Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
 
   6 *
   7 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   8 *	Added handling for CPU hotplug
   9 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  10 *	Fix handling for CPU hotplug -- affected CPUs
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/init.h>
  21#include <linux/notifier.h>
  22#include <linux/cpufreq.h>
 
  23#include <linux/delay.h>
  24#include <linux/interrupt.h>
  25#include <linux/spinlock.h>
  26#include <linux/device.h>
  27#include <linux/slab.h>
  28#include <linux/cpu.h>
  29#include <linux/completion.h>
  30#include <linux/mutex.h>
 
 
 
  31#include <linux/syscore_ops.h>
  32
  33#include <trace/events/power.h>
  34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35/**
  36 * The "cpufreq driver" - the arch- or hardware-dependent low
  37 * level driver of CPUFreq support, and its spinlock. This lock
  38 * also protects the cpufreq_cpu_data array.
  39 */
  40static struct cpufreq_driver *cpufreq_driver;
  41static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  42#ifdef CONFIG_HOTPLUG_CPU
  43/* This one keeps track of the previously set governor of a removed CPU */
  44static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
  45#endif
  46static DEFINE_SPINLOCK(cpufreq_driver_lock);
  47
  48/*
  49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
  50 * all cpufreq/hotplug/workqueue/etc related lock issues.
  51 *
  52 * The rules for this semaphore:
  53 * - Any routine that wants to read from the policy structure will
  54 *   do a down_read on this semaphore.
  55 * - Any routine that will write to the policy structure and/or may take away
  56 *   the policy altogether (eg. CPU hotplug), will hold this lock in write
  57 *   mode before doing so.
  58 *
  59 * Additional rules:
  60 * - All holders of the lock should check to make sure that the CPU they
  61 *   are concerned with are online after they get the lock.
  62 * - Governor routines that can be called in cpufreq hotplug path should not
  63 *   take this sem as top level hotplug notifier handler takes this.
  64 * - Lock should not be held across
  65 *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
  66 */
  67static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
  68static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
  69
  70#define lock_policy_rwsem(mode, cpu)					\
  71static int lock_policy_rwsem_##mode					\
  72(int cpu)								\
  73{									\
  74	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);		\
  75	BUG_ON(policy_cpu == -1);					\
  76	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
  77	if (unlikely(!cpu_online(cpu))) {				\
  78		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
  79		return -1;						\
  80	}								\
  81									\
  82	return 0;							\
  83}
  84
  85lock_policy_rwsem(read, cpu);
  86
  87lock_policy_rwsem(write, cpu);
  88
  89static void unlock_policy_rwsem_read(int cpu)
  90{
  91	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  92	BUG_ON(policy_cpu == -1);
  93	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
  94}
  95
  96static void unlock_policy_rwsem_write(int cpu)
  97{
  98	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  99	BUG_ON(policy_cpu == -1);
 100	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
 101}
 102
 103
 104/* internal prototypes */
 105static int __cpufreq_governor(struct cpufreq_policy *policy,
 106		unsigned int event);
 107static unsigned int __cpufreq_get(unsigned int cpu);
 108static void handle_update(struct work_struct *work);
 
 
 109
 110/**
 111 * Two notifier lists: the "policy" list is involved in the
 112 * validation process for a new CPU frequency policy; the
 113 * "transition" list for kernel code that needs to handle
 114 * changes to devices when the CPU clock speed changes.
 115 * The mutex locks both lists.
 116 */
 117static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
 118static struct srcu_notifier_head cpufreq_transition_notifier_list;
 119
 120static bool init_cpufreq_transition_notifier_list_called;
 121static int __init init_cpufreq_transition_notifier_list(void)
 122{
 123	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
 124	init_cpufreq_transition_notifier_list_called = true;
 125	return 0;
 
 
 126}
 127pure_initcall(init_cpufreq_transition_notifier_list);
 128
 129static LIST_HEAD(cpufreq_governor_list);
 130static DEFINE_MUTEX(cpufreq_governor_mutex);
 131
 132struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 133{
 134	struct cpufreq_policy *data;
 135	unsigned long flags;
 
