Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
 
   6 *
   7 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   8 *	Added handling for CPU hotplug
   9 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  10 *	Fix handling for CPU hotplug -- affected CPUs
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/init.h>
  21#include <linux/notifier.h>
  22#include <linux/cpufreq.h>
 
  23#include <linux/delay.h>
  24#include <linux/interrupt.h>
  25#include <linux/spinlock.h>
  26#include <linux/device.h>
  27#include <linux/slab.h>
  28#include <linux/cpu.h>
  29#include <linux/completion.h>
  30#include <linux/mutex.h>
 
 
 
  31#include <linux/syscore_ops.h>
  32
 
  33#include <trace/events/power.h>
  34
  35/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36 * The "cpufreq driver" - the arch- or hardware-dependent low
  37 * level driver of CPUFreq support, and its spinlock. This lock
  38 * also protects the cpufreq_cpu_data array.
  39 */
  40static struct cpufreq_driver *cpufreq_driver;
  41static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  42#ifdef CONFIG_HOTPLUG_CPU
  43/* This one keeps track of the previously set governor of a removed CPU */
  44static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
  45#endif
  46static DEFINE_SPINLOCK(cpufreq_driver_lock);
  47
  48/*
  49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
  50 * all cpufreq/hotplug/workqueue/etc related lock issues.
  51 *
  52 * The rules for this semaphore:
  53 * - Any routine that wants to read from the policy structure will
  54 *   do a down_read on this semaphore.
  55 * - Any routine that will write to the policy structure and/or may take away
  56 *   the policy altogether (eg. CPU hotplug), will hold this lock in write
  57 *   mode before doing so.
  58 *
  59 * Additional rules:
  60 * - All holders of the lock should check to make sure that the CPU they
  61 *   are concerned with are online after they get the lock.
  62 * - Governor routines that can be called in cpufreq hotplug path should not
  63 *   take this sem as top level hotplug notifier handler takes this.
  64 * - Lock should not be held across
  65 *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
  66 */
  67static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
  68static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
  69
  70#define lock_policy_rwsem(mode, cpu)					\
  71static int lock_policy_rwsem_##mode					\
  72(int cpu)								\
  73{									\
  74	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);		\
  75	BUG_ON(policy_cpu == -1);					\
  76	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
  77	if (unlikely(!cpu_online(cpu))) {				\
  78		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
  79		return -1;						\
  80	}								\
  81									\
  82	return 0;							\
  83}
  84
  85lock_policy_rwsem(read, cpu);
 
  86
  87lock_policy_rwsem(write, cpu);
  88
  89static void unlock_policy_rwsem_read(int cpu)
  90{
  91	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  92	BUG_ON(policy_cpu == -1);
  93	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
  94}
  95
  96static void unlock_policy_rwsem_write(int cpu)
  97{
  98	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  99	BUG_ON(policy_cpu == -1);
 100	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
 101}
 102
 103
 104/* internal prototypes */
 105static int __cpufreq_governor(struct cpufreq_policy *policy,
 106		unsigned int event);
 107static unsigned int __cpufreq_get(unsigned int cpu);
 108static void handle_update(struct work_struct *work);
 
 
 
 
 109
 110/**
 111 * Two notifier lists: the "policy" list is involved in the
 112 * validation process for a new CPU frequency policy; the
 113 * "transition" list for kernel code that needs to handle
 114 * changes to devices when the CPU clock speed changes.
 115 * The mutex locks both lists.
 116 */
 117static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
 118static struct srcu_notifier_head cpufreq_transition_notifier_list;
 119
 120static bool init_cpufreq_transition_notifier_list_called;
 121static int __init init_cpufreq_transition_notifier_list(void)
 122{
 123	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
 124	init_cpufreq_transition_notifier_list_called = true;
 125	return 0;
 
 
 126}
 127pure_initcall(init_cpufreq_transition_notifier_list);
 128
 129static LIST_HEAD(cpufreq_governor_list);
 130static DEFINE_MUTEX(cpufreq_governor_mutex);
 131
 132struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 133{
 134	struct cpufreq_policy *data;
 135	unsigned long flags;
 
 136
 137	if (cpu >= nr_cpu_ids)
 138		goto err_out;
 139
 140	/* get the cpufreq driver */
 141	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 142
 143	if (!cpufreq_driver)
 144		goto err_out_unlock;
 
 
 
 
 145
 146	if (!try_module_get(cpufreq_driver->owner))
 147		goto err_out_unlock;
 148
 
 149
 150	/* get the CPU */
 151	data = per_cpu(cpufreq_cpu_data, cpu);
 
 
 
 
 152
 153	if (!data)
 154		goto err_out_put_module;
 
 
 
 
 155
 156	if (!kobject_get(&data->kobj))
 157		goto err_out_put_module;
 
 158
 159	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 160	return data;
 
 
 161
 162err_out_put_module:
 163	module_put(cpufreq_driver->owner);
 164err_out_unlock:
 165	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 166err_out:
 167	return NULL;
 168}
 169EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170
 
 
 
 
 
 171
 172void cpufreq_cpu_put(struct cpufreq_policy *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173{
 174	kobject_put(&data->kobj);
 175	module_put(cpufreq_driver->owner);
 176}
 177EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180/*********************************************************************
 181 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 182 *********************************************************************/
 183
 184/**
 185 * adjust_jiffies - adjust the system "loops_per_jiffy"
 
 
 186 *
 187 * This function alters the system "loops_per_jiffy" for the clock
 188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 189 * systems as each CPU might be scaled differently. So, use the arch
 190 * per-CPU loops_per_jiffy value wherever possible.
 191 */
 192#ifndef CONFIG_SMP
 193static unsigned long l_p_j_ref;
 194static unsigned int  l_p_j_ref_freq;
 195
 196static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 197{
 
 
 
 
 198	if (ci->flags & CPUFREQ_CONST_LOOPS)
 199		return;
 200
 201	if (!l_p_j_ref_freq) {
 202		l_p_j_ref = loops_per_jiffy;
 203		l_p_j_ref_freq = ci->old;
 204		pr_debug("saving %lu as reference value for loops_per_jiffy; "
 205			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
 206	}
 207	if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
 208	    (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
 209	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
 210		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 211								ci->new);
 212		pr_debug("scaling loops_per_jiffy to %lu "
 213			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
 214	}
 215}
 216#else
 217static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 218{
 219	return;
 220}
 221#endif
 222
 223
 224/**
 225 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 226 * on frequency transition.
 227 *
 228 * This function calls the transition notifiers and the "adjust_jiffies"
 229 * function. It is called twice on all CPU frequency changes that have
 230 * external effects.
 231 */
 232void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 233{
 234	struct cpufreq_policy *policy;
 235
 236	BUG_ON(irqs_disabled());
 237
 
 
 
 
 238	freqs->flags = cpufreq_driver->flags;
 239	pr_debug("notification %u of frequency transition to %u kHz\n",
 240		state, freqs->new);
 241
 242	policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
 243	switch (state) {
 244
 245	case CPUFREQ_PRECHANGE:
 246		/* detect if the driver reported a value as "old frequency"
 
 247		 * which is not equal to what the cpufreq core thinks is
 248		 * "old frequency".
 249		 */
 250		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 251			if ((policy) && (policy->cpu == freqs->cpu) &&
 252			    (policy->cur) && (policy->cur != freqs->old)) {
 253				pr_debug("Warning: CPU frequency is"
 254					" %u, cpufreq assumed %u kHz.\n",
 255					freqs->old, policy->cur);
 256				freqs->old = policy->cur;
 257			}
 258		}
 
 259		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 260				CPUFREQ_PRECHANGE, freqs);
 
 261		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 262		break;
 263
 264	case CPUFREQ_POSTCHANGE:
 265		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 266		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
 267			(unsigned long)freqs->cpu);
 268		trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
 269		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 270		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 271				CPUFREQ_POSTCHANGE, freqs);
 272		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 273			policy->cur = freqs->new;
 274		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275	}
 
 
 
 
 
 
 
 276}
 277EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
 
 
 
 
 
 
 
 
 278
 
 
 
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280
 281/*********************************************************************
 282 *                          SYSFS INTERFACE                          *
 283 *********************************************************************/
 
 
 
 
 
 284
 285static struct cpufreq_governor *__find_governor(const char *str_governor)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286{
 287	struct cpufreq_governor *t;
 288
 289	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 290		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 291			return t;
 292
 293	return NULL;
 294}
 295
 296/**
 297 * cpufreq_parse_governor - parse a governor string
 298 */
 299static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 300				struct cpufreq_governor **governor)
 301{
 302	int err = -EINVAL;
 303
 304	if (!cpufreq_driver)
 305		goto out;
 
 
 306
 307	if (cpufreq_driver->setpolicy) {
 308		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 309			*policy = CPUFREQ_POLICY_PERFORMANCE;
 310			err = 0;
 311		} else if (!strnicmp(str_governor, "powersave",
 312						CPUFREQ_NAME_LEN)) {
 313			*policy = CPUFREQ_POLICY_POWERSAVE;
 314			err = 0;
 315		}
 316	} else if (cpufreq_driver->target) {
 317		struct cpufreq_governor *t;
 318
 319		mutex_lock(&cpufreq_governor_mutex);
 
 320
 321		t = __find_governor(str_governor);
 
 322
 323		if (t == NULL) {
 324			int ret;
 
 
 325
 326			mutex_unlock(&cpufreq_governor_mutex);
 327			ret = request_module("cpufreq_%s", str_governor);
 328			mutex_lock(&cpufreq_governor_mutex);
 329
 330			if (ret == 0)
 331				t = __find_governor(str_governor);
 332		}
 333
 334		if (t != NULL) {
 335			*governor = t;
 336			err = 0;
 337		}
 
 
 
 338
 339		mutex_unlock(&cpufreq_governor_mutex);
 340	}
 341out:
 342	return err;
 343}
 344
 
 
 345
 346/**
 
 
 
 347 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 348 * print out cpufreq information
 349 *
 350 * Write out information from cpufreq_driver->policy[cpu]; object must be
 351 * "unsigned int".
 352 */
 353
 354#define show_one(file_name, object)			\
 355static ssize_t show_##file_name				\
 356(struct cpufreq_policy *policy, char *buf)		\
 357{							\
 358	return sprintf(buf, "%u\n", policy->object);	\
 359}
 360
 361show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 362show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 363show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 364show_one(scaling_min_freq, min);
 365show_one(scaling_max_freq, max);
 366show_one(scaling_cur_freq, cur);
 367
 368static int __cpufreq_set_policy(struct cpufreq_policy *data,
 369				struct cpufreq_policy *policy);
 
 
 370
 371/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 373 */
 374#define store_one(file_name, object)			\
 375static ssize_t store_##file_name					\
 376(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 377{									\
 378	unsigned int ret = -EINVAL;					\
 379	struct cpufreq_policy new_policy;				\
 380									\
 381	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 382	if (ret)							\
 383		return -EINVAL;						\
 384									\
 385	ret = sscanf(buf, "%u", &new_policy.object);			\
 386	if (ret != 1)							\
 387		return -EINVAL;						\
 388									\
 389	ret = __cpufreq_set_policy(policy, &new_policy);		\
 390	policy->user_policy.object = policy->object;			\
 391									\
 392	return ret ? ret : count;					\
 393}
 394
 395store_one(scaling_min_freq, min);
 396store_one(scaling_max_freq, max);
 397
 398/**
 399 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 400 */
 401static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 402					char *buf)
 403{
 404	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 405	if (!cur_freq)
 406		return sprintf(buf, "<unknown>");
 407	return sprintf(buf, "%u\n", cur_freq);
 408}
 409
 
 
 410
 411/**
 
 
 
 412 * show_scaling_governor - show the current policy for the specified CPU
 413 */
 414static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 415{
 416	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 417		return sprintf(buf, "powersave\n");
 418	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 419		return sprintf(buf, "performance\n");
 420	else if (policy->governor)
 421		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
 422				policy->governor->name);
 423	return -EINVAL;
 424}
 425
 426
 427/**
 428 * store_scaling_governor - store policy for the specified CPU
 429 */
 430static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 431					const char *buf, size_t count)
 432{
 433	unsigned int ret = -EINVAL;
 434	char	str_governor[16];
 435	struct cpufreq_policy new_policy;
 436
 437	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 438	if (ret)
 439		return ret;
 440
 441	ret = sscanf(buf, "%15s", str_governor);
 442	if (ret != 1)
 443		return -EINVAL;
 444
 445	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 446						&new_policy.governor))
 447		return -EINVAL;
 
 
 
 448
 449	/* Do not use cpufreq_set_policy here or the user_policy.max
 450	   will be wrongly overridden */
 451	ret = __cpufreq_set_policy(policy, &new_policy);
 452
 453	policy->user_policy.policy = policy->policy;
 454	policy->user_policy.governor = policy->governor;
 
 455
 456	if (ret)
 457		return ret;
 458	else
 459		return count;
 
 
 
 460}
 461
 462/**
 463 * show_scaling_driver - show the cpufreq driver currently loaded
 464 */
 465static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 466{
 467	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
 468}
 469
 470/**
 471 * show_scaling_available_governors - show the available CPUfreq governors
 472 */
 473static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 474						char *buf)
 475{
 476	ssize_t i = 0;
 477	struct cpufreq_governor *t;
 478
 479	if (!cpufreq_driver->target) {
 480		i += sprintf(buf, "performance powersave");
 481		goto out;
 482	}
 483
 484	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 
 485		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 486		    - (CPUFREQ_NAME_LEN + 2)))
 487			goto out;
 488		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
 489	}
 
 490out:
 491	i += sprintf(&buf[i], "\n");
 492	return i;
 493}
 494
 495static ssize_t show_cpus(const struct cpumask *mask, char *buf)
 496{
 497	ssize_t i = 0;
 498	unsigned int cpu;
 499
 500	for_each_cpu(cpu, mask) {
 501		if (i)
 502			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 503		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 504		if (i >= (PAGE_SIZE - 5))
 505			break;
 506	}
 507	i += sprintf(&buf[i], "\n");
 
 
 
 
 508	return i;
 509}
 
 510
 511/**
 512 * show_related_cpus - show the CPUs affected by each transition even if
 513 * hw coordination is in use
 514 */
 515static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 516{
 517	if (cpumask_empty(policy->related_cpus))
 518		return show_cpus(policy->cpus, buf);
 519	return show_cpus(policy->related_cpus, buf);
 520}
 521
 522/**
 523 * show_affected_cpus - show the CPUs affected by each transition
 524 */
 525static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 526{
 527	return show_cpus(policy->cpus, buf);
 528}
 529
 530static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 531					const char *buf, size_t count)
 532{
 533	unsigned int freq = 0;
 534	unsigned int ret;
 535
 536	if (!policy->governor || !policy->governor->store_setspeed)
 537		return -EINVAL;
 538
 539	ret = sscanf(buf, "%u", &freq);
 540	if (ret != 1)
 541		return -EINVAL;
 542
 543	policy->governor->store_setspeed(policy, freq);
 544
 545	return count;
 546}
 547
 548static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (!policy->governor || !policy->governor->show_setspeed)
 551		return sprintf(buf, "<unsupported>\n");
 552
 553	return policy->governor->show_setspeed(policy, buf);
 554}
 555
 556/**
 557 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
 558 */
 559static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 560{
 561	unsigned int limit;
 562	int ret;
 563	if (cpufreq_driver->bios_limit) {
 564		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 565		if (!ret)
 566			return sprintf(buf, "%u\n", limit);
 567	}
 568	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 569}
 570
 571cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 572cpufreq_freq_attr_ro(cpuinfo_min_freq);
 573cpufreq_freq_attr_ro(cpuinfo_max_freq);
 574cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 575cpufreq_freq_attr_ro(scaling_available_governors);
 576cpufreq_freq_attr_ro(scaling_driver);
 577cpufreq_freq_attr_ro(scaling_cur_freq);
 578cpufreq_freq_attr_ro(bios_limit);
 579cpufreq_freq_attr_ro(related_cpus);
 580cpufreq_freq_attr_ro(affected_cpus);
 581cpufreq_freq_attr_rw(scaling_min_freq);
 582cpufreq_freq_attr_rw(scaling_max_freq);
 583cpufreq_freq_attr_rw(scaling_governor);
 584cpufreq_freq_attr_rw(scaling_setspeed);
 585
 586static struct attribute *default_attrs[] = {
 587	&cpuinfo_min_freq.attr,
 588	&cpuinfo_max_freq.attr,
 589	&cpuinfo_transition_latency.attr,
 590	&scaling_min_freq.attr,
 591	&scaling_max_freq.attr,
 592	&affected_cpus.attr,
 593	&related_cpus.attr,
 594	&scaling_governor.attr,
 595	&scaling_driver.attr,
 596	&scaling_available_governors.attr,
 597	&scaling_setspeed.attr,
 598	NULL
 599};
 600
 601struct kobject *cpufreq_global_kobject;
 602EXPORT_SYMBOL(cpufreq_global_kobject);
 603
 604#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 605#define to_attr(a) container_of(a, struct freq_attr, attr)
 606
 607static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 608{
 609	struct cpufreq_policy *policy = to_policy(kobj);
 610	struct freq_attr *fattr = to_attr(attr);
 611	ssize_t ret = -EINVAL;
 612	policy = cpufreq_cpu_get(policy->cpu);
 613	if (!policy)
 614		goto no_policy;
 615
 616	if (lock_policy_rwsem_read(policy->cpu) < 0)
 617		goto fail;
 618
 619	if (fattr->show)
 
