlen, flags);
3260}
3261EXPORT_SYMBOL(kernel_connect);
3262
3263int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3264			 int *addrlen)
3265{
3266	return sock->ops->getname(sock, addr, addrlen, 0);
3267}
3268EXPORT_SYMBOL(kernel_getsockname);
3269
3270int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3271			 int *addrlen)
3272{
3273	return sock->ops->getname(sock, addr, addrlen, 1);
3274}
3275EXPORT_SYMBOL(kernel_getpeername);
3276
3277int kernel_getsockopt(struct socket *sock, int level, int optname,
3278			char *optval, int *optlen)
3279{
3280	mm_segment_t oldfs = get_fs();
3281	char __user *uoptval;
3282	int __user *uoptlen;
3283	int err;
3284
3285	uoptval = (char __user __force *) optval;
3286	uoptlen = (int __user __force *) optlen;
3287
3288	set_fs(KERNEL_DS);
3289	if (level == SOL_SOCKET)
3290		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291	else
3292		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293					    uoptlen);
3294	set_fs(oldfs);
3295	return err;
3296}
3297EXPORT_SYMBOL(kernel_getsockopt);
3298
3299int kernel_setsockopt(struct socket *sock, int level, int optname,
3300			char *optval, unsigned int optlen)
3301{
3302	mm_segment_t oldfs = get_fs();
3303	char __user *uoptval;
3304	int err;
3305
3306	uoptval = (char __user __force *) optval;
3307
3308	set_fs(KERNEL_DS);
3309	if (level == SOL_SOCKET)
3310		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311	else
3312		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313					    optlen);
3314	set_fs(oldfs);
3315	return err;
3316}
3317EXPORT_SYMBOL(kernel_setsockopt);
3318
3319int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320		    size_t size, int flags)
3321{
3322	if (sock->ops->sendpage)
3323		return sock->ops->sendpage(sock, page, offset, size, flags);
3324
3325	return sock_no_sendpage(sock, page, offset, size, flags);
3326}
3327EXPORT_SYMBOL(kernel_sendpage);
3328
3329int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3330{
3331	mm_segment_t oldfs = get_fs();
3332	int err;
3333
3334	set_fs(KERNEL_DS);
3335	err = sock->ops->ioctl(sock, cmd, arg);
3336	set_fs(oldfs);
3337
3338	return err;
3339}
3340EXPORT_SYMBOL(kernel_sock_ioctl);
3341
3342int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343{
3344	return sock->ops->shutdown(sock, how);
3345}
3346EXPORT_SYMBOL(kernel_sock_shutdown);
v4.6
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <asm/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122			      struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126			      unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130			     int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132				struct pipe_inode_info *pipe, size_t len,
 133				unsigned int flags);
 134
 135/*
 136 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *	in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141	.owner =	THIS_MODULE,
 142	.llseek =	no_llseek,
 143	.read_iter =	sock_read_iter,
 144	.write_iter =	sock_write_iter,
 145	.poll =		sock_poll,
 146	.unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148	.compat_ioctl = compat_sock_ioctl,
 149#endif
 150	.mmap =		sock_mmap,
 151	.release =	sock_close,
 152	.fasync =	sock_fasync,
 153	.sendpage =	sock_sendpage,
 154	.splice_write = generic_splice_sendpage,
 155	.splice_read =	sock_splice_read,
 156};
 157
 158/*
 159 *	The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *	Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *	move_addr_to_kernel	-	copy a socket address into kernel space
 179 *	@uaddr: Address in user space
 180 *	@kaddr: Address in kernel space
 181 *	@ulen: Length in user space
 182 *
 183 *	The address is copied into kernel space. If the provided address is
 184 *	too long an error code of -EINVAL is returned. If the copy gives
 185 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191		return -EINVAL;
 192	if (ulen == 0)
 193		return 0;
 194	if (copy_from_user(kaddr, uaddr, ulen))
 195		return -EFAULT;
 196	return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *	move_addr_to_user	-	copy an address to user space
 201 *	@kaddr: kernel space address
 202 *	@klen: length of address in kernel
 203 *	@uaddr: user space address
 204 *	@ulen: pointer to user length field
 205 *
 206 *	The value pointed to by ulen on entry is the buffer length available.
 207 *	This is overwritten with the buffer space used. -EINVAL is returned
 208 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *	is returned if either the buffer or the length field are not
 210 *	accessible.
 211 *	After copying the data up to the limit the user specifies, the true
 212 *	length of the data is written over the length limit the user
 213 *	specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217			     void __user *uaddr, int __user *ulen)
 218{
 219	int err;
 220	int len;
 221
 222	BUG_ON(klen > sizeof(struct sockaddr_storage));
 223	err = get_user(len, ulen);
 224	if (err)
 225		return err;
 226	if (len > klen)
 227		len = klen;
 228	if (len < 0)
 229		return -EINVAL;
 230	if (len) {
 231		if (audit_sockaddr(klen, kaddr))
 232			return -ENOMEM;
 233		if (copy_to_user(uaddr, kaddr, len))
 234			return -EFAULT;
 235	}
 236	/*
 237	 *      "fromlen shall refer to the value before truncation.."
 238	 *                      1003.1g
 239	 */
 240	return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247	struct socket_alloc *ei;
 248	struct socket_wq *wq;
 249
 250	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251	if (!ei)
 252		return NULL;
 253	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254	if (!wq) {
 255		kmem_cache_free(sock_inode_cachep, ei);
 256		return NULL;
 257	}
 258	init_waitqueue_head(&wq->wait);
 259	wq->fasync_list = NULL;
 260	wq->flags = 0;
 261	RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263	ei->socket.state = SS_UNCONNECTED;
 264	ei->socket.flags = 0;
 265	ei->socket.ops = NULL;
 266	ei->socket.sk = NULL;
 267	ei->socket.file = NULL;
 268
 269	return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274	struct socket_alloc *ei;
 275	struct socket_wq *wq;
 276
 277	ei = container_of(inode, struct socket_alloc, vfs_inode);
 278	wq = rcu_dereference_protected(ei->socket.wq, 1);
 279	kfree_rcu(wq, rcu);
 280	kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285	struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287	inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293					      sizeof(struct socket_alloc),
 294					      0,
 295					      (SLAB_HWCACHE_ALIGN |
 296					       SLAB_RECLAIM_ACCOUNT |
 297					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298					      init_once);
 299	if (sock_inode_cachep == NULL)
 300		return -ENOMEM;
 301	return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305	.alloc_inode	= sock_alloc_inode,
 306	.destroy_inode	= sock_destroy_inode,
 307	.statfs		= simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316				d_inode(dentry)->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320	.d_dname  = sockfs_dname,
 321};
 322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 324			 int flags, const char *dev_name, void *data)
 325{
 326	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 327		&sockfs_dentry_operations, SOCKFS_MAGIC);
 
 328}
 329
 330static struct vfsmount *sock_mnt __read_mostly;
 331
 332static struct file_system_type sock_fs_type = {
 333	.name =		"sockfs",
 334	.mount =	sockfs_mount,
 335	.kill_sb =	kill_anon_super,
 336};
 337
 338/*
 339 *	Obtains the first available file descriptor and sets it up for use.
 340 *
 341 *	These functions create file structures and maps them to fd space
 342 *	of the current process. On success it returns file descriptor
 343 *	and file struct implicitly stored in sock->file.
 344 *	Note that another thread may close file descriptor before we return
 345 *	from this function. We use the fact that now we do not refer
 346 *	to socket after mapping. If one day we will need it, this
 347 *	function will increment ref. count on file by 1.
 348 *
 349 *	In any case returned fd MAY BE not valid!
 350 *	This race condition is unavoidable
 351 *	with shared fd spaces, we cannot solve it inside kernel,
 352 *	but we take care of internal coherence yet.
 353 */
 354
 355struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 356{
 357	struct qstr name = { .name = "" };
 358	struct path path;
 359	struct file *file;
 360
 361	if (dname) {
 362		name.name = dname;
 363		name.len = strlen(name.name);
 364	} else if (sock->sk) {
 365		name.name = sock->sk->sk_prot_creator->name;
 366		name.len = strlen(name.name);
 367	}
 368	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 369	if (unlikely(!path.dentry))
 370		return ERR_PTR(-ENOMEM);
 371	path.mnt = mntget(sock_mnt);
 372
 373	d_instantiate(path.dentry, SOCK_INODE(sock));
 374
 375	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 376		  &socket_file_ops);
 377	if (IS_ERR(file)) {
 378		/* drop dentry, keep inode */
 379		ihold(d_inode(path.dentry));
 380		path_put(&path);
 381		return file;
 382	}
 383
 384	sock->file = file;
 385	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 386	file->private_data = sock;
 387	return file;
 388}
 389EXPORT_SYMBOL(sock_alloc_file);
 390
 391static int sock_map_fd(struct socket *sock, int flags)
 392{
 393	struct file *newfile;
 394	int fd = get_unused_fd_flags(flags);
 395	if (unlikely(fd < 0))
 396		return fd;
 397
 398	newfile = sock_alloc_file(sock, flags, NULL);
 399	if (likely(!IS_ERR(newfile))) {
 400		fd_install(fd, newfile);
 401		return fd;
 402	}
 403
 404	put_unused_fd(fd);
 405	return PTR_ERR(newfile);
 406}
 407
 408struct socket *sock_from_file(struct file *file, int *err)
 409{
 410	if (file->f_op == &socket_file_ops)
 411		return file->private_data;	/* set in sock_map_fd */
 412
 413	*err = -ENOTSOCK;
 414	return NULL;
 415}
 416EXPORT_SYMBOL(sock_from_file);
 417
 418/**
 419 *	sockfd_lookup - Go from a file number to its socket slot
 420 *	@fd: file handle
 421 *	@err: pointer to an error code return
 422 *
 423 *	The file handle passed in is locked and the socket it is bound
 424 *	too is returned. If an error occurs the err pointer is overwritten
 425 *	with a negative errno code and NULL is returned. The function checks
 426 *	for both invalid handles and passing a handle which is not a socket.
 427 *
 428 *	On a success the socket object pointer is returned.
 429 */
 430
 431struct socket *sockfd_lookup(int fd, int *err)
 432{
 433	struct file *file;
 434	struct socket *sock;
 435
 436	file = fget(fd);
 437	if (!file) {
 438		*err = -EBADF;
 439		return NULL;
 440	}
 441
 442	sock = sock_from_file(file, err);
 443	if (!sock)
 444		fput(file);
 445	return sock;
 446}
 447EXPORT_SYMBOL(sockfd_lookup);
 448
 449static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 450{
 451	struct fd f = fdget(fd);
 452	struct socket *sock;
 453
 454	*err = -EBADF;
 455	if (f.file) {
 456		sock = sock_from_file(f.file, err);
 457		if (likely(sock)) {
 458			*fput_needed = f.flags;
 459			return sock;
 460		}
 461		fdput(f);
 462	}
 463	return NULL;
 464}
 465
 466#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 467#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 468#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 469static ssize_t sockfs_getxattr(struct dentry *dentry,
 470			       const char *name, void *value, size_t size)
 471{
 472	const char *proto_name;
 473	size_t proto_size;
 474	int error;
 475
 476	error = -ENODATA;
 477	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
 478		proto_name = dentry->d_name.name;
 479		proto_size = strlen(proto_name);
 480
 481		if (value) {
 482			error = -ERANGE;
 483			if (proto_size + 1 > size)
 484				goto out;
 485
 486			strncpy(value, proto_name, proto_size + 1);
 487		}
 488		error = proto_size + 1;
 489	}
 490
 491out:
 492	return error;
 493}
 494
 495static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 496				size_t size)
 497{
 498	ssize_t len;
 499	ssize_t used = 0;
 500
 501	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 502	if (len < 0)
 503		return len;
 504	used += len;
 505	if (buffer) {
 506		if (size < used)
 507			return -ERANGE;
 508		buffer += len;
 509	}
 510
 511	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 512	used += len;
 513	if (buffer) {
 514		if (size < used)
 515			return -ERANGE;
 516		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 517		buffer += len;
 518	}
 519
 520	return used;
 521}
 522
 