 136
 137	if (cpu >= nr_cpu_ids)
 138		goto err_out;
 
 
 
 
 
 
 139
 140	/* get the cpufreq driver */
 141	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 
 142
 143	if (!cpufreq_driver)
 144		goto err_out_unlock;
 145
 146	if (!try_module_get(cpufreq_driver->owner))
 147		goto err_out_unlock;
 
 
 
 
 148
 
 
 
 149
 150	/* get the CPU */
 151	data = per_cpu(cpufreq_cpu_data, cpu);
 152
 153	if (!data)
 154		goto err_out_put_module;
 
 155
 156	if (!kobject_get(&data->kobj))
 157		goto err_out_put_module;
 
 
 158
 159	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 160	return data;
 
 161
 162err_out_put_module:
 163	module_put(cpufreq_driver->owner);
 164err_out_unlock:
 165	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 166err_out:
 167	return NULL;
 168}
 169EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171
 172void cpufreq_cpu_put(struct cpufreq_policy *data)
 173{
 174	kobject_put(&data->kobj);
 175	module_put(cpufreq_driver->owner);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176}
 177EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180/*********************************************************************
 181 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 182 *********************************************************************/
 183
 184/**
 185 * adjust_jiffies - adjust the system "loops_per_jiffy"
 186 *
 187 * This function alters the system "loops_per_jiffy" for the clock
 188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 189 * systems as each CPU might be scaled differently. So, use the arch
 190 * per-CPU loops_per_jiffy value wherever possible.
 191 */
 192#ifndef CONFIG_SMP
 193static unsigned long l_p_j_ref;
 194static unsigned int  l_p_j_ref_freq;
 195
 196static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 197{
 
 
 
 
 198	if (ci->flags & CPUFREQ_CONST_LOOPS)
 199		return;
 200
 201	if (!l_p_j_ref_freq) {
 202		l_p_j_ref = loops_per_jiffy;
 203		l_p_j_ref_freq = ci->old;
 204		pr_debug("saving %lu as reference value for loops_per_jiffy; "
 205			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
 206	}
 207	if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
 208	    (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
 209	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
 210		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 211								ci->new);
 212		pr_debug("scaling loops_per_jiffy to %lu "
 213			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
 214	}
 215}
 216#else
 217static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 218{
 219	return;
 220}
 221#endif
 222
 223
 224/**
 225 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 226 * on frequency transition.
 
 
 227 *
 228 * This function calls the transition notifiers and the "adjust_jiffies"
 229 * function. It is called twice on all CPU frequency changes that have
 230 * external effects.
 231 */
 232void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
 
 
 233{
 234	struct cpufreq_policy *policy;
 235
 236	BUG_ON(irqs_disabled());
 237
 
 
 
 
 238	freqs->flags = cpufreq_driver->flags;
 239	pr_debug("notification %u of frequency transition to %u kHz\n",
 240		state, freqs->new);
 241
 242	policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
 243	switch (state) {
 244
 245	case CPUFREQ_PRECHANGE:
 246		/* detect if the driver reported a value as "old frequency"
 
 247		 * which is not equal to what the cpufreq core thinks is
 248		 * "old frequency".
 249		 */
 250		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 251			if ((policy) && (policy->cpu == freqs->cpu) &&
 252			    (policy->cur) && (policy->cur != freqs->old)) {
 253				pr_debug("Warning: CPU frequency is"
 254					" %u, cpufreq assumed %u kHz.\n",
 255					freqs->old, policy->cur);
 256				freqs->old = policy->cur;
 257			}
 258		}
 
 259		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 260				CPUFREQ_PRECHANGE, freqs);
 
 261		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 262		break;
 263
 264	case CPUFREQ_POSTCHANGE:
 265		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 266		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
 267			(unsigned long)freqs->cpu);
 268		trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
 269		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 270		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 271				CPUFREQ_POSTCHANGE, freqs);
 272		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 273			policy->cur = freqs->new;
 274		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275	}
 
 
 
 
 
 
 
 276}
 277EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
 278
 
 
 
 
 