 620		ret = fattr->show(policy, buf);
 621	else
 622		ret = -EIO;
 623
 624	unlock_policy_rwsem_read(policy->cpu);
 625fail:
 626	cpufreq_cpu_put(policy);
 627no_policy:
 628	return ret;
 629}
 630
 631static ssize_t store(struct kobject *kobj, struct attribute *attr,
 632		     const char *buf, size_t count)
 633{
 634	struct cpufreq_policy *policy = to_policy(kobj);
 635	struct freq_attr *fattr = to_attr(attr);
 636	ssize_t ret = -EINVAL;
 637	policy = cpufreq_cpu_get(policy->cpu);
 638	if (!policy)
 639		goto no_policy;
 640
 641	if (lock_policy_rwsem_write(policy->cpu) < 0)
 642		goto fail;
 643
 644	if (fattr->store)
 
 645		ret = fattr->store(policy, buf, count);
 646	else
 647		ret = -EIO;
 648
 649	unlock_policy_rwsem_write(policy->cpu);
 650fail:
 651	cpufreq_cpu_put(policy);
 652no_policy:
 653	return ret;
 654}
 655
 656static void cpufreq_sysfs_release(struct kobject *kobj)
 657{
 658	struct cpufreq_policy *policy = to_policy(kobj);
 659	pr_debug("last reference is dropped\n");
 660	complete(&policy->kobj_unregister);
 661}
 662
 663static const struct sysfs_ops sysfs_ops = {
 664	.show	= show,
 665	.store	= store,
 666};
 667
 668static struct kobj_type ktype_cpufreq = {
 669	.sysfs_ops	= &sysfs_ops,
 670	.default_attrs	= default_attrs,
 671	.release	= cpufreq_sysfs_release,
 672};
 673
 674/*
 675 * Returns:
 676 *   Negative: Failure
 677 *   0:        Success
 678 *   Positive: When we have a managed CPU and the sysfs got symlinked
 679 */
 680static int cpufreq_add_dev_policy(unsigned int cpu,
 681				  struct cpufreq_policy *policy,
 682				  struct sys_device *sys_dev)
 683{
 684	int ret = 0;
 685#ifdef CONFIG_SMP
 686	unsigned long flags;
 687	unsigned int j;
 688#ifdef CONFIG_HOTPLUG_CPU
 689	struct cpufreq_governor *gov;
 690
 691	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
 692	if (gov) {
 693		policy->governor = gov;
 694		pr_debug("Restoring governor %s for cpu %d\n",
 695		       policy->governor->name, cpu);
 696	}
 697#endif
 698
 699	for_each_cpu(j, policy->cpus) {
 700		struct cpufreq_policy *managed_policy;
 701
 702		if (cpu == j)
 703			continue;
 704
 705		/* Check for existing affected CPUs.
 706		 * They may not be aware of it due to CPU Hotplug.
 707		 * cpufreq_cpu_put is called when the device is removed
 708		 * in __cpufreq_remove_dev()
 709		 */
 710		managed_policy = cpufreq_cpu_get(j);
 711		if (unlikely(managed_policy)) {
 712
 713			/* Set proper policy_cpu */
 714			unlock_policy_rwsem_write(cpu);
 715			per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
 716
 717			if (lock_policy_rwsem_write(cpu) < 0) {
 718				/* Should not go through policy unlock path */
 719				if (cpufreq_driver->exit)
 720					cpufreq_driver->exit(policy);
 721				cpufreq_cpu_put(managed_policy);
 722				return -EBUSY;
 723			}
 724
 725			spin_lock_irqsave(&cpufreq_driver_lock, flags);
 726			cpumask_copy(managed_policy->cpus, policy->cpus);
 727			per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
 728			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 729
 730			pr_debug("CPU already managed, adding link\n");
 731			ret = sysfs_create_link(&sys_dev->kobj,
 732						&managed_policy->kobj,
 733						"cpufreq");
 734			if (ret)
 735				cpufreq_cpu_put(managed_policy);
 736			/*
 737			 * Success. We only needed to be added to the mask.
 738			 * Call driver->exit() because only the cpu parent of
 739			 * the kobj needed to call init().
 740			 */
 741			if (cpufreq_driver->exit)
 742				cpufreq_driver->exit(policy);
 743
 744			if (!ret)
 745				return 1;
 746			else
 747				return ret;
 748		}
 749	}
 750#endif
 751	return ret;
 752}
 753
 754
 755/* symlink affected CPUs */
 756static int cpufreq_add_dev_symlink(unsigned int cpu,
 757				   struct cpufreq_policy *policy)
 758{
 759	unsigned int j;
 760	int ret = 0;
 761
 762	for_each_cpu(j, policy->cpus) {
 763		struct cpufreq_policy *managed_policy;
 764		struct sys_device *cpu_sys_dev;
 765
 766		if (j == cpu)
 767			continue;
 768		if (!cpu_online(j))
 769			continue;
 770
 771		pr_debug("CPU %u already managed, adding link\n", j);
 772		managed_policy = cpufreq_cpu_get(cpu);
 773		cpu_sys_dev = get_cpu_sysdev(j);
 774		ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
 775					"cpufreq");
 776		if (ret) {
 777			cpufreq_cpu_put(managed_policy);
 778			return ret;
 779		}
 780	}
 781	return ret;
 782}
 783
 784static int cpufreq_add_dev_interface(unsigned int cpu,
 785				     struct cpufreq_policy *policy,
 786				     struct sys_device *sys_dev)
 787{
 788	struct cpufreq_policy new_policy;
 789	struct freq_attr **drv_attr;
 790	unsigned long flags;
 791	int ret = 0;
 792	unsigned int j;
 793
 794	/* prepare interface data */
 795	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 796				   &sys_dev->kobj, "cpufreq");
 797	if (ret)
 798		return ret;
 799
 800	/* set up files for this cpu device */
 801	drv_attr = cpufreq_driver->attr;
 802	while ((drv_attr) && (*drv_attr)) {
 803		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 804		if (ret)
 805			goto err_out_kobj_put;
 806		drv_attr++;
 807	}
 808	if (cpufreq_driver->get) {
 809		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 810		if (ret)
 811			goto err_out_kobj_put;
 812	}
 813	if (cpufreq_driver->target) {
 814		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 815		if (ret)
 816			goto err_out_kobj_put;
 817	}
 
 
 
 
 
 818	if (cpufreq_driver->bios_limit) {
 819		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 820		if (ret)
 821			goto err_out_kobj_put;
 822	}
 823
 824	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 825	for_each_cpu(j, policy->cpus) {
 826		if (!cpu_online(j))
 827			continue;
 828		per_cpu(cpufreq_cpu_data, j) = policy;
 829		per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
 830	}
 831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 832
 833	ret = cpufreq_add_dev_symlink(cpu, policy);
 834	if (ret)
 835		goto err_out_kobj_put;
 836
 837	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
 838	/* assure that the starting sequence is run in __cpufreq_set_policy */
 839	policy->governor = NULL;
 840
 841	/* set default policy */
 842	ret = __cpufreq_set_policy(policy, &new_policy);
 843	policy->user_policy.policy = policy->policy;
 844	policy->user_policy.governor = policy->governor;
 845
 846	if (ret) {
 847		pr_debug("setting policy failed\n");
 848		if (cpufreq_driver->exit)
 849			cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	}
 851	return ret;
 852
 853err_out_kobj_put:
 854	kobject_put(&policy->kobj);
 855	wait_for_completion(&policy->kobj_unregister);
 
 856	return ret;
 857}
 858
 859
 860/**
 861 * cpufreq_add_dev - add a CPU device
 862 *
 863 * Adds the cpufreq interface for a CPU device.
 864 *
 865 * The Oracle says: try running cpufreq registration/unregistration concurrently
 866 * with with cpu hotplugging and all hell will break loose. Tried to clean this
 867 * mess up, but more thorough testing is needed. - Mathieu
 868 */
 869static int cpufreq_add_dev(struct sys_device *sys_dev)
 870{
 871	unsigned int cpu = sys_dev->id;
 872	int ret = 0, found = 0;
 873	struct cpufreq_policy *policy;
 874	unsigned long flags;
 875	unsigned int j;
 876#ifdef CONFIG_HOTPLUG_CPU
 877	int sibling;
 878#endif
 879
 880	if (cpu_is_offline(cpu))
 
 881		return 0;
 882
 883	pr_debug("adding CPU %u\n", cpu);
 
 
 884
 885#ifdef CONFIG_SMP
 886	/* check whether a different CPU already registered this
 887	 * CPU because it is in the same boat. */
 888	policy = cpufreq_cpu_get(cpu);
 889	if (unlikely(policy)) {
 890		cpufreq_cpu_put(policy);
 891		return 0;
 892	}
 893#endif
 
 
 894
 895	if (!try_module_get(cpufreq_driver->owner)) {
 896		ret = -EINVAL;
 897		goto module_out;
 
 
 
 898	}
 
 
 
 
 
 
 
 899
 900	ret = -ENOMEM;
 901	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902	if (!policy)
 903		goto nomem_out;
 904
 905	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
 906		goto err_free_policy;
 907
 908	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
 909		goto err_free_cpumask;
 910
 911	policy->cpu = cpu;
 912	cpumask_copy(policy->cpus, cpumask_of(cpu));
 913
 914	/* Initially set CPU itself as the policy_cpu */
 915	per_cpu(cpufreq_policy_cpu, cpu) = cpu;
 916	ret = (lock_policy_rwsem_write(cpu) < 0);
 917	WARN_ON(ret);
 918
 919	init_completion(&policy->kobj_unregister);
 920	INIT_WORK(&policy->update, handle_update);
 921
 922	/* Set governor before ->init, so that driver could check it */
 923#ifdef CONFIG_HOTPLUG_CPU
 924	for_each_online_cpu(sibling) {
 925		struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
 926		if (cp && cp->governor &&
 927		    (cpumask_test_cpu(cpu, cp->related_cpus))) {
 928			policy->governor = cp->governor;
 929			found = 1;
 930			break;
 931		}
 932	}
 933#endif
 934	if (!found)
 935		policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
 936	/* call driver. From then on the cpufreq must be able
 937	 * to accept all calls to ->verify and ->setpolicy for this CPU
 938	 */
 939	ret = cpufreq_driver->init(policy);
 940	if (ret) {
 941		pr_debug("initialization failed\n");
 942		goto err_unlock_policy;
 
 
 
 
 
 
 943	}
 944	policy->user_policy.min = policy->min;
 945	policy->user_policy.max = policy->max;
 946
 947	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
 948				     CPUFREQ_START, policy);
 949
 950	ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
 
 
 
 
 951	if (ret) {
 952		if (ret > 0)
 953			/* This is a managed cpu, symlink created,
 954			   exit with 0 */
 955			ret = 0;
 956		goto err_unlock_policy;
 957	}
 958
 959	ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
 960	if (ret)
 961		goto err_out_unregister;
 
 
 
 
 962
 963	unlock_policy_rwsem_write(cpu);
 
 
 
 
 964
 965	kobject_uevent(&policy->kobj, KOBJ_ADD);
 966	module_put(cpufreq_driver->owner);
 967	pr_debug("initialization complete\n");
 968
 969	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 970
 
 
 971
 972err_out_unregister:
 973	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 974	for_each_cpu(j, policy->cpus)
 975		per_cpu(cpufreq_cpu_data, j) = NULL;
 976	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 977
 978	kobject_put(&policy->kobj);
 979	wait_for_completion(&policy->kobj_unregister);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980
 981err_unlock_policy:
 982	unlock_policy_rwsem_write(cpu);
 983	free_cpumask_var(policy->related_cpus);
 984err_free_cpumask:
 985	free_cpumask_var(policy->cpus);
 986err_free_policy:
 987	kfree(policy);
 988nomem_out:
 989	module_put(cpufreq_driver->owner);
 990module_out:
 991	return ret;
 992}
 993
 994
 995/**
 996 * __cpufreq_remove_dev - remove a CPU device
 997 *
 998 * Removes the cpufreq interface for a CPU device.
 999 * Caller should already have policy_rwsem in write mode for this CPU.
1000 * This routine frees the rwsem before returning.
1001 */
1002static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1003{
1004	unsigned int cpu = sys_dev->id;
 
1005	unsigned long flags;
1006	struct cpufreq_policy *data;
1007	struct kobject *kobj;
1008	struct completion *cmp;
1009#ifdef CONFIG_SMP
1010	struct sys_device *cpu_sys_dev;
1011	unsigned int j;
1012#endif
1013
1014	pr_debug("unregistering CPU %u\n", cpu);
1015
1016	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1017	data = per_cpu(cpufreq_cpu_data, cpu);
1018
1019	if (!data) {
1020		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1021		unlock_policy_rwsem_write(cpu);
1022		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023	}
1024	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1025
 
 
 
1026
1027#ifdef CONFIG_SMP
1028	/* if this isn't the CPU which is the parent of the kobj, we
1029	 * only need to unlink, put and exit
1030	 */
1031	if (unlikely(cpu != data->cpu)) {
1032		pr_debug("removing link\n");
1033		cpumask_clear_cpu(cpu, data->cpus);
1034		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1035		kobj = &sys_dev->kobj;
1036		cpufreq_cpu_put(data);
1037		unlock_policy_rwsem_write(cpu);
1038		sysfs_remove_link(kobj, "cpufreq");
1039		return 0;
1040	}
1041#endif
1042
1043#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
1044
1045#ifdef CONFIG_HOTPLUG_CPU
1046	strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1047			CPUFREQ_NAME_LEN);
1048#endif
 
 
 
 
 
 
 
 
 
 
 
 
1049
1050	/* if we have other CPUs still registered, we need to unlink them,
1051	 * or else wait_for_completion below will lock up. Clean the
1052	 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1053	 * the sysfs links afterwards.
1054	 */
1055	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1056		for_each_cpu(j, data->cpus) {
1057			if (j == cpu)
1058				continue;
1059			per_cpu(cpufreq_cpu_data, j) = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061	}
1062
1063	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064
1065	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1066		for_each_cpu(j, data->cpus) {
1067			if (j == cpu)
1068				continue;
1069			pr_debug("removing link for cpu %u\n", j);
1070#ifdef CONFIG_HOTPLUG_CPU
1071			strncpy(per_cpu(cpufreq_cpu_governor, j),
1072				data->governor->name, CPUFREQ_NAME_LEN);
1073#endif
1074			cpu_sys_dev = get_cpu_sysdev(j);
1075			kobj = &cpu_sys_dev->kobj;
1076			unlock_policy_rwsem_write(cpu);
1077			sysfs_remove_link(kobj, "cpufreq");
1078			lock_policy_rwsem_write(cpu);
1079			cpufreq_cpu_put(data);
1080		}
1081	}
1082#else
1083	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084#endif
1085
1086	if (cpufreq_driver->target)
1087		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088
1089	kobj = &data->kobj;
1090	cmp = &data->kobj_unregister;
1091	unlock_policy_rwsem_write(cpu);
1092	kobject_put(kobj);
 