 
 
 
 
 
 
 
 
 
 
 
 
 523static const struct inode_operations sockfs_inode_ops = {
 524	.getxattr = sockfs_getxattr,
 525	.listxattr = sockfs_listxattr,
 
 526};
 527
 528/**
 529 *	sock_alloc	-	allocate a socket
 530 *
 531 *	Allocate a new inode and socket object. The two are bound together
 532 *	and initialised. The socket is then returned. If we are out of inodes
 533 *	NULL is returned.
 534 */
 535
 536struct socket *sock_alloc(void)
 537{
 538	struct inode *inode;
 539	struct socket *sock;
 540
 541	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 542	if (!inode)
 543		return NULL;
 544
 545	sock = SOCKET_I(inode);
 546
 547	kmemcheck_annotate_bitfield(sock, type);
 548	inode->i_ino = get_next_ino();
 549	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 550	inode->i_uid = current_fsuid();
 551	inode->i_gid = current_fsgid();
 552	inode->i_op = &sockfs_inode_ops;
 553
 554	this_cpu_add(sockets_in_use, 1);
 555	return sock;
 556}
 557EXPORT_SYMBOL(sock_alloc);
 558
 559/**
 560 *	sock_release	-	close a socket
 561 *	@sock: socket to close
 562 *
 563 *	The socket is released from the protocol stack if it has a release
 564 *	callback, and the inode is then released if the socket is bound to
 565 *	an inode not a file.
 566 */
 567
 568void sock_release(struct socket *sock)
 569{
 570	if (sock->ops) {
 571		struct module *owner = sock->ops->owner;
 572
 573		sock->ops->release(sock);
 574		sock->ops = NULL;
 575		module_put(owner);
 576	}
 577
 578	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 579		pr_err("%s: fasync list not empty!\n", __func__);
 580
 581	this_cpu_sub(sockets_in_use, 1);
 582	if (!sock->file) {
 583		iput(SOCK_INODE(sock));
 584		return;
 585	}
 586	sock->file = NULL;
 587}
 588EXPORT_SYMBOL(sock_release);
 589
 590void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
 591{
 592	u8 flags = *tx_flags;
 593
 594	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 595		flags |= SKBTX_HW_TSTAMP;
 596
 597	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 598		flags |= SKBTX_SW_TSTAMP;
 599
 600	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
 601		flags |= SKBTX_SCHED_TSTAMP;
 602
 603	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
 604		flags |= SKBTX_ACK_TSTAMP;
 605
 606	*tx_flags = flags;
 607}
 608EXPORT_SYMBOL(__sock_tx_timestamp);
 609
 610static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 611{
 612	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 613	BUG_ON(ret == -EIOCBQUEUED);
 614	return ret;
 615}
 616
 617int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 618{
 619	int err = security_socket_sendmsg(sock, msg,
 620					  msg_data_left(msg));
 621
 622	return err ?: sock_sendmsg_nosec(sock, msg);
 623}
 624EXPORT_SYMBOL(sock_sendmsg);
 625
 626int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 627		   struct kvec *vec, size_t num, size_t size)
 628{
 629	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 630	return sock_sendmsg(sock, msg);
 631}
 632EXPORT_SYMBOL(kernel_sendmsg);
 633
 634/*
 635 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 636 */
 637void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 638	struct sk_buff *skb)
 639{
 640	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 641	struct scm_timestamping tss;
 642	int empty = 1;
 643	struct skb_shared_hwtstamps *shhwtstamps =
 644		skb_hwtstamps(skb);
 645
 646	/* Race occurred between timestamp enabling and packet
 647	   receiving.  Fill in the current time for now. */
 648	if (need_software_tstamp && skb->tstamp.tv64 == 0)
 649		__net_timestamp(skb);
 650
 651	if (need_software_tstamp) {
 652		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 653			struct timeval tv;
 654			skb_get_timestamp(skb, &tv);
 655			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 656				 sizeof(tv), &tv);
 657		} else {
 658			struct timespec ts;
 659			skb_get_timestampns(skb, &ts);
 660			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 661				 sizeof(ts), &ts);
 662		}
 663	}
 664
 665	memset(&tss, 0, sizeof(tss));
 666	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 667	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 668		empty = 0;
 669	if (shhwtstamps &&
 670	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 671	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 672		empty = 0;
 673	if (!empty)
 674		put_cmsg(msg, SOL_SOCKET,
 675			 SCM_TIMESTAMPING, sizeof(tss), &tss);
 
 
 
 
 
 676}
 677EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 678
 679void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 680	struct sk_buff *skb)
 681{
 682	int ack;
 683
 684	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 685		return;
 686	if (!skb->wifi_acked_valid)
 687		return;
 688
 689	ack = skb->wifi_acked;
 690
 691	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 692}
 693EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 694
 695static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 696				   struct sk_buff *skb)
 697{
 698	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 699		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 700			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 701}
 702
 703void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 704	struct sk_buff *skb)
 705{
 706	sock_recv_timestamp(msg, sk, skb);
 707	sock_recv_drops(msg, sk, skb);
 708}
 709EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 710
 711static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 712				     size_t size, int flags)
 713{
 714	return sock->ops->recvmsg(sock, msg, size, flags);
 715}
 716
 717int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
 718		 int flags)
 719{
 720	int err = security_socket_recvmsg(sock, msg, size, flags);
 721
 722	return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
 723}
 724EXPORT_SYMBOL(sock_recvmsg);
 725
 726/**
 727 * kernel_recvmsg - Receive a message from a socket (kernel space)
 728 * @sock:       The socket to receive the message from
 729 * @msg:        Received message
 730 * @vec:        Input s/g array for message data
 731 * @num:        Size of input s/g array
 732 * @size:       Number of bytes to read
 733 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 734 *
 735 * On return the msg structure contains the scatter/gather array passed in the
 736 * vec argument. The array is modified so that it consists of the unfilled
 737 * portion of the original array.
 738 *
 739 * The returned value is the total number of bytes received, or an error.
 740 */
 741int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 742		   struct kvec *vec, size_t num, size_t size, int flags)
 743{
 744	mm_segment_t oldfs = get_fs();
 745	int result;
 746
 747	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 748	set_fs(KERNEL_DS);
 749	result = sock_recvmsg(sock, msg, size, flags);
 750	set_fs(oldfs);
 751	return result;
 752}
 753EXPORT_SYMBOL(kernel_recvmsg);
 754
 755static ssize_t sock_sendpage(struct file *file, struct page *page,
 756			     int offset, size_t size, loff_t *ppos, int more)
 757{
 758	struct socket *sock;
 759	int flags;
 760
 761	sock = file->private_data;
 762
 763	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 764	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 765	flags |= more;
 766
 767	return kernel_sendpage(sock, page, offset, size, flags);
 768}
 769
 770static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 771				struct pipe_inode_info *pipe, size_t len,
 772				unsigned int flags)
 773{
 774	struct socket *sock = file->private_data;
 775
 776	if (unlikely(!sock->ops->splice_read))
 777		return -EINVAL;
 778
 779	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 780}
 781
 782static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 783{
 784	struct file *file = iocb->ki_filp;
 785	struct socket *sock = file->private_data;
 786	struct msghdr msg = {.msg_iter = *to,
 787			     .msg_iocb = iocb};
 788	ssize_t res;
 789
 790	if (file->f_flags & O_NONBLOCK)
 791		msg.msg_flags = MSG_DONTWAIT;
 792
 793	if (iocb->ki_pos != 0)
 794		return -ESPIPE;
 795
 796	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 797		return 0;
 798
 799	res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
 800	*to = msg.msg_iter;
 801	return res;
 802}
 803
 804static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 805{
 806	struct file *file = iocb->ki_filp;
 807	struct socket *sock = file->private_data;
 808	struct msghdr msg = {.msg_iter = *from,
 809			     .msg_iocb = iocb};
 810	ssize_t res;
 811
 812	if (iocb->ki_pos != 0)
 813		return -ESPIPE;
 814
 815	if (file->f_flags & O_NONBLOCK)
 816		msg.msg_flags = MSG_DONTWAIT;
 817
 818	if (sock->type == SOCK_SEQPACKET)
 819		msg.msg_flags |= MSG_EOR;
 820
 821	res = sock_sendmsg(sock, &msg);
 822	*from = msg.msg_iter;
 823	return res;
 824}
 825
 826/*
 827 * Atomic setting of ioctl hooks to avoid race
 828 * with module unload.
 829 */
 830
 831static DEFINE_MUTEX(br_ioctl_mutex);
 832static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 833
 834void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 835{
 836	mutex_lock(&br_ioctl_mutex);
 837	br_ioctl_hook = hook;
 838	mutex_unlock(&br_ioctl_mutex);
 839}
 840EXPORT_SYMBOL(brioctl_set);
 841
 842static DEFINE_MUTEX(vlan_ioctl_mutex);
 843static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 844
 845void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 846{
 847	mutex_lock(&vlan_ioctl_mutex);
 848	vlan_ioctl_hook = hook;
 849	mutex_unlock(&vlan_ioctl_mutex);
 850}
 851EXPORT_SYMBOL(vlan_ioctl_set);
 852
 853static DEFINE_MUTEX(dlci_ioctl_mutex);
 854static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 855
 856void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 857{
 858	mutex_lock(&dlci_ioctl_mutex);
 859	dlci_ioctl_hook = hook;
 860	mutex_unlock(&dlci_ioctl_mutex);
 861}
 862EXPORT_SYMBOL(dlci_ioctl_set);
 863
 864static long sock_do_ioctl(struct net *net, struct socket *sock,
 865				 unsigned int cmd, unsigned long arg)
 866{
 867	int err;
 868	void __user *argp = (void __user *)arg;
 869
 870	err = sock->ops->ioctl(sock, cmd, arg);
 871
 872	/*
 873	 * If this ioctl is unknown try to hand it down
 874	 * to the NIC driver.
 875	 */
 876	if (err == -ENOIOCTLCMD)
 877		err = dev_ioctl(net, cmd, argp);
 878
 879	return err;
 880}
 881
 882/*
 883 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 884 *	what to do with it - that's up to the protocol still.
 885 */
 886
 
 
 
 
 
