Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
 
   6 *
   7 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   8 *	Added handling for CPU hotplug
   9 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  10 *	Fix handling for CPU hotplug -- affected CPUs
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/init.h>
  21#include <linux/notifier.h>
  22#include <linux/cpufreq.h>
 
  23#include <linux/delay.h>
  24#include <linux/interrupt.h>
  25#include <linux/spinlock.h>
  26#include <linux/device.h>
  27#include <linux/slab.h>
  28#include <linux/cpu.h>
  29#include <linux/completion.h>
  30#include <linux/mutex.h>
 
 
 
  31#include <linux/syscore_ops.h>
  32
 
  33#include <trace/events/power.h>
  34
  35/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36 * The "cpufreq driver" - the arch- or hardware-dependent low
  37 * level driver of CPUFreq support, and its spinlock. This lock
  38 * also protects the cpufreq_cpu_data array.
  39 */
  40static struct cpufreq_driver *cpufreq_driver;
  41static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  42#ifdef CONFIG_HOTPLUG_CPU
  43/* This one keeps track of the previously set governor of a removed CPU */
  44static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
  45#endif
  46static DEFINE_SPINLOCK(cpufreq_driver_lock);
  47
  48/*
  49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
  50 * all cpufreq/hotplug/workqueue/etc related lock issues.
  51 *
  52 * The rules for this semaphore:
  53 * - Any routine that wants to read from the policy structure will
  54 *   do a down_read on this semaphore.
  55 * - Any routine that will write to the policy structure and/or may take away
  56 *   the policy altogether (eg. CPU hotplug), will hold this lock in write
  57 *   mode before doing so.
  58 *
  59 * Additional rules:
  60 * - All holders of the lock should check to make sure that the CPU they
  61 *   are concerned with are online after they get the lock.
  62 * - Governor routines that can be called in cpufreq hotplug path should not
  63 *   take this sem as top level hotplug notifier handler takes this.
  64 * - Lock should not be held across
  65 *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
  66 */
  67static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
  68static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
  69
  70#define lock_policy_rwsem(mode, cpu)					\
  71static int lock_policy_rwsem_##mode					\
  72(int cpu)								\
  73{									\
  74	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);		\
  75	BUG_ON(policy_cpu == -1);					\
  76	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
  77	if (unlikely(!cpu_online(cpu))) {				\
  78		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
  79		return -1;						\
  80	}								\
  81									\
  82	return 0;							\
  83}
  84
  85lock_policy_rwsem(read, cpu);
 
  86
  87lock_policy_rwsem(write, cpu);
  88
  89static void unlock_policy_rwsem_read(int cpu)
  90{
  91	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  92	BUG_ON(policy_cpu == -1);
  93	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
  94}
  95
  96static void unlock_policy_rwsem_write(int cpu)
  97{
  98	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  99	BUG_ON(policy_cpu == -1);
 100	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
 101}
 102
 103
 104/* internal prototypes */
 105static int __cpufreq_governor(struct cpufreq_policy *policy,
 106		unsigned int event);
 107static unsigned int __cpufreq_get(unsigned int cpu);
 108static void handle_update(struct work_struct *work);
 
 
 
 
 109
 110/**
 111 * Two notifier lists: the "policy" list is involved in the
 112 * validation process for a new CPU frequency policy; the
 113 * "transition" list for kernel code that needs to handle
 114 * changes to devices when the CPU clock speed changes.
 115 * The mutex locks both lists.
 116 */
 117static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
 118static struct srcu_notifier_head cpufreq_transition_notifier_list;
 119
 120static bool init_cpufreq_transition_notifier_list_called;
 121static int __init init_cpufreq_transition_notifier_list(void)
 122{
 123	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
 124	init_cpufreq_transition_notifier_list_called = true;
 125	return 0;
 
 
 126}
 127pure_initcall(init_cpufreq_transition_notifier_list);
 128
 129static LIST_HEAD(cpufreq_governor_list);
 130static DEFINE_MUTEX(cpufreq_governor_mutex);
 131
 132struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 133{
 134	struct cpufreq_policy *data;
 135	unsigned long flags;
 
 136
 137	if (cpu >= nr_cpu_ids)
 138		goto err_out;
 139
 140	/* get the cpufreq driver */
 141	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 142
 143	if (!cpufreq_driver)
 144		goto err_out_unlock;
 
 
 
 
 145
 146	if (!try_module_get(cpufreq_driver->owner))
 147		goto err_out_unlock;
 148
 
 149
 150	/* get the CPU */
 151	data = per_cpu(cpufreq_cpu_data, cpu);
 
 
 
 
 152
 153	if (!data)
 154		goto err_out_put_module;
 
 
 
 
 155
 156	if (!kobject_get(&data->kobj))
 157		goto err_out_put_module;
 
 158
 159	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 160	return data;
 
 
 161
 162err_out_put_module:
 163	module_put(cpufreq_driver->owner);
 164err_out_unlock:
 165	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 166err_out:
 167	return NULL;
 168}
 169EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170
 
 
 
 
 
 171
 172void cpufreq_cpu_put(struct cpufreq_policy *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173{
 174	kobject_put(&data->kobj);
 175	module_put(cpufreq_driver->owner);
 176}
 177EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180/*********************************************************************
 181 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 182 *********************************************************************/
 183
 184/**
 185 * adjust_jiffies - adjust the system "loops_per_jiffy"
 
 
 186 *
 187 * This function alters the system "loops_per_jiffy" for the clock
 188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 189 * systems as each CPU might be scaled differently. So, use the arch
 190 * per-CPU loops_per_jiffy value wherever possible.
 191 */
 192#ifndef CONFIG_SMP
 193static unsigned long l_p_j_ref;
 194static unsigned int  l_p_j_ref_freq;
 195
 196static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 197{
 
 
 
 
 198	if (ci->flags & CPUFREQ_CONST_LOOPS)
 199		return;
 200
 201	if (!l_p_j_ref_freq) {
 202		l_p_j_ref = loops_per_jiffy;
 203		l_p_j_ref_freq = ci->old;
 204		pr_debug("saving %lu as reference value for loops_per_jiffy; "
 205			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
 206	}
 207	if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
 208	    (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
 209	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
 210		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 211								ci->new);
 212		pr_debug("scaling loops_per_jiffy to %lu "
 213			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
 214	}
 215}
 216#else
 217static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 218{
 219	return;
 220}
 221#endif
 222
 223
 224/**
 225 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 226 * on frequency transition.
 227 *
 228 * This function calls the transition notifiers and the "adjust_jiffies"
 229 * function. It is called twice on all CPU frequency changes that have
 230 * external effects.
 231 */
 232void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 233{
 234	struct cpufreq_policy *policy;
 235
 236	BUG_ON(irqs_disabled());
 237
 
 
 
 
 238	freqs->flags = cpufreq_driver->flags;
 239	pr_debug("notification %u of frequency transition to %u kHz\n",
 240		state, freqs->new);
 241
 242	policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
 243	switch (state) {
 244
 245	case CPUFREQ_PRECHANGE:
 246		/* detect if the driver reported a value as "old frequency"
 
 247		 * which is not equal to what the cpufreq core thinks is
 248		 * "old frequency".
 249		 */
 250		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 251			if ((policy) && (policy->cpu == freqs->cpu) &&
 252			    (policy->cur) && (policy->cur != freqs->old)) {
 253				pr_debug("Warning: CPU frequency is"
 254					" %u, cpufreq assumed %u kHz.\n",
 255					freqs->old, policy->cur);
 256				freqs->old = policy->cur;
 257			}
 258		}
 
 259		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 260				CPUFREQ_PRECHANGE, freqs);
 
 261		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 262		break;
 263
 264	case CPUFREQ_POSTCHANGE:
 265		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 266		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
 267			(unsigned long)freqs->cpu);
 268		trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
 269		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 270		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 271				CPUFREQ_POSTCHANGE, freqs);
 272		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 273			policy->cur = freqs->new;
 274		break;
 275	}
 276}
 277EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
 278
 
 
 
 
 
 
 
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280
 281/*********************************************************************
 282 *                          SYSFS INTERFACE                          *
 283 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285static struct cpufreq_governor *__find_governor(const char *str_governor)
 286{
 287	struct cpufreq_governor *t;
 288
 289	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 290		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 291			return t;
 292
 293	return NULL;
 294}
 295
 296/**
 297 * cpufreq_parse_governor - parse a governor string
 298 */
 299static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 300				struct cpufreq_governor **governor)
 301{
 302	int err = -EINVAL;
 303
 304	if (!cpufreq_driver)
 305		goto out;
 
 
 306
 307	if (cpufreq_driver->setpolicy) {
 308		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 309			*policy = CPUFREQ_POLICY_PERFORMANCE;
 310			err = 0;
 311		} else if (!strnicmp(str_governor, "powersave",
 312						CPUFREQ_NAME_LEN)) {
 313			*policy = CPUFREQ_POLICY_POWERSAVE;
 314			err = 0;
 315		}
 316	} else if (cpufreq_driver->target) {
 317		struct cpufreq_governor *t;
 318
 319		mutex_lock(&cpufreq_governor_mutex);
 
 320
 321		t = __find_governor(str_governor);
 
 
 
 322
 323		if (t == NULL) {
 324			int ret;
 325
 326			mutex_unlock(&cpufreq_governor_mutex);
 327			ret = request_module("cpufreq_%s", str_governor);
 328			mutex_lock(&cpufreq_governor_mutex);
 329
 330			if (ret == 0)
 331				t = __find_governor(str_governor);
 332		}
 
 
 
 
 333
 334		if (t != NULL) {
 335			*governor = t;
 336			err = 0;
 337		}
 338
 339		mutex_unlock(&cpufreq_governor_mutex);
 340	}
 341out:
 342	return err;
 343}
 344
 
 
 345
 346/**
 347 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 348 * print out cpufreq information
 349 *
 350 * Write out information from cpufreq_driver->policy[cpu]; object must be
 351 * "unsigned int".
 352 */
 353
 354#define show_one(file_name, object)			\
 355static ssize_t show_##file_name				\
 356(struct cpufreq_policy *policy, char *buf)		\
 357{							\
 358	return sprintf(buf, "%u\n", policy->object);	\
 359}
 360
 361show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 362show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 363show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 364show_one(scaling_min_freq, min);
 365show_one(scaling_max_freq, max);
 366show_one(scaling_cur_freq, cur);
 367
 368static int __cpufreq_set_policy(struct cpufreq_policy *data,
 369				struct cpufreq_policy *policy);
 
 
 370
 371/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 373 */
 374#define store_one(file_name, object)			\
 375static ssize_t store_##file_name					\
 376(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 377{									\
 378	unsigned int ret = -EINVAL;					\
 379	struct cpufreq_policy new_policy;				\
 380									\
 381	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 382	if (ret)							\
 383		return -EINVAL;						\
 384									\
 385	ret = sscanf(buf, "%u", &new_policy.object);			\
 386	if (ret != 1)							\
 387		return -EINVAL;						\
 388									\
 389	ret = __cpufreq_set_policy(policy, &new_policy);		\
 390	policy->user_policy.object = policy->object;			\
 391									\
 392	return ret ? ret : count;					\
 
 393}
 394
 395store_one(scaling_min_freq, min);
 396store_one(scaling_max_freq, max);
 397
 398/**
 399 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 400 */
 401static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 402					char *buf)
 403{
 404	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 405	if (!cur_freq)
 406		return sprintf(buf, "<unknown>");
 407	return sprintf(buf, "%u\n", cur_freq);
 408}
 409
 
 
 410
 411/**
 
 
 
 412 * show_scaling_governor - show the current policy for the specified CPU
 413 */
 414static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 415{
 416	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 417		return sprintf(buf, "powersave\n");
 418	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 419		return sprintf(buf, "performance\n");
 420	else if (policy->governor)
 421		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
 422				policy->governor->name);
 423	return -EINVAL;
 424}
 425
 426
 427/**
 428 * store_scaling_governor - store policy for the specified CPU
 429 */
 430static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 431					const char *buf, size_t count)
 432{
 433	unsigned int ret = -EINVAL;
 434	char	str_governor[16];
 435	struct cpufreq_policy new_policy;
 436
 437	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 438	if (ret)
 439		return ret;
 440
 441	ret = sscanf(buf, "%15s", str_governor);
 442	if (ret != 1)
 443		return -EINVAL;
 444
 445	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 446						&new_policy.governor))
 447		return -EINVAL;
 448
 449	/* Do not use cpufreq_set_policy here or the user_policy.max
 450	   will be wrongly overridden */
 451	ret = __cpufreq_set_policy(policy, &new_policy);
 452
 453	policy->user_policy.policy = policy->policy;
 454	policy->user_policy.governor = policy->governor;
 
 455
 456	if (ret)
 457		return ret;
 458	else
 459		return count;
 
 
 
 
 
 
 
 460}
 461
 462/**
 463 * show_scaling_driver - show the cpufreq driver currently loaded
 464 */
 465static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 466{
 467	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
 468}
 469
 470/**
 471 * show_scaling_available_governors - show the available CPUfreq governors
 472 */
 473static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 474						char *buf)
 475{
 476	ssize_t i = 0;
 477	struct cpufreq_governor *t;
 478
 479	if (!cpufreq_driver->target) {
 480		i += sprintf(buf, "performance powersave");
 481		goto out;
 482	}
 483
 484	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 
 485		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 486		    - (CPUFREQ_NAME_LEN + 2)))
 487			goto out;
 488		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
 489	}
 
 490out:
 491	i += sprintf(&buf[i], "\n");
 492	return i;
 493}
 494
 495static ssize_t show_cpus(const struct cpumask *mask, char *buf)
 496{
 497	ssize_t i = 0;
 498	unsigned int cpu;
 499
 500	for_each_cpu(cpu, mask) {
 501		if (i)
 502			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 503		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 504		if (i >= (PAGE_SIZE - 5))
 505			break;
 506	}
 
 
 
 
 507	i += sprintf(&buf[i], "\n");
 508	return i;
 509}
 
 510
 511/**
 512 * show_related_cpus - show the CPUs affected by each transition even if
 513 * hw coordination is in use
 514 */
 515static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 516{
 517	if (cpumask_empty(policy->related_cpus))
 518		return show_cpus(policy->cpus, buf);
 519	return show_cpus(policy->related_cpus, buf);
 520}
 521
 522/**
 523 * show_affected_cpus - show the CPUs affected by each transition
 524 */
 525static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 526{
 527	return show_cpus(policy->cpus, buf);
 528}
 529
 530static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 531					const char *buf, size_t count)
 532{
 533	unsigned int freq = 0;
 534	unsigned int ret;
 535
 536	if (!policy->governor || !policy->governor->store_setspeed)
 537		return -EINVAL;
 538
 539	ret = sscanf(buf, "%u", &freq);
 540	if (ret != 1)
 541		return -EINVAL;
 542
 543	policy->governor->store_setspeed(policy, freq);
 544
 545	return count;
 546}
 547
 548static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (!policy->governor || !policy->governor->show_setspeed)
 551		return sprintf(buf, "<unsupported>\n");
 552
 553	return policy->governor->show_setspeed(policy, buf);
 554}
 555
 556/**
 557 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
 558 */
 559static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 560{
 561	unsigned int limit;
 562	int ret;
 563	if (cpufreq_driver->bios_limit) {
 564		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 565		if (!ret)
 566			return sprintf(buf, "%u\n", limit);
 567	}
 568	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 569}
 570
 571cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 572cpufreq_freq_attr_ro(cpuinfo_min_freq);
 573cpufreq_freq_attr_ro(cpuinfo_max_freq);
 574cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 575cpufreq_freq_attr_ro(scaling_available_governors);
 576cpufreq_freq_attr_ro(scaling_driver);
 577cpufreq_freq_attr_ro(scaling_cur_freq);
 578cpufreq_freq_attr_ro(bios_limit);
 579cpufreq_freq_attr_ro(related_cpus);
 580cpufreq_freq_attr_ro(affected_cpus);
 581cpufreq_freq_attr_rw(scaling_min_freq);
 582cpufreq_freq_attr_rw(scaling_max_freq);
 583cpufreq_freq_attr_rw(scaling_governor);
 584cpufreq_freq_attr_rw(scaling_setspeed);
 585
 586static struct attribute *default_attrs[] = {
 587	&cpuinfo_min_freq.attr,
 588	&cpuinfo_max_freq.attr,
 589	&cpuinfo_transition_latency.attr,
 590	&scaling_min_freq.attr,
 591	&scaling_max_freq.attr,
 592	&affected_cpus.attr,
 593	&related_cpus.attr,
 594	&scaling_governor.attr,
 595	&scaling_driver.attr,
 596	&scaling_available_governors.attr,
 597	&scaling_setspeed.attr,
 598	NULL
 599};
 600
 601struct kobject *cpufreq_global_kobject;
 602EXPORT_SYMBOL(cpufreq_global_kobject);
 603
 604#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 605#define to_attr(a) container_of(a, struct freq_attr, attr)
 606
 607static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 608{
 609	struct cpufreq_policy *policy = to_policy(kobj);
 610	struct freq_attr *fattr = to_attr(attr);
 611	ssize_t ret = -EINVAL;
 612	policy = cpufreq_cpu_get(policy->cpu);
 613	if (!policy)
 614		goto no_policy;
 615
 616	if (lock_policy_rwsem_read(policy->cpu) < 0)
 617		goto fail;
 618
 619	if (fattr->show)
 
