Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
 
   6 *
   7 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   8 *	Added handling for CPU hotplug
   9 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  10 *	Fix handling for CPU hotplug -- affected CPUs
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/init.h>
  21#include <linux/notifier.h>
  22#include <linux/cpufreq.h>
 
  23#include <linux/delay.h>
  24#include <linux/interrupt.h>
  25#include <linux/spinlock.h>
  26#include <linux/device.h>
  27#include <linux/slab.h>
  28#include <linux/cpu.h>
  29#include <linux/completion.h>
  30#include <linux/mutex.h>
 
 
 
  31#include <linux/syscore_ops.h>
  32
  33#include <trace/events/power.h>
  34
  35/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36 * The "cpufreq driver" - the arch- or hardware-dependent low
  37 * level driver of CPUFreq support, and its spinlock. This lock
  38 * also protects the cpufreq_cpu_data array.
  39 */
  40static struct cpufreq_driver *cpufreq_driver;
  41static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  42#ifdef CONFIG_HOTPLUG_CPU
  43/* This one keeps track of the previously set governor of a removed CPU */
  44static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
  45#endif
  46static DEFINE_SPINLOCK(cpufreq_driver_lock);
  47
  48/*
  49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
  50 * all cpufreq/hotplug/workqueue/etc related lock issues.
  51 *
  52 * The rules for this semaphore:
  53 * - Any routine that wants to read from the policy structure will
  54 *   do a down_read on this semaphore.
  55 * - Any routine that will write to the policy structure and/or may take away
  56 *   the policy altogether (eg. CPU hotplug), will hold this lock in write
  57 *   mode before doing so.
  58 *
  59 * Additional rules:
  60 * - All holders of the lock should check to make sure that the CPU they
  61 *   are concerned with are online after they get the lock.
  62 * - Governor routines that can be called in cpufreq hotplug path should not
  63 *   take this sem as top level hotplug notifier handler takes this.
  64 * - Lock should not be held across
  65 *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
  66 */
  67static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
  68static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
  69
  70#define lock_policy_rwsem(mode, cpu)					\
  71static int lock_policy_rwsem_##mode					\
  72(int cpu)								\
  73{									\
  74	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);		\
  75	BUG_ON(policy_cpu == -1);					\
  76	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
  77	if (unlikely(!cpu_online(cpu))) {				\
  78		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
  79		return -1;						\
  80	}								\
  81									\
  82	return 0;							\
  83}
  84
  85lock_policy_rwsem(read, cpu);
  86
  87lock_policy_rwsem(write, cpu);
  88
  89static void unlock_policy_rwsem_read(int cpu)
  90{
  91	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  92	BUG_ON(policy_cpu == -1);
  93	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
  94}
  95
  96static void unlock_policy_rwsem_write(int cpu)
 
 
 
  97{
  98	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  99	BUG_ON(policy_cpu == -1);
 100	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
 101}
 102
 103
 104/* internal prototypes */
 105static int __cpufreq_governor(struct cpufreq_policy *policy,
 106		unsigned int event);
 107static unsigned int __cpufreq_get(unsigned int cpu);
 108static void handle_update(struct work_struct *work);
 
 
 
 109
 110/**
 111 * Two notifier lists: the "policy" list is involved in the
 112 * validation process for a new CPU frequency policy; the
 113 * "transition" list for kernel code that needs to handle
 114 * changes to devices when the CPU clock speed changes.
 115 * The mutex locks both lists.
 116 */
 117static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
 118static struct srcu_notifier_head cpufreq_transition_notifier_list;
 119
 120static bool init_cpufreq_transition_notifier_list_called;
 121static int __init init_cpufreq_transition_notifier_list(void)
 122{
 123	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
 124	init_cpufreq_transition_notifier_list_called = true;
 125	return 0;
 
 
 126}
 127pure_initcall(init_cpufreq_transition_notifier_list);
 128
 129static LIST_HEAD(cpufreq_governor_list);
 130static DEFINE_MUTEX(cpufreq_governor_mutex);
 131
 132struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 133{
 134	struct cpufreq_policy *data;
 135	unsigned long flags;
 
 136
 137	if (cpu >= nr_cpu_ids)
 138		goto err_out;
 139
 140	/* get the cpufreq driver */
 141	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 142
 143	if (!cpufreq_driver)
 144		goto err_out_unlock;
 
 
 
 
 145
 146	if (!try_module_get(cpufreq_driver->owner))
 147		goto err_out_unlock;
 148
 
 149
 150	/* get the CPU */
 151	data = per_cpu(cpufreq_cpu_data, cpu);
 
 
 
 
 152
 153	if (!data)
 154		goto err_out_put_module;
 
 155
 156	if (!kobject_get(&data->kobj))
 157		goto err_out_put_module;
 158
 159	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 160	return data;
 
 161
 162err_out_put_module:
 163	module_put(cpufreq_driver->owner);
 164err_out_unlock:
 165	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 166err_out:
 167	return NULL;
 168}
 169EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170
 
 
 
 
 
 
 
 
 
 171
 172void cpufreq_cpu_put(struct cpufreq_policy *data)
 
 
 
 
 
 
 
 
 
 
 
 173{
 174	kobject_put(&data->kobj);
 175	module_put(cpufreq_driver->owner);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176}
 177EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180/*********************************************************************
 181 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 182 *********************************************************************/
 183
 184/**
 185 * adjust_jiffies - adjust the system "loops_per_jiffy"
 
 
 186 *
 187 * This function alters the system "loops_per_jiffy" for the clock
 188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 189 * systems as each CPU might be scaled differently. So, use the arch
 190 * per-CPU loops_per_jiffy value wherever possible.
 191 */
 192#ifndef CONFIG_SMP
 193static unsigned long l_p_j_ref;
 194static unsigned int  l_p_j_ref_freq;
 195
 196static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 197{
 
 
 
 
 198	if (ci->flags & CPUFREQ_CONST_LOOPS)
 199		return;
 200
 201	if (!l_p_j_ref_freq) {
 202		l_p_j_ref = loops_per_jiffy;
 203		l_p_j_ref_freq = ci->old;
 204		pr_debug("saving %lu as reference value for loops_per_jiffy; "
 205			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
 206	}
 207	if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
 208	    (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
 209	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
 210		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 211								ci->new);
 212		pr_debug("scaling loops_per_jiffy to %lu "
 213			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
 214	}
 215}
 216#else
 217static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 218{
 219	return;
 220}
 221#endif
 222
 223
 224/**
 225 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 226 * on frequency transition.
 227 *
 228 * This function calls the transition notifiers and the "adjust_jiffies"
 229 * function. It is called twice on all CPU frequency changes that have
 230 * external effects.
 231 */
 232void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 233{
 234	struct cpufreq_policy *policy;
 235
 236	BUG_ON(irqs_disabled());
 237
 
 
 
 
 238	freqs->flags = cpufreq_driver->flags;
 239	pr_debug("notification %u of frequency transition to %u kHz\n",
 240		state, freqs->new);
 241
 242	policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
 243	switch (state) {
 244
 245	case CPUFREQ_PRECHANGE:
 246		/* detect if the driver reported a value as "old frequency"
 
 247		 * which is not equal to what the cpufreq core thinks is
 248		 * "old frequency".
 249		 */
 250		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 251			if ((policy) && (policy->cpu == freqs->cpu) &&
 252			    (policy->cur) && (policy->cur != freqs->old)) {
 253				pr_debug("Warning: CPU frequency is"
 254					" %u, cpufreq assumed %u kHz.\n",
 255					freqs->old, policy->cur);
 256				freqs->old = policy->cur;
 257			}
 258		}
 
 259		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 260				CPUFREQ_PRECHANGE, freqs);
 
 261		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 262		break;
 263
 264	case CPUFREQ_POSTCHANGE:
 265		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 266		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
 267			(unsigned long)freqs->cpu);
 268		trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
 269		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 270		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 271				CPUFREQ_POSTCHANGE, freqs);
 272		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 273			policy->cur = freqs->new;
 274		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276}
 277EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
 278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280
 281/*********************************************************************
 282 *                          SYSFS INTERFACE                          *
 283 *********************************************************************/
 
 
 
 
 
 284
 285static struct cpufreq_governor *__find_governor(const char *str_governor)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286{
 287	struct cpufreq_governor *t;
 288
 289	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 290		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 291			return t;
 292
 293	return NULL;
 294}
 295
 296/**
 297 * cpufreq_parse_governor - parse a governor string
 298 */
 299static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 300				struct cpufreq_governor **governor)
 301{
 302	int err = -EINVAL;
 303
 304	if (!cpufreq_driver)
 305		goto out;
 
 
 306
 307	if (cpufreq_driver->setpolicy) {
 308		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 309			*policy = CPUFREQ_POLICY_PERFORMANCE;
 310			err = 0;
 311		} else if (!strnicmp(str_governor, "powersave",
 312						CPUFREQ_NAME_LEN)) {
 313			*policy = CPUFREQ_POLICY_POWERSAVE;
 314			err = 0;
 315		}
 316	} else if (cpufreq_driver->target) {
 317		struct cpufreq_governor *t;
 318
 319		mutex_lock(&cpufreq_governor_mutex);
 
 320
 321		t = __find_governor(str_governor);
 
 322
 323		if (t == NULL) {
 324			int ret;
 
 
 325
 326			mutex_unlock(&cpufreq_governor_mutex);
 327			ret = request_module("cpufreq_%s", str_governor);
 328			mutex_lock(&cpufreq_governor_mutex);
 329
 330			if (ret == 0)
 331				t = __find_governor(str_governor);
 332		}
 333
 334		if (t != NULL) {
 335			*governor = t;
 336			err = 0;
 337		}
 
 
 
 338
 339		mutex_unlock(&cpufreq_governor_mutex);
 340	}
 341out:
 342	return err;
 343}
 344
 
 
 345
 346/**
 
 
 
 347 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 348 * print out cpufreq information
 349 *
 350 * Write out information from cpufreq_driver->policy[cpu]; object must be
 351 * "unsigned int".
 352 */
 353
 354#define show_one(file_name, object)			\
 355static ssize_t show_##file_name				\
 356(struct cpufreq_policy *policy, char *buf)		\
 357{							\
 358	return sprintf(buf, "%u\n", policy->object);	\
 359}
 360
 361show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 362show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 363show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 364show_one(scaling_min_freq, min);
 365show_one(scaling_max_freq, max);
 366show_one(scaling_cur_freq, cur);
 367
 368static int __cpufreq_set_policy(struct cpufreq_policy *data,
 369				struct cpufreq_policy *policy);
 
 
 370
 371/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 373 */
 374#define store_one(file_name, object)			\
 375static ssize_t store_##file_name					\
 376(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 377{									\
 378	unsigned int ret = -EINVAL;					\
 379	struct cpufreq_policy new_policy;				\
 380									\
 381	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 382	if (ret)							\
 383		return -EINVAL;						\
 384									\
 385	ret = sscanf(buf, "%u", &new_policy.object);			\
 386	if (ret != 1)							\
 387		return -EINVAL;						\
 388									\
 389	ret = __cpufreq_set_policy(policy, &new_policy);		\
 390	policy->user_policy.object = policy->object;			\
 391									\
 392	return ret ? ret : count;					\
 393}
 394
 395store_one(scaling_min_freq, min);
 396store_one(scaling_max_freq, max);
 397
 398/**
 399 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 400 */
 401static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 402					char *buf)
 403{
 404	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 405	if (!cur_freq)
 406		return sprintf(buf, "<unknown>");
 407	return sprintf(buf, "%u\n", cur_freq);
 408}
 409
 
 
 410
 411/**
 
 
 
 412 * show_scaling_governor - show the current policy for the specified CPU
 413 */
 414static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 415{
 416	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 417		return sprintf(buf, "powersave\n");
 418	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 419		return sprintf(buf, "performance\n");
 420	else if (policy->governor)
 421		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
 422				policy->governor->name);
 423	return -EINVAL;
 424}
 425
 426
 427/**
 428 * store_scaling_governor - store policy for the specified CPU
 429 */
 430static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 431					const char *buf, size_t count)
 432{
 433	unsigned int ret = -EINVAL;
 434	char	str_governor[16];
 435	struct cpufreq_policy new_policy;
 436
 437	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 438	if (ret)
 439		return ret;
 440
 441	ret = sscanf(buf, "%15s", str_governor);
 442	if (ret != 1)
 443		return -EINVAL;
 444
 445	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 446						&new_policy.governor))
 447		return -EINVAL;
 448
 449	/* Do not use cpufreq_set_policy here or the user_policy.max
 450	   will be wrongly overridden */
 451	ret = __cpufreq_set_policy(policy, &new_policy);
 452
 453	policy->user_policy.policy = policy->policy;
 454	policy->user_policy.governor = policy->governor;
 
 455
 456	if (ret)
 457		return ret;
 458	else
 459		return count;
 
 
 
 
 
 
 
 460}
 461
 462/**
 463 * show_scaling_driver - show the cpufreq driver currently loaded
 464 */
 465static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 466{
 467	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
 468}
 469
 470/**
 471 * show_scaling_available_governors - show the available CPUfreq governors
 472 */
 473static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 474						char *buf)
 475{
 476	ssize_t i = 0;
 477	struct cpufreq_governor *t;
 478
 479	if (!cpufreq_driver->target) {
 480		i += sprintf(buf, "performance powersave");
 481		goto out;
 482	}
 483
 484	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 
 485		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 486		    - (CPUFREQ_NAME_LEN + 2)))
 487			goto out;
 488		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
 489	}
 
 490out:
 491	i += sprintf(&buf[i], "\n");
 492	return i;
 493}
 494
 495static ssize_t show_cpus(const struct cpumask *mask, char *buf)
 496{
 497	ssize_t i = 0;
 498	unsigned int cpu;
 499
 500	for_each_cpu(cpu, mask) {
 501		if (i)
 502			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 503		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 504		if (i >= (PAGE_SIZE - 5))
 505			break;
 506	}
 507	i += sprintf(&buf[i], "\n");
 508	return i;
 509}
 
 510
 511/**
 512 * show_related_cpus - show the CPUs affected by each transition even if
 513 * hw coordination is in use
 514 */
 515static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 516{
 517	if (cpumask_empty(policy->related_cpus))
 518		return show_cpus(policy->cpus, buf);
 519	return show_cpus(policy->related_cpus, buf);
 520}
 521
 522/**
 523 * show_affected_cpus - show the CPUs affected by each transition
 524 */
 525static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 526{
 527	return show_cpus(policy->cpus, buf);
 528}
 529
 530static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 531					const char *buf, size_t count)
 532{
 533	unsigned int freq = 0;
 534	unsigned int ret;
 535
 536	if (!policy->governor || !policy->governor->store_setspeed)
 537		return -EINVAL;
 538
 539	ret = sscanf(buf, "%u", &freq);
 540	if (ret != 1)
 541		return -EINVAL;
 542
 543	policy->governor->store_setspeed(policy, freq);
 544
 545	return count;
 546}
 547
 548static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (!policy->governor || !policy->governor->show_setspeed)
 551		return sprintf(buf, "<unsupported>\n");
 552
 553	return policy->governor->show_setspeed(policy, buf);
 554}
 555
 556/**
 557 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
 558 */
 559static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 560{
 561	unsigned int limit;
 562	int ret;
 563	if (cpufreq_driver->bios_limit) {
 564		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 565		if (!ret)
 566			return sprintf(buf, "%u\n", limit);
 567	}
 568	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 569}
 570
 571cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 572cpufreq_freq_attr_ro(cpuinfo_min_freq);
 573cpufreq_freq_attr_ro(cpuinfo_max_freq);
 574cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 575cpufreq_freq_attr_ro(scaling_available_governors);
 576cpufreq_freq_attr_ro(scaling_driver);
 577cpufreq_freq_attr_ro(scaling_cur_freq);
 578cpufreq_freq_attr_ro(bios_limit);
 579cpufreq_freq_attr_ro(related_cpus);
 580cpufreq_freq_attr_ro(affected_cpus);
 581cpufreq_freq_attr_rw(scaling_min_freq);
 582cpufreq_freq_attr_rw(scaling_max_freq);
 583cpufreq_freq_attr_rw(scaling_governor);
 584cpufreq_freq_attr_rw(scaling_setspeed);
 585
 586static struct attribute *default_attrs[] = {
 587	&cpuinfo_min_freq.attr,
 588	&cpuinfo_max_freq.attr,
 589	&cpuinfo_transition_latency.attr,
 590	&scaling_min_freq.attr,
 591	&scaling_max_freq.attr,
 592	&affected_cpus.attr,
 593	&related_cpus.attr,
 594	&scaling_governor.attr,
 595	&scaling_driver.attr,
 596	&scaling_available_governors.attr,
 597	&scaling_setspeed.attr,
 598	NULL
 599};
 600
 601struct kobject *cpufreq_global_kobject;
 602EXPORT_SYMBOL(cpufreq_global_kobject);
 603
 604#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 605#define to_attr(a) container_of(a, struct freq_attr, attr)
 606
 607static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 608{
 609	struct cpufreq_policy *policy = to_policy(kobj);
 610	struct freq_attr *fattr = to_attr(attr);
 611	ssize_t ret = -EINVAL;
 612	policy = cpufreq_cpu_get(policy->cpu);
 613	if (!policy)
 614		goto no_policy;
 615
 616	if (lock_policy_rwsem_read(policy->cpu) < 0)
 617		goto fail;
 618
 619	if (fattr->show)
 620		ret = fattr->show(policy, buf);
 621	else
 622		ret = -EIO;
 623
 624	unlock_policy_rwsem_read(policy->cpu);
 625fail:
 626	cpufreq_cpu_put(policy);
 627no_policy:
 628	return ret;
 629}
 630
 631static ssize_t store(struct kobject *kobj, struct attribute *attr,
 632		     const char *buf, size_t count)
 633{
 634	struct cpufreq_policy *policy = to_policy(kobj);
 635	struct freq_attr *fattr = to_attr(attr);
 636	ssize_t ret = -EINVAL;
 637	policy = cpufreq_cpu_get(policy->cpu);
 638	if (!policy)
 639		goto no_policy;
 640
 641	if (lock_policy_rwsem_write(policy->cpu) < 0)
 642		goto fail;
 
