Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
 
   6 *
   7 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   8 *	Added handling for CPU hotplug
   9 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  10 *	Fix handling for CPU hotplug -- affected CPUs
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/init.h>
  21#include <linux/notifier.h>
  22#include <linux/cpufreq.h>
  23#include <linux/delay.h>
  24#include <linux/interrupt.h>
  25#include <linux/spinlock.h>
  26#include <linux/device.h>
  27#include <linux/slab.h>
  28#include <linux/cpu.h>
  29#include <linux/completion.h>
  30#include <linux/mutex.h>
 
 
  31#include <linux/syscore_ops.h>
  32
  33#include <trace/events/power.h>
  34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35/**
  36 * The "cpufreq driver" - the arch- or hardware-dependent low
  37 * level driver of CPUFreq support, and its spinlock. This lock
  38 * also protects the cpufreq_cpu_data array.
  39 */
  40static struct cpufreq_driver *cpufreq_driver;
  41static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  42#ifdef CONFIG_HOTPLUG_CPU
  43/* This one keeps track of the previously set governor of a removed CPU */
  44static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
  45#endif
  46static DEFINE_SPINLOCK(cpufreq_driver_lock);
  47
  48/*
  49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
  50 * all cpufreq/hotplug/workqueue/etc related lock issues.
  51 *
  52 * The rules for this semaphore:
  53 * - Any routine that wants to read from the policy structure will
  54 *   do a down_read on this semaphore.
  55 * - Any routine that will write to the policy structure and/or may take away
  56 *   the policy altogether (eg. CPU hotplug), will hold this lock in write
  57 *   mode before doing so.
  58 *
  59 * Additional rules:
  60 * - All holders of the lock should check to make sure that the CPU they
  61 *   are concerned with are online after they get the lock.
  62 * - Governor routines that can be called in cpufreq hotplug path should not
  63 *   take this sem as top level hotplug notifier handler takes this.
  64 * - Lock should not be held across
  65 *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
  66 */
  67static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
  68static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
  69
  70#define lock_policy_rwsem(mode, cpu)					\
  71static int lock_policy_rwsem_##mode					\
  72(int cpu)								\
  73{									\
  74	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);		\
  75	BUG_ON(policy_cpu == -1);					\
  76	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
  77	if (unlikely(!cpu_online(cpu))) {				\
  78		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
  79		return -1;						\
  80	}								\
  81									\
  82	return 0;							\
  83}
  84
  85lock_policy_rwsem(read, cpu);
  86
  87lock_policy_rwsem(write, cpu);
 
  88
  89static void unlock_policy_rwsem_read(int cpu)
  90{
  91	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  92	BUG_ON(policy_cpu == -1);
  93	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
  94}
  95
  96static void unlock_policy_rwsem_write(int cpu)
  97{
  98	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  99	BUG_ON(policy_cpu == -1);
 100	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
 101}
 102
 103
 104/* internal prototypes */
 105static int __cpufreq_governor(struct cpufreq_policy *policy,
 106		unsigned int event);
 107static unsigned int __cpufreq_get(unsigned int cpu);
 108static void handle_update(struct work_struct *work);
 
 
 109
 110/**
 111 * Two notifier lists: the "policy" list is involved in the
 112 * validation process for a new CPU frequency policy; the
 113 * "transition" list for kernel code that needs to handle
 114 * changes to devices when the CPU clock speed changes.
 115 * The mutex locks both lists.
 116 */
 117static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
 118static struct srcu_notifier_head cpufreq_transition_notifier_list;
 119
 120static bool init_cpufreq_transition_notifier_list_called;
 121static int __init init_cpufreq_transition_notifier_list(void)
 122{
 123	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
 124	init_cpufreq_transition_notifier_list_called = true;
 125	return 0;
 126}
 127pure_initcall(init_cpufreq_transition_notifier_list);
 128
 129static LIST_HEAD(cpufreq_governor_list);
 
 
 
 
 
 
 
 
 130static DEFINE_MUTEX(cpufreq_governor_mutex);
 131
 132struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 133{
 134	struct cpufreq_policy *data;
 135	unsigned long flags;
 
 136
 137	if (cpu >= nr_cpu_ids)
 138		goto err_out;
 
 
 
 
 
 
 139
 140	/* get the cpufreq driver */
 141	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 
 142
 143	if (!cpufreq_driver)
 144		goto err_out_unlock;
 145
 146	if (!try_module_get(cpufreq_driver->owner))
 147		goto err_out_unlock;
 
 
 
 
 148
 
 
 
 149
 150	/* get the CPU */
 151	data = per_cpu(cpufreq_cpu_data, cpu);
 152
 153	if (!data)
 154		goto err_out_put_module;
 
 155
 156	if (!kobject_get(&data->kobj))
 157		goto err_out_put_module;
 
 
 158
 159	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 160	return data;
 
 161
 162err_out_put_module:
 163	module_put(cpufreq_driver->owner);
 164err_out_unlock:
 165	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 166err_out:
 167	return NULL;
 168}
 169EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171
 172void cpufreq_cpu_put(struct cpufreq_policy *data)
 
 
 
 
 173{
 174	kobject_put(&data->kobj);
 175	module_put(cpufreq_driver->owner);
 
 176}
 177EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180/*********************************************************************
 181 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 182 *********************************************************************/
 183
 184/**
 185 * adjust_jiffies - adjust the system "loops_per_jiffy"
 186 *
 187 * This function alters the system "loops_per_jiffy" for the clock
 188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 189 * systems as each CPU might be scaled differently. So, use the arch
 190 * per-CPU loops_per_jiffy value wherever possible.
 191 */
 192#ifndef CONFIG_SMP
 193static unsigned long l_p_j_ref;
 194static unsigned int  l_p_j_ref_freq;
 195
 196static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 197{
 
 
 
 
 198	if (ci->flags & CPUFREQ_CONST_LOOPS)
 199		return;
 200
 201	if (!l_p_j_ref_freq) {
 202		l_p_j_ref = loops_per_jiffy;
 203		l_p_j_ref_freq = ci->old;
 204		pr_debug("saving %lu as reference value for loops_per_jiffy; "
 205			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
 206	}
 207	if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
 208	    (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
 209	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
 210		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 211								ci->new);
 212		pr_debug("scaling loops_per_jiffy to %lu "
 213			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
 214	}
 215}
 216#else
 217static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 218{
 219	return;
 220}
 221#endif
 
 222
 223
 224/**
 225 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 226 * on frequency transition.
 227 *
 228 * This function calls the transition notifiers and the "adjust_jiffies"
 229 * function. It is called twice on all CPU frequency changes that have
 230 * external effects.
 231 */
 232void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
 233{
 234	struct cpufreq_policy *policy;
 235
 236	BUG_ON(irqs_disabled());
 237
 
 
 
 238	freqs->flags = cpufreq_driver->flags;
 239	pr_debug("notification %u of frequency transition to %u kHz\n",
 240		state, freqs->new);
 241
 242	policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
 243	switch (state) {
 244
 245	case CPUFREQ_PRECHANGE:
 246		/* detect if the driver reported a value as "old frequency"
 247		 * which is not equal to what the cpufreq core thinks is
 248		 * "old frequency".
 249		 */
 250		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 251			if ((policy) && (policy->cpu == freqs->cpu) &&
 252			    (policy->cur) && (policy->cur != freqs->old)) {
 253				pr_debug("Warning: CPU frequency is"
 254					" %u, cpufreq assumed %u kHz.\n",
 255					freqs->old, policy->cur);
 256				freqs->old = policy->cur;
 257			}
 258		}
 259		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 260				CPUFREQ_PRECHANGE, freqs);
 261		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 262		break;
 263
 264	case CPUFREQ_POSTCHANGE:
 265		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 266		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
 267			(unsigned long)freqs->cpu);
 268		trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
 269		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 270		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 271				CPUFREQ_POSTCHANGE, freqs);
 272		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 273			policy->cur = freqs->new;
 274		break;
 275	}
 276}
 277EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
 278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280
 281/*********************************************************************
 282 *                          SYSFS INTERFACE                          *
 283 *********************************************************************/
 
 
 
 
 
 284
 285static struct cpufreq_governor *__find_governor(const char *str_governor)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286{
 287	struct cpufreq_governor *t;
 288
 289	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 290		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 291			return t;
 292
 293	return NULL;
 294}
 295
 296/**
 297 * cpufreq_parse_governor - parse a governor string
 298 */
 299static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 300				struct cpufreq_governor **governor)
 301{
 302	int err = -EINVAL;
 303
 304	if (!cpufreq_driver)
 305		goto out;
 306
 307	if (cpufreq_driver->setpolicy) {
 308		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 309			*policy = CPUFREQ_POLICY_PERFORMANCE;
 310			err = 0;
 311		} else if (!strnicmp(str_governor, "powersave",
 312						CPUFREQ_NAME_LEN)) {
 313			*policy = CPUFREQ_POLICY_POWERSAVE;
 314			err = 0;
 
 315		}
 316	} else if (cpufreq_driver->target) {
 317		struct cpufreq_governor *t;
 318
 319		mutex_lock(&cpufreq_governor_mutex);
 320
 321		t = __find_governor(str_governor);
 322
 323		if (t == NULL) {
 324			int ret;
 325
 326			mutex_unlock(&cpufreq_governor_mutex);
 
 327			ret = request_module("cpufreq_%s", str_governor);
 328			mutex_lock(&cpufreq_governor_mutex);
 
 329
 330			if (ret == 0)
 331				t = __find_governor(str_governor);
 332		}
 333
 334		if (t != NULL) {
 335			*governor = t;
 336			err = 0;
 337		}
 
 
 338
 339		mutex_unlock(&cpufreq_governor_mutex);
 
 
 
 
 
 340	}
 341out:
 342	return err;
 343}
 344
 
 
 345
 346/**
 347 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 348 * print out cpufreq information
 349 *
 350 * Write out information from cpufreq_driver->policy[cpu]; object must be
 351 * "unsigned int".
 352 */
 353
 354#define show_one(file_name, object)			\
 355static ssize_t show_##file_name				\
 356(struct cpufreq_policy *policy, char *buf)		\
 357{							\
 358	return sprintf(buf, "%u\n", policy->object);	\
 359}
 360
 361show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 362show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 363show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 364show_one(scaling_min_freq, min);
 365show_one(scaling_max_freq, max);
 366show_one(scaling_cur_freq, cur);
 367
 368static int __cpufreq_set_policy(struct cpufreq_policy *data,
 369				struct cpufreq_policy *policy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370
 371/**
 372 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 373 */
 374#define store_one(file_name, object)			\
 375static ssize_t store_##file_name					\
 376(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 377{									\
 378	unsigned int ret = -EINVAL;					\
 379	struct cpufreq_policy new_policy;				\
 380									\
 381	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 382	if (ret)							\
 383		return -EINVAL;						\
 384									\
 385	ret = sscanf(buf, "%u", &new_policy.object);			\
 386	if (ret != 1)							\
 387		return -EINVAL;						\
 388									\
 389	ret = __cpufreq_set_policy(policy, &new_policy);		\
 390	policy->user_policy.object = policy->object;			\
 
 
 391									\
 392	return ret ? ret : count;					\
 393}
 394
 395store_one(scaling_min_freq, min);
 396store_one(scaling_max_freq, max);
 397
 398/**
 399 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 400 */
 401static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 402					char *buf)
 403{
 404	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 405	if (!cur_freq)
 406		return sprintf(buf, "<unknown>");
 407	return sprintf(buf, "%u\n", cur_freq);
 408}
 409
 
 
 
 
 
 410
 411/**
 412 * show_scaling_governor - show the current policy for the specified CPU
 413 */
 414static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 415{
 416	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 417		return sprintf(buf, "powersave\n");
 418	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 419		return sprintf(buf, "performance\n");
 420	else if (policy->governor)
 421		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
 422				policy->governor->name);
 423	return -EINVAL;
 424}
 425
 426
 427/**
 428 * store_scaling_governor - store policy for the specified CPU
 429 */
 430static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 431					const char *buf, size_t count)
 432{
 433	unsigned int ret = -EINVAL;
 434	char	str_governor[16];
 435	struct cpufreq_policy new_policy;
 436
 437	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 438	if (ret)
 439		return ret;
 440
 441	ret = sscanf(buf, "%15s", str_governor);
 442	if (ret != 1)
 443		return -EINVAL;
 444
 445	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 446						&new_policy.governor))
 447		return -EINVAL;
 448
 449	/* Do not use cpufreq_set_policy here or the user_policy.max
 450	   will be wrongly overridden */
 451	ret = __cpufreq_set_policy(policy, &new_policy);
 452
 453	policy->user_policy.policy = policy->policy;
 454	policy->user_policy.governor = policy->governor;
 455
 456	if (ret)
 457		return ret;
 458	else
 459		return count;
 460}
 461
 462/**
 463 * show_scaling_driver - show the cpufreq driver currently loaded
 464 */
 465static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 466{
 467	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
 468}
 469
 470/**
 471 * show_scaling_available_governors - show the available CPUfreq governors
 472 */
 473static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 474						char *buf)
 475{
 476	ssize_t i = 0;
 477	struct cpufreq_governor *t;
 478
 479	if (!cpufreq_driver->target) {
 480		i += sprintf(buf, "performance powersave");
 481		goto out;
 482	}
 483
 484	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 485		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 486		    - (CPUFREQ_NAME_LEN + 2)))
 487			goto out;
 488		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
 489	}
 490out:
 491	i += sprintf(&buf[i], "\n");
 492	return i;
 493}
 494
 495static ssize_t show_cpus(const struct cpumask *mask, char *buf)
 496{
 497	ssize_t i = 0;
 498	unsigned int cpu;
 499
 500	for_each_cpu(cpu, mask) {
 501		if (i)
 502			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 503		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 504		if (i >= (PAGE_SIZE - 5))
 505			break;
 506	}
 507	i += sprintf(&buf[i], "\n");
 508	return i;
 509}
 
 510
 511/**
 512 * show_related_cpus - show the CPUs affected by each transition even if
 513 * hw coordination is in use
 514 */
 515static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 516{
 517	if (cpumask_empty(policy->related_cpus))
 518		return show_cpus(policy->cpus, buf);
 519	return show_cpus(policy->related_cpus, buf);
 520}
 521
 522/**
 523 * show_affected_cpus - show the CPUs affected by each transition
 524 */
 525static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 526{
 527	return show_cpus(policy->cpus, buf);
 528}
 529
 530static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 531					const char *buf, size_t count)
 532{
 533	unsigned int freq = 0;
 534	unsigned int ret;
 535
 536	if (!policy->governor || !policy->governor->store_setspeed)
 537		return -EINVAL;
 538
 539	ret = sscanf(buf, "%u", &freq);
 540	if (ret != 1)
 541		return -EINVAL;
 542
 543	policy->governor->store_setspeed(policy, freq);
 544
 545	return count;
 546}
 547
 548static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (!policy->governor || !policy->governor->show_setspeed)
 551		return sprintf(buf, "<unsupported>\n");
 552
 553	return policy->governor->show_setspeed(policy, buf);
 554}
 555
 556/**
 557 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
 558 */
 559static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 560{
 561	unsigned int limit;
 562	int ret;
 563	if (cpufreq_driver->bios_limit) {
 564		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 565		if (!ret)
 566			return sprintf(buf, "%u\n", limit);
 567	}
 568	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 569}
 570
 571cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 572cpufreq_freq_attr_ro(cpuinfo_min_freq);
 573cpufreq_freq_attr_ro(cpuinfo_max_freq);
 574cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 575cpufreq_freq_attr_ro(scaling_available_governors);
 576cpufreq_freq_attr_ro(scaling_driver);
 577cpufreq_freq_attr_ro(scaling_cur_freq);
 578cpufreq_freq_attr_ro(bios_limit);
 579cpufreq_freq_attr_ro(related_cpus);
 580cpufreq_freq_attr_ro(affected_cpus);
 581cpufreq_freq_attr_rw(scaling_min_freq);
 582cpufreq_freq_attr_rw(scaling_max_freq);
 583cpufreq_freq_attr_rw(scaling_governor);
 584cpufreq_freq_attr_rw(scaling_setspeed);
 585
 586static struct attribute *default_attrs[] = {
 587	&cpuinfo_min_freq.attr,
 588	&cpuinfo_max_freq.attr,
 589	&cpuinfo_transition_latency.attr,
 590	&scaling_min_freq.attr,
 591	&scaling_max_freq.attr,
 592	&affected_cpus.attr,
 593	&related_cpus.attr,
 594	&scaling_governor.attr,
 595	&scaling_driver.attr,
 596	&scaling_available_governors.attr,
 597	&scaling_setspeed.attr,
 598	NULL
 599};
 600
 601struct kobject *cpufreq_global_kobject;
 602EXPORT_SYMBOL(cpufreq_global_kobject);
 603
 604#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 605#define to_attr(a) container_of(a, struct freq_attr, attr)
 606
 607static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 608{
 609	struct cpufreq_policy *policy = to_policy(kobj);
 610	struct freq_attr *fattr = to_attr(attr);
 611	ssize_t ret = -EINVAL;
 612	policy = cpufreq_cpu_get(policy->cpu);
 613	if (!policy)
 614		goto no_policy;
 615
 616	if (lock_policy_rwsem_read(policy->cpu) < 0)
 617		goto fail;
 618
 619	if (fattr->show)
 620		ret = fattr->show(policy, buf);
 621	else
 622		ret = -EIO;
 623
 624	unlock_policy_rwsem_read(policy->cpu);
 625fail:
 626	cpufreq_cpu_put(policy);
 627no_policy:
 628	return ret;
 629}
 630
 631static ssize_t store(struct kobject *kobj, struct attribute *attr,
 632		     const char *buf, size_t count)
 633{
 634	struct cpufreq_policy *policy = to_policy(kobj);
 635	struct freq_attr *fattr = to_attr(attr);
 636	ssize_t ret = -EINVAL;
 637	policy = cpufreq_cpu_get(policy->cpu);
 638	if (!policy)
 639		goto no_policy;
 640
 641	if (lock_policy_rwsem_write(policy->cpu) < 0)
 642		goto fail;
 643
 644	if (fattr->store)
 