 620		ret = fattr->show(policy, buf);
 621	else
 622		ret = -EIO;
 623
 624	unlock_policy_rwsem_read(policy->cpu);
 625fail:
 626	cpufreq_cpu_put(policy);
 627no_policy:
 628	return ret;
 629}
 630
 631static ssize_t store(struct kobject *kobj, struct attribute *attr,
 632		     const char *buf, size_t count)
 633{
 634	struct cpufreq_policy *policy = to_policy(kobj);
 635	struct freq_attr *fattr = to_attr(attr);
 636	ssize_t ret = -EINVAL;
 637	policy = cpufreq_cpu_get(policy->cpu);
 638	if (!policy)
 639		goto no_policy;
 640
 641	if (lock_policy_rwsem_write(policy->cpu) < 0)
 642		goto fail;
 643
 644	if (fattr->store)
 
 645		ret = fattr->store(policy, buf, count);
 646	else
 647		ret = -EIO;
 648
 649	unlock_policy_rwsem_write(policy->cpu);
 650fail:
 651	cpufreq_cpu_put(policy);
 652no_policy:
 653	return ret;
 654}
 655
 656static void cpufreq_sysfs_release(struct kobject *kobj)
 657{
 658	struct cpufreq_policy *policy = to_policy(kobj);
 659	pr_debug("last reference is dropped\n");
 660	complete(&policy->kobj_unregister);
 661}
 662
 663static const struct sysfs_ops sysfs_ops = {
 664	.show	= show,
 665	.store	= store,
 666};
 667
 668static struct kobj_type ktype_cpufreq = {
 669	.sysfs_ops	= &sysfs_ops,
 670	.default_attrs	= default_attrs,
 671	.release	= cpufreq_sysfs_release,
 672};
 673
 674/*
 675 * Returns:
 676 *   Negative: Failure
 677 *   0:        Success
 678 *   Positive: When we have a managed CPU and the sysfs got symlinked
 679 */
 680static int cpufreq_add_dev_policy(unsigned int cpu,
 681				  struct cpufreq_policy *policy,
 682				  struct sys_device *sys_dev)
 683{
 684	int ret = 0;
 685#ifdef CONFIG_SMP
 686	unsigned long flags;
 687	unsigned int j;
 688#ifdef CONFIG_HOTPLUG_CPU
 689	struct cpufreq_governor *gov;
 690
 691	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
 692	if (gov) {
 693		policy->governor = gov;
 694		pr_debug("Restoring governor %s for cpu %d\n",
 695		       policy->governor->name, cpu);
 696	}
 697#endif
 698
 699	for_each_cpu(j, policy->cpus) {
 700		struct cpufreq_policy *managed_policy;
 701
 702		if (cpu == j)
 703			continue;
 704
 705		/* Check for existing affected CPUs.
 706		 * They may not be aware of it due to CPU Hotplug.
 707		 * cpufreq_cpu_put is called when the device is removed
 708		 * in __cpufreq_remove_dev()
 709		 */
 710		managed_policy = cpufreq_cpu_get(j);
 711		if (unlikely(managed_policy)) {
 712
 713			/* Set proper policy_cpu */
 714			unlock_policy_rwsem_write(cpu);
 715			per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
 716
 717			if (lock_policy_rwsem_write(cpu) < 0) {
 718				/* Should not go through policy unlock path */
 719				if (cpufreq_driver->exit)
 720					cpufreq_driver->exit(policy);
 721				cpufreq_cpu_put(managed_policy);
 722				return -EBUSY;
 723			}
 724
 725			spin_lock_irqsave(&cpufreq_driver_lock, flags);
 726			cpumask_copy(managed_policy->cpus, policy->cpus);
 727			per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
 728			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 729
 730			pr_debug("CPU already managed, adding link\n");
 731			ret = sysfs_create_link(&sys_dev->kobj,
 732						&managed_policy->kobj,
 733						"cpufreq");
 734			if (ret)
 735				cpufreq_cpu_put(managed_policy);
 736			/*
 737			 * Success. We only needed to be added to the mask.
 738			 * Call driver->exit() because only the cpu parent of
 739			 * the kobj needed to call init().
 740			 */
 741			if (cpufreq_driver->exit)
 742				cpufreq_driver->exit(policy);
 743
 744			if (!ret)
 745				return 1;
 746			else
 747				return ret;
 748		}
 749	}
 750#endif
 751	return ret;
 752}
 753
 754
 755/* symlink affected CPUs */
 756static int cpufreq_add_dev_symlink(unsigned int cpu,
 757				   struct cpufreq_policy *policy)
 758{
 759	unsigned int j;
 760	int ret = 0;
 761
 762	for_each_cpu(j, policy->cpus) {
 763		struct cpufreq_policy *managed_policy;
 764		struct sys_device *cpu_sys_dev;
 765
 766		if (j == cpu)
 767			continue;
 768		if (!cpu_online(j))
 769			continue;
 770
 771		pr_debug("CPU %u already managed, adding link\n", j);
 772		managed_policy = cpufreq_cpu_get(cpu);
 773		cpu_sys_dev = get_cpu_sysdev(j);
 774		ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
 775					"cpufreq");
 776		if (ret) {
 777			cpufreq_cpu_put(managed_policy);
 778			return ret;
 779		}
 780	}
 781	return ret;
 782}
 783
 784static int cpufreq_add_dev_interface(unsigned int cpu,
 785				     struct cpufreq_policy *policy,
 786				     struct sys_device *sys_dev)
 787{
 788	struct cpufreq_policy new_policy;
 789	struct freq_attr **drv_attr;
 790	unsigned long flags;
 791	int ret = 0;
 792	unsigned int j;
 793
 794	/* prepare interface data */
 795	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 796				   &sys_dev->kobj, "cpufreq");
 797	if (ret)
 798		return ret;
 799
 800	/* set up files for this cpu device */
 801	drv_attr = cpufreq_driver->attr;
 802	while ((drv_attr) && (*drv_attr)) {
 803		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 804		if (ret)
 805			goto err_out_kobj_put;
 806		drv_attr++;
 807	}
 808	if (cpufreq_driver->get) {
 809		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 810		if (ret)
 811			goto err_out_kobj_put;
 812	}
 813	if (cpufreq_driver->target) {
 814		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 815		if (ret)
 816			goto err_out_kobj_put;
 817	}
 
 
 
 
 
 818	if (cpufreq_driver->bios_limit) {
 819		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 820		if (ret)
 821			goto err_out_kobj_put;
 822	}
 823
 824	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 825	for_each_cpu(j, policy->cpus) {
 826		if (!cpu_online(j))
 827			continue;
 828		per_cpu(cpufreq_cpu_data, j) = policy;
 829		per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
 830	}
 831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 832
 833	ret = cpufreq_add_dev_symlink(cpu, policy);
 834	if (ret)
 835		goto err_out_kobj_put;
 
 
 
 
 
 836
 837	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
 838	/* assure that the starting sequence is run in __cpufreq_set_policy */
 839	policy->governor = NULL;
 840
 841	/* set default policy */
 842	ret = __cpufreq_set_policy(policy, &new_policy);
 843	policy->user_policy.policy = policy->policy;
 844	policy->user_policy.governor = policy->governor;
 
 845
 846	if (ret) {
 847		pr_debug("setting policy failed\n");
 848		if (cpufreq_driver->exit)
 849			cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	}
 851	return ret;
 852
 853err_out_kobj_put:
 854	kobject_put(&policy->kobj);
 855	wait_for_completion(&policy->kobj_unregister);
 
 856	return ret;
 857}
 858
 859
 860/**
 861 * cpufreq_add_dev - add a CPU device
 862 *
 863 * Adds the cpufreq interface for a CPU device.
 864 *
 865 * The Oracle says: try running cpufreq registration/unregistration concurrently
 866 * with with cpu hotplugging and all hell will break loose. Tried to clean this
 867 * mess up, but more thorough testing is needed. - Mathieu
 868 */
 869static int cpufreq_add_dev(struct sys_device *sys_dev)
 870{
 871	unsigned int cpu = sys_dev->id;
 872	int ret = 0, found = 0;
 873	struct cpufreq_policy *policy;
 874	unsigned long flags;
 875	unsigned int j;
 876#ifdef CONFIG_HOTPLUG_CPU
 877	int sibling;
 878#endif
 879
 880	if (cpu_is_offline(cpu))
 
 881		return 0;
 882
 883	pr_debug("adding CPU %u\n", cpu);
 
 
 884
 885#ifdef CONFIG_SMP
 886	/* check whether a different CPU already registered this
 887	 * CPU because it is in the same boat. */
 888	policy = cpufreq_cpu_get(cpu);
 889	if (unlikely(policy)) {
 890		cpufreq_cpu_put(policy);
 891		return 0;
 892	}
 893#endif
 
 
 894
 895	if (!try_module_get(cpufreq_driver->owner)) {
 896		ret = -EINVAL;
 897		goto module_out;
 
 
 
 898	}
 
 
 899
 900	ret = -ENOMEM;
 901	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902	if (!policy)
 903		goto nomem_out;
 904
 905	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
 906		goto err_free_policy;
 907
 908	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
 909		goto err_free_cpumask;
 910
 911	policy->cpu = cpu;
 912	cpumask_copy(policy->cpus, cpumask_of(cpu));
 913
 914	/* Initially set CPU itself as the policy_cpu */
 915	per_cpu(cpufreq_policy_cpu, cpu) = cpu;
 916	ret = (lock_policy_rwsem_write(cpu) < 0);
 917	WARN_ON(ret);
 918
 919	init_completion(&policy->kobj_unregister);
 920	INIT_WORK(&policy->update, handle_update);
 921
 922	/* Set governor before ->init, so that driver could check it */
 923#ifdef CONFIG_HOTPLUG_CPU
 924	for_each_online_cpu(sibling) {
 925		struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
 926		if (cp && cp->governor &&
 927		    (cpumask_test_cpu(cpu, cp->related_cpus))) {
 928			policy->governor = cp->governor;
 929			found = 1;
 930			break;
 931		}
 932	}
 933#endif
 934	if (!found)
 935		policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
 936	/* call driver. From then on the cpufreq must be able
 937	 * to accept all calls to ->verify and ->setpolicy for this CPU
 938	 */
 939	ret = cpufreq_driver->init(policy);
 940	if (ret) {
 941		pr_debug("initialization failed\n");
 942		goto err_unlock_policy;
 
 
 
 
 
 
 943	}
 944	policy->user_policy.min = policy->min;
 945	policy->user_policy.max = policy->max;
 946
 947	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
 948				     CPUFREQ_START, policy);
 
 
 949
 950	ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
 
 951	if (ret) {
 952		if (ret > 0)
 953			/* This is a managed cpu, symlink created,
 954			   exit with 0 */
 955			ret = 0;
 956		goto err_unlock_policy;
 957	}
 958
 959	ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
 960	if (ret)
 961		goto err_out_unregister;
 
 
 
 
 962
 963	unlock_policy_rwsem_write(cpu);
 
 
 
 
 964
 965	kobject_uevent(&policy->kobj, KOBJ_ADD);
 966	module_put(cpufreq_driver->owner);
 967	pr_debug("initialization complete\n");
 968
 969	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970
 
 
 
 
 
 
 971
 972err_out_unregister:
 973	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 974	for_each_cpu(j, policy->cpus)
 975		per_cpu(cpufreq_cpu_data, j) = NULL;
 976	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977
 978	kobject_put(&policy->kobj);
 979	wait_for_completion(&policy->kobj_unregister);
 980
 981err_unlock_policy:
 982	unlock_policy_rwsem_write(cpu);
 983	free_cpumask_var(policy->related_cpus);
 984err_free_cpumask:
 985	free_cpumask_var(policy->cpus);
 986err_free_policy:
 987	kfree(policy);
 988nomem_out:
 989	module_put(cpufreq_driver->owner);
 990module_out:
 991	return ret;
 992}
 993
 994
 995/**
 996 * __cpufreq_remove_dev - remove a CPU device
 997 *
 998 * Removes the cpufreq interface for a CPU device.
 999 * Caller should already have policy_rwsem in write mode for this CPU.
1000 * This routine frees the rwsem before returning.
1001 */
1002static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1003{
1004	unsigned int cpu = sys_dev->id;
 
1005	unsigned long flags;
1006	struct cpufreq_policy *data;
1007	struct kobject *kobj;
1008	struct completion *cmp;
1009#ifdef CONFIG_SMP
1010	struct sys_device *cpu_sys_dev;
1011	unsigned int j;
1012#endif
1013
1014	pr_debug("unregistering CPU %u\n", cpu);
1015
1016	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1017	data = per_cpu(cpufreq_cpu_data, cpu);
1018
1019	if (!data) {
1020		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1021		unlock_policy_rwsem_write(cpu);
1022		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023	}
1024	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1025
 
 
 
1026
1027#ifdef CONFIG_SMP
1028	/* if this isn't the CPU which is the parent of the kobj, we
1029	 * only need to unlink, put and exit
1030	 */
1031	if (unlikely(cpu != data->cpu)) {
1032		pr_debug("removing link\n");
1033		cpumask_clear_cpu(cpu, data->cpus);
1034		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1035		kobj = &sys_dev->kobj;
1036		cpufreq_cpu_put(data);
1037		unlock_policy_rwsem_write(cpu);
1038		sysfs_remove_link(kobj, "cpufreq");
1039		return 0;
1040	}
1041#endif
 
 
 
 
1042
1043#ifdef CONFIG_SMP
 
1044
1045#ifdef CONFIG_HOTPLUG_CPU
1046	strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1047			CPUFREQ_NAME_LEN);
1048#endif
 
 
 
 
 
 
 
 
1049
1050	/* if we have other CPUs still registered, we need to unlink them,
1051	 * or else wait_for_completion below will lock up. Clean the
1052	 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1053	 * the sysfs links afterwards.
1054	 */
1055	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1056		for_each_cpu(j, data->cpus) {
1057			if (j == cpu)
1058				continue;
1059			per_cpu(cpufreq_cpu_data, j) = NULL;
 
 
 
 
 
 
 
 
1060		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061	}
1062
1063	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064
1065	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1066		for_each_cpu(j, data->cpus) {
1067			if (j == cpu)
1068				continue;
1069			pr_debug("removing link for cpu %u\n", j);
1070#ifdef CONFIG_HOTPLUG_CPU
1071			strncpy(per_cpu(cpufreq_cpu_governor, j),
1072				data->governor->name, CPUFREQ_NAME_LEN);
1073#endif
1074			cpu_sys_dev = get_cpu_sysdev(j);
1075			kobj = &cpu_sys_dev->kobj;
1076			unlock_policy_rwsem_write(cpu);
1077			sysfs_remove_link(kobj, "cpufreq");
1078			lock_policy_rwsem_write(cpu);
1079			cpufreq_cpu_put(data);
1080		}
1081	}
1082#else
1083	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084#endif
1085
1086	if (cpufreq_driver->target)
1087		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088
1089	kobj = &data->kobj;
1090	cmp = &data->kobj_unregister;
1091	unlock_policy_rwsem_write(cpu);
1092	kobject_put(kobj);
 