 
 
 
 
 
 
 643
 644	if (fattr->store)
 
 645		ret = fattr->store(policy, buf, count);
 646	else
 647		ret = -EIO;
 
 
 648
 649	unlock_policy_rwsem_write(policy->cpu);
 650fail:
 651	cpufreq_cpu_put(policy);
 652no_policy:
 653	return ret;
 654}
 655
 656static void cpufreq_sysfs_release(struct kobject *kobj)
 657{
 658	struct cpufreq_policy *policy = to_policy(kobj);
 659	pr_debug("last reference is dropped\n");
 660	complete(&policy->kobj_unregister);
 661}
 662
 663static const struct sysfs_ops sysfs_ops = {
 664	.show	= show,
 665	.store	= store,
 666};
 667
 668static struct kobj_type ktype_cpufreq = {
 669	.sysfs_ops	= &sysfs_ops,
 670	.default_attrs	= default_attrs,
 671	.release	= cpufreq_sysfs_release,
 672};
 673
 674/*
 675 * Returns:
 676 *   Negative: Failure
 677 *   0:        Success
 678 *   Positive: When we have a managed CPU and the sysfs got symlinked
 679 */
 680static int cpufreq_add_dev_policy(unsigned int cpu,
 681				  struct cpufreq_policy *policy,
 682				  struct sys_device *sys_dev)
 683{
 684	int ret = 0;
 685#ifdef CONFIG_SMP
 686	unsigned long flags;
 687	unsigned int j;
 688#ifdef CONFIG_HOTPLUG_CPU
 689	struct cpufreq_governor *gov;
 690
 691	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
 692	if (gov) {
 693		policy->governor = gov;
 694		pr_debug("Restoring governor %s for cpu %d\n",
 695		       policy->governor->name, cpu);
 696	}
 697#endif
 698
 699	for_each_cpu(j, policy->cpus) {
 700		struct cpufreq_policy *managed_policy;
 701
 702		if (cpu == j)
 703			continue;
 704
 705		/* Check for existing affected CPUs.
 706		 * They may not be aware of it due to CPU Hotplug.
 707		 * cpufreq_cpu_put is called when the device is removed
 708		 * in __cpufreq_remove_dev()
 709		 */
 710		managed_policy = cpufreq_cpu_get(j);
 711		if (unlikely(managed_policy)) {
 712
 713			/* Set proper policy_cpu */
 714			unlock_policy_rwsem_write(cpu);
 715			per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
 716
 717			if (lock_policy_rwsem_write(cpu) < 0) {
 718				/* Should not go through policy unlock path */
 719				if (cpufreq_driver->exit)
 720					cpufreq_driver->exit(policy);
 721				cpufreq_cpu_put(managed_policy);
 722				return -EBUSY;
 723			}
 724
 725			spin_lock_irqsave(&cpufreq_driver_lock, flags);
 726			cpumask_copy(managed_policy->cpus, policy->cpus);
 727			per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
 728			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 729
 730			pr_debug("CPU already managed, adding link\n");
 731			ret = sysfs_create_link(&sys_dev->kobj,
 732						&managed_policy->kobj,
 733						"cpufreq");
 734			if (ret)
 735				cpufreq_cpu_put(managed_policy);
 736			/*
 737			 * Success. We only needed to be added to the mask.
 738			 * Call driver->exit() because only the cpu parent of
 739			 * the kobj needed to call init().
 740			 */
 741			if (cpufreq_driver->exit)
 742				cpufreq_driver->exit(policy);
 743
 744			if (!ret)
 745				return 1;
 746			else
 747				return ret;
 748		}
 749	}
 750#endif
 751	return ret;
 752}
 753
 754
 755/* symlink affected CPUs */
 756static int cpufreq_add_dev_symlink(unsigned int cpu,
 757				   struct cpufreq_policy *policy)
 758{
 759	unsigned int j;
 760	int ret = 0;
 761
 762	for_each_cpu(j, policy->cpus) {
 763		struct cpufreq_policy *managed_policy;
 764		struct sys_device *cpu_sys_dev;
 765
 766		if (j == cpu)
 767			continue;
 768		if (!cpu_online(j))
 769			continue;
 770
 771		pr_debug("CPU %u already managed, adding link\n", j);
 772		managed_policy = cpufreq_cpu_get(cpu);
 773		cpu_sys_dev = get_cpu_sysdev(j);
 774		ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
 775					"cpufreq");
 776		if (ret) {
 777			cpufreq_cpu_put(managed_policy);
 778			return ret;
 779		}
 780	}
 781	return ret;
 782}
 783
 784static int cpufreq_add_dev_interface(unsigned int cpu,
 785				     struct cpufreq_policy *policy,
 786				     struct sys_device *sys_dev)
 787{
 788	struct cpufreq_policy new_policy;
 789	struct freq_attr **drv_attr;
 790	unsigned long flags;
 791	int ret = 0;
 792	unsigned int j;
 793
 794	/* prepare interface data */
 795	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 796				   &sys_dev->kobj, "cpufreq");
 797	if (ret)
 798		return ret;
 799
 800	/* set up files for this cpu device */
 801	drv_attr = cpufreq_driver->attr;
 802	while ((drv_attr) && (*drv_attr)) {
 803		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 804		if (ret)
 805			goto err_out_kobj_put;
 806		drv_attr++;
 807	}
 808	if (cpufreq_driver->get) {
 809		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 810		if (ret)
 811			goto err_out_kobj_put;
 812	}
 813	if (cpufreq_driver->target) {
 814		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 815		if (ret)
 816			goto err_out_kobj_put;
 817	}
 
 
 
 
 
 818	if (cpufreq_driver->bios_limit) {
 819		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 820		if (ret)
 821			goto err_out_kobj_put;
 822	}
 823
 824	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 825	for_each_cpu(j, policy->cpus) {
 826		if (!cpu_online(j))
 827			continue;
 828		per_cpu(cpufreq_cpu_data, j) = policy;
 829		per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
 830	}
 831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 832
 833	ret = cpufreq_add_dev_symlink(cpu, policy);
 834	if (ret)
 835		goto err_out_kobj_put;
 
 
 836
 837	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
 838	/* assure that the starting sequence is run in __cpufreq_set_policy */
 839	policy->governor = NULL;
 840
 841	/* set default policy */
 842	ret = __cpufreq_set_policy(policy, &new_policy);
 843	policy->user_policy.policy = policy->policy;
 844	policy->user_policy.governor = policy->governor;
 
 845
 846	if (ret) {
 847		pr_debug("setting policy failed\n");
 848		if (cpufreq_driver->exit)
 849			cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	}
 851	return ret;
 852
 853err_out_kobj_put:
 854	kobject_put(&policy->kobj);
 855	wait_for_completion(&policy->kobj_unregister);
 
 856	return ret;
 857}
 858
 859
 860/**
 861 * cpufreq_add_dev - add a CPU device
 862 *
 863 * Adds the cpufreq interface for a CPU device.
 864 *
 865 * The Oracle says: try running cpufreq registration/unregistration concurrently
 866 * with with cpu hotplugging and all hell will break loose. Tried to clean this
 867 * mess up, but more thorough testing is needed. - Mathieu
 868 */
 869static int cpufreq_add_dev(struct sys_device *sys_dev)
 870{
 871	unsigned int cpu = sys_dev->id;
 872	int ret = 0, found = 0;
 873	struct cpufreq_policy *policy;
 874	unsigned long flags;
 875	unsigned int j;
 876#ifdef CONFIG_HOTPLUG_CPU
 877	int sibling;
 878#endif
 879
 880	if (cpu_is_offline(cpu))
 
 881		return 0;
 882
 883	pr_debug("adding CPU %u\n", cpu);
 
 
 884
 885#ifdef CONFIG_SMP
 886	/* check whether a different CPU already registered this
 887	 * CPU because it is in the same boat. */
 888	policy = cpufreq_cpu_get(cpu);
 889	if (unlikely(policy)) {
 890		cpufreq_cpu_put(policy);
 891		return 0;
 892	}
 893#endif
 
 
 894
 895	if (!try_module_get(cpufreq_driver->owner)) {
 896		ret = -EINVAL;
 897		goto module_out;
 
 
 
 898	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900	ret = -ENOMEM;
 901	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902	if (!policy)
 903		goto nomem_out;
 904
 905	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
 906		goto err_free_policy;
 907
 908	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
 909		goto err_free_cpumask;
 910
 911	policy->cpu = cpu;
 912	cpumask_copy(policy->cpus, cpumask_of(cpu));
 913
 914	/* Initially set CPU itself as the policy_cpu */
 915	per_cpu(cpufreq_policy_cpu, cpu) = cpu;
 916	ret = (lock_policy_rwsem_write(cpu) < 0);
 917	WARN_ON(ret);
 
 
 
 
 
 
 
 
 918
 919	init_completion(&policy->kobj_unregister);
 920	INIT_WORK(&policy->update, handle_update);
 921
 922	/* Set governor before ->init, so that driver could check it */
 923#ifdef CONFIG_HOTPLUG_CPU
 924	for_each_online_cpu(sibling) {
 925		struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
 926		if (cp && cp->governor &&
 927		    (cpumask_test_cpu(cpu, cp->related_cpus))) {
 928			policy->governor = cp->governor;
 929			found = 1;
 930			break;
 931		}
 932	}
 933#endif
 934	if (!found)
 935		policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
 936	/* call driver. From then on the cpufreq must be able
 937	 * to accept all calls to ->verify and ->setpolicy for this CPU
 938	 */
 939	ret = cpufreq_driver->init(policy);
 940	if (ret) {
 941		pr_debug("initialization failed\n");
 942		goto err_unlock_policy;
 
 943	}
 944	policy->user_policy.min = policy->min;
 945	policy->user_policy.max = policy->max;
 946
 947	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
 948				     CPUFREQ_START, policy);
 949
 950	ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
 
 951	if (ret) {
 952		if (ret > 0)
 953			/* This is a managed cpu, symlink created,
 954			   exit with 0 */
 955			ret = 0;
 956		goto err_unlock_policy;
 957	}
 958
 959	ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
 960	if (ret)
 961		goto err_out_unregister;
 
 
 
 962
 963	unlock_policy_rwsem_write(cpu);
 
 964
 965	kobject_uevent(&policy->kobj, KOBJ_ADD);
 966	module_put(cpufreq_driver->owner);
 967	pr_debug("initialization complete\n");
 
 
 
 
 
 
 
 
 
 
 968
 969	return 0;
 
 970
 
 
 
 
 971
 972err_out_unregister:
 973	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 974	for_each_cpu(j, policy->cpus)
 975		per_cpu(cpufreq_cpu_data, j) = NULL;
 976	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977
 978	kobject_put(&policy->kobj);
 979	wait_for_completion(&policy->kobj_unregister);
 980
 981err_unlock_policy:
 982	unlock_policy_rwsem_write(cpu);
 983	free_cpumask_var(policy->related_cpus);
 984err_free_cpumask:
 985	free_cpumask_var(policy->cpus);
 986err_free_policy:
 987	kfree(policy);
 988nomem_out:
 989	module_put(cpufreq_driver->owner);
 990module_out:
 991	return ret;
 992}
 993
 994
 995/**
 996 * __cpufreq_remove_dev - remove a CPU device
 997 *
 998 * Removes the cpufreq interface for a CPU device.
 999 * Caller should already have policy_rwsem in write mode for this CPU.
1000 * This routine frees the rwsem before returning.
1001 */
1002static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1003{
1004	unsigned int cpu = sys_dev->id;
 
1005	unsigned long flags;
1006	struct cpufreq_policy *data;
1007	struct kobject *kobj;
1008	struct completion *cmp;
1009#ifdef CONFIG_SMP
1010	struct sys_device *cpu_sys_dev;
1011	unsigned int j;
1012#endif
1013
1014	pr_debug("unregistering CPU %u\n", cpu);
1015
1016	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1017	data = per_cpu(cpufreq_cpu_data, cpu);
1018
1019	if (!data) {
1020		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1021		unlock_policy_rwsem_write(cpu);
1022		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023	}
1024	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1025
 
 
 
 
 
 
 
 
 
 
 
 
1026
1027#ifdef CONFIG_SMP
1028	/* if this isn't the CPU which is the parent of the kobj, we
1029	 * only need to unlink, put and exit
1030	 */
1031	if (unlikely(cpu != data->cpu)) {
1032		pr_debug("removing link\n");
1033		cpumask_clear_cpu(cpu, data->cpus);
1034		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1035		kobj = &sys_dev->kobj;
1036		cpufreq_cpu_put(data);
1037		unlock_policy_rwsem_write(cpu);
1038		sysfs_remove_link(kobj, "cpufreq");
1039		return 0;
1040	}
1041#endif
1042
1043#ifdef CONFIG_SMP
 
 
 
 
 
 
 
1044
1045#ifdef CONFIG_HOTPLUG_CPU
1046	strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1047			CPUFREQ_NAME_LEN);
1048#endif
1049
1050	/* if we have other CPUs still registered, we need to unlink them,
1051	 * or else wait_for_completion below will lock up. Clean the
1052	 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1053	 * the sysfs links afterwards.
1054	 */
1055	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1056		for_each_cpu(j, data->cpus) {
1057			if (j == cpu)
1058				continue;
1059			per_cpu(cpufreq_cpu_data, j) = NULL;
 
1060		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061	}
1062
1063	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064
1065	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1066		for_each_cpu(j, data->cpus) {
1067			if (j == cpu)
1068				continue;
1069			pr_debug("removing link for cpu %u\n", j);
1070#ifdef CONFIG_HOTPLUG_CPU
1071			strncpy(per_cpu(cpufreq_cpu_governor, j),
1072				data->governor->name, CPUFREQ_NAME_LEN);
1073#endif
1074			cpu_sys_dev = get_cpu_sysdev(j);
1075			kobj = &cpu_sys_dev->kobj;
1076			unlock_policy_rwsem_write(cpu);
1077			sysfs_remove_link(kobj, "cpufreq");
1078			lock_policy_rwsem_write(cpu);
1079			cpufreq_cpu_put(data);
1080		}
1081	}
1082#else
1083	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084#endif
1085
1086	if (cpufreq_driver->target)
1087		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088
1089	kobj = &data->kobj;
1090	cmp = &data->kobj_unregister;
1091	unlock_policy_rwsem_write(cpu);
1092	kobject_put(kobj);
 
 
 
 
 
 
1093
1094	/* we need to make sure that the underlying kobj is actually
1095	 * not referenced anymore by anybody before we proceed with
1096	 * unloading.
1097	 */
1098	pr_debug("waiting for dropping of refcount\n");
1099	wait_for_completion(cmp);
1100	pr_debug("wait complete\n");
1101
1102	lock_policy_rwsem_write(cpu);
1103	if (cpufreq_driver->exit)
1104		cpufreq_driver->exit(data);
1105	unlock_policy_rwsem_write(cpu);
1106
1107#ifdef CONFIG_HOTPLUG_CPU
1108	/* when the CPU which is the parent of the kobj is hotplugged
1109	 * offline, check for siblings, and create cpufreq sysfs interface
1110	 * and symlinks
1111	 */
1112	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1113		/* first sibling now owns the new sysfs dir */
1114		cpumask_clear_cpu(cpu, data->cpus);
1115		cpufreq_add_dev(get_cpu_sysdev(cpumask_first(data->cpus)));
1116
1117		/* finally remove our own symlink */
1118		lock_policy_rwsem_write(cpu);
1119		__cpufreq_remove_dev(sys_dev);
1120	}
1121#endif
1122
1123	free_cpumask_var(data->related_cpus);
1124	free_cpumask_var(data->cpus);
1125	kfree(data);
 
 
 
 
 
 
 
 
 
1126
1127	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128}
1129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130
1131static int cpufreq_remove_dev(struct sys_device *sys_dev)
 
 
 
1132{
1133	unsigned int cpu = sys_dev->id;
1134	int retval;
 
 
1135
1136	if (cpu_is_offline(cpu))
 
 
1137		return 0;
 
1138
1139	if (unlikely(lock_policy_rwsem_write(cpu)))
1140		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141
1142	retval = __cpufreq_remove_dev(sys_dev);
1143	return retval;
1144}
 
 
 