 
 
 
 
 
1093
1094	/* we need to make sure that the underlying kobj is actually
1095	 * not referenced anymore by anybody before we proceed with
1096	 * unloading.
1097	 */
1098	pr_debug("waiting for dropping of refcount\n");
1099	wait_for_completion(cmp);
1100	pr_debug("wait complete\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101
1102	lock_policy_rwsem_write(cpu);
 
 
 
 
 
 
 
 
1103	if (cpufreq_driver->exit)
1104		cpufreq_driver->exit(data);
1105	unlock_policy_rwsem_write(cpu);
1106
1107#ifdef CONFIG_HOTPLUG_CPU
1108	/* when the CPU which is the parent of the kobj is hotplugged
1109	 * offline, check for siblings, and create cpufreq sysfs interface
1110	 * and symlinks
1111	 */
1112	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1113		/* first sibling now owns the new sysfs dir */
1114		cpumask_clear_cpu(cpu, data->cpus);
1115		cpufreq_add_dev(get_cpu_sysdev(cpumask_first(data->cpus)));
1116
1117		/* finally remove our own symlink */
1118		lock_policy_rwsem_write(cpu);
1119		__cpufreq_remove_dev(sys_dev);
 
 
 
 
 
 
 
 
 
 
 
 
1120	}
1121#endif
1122
1123	free_cpumask_var(data->related_cpus);
1124	free_cpumask_var(data->cpus);
1125	kfree(data);
 
1126
1127	return 0;
1128}
1129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130
1131static int cpufreq_remove_dev(struct sys_device *sys_dev)
 
 
 
1132{
1133	unsigned int cpu = sys_dev->id;
1134	int retval;
1135
1136	if (cpu_is_offline(cpu))
 
 
 
 
1137		return 0;
 
1138
1139	if (unlikely(lock_policy_rwsem_write(cpu)))
1140		BUG();
1141
1142	retval = __cpufreq_remove_dev(sys_dev);
1143	return retval;
1144}
1145
 
 
 
1146
1147static void handle_update(struct work_struct *work)
 
 
 
 
 
1148{
1149	struct cpufreq_policy *policy =
1150		container_of(work, struct cpufreq_policy, update);
1151	unsigned int cpu = policy->cpu;
1152	pr_debug("handle_update for cpu %u called\n", cpu);
1153	cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154}
1155
1156/**
1157 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1158 *	@cpu: cpu number
1159 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1160 *	@new_freq: CPU frequency the CPU actually runs at
1161 *
1162 *	We adjust to current frequency first, and need to clean up later.
1163 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1164 */
1165static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1166				unsigned int new_freq)
1167{
1168	struct cpufreq_freqs freqs;
1169
1170	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1171	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172
1173	freqs.cpu = cpu;
1174	freqs.old = old_freq;
1175	freqs.new = new_freq;
1176	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1177	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
 
1178}
1179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181/**
1182 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1183 * @cpu: CPU number
1184 *
1185 * This is the last known freq, without actually getting it from the driver.
1186 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187 */
1188unsigned int cpufreq_quick_get(unsigned int cpu)
1189{
1190	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1191	unsigned int ret_freq = 0;
 
 
 
 
 
 
 
 
 
 
 
1192
 
1193	if (policy) {
1194		ret_freq = policy->cur;
1195		cpufreq_cpu_put(policy);
1196	}
1197
1198	return ret_freq;
1199}
1200EXPORT_SYMBOL(cpufreq_quick_get);
1201
1202/**
1203 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1204 * @cpu: CPU number
1205 *
1206 * Just return the max possible frequency for a given CPU.
1207 */
1208unsigned int cpufreq_quick_get_max(unsigned int cpu)
1209{
1210	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1211	unsigned int ret_freq = 0;
1212
1213	if (policy) {
1214		ret_freq = policy->max;
1215		cpufreq_cpu_put(policy);
1216	}
1217
1218	return ret_freq;
1219}
1220EXPORT_SYMBOL(cpufreq_quick_get_max);
1221
1222
1223static unsigned int __cpufreq_get(unsigned int cpu)
 
 
 
 
 
1224{
1225	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1226	unsigned int ret_freq = 0;
1227
1228	if (!cpufreq_driver->get)
1229		return ret_freq;
1230
1231	ret_freq = cpufreq_driver->get(cpu);
1232
1233	if (ret_freq && policy->cur &&
1234		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1235		/* verify no discrepancy between actual and
1236					saved value exists */
1237		if (unlikely(ret_freq != policy->cur)) {
1238			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1239			schedule_work(&policy->update);
1240		}
1241	}
1242
1243	return ret_freq;
1244}
 
 
 
 
 
 
 
 
 
1245
1246/**
1247 * cpufreq_get - get the current CPU frequency (in kHz)
1248 * @cpu: CPU number
1249 *
1250 * Get the CPU current (static) CPU frequency
1251 */
1252unsigned int cpufreq_get(unsigned int cpu)
1253{
1254	unsigned int ret_freq = 0;
1255	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 
1256
1257	if (!policy)
1258		goto out;
1259
1260	if (unlikely(lock_policy_rwsem_read(cpu)))
1261		goto out_policy;
1262
1263	ret_freq = __cpufreq_get(cpu);
1264
1265	unlock_policy_rwsem_read(cpu);
 
1266
1267out_policy:
1268	cpufreq_cpu_put(policy);
1269out:
1270	return ret_freq;
1271}
1272EXPORT_SYMBOL(cpufreq_get);
1273
1274static struct sysdev_driver cpufreq_sysdev_driver = {
1275	.add		= cpufreq_add_dev,
1276	.remove		= cpufreq_remove_dev,
 
 
1277};
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279
1280/**
1281 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1282 *
1283 * This function is only executed for the boot processor.  The other CPUs
1284 * have been put offline by means of CPU hotplug.
 
 
1285 */
1286static int cpufreq_bp_suspend(void)
1287{
1288	int ret = 0;
1289
1290	int cpu = smp_processor_id();
1291	struct cpufreq_policy *cpu_policy;
1292
1293	pr_debug("suspending cpu %u\n", cpu);
 
1294
1295	/* If there's no policy for the boot CPU, we have nothing to do. */
1296	cpu_policy = cpufreq_cpu_get(cpu);
1297	if (!cpu_policy)
1298		return 0;
1299
1300	if (cpufreq_driver->suspend) {
1301		ret = cpufreq_driver->suspend(cpu_policy);
1302		if (ret)
1303			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1304					"step on CPU %u\n", cpu_policy->cpu);
 
 
 
 
 
1305	}
1306
1307	cpufreq_cpu_put(cpu_policy);
1308	return ret;
1309}
1310
1311/**
1312 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1313 *
1314 *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1315 *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1316 *	    restored. It will verify that the current freq is in sync with
1317 *	    what we believe it to be. This is a bit later than when it
1318 *	    should be, but nonethteless it's better than calling
1319 *	    cpufreq_driver->get() here which might re-enable interrupts...
1320 *
1321 * This function is only executed for the boot CPU.  The other CPUs have not
1322 * been turned on yet.
1323 */
1324static void cpufreq_bp_resume(void)
1325{
1326	int ret = 0;
 
1327
1328	int cpu = smp_processor_id();
1329	struct cpufreq_policy *cpu_policy;
 
 
 
1330
1331	pr_debug("resuming cpu %u\n", cpu);
1332
1333	/* If there's no policy for the boot CPU, we have nothing to do. */
1334	cpu_policy = cpufreq_cpu_get(cpu);
1335	if (!cpu_policy)
1336		return;
1337
1338	if (cpufreq_driver->resume) {
1339		ret = cpufreq_driver->resume(cpu_policy);
1340		if (ret) {
1341			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1342					"step on CPU %u\n", cpu_policy->cpu);
1343			goto fail;
 
 
 
 
 
 
 
 
1344		}
1345	}
 
1346
1347	schedule_work(&cpu_policy->update);
 
 
 
 
 
 
 
 
 
 
1348
1349fail:
1350	cpufreq_cpu_put(cpu_policy);
 
 
 
 
 
 
 
 
 
 
1351}
 
1352
1353static struct syscore_ops cpufreq_syscore_ops = {
1354	.suspend	= cpufreq_bp_suspend,
1355	.resume		= cpufreq_bp_resume,
1356};
 
 
 
 
 
 
1357
 
 
 
1358
1359/*********************************************************************
1360 *                     NOTIFIER LISTS INTERFACE                      *
1361 *********************************************************************/
1362
1363/**
1364 *	cpufreq_register_notifier - register a driver with cpufreq
1365 *	@nb: notifier function to register
1366 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1367 *
1368 *	Add a driver to one of two lists: either a list of drivers that
1369 *      are notified about clock rate changes (once before and once after
1370 *      the transition), or a list of drivers that are notified about
1371 *      changes in cpufreq policy.
1372 *
1373 *	This function may sleep, and has the same return conditions as
1374 *	blocking_notifier_chain_register.
1375 */
1376int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1377{
1378	int ret;
1379
1380	WARN_ON(!init_cpufreq_transition_notifier_list_called);
 
1381
1382	switch (list) {
1383	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1384		ret = srcu_notifier_chain_register(
1385				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1386		break;
1387	case CPUFREQ_POLICY_NOTIFIER:
1388		ret = blocking_notifier_chain_register(
1389				&cpufreq_policy_notifier_list, nb);
1390		break;
1391	default:
1392		ret = -EINVAL;
1393	}
1394
1395	return ret;
1396}
1397EXPORT_SYMBOL(cpufreq_register_notifier);
1398
1399
1400/**
1401 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1402 *	@nb: notifier block to be unregistered
1403 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1404 *
1405 *	Remove a driver from the CPU frequency notifier list.
1406 *
1407 *	This function may sleep, and has the same return conditions as
1408 *	blocking_notifier_chain_unregister.
1409 */
1410int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1411{
1412	int ret;
1413
 
 
 
1414	switch (list) {
1415	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1416		ret = srcu_notifier_chain_unregister(
1417				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1418		break;
1419	case CPUFREQ_POLICY_NOTIFIER:
1420		ret = blocking_notifier_chain_unregister(
1421				&cpufreq_policy_notifier_list, nb);
1422		break;
1423	default:
1424		ret = -EINVAL;
1425	}
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL(cpufreq_unregister_notifier);
1430
1431
1432/*********************************************************************
1433 *                              GOVERNORS                            *
1434 *********************************************************************/
1435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436
1437int __cpufreq_driver_target(struct cpufreq_policy *policy,
1438			    unsigned int target_freq,
1439			    unsigned int relation)
1440{
1441	int retval = -EINVAL;
1442
1443	pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1444		target_freq, relation);
1445	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1446		retval = cpufreq_driver->target(policy, target_freq, relation);
1447
1448	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449}
1450EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1451
1452int cpufreq_driver_target(struct cpufreq_policy *policy,
1453			  unsigned int target_freq,
1454			  unsigned int relation)
1455{
1456	int ret = -EINVAL;
1457
1458	policy = cpufreq_cpu_get(policy->cpu);
1459	if (!policy)
1460		goto no_policy;
1461
1462	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1463		goto fail;
1464
1465	ret = __cpufreq_driver_target(policy, target_freq, relation);
1466
1467	unlock_policy_rwsem_write(policy->cpu);
1468
1469fail:
1470	cpufreq_cpu_put(policy);
1471no_policy:
1472	return ret;
1473}
1474EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1475
1476int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1477{
1478	int ret = 0;
 
1479
1480	policy = cpufreq_cpu_get(policy->cpu);
1481	if (!policy)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482		return -EINVAL;
1483
1484	if (cpu_online(cpu) && cpufreq_driver->getavg)
1485		ret = cpufreq_driver->getavg(policy, cpu);
1486
1487	cpufreq_cpu_put(policy);
1488	return ret;
 
 
 
 
 
 
 
 
 
1489}
1490EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1491
1492/*
1493 * when "event" is CPUFREQ_GOV_LIMITS
1494 */
 
1495
1496static int __cpufreq_governor(struct cpufreq_policy *policy,
1497					unsigned int event)
 
 
 
 
 
 
 
1498{
1499	int ret;
1500
1501	/* Only must be defined when default governor is known to have latency
1502	   restrictions, like e.g. conservative or ondemand.
1503	   That this is the case is already ensured in Kconfig
1504	*/
1505#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1506	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1507#else
1508	struct cpufreq_governor *gov = NULL;
1509#endif
1510
1511	if (policy->governor->max_transition_latency &&
1512	    policy->cpuinfo.transition_latency >
1513	    policy->governor->max_transition_latency) {
1514		if (!gov)
1515			return -EINVAL;
1516		else {
1517			printk(KERN_WARNING "%s governor failed, too long"
1518			       " transition latency of HW, fallback"
1519			       " to %s governor\n",
1520			       policy->governor->name,
1521			       gov->name);
1522			policy->governor = gov;
1523		}
1524	}
1525
1526	if (!try_module_get(policy->governor->owner))
1527		return -EINVAL;
 
 
 
1528
1529	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1530						policy->cpu, event);
1531	ret = policy->governor->governor(policy, event);
1532
1533	/* we keep one module reference alive for
1534			each CPU governed by this CPU */
1535	if ((event != CPUFREQ_GOV_START) || ret)
1536		module_put(policy->governor->owner);
1537	if ((event == CPUFREQ_GOV_STOP) && !ret)
1538		module_put(policy->governor->owner);
1539
1540	return ret;
 
 
 
1541}
1542
 
 
 
 
 
 
 
 
 
 
1543
1544int cpufreq_register_governor(struct cpufreq_governor *governor)
1545{
1546	int err;
1547
1548	if (!governor)
1549		return -EINVAL;
1550
 
 
 
1551	mutex_lock(&cpufreq_governor_mutex);
1552
1553	err = -EBUSY;
1554	if (__find_governor(governor->name) == NULL) {
1555		err = 0;
1556		list_add(&governor->governor_list, &cpufreq_governor_list);
1557	}
1558
1559	mutex_unlock(&cpufreq_governor_mutex);
1560	return err;
1561}
1562EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1563
1564
1565void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1566{
1567#ifdef CONFIG_HOTPLUG_CPU
1568	int cpu;
1569#endif
1570
1571	if (!governor)
1572		return;
1573
1574#ifdef CONFIG_HOTPLUG_CPU
1575	for_each_present_cpu(cpu) {
1576		if (cpu_online(cpu))
1577			continue;
1578		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1579			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
 
 
 
1580	}
1581#endif
1582
1583	mutex_lock(&cpufreq_governor_mutex);
1584	list_del(&governor->governor_list);
1585	mutex_unlock(&cpufreq_governor_mutex);
1586	return;
1587}
1588EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1589
1590
1591
1592/*********************************************************************
1593 *                          POLICY INTERFACE                         *
1594 *********************************************************************/
1595
1596/**
1597 * cpufreq_get_policy - get the current cpufreq_policy
1598 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1599 *	is written
 
1600 *
1601 * Reads the current cpufreq policy.
1602 */
1603int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1604{
1605	struct cpufreq_policy *cpu_policy;
1606	if (!policy)
1607		return -EINVAL;
1608
1609	cpu_policy = cpufreq_cpu_get(cpu);
1610	if (!cpu_policy)
1611		return -EINVAL;
1612
1613	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1614
1615	cpufreq_cpu_put(cpu_policy);
1616	return 0;
1617}
1618EXPORT_SYMBOL(cpufreq_get_policy);
1619
 
1620
1621/*
1622 * data   : current policy.
1623 * policy : policy to be set.
 