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280
 281/*********************************************************************
 282 *                          SYSFS INTERFACE                          *
 283 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285static struct cpufreq_governor *__find_governor(const char *str_governor)
 286{
 287	struct cpufreq_governor *t;
 288
 289	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 290		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 291			return t;
 292
 293	return NULL;
 294}
 295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296/**
 297 * cpufreq_parse_governor - parse a governor string
 298 */
 299static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 300				struct cpufreq_governor **governor)
 301{
 302	int err = -EINVAL;
 303
 304	if (!cpufreq_driver)
 305		goto out;
 306
 307	if (cpufreq_driver->setpolicy) {
 308		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 309			*policy = CPUFREQ_POLICY_PERFORMANCE;
 310			err = 0;
 311		} else if (!strnicmp(str_governor, "powersave",
 312						CPUFREQ_NAME_LEN)) {
 313			*policy = CPUFREQ_POLICY_POWERSAVE;
 314			err = 0;
 315		}
 316	} else if (cpufreq_driver->target) {
 317		struct cpufreq_governor *t;
 318
 319		mutex_lock(&cpufreq_governor_mutex);
 
 
 320
 321		t = __find_governor(str_governor);
 322
 323		if (t == NULL) {
 324			int ret;
 
 325
 326			mutex_unlock(&cpufreq_governor_mutex);
 327			ret = request_module("cpufreq_%s", str_governor);
 328			mutex_lock(&cpufreq_governor_mutex);
 329
 330			if (ret == 0)
 331				t = __find_governor(str_governor);
 332		}
 
 333
 334		if (t != NULL) {
 335			*governor = t;
 336			err = 0;
 337		}
 338
 339		mutex_unlock(&cpufreq_governor_mutex);
 
 
 340	}
 341out:
 342	return err;
 343}
 344
 
 
 345
 346/**
 347 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 348 * print out cpufreq information
 349 *
 350 * Write out information from cpufreq_driver->policy[cpu]; object must be
 351 * "unsigned int".
 352 */
 353
 354#define show_one(file_name, object)			\
 355static ssize_t show_##file_name				\
 356(struct cpufreq_policy *policy, char *buf)		\
 357{							\
 358	return sprintf(buf, "%u\n", policy->object);	\
 359}
 360
 361show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 362show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 363show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 364show_one(scaling_min_freq, min);
 365show_one(scaling_max_freq, max);
 366show_one(scaling_cur_freq, cur);
 367
 368static int __cpufreq_set_policy(struct cpufreq_policy *data,
 369				struct cpufreq_policy *policy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370
 371/**
 372 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 373 */
 374#define store_one(file_name, object)			\
 375static ssize_t store_##file_name					\
 376(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 377{									\
 378	unsigned int ret = -EINVAL;					\
 379	struct cpufreq_policy new_policy;				\
 380									\
 381	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 382	if (ret)							\
 383		return -EINVAL;						\
 384									\
 385	ret = sscanf(buf, "%u", &new_policy.object);			\
 386	if (ret != 1)							\
 387		return -EINVAL;						\
 388									\
 389	ret = __cpufreq_set_policy(policy, &new_policy);		\
 390	policy->user_policy.object = policy->object;			\
 391									\
 392	return ret ? ret : count;					\
 393}
 394
 395store_one(scaling_min_freq, min);
 396store_one(scaling_max_freq, max);
 397
 398/**
 399 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 400 */
 401static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 402					char *buf)
 403{
 404	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 405	if (!cur_freq)
 406		return sprintf(buf, "<unknown>");
 407	return sprintf(buf, "%u\n", cur_freq);
 408}
 409
 
 
 
 
 
 410
 411/**
 412 * show_scaling_governor - show the current policy for the specified CPU
 413 */
 414static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 415{
 416	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 417		return sprintf(buf, "powersave\n");
 418	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 419		return sprintf(buf, "performance\n");
 420	else if (policy->governor)
 421		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
 422				policy->governor->name);
 423	return -EINVAL;
 424}
 425
 426
 427/**
 428 * store_scaling_governor - store policy for the specified CPU
 429 */
 430static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 431					const char *buf, size_t count)
 432{
 433	unsigned int ret = -EINVAL;
 434	char	str_governor[16];
 435	struct cpufreq_policy new_policy;
 436
 437	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 438	if (ret)
 439		return ret;
 440
 441	ret = sscanf(buf, "%15s", str_governor);
 442	if (ret != 1)
 443		return -EINVAL;
 444
 445	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 446						&new_policy.governor))
 447		return -EINVAL;
 