 
1145
 
 
1146
1147static void handle_update(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148{
1149	struct cpufreq_policy *policy =
1150		container_of(work, struct cpufreq_policy, update);
1151	unsigned int cpu = policy->cpu;
1152	pr_debug("handle_update for cpu %u called\n", cpu);
1153	cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154}
1155
1156/**
1157 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1158 *	@cpu: cpu number
1159 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1160 *	@new_freq: CPU frequency the CPU actually runs at
1161 *
1162 *	We adjust to current frequency first, and need to clean up later.
1163 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1164 */
1165static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1166				unsigned int new_freq)
1167{
1168	struct cpufreq_freqs freqs;
1169
1170	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1171	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172
1173	freqs.cpu = cpu;
1174	freqs.old = old_freq;
1175	freqs.new = new_freq;
1176	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1177	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
 
1178}
1179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181/**
1182 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1183 * @cpu: CPU number
1184 *
1185 * This is the last known freq, without actually getting it from the driver.
1186 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187 */
1188unsigned int cpufreq_quick_get(unsigned int cpu)
1189{
1190	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1191	unsigned int ret_freq = 0;
 
 
 
1192
 
 
 
 
 
 
 
 
 
1193	if (policy) {
1194		ret_freq = policy->cur;
1195		cpufreq_cpu_put(policy);
1196	}
1197
1198	return ret_freq;
1199}
1200EXPORT_SYMBOL(cpufreq_quick_get);
1201
1202/**
1203 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1204 * @cpu: CPU number
1205 *
1206 * Just return the max possible frequency for a given CPU.
1207 */
1208unsigned int cpufreq_quick_get_max(unsigned int cpu)
1209{
1210	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1211	unsigned int ret_freq = 0;
1212
1213	if (policy) {
1214		ret_freq = policy->max;
1215		cpufreq_cpu_put(policy);
1216	}
1217
1218	return ret_freq;
1219}
1220EXPORT_SYMBOL(cpufreq_quick_get_max);
1221
1222
1223static unsigned int __cpufreq_get(unsigned int cpu)
 
 
 
 
 
1224{
1225	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1226	unsigned int ret_freq = 0;
1227
1228	if (!cpufreq_driver->get)
1229		return ret_freq;
1230
1231	ret_freq = cpufreq_driver->get(cpu);
1232
1233	if (ret_freq && policy->cur &&
1234		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1235		/* verify no discrepancy between actual and
1236					saved value exists */
1237		if (unlikely(ret_freq != policy->cur)) {
1238			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1239			schedule_work(&policy->update);
1240		}
1241	}
1242
1243	return ret_freq;
1244}
 
 
 
 
 
 
 
 
 
1245
1246/**
1247 * cpufreq_get - get the current CPU frequency (in kHz)
1248 * @cpu: CPU number
1249 *
1250 * Get the CPU current (static) CPU frequency
1251 */
1252unsigned int cpufreq_get(unsigned int cpu)
1253{
1254	unsigned int ret_freq = 0;
1255	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 
1256
1257	if (!policy)
1258		goto out;
1259
1260	if (unlikely(lock_policy_rwsem_read(cpu)))
1261		goto out_policy;
1262
1263	ret_freq = __cpufreq_get(cpu);
1264
1265	unlock_policy_rwsem_read(cpu);
 
1266
1267out_policy:
1268	cpufreq_cpu_put(policy);
1269out:
1270	return ret_freq;
1271}
1272EXPORT_SYMBOL(cpufreq_get);
1273
1274static struct sysdev_driver cpufreq_sysdev_driver = {
1275	.add		= cpufreq_add_dev,
1276	.remove		= cpufreq_remove_dev,
 
 
1277};
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279
1280/**
1281 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1282 *
1283 * This function is only executed for the boot processor.  The other CPUs
1284 * have been put offline by means of CPU hotplug.
 
 
1285 */
1286static int cpufreq_bp_suspend(void)
1287{
1288	int ret = 0;
1289
1290	int cpu = smp_processor_id();
1291	struct cpufreq_policy *cpu_policy;
1292
1293	pr_debug("suspending cpu %u\n", cpu);
 
1294
1295	/* If there's no policy for the boot CPU, we have nothing to do. */
1296	cpu_policy = cpufreq_cpu_get(cpu);
1297	if (!cpu_policy)
1298		return 0;
1299
1300	if (cpufreq_driver->suspend) {
1301		ret = cpufreq_driver->suspend(cpu_policy);
1302		if (ret)
1303			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1304					"step on CPU %u\n", cpu_policy->cpu);
 
 
 
 
 
1305	}
1306
1307	cpufreq_cpu_put(cpu_policy);
1308	return ret;
1309}
1310
1311/**
1312 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1313 *
1314 *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1315 *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1316 *	    restored. It will verify that the current freq is in sync with
1317 *	    what we believe it to be. This is a bit later than when it
1318 *	    should be, but nonethteless it's better than calling
1319 *	    cpufreq_driver->get() here which might re-enable interrupts...
1320 *
1321 * This function is only executed for the boot CPU.  The other CPUs have not
1322 * been turned on yet.
1323 */
1324static void cpufreq_bp_resume(void)
1325{
1326	int ret = 0;
 
1327
1328	int cpu = smp_processor_id();
1329	struct cpufreq_policy *cpu_policy;
1330
1331	pr_debug("resuming cpu %u\n", cpu);
 
1332
1333	/* If there's no policy for the boot CPU, we have nothing to do. */
1334	cpu_policy = cpufreq_cpu_get(cpu);
1335	if (!cpu_policy)
1336		return;
1337
1338	if (cpufreq_driver->resume) {
1339		ret = cpufreq_driver->resume(cpu_policy);
1340		if (ret) {
1341			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1342					"step on CPU %u\n", cpu_policy->cpu);
1343			goto fail;
 
 
 
 
 
 
 
 
1344		}
1345	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1346
1347	schedule_work(&cpu_policy->update);
 
 
 
 
 
 
 
 
 
1348
1349fail:
1350	cpufreq_cpu_put(cpu_policy);
1351}
 
1352
1353static struct syscore_ops cpufreq_syscore_ops = {
1354	.suspend	= cpufreq_bp_suspend,
1355	.resume		= cpufreq_bp_resume,
1356};
 
 
 
 
 
 
1357
 
 
 
1358
1359/*********************************************************************
1360 *                     NOTIFIER LISTS INTERFACE                      *
1361 *********************************************************************/
1362
1363/**
1364 *	cpufreq_register_notifier - register a driver with cpufreq
1365 *	@nb: notifier function to register
1366 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1367 *
1368 *	Add a driver to one of two lists: either a list of drivers that
1369 *      are notified about clock rate changes (once before and once after
1370 *      the transition), or a list of drivers that are notified about
1371 *      changes in cpufreq policy.
1372 *
1373 *	This function may sleep, and has the same return conditions as
1374 *	blocking_notifier_chain_register.
1375 */
1376int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1377{
1378	int ret;
1379
1380	WARN_ON(!init_cpufreq_transition_notifier_list_called);
 
1381
1382	switch (list) {
1383	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1384		ret = srcu_notifier_chain_register(
1385				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1386		break;
1387	case CPUFREQ_POLICY_NOTIFIER:
1388		ret = blocking_notifier_chain_register(
1389				&cpufreq_policy_notifier_list, nb);
1390		break;
1391	default:
1392		ret = -EINVAL;
1393	}
1394
1395	return ret;
1396}
1397EXPORT_SYMBOL(cpufreq_register_notifier);
1398
1399
1400/**
1401 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1402 *	@nb: notifier block to be unregistered
1403 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1404 *
1405 *	Remove a driver from the CPU frequency notifier list.
1406 *
1407 *	This function may sleep, and has the same return conditions as
1408 *	blocking_notifier_chain_unregister.
1409 */
1410int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1411{
1412	int ret;
1413
 
 
 
1414	switch (list) {
1415	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1416		ret = srcu_notifier_chain_unregister(
1417				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1418		break;
1419	case CPUFREQ_POLICY_NOTIFIER:
1420		ret = blocking_notifier_chain_unregister(
1421				&cpufreq_policy_notifier_list, nb);
1422		break;
1423	default:
1424		ret = -EINVAL;
1425	}
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL(cpufreq_unregister_notifier);
1430
1431
1432/*********************************************************************
1433 *                              GOVERNORS                            *
1434 *********************************************************************/
1435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436
1437int __cpufreq_driver_target(struct cpufreq_policy *policy,
1438			    unsigned int target_freq,
1439			    unsigned int relation)
1440{
1441	int retval = -EINVAL;
1442
1443	pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1444		target_freq, relation);
1445	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1446		retval = cpufreq_driver->target(policy, target_freq, relation);
1447
1448	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449}
1450EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1451
1452int cpufreq_driver_target(struct cpufreq_policy *policy,
1453			  unsigned int target_freq,
1454			  unsigned int relation)
1455{
1456	int ret = -EINVAL;
1457
1458	policy = cpufreq_cpu_get(policy->cpu);
1459	if (!policy)
1460		goto no_policy;
1461
1462	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1463		goto fail;
1464
1465	ret = __cpufreq_driver_target(policy, target_freq, relation);
1466
1467	unlock_policy_rwsem_write(policy->cpu);
1468
1469fail:
1470	cpufreq_cpu_put(policy);
1471no_policy:
1472	return ret;
1473}
1474EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1475
1476int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1477{
1478	int ret = 0;
 
1479
1480	policy = cpufreq_cpu_get(policy->cpu);
1481	if (!policy)
 
 
 
 
 
 
 
 
 
 
1482		return -EINVAL;
1483
1484	if (cpu_online(cpu) && cpufreq_driver->getavg)
1485		ret = cpufreq_driver->getavg(policy, cpu);
 
 
 
 
 
 
 
 
 
 
 
1486
1487	cpufreq_cpu_put(policy);
1488	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489}
1490EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1491
1492/*
1493 * when "event" is CPUFREQ_GOV_LIMITS
1494 */
 
 
 
 
 
 
1495
1496static int __cpufreq_governor(struct cpufreq_policy *policy,
1497					unsigned int event)
 
 
1498{
1499	int ret;
1500
1501	/* Only must be defined when default governor is known to have latency
1502	   restrictions, like e.g. conservative or ondemand.
1503	   That this is the case is already ensured in Kconfig
1504	*/
1505#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1506	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1507#else
1508	struct cpufreq_governor *gov = NULL;
1509#endif
1510
1511	if (policy->governor->max_transition_latency &&
1512	    policy->cpuinfo.transition_latency >
1513	    policy->governor->max_transition_latency) {
1514		if (!gov)
1515			return -EINVAL;
1516		else {
1517			printk(KERN_WARNING "%s governor failed, too long"
1518			       " transition latency of HW, fallback"
1519			       " to %s governor\n",
1520			       policy->governor->name,
1521			       gov->name);
1522			policy->governor = gov;
1523		}
1524	}
1525
1526	if (!try_module_get(policy->governor->owner))
1527		return -EINVAL;
1528
1529	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1530						policy->cpu, event);
1531	ret = policy->governor->governor(policy, event);
1532
1533	/* we keep one module reference alive for
1534			each CPU governed by this CPU */
1535	if ((event != CPUFREQ_GOV_START) || ret)
1536		module_put(policy->governor->owner);
1537	if ((event == CPUFREQ_GOV_STOP) && !ret)
1538		module_put(policy->governor->owner);
1539
1540	return ret;
 
 
 
 
 
 
 
 
1541}
1542
 
 
 
 
 
 
 
 
 
 
1543
1544int cpufreq_register_governor(struct cpufreq_governor *governor)
1545{
1546	int err;
1547
1548	if (!governor)
1549		return -EINVAL;
1550
 
 
 
1551	mutex_lock(&cpufreq_governor_mutex);
1552
1553	err = -EBUSY;
1554	if (__find_governor(governor->name) == NULL) {
1555		err = 0;
1556		list_add(&governor->governor_list, &cpufreq_governor_list);
1557	}
1558
1559	mutex_unlock(&cpufreq_governor_mutex);
1560	return err;
1561}
1562EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1563
1564
1565void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1566{
1567#ifdef CONFIG_HOTPLUG_CPU
1568	int cpu;
1569#endif
1570
1571	if (!governor)
1572		return;
1573
1574#ifdef CONFIG_HOTPLUG_CPU
1575	for_each_present_cpu(cpu) {
1576		if (cpu_online(cpu))
1577			continue;
1578		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1579			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
 
 
 
1580	}
1581#endif
1582
1583	mutex_lock(&cpufreq_governor_mutex);
1584	list_del(&governor->governor_list);
1585	mutex_unlock(&cpufreq_governor_mutex);
1586	return;
1587}
1588EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1589
1590
1591
1592/*********************************************************************
1593 *                          POLICY INTERFACE                         *
1594 *********************************************************************/
1595
1596/**
1597 * cpufreq_get_policy - get the current cpufreq_policy
1598 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1599 *	is written
 
1600 *
1601 * Reads the current cpufreq policy.
1602 */
1603int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1604{
1605	struct cpufreq_policy *cpu_policy;
1606	if (!policy)
1607		return -EINVAL;
1608
1609	cpu_policy = cpufreq_cpu_get(cpu);
1610	if (!cpu_policy)
1611		return -EINVAL;
1612
1613	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1614
1615	cpufreq_cpu_put(cpu_policy);
1616	return 0;
1617}
1618EXPORT_SYMBOL(cpufreq_get_policy);
1619
1620
1621/*
1622 * data   : current policy.
1623 * policy : policy to be set.
1624 */
1625static int __cpufreq_set_policy(struct cpufreq_policy *data,
1626				struct cpufreq_policy *policy)
 
 
 
 
 
 
 
 
 
 
 
1627{
1628	int ret = 0;
 
 
1629
1630	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1631		policy->min, policy->max);
 
 
 
 
 
 
 
1632
1633	memcpy(&policy->cpuinfo, &data->cpuinfo,
1634				sizeof(struct cpufreq_cpuinfo));
1635
1636	if (policy->min > data->max || policy->max < data->min) {
1637		ret = -EINVAL;
1638		goto error_out;
1639	}
1640
1641	/* verify the cpu speed can be set within this limit */
1642	ret = cpufreq_driver->verify(policy);
1643	if (ret)
1644		goto error_out;
1645
1646	/* adjust if necessary - all reasons */
1647	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1648			CPUFREQ_ADJUST, policy);
1649
1650	/* adjust if necessary - hardware incompatibility*/
1651	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1652			CPUFREQ_INCOMPATIBLE, policy);
1653
1654	/* verify the cpu speed can be set within this limit,
1655	   which might be different to the first one */
1656	ret = cpufreq_driver->verify(policy);
1657	if (ret)
1658		goto error_out;
1659
1660	/* notification of the new policy */
1661	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1662			CPUFREQ_NOTIFY, policy);
1663
1664	data->min = policy->min;
1665	data->max = policy->max;
1666
1667	pr_debug("new min and max freqs are %u - %u kHz\n",
1668					data->min, data->max);
1669
1670	if (cpufreq_driver->setpolicy) {
1671		data->policy = policy->policy;
1672		pr_debug("setting range\n");
1673		ret = cpufreq_driver->setpolicy(policy);
1674	} else {
1675		if (policy->governor != data->governor) {
1676			/* save old, working values */
1677			struct cpufreq_governor *old_gov = data->governor;
1678
1679			pr_debug("governor switch\n");
1680
1681			/* end old governor */
1682			if (data->governor)
1683				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1684
1685			/* start new governor */
1686			data->governor = policy->governor;
1687			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1688				/* new governor failed, so re-start old one */
1689				pr_debug("starting governor %s failed\n",
1690							data->governor->name);
1691				if (old_gov) {
1692					data->governor = old_gov;
1693					__cpufreq_governor(data,
1694							   CPUFREQ_GOV_START);
1695				}
1696				ret = -EINVAL;
1697				goto error_out;
1698			}
1699			/* might be a policy change, too, so fall through */
 
1700		}
1701		pr_debug("governor: change or update limits\n");
1702		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
 
 
 
 
 
 
 
 
 
1703	}
1704
1705error_out:
1706	return ret;
1707}
1708
1709/**
1710 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1711 *	@cpu: CPU which shall be re-evaluated
1712 *
1713 *	Useful for policy notifiers which have different necessities
1714 *	at different times.
 