 
 
 
 
 
1093
1094	/* we need to make sure that the underlying kobj is actually
1095	 * not referenced anymore by anybody before we proceed with
1096	 * unloading.
1097	 */
1098	pr_debug("waiting for dropping of refcount\n");
1099	wait_for_completion(cmp);
1100	pr_debug("wait complete\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101
1102	lock_policy_rwsem_write(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103	if (cpufreq_driver->exit)
1104		cpufreq_driver->exit(data);
1105	unlock_policy_rwsem_write(cpu);
1106
1107#ifdef CONFIG_HOTPLUG_CPU
1108	/* when the CPU which is the parent of the kobj is hotplugged
1109	 * offline, check for siblings, and create cpufreq sysfs interface
1110	 * and symlinks
1111	 */
1112	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1113		/* first sibling now owns the new sysfs dir */
1114		cpumask_clear_cpu(cpu, data->cpus);
1115		cpufreq_add_dev(get_cpu_sysdev(cpumask_first(data->cpus)));
1116
1117		/* finally remove our own symlink */
1118		lock_policy_rwsem_write(cpu);
1119		__cpufreq_remove_dev(sys_dev);
 
 
 
 
 
 
 
 
 
 
 
 
1120	}
1121#endif
1122
1123	free_cpumask_var(data->related_cpus);
1124	free_cpumask_var(data->cpus);
1125	kfree(data);
 
1126
1127	return 0;
1128}
1129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130
1131static int cpufreq_remove_dev(struct sys_device *sys_dev)
 
 
 
 
 
 
1132{
1133	unsigned int cpu = sys_dev->id;
1134	int retval;
 
1135
1136	if (cpu_is_offline(cpu))
 
 
1137		return 0;
 
1138
1139	if (unlikely(lock_policy_rwsem_write(cpu)))
1140		BUG();
1141
1142	retval = __cpufreq_remove_dev(sys_dev);
1143	return retval;
1144}
1145
 
 
 
1146
1147static void handle_update(struct work_struct *work)
 
 
 
 
 
1148{
1149	struct cpufreq_policy *policy =
1150		container_of(work, struct cpufreq_policy, update);
1151	unsigned int cpu = policy->cpu;
1152	pr_debug("handle_update for cpu %u called\n", cpu);
1153	cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154}
1155
1156/**
1157 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1158 *	@cpu: cpu number
1159 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1160 *	@new_freq: CPU frequency the CPU actually runs at
1161 *
1162 *	We adjust to current frequency first, and need to clean up later.
1163 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1164 */
1165static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1166				unsigned int new_freq)
1167{
1168	struct cpufreq_freqs freqs;
1169
1170	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1171	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172
1173	freqs.cpu = cpu;
1174	freqs.old = old_freq;
1175	freqs.new = new_freq;
1176	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1177	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
 
1178}
1179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181/**
1182 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1183 * @cpu: CPU number
1184 *
1185 * This is the last known freq, without actually getting it from the driver.
1186 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187 */
1188unsigned int cpufreq_quick_get(unsigned int cpu)
1189{
1190	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1191	unsigned int ret_freq = 0;
 
 
 
 
 
 
 
 
 
1192
 
 
 
1193	if (policy) {
1194		ret_freq = policy->cur;
1195		cpufreq_cpu_put(policy);
1196	}
1197
1198	return ret_freq;
1199}
1200EXPORT_SYMBOL(cpufreq_quick_get);
1201
1202/**
1203 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1204 * @cpu: CPU number
1205 *
1206 * Just return the max possible frequency for a given CPU.
1207 */
1208unsigned int cpufreq_quick_get_max(unsigned int cpu)
1209{
1210	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1211	unsigned int ret_freq = 0;
1212
1213	if (policy) {
1214		ret_freq = policy->max;
1215		cpufreq_cpu_put(policy);
1216	}
1217
1218	return ret_freq;
1219}
1220EXPORT_SYMBOL(cpufreq_quick_get_max);
1221
1222
1223static unsigned int __cpufreq_get(unsigned int cpu)
 
 
 
 
 
1224{
1225	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1226	unsigned int ret_freq = 0;
1227
1228	if (!cpufreq_driver->get)
1229		return ret_freq;
1230
1231	ret_freq = cpufreq_driver->get(cpu);
1232
1233	if (ret_freq && policy->cur &&
1234		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1235		/* verify no discrepancy between actual and
1236					saved value exists */
1237		if (unlikely(ret_freq != policy->cur)) {
1238			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1239			schedule_work(&policy->update);
1240		}
1241	}
1242
1243	return ret_freq;
1244}
 
 
 
 
 
 
 
 
 
1245
1246/**
1247 * cpufreq_get - get the current CPU frequency (in kHz)
1248 * @cpu: CPU number
1249 *
1250 * Get the CPU current (static) CPU frequency
1251 */
1252unsigned int cpufreq_get(unsigned int cpu)
1253{
1254	unsigned int ret_freq = 0;
1255	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 
1256
1257	if (!policy)
1258		goto out;
1259
1260	if (unlikely(lock_policy_rwsem_read(cpu)))
1261		goto out_policy;
1262
1263	ret_freq = __cpufreq_get(cpu);
1264
1265	unlock_policy_rwsem_read(cpu);
 
1266
1267out_policy:
1268	cpufreq_cpu_put(policy);
1269out:
1270	return ret_freq;
1271}
1272EXPORT_SYMBOL(cpufreq_get);
1273
1274static struct sysdev_driver cpufreq_sysdev_driver = {
1275	.add		= cpufreq_add_dev,
1276	.remove		= cpufreq_remove_dev,
 
 
1277};
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279
1280/**
1281 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1282 *
1283 * This function is only executed for the boot processor.  The other CPUs
1284 * have been put offline by means of CPU hotplug.
 
 
1285 */
1286static int cpufreq_bp_suspend(void)
1287{
1288	int ret = 0;
1289
1290	int cpu = smp_processor_id();
1291	struct cpufreq_policy *cpu_policy;
1292
1293	pr_debug("suspending cpu %u\n", cpu);
 
1294
1295	/* If there's no policy for the boot CPU, we have nothing to do. */
1296	cpu_policy = cpufreq_cpu_get(cpu);
1297	if (!cpu_policy)
1298		return 0;
1299
1300	if (cpufreq_driver->suspend) {
1301		ret = cpufreq_driver->suspend(cpu_policy);
1302		if (ret)
1303			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1304					"step on CPU %u\n", cpu_policy->cpu);
 
 
 
 
 
1305	}
1306
1307	cpufreq_cpu_put(cpu_policy);
1308	return ret;
1309}
1310
1311/**
1312 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1313 *
1314 *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1315 *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1316 *	    restored. It will verify that the current freq is in sync with
1317 *	    what we believe it to be. This is a bit later than when it
1318 *	    should be, but nonethteless it's better than calling
1319 *	    cpufreq_driver->get() here which might re-enable interrupts...
1320 *
1321 * This function is only executed for the boot CPU.  The other CPUs have not
1322 * been turned on yet.
1323 */
1324static void cpufreq_bp_resume(void)
1325{
1326	int ret = 0;
 
1327
1328	int cpu = smp_processor_id();
1329	struct cpufreq_policy *cpu_policy;
1330
1331	pr_debug("resuming cpu %u\n", cpu);
 
1332
1333	/* If there's no policy for the boot CPU, we have nothing to do. */
1334	cpu_policy = cpufreq_cpu_get(cpu);
1335	if (!cpu_policy)
1336		return;
1337
1338	if (cpufreq_driver->resume) {
1339		ret = cpufreq_driver->resume(cpu_policy);
1340		if (ret) {
1341			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1342					"step on CPU %u\n", cpu_policy->cpu);
1343			goto fail;
 
 
 
 
 
 
 
 
1344		}
1345	}
 
1346
1347	schedule_work(&cpu_policy->update);
 
 
 
 
 
 
 
 
 
 
1348
1349fail:
1350	cpufreq_cpu_put(cpu_policy);
 
 
 
 
 
 
 
 
 
 
1351}
 
1352
1353static struct syscore_ops cpufreq_syscore_ops = {
1354	.suspend	= cpufreq_bp_suspend,
1355	.resume		= cpufreq_bp_resume,
1356};
 
 
 
 
 
 
1357
 
 
 
1358
1359/*********************************************************************
1360 *                     NOTIFIER LISTS INTERFACE                      *
1361 *********************************************************************/
1362
1363/**
1364 *	cpufreq_register_notifier - register a driver with cpufreq
1365 *	@nb: notifier function to register
1366 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1367 *
1368 *	Add a driver to one of two lists: either a list of drivers that
1369 *      are notified about clock rate changes (once before and once after
1370 *      the transition), or a list of drivers that are notified about
1371 *      changes in cpufreq policy.
1372 *
1373 *	This function may sleep, and has the same return conditions as
1374 *	blocking_notifier_chain_register.
1375 */
1376int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1377{
1378	int ret;
1379
1380	WARN_ON(!init_cpufreq_transition_notifier_list_called);
 
1381
1382	switch (list) {
1383	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1384		ret = srcu_notifier_chain_register(
1385				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1386		break;
1387	case CPUFREQ_POLICY_NOTIFIER:
1388		ret = blocking_notifier_chain_register(
1389				&cpufreq_policy_notifier_list, nb);
1390		break;
1391	default:
1392		ret = -EINVAL;
1393	}
1394
1395	return ret;
1396}
1397EXPORT_SYMBOL(cpufreq_register_notifier);
1398
1399
1400/**
1401 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1402 *	@nb: notifier block to be unregistered
1403 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1404 *
1405 *	Remove a driver from the CPU frequency notifier list.
1406 *
1407 *	This function may sleep, and has the same return conditions as
1408 *	blocking_notifier_chain_unregister.
1409 */
1410int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1411{
1412	int ret;
1413
 
 
 
1414	switch (list) {
1415	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1416		ret = srcu_notifier_chain_unregister(
1417				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1418		break;
1419	case CPUFREQ_POLICY_NOTIFIER:
1420		ret = blocking_notifier_chain_unregister(
1421				&cpufreq_policy_notifier_list, nb);
1422		break;
1423	default:
1424		ret = -EINVAL;
1425	}
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL(cpufreq_unregister_notifier);
1430
1431
1432/*********************************************************************
1433 *                              GOVERNORS                            *
1434 *********************************************************************/
1435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436
1437int __cpufreq_driver_target(struct cpufreq_policy *policy,
1438			    unsigned int target_freq,
1439			    unsigned int relation)
1440{
1441	int retval = -EINVAL;
1442
1443	pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1444		target_freq, relation);
1445	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1446		retval = cpufreq_driver->target(policy, target_freq, relation);
1447
1448	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449}
1450EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1451
1452int cpufreq_driver_target(struct cpufreq_policy *policy,
1453			  unsigned int target_freq,
1454			  unsigned int relation)
1455{
1456	int ret = -EINVAL;
1457
1458	policy = cpufreq_cpu_get(policy->cpu);
1459	if (!policy)
1460		goto no_policy;
1461
1462	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1463		goto fail;
1464
1465	ret = __cpufreq_driver_target(policy, target_freq, relation);
1466
1467	unlock_policy_rwsem_write(policy->cpu);
1468
1469fail:
1470	cpufreq_cpu_put(policy);
1471no_policy:
1472	return ret;
1473}
1474EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1475
1476int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1477{
1478	int ret = 0;
 
1479
1480	policy = cpufreq_cpu_get(policy->cpu);
1481	if (!policy)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482		return -EINVAL;
1483
1484	if (cpu_online(cpu) && cpufreq_driver->getavg)
1485		ret = cpufreq_driver->getavg(policy, cpu);
1486
1487	cpufreq_cpu_put(policy);
1488	return ret;
 
 
 
 
 
 
 
 
 
1489}
1490EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1491
1492/*
1493 * when "event" is CPUFREQ_GOV_LIMITS
1494 */
 
1495
1496static int __cpufreq_governor(struct cpufreq_policy *policy,
1497					unsigned int event)
 
 
 
 
 
 
 
1498{
1499	int ret;
1500
1501	/* Only must be defined when default governor is known to have latency
1502	   restrictions, like e.g. conservative or ondemand.
1503	   That this is the case is already ensured in Kconfig
1504	*/
1505#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1506	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1507#else
1508	struct cpufreq_governor *gov = NULL;
1509#endif
1510
1511	if (policy->governor->max_transition_latency &&
1512	    policy->cpuinfo.transition_latency >
1513	    policy->governor->max_transition_latency) {
1514		if (!gov)
1515			return -EINVAL;
1516		else {
1517			printk(KERN_WARNING "%s governor failed, too long"
1518			       " transition latency of HW, fallback"
1519			       " to %s governor\n",
1520			       policy->governor->name,
1521			       gov->name);
1522			policy->governor = gov;
1523		}
1524	}
1525
1526	if (!try_module_get(policy->governor->owner))
1527		return -EINVAL;
 
 
 
1528
1529	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1530						policy->cpu, event);
1531	ret = policy->governor->governor(policy, event);
1532
1533	/* we keep one module reference alive for
1534			each CPU governed by this CPU */
1535	if ((event != CPUFREQ_GOV_START) || ret)
1536		module_put(policy->governor->owner);
1537	if ((event == CPUFREQ_GOV_STOP) && !ret)
1538		module_put(policy->governor->owner);
1539
1540	return ret;
 
 
 
1541}
1542
 
 
 
 
 
 
 
 
 
 
1543
1544int cpufreq_register_governor(struct cpufreq_governor *governor)
1545{
1546	int err;
1547
1548	if (!governor)
1549		return -EINVAL;
1550
 
 
 
1551	mutex_lock(&cpufreq_governor_mutex);
1552
1553	err = -EBUSY;
1554	if (__find_governor(governor->name) == NULL) {
1555		err = 0;
1556		list_add(&governor->governor_list, &cpufreq_governor_list);
1557	}
1558
1559	mutex_unlock(&cpufreq_governor_mutex);
1560	return err;
1561}
1562EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1563
1564
1565void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1566{
1567#ifdef CONFIG_HOTPLUG_CPU
1568	int cpu;
1569#endif
1570
1571	if (!governor)
1572		return;
1573
1574#ifdef CONFIG_HOTPLUG_CPU
1575	for_each_present_cpu(cpu) {
1576		if (cpu_online(cpu))
1577			continue;
1578		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1579			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
 
 
 
1580	}
1581#endif
1582
1583	mutex_lock(&cpufreq_governor_mutex);
1584	list_del(&governor->governor_list);
1585	mutex_unlock(&cpufreq_governor_mutex);
1586	return;
1587}
1588EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1589
1590
1591
1592/*********************************************************************
1593 *                          POLICY INTERFACE                         *
1594 *********************************************************************/
1595
1596/**
1597 * cpufreq_get_policy - get the current cpufreq_policy
1598 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1599 *	is written
 
1600 *
1601 * Reads the current cpufreq policy.
1602 */
1603int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1604{
1605	struct cpufreq_policy *cpu_policy;
1606	if (!policy)
1607		return -EINVAL;
1608
1609	cpu_policy = cpufreq_cpu_get(cpu);
1610	if (!cpu_policy)
1611		return -EINVAL;
1612
1613	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1614
1615	cpufreq_cpu_put(cpu_policy);
1616	return 0;
1617}
1618EXPORT_SYMBOL(cpufreq_get_policy);
1619
1620
1621/*
1622 * data   : current policy.
1623 * policy : policy to be set.
1624 */
1625static int __cpufreq_set_policy(struct cpufreq_policy *data,
1626				struct cpufreq_policy *policy)
 
 
 
 
 
 
 
 
 
 
 