 645		ret = fattr->store(policy, buf, count);
 646	else
 647		ret = -EIO;
 
 
 648
 649	unlock_policy_rwsem_write(policy->cpu);
 650fail:
 651	cpufreq_cpu_put(policy);
 652no_policy:
 653	return ret;
 654}
 655
 656static void cpufreq_sysfs_release(struct kobject *kobj)
 657{
 658	struct cpufreq_policy *policy = to_policy(kobj);
 659	pr_debug("last reference is dropped\n");
 660	complete(&policy->kobj_unregister);
 661}
 662
 663static const struct sysfs_ops sysfs_ops = {
 664	.show	= show,
 665	.store	= store,
 666};
 667
 668static struct kobj_type ktype_cpufreq = {
 669	.sysfs_ops	= &sysfs_ops,
 670	.default_attrs	= default_attrs,
 671	.release	= cpufreq_sysfs_release,
 672};
 673
 674/*
 675 * Returns:
 676 *   Negative: Failure
 677 *   0:        Success
 678 *   Positive: When we have a managed CPU and the sysfs got symlinked
 679 */
 680static int cpufreq_add_dev_policy(unsigned int cpu,
 681				  struct cpufreq_policy *policy,
 682				  struct sys_device *sys_dev)
 683{
 684	int ret = 0;
 685#ifdef CONFIG_SMP
 686	unsigned long flags;
 687	unsigned int j;
 688#ifdef CONFIG_HOTPLUG_CPU
 689	struct cpufreq_governor *gov;
 690
 691	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
 692	if (gov) {
 693		policy->governor = gov;
 694		pr_debug("Restoring governor %s for cpu %d\n",
 695		       policy->governor->name, cpu);
 696	}
 697#endif
 698
 699	for_each_cpu(j, policy->cpus) {
 700		struct cpufreq_policy *managed_policy;
 701
 702		if (cpu == j)
 703			continue;
 704
 705		/* Check for existing affected CPUs.
 706		 * They may not be aware of it due to CPU Hotplug.
 707		 * cpufreq_cpu_put is called when the device is removed
 708		 * in __cpufreq_remove_dev()
 709		 */
 710		managed_policy = cpufreq_cpu_get(j);
 711		if (unlikely(managed_policy)) {
 712
 713			/* Set proper policy_cpu */
 714			unlock_policy_rwsem_write(cpu);
 715			per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
 716
 717			if (lock_policy_rwsem_write(cpu) < 0) {
 718				/* Should not go through policy unlock path */
 719				if (cpufreq_driver->exit)
 720					cpufreq_driver->exit(policy);
 721				cpufreq_cpu_put(managed_policy);
 722				return -EBUSY;
 723			}
 724
 725			spin_lock_irqsave(&cpufreq_driver_lock, flags);
 726			cpumask_copy(managed_policy->cpus, policy->cpus);
 727			per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
 728			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 729
 730			pr_debug("CPU already managed, adding link\n");
 731			ret = sysfs_create_link(&sys_dev->kobj,
 732						&managed_policy->kobj,
 733						"cpufreq");
 734			if (ret)
 735				cpufreq_cpu_put(managed_policy);
 736			/*
 737			 * Success. We only needed to be added to the mask.
 738			 * Call driver->exit() because only the cpu parent of
 739			 * the kobj needed to call init().
 740			 */
 741			if (cpufreq_driver->exit)
 742				cpufreq_driver->exit(policy);
 743
 744			if (!ret)
 745				return 1;
 746			else
 747				return ret;
 748		}
 749	}
 750#endif
 751	return ret;
 752}
 753
 754
 755/* symlink affected CPUs */
 756static int cpufreq_add_dev_symlink(unsigned int cpu,
 757				   struct cpufreq_policy *policy)
 758{
 759	unsigned int j;
 760	int ret = 0;
 761
 762	for_each_cpu(j, policy->cpus) {
 763		struct cpufreq_policy *managed_policy;
 764		struct sys_device *cpu_sys_dev;
 765
 766		if (j == cpu)
 767			continue;
 768		if (!cpu_online(j))
 769			continue;
 770
 771		pr_debug("CPU %u already managed, adding link\n", j);
 772		managed_policy = cpufreq_cpu_get(cpu);
 773		cpu_sys_dev = get_cpu_sysdev(j);
 774		ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
 775					"cpufreq");
 776		if (ret) {
 777			cpufreq_cpu_put(managed_policy);
 778			return ret;
 779		}
 780	}
 781	return ret;
 782}
 783
 784static int cpufreq_add_dev_interface(unsigned int cpu,
 785				     struct cpufreq_policy *policy,
 786				     struct sys_device *sys_dev)
 787{
 788	struct cpufreq_policy new_policy;
 789	struct freq_attr **drv_attr;
 790	unsigned long flags;
 791	int ret = 0;
 792	unsigned int j;
 793
 794	/* prepare interface data */
 795	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 796				   &sys_dev->kobj, "cpufreq");
 797	if (ret)
 798		return ret;
 799
 800	/* set up files for this cpu device */
 801	drv_attr = cpufreq_driver->attr;
 802	while ((drv_attr) && (*drv_attr)) {
 803		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 804		if (ret)
 805			goto err_out_kobj_put;
 806		drv_attr++;
 807	}
 808	if (cpufreq_driver->get) {
 809		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 810		if (ret)
 811			goto err_out_kobj_put;
 812	}
 813	if (cpufreq_driver->target) {
 814		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 815		if (ret)
 816			goto err_out_kobj_put;
 817	}
 
 
 
 
 
 818	if (cpufreq_driver->bios_limit) {
 819		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 820		if (ret)
 821			goto err_out_kobj_put;
 822	}
 823
 824	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 825	for_each_cpu(j, policy->cpus) {
 826		if (!cpu_online(j))
 827			continue;
 828		per_cpu(cpufreq_cpu_data, j) = policy;
 829		per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
 830	}
 831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 832
 833	ret = cpufreq_add_dev_symlink(cpu, policy);
 834	if (ret)
 835		goto err_out_kobj_put;
 
 836
 837	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
 838	/* assure that the starting sequence is run in __cpufreq_set_policy */
 839	policy->governor = NULL;
 
 840
 841	/* set default policy */
 842	ret = __cpufreq_set_policy(policy, &new_policy);
 843	policy->user_policy.policy = policy->policy;
 844	policy->user_policy.governor = policy->governor;
 845
 846	if (ret) {
 847		pr_debug("setting policy failed\n");
 848		if (cpufreq_driver->exit)
 849			cpufreq_driver->exit(policy);
 
 
 
 
 
 850	}
 851	return ret;
 852
 853err_out_kobj_put:
 854	kobject_put(&policy->kobj);
 855	wait_for_completion(&policy->kobj_unregister);
 856	return ret;
 857}
 858
 
 
 
 
 
 
 
 
 
 
 859
 860/**
 861 * cpufreq_add_dev - add a CPU device
 862 *
 863 * Adds the cpufreq interface for a CPU device.
 864 *
 865 * The Oracle says: try running cpufreq registration/unregistration concurrently
 866 * with with cpu hotplugging and all hell will break loose. Tried to clean this
 867 * mess up, but more thorough testing is needed. - Mathieu
 868 */
 869static int cpufreq_add_dev(struct sys_device *sys_dev)
 870{
 871	unsigned int cpu = sys_dev->id;
 872	int ret = 0, found = 0;
 873	struct cpufreq_policy *policy;
 874	unsigned long flags;
 875	unsigned int j;
 876#ifdef CONFIG_HOTPLUG_CPU
 877	int sibling;
 878#endif
 879
 880	if (cpu_is_offline(cpu))
 
 881		return 0;
 882
 883	pr_debug("adding CPU %u\n", cpu);
 
 
 884
 885#ifdef CONFIG_SMP
 886	/* check whether a different CPU already registered this
 887	 * CPU because it is in the same boat. */
 888	policy = cpufreq_cpu_get(cpu);
 889	if (unlikely(policy)) {
 890		cpufreq_cpu_put(policy);
 891		return 0;
 892	}
 893#endif
 894
 895	if (!try_module_get(cpufreq_driver->owner)) {
 896		ret = -EINVAL;
 897		goto module_out;
 
 898	}
 
 
 
 899
 900	ret = -ENOMEM;
 901	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 902	if (!policy)
 903		goto nomem_out;
 904
 905	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
 906		goto err_free_policy;
 907
 908	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
 909		goto err_free_cpumask;
 910
 911	policy->cpu = cpu;
 912	cpumask_copy(policy->cpus, cpumask_of(cpu));
 913
 914	/* Initially set CPU itself as the policy_cpu */
 915	per_cpu(cpufreq_policy_cpu, cpu) = cpu;
 916	ret = (lock_policy_rwsem_write(cpu) < 0);
 917	WARN_ON(ret);
 
 
 918
 
 
 
 
 919	init_completion(&policy->kobj_unregister);
 920	INIT_WORK(&policy->update, handle_update);
 921
 922	/* Set governor before ->init, so that driver could check it */
 923#ifdef CONFIG_HOTPLUG_CPU
 924	for_each_online_cpu(sibling) {
 925		struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
 926		if (cp && cp->governor &&
 927		    (cpumask_test_cpu(cpu, cp->related_cpus))) {
 928			policy->governor = cp->governor;
 929			found = 1;
 930			break;
 931		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932	}
 933#endif
 934	if (!found)
 935		policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
 936	/* call driver. From then on the cpufreq must be able
 937	 * to accept all calls to ->verify and ->setpolicy for this CPU
 938	 */
 939	ret = cpufreq_driver->init(policy);
 940	if (ret) {
 941		pr_debug("initialization failed\n");
 942		goto err_unlock_policy;
 943	}
 944	policy->user_policy.min = policy->min;
 945	policy->user_policy.max = policy->max;
 946
 947	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
 948				     CPUFREQ_START, policy);
 
 949
 950	ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
 951	if (ret) {
 952		if (ret > 0)
 953			/* This is a managed cpu, symlink created,
 954			   exit with 0 */
 955			ret = 0;
 956		goto err_unlock_policy;
 957	}
 958
 959	ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
 960	if (ret)
 961		goto err_out_unregister;
 
 
 962
 963	unlock_policy_rwsem_write(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964
 965	kobject_uevent(&policy->kobj, KOBJ_ADD);
 966	module_put(cpufreq_driver->owner);
 
 
 
 
 967	pr_debug("initialization complete\n");
 968
 969	return 0;
 970
 
 
 
 971
 972err_out_unregister:
 973	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 974	for_each_cpu(j, policy->cpus)
 975		per_cpu(cpufreq_cpu_data, j) = NULL;
 976	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 977
 978	kobject_put(&policy->kobj);
 979	wait_for_completion(&policy->kobj_unregister);
 
 980
 981err_unlock_policy:
 982	unlock_policy_rwsem_write(cpu);
 983	free_cpumask_var(policy->related_cpus);
 984err_free_cpumask:
 985	free_cpumask_var(policy->cpus);
 986err_free_policy:
 987	kfree(policy);
 988nomem_out:
 989	module_put(cpufreq_driver->owner);
 990module_out:
 991	return ret;
 992}
 993
 994
 995/**
 996 * __cpufreq_remove_dev - remove a CPU device
 997 *
 998 * Removes the cpufreq interface for a CPU device.
 999 * Caller should already have policy_rwsem in write mode for this CPU.
1000 * This routine frees the rwsem before returning.
1001 */
1002static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1003{
1004	unsigned int cpu = sys_dev->id;
1005	unsigned long flags;
1006	struct cpufreq_policy *data;
1007	struct kobject *kobj;
1008	struct completion *cmp;
1009#ifdef CONFIG_SMP
1010	struct sys_device *cpu_sys_dev;
1011	unsigned int j;
1012#endif
1013
1014	pr_debug("unregistering CPU %u\n", cpu);
1015
1016	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1017	data = per_cpu(cpufreq_cpu_data, cpu);
1018
1019	if (!data) {
1020		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1021		unlock_policy_rwsem_write(cpu);
1022		return -EINVAL;
1023	}
1024	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1025
 
 
 
 
1026
1027#ifdef CONFIG_SMP
1028	/* if this isn't the CPU which is the parent of the kobj, we
1029	 * only need to unlink, put and exit
1030	 */
1031	if (unlikely(cpu != data->cpu)) {
1032		pr_debug("removing link\n");
1033		cpumask_clear_cpu(cpu, data->cpus);
1034		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1035		kobj = &sys_dev->kobj;
1036		cpufreq_cpu_put(data);
1037		unlock_policy_rwsem_write(cpu);
1038		sysfs_remove_link(kobj, "cpufreq");
1039		return 0;
1040	}
1041#endif
1042
1043#ifdef CONFIG_SMP
 
 
 
1044
1045#ifdef CONFIG_HOTPLUG_CPU
1046	strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1047			CPUFREQ_NAME_LEN);
1048#endif
1049
1050	/* if we have other CPUs still registered, we need to unlink them,
1051	 * or else wait_for_completion below will lock up. Clean the
1052	 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1053	 * the sysfs links afterwards.
1054	 */
1055	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1056		for_each_cpu(j, data->cpus) {
1057			if (j == cpu)
1058				continue;
1059			per_cpu(cpufreq_cpu_data, j) = NULL;
1060		}
1061	}
1062
1063	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064
1065	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1066		for_each_cpu(j, data->cpus) {
1067			if (j == cpu)
1068				continue;
1069			pr_debug("removing link for cpu %u\n", j);
1070#ifdef CONFIG_HOTPLUG_CPU
1071			strncpy(per_cpu(cpufreq_cpu_governor, j),
1072				data->governor->name, CPUFREQ_NAME_LEN);
1073#endif
1074			cpu_sys_dev = get_cpu_sysdev(j);
1075			kobj = &cpu_sys_dev->kobj;
1076			unlock_policy_rwsem_write(cpu);
1077			sysfs_remove_link(kobj, "cpufreq");
1078			lock_policy_rwsem_write(cpu);
1079			cpufreq_cpu_put(data);
 
 
 
 
 