 
1715 */
1716int cpufreq_update_policy(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717{
1718	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1719	struct cpufreq_policy policy;
1720	int ret;
1721
1722	if (!data) {
1723		ret = -ENODEV;
1724		goto no_policy;
1725	}
1726
1727	if (unlikely(lock_policy_rwsem_write(cpu))) {
1728		ret = -EINVAL;
1729		goto fail;
 
1730	}
1731
1732	pr_debug("updating policy for CPU %u\n", cpu);
1733	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1734	policy.min = data->user_policy.min;
1735	policy.max = data->user_policy.max;
1736	policy.policy = data->user_policy.policy;
1737	policy.governor = data->user_policy.governor;
1738
1739	/* BIOS might change freq behind our back
1740	  -> ask driver for current freq and notify governors about a change */
1741	if (cpufreq_driver->get) {
1742		policy.cur = cpufreq_driver->get(cpu);
1743		if (!data->cur) {
1744			pr_debug("Driver did not initialize current freq");
1745			data->cur = policy.cur;
1746		} else {
1747			if (data->cur != policy.cur)
1748				cpufreq_out_of_sync(cpu, data->cur,
1749								policy.cur);
1750		}
 
 
 
 
 
 
 
 
 
1751	}
 
 
 
 
 
 
1752
1753	ret = __cpufreq_set_policy(data, &policy);
 
 
1754
1755	unlock_policy_rwsem_write(cpu);
 
1756
1757fail:
1758	cpufreq_cpu_put(data);
1759no_policy:
1760	return ret;
1761}
1762EXPORT_SYMBOL(cpufreq_update_policy);
1763
1764static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1765					unsigned long action, void *hcpu)
1766{
1767	unsigned int cpu = (unsigned long)hcpu;
1768	struct sys_device *sys_dev;
1769
1770	sys_dev = get_cpu_sysdev(cpu);
1771	if (sys_dev) {
1772		switch (action) {
1773		case CPU_ONLINE:
1774		case CPU_ONLINE_FROZEN:
1775			cpufreq_add_dev(sys_dev);
1776			break;
1777		case CPU_DOWN_PREPARE:
1778		case CPU_DOWN_PREPARE_FROZEN:
1779			if (unlikely(lock_policy_rwsem_write(cpu)))
1780				BUG();
1781
1782			__cpufreq_remove_dev(sys_dev);
1783			break;
1784		case CPU_DOWN_FAILED:
1785		case CPU_DOWN_FAILED_FROZEN:
1786			cpufreq_add_dev(sys_dev);
1787			break;
1788		}
1789	}
1790	return NOTIFY_OK;
1791}
1792
1793static struct notifier_block __refdata cpufreq_cpu_notifier = {
1794    .notifier_call = cpufreq_cpu_callback,
1795};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796
1797/*********************************************************************
1798 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1799 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
1801/**
1802 * cpufreq_register_driver - register a CPU Frequency driver
1803 * @driver_data: A struct cpufreq_driver containing the values#
1804 * submitted by the CPU Frequency driver.
1805 *
1806 *   Registers a CPU Frequency driver to this core code. This code
1807 * returns zero on success, -EBUSY when another driver got here first
1808 * (and isn't unregistered in the meantime).
1809 *
1810 */
1811int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1812{
1813	unsigned long flags;
1814	int ret;
1815
 
 
 
 
 
 
 
 
 
 
1816	if (!driver_data || !driver_data->verify || !driver_data->init ||
1817	    ((!driver_data->setpolicy) && (!driver_data->target)))
 
 
 
 
 
1818		return -EINVAL;
1819
1820	pr_debug("trying to register driver %s\n", driver_data->name);
1821
1822	if (driver_data->setpolicy)
1823		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1824
1825	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1826	if (cpufreq_driver) {
1827		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828		return -EBUSY;
 
1829	}
1830	cpufreq_driver = driver_data;
1831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1832
1833	ret = sysdev_driver_register(&cpu_sysdev_class,
1834					&cpufreq_sysdev_driver);
1835	if (ret)
1836		goto err_null_driver;
 
 
 
 
1837
1838	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839		int i;
1840		ret = -ENODEV;
 
 
 
 
 
1841
1842		/* check for at least one working CPU */
1843		for (i = 0; i < nr_cpu_ids; i++)
1844			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845				ret = 0;
1846				break;
1847			}
1848
 
1849		/* if all ->init() calls failed, unregister */
1850		if (ret) {
1851			pr_debug("no CPU initialized for driver %s\n",
1852							driver_data->name);
1853			goto err_sysdev_unreg;
1854		}
1855	}
1856
1857	register_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
 
 
1858	pr_debug("driver %s up and running\n", driver_data->name);
 
1859
1860	return 0;
1861err_sysdev_unreg:
1862	sysdev_driver_unregister(&cpu_sysdev_class,
1863			&cpufreq_sysdev_driver);
1864err_null_driver:
1865	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1866	cpufreq_driver = NULL;
1867	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1868	return ret;
1869}
1870EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1871
1872
1873/**
1874 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1875 *
1876 *    Unregister the current CPUFreq driver. Only call this if you have
1877 * the right to do so, i.e. if you have succeeded in initialising before!
1878 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1879 * currently not initialised.
1880 */
1881int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1882{
1883	unsigned long flags;
1884
1885	if (!cpufreq_driver || (driver != cpufreq_driver))
1886		return -EINVAL;
1887
1888	pr_debug("unregistering driver %s\n", driver->name);
1889
1890	sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1891	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
1892
1893	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1894	cpufreq_driver = NULL;
1895	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1896
1897	return 0;
1898}
1899EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1900
1901static int __init cpufreq_core_init(void)
1902{
1903	int cpu;
1904
1905	for_each_possible_cpu(cpu) {
1906		per_cpu(cpufreq_policy_cpu, cpu) = -1;
1907		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1908	}
1909
1910	cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1911						&cpu_sysdev_class.kset.kobj);
1912	BUG_ON(!cpufreq_global_kobject);
1913	register_syscore_ops(&cpufreq_syscore_ops);
 
 
1914
1915	return 0;
1916}
 
 
1917core_initcall(cpufreq_core_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
 
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
 
 
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <trace/events/power.h>
  32
  33static LIST_HEAD(cpufreq_policy_list);
  34
  35/* Macros to iterate over CPU policies */
  36#define for_each_suitable_policy(__policy, __active)			 \
  37	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  38		if ((__active) == !policy_is_inactive(__policy))
  39
  40#define for_each_active_policy(__policy)		\
  41	for_each_suitable_policy(__policy, true)
  42#define for_each_inactive_policy(__policy)		\
  43	for_each_suitable_policy(__policy, false)
  44
  45/* Iterate over governors */
  46static LIST_HEAD(cpufreq_governor_list);
  47#define for_each_governor(__governor)				\
  48	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  49
  50static char default_governor[CPUFREQ_NAME_LEN];
  51
  52/*
  53 * The "cpufreq driver" - the arch- or hardware-dependent low
  54 * level driver of CPUFreq support, and its spinlock. This lock
  55 * also protects the cpufreq_cpu_data array.
  56 */
  57static struct cpufreq_driver *cpufreq_driver;
  58static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  59static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
 
 
  60
  61static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  62bool cpufreq_supports_freq_invariance(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63{
  64	return static_branch_likely(&cpufreq_freq_invariance);
 
 
  65}
  66
  67/* Flag to suspend/resume CPUFreq governors */
  68static bool cpufreq_suspended;
  69
  70static inline bool has_target(void)
  71{
  72	return cpufreq_driver->target_index || cpufreq_driver->target;
 
 
  73}
  74
 
  75/* internal prototypes */
  76static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  77static int cpufreq_init_governor(struct cpufreq_policy *policy);
  78static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  79static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  80static int cpufreq_set_policy(struct cpufreq_policy *policy,
  81			      struct cpufreq_governor *new_gov,
  82			      unsigned int new_pol);
  83
  84/*
  85 * Two notifier lists: the "policy" list is involved in the
  86 * validation process for a new CPU frequency policy; the
  87 * "transition" list for kernel code that needs to handle
  88 * changes to devices when the CPU clock speed changes.
  89 * The mutex locks both lists.
  90 */
  91static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  92SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
  93
  94static int off __read_mostly;
  95static int cpufreq_disabled(void)
  96{
  97	return off;
  98}
  99void disable_cpufreq(void)
 100{
 101	off = 1;
 102}
 
 
 
 103static DEFINE_MUTEX(cpufreq_governor_mutex);
 104
 105bool have_governor_per_policy(void)
 106{
 107	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 108}
 109EXPORT_SYMBOL_GPL(have_governor_per_policy);
 110
 111static struct kobject *cpufreq_global_kobject;
 
 112
 113struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 114{
 115	if (have_governor_per_policy())
 116		return &policy->kobj;
 117	else
 118		return cpufreq_global_kobject;
 119}
 120EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 121
 122static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 123{
 124	struct kernel_cpustat kcpustat;
 125	u64 cur_wall_time;
 126	u64 idle_time;
 127	u64 busy_time;
 128
 129	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 
 130
 131	kcpustat_cpu_fetch(&kcpustat, cpu);
 132
 133	busy_time = kcpustat.cpustat[CPUTIME_USER];
 134	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 135	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 136	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 137	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 138	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 139
 140	idle_time = cur_wall_time - busy_time;
 141	if (wall)
 142		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 143
 144	return div_u64(idle_time, NSEC_PER_USEC);
 145}
 146
 147u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 148{
 149	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 150
 151	if (idle_time == -1ULL)
 152		return get_cpu_idle_time_jiffy(cpu, wall);
 153	else if (!io_busy)
 154		idle_time += get_cpu_iowait_time_us(cpu, wall);
 155
 156	return idle_time;
 157}
 158EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 159
 160/*
 161 * This is a generic cpufreq init() routine which can be used by cpufreq
 162 * drivers of SMP systems. It will do following:
 163 * - validate & show freq table passed
 164 * - set policies transition latency
 165 * - policy->cpus with all possible CPUs
 166 */
 167void cpufreq_generic_init(struct cpufreq_policy *policy,
 168		struct cpufreq_frequency_table *table,
 169		unsigned int transition_latency)
 170{
 171	policy->freq_table = table;
 172	policy->cpuinfo.transition_latency = transition_latency;
 173
 174	/*
 175	 * The driver only supports the SMP configuration where all processors
 176	 * share the clock and voltage and clock.
 177	 */
 178	cpumask_setall(policy->cpus);
 179}
 180EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 181
 182struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 183{
 184	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 185
 186	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 187}
 188EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 189
 190unsigned int cpufreq_generic_get(unsigned int cpu)
 191{
 192	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 193
 194	if (!policy || IS_ERR(policy->clk)) {
 195		pr_err("%s: No %s associated to cpu: %d\n",
 196		       __func__, policy ? "clk" : "policy", cpu);
 197		return 0;
 198	}
 199
 200	return clk_get_rate(policy->clk) / 1000;
 201}
 202EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 203
 204/**
 205 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 206 * @cpu: CPU to find the policy for.
 207 *
 208 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 209 * the kobject reference counter of that policy.  Return a valid policy on
 210 * success or NULL on failure.
 211 *
 212 * The policy returned by this function has to be released with the help of
 213 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 214 */
 215struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 216{
 217	struct cpufreq_policy *policy = NULL;
 218	unsigned long flags;
 219
 220	if (WARN_ON(cpu >= nr_cpu_ids))
 221		return NULL;
 222
 223	/* get the cpufreq driver */
 224	read_lock_irqsave(&cpufreq_driver_lock, flags);
 225
 226	if (cpufreq_driver) {
 227		/* get the CPU */
 228		policy = cpufreq_cpu_get_raw(cpu);
 229		if (policy)
 230			kobject_get(&policy->kobj);
 231	}
 232
 233	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 234
 235	return policy;
 236}
 237EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 238
 239/**
 240 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 241 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 242 */
 243void cpufreq_cpu_put(struct cpufreq_policy *policy)
 244{
 245	kobject_put(&policy->kobj);
 246}
 247EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 248
 249/**
 250 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 251 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 252 */
 253void cpufreq_cpu_release(struct cpufreq_policy *policy)
 254{
 255	if (WARN_ON(!policy))
 256		return;
 257
 258	lockdep_assert_held(&policy->rwsem);
 259
 260	up_write(&policy->rwsem);
 261
 262	cpufreq_cpu_put(policy);
 263}
 264
 265/**
 266 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 267 * @cpu: CPU to find the policy for.
 268 *
 269 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 270 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 271 * Return the policy if it is active or release it and return NULL otherwise.
 272 *
 273 * The policy returned by this function has to be released with the help of
 274 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 275 * counter properly.
 276 */
 277struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 278{
 279	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 280
 281	if (!policy)
 282		return NULL;
 283
 284	down_write(&policy->rwsem);
 285
 286	if (policy_is_inactive(policy)) {
 287		cpufreq_cpu_release(policy);
 288		return NULL;
 289	}
 290
 291	return policy;
 292}
 293
 294/*********************************************************************
 295 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 296 *********************************************************************/
 297
 298/**
 299 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 300 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 301 * @ci: Frequency change information.
 302 *
 303 * This function alters the system "loops_per_jiffy" for the clock
 304 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 305 * systems as each CPU might be scaled differently. So, use the arch
 306 * per-CPU loops_per_jiffy value wherever possible.
 307 */
 
 
 
 
 308static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 309{
 310#ifndef CONFIG_SMP
 311	static unsigned long l_p_j_ref;
 312	static unsigned int l_p_j_ref_freq;
 313
 314	if (ci->flags & CPUFREQ_CONST_LOOPS)
 315		return;
 316
 317	if (!l_p_j_ref_freq) {
 318		l_p_j_ref = loops_per_jiffy;
 319		l_p_j_ref_freq = ci->old;
 320		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 321			 l_p_j_ref, l_p_j_ref_freq);
 322	}
 323	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 
 
 324		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 325								ci->new);
 326		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 327			 loops_per_jiffy, ci->new);
 328	}
 
 
 
 
 
 
 329#endif
 330}
 331
 332/**
 333 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 334 * @policy: cpufreq policy to enable fast frequency switching for.
 335 * @freqs: contain details of the frequency update.
 336 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 337 *
 338 * This function calls the transition notifiers and adjust_jiffies().
 339 *
 340 * It is called twice on all CPU frequency changes that have external effects.
 341 */
 342static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 343				      struct cpufreq_freqs *freqs,
 344				      unsigned int state)
 345{
 346	int cpu;
 347
 348	BUG_ON(irqs_disabled());
 349
 350	if (cpufreq_disabled())
 351		return;
 352
 353	freqs->policy = policy;
 354	freqs->flags = cpufreq_driver->flags;
 355	pr_debug("notification %u of frequency transition to %u kHz\n",
 356		 state, freqs->new);
 357
 
 358	switch (state) {
 
 359	case CPUFREQ_PRECHANGE:
 360		/*
 361		 * Detect if the driver reported a value as "old frequency"
 362		 * which is not equal to what the cpufreq core thinks is
 363		 * "old frequency".
 364		 */
 365		if (policy->cur && policy->cur != freqs->old) {
 366			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 367				 freqs->old, policy->cur);
 368			freqs->old = policy->cur;
 
 
 
 
 369		}
 370
 371		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 372					 CPUFREQ_PRECHANGE, freqs);
 373
 374		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 375		break;
 376
 377	case CPUFREQ_POSTCHANGE:
 378		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 379		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 380			 cpumask_pr_args(policy->cpus));
 381
 382		for_each_cpu(cpu, policy->cpus)
 383			trace_cpu_frequency(freqs->new, cpu);
 384
 385		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 386					 CPUFREQ_POSTCHANGE, freqs);
 387
 388		cpufreq_stats_record_transition(policy, freqs->new);
 389		policy->cur = freqs->new;
 390	}
 391}
 392
 393/* Do post notifications when there are chances that transition has failed */
 394static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 395		struct cpufreq_freqs *freqs, int transition_failed)
 396{
 397	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 398	if (!transition_failed)
 399		return;
 400
 401	swap(freqs->old, freqs->new);
 402	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 403	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 404}
 405
 406void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 407		struct cpufreq_freqs *freqs)
 408{
 409
 410	/*
 411	 * Catch double invocations of _begin() which lead to self-deadlock.
 412	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 413	 * doesn't invoke _begin() on their behalf, and hence the chances of
 414	 * double invocations are very low. Moreover, there are scenarios
 415	 * where these checks can emit false-positive warnings in these
 416	 * drivers; so we avoid that by skipping them altogether.
 417	 */
 418	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 419				&& current == policy->transition_task);
 420
 421wait:
 422	wait_event(policy->transition_wait, !policy->transition_ongoing);
 423
 424	spin_lock(&policy->transition_lock);
 425
 426	if (unlikely(policy->transition_ongoing)) {
 427		spin_unlock(&policy->transition_lock);
 428		goto wait;
 429	}
 430
 431	policy->transition_ongoing = true;
 432	policy->transition_task = current;
 433
 434	spin_unlock(&policy->transition_lock);
 435
 436	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 437}
 438EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 439
 440void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 441		struct cpufreq_freqs *freqs, int transition_failed)
 442{
 443	if (WARN_ON(!policy->transition_ongoing))
 444		return;
 445
 446	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 447
 448	arch_set_freq_scale(policy->related_cpus,
 449			    policy->cur,
 450			    policy->cpuinfo.max_freq);
 451
 452	policy->transition_ongoing = false;
 453	policy->transition_task = NULL;
 454
 455	wake_up(&policy->transition_wait);
 456}
 457EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 458
 459/*
 460 * Fast frequency switching status count.  Positive means "enabled", negative
 461 * means "disabled" and 0 means "not decided yet".
 462 */
 463static int cpufreq_fast_switch_count;
 464static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 465
 466static void cpufreq_list_transition_notifiers(void)
 467{
 468	struct notifier_block *nb;
 469
 470	pr_info("Registered transition notifiers:\n");
 471
 472	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 473
 474	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 475		pr_info("%pS\n", nb->notifier_call);
 476
 477	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 478}
 479
 480/**
 481 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 482 * @policy: cpufreq policy to enable fast frequency switching for.
 483 *
 484 * Try to enable fast frequency switching for @policy.
 485 *
 486 * The attempt will fail if there is at least one transition notifier registered
 487 * at this point, as fast frequency switching is quite fundamentally at odds
 488 * with transition notifiers.  Thus if successful, it will make registration of
 489 * transition notifiers fail going forward.
 490 */
 491void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 492{
 493	lockdep_assert_held(&policy->rwsem);
 494
 495	if (!policy->fast_switch_possible)
 496		return;
 497
 498	mutex_lock(&cpufreq_fast_switch_lock);
 499	if (cpufreq_fast_switch_count >= 0) {
 500		cpufreq_fast_switch_count++;
 501		policy->fast_switch_enabled = true;
 502	} else {
 503		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 504			policy->cpu);
 505		cpufreq_list_transition_notifiers();
 506	}
 507	mutex_unlock(&cpufreq_fast_switch_lock);
 508}
 509EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 510
 511/**
 512 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 513 * @policy: cpufreq policy to disable fast frequency switching for.
 514 */
 515void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 516{
 517	mutex_lock(&cpufreq_fast_switch_lock);
 518	if (policy->fast_switch_enabled) {
 519		policy->fast_switch_enabled = false;
 520		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 521			cpufreq_fast_switch_count--;
 522	}
 523	mutex_unlock(&cpufreq_fast_switch_lock);
 524}
 525EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 526
 527static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 528		unsigned int target_freq, unsigned int relation)
 529{
 530	unsigned int idx;
 531
 532	target_freq = clamp_val(target_freq, policy->min, policy->max);
 533
 534	if (!cpufreq_driver->target_index)
 535		return target_freq;
 536
 537	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 538	policy->cached_resolved_idx = idx;
 539	policy->cached_target_freq = target_freq;
 540	return policy->freq_table[idx].frequency;
 541}
 