1627{
1628	int ret = 0;
1629
1630	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1631		policy->min, policy->max);
1632
1633	memcpy(&policy->cpuinfo, &data->cpuinfo,
1634				sizeof(struct cpufreq_cpuinfo));
1635
1636	if (policy->min > data->max || policy->max < data->min) {
1637		ret = -EINVAL;
1638		goto error_out;
1639	}
 
 
 
 
 
1640
1641	/* verify the cpu speed can be set within this limit */
1642	ret = cpufreq_driver->verify(policy);
1643	if (ret)
1644		goto error_out;
1645
1646	/* adjust if necessary - all reasons */
1647	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1648			CPUFREQ_ADJUST, policy);
1649
1650	/* adjust if necessary - hardware incompatibility*/
1651	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1652			CPUFREQ_INCOMPATIBLE, policy);
1653
1654	/* verify the cpu speed can be set within this limit,
1655	   which might be different to the first one */
1656	ret = cpufreq_driver->verify(policy);
1657	if (ret)
1658		goto error_out;
1659
1660	/* notification of the new policy */
1661	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1662			CPUFREQ_NOTIFY, policy);
 
 
 
 
 
 
 
1663
1664	data->min = policy->min;
1665	data->max = policy->max;
1666
1667	pr_debug("new min and max freqs are %u - %u kHz\n",
1668					data->min, data->max);
1669
1670	if (cpufreq_driver->setpolicy) {
1671		data->policy = policy->policy;
1672		pr_debug("setting range\n");
1673		ret = cpufreq_driver->setpolicy(policy);
1674	} else {
1675		if (policy->governor != data->governor) {
1676			/* save old, working values */
1677			struct cpufreq_governor *old_gov = data->governor;
1678
1679			pr_debug("governor switch\n");
1680
1681			/* end old governor */
1682			if (data->governor)
1683				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1684
1685			/* start new governor */
1686			data->governor = policy->governor;
1687			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1688				/* new governor failed, so re-start old one */
1689				pr_debug("starting governor %s failed\n",
1690							data->governor->name);
1691				if (old_gov) {
1692					data->governor = old_gov;
1693					__cpufreq_governor(data,
1694							   CPUFREQ_GOV_START);
1695				}
1696				ret = -EINVAL;
1697				goto error_out;
1698			}
1699			/* might be a policy change, too, so fall through */
1700		}
1701		pr_debug("governor: change or update limits\n");
1702		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
 
 
 
 
 
 
 
 
 
1703	}
1704
1705error_out:
1706	return ret;
1707}
1708
1709/**
1710 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1711 *	@cpu: CPU which shall be re-evaluated
1712 *
1713 *	Useful for policy notifiers which have different necessities
1714 *	at different times.
 
 
1715 */
1716int cpufreq_update_policy(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717{
1718	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1719	struct cpufreq_policy policy;
1720	int ret;
1721
1722	if (!data) {
1723		ret = -ENODEV;
1724		goto no_policy;
1725	}
1726
1727	if (unlikely(lock_policy_rwsem_write(cpu))) {
1728		ret = -EINVAL;
1729		goto fail;
 
1730	}
1731
1732	pr_debug("updating policy for CPU %u\n", cpu);
1733	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1734	policy.min = data->user_policy.min;
1735	policy.max = data->user_policy.max;
1736	policy.policy = data->user_policy.policy;
1737	policy.governor = data->user_policy.governor;
1738
1739	/* BIOS might change freq behind our back
1740	  -> ask driver for current freq and notify governors about a change */
1741	if (cpufreq_driver->get) {
1742		policy.cur = cpufreq_driver->get(cpu);
1743		if (!data->cur) {
1744			pr_debug("Driver did not initialize current freq");
1745			data->cur = policy.cur;
1746		} else {
1747			if (data->cur != policy.cur)
1748				cpufreq_out_of_sync(cpu, data->cur,
1749								policy.cur);
 
 
 
 
 
 
 
 
 
 
 
 
1750		}
1751	}
 
 
 
 
 
 
1752
1753	ret = __cpufreq_set_policy(data, &policy);
 
 
1754
1755	unlock_policy_rwsem_write(cpu);
 
1756
1757fail:
1758	cpufreq_cpu_put(data);
1759no_policy:
1760	return ret;
1761}
1762EXPORT_SYMBOL(cpufreq_update_policy);
1763
1764static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1765					unsigned long action, void *hcpu)
1766{
1767	unsigned int cpu = (unsigned long)hcpu;
1768	struct sys_device *sys_dev;
1769
1770	sys_dev = get_cpu_sysdev(cpu);
1771	if (sys_dev) {
1772		switch (action) {
1773		case CPU_ONLINE:
1774		case CPU_ONLINE_FROZEN:
1775			cpufreq_add_dev(sys_dev);
1776			break;
1777		case CPU_DOWN_PREPARE:
1778		case CPU_DOWN_PREPARE_FROZEN:
1779			if (unlikely(lock_policy_rwsem_write(cpu)))
1780				BUG();
1781
1782			__cpufreq_remove_dev(sys_dev);
1783			break;
1784		case CPU_DOWN_FAILED:
1785		case CPU_DOWN_FAILED_FROZEN:
1786			cpufreq_add_dev(sys_dev);
1787			break;
1788		}
1789	}
1790	return NOTIFY_OK;
1791}
1792
1793static struct notifier_block __refdata cpufreq_cpu_notifier = {
1794    .notifier_call = cpufreq_cpu_callback,
1795};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796
1797/*********************************************************************
1798 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1799 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
1801/**
1802 * cpufreq_register_driver - register a CPU Frequency driver
1803 * @driver_data: A struct cpufreq_driver containing the values#
1804 * submitted by the CPU Frequency driver.
1805 *
1806 *   Registers a CPU Frequency driver to this core code. This code
1807 * returns zero on success, -EBUSY when another driver got here first
1808 * (and isn't unregistered in the meantime).
1809 *
1810 */
1811int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1812{
1813	unsigned long flags;
1814	int ret;
1815
 
 
 
 
 
 
 
 
 
 
1816	if (!driver_data || !driver_data->verify || !driver_data->init ||
1817	    ((!driver_data->setpolicy) && (!driver_data->target)))
 
 
 
 
 
 
1818		return -EINVAL;
1819
1820	pr_debug("trying to register driver %s\n", driver_data->name);
1821
1822	if (driver_data->setpolicy)
1823		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1824
1825	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1826	if (cpufreq_driver) {
1827		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828		return -EBUSY;
 
1829	}
1830	cpufreq_driver = driver_data;
1831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1832
1833	ret = sysdev_driver_register(&cpu_sysdev_class,
1834					&cpufreq_sysdev_driver);
1835	if (ret)
1836		goto err_null_driver;
 
 
 
 
1837
1838	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839		int i;
1840		ret = -ENODEV;
 
 
 
 
 
1841
1842		/* check for at least one working CPU */
1843		for (i = 0; i < nr_cpu_ids; i++)
1844			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845				ret = 0;
1846				break;
1847			}
1848
 
1849		/* if all ->init() calls failed, unregister */
1850		if (ret) {
1851			pr_debug("no CPU initialized for driver %s\n",
1852							driver_data->name);
1853			goto err_sysdev_unreg;
1854		}
1855	}
1856
1857	register_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
 
 
1858	pr_debug("driver %s up and running\n", driver_data->name);
 
1859
1860	return 0;
1861err_sysdev_unreg:
1862	sysdev_driver_unregister(&cpu_sysdev_class,
1863			&cpufreq_sysdev_driver);
1864err_null_driver:
1865	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1866	cpufreq_driver = NULL;
1867	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1868	return ret;
1869}
1870EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1871
1872
1873/**
1874 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1875 *
1876 *    Unregister the current CPUFreq driver. Only call this if you have
1877 * the right to do so, i.e. if you have succeeded in initialising before!
1878 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1879 * currently not initialised.
1880 */
1881int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1882{
1883	unsigned long flags;
1884
1885	if (!cpufreq_driver || (driver != cpufreq_driver))
1886		return -EINVAL;
1887
1888	pr_debug("unregistering driver %s\n", driver->name);
1889
1890	sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1891	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
1892
1893	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1894	cpufreq_driver = NULL;
1895	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1896
1897	return 0;
 
1898}
1899EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1900
1901static int __init cpufreq_core_init(void)
1902{
1903	int cpu;
 
1904
1905	for_each_possible_cpu(cpu) {
1906		per_cpu(cpufreq_policy_cpu, cpu) = -1;
1907		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1908	}
1909
1910	cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1911						&cpu_sysdev_class.kset.kobj);
 
 
 
1912	BUG_ON(!cpufreq_global_kobject);
1913	register_syscore_ops(&cpufreq_syscore_ops);
 
 
1914
1915	return 0;
1916}
 
 
1917core_initcall(cpufreq_core_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
 
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
 
 
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
 
 
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
 
 
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
 
 
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
 
 
  79}
  80
 
  81/* internal prototypes */
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 
 
 
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 
 
 
 
 
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 241
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 252	kobject_put(&policy->kobj);
 
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 266
 267	up_write(&policy->rwsem);
 268
 269	cpufreq_cpu_put(policy);
 270}
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 299}
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 
 
 
 
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 
 
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 
 
 
 
 
 
 336#endif
 337}
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 354
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 
 365	switch (state) {
 
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 
 
 
 
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 397	}
 398}
 
 399
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency) {
 579		unsigned int max_delay_us = 2 * MSEC_PER_SEC;
 580
 581		/*
 582		 * If the platform already has high transition_latency, use it
 583		 * as-is.
 584		 */
 585		if (latency > max_delay_us)
 586			return latency;
 587
 588		/*
 589		 * For platforms that can change the frequency very fast (< 2
 590		 * us), the above formula gives a decent transition delay. But
 591		 * for platforms where transition_latency is in milliseconds, it
 592		 * ends up giving unrealistic values.
 593		 *
 594		 * Cap the default transition delay to 2 ms, which seems to be
 595		 * a reasonable amount of time after which we should reevaluate
 596		 * the frequency.
 597		 */
 598		return min(latency * LATENCY_MULTIPLIER, max_delay_us);
 599	}
 600
 601	return LATENCY_MULTIPLIER;
 602}
 603EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 604
 605/*********************************************************************
 606 *                          SYSFS INTERFACE                          *
 607 *********************************************************************/
 608static ssize_t show_boost(struct kobject *kobj,
 609			  struct kobj_attribute *attr, char *buf)
 610{
 611	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 612}
 613
 614static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 615			   const char *buf, size_t count)
 616{
 617	int ret, enable;
 618
 619	ret = sscanf(buf, "%d", &enable);
 620	if (ret != 1 || enable < 0 || enable > 1)
 621		return -EINVAL;
 622
 623	if (cpufreq_boost_trigger_state(enable)) {
 624		pr_err("%s: Cannot %s BOOST!\n",
 625		       __func__, enable ? "enable" : "disable");
 626		return -EINVAL;
 627	}
 628
 629	pr_debug("%s: cpufreq BOOST %s\n",
 630		 __func__, enable ? "enabled" : "disabled");
 631
 632	return count;
 633}
 634define_one_global_rw(boost);
 635
 636static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 637{
 638	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 639}
 640
 641static ssize_t store_local_boost(struct cpufreq_policy *policy,
 642				 const char *buf, size_t count)
 643{
 644	int ret, enable;
 645
 646	ret = kstrtoint(buf, 10, &enable);
 647	if (ret || enable < 0 || enable > 1)
 648		return -EINVAL;
 649
 650	if (!cpufreq_driver->boost_enabled)
 651		return -EINVAL;
 652
 653	if (policy->boost_enabled == enable)
 654		return count;
 655
 656	policy->boost_enabled = enable;
 657
 658	cpus_read_lock();
 659	ret = cpufreq_driver->set_boost(policy, enable);
 660	cpus_read_unlock();
 661
 662	if (ret) {
 663		policy->boost_enabled = !policy->boost_enabled;
 664		return ret;
 665	}
 666
 667	return count;
 668}
 669
 670static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 671
 672static struct cpufreq_governor *find_governor(const char *str_governor)
 673{
 674	struct cpufreq_governor *t;
 675
 676	for_each_governor(t)
 677		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 678			return t;
 679
 680	return NULL;
 681}
 682
 683static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 684{
 685	struct cpufreq_governor *t;
 686
 687	mutex_lock(&cpufreq_governor_mutex);
 688	t = find_governor(str_governor);
 689	if (!t)
 690		goto unlock;
 691
 692	if (!try_module_get(t->owner))
 693		t = NULL;
 694
 695unlock:
 696	mutex_unlock(&cpufreq_governor_mutex);
 
 
 
 
 
 
 697
 698	return t;
 699}
 700
 701static unsigned int cpufreq_parse_policy(char *str_governor)
 702{
 703	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 704		return CPUFREQ_POLICY_PERFORMANCE;
 705
 706	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 707		return CPUFREQ_POLICY_POWERSAVE;
 708
 709	return CPUFREQ_POLICY_UNKNOWN;
 710}
 
 711
 712/**
 713 * cpufreq_parse_governor - parse a governor string only for has_target()
 714 * @str_governor: Governor name.
 715 */
 716static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 717{
 718	struct cpufreq_governor *t;
 719
 720	t = get_governor(str_governor);
 721	if (t)
 722		return t;
 
 723
 724	if (request_module("cpufreq_%s", str_governor))
 725		return NULL;
 
 
 
 726
 727	return get_governor(str_governor);
 728}
 729
 730/*
 731 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 732 * print out cpufreq information
 733 *
 734 * Write out information from cpufreq_driver->policy[cpu]; object must be
 735 * "unsigned int".
 736 */
 737
 738#define show_one(file_name, object)			\
 739static ssize_t show_##file_name				\
 740(struct cpufreq_policy *policy, char *buf)		\
 741{							\
 742	return sprintf(buf, "%u\n", policy->object);	\
 743}
 744
 745show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 746show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 747show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 748show_one(scaling_min_freq, min);
 749show_one(scaling_max_freq, max);
 
 750
 751__weak unsigned int arch_freq_get_on_cpu(int cpu)
 752{
 753	return 0;
 754}
 755
 756static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 757{
 758	ssize_t ret;
 759	unsigned int freq;
 760
 761	freq = arch_freq_get_on_cpu(policy->cpu);
 762	if (freq)
 763		ret = sprintf(buf, "%u\n", freq);
 764	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 765		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 766	else
 767		ret = sprintf(buf, "%u\n", policy->cur);
 768	return ret;
 769}
 770
 771/*
 772 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 773 */
 774#define store_one(file_name, object)			\
 775static ssize_t store_##file_name					\
 776(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 777{									\
 778	unsigned long val;						\
 779	int ret;							\
 780									\
 781	ret = kstrtoul(buf, 0, &val);					\
 782	if (ret)							\
 783		return ret;						\
 
 
 
 
 
 
 
 784									\
 785	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 786	return ret >= 0 ? count : ret;					\
 787}
 788
 789store_one(scaling_min_freq, min);
 790store_one(scaling_max_freq, max);
 791
 792/*
 793 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 794 */
 795static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 796					char *buf)
 797{
 798	unsigned int cur_freq = __cpufreq_get(policy);
 
 
 
 
 799
 800	if (cur_freq)
 801		return sprintf(buf, "%u\n", cur_freq);
 802
 803	return sprintf(buf, "<unknown>\n");
 804}
 805
 806/*
 807 * show_scaling_governor - show the current policy for the specified CPU
 808 */
 809static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 810{
 811	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 812		return sprintf(buf, "powersave\n");
 813	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 814		return sprintf(buf, "performance\n");
 815	else if (policy->governor)
 816		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 817				policy->governor->name);
 818	return -EINVAL;
 819}
 820
 821/*
 
 822 * store_scaling_governor - store policy for the specified CPU
 823 */
 824static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 825					const char *buf, size_t count)
 826{
 827	char str_governor[16];
 828	int ret;
 
 
 
 
 
 829
 830	ret = sscanf(buf, "%15s", str_governor);
 831	if (ret != 1)
 832		return -EINVAL;
 833
 834	if (cpufreq_driver->setpolicy) {
 835		unsigned int new_pol;
 