 
 
 
 448
 449	/* Do not use cpufreq_set_policy here or the user_policy.max
 450	   will be wrongly overridden */
 451	ret = __cpufreq_set_policy(policy, &new_policy);
 452
 453	policy->user_policy.policy = policy->policy;
 454	policy->user_policy.governor = policy->governor;
 455
 456	if (ret)
 457		return ret;
 458	else
 459		return count;
 460}
 461
 462/**
 463 * show_scaling_driver - show the cpufreq driver currently loaded
 464 */
 465static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 466{
 467	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
 468}
 469
 470/**
 471 * show_scaling_available_governors - show the available CPUfreq governors
 472 */
 473static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 474						char *buf)
 475{
 476	ssize_t i = 0;
 477	struct cpufreq_governor *t;
 478
 479	if (!cpufreq_driver->target) {
 480		i += sprintf(buf, "performance powersave");
 481		goto out;
 482	}
 483
 484	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 485		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 486		    - (CPUFREQ_NAME_LEN + 2)))
 487			goto out;
 488		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
 489	}
 490out:
 491	i += sprintf(&buf[i], "\n");
 492	return i;
 493}
 494
 495static ssize_t show_cpus(const struct cpumask *mask, char *buf)
 496{
 497	ssize_t i = 0;
 498	unsigned int cpu;
 499
 500	for_each_cpu(cpu, mask) {
 501		if (i)
 502			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 503		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 504		if (i >= (PAGE_SIZE - 5))
 505			break;
 506	}
 507	i += sprintf(&buf[i], "\n");
 508	return i;
 509}
 