 542
 543/**
 544 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 545 * one.
 546 * @policy: associated policy to interrogate
 547 * @target_freq: target frequency to resolve.
 548 *
 549 * The target to driver frequency mapping is cached in the policy.
 550 *
 551 * Return: Lowest driver-supported frequency greater than or equal to the
 552 * given target_freq, subject to policy (min/max) and driver limitations.
 553 */
 554unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 555					 unsigned int target_freq)
 556{
 557	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_L);
 558}
 559EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 560
 561unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 562{
 563	unsigned int latency;
 564
 565	if (policy->transition_delay_us)
 566		return policy->transition_delay_us;
 567
 568	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 569	if (latency) {
 570		/*
 571		 * For platforms that can change the frequency very fast (< 10
 572		 * us), the above formula gives a decent transition delay. But
 573		 * for platforms where transition_latency is in milliseconds, it
 574		 * ends up giving unrealistic values.
 575		 *
 576		 * Cap the default transition delay to 10 ms, which seems to be
 577		 * a reasonable amount of time after which we should reevaluate
 578		 * the frequency.
 579		 */
 580		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 581	}
 582
 583	return LATENCY_MULTIPLIER;
 584}
 585EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 586
 587/*********************************************************************
 588 *                          SYSFS INTERFACE                          *
 589 *********************************************************************/
 590static ssize_t show_boost(struct kobject *kobj,
 591			  struct kobj_attribute *attr, char *buf)
 592{
 593	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 594}
 595
 596static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 597			   const char *buf, size_t count)
 598{
 599	int ret, enable;
 600
 601	ret = sscanf(buf, "%d", &enable);
 602	if (ret != 1 || enable < 0 || enable > 1)
 603		return -EINVAL;
 604
 605	if (cpufreq_boost_trigger_state(enable)) {
 606		pr_err("%s: Cannot %s BOOST!\n",
 607		       __func__, enable ? "enable" : "disable");
 608		return -EINVAL;
 609	}
 610
 611	pr_debug("%s: cpufreq BOOST %s\n",
 612		 __func__, enable ? "enabled" : "disabled");
 613
 614	return count;
 615}
 616define_one_global_rw(boost);
 617
 618static struct cpufreq_governor *find_governor(const char *str_governor)
 619{
 620	struct cpufreq_governor *t;
 621
 622	for_each_governor(t)
 623		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 624			return t;
 625
 626	return NULL;
 627}
 628
 629static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 630{
 631	struct cpufreq_governor *t;
 632
 633	mutex_lock(&cpufreq_governor_mutex);
 634	t = find_governor(str_governor);
 635	if (!t)
 636		goto unlock;
 637
 638	if (!try_module_get(t->owner))
 639		t = NULL;
 
 
 
 
 
 
 
 
 
 640
 641unlock:
 642	mutex_unlock(&cpufreq_governor_mutex);
 643
 644	return t;
 645}
 646
 647static unsigned int cpufreq_parse_policy(char *str_governor)
 648{
 649	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 650		return CPUFREQ_POLICY_PERFORMANCE;
 651
 652	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 653		return CPUFREQ_POLICY_POWERSAVE;
 
 654
 655	return CPUFREQ_POLICY_UNKNOWN;
 656}
 
 657
 658/**
 659 * cpufreq_parse_governor - parse a governor string only for has_target()
 660 * @str_governor: Governor name.
 661 */
 662static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 663{
 664	struct cpufreq_governor *t;
 665
 666	t = get_governor(str_governor);
 667	if (t)
 668		return t;
 
 
 669
 670	if (request_module("cpufreq_%s", str_governor))
 671		return NULL;
 672
 673	return get_governor(str_governor);
 674}
 675
 676/*
 677 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 678 * print out cpufreq information
 679 *
 680 * Write out information from cpufreq_driver->policy[cpu]; object must be
 681 * "unsigned int".
 682 */
 683
 684#define show_one(file_name, object)			\
 685static ssize_t show_##file_name				\
 686(struct cpufreq_policy *policy, char *buf)		\
 687{							\
 688	return sprintf(buf, "%u\n", policy->object);	\
 689}
 690
 691show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 692show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 693show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 694show_one(scaling_min_freq, min);
 695show_one(scaling_max_freq, max);
 
 696
 697__weak unsigned int arch_freq_get_on_cpu(int cpu)
 698{
 699	return 0;
 700}
 701
 702static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 703{
 704	ssize_t ret;
 705	unsigned int freq;
 706
 707	freq = arch_freq_get_on_cpu(policy->cpu);
 708	if (freq)
 709		ret = sprintf(buf, "%u\n", freq);
 710	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 711		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 712	else
 713		ret = sprintf(buf, "%u\n", policy->cur);
 714	return ret;
 715}
 716
 717/*
 718 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 719 */
 720#define store_one(file_name, object)			\
 721static ssize_t store_##file_name					\
 722(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 723{									\
 724	unsigned long val;						\
 725	int ret;							\
 
 
 
 
 726									\
 727	ret = sscanf(buf, "%lu", &val);					\
 728	if (ret != 1)							\
 729		return -EINVAL;						\
 730									\
 731	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 732	return ret >= 0 ? count : ret;					\
 
 
 733}
 734
 735store_one(scaling_min_freq, min);
 736store_one(scaling_max_freq, max);
 737
 738/*
 739 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 740 */
 741static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 742					char *buf)
 743{
 744	unsigned int cur_freq = __cpufreq_get(policy);
 
 
 
 
 745
 746	if (cur_freq)
 747		return sprintf(buf, "%u\n", cur_freq);
 748
 749	return sprintf(buf, "<unknown>\n");
 750}
 751
 752/*
 753 * show_scaling_governor - show the current policy for the specified CPU
 754 */
 755static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 756{
 757	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 758		return sprintf(buf, "powersave\n");
 759	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 760		return sprintf(buf, "performance\n");
 761	else if (policy->governor)
 762		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 763				policy->governor->name);
 764	return -EINVAL;
 765}
 766
 767/*
 
 768 * store_scaling_governor - store policy for the specified CPU
 769 */
 770static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 771					const char *buf, size_t count)
 772{
 773	char str_governor[16];
 774	int ret;
 
 
 
 
 
 775
 776	ret = sscanf(buf, "%15s", str_governor);
 777	if (ret != 1)
 778		return -EINVAL;
 779
 780	if (cpufreq_driver->setpolicy) {
 781		unsigned int new_pol;
 
 782
 783		new_pol = cpufreq_parse_policy(str_governor);
 784		if (!new_pol)
 785			return -EINVAL;
 786
 787		ret = cpufreq_set_policy(policy, NULL, new_pol);
 788	} else {
 789		struct cpufreq_governor *new_gov;
 790
 791		new_gov = cpufreq_parse_governor(str_governor);
 792		if (!new_gov)
 793			return -EINVAL;
 794
 795		ret = cpufreq_set_policy(policy, new_gov,
 796					 CPUFREQ_POLICY_UNKNOWN);
 797
 798		module_put(new_gov->owner);
 799	}
 800
 801	return ret ? ret : count;
 802}
 803
 804/*
 805 * show_scaling_driver - show the cpufreq driver currently loaded
 806 */
 807static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 808{
 809	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 810}
 811
 812/*
 813 * show_scaling_available_governors - show the available CPUfreq governors
 814 */
 815static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 816						char *buf)
 817{
 818	ssize_t i = 0;
 819	struct cpufreq_governor *t;
 820
 821	if (!has_target()) {
 822		i += sprintf(buf, "performance powersave");
 823		goto out;
 824	}
 825
 826	mutex_lock(&cpufreq_governor_mutex);
 827	for_each_governor(t) {
 828		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 829		    - (CPUFREQ_NAME_LEN + 2)))
 830			break;
 831		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 832	}
 833	mutex_unlock(&cpufreq_governor_mutex);
 834out:
 835	i += sprintf(&buf[i], "\n");
 836	return i;
 837}
 838
 839ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 840{
 841	ssize_t i = 0;
 842	unsigned int cpu;
 843
 844	for_each_cpu(cpu, mask) {
 845		if (i)
 846			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 847		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 848		if (i >= (PAGE_SIZE - 5))
 849			break;
 850	}
 851	i += sprintf(&buf[i], "\n");
 852	return i;
 853}
 854EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 855
 856/*
 857 * show_related_cpus - show the CPUs affected by each transition even if
 858 * hw coordination is in use
 859 */
 860static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 861{
 862	return cpufreq_show_cpus(policy->related_cpus, buf);
 
 
 863}
 864
 865/*
 866 * show_affected_cpus - show the CPUs affected by each transition
 867 */
 868static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 869{
 870	return cpufreq_show_cpus(policy->cpus, buf);
 871}
 872
 873static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 874					const char *buf, size_t count)
 875{
 876	unsigned int freq = 0;
 877	unsigned int ret;
 878
 879	if (!policy->governor || !policy->governor->store_setspeed)
 880		return -EINVAL;
 881
 882	ret = sscanf(buf, "%u", &freq);
 883	if (ret != 1)
 884		return -EINVAL;
 885
 886	policy->governor->store_setspeed(policy, freq);
 887
 888	return count;
 889}
 890
 891static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 892{
 893	if (!policy->governor || !policy->governor->show_setspeed)
 894		return sprintf(buf, "<unsupported>\n");
 895
 896	return policy->governor->show_setspeed(policy, buf);
 897}
 898
 899/*
 900 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 901 */
 902static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 903{
 904	unsigned int limit;
 905	int ret;
 906	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 907	if (!ret)
 908		return sprintf(buf, "%u\n", limit);
 
 
 909	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 910}
 911
 912cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 913cpufreq_freq_attr_ro(cpuinfo_min_freq);
 914cpufreq_freq_attr_ro(cpuinfo_max_freq);
 915cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 916cpufreq_freq_attr_ro(scaling_available_governors);
 917cpufreq_freq_attr_ro(scaling_driver);
 918cpufreq_freq_attr_ro(scaling_cur_freq);
 919cpufreq_freq_attr_ro(bios_limit);
 920cpufreq_freq_attr_ro(related_cpus);
 921cpufreq_freq_attr_ro(affected_cpus);
 922cpufreq_freq_attr_rw(scaling_min_freq);
 923cpufreq_freq_attr_rw(scaling_max_freq);
 924cpufreq_freq_attr_rw(scaling_governor);
 925cpufreq_freq_attr_rw(scaling_setspeed);
 926
 927static struct attribute *default_attrs[] = {
 928	&cpuinfo_min_freq.attr,
 929	&cpuinfo_max_freq.attr,
 930	&cpuinfo_transition_latency.attr,
 931	&scaling_min_freq.attr,
 932	&scaling_max_freq.attr,
 933	&affected_cpus.attr,
 934	&related_cpus.attr,
 935	&scaling_governor.attr,
 936	&scaling_driver.attr,
 937	&scaling_available_governors.attr,
 938	&scaling_setspeed.attr,
 939	NULL
 940};
 941
 
 
 
 942#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 943#define to_attr(a) container_of(a, struct freq_attr, attr)
 944
 945static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 946{
 947	struct cpufreq_policy *policy = to_policy(kobj);
 948	struct freq_attr *fattr = to_attr(attr);
 949	ssize_t ret;
 
 
 
 950
 951	if (!fattr->show)
 952		return -EIO;
 953
 954	down_read(&policy->rwsem);
 955	ret = fattr->show(policy, buf);
 956	up_read(&policy->rwsem);
 
 957
 
 
 
 
 958	return ret;
 959}
 960
 961static ssize_t store(struct kobject *kobj, struct attribute *attr,
 962		     const char *buf, size_t count)
 963{
 964	struct cpufreq_policy *policy = to_policy(kobj);
 965	struct freq_attr *fattr = to_attr(attr);
 966	ssize_t ret = -EINVAL;
 
 
 
 967
 968	if (!fattr->store)
 969		return -EIO;
 970
 971	/*
 972	 * cpus_read_trylock() is used here to work around a circular lock
 973	 * dependency problem with respect to the cpufreq_register_driver().
 974	 */
 975	if (!cpus_read_trylock())
 976		return -EBUSY;
 977
 978	if (cpu_online(policy->cpu)) {
 979		down_write(&policy->rwsem);
 980		ret = fattr->store(policy, buf, count);
 981		up_write(&policy->rwsem);
 982	}
 983
 984	cpus_read_unlock();
 985
 
 
 
 
 986	return ret;
 987}
 988
 989static void cpufreq_sysfs_release(struct kobject *kobj)
 990{
 991	struct cpufreq_policy *policy = to_policy(kobj);
 992	pr_debug("last reference is dropped\n");
 993	complete(&policy->kobj_unregister);
 994}
 995
 996static const struct sysfs_ops sysfs_ops = {
 997	.show	= show,
 998	.store	= store,
 999};
1000
1001static struct kobj_type ktype_cpufreq = {
1002	.sysfs_ops	= &sysfs_ops,
1003	.default_attrs	= default_attrs,
1004	.release	= cpufreq_sysfs_release,
1005};
1006
1007static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
1008{
1009	struct device *dev = get_cpu_device(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
1010
1011	if (unlikely(!dev))
1012		return;
 
 
 
 
 
 
 
 
 
 
 
1013
1014	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1015		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016
1017	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1018	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1019		dev_err(dev, "cpufreq symlink creation failed\n");
 
 
 
 
 
1020}
1021
1022static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1023				   struct device *dev)
 
 
1024{
1025	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1026	sysfs_remove_link(&dev->kobj, "cpufreq");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027}
1028
1029static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
 
1030{
 
1031	struct freq_attr **drv_attr;
 
1032	int ret = 0;
 
 
 
 
 
 
 
1033
1034	/* set up files for this cpu device */
1035	drv_attr = cpufreq_driver->attr;
1036	while (drv_attr && *drv_attr) {
1037		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1038		if (ret)
1039			return ret;
1040		drv_attr++;
1041	}
1042	if (cpufreq_driver->get) {
1043		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1044		if (ret)
1045			return ret;
 
 
 
 
 
1046	}
1047
1048	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1049	if (ret)
1050		return ret;
1051
1052	if (cpufreq_driver->bios_limit) {
1053		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1054		if (ret)
1055			return ret;
1056	}
1057
1058	return 0;
1059}
 
 
 
 
 
 
1060
1061static int cpufreq_init_policy(struct cpufreq_policy *policy)
1062{
1063	struct cpufreq_governor *gov = NULL;
1064	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1065	int ret;
1066
1067	if (has_target()) {
1068		/* Update policy governor to the one used before hotplug. */
1069		gov = get_governor(policy->last_governor);
1070		if (gov) {
1071			pr_debug("Restoring governor %s for cpu %d\n",
1072				 gov->name, policy->cpu);
1073		} else {
1074			gov = get_governor(default_governor);
1075		}
1076
1077		if (!gov) {
1078			gov = cpufreq_default_governor();
1079			__module_get(gov->owner);
1080		}
1081
1082	} else {
1083
1084		/* Use the default policy if there is no last_policy. */
1085		if (policy->last_policy) {
1086			pol = policy->last_policy;
1087		} else {
1088			pol = cpufreq_parse_policy(default_governor);
1089			/*
1090			 * In case the default governor is neither "performance"
1091			 * nor "powersave", fall back to the initial policy
1092			 * value set by the driver.
1093			 */
1094			if (pol == CPUFREQ_POLICY_UNKNOWN)
1095				pol = policy->policy;
1096		}
1097		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1098		    pol != CPUFREQ_POLICY_POWERSAVE)
1099			return -ENODATA;
1100	}
 
1101
1102	ret = cpufreq_set_policy(policy, gov, pol);
1103	if (gov)
1104		module_put(gov->owner);
1105
1106	return ret;
1107}
1108
1109static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
1110{
1111	int ret = 0;
 
 
 
 
 
 
 
1112
1113	/* Has this CPU been taken care of already? */
1114	if (cpumask_test_cpu(cpu, policy->cpus))
1115		return 0;
1116
1117	down_write(&policy->rwsem);
1118	if (has_target())
1119		cpufreq_stop_governor(policy);
1120
1121	cpumask_set_cpu(cpu, policy->cpus);
1122
1123	if (has_target()) {
1124		ret = cpufreq_start_governor(policy);
1125		if (ret)
1126			pr_err("%s: Failed to start governor\n", __func__);
 