 887static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 888{
 889	struct socket *sock;
 890	struct sock *sk;
 891	void __user *argp = (void __user *)arg;
 892	int pid, err;
 893	struct net *net;
 894
 895	sock = file->private_data;
 896	sk = sock->sk;
 897	net = sock_net(sk);
 898	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 899		err = dev_ioctl(net, cmd, argp);
 900	} else
 901#ifdef CONFIG_WEXT_CORE
 902	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 903		err = dev_ioctl(net, cmd, argp);
 904	} else
 905#endif
 906		switch (cmd) {
 907		case FIOSETOWN:
 908		case SIOCSPGRP:
 909			err = -EFAULT;
 910			if (get_user(pid, (int __user *)argp))
 911				break;
 912			f_setown(sock->file, pid, 1);
 913			err = 0;
 914			break;
 915		case FIOGETOWN:
 916		case SIOCGPGRP:
 917			err = put_user(f_getown(sock->file),
 918				       (int __user *)argp);
 919			break;
 920		case SIOCGIFBR:
 921		case SIOCSIFBR:
 922		case SIOCBRADDBR:
 923		case SIOCBRDELBR:
 924			err = -ENOPKG;
 925			if (!br_ioctl_hook)
 926				request_module("bridge");
 927
 928			mutex_lock(&br_ioctl_mutex);
 929			if (br_ioctl_hook)
 930				err = br_ioctl_hook(net, cmd, argp);
 931			mutex_unlock(&br_ioctl_mutex);
 932			break;
 933		case SIOCGIFVLAN:
 934		case SIOCSIFVLAN:
 935			err = -ENOPKG;
 936			if (!vlan_ioctl_hook)
 937				request_module("8021q");
 938
 939			mutex_lock(&vlan_ioctl_mutex);
 940			if (vlan_ioctl_hook)
 941				err = vlan_ioctl_hook(net, argp);
 942			mutex_unlock(&vlan_ioctl_mutex);
 943			break;
 944		case SIOCADDDLCI:
 945		case SIOCDELDLCI:
 946			err = -ENOPKG;
 947			if (!dlci_ioctl_hook)
 948				request_module("dlci");
 949
 950			mutex_lock(&dlci_ioctl_mutex);
 951			if (dlci_ioctl_hook)
 952				err = dlci_ioctl_hook(cmd, argp);
 953			mutex_unlock(&dlci_ioctl_mutex);
 954			break;
 
 
 
 
 
 
 