 
1080		}
1081	}
1082#else
1083	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084#endif
1085
1086	if (cpufreq_driver->target)
1087		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1088
1089	kobj = &data->kobj;
1090	cmp = &data->kobj_unregister;
1091	unlock_policy_rwsem_write(cpu);
1092	kobject_put(kobj);
1093
1094	/* we need to make sure that the underlying kobj is actually
1095	 * not referenced anymore by anybody before we proceed with
1096	 * unloading.
1097	 */
1098	pr_debug("waiting for dropping of refcount\n");
1099	wait_for_completion(cmp);
1100	pr_debug("wait complete\n");
1101
1102	lock_policy_rwsem_write(cpu);
1103	if (cpufreq_driver->exit)
1104		cpufreq_driver->exit(data);
1105	unlock_policy_rwsem_write(cpu);
1106
1107#ifdef CONFIG_HOTPLUG_CPU
1108	/* when the CPU which is the parent of the kobj is hotplugged
1109	 * offline, check for siblings, and create cpufreq sysfs interface
1110	 * and symlinks
1111	 */
1112	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1113		/* first sibling now owns the new sysfs dir */
1114		cpumask_clear_cpu(cpu, data->cpus);
1115		cpufreq_add_dev(get_cpu_sysdev(cpumask_first(data->cpus)));
1116
1117		/* finally remove our own symlink */
1118		lock_policy_rwsem_write(cpu);
1119		__cpufreq_remove_dev(sys_dev);
1120	}
1121#endif
1122
1123	free_cpumask_var(data->related_cpus);
1124	free_cpumask_var(data->cpus);
1125	kfree(data);
1126
 
 
1127	return 0;
1128}
1129
1130
1131static int cpufreq_remove_dev(struct sys_device *sys_dev)
 
 
 
 
1132{
1133	unsigned int cpu = sys_dev->id;
1134	int retval;
1135
1136	if (cpu_is_offline(cpu))
1137		return 0;
1138
1139	if (unlikely(lock_policy_rwsem_write(cpu)))
1140		BUG();
1141
1142	retval = __cpufreq_remove_dev(sys_dev);
1143	return retval;
1144}
1145
 
 
1146
1147static void handle_update(struct work_struct *work)
1148{
1149	struct cpufreq_policy *policy =
1150		container_of(work, struct cpufreq_policy, update);
1151	unsigned int cpu = policy->cpu;
1152	pr_debug("handle_update for cpu %u called\n", cpu);
1153	cpufreq_update_policy(cpu);
1154}
1155
1156/**
1157 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1158 *	@cpu: cpu number
1159 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1160 *	@new_freq: CPU frequency the CPU actually runs at
1161 *
1162 *	We adjust to current frequency first, and need to clean up later.
1163 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1164 */
1165static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1166				unsigned int new_freq)
1167{
1168	struct cpufreq_freqs freqs;
1169
1170	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1171	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172
1173	freqs.cpu = cpu;
1174	freqs.old = old_freq;
1175	freqs.new = new_freq;
1176	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1177	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1178}
1179
 
 
 
1180
1181/**
1182 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1183 * @cpu: CPU number
1184 *
1185 * This is the last known freq, without actually getting it from the driver.
1186 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187 */
1188unsigned int cpufreq_quick_get(unsigned int cpu)
1189{
1190	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1191	unsigned int ret_freq = 0;
 
 
 
1192
 
 
 
 
 
 
 
 
 
1193	if (policy) {
1194		ret_freq = policy->cur;
1195		cpufreq_cpu_put(policy);
1196	}
1197
1198	return ret_freq;
1199}
1200EXPORT_SYMBOL(cpufreq_quick_get);
1201
1202/**
1203 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1204 * @cpu: CPU number
1205 *
1206 * Just return the max possible frequency for a given CPU.
1207 */
1208unsigned int cpufreq_quick_get_max(unsigned int cpu)
1209{
1210	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1211	unsigned int ret_freq = 0;
1212
1213	if (policy) {
1214		ret_freq = policy->max;
1215		cpufreq_cpu_put(policy);
1216	}
1217
1218	return ret_freq;
1219}
1220EXPORT_SYMBOL(cpufreq_quick_get_max);
1221
1222
1223static unsigned int __cpufreq_get(unsigned int cpu)
1224{
1225	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1226	unsigned int ret_freq = 0;
1227
1228	if (!cpufreq_driver->get)
1229		return ret_freq;
1230
1231	ret_freq = cpufreq_driver->get(cpu);
 
 
 
 
 
 
 
 
1232
1233	if (ret_freq && policy->cur &&
1234		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1235		/* verify no discrepancy between actual and
1236					saved value exists */
1237		if (unlikely(ret_freq != policy->cur)) {
1238			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1239			schedule_work(&policy->update);
1240		}
1241	}
1242
1243	return ret_freq;
1244}
1245
1246/**
1247 * cpufreq_get - get the current CPU frequency (in kHz)
1248 * @cpu: CPU number
1249 *
1250 * Get the CPU current (static) CPU frequency
1251 */
1252unsigned int cpufreq_get(unsigned int cpu)
1253{
1254	unsigned int ret_freq = 0;
1255	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 
1256
1257	if (!policy)
1258		goto out;
1259
1260	if (unlikely(lock_policy_rwsem_read(cpu)))
1261		goto out_policy;
1262
1263	ret_freq = __cpufreq_get(cpu);
1264
1265	unlock_policy_rwsem_read(cpu);
 
1266
1267out_policy:
1268	cpufreq_cpu_put(policy);
1269out:
1270	return ret_freq;
1271}
1272EXPORT_SYMBOL(cpufreq_get);
1273
1274static struct sysdev_driver cpufreq_sysdev_driver = {
1275	.add		= cpufreq_add_dev,
1276	.remove		= cpufreq_remove_dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277};
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279
1280/**
1281 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1282 *
1283 * This function is only executed for the boot processor.  The other CPUs
1284 * have been put offline by means of CPU hotplug.
 
 
1285 */
1286static int cpufreq_bp_suspend(void)
1287{
1288	int ret = 0;
1289
1290	int cpu = smp_processor_id();
1291	struct cpufreq_policy *cpu_policy;
1292
1293	pr_debug("suspending cpu %u\n", cpu);
 
1294
1295	/* If there's no policy for the boot CPU, we have nothing to do. */
1296	cpu_policy = cpufreq_cpu_get(cpu);
1297	if (!cpu_policy)
1298		return 0;
1299
1300	if (cpufreq_driver->suspend) {
1301		ret = cpufreq_driver->suspend(cpu_policy);
1302		if (ret)
1303			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1304					"step on CPU %u\n", cpu_policy->cpu);
 
 
 
 
 
1305	}
1306
1307	cpufreq_cpu_put(cpu_policy);
1308	return ret;
1309}
1310
1311/**
1312 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1313 *
1314 *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1315 *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1316 *	    restored. It will verify that the current freq is in sync with
1317 *	    what we believe it to be. This is a bit later than when it
1318 *	    should be, but nonethteless it's better than calling
1319 *	    cpufreq_driver->get() here which might re-enable interrupts...
1320 *
1321 * This function is only executed for the boot CPU.  The other CPUs have not
1322 * been turned on yet.
1323 */
1324static void cpufreq_bp_resume(void)
1325{
1326	int ret = 0;
 
1327
1328	int cpu = smp_processor_id();
1329	struct cpufreq_policy *cpu_policy;
1330
1331	pr_debug("resuming cpu %u\n", cpu);
 
1332
1333	/* If there's no policy for the boot CPU, we have nothing to do. */
1334	cpu_policy = cpufreq_cpu_get(cpu);
1335	if (!cpu_policy)
1336		return;
1337
1338	if (cpufreq_driver->resume) {
1339		ret = cpufreq_driver->resume(cpu_policy);
1340		if (ret) {
1341			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1342					"step on CPU %u\n", cpu_policy->cpu);
1343			goto fail;
 
 
 
 
 
 
 
 
1344		}
1345	}
 
1346
1347	schedule_work(&cpu_policy->update);
 
 
 
 
 
 
 
 
 
1348
1349fail:
1350	cpufreq_cpu_put(cpu_policy);
1351}
 
1352
1353static struct syscore_ops cpufreq_syscore_ops = {
1354	.suspend	= cpufreq_bp_suspend,
1355	.resume		= cpufreq_bp_resume,
1356};
 
 
 
 
 
 
1357
 
 
 
1358
1359/*********************************************************************
1360 *                     NOTIFIER LISTS INTERFACE                      *
1361 *********************************************************************/
1362
1363/**
1364 *	cpufreq_register_notifier - register a driver with cpufreq
1365 *	@nb: notifier function to register
1366 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1367 *
1368 *	Add a driver to one of two lists: either a list of drivers that
1369 *      are notified about clock rate changes (once before and once after
1370 *      the transition), or a list of drivers that are notified about
1371 *      changes in cpufreq policy.
1372 *
1373 *	This function may sleep, and has the same return conditions as
1374 *	blocking_notifier_chain_register.
1375 */
1376int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1377{
1378	int ret;
1379
 
 
 
1380	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1381
1382	switch (list) {
1383	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1384		ret = srcu_notifier_chain_register(
1385				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1386		break;
1387	case CPUFREQ_POLICY_NOTIFIER:
1388		ret = blocking_notifier_chain_register(
1389				&cpufreq_policy_notifier_list, nb);
1390		break;
1391	default:
1392		ret = -EINVAL;
1393	}
1394
1395	return ret;
1396}
1397EXPORT_SYMBOL(cpufreq_register_notifier);
1398
1399
1400/**
1401 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1402 *	@nb: notifier block to be unregistered
1403 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1404 *
1405 *	Remove a driver from the CPU frequency notifier list.
1406 *
1407 *	This function may sleep, and has the same return conditions as
1408 *	blocking_notifier_chain_unregister.
1409 */
1410int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1411{
1412	int ret;
1413
 
 
 
1414	switch (list) {
1415	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1416		ret = srcu_notifier_chain_unregister(
1417				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1418		break;
1419	case CPUFREQ_POLICY_NOTIFIER:
1420		ret = blocking_notifier_chain_unregister(
1421				&cpufreq_policy_notifier_list, nb);
1422		break;
1423	default:
1424		ret = -EINVAL;
1425	}
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL(cpufreq_unregister_notifier);
1430
1431
1432/*********************************************************************
1433 *                              GOVERNORS                            *
1434 *********************************************************************/
1435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436
1437int __cpufreq_driver_target(struct cpufreq_policy *policy,
1438			    unsigned int target_freq,
1439			    unsigned int relation)
1440{
1441	int retval = -EINVAL;
 
1442
1443	pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1444		target_freq, relation);
1445	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1446		retval = cpufreq_driver->target(policy, target_freq, relation);
1447
1448	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449}
1450EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1451
1452int cpufreq_driver_target(struct cpufreq_policy *policy,
1453			  unsigned int target_freq,
1454			  unsigned int relation)
1455{
1456	int ret = -EINVAL;
1457
1458	policy = cpufreq_cpu_get(policy->cpu);
1459	if (!policy)
1460		goto no_policy;
1461
1462	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1463		goto fail;
1464
1465	ret = __cpufreq_driver_target(policy, target_freq, relation);
1466
1467	unlock_policy_rwsem_write(policy->cpu);
1468
1469fail:
1470	cpufreq_cpu_put(policy);
1471no_policy:
1472	return ret;
1473}
1474EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1475
1476int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1477{
1478	int ret = 0;
 
1479
1480	policy = cpufreq_cpu_get(policy->cpu);
1481	if (!policy)
 
 
 
 
 
 
 
 
 
 
1482		return -EINVAL;
1483
1484	if (cpu_online(cpu) && cpufreq_driver->getavg)
1485		ret = cpufreq_driver->getavg(policy, cpu);
 
 
 
 
 
 
 
 
 
 
 
1486
1487	cpufreq_cpu_put(policy);
1488	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1489}
1490EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1491
1492/*
1493 * when "event" is CPUFREQ_GOV_LIMITS
1494 */
 
 
 
1495
1496static int __cpufreq_governor(struct cpufreq_policy *policy,
1497					unsigned int event)
 
 
 
 
 
1498{
1499	int ret;
1500
1501	/* Only must be defined when default governor is known to have latency
1502	   restrictions, like e.g. conservative or ondemand.
1503	   That this is the case is already ensured in Kconfig
1504	*/
1505#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1506	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1507#else
1508	struct cpufreq_governor *gov = NULL;
1509#endif
1510
1511	if (policy->governor->max_transition_latency &&
1512	    policy->cpuinfo.transition_latency >
1513	    policy->governor->max_transition_latency) {
1514		if (!gov)
1515			return -EINVAL;
1516		else {
1517			printk(KERN_WARNING "%s governor failed, too long"
1518			       " transition latency of HW, fallback"
1519			       " to %s governor\n",
1520			       policy->governor->name,
1521			       gov->name);
1522			policy->governor = gov;
1523		}
1524	}
1525
1526	if (!try_module_get(policy->governor->owner))
1527		return -EINVAL;
1528
1529	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1530						policy->cpu, event);
1531	ret = policy->governor->governor(policy, event);
1532
1533	/* we keep one module reference alive for
1534			each CPU governed by this CPU */
1535	if ((event != CPUFREQ_GOV_START) || ret)
1536		module_put(policy->governor->owner);
1537	if ((event == CPUFREQ_GOV_STOP) && !ret)
1538		module_put(policy->governor->owner);
1539
1540	return ret;
 
 
 
 
 
 
 
 
1541}
1542
 
 
 
 
 
 
 
 
 
 
1543
1544int cpufreq_register_governor(struct cpufreq_governor *governor)
1545{
1546	int err;
1547
1548	if (!governor)
1549		return -EINVAL;
1550
 
 
 
1551	mutex_lock(&cpufreq_governor_mutex);
1552
1553	err = -EBUSY;
1554	if (__find_governor(governor->name) == NULL) {
1555		err = 0;
1556		list_add(&governor->governor_list, &cpufreq_governor_list);
1557	}
1558
1559	mutex_unlock(&cpufreq_governor_mutex);
1560	return err;
1561}
1562EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1563
1564
1565void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1566{
1567#ifdef CONFIG_HOTPLUG_CPU
1568	int cpu;
1569#endif
1570
1571	if (!governor)
1572		return;
1573
1574#ifdef CONFIG_HOTPLUG_CPU
1575	for_each_present_cpu(cpu) {
1576		if (cpu_online(cpu))
1577			continue;
1578		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1579			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
 
 
 
1580	}
1581#endif
1582
1583	mutex_lock(&cpufreq_governor_mutex);
1584	list_del(&governor->governor_list);
1585	mutex_unlock(&cpufreq_governor_mutex);
1586	return;
1587}
1588EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1589
1590
1591
1592/*********************************************************************
1593 *                          POLICY INTERFACE                         *
1594 *********************************************************************/
1595
1596/**
1597 * cpufreq_get_policy - get the current cpufreq_policy
1598 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1599 *	is written
1600 *
1601 * Reads the current cpufreq policy.
1602 */
1603int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1604{
1605	struct cpufreq_policy *cpu_policy;
1606	if (!policy)
1607		return -EINVAL;
1608
1609	cpu_policy = cpufreq_cpu_get(cpu);
1610	if (!cpu_policy)
1611		return -EINVAL;
1612
1613	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1614
1615	cpufreq_cpu_put(cpu_policy);
1616	return 0;
1617}
1618EXPORT_SYMBOL(cpufreq_get_policy);
1619
1620
1621/*
1622 * data   : current policy.
1623 * policy : policy to be set.
1624 */
1625static int __cpufreq_set_policy(struct cpufreq_policy *data,
1626				struct cpufreq_policy *policy)
1627{
1628	int ret = 0;
 
1629
1630	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1631		policy->min, policy->max);
1632
1633	memcpy(&policy->cpuinfo, &data->cpuinfo,
1634				sizeof(struct cpufreq_cpuinfo));
1635
1636	if (policy->min > data->max || policy->max < data->min) {
1637		ret = -EINVAL;
1638		goto error_out;
1639	}
 
 
1640
1641	/* verify the cpu speed can be set within this limit */
1642	ret = cpufreq_driver->verify(policy);
1643	if (ret)
1644		goto error_out;
1645
1646	/* adjust if necessary - all reasons */
1647	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1648			CPUFREQ_ADJUST, policy);
1649
1650	/* adjust if necessary - hardware incompatibility*/
1651	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1652			CPUFREQ_INCOMPATIBLE, policy);
1653
1654	/* verify the cpu speed can be set within this limit,
1655	   which might be different to the first one */
1656	ret = cpufreq_driver->verify(policy);
 
 
1657	if (ret)
1658		goto error_out;
1659
1660	/* notification of the new policy */
1661	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1662			CPUFREQ_NOTIFY, policy);
1663
1664	data->min = policy->min;
1665	data->max = policy->max;
 