 836
 837		new_pol = cpufreq_parse_policy(str_governor);
 838		if (!new_pol)
 839			return -EINVAL;
 840
 841		ret = cpufreq_set_policy(policy, NULL, new_pol);
 842	} else {
 843		struct cpufreq_governor *new_gov;
 844
 845		new_gov = cpufreq_parse_governor(str_governor);
 846		if (!new_gov)
 847			return -EINVAL;
 848
 849		ret = cpufreq_set_policy(policy, new_gov,
 850					 CPUFREQ_POLICY_UNKNOWN);
 851
 852		module_put(new_gov->owner);
 853	}
 854
 855	return ret ? ret : count;
 856}
 857
 858/*
 859 * show_scaling_driver - show the cpufreq driver currently loaded
 860 */
 861static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 862{
 863	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 864}
 865
 866/*
 867 * show_scaling_available_governors - show the available CPUfreq governors
 868 */
 869static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 870						char *buf)
 871{
 872	ssize_t i = 0;
 873	struct cpufreq_governor *t;
 874
 875	if (!has_target()) {
 876		i += sprintf(buf, "performance powersave");
 877		goto out;
 878	}
 879
 880	mutex_lock(&cpufreq_governor_mutex);
 881	for_each_governor(t) {
 882		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 883		    - (CPUFREQ_NAME_LEN + 2)))
 884			break;
 885		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 886	}
 887	mutex_unlock(&cpufreq_governor_mutex);
 888out:
 889	i += sprintf(&buf[i], "\n");
 890	return i;
 891}
 892
 893ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 894{
 895	ssize_t i = 0;
 896	unsigned int cpu;
 897
 898	for_each_cpu(cpu, mask) {
 899		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
 
 
 900		if (i >= (PAGE_SIZE - 5))
 901			break;
 902	}
 903
 904	/* Remove the extra space at the end */
 905	i--;
 906
 907	i += sprintf(&buf[i], "\n");
 908	return i;
 909}
 910EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 911
 912/*
 913 * show_related_cpus - show the CPUs affected by each transition even if
 914 * hw coordination is in use
 915 */
 916static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 917{
 918	return cpufreq_show_cpus(policy->related_cpus, buf);
 
 
 919}
 920
 921/*
 922 * show_affected_cpus - show the CPUs affected by each transition
 923 */
 924static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 925{
 926	return cpufreq_show_cpus(policy->cpus, buf);
 927}
 928
 929static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 930					const char *buf, size_t count)
 931{
 932	unsigned int freq = 0;
 933	unsigned int ret;
 934
 935	if (!policy->governor || !policy->governor->store_setspeed)
 936		return -EINVAL;
 937
 938	ret = sscanf(buf, "%u", &freq);
 939	if (ret != 1)
 940		return -EINVAL;
 941
 942	policy->governor->store_setspeed(policy, freq);
 943
 944	return count;
 945}
 946
 947static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 948{
 949	if (!policy->governor || !policy->governor->show_setspeed)
 950		return sprintf(buf, "<unsupported>\n");
 951
 952	return policy->governor->show_setspeed(policy, buf);
 953}
 954
 955/*
 956 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 957 */
 958static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 959{
 960	unsigned int limit;
 961	int ret;
 962	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 963	if (!ret)
 964		return sprintf(buf, "%u\n", limit);
 
 
 965	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 966}
 967
 968cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 969cpufreq_freq_attr_ro(cpuinfo_min_freq);
 970cpufreq_freq_attr_ro(cpuinfo_max_freq);
 971cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 972cpufreq_freq_attr_ro(scaling_available_governors);
 973cpufreq_freq_attr_ro(scaling_driver);
 974cpufreq_freq_attr_ro(scaling_cur_freq);
 975cpufreq_freq_attr_ro(bios_limit);
 976cpufreq_freq_attr_ro(related_cpus);
 977cpufreq_freq_attr_ro(affected_cpus);
 978cpufreq_freq_attr_rw(scaling_min_freq);
 979cpufreq_freq_attr_rw(scaling_max_freq);
 980cpufreq_freq_attr_rw(scaling_governor);
 981cpufreq_freq_attr_rw(scaling_setspeed);
 982
 983static struct attribute *cpufreq_attrs[] = {
 984	&cpuinfo_min_freq.attr,
 985	&cpuinfo_max_freq.attr,
 986	&cpuinfo_transition_latency.attr,
 987	&scaling_min_freq.attr,
 988	&scaling_max_freq.attr,
 989	&affected_cpus.attr,
 990	&related_cpus.attr,
 991	&scaling_governor.attr,
 992	&scaling_driver.attr,
 993	&scaling_available_governors.attr,
 994	&scaling_setspeed.attr,
 995	NULL
 996};
 997ATTRIBUTE_GROUPS(cpufreq);
 
 
 998
 999#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
1000#define to_attr(a) container_of(a, struct freq_attr, attr)
1001
1002static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1003{
1004	struct cpufreq_policy *policy = to_policy(kobj);
1005	struct freq_attr *fattr = to_attr(attr);
1006	ssize_t ret = -EBUSY;
 
 
 
1007
1008	if (!fattr->show)
1009		return -EIO;
1010
1011	down_read(&policy->rwsem);
1012	if (likely(!policy_is_inactive(policy)))
1013		ret = fattr->show(policy, buf);
1014	up_read(&policy->rwsem);
 
1015
 
 
 
 
1016	return ret;
1017}
1018
1019static ssize_t store(struct kobject *kobj, struct attribute *attr,
1020		     const char *buf, size_t count)
1021{
1022	struct cpufreq_policy *policy = to_policy(kobj);
1023	struct freq_attr *fattr = to_attr(attr);
1024	ssize_t ret = -EBUSY;
 
 
 
1025
1026	if (!fattr->store)
1027		return -EIO;
1028
1029	down_write(&policy->rwsem);
1030	if (likely(!policy_is_inactive(policy)))
1031		ret = fattr->store(policy, buf, count);
1032	up_write(&policy->rwsem);
 
1033
 
 
 
 
1034	return ret;
1035}
1036
1037static void cpufreq_sysfs_release(struct kobject *kobj)
1038{
1039	struct cpufreq_policy *policy = to_policy(kobj);
1040	pr_debug("last reference is dropped\n");
1041	complete(&policy->kobj_unregister);
1042}
1043
1044static const struct sysfs_ops sysfs_ops = {
1045	.show	= show,
1046	.store	= store,
1047};
1048
1049static const struct kobj_type ktype_cpufreq = {
1050	.sysfs_ops	= &sysfs_ops,
1051	.default_groups	= cpufreq_groups,
1052	.release	= cpufreq_sysfs_release,
1053};
1054
1055static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1056				struct device *dev)
 
 
 
 
 
 
 
1057{
1058	if (unlikely(!dev))
1059		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060
1061	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1062		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063
1064	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1065	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1066		dev_err(dev, "cpufreq symlink creation failed\n");
 
 
 
 
 
1067}
1068
1069static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1070				   struct device *dev)
 
 
1071{
1072	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1073	sysfs_remove_link(&dev->kobj, "cpufreq");
1074	cpumask_clear_cpu(cpu, policy->real_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075}
1076
1077static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
 
1078{
 
1079	struct freq_attr **drv_attr;
 
1080	int ret = 0;
 
 
 
 
 
 
 
1081
1082	/* set up files for this cpu device */
1083	drv_attr = cpufreq_driver->attr;
1084	while (drv_attr && *drv_attr) {
1085		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1086		if (ret)
1087			return ret;
1088		drv_attr++;
1089	}
1090	if (cpufreq_driver->get) {
1091		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1092		if (ret)
1093			return ret;
 
 
 
 
 
1094	}
1095
1096	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1097	if (ret)
1098		return ret;
1099
1100	if (cpufreq_driver->bios_limit) {
1101		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1102		if (ret)
1103			return ret;
1104	}
1105
1106	if (cpufreq_boost_supported()) {
1107		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1108		if (ret)
1109			return ret;
 
 
1110	}
 
1111
1112	return 0;
1113}
1114
1115static int cpufreq_init_policy(struct cpufreq_policy *policy)
1116{
1117	struct cpufreq_governor *gov = NULL;
1118	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1119	int ret;
1120
1121	if (has_target()) {
1122		/* Update policy governor to the one used before hotplug. */
1123		gov = get_governor(policy->last_governor);
1124		if (gov) {
1125			pr_debug("Restoring governor %s for cpu %d\n",
1126				 gov->name, policy->cpu);
1127		} else {
1128			gov = get_governor(default_governor);
1129		}
1130
1131		if (!gov) {
1132			gov = cpufreq_default_governor();
1133			__module_get(gov->owner);
1134		}
1135
1136	} else {
1137
1138		/* Use the default policy if there is no last_policy. */
1139		if (policy->last_policy) {
1140			pol = policy->last_policy;
1141		} else {
1142			pol = cpufreq_parse_policy(default_governor);
1143			/*
1144			 * In case the default governor is neither "performance"
1145			 * nor "powersave", fall back to the initial policy
1146			 * value set by the driver.
1147			 */
1148			if (pol == CPUFREQ_POLICY_UNKNOWN)
1149				pol = policy->policy;
1150		}
1151		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1152		    pol != CPUFREQ_POLICY_POWERSAVE)
1153			return -ENODATA;
1154	}
 
1155
1156	ret = cpufreq_set_policy(policy, gov, pol);
1157	if (gov)
1158		module_put(gov->owner);
1159
1160	return ret;
1161}
1162
1163static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
1164{
1165	int ret = 0;
 
 
 
 
 
 
 
1166
1167	/* Has this CPU been taken care of already? */
1168	if (cpumask_test_cpu(cpu, policy->cpus))
1169		return 0;
1170
1171	down_write(&policy->rwsem);
1172	if (has_target())
1173		cpufreq_stop_governor(policy);
1174
1175	cpumask_set_cpu(cpu, policy->cpus);
1176
1177	if (has_target()) {
1178		ret = cpufreq_start_governor(policy);
1179		if (ret)
1180			pr_err("%s: Failed to start governor\n", __func__);
 
1181	}
1182	up_write(&policy->rwsem);
1183	return ret;
1184}
1185
1186void refresh_frequency_limits(struct cpufreq_policy *policy)
1187{
1188	if (!policy_is_inactive(policy)) {
1189		pr_debug("updating policy for CPU %u\n", policy->cpu);
1190
1191		cpufreq_set_policy(policy, policy->governor, policy->policy);
1192	}
1193}
1194EXPORT_SYMBOL(refresh_frequency_limits);
1195
1196static void handle_update(struct work_struct *work)
1197{
1198	struct cpufreq_policy *policy =
1199		container_of(work, struct cpufreq_policy, update);
1200
1201	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1202	down_write(&policy->rwsem);
1203	refresh_frequency_limits(policy);
1204	up_write(&policy->rwsem);
1205}
1206
1207static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1208				void *data)
1209{
1210	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1211
1212	schedule_work(&policy->update);
1213	return 0;
1214}
1215
1216static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1217				void *data)
1218{
1219	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1220
1221	schedule_work(&policy->update);
1222	return 0;
1223}
1224
1225static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1226{
1227	struct kobject *kobj;
1228	struct completion *cmp;
1229
1230	down_write(&policy->rwsem);
1231	cpufreq_stats_free_table(policy);
1232	kobj = &policy->kobj;
1233	cmp = &policy->kobj_unregister;
1234	up_write(&policy->rwsem);
1235	kobject_put(kobj);
1236
1237	/*
1238	 * We need to make sure that the underlying kobj is
1239	 * actually not referenced anymore by anybody before we
1240	 * proceed with unloading.
1241	 */
1242	pr_debug("waiting for dropping of refcount\n");
1243	wait_for_completion(cmp);
1244	pr_debug("wait complete\n");
1245}
1246
1247static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1248{
1249	struct cpufreq_policy *policy;
1250	struct device *dev = get_cpu_device(cpu);
1251	int ret;
1252
1253	if (!dev)
1254		return NULL;
1255
1256	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1257	if (!policy)
1258		return NULL;
1259
1260	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1261		goto err_free_policy;
1262
1263	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1264		goto err_free_cpumask;
1265
1266	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1267		goto err_free_rcpumask;
 
 
 
 
 
1268
1269	init_completion(&policy->kobj_unregister);
1270	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1271				   cpufreq_global_kobject, "policy%u", cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272	if (ret) {
1273		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1274		/*
1275		 * The entire policy object will be freed below, but the extra
1276		 * memory allocated for the kobject name needs to be freed by
1277		 * releasing the kobject.
1278		 */
1279		kobject_put(&policy->kobj);
1280		goto err_free_real_cpus;
1281	}
 
 
1282
1283	freq_constraints_init(&policy->constraints);
1284
1285	policy->nb_min.notifier_call = cpufreq_notifier_min;
1286	policy->nb_max.notifier_call = cpufreq_notifier_max;
1287
1288	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1289				    &policy->nb_min);
1290	if (ret) {
1291		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1292			ret, cpu);
1293		goto err_kobj_remove;
 
 
1294	}
1295
1296	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1297				    &policy->nb_max);
1298	if (ret) {
1299		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1300			ret, cpu);
1301		goto err_min_qos_notifier;
1302	}
1303
1304	INIT_LIST_HEAD(&policy->policy_list);
1305	init_rwsem(&policy->rwsem);
1306	spin_lock_init(&policy->transition_lock);
1307	init_waitqueue_head(&policy->transition_wait);
1308	INIT_WORK(&policy->update, handle_update);
1309
1310	policy->cpu = cpu;
1311	return policy;
 
1312
1313err_min_qos_notifier:
1314	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1315				 &policy->nb_min);
1316err_kobj_remove:
1317	cpufreq_policy_put_kobj(policy);
1318err_free_real_cpus:
1319	free_cpumask_var(policy->real_cpus);
1320err_free_rcpumask:
1321	free_cpumask_var(policy->related_cpus);
1322err_free_cpumask:
1323	free_cpumask_var(policy->cpus);
1324err_free_policy:
1325	kfree(policy);
1326
1327	return NULL;
1328}
1329
1330static void cpufreq_policy_free(struct cpufreq_policy *policy)
1331{
1332	unsigned long flags;
1333	int cpu;
1334
1335	/*
1336	 * The callers must ensure the policy is inactive by now, to avoid any
1337	 * races with show()/store() callbacks.
1338	 */
1339	if (unlikely(!policy_is_inactive(policy)))
1340		pr_warn("%s: Freeing active policy\n", __func__);
1341
1342	/* Remove policy from list */
1343	write_lock_irqsave(&cpufreq_driver_lock, flags);
1344	list_del(&policy->policy_list);
1345
1346	for_each_cpu(cpu, policy->related_cpus)
1347		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1348	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1349
1350	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1351				 &policy->nb_max);
1352	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1353				 &policy->nb_min);
1354
1355	/* Cancel any pending policy->update work before freeing the policy. */
1356	cancel_work_sync(&policy->update);
1357
1358	if (policy->max_freq_req) {
1359		/*
1360		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1361		 * notification, since CPUFREQ_CREATE_POLICY notification was
1362		 * sent after adding max_freq_req earlier.
1363		 */
1364		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1365					     CPUFREQ_REMOVE_POLICY, policy);
1366		freq_qos_remove_request(policy->max_freq_req);
1367	}
1368
1369	freq_qos_remove_request(policy->min_freq_req);
1370	kfree(policy->min_freq_req);
1371
1372	cpufreq_policy_put_kobj(policy);
1373	free_cpumask_var(policy->real_cpus);
1374	free_cpumask_var(policy->related_cpus);
 
1375	free_cpumask_var(policy->cpus);
 
1376	kfree(policy);
 
 
 
 
1377}
1378
1379static int cpufreq_online(unsigned int cpu)
 
 
 
 
 
 
 
 
1380{
1381	struct cpufreq_policy *policy;
1382	bool new_policy;
1383	unsigned long flags;
 
 
 
 
 
1384	unsigned int j;
1385	int ret;
 
 
1386
1387	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
 
1388
1389	/* Check if this CPU already has a policy to manage it */
1390	policy = per_cpu(cpufreq_cpu_data, cpu);
1391	if (policy) {
1392		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1393		if (!policy_is_inactive(policy))
1394			return cpufreq_add_policy_cpu(policy, cpu);
1395
1396		/* This is the only online CPU for the policy.  Start over. */
1397		new_policy = false;
1398		down_write(&policy->rwsem);
1399		policy->cpu = cpu;
1400		policy->governor = NULL;
1401	} else {
1402		new_policy = true;
1403		policy = cpufreq_policy_alloc(cpu);
1404		if (!policy)
1405			return -ENOMEM;
1406		down_write(&policy->rwsem);
1407	}
 
1408
1409	if (!new_policy && cpufreq_driver->online) {
1410		/* Recover policy->cpus using related_cpus */
1411		cpumask_copy(policy->cpus, policy->related_cpus);
1412
1413		ret = cpufreq_driver->online(policy);
1414		if (ret) {
1415			pr_debug("%s: %d: initialization failed\n", __func__,
1416				 __LINE__);
1417			goto out_exit_policy;
1418		}
1419	} else {
1420		cpumask_copy(policy->cpus, cpumask_of(cpu));
1421
1422		/*
1423		 * Call driver. From then on the cpufreq must be able
1424		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1425		 */
1426		ret = cpufreq_driver->init(policy);
1427		if (ret) {
1428			pr_debug("%s: %d: initialization failed\n", __func__,
1429				 __LINE__);
1430			goto out_free_policy;
1431		}
1432
1433		/* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1434		policy->boost_enabled = cpufreq_boost_enabled() && policy_has_boost_freq(policy);
1435
1436		/*
1437		 * The initialization has succeeded and the policy is online.
1438		 * If there is a problem with its frequency table, take it
1439		 * offline and drop it.
1440		 */
1441		ret = cpufreq_table_validate_and_sort(policy);
1442		if (ret)
1443			goto out_offline_policy;
1444
1445		/* related_cpus should at least include policy->cpus. */
1446		cpumask_copy(policy->related_cpus, policy->cpus);
1447	}
1448
1449	/*
1450	 * affected cpus must always be the one, which are online. We aren't
1451	 * managing offline cpus here.
 