 955		default:
 956			err = sock_do_ioctl(net, sock, cmd, arg);
 957			break;
 958		}
 959	return err;
 960}
 961
 962int sock_create_lite(int family, int type, int protocol, struct socket **res)
 963{
 964	int err;
 965	struct socket *sock = NULL;
 966
 967	err = security_socket_create(family, type, protocol, 1);
 968	if (err)
 969		goto out;
 970
 971	sock = sock_alloc();
 972	if (!sock) {
 973		err = -ENOMEM;
 974		goto out;
 975	}
 976
 977	sock->type = type;
 978	err = security_socket_post_create(sock, family, type, protocol, 1);
 979	if (err)
 980		goto out_release;
 981
 982out:
 983	*res = sock;
 984	return err;
 985out_release:
 986	sock_release(sock);
 987	sock = NULL;
 988	goto out;
 989}
 990EXPORT_SYMBOL(sock_create_lite);
 991
 992/* No kernel lock held - perfect */
 993static unsigned int sock_poll(struct file *file, poll_table *wait)
 994{
 995	unsigned int busy_flag = 0;
 996	struct socket *sock;
 997
 998	/*
 999	 *      We can't return errors to poll, so it's either yes or no.
1000	 */
1001	sock = file->private_data;
1002
1003	if (sk_can_busy_loop(sock->sk)) {
1004		/* this socket can poll_ll so tell the system call */
1005		busy_flag = POLL_BUSY_LOOP;
1006
1007		/* once, only if requested by syscall */
1008		if (wait && (wait->_key & POLL_BUSY_LOOP))
1009			sk_busy_loop(sock->sk, 1);
1010	}
1011
1012	return busy_flag | sock->ops->poll(file, sock, wait);
1013}
1014
1015static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1016{
1017	struct socket *sock = file->private_data;
1018
1019	return sock->ops->mmap(file, sock, vma);
1020}
1021
1022static int sock_close(struct inode *inode, struct file *filp)
1023{
1024	sock_release(SOCKET_I(inode));
1025	return 0;
1026}
1027
1028/*
1029 *	Update the socket async list
1030 *
1031 *	Fasync_list locking strategy.
1032 *
1033 *	1. fasync_list is modified only under process context socket lock
1034 *	   i.e. under semaphore.
1035 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1036 *	   or under socket lock
1037 */
1038
1039static int sock_fasync(int fd, struct file *filp, int on)
1040{
1041	struct socket *sock = filp->private_data;
1042	struct sock *sk = sock->sk;
1043	struct socket_wq *wq;
1044
1045	if (sk == NULL)
1046		return -EINVAL;
1047
1048	lock_sock(sk);
1049	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1050	fasync_helper(fd, filp, on, &wq->fasync_list);
1051
1052	if (!wq->fasync_list)
1053		sock_reset_flag(sk, SOCK_FASYNC);
1054	else
1055		sock_set_flag(sk, SOCK_FASYNC);
1056
1057	release_sock(sk);
1058	return 0;
1059}
1060
1061/* This function may be called only under rcu_lock */
1062
1063int sock_wake_async(struct socket_wq *wq, int how, int band)
1064{
1065	if (!wq || !wq->fasync_list)
1066		return -1;
1067
1068	switch (how) {
1069	case SOCK_WAKE_WAITD:
1070		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1071			break;
1072		goto call_kill;
1073	case SOCK_WAKE_SPACE:
1074		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1075			break;
1076		/* fall through */
1077	case SOCK_WAKE_IO:
1078call_kill:
1079		kill_fasync(&wq->fasync_list, SIGIO, band);
1080		break;
1081	case SOCK_WAKE_URG:
1082		kill_fasync(&wq->fasync_list, SIGURG, band);
1083	}
1084
1085	return 0;
1086}
1087EXPORT_SYMBOL(sock_wake_async);
1088
1089int __sock_create(struct net *net, int family, int type, int protocol,
1090			 struct socket **res, int kern)
1091{
1092	int err;
1093	struct socket *sock;
1094	const struct net_proto_family *pf;
1095
1096	/*
1097	 *      Check protocol is in range
1098	 */
1099	if (family < 0 || family >= NPROTO)
1100		return -EAFNOSUPPORT;
1101	if (type < 0 || type >= SOCK_MAX)
1102		return -EINVAL;
1103
1104	/* Compatibility.
1105
1106	   This uglymoron is moved from INET layer to here to avoid
1107	   deadlock in module load.
1108	 */
1109	if (family == PF_INET && type == SOCK_PACKET) {
1110		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1111			     current->comm);
1112		family = PF_PACKET;
1113	}
1114
1115	err = security_socket_create(family, type, protocol, kern);
1116	if (err)
1117		return err;
1118
1119	/*
1120	 *	Allocate the socket and allow the family to set things up. if
1121	 *	the protocol is 0, the family is instructed to select an appropriate
1122	 *	default.
1123	 */
1124	sock = sock_alloc();
1125	if (!sock) {
1126		net_warn_ratelimited("socket: no more sockets\n");
1127		return -ENFILE;	/* Not exactly a match, but its the
1128				   closest posix thing */
1129	}
1130
1131	sock->type = type;
1132
1133#ifdef CONFIG_MODULES
1134	/* Attempt to load a protocol module if the find failed.
1135	 *
1136	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1137	 * requested real, full-featured networking support upon configuration.
1138	 * Otherwise module support will break!
1139	 */
1140	if (rcu_access_pointer(net_families[family]) == NULL)
1141		request_module("net-pf-%d", family);
1142#endif
1143
1144	rcu_read_lock();
1145	pf = rcu_dereference(net_families[family]);
1146	err = -EAFNOSUPPORT;
1147	if (!pf)
1148		goto out_release;
1149
1150	/*
1151	 * We will call the ->create function, that possibly is in a loadable
1152	 * module, so we have to bump that loadable module refcnt first.
1153	 */
1154	if (!try_module_get(pf->owner))
1155		goto out_release;
1156
1157	/* Now protected by module ref count */
1158	rcu_read_unlock();
1159
1160	err = pf->create(net, sock, protocol, kern);
1161	if (err < 0)
1162		goto out_module_put;
1163
1164	/*
1165	 * Now to bump the refcnt of the [loadable] module that owns this
1166	 * socket at sock_release time we decrement its refcnt.
1167	 */
1168	if (!try_module_get(sock->ops->owner))
1169		goto out_module_busy;
1170
1171	/*
1172	 * Now that we're done with the ->create function, the [loadable]
1173	 * module can have its refcnt decremented
1174	 */
1175	module_put(pf->owner);
1176	err = security_socket_post_create(sock, family, type, protocol, kern);
1177	if (err)
1178		goto out_sock_release;
1179	*res = sock;
1180
1181	return 0;
1182
1183out_module_busy:
1184	err = -EAFNOSUPPORT;
1185out_module_put:
1186	sock->ops = NULL;
1187	module_put(pf->owner);
1188out_sock_release:
1189	sock_release(sock);
1190	return err;
1191
1192out_release:
1193	rcu_read_unlock();
1194	goto out_sock_release;
1195}
1196EXPORT_SYMBOL(__sock_create);
1197
1198int sock_create(int family, int type, int protocol, struct socket **res)
1199{
1200	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1201}
1202EXPORT_SYMBOL(sock_create);
1203
1204int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1205{
1206	return __sock_create(net, family, type, protocol, res, 1);
1207}
1208EXPORT_SYMBOL(sock_create_kern);
1209
1210SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1211{
1212	int retval;
1213	struct socket *sock;
1214	int flags;
1215
1216	/* Check the SOCK_* constants for consistency.  */
1217	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1218	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1219	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1220	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1221
1222	flags = type & ~SOCK_TYPE_MASK;
1223	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1224		return -EINVAL;
1225	type &= SOCK_TYPE_MASK;
1226
1227	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1228		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1229
1230	retval = sock_create(family, type, protocol, &sock);
1231	if (retval < 0)
1232		goto out;
1233
1234	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1235	if (retval < 0)
1236		goto out_release;
1237
1238out:
1239	/* It may be already another descriptor 8) Not kernel problem. */
1240	return retval;
1241
1242out_release:
1243	sock_release(sock);
1244	return retval;
1245}
1246
1247/*
1248 *	Create a pair of connected sockets.
1249 */
1250
1251SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1252		int __user *, usockvec)
1253{
1254	struct socket *sock1, *sock2;
1255	int fd1, fd2, err;
1256	struct file *newfile1, *newfile2;
1257	int flags;
1258
1259	flags = type & ~SOCK_TYPE_MASK;
1260	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1261		return -EINVAL;
1262	type &= SOCK_TYPE_MASK;
1263
1264	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1265		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1266
1267	/*
1268	 * Obtain the first socket and check if the underlying protocol
1269	 * supports the socketpair call.
1270	 */
1271
1272	err = sock_create(family, type, protocol, &sock1);
1273	if (err < 0)
1274		goto out;
1275
1276	err = sock_create(family, type, protocol, &sock2);
1277	if (err < 0)
1278		goto out_release_1;
1279
1280	err = sock1->ops->socketpair(sock1, sock2);
1281	if (err < 0)
1282		goto out_release_both;
1283
1284	fd1 = get_unused_fd_flags(flags);
1285	if (unlikely(fd1 < 0)) {
1286		err = fd1;
1287		goto out_release_both;
1288	}
1289
1290	fd2 = get_unused_fd_flags(flags);
1291	if (unlikely(fd2 < 0)) {
1292		err = fd2;
1293		goto out_put_unused_1;
1294	}
1295
1296	newfile1 = sock_alloc_file(sock1, flags, NULL);
1297	if (IS_ERR(newfile1)) {
1298		err = PTR_ERR(newfile1);
1299		goto out_put_unused_both;
1300	}
1301
1302	newfile2 = sock_alloc_file(sock2, flags, NULL);
1303	if (IS_ERR(newfile2)) {
1304		err = PTR_ERR(newfile2);
1305		goto out_fput_1;
1306	}
1307
1308	err = put_user(fd1, &usockvec[0]);
1309	if (err)
1310		goto out_fput_both;
1311
1312	err = put_user(fd2, &usockvec[1]);
1313	if (err)
1314		goto out_fput_both;
1315
1316	audit_fd_pair(fd1, fd2);
1317
1318	fd_install(fd1, newfile1);
1319	fd_install(fd2, newfile2);
1320	/* fd1 and fd2 may be already another descriptors.
1321	 * Not kernel problem.
1322	 */
1323
1324	return 0;
1325
1326out_fput_both:
1327	fput(newfile2);
1328	fput(newfile1);
1329	put_unused_fd(fd2);
1330	put_unused_fd(fd1);
1331	goto out;
1332
1333out_fput_1:
1334	fput(newfile1);
1335	put_unused_fd(fd2);
1336	put_unused_fd(fd1);
1337	sock_release(sock2);
1338	goto out;
1339
1340out_put_unused_both:
1341	put_unused_fd(fd2);
1342out_put_unused_1:
1343	put_unused_fd(fd1);
1344out_release_both:
1345	sock_release(sock2);
1346out_release_1:
1347	sock_release(sock1);
1348out:
1349	return err;
1350}
1351
1352/*
1353 *	Bind a name to a socket. Nothing much to do here since it's
1354 *	the protocol's responsibility to handle the local address.
1355 *
1356 *	We move the socket address to kernel space before we call
1357 *	the protocol layer (having also checked the address is ok).
1358 */
1359
1360SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1361{
1362	struct socket *sock;
1363	struct sockaddr_storage address;
1364	int err, fput_needed;
1365
1366	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1367	if (sock) {
1368		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1369		if (err >= 0) {
1370			err = security_socket_bind(sock,
1371						   (struct sockaddr *)&address,
1372						   addrlen);
1373			if (!err)
1374				err = sock->ops->bind(sock,
1375						      (struct sockaddr *)
1376						      &address, addrlen);
1377		}
1378		fput_light(sock->file, fput_needed);
1379	}
1380	return err;
1381}
1382
1383/*
1384 *	Perform a listen. Basically, we allow the protocol to do anything
1385 *	necessary for a listen, and if that works, we mark the socket as
1386 *	ready for listening.
1387 */
1388
1389SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1390{
1391	struct socket *sock;
1392	int err, fput_needed;
1393	int somaxconn;
1394
1395	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1396	if (sock) {
1397		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1398		if ((unsigned int)backlog > somaxconn)
1399			backlog = somaxconn;
1400
1401		err = security_socket_listen(sock, backlog);
1402		if (!err)
1403			err = sock->ops->listen(sock, backlog);
1404
1405		fput_light(sock->file, fput_needed);
1406	}
1407	return err;
1408}
1409
1410/*
1411 *	For accept, we attempt to create a new socket, set up the link
1412 *	with the client, wake up the client, then return the new
1413 *	connected fd. We collect the address of the connector in kernel
1414 *	space and move it to user at the very end. This is unclean because
1415 *	we open the socket then return an error.
1416 *
1417 *	1003.1g adds the ability to recvmsg() to query connection pending
1418 *	status to recvmsg. We need to add that support in a way thats
1419 *	clean when we restucture accept also.
1420 */
1421
1422SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1423		int __user *, upeer_addrlen, int, flags)
1424{
1425	struct socket *sock, *newsock;
1426	struct file *newfile;
1427	int err, len, newfd, fput_needed;
1428	struct sockaddr_storage address;
1429
1430	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1431		return -EINVAL;
1432
1433	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1434		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1435
1436	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1437	if (!sock)
1438		goto out;
1439
1440	err = -ENFILE;
1441	newsock = sock_alloc();
1442	if (!newsock)
1443		goto out_put;
1444
1445	newsock->type = sock->type;
1446	newsock->ops = sock->ops;
1447
1448	/*
1449	 * We don't need try_module_get here, as the listening socket (sock)
1450	 * has the protocol module (sock->ops->owner) held.
1451	 */
1452	__module_get(newsock->ops->owner);
1453
1454	newfd = get_unused_fd_flags(flags);
1455	if (unlikely(newfd < 0)) {
1456		err = newfd;
1457		sock_release(newsock);
1458		goto out_put;
1459	}
1460	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1461	if (IS_ERR(newfile)) {
1462		err = PTR_ERR(newfile);
1463		put_unused_fd(newfd);
1464		sock_release(newsock);
1465		goto out_put;
1466	}
1467
1468	err = security_socket_accept(sock, newsock);
1469	if (err)
1470		goto out_fd;
1471
1472	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1473	if (err < 0)
1474		goto out_fd;
1475
1476	if (upeer_sockaddr) {
1477		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1478					  &len, 2) < 0) {
1479			err = -ECONNABORTED;
1480			goto out_fd;
1481		}
1482		err = move_addr_to_user(&address,
1483					len, upeer_sockaddr, upeer_addrlen);
1484		if (err < 0)
1485			goto out_fd;
1486	}
1487
1488	/* File flags are not inherited via accept() unlike another OSes. */
1489
1490	fd_install(newfd, newfile);
1491	err = newfd;
1492
1493out_put:
1494	fput_light(sock->file, fput_needed);
1495out:
1496	return err;
1497out_fd:
1498	fput(newfile);
1499	put_unused_fd(newfd);
1500	goto out_put;
1501}
1502
1503SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1504		int __user *, upeer_addrlen)
1505{
1506	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1507}
1508
1509/*
1510 *	Attempt to connect to a socket with the server address.  The address
1511 *	is in user space so we verify it is OK and move it to kernel space.
1512 *
1513 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1514 *	break bindings
1515 *
1516 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1517 *	other SEQPACKET protocols that take time to connect() as it doesn't
1518 *	include the -EINPROGRESS status for such sockets.
1519 */
1520
1521SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1522		int, addrlen)
1523{
1524	struct socket *sock;
1525	struct sockaddr_storage address;
1526	int err, fput_needed;
1527
1528	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1529	if (!sock)
1530		goto out;
1531	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1532	if (err < 0)
1533		goto out_put;
1534
1535	err =
1536	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1537	if (err)
1538		goto out_put;
1539
1540	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1541				 sock->file->f_flags);
1542out_put:
1543	fput_light(sock->file, fput_needed);
1544out:
1545	return err;
1546}
1547
1548/*
1549 *	Get the local address ('name') of a socket object. Move the obtained
1550 *	name to user space.
1551 */
1552
1553SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1554		int __user *, usockaddr_len)
1555{
1556	struct socket *sock;
1557	struct sockaddr_storage address;
1558	int len, err, fput_needed;
1559
1560	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1561	if (!sock)
1562		goto out;
1563
1564	err = security_socket_getsockname(sock);
1565	if (err)
1566		goto out_put;
1567
1568	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1569	if (err)
1570		goto out_put;
1571	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1572
1573out_put:
1574	fput_light(sock->file, fput_needed);
1575out:
1576	return err;
1577}
1578
1579/*
1580 *	Get the remote address ('name') of a socket object. Move the obtained
1581 *	name to user space.
1582 */
1583
1584SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1585		int __user *, usockaddr_len)
1586{
1587	struct socket *sock;
1588	struct sockaddr_storage address;
1589	int len, err, fput_needed;
1590
1591	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1592	if (sock != NULL) {
1593		err = security_socket_getpeername(sock);
1594		if (err) {
1595			fput_light(sock->file, fput_needed);
1596			return err;
1597		}
1598
1599		err =
1600		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1601				       1);
1602		if (!err)
1603			err = move_addr_to_user(&address, len, usockaddr,
1604						usockaddr_len);
1605		fput_light(sock->file, fput_needed);
1606	}
1607	return err;
1608}
1609
1610/*
1611 *	Send a datagram to a given address. We move the address into kernel
1612 *	space and check the user space data area is readable before invoking
1613 *	the protocol.
1614 */
1615
1616SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1617		unsigned int, flags, struct sockaddr __user *, addr,
1618		int, addr_len)
1619{
1620	struct socket *sock;
1621	struct sockaddr_storage address;
1622	int err;
1623	struct msghdr msg;
1624	struct iovec iov;
1625	int fput_needed;
1626
1627	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1628	if (unlikely(err))
1629		return err;
1630	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631	if (!sock)
1632		goto out;
1633
1634	msg.msg_name = NULL;
1635	msg.msg_control = NULL;
1636	msg.msg_controllen = 0;
1637	msg.msg_namelen = 0;
1638	if (addr) {
1639		err = move_addr_to_kernel(addr, addr_len, &address);
1640		if (err < 0)
1641			goto out_put;
1642		msg.msg_name = (struct sockaddr *)&address;
1643		msg.msg_namelen = addr_len;
1644	}
1645	if (sock->file->f_flags & O_NONBLOCK)
1646		flags |= MSG_DONTWAIT;
1647	msg.msg_flags = flags;
1648	err = sock_sendmsg(sock, &msg);
1649
1650out_put:
1651	fput_light(sock->file, fput_needed);
1652out:
1653	return err;
1654}
1655
1656/*
1657 *	Send a datagram down a socket.
1658 */
1659
1660SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1661		unsigned int, flags)
1662{
1663	return sys_sendto(fd, buff, len, flags, NULL, 0);
1664}
1665
1666/*
1667 *	Receive a frame from the socket and optionally record the address of the
1668 *	sender. We verify the buffers are writable and if needed move the
1669 *	sender address from kernel to user space.
1670 */
1671
1672SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1673		unsigned int, flags, struct sockaddr __user *, addr,
1674		int __user *, addr_len)
1675{
1676	struct socket *sock;
1677	struct iovec iov;
1678	struct msghdr msg;
1679	struct sockaddr_storage address;
1680	int err, err2;
1681	int fput_needed;
1682
1683	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1684	if (unlikely(err))
1685		return err;
1686	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1687	if (!sock)
1688		goto out;
1689
1690	msg.msg_control = NULL;
1691	msg.msg_controllen = 0;
1692	/* Save some cycles and don't copy the address if not needed */
1693	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1694	/* We assume all kernel code knows the size of sockaddr_storage */
1695	msg.msg_namelen = 0;
1696	msg.msg_iocb = NULL;
1697	if (sock->file->f_flags & O_NONBLOCK)
1698		flags |= MSG_DONTWAIT;
1699	err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1700
1701	if (err >= 0 && addr != NULL) {
1702		err2 = move_addr_to_user(&address,
1703					 msg.msg_namelen, addr, addr_len);
1704		if (err2 < 0)
1705			err = err2;
1706	}
1707
1708	fput_light(sock->file, fput_needed);
1709out:
1710	return err;
1711}
1712
1713/*
1714 *	Receive a datagram from a socket.
1715 */
1716
1717SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1718		unsigned int, flags)
1719{
1720	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1721}
1722
1723/*
1724 *	Set a socket option. Because we don't know the option lengths we have
1725 *	to pass the user mode parameter for the protocols to sort out.
1726 */
1727
1728SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1729		char __user *, optval, int, optlen)
1730{
1731	int err, fput_needed;
1732	struct socket *sock;
1733
1734	if (optlen < 0)
1735		return -EINVAL;
1736
1737	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1738	if (sock != NULL) {
1739		err = security_socket_setsockopt(sock, level, optname);
1740		if (err)
1741			goto out_put;
1742
1743		if (level == SOL_SOCKET)
1744			err =
1745			    sock_setsockopt(sock, level, optname, optval,
1746					    optlen);
1747		else
1748			err =
1749			    sock->ops->setsockopt(sock, level, optname, optval,
1750						  optlen);
1751out_put:
1752		fput_light(sock->file, fput_needed);
1753	}
1754	return err;
1755}
1756
1757/*
1758 *	Get a socket option. Because we don't know the option lengths we have
1759 *	to pass a user mode parameter for the protocols to sort out.
1760 */
1761
1762SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1763		char __user *, optval, int __user *, optlen)
1764{
1765	int err, fput_needed;
1766	struct socket *sock;
1767
1768	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769	if (sock != NULL) {
1770		err = security_socket_getsockopt(sock, level, optname);
1771		if (err)
1772			goto out_put;
1773
1774		if (level == SOL_SOCKET)
1775			err =
1776			    sock_getsockopt(sock, level, optname, optval,
1777					    optlen);
1778		else
1779			err =
1780			    sock->ops->getsockopt(sock, level, optname, optval,
1781						  optlen);
1782out_put:
1783		fput_light(sock->file, fput_needed);
1784	}
1785	return err;
1786}
1787
1788/*
1789 *	Shutdown a socket.
1790 */
1791
1792SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1793{
1794	int err, fput_needed;
1795	struct socket *sock;
1796
1797	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1798	if (sock != NULL) {
1799		err = security_socket_shutdown(sock, how);
1800		if (!err)
1801			err = sock->ops->shutdown(sock, how);
1802		fput_light(sock->file, fput_needed);
1803	}
1804	return err;
1805}
1806
1807/* A couple of helpful macros for getting the address of the 32/64 bit
1808 * fields which are the same type (int / unsigned) on our platforms.
1809 */
1810#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1811#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1812#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1813
1814struct used_address {
1815	struct sockaddr_storage name;
1816	unsigned int name_len;
1817};
1818
1819static int copy_msghdr_from_user(struct msghdr *kmsg,
1820				 struct user_msghdr __user *umsg,
1821				 struct sockaddr __user **save_addr,
1822				 struct iovec **iov)
1823{
1824	struct sockaddr __user *uaddr;
1825	struct iovec __user *uiov;
1826	size_t nr_segs;
1827	ssize_t err;
1828
1829	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1830	    __get_user(uaddr, &umsg->msg_name) ||
1831	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1832	    __get_user(uiov, &umsg->msg_iov) ||
1833	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1834	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1835	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1836	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1837		return -EFAULT;
1838
1839	if (!uaddr)
1840		kmsg->msg_namelen = 0;
1841
1842	if (kmsg->msg_namelen < 0)
1843		return -EINVAL;
1844
1845	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1846		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1847
1848	if (save_addr)
1849		*save_addr = uaddr;
1850
1851	if (uaddr && kmsg->msg_namelen) {
1852		if (!save_addr) {
1853			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1854						  kmsg->msg_name);
1855			if (err < 0)
1856				return err;
1857		}
1858	} else {
1859		kmsg->msg_name = NULL;
1860		kmsg->msg_namelen = 0;
1861	}
1862
1863	if (nr_segs > UIO_MAXIOV)
1864		return -EMSGSIZE;
1865
1866	kmsg->msg_iocb = NULL;
1867
1868	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1869			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1870}
1871
1872static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1873			 struct msghdr *msg_sys, unsigned int flags,
1874			 struct used_address *used_address,
1875			 unsigned int allowed_msghdr_flags)
1876{
1877	struct compat_msghdr __user *msg_compat =
1878	    (struct compat_msghdr __user *)msg;
1879	struct sockaddr_storage address;
1880	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1881	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1882	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1883	/* 20 is size of ipv6_pktinfo */
1884	unsigned char *ctl_buf = ctl;
1885	int ctl_len;
1886	ssize_t err;
1887
1888	msg_sys->msg_name = &address;
1889
1890	if (MSG_CMSG_COMPAT & flags)
1891		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1892	else
1893		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1894	if (err < 0)
1895		return err;
1896
1897	err = -ENOBUFS;
1898
1899	if (msg_sys->msg_controllen > INT_MAX)
1900		goto out_freeiov;
1901	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1902	ctl_len = msg_sys->msg_controllen;
1903	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1904		err =
1905		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1906						     sizeof(ctl));
1907		if (err)
1908			goto out_freeiov;
1909		ctl_buf = msg_sys->msg_control;
1910		ctl_len = msg_sys->msg_controllen;
1911	} else if (ctl_len) {
1912		if (ctl_len > sizeof(ctl)) {
1913			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1914			if (ctl_buf == NULL)
1915				goto out_freeiov;
1916		}
1917		err = -EFAULT;
1918		/*
1919		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1920		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1921		 * checking falls down on this.
1922		 */
1923		if (copy_from_user(ctl_buf,
1924				   (void __user __force *)msg_sys->msg_control,
1925				   ctl_len))
1926			goto out_freectl;
1927		msg_sys->msg_control = ctl_buf;
1928	}
1929	msg_sys->msg_flags = flags;
1930
1931	if (sock->file->f_flags & O_NONBLOCK)
1932		msg_sys->msg_flags |= MSG_DONTWAIT;
1933	/*
1934	 * If this is sendmmsg() and current destination address is same as
1935	 * previously succeeded address, omit asking LSM's decision.
1936	 * used_address->name_len is initialized to UINT_MAX so that the first
1937	 * destination address never matches.
1938	 */
1939	if (used_address && msg_sys->msg_name &&
1940	    used_address->name_len == msg_sys->msg_namelen &&
1941	    !memcmp(&used_address->name, msg_sys->msg_name,
1942		    used_address->name_len)) {
1943		err = sock_sendmsg_nosec(sock, msg_sys);
1944		goto out_freectl;
1945	}
1946	err = sock_sendmsg(sock, msg_sys);
1947	/*
1948	 * If this is sendmmsg() and sending to current destination address was
1949	 * successful, remember it.
1950	 */
1951	if (used_address && err >= 0) {
1952		used_address->name_len = msg_sys->msg_namelen;
1953		if (msg_sys->msg_name)
1954			memcpy(&used_address->name, msg_sys->msg_name,
1955			       used_address->name_len);
1956	}
1957
1958out_freectl:
1959	if (ctl_buf != ctl)
1960		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1961out_freeiov:
1962	kfree(iov);
1963	return err;
1964}
1965
1966/*
1967 *	BSD sendmsg interface
1968 */
1969
1970long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1971{
1972	int fput_needed, err;
1973	struct msghdr msg_sys;
1974	struct socket *sock;
1975
1976	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1977	if (!sock)
1978		goto out;
1979
1980	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1981
1982	fput_light(sock->file, fput_needed);
1983out:
1984	return err;
1985}
1986
1987SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1988{
1989	if (flags & MSG_CMSG_COMPAT)
1990		return -EINVAL;
1991	return __sys_sendmsg(fd, msg, flags);
1992}
1993
1994/*
1995 *	Linux sendmmsg interface
1996 */
1997
1998int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
1999		   unsigned int flags)
2000{
2001	int fput_needed, err, datagrams;
2002	struct socket *sock;
2003	struct mmsghdr __user *entry;
2004	struct compat_mmsghdr __user *compat_entry;
2005	struct msghdr msg_sys;
2006	struct used_address used_address;
2007	unsigned int oflags = flags;
2008
2009	if (vlen > UIO_MAXIOV)
2010		vlen = UIO_MAXIOV;
2011
2012	datagrams = 0;
2013
2014	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2015	if (!sock)
2016		return err;
2017
2018	used_address.name_len = UINT_MAX;
2019	entry = mmsg;
2020	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2021	err = 0;
2022	flags |= MSG_BATCH;
2023
2024	while (datagrams < vlen) {
2025		if (datagrams == vlen - 1)
2026			flags = oflags;
2027
2028		if (MSG_CMSG_COMPAT & flags) {
2029			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2030					     &msg_sys, flags, &used_address, MSG_EOR);
2031			if (err < 0)
2032				break;
2033			err = __put_user(err, &compat_entry->msg_len);
2034			++compat_entry;
2035		} else {
2036			err = ___sys_sendmsg(sock,
2037					     (struct user_msghdr __user *)entry,
2038					     &msg_sys, flags, &used_address, MSG_EOR);
2039			if (err < 0)
2040				break;
2041			err = put_user(err, &entry->msg_len);
2042			++entry;
2043		}
2044
2045		if (err)
2046			break;
2047		++datagrams;
 