 
1666
1667	pr_debug("new min and max freqs are %u - %u kHz\n",
1668					data->min, data->max);
1669
1670	if (cpufreq_driver->setpolicy) {
1671		data->policy = policy->policy;
1672		pr_debug("setting range\n");
1673		ret = cpufreq_driver->setpolicy(policy);
1674	} else {
1675		if (policy->governor != data->governor) {
1676			/* save old, working values */
1677			struct cpufreq_governor *old_gov = data->governor;
1678
1679			pr_debug("governor switch\n");
1680
1681			/* end old governor */
1682			if (data->governor)
1683				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1684
1685			/* start new governor */
1686			data->governor = policy->governor;
1687			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1688				/* new governor failed, so re-start old one */
1689				pr_debug("starting governor %s failed\n",
1690							data->governor->name);
1691				if (old_gov) {
1692					data->governor = old_gov;
1693					__cpufreq_governor(data,
1694							   CPUFREQ_GOV_START);
1695				}
1696				ret = -EINVAL;
1697				goto error_out;
1698			}
1699			/* might be a policy change, too, so fall through */
1700		}
1701		pr_debug("governor: change or update limits\n");
1702		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
 
 
 
 
 
 
 
 
 
1703	}
1704
1705error_out:
1706	return ret;
1707}
1708
1709/**
1710 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1711 *	@cpu: CPU which shall be re-evaluated
1712 *
1713 *	Useful for policy notifiers which have different necessities
1714 *	at different times.
1715 */
1716int cpufreq_update_policy(unsigned int cpu)
1717{
1718	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1719	struct cpufreq_policy policy;
1720	int ret;
1721
1722	if (!data) {
1723		ret = -ENODEV;
1724		goto no_policy;
1725	}
1726
1727	if (unlikely(lock_policy_rwsem_write(cpu))) {
1728		ret = -EINVAL;
1729		goto fail;
1730	}
1731
1732	pr_debug("updating policy for CPU %u\n", cpu);
1733	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1734	policy.min = data->user_policy.min;
1735	policy.max = data->user_policy.max;
1736	policy.policy = data->user_policy.policy;
1737	policy.governor = data->user_policy.governor;
 
 
 
 
 
 
1738
1739	/* BIOS might change freq behind our back
1740	  -> ask driver for current freq and notify governors about a change */
1741	if (cpufreq_driver->get) {
1742		policy.cur = cpufreq_driver->get(cpu);
1743		if (!data->cur) {
1744			pr_debug("Driver did not initialize current freq");
1745			data->cur = policy.cur;
1746		} else {
1747			if (data->cur != policy.cur)
1748				cpufreq_out_of_sync(cpu, data->cur,
1749								policy.cur);
1750		}
1751	}
1752
1753	ret = __cpufreq_set_policy(data, &policy);
1754
1755	unlock_policy_rwsem_write(cpu);
 
1756
1757fail:
1758	cpufreq_cpu_put(data);
1759no_policy:
1760	return ret;
1761}
1762EXPORT_SYMBOL(cpufreq_update_policy);
1763
1764static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1765					unsigned long action, void *hcpu)
 
 
1766{
1767	unsigned int cpu = (unsigned long)hcpu;
1768	struct sys_device *sys_dev;
1769
1770	sys_dev = get_cpu_sysdev(cpu);
1771	if (sys_dev) {
1772		switch (action) {
1773		case CPU_ONLINE:
1774		case CPU_ONLINE_FROZEN:
1775			cpufreq_add_dev(sys_dev);
1776			break;
1777		case CPU_DOWN_PREPARE:
1778		case CPU_DOWN_PREPARE_FROZEN:
1779			if (unlikely(lock_policy_rwsem_write(cpu)))
1780				BUG();
1781
1782			__cpufreq_remove_dev(sys_dev);
1783			break;
1784		case CPU_DOWN_FAILED:
1785		case CPU_DOWN_FAILED_FROZEN:
1786			cpufreq_add_dev(sys_dev);
1787			break;
1788		}
 
 
 
 
 
1789	}
1790	return NOTIFY_OK;
 
1791}
1792
1793static struct notifier_block __refdata cpufreq_cpu_notifier = {
1794    .notifier_call = cpufreq_cpu_callback,
1795};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796
1797/*********************************************************************
1798 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1799 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
1801/**
1802 * cpufreq_register_driver - register a CPU Frequency driver
1803 * @driver_data: A struct cpufreq_driver containing the values#
1804 * submitted by the CPU Frequency driver.
1805 *
1806 *   Registers a CPU Frequency driver to this core code. This code
1807 * returns zero on success, -EBUSY when another driver got here first
1808 * (and isn't unregistered in the meantime).
1809 *
1810 */
1811int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1812{
1813	unsigned long flags;
1814	int ret;
1815
 
 
 
1816	if (!driver_data || !driver_data->verify || !driver_data->init ||
1817	    ((!driver_data->setpolicy) && (!driver_data->target)))
 
 
 
 
1818		return -EINVAL;
1819
1820	pr_debug("trying to register driver %s\n", driver_data->name);
1821
1822	if (driver_data->setpolicy)
1823		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1824
1825	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1826	if (cpufreq_driver) {
1827		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828		return -EBUSY;
 
1829	}
1830	cpufreq_driver = driver_data;
1831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1832
1833	ret = sysdev_driver_register(&cpu_sysdev_class,
1834					&cpufreq_sysdev_driver);
1835	if (ret)
1836		goto err_null_driver;
1837
1838	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839		int i;
1840		ret = -ENODEV;
 
 
1841
1842		/* check for at least one working CPU */
1843		for (i = 0; i < nr_cpu_ids; i++)
1844			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845				ret = 0;
1846				break;
1847			}
1848
 
 
1849		/* if all ->init() calls failed, unregister */
1850		if (ret) {
1851			pr_debug("no CPU initialized for driver %s\n",
1852							driver_data->name);
1853			goto err_sysdev_unreg;
1854		}
1855	}
1856
1857	register_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
 
 
1858	pr_debug("driver %s up and running\n", driver_data->name);
 
1859
1860	return 0;
1861err_sysdev_unreg:
1862	sysdev_driver_unregister(&cpu_sysdev_class,
1863			&cpufreq_sysdev_driver);
1864err_null_driver:
1865	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1866	cpufreq_driver = NULL;
1867	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1868	return ret;
1869}
1870EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1871
1872
1873/**
1874 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1875 *
1876 *    Unregister the current CPUFreq driver. Only call this if you have
1877 * the right to do so, i.e. if you have succeeded in initialising before!
1878 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1879 * currently not initialised.
1880 */
1881int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1882{
1883	unsigned long flags;
1884
1885	if (!cpufreq_driver || (driver != cpufreq_driver))
1886		return -EINVAL;
1887
1888	pr_debug("unregistering driver %s\n", driver->name);
1889
1890	sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1891	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
1892
1893	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1894	cpufreq_driver = NULL;
1895	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1896
1897	return 0;
1898}
1899EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1900
 
 
 
 
 
 
 
 
 
 
 
1901static int __init cpufreq_core_init(void)
1902{
1903	int cpu;
 
1904
1905	for_each_possible_cpu(cpu) {
1906		per_cpu(cpufreq_policy_cpu, cpu) = -1;
1907		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1908	}
1909
1910	cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1911						&cpu_sysdev_class.kset.kobj);
1912	BUG_ON(!cpufreq_global_kobject);
 
1913	register_syscore_ops(&cpufreq_syscore_ops);
1914
1915	return 0;
1916}
 
1917core_initcall(cpufreq_core_init);
v4.17
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   6 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   7 *
   8 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   9 *	Added handling for CPU hotplug
  10 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  11 *	Fix handling for CPU hotplug -- affected CPUs
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
 
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/cpu.h>
 
  21#include <linux/cpufreq.h>
  22#include <linux/delay.h>
 
 
  23#include <linux/device.h>
  24#include <linux/init.h>
  25#include <linux/kernel_stat.h>
  26#include <linux/module.h>
  27#include <linux/mutex.h>
  28#include <linux/slab.h>
  29#include <linux/suspend.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/tick.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36static inline bool policy_is_inactive(struct cpufreq_policy *policy)
  37{
  38	return cpumask_empty(policy->cpus);
  39}
  40
  41/* Macros to iterate over CPU policies */
  42#define for_each_suitable_policy(__policy, __active)			 \
  43	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  44		if ((__active) == !policy_is_inactive(__policy))
  45
  46#define for_each_active_policy(__policy)		\
  47	for_each_suitable_policy(__policy, true)
  48#define for_each_inactive_policy(__policy)		\
  49	for_each_suitable_policy(__policy, false)
  50
  51#define for_each_policy(__policy)			\
  52	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
  53
  54/* Iterate over governors */
  55static LIST_HEAD(cpufreq_governor_list);
  56#define for_each_governor(__governor)				\
  57	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  58
  59/**
  60 * The "cpufreq driver" - the arch- or hardware-dependent low
  61 * level driver of CPUFreq support, and its spinlock. This lock
  62 * also protects the cpufreq_cpu_data array.
  63 */
  64static struct cpufreq_driver *cpufreq_driver;
  65static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  66static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
 
 
  74}
  75
 
 
 
 
 
 
 
 
  76/* internal prototypes */
  77static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  78static int cpufreq_init_governor(struct cpufreq_policy *policy);
  79static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  80static int cpufreq_start_governor(struct cpufreq_policy *policy);
  81static void cpufreq_stop_governor(struct cpufreq_policy *policy);
  82static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  83
  84/**
  85 * Two notifier lists: the "policy" list is involved in the
  86 * validation process for a new CPU frequency policy; the
  87 * "transition" list for kernel code that needs to handle
  88 * changes to devices when the CPU clock speed changes.
  89 * The mutex locks both lists.
  90 */
  91static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  92static struct srcu_notifier_head cpufreq_transition_notifier_list;
  93
  94static bool init_cpufreq_transition_notifier_list_called;
  95static int __init init_cpufreq_transition_notifier_list(void)
  96{
  97	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
  98	init_cpufreq_transition_notifier_list_called = true;
  99	return 0;
 100}
 101pure_initcall(init_cpufreq_transition_notifier_list);
 102
 103static int off __read_mostly;
 104static int cpufreq_disabled(void)
 105{
 106	return off;
 107}
 108void disable_cpufreq(void)
 109{
 110	off = 1;
 111}
 112static DEFINE_MUTEX(cpufreq_governor_mutex);
 113
 114bool have_governor_per_policy(void)
 115{
 116	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 117}
 118EXPORT_SYMBOL_GPL(have_governor_per_policy);
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	u64 idle_time;
 132	u64 cur_wall_time;
 133	u64 busy_time;
 134
 135	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 
 136
 137	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 138	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 139	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 140	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 141	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 142	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 143
 144	idle_time = cur_wall_time - busy_time;
 145	if (wall)
 146		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 147
 148	return div_u64(idle_time, NSEC_PER_USEC);
 149}
 150
 151u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 152{
 153	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 154
 155	if (idle_time == -1ULL)
 156		return get_cpu_idle_time_jiffy(cpu, wall);
 157	else if (!io_busy)
 158		idle_time += get_cpu_iowait_time_us(cpu, wall);
 159
 160	return idle_time;
 161}
 162EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 163
 164__weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
 165		unsigned long max_freq)
 166{
 
 
 
 167}
 168EXPORT_SYMBOL_GPL(arch_set_freq_scale);
 169
 170/*
 171 * This is a generic cpufreq init() routine which can be used by cpufreq
 172 * drivers of SMP systems. It will do following:
 173 * - validate & show freq table passed
 174 * - set policies transition latency
 175 * - policy->cpus with all possible CPUs
 176 */
 177int cpufreq_generic_init(struct cpufreq_policy *policy,
 178		struct cpufreq_frequency_table *table,
 179		unsigned int transition_latency)
 180{
 181	policy->freq_table = table;
 182	policy->cpuinfo.transition_latency = transition_latency;
 183
 184	/*
 185	 * The driver only supports the SMP configuration where all processors
 186	 * share the clock and voltage and clock.
 187	 */
 188	cpumask_setall(policy->cpus);
 189
 190	return 0;
 191}
 192EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 193
 194struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 195{
 196	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 197
 198	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 199}
 200EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 201
 202unsigned int cpufreq_generic_get(unsigned int cpu)
 203{
 204	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 205
 206	if (!policy || IS_ERR(policy->clk)) {
 207		pr_err("%s: No %s associated to cpu: %d\n",
 208		       __func__, policy ? "clk" : "policy", cpu);
 209		return 0;
 210	}
 211
 212	return clk_get_rate(policy->clk) / 1000;
 213}
 214EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 215
 216/**
 217 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
 218 *
 219 * @cpu: cpu to find policy for.
 220 *
 221 * This returns policy for 'cpu', returns NULL if it doesn't exist.
 222 * It also increments the kobject reference count to mark it busy and so would
 223 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
 224 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
 225 * freed as that depends on the kobj count.
 226 *
 227 * Return: A valid policy on success, otherwise NULL on failure.
 228 */
 229struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 230{
 231	struct cpufreq_policy *policy = NULL;
 232	unsigned long flags;
 233
 234	if (WARN_ON(cpu >= nr_cpu_ids))
 235		return NULL;
 236
 237	/* get the cpufreq driver */
 238	read_lock_irqsave(&cpufreq_driver_lock, flags);
 239
 240	if (cpufreq_driver) {
 241		/* get the CPU */
 242		policy = cpufreq_cpu_get_raw(cpu);
 243		if (policy)
 244			kobject_get(&policy->kobj);
 245	}
 246
 247	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 248
 249	return policy;
 250}
 251EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 252
 253/**
 254 * cpufreq_cpu_put: Decrements the usage count of a policy
 255 *
 256 * @policy: policy earlier returned by cpufreq_cpu_get().
 257 *
 258 * This decrements the kobject reference count incremented earlier by calling
 259 * cpufreq_cpu_get().
 260 */
 261void cpufreq_cpu_put(struct cpufreq_policy *policy)
 262{
 263	kobject_put(&policy->kobj);
 264}
 265EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 266
 267/*********************************************************************
 268 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 269 *********************************************************************/
 270
 271/**
 272 * adjust_jiffies - adjust the system "loops_per_jiffy"
 273 *
 274 * This function alters the system "loops_per_jiffy" for the clock
 275 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 276 * systems as each CPU might be scaled differently. So, use the arch
 277 * per-CPU loops_per_jiffy value wherever possible.
 278 */
 
 
 
 
 279static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 280{
 281#ifndef CONFIG_SMP
 282	static unsigned long l_p_j_ref;
 283	static unsigned int l_p_j_ref_freq;
 284
 285	if (ci->flags & CPUFREQ_CONST_LOOPS)
 286		return;
 287
 288	if (!l_p_j_ref_freq) {
 289		l_p_j_ref = loops_per_jiffy;
 290		l_p_j_ref_freq = ci->old;
 291		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 292			 l_p_j_ref, l_p_j_ref_freq);
 293	}
 294	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 
 
 295		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 296								ci->new);
 297		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 298			 loops_per_jiffy, ci->new);
 299	}
 
 
 
 
 
 
 300#endif
 301}
 302
 303static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
 304		struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 
 
 
 
 305{
 
 
 306	BUG_ON(irqs_disabled());
 307
 308	if (cpufreq_disabled())
 309		return;
 310
 311	freqs->flags = cpufreq_driver->flags;
 312	pr_debug("notification %u of frequency transition to %u kHz\n",
 313		 state, freqs->new);
 314
 
 315	switch (state) {
 316
 317	case CPUFREQ_PRECHANGE:
 318		/* detect if the driver reported a value as "old frequency"
 319		 * which is not equal to what the cpufreq core thinks is
 320		 * "old frequency".
 321		 */
 322		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 323			if ((policy) && (policy->cpu == freqs->cpu) &&
 324			    (policy->cur) && (policy->cur != freqs->old)) {
 325				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 326					 freqs->old, policy->cur);
 
 327				freqs->old = policy->cur;
 328			}
 329		}
 330		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 331				CPUFREQ_PRECHANGE, freqs);
 332		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 333		break;
 334
 335	case CPUFREQ_POSTCHANGE:
 336		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 337		pr_debug("FREQ: %lu - CPU: %lu\n",
 338			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
 
 339		trace_cpu_frequency(freqs->new, freqs->cpu);
 340		cpufreq_stats_record_transition(policy, freqs->new);
 341		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 342				CPUFREQ_POSTCHANGE, freqs);
 343		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 344			policy->cur = freqs->new;
 345		break;
 346	}
 347}
 