1127	}
1128	up_write(&policy->rwsem);
1129	return ret;
1130}
1131
1132void refresh_frequency_limits(struct cpufreq_policy *policy)
1133{
1134	if (!policy_is_inactive(policy)) {
1135		pr_debug("updating policy for CPU %u\n", policy->cpu);
1136
1137		cpufreq_set_policy(policy, policy->governor, policy->policy);
1138	}
1139}
1140EXPORT_SYMBOL(refresh_frequency_limits);
1141
1142static void handle_update(struct work_struct *work)
1143{
1144	struct cpufreq_policy *policy =
1145		container_of(work, struct cpufreq_policy, update);
1146
1147	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1148	down_write(&policy->rwsem);
1149	refresh_frequency_limits(policy);
1150	up_write(&policy->rwsem);
1151}
1152
1153static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1154				void *data)
1155{
1156	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1157
1158	schedule_work(&policy->update);
1159	return 0;
1160}
1161
1162static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1163				void *data)
1164{
1165	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1166
1167	schedule_work(&policy->update);
1168	return 0;
1169}
1170
1171static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1172{
1173	struct kobject *kobj;
1174	struct completion *cmp;
1175
1176	down_write(&policy->rwsem);
1177	cpufreq_stats_free_table(policy);
1178	kobj = &policy->kobj;
1179	cmp = &policy->kobj_unregister;
1180	up_write(&policy->rwsem);
1181	kobject_put(kobj);
1182
1183	/*
1184	 * We need to make sure that the underlying kobj is
1185	 * actually not referenced anymore by anybody before we
1186	 * proceed with unloading.
1187	 */
1188	pr_debug("waiting for dropping of refcount\n");
1189	wait_for_completion(cmp);
1190	pr_debug("wait complete\n");
1191}
1192
1193static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1194{
1195	struct cpufreq_policy *policy;
1196	struct device *dev = get_cpu_device(cpu);
1197	int ret;
1198
1199	if (!dev)
1200		return NULL;
1201
1202	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1203	if (!policy)
1204		return NULL;
1205
1206	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1207		goto err_free_policy;
1208
1209	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1210		goto err_free_cpumask;
1211
1212	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1213		goto err_free_rcpumask;
1214
1215	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1216				   cpufreq_global_kobject, "policy%u", cpu);
1217	if (ret) {
1218		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1219		/*
1220		 * The entire policy object will be freed below, but the extra
1221		 * memory allocated for the kobject name needs to be freed by
1222		 * releasing the kobject.
1223		 */
1224		kobject_put(&policy->kobj);
1225		goto err_free_real_cpus;
1226	}
1227
1228	freq_constraints_init(&policy->constraints);
 
1229
1230	policy->nb_min.notifier_call = cpufreq_notifier_min;
1231	policy->nb_max.notifier_call = cpufreq_notifier_max;
1232
1233	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1234				    &policy->nb_min);
 
 
 
 
 
 
 
 
 
 
 
 
 
1235	if (ret) {
1236		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1237			ret, cpumask_pr_args(policy->cpus));
1238		goto err_kobj_remove;
1239	}
 
 
 
 
 
1240
1241	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1242				    &policy->nb_max);
1243	if (ret) {
1244		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1245			ret, cpumask_pr_args(policy->cpus));
1246		goto err_min_qos_notifier;
 
 
1247	}
1248
1249	INIT_LIST_HEAD(&policy->policy_list);
1250	init_rwsem(&policy->rwsem);
1251	spin_lock_init(&policy->transition_lock);
1252	init_waitqueue_head(&policy->transition_wait);
1253	init_completion(&policy->kobj_unregister);
1254	INIT_WORK(&policy->update, handle_update);
1255
1256	policy->cpu = cpu;
1257	return policy;
1258
1259err_min_qos_notifier:
1260	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1261				 &policy->nb_min);
1262err_kobj_remove:
1263	cpufreq_policy_put_kobj(policy);
1264err_free_real_cpus:
1265	free_cpumask_var(policy->real_cpus);
1266err_free_rcpumask:
1267	free_cpumask_var(policy->related_cpus);
1268err_free_cpumask:
1269	free_cpumask_var(policy->cpus);
1270err_free_policy:
1271	kfree(policy);
1272
1273	return NULL;
1274}
1275
1276static void cpufreq_policy_free(struct cpufreq_policy *policy)
1277{
1278	unsigned long flags;
1279	int cpu;
1280
1281	/* Remove policy from list */
1282	write_lock_irqsave(&cpufreq_driver_lock, flags);
1283	list_del(&policy->policy_list);
1284
1285	for_each_cpu(cpu, policy->related_cpus)
1286		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1287	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1288
1289	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1290				 &policy->nb_max);
1291	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1292				 &policy->nb_min);
1293
1294	/* Cancel any pending policy->update work before freeing the policy. */
1295	cancel_work_sync(&policy->update);
1296
1297	if (policy->max_freq_req) {
1298		/*
1299		 * CPUFREQ_CREATE_POLICY notification is sent only after
1300		 * successfully adding max_freq_req request.
1301		 */
1302		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1303					     CPUFREQ_REMOVE_POLICY, policy);
1304		freq_qos_remove_request(policy->max_freq_req);
1305	}
1306
1307	freq_qos_remove_request(policy->min_freq_req);
1308	kfree(policy->min_freq_req);
1309
1310	cpufreq_policy_put_kobj(policy);
1311	free_cpumask_var(policy->real_cpus);
1312	free_cpumask_var(policy->related_cpus);
 
1313	free_cpumask_var(policy->cpus);
 
1314	kfree(policy);
 
 
 
 
1315}
1316
1317static int cpufreq_online(unsigned int cpu)
 
 
 
 
 
 
 
 
1318{
1319	struct cpufreq_policy *policy;
1320	bool new_policy;
1321	unsigned long flags;
 
 
 
 
 
1322	unsigned int j;
1323	int ret;
 
 
1324
1325	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
 
1326
1327	/* Check if this CPU already has a policy to manage it */
1328	policy = per_cpu(cpufreq_cpu_data, cpu);
1329	if (policy) {
1330		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1331		if (!policy_is_inactive(policy))
1332			return cpufreq_add_policy_cpu(policy, cpu);
1333
1334		/* This is the only online CPU for the policy.  Start over. */
1335		new_policy = false;
1336		down_write(&policy->rwsem);
1337		policy->cpu = cpu;
1338		policy->governor = NULL;
1339		up_write(&policy->rwsem);
1340	} else {
1341		new_policy = true;
1342		policy = cpufreq_policy_alloc(cpu);
1343		if (!policy)
1344			return -ENOMEM;
1345	}
 
1346
1347	if (!new_policy && cpufreq_driver->online) {
1348		ret = cpufreq_driver->online(policy);
1349		if (ret) {
1350			pr_debug("%s: %d: initialization failed\n", __func__,
1351				 __LINE__);
1352			goto out_exit_policy;
1353		}
1354
1355		/* Recover policy->cpus using related_cpus */
1356		cpumask_copy(policy->cpus, policy->related_cpus);
1357	} else {
1358		cpumask_copy(policy->cpus, cpumask_of(cpu));
1359
1360		/*
1361		 * Call driver. From then on the cpufreq must be able
1362		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1363		 */
1364		ret = cpufreq_driver->init(policy);
1365		if (ret) {
1366			pr_debug("%s: %d: initialization failed\n", __func__,
1367				 __LINE__);
1368			goto out_free_policy;
1369		}
 
 
 
 
 
1370
1371		/*
1372		 * The initialization has succeeded and the policy is online.
1373		 * If there is a problem with its frequency table, take it
1374		 * offline and drop it.
1375		 */
1376		ret = cpufreq_table_validate_and_sort(policy);
1377		if (ret)
1378			goto out_offline_policy;
1379
1380		/* related_cpus should at least include policy->cpus. */
1381		cpumask_copy(policy->related_cpus, policy->cpus);
1382	}
 
1383
1384	down_write(&policy->rwsem);
1385	/*
1386	 * affected cpus must always be the one, which are online. We aren't
1387	 * managing offline cpus here.
1388	 */
1389	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1390
1391	if (new_policy) {
1392		for_each_cpu(j, policy->related_cpus) {
1393			per_cpu(cpufreq_cpu_data, j) = policy;
1394			add_cpu_dev_symlink(policy, j);
1395		}
1396
1397		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1398					       GFP_KERNEL);
1399		if (!policy->min_freq_req) {
1400			ret = -ENOMEM;
1401			goto out_destroy_policy;
1402		}
1403
1404		ret = freq_qos_add_request(&policy->constraints,
1405					   policy->min_freq_req, FREQ_QOS_MIN,
1406					   policy->min);
1407		if (ret < 0) {
1408			/*
1409			 * So we don't call freq_qos_remove_request() for an
1410			 * uninitialized request.
1411			 */
1412			kfree(policy->min_freq_req);
1413			policy->min_freq_req = NULL;
1414			goto out_destroy_policy;
1415		}
1416
1417		/*
1418		 * This must be initialized right here to avoid calling
1419		 * freq_qos_remove_request() on uninitialized request in case
1420		 * of errors.
1421		 */
1422		policy->max_freq_req = policy->min_freq_req + 1;
1423
1424		ret = freq_qos_add_request(&policy->constraints,
1425					   policy->max_freq_req, FREQ_QOS_MAX,
1426					   policy->max);
1427		if (ret < 0) {
1428			policy->max_freq_req = NULL;
1429			goto out_destroy_policy;
1430		}
1431
1432		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1433				CPUFREQ_CREATE_POLICY, policy);
1434	}
1435
1436	if (cpufreq_driver->get && has_target()) {
1437		policy->cur = cpufreq_driver->get(policy->cpu);
1438		if (!policy->cur) {
1439			ret = -EIO;
1440			pr_err("%s: ->get() failed\n", __func__);
1441			goto out_destroy_policy;
 
 
 
 
 
 
 
 
 
 
 
1442		}
1443	}
 
 
 
1444
1445	/*
1446	 * Sometimes boot loaders set CPU frequency to a value outside of
1447	 * frequency table present with cpufreq core. In such cases CPU might be
1448	 * unstable if it has to run on that frequency for long duration of time
1449	 * and so its better to set it to a frequency which is specified in
1450	 * freq-table. This also makes cpufreq stats inconsistent as
1451	 * cpufreq-stats would fail to register because current frequency of CPU
1452	 * isn't found in freq-table.
1453	 *
1454	 * Because we don't want this change to effect boot process badly, we go
1455	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1456	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1457	 * is initialized to zero).
1458	 *
1459	 * We are passing target-freq as "policy->cur - 1" otherwise
1460	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1461	 * equal to target-freq.
1462	 */
1463	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1464	    && has_target()) {
1465		unsigned int old_freq = policy->cur;
1466
1467		/* Are we running at unknown frequency ? */
1468		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1469		if (ret == -EINVAL) {
1470			ret = __cpufreq_driver_target(policy, old_freq - 1,
1471						      CPUFREQ_RELATION_L);
1472
1473			/*
1474			 * Reaching here after boot in a few seconds may not
1475			 * mean that system will remain stable at "unknown"
1476			 * frequency for longer duration. Hence, a BUG_ON().
1477			 */
1478			BUG_ON(ret);
1479			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1480				__func__, policy->cpu, old_freq, policy->cur);
1481		}
1482	}
1483
1484	if (new_policy) {
1485		ret = cpufreq_add_dev_interface(policy);
1486		if (ret)
1487			goto out_destroy_policy;
 
 
 
1488
1489		cpufreq_stats_create_table(policy);
 
 
 
1490
1491		write_lock_irqsave(&cpufreq_driver_lock, flags);
1492		list_add(&policy->policy_list, &cpufreq_policy_list);
1493		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1494	}
1495
1496	ret = cpufreq_init_policy(policy);
1497	if (ret) {
1498		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1499		       __func__, cpu, ret);
1500		goto out_destroy_policy;
 
 
 
1501	}
 
1502
1503	up_write(&policy->rwsem);
1504
1505	kobject_uevent(&policy->kobj, KOBJ_ADD);
1506
1507	/* Callback for handling stuff after policy is ready */
1508	if (cpufreq_driver->ready)
1509		cpufreq_driver->ready(policy);
1510
1511	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1512		policy->cdev = of_cpufreq_cooling_register(policy);
1513
1514	pr_debug("initialization complete\n");
1515
1516	return 0;
1517
1518out_destroy_policy:
1519	for_each_cpu(j, policy->real_cpus)
1520		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1521
1522	up_write(&policy->rwsem);
1523
1524out_offline_policy:
1525	if (cpufreq_driver->offline)
1526		cpufreq_driver->offline(policy);
1527
1528out_exit_policy:
1529	if (cpufreq_driver->exit)
1530		cpufreq_driver->exit(policy);
1531
1532out_free_policy:
1533	cpufreq_policy_free(policy);
1534	return ret;
1535}
1536
1537/**
1538 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1539 * @dev: CPU device.
1540 * @sif: Subsystem interface structure pointer (not used)
1541 */
1542static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1543{
1544	struct cpufreq_policy *policy;
1545	unsigned cpu = dev->id;
1546	int ret;
1547
1548	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1549
1550	if (cpu_online(cpu)) {
1551		ret = cpufreq_online(cpu);
1552		if (ret)
1553			return ret;
1554	}
1555
1556	/* Create sysfs link on CPU registration */
1557	policy = per_cpu(cpufreq_cpu_data, cpu);
1558	if (policy)
1559		add_cpu_dev_symlink(policy, cpu);
1560
1561	return 0;
1562}
1563
1564static int cpufreq_offline(unsigned int cpu)
1565{
1566	struct cpufreq_policy *policy;
1567	int ret;
1568
1569	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1570
1571	policy = cpufreq_cpu_get_raw(cpu);
1572	if (!policy) {
1573		pr_debug("%s: No cpu_data found\n", __func__);
1574		return 0;
1575	}
1576
1577	down_write(&policy->rwsem);
1578	if (has_target())
1579		cpufreq_stop_governor(policy);
1580
1581	cpumask_clear_cpu(cpu, policy->cpus);
1582
1583	if (policy_is_inactive(policy)) {
1584		if (has_target())
1585			strncpy(policy->last_governor, policy->governor->name,
1586				CPUFREQ_NAME_LEN);
1587		else
1588			policy->last_policy = policy->policy;
1589	} else if (cpu == policy->cpu) {
1590		/* Nominate new CPU */
1591		policy->cpu = cpumask_any(policy->cpus);
1592	}
1593
1594	/* Start governor again for active policy */
1595	if (!policy_is_inactive(policy)) {
1596		if (has_target()) {
1597			ret = cpufreq_start_governor(policy);
1598			if (ret)
1599				pr_err("%s: Failed to start governor\n", __func__);
1600		}
1601
1602		goto unlock;
1603	}
1604
1605	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1606		cpufreq_cooling_unregister(policy->cdev);
1607		policy->cdev = NULL;
1608	}
1609
1610	if (has_target())
1611		cpufreq_exit_governor(policy);
1612
1613	/*
1614	 * Perform the ->offline() during light-weight tear-down, as
1615	 * that allows fast recovery when the CPU comes back.
1616	 */
1617	if (cpufreq_driver->offline) {
1618		cpufreq_driver->offline(policy);
1619	} else if (cpufreq_driver->exit) {
1620		cpufreq_driver->exit(policy);
1621		policy->freq_table = NULL;
1622	}
1623
1624unlock:
1625	up_write(&policy->rwsem);
1626	return 0;
1627}
1628
1629/*
1630 * cpufreq_remove_dev - remove a CPU device
1631 *
1632 * Removes the cpufreq interface for a CPU device.
1633 */
1634static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1635{
1636	unsigned int cpu = dev->id;
1637	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1638
1639	if (!policy)
1640		return;
1641
1642	if (cpu_online(cpu))
1643		cpufreq_offline(cpu);
1644
1645	cpumask_clear_cpu(cpu, policy->real_cpus);
1646	remove_cpu_dev_symlink(policy, dev);
1647
1648	if (cpumask_empty(policy->real_cpus)) {
1649		/* We did light-weight exit earlier, do full tear down now */
1650		if (cpufreq_driver->offline)
1651			cpufreq_driver->exit(policy);
1652
1653		cpufreq_policy_free(policy);
1654	}
1655}
1656
1657/**
1658 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1659 * @policy: Policy managing CPUs.
1660 * @new_freq: New CPU frequency.
 