 
1624 */
1625static int __cpufreq_set_policy(struct cpufreq_policy *data,
1626				struct cpufreq_policy *policy)
1627{
1628	int ret = 0;
 
 
1629
1630	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1631		policy->min, policy->max);
 
 
 
 
 
 
 
 
 
 
 
 
 
1632
1633	memcpy(&policy->cpuinfo, &data->cpuinfo,
1634				sizeof(struct cpufreq_cpuinfo));
 
1635
1636	if (policy->min > data->max || policy->max < data->min) {
1637		ret = -EINVAL;
1638		goto error_out;
1639	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640
1641	/* verify the cpu speed can be set within this limit */
1642	ret = cpufreq_driver->verify(policy);
1643	if (ret)
1644		goto error_out;
 
 
 
 
 
 
 
 
1645
1646	/* adjust if necessary - all reasons */
1647	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1648			CPUFREQ_ADJUST, policy);
1649
1650	/* adjust if necessary - hardware incompatibility*/
1651	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1652			CPUFREQ_INCOMPATIBLE, policy);
1653
1654	/* verify the cpu speed can be set within this limit,
1655	   which might be different to the first one */
1656	ret = cpufreq_driver->verify(policy);
1657	if (ret)
1658		goto error_out;
 
 
 
 
 
 
 
 
 
 
 
1659
1660	/* notification of the new policy */
1661	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1662			CPUFREQ_NOTIFY, policy);
1663
1664	data->min = policy->min;
1665	data->max = policy->max;
1666
1667	pr_debug("new min and max freqs are %u - %u kHz\n",
1668					data->min, data->max);
1669
1670	if (cpufreq_driver->setpolicy) {
1671		data->policy = policy->policy;
1672		pr_debug("setting range\n");
1673		ret = cpufreq_driver->setpolicy(policy);
1674	} else {
1675		if (policy->governor != data->governor) {
1676			/* save old, working values */
1677			struct cpufreq_governor *old_gov = data->governor;
1678
1679			pr_debug("governor switch\n");
1680
1681			/* end old governor */
1682			if (data->governor)
1683				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1684
1685			/* start new governor */
1686			data->governor = policy->governor;
1687			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1688				/* new governor failed, so re-start old one */
1689				pr_debug("starting governor %s failed\n",
1690							data->governor->name);
1691				if (old_gov) {
1692					data->governor = old_gov;
1693					__cpufreq_governor(data,
1694							   CPUFREQ_GOV_START);
1695				}
1696				ret = -EINVAL;
1697				goto error_out;
1698			}
1699			/* might be a policy change, too, so fall through */
1700		}
1701		pr_debug("governor: change or update limits\n");
1702		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
 
 
 
 
 
 
 
 
 
1703	}
1704
1705error_out:
1706	return ret;
1707}
1708
1709/**
1710 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1711 *	@cpu: CPU which shall be re-evaluated
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712 *
1713 *	Useful for policy notifiers which have different necessities
1714 *	at different times.
1715 */
1716int cpufreq_update_policy(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
1717{
1718	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1719	struct cpufreq_policy policy;
1720	int ret;
1721
1722	if (!data) {
1723		ret = -ENODEV;
1724		goto no_policy;
1725	}
1726
1727	if (unlikely(lock_policy_rwsem_write(cpu))) {
1728		ret = -EINVAL;
1729		goto fail;
 
1730	}
1731
1732	pr_debug("updating policy for CPU %u\n", cpu);
1733	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1734	policy.min = data->user_policy.min;
1735	policy.max = data->user_policy.max;
1736	policy.policy = data->user_policy.policy;
1737	policy.governor = data->user_policy.governor;
1738
1739	/* BIOS might change freq behind our back
1740	  -> ask driver for current freq and notify governors about a change */
1741	if (cpufreq_driver->get) {
1742		policy.cur = cpufreq_driver->get(cpu);
1743		if (!data->cur) {
1744			pr_debug("Driver did not initialize current freq");
1745			data->cur = policy.cur;
1746		} else {
1747			if (data->cur != policy.cur)
1748				cpufreq_out_of_sync(cpu, data->cur,
1749								policy.cur);
 
 
 
 
 
 
 
 
 
 
 
 
1750		}
1751	}
 
1752
1753	ret = __cpufreq_set_policy(data, &policy);
 
 
 
1754
1755	unlock_policy_rwsem_write(cpu);
 
 
 
 
 
1756
1757fail:
1758	cpufreq_cpu_put(data);
1759no_policy:
1760	return ret;
1761}
1762EXPORT_SYMBOL(cpufreq_update_policy);
1763
1764static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1765					unsigned long action, void *hcpu)
1766{
1767	unsigned int cpu = (unsigned long)hcpu;
1768	struct sys_device *sys_dev;
1769
1770	sys_dev = get_cpu_sysdev(cpu);
1771	if (sys_dev) {
1772		switch (action) {
1773		case CPU_ONLINE:
1774		case CPU_ONLINE_FROZEN:
1775			cpufreq_add_dev(sys_dev);
1776			break;
1777		case CPU_DOWN_PREPARE:
1778		case CPU_DOWN_PREPARE_FROZEN:
1779			if (unlikely(lock_policy_rwsem_write(cpu)))
1780				BUG();
1781
1782			__cpufreq_remove_dev(sys_dev);
1783			break;
1784		case CPU_DOWN_FAILED:
1785		case CPU_DOWN_FAILED_FROZEN:
1786			cpufreq_add_dev(sys_dev);
1787			break;
1788		}
1789	}
1790	return NOTIFY_OK;
1791}
1792
1793static struct notifier_block __refdata cpufreq_cpu_notifier = {
1794    .notifier_call = cpufreq_cpu_callback,
1795};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796
1797/*********************************************************************
1798 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1799 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
1801/**
1802 * cpufreq_register_driver - register a CPU Frequency driver
1803 * @driver_data: A struct cpufreq_driver containing the values#
1804 * submitted by the CPU Frequency driver.
1805 *
1806 *   Registers a CPU Frequency driver to this core code. This code
1807 * returns zero on success, -EBUSY when another driver got here first
1808 * (and isn't unregistered in the meantime).
1809 *
1810 */
1811int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1812{
1813	unsigned long flags;
1814	int ret;
1815
 
 
 
 
 
 
 
 
 
 
1816	if (!driver_data || !driver_data->verify || !driver_data->init ||
1817	    ((!driver_data->setpolicy) && (!driver_data->target)))
 
 
 
 
 
 
1818		return -EINVAL;
1819
1820	pr_debug("trying to register driver %s\n", driver_data->name);
1821
1822	if (driver_data->setpolicy)
1823		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1824
1825	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1826	if (cpufreq_driver) {
1827		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828		return -EBUSY;
 
1829	}
1830	cpufreq_driver = driver_data;
1831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1832
1833	ret = sysdev_driver_register(&cpu_sysdev_class,
1834					&cpufreq_sysdev_driver);
1835	if (ret)
1836		goto err_null_driver;
 
 
 
 
1837
1838	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839		int i;
1840		ret = -ENODEV;
 
 
 
 
 
1841
1842		/* check for at least one working CPU */
1843		for (i = 0; i < nr_cpu_ids; i++)
1844			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845				ret = 0;
1846				break;
1847			}
1848
 
1849		/* if all ->init() calls failed, unregister */
1850		if (ret) {
1851			pr_debug("no CPU initialized for driver %s\n",
1852							driver_data->name);
1853			goto err_sysdev_unreg;
1854		}
1855	}
1856
1857	register_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
 
 
1858	pr_debug("driver %s up and running\n", driver_data->name);
 
1859
1860	return 0;
1861err_sysdev_unreg:
1862	sysdev_driver_unregister(&cpu_sysdev_class,
1863			&cpufreq_sysdev_driver);
1864err_null_driver:
1865	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1866	cpufreq_driver = NULL;
1867	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1868	return ret;
1869}
1870EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1871
1872
1873/**
1874 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1875 *
1876 *    Unregister the current CPUFreq driver. Only call this if you have
1877 * the right to do so, i.e. if you have succeeded in initialising before!
1878 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1879 * currently not initialised.
1880 */
1881int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1882{
1883	unsigned long flags;
1884
1885	if (!cpufreq_driver || (driver != cpufreq_driver))
1886		return -EINVAL;
1887
1888	pr_debug("unregistering driver %s\n", driver->name);
1889
1890	sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1891	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
1892
1893	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1894	cpufreq_driver = NULL;
1895	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1896
1897	return 0;
 
1898}
1899EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1900
1901static int __init cpufreq_core_init(void)
1902{
1903	int cpu;
 
1904
1905	for_each_possible_cpu(cpu) {
1906		per_cpu(cpufreq_policy_cpu, cpu) = -1;
1907		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1908	}
1909
1910	cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1911						&cpu_sysdev_class.kset.kobj);
 
 
 
1912	BUG_ON(!cpufreq_global_kobject);
1913	register_syscore_ops(&cpufreq_syscore_ops);
 
 
1914
1915	return 0;
1916}
 
 
1917core_initcall(cpufreq_core_init);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
 
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
 
 
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
 
 
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
 
 
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
 
 
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
 
 
  79}
  80
 
  81/* internal prototypes */
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 
 
 
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 
 
 
 
 
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 241
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 252	kobject_put(&policy->kobj);
 
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 266
 267	up_write(&policy->rwsem);
 268
 269	cpufreq_cpu_put(policy);
 270}
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 299}
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 
 
 
 
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 
 
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 
 
 
 
 
 
 336#endif
 337}
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 354
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 
 365	switch (state) {
 
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 
 
 
 
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 397	}
 398}
 399
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency)
 579		/* Give a 50% breathing room between updates */
 580		return latency + (latency >> 1);
 581
 582	return USEC_PER_MSEC;
 583}
 584EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 585
 586/*********************************************************************
 587 *                          SYSFS INTERFACE                          *
 588 *********************************************************************/
 589static ssize_t show_boost(struct kobject *kobj,
 590			  struct kobj_attribute *attr, char *buf)
 591{
 592	return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled);
 593}
 594
 595static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 596			   const char *buf, size_t count)
 597{
 598	bool enable;
 599
 600	if (kstrtobool(buf, &enable))
 601		return -EINVAL;
 602
 603	if (cpufreq_boost_trigger_state(enable)) {
 604		pr_err("%s: Cannot %s BOOST!\n",
 605		       __func__, enable ? "enable" : "disable");
 606		return -EINVAL;
 607	}
 608
 609	pr_debug("%s: cpufreq BOOST %s\n",
 610		 __func__, enable ? "enabled" : "disabled");
 611
 612	return count;
 613}
 614define_one_global_rw(boost);
 615
 616static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 617{
 618	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 619}
 620
 621static ssize_t store_local_boost(struct cpufreq_policy *policy,
 622				 const char *buf, size_t count)
 623{
 624	int ret;
 625	bool enable;
 626
 627	if (kstrtobool(buf, &enable))
 628		return -EINVAL;
 629
 630	if (!cpufreq_driver->boost_enabled)
 631		return -EINVAL;
 632
 633	if (policy->boost_enabled == enable)
 634		return count;
 635
 636	policy->boost_enabled = enable;
 637
 638	cpus_read_lock();
 639	ret = cpufreq_driver->set_boost(policy, enable);
 640	cpus_read_unlock();
 641
 642	if (ret) {
 643		policy->boost_enabled = !policy->boost_enabled;
 644		return ret;
 645	}
 646
 647	return count;
 648}
 649
 650static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 651
 652static struct cpufreq_governor *find_governor(const char *str_governor)
 653{
 654	struct cpufreq_governor *t;
 655
 656	for_each_governor(t)
 657		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 658			return t;
 659
 660	return NULL;
 661}
 662
 663static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 664{
 665	struct cpufreq_governor *t;
 666
 667	mutex_lock(&cpufreq_governor_mutex);
 668	t = find_governor(str_governor);
 669	if (!t)
 670		goto unlock;
 671
 672	if (!try_module_get(t->owner))
 673		t = NULL;
 
 
 
 
 
 
 
 
 
 674
 675unlock:
 676	mutex_unlock(&cpufreq_governor_mutex);
 677
 678	return t;
 679}
 680
 681static unsigned int cpufreq_parse_policy(char *str_governor)
 682{
 683	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 684		return CPUFREQ_POLICY_PERFORMANCE;
 685
 686	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 687		return CPUFREQ_POLICY_POWERSAVE;
 
 688
 689	return CPUFREQ_POLICY_UNKNOWN;
 690}
 
 691
 692/**
 693 * cpufreq_parse_governor - parse a governor string only for has_target()
 694 * @str_governor: Governor name.
 695 */
 696static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 697{
 698	struct cpufreq_governor *t;
 699
 700	t = get_governor(str_governor);
 701	if (t)
 702		return t;
 
 
 703
 704	if (request_module("cpufreq_%s", str_governor))
 705		return NULL;
 706
 707	return get_governor(str_governor);
 708}
 709
 710/*
 711 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 712 * print out cpufreq information
 713 *
 714 * Write out information from cpufreq_driver->policy[cpu]; object must be
 715 * "unsigned int".
 716 */
 717
 718#define show_one(file_name, object)			\
 719static ssize_t show_##file_name				\
 720(struct cpufreq_policy *policy, char *buf)		\
 721{							\
 722	return sysfs_emit(buf, "%u\n", policy->object);	\
 723}
 724
 725show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 726show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 727show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 728show_one(scaling_min_freq, min);
 729show_one(scaling_max_freq, max);
 
 730
 731__weak unsigned int arch_freq_get_on_cpu(int cpu)
 732{
 733	return 0;
 734}
 735
 736static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 737{
 738	ssize_t ret;
 739	unsigned int freq;
 740
 741	freq = arch_freq_get_on_cpu(policy->cpu);
 742	if (freq)
 743		ret = sysfs_emit(buf, "%u\n", freq);
 744	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 745		ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 746	else
 747		ret = sysfs_emit(buf, "%u\n", policy->cur);
 748	return ret;
 749}
 750
 751/*
 752 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 753 */
 754#define store_one(file_name, object)			\
 755static ssize_t store_##file_name					\
 756(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 757{									\
 758	unsigned long val;						\
 759	int ret;							\
 760									\
 761	ret = kstrtoul(buf, 0, &val);					\
 762	if (ret)							\
 763		return ret;						\
 
 
 
 
 764									\
 765	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 766	return ret >= 0 ? count : ret;					\
 
 
 767}
 768
 769store_one(scaling_min_freq, min);
 770store_one(scaling_max_freq, max);
 771
 772/*
 773 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 774 */
 775static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 776					char *buf)
 777{
 778	unsigned int cur_freq = __cpufreq_get(policy);
 
 
 
 
 779
 780	if (cur_freq)
 781		return sysfs_emit(buf, "%u\n", cur_freq);
 782
 783	return sysfs_emit(buf, "<unknown>\n");
 784}
 785
 786/*
 787 * show_scaling_governor - show the current policy for the specified CPU
 788 */
 789static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 790{
 791	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 792		return sysfs_emit(buf, "powersave\n");
 793	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 794		return sysfs_emit(buf, "performance\n");
 795	else if (policy->governor)
 796		return sysfs_emit(buf, "%s\n", policy->governor->name);
 
 797	return -EINVAL;
 798}
 799
 800/*
 
 801 * store_scaling_governor - store policy for the specified CPU
 802 */
 803static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 804					const char *buf, size_t count)
 805{
 806	char str_governor[16];
 807	int ret;
 
 
 
 
 
 808
 809	ret = sscanf(buf, "%15s", str_governor);
 810	if (ret != 1)
 811		return -EINVAL;
 812
 813	if (cpufreq_driver->setpolicy) {
 814		unsigned int new_pol;
 815
 816		new_pol = cpufreq_parse_policy(str_governor);
 817		if (!new_pol)
 818			return -EINVAL;
 819
 820		ret = cpufreq_set_policy(policy, NULL, new_pol);
 821	} else {
 822		struct cpufreq_governor *new_gov;
 823
 824		new_gov = cpufreq_parse_governor(str_governor);
 825		if (!new_gov)
 826			return -EINVAL;
 827
 828		ret = cpufreq_set_policy(policy, new_gov,
 829					 CPUFREQ_POLICY_UNKNOWN);
 830
 831		module_put(new_gov->owner);
 832	}
 833
 834	return ret ? ret : count;
 835}
 836
 837/*
 838 * show_scaling_driver - show the cpufreq driver currently loaded
 839 */
 840static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 841{
 842	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 843}
 844
 845/*
 846 * show_scaling_available_governors - show the available CPUfreq governors
 847 */
 848static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 849						char *buf)
 850{
 851	ssize_t i = 0;
 852	struct cpufreq_governor *t;
 853
 854	if (!has_target()) {
 855		i += sysfs_emit(buf, "performance powersave");
 856		goto out;
 857	}
 858
 859	mutex_lock(&cpufreq_governor_mutex);
 860	for_each_governor(t) {
 861		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 862		    - (CPUFREQ_NAME_LEN + 2)))
 863			break;
 864		i += sysfs_emit_at(buf, i, "%s ", t->name);
 865	}
 866	mutex_unlock(&cpufreq_governor_mutex);
 867out:
 868	i += sysfs_emit_at(buf, i, "\n");
 869	return i;
 870}
 871
 872ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 873{
 874	ssize_t i = 0;
 875	unsigned int cpu;
 876
 877	for_each_cpu(cpu, mask) {
 878		i += sysfs_emit_at(buf, i, "%u ", cpu);
 