 348
 349/**
 350 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 351 * on frequency transition.
 352 *
 353 * This function calls the transition notifiers and the "adjust_jiffies"
 354 * function. It is called twice on all CPU frequency changes that have
 355 * external effects.
 356 */
 357static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 358		struct cpufreq_freqs *freqs, unsigned int state)
 359{
 360	for_each_cpu(freqs->cpu, policy->cpus)
 361		__cpufreq_notify_transition(policy, freqs, state);
 362}
 363
 364/* Do post notifications when there are chances that transition has failed */
 365static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 366		struct cpufreq_freqs *freqs, int transition_failed)
 367{
 368	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 369	if (!transition_failed)
 370		return;
 371
 372	swap(freqs->old, freqs->new);
 373	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 374	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 375}
 376
 377void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 378		struct cpufreq_freqs *freqs)
 379{
 380
 381	/*
 382	 * Catch double invocations of _begin() which lead to self-deadlock.
 383	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 384	 * doesn't invoke _begin() on their behalf, and hence the chances of
 385	 * double invocations are very low. Moreover, there are scenarios
 386	 * where these checks can emit false-positive warnings in these
 387	 * drivers; so we avoid that by skipping them altogether.
 388	 */
 389	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 390				&& current == policy->transition_task);
 391
 392wait:
 393	wait_event(policy->transition_wait, !policy->transition_ongoing);
 394
 395	spin_lock(&policy->transition_lock);
 396
 397	if (unlikely(policy->transition_ongoing)) {
 398		spin_unlock(&policy->transition_lock);
 399		goto wait;
 400	}
 401
 402	policy->transition_ongoing = true;
 403	policy->transition_task = current;
 404
 405	spin_unlock(&policy->transition_lock);
 406
 407	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 408}
 409EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 410
 411void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 412		struct cpufreq_freqs *freqs, int transition_failed)
 413{
 414	if (unlikely(WARN_ON(!policy->transition_ongoing)))
 415		return;
 416
 417	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 418
 419	policy->transition_ongoing = false;
 420	policy->transition_task = NULL;
 421
 422	wake_up(&policy->transition_wait);
 423}
 424EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 425
 426/*
 427 * Fast frequency switching status count.  Positive means "enabled", negative
 428 * means "disabled" and 0 means "not decided yet".
 429 */
 430static int cpufreq_fast_switch_count;
 431static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 432
 433static void cpufreq_list_transition_notifiers(void)
 434{
 435	struct notifier_block *nb;
 436
 437	pr_info("Registered transition notifiers:\n");
 438
 439	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 440
 441	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 442		pr_info("%pF\n", nb->notifier_call);
 443
 444	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 445}
 446
 447/**
 448 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 449 * @policy: cpufreq policy to enable fast frequency switching for.
 450 *
 451 * Try to enable fast frequency switching for @policy.
 452 *
 453 * The attempt will fail if there is at least one transition notifier registered
 454 * at this point, as fast frequency switching is quite fundamentally at odds
 455 * with transition notifiers.  Thus if successful, it will make registration of
 456 * transition notifiers fail going forward.
 457 */
 458void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 459{
 460	lockdep_assert_held(&policy->rwsem);
 461
 462	if (!policy->fast_switch_possible)
 463		return;
 464
 465	mutex_lock(&cpufreq_fast_switch_lock);
 466	if (cpufreq_fast_switch_count >= 0) {
 467		cpufreq_fast_switch_count++;
 468		policy->fast_switch_enabled = true;
 469	} else {
 470		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 471			policy->cpu);
 472		cpufreq_list_transition_notifiers();
 473	}
 474	mutex_unlock(&cpufreq_fast_switch_lock);
 475}
 476EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 477
 478/**
 479 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 480 * @policy: cpufreq policy to disable fast frequency switching for.
 481 */
 482void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 483{
 484	mutex_lock(&cpufreq_fast_switch_lock);
 485	if (policy->fast_switch_enabled) {
 486		policy->fast_switch_enabled = false;
 487		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 488			cpufreq_fast_switch_count--;
 489	}
 490	mutex_unlock(&cpufreq_fast_switch_lock);
 491}
 492EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 493
 494/**
 495 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 496 * one.
 497 * @target_freq: target frequency to resolve.
 498 *
 499 * The target to driver frequency mapping is cached in the policy.
 500 *
 501 * Return: Lowest driver-supported frequency greater than or equal to the
 502 * given target_freq, subject to policy (min/max) and driver limitations.
 503 */
 504unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 505					 unsigned int target_freq)
 506{
 507	target_freq = clamp_val(target_freq, policy->min, policy->max);
 508	policy->cached_target_freq = target_freq;
 509
 510	if (cpufreq_driver->target_index) {
 511		int idx;
 512
 513		idx = cpufreq_frequency_table_target(policy, target_freq,
 514						     CPUFREQ_RELATION_L);
 515		policy->cached_resolved_idx = idx;
 516		return policy->freq_table[idx].frequency;
 517	}
 518
 519	if (cpufreq_driver->resolve_freq)
 520		return cpufreq_driver->resolve_freq(policy, target_freq);
 521
 522	return target_freq;
 523}
 524EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 525
 526unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 527{
 528	unsigned int latency;
 529
 530	if (policy->transition_delay_us)
 531		return policy->transition_delay_us;
 532
 533	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 534	if (latency) {
 535		/*
 536		 * For platforms that can change the frequency very fast (< 10
 537		 * us), the above formula gives a decent transition delay. But
 538		 * for platforms where transition_latency is in milliseconds, it
 539		 * ends up giving unrealistic values.
 540		 *
 541		 * Cap the default transition delay to 10 ms, which seems to be
 542		 * a reasonable amount of time after which we should reevaluate
 543		 * the frequency.
 544		 */
 545		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 546	}
 547
 548	return LATENCY_MULTIPLIER;
 549}
 550EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 551
 552/*********************************************************************
 553 *                          SYSFS INTERFACE                          *
 554 *********************************************************************/
 555static ssize_t show_boost(struct kobject *kobj,
 556				 struct attribute *attr, char *buf)
 557{
 558	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 559}
 560
 561static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
 562				  const char *buf, size_t count)
 563{
 564	int ret, enable;
 565
 566	ret = sscanf(buf, "%d", &enable);
 567	if (ret != 1 || enable < 0 || enable > 1)
 568		return -EINVAL;
 569
 570	if (cpufreq_boost_trigger_state(enable)) {
 571		pr_err("%s: Cannot %s BOOST!\n",
 572		       __func__, enable ? "enable" : "disable");
 573		return -EINVAL;
 574	}
 575
 576	pr_debug("%s: cpufreq BOOST %s\n",
 577		 __func__, enable ? "enabled" : "disabled");
 578
 579	return count;
 580}
 581define_one_global_rw(boost);
 582
 583static struct cpufreq_governor *find_governor(const char *str_governor)
 584{
 585	struct cpufreq_governor *t;
 586
 587	for_each_governor(t)
 588		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 589			return t;
 590
 591	return NULL;
 592}
 593
 594/**
 595 * cpufreq_parse_governor - parse a governor string
 596 */
 597static int cpufreq_parse_governor(char *str_governor,
 598				  struct cpufreq_policy *policy)
 599{
 
 
 
 
 
 600	if (cpufreq_driver->setpolicy) {
 601		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 602			policy->policy = CPUFREQ_POLICY_PERFORMANCE;
 603			return 0;
 604		}
 605
 606		if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
 607			policy->policy = CPUFREQ_POLICY_POWERSAVE;
 608			return 0;
 609		}
 610	} else {
 611		struct cpufreq_governor *t;
 612
 613		mutex_lock(&cpufreq_governor_mutex);
 614
 615		t = find_governor(str_governor);
 616		if (!t) {
 
 617			int ret;
 618
 619			mutex_unlock(&cpufreq_governor_mutex);
 620
 621			ret = request_module("cpufreq_%s", str_governor);
 622			if (ret)
 623				return -EINVAL;
 624
 625			mutex_lock(&cpufreq_governor_mutex);
 
 
 626
 627			t = find_governor(str_governor);
 
 
 628		}
 629		if (t && !try_module_get(t->owner))
 630			t = NULL;
 631
 632		mutex_unlock(&cpufreq_governor_mutex);
 633
 634		if (t) {
 635			policy->governor = t;
 636			return 0;
 637		}
 638	}
 
 
 
 639
 640	return -EINVAL;
 641}
 642
 643/**
 644 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 645 * print out cpufreq information
 646 *
 647 * Write out information from cpufreq_driver->policy[cpu]; object must be
 648 * "unsigned int".
 649 */
 650
 651#define show_one(file_name, object)			\
 652static ssize_t show_##file_name				\
 653(struct cpufreq_policy *policy, char *buf)		\
 654{							\
 655	return sprintf(buf, "%u\n", policy->object);	\
 656}
 657
 658show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 659show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 660show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 661show_one(scaling_min_freq, min);
 662show_one(scaling_max_freq, max);
 
 663
 664__weak unsigned int arch_freq_get_on_cpu(int cpu)
 665{
 666	return 0;
 667}
 668
 669static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 670{
 671	ssize_t ret;
 672	unsigned int freq;
 673
 674	freq = arch_freq_get_on_cpu(policy->cpu);
 675	if (freq)
 676		ret = sprintf(buf, "%u\n", freq);
 677	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
 678			cpufreq_driver->get)
 679		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 680	else
 681		ret = sprintf(buf, "%u\n", policy->cur);
 682	return ret;
 683}
 684
 685static int cpufreq_set_policy(struct cpufreq_policy *policy,
 686				struct cpufreq_policy *new_policy);
 687
 688/**
 689 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 690 */
 691#define store_one(file_name, object)			\
 692static ssize_t store_##file_name					\
 693(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 694{									\
 695	int ret, temp;							\
 696	struct cpufreq_policy new_policy;				\
 697									\
 698	memcpy(&new_policy, policy, sizeof(*policy));			\
 
 
 699									\
 700	ret = sscanf(buf, "%u", &new_policy.object);			\
 701	if (ret != 1)							\
 702		return -EINVAL;						\
 703									\
 704	temp = new_policy.object;					\
 705	ret = cpufreq_set_policy(policy, &new_policy);		\
 706	if (!ret)							\
 707		policy->user_policy.object = temp;			\
 708									\
 709	return ret ? ret : count;					\
 710}
 711
 712store_one(scaling_min_freq, min);
 713store_one(scaling_max_freq, max);
 714
 715/**
 716 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 717 */
 718static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 719					char *buf)
 720{
 721	unsigned int cur_freq = __cpufreq_get(policy);
 
 
 
 
 722
 723	if (cur_freq)
 724		return sprintf(buf, "%u\n", cur_freq);
 725
 726	return sprintf(buf, "<unknown>\n");
 727}
 728
 729/**
 730 * show_scaling_governor - show the current policy for the specified CPU
 731 */
 732static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 733{
 734	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 735		return sprintf(buf, "powersave\n");
 736	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 737		return sprintf(buf, "performance\n");
 738	else if (policy->governor)
 739		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 740				policy->governor->name);
 741	return -EINVAL;
 742}
 743
 
 744/**
 745 * store_scaling_governor - store policy for the specified CPU
 746 */
 747static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 748					const char *buf, size_t count)
 749{
 750	int ret;
 751	char	str_governor[16];
 752	struct cpufreq_policy new_policy;
 753
 754	memcpy(&new_policy, policy, sizeof(*policy));
 
 
 755
 756	ret = sscanf(buf, "%15s", str_governor);
 757	if (ret != 1)
 758		return -EINVAL;
 759
 760	if (cpufreq_parse_governor(str_governor, &new_policy))
 
 761		return -EINVAL;
 762
 763	ret = cpufreq_set_policy(policy, &new_policy);
 
 
 764
 765	if (new_policy.governor)
 766		module_put(new_policy.governor->owner);
 767
 768	return ret ? ret : count;
 
 
 
 769}
 770
 771/**
 772 * show_scaling_driver - show the cpufreq driver currently loaded
 773 */
 774static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 775{
 776	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 777}
 778
 779/**
 780 * show_scaling_available_governors - show the available CPUfreq governors
 781 */
 782static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 783						char *buf)
 784{
 785	ssize_t i = 0;
 786	struct cpufreq_governor *t;
 787
 788	if (!has_target()) {
 789		i += sprintf(buf, "performance powersave");
 790		goto out;
 791	}
 792
 793	for_each_governor(t) {
 794		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 795		    - (CPUFREQ_NAME_LEN + 2)))
 796			goto out;
 797		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 798	}
 799out:
 800	i += sprintf(&buf[i], "\n");
 801	return i;
 802}
 803
 804ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 805{
 806	ssize_t i = 0;
 807	unsigned int cpu;
 808
 809	for_each_cpu(cpu, mask) {
 810		if (i)
 811			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 812		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 813		if (i >= (PAGE_SIZE - 5))
 814			break;
 815	}
 816	i += sprintf(&buf[i], "\n");
 817	return i;
 818}
 819EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 820
 821/**
 822 * show_related_cpus - show the CPUs affected by each transition even if
 823 * hw coordination is in use
 824 */
 825static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 826{
 827	return cpufreq_show_cpus(policy->related_cpus, buf);
 
 
 828}
 829
 830/**
 831 * show_affected_cpus - show the CPUs affected by each transition
 832 */
 833static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 834{
 835	return cpufreq_show_cpus(policy->cpus, buf);
 836}
 837
 838static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 839					const char *buf, size_t count)
 840{
 841	unsigned int freq = 0;
 842	unsigned int ret;
 843
 844	if (!policy->governor || !policy->governor->store_setspeed)
 845		return -EINVAL;
 846
 847	ret = sscanf(buf, "%u", &freq);
 848	if (ret != 1)
 849		return -EINVAL;
 850
 851	policy->governor->store_setspeed(policy, freq);
 852
 853	return count;
 854}
 855
 856static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 857{
 858	if (!policy->governor || !policy->governor->show_setspeed)
 859		return sprintf(buf, "<unsupported>\n");
 860
 861	return policy->governor->show_setspeed(policy, buf);
 862}
 863
 864/**
 865 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 866 */
 867static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 868{
 869	unsigned int limit;
 870	int ret;
 871	if (cpufreq_driver->bios_limit) {
 872		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 873		if (!ret)
 874			return sprintf(buf, "%u\n", limit);
 875	}
 876	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 877}
 878
 879cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 880cpufreq_freq_attr_ro(cpuinfo_min_freq);
 881cpufreq_freq_attr_ro(cpuinfo_max_freq);
 882cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 883cpufreq_freq_attr_ro(scaling_available_governors);
 884cpufreq_freq_attr_ro(scaling_driver);
 885cpufreq_freq_attr_ro(scaling_cur_freq);
 886cpufreq_freq_attr_ro(bios_limit);
 887cpufreq_freq_attr_ro(related_cpus);
 888cpufreq_freq_attr_ro(affected_cpus);
 889cpufreq_freq_attr_rw(scaling_min_freq);
 890cpufreq_freq_attr_rw(scaling_max_freq);
 891cpufreq_freq_attr_rw(scaling_governor);
 892cpufreq_freq_attr_rw(scaling_setspeed);
 893
 894static struct attribute *default_attrs[] = {
 895	&cpuinfo_min_freq.attr,
 896	&cpuinfo_max_freq.attr,
 897	&cpuinfo_transition_latency.attr,
 898	&scaling_min_freq.attr,
 899	&scaling_max_freq.attr,
 900	&affected_cpus.attr,
 901	&related_cpus.attr,
 902	&scaling_governor.attr,
 903	&scaling_driver.attr,
 904	&scaling_available_governors.attr,
 905	&scaling_setspeed.attr,
 906	NULL
 907};
 908
 
 
 
 909#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 910#define to_attr(a) container_of(a, struct freq_attr, attr)
 911
 912static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 913{
 914	struct cpufreq_policy *policy = to_policy(kobj);
 915	struct freq_attr *fattr = to_attr(attr);
 916	ssize_t ret;
 
 
 
 917
 918	down_read(&policy->rwsem);
 919	ret = fattr->show(policy, buf);
 920	up_read(&policy->rwsem);
 
 
 
 
 921
 
 
 
 
 922	return ret;
 923}
 924
 925static ssize_t store(struct kobject *kobj, struct attribute *attr,
 926		     const char *buf, size_t count)
 927{
 928	struct cpufreq_policy *policy = to_policy(kobj);
 929	struct freq_attr *fattr = to_attr(attr);
 930	ssize_t ret = -EINVAL;
 