1661 *
1662 * Adjust to the current frequency first and clean up later by either calling
1663 * cpufreq_update_policy(), or scheduling handle_update().
1664 */
1665static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1666				unsigned int new_freq)
1667{
1668	struct cpufreq_freqs freqs;
1669
1670	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1671		 policy->cur, new_freq);
1672
1673	freqs.old = policy->cur;
 
1674	freqs.new = new_freq;
1675
1676	cpufreq_freq_transition_begin(policy, &freqs);
1677	cpufreq_freq_transition_end(policy, &freqs, 0);
1678}
1679
1680static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1681{
1682	unsigned int new_freq;
1683
1684	new_freq = cpufreq_driver->get(policy->cpu);
1685	if (!new_freq)
1686		return 0;
1687
1688	/*
1689	 * If fast frequency switching is used with the given policy, the check
1690	 * against policy->cur is pointless, so skip it in that case.
1691	 */
1692	if (policy->fast_switch_enabled || !has_target())
1693		return new_freq;
1694
1695	if (policy->cur != new_freq) {
1696		cpufreq_out_of_sync(policy, new_freq);
1697		if (update)
1698			schedule_work(&policy->update);
1699	}
1700
1701	return new_freq;
1702}
1703
1704/**
1705 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1706 * @cpu: CPU number
1707 *
1708 * This is the last known freq, without actually getting it from the driver.
1709 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1710 */
1711unsigned int cpufreq_quick_get(unsigned int cpu)
1712{
1713	struct cpufreq_policy *policy;
1714	unsigned int ret_freq = 0;
1715	unsigned long flags;
1716
1717	read_lock_irqsave(&cpufreq_driver_lock, flags);
1718
1719	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1720		ret_freq = cpufreq_driver->get(cpu);
1721		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1722		return ret_freq;
1723	}
1724
1725	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1726
1727	policy = cpufreq_cpu_get(cpu);
1728	if (policy) {
1729		ret_freq = policy->cur;
1730		cpufreq_cpu_put(policy);
1731	}
1732
1733	return ret_freq;
1734}
1735EXPORT_SYMBOL(cpufreq_quick_get);
1736
1737/**
1738 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1739 * @cpu: CPU number
1740 *
1741 * Just return the max possible frequency for a given CPU.
1742 */
1743unsigned int cpufreq_quick_get_max(unsigned int cpu)
1744{
1745	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1746	unsigned int ret_freq = 0;
1747
1748	if (policy) {
1749		ret_freq = policy->max;
1750		cpufreq_cpu_put(policy);
1751	}
1752
1753	return ret_freq;
1754}
1755EXPORT_SYMBOL(cpufreq_quick_get_max);
1756
1757/**
1758 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1759 * @cpu: CPU number
1760 *
1761 * The default return value is the max_freq field of cpuinfo.
1762 */
1763__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1764{
1765	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1766	unsigned int ret_freq = 0;
1767
1768	if (policy) {
1769		ret_freq = policy->cpuinfo.max_freq;
1770		cpufreq_cpu_put(policy);
 
 
 
 
 
 
 
 
 
 
1771	}
1772
1773	return ret_freq;
1774}
1775EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1776
1777static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1778{
1779	if (unlikely(policy_is_inactive(policy)))
1780		return 0;
1781
1782	return cpufreq_verify_current_freq(policy, true);
1783}
1784
1785/**
1786 * cpufreq_get - get the current CPU frequency (in kHz)
1787 * @cpu: CPU number
1788 *
1789 * Get the CPU current (static) CPU frequency
1790 */
1791unsigned int cpufreq_get(unsigned int cpu)
1792{
 
1793	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1794	unsigned int ret_freq = 0;
1795
1796	if (policy) {
1797		down_read(&policy->rwsem);
1798		if (cpufreq_driver->get)
1799			ret_freq = __cpufreq_get(policy);
1800		up_read(&policy->rwsem);
 
 
1801
1802		cpufreq_cpu_put(policy);
1803	}
1804
 
 
 
1805	return ret_freq;
1806}
1807EXPORT_SYMBOL(cpufreq_get);
1808
1809static struct subsys_interface cpufreq_interface = {
1810	.name		= "cpufreq",
1811	.subsys		= &cpu_subsys,
1812	.add_dev	= cpufreq_add_dev,
1813	.remove_dev	= cpufreq_remove_dev,
1814};
1815
1816/*
1817 * In case platform wants some specific frequency to be configured
1818 * during suspend..
1819 */
1820int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1821{
1822	int ret;
1823
1824	if (!policy->suspend_freq) {
1825		pr_debug("%s: suspend_freq not defined\n", __func__);
1826		return 0;
1827	}
1828
1829	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1830			policy->suspend_freq);
1831
1832	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1833			CPUFREQ_RELATION_H);
1834	if (ret)
1835		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1836				__func__, policy->suspend_freq, ret);
1837
1838	return ret;
1839}
1840EXPORT_SYMBOL(cpufreq_generic_suspend);
1841
1842/**
1843 * cpufreq_suspend() - Suspend CPUFreq governors.
1844 *
1845 * Called during system wide Suspend/Hibernate cycles for suspending governors
1846 * as some platforms can't change frequency after this point in suspend cycle.
1847 * Because some of the devices (like: i2c, regulators, etc) they use for
1848 * changing frequency are suspended quickly after this point.
1849 */
1850void cpufreq_suspend(void)
1851{
1852	struct cpufreq_policy *policy;
1853
1854	if (!cpufreq_driver)
1855		return;
1856
1857	if (!has_target() && !cpufreq_driver->suspend)
1858		goto suspend;
1859
1860	pr_debug("%s: Suspending Governors\n", __func__);
 
 
 
1861
1862	for_each_active_policy(policy) {
1863		if (has_target()) {
1864			down_write(&policy->rwsem);
1865			cpufreq_stop_governor(policy);
1866			up_write(&policy->rwsem);
1867		}
1868
1869		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1870			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1871				cpufreq_driver->name);
1872	}
1873
1874suspend:
1875	cpufreq_suspended = true;
1876}
1877
1878/**
1879 * cpufreq_resume() - Resume CPUFreq governors.
 
 
 
 
 
 
 
1880 *
1881 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1882 * are suspended with cpufreq_suspend().
1883 */
1884void cpufreq_resume(void)
1885{
1886	struct cpufreq_policy *policy;
1887	int ret;
1888
1889	if (!cpufreq_driver)
1890		return;
1891
1892	if (unlikely(!cpufreq_suspended))
1893		return;
1894
1895	cpufreq_suspended = false;
1896
1897	if (!has_target() && !cpufreq_driver->resume)
1898		return;
1899
1900	pr_debug("%s: Resuming Governors\n", __func__);
1901
1902	for_each_active_policy(policy) {
1903		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1904			pr_err("%s: Failed to resume driver: %p\n", __func__,
1905				policy);
1906		} else if (has_target()) {
1907			down_write(&policy->rwsem);
1908			ret = cpufreq_start_governor(policy);
1909			up_write(&policy->rwsem);
1910
1911			if (ret)
1912				pr_err("%s: Failed to start governor for policy: %p\n",
1913				       __func__, policy);
1914		}
1915	}
1916}
1917
1918/**
1919 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1920 * @flags: Flags to test against the current cpufreq driver's flags.
1921 *
1922 * Assumes that the driver is there, so callers must ensure that this is the
1923 * case.
1924 */
1925bool cpufreq_driver_test_flags(u16 flags)
1926{
1927	return !!(cpufreq_driver->flags & flags);
1928}
1929
1930/**
1931 * cpufreq_get_current_driver - Return the current driver's name.
1932 *
1933 * Return the name string of the currently registered cpufreq driver or NULL if
1934 * none.
1935 */
1936const char *cpufreq_get_current_driver(void)
1937{
1938	if (cpufreq_driver)
1939		return cpufreq_driver->name;
1940
1941	return NULL;
 
1942}
1943EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1944
1945/**
1946 * cpufreq_get_driver_data - Return current driver data.
1947 *
1948 * Return the private data of the currently registered cpufreq driver, or NULL
1949 * if no cpufreq driver has been registered.
1950 */
1951void *cpufreq_get_driver_data(void)
1952{
1953	if (cpufreq_driver)
1954		return cpufreq_driver->driver_data;
1955
1956	return NULL;
1957}
1958EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1959
1960/*********************************************************************
1961 *                     NOTIFIER LISTS INTERFACE                      *
1962 *********************************************************************/
1963
1964/**
1965 * cpufreq_register_notifier - Register a notifier with cpufreq.
1966 * @nb: notifier function to register.
1967 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
1968 *
1969 * Add a notifier to one of two lists: either a list of notifiers that run on
1970 * clock rate changes (once before and once after every transition), or a list
1971 * of notifiers that ron on cpufreq policy changes.
 
1972 *
1973 * This function may sleep and it has the same return values as
1974 * blocking_notifier_chain_register().
1975 */
1976int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1977{
1978	int ret;
1979
1980	if (cpufreq_disabled())
1981		return -EINVAL;
1982
1983	switch (list) {
1984	case CPUFREQ_TRANSITION_NOTIFIER:
1985		mutex_lock(&cpufreq_fast_switch_lock);
1986
1987		if (cpufreq_fast_switch_count > 0) {
1988			mutex_unlock(&cpufreq_fast_switch_lock);
1989			return -EBUSY;
1990		}
1991		ret = srcu_notifier_chain_register(
1992				&cpufreq_transition_notifier_list, nb);
1993		if (!ret)
1994			cpufreq_fast_switch_count--;
1995
1996		mutex_unlock(&cpufreq_fast_switch_lock);
1997		break;
1998	case CPUFREQ_POLICY_NOTIFIER:
1999		ret = blocking_notifier_chain_register(
2000				&cpufreq_policy_notifier_list, nb);
2001		break;
2002	default:
2003		ret = -EINVAL;
2004	}
2005
2006	return ret;
2007}
2008EXPORT_SYMBOL(cpufreq_register_notifier);
2009
 
2010/**
2011 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2012 * @nb: notifier block to be unregistered.
2013 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2014 *
2015 * Remove a notifier from one of the cpufreq notifier lists.
2016 *
2017 * This function may sleep and it has the same return values as
2018 * blocking_notifier_chain_unregister().
2019 */
2020int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2021{
2022	int ret;
2023
2024	if (cpufreq_disabled())
2025		return -EINVAL;
2026
2027	switch (list) {
2028	case CPUFREQ_TRANSITION_NOTIFIER:
2029		mutex_lock(&cpufreq_fast_switch_lock);
2030
2031		ret = srcu_notifier_chain_unregister(
2032				&cpufreq_transition_notifier_list, nb);
2033		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2034			cpufreq_fast_switch_count++;
2035
2036		mutex_unlock(&cpufreq_fast_switch_lock);
2037		break;
2038	case CPUFREQ_POLICY_NOTIFIER:
2039		ret = blocking_notifier_chain_unregister(
2040				&cpufreq_policy_notifier_list, nb);
2041		break;
2042	default:
2043		ret = -EINVAL;
2044	}
2045
2046	return ret;
2047}
2048EXPORT_SYMBOL(cpufreq_unregister_notifier);
2049
2050
2051/*********************************************************************
2052 *                              GOVERNORS                            *
2053 *********************************************************************/
2054
2055/**
2056 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2057 * @policy: cpufreq policy to switch the frequency for.
2058 * @target_freq: New frequency to set (may be approximate).
2059 *
2060 * Carry out a fast frequency switch without sleeping.
2061 *
2062 * The driver's ->fast_switch() callback invoked by this function must be
2063 * suitable for being called from within RCU-sched read-side critical sections
2064 * and it is expected to select the minimum available frequency greater than or
2065 * equal to @target_freq (CPUFREQ_RELATION_L).
2066 *
2067 * This function must not be called if policy->fast_switch_enabled is unset.
2068 *
2069 * Governors calling this function must guarantee that it will never be invoked
2070 * twice in parallel for the same policy and that it will never be called in
2071 * parallel with either ->target() or ->target_index() for the same policy.
2072 *
2073 * Returns the actual frequency set for the CPU.
2074 *
2075 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2076 * error condition, the hardware configuration must be preserved.
2077 */
2078unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2079					unsigned int target_freq)
2080{
2081	unsigned int freq;
2082	int cpu;
2083
2084	target_freq = clamp_val(target_freq, policy->min, policy->max);
2085	freq = cpufreq_driver->fast_switch(policy, target_freq);
2086
2087	if (!freq)
2088		return 0;
2089
2090	policy->cur = freq;
2091	arch_set_freq_scale(policy->related_cpus, freq,
2092			    policy->cpuinfo.max_freq);
2093	cpufreq_stats_record_transition(policy, freq);
2094
2095	if (trace_cpu_frequency_enabled()) {
2096		for_each_cpu(cpu, policy->cpus)
2097			trace_cpu_frequency(freq, cpu);
2098	}
2099
2100	return freq;
2101}
2102EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2103
2104/**
2105 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2106 * @cpu: Target CPU.
2107 * @min_perf: Minimum (required) performance level (units of @capacity).
2108 * @target_perf: Target (desired) performance level (units of @capacity).
2109 * @capacity: Capacity of the target CPU.
2110 *
2111 * Carry out a fast performance level switch of @cpu without sleeping.
2112 *
2113 * The driver's ->adjust_perf() callback invoked by this function must be
2114 * suitable for being called from within RCU-sched read-side critical sections
2115 * and it is expected to select a suitable performance level equal to or above
2116 * @min_perf and preferably equal to or below @target_perf.
2117 *
2118 * This function must not be called if policy->fast_switch_enabled is unset.
2119 *
2120 * Governors calling this function must guarantee that it will never be invoked
2121 * twice in parallel for the same CPU and that it will never be called in
2122 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2123 * the same CPU.
2124 */
2125void cpufreq_driver_adjust_perf(unsigned int cpu,
2126				 unsigned long min_perf,
2127				 unsigned long target_perf,
2128				 unsigned long capacity)
2129{
2130	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2131}
2132
2133/**
2134 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2135 *
2136 * Return 'true' if the ->adjust_perf callback is present for the
2137 * current driver or 'false' otherwise.
2138 */
2139bool cpufreq_driver_has_adjust_perf(void)
2140{
2141	return !!cpufreq_driver->adjust_perf;
2142}
2143
2144/* Must set freqs->new to intermediate frequency */
2145static int __target_intermediate(struct cpufreq_policy *policy,
2146				 struct cpufreq_freqs *freqs, int index)
2147{
2148	int ret;
2149
2150	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2151
2152	/* We don't need to switch to intermediate freq */
2153	if (!freqs->new)
2154		return 0;
2155
2156	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2157		 __func__, policy->cpu, freqs->old, freqs->new);
2158
2159	cpufreq_freq_transition_begin(policy, freqs);
2160	ret = cpufreq_driver->target_intermediate(policy, index);
2161	cpufreq_freq_transition_end(policy, freqs, ret);
2162
2163	if (ret)
2164		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2165		       __func__, ret);
2166
2167	return ret;
2168}
2169
2170static int __target_index(struct cpufreq_policy *policy, int index)
2171{
2172	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2173	unsigned int restore_freq, intermediate_freq = 0;
2174	unsigned int newfreq = policy->freq_table[index].frequency;
2175	int retval = -EINVAL;
2176	bool notify;
2177
2178	if (newfreq == policy->cur)
2179		return 0;
2180
2181	/* Save last value to restore later on errors */
2182	restore_freq = policy->cur;
2183
2184	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2185	if (notify) {
2186		/* Handle switching to intermediate frequency */
2187		if (cpufreq_driver->get_intermediate) {
2188			retval = __target_intermediate(policy, &freqs, index);
2189			if (retval)
2190				return retval;
2191
2192			intermediate_freq = freqs.new;
2193			/* Set old freq to intermediate */
2194			if (intermediate_freq)
2195				freqs.old = freqs.new;
2196		}
2197
2198		freqs.new = newfreq;
2199		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2200			 __func__, policy->cpu, freqs.old, freqs.new);
2201
2202		cpufreq_freq_transition_begin(policy, &freqs);
2203	}
2204
2205	retval = cpufreq_driver->target_index(policy, index);
2206	if (retval)
2207		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2208		       retval);
2209
2210	if (notify) {
2211		cpufreq_freq_transition_end(policy, &freqs, retval);
2212
2213		/*
2214		 * Failed after setting to intermediate freq? Driver should have
2215		 * reverted back to initial frequency and so should we. Check
2216		 * here for intermediate_freq instead of get_intermediate, in
2217		 * case we haven't switched to intermediate freq at all.
2218		 */
2219		if (unlikely(retval && intermediate_freq)) {
2220			freqs.old = intermediate_freq;
2221			freqs.new = restore_freq;
2222			cpufreq_freq_transition_begin(policy, &freqs);
2223			cpufreq_freq_transition_end(policy, &freqs, 0);
2224		}
2225	}
2226
2227	return retval;
2228}
2229
2230int __cpufreq_driver_target(struct cpufreq_policy *policy,
2231			    unsigned int target_freq,
2232			    unsigned int relation)
2233{
2234	unsigned int old_target_freq = target_freq;
2235
2236	if (cpufreq_disabled())
2237		return -ENODEV;
 
 
2238
2239	target_freq = __resolve_freq(policy, target_freq, relation);
2240
2241	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2242		 policy->cpu, target_freq, relation, old_target_freq);
2243
2244	/*
2245	 * This might look like a redundant call as we are checking it again
2246	 * after finding index. But it is left intentionally for cases where
2247	 * exactly same freq is called again and so we can save on few function
2248	 * calls.
2249	 */
2250	if (target_freq == policy->cur &&
2251	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2252		return 0;
2253
2254	if (cpufreq_driver->target)
2255		return cpufreq_driver->target(policy, target_freq, relation);
2256
2257	if (!cpufreq_driver->target_index)
2258		return -EINVAL;
2259
2260	return __target_index(policy, policy->cached_resolved_idx);
2261}
2262EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2263
2264int cpufreq_driver_target(struct cpufreq_policy *policy,
2265			  unsigned int target_freq,
2266			  unsigned int relation)
2267{
2268	int ret;
 
 
 
 
2269
2270	down_write(&policy->rwsem);
 