1452	 */
1453	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1454
1455	if (new_policy) {
1456		for_each_cpu(j, policy->related_cpus) {
1457			per_cpu(cpufreq_cpu_data, j) = policy;
1458			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1459		}
1460
1461		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1462					       GFP_KERNEL);
1463		if (!policy->min_freq_req) {
1464			ret = -ENOMEM;
1465			goto out_destroy_policy;
1466		}
1467
1468		ret = freq_qos_add_request(&policy->constraints,
1469					   policy->min_freq_req, FREQ_QOS_MIN,
1470					   FREQ_QOS_MIN_DEFAULT_VALUE);
1471		if (ret < 0) {
1472			/*
1473			 * So we don't call freq_qos_remove_request() for an
1474			 * uninitialized request.
1475			 */
1476			kfree(policy->min_freq_req);
1477			policy->min_freq_req = NULL;
1478			goto out_destroy_policy;
1479		}
1480
1481		/*
1482		 * This must be initialized right here to avoid calling
1483		 * freq_qos_remove_request() on uninitialized request in case
1484		 * of errors.
1485		 */
1486		policy->max_freq_req = policy->min_freq_req + 1;
1487
1488		ret = freq_qos_add_request(&policy->constraints,
1489					   policy->max_freq_req, FREQ_QOS_MAX,
1490					   FREQ_QOS_MAX_DEFAULT_VALUE);
1491		if (ret < 0) {
1492			policy->max_freq_req = NULL;
1493			goto out_destroy_policy;
1494		}
1495
1496		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1497				CPUFREQ_CREATE_POLICY, policy);
1498	}
1499
1500	if (cpufreq_driver->get && has_target()) {
1501		policy->cur = cpufreq_driver->get(policy->cpu);
1502		if (!policy->cur) {
1503			ret = -EIO;
1504			pr_err("%s: ->get() failed\n", __func__);
1505			goto out_destroy_policy;
 
 
 
 
 
 
 
 
 
 
 
1506		}
1507	}
 
 
 
1508
1509	/*
1510	 * Sometimes boot loaders set CPU frequency to a value outside of
1511	 * frequency table present with cpufreq core. In such cases CPU might be
1512	 * unstable if it has to run on that frequency for long duration of time
1513	 * and so its better to set it to a frequency which is specified in
1514	 * freq-table. This also makes cpufreq stats inconsistent as
1515	 * cpufreq-stats would fail to register because current frequency of CPU
1516	 * isn't found in freq-table.
1517	 *
1518	 * Because we don't want this change to effect boot process badly, we go
1519	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1520	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1521	 * is initialized to zero).
1522	 *
1523	 * We are passing target-freq as "policy->cur - 1" otherwise
1524	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1525	 * equal to target-freq.
1526	 */
1527	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1528	    && has_target()) {
1529		unsigned int old_freq = policy->cur;
1530
1531		/* Are we running at unknown frequency ? */
1532		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1533		if (ret == -EINVAL) {
1534			ret = __cpufreq_driver_target(policy, old_freq - 1,
1535						      CPUFREQ_RELATION_L);
1536
1537			/*
1538			 * Reaching here after boot in a few seconds may not
1539			 * mean that system will remain stable at "unknown"
1540			 * frequency for longer duration. Hence, a BUG_ON().
1541			 */
1542			BUG_ON(ret);
1543			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1544				__func__, policy->cpu, old_freq, policy->cur);
1545		}
1546	}
1547
1548	if (new_policy) {
1549		ret = cpufreq_add_dev_interface(policy);
1550		if (ret)
1551			goto out_destroy_policy;
1552
1553		cpufreq_stats_create_table(policy);
1554
1555		write_lock_irqsave(&cpufreq_driver_lock, flags);
1556		list_add(&policy->policy_list, &cpufreq_policy_list);
1557		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1558
1559		/*
1560		 * Register with the energy model before
1561		 * sugov_eas_rebuild_sd() is called, which will result
1562		 * in rebuilding of the sched domains, which should only be done
1563		 * once the energy model is properly initialized for the policy
1564		 * first.
1565		 *
1566		 * Also, this should be called before the policy is registered
1567		 * with cooling framework.
1568		 */
1569		if (cpufreq_driver->register_em)
1570			cpufreq_driver->register_em(policy);
1571	}
1572
1573	ret = cpufreq_init_policy(policy);
1574	if (ret) {
1575		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1576		       __func__, cpu, ret);
1577		goto out_destroy_policy;
1578	}
1579
1580	up_write(&policy->rwsem);
1581
1582	kobject_uevent(&policy->kobj, KOBJ_ADD);
1583
1584	/* Callback for handling stuff after policy is ready */
1585	if (cpufreq_driver->ready)
1586		cpufreq_driver->ready(policy);
1587
1588	/* Register cpufreq cooling only for a new policy */
1589	if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1590		policy->cdev = of_cpufreq_cooling_register(policy);
1591
1592	pr_debug("initialization complete\n");
1593
1594	return 0;
1595
1596out_destroy_policy:
1597	for_each_cpu(j, policy->real_cpus)
1598		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1599
1600out_offline_policy:
1601	if (cpufreq_driver->offline)
1602		cpufreq_driver->offline(policy);
1603
1604out_exit_policy:
1605	if (cpufreq_driver->exit)
1606		cpufreq_driver->exit(policy);
 
1607
1608out_free_policy:
1609	cpumask_clear(policy->cpus);
1610	up_write(&policy->rwsem);
1611
1612	cpufreq_policy_free(policy);
1613	return ret;
1614}
1615
1616/**
1617 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1618 * @dev: CPU device.
1619 * @sif: Subsystem interface structure pointer (not used)
1620 */
1621static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1622{
1623	struct cpufreq_policy *policy;
1624	unsigned cpu = dev->id;
1625	int ret;
1626
1627	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1628
1629	if (cpu_online(cpu)) {
1630		ret = cpufreq_online(cpu);
1631		if (ret)
1632			return ret;
1633	}
 
1634
1635	/* Create sysfs link on CPU registration */
1636	policy = per_cpu(cpufreq_cpu_data, cpu);
1637	if (policy)
1638		add_cpu_dev_symlink(policy, cpu, dev);
1639
1640	return 0;
1641}
1642
1643static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1644{
1645	int ret;
1646
1647	if (has_target())
1648		cpufreq_stop_governor(policy);
1649
1650	cpumask_clear_cpu(cpu, policy->cpus);
1651
1652	if (!policy_is_inactive(policy)) {
1653		/* Nominate a new CPU if necessary. */
1654		if (cpu == policy->cpu)
1655			policy->cpu = cpumask_any(policy->cpus);
1656
1657		/* Start the governor again for the active policy. */
1658		if (has_target()) {
1659			ret = cpufreq_start_governor(policy);
1660			if (ret)
1661				pr_err("%s: Failed to start governor\n", __func__);
1662		}
1663
1664		return;
1665	}
1666
1667	if (has_target())
1668		strscpy(policy->last_governor, policy->governor->name,
1669			CPUFREQ_NAME_LEN);
1670	else
1671		policy->last_policy = policy->policy;
1672
1673	if (has_target())
1674		cpufreq_exit_governor(policy);
1675
1676	/*
1677	 * Perform the ->offline() during light-weight tear-down, as
1678	 * that allows fast recovery when the CPU comes back.
1679	 */
1680	if (cpufreq_driver->offline) {
1681		cpufreq_driver->offline(policy);
1682		return;
1683	}
1684
1685	if (cpufreq_driver->exit)
1686		cpufreq_driver->exit(policy);
1687
1688	policy->freq_table = NULL;
1689}
1690
1691static int cpufreq_offline(unsigned int cpu)
1692{
1693	struct cpufreq_policy *policy;
1694
1695	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1696
1697	policy = cpufreq_cpu_get_raw(cpu);
1698	if (!policy) {
1699		pr_debug("%s: No cpu_data found\n", __func__);
1700		return 0;
1701	}
1702
1703	down_write(&policy->rwsem);
 
1704
1705	__cpufreq_offline(cpu, policy);
 
 
1706
1707	up_write(&policy->rwsem);
1708	return 0;
1709}
1710
1711/*
1712 * cpufreq_remove_dev - remove a CPU device
1713 *
1714 * Removes the cpufreq interface for a CPU device.
1715 */
1716static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1717{
1718	unsigned int cpu = dev->id;
1719	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1720
1721	if (!policy)
1722		return;
1723
1724	down_write(&policy->rwsem);
1725
1726	if (cpu_online(cpu))
1727		__cpufreq_offline(cpu, policy);
1728
1729	remove_cpu_dev_symlink(policy, cpu, dev);
1730
1731	if (!cpumask_empty(policy->real_cpus)) {
1732		up_write(&policy->rwsem);
1733		return;
1734	}
1735
1736	/*
1737	 * Unregister cpufreq cooling once all the CPUs of the policy are
1738	 * removed.
1739	 */
1740	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1741		cpufreq_cooling_unregister(policy->cdev);
1742		policy->cdev = NULL;
1743	}
1744
1745	/* We did light-weight exit earlier, do full tear down now */
1746	if (cpufreq_driver->offline && cpufreq_driver->exit)
1747		cpufreq_driver->exit(policy);
1748
1749	up_write(&policy->rwsem);
1750
1751	cpufreq_policy_free(policy);
1752}
1753
1754/**
1755 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1756 * @policy: Policy managing CPUs.
1757 * @new_freq: New CPU frequency.
 
1758 *
1759 * Adjust to the current frequency first and clean up later by either calling
1760 * cpufreq_update_policy(), or scheduling handle_update().
1761 */
1762static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1763				unsigned int new_freq)
1764{
1765	struct cpufreq_freqs freqs;
1766
1767	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1768		 policy->cur, new_freq);
1769
1770	freqs.old = policy->cur;
 
1771	freqs.new = new_freq;
1772
1773	cpufreq_freq_transition_begin(policy, &freqs);
1774	cpufreq_freq_transition_end(policy, &freqs, 0);
1775}
1776
1777static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1778{
1779	unsigned int new_freq;
1780
1781	new_freq = cpufreq_driver->get(policy->cpu);
1782	if (!new_freq)
1783		return 0;
1784
1785	/*
1786	 * If fast frequency switching is used with the given policy, the check
1787	 * against policy->cur is pointless, so skip it in that case.
1788	 */
1789	if (policy->fast_switch_enabled || !has_target())
1790		return new_freq;
1791
1792	if (policy->cur != new_freq) {
1793		/*
1794		 * For some platforms, the frequency returned by hardware may be
1795		 * slightly different from what is provided in the frequency
1796		 * table, for example hardware may return 499 MHz instead of 500
1797		 * MHz. In such cases it is better to avoid getting into
1798		 * unnecessary frequency updates.
1799		 */
1800		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1801			return policy->cur;
1802
1803		cpufreq_out_of_sync(policy, new_freq);
1804		if (update)
1805			schedule_work(&policy->update);
1806	}
1807
1808	return new_freq;
1809}
1810
1811/**
1812 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1813 * @cpu: CPU number
1814 *
1815 * This is the last known freq, without actually getting it from the driver.
1816 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1817 */
1818unsigned int cpufreq_quick_get(unsigned int cpu)
1819{
1820	struct cpufreq_policy *policy;
1821	unsigned int ret_freq = 0;
1822	unsigned long flags;
1823
1824	read_lock_irqsave(&cpufreq_driver_lock, flags);
1825
1826	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1827		ret_freq = cpufreq_driver->get(cpu);
1828		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1829		return ret_freq;
1830	}
1831
1832	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1833
1834	policy = cpufreq_cpu_get(cpu);
1835	if (policy) {
1836		ret_freq = policy->cur;
1837		cpufreq_cpu_put(policy);
1838	}
1839
1840	return ret_freq;
1841}
1842EXPORT_SYMBOL(cpufreq_quick_get);
1843
1844/**
1845 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1846 * @cpu: CPU number
1847 *
1848 * Just return the max possible frequency for a given CPU.
1849 */
1850unsigned int cpufreq_quick_get_max(unsigned int cpu)
1851{
1852	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1853	unsigned int ret_freq = 0;
1854
1855	if (policy) {
1856		ret_freq = policy->max;
1857		cpufreq_cpu_put(policy);
1858	}
1859
1860	return ret_freq;
1861}
1862EXPORT_SYMBOL(cpufreq_quick_get_max);
1863
1864/**
1865 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1866 * @cpu: CPU number
1867 *
1868 * The default return value is the max_freq field of cpuinfo.
1869 */
1870__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1871{
1872	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1873	unsigned int ret_freq = 0;
1874
1875	if (policy) {
1876		ret_freq = policy->cpuinfo.max_freq;
1877		cpufreq_cpu_put(policy);
 
 
 
 
 
 
 
 
 
 
1878	}
1879
1880	return ret_freq;
1881}
1882EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1883
1884static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1885{
1886	if (unlikely(policy_is_inactive(policy)))
1887		return 0;
1888
1889	return cpufreq_verify_current_freq(policy, true);
1890}
1891
1892/**
1893 * cpufreq_get - get the current CPU frequency (in kHz)
1894 * @cpu: CPU number
1895 *
1896 * Get the CPU current (static) CPU frequency
1897 */
1898unsigned int cpufreq_get(unsigned int cpu)
1899{
 
1900	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1901	unsigned int ret_freq = 0;
1902
1903	if (policy) {
1904		down_read(&policy->rwsem);
1905		if (cpufreq_driver->get)
1906			ret_freq = __cpufreq_get(policy);
1907		up_read(&policy->rwsem);
 
 
1908
1909		cpufreq_cpu_put(policy);
1910	}
1911
 
 
 
1912	return ret_freq;
1913}
1914EXPORT_SYMBOL(cpufreq_get);
1915
1916static struct subsys_interface cpufreq_interface = {
1917	.name		= "cpufreq",
1918	.subsys		= &cpu_subsys,
1919	.add_dev	= cpufreq_add_dev,
1920	.remove_dev	= cpufreq_remove_dev,
1921};
1922
1923/*
1924 * In case platform wants some specific frequency to be configured
1925 * during suspend..
1926 */
1927int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1928{
1929	int ret;
1930
1931	if (!policy->suspend_freq) {
1932		pr_debug("%s: suspend_freq not defined\n", __func__);
1933		return 0;
1934	}
1935
1936	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1937			policy->suspend_freq);
1938
1939	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1940			CPUFREQ_RELATION_H);
1941	if (ret)
1942		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1943				__func__, policy->suspend_freq, ret);
1944
1945	return ret;
1946}
1947EXPORT_SYMBOL(cpufreq_generic_suspend);
1948
1949/**
1950 * cpufreq_suspend() - Suspend CPUFreq governors.
1951 *
1952 * Called during system wide Suspend/Hibernate cycles for suspending governors
1953 * as some platforms can't change frequency after this point in suspend cycle.
1954 * Because some of the devices (like: i2c, regulators, etc) they use for
1955 * changing frequency are suspended quickly after this point.
1956 */
1957void cpufreq_suspend(void)
1958{
1959	struct cpufreq_policy *policy;
1960
1961	if (!cpufreq_driver)
1962		return;
1963
1964	if (!has_target() && !cpufreq_driver->suspend)
1965		goto suspend;
1966
1967	pr_debug("%s: Suspending Governors\n", __func__);
 
 
 
1968
1969	for_each_active_policy(policy) {
1970		if (has_target()) {
1971			down_write(&policy->rwsem);
1972			cpufreq_stop_governor(policy);
1973			up_write(&policy->rwsem);
1974		}
1975
1976		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1977			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1978				cpufreq_driver->name);
1979	}
1980
1981suspend:
1982	cpufreq_suspended = true;
1983}
1984
1985/**
1986 * cpufreq_resume() - Resume CPUFreq governors.
 