 
 
 931
 932	cpus_read_lock();
 
 933
 934	if (cpu_online(policy->cpu)) {
 935		down_write(&policy->rwsem);
 936		ret = fattr->store(policy, buf, count);
 937		up_write(&policy->rwsem);
 938	}
 939
 940	cpus_read_unlock();
 941
 
 
 
 
 942	return ret;
 943}
 944
 945static void cpufreq_sysfs_release(struct kobject *kobj)
 946{
 947	struct cpufreq_policy *policy = to_policy(kobj);
 948	pr_debug("last reference is dropped\n");
 949	complete(&policy->kobj_unregister);
 950}
 951
 952static const struct sysfs_ops sysfs_ops = {
 953	.show	= show,
 954	.store	= store,
 955};
 956
 957static struct kobj_type ktype_cpufreq = {
 958	.sysfs_ops	= &sysfs_ops,
 959	.default_attrs	= default_attrs,
 960	.release	= cpufreq_sysfs_release,
 961};
 962
 963static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
 964{
 965	struct device *dev = get_cpu_device(cpu);
 
 
 
 
 
 966
 967	if (!dev)
 968		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969
 970	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
 971		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972
 973	dev_dbg(dev, "%s: Adding symlink\n", __func__);
 974	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
 975		dev_err(dev, "cpufreq symlink creation failed\n");
 
 
 
 
 
 976}
 977
 978static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
 979				   struct device *dev)
 
 
 980{
 981	dev_dbg(dev, "%s: Removing symlink\n", __func__);
 982	sysfs_remove_link(&dev->kobj, "cpufreq");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983}
 984
 985static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
 
 986{
 
 987	struct freq_attr **drv_attr;
 
 988	int ret = 0;
 
 
 
 
 
 
 
 989
 990	/* set up files for this cpu device */
 991	drv_attr = cpufreq_driver->attr;
 992	while (drv_attr && *drv_attr) {
 993		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 994		if (ret)
 995			return ret;
 996		drv_attr++;
 997	}
 998	if (cpufreq_driver->get) {
 999		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1000		if (ret)
1001			return ret;
 
 
 
 
 
1002	}
1003
1004	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1005	if (ret)
1006		return ret;
1007
1008	if (cpufreq_driver->bios_limit) {
1009		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1010		if (ret)
1011			return ret;
1012	}
1013
1014	return 0;
1015}
 
 
 
 
 
 
1016
1017__weak struct cpufreq_governor *cpufreq_default_governor(void)
1018{
1019	return NULL;
1020}
1021
1022static int cpufreq_init_policy(struct cpufreq_policy *policy)
1023{
1024	struct cpufreq_governor *gov = NULL;
1025	struct cpufreq_policy new_policy;
1026
1027	memcpy(&new_policy, policy, sizeof(*policy));
 
 
 
1028
1029	/* Update governor of new_policy to the governor used before hotplug */
1030	gov = find_governor(policy->last_governor);
1031	if (gov) {
1032		pr_debug("Restoring governor %s for cpu %d\n",
1033				policy->governor->name, policy->cpu);
1034	} else {
1035		gov = cpufreq_default_governor();
1036		if (!gov)
1037			return -ENODATA;
1038	}
 
1039
1040	new_policy.governor = gov;
 
 
 
 
1041
1042	/* Use the default policy if there is no last_policy. */
1043	if (cpufreq_driver->setpolicy) {
1044		if (policy->last_policy)
1045			new_policy.policy = policy->last_policy;
1046		else
1047			cpufreq_parse_governor(gov->name, &new_policy);
1048	}
1049	/* set default policy */
1050	return cpufreq_set_policy(policy, &new_policy);
1051}
1052
1053static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
 
1054{
1055	int ret = 0;
 
 
 
 
 
 
 
1056
1057	/* Has this CPU been taken care of already? */
1058	if (cpumask_test_cpu(cpu, policy->cpus))
1059		return 0;
1060
1061	down_write(&policy->rwsem);
1062	if (has_target())
1063		cpufreq_stop_governor(policy);
1064
1065	cpumask_set_cpu(cpu, policy->cpus);
 
 
 
 
 
 
 
 
1066
1067	if (has_target()) {
1068		ret = cpufreq_start_governor(policy);
1069		if (ret)
1070			pr_err("%s: Failed to start governor\n", __func__);
1071	}
1072	up_write(&policy->rwsem);
1073	return ret;
1074}
1075
1076static void handle_update(struct work_struct *work)
1077{
1078	struct cpufreq_policy *policy =
1079		container_of(work, struct cpufreq_policy, update);
1080	unsigned int cpu = policy->cpu;
1081	pr_debug("handle_update for cpu %u called\n", cpu);
1082	cpufreq_update_policy(cpu);
1083}
1084
1085static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1086{
1087	struct cpufreq_policy *policy;
1088	int ret;
1089
1090	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1091	if (!policy)
1092		return NULL;
1093
1094	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1095		goto err_free_policy;
1096
1097	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1098		goto err_free_cpumask;
1099
1100	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1101		goto err_free_rcpumask;
1102
1103	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1104				   cpufreq_global_kobject, "policy%u", cpu);
1105	if (ret) {
1106		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1107		goto err_free_real_cpus;
1108	}
1109
1110	INIT_LIST_HEAD(&policy->policy_list);
1111	init_rwsem(&policy->rwsem);
1112	spin_lock_init(&policy->transition_lock);
1113	init_waitqueue_head(&policy->transition_wait);
1114	init_completion(&policy->kobj_unregister);
1115	INIT_WORK(&policy->update, handle_update);
1116
1117	policy->cpu = cpu;
1118	return policy;
1119
1120err_free_real_cpus:
1121	free_cpumask_var(policy->real_cpus);
1122err_free_rcpumask:
1123	free_cpumask_var(policy->related_cpus);
1124err_free_cpumask:
1125	free_cpumask_var(policy->cpus);
1126err_free_policy:
1127	kfree(policy);
1128
1129	return NULL;
1130}
1131
1132static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1133{
1134	struct kobject *kobj;
1135	struct completion *cmp;
1136
1137	down_write(&policy->rwsem);
1138	cpufreq_stats_free_table(policy);
1139	kobj = &policy->kobj;
1140	cmp = &policy->kobj_unregister;
1141	up_write(&policy->rwsem);
1142	kobject_put(kobj);
1143
1144	/*
1145	 * We need to make sure that the underlying kobj is
1146	 * actually not referenced anymore by anybody before we
1147	 * proceed with unloading.
1148	 */
1149	pr_debug("waiting for dropping of refcount\n");
1150	wait_for_completion(cmp);
1151	pr_debug("wait complete\n");
1152}
1153
1154static void cpufreq_policy_free(struct cpufreq_policy *policy)
1155{
1156	unsigned long flags;
1157	int cpu;
1158
1159	/* Remove policy from list */
1160	write_lock_irqsave(&cpufreq_driver_lock, flags);
1161	list_del(&policy->policy_list);
1162
1163	for_each_cpu(cpu, policy->related_cpus)
1164		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1165	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1166
1167	cpufreq_policy_put_kobj(policy);
1168	free_cpumask_var(policy->real_cpus);
1169	free_cpumask_var(policy->related_cpus);
1170	free_cpumask_var(policy->cpus);
1171	kfree(policy);
1172}
1173
1174static int cpufreq_online(unsigned int cpu)
1175{
1176	struct cpufreq_policy *policy;
1177	bool new_policy;
1178	unsigned long flags;
1179	unsigned int j;
1180	int ret;
1181
1182	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1183
1184	/* Check if this CPU already has a policy to manage it */
1185	policy = per_cpu(cpufreq_cpu_data, cpu);
1186	if (policy) {
1187		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1188		if (!policy_is_inactive(policy))
1189			return cpufreq_add_policy_cpu(policy, cpu);
1190
1191		/* This is the only online CPU for the policy.  Start over. */
1192		new_policy = false;
1193		down_write(&policy->rwsem);
1194		policy->cpu = cpu;
1195		policy->governor = NULL;
1196		up_write(&policy->rwsem);
1197	} else {
1198		new_policy = true;
1199		policy = cpufreq_policy_alloc(cpu);
1200		if (!policy)
1201			return -ENOMEM;
1202	}
1203
1204	cpumask_copy(policy->cpus, cpumask_of(cpu));
1205
1206	/* call driver. From then on the cpufreq must be able
1207	 * to accept all calls to ->verify and ->setpolicy for this CPU
1208	 */
1209	ret = cpufreq_driver->init(policy);
1210	if (ret) {
1211		pr_debug("initialization failed\n");
1212		goto out_free_policy;
1213	}
 
 
1214
1215	ret = cpufreq_table_validate_and_sort(policy);
1216	if (ret)
1217		goto out_exit_policy;
1218
1219	down_write(&policy->rwsem);
1220
1221	if (new_policy) {
1222		/* related_cpus should at least include policy->cpus. */
1223		cpumask_copy(policy->related_cpus, policy->cpus);
 
 
1224	}
1225
1226	/*
1227	 * affected cpus must always be the one, which are online. We aren't
1228	 * managing offline cpus here.
1229	 */
1230	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1231
1232	if (new_policy) {
1233		policy->user_policy.min = policy->min;
1234		policy->user_policy.max = policy->max;
1235
1236		for_each_cpu(j, policy->related_cpus) {
1237			per_cpu(cpufreq_cpu_data, j) = policy;
1238			add_cpu_dev_symlink(policy, j);
1239		}
1240	} else {
1241		policy->min = policy->user_policy.min;
1242		policy->max = policy->user_policy.max;
1243	}
1244
1245	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1246		policy->cur = cpufreq_driver->get(policy->cpu);
1247		if (!policy->cur) {
1248			pr_err("%s: ->get() failed\n", __func__);
1249			goto out_destroy_policy;
1250		}
1251	}
1252
1253	/*
1254	 * Sometimes boot loaders set CPU frequency to a value outside of
1255	 * frequency table present with cpufreq core. In such cases CPU might be
1256	 * unstable if it has to run on that frequency for long duration of time
1257	 * and so its better to set it to a frequency which is specified in
1258	 * freq-table. This also makes cpufreq stats inconsistent as
1259	 * cpufreq-stats would fail to register because current frequency of CPU
1260	 * isn't found in freq-table.
1261	 *
1262	 * Because we don't want this change to effect boot process badly, we go
1263	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1264	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1265	 * is initialized to zero).
1266	 *
1267	 * We are passing target-freq as "policy->cur - 1" otherwise
1268	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1269	 * equal to target-freq.
1270	 */
1271	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1272	    && has_target()) {
1273		/* Are we running at unknown frequency ? */
1274		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1275		if (ret == -EINVAL) {
1276			/* Warn user and fix it */
1277			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1278				__func__, policy->cpu, policy->cur);
1279			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1280				CPUFREQ_RELATION_L);
1281
1282			/*
1283			 * Reaching here after boot in a few seconds may not
1284			 * mean that system will remain stable at "unknown"
1285			 * frequency for longer duration. Hence, a BUG_ON().
1286			 */
1287			BUG_ON(ret);
1288			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1289				__func__, policy->cpu, policy->cur);
1290		}
1291	}
1292
1293	if (new_policy) {
1294		ret = cpufreq_add_dev_interface(policy);
1295		if (ret)
1296			goto out_destroy_policy;
1297
1298		cpufreq_stats_create_table(policy);
1299
1300		write_lock_irqsave(&cpufreq_driver_lock, flags);
1301		list_add(&policy->policy_list, &cpufreq_policy_list);
1302		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1303	}
1304
1305	ret = cpufreq_init_policy(policy);
1306	if (ret) {
1307		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1308		       __func__, cpu, ret);
1309		/* cpufreq_policy_free() will notify based on this */
1310		new_policy = false;
1311		goto out_destroy_policy;
1312	}
1313
1314	up_write(&policy->rwsem);
1315
1316	kobject_uevent(&policy->kobj, KOBJ_ADD);
1317
1318	/* Callback for handling stuff after policy is ready */
1319	if (cpufreq_driver->ready)
1320		cpufreq_driver->ready(policy);
1321
1322	pr_debug("initialization complete\n");
1323
1324	return 0;
1325
1326out_destroy_policy:
1327	for_each_cpu(j, policy->real_cpus)
1328		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1329
1330	up_write(&policy->rwsem);
 
 
 
 
1331
1332out_exit_policy:
1333	if (cpufreq_driver->exit)
1334		cpufreq_driver->exit(policy);
1335
1336out_free_policy:
1337	cpufreq_policy_free(policy);
 
 
 
 
 
 
 
 
1338	return ret;
1339}
1340
 
1341/**
1342 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1343 * @dev: CPU device.
1344 * @sif: Subsystem interface structure pointer (not used)
 
 
1345 */
1346static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1347{
1348	struct cpufreq_policy *policy;
1349	unsigned cpu = dev->id;
1350	int ret;
 
 
 
 
 
 
 
 
1351
1352	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
 
1353
1354	if (cpu_online(cpu)) {
1355		ret = cpufreq_online(cpu);
1356		if (ret)
1357			return ret;
1358	}
 
1359
1360	/* Create sysfs link on CPU registration */
1361	policy = per_cpu(cpufreq_cpu_data, cpu);
1362	if (policy)
1363		add_cpu_dev_symlink(policy, cpu);
1364
1365	return 0;
1366}
 
 
 
 
 
 
 
 
 
 
 
 
 
1367
1368static int cpufreq_offline(unsigned int cpu)
1369{
1370	struct cpufreq_policy *policy;
1371	int ret;
1372
1373	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
 
 
 
1374
1375	policy = cpufreq_cpu_get_raw(cpu);
1376	if (!policy) {
1377		pr_debug("%s: No cpu_data found\n", __func__);
1378		return 0;
 
 
 
 
 
 
 
1379	}
1380
1381	down_write(&policy->rwsem);
1382	if (has_target())
1383		cpufreq_stop_governor(policy);
1384
1385	cpumask_clear_cpu(cpu, policy->cpus);
1386
1387	if (policy_is_inactive(policy)) {
1388		if (has_target())
1389			strncpy(policy->last_governor, policy->governor->name,
1390				CPUFREQ_NAME_LEN);
1391		else
1392			policy->last_policy = policy->policy;
1393	} else if (cpu == policy->cpu) {
1394		/* Nominate new CPU */
1395		policy->cpu = cpumask_any(policy->cpus);
1396	}
1397
1398	/* Start governor again for active policy */
1399	if (!policy_is_inactive(policy)) {
1400		if (has_target()) {
1401			ret = cpufreq_start_governor(policy);
1402			if (ret)
1403				pr_err("%s: Failed to start governor\n", __func__);
1404		}
 
 
 
 
1405
1406		goto unlock;
1407	}
 
 
 
 
 
1408
1409	if (cpufreq_driver->stop_cpu)
1410		cpufreq_driver->stop_cpu(policy);
 
 
 
 
 
1411
1412	if (has_target())
1413		cpufreq_exit_governor(policy);
 
 
1414
1415	/*
1416	 * Perform the ->exit() even during light-weight tear-down,
1417	 * since this is a core component, and is essential for the
1418	 * subsequent light-weight ->init() to succeed.
1419	 */
1420	if (cpufreq_driver->exit) {
1421		cpufreq_driver->exit(policy);
1422		policy->freq_table = NULL;
 
 
 
 
 
1423	}
 
 
 
 
 
1424
1425unlock:
1426	up_write(&policy->rwsem);
1427	return 0;
1428}
1429
1430/**
1431 * cpufreq_remove_dev - remove a CPU device
1432 *
1433 * Removes the cpufreq interface for a CPU device.
1434 */
1435static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1436{
1437	unsigned int cpu = dev->id;
1438	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 
 
 
1439
1440	if (!policy)
1441		return;
1442
1443	if (cpu_online(cpu))
1444		cpufreq_offline(cpu);
 
1445
1446	cpumask_clear_cpu(cpu, policy->real_cpus);
1447	remove_cpu_dev_symlink(policy, dev);
1448
1449	if (cpumask_empty(policy->real_cpus))
1450		cpufreq_policy_free(policy);
 
 
 
 
 
1451}
1452
1453/**
1454 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1455 *	in deep trouble.
1456 *	@policy: policy managing CPUs
1457 *	@new_freq: CPU frequency the CPU actually runs at
1458 *
1459 *	We adjust to current frequency first, and need to clean up later.
1460 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1461 */
1462static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1463				unsigned int new_freq)
1464{
1465	struct cpufreq_freqs freqs;
1466
1467	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1468		 policy->cur, new_freq);
1469
1470	freqs.old = policy->cur;
 