2271
2272	ret = __cpufreq_driver_target(policy, target_freq, relation);
2273
2274	up_write(&policy->rwsem);
2275
 
 
 
2276	return ret;
2277}
2278EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2279
2280__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2281{
2282	return NULL;
2283}
2284
2285static int cpufreq_init_governor(struct cpufreq_policy *policy)
2286{
2287	int ret;
2288
2289	/* Don't start any governor operations if we are entering suspend */
2290	if (cpufreq_suspended)
2291		return 0;
2292	/*
2293	 * Governor might not be initiated here if ACPI _PPC changed
2294	 * notification happened, so check it.
2295	 */
2296	if (!policy->governor)
2297		return -EINVAL;
2298
2299	/* Platform doesn't want dynamic frequency switching ? */
2300	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2301	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2302		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2303
2304		if (gov) {
2305			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2306				policy->governor->name, gov->name);
2307			policy->governor = gov;
2308		} else {
2309			return -EINVAL;
2310		}
2311	}
2312
2313	if (!try_module_get(policy->governor->owner))
2314		return -EINVAL;
2315
2316	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2317
2318	if (policy->governor->init) {
2319		ret = policy->governor->init(policy);
2320		if (ret) {
2321			module_put(policy->governor->owner);
2322			return ret;
2323		}
2324	}
2325
2326	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2327
2328	return 0;
2329}
 
2330
2331static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2332{
2333	if (cpufreq_suspended || !policy->governor)
2334		return;
2335
2336	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2337
2338	if (policy->governor->exit)
2339		policy->governor->exit(policy);
2340
2341	module_put(policy->governor->owner);
2342}
2343
2344int cpufreq_start_governor(struct cpufreq_policy *policy)
2345{
2346	int ret;
2347
2348	if (cpufreq_suspended)
2349		return 0;
 
 
 
 
 
 
 
2350
2351	if (!policy->governor)
2352		return -EINVAL;
2353
2354	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2355
2356	if (cpufreq_driver->get)
2357		cpufreq_verify_current_freq(policy, false);
2358
2359	if (policy->governor->start) {
2360		ret = policy->governor->start(policy);
2361		if (ret)
2362			return ret;
 
2363	}
2364
2365	if (policy->governor->limits)
2366		policy->governor->limits(policy);
2367
2368	return 0;
2369}
 
 
 
 
 
 
 
 
2370
2371void cpufreq_stop_governor(struct cpufreq_policy *policy)
2372{
2373	if (cpufreq_suspended || !policy->governor)
2374		return;
2375
2376	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2377
2378	if (policy->governor->stop)
2379		policy->governor->stop(policy);
2380}
2381
2382static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2383{
2384	if (cpufreq_suspended || !policy->governor)
2385		return;
2386
2387	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2388
2389	if (policy->governor->limits)
2390		policy->governor->limits(policy);
2391}
2392
2393int cpufreq_register_governor(struct cpufreq_governor *governor)
2394{
2395	int err;
2396
2397	if (!governor)
2398		return -EINVAL;
2399
2400	if (cpufreq_disabled())
2401		return -ENODEV;
2402
2403	mutex_lock(&cpufreq_governor_mutex);
2404
2405	err = -EBUSY;
2406	if (!find_governor(governor->name)) {
2407		err = 0;
2408		list_add(&governor->governor_list, &cpufreq_governor_list);
2409	}
2410
2411	mutex_unlock(&cpufreq_governor_mutex);
2412	return err;
2413}
2414EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2415
 
2416void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2417{
2418	struct cpufreq_policy *policy;
2419	unsigned long flags;
 
2420
2421	if (!governor)
2422		return;
2423
2424	if (cpufreq_disabled())
2425		return;
2426
2427	/* clear last_governor for all inactive policies */
2428	read_lock_irqsave(&cpufreq_driver_lock, flags);
2429	for_each_inactive_policy(policy) {
2430		if (!strcmp(policy->last_governor, governor->name)) {
2431			policy->governor = NULL;
2432			strcpy(policy->last_governor, "\0");
2433		}
2434	}
2435	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2436
2437	mutex_lock(&cpufreq_governor_mutex);
2438	list_del(&governor->governor_list);
2439	mutex_unlock(&cpufreq_governor_mutex);
 
2440}
2441EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2442
2443
 
2444/*********************************************************************
2445 *                          POLICY INTERFACE                         *
2446 *********************************************************************/
2447
2448/**
2449 * cpufreq_get_policy - get the current cpufreq_policy
2450 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2451 *	is written
2452 * @cpu: CPU to find the policy for
2453 *
2454 * Reads the current cpufreq policy.
2455 */
2456int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2457{
2458	struct cpufreq_policy *cpu_policy;
2459	if (!policy)
2460		return -EINVAL;
2461
2462	cpu_policy = cpufreq_cpu_get(cpu);
2463	if (!cpu_policy)
2464		return -EINVAL;
2465
2466	memcpy(policy, cpu_policy, sizeof(*policy));
2467
2468	cpufreq_cpu_put(cpu_policy);
2469	return 0;
2470}
2471EXPORT_SYMBOL(cpufreq_get_policy);
2472
2473/**
2474 * cpufreq_set_policy - Modify cpufreq policy parameters.
2475 * @policy: Policy object to modify.
2476 * @new_gov: Policy governor pointer.
2477 * @new_pol: Policy value (for drivers with built-in governors).
2478 *
2479 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2480 * limits to be set for the policy, update @policy with the verified limits
2481 * values and either invoke the driver's ->setpolicy() callback (if present) or
2482 * carry out a governor update for @policy.  That is, run the current governor's
2483 * ->limits() callback (if @new_gov points to the same object as the one in
2484 * @policy) or replace the governor for @policy with @new_gov.
2485 *
2486 * The cpuinfo part of @policy is not updated by this function.
2487 */
2488static int cpufreq_set_policy(struct cpufreq_policy *policy,
2489			      struct cpufreq_governor *new_gov,
2490			      unsigned int new_pol)
2491{
2492	struct cpufreq_policy_data new_data;
2493	struct cpufreq_governor *old_gov;
2494	int ret;
2495
2496	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2497	new_data.freq_table = policy->freq_table;
2498	new_data.cpu = policy->cpu;
2499	/*
2500	 * PM QoS framework collects all the requests from users and provide us
2501	 * the final aggregated value here.
2502	 */
2503	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2504	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2505
2506	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2507		 new_data.cpu, new_data.min, new_data.max);
2508
2509	/*
2510	 * Verify that the CPU speed can be set within these limits and make sure
2511	 * that min <= max.
2512	 */
2513	ret = cpufreq_driver->verify(&new_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2514	if (ret)
2515		return ret;
2516
2517	policy->min = new_data.min;
2518	policy->max = new_data.max;
2519	trace_cpu_frequency_limits(policy);
2520
2521	policy->cached_target_freq = UINT_MAX;
 
2522
2523	pr_debug("new min and max freqs are %u - %u kHz\n",
2524		 policy->min, policy->max);
2525
2526	if (cpufreq_driver->setpolicy) {
2527		policy->policy = new_pol;
2528		pr_debug("setting range\n");
2529		return cpufreq_driver->setpolicy(policy);
2530	}
2531
2532	if (new_gov == policy->governor) {
2533		pr_debug("governor limits update\n");
2534		cpufreq_governor_limits(policy);
2535		return 0;
2536	}
2537
2538	pr_debug("governor switch\n");
2539
2540	/* save old, working values */
2541	old_gov = policy->governor;
2542	/* end old governor */
2543	if (old_gov) {
2544		cpufreq_stop_governor(policy);
2545		cpufreq_exit_governor(policy);
2546	}
2547
2548	/* start new governor */
2549	policy->governor = new_gov;
2550	ret = cpufreq_init_governor(policy);
2551	if (!ret) {
2552		ret = cpufreq_start_governor(policy);
2553		if (!ret) {
2554			pr_debug("governor change\n");
2555			sched_cpufreq_governor_change(policy, old_gov);
2556			return 0;
2557		}
2558		cpufreq_exit_governor(policy);
2559	}
2560
2561	/* new governor failed, so re-start old one */
2562	pr_debug("starting governor %s failed\n", policy->governor->name);
2563	if (old_gov) {
2564		policy->governor = old_gov;
2565		if (cpufreq_init_governor(policy))
2566			policy->governor = NULL;
2567		else
2568			cpufreq_start_governor(policy);
2569	}
2570
 
2571	return ret;
2572}
2573
2574/**
2575 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2576 * @cpu: CPU to re-evaluate the policy for.
2577 *
2578 * Update the current frequency for the cpufreq policy of @cpu and use
2579 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2580 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2581 * for the policy in question, among other things.
2582 */
2583void cpufreq_update_policy(unsigned int cpu)
2584{
2585	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2586
2587	if (!policy)
2588		return;
2589
2590	/*
2591	 * BIOS might change freq behind our back
2592	 * -> ask driver for current freq and notify governors about a change
2593	 */
2594	if (cpufreq_driver->get && has_target() &&
2595	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2596		goto unlock;
2597
2598	refresh_frequency_limits(policy);
2599
2600unlock:
2601	cpufreq_cpu_release(policy);
2602}
2603EXPORT_SYMBOL(cpufreq_update_policy);
2604
2605/**
2606 * cpufreq_update_limits - Update policy limits for a given CPU.
2607 * @cpu: CPU to update the policy limits for.
2608 *
2609 * Invoke the driver's ->update_limits callback if present or call
2610 * cpufreq_update_policy() for @cpu.
2611 */
2612void cpufreq_update_limits(unsigned int cpu)
2613{
2614	if (cpufreq_driver->update_limits)
2615		cpufreq_driver->update_limits(cpu);
2616	else
2617		cpufreq_update_policy(cpu);
2618}
2619EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2620
2621/*********************************************************************
2622 *               BOOST						     *
2623 *********************************************************************/
2624static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2625{
 
 
2626	int ret;
2627
2628	if (!policy->freq_table)
2629		return -ENXIO;
 
 
2630
2631	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2632	if (ret) {
2633		pr_err("%s: Policy frequency update failed\n", __func__);
2634		return ret;
2635	}
2636
2637	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2638	if (ret < 0)
2639		return ret;
 
 
 
2640
2641	return 0;
2642}
2643
2644int cpufreq_boost_trigger_state(int state)
2645{
2646	struct cpufreq_policy *policy;
2647	unsigned long flags;
2648	int ret = 0;
2649
2650	if (cpufreq_driver->boost_enabled == state)
2651		return 0;
2652
2653	write_lock_irqsave(&cpufreq_driver_lock, flags);
2654	cpufreq_driver->boost_enabled = state;
2655	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2656
2657	get_online_cpus();
2658	for_each_active_policy(policy) {
2659		ret = cpufreq_driver->set_boost(policy, state);
2660		if (ret)
2661			goto err_reset_state;
2662	}
2663	put_online_cpus();
2664
2665	return 0;
2666
2667err_reset_state:
2668	put_online_cpus();
2669
2670	write_lock_irqsave(&cpufreq_driver_lock, flags);
2671	cpufreq_driver->boost_enabled = !state;
2672	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2673
2674	pr_err("%s: Cannot %s BOOST\n",
2675	       __func__, state ? "enable" : "disable");
2676
 
 
 
2677	return ret;
2678}
 
2679
2680static bool cpufreq_boost_supported(void)
 
2681{
2682	return cpufreq_driver->set_boost;
2683}
2684
2685static int create_boost_sysfs_file(void)
2686{
2687	int ret;
 
 
 
 
 
 
 
 
2688
2689	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2690	if (ret)
2691		pr_err("%s: cannot register global BOOST sysfs file\n",
2692		       __func__);
2693
2694	return ret;
 
 
 
2695}
2696
2697static void remove_boost_sysfs_file(void)
2698{
2699	if (cpufreq_boost_supported())
2700		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2701}
2702
2703int cpufreq_enable_boost_support(void)
2704{
2705	if (!cpufreq_driver)
2706		return -EINVAL;
2707
2708	if (cpufreq_boost_supported())
2709		return 0;
2710
2711	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2712
2713	/* This will get removed on driver unregister */
2714	return create_boost_sysfs_file();
2715}
2716EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2717
2718int cpufreq_boost_enabled(void)
2719{
2720	return cpufreq_driver->boost_enabled;
2721}
2722EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2723
2724/*********************************************************************
2725 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2726 *********************************************************************/
2727static enum cpuhp_state hp_online;
2728
2729static int cpuhp_cpufreq_online(unsigned int cpu)
2730{
2731	cpufreq_online(cpu);
2732
2733	return 0;
2734}
2735
2736static int cpuhp_cpufreq_offline(unsigned int cpu)
2737{
2738	cpufreq_offline(cpu);
2739
2740	return 0;
2741}
2742
2743/**
2744 * cpufreq_register_driver - register a CPU Frequency driver
2745 * @driver_data: A struct cpufreq_driver containing the values#
2746 * submitted by the CPU Frequency driver.
2747 *
2748 * Registers a CPU Frequency driver to this core code. This code
2749 * returns zero on success, -EEXIST when another driver got here first
2750 * (and isn't unregistered in the meantime).
2751 *
2752 */
2753int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2754{
2755	unsigned long flags;
2756	int ret;
2757
2758	if (cpufreq_disabled())
2759		return -ENODEV;
2760
2761	/*
2762	 * The cpufreq core depends heavily on the availability of device
2763	 * structure, make sure they are available before proceeding further.
2764	 */
2765	if (!get_cpu_device(0))
2766		return -EPROBE_DEFER;
2767
2768	if (!driver_data || !driver_data->verify || !driver_data->init ||
2769	    !(driver_data->setpolicy || driver_data->target_index ||
2770		    driver_data->target) ||
2771	     (driver_data->setpolicy && (driver_data->target_index ||
2772		    driver_data->target)) ||
2773	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2774	     (!driver_data->online != !driver_data->offline))
2775		return -EINVAL;
2776
2777	pr_debug("trying to register driver %s\n", driver_data->name);
2778
2779	/* Protect against concurrent CPU online/offline. */
2780	cpus_read_lock();
2781
2782	write_lock_irqsave(&cpufreq_driver_lock, flags);
2783	if (cpufreq_driver) {
2784		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2785		ret = -EEXIST;
2786		goto out;
2787	}
2788	cpufreq_driver = driver_data;
2789	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2790
2791	/*
2792	 * Mark support for the scheduler's frequency invariance engine for
2793	 * drivers that implement target(), target_index() or fast_switch().
2794	 */
2795	if (!cpufreq_driver->setpolicy) {
2796		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2797		pr_debug("supports frequency invariance");
2798	}
2799
2800	if (driver_data->setpolicy)
2801		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2802
2803	if (cpufreq_boost_supported()) {
2804		ret = create_boost_sysfs_file();
2805		if (ret)
2806			goto err_null_driver;
2807	}
2808
2809	ret = subsys_interface_register(&cpufreq_interface);
2810	if (ret)
2811		goto err_boost_unreg;
 
 
 
2812
2813	if (unlikely(list_empty(&cpufreq_policy_list))) {
2814		/* if all ->init() calls failed, unregister */
2815		ret = -ENODEV;
2816		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2817			 driver_data->name);
2818		goto err_if_unreg;
 
2819	}
2820
2821	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2822						   "cpufreq:online",
2823						   cpuhp_cpufreq_online,
2824						   cpuhp_cpufreq_offline);
2825	if (ret < 0)
2826		goto err_if_unreg;
2827	hp_online = ret;
2828	ret = 0;
2829
2830	pr_debug("driver %s up and running\n", driver_data->name);
2831	goto out;
2832
2833err_if_unreg:
2834	subsys_interface_unregister(&cpufreq_interface);
2835err_boost_unreg:
2836	remove_boost_sysfs_file();
2837err_null_driver:
2838	write_lock_irqsave(&cpufreq_driver_lock, flags);
2839	cpufreq_driver = NULL;
2840	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2841out:
2842	cpus_read_unlock();
2843	return ret;
2844}
2845EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2846
2847/*
 
2848 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2849 *
2850 * Unregister the current CPUFreq driver. Only call this if you have
2851 * the right to do so, i.e. if you have succeeded in initialising before!
2852 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2853 * currently not initialised.
2854 */
2855int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2856{
2857	unsigned long flags;
2858
2859	if (!cpufreq_driver || (driver != cpufreq_driver))
2860		return -EINVAL;
2861
2862	pr_debug("unregistering driver %s\n", driver->name);
2863
2864	/* Protect against concurrent cpu hotplug */
2865	cpus_read_lock();
2866	subsys_interface_unregister(&cpufreq_interface);
2867	remove_boost_sysfs_file();
2868	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2869	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2870
2871	write_lock_irqsave(&cpufreq_driver_lock, flags);
2872
 
2873	cpufreq_driver = NULL;
2874
2875	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2876	cpus_read_unlock();
2877
2878	return 0;
2879}
2880EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2881
2882static int __init cpufreq_core_init(void)
2883{
2884	struct cpufreq_governor *gov = cpufreq_default_governor();
2885
2886	if (cpufreq_disabled())
2887		return -ENODEV;
 
 
2888
2889	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
 
2890	BUG_ON(!cpufreq_global_kobject);
2891
2892	if (!strlen(default_governor))
2893		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2894
2895	return 0;
2896}
2897module_param(off, int, 0444);
2898module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2899core_initcall(cpufreq_core_init);