 
2048		cond_resched();
2049	}
2050
2051	fput_light(sock->file, fput_needed);
2052
2053	/* We only return an error if no datagrams were able to be sent */
2054	if (datagrams != 0)
2055		return datagrams;
2056
2057	return err;
2058}
2059
2060SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2061		unsigned int, vlen, unsigned int, flags)
2062{
2063	if (flags & MSG_CMSG_COMPAT)
2064		return -EINVAL;
2065	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2066}
2067
2068static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2069			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2070{
2071	struct compat_msghdr __user *msg_compat =
2072	    (struct compat_msghdr __user *)msg;
2073	struct iovec iovstack[UIO_FASTIOV];
2074	struct iovec *iov = iovstack;
2075	unsigned long cmsg_ptr;
2076	int total_len, len;
2077	ssize_t err;
2078
2079	/* kernel mode address */
2080	struct sockaddr_storage addr;
2081
2082	/* user mode address pointers */
2083	struct sockaddr __user *uaddr;
2084	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2085
2086	msg_sys->msg_name = &addr;
2087
2088	if (MSG_CMSG_COMPAT & flags)
2089		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2090	else
2091		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2092	if (err < 0)
2093		return err;
2094	total_len = iov_iter_count(&msg_sys->msg_iter);
2095
2096	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2097	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2098
2099	/* We assume all kernel code knows the size of sockaddr_storage */
2100	msg_sys->msg_namelen = 0;
2101
2102	if (sock->file->f_flags & O_NONBLOCK)
2103		flags |= MSG_DONTWAIT;
2104	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2105							  total_len, flags);
2106	if (err < 0)
2107		goto out_freeiov;
2108	len = err;
2109
2110	if (uaddr != NULL) {
2111		err = move_addr_to_user(&addr,
2112					msg_sys->msg_namelen, uaddr,
2113					uaddr_len);
2114		if (err < 0)
2115			goto out_freeiov;
2116	}
2117	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2118			 COMPAT_FLAGS(msg));
2119	if (err)
2120		goto out_freeiov;
2121	if (MSG_CMSG_COMPAT & flags)
2122		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2123				 &msg_compat->msg_controllen);
2124	else
2125		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2126				 &msg->msg_controllen);
2127	if (err)
2128		goto out_freeiov;
2129	err = len;
2130
2131out_freeiov:
2132	kfree(iov);
2133	return err;
2134}
2135
2136/*
2137 *	BSD recvmsg interface
2138 */
2139
2140long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2141{
2142	int fput_needed, err;
2143	struct msghdr msg_sys;
2144	struct socket *sock;
2145
2146	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2147	if (!sock)
2148		goto out;
2149
2150	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2151
2152	fput_light(sock->file, fput_needed);
2153out:
2154	return err;
2155}
2156
2157SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2158		unsigned int, flags)
2159{
2160	if (flags & MSG_CMSG_COMPAT)
2161		return -EINVAL;
2162	return __sys_recvmsg(fd, msg, flags);
2163}
2164
2165/*
2166 *     Linux recvmmsg interface
2167 */
2168
2169int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2170		   unsigned int flags, struct timespec *timeout)
2171{
2172	int fput_needed, err, datagrams;
2173	struct socket *sock;
2174	struct mmsghdr __user *entry;
2175	struct compat_mmsghdr __user *compat_entry;
2176	struct msghdr msg_sys;
2177	struct timespec end_time;
 