 510
 511/**
 512 * show_related_cpus - show the CPUs affected by each transition even if
 513 * hw coordination is in use
 514 */
 515static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 516{
 517	if (cpumask_empty(policy->related_cpus))
 518		return show_cpus(policy->cpus, buf);
 519	return show_cpus(policy->related_cpus, buf);
 520}
 521
 522/**
 523 * show_affected_cpus - show the CPUs affected by each transition
 524 */
 525static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 526{
 527	return show_cpus(policy->cpus, buf);
 528}
 529
 530static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 531					const char *buf, size_t count)
 532{
 533	unsigned int freq = 0;
 534	unsigned int ret;
 535
 536	if (!policy->governor || !policy->governor->store_setspeed)
 537		return -EINVAL;
 538
 539	ret = sscanf(buf, "%u", &freq);
 540	if (ret != 1)
 541		return -EINVAL;
 542
 543	policy->governor->store_setspeed(policy, freq);
 544
 545	return count;
 546}
 547
 548static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (!policy->governor || !policy->governor->show_setspeed)
 551		return sprintf(buf, "<unsupported>\n");
 552
 553	return policy->governor->show_setspeed(policy, buf);
 554}
 555
 556/**
 557 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
 558 */
 559static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 560{
 561	unsigned int limit;
 562	int ret;
 563	if (cpufreq_driver->bios_limit) {
 564		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 565		if (!ret)
 566			return sprintf(buf, "%u\n", limit);
 567	}
 568	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 569}
 570
 571cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 572cpufreq_freq_attr_ro(cpuinfo_min_freq);
 573cpufreq_freq_attr_ro(cpuinfo_max_freq);
 574cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 575cpufreq_freq_attr_ro(scaling_available_governors);
 576cpufreq_freq_attr_ro(scaling_driver);
 577cpufreq_freq_attr_ro(scaling_cur_freq);
 578cpufreq_freq_attr_ro(bios_limit);
 579cpufreq_freq_attr_ro(related_cpus);
 580cpufreq_freq_attr_ro(affected_cpus);
 581cpufreq_freq_attr_rw(scaling_min_freq);
 582cpufreq_freq_attr_rw(scaling_max_freq);
 583cpufreq_freq_attr_rw(scaling_governor);
 584cpufreq_freq_attr_rw(scaling_setspeed);
 585
 586static struct attribute *default_attrs[] = {
 587	&cpuinfo_min_freq.attr,
 588	&cpuinfo_max_freq.attr,
 589	&cpuinfo_transition_latency.attr,
 590	&scaling_min_freq.attr,
 591	&scaling_max_freq.attr,
 592	&affected_cpus.attr,
 593	&related_cpus.attr,
 594	&scaling_governor.attr,
 595	&scaling_driver.attr,
 596	&scaling_available_governors.attr,
 597	&scaling_setspeed.attr,
 598	NULL
 599};
 600
 601struct kobject *cpufreq_global_kobject;
 602EXPORT_SYMBOL(cpufreq_global_kobject);
 603
 604#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 605#define to_attr(a) container_of(a, struct freq_attr, attr)
 606
 607static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 608{
 609	struct cpufreq_policy *policy = to_policy(kobj);
 610	struct freq_attr *fattr = to_attr(attr);
 611	ssize_t ret = -EINVAL;
 612	policy = cpufreq_cpu_get(policy->cpu);
 613	if (!policy)
 614		goto no_policy;
 615
 616	if (lock_policy_rwsem_read(policy->cpu) < 0)
 617		goto fail;
 618
 619	if (fattr->show)
 620		ret = fattr->show(policy, buf);
 621	else
 622		ret = -EIO;
 623
 624	unlock_policy_rwsem_read(policy->cpu);
 625fail:
 626	cpufreq_cpu_put(policy);
 627no_policy:
 628	return ret;
 629}
 630
 631static ssize_t store(struct kobject *kobj, struct attribute *attr,
 632		     const char *buf, size_t count)
 633{
 634	struct cpufreq_policy *policy = to_policy(kobj);
 635	struct freq_attr *fattr = to_attr(attr);
 636	ssize_t ret = -EINVAL;
 637	policy = cpufreq_cpu_get(policy->cpu);
 638	if (!policy)
 639		goto no_policy;
 640
 641	if (lock_policy_rwsem_write(policy->cpu) < 0)
 642		goto fail;
 
 
 
 
 643
 644	if (fattr->store)
 
 645		ret = fattr->store(policy, buf, count);
 646	else
 647		ret = -EIO;
 