 
 
 
 
 
 
1987 *
1988 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1989 * are suspended with cpufreq_suspend().
1990 */
1991void cpufreq_resume(void)
1992{
1993	struct cpufreq_policy *policy;
1994	int ret;
1995
1996	if (!cpufreq_driver)
1997		return;
1998
1999	if (unlikely(!cpufreq_suspended))
2000		return;
2001
2002	cpufreq_suspended = false;
2003
2004	if (!has_target() && !cpufreq_driver->resume)
2005		return;
2006
2007	pr_debug("%s: Resuming Governors\n", __func__);
2008
2009	for_each_active_policy(policy) {
2010		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2011			pr_err("%s: Failed to resume driver: %s\n", __func__,
2012				cpufreq_driver->name);
2013		} else if (has_target()) {
2014			down_write(&policy->rwsem);
2015			ret = cpufreq_start_governor(policy);
2016			up_write(&policy->rwsem);
2017
2018			if (ret)
2019				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2020				       __func__, policy->cpu);
2021		}
2022	}
2023}
2024
2025/**
2026 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2027 * @flags: Flags to test against the current cpufreq driver's flags.
2028 *
2029 * Assumes that the driver is there, so callers must ensure that this is the
2030 * case.
2031 */
2032bool cpufreq_driver_test_flags(u16 flags)
2033{
2034	return !!(cpufreq_driver->flags & flags);
2035}
2036
2037/**
2038 * cpufreq_get_current_driver - Return the current driver's name.
2039 *
2040 * Return the name string of the currently registered cpufreq driver or NULL if
2041 * none.
2042 */
2043const char *cpufreq_get_current_driver(void)
2044{
2045	if (cpufreq_driver)
2046		return cpufreq_driver->name;
2047
2048	return NULL;
2049}
2050EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2051
2052/**
2053 * cpufreq_get_driver_data - Return current driver data.
2054 *
2055 * Return the private data of the currently registered cpufreq driver, or NULL
2056 * if no cpufreq driver has been registered.
2057 */
2058void *cpufreq_get_driver_data(void)
2059{
2060	if (cpufreq_driver)
2061		return cpufreq_driver->driver_data;
2062
2063	return NULL;
2064}
2065EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2066
2067/*********************************************************************
2068 *                     NOTIFIER LISTS INTERFACE                      *
2069 *********************************************************************/
2070
2071/**
2072 * cpufreq_register_notifier - Register a notifier with cpufreq.
2073 * @nb: notifier function to register.
2074 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2075 *
2076 * Add a notifier to one of two lists: either a list of notifiers that run on
2077 * clock rate changes (once before and once after every transition), or a list
2078 * of notifiers that ron on cpufreq policy changes.
 
2079 *
2080 * This function may sleep and it has the same return values as
2081 * blocking_notifier_chain_register().
2082 */
2083int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2084{
2085	int ret;
2086
2087	if (cpufreq_disabled())
2088		return -EINVAL;
2089
2090	switch (list) {
2091	case CPUFREQ_TRANSITION_NOTIFIER:
2092		mutex_lock(&cpufreq_fast_switch_lock);
2093
2094		if (cpufreq_fast_switch_count > 0) {
2095			mutex_unlock(&cpufreq_fast_switch_lock);
2096			return -EBUSY;
2097		}
2098		ret = srcu_notifier_chain_register(
2099				&cpufreq_transition_notifier_list, nb);
2100		if (!ret)
2101			cpufreq_fast_switch_count--;
2102
2103		mutex_unlock(&cpufreq_fast_switch_lock);
2104		break;
2105	case CPUFREQ_POLICY_NOTIFIER:
2106		ret = blocking_notifier_chain_register(
2107				&cpufreq_policy_notifier_list, nb);
2108		break;
2109	default:
2110		ret = -EINVAL;
2111	}
2112
2113	return ret;
2114}
2115EXPORT_SYMBOL(cpufreq_register_notifier);
2116
 
2117/**
2118 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2119 * @nb: notifier block to be unregistered.
2120 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2121 *
2122 * Remove a notifier from one of the cpufreq notifier lists.
2123 *
2124 * This function may sleep and it has the same return values as
2125 * blocking_notifier_chain_unregister().
2126 */
2127int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2128{
2129	int ret;
2130
2131	if (cpufreq_disabled())
2132		return -EINVAL;
2133
2134	switch (list) {
2135	case CPUFREQ_TRANSITION_NOTIFIER:
2136		mutex_lock(&cpufreq_fast_switch_lock);
2137
2138		ret = srcu_notifier_chain_unregister(
2139				&cpufreq_transition_notifier_list, nb);
2140		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2141			cpufreq_fast_switch_count++;
2142
2143		mutex_unlock(&cpufreq_fast_switch_lock);
2144		break;
2145	case CPUFREQ_POLICY_NOTIFIER:
2146		ret = blocking_notifier_chain_unregister(
2147				&cpufreq_policy_notifier_list, nb);
2148		break;
2149	default:
2150		ret = -EINVAL;
2151	}
2152
2153	return ret;
2154}
2155EXPORT_SYMBOL(cpufreq_unregister_notifier);
2156
2157
2158/*********************************************************************
2159 *                              GOVERNORS                            *
2160 *********************************************************************/
2161
2162/**
2163 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2164 * @policy: cpufreq policy to switch the frequency for.
2165 * @target_freq: New frequency to set (may be approximate).
2166 *
2167 * Carry out a fast frequency switch without sleeping.
2168 *
2169 * The driver's ->fast_switch() callback invoked by this function must be
2170 * suitable for being called from within RCU-sched read-side critical sections
2171 * and it is expected to select the minimum available frequency greater than or
2172 * equal to @target_freq (CPUFREQ_RELATION_L).
2173 *
2174 * This function must not be called if policy->fast_switch_enabled is unset.
2175 *
2176 * Governors calling this function must guarantee that it will never be invoked
2177 * twice in parallel for the same policy and that it will never be called in
2178 * parallel with either ->target() or ->target_index() for the same policy.
2179 *
2180 * Returns the actual frequency set for the CPU.
2181 *
2182 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2183 * error condition, the hardware configuration must be preserved.
2184 */
2185unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2186					unsigned int target_freq)
2187{
2188	unsigned int freq;
2189	int cpu;
2190
2191	target_freq = clamp_val(target_freq, policy->min, policy->max);
2192	freq = cpufreq_driver->fast_switch(policy, target_freq);
2193
2194	if (!freq)
2195		return 0;
2196
2197	policy->cur = freq;
2198	arch_set_freq_scale(policy->related_cpus, freq,
2199			    arch_scale_freq_ref(policy->cpu));
2200	cpufreq_stats_record_transition(policy, freq);
2201
2202	if (trace_cpu_frequency_enabled()) {
2203		for_each_cpu(cpu, policy->cpus)
2204			trace_cpu_frequency(freq, cpu);
2205	}
2206
2207	return freq;
2208}
2209EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2210
2211/**
2212 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2213 * @cpu: Target CPU.
2214 * @min_perf: Minimum (required) performance level (units of @capacity).
2215 * @target_perf: Target (desired) performance level (units of @capacity).
2216 * @capacity: Capacity of the target CPU.
2217 *
2218 * Carry out a fast performance level switch of @cpu without sleeping.
2219 *
2220 * The driver's ->adjust_perf() callback invoked by this function must be
2221 * suitable for being called from within RCU-sched read-side critical sections
2222 * and it is expected to select a suitable performance level equal to or above
2223 * @min_perf and preferably equal to or below @target_perf.
2224 *
2225 * This function must not be called if policy->fast_switch_enabled is unset.
2226 *
2227 * Governors calling this function must guarantee that it will never be invoked
2228 * twice in parallel for the same CPU and that it will never be called in
2229 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2230 * the same CPU.
2231 */
2232void cpufreq_driver_adjust_perf(unsigned int cpu,
2233				 unsigned long min_perf,
2234				 unsigned long target_perf,
2235				 unsigned long capacity)
2236{
2237	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2238}
2239
2240/**
2241 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2242 *
2243 * Return 'true' if the ->adjust_perf callback is present for the
2244 * current driver or 'false' otherwise.
2245 */
2246bool cpufreq_driver_has_adjust_perf(void)
2247{
2248	return !!cpufreq_driver->adjust_perf;
2249}
2250
2251/* Must set freqs->new to intermediate frequency */
2252static int __target_intermediate(struct cpufreq_policy *policy,
2253				 struct cpufreq_freqs *freqs, int index)
2254{
2255	int ret;
2256
2257	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2258
2259	/* We don't need to switch to intermediate freq */
2260	if (!freqs->new)
2261		return 0;
2262
2263	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2264		 __func__, policy->cpu, freqs->old, freqs->new);
2265
2266	cpufreq_freq_transition_begin(policy, freqs);
2267	ret = cpufreq_driver->target_intermediate(policy, index);
2268	cpufreq_freq_transition_end(policy, freqs, ret);
2269
2270	if (ret)
2271		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2272		       __func__, ret);
2273
2274	return ret;
2275}
2276
2277static int __target_index(struct cpufreq_policy *policy, int index)
2278{
2279	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2280	unsigned int restore_freq, intermediate_freq = 0;
2281	unsigned int newfreq = policy->freq_table[index].frequency;
2282	int retval = -EINVAL;
2283	bool notify;
2284
2285	if (newfreq == policy->cur)
2286		return 0;
2287
2288	/* Save last value to restore later on errors */
2289	restore_freq = policy->cur;
2290
2291	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2292	if (notify) {
2293		/* Handle switching to intermediate frequency */
2294		if (cpufreq_driver->get_intermediate) {
2295			retval = __target_intermediate(policy, &freqs, index);
2296			if (retval)
2297				return retval;
2298
2299			intermediate_freq = freqs.new;
2300			/* Set old freq to intermediate */
2301			if (intermediate_freq)
2302				freqs.old = freqs.new;
2303		}
2304
2305		freqs.new = newfreq;
2306		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2307			 __func__, policy->cpu, freqs.old, freqs.new);
2308
2309		cpufreq_freq_transition_begin(policy, &freqs);
2310	}
2311
2312	retval = cpufreq_driver->target_index(policy, index);
2313	if (retval)
2314		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2315		       retval);
2316
2317	if (notify) {
2318		cpufreq_freq_transition_end(policy, &freqs, retval);
2319
2320		/*
2321		 * Failed after setting to intermediate freq? Driver should have
2322		 * reverted back to initial frequency and so should we. Check
2323		 * here for intermediate_freq instead of get_intermediate, in
2324		 * case we haven't switched to intermediate freq at all.
2325		 */
2326		if (unlikely(retval && intermediate_freq)) {
2327			freqs.old = intermediate_freq;
2328			freqs.new = restore_freq;
2329			cpufreq_freq_transition_begin(policy, &freqs);
2330			cpufreq_freq_transition_end(policy, &freqs, 0);
2331		}
2332	}
2333
2334	return retval;
2335}
2336
2337int __cpufreq_driver_target(struct cpufreq_policy *policy,
2338			    unsigned int target_freq,
2339			    unsigned int relation)
2340{
2341	unsigned int old_target_freq = target_freq;
2342
2343	if (cpufreq_disabled())
2344		return -ENODEV;
 
 
2345
2346	target_freq = __resolve_freq(policy, target_freq, relation);
2347
2348	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2349		 policy->cpu, target_freq, relation, old_target_freq);
2350
2351	/*
2352	 * This might look like a redundant call as we are checking it again
2353	 * after finding index. But it is left intentionally for cases where
2354	 * exactly same freq is called again and so we can save on few function
2355	 * calls.
2356	 */
2357	if (target_freq == policy->cur &&
2358	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2359		return 0;
2360
2361	if (cpufreq_driver->target) {
2362		/*
2363		 * If the driver hasn't setup a single inefficient frequency,
2364		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2365		 */
2366		if (!policy->efficiencies_available)
2367			relation &= ~CPUFREQ_RELATION_E;
2368
2369		return cpufreq_driver->target(policy, target_freq, relation);
2370	}
2371
2372	if (!cpufreq_driver->target_index)
2373		return -EINVAL;
2374
2375	return __target_index(policy, policy->cached_resolved_idx);
2376}
2377EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2378
2379int cpufreq_driver_target(struct cpufreq_policy *policy,
2380			  unsigned int target_freq,
2381			  unsigned int relation)
2382{
2383	int ret;
 
 
 
 
2384
2385	down_write(&policy->rwsem);
 
2386
2387	ret = __cpufreq_driver_target(policy, target_freq, relation);
2388
2389	up_write(&policy->rwsem);
2390
 
 
 
2391	return ret;
2392}
2393EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2394
2395__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2396{
2397	return NULL;
2398}
2399
2400static int cpufreq_init_governor(struct cpufreq_policy *policy)
2401{
2402	int ret;
2403
2404	/* Don't start any governor operations if we are entering suspend */
2405	if (cpufreq_suspended)
2406		return 0;
2407	/*
2408	 * Governor might not be initiated here if ACPI _PPC changed
2409	 * notification happened, so check it.
2410	 */
2411	if (!policy->governor)
2412		return -EINVAL;
2413
2414	/* Platform doesn't want dynamic frequency switching ? */
2415	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2416	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2417		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2418
2419		if (gov) {
2420			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2421				policy->governor->name, gov->name);
2422			policy->governor = gov;
2423		} else {
2424			return -EINVAL;
2425		}
2426	}
2427
2428	if (!try_module_get(policy->governor->owner))
2429		return -EINVAL;
2430
2431	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
 
2432
2433	if (policy->governor->init) {
2434		ret = policy->governor->init(policy);
2435		if (ret) {
2436			module_put(policy->governor->owner);
2437			return ret;
2438		}
2439	}
2440
2441	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2442
2443	return 0;
2444}
 
2445
2446static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2447{
2448	if (cpufreq_suspended || !policy->governor)
2449		return;
2450
2451	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2452
2453	if (policy->governor->exit)
2454		policy->governor->exit(policy);
2455
2456	module_put(policy->governor->owner);
2457}
2458
2459int cpufreq_start_governor(struct cpufreq_policy *policy)
2460{
2461	int ret;
2462
2463	if (cpufreq_suspended)
2464		return 0;
 
 
 
 
 
 
 