2178
2179	if (timeout &&
2180	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2181				    timeout->tv_nsec))
2182		return -EINVAL;
2183
2184	datagrams = 0;
2185
2186	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2187	if (!sock)
2188		return err;
2189
2190	err = sock_error(sock->sk);
2191	if (err)
 
2192		goto out_put;
 
2193
2194	entry = mmsg;
2195	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2196
2197	while (datagrams < vlen) {
2198		/*
2199		 * No need to ask LSM for more than the first datagram.
2200		 */
2201		if (MSG_CMSG_COMPAT & flags) {
2202			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2203					     &msg_sys, flags & ~MSG_WAITFORONE,
2204					     datagrams);
2205			if (err < 0)
2206				break;
2207			err = __put_user(err, &compat_entry->msg_len);
2208			++compat_entry;
2209		} else {
2210			err = ___sys_recvmsg(sock,
2211					     (struct user_msghdr __user *)entry,
2212					     &msg_sys, flags & ~MSG_WAITFORONE,
2213					     datagrams);
2214			if (err < 0)
2215				break;
2216			err = put_user(err, &entry->msg_len);
2217			++entry;
2218		}
2219
2220		if (err)
2221			break;
2222		++datagrams;
2223
2224		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2225		if (flags & MSG_WAITFORONE)
2226			flags |= MSG_DONTWAIT;
2227
2228		if (timeout) {
2229			ktime_get_ts(timeout);
2230			*timeout = timespec_sub(end_time, *timeout);
 