 
 648
 649	unlock_policy_rwsem_write(policy->cpu);
 650fail:
 651	cpufreq_cpu_put(policy);
 652no_policy:
 653	return ret;
 654}
 655
 656static void cpufreq_sysfs_release(struct kobject *kobj)
 657{
 658	struct cpufreq_policy *policy = to_policy(kobj);
 659	pr_debug("last reference is dropped\n");
 660	complete(&policy->kobj_unregister);
 661}
 662
 663static const struct sysfs_ops sysfs_ops = {
 664	.show	= show,
 665	.store	= store,
 666};
 667
 668static struct kobj_type ktype_cpufreq = {
 669	.sysfs_ops	= &sysfs_ops,
 670	.default_attrs	= default_attrs,
 671	.release	= cpufreq_sysfs_release,
 672};
 673
 674/*
 675 * Returns:
 676 *   Negative: Failure
 677 *   0:        Success
 678 *   Positive: When we have a managed CPU and the sysfs got symlinked
 679 */
 680static int cpufreq_add_dev_policy(unsigned int cpu,
 681				  struct cpufreq_policy *policy,
 682				  struct sys_device *sys_dev)
 683{
 684	int ret = 0;
 685#ifdef CONFIG_SMP
 686	unsigned long flags;
 687	unsigned int j;
 688#ifdef CONFIG_HOTPLUG_CPU
 689	struct cpufreq_governor *gov;
 690
 691	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
 692	if (gov) {
 693		policy->governor = gov;
 694		pr_debug("Restoring governor %s for cpu %d\n",
 695		       policy->governor->name, cpu);
 696	}
 697#endif
 698
 699	for_each_cpu(j, policy->cpus) {
 700		struct cpufreq_policy *managed_policy;
 701
 702		if (cpu == j)
 703			continue;
 704
 705		/* Check for existing affected CPUs.
 706		 * They may not be aware of it due to CPU Hotplug.
 707		 * cpufreq_cpu_put is called when the device is removed
 708		 * in __cpufreq_remove_dev()
 709		 */
 710		managed_policy = cpufreq_cpu_get(j);
 711		if (unlikely(managed_policy)) {
 712
 713			/* Set proper policy_cpu */
 714			unlock_policy_rwsem_write(cpu);
 715			per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
 716
 717			if (lock_policy_rwsem_write(cpu) < 0) {
 718				/* Should not go through policy unlock path */
 719				if (cpufreq_driver->exit)
 720					cpufreq_driver->exit(policy);
 721				cpufreq_cpu_put(managed_policy);
 722				return -EBUSY;
 723			}
 724
 725			spin_lock_irqsave(&cpufreq_driver_lock, flags);
 726			cpumask_copy(managed_policy->cpus, policy->cpus);
 727			per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
 728			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 729
 730			pr_debug("CPU already managed, adding link\n");
 731			ret = sysfs_create_link(&sys_dev->kobj,
 732						&managed_policy->kobj,
 733						"cpufreq");
 734			if (ret)
 735				cpufreq_cpu_put(managed_policy);
 736			/*
 737			 * Success. We only needed to be added to the mask.
 738			 * Call driver->exit() because only the cpu parent of
 739			 * the kobj needed to call init().
 740			 */
 741			if (cpufreq_driver->exit)
 742				cpufreq_driver->exit(policy);
 743
 744			if (!ret)
 745				return 1;
 746			else
 747				return ret;
 748		}
 749	}
 750#endif
 751	return ret;
 752}
 753
 754
 755/* symlink affected CPUs */
 756static int cpufreq_add_dev_symlink(unsigned int cpu,
 757				   struct cpufreq_policy *policy)
 758{
 759	unsigned int j;
 760	int ret = 0;
 761
 762	for_each_cpu(j, policy->cpus) {
 763		struct cpufreq_policy *managed_policy;
 764		struct sys_device *cpu_sys_dev;
 765
 766		if (j == cpu)
 767			continue;
 768		if (!cpu_online(j))
 769			continue;
 770
 771		pr_debug("CPU %u already managed, adding link\n", j);
 772		managed_policy = cpufreq_cpu_get(cpu);
 773		cpu_sys_dev = get_cpu_sysdev(j);
 774		ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
 775					"cpufreq");
 776		if (ret) {
 777			cpufreq_cpu_put(managed_policy);
 778			return ret;
 779		}
 780	}
 781	return ret;
 782}
 783
 784static int cpufreq_add_dev_interface(unsigned int cpu,
 785				     struct cpufreq_policy *policy,
 786				     struct sys_device *sys_dev)
 787{
 788	struct cpufreq_policy new_policy;
 789	struct freq_attr **drv_attr;
 790	unsigned long flags;
 791	int ret = 0;
 792	unsigned int j;
 793
 794	/* prepare interface data */
 795	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 796				   &sys_dev->kobj, "cpufreq");
 797	if (ret)
 798		return ret;
 799
 800	/* set up files for this cpu device */
 801	drv_attr = cpufreq_driver->attr;
 802	while ((drv_attr) && (*drv_attr)) {
 803		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 804		if (ret)
 805			goto err_out_kobj_put;
 806		drv_attr++;
 807	}
 808	if (cpufreq_driver->get) {
 809		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 810		if (ret)
 811			goto err_out_kobj_put;
 812	}
 813	if (cpufreq_driver->target) {
 814		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 815		if (ret)
 816			goto err_out_kobj_put;
 817	}
 
 
 
 
 
 818	if (cpufreq_driver->bios_limit) {
 819		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 820		if (ret)
 821			goto err_out_kobj_put;
 822	}
 823
 824	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 825	for_each_cpu(j, policy->cpus) {
 826		if (!cpu_online(j))
 827			continue;
 828		per_cpu(cpufreq_cpu_data, j) = policy;
 829		per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
 830	}
 831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 832
 833	ret = cpufreq_add_dev_symlink(cpu, policy);
 834	if (ret)
 835		goto err_out_kobj_put;
 