1471	freqs.new = new_freq;
 
 
 
1472
1473	cpufreq_freq_transition_begin(policy, &freqs);
1474	cpufreq_freq_transition_end(policy, &freqs, 0);
1475}
1476
1477/**
1478 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1479 * @cpu: CPU number
1480 *
1481 * This is the last known freq, without actually getting it from the driver.
1482 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1483 */
1484unsigned int cpufreq_quick_get(unsigned int cpu)
1485{
1486	struct cpufreq_policy *policy;
1487	unsigned int ret_freq = 0;
1488	unsigned long flags;
1489
1490	read_lock_irqsave(&cpufreq_driver_lock, flags);
1491
1492	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1493		ret_freq = cpufreq_driver->get(cpu);
1494		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1495		return ret_freq;
1496	}
1497
1498	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1499
1500	policy = cpufreq_cpu_get(cpu);
1501	if (policy) {
1502		ret_freq = policy->cur;
1503		cpufreq_cpu_put(policy);
1504	}
1505
1506	return ret_freq;
1507}
1508EXPORT_SYMBOL(cpufreq_quick_get);
1509
1510/**
1511 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1512 * @cpu: CPU number
1513 *
1514 * Just return the max possible frequency for a given CPU.
1515 */
1516unsigned int cpufreq_quick_get_max(unsigned int cpu)
1517{
1518	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1519	unsigned int ret_freq = 0;
1520
1521	if (policy) {
1522		ret_freq = policy->max;
1523		cpufreq_cpu_put(policy);
1524	}
1525
1526	return ret_freq;
1527}
1528EXPORT_SYMBOL(cpufreq_quick_get_max);
1529
1530static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
 
1531{
 
1532	unsigned int ret_freq = 0;
1533
1534	if (!cpufreq_driver->get)
1535		return ret_freq;
1536
1537	ret_freq = cpufreq_driver->get(policy->cpu);
1538
1539	/*
1540	 * Updating inactive policies is invalid, so avoid doing that.  Also
1541	 * if fast frequency switching is used with the given policy, the check
1542	 * against policy->cur is pointless, so skip it in that case too.
1543	 */
1544	if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1545		return ret_freq;
1546
1547	if (ret_freq && policy->cur &&
1548		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1549		/* verify no discrepancy between actual and
1550					saved value exists */
1551		if (unlikely(ret_freq != policy->cur)) {
1552			cpufreq_out_of_sync(policy, ret_freq);
1553			schedule_work(&policy->update);
1554		}
1555	}
1556
1557	return ret_freq;
1558}
1559
1560/**
1561 * cpufreq_get - get the current CPU frequency (in kHz)
1562 * @cpu: CPU number
1563 *
1564 * Get the CPU current (static) CPU frequency
1565 */
1566unsigned int cpufreq_get(unsigned int cpu)
1567{
 
1568	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1569	unsigned int ret_freq = 0;
1570
1571	if (policy) {
1572		down_read(&policy->rwsem);
1573
1574		if (!policy_is_inactive(policy))
1575			ret_freq = __cpufreq_get(policy);
1576
1577		up_read(&policy->rwsem);
1578
1579		cpufreq_cpu_put(policy);
1580	}
1581
 
 
 
1582	return ret_freq;
1583}
1584EXPORT_SYMBOL(cpufreq_get);
1585
1586static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1587{
1588	unsigned int new_freq;
1589
1590	new_freq = cpufreq_driver->get(policy->cpu);
1591	if (!new_freq)
1592		return 0;
1593
1594	if (!policy->cur) {
1595		pr_debug("cpufreq: Driver did not initialize current freq\n");
1596		policy->cur = new_freq;
1597	} else if (policy->cur != new_freq && has_target()) {
1598		cpufreq_out_of_sync(policy, new_freq);
1599	}
1600
1601	return new_freq;
1602}
1603
1604static struct subsys_interface cpufreq_interface = {
1605	.name		= "cpufreq",
1606	.subsys		= &cpu_subsys,
1607	.add_dev	= cpufreq_add_dev,
1608	.remove_dev	= cpufreq_remove_dev,
1609};
1610
1611/*
1612 * In case platform wants some specific frequency to be configured
1613 * during suspend..
1614 */
1615int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1616{
1617	int ret;
1618
1619	if (!policy->suspend_freq) {
1620		pr_debug("%s: suspend_freq not defined\n", __func__);
1621		return 0;
1622	}
1623
1624	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1625			policy->suspend_freq);
1626
1627	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1628			CPUFREQ_RELATION_H);
1629	if (ret)
1630		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1631				__func__, policy->suspend_freq, ret);
1632
1633	return ret;
1634}
1635EXPORT_SYMBOL(cpufreq_generic_suspend);
1636
1637/**
1638 * cpufreq_suspend() - Suspend CPUFreq governors
1639 *
1640 * Called during system wide Suspend/Hibernate cycles for suspending governors
1641 * as some platforms can't change frequency after this point in suspend cycle.
1642 * Because some of the devices (like: i2c, regulators, etc) they use for
1643 * changing frequency are suspended quickly after this point.
1644 */
1645void cpufreq_suspend(void)
1646{
1647	struct cpufreq_policy *policy;
1648
1649	if (!cpufreq_driver)
1650		return;
1651
1652	if (!has_target() && !cpufreq_driver->suspend)
1653		goto suspend;
1654
1655	pr_debug("%s: Suspending Governors\n", __func__);
 
 
 
1656
1657	for_each_active_policy(policy) {
1658		if (has_target()) {
1659			down_write(&policy->rwsem);
1660			cpufreq_stop_governor(policy);
1661			up_write(&policy->rwsem);
1662		}
1663
1664		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1665			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1666				policy);
1667	}
1668
1669suspend:
1670	cpufreq_suspended = true;
1671}
1672
1673/**
1674 * cpufreq_resume() - Resume CPUFreq governors
1675 *
1676 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1677 * are suspended with cpufreq_suspend().
 
 
 
 
 
 
 
1678 */
1679void cpufreq_resume(void)
1680{
1681	struct cpufreq_policy *policy;
1682	int ret;
1683
1684	if (!cpufreq_driver)
1685		return;
1686
1687	if (unlikely(!cpufreq_suspended))
1688		return;
1689
1690	cpufreq_suspended = false;
1691
1692	if (!has_target() && !cpufreq_driver->resume)
1693		return;
1694
1695	pr_debug("%s: Resuming Governors\n", __func__);
1696
1697	for_each_active_policy(policy) {
1698		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1699			pr_err("%s: Failed to resume driver: %p\n", __func__,
1700				policy);
1701		} else if (has_target()) {
1702			down_write(&policy->rwsem);
1703			ret = cpufreq_start_governor(policy);
1704			up_write(&policy->rwsem);
1705
1706			if (ret)
1707				pr_err("%s: Failed to start governor for policy: %p\n",
1708				       __func__, policy);
1709		}
1710	}
1711}
1712
1713/**
1714 *	cpufreq_get_current_driver - return current driver's name
1715 *
1716 *	Return the name string of the currently loaded cpufreq driver
1717 *	or NULL, if none.
1718 */
1719const char *cpufreq_get_current_driver(void)
1720{
1721	if (cpufreq_driver)
1722		return cpufreq_driver->name;
1723
1724	return NULL;
 
1725}
1726EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1727
1728/**
1729 *	cpufreq_get_driver_data - return current driver data
1730 *
1731 *	Return the private data of the currently loaded cpufreq
1732 *	driver, or NULL if no cpufreq driver is loaded.
1733 */
1734void *cpufreq_get_driver_data(void)
1735{
1736	if (cpufreq_driver)
1737		return cpufreq_driver->driver_data;
1738
1739	return NULL;
1740}
1741EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1742
1743/*********************************************************************
1744 *                     NOTIFIER LISTS INTERFACE                      *
1745 *********************************************************************/
1746
1747/**
1748 *	cpufreq_register_notifier - register a driver with cpufreq
1749 *	@nb: notifier function to register
1750 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1751 *
1752 *	Add a driver to one of two lists: either a list of drivers that
1753 *      are notified about clock rate changes (once before and once after
1754 *      the transition), or a list of drivers that are notified about
1755 *      changes in cpufreq policy.
1756 *
1757 *	This function may sleep, and has the same return conditions as
1758 *	blocking_notifier_chain_register.
1759 */
1760int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1761{
1762	int ret;
1763
1764	if (cpufreq_disabled())
1765		return -EINVAL;
1766
1767	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1768
1769	switch (list) {
1770	case CPUFREQ_TRANSITION_NOTIFIER:
1771		mutex_lock(&cpufreq_fast_switch_lock);
1772
1773		if (cpufreq_fast_switch_count > 0) {
1774			mutex_unlock(&cpufreq_fast_switch_lock);
1775			return -EBUSY;
1776		}
1777		ret = srcu_notifier_chain_register(
1778				&cpufreq_transition_notifier_list, nb);
1779		if (!ret)
1780			cpufreq_fast_switch_count--;
1781
1782		mutex_unlock(&cpufreq_fast_switch_lock);
1783		break;
1784	case CPUFREQ_POLICY_NOTIFIER:
1785		ret = blocking_notifier_chain_register(
1786				&cpufreq_policy_notifier_list, nb);
1787		break;
1788	default:
1789		ret = -EINVAL;
1790	}
1791
1792	return ret;
1793}
1794EXPORT_SYMBOL(cpufreq_register_notifier);
1795
 
1796/**
1797 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1798 *	@nb: notifier block to be unregistered
1799 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1800 *
1801 *	Remove a driver from the CPU frequency notifier list.
1802 *
1803 *	This function may sleep, and has the same return conditions as
1804 *	blocking_notifier_chain_unregister.
1805 */
1806int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1807{
1808	int ret;
1809
1810	if (cpufreq_disabled())
1811		return -EINVAL;
1812
1813	switch (list) {
1814	case CPUFREQ_TRANSITION_NOTIFIER:
1815		mutex_lock(&cpufreq_fast_switch_lock);
1816
1817		ret = srcu_notifier_chain_unregister(
1818				&cpufreq_transition_notifier_list, nb);
1819		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1820			cpufreq_fast_switch_count++;
1821
1822		mutex_unlock(&cpufreq_fast_switch_lock);
1823		break;
1824	case CPUFREQ_POLICY_NOTIFIER:
1825		ret = blocking_notifier_chain_unregister(
1826				&cpufreq_policy_notifier_list, nb);
1827		break;
1828	default:
1829		ret = -EINVAL;
1830	}
1831
1832	return ret;
1833}
1834EXPORT_SYMBOL(cpufreq_unregister_notifier);
1835
1836
1837/*********************************************************************
1838 *                              GOVERNORS                            *
1839 *********************************************************************/
1840
1841/**
1842 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1843 * @policy: cpufreq policy to switch the frequency for.
1844 * @target_freq: New frequency to set (may be approximate).
1845 *
1846 * Carry out a fast frequency switch without sleeping.
1847 *
1848 * The driver's ->fast_switch() callback invoked by this function must be
1849 * suitable for being called from within RCU-sched read-side critical sections
1850 * and it is expected to select the minimum available frequency greater than or
1851 * equal to @target_freq (CPUFREQ_RELATION_L).
1852 *
1853 * This function must not be called if policy->fast_switch_enabled is unset.
1854 *
1855 * Governors calling this function must guarantee that it will never be invoked
1856 * twice in parallel for the same policy and that it will never be called in
1857 * parallel with either ->target() or ->target_index() for the same policy.
1858 *
1859 * Returns the actual frequency set for the CPU.
1860 *
1861 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1862 * error condition, the hardware configuration must be preserved.
1863 */
1864unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1865					unsigned int target_freq)
1866{
1867	target_freq = clamp_val(target_freq, policy->min, policy->max);
1868
1869	return cpufreq_driver->fast_switch(policy, target_freq);
1870}
1871EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1872
1873/* Must set freqs->new to intermediate frequency */
1874static int __target_intermediate(struct cpufreq_policy *policy,
1875				 struct cpufreq_freqs *freqs, int index)
1876{
1877	int ret;
1878
1879	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1880
1881	/* We don't need to switch to intermediate freq */
1882	if (!freqs->new)
1883		return 0;
1884
1885	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1886		 __func__, policy->cpu, freqs->old, freqs->new);
1887
1888	cpufreq_freq_transition_begin(policy, freqs);
1889	ret = cpufreq_driver->target_intermediate(policy, index);
1890	cpufreq_freq_transition_end(policy, freqs, ret);
1891
1892	if (ret)
1893		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1894		       __func__, ret);
1895
1896	return ret;
1897}
1898
1899static int __target_index(struct cpufreq_policy *policy, int index)
1900{
1901	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1902	unsigned int intermediate_freq = 0;
1903	unsigned int newfreq = policy->freq_table[index].frequency;
1904	int retval = -EINVAL;
1905	bool notify;
1906
1907	if (newfreq == policy->cur)
1908		return 0;
1909
1910	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1911	if (notify) {
1912		/* Handle switching to intermediate frequency */
1913		if (cpufreq_driver->get_intermediate) {
1914			retval = __target_intermediate(policy, &freqs, index);
1915			if (retval)
1916				return retval;
1917
1918			intermediate_freq = freqs.new;
1919			/* Set old freq to intermediate */
1920			if (intermediate_freq)
1921				freqs.old = freqs.new;
1922		}
1923
1924		freqs.new = newfreq;
1925		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1926			 __func__, policy->cpu, freqs.old, freqs.new);
1927
1928		cpufreq_freq_transition_begin(policy, &freqs);
1929	}
1930
1931	retval = cpufreq_driver->target_index(policy, index);
1932	if (retval)
1933		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1934		       retval);
1935
1936	if (notify) {
1937		cpufreq_freq_transition_end(policy, &freqs, retval);
1938
1939		/*
1940		 * Failed after setting to intermediate freq? Driver should have
1941		 * reverted back to initial frequency and so should we. Check
1942		 * here for intermediate_freq instead of get_intermediate, in
1943		 * case we haven't switched to intermediate freq at all.
1944		 */
1945		if (unlikely(retval && intermediate_freq)) {
1946			freqs.old = intermediate_freq;
1947			freqs.new = policy->restore_freq;
1948			cpufreq_freq_transition_begin(policy, &freqs);
1949			cpufreq_freq_transition_end(policy, &freqs, 0);
1950		}
1951	}
1952
1953	return retval;
1954}
1955
1956int __cpufreq_driver_target(struct cpufreq_policy *policy,
1957			    unsigned int target_freq,
1958			    unsigned int relation)
1959{
1960	unsigned int old_target_freq = target_freq;
1961	int index;
1962
1963	if (cpufreq_disabled())
1964		return -ENODEV;
 
 
1965
1966	/* Make sure that target_freq is within supported range */
1967	target_freq = clamp_val(target_freq, policy->min, policy->max);
1968
1969	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1970		 policy->cpu, target_freq, relation, old_target_freq);
1971
1972	/*
1973	 * This might look like a redundant call as we are checking it again
1974	 * after finding index. But it is left intentionally for cases where
1975	 * exactly same freq is called again and so we can save on few function
1976	 * calls.
1977	 */
1978	if (target_freq == policy->cur)
1979		return 0;
1980
1981	/* Save last value to restore later on errors */
1982	policy->restore_freq = policy->cur;
1983
1984	if (cpufreq_driver->target)
1985		return cpufreq_driver->target(policy, target_freq, relation);
1986
1987	if (!cpufreq_driver->target_index)
1988		return -EINVAL;
1989
1990	index = cpufreq_frequency_table_target(policy, target_freq, relation);
1991
1992	return __target_index(policy, index);
1993}
1994EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1995
1996int cpufreq_driver_target(struct cpufreq_policy *policy,
1997			  unsigned int target_freq,
1998			  unsigned int relation)
1999{
2000	int ret = -EINVAL;
2001
2002	down_write(&policy->rwsem);
 
 
 
 
 
2003
2004	ret = __cpufreq_driver_target(policy, target_freq, relation);
2005
2006	up_write(&policy->rwsem);
2007
 
 
 