 
 879		if (i >= (PAGE_SIZE - 5))
 880			break;
 881	}
 882
 883	/* Remove the extra space at the end */
 884	i--;
 885
 886	i += sysfs_emit_at(buf, i, "\n");
 887	return i;
 888}
 889EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 890
 891/*
 892 * show_related_cpus - show the CPUs affected by each transition even if
 893 * hw coordination is in use
 894 */
 895static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 896{
 897	return cpufreq_show_cpus(policy->related_cpus, buf);
 
 
 898}
 899
 900/*
 901 * show_affected_cpus - show the CPUs affected by each transition
 902 */
 903static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 904{
 905	return cpufreq_show_cpus(policy->cpus, buf);
 906}
 907
 908static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 909					const char *buf, size_t count)
 910{
 911	unsigned int freq = 0;
 912	unsigned int ret;
 913
 914	if (!policy->governor || !policy->governor->store_setspeed)
 915		return -EINVAL;
 916
 917	ret = sscanf(buf, "%u", &freq);
 918	if (ret != 1)
 919		return -EINVAL;
 920
 921	policy->governor->store_setspeed(policy, freq);
 922
 923	return count;
 924}
 925
 926static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 927{
 928	if (!policy->governor || !policy->governor->show_setspeed)
 929		return sysfs_emit(buf, "<unsupported>\n");
 930
 931	return policy->governor->show_setspeed(policy, buf);
 932}
 933
 934/*
 935 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 936 */
 937static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 938{
 939	unsigned int limit;
 940	int ret;
 941	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 942	if (!ret)
 943		return sysfs_emit(buf, "%u\n", limit);
 944	return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq);
 
 
 945}
 946
 947cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 948cpufreq_freq_attr_ro(cpuinfo_min_freq);
 949cpufreq_freq_attr_ro(cpuinfo_max_freq);
 950cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 951cpufreq_freq_attr_ro(scaling_available_governors);
 952cpufreq_freq_attr_ro(scaling_driver);
 953cpufreq_freq_attr_ro(scaling_cur_freq);
 954cpufreq_freq_attr_ro(bios_limit);
 955cpufreq_freq_attr_ro(related_cpus);
 956cpufreq_freq_attr_ro(affected_cpus);
 957cpufreq_freq_attr_rw(scaling_min_freq);
 958cpufreq_freq_attr_rw(scaling_max_freq);
 959cpufreq_freq_attr_rw(scaling_governor);
 960cpufreq_freq_attr_rw(scaling_setspeed);
 961
 962static struct attribute *cpufreq_attrs[] = {
 963	&cpuinfo_min_freq.attr,
 964	&cpuinfo_max_freq.attr,
 965	&cpuinfo_transition_latency.attr,
 966	&scaling_min_freq.attr,
 967	&scaling_max_freq.attr,
 968	&affected_cpus.attr,
 969	&related_cpus.attr,
 970	&scaling_governor.attr,
 971	&scaling_driver.attr,
 972	&scaling_available_governors.attr,
 973	&scaling_setspeed.attr,
 974	NULL
 975};
 976ATTRIBUTE_GROUPS(cpufreq);
 
 
 977
 978#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 979#define to_attr(a) container_of(a, struct freq_attr, attr)
 980
 981static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 982{
 983	struct cpufreq_policy *policy = to_policy(kobj);
 984	struct freq_attr *fattr = to_attr(attr);
 985	ssize_t ret = -EBUSY;
 
 
 
 986
 987	if (!fattr->show)
 988		return -EIO;
 989
 990	down_read(&policy->rwsem);
 991	if (likely(!policy_is_inactive(policy)))
 992		ret = fattr->show(policy, buf);
 993	up_read(&policy->rwsem);
 
 994
 
 
 
 
 995	return ret;
 996}
 997
 998static ssize_t store(struct kobject *kobj, struct attribute *attr,
 999		     const char *buf, size_t count)
1000{
1001	struct cpufreq_policy *policy = to_policy(kobj);
1002	struct freq_attr *fattr = to_attr(attr);
1003	ssize_t ret = -EBUSY;
 
 
 
1004
1005	if (!fattr->store)
1006		return -EIO;
1007
1008	down_write(&policy->rwsem);
1009	if (likely(!policy_is_inactive(policy)))
1010		ret = fattr->store(policy, buf, count);
1011	up_write(&policy->rwsem);
 
1012
 
 
 
 
1013	return ret;
1014}
1015
1016static void cpufreq_sysfs_release(struct kobject *kobj)
1017{
1018	struct cpufreq_policy *policy = to_policy(kobj);
1019	pr_debug("last reference is dropped\n");
1020	complete(&policy->kobj_unregister);
1021}
1022
1023static const struct sysfs_ops sysfs_ops = {
1024	.show	= show,
1025	.store	= store,
1026};
1027
1028static const struct kobj_type ktype_cpufreq = {
1029	.sysfs_ops	= &sysfs_ops,
1030	.default_groups	= cpufreq_groups,
1031	.release	= cpufreq_sysfs_release,
1032};
1033
1034static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1035				struct device *dev)
 
 
 
 
 
 
 
1036{
1037	if (unlikely(!dev))
1038		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039
1040	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1041		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042
1043	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1044	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1045		dev_err(dev, "cpufreq symlink creation failed\n");
 
 
 
 
 
1046}
1047
1048static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1049				   struct device *dev)
 
 
1050{
1051	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1052	sysfs_remove_link(&dev->kobj, "cpufreq");
1053	cpumask_clear_cpu(cpu, policy->real_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054}
1055
1056static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
 
1057{
 
1058	struct freq_attr **drv_attr;
 
1059	int ret = 0;
 
 
 
 
 
 
 
1060
1061	/* set up files for this cpu device */
1062	drv_attr = cpufreq_driver->attr;
1063	while (drv_attr && *drv_attr) {
1064		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1065		if (ret)
1066			return ret;
1067		drv_attr++;
1068	}
1069	if (cpufreq_driver->get) {
1070		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1071		if (ret)
1072			return ret;
 
 
 
 
 
1073	}
1074
1075	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1076	if (ret)
1077		return ret;
1078
1079	if (cpufreq_driver->bios_limit) {
1080		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1081		if (ret)
1082			return ret;
1083	}
1084
1085	if (cpufreq_boost_supported()) {
1086		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1087		if (ret)
1088			return ret;
 
 
1089	}
 
1090
1091	return 0;
1092}
 
1093
1094static int cpufreq_init_policy(struct cpufreq_policy *policy)
1095{
1096	struct cpufreq_governor *gov = NULL;
1097	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1098	int ret;
 
 
 
1099
1100	if (has_target()) {
1101		/* Update policy governor to the one used before hotplug. */
1102		gov = get_governor(policy->last_governor);
1103		if (gov) {
1104			pr_debug("Restoring governor %s for cpu %d\n",
1105				 gov->name, policy->cpu);
1106		} else {
1107			gov = get_governor(default_governor);
1108		}
1109
1110		if (!gov) {
1111			gov = cpufreq_default_governor();
1112			__module_get(gov->owner);
1113		}
1114
1115	} else {
1116
1117		/* Use the default policy if there is no last_policy. */
1118		if (policy->last_policy) {
1119			pol = policy->last_policy;
1120		} else {
1121			pol = cpufreq_parse_policy(default_governor);
1122			/*
1123			 * In case the default governor is neither "performance"
1124			 * nor "powersave", fall back to the initial policy
1125			 * value set by the driver.
1126			 */
1127			if (pol == CPUFREQ_POLICY_UNKNOWN)
1128				pol = policy->policy;
1129		}
1130		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1131		    pol != CPUFREQ_POLICY_POWERSAVE)
1132			return -ENODATA;
1133	}
 
1134
1135	ret = cpufreq_set_policy(policy, gov, pol);
1136	if (gov)
1137		module_put(gov->owner);
1138
1139	return ret;
1140}
1141
1142static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
1143{
1144	int ret = 0;
 
 
 
 
 
 
 
1145
1146	/* Has this CPU been taken care of already? */
1147	if (cpumask_test_cpu(cpu, policy->cpus))
1148		return 0;
1149
1150	down_write(&policy->rwsem);
1151	if (has_target())
1152		cpufreq_stop_governor(policy);
1153
1154	cpumask_set_cpu(cpu, policy->cpus);
1155
1156	if (has_target()) {
1157		ret = cpufreq_start_governor(policy);
1158		if (ret)
1159			pr_err("%s: Failed to start governor\n", __func__);
 
1160	}
1161	up_write(&policy->rwsem);
1162	return ret;
1163}
1164
1165void refresh_frequency_limits(struct cpufreq_policy *policy)
1166{
1167	if (!policy_is_inactive(policy)) {
1168		pr_debug("updating policy for CPU %u\n", policy->cpu);
1169
1170		cpufreq_set_policy(policy, policy->governor, policy->policy);
1171	}
1172}
1173EXPORT_SYMBOL(refresh_frequency_limits);
1174
1175static void handle_update(struct work_struct *work)
1176{
1177	struct cpufreq_policy *policy =
1178		container_of(work, struct cpufreq_policy, update);
1179
1180	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1181	down_write(&policy->rwsem);
1182	refresh_frequency_limits(policy);
1183	up_write(&policy->rwsem);
1184}
1185
1186static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1187				void *data)
1188{
1189	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1190
1191	schedule_work(&policy->update);
1192	return 0;
1193}
1194
1195static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1196				void *data)
1197{
1198	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1199
1200	schedule_work(&policy->update);
1201	return 0;
1202}
1203
1204static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1205{
1206	struct kobject *kobj;
1207	struct completion *cmp;
1208
1209	down_write(&policy->rwsem);
1210	cpufreq_stats_free_table(policy);
1211	kobj = &policy->kobj;
1212	cmp = &policy->kobj_unregister;
1213	up_write(&policy->rwsem);
1214	kobject_put(kobj);
1215
1216	/*
1217	 * We need to make sure that the underlying kobj is
1218	 * actually not referenced anymore by anybody before we
1219	 * proceed with unloading.
1220	 */
1221	pr_debug("waiting for dropping of refcount\n");
1222	wait_for_completion(cmp);
1223	pr_debug("wait complete\n");
1224}
1225
1226static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1227{
1228	struct cpufreq_policy *policy;
1229	struct device *dev = get_cpu_device(cpu);
1230	int ret;
1231
1232	if (!dev)
1233		return NULL;
1234
1235	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1236	if (!policy)
1237		return NULL;
1238
1239	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1240		goto err_free_policy;
1241
1242	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1243		goto err_free_cpumask;
1244
1245	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1246		goto err_free_rcpumask;
 
 
 
 
 
1247
1248	init_completion(&policy->kobj_unregister);
1249	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1250				   cpufreq_global_kobject, "policy%u", cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251	if (ret) {
1252		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1253		/*
1254		 * The entire policy object will be freed below, but the extra
1255		 * memory allocated for the kobject name needs to be freed by
1256		 * releasing the kobject.
1257		 */
1258		kobject_put(&policy->kobj);
1259		goto err_free_real_cpus;
1260	}
 
 
1261
1262	freq_constraints_init(&policy->constraints);
 
1263
1264	policy->nb_min.notifier_call = cpufreq_notifier_min;
1265	policy->nb_max.notifier_call = cpufreq_notifier_max;
1266
1267	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1268				    &policy->nb_min);
1269	if (ret) {
1270		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1271			ret, cpu);
1272		goto err_kobj_remove;
 
 
1273	}
1274
1275	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1276				    &policy->nb_max);
1277	if (ret) {
1278		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1279			ret, cpu);
1280		goto err_min_qos_notifier;
1281	}
1282
1283	INIT_LIST_HEAD(&policy->policy_list);
1284	init_rwsem(&policy->rwsem);
1285	spin_lock_init(&policy->transition_lock);
1286	init_waitqueue_head(&policy->transition_wait);
1287	INIT_WORK(&policy->update, handle_update);
1288
1289	policy->cpu = cpu;
1290	return policy;
 
1291
1292err_min_qos_notifier:
1293	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1294				 &policy->nb_min);
1295err_kobj_remove:
1296	cpufreq_policy_put_kobj(policy);
1297err_free_real_cpus:
1298	free_cpumask_var(policy->real_cpus);
1299err_free_rcpumask:
1300	free_cpumask_var(policy->related_cpus);
1301err_free_cpumask:
1302	free_cpumask_var(policy->cpus);
1303err_free_policy:
1304	kfree(policy);
1305
1306	return NULL;
1307}
1308
1309static void cpufreq_policy_free(struct cpufreq_policy *policy)
1310{
1311	unsigned long flags;
1312	int cpu;
 
1313
1314	/*
1315	 * The callers must ensure the policy is inactive by now, to avoid any
1316	 * races with show()/store() callbacks.
1317	 */
1318	if (unlikely(!policy_is_inactive(policy)))
1319		pr_warn("%s: Freeing active policy\n", __func__);
1320
1321	/* Remove policy from list */
1322	write_lock_irqsave(&cpufreq_driver_lock, flags);
1323	list_del(&policy->policy_list);
1324
1325	for_each_cpu(cpu, policy->related_cpus)
1326		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1327	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1328
1329	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1330				 &policy->nb_max);
1331	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1332				 &policy->nb_min);
1333
1334	/* Cancel any pending policy->update work before freeing the policy. */
1335	cancel_work_sync(&policy->update);
1336
1337	if (policy->max_freq_req) {
1338		/*
1339		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1340		 * notification, since CPUFREQ_CREATE_POLICY notification was
1341		 * sent after adding max_freq_req earlier.
1342		 */
1343		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1344					     CPUFREQ_REMOVE_POLICY, policy);
1345		freq_qos_remove_request(policy->max_freq_req);
1346	}
1347
1348	freq_qos_remove_request(policy->min_freq_req);
1349	kfree(policy->min_freq_req);
1350
1351	cpufreq_policy_put_kobj(policy);
1352	free_cpumask_var(policy->real_cpus);
1353	free_cpumask_var(policy->related_cpus);
 
1354	free_cpumask_var(policy->cpus);
 
1355	kfree(policy);
 
 
 
 
1356}
1357
1358static int cpufreq_online(unsigned int cpu)
 
 
 
 
 
 
 
 
1359{
1360	struct cpufreq_policy *policy;
1361	bool new_policy;
1362	unsigned long flags;
 
 
 
 
 
1363	unsigned int j;
1364	int ret;
 
 
1365
1366	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
 
1367
1368	/* Check if this CPU already has a policy to manage it */
1369	policy = per_cpu(cpufreq_cpu_data, cpu);
1370	if (policy) {
1371		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1372		if (!policy_is_inactive(policy))
1373			return cpufreq_add_policy_cpu(policy, cpu);
1374
1375		/* This is the only online CPU for the policy.  Start over. */
1376		new_policy = false;
1377		down_write(&policy->rwsem);
1378		policy->cpu = cpu;
1379		policy->governor = NULL;
1380	} else {
1381		new_policy = true;
1382		policy = cpufreq_policy_alloc(cpu);
1383		if (!policy)
1384			return -ENOMEM;
1385		down_write(&policy->rwsem);
1386	}
 
1387
1388	if (!new_policy && cpufreq_driver->online) {
1389		/* Recover policy->cpus using related_cpus */
1390		cpumask_copy(policy->cpus, policy->related_cpus);
1391
1392		ret = cpufreq_driver->online(policy);
1393		if (ret) {
1394			pr_debug("%s: %d: initialization failed\n", __func__,
1395				 __LINE__);
1396			goto out_exit_policy;
1397		}
1398	} else {
1399		cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
 
 
 
 
 
1400
1401		/*
1402		 * Call driver. From then on the cpufreq must be able
1403		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1404		 */
1405		ret = cpufreq_driver->init(policy);
1406		if (ret) {
1407			pr_debug("%s: %d: initialization failed\n", __func__,
1408				 __LINE__);
1409			goto out_free_policy;
1410		}
1411
1412		/* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1413		if (cpufreq_boost_enabled() && policy_has_boost_freq(policy))
1414			policy->boost_enabled = true;
1415
1416		/*
1417		 * The initialization has succeeded and the policy is online.
1418		 * If there is a problem with its frequency table, take it
1419		 * offline and drop it.
1420		 */
1421		ret = cpufreq_table_validate_and_sort(policy);
1422		if (ret)
1423			goto out_offline_policy;
1424
1425		/* related_cpus should at least include policy->cpus. */
1426		cpumask_copy(policy->related_cpus, policy->cpus);
1427	}
1428
1429	/*
1430	 * affected cpus must always be the one, which are online. We aren't
1431	 * managing offline cpus here.
 