2231			if (timeout->tv_sec < 0) {
2232				timeout->tv_sec = timeout->tv_nsec = 0;
2233				break;
2234			}
2235
2236			/* Timeout, return less than vlen datagrams */
2237			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2238				break;
2239		}
2240
2241		/* Out of band data, return right away */
2242		if (msg_sys.msg_flags & MSG_OOB)
2243			break;
2244		cond_resched();
2245	}
2246
2247	if (err == 0)
2248		goto out_put;
2249
2250	if (datagrams == 0) {
2251		datagrams = err;
2252		goto out_put;
2253	}
2254
2255	/*
2256	 * We may return less entries than requested (vlen) if the
2257	 * sock is non block and there aren't enough datagrams...
2258	 */
2259	if (err != -EAGAIN) {
2260		/*
2261		 * ... or  if recvmsg returns an error after we
2262		 * received some datagrams, where we record the
2263		 * error to return on the next call or if the
2264		 * app asks about it using getsockopt(SO_ERROR).
2265		 */
2266		sock->sk->sk_err = -err;
2267	}
2268out_put:
2269	fput_light(sock->file, fput_needed);
2270
2271	return datagrams;
2272}
2273
2274SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2275		unsigned int, vlen, unsigned int, flags,
2276		struct timespec __user *, timeout)
2277{
2278	int datagrams;
2279	struct timespec timeout_sys;
2280
2281	if (flags & MSG_CMSG_COMPAT)
2282		return -EINVAL;
2283
2284	if (!timeout)
2285		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2286
2287	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2288		return -EFAULT;
2289
2290	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2291
2292	if (datagrams > 0 &&
2293	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2294		datagrams = -EFAULT;
2295
2296	return datagrams;
2297}
2298
2299#ifdef __ARCH_WANT_SYS_SOCKETCALL
2300/* Argument list sizes for sys_socketcall */
2301#define AL(x) ((x) * sizeof(unsigned long))
2302static const unsigned char nargs[21] = {
2303	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2304	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2305	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2306	AL(4), AL(5), AL(4)
2307};
2308
2309#undef AL
2310
2311/*
2312 *	System call vectors.
2313 *
2314 *	Argument checking cleaned up. Saved 20% in size.
2315 *  This function doesn't need to set the kernel lock because
2316 *  it is set by the callees.
2317 */
2318
2319SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2320{
2321	unsigned long a[AUDITSC_ARGS];
2322	unsigned long a0, a1;
2323	int err;
2324	unsigned int len;
2325
2326	if (call < 1 || call > SYS_SENDMMSG)
2327		return -EINVAL;
2328
2329	len = nargs[call];
2330	if (len > sizeof(a))
2331		return -EINVAL;
2332
2333	/* copy_from_user should be SMP safe. */
2334	if (copy_from_user(a, args, len))
2335		return -EFAULT;
2336
2337	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2338	if (err)
2339		return err;
2340
2341	a0 = a[0];
2342	a1 = a[1];
2343
2344	switch (call) {
2345	case SYS_SOCKET:
2346		err = sys_socket(a0, a1, a[2]);
2347		break;
2348	case SYS_BIND:
2349		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2350		break;
2351	case SYS_CONNECT:
2352		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2353		break;
2354	case SYS_LISTEN:
2355		err = sys_listen(a0, a1);
2356		break;
2357	case SYS_ACCEPT:
2358		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2359				  (int __user *)a[2], 0);
2360		break;
2361	case SYS_GETSOCKNAME:
2362		err =
2363		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2364				    (int __user *)a[2]);
2365		break;
2366	case SYS_GETPEERNAME:
2367		err =
2368		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2369				    (int __user *)a[2]);
2370		break;
2371	case SYS_SOCKETPAIR:
2372		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2373		break;
2374	case SYS_SEND:
2375		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2376		break;
2377	case SYS_SENDTO:
2378		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2379				 (struct sockaddr __user *)a[4], a[5]);
2380		break;
2381	case SYS_RECV:
2382		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2383		break;
2384	case SYS_RECVFROM:
2385		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2386				   (struct sockaddr __user *)a[4],
2387				   (int __user *)a[5]);
2388		break;
2389	case SYS_SHUTDOWN:
2390		err = sys_shutdown(a0, a1);
2391		break;
2392	case SYS_SETSOCKOPT:
2393		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2394		break;
2395	case SYS_GETSOCKOPT:
2396		err =
2397		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2398				   (int __user *)a[4]);
2399		break;
2400	case SYS_SENDMSG:
2401		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2402		break;
2403	case SYS_SENDMMSG:
2404		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2405		break;
2406	case SYS_RECVMSG:
2407		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2408		break;
2409	case SYS_RECVMMSG:
2410		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2411				   (struct timespec __user *)a[4]);
2412		break;
2413	case SYS_ACCEPT4:
2414		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2415				  (int __user *)a[2], a[3]);
2416		break;
2417	default:
2418		err = -EINVAL;
2419		break;
2420	}
2421	return err;
2422}
2423
2424#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2425
2426/**
2427 *	sock_register - add a socket protocol handler
2428 *	@ops: description of protocol
2429 *
2430 *	This function is called by a protocol handler that wants to
2431 *	advertise its address family, and have it linked into the
2432 *	socket interface. The value ops->family corresponds to the
2433 *	socket system call protocol family.
2434 */
2435int sock_register(const struct net_proto_family *ops)
2436{
2437	int err;
2438
2439	if (ops->family >= NPROTO) {
2440		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2441		return -ENOBUFS;
2442	}
2443
2444	spin_lock(&net_family_lock);
2445	if (rcu_dereference_protected(net_families[ops->family],
2446				      lockdep_is_held(&net_family_lock)))
2447		err = -EEXIST;
2448	else {
2449		rcu_assign_pointer(net_families[ops->family], ops);
2450		err = 0;
2451	}
2452	spin_unlock(&net_family_lock);
2453
2454	pr_info("NET: Registered protocol family %d\n", ops->family);
2455	return err;
2456}
2457EXPORT_SYMBOL(sock_register);
2458
2459/**
2460 *	sock_unregister - remove a protocol handler
2461 *	@family: protocol family to remove
2462 *
2463 *	This function is called by a protocol handler that wants to
2464 *	remove its address family, and have it unlinked from the
2465 *	new socket creation.
2466 *
2467 *	If protocol handler is a module, then it can use module reference
2468 *	counts to protect against new references. If protocol handler is not
2469 *	a module then it needs to provide its own protection in
2470 *	the ops->create routine.
2471 */
2472void sock_unregister(int family)
2473{
2474	BUG_ON(family < 0 || family >= NPROTO);
2475
2476	spin_lock(&net_family_lock);
2477	RCU_INIT_POINTER(net_families[family], NULL);
2478	spin_unlock(&net_family_lock);
2479
2480	synchronize_rcu();
2481
2482	pr_info("NET: Unregistered protocol family %d\n", family);
2483}
2484EXPORT_SYMBOL(sock_unregister);
2485
2486static int __init sock_init(void)
2487{
2488	int err;
2489	/*
2490	 *      Initialize the network sysctl infrastructure.
2491	 */
2492	err = net_sysctl_init();
2493	if (err)
2494		goto out;
2495
2496	/*
2497	 *      Initialize skbuff SLAB cache
2498	 */
2499	skb_init();
2500
2501	/*
2502	 *      Initialize the protocols module.
2503	 */
2504
2505	init_inodecache();
2506
2507	err = register_filesystem(&sock_fs_type);
2508	if (err)
2509		goto out_fs;
2510	sock_mnt = kern_mount(&sock_fs_type);
2511	if (IS_ERR(sock_mnt)) {
2512		err = PTR_ERR(sock_mnt);
2513		goto out_mount;
2514	}
2515
2516	/* The real protocol initialization is performed in later initcalls.
2517	 */
2518
2519#ifdef CONFIG_NETFILTER
2520	err = netfilter_init();
2521	if (err)
2522		goto out;
2523#endif
2524
2525	ptp_classifier_init();
2526
2527out:
2528	return err;
2529
2530out_mount:
2531	unregister_filesystem(&sock_fs_type);
2532out_fs:
2533	goto out;
2534}
2535
2536core_initcall(sock_init);	/* early initcall */
2537
2538#ifdef CONFIG_PROC_FS
2539void socket_seq_show(struct seq_file *seq)
2540{
2541	int cpu;
2542	int counter = 0;
2543
2544	for_each_possible_cpu(cpu)
2545	    counter += per_cpu(sockets_in_use, cpu);
2546
2547	/* It can be negative, by the way. 8) */
2548	if (counter < 0)
2549		counter = 0;
2550
2551	seq_printf(seq, "sockets: used %d\n", counter);
2552}
2553#endif				/* CONFIG_PROC_FS */
2554
2555#ifdef CONFIG_COMPAT
2556static int do_siocgstamp(struct net *net, struct socket *sock,
2557			 unsigned int cmd, void __user *up)
2558{
2559	mm_segment_t old_fs = get_fs();
2560	struct timeval ktv;
2561	int err;
2562
2563	set_fs(KERNEL_DS);
2564	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2565	set_fs(old_fs);
2566	if (!err)
2567		err = compat_put_timeval(&ktv, up);
2568
2569	return err;
2570}
2571
2572static int do_siocgstampns(struct net *net, struct socket *sock,
2573			   unsigned int cmd, void __user *up)
2574{
2575	mm_segment_t old_fs = get_fs();
2576	struct timespec kts;
2577	int err;
2578
2579	set_fs(KERNEL_DS);
2580	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2581	set_fs(old_fs);
2582	if (!err)
2583		err = compat_put_timespec(&kts, up);
2584
2585	return err;
2586}
2587
2588static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2589{
2590	struct ifreq __user *uifr;
2591	int err;
2592
2593	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2594	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2595		return -EFAULT;
2596
2597	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2598	if (err)
2599		return err;
2600
2601	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2602		return -EFAULT;
2603
2604	return 0;
2605}
2606
2607static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2608{
2609	struct compat_ifconf ifc32;
2610	struct ifconf ifc;
2611	struct ifconf __user *uifc;
2612	struct compat_ifreq __user *ifr32;
2613	struct ifreq __user *ifr;
2614	unsigned int i, j;
2615	int err;
2616
2617	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2618		return -EFAULT;
2619
2620	memset(&ifc, 0, sizeof(ifc));
2621	if (ifc32.ifcbuf == 0) {
2622		ifc32.ifc_len = 0;
2623		ifc.ifc_len = 0;
2624		ifc.ifc_req = NULL;
2625		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2626	} else {
2627		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2628			sizeof(struct ifreq);
2629		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2630		ifc.ifc_len = len;
2631		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2632		ifr32 = compat_ptr(ifc32.ifcbuf);
2633		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2634			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2635				return -EFAULT;
2636			ifr++;
2637			ifr32++;
2638		}
2639	}
2640	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2641		return -EFAULT;
2642
2643	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2644	if (err)
2645		return err;
2646
2647	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2648		return -EFAULT;
2649
2650	ifr = ifc.ifc_req;
2651	ifr32 = compat_ptr(ifc32.ifcbuf);
2652	for (i = 0, j = 0;
2653	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2654	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2655		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2656			return -EFAULT;
2657		ifr32++;
2658		ifr++;
2659	}
2660
2661	if (ifc32.ifcbuf == 0) {
2662		/* Translate from 64-bit structure multiple to
2663		 * a 32-bit one.
2664		 */
2665		i = ifc.ifc_len;
2666		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2667		ifc32.ifc_len = i;
2668	} else {
2669		ifc32.ifc_len = i;
2670	}
2671	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2672		return -EFAULT;
2673
2674	return 0;
2675}
2676
2677static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2678{
2679	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2680	bool convert_in = false, convert_out = false;
2681	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2682	struct ethtool_rxnfc __user *rxnfc;
2683	struct ifreq __user *ifr;
2684	u32 rule_cnt = 0, actual_rule_cnt;
2685	u32 ethcmd;
2686	u32 data;
2687	int ret;
2688
2689	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2690		return -EFAULT;
2691
2692	compat_rxnfc = compat_ptr(data);
2693
2694	if (get_user(ethcmd, &compat_rxnfc->cmd))
2695		return -EFAULT;
2696
2697	/* Most ethtool structures are defined without padding.
2698	 * Unfortunately struct ethtool_rxnfc is an exception.
2699	 */
2700	switch (ethcmd) {
2701	default:
2702		break;
2703	case ETHTOOL_GRXCLSRLALL:
2704		/* Buffer size is variable */
2705		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2706			return -EFAULT;
2707		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2708			return -ENOMEM;
2709		buf_size += rule_cnt * sizeof(u32);
2710		/* fall through */
2711	case ETHTOOL_GRXRINGS:
2712	case ETHTOOL_GRXCLSRLCNT:
2713	case ETHTOOL_GRXCLSRULE:
2714	case ETHTOOL_SRXCLSRLINS:
2715		convert_out = true;
2716		/* fall through */
2717	case ETHTOOL_SRXCLSRLDEL:
2718		buf_size += sizeof(struct ethtool_rxnfc);
2719		convert_in = true;
2720		break;
2721	}
2722
2723	ifr = compat_alloc_user_space(buf_size);
2724	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2725
2726	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2727		return -EFAULT;
2728
2729	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2730		     &ifr->ifr_ifru.ifru_data))
2731		return -EFAULT;
2732
2733	if (convert_in) {
2734		/* We expect there to be holes between fs.m_ext and
2735		 * fs.ring_cookie and at the end of fs, but nowhere else.
2736		 */
2737		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2738			     sizeof(compat_rxnfc->fs.m_ext) !=
2739			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2740			     sizeof(rxnfc->fs.m_ext));
2741		BUILD_BUG_ON(
2742			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2743			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2744			offsetof(struct ethtool_rxnfc, fs.location) -
2745			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2746
2747		if (copy_in_user(rxnfc, compat_rxnfc,
2748				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2749				 (void __user *)rxnfc) ||
2750		    copy_in_user(&rxnfc->fs.ring_cookie,
2751				 &compat_rxnfc->fs.ring_cookie,
2752				 (void __user *)(&rxnfc->fs.location + 1) -
2753				 (void __user *)&rxnfc->fs.ring_cookie) ||
2754		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2755				 sizeof(rxnfc->rule_cnt)))
2756			return -EFAULT;
2757	}
2758
2759	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2760	if (ret)
2761		return ret;
2762
2763	if (convert_out) {
2764		if (copy_in_user(compat_rxnfc, rxnfc,
2765				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2766				 (const void __user *)rxnfc) ||
2767		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2768				 &rxnfc->fs.ring_cookie,
2769				 (const void __user *)(&rxnfc->fs.location + 1) -
2770				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2771		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2772				 sizeof(rxnfc->rule_cnt)))
2773			return -EFAULT;
2774
2775		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2776			/* As an optimisation, we only copy the actual
2777			 * number of rules that the underlying
2778			 * function returned.  Since Mallory might
2779			 * change the rule count in user memory, we
2780			 * check that it is less than the rule count
2781			 * originally given (as the user buffer size),
2782			 * which has been range-checked.
2783			 */
2784			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2785				return -EFAULT;
2786			if (actual_rule_cnt < rule_cnt)
2787				rule_cnt = actual_rule_cnt;
2788			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2789					 &rxnfc->rule_locs[0],
2790					 rule_cnt * sizeof(u32)))
2791				return -EFAULT;
2792		}
2793	}
2794
2795	return 0;
2796}
2797
2798static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2799{
2800	void __user *uptr;
2801	compat_uptr_t uptr32;
2802	struct ifreq __user *uifr;
2803
2804	uifr = compat_alloc_user_space(sizeof(*uifr));
2805	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2806		return -EFAULT;
2807
2808	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2809		return -EFAULT;
2810
2811	uptr = compat_ptr(uptr32);
2812
2813	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2814		return -EFAULT;
2815
2816	return dev_ioctl(net, SIOCWANDEV, uifr);
2817}
2818
2819static int bond_ioctl(struct net *net, unsigned int cmd,
2820			 struct compat_ifreq __user *ifr32)
2821{
2822	struct ifreq kifr;
2823	mm_segment_t old_fs;
2824	int err;
2825
2826	switch (cmd) {
2827	case SIOCBONDENSLAVE:
2828	case SIOCBONDRELEASE:
2829	case SIOCBONDSETHWADDR:
2830	case SIOCBONDCHANGEACTIVE:
2831		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2832			return -EFAULT;
2833
2834		old_fs = get_fs();
2835		set_fs(KERNEL_DS);
2836		err = dev_ioctl(net, cmd,
2837				(struct ifreq __user __force *) &kifr);
2838		set_fs(old_fs);
2839
2840		return err;
2841	default:
2842		return -ENOIOCTLCMD;
2843	}
2844}
2845
2846/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2847static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2848				 struct compat_ifreq __user *u_ifreq32)
2849{
2850	struct ifreq __user *u_ifreq64;
2851	char tmp_buf[IFNAMSIZ];
2852	void __user *data64;
2853	u32 data32;
2854
2855	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2856			   IFNAMSIZ))
2857		return -EFAULT;
2858	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2859		return -EFAULT;
2860	data64 = compat_ptr(data32);
2861
2862	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2863
2864	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2865			 IFNAMSIZ))
2866		return -EFAULT;
2867	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2868		return -EFAULT;
2869
2870	return dev_ioctl(net, cmd, u_ifreq64);
2871}
2872
2873static int dev_ifsioc(struct net *net, struct socket *sock,
2874			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2875{
2876	struct ifreq __user *uifr;
2877	int err;
2878
2879	uifr = compat_alloc_user_space(sizeof(*uifr));
2880	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2881		return -EFAULT;
2882
2883	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2884
2885	if (!err) {
2886		switch (cmd) {
2887		case SIOCGIFFLAGS:
2888		case SIOCGIFMETRIC:
2889		case SIOCGIFMTU:
2890		case SIOCGIFMEM:
2891		case SIOCGIFHWADDR:
2892		case SIOCGIFINDEX:
2893		case SIOCGIFADDR:
2894		case SIOCGIFBRDADDR:
2895		case SIOCGIFDSTADDR:
2896		case SIOCGIFNETMASK:
2897		case SIOCGIFPFLAGS:
2898		case SIOCGIFTXQLEN:
2899		case SIOCGMIIPHY:
2900		case SIOCGMIIREG:
2901			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2902				err = -EFAULT;
2903			break;
2904		}
2905	}
2906	return err;
2907}
2908
2909static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2910			struct compat_ifreq __user *uifr32)
2911{
2912	struct ifreq ifr;
2913	struct compat_ifmap __user *uifmap32;
2914	mm_segment_t old_fs;
2915	int err;
2916
2917	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2918	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2919	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2920	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2921	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2922	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2923	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2924	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2925	if (err)
2926		return -EFAULT;
2927
2928	old_fs = get_fs();
2929	set_fs(KERNEL_DS);
2930	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2931	set_fs(old_fs);
2932
2933	if (cmd == SIOCGIFMAP && !err) {
2934		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2935		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2936		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2937		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2938		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2939		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2940		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2941		if (err)
2942			err = -EFAULT;
2943	}
2944	return err;
2945}
2946
2947struct rtentry32 {
2948	u32		rt_pad1;
2949	struct sockaddr rt_dst;         /* target address               */
2950	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2951	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2952	unsigned short	rt_flags;
2953	short		rt_pad2;
2954	u32		rt_pad3;
2955	unsigned char	rt_tos;
2956	unsigned char	rt_class;
2957	short		rt_pad4;
2958	short		rt_metric;      /* +1 for binary compatibility! */
2959	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2960	u32		rt_mtu;         /* per route MTU/Window         */
2961	u32		rt_window;      /* Window clamping              */
2962	unsigned short  rt_irtt;        /* Initial RTT                  */
2963};
2964
2965struct in6_rtmsg32 {
2966	struct in6_addr		rtmsg_dst;
2967	struct in6_addr		rtmsg_src;
2968	struct in6_addr		rtmsg_gateway;
2969	u32			rtmsg_type;
2970	u16			rtmsg_dst_len;
2971	u16			rtmsg_src_len;
2972	u32			rtmsg_metric;
2973	u32			rtmsg_info;
2974	u32			rtmsg_flags;
2975	s32			rtmsg_ifindex;
2976};
2977
2978static int routing_ioctl(struct net *net, struct socket *sock,
2979			 unsigned int cmd, void __user *argp)
2980{
2981	int ret;
2982	void *r = NULL;
2983	struct in6_rtmsg r6;
2984	struct rtentry r4;
2985	char devname[16];
2986	u32 rtdev;
2987	mm_segment_t old_fs = get_fs();
2988
2989	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2990		struct in6_rtmsg32 __user *ur6 = argp;
2991		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2992			3 * sizeof(struct in6_addr));
2993		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2994		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2995		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2996		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2997		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2998		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2999		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3000
3001		r = (void *) &r6;
3002	} else { /* ipv4 */
3003		struct rtentry32 __user *ur4 = argp;
3004		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3005					3 * sizeof(struct sockaddr));
3006		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3007		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3008		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3009		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3010		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3011		ret |= get_user(rtdev, &(ur4->rt_dev));
3012		if (rtdev) {
3013			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3014			r4.rt_dev = (char __user __force *)devname;
3015			devname[15] = 0;
3016		} else
3017			r4.rt_dev = NULL;
3018
3019		r = (void *) &r4;
3020	}
3021
3022	if (ret) {
3023		ret = -EFAULT;
3024		goto out;
3025	}
3026
3027	set_fs(KERNEL_DS);
3028	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3029	set_fs(old_fs);
3030
3031out:
3032	return ret;
3033}
3034
3035/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3036 * for some operations; this forces use of the newer bridge-utils that
3037 * use compatible ioctls
3038 */
3039static int old_bridge_ioctl(compat_ulong_t __user *argp)
3040{
3041	compat_ulong_t tmp;
3042
3043	if (get_user(tmp, argp))
3044		return -EFAULT;
3045	if (tmp == BRCTL_GET_VERSION)
3046		return BRCTL_VERSION + 1;
3047	return -EINVAL;
3048}
3049
3050static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3051			 unsigned int cmd, unsigned long arg)
3052{
3053	void __user *argp = compat_ptr(arg);
3054	struct sock *sk = sock->sk;
3055	struct net *net = sock_net(sk);
3056
3057	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3058		return compat_ifr_data_ioctl(net, cmd, argp);
3059
3060	switch (cmd) {
3061	case SIOCSIFBR:
3062	case SIOCGIFBR:
3063		return old_bridge_ioctl(argp);
3064	case SIOCGIFNAME:
3065		return dev_ifname32(net, argp);
3066	case SIOCGIFCONF:
3067		return dev_ifconf(net, argp);
3068	case SIOCETHTOOL:
3069		return ethtool_ioctl(net, argp);
3070	case SIOCWANDEV:
3071		return compat_siocwandev(net, argp);
3072	case SIOCGIFMAP:
3073	case SIOCSIFMAP:
3074		return compat_sioc_ifmap(net, cmd, argp);
3075	case SIOCBONDENSLAVE:
3076	case SIOCBONDRELEASE:
3077	case SIOCBONDSETHWADDR:
3078	case SIOCBONDCHANGEACTIVE:
3079		return bond_ioctl(net, cmd, argp);
3080	case SIOCADDRT:
3081	case SIOCDELRT:
3082		return routing_ioctl(net, sock, cmd, argp);
3083	case SIOCGSTAMP:
3084		return do_siocgstamp(net, sock, cmd, argp);
3085	case SIOCGSTAMPNS:
3086		return do_siocgstampns(net, sock, cmd, argp);
3087	case SIOCBONDSLAVEINFOQUERY:
3088	case SIOCBONDINFOQUERY:
3089	case SIOCSHWTSTAMP:
3090	case SIOCGHWTSTAMP:
3091		return compat_ifr_data_ioctl(net, cmd, argp);
3092
3093	case FIOSETOWN:
3094	case SIOCSPGRP:
3095	case FIOGETOWN:
3096	case SIOCGPGRP:
3097	case SIOCBRADDBR:
3098	case SIOCBRDELBR:
3099	case SIOCGIFVLAN:
3100	case SIOCSIFVLAN:
3101	case SIOCADDDLCI:
3102	case SIOCDELDLCI:
 