2008	return ret;
2009}
2010EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2011
2012__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2013{
2014	return NULL;
2015}
2016
2017static int cpufreq_init_governor(struct cpufreq_policy *policy)
2018{
2019	int ret;
2020
2021	/* Don't start any governor operations if we are entering suspend */
2022	if (cpufreq_suspended)
2023		return 0;
2024	/*
2025	 * Governor might not be initiated here if ACPI _PPC changed
2026	 * notification happened, so check it.
2027	 */
2028	if (!policy->governor)
2029		return -EINVAL;
2030
2031	/* Platform doesn't want dynamic frequency switching ? */
2032	if (policy->governor->dynamic_switching &&
2033	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2034		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2035
2036		if (gov) {
2037			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2038				policy->governor->name, gov->name);
2039			policy->governor = gov;
2040		} else {
2041			return -EINVAL;
2042		}
2043	}
2044
2045	if (!try_module_get(policy->governor->owner))
2046		return -EINVAL;
2047
2048	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2049
2050	if (policy->governor->init) {
2051		ret = policy->governor->init(policy);
2052		if (ret) {
2053			module_put(policy->governor->owner);
2054			return ret;
2055		}
2056	}
2057
2058	return 0;
2059}
 
2060
2061static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2062{
2063	if (cpufreq_suspended || !policy->governor)
2064		return;
2065
2066	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2067
2068	if (policy->governor->exit)
2069		policy->governor->exit(policy);
2070
2071	module_put(policy->governor->owner);
2072}
2073
2074static int cpufreq_start_governor(struct cpufreq_policy *policy)
2075{
2076	int ret;
2077
2078	if (cpufreq_suspended)
2079		return 0;
 
 
 
 
 
 
 
2080
2081	if (!policy->governor)
2082		return -EINVAL;
2083
2084	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2085
2086	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2087		cpufreq_update_current_freq(policy);
2088
2089	if (policy->governor->start) {
2090		ret = policy->governor->start(policy);
2091		if (ret)
2092			return ret;
 
2093	}
2094
2095	if (policy->governor->limits)
2096		policy->governor->limits(policy);
2097
2098	return 0;
2099}
 
 
 
 
 
 
 
 
2100
2101static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2102{
2103	if (cpufreq_suspended || !policy->governor)
2104		return;
2105
2106	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2107
2108	if (policy->governor->stop)
2109		policy->governor->stop(policy);
2110}
2111
2112static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2113{
2114	if (cpufreq_suspended || !policy->governor)
2115		return;
2116
2117	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2118
2119	if (policy->governor->limits)
2120		policy->governor->limits(policy);
2121}
2122
2123int cpufreq_register_governor(struct cpufreq_governor *governor)
2124{
2125	int err;
2126
2127	if (!governor)
2128		return -EINVAL;
2129
2130	if (cpufreq_disabled())
2131		return -ENODEV;
2132
2133	mutex_lock(&cpufreq_governor_mutex);
2134
2135	err = -EBUSY;
2136	if (!find_governor(governor->name)) {
2137		err = 0;
2138		list_add(&governor->governor_list, &cpufreq_governor_list);
2139	}
2140
2141	mutex_unlock(&cpufreq_governor_mutex);
2142	return err;
2143}
2144EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2145
 
2146void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2147{
2148	struct cpufreq_policy *policy;
2149	unsigned long flags;
 
2150
2151	if (!governor)
2152		return;
2153
2154	if (cpufreq_disabled())
2155		return;
2156
2157	/* clear last_governor for all inactive policies */
2158	read_lock_irqsave(&cpufreq_driver_lock, flags);
2159	for_each_inactive_policy(policy) {
2160		if (!strcmp(policy->last_governor, governor->name)) {
2161			policy->governor = NULL;
2162			strcpy(policy->last_governor, "\0");
2163		}
2164	}
2165	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2166
2167	mutex_lock(&cpufreq_governor_mutex);
2168	list_del(&governor->governor_list);
2169	mutex_unlock(&cpufreq_governor_mutex);
 
2170}
2171EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2172
2173
 
2174/*********************************************************************
2175 *                          POLICY INTERFACE                         *
2176 *********************************************************************/
2177
2178/**
2179 * cpufreq_get_policy - get the current cpufreq_policy
2180 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2181 *	is written
2182 *
2183 * Reads the current cpufreq policy.
2184 */
2185int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2186{
2187	struct cpufreq_policy *cpu_policy;
2188	if (!policy)
2189		return -EINVAL;
2190
2191	cpu_policy = cpufreq_cpu_get(cpu);
2192	if (!cpu_policy)
2193		return -EINVAL;
2194
2195	memcpy(policy, cpu_policy, sizeof(*policy));
2196
2197	cpufreq_cpu_put(cpu_policy);
2198	return 0;
2199}
2200EXPORT_SYMBOL(cpufreq_get_policy);
2201
 
2202/*
2203 * policy : current policy.
2204 * new_policy: policy to be set.
2205 */
2206static int cpufreq_set_policy(struct cpufreq_policy *policy,
2207				struct cpufreq_policy *new_policy)
2208{
2209	struct cpufreq_governor *old_gov;
2210	int ret;
2211
2212	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2213		 new_policy->cpu, new_policy->min, new_policy->max);
2214
2215	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
 
2216
2217	/*
2218	* This check works well when we store new min/max freq attributes,
2219	* because new_policy is a copy of policy with one field updated.
2220	*/
2221	if (new_policy->min > new_policy->max)
2222		return -EINVAL;
2223
2224	/* verify the cpu speed can be set within this limit */
2225	ret = cpufreq_driver->verify(new_policy);
2226	if (ret)
2227		return ret;
2228
2229	/* adjust if necessary - all reasons */
2230	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2231			CPUFREQ_ADJUST, new_policy);
 
 
 
 
2232
2233	/*
2234	 * verify the cpu speed can be set within this limit, which might be
2235	 * different to the first one
2236	 */
2237	ret = cpufreq_driver->verify(new_policy);
2238	if (ret)
2239		return ret;
2240
2241	/* notification of the new policy */
2242	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2243			CPUFREQ_NOTIFY, new_policy);
2244
2245	policy->min = new_policy->min;
2246	policy->max = new_policy->max;
2247
2248	policy->cached_target_freq = UINT_MAX;
2249
2250	pr_debug("new min and max freqs are %u - %u kHz\n",
2251		 policy->min, policy->max);
2252
2253	if (cpufreq_driver->setpolicy) {
2254		policy->policy = new_policy->policy;
2255		pr_debug("setting range\n");
2256		return cpufreq_driver->setpolicy(new_policy);
2257	}
2258
2259	if (new_policy->governor == policy->governor) {
2260		pr_debug("cpufreq: governor limits update\n");
2261		cpufreq_governor_limits(policy);
2262		return 0;
2263	}
2264
2265	pr_debug("governor switch\n");
2266
2267	/* save old, working values */
2268	old_gov = policy->governor;
2269	/* end old governor */
2270	if (old_gov) {
2271		cpufreq_stop_governor(policy);
2272		cpufreq_exit_governor(policy);
2273	}
2274
2275	/* start new governor */
2276	policy->governor = new_policy->governor;
2277	ret = cpufreq_init_governor(policy);
2278	if (!ret) {
2279		ret = cpufreq_start_governor(policy);
2280		if (!ret) {
2281			pr_debug("cpufreq: governor change\n");
2282			return 0;
2283		}
2284		cpufreq_exit_governor(policy);
2285	}
2286
2287	/* new governor failed, so re-start old one */
2288	pr_debug("starting governor %s failed\n", policy->governor->name);
2289	if (old_gov) {
2290		policy->governor = old_gov;
2291		if (cpufreq_init_governor(policy))
2292			policy->governor = NULL;
2293		else
2294			cpufreq_start_governor(policy);
2295	}
2296
 
2297	return ret;
2298}
2299
2300/**
2301 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2302 *	@cpu: CPU which shall be re-evaluated
2303 *
2304 *	Useful for policy notifiers which have different necessities
2305 *	at different times.
2306 */
2307void cpufreq_update_policy(unsigned int cpu)
2308{
2309	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2310	struct cpufreq_policy new_policy;
 
2311
2312	if (!policy)
2313		return;
 
 
2314
2315	down_write(&policy->rwsem);
2316
2317	if (policy_is_inactive(policy))
2318		goto unlock;
2319
2320	pr_debug("updating policy for CPU %u\n", cpu);
2321	memcpy(&new_policy, policy, sizeof(*policy));
2322	new_policy.min = policy->user_policy.min;
2323	new_policy.max = policy->user_policy.max;
2324
2325	/*
2326	 * BIOS might change freq behind our back
2327	 * -> ask driver for current freq and notify governors about a change
2328	 */
2329	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2330		if (cpufreq_suspended)
2331			goto unlock;
2332
2333		new_policy.cur = cpufreq_update_current_freq(policy);
2334		if (WARN_ON(!new_policy.cur))
2335			goto unlock;
 
 
 
 
 
 
 
 
 
2336	}
2337
2338	cpufreq_set_policy(policy, &new_policy);
2339
2340unlock:
2341	up_write(&policy->rwsem);
2342
2343	cpufreq_cpu_put(policy);
 
 
 
2344}
2345EXPORT_SYMBOL(cpufreq_update_policy);
2346
2347/*********************************************************************
2348 *               BOOST						     *
2349 *********************************************************************/
2350static int cpufreq_boost_set_sw(int state)
2351{
2352	struct cpufreq_policy *policy;
2353	int ret = -EINVAL;
2354
2355	for_each_active_policy(policy) {
2356		if (!policy->freq_table)
2357			continue;
 
 
 
 
 
 
 
 
2358
2359		ret = cpufreq_frequency_table_cpuinfo(policy,
2360						      policy->freq_table);
2361		if (ret) {
2362			pr_err("%s: Policy frequency update failed\n",
2363			       __func__);
2364			break;
2365		}
2366
2367		down_write(&policy->rwsem);
2368		policy->user_policy.max = policy->max;
2369		cpufreq_governor_limits(policy);
2370		up_write(&policy->rwsem);
2371	}
2372
2373	return ret;
2374}
2375
2376int cpufreq_boost_trigger_state(int state)
2377{
2378	unsigned long flags;
2379	int ret = 0;
2380
2381	if (cpufreq_driver->boost_enabled == state)
2382		return 0;
2383
2384	write_lock_irqsave(&cpufreq_driver_lock, flags);
2385	cpufreq_driver->boost_enabled = state;
2386	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2387
2388	ret = cpufreq_driver->set_boost(state);
2389	if (ret) {
2390		write_lock_irqsave(&cpufreq_driver_lock, flags);
2391		cpufreq_driver->boost_enabled = !state;
2392		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2393
2394		pr_err("%s: Cannot %s BOOST\n",
2395		       __func__, state ? "enable" : "disable");
2396	}
2397
2398	return ret;
2399}
2400
2401static bool cpufreq_boost_supported(void)
2402{
2403	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2404}
2405
2406static int create_boost_sysfs_file(void)
2407{
2408	int ret;
2409
2410	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2411	if (ret)
2412		pr_err("%s: cannot register global BOOST sysfs file\n",
2413		       __func__);
2414
2415	return ret;
2416}
2417
2418static void remove_boost_sysfs_file(void)
2419{
2420	if (cpufreq_boost_supported())
2421		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2422}
2423
2424int cpufreq_enable_boost_support(void)
2425{
2426	if (!cpufreq_driver)
2427		return -EINVAL;
2428
2429	if (cpufreq_boost_supported())
2430		return 0;
2431
2432	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2433
2434	/* This will get removed on driver unregister */
2435	return create_boost_sysfs_file();
2436}
2437EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2438
2439int cpufreq_boost_enabled(void)
2440{
2441	return cpufreq_driver->boost_enabled;
2442}
2443EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2444
2445/*********************************************************************
2446 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2447 *********************************************************************/
2448static enum cpuhp_state hp_online;
2449
2450static int cpuhp_cpufreq_online(unsigned int cpu)
2451{
2452	cpufreq_online(cpu);
2453
2454	return 0;
2455}
2456
2457static int cpuhp_cpufreq_offline(unsigned int cpu)
2458{
2459	cpufreq_offline(cpu);
2460
2461	return 0;
2462}
2463
2464/**
2465 * cpufreq_register_driver - register a CPU Frequency driver
2466 * @driver_data: A struct cpufreq_driver containing the values#
2467 * submitted by the CPU Frequency driver.
2468 *
2469 * Registers a CPU Frequency driver to this core code. This code
2470 * returns zero on success, -EEXIST when another driver got here first
2471 * (and isn't unregistered in the meantime).
2472 *
2473 */
2474int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2475{
2476	unsigned long flags;
2477	int ret;
2478
2479	if (cpufreq_disabled())
2480		return -ENODEV;
2481
2482	if (!driver_data || !driver_data->verify || !driver_data->init ||
2483	    !(driver_data->setpolicy || driver_data->target_index ||
2484		    driver_data->target) ||
2485	     (driver_data->setpolicy && (driver_data->target_index ||
2486		    driver_data->target)) ||
2487	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2488		return -EINVAL;
2489
2490	pr_debug("trying to register driver %s\n", driver_data->name);
2491
2492	/* Protect against concurrent CPU online/offline. */
2493	cpus_read_lock();
2494
2495	write_lock_irqsave(&cpufreq_driver_lock, flags);
2496	if (cpufreq_driver) {
2497		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2498		ret = -EEXIST;
2499		goto out;
2500	}
2501	cpufreq_driver = driver_data;
2502	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2503
2504	if (driver_data->setpolicy)
2505		driver_data->flags |= CPUFREQ_CONST_LOOPS;
 
 
2506
2507	if (cpufreq_boost_supported()) {
2508		ret = create_boost_sysfs_file();
2509		if (ret)
2510			goto err_null_driver;
2511	}
2512
2513	ret = subsys_interface_register(&cpufreq_interface);
2514	if (ret)
2515		goto err_boost_unreg;
 
 
 
2516
2517	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2518	    list_empty(&cpufreq_policy_list)) {
2519		/* if all ->init() calls failed, unregister */
2520		ret = -ENODEV;
2521		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2522			 driver_data->name);
2523		goto err_if_unreg;
 
2524	}
2525
2526	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2527						   "cpufreq:online",
2528						   cpuhp_cpufreq_online,
2529						   cpuhp_cpufreq_offline);
2530	if (ret < 0)
2531		goto err_if_unreg;
2532	hp_online = ret;
2533	ret = 0;
2534
2535	pr_debug("driver %s up and running\n", driver_data->name);
2536	goto out;
2537
2538err_if_unreg:
2539	subsys_interface_unregister(&cpufreq_interface);
2540err_boost_unreg:
2541	remove_boost_sysfs_file();
2542err_null_driver:
2543	write_lock_irqsave(&cpufreq_driver_lock, flags);
2544	cpufreq_driver = NULL;
2545	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2546out:
2547	cpus_read_unlock();
2548	return ret;
2549}
2550EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2551
 
2552/**
2553 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2554 *
2555 * Unregister the current CPUFreq driver. Only call this if you have
2556 * the right to do so, i.e. if you have succeeded in initialising before!
2557 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2558 * currently not initialised.
2559 */
2560int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2561{
2562	unsigned long flags;
2563
2564	if (!cpufreq_driver || (driver != cpufreq_driver))
2565		return -EINVAL;
2566
2567	pr_debug("unregistering driver %s\n", driver->name);
2568
2569	/* Protect against concurrent cpu hotplug */
2570	cpus_read_lock();
2571	subsys_interface_unregister(&cpufreq_interface);
2572	remove_boost_sysfs_file();
2573	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2574
2575	write_lock_irqsave(&cpufreq_driver_lock, flags);
2576
 
2577	cpufreq_driver = NULL;
2578
2579	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2580	cpus_read_unlock();
2581
2582	return 0;
2583}
2584EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2585
2586/*
2587 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2588 * or mutexes when secondary CPUs are halted.
2589 */
2590static struct syscore_ops cpufreq_syscore_ops = {
2591	.shutdown = cpufreq_suspend,
2592};
2593
2594struct kobject *cpufreq_global_kobject;
2595EXPORT_SYMBOL(cpufreq_global_kobject);
2596
2597static int __init cpufreq_core_init(void)
2598{
2599	if (cpufreq_disabled())
2600		return -ENODEV;
2601
2602	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
 
 
 
 
 
 
2603	BUG_ON(!cpufreq_global_kobject);
2604
2605	register_syscore_ops(&cpufreq_syscore_ops);
2606
2607	return 0;
2608}
2609module_param(off, int, 0444);
2610core_initcall(cpufreq_core_init);