1432	 */
1433	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1434
1435	if (new_policy) {
1436		for_each_cpu(j, policy->related_cpus) {
1437			per_cpu(cpufreq_cpu_data, j) = policy;
1438			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1439		}
1440
1441		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1442					       GFP_KERNEL);
1443		if (!policy->min_freq_req) {
1444			ret = -ENOMEM;
1445			goto out_destroy_policy;
1446		}
1447
1448		ret = freq_qos_add_request(&policy->constraints,
1449					   policy->min_freq_req, FREQ_QOS_MIN,
1450					   FREQ_QOS_MIN_DEFAULT_VALUE);
1451		if (ret < 0) {
1452			/*
1453			 * So we don't call freq_qos_remove_request() for an
1454			 * uninitialized request.
1455			 */
1456			kfree(policy->min_freq_req);
1457			policy->min_freq_req = NULL;
1458			goto out_destroy_policy;
1459		}
1460
1461		/*
1462		 * This must be initialized right here to avoid calling
1463		 * freq_qos_remove_request() on uninitialized request in case
1464		 * of errors.
1465		 */
1466		policy->max_freq_req = policy->min_freq_req + 1;
1467
1468		ret = freq_qos_add_request(&policy->constraints,
1469					   policy->max_freq_req, FREQ_QOS_MAX,
1470					   FREQ_QOS_MAX_DEFAULT_VALUE);
1471		if (ret < 0) {
1472			policy->max_freq_req = NULL;
1473			goto out_destroy_policy;
1474		}
1475
1476		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1477				CPUFREQ_CREATE_POLICY, policy);
1478	}
1479
1480	if (cpufreq_driver->get && has_target()) {
1481		policy->cur = cpufreq_driver->get(policy->cpu);
1482		if (!policy->cur) {
1483			ret = -EIO;
1484			pr_err("%s: ->get() failed\n", __func__);
1485			goto out_destroy_policy;
 
 
 
 
 
 
 
 
 
 
 
1486		}
1487	}
 
 
 
1488
1489	/*
1490	 * Sometimes boot loaders set CPU frequency to a value outside of
1491	 * frequency table present with cpufreq core. In such cases CPU might be
1492	 * unstable if it has to run on that frequency for long duration of time
1493	 * and so its better to set it to a frequency which is specified in
1494	 * freq-table. This also makes cpufreq stats inconsistent as
1495	 * cpufreq-stats would fail to register because current frequency of CPU
1496	 * isn't found in freq-table.
1497	 *
1498	 * Because we don't want this change to effect boot process badly, we go
1499	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1500	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1501	 * is initialized to zero).
1502	 *
1503	 * We are passing target-freq as "policy->cur - 1" otherwise
1504	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1505	 * equal to target-freq.
1506	 */
1507	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1508	    && has_target()) {
1509		unsigned int old_freq = policy->cur;
1510
1511		/* Are we running at unknown frequency ? */
1512		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1513		if (ret == -EINVAL) {
1514			ret = __cpufreq_driver_target(policy, old_freq - 1,
1515						      CPUFREQ_RELATION_L);
1516
1517			/*
1518			 * Reaching here after boot in a few seconds may not
1519			 * mean that system will remain stable at "unknown"
1520			 * frequency for longer duration. Hence, a BUG_ON().
1521			 */
1522			BUG_ON(ret);
1523			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u kHz, changing to: %u kHz\n",
1524				__func__, policy->cpu, old_freq, policy->cur);
1525		}
1526	}
1527
1528	if (new_policy) {
1529		ret = cpufreq_add_dev_interface(policy);
1530		if (ret)
1531			goto out_destroy_policy;
1532
1533		cpufreq_stats_create_table(policy);
1534
1535		write_lock_irqsave(&cpufreq_driver_lock, flags);
1536		list_add(&policy->policy_list, &cpufreq_policy_list);
1537		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1538
1539		/*
1540		 * Register with the energy model before
1541		 * sugov_eas_rebuild_sd() is called, which will result
1542		 * in rebuilding of the sched domains, which should only be done
1543		 * once the energy model is properly initialized for the policy
1544		 * first.
1545		 *
1546		 * Also, this should be called before the policy is registered
1547		 * with cooling framework.
1548		 */
1549		if (cpufreq_driver->register_em)
1550			cpufreq_driver->register_em(policy);
1551	}
1552
1553	ret = cpufreq_init_policy(policy);
1554	if (ret) {
1555		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1556		       __func__, cpu, ret);
1557		goto out_destroy_policy;
1558	}
1559
1560	up_write(&policy->rwsem);
1561
1562	kobject_uevent(&policy->kobj, KOBJ_ADD);
1563
1564	/* Callback for handling stuff after policy is ready */
1565	if (cpufreq_driver->ready)
1566		cpufreq_driver->ready(policy);
1567
1568	/* Register cpufreq cooling only for a new policy */
1569	if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1570		policy->cdev = of_cpufreq_cooling_register(policy);
1571
1572	pr_debug("initialization complete\n");
1573
1574	return 0;
1575
1576out_destroy_policy:
1577	for_each_cpu(j, policy->real_cpus)
1578		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1579
1580out_offline_policy:
1581	if (cpufreq_driver->offline)
1582		cpufreq_driver->offline(policy);
1583
1584out_exit_policy:
1585	if (cpufreq_driver->exit)
1586		cpufreq_driver->exit(policy);
 
1587
1588out_free_policy:
1589	cpumask_clear(policy->cpus);
1590	up_write(&policy->rwsem);
1591
1592	cpufreq_policy_free(policy);
1593	return ret;
1594}
1595
1596/**
1597 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1598 * @dev: CPU device.
1599 * @sif: Subsystem interface structure pointer (not used)
1600 */
1601static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1602{
1603	struct cpufreq_policy *policy;
1604	unsigned cpu = dev->id;
1605	int ret;
1606
1607	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1608
1609	if (cpu_online(cpu)) {
1610		ret = cpufreq_online(cpu);
1611		if (ret)
1612			return ret;
1613	}
 
1614
1615	/* Create sysfs link on CPU registration */
1616	policy = per_cpu(cpufreq_cpu_data, cpu);
1617	if (policy)
1618		add_cpu_dev_symlink(policy, cpu, dev);
1619
1620	return 0;
1621}
1622
1623static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1624{
1625	int ret;
1626
1627	if (has_target())
1628		cpufreq_stop_governor(policy);
1629
1630	cpumask_clear_cpu(cpu, policy->cpus);
1631
1632	if (!policy_is_inactive(policy)) {
1633		/* Nominate a new CPU if necessary. */
1634		if (cpu == policy->cpu)
1635			policy->cpu = cpumask_any(policy->cpus);
1636
1637		/* Start the governor again for the active policy. */
1638		if (has_target()) {
1639			ret = cpufreq_start_governor(policy);
1640			if (ret)
1641				pr_err("%s: Failed to start governor\n", __func__);
1642		}
1643
1644		return;
1645	}
1646
1647	if (has_target())
1648		strscpy(policy->last_governor, policy->governor->name,
1649			CPUFREQ_NAME_LEN);
1650	else
1651		policy->last_policy = policy->policy;
1652
1653	if (has_target())
1654		cpufreq_exit_governor(policy);
1655
1656	/*
1657	 * Perform the ->offline() during light-weight tear-down, as
1658	 * that allows fast recovery when the CPU comes back.
1659	 */
1660	if (cpufreq_driver->offline) {
1661		cpufreq_driver->offline(policy);
1662		return;
1663	}
1664
1665	if (cpufreq_driver->exit)
1666		cpufreq_driver->exit(policy);
1667
1668	policy->freq_table = NULL;
1669}
1670
1671static int cpufreq_offline(unsigned int cpu)
1672{
1673	struct cpufreq_policy *policy;
 
1674
1675	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1676
1677	policy = cpufreq_cpu_get_raw(cpu);
1678	if (!policy) {
1679		pr_debug("%s: No cpu_data found\n", __func__);
1680		return 0;
1681	}
1682
1683	down_write(&policy->rwsem);
 
1684
1685	__cpufreq_offline(cpu, policy);
 
 
1686
1687	up_write(&policy->rwsem);
1688	return 0;
1689}
1690
1691/*
1692 * cpufreq_remove_dev - remove a CPU device
1693 *
1694 * Removes the cpufreq interface for a CPU device.
1695 */
1696static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1697{
1698	unsigned int cpu = dev->id;
1699	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1700
1701	if (!policy)
1702		return;
1703
1704	down_write(&policy->rwsem);
1705
1706	if (cpu_online(cpu))
1707		__cpufreq_offline(cpu, policy);
1708
1709	remove_cpu_dev_symlink(policy, cpu, dev);
1710
1711	if (!cpumask_empty(policy->real_cpus)) {
1712		up_write(&policy->rwsem);
1713		return;
1714	}
1715
1716	/*
1717	 * Unregister cpufreq cooling once all the CPUs of the policy are
1718	 * removed.
1719	 */
1720	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1721		cpufreq_cooling_unregister(policy->cdev);
1722		policy->cdev = NULL;
1723	}
1724
1725	/* We did light-weight exit earlier, do full tear down now */
1726	if (cpufreq_driver->offline && cpufreq_driver->exit)
1727		cpufreq_driver->exit(policy);
1728
1729	up_write(&policy->rwsem);
1730
1731	cpufreq_policy_free(policy);
1732}
1733
1734/**
1735 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1736 * @policy: Policy managing CPUs.
1737 * @new_freq: New CPU frequency.
 
1738 *
1739 * Adjust to the current frequency first and clean up later by either calling
1740 * cpufreq_update_policy(), or scheduling handle_update().
1741 */
1742static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1743				unsigned int new_freq)
1744{
1745	struct cpufreq_freqs freqs;
1746
1747	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1748		 policy->cur, new_freq);
1749
1750	freqs.old = policy->cur;
 
1751	freqs.new = new_freq;
1752
1753	cpufreq_freq_transition_begin(policy, &freqs);
1754	cpufreq_freq_transition_end(policy, &freqs, 0);
1755}
1756
1757static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1758{
1759	unsigned int new_freq;
1760
1761	new_freq = cpufreq_driver->get(policy->cpu);
1762	if (!new_freq)
1763		return 0;
1764
1765	/*
1766	 * If fast frequency switching is used with the given policy, the check
1767	 * against policy->cur is pointless, so skip it in that case.
1768	 */
1769	if (policy->fast_switch_enabled || !has_target())
1770		return new_freq;
1771
1772	if (policy->cur != new_freq) {
1773		/*
1774		 * For some platforms, the frequency returned by hardware may be
1775		 * slightly different from what is provided in the frequency
1776		 * table, for example hardware may return 499 MHz instead of 500
1777		 * MHz. In such cases it is better to avoid getting into
1778		 * unnecessary frequency updates.
1779		 */
1780		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1781			return policy->cur;
1782
1783		cpufreq_out_of_sync(policy, new_freq);
1784		if (update)
1785			schedule_work(&policy->update);
1786	}
1787
1788	return new_freq;
1789}
1790
1791/**
1792 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1793 * @cpu: CPU number
1794 *
1795 * This is the last known freq, without actually getting it from the driver.
1796 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1797 */
1798unsigned int cpufreq_quick_get(unsigned int cpu)
1799{
1800	struct cpufreq_policy *policy;
1801	unsigned int ret_freq = 0;
1802	unsigned long flags;
1803
1804	read_lock_irqsave(&cpufreq_driver_lock, flags);
1805
1806	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1807		ret_freq = cpufreq_driver->get(cpu);
1808		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1809		return ret_freq;
1810	}
1811
1812	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1813
1814	policy = cpufreq_cpu_get(cpu);
1815	if (policy) {
1816		ret_freq = policy->cur;
1817		cpufreq_cpu_put(policy);
1818	}
1819
1820	return ret_freq;
1821}
1822EXPORT_SYMBOL(cpufreq_quick_get);
1823
1824/**
1825 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1826 * @cpu: CPU number
1827 *
1828 * Just return the max possible frequency for a given CPU.
1829 */
1830unsigned int cpufreq_quick_get_max(unsigned int cpu)
1831{
1832	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1833	unsigned int ret_freq = 0;
1834
1835	if (policy) {
1836		ret_freq = policy->max;
1837		cpufreq_cpu_put(policy);
1838	}
1839
1840	return ret_freq;
1841}
1842EXPORT_SYMBOL(cpufreq_quick_get_max);
1843
1844/**
1845 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1846 * @cpu: CPU number
1847 *
1848 * The default return value is the max_freq field of cpuinfo.
1849 */
1850__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1851{
1852	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1853	unsigned int ret_freq = 0;
1854
1855	if (policy) {
1856		ret_freq = policy->cpuinfo.max_freq;
1857		cpufreq_cpu_put(policy);
 
 
 
 
 
 
 
 
 
 
1858	}
1859
1860	return ret_freq;
1861}
1862EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1863
1864static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1865{
1866	if (unlikely(policy_is_inactive(policy)))
1867		return 0;
1868
1869	return cpufreq_verify_current_freq(policy, true);
1870}
1871
1872/**
1873 * cpufreq_get - get the current CPU frequency (in kHz)
1874 * @cpu: CPU number
1875 *
1876 * Get the CPU current (static) CPU frequency
1877 */
1878unsigned int cpufreq_get(unsigned int cpu)
1879{
 
1880	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1881	unsigned int ret_freq = 0;
1882
1883	if (policy) {
1884		down_read(&policy->rwsem);
1885		if (cpufreq_driver->get)
1886			ret_freq = __cpufreq_get(policy);
1887		up_read(&policy->rwsem);
 
 
1888
1889		cpufreq_cpu_put(policy);
1890	}
1891
 
 
 
1892	return ret_freq;
1893}
1894EXPORT_SYMBOL(cpufreq_get);
1895
1896static struct subsys_interface cpufreq_interface = {
1897	.name		= "cpufreq",
1898	.subsys		= &cpu_subsys,
1899	.add_dev	= cpufreq_add_dev,
1900	.remove_dev	= cpufreq_remove_dev,
1901};
1902
1903/*
1904 * In case platform wants some specific frequency to be configured
1905 * during suspend..
1906 */
1907int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1908{
1909	int ret;
1910
1911	if (!policy->suspend_freq) {
1912		pr_debug("%s: suspend_freq not defined\n", __func__);
1913		return 0;
1914	}
1915
1916	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1917			policy->suspend_freq);
1918
1919	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1920			CPUFREQ_RELATION_H);
1921	if (ret)
1922		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1923				__func__, policy->suspend_freq, ret);
1924
1925	return ret;
1926}
1927EXPORT_SYMBOL(cpufreq_generic_suspend);
1928
1929/**
1930 * cpufreq_suspend() - Suspend CPUFreq governors.
1931 *
1932 * Called during system wide Suspend/Hibernate cycles for suspending governors
1933 * as some platforms can't change frequency after this point in suspend cycle.
1934 * Because some of the devices (like: i2c, regulators, etc) they use for
1935 * changing frequency are suspended quickly after this point.
1936 */
1937void cpufreq_suspend(void)
1938{
1939	struct cpufreq_policy *policy;
1940
1941	if (!cpufreq_driver)
1942		return;
1943
1944	if (!has_target() && !cpufreq_driver->suspend)
1945		goto suspend;
1946
1947	pr_debug("%s: Suspending Governors\n", __func__);
 
 
 
1948
1949	for_each_active_policy(policy) {
1950		if (has_target()) {
1951			down_write(&policy->rwsem);
1952			cpufreq_stop_governor(policy);
1953			up_write(&policy->rwsem);
1954		}
1955
1956		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1957			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1958				cpufreq_driver->name);
1959	}
1960
1961suspend:
1962	cpufreq_suspended = true;
1963}
1964
1965/**
1966 * cpufreq_resume() - Resume CPUFreq governors.
1967 *
1968 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1969 * are suspended with cpufreq_suspend().
 