2465
2466	if (!policy->governor)
2467		return -EINVAL;
2468
2469	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2470
2471	if (cpufreq_driver->get)
2472		cpufreq_verify_current_freq(policy, false);
2473
2474	if (policy->governor->start) {
2475		ret = policy->governor->start(policy);
2476		if (ret)
2477			return ret;
 
2478	}
2479
2480	if (policy->governor->limits)
2481		policy->governor->limits(policy);
2482
2483	return 0;
2484}
2485
2486void cpufreq_stop_governor(struct cpufreq_policy *policy)
2487{
2488	if (cpufreq_suspended || !policy->governor)
2489		return;
 
 
 
 
 
 
2490
2491	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2492
2493	if (policy->governor->stop)
2494		policy->governor->stop(policy);
2495}
2496
2497static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2498{
2499	if (cpufreq_suspended || !policy->governor)
2500		return;
2501
2502	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2503
2504	if (policy->governor->limits)
2505		policy->governor->limits(policy);
2506}
2507
2508int cpufreq_register_governor(struct cpufreq_governor *governor)
2509{
2510	int err;
2511
2512	if (!governor)
2513		return -EINVAL;
2514
2515	if (cpufreq_disabled())
2516		return -ENODEV;
2517
2518	mutex_lock(&cpufreq_governor_mutex);
2519
2520	err = -EBUSY;
2521	if (!find_governor(governor->name)) {
2522		err = 0;
2523		list_add(&governor->governor_list, &cpufreq_governor_list);
2524	}
2525
2526	mutex_unlock(&cpufreq_governor_mutex);
2527	return err;
2528}
2529EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2530
 
2531void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2532{
2533	struct cpufreq_policy *policy;
2534	unsigned long flags;
 
2535
2536	if (!governor)
2537		return;
2538
2539	if (cpufreq_disabled())
2540		return;
2541
2542	/* clear last_governor for all inactive policies */
2543	read_lock_irqsave(&cpufreq_driver_lock, flags);
2544	for_each_inactive_policy(policy) {
2545		if (!strcmp(policy->last_governor, governor->name)) {
2546			policy->governor = NULL;
2547			strcpy(policy->last_governor, "\0");
2548		}
2549	}
2550	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2551
2552	mutex_lock(&cpufreq_governor_mutex);
2553	list_del(&governor->governor_list);
2554	mutex_unlock(&cpufreq_governor_mutex);
 
2555}
2556EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2557
2558
 
2559/*********************************************************************
2560 *                          POLICY INTERFACE                         *
2561 *********************************************************************/
2562
2563/**
2564 * cpufreq_get_policy - get the current cpufreq_policy
2565 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2566 *	is written
2567 * @cpu: CPU to find the policy for
2568 *
2569 * Reads the current cpufreq policy.
2570 */
2571int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2572{
2573	struct cpufreq_policy *cpu_policy;
2574	if (!policy)
2575		return -EINVAL;
2576
2577	cpu_policy = cpufreq_cpu_get(cpu);
2578	if (!cpu_policy)
2579		return -EINVAL;
2580
2581	memcpy(policy, cpu_policy, sizeof(*policy));
2582
2583	cpufreq_cpu_put(cpu_policy);
2584	return 0;
2585}
2586EXPORT_SYMBOL(cpufreq_get_policy);
2587
2588/**
2589 * cpufreq_set_policy - Modify cpufreq policy parameters.
2590 * @policy: Policy object to modify.
2591 * @new_gov: Policy governor pointer.
2592 * @new_pol: Policy value (for drivers with built-in governors).
2593 *
2594 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2595 * limits to be set for the policy, update @policy with the verified limits
2596 * values and either invoke the driver's ->setpolicy() callback (if present) or
2597 * carry out a governor update for @policy.  That is, run the current governor's
2598 * ->limits() callback (if @new_gov points to the same object as the one in
2599 * @policy) or replace the governor for @policy with @new_gov.
2600 *
2601 * The cpuinfo part of @policy is not updated by this function.
2602 */
2603static int cpufreq_set_policy(struct cpufreq_policy *policy,
2604			      struct cpufreq_governor *new_gov,
2605			      unsigned int new_pol)
2606{
2607	struct cpufreq_policy_data new_data;
2608	struct cpufreq_governor *old_gov;
2609	int ret;
 
 
 
 
2610
2611	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2612	new_data.freq_table = policy->freq_table;
2613	new_data.cpu = policy->cpu;
2614	/*
2615	 * PM QoS framework collects all the requests from users and provide us
2616	 * the final aggregated value here.
2617	 */
2618	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2619	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2620
2621	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2622		 new_data.cpu, new_data.min, new_data.max);
 
 
2623
2624	/*
2625	 * Verify that the CPU speed can be set within these limits and make sure
2626	 * that min <= max.
2627	 */
2628	ret = cpufreq_driver->verify(&new_data);
 
 
 
 
 
 
2629	if (ret)
2630		return ret;
2631
2632	/*
2633	 * Resolve policy min/max to available frequencies. It ensures
2634	 * no frequency resolution will neither overshoot the requested maximum
2635	 * nor undershoot the requested minimum.
2636	 */
2637	policy->min = new_data.min;
2638	policy->max = new_data.max;
2639	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2640	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2641	trace_cpu_frequency_limits(policy);
2642
2643	policy->cached_target_freq = UINT_MAX;
 
2644
2645	pr_debug("new min and max freqs are %u - %u kHz\n",
2646		 policy->min, policy->max);
2647
2648	if (cpufreq_driver->setpolicy) {
2649		policy->policy = new_pol;
2650		pr_debug("setting range\n");
2651		return cpufreq_driver->setpolicy(policy);
2652	}
2653
2654	if (new_gov == policy->governor) {
2655		pr_debug("governor limits update\n");
2656		cpufreq_governor_limits(policy);
2657		return 0;
2658	}
2659
2660	pr_debug("governor switch\n");
2661
2662	/* save old, working values */
2663	old_gov = policy->governor;
2664	/* end old governor */
2665	if (old_gov) {
2666		cpufreq_stop_governor(policy);
2667		cpufreq_exit_governor(policy);
2668	}
2669
2670	/* start new governor */
2671	policy->governor = new_gov;
2672	ret = cpufreq_init_governor(policy);
2673	if (!ret) {
2674		ret = cpufreq_start_governor(policy);
2675		if (!ret) {
2676			pr_debug("governor change\n");
2677			return 0;
2678		}
2679		cpufreq_exit_governor(policy);
2680	}
2681
2682	/* new governor failed, so re-start old one */
2683	pr_debug("starting governor %s failed\n", policy->governor->name);
2684	if (old_gov) {
2685		policy->governor = old_gov;
2686		if (cpufreq_init_governor(policy))
2687			policy->governor = NULL;
2688		else
2689			cpufreq_start_governor(policy);
2690	}
2691
 
2692	return ret;
2693}
2694
2695/**
2696 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2697 * @cpu: CPU to re-evaluate the policy for.
2698 *
2699 * Update the current frequency for the cpufreq policy of @cpu and use
2700 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2701 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2702 * for the policy in question, among other things.
2703 */
2704void cpufreq_update_policy(unsigned int cpu)
2705{
2706	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2707
2708	if (!policy)
2709		return;
2710
2711	/*
2712	 * BIOS might change freq behind our back
2713	 * -> ask driver for current freq and notify governors about a change
2714	 */
2715	if (cpufreq_driver->get && has_target() &&
2716	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2717		goto unlock;
2718
2719	refresh_frequency_limits(policy);
2720
2721unlock:
2722	cpufreq_cpu_release(policy);
2723}
2724EXPORT_SYMBOL(cpufreq_update_policy);
2725
2726/**
2727 * cpufreq_update_limits - Update policy limits for a given CPU.
2728 * @cpu: CPU to update the policy limits for.
2729 *
2730 * Invoke the driver's ->update_limits callback if present or call
2731 * cpufreq_update_policy() for @cpu.
2732 */
2733void cpufreq_update_limits(unsigned int cpu)
2734{
2735	if (cpufreq_driver->update_limits)
2736		cpufreq_driver->update_limits(cpu);
2737	else
2738		cpufreq_update_policy(cpu);
2739}
2740EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2741
2742/*********************************************************************
2743 *               BOOST						     *
2744 *********************************************************************/
2745static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2746{
 
 
2747	int ret;
2748
2749	if (!policy->freq_table)
2750		return -ENXIO;
 
 
2751
2752	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2753	if (ret) {
2754		pr_err("%s: Policy frequency update failed\n", __func__);
2755		return ret;
2756	}
2757
2758	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2759	if (ret < 0)
2760		return ret;
 
 
 
2761
2762	return 0;
2763}
2764
2765int cpufreq_boost_trigger_state(int state)
2766{
2767	struct cpufreq_policy *policy;
2768	unsigned long flags;
2769	int ret = 0;
2770
2771	if (cpufreq_driver->boost_enabled == state)
2772		return 0;
2773
2774	write_lock_irqsave(&cpufreq_driver_lock, flags);
2775	cpufreq_driver->boost_enabled = state;
2776	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2777
2778	cpus_read_lock();
2779	for_each_active_policy(policy) {
2780		policy->boost_enabled = state;
2781		ret = cpufreq_driver->set_boost(policy, state);
2782		if (ret) {
2783			policy->boost_enabled = !policy->boost_enabled;
2784			goto err_reset_state;
2785		}
2786	}
2787	cpus_read_unlock();
2788
2789	return 0;
2790
2791err_reset_state:
2792	cpus_read_unlock();
2793
2794	write_lock_irqsave(&cpufreq_driver_lock, flags);
2795	cpufreq_driver->boost_enabled = !state;
2796	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2797
2798	pr_err("%s: Cannot %s BOOST\n",
2799	       __func__, state ? "enable" : "disable");
2800
 
 
 
2801	return ret;
2802}
 
2803
2804static bool cpufreq_boost_supported(void)
 
2805{
2806	return cpufreq_driver->set_boost;
2807}
2808
2809static int create_boost_sysfs_file(void)
2810{
2811	int ret;
 
 
 
 
 
 
 
 
2812
2813	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2814	if (ret)
2815		pr_err("%s: cannot register global BOOST sysfs file\n",
2816		       __func__);
2817
2818	return ret;
 
 
 
2819}
2820
2821static void remove_boost_sysfs_file(void)
2822{
2823	if (cpufreq_boost_supported())
2824		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2825}
2826
2827int cpufreq_enable_boost_support(void)
2828{
2829	if (!cpufreq_driver)
2830		return -EINVAL;
2831
2832	if (cpufreq_boost_supported())
2833		return 0;
2834
2835	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2836
2837	/* This will get removed on driver unregister */
2838	return create_boost_sysfs_file();
2839}
2840EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2841
2842int cpufreq_boost_enabled(void)
2843{
2844	return cpufreq_driver->boost_enabled;
2845}
2846EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2847
2848/*********************************************************************
2849 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2850 *********************************************************************/
2851static enum cpuhp_state hp_online;
2852
2853static int cpuhp_cpufreq_online(unsigned int cpu)
2854{
2855	cpufreq_online(cpu);
2856
2857	return 0;
2858}
2859
2860static int cpuhp_cpufreq_offline(unsigned int cpu)
2861{
2862	cpufreq_offline(cpu);
2863
2864	return 0;
2865}
2866
2867/**
2868 * cpufreq_register_driver - register a CPU Frequency driver
2869 * @driver_data: A struct cpufreq_driver containing the values#
2870 * submitted by the CPU Frequency driver.
2871 *
2872 * Registers a CPU Frequency driver to this core code. This code
2873 * returns zero on success, -EEXIST when another driver got here first
2874 * (and isn't unregistered in the meantime).
2875 *
2876 */
2877int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2878{
2879	unsigned long flags;
2880	int ret;
2881
2882	if (cpufreq_disabled())
2883		return -ENODEV;
2884
2885	/*
2886	 * The cpufreq core depends heavily on the availability of device
2887	 * structure, make sure they are available before proceeding further.
2888	 */
2889	if (!get_cpu_device(0))
2890		return -EPROBE_DEFER;
2891
2892	if (!driver_data || !driver_data->verify || !driver_data->init ||
2893	    !(driver_data->setpolicy || driver_data->target_index ||
2894		    driver_data->target) ||
2895	     (driver_data->setpolicy && (driver_data->target_index ||
2896		    driver_data->target)) ||
2897	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2898	     (!driver_data->online != !driver_data->offline) ||
2899		 (driver_data->adjust_perf && !driver_data->fast_switch))
2900		return -EINVAL;
2901
2902	pr_debug("trying to register driver %s\n", driver_data->name);
2903
2904	/* Protect against concurrent CPU online/offline. */
2905	cpus_read_lock();
2906
2907	write_lock_irqsave(&cpufreq_driver_lock, flags);
2908	if (cpufreq_driver) {
2909		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2910		ret = -EEXIST;
2911		goto out;
2912	}
2913	cpufreq_driver = driver_data;
2914	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2915
2916	/*
2917	 * Mark support for the scheduler's frequency invariance engine for
2918	 * drivers that implement target(), target_index() or fast_switch().
2919	 */
2920	if (!cpufreq_driver->setpolicy) {
2921		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2922		pr_debug("supports frequency invariance");
2923	}
2924
2925	if (driver_data->setpolicy)
2926		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2927
2928	if (cpufreq_boost_supported()) {
2929		ret = create_boost_sysfs_file();
2930		if (ret)
2931			goto err_null_driver;
2932	}
2933
2934	ret = subsys_interface_register(&cpufreq_interface);
2935	if (ret)
2936		goto err_boost_unreg;
 
 
 
2937
2938	if (unlikely(list_empty(&cpufreq_policy_list))) {
2939		/* if all ->init() calls failed, unregister */
2940		ret = -ENODEV;
2941		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2942			 driver_data->name);
2943		goto err_if_unreg;
 
2944	}
2945
2946	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2947						   "cpufreq:online",
2948						   cpuhp_cpufreq_online,
2949						   cpuhp_cpufreq_offline);
2950	if (ret < 0)
2951		goto err_if_unreg;
2952	hp_online = ret;
2953	ret = 0;
2954
2955	pr_debug("driver %s up and running\n", driver_data->name);
2956	goto out;
2957
2958err_if_unreg:
2959	subsys_interface_unregister(&cpufreq_interface);
2960err_boost_unreg:
2961	remove_boost_sysfs_file();
2962err_null_driver:
2963	write_lock_irqsave(&cpufreq_driver_lock, flags);
2964	cpufreq_driver = NULL;
2965	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2966out:
2967	cpus_read_unlock();
2968	return ret;
2969}
2970EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2971
2972/*
 
2973 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2974 *
2975 * Unregister the current CPUFreq driver. Only call this if you have
2976 * the right to do so, i.e. if you have succeeded in initialising before!
2977 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2978 * currently not initialised.
2979 */
2980void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2981{
2982	unsigned long flags;
2983
2984	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2985		return;
2986
2987	pr_debug("unregistering driver %s\n", driver->name);
2988
2989	/* Protect against concurrent cpu hotplug */
2990	cpus_read_lock();
2991	subsys_interface_unregister(&cpufreq_interface);
2992	remove_boost_sysfs_file();
2993	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2994	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2995
2996	write_lock_irqsave(&cpufreq_driver_lock, flags);
2997
 
2998	cpufreq_driver = NULL;
 
2999
3000	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3001	cpus_read_unlock();
3002}
3003EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3004
3005static int __init cpufreq_core_init(void)
3006{
3007	struct cpufreq_governor *gov = cpufreq_default_governor();
3008	struct device *dev_root;
3009
3010	if (cpufreq_disabled())
3011		return -ENODEV;
 
 
3012
3013	dev_root = bus_get_dev_root(&cpu_subsys);
3014	if (dev_root) {
3015		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3016		put_device(dev_root);
3017	}
3018	BUG_ON(!cpufreq_global_kobject);
3019
3020	if (!strlen(default_governor))
3021		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3022
3023	return 0;
3024}
3025module_param(off, int, 0444);
3026module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3027core_initcall(cpufreq_core_init);