3103		return sock_ioctl(file, cmd, arg);
3104
3105	case SIOCGIFFLAGS:
3106	case SIOCSIFFLAGS:
3107	case SIOCGIFMETRIC:
3108	case SIOCSIFMETRIC:
3109	case SIOCGIFMTU:
3110	case SIOCSIFMTU:
3111	case SIOCGIFMEM:
3112	case SIOCSIFMEM:
3113	case SIOCGIFHWADDR:
3114	case SIOCSIFHWADDR:
3115	case SIOCADDMULTI:
3116	case SIOCDELMULTI:
3117	case SIOCGIFINDEX:
3118	case SIOCGIFADDR:
3119	case SIOCSIFADDR:
3120	case SIOCSIFHWBROADCAST:
3121	case SIOCDIFADDR:
3122	case SIOCGIFBRDADDR:
3123	case SIOCSIFBRDADDR:
3124	case SIOCGIFDSTADDR:
3125	case SIOCSIFDSTADDR:
3126	case SIOCGIFNETMASK:
3127	case SIOCSIFNETMASK:
3128	case SIOCSIFPFLAGS:
3129	case SIOCGIFPFLAGS:
3130	case SIOCGIFTXQLEN:
3131	case SIOCSIFTXQLEN:
3132	case SIOCBRADDIF:
3133	case SIOCBRDELIF:
3134	case SIOCSIFNAME:
3135	case SIOCGMIIPHY:
3136	case SIOCGMIIREG:
3137	case SIOCSMIIREG:
3138		return dev_ifsioc(net, sock, cmd, argp);
3139
3140	case SIOCSARP:
3141	case SIOCGARP:
3142	case SIOCDARP:
3143	case SIOCATMARK:
3144		return sock_do_ioctl(net, sock, cmd, arg);
3145	}
3146
3147	return -ENOIOCTLCMD;
3148}
3149
3150static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3151			      unsigned long arg)
3152{
3153	struct socket *sock = file->private_data;
3154	int ret = -ENOIOCTLCMD;
3155	struct sock *sk;
3156	struct net *net;
3157
3158	sk = sock->sk;
3159	net = sock_net(sk);
3160
3161	if (sock->ops->compat_ioctl)
3162		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3163
3164	if (ret == -ENOIOCTLCMD &&
3165	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3166		ret = compat_wext_handle_ioctl(net, cmd, arg);
3167
3168	if (ret == -ENOIOCTLCMD)
3169		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3170
3171	return ret;
3172}
3173#endif
3174
3175int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3176{
3177	return sock->ops->bind(sock, addr, addrlen);
3178}
3179EXPORT_SYMBOL(kernel_bind);
3180
3181int kernel_listen(struct socket *sock, int backlog)
3182{
3183	return sock->ops->listen(sock, backlog);
3184}
3185EXPORT_SYMBOL(kernel_listen);
3186
3187int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3188{
3189	struct sock *sk = sock->sk;
3190	int err;
3191
3192	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3193			       newsock);
3194	if (err < 0)
3195		goto done;
3196
3197	err = sock->ops->accept(sock, *newsock, flags);
3198	if (err < 0) {
3199		sock_release(*newsock);
3200		*newsock = NULL;
3201		goto done;
3202	}
3203
3204	(*newsock)->ops = sock->ops;
3205	__module_get((*newsock)->ops->owner);
3206
3207done:
3208	return err;
3209}
3210EXPORT_SYMBOL(kernel_accept);
3211
3212int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3213		   int flags)
3214{
3215	return sock->ops->connect(sock, addr, addrlen, flags);
3216}
3217EXPORT_SYMBOL(kernel_connect);
3218
3219int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3220			 int *addrlen)
3221{
3222	return sock->ops->getname(sock, addr, addrlen, 0);
3223}
3224EXPORT_SYMBOL(kernel_getsockname);
3225
3226int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3227			 int *addrlen)
3228{
3229	return sock->ops->getname(sock, addr, addrlen, 1);
3230}
3231EXPORT_SYMBOL(kernel_getpeername);
3232
3233int kernel_getsockopt(struct socket *sock, int level, int optname,
3234			char *optval, int *optlen)
3235{
3236	mm_segment_t oldfs = get_fs();
3237	char __user *uoptval;
3238	int __user *uoptlen;
3239	int err;
3240
3241	uoptval = (char __user __force *) optval;
3242	uoptlen = (int __user __force *) optlen;
3243
3244	set_fs(KERNEL_DS);
3245	if (level == SOL_SOCKET)
3246		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3247	else
3248		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3249					    uoptlen);
3250	set_fs(oldfs);
3251	return err;
3252}
3253EXPORT_SYMBOL(kernel_getsockopt);
3254
3255int kernel_setsockopt(struct socket *sock, int level, int optname,
3256			char *optval, unsigned int optlen)
3257{
3258	mm_segment_t oldfs = get_fs();
3259	char __user *uoptval;
3260	int err;
3261
3262	uoptval = (char __user __force *) optval;
3263
3264	set_fs(KERNEL_DS);
3265	if (level == SOL_SOCKET)
3266		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3267	else
3268		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3269					    optlen);
3270	set_fs(oldfs);
3271	return err;
3272}
3273EXPORT_SYMBOL(kernel_setsockopt);
3274
3275int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3276		    size_t size, int flags)
3277{
3278	if (sock->ops->sendpage)
3279		return sock->ops->sendpage(sock, page, offset, size, flags);
3280
3281	return sock_no_sendpage(sock, page, offset, size, flags);
3282}
3283EXPORT_SYMBOL(kernel_sendpage);
3284
3285int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3286{
3287	mm_segment_t oldfs = get_fs();
3288	int err;
3289
3290	set_fs(KERNEL_DS);
3291	err = sock->ops->ioctl(sock, cmd, arg);
3292	set_fs(oldfs);
3293
3294	return err;
3295}
3296EXPORT_SYMBOL(kernel_sock_ioctl);
3297
3298int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3299{
3300	return sock->ops->shutdown(sock, how);
3301}
3302EXPORT_SYMBOL(kernel_sock_shutdown);