 
 
 
 
 
 
1970 */
1971void cpufreq_resume(void)
1972{
1973	struct cpufreq_policy *policy;
1974	int ret;
1975
1976	if (!cpufreq_driver)
1977		return;
1978
1979	if (unlikely(!cpufreq_suspended))
1980		return;
1981
1982	cpufreq_suspended = false;
1983
1984	if (!has_target() && !cpufreq_driver->resume)
 
 
1985		return;
1986
1987	pr_debug("%s: Resuming Governors\n", __func__);
1988
1989	for_each_active_policy(policy) {
1990		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1991			pr_err("%s: Failed to resume driver: %s\n", __func__,
1992				cpufreq_driver->name);
1993		} else if (has_target()) {
1994			down_write(&policy->rwsem);
1995			ret = cpufreq_start_governor(policy);
1996			up_write(&policy->rwsem);
1997
1998			if (ret)
1999				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2000				       __func__, policy->cpu);
2001		}
2002	}
2003}
2004
2005/**
2006 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2007 * @flags: Flags to test against the current cpufreq driver's flags.
2008 *
2009 * Assumes that the driver is there, so callers must ensure that this is the
2010 * case.
2011 */
2012bool cpufreq_driver_test_flags(u16 flags)
2013{
2014	return !!(cpufreq_driver->flags & flags);
2015}
2016
2017/**
2018 * cpufreq_get_current_driver - Return the current driver's name.
2019 *
2020 * Return the name string of the currently registered cpufreq driver or NULL if
2021 * none.
2022 */
2023const char *cpufreq_get_current_driver(void)
2024{
2025	if (cpufreq_driver)
2026		return cpufreq_driver->name;
2027
2028	return NULL;
2029}
2030EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2031
2032/**
2033 * cpufreq_get_driver_data - Return current driver data.
2034 *
2035 * Return the private data of the currently registered cpufreq driver, or NULL
2036 * if no cpufreq driver has been registered.
2037 */
2038void *cpufreq_get_driver_data(void)
2039{
2040	if (cpufreq_driver)
2041		return cpufreq_driver->driver_data;
2042
2043	return NULL;
2044}
2045EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2046
2047/*********************************************************************
2048 *                     NOTIFIER LISTS INTERFACE                      *
2049 *********************************************************************/
2050
2051/**
2052 * cpufreq_register_notifier - Register a notifier with cpufreq.
2053 * @nb: notifier function to register.
2054 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2055 *
2056 * Add a notifier to one of two lists: either a list of notifiers that run on
2057 * clock rate changes (once before and once after every transition), or a list
2058 * of notifiers that ron on cpufreq policy changes.
 
2059 *
2060 * This function may sleep and it has the same return values as
2061 * blocking_notifier_chain_register().
2062 */
2063int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2064{
2065	int ret;
2066
2067	if (cpufreq_disabled())
2068		return -EINVAL;
2069
2070	switch (list) {
2071	case CPUFREQ_TRANSITION_NOTIFIER:
2072		mutex_lock(&cpufreq_fast_switch_lock);
2073
2074		if (cpufreq_fast_switch_count > 0) {
2075			mutex_unlock(&cpufreq_fast_switch_lock);
2076			return -EBUSY;
2077		}
2078		ret = srcu_notifier_chain_register(
2079				&cpufreq_transition_notifier_list, nb);
2080		if (!ret)
2081			cpufreq_fast_switch_count--;
2082
2083		mutex_unlock(&cpufreq_fast_switch_lock);
2084		break;
2085	case CPUFREQ_POLICY_NOTIFIER:
2086		ret = blocking_notifier_chain_register(
2087				&cpufreq_policy_notifier_list, nb);
2088		break;
2089	default:
2090		ret = -EINVAL;
2091	}
2092
2093	return ret;
2094}
2095EXPORT_SYMBOL(cpufreq_register_notifier);
2096
 
2097/**
2098 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2099 * @nb: notifier block to be unregistered.
2100 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2101 *
2102 * Remove a notifier from one of the cpufreq notifier lists.
2103 *
2104 * This function may sleep and it has the same return values as
2105 * blocking_notifier_chain_unregister().
2106 */
2107int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2108{
2109	int ret;
2110
2111	if (cpufreq_disabled())
2112		return -EINVAL;
2113
2114	switch (list) {
2115	case CPUFREQ_TRANSITION_NOTIFIER:
2116		mutex_lock(&cpufreq_fast_switch_lock);
2117
2118		ret = srcu_notifier_chain_unregister(
2119				&cpufreq_transition_notifier_list, nb);
2120		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2121			cpufreq_fast_switch_count++;
2122
2123		mutex_unlock(&cpufreq_fast_switch_lock);
2124		break;
2125	case CPUFREQ_POLICY_NOTIFIER:
2126		ret = blocking_notifier_chain_unregister(
2127				&cpufreq_policy_notifier_list, nb);
2128		break;
2129	default:
2130		ret = -EINVAL;
2131	}
2132
2133	return ret;
2134}
2135EXPORT_SYMBOL(cpufreq_unregister_notifier);
2136
2137
2138/*********************************************************************
2139 *                              GOVERNORS                            *
2140 *********************************************************************/
2141
2142/**
2143 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2144 * @policy: cpufreq policy to switch the frequency for.
2145 * @target_freq: New frequency to set (may be approximate).
2146 *
2147 * Carry out a fast frequency switch without sleeping.
2148 *
2149 * The driver's ->fast_switch() callback invoked by this function must be
2150 * suitable for being called from within RCU-sched read-side critical sections
2151 * and it is expected to select the minimum available frequency greater than or
2152 * equal to @target_freq (CPUFREQ_RELATION_L).
2153 *
2154 * This function must not be called if policy->fast_switch_enabled is unset.
2155 *
2156 * Governors calling this function must guarantee that it will never be invoked
2157 * twice in parallel for the same policy and that it will never be called in
2158 * parallel with either ->target() or ->target_index() for the same policy.
2159 *
2160 * Returns the actual frequency set for the CPU.
2161 *
2162 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2163 * error condition, the hardware configuration must be preserved.
2164 */
2165unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2166					unsigned int target_freq)
2167{
2168	unsigned int freq;
2169	int cpu;
2170
2171	target_freq = clamp_val(target_freq, policy->min, policy->max);
2172	freq = cpufreq_driver->fast_switch(policy, target_freq);
2173
2174	if (!freq)
2175		return 0;
2176
2177	policy->cur = freq;
2178	arch_set_freq_scale(policy->related_cpus, freq,
2179			    arch_scale_freq_ref(policy->cpu));
2180	cpufreq_stats_record_transition(policy, freq);
2181
2182	if (trace_cpu_frequency_enabled()) {
2183		for_each_cpu(cpu, policy->cpus)
2184			trace_cpu_frequency(freq, cpu);
2185	}
2186
2187	return freq;
2188}
2189EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2190
2191/**
2192 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2193 * @cpu: Target CPU.
2194 * @min_perf: Minimum (required) performance level (units of @capacity).
2195 * @target_perf: Target (desired) performance level (units of @capacity).
2196 * @capacity: Capacity of the target CPU.
2197 *
2198 * Carry out a fast performance level switch of @cpu without sleeping.
2199 *
2200 * The driver's ->adjust_perf() callback invoked by this function must be
2201 * suitable for being called from within RCU-sched read-side critical sections
2202 * and it is expected to select a suitable performance level equal to or above
2203 * @min_perf and preferably equal to or below @target_perf.
2204 *
2205 * This function must not be called if policy->fast_switch_enabled is unset.
2206 *
2207 * Governors calling this function must guarantee that it will never be invoked
2208 * twice in parallel for the same CPU and that it will never be called in
2209 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2210 * the same CPU.
2211 */
2212void cpufreq_driver_adjust_perf(unsigned int cpu,
2213				 unsigned long min_perf,
2214				 unsigned long target_perf,
2215				 unsigned long capacity)
2216{
2217	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2218}
2219
2220/**
2221 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2222 *
2223 * Return 'true' if the ->adjust_perf callback is present for the
2224 * current driver or 'false' otherwise.
2225 */
2226bool cpufreq_driver_has_adjust_perf(void)
2227{
2228	return !!cpufreq_driver->adjust_perf;
2229}
2230
2231/* Must set freqs->new to intermediate frequency */
2232static int __target_intermediate(struct cpufreq_policy *policy,
2233				 struct cpufreq_freqs *freqs, int index)
2234{
2235	int ret;
2236
2237	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2238
2239	/* We don't need to switch to intermediate freq */
2240	if (!freqs->new)
2241		return 0;
2242
2243	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2244		 __func__, policy->cpu, freqs->old, freqs->new);
2245
2246	cpufreq_freq_transition_begin(policy, freqs);
2247	ret = cpufreq_driver->target_intermediate(policy, index);
2248	cpufreq_freq_transition_end(policy, freqs, ret);
2249
2250	if (ret)
2251		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2252		       __func__, ret);
2253
2254	return ret;
2255}
2256
2257static int __target_index(struct cpufreq_policy *policy, int index)
2258{
2259	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2260	unsigned int restore_freq, intermediate_freq = 0;
2261	unsigned int newfreq = policy->freq_table[index].frequency;
2262	int retval = -EINVAL;
2263	bool notify;
2264
2265	if (newfreq == policy->cur)
2266		return 0;
2267
2268	/* Save last value to restore later on errors */
2269	restore_freq = policy->cur;
2270
2271	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2272	if (notify) {
2273		/* Handle switching to intermediate frequency */
2274		if (cpufreq_driver->get_intermediate) {
2275			retval = __target_intermediate(policy, &freqs, index);
2276			if (retval)
2277				return retval;
2278
2279			intermediate_freq = freqs.new;
2280			/* Set old freq to intermediate */
2281			if (intermediate_freq)
2282				freqs.old = freqs.new;
2283		}
2284
2285		freqs.new = newfreq;
2286		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2287			 __func__, policy->cpu, freqs.old, freqs.new);
2288
2289		cpufreq_freq_transition_begin(policy, &freqs);
2290	}
2291
2292	retval = cpufreq_driver->target_index(policy, index);
2293	if (retval)
2294		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2295		       retval);
2296
2297	if (notify) {
2298		cpufreq_freq_transition_end(policy, &freqs, retval);
2299
2300		/*
2301		 * Failed after setting to intermediate freq? Driver should have
2302		 * reverted back to initial frequency and so should we. Check
2303		 * here for intermediate_freq instead of get_intermediate, in
2304		 * case we haven't switched to intermediate freq at all.
2305		 */
2306		if (unlikely(retval && intermediate_freq)) {
2307			freqs.old = intermediate_freq;
2308			freqs.new = restore_freq;
2309			cpufreq_freq_transition_begin(policy, &freqs);
2310			cpufreq_freq_transition_end(policy, &freqs, 0);
2311		}
2312	}
2313
2314	return retval;
2315}
2316
2317int __cpufreq_driver_target(struct cpufreq_policy *policy,
2318			    unsigned int target_freq,
2319			    unsigned int relation)
2320{
2321	unsigned int old_target_freq = target_freq;
2322
2323	if (cpufreq_disabled())
2324		return -ENODEV;
 
 
2325
2326	target_freq = __resolve_freq(policy, target_freq, relation);
2327
2328	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2329		 policy->cpu, target_freq, relation, old_target_freq);
2330
2331	/*
2332	 * This might look like a redundant call as we are checking it again
2333	 * after finding index. But it is left intentionally for cases where
2334	 * exactly same freq is called again and so we can save on few function
2335	 * calls.
2336	 */
2337	if (target_freq == policy->cur &&
2338	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2339		return 0;
2340
2341	if (cpufreq_driver->target) {
2342		/*
2343		 * If the driver hasn't setup a single inefficient frequency,
2344		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2345		 */
2346		if (!policy->efficiencies_available)
2347			relation &= ~CPUFREQ_RELATION_E;
2348
2349		return cpufreq_driver->target(policy, target_freq, relation);
2350	}
2351
2352	if (!cpufreq_driver->target_index)
2353		return -EINVAL;
2354
2355	return __target_index(policy, policy->cached_resolved_idx);
2356}
2357EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2358
2359int cpufreq_driver_target(struct cpufreq_policy *policy,
2360			  unsigned int target_freq,
2361			  unsigned int relation)
2362{
2363	int ret;
 
 
 
 
2364
2365	down_write(&policy->rwsem);
 
2366
2367	ret = __cpufreq_driver_target(policy, target_freq, relation);
2368
2369	up_write(&policy->rwsem);
2370
 
 
 
2371	return ret;
2372}
2373EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2374
2375__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2376{
2377	return NULL;
2378}
2379
2380static int cpufreq_init_governor(struct cpufreq_policy *policy)
2381{
2382	int ret;
2383
2384	/* Don't start any governor operations if we are entering suspend */
2385	if (cpufreq_suspended)
2386		return 0;
2387	/*
2388	 * Governor might not be initiated here if ACPI _PPC changed
2389	 * notification happened, so check it.
2390	 */
2391	if (!policy->governor)
2392		return -EINVAL;
2393
2394	/* Platform doesn't want dynamic frequency switching ? */
2395	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2396	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2397		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2398
2399		if (gov) {
2400			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2401				policy->governor->name, gov->name);
2402			policy->governor = gov;
2403		} else {
2404			return -EINVAL;
2405		}
2406	}
2407
2408	if (!try_module_get(policy->governor->owner))
2409		return -EINVAL;
2410
2411	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
 
2412
2413	if (policy->governor->init) {
2414		ret = policy->governor->init(policy);
2415		if (ret) {
2416			module_put(policy->governor->owner);
2417			return ret;
2418		}
2419	}
2420
2421	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2422
2423	return 0;
2424}
 
2425
2426static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2427{
2428	if (cpufreq_suspended || !policy->governor)
2429		return;
2430
2431	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2432
2433	if (policy->governor->exit)
2434		policy->governor->exit(policy);
2435
2436	module_put(policy->governor->owner);
2437}
2438
2439int cpufreq_start_governor(struct cpufreq_policy *policy)
2440{
2441	int ret;
2442
2443	if (cpufreq_suspended)
2444		return 0;
 
 
 
 
 
 
 
2445
2446	if (!policy->governor)
2447		return -EINVAL;
2448
2449	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2450
2451	if (cpufreq_driver->get)
2452		cpufreq_verify_current_freq(policy, false);
2453
2454	if (policy->governor->start) {
2455		ret = policy->governor->start(policy);
2456		if (ret)
2457			return ret;
 
2458	}
2459
2460	if (policy->governor->limits)
2461		policy->governor->limits(policy);
2462
2463	return 0;
2464}
2465
2466void cpufreq_stop_governor(struct cpufreq_policy *policy)
2467{
2468	if (cpufreq_suspended || !policy->governor)
2469		return;
 
 
 
 
 
 
2470
2471	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2472
2473	if (policy->governor->stop)
2474		policy->governor->stop(policy);
2475}
2476
2477static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2478{
2479	if (cpufreq_suspended || !policy->governor)
2480		return;
2481
2482	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2483
2484	if (policy->governor->limits)
2485		policy->governor->limits(policy);
2486}
2487
2488int cpufreq_register_governor(struct cpufreq_governor *governor)
2489{
2490	int err;
2491
2492	if (!governor)
2493		return -EINVAL;
2494
2495	if (cpufreq_disabled())
2496		return -ENODEV;
2497
2498	mutex_lock(&cpufreq_governor_mutex);
2499
2500	err = -EBUSY;
2501	if (!find_governor(governor->name)) {
2502		err = 0;
2503		list_add(&governor->governor_list, &cpufreq_governor_list);
2504	}
2505
2506	mutex_unlock(&cpufreq_governor_mutex);
2507	return err;
2508}
2509EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2510
 
2511void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2512{
2513	struct cpufreq_policy *policy;
2514	unsigned long flags;
 
2515
2516	if (!governor)
2517		return;
2518
2519	if (cpufreq_disabled())
2520		return;
2521
2522	/* clear last_governor for all inactive policies */
2523	read_lock_irqsave(&cpufreq_driver_lock, flags);
2524	for_each_inactive_policy(policy) {
2525		if (!strcmp(policy->last_governor, governor->name)) {
2526			policy->governor = NULL;
2527			strcpy(policy->last_governor, "\0");
2528		}
2529	}
2530	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2531
2532	mutex_lock(&cpufreq_governor_mutex);
2533	list_del(&governor->governor_list);
2534	mutex_unlock(&cpufreq_governor_mutex);
 
2535}
2536EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2537
2538
 
2539/*********************************************************************
2540 *                          POLICY INTERFACE                         *
2541 *********************************************************************/
2542
2543/**
2544 * cpufreq_get_policy - get the current cpufreq_policy
2545 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2546 *	is written
2547 * @cpu: CPU to find the policy for
2548 *
2549 * Reads the current cpufreq policy.
2550 */
2551int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2552{
2553	struct cpufreq_policy *cpu_policy;
2554	if (!policy)
2555		return -EINVAL;
2556
2557	cpu_policy = cpufreq_cpu_get(cpu);
2558	if (!cpu_policy)
2559		return -EINVAL;
2560
2561	memcpy(policy, cpu_policy, sizeof(*policy));
2562
2563	cpufreq_cpu_put(cpu_policy);
2564	return 0;
2565}
2566EXPORT_SYMBOL(cpufreq_get_policy);
2567
2568DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2569
2570/**
2571 * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2572 * @policy: cpufreq policy of the CPUs.
2573 *
2574 * Update the value of cpufreq pressure for all @cpus in the policy.
2575 */
2576static void cpufreq_update_pressure(struct cpufreq_policy *policy)
 
2577{
2578	unsigned long max_capacity, capped_freq, pressure;
2579	u32 max_freq;
2580	int cpu;
2581
2582	cpu = cpumask_first(policy->related_cpus);
2583	max_freq = arch_scale_freq_ref(cpu);
2584	capped_freq = policy->max;
2585
2586	/*
2587	 * Handle properly the boost frequencies, which should simply clean
2588	 * the cpufreq pressure value.
2589	 */
2590	if (max_freq <= capped_freq) {
2591		pressure = 0;
2592	} else {
2593		max_capacity = arch_scale_cpu_capacity(cpu);
2594		pressure = max_capacity -
2595			   mult_frac(max_capacity, capped_freq, max_freq);
2596	}
2597
2598	for_each_cpu(cpu, policy->related_cpus)
2599		WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2600}
2601
2602/**
2603 * cpufreq_set_policy - Modify cpufreq policy parameters.
2604 * @policy: Policy object to modify.
2605 * @new_gov: Policy governor pointer.
2606 * @new_pol: Policy value (for drivers with built-in governors).
2607 *
2608 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2609 * limits to be set for the policy, update @policy with the verified limits
2610 * values and either invoke the driver's ->setpolicy() callback (if present) or
2611 * carry out a governor update for @policy.  That is, run the current governor's
2612 * ->limits() callback (if @new_gov points to the same object as the one in
2613 * @policy) or replace the governor for @policy with @new_gov.
2614 *
2615 * The cpuinfo part of @policy is not updated by this function.
2616 */
2617static int cpufreq_set_policy(struct cpufreq_policy *policy,
2618			      struct cpufreq_governor *new_gov,
2619			      unsigned int new_pol)
2620{
2621	struct cpufreq_policy_data new_data;
2622	struct cpufreq_governor *old_gov;
2623	int ret;
2624
2625	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2626	new_data.freq_table = policy->freq_table;
2627	new_data.cpu = policy->cpu;
2628	/*
2629	 * PM QoS framework collects all the requests from users and provide us
2630	 * the final aggregated value here.
2631	 */
2632	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2633	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2634
2635	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2636		 new_data.cpu, new_data.min, new_data.max);
2637
2638	/*
2639	 * Verify that the CPU speed can be set within these limits and make sure
2640	 * that min <= max.
2641	 */
2642	ret = cpufreq_driver->verify(&new_data);
 
 
 
 
 
 
2643	if (ret)
2644		return ret;
2645
2646	/*
2647	 * Resolve policy min/max to available frequencies. It ensures
2648	 * no frequency resolution will neither overshoot the requested maximum
2649	 * nor undershoot the requested minimum.
2650	 */
2651	policy->min = new_data.min;
2652	policy->max = new_data.max;
2653	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2654	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2655	trace_cpu_frequency_limits(policy);
2656
2657	cpufreq_update_pressure(policy);
 
 
2658
2659	policy->cached_target_freq = UINT_MAX;
 
2660
2661	pr_debug("new min and max freqs are %u - %u kHz\n",
2662		 policy->min, policy->max);
2663
2664	if (cpufreq_driver->setpolicy) {
2665		policy->policy = new_pol;
2666		pr_debug("setting range\n");
2667		return cpufreq_driver->setpolicy(policy);
2668	}
2669
2670	if (new_gov == policy->governor) {
2671		pr_debug("governor limits update\n");
2672		cpufreq_governor_limits(policy);
2673		return 0;
2674	}
2675
2676	pr_debug("governor switch\n");
2677
2678	/* save old, working values */
2679	old_gov = policy->governor;
2680	/* end old governor */
2681	if (old_gov) {
2682		cpufreq_stop_governor(policy);
2683		cpufreq_exit_governor(policy);
2684	}
2685
2686	/* start new governor */
2687	policy->governor = new_gov;
2688	ret = cpufreq_init_governor(policy);
2689	if (!ret) {
2690		ret = cpufreq_start_governor(policy);
2691		if (!ret) {
2692			pr_debug("governor change\n");
2693			return 0;
2694		}
2695		cpufreq_exit_governor(policy);
2696	}
2697
2698	/* new governor failed, so re-start old one */
2699	pr_debug("starting governor %s failed\n", policy->governor->name);
2700	if (old_gov) {
2701		policy->governor = old_gov;
2702		if (cpufreq_init_governor(policy))
2703			policy->governor = NULL;
2704		else
2705			cpufreq_start_governor(policy);
2706	}
2707
 
2708	return ret;
2709}
2710
2711/**
2712 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2713 * @cpu: CPU to re-evaluate the policy for.
2714 *
2715 * Update the current frequency for the cpufreq policy of @cpu and use
2716 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2717 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2718 * for the policy in question, among other things.
2719 */
2720void cpufreq_update_policy(unsigned int cpu)
2721{
2722	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2723
2724	if (!policy)
2725		return;
2726
2727	/*
2728	 * BIOS might change freq behind our back
2729	 * -> ask driver for current freq and notify governors about a change
2730	 */
2731	if (cpufreq_driver->get && has_target() &&
2732	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2733		goto unlock;
2734
2735	refresh_frequency_limits(policy);
2736
2737unlock:
2738	cpufreq_cpu_release(policy);
2739}
2740EXPORT_SYMBOL(cpufreq_update_policy);
2741
2742/**
2743 * cpufreq_update_limits - Update policy limits for a given CPU.
2744 * @cpu: CPU to update the policy limits for.
2745 *
2746 * Invoke the driver's ->update_limits callback if present or call
2747 * cpufreq_update_policy() for @cpu.
2748 */
2749void cpufreq_update_limits(unsigned int cpu)
2750{
2751	if (cpufreq_driver->update_limits)
2752		cpufreq_driver->update_limits(cpu);
2753	else
2754		cpufreq_update_policy(cpu);
2755}
2756EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2757
2758/*********************************************************************
2759 *               BOOST						     *
2760 *********************************************************************/
2761static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2762{
 
 
2763	int ret;
2764
2765	if (!policy->freq_table)
2766		return -ENXIO;
 
 
2767
2768	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2769	if (ret) {
2770		pr_err("%s: Policy frequency update failed\n", __func__);
2771		return ret;
2772	}
2773
2774	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2775	if (ret < 0)
2776		return ret;
 
 
 
2777
2778	return 0;
2779}
2780
2781int cpufreq_boost_trigger_state(int state)
2782{
2783	struct cpufreq_policy *policy;
2784	unsigned long flags;
2785	int ret = 0;
2786
2787	if (cpufreq_driver->boost_enabled == state)
2788		return 0;
2789
2790	write_lock_irqsave(&cpufreq_driver_lock, flags);
2791	cpufreq_driver->boost_enabled = state;
2792	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2793
2794	cpus_read_lock();
2795	for_each_active_policy(policy) {
2796		policy->boost_enabled = state;
2797		ret = cpufreq_driver->set_boost(policy, state);
2798		if (ret) {
2799			policy->boost_enabled = !policy->boost_enabled;
2800			goto err_reset_state;
2801		}
2802	}
2803	cpus_read_unlock();
2804
2805	return 0;
2806
2807err_reset_state:
2808	cpus_read_unlock();
2809
2810	write_lock_irqsave(&cpufreq_driver_lock, flags);
2811	cpufreq_driver->boost_enabled = !state;
2812	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2813
2814	pr_err("%s: Cannot %s BOOST\n",
2815	       __func__, state ? "enable" : "disable");
2816
 
 
 
2817	return ret;
2818}
 
2819
2820static bool cpufreq_boost_supported(void)
 
2821{
2822	return cpufreq_driver->set_boost;
2823}
2824
2825static int create_boost_sysfs_file(void)
2826{
2827	int ret;
 
 
 
 
 
 
 
 
2828
2829	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2830	if (ret)
2831		pr_err("%s: cannot register global BOOST sysfs file\n",
2832		       __func__);
2833
2834	return ret;
 
 
 
2835}
2836
2837static void remove_boost_sysfs_file(void)
2838{
2839	if (cpufreq_boost_supported())
2840		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2841}
2842
2843int cpufreq_enable_boost_support(void)
2844{
2845	if (!cpufreq_driver)
2846		return -EINVAL;
2847
2848	if (cpufreq_boost_supported())
2849		return 0;
2850
2851	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2852
2853	/* This will get removed on driver unregister */
2854	return create_boost_sysfs_file();
2855}
2856EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2857
2858bool cpufreq_boost_enabled(void)
2859{
2860	return cpufreq_driver->boost_enabled;
2861}
2862EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2863
2864/*********************************************************************
2865 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2866 *********************************************************************/
2867static enum cpuhp_state hp_online;
2868
2869static int cpuhp_cpufreq_online(unsigned int cpu)
2870{
2871	cpufreq_online(cpu);
2872
2873	return 0;
2874}
2875
2876static int cpuhp_cpufreq_offline(unsigned int cpu)
2877{
2878	cpufreq_offline(cpu);
2879
2880	return 0;
2881}
2882
2883/**
2884 * cpufreq_register_driver - register a CPU Frequency driver
2885 * @driver_data: A struct cpufreq_driver containing the values#
2886 * submitted by the CPU Frequency driver.
2887 *
2888 * Registers a CPU Frequency driver to this core code. This code
2889 * returns zero on success, -EEXIST when another driver got here first
2890 * (and isn't unregistered in the meantime).
2891 *
2892 */
2893int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2894{
2895	unsigned long flags;
2896	int ret;
2897
2898	if (cpufreq_disabled())
2899		return -ENODEV;
2900
2901	/*
2902	 * The cpufreq core depends heavily on the availability of device
2903	 * structure, make sure they are available before proceeding further.
2904	 */
2905	if (!get_cpu_device(0))
2906		return -EPROBE_DEFER;
2907
2908	if (!driver_data || !driver_data->verify || !driver_data->init ||
2909	    !(driver_data->setpolicy || driver_data->target_index ||
2910		    driver_data->target) ||
2911	     (driver_data->setpolicy && (driver_data->target_index ||
2912		    driver_data->target)) ||
2913	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2914	     (!driver_data->online != !driver_data->offline) ||
2915		 (driver_data->adjust_perf && !driver_data->fast_switch))
2916		return -EINVAL;
2917
2918	pr_debug("trying to register driver %s\n", driver_data->name);
2919
2920	/* Protect against concurrent CPU online/offline. */
2921	cpus_read_lock();
2922
2923	write_lock_irqsave(&cpufreq_driver_lock, flags);
2924	if (cpufreq_driver) {
2925		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2926		ret = -EEXIST;
2927		goto out;
2928	}
2929	cpufreq_driver = driver_data;
2930	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2931
2932	/*
2933	 * Mark support for the scheduler's frequency invariance engine for
2934	 * drivers that implement target(), target_index() or fast_switch().
2935	 */
2936	if (!cpufreq_driver->setpolicy) {
2937		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2938		pr_debug("supports frequency invariance");
2939	}
2940
2941	if (driver_data->setpolicy)
2942		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2943
2944	if (cpufreq_boost_supported()) {
2945		ret = create_boost_sysfs_file();
2946		if (ret)
2947			goto err_null_driver;
2948	}
2949
2950	ret = subsys_interface_register(&cpufreq_interface);
2951	if (ret)
2952		goto err_boost_unreg;
 
 
 
2953
2954	if (unlikely(list_empty(&cpufreq_policy_list))) {
2955		/* if all ->init() calls failed, unregister */
2956		ret = -ENODEV;
2957		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2958			 driver_data->name);
2959		goto err_if_unreg;
 
2960	}
2961
2962	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2963						   "cpufreq:online",
2964						   cpuhp_cpufreq_online,
2965						   cpuhp_cpufreq_offline);
2966	if (ret < 0)
2967		goto err_if_unreg;
2968	hp_online = ret;
2969	ret = 0;
2970
2971	pr_debug("driver %s up and running\n", driver_data->name);
2972	goto out;
2973
2974err_if_unreg:
2975	subsys_interface_unregister(&cpufreq_interface);
2976err_boost_unreg:
2977	remove_boost_sysfs_file();
2978err_null_driver:
2979	write_lock_irqsave(&cpufreq_driver_lock, flags);
2980	cpufreq_driver = NULL;
2981	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2982out:
2983	cpus_read_unlock();
2984	return ret;
2985}
2986EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2987
2988/*
 
2989 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2990 *
2991 * Unregister the current CPUFreq driver. Only call this if you have
2992 * the right to do so, i.e. if you have succeeded in initialising before!
2993 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2994 * currently not initialised.
2995 */
2996void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2997{
2998	unsigned long flags;
2999
3000	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3001		return;
3002
3003	pr_debug("unregistering driver %s\n", driver->name);
3004
3005	/* Protect against concurrent cpu hotplug */
3006	cpus_read_lock();
3007	subsys_interface_unregister(&cpufreq_interface);
3008	remove_boost_sysfs_file();
3009	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3010	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3011
3012	write_lock_irqsave(&cpufreq_driver_lock, flags);
3013
 
3014	cpufreq_driver = NULL;
 
3015
3016	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3017	cpus_read_unlock();
3018}
3019EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3020
3021static int __init cpufreq_core_init(void)
3022{
3023	struct cpufreq_governor *gov = cpufreq_default_governor();
3024	struct device *dev_root;
3025
3026	if (cpufreq_disabled())
3027		return -ENODEV;
 
 
3028
3029	dev_root = bus_get_dev_root(&cpu_subsys);
3030	if (dev_root) {
3031		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3032		put_device(dev_root);
3033	}
3034	BUG_ON(!cpufreq_global_kobject);
3035
3036	if (!strlen(default_governor))
3037		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3038
3039	return 0;
3040}
3041module_param(off, int, 0444);
3042module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3043core_initcall(cpufreq_core_init);