 836
 837	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
 838	/* assure that the starting sequence is run in __cpufreq_set_policy */
 839	policy->governor = NULL;
 840
 841	/* set default policy */
 842	ret = __cpufreq_set_policy(policy, &new_policy);
 843	policy->user_policy.policy = policy->policy;
 844	policy->user_policy.governor = policy->governor;
 845
 846	if (ret) {
 847		pr_debug("setting policy failed\n");
 848		if (cpufreq_driver->exit)
 849			cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	}
 851	return ret;
 852
 853err_out_kobj_put:
 854	kobject_put(&policy->kobj);
 855	wait_for_completion(&policy->kobj_unregister);
 856	return ret;
 857}
 858
 859
 860/**
 861 * cpufreq_add_dev - add a CPU device
 862 *
 863 * Adds the cpufreq interface for a CPU device.
 864 *
 865 * The Oracle says: try running cpufreq registration/unregistration concurrently
 866 * with with cpu hotplugging and all hell will break loose. Tried to clean this
 867 * mess up, but more thorough testing is needed. - Mathieu
 868 */
 869static int cpufreq_add_dev(struct sys_device *sys_dev)
 870{
 871	unsigned int cpu = sys_dev->id;
 872	int ret = 0, found = 0;
 873	struct cpufreq_policy *policy;
 874	unsigned long flags;
 875	unsigned int j;
 876#ifdef CONFIG_HOTPLUG_CPU
 877	int sibling;
 878#endif
 879
 880	if (cpu_is_offline(cpu))
 
 881		return 0;
 882
 883	pr_debug("adding CPU %u\n", cpu);
 
 
 884
 885#ifdef CONFIG_SMP
 886	/* check whether a different CPU already registered this
 887	 * CPU because it is in the same boat. */
 888	policy = cpufreq_cpu_get(cpu);
 889	if (unlikely(policy)) {
 890		cpufreq_cpu_put(policy);
 891		return 0;
 892	}
 893#endif
 
 
 894
 895	if (!try_module_get(cpufreq_driver->owner)) {
 896		ret = -EINVAL;
 897		goto module_out;
 
 
 
 
 
 
 898	}
 
 
 899
 900	ret = -ENOMEM;
 901	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902	if (!policy)
 903		goto nomem_out;
 904
 905	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
 906		goto err_free_policy;
 907
 908	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
 909		goto err_free_cpumask;
 910
 911	policy->cpu = cpu;
 912	cpumask_copy(policy->cpus, cpumask_of(cpu));
 913
 914	/* Initially set CPU itself as the policy_cpu */
 915	per_cpu(cpufreq_policy_cpu, cpu) = cpu;
 916	ret = (lock_policy_rwsem_write(cpu) < 0);
 917	WARN_ON(ret);
 
 
 
 
 
 
 
 
 918
 919	init_completion(&policy->kobj_unregister);
 920	INIT_WORK(&policy->update, handle_update);
 921
 922	/* Set governor before ->init, so that driver could check it */
 923#ifdef CONFIG_HOTPLUG_CPU
 924	for_each_online_cpu(sibling) {
 925		struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
 926		if (cp && cp->governor &&
 927		    (cpumask_test_cpu(cpu, cp->related_cpus))) {
 928			policy->governor = cp->governor;
 929			found = 1;
 930			break;
 931		}
 932	}
 933#endif
 934	if (!found)
 935		policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
 936	/* call driver. From then on the cpufreq must be able
 937	 * to accept all calls to ->verify and ->setpolicy for this CPU
 938	 */
 939	ret = cpufreq_driver->init(policy);
 940	if (ret) {
 941		pr_debug("initialization failed\n");
 942		goto err_unlock_policy;
 
 943	}
 944	policy->user_policy.min = policy->min;
 945	policy->user_policy.max = policy->max;
 946
 947	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
 948				     CPUFREQ_START, policy);
 949
 950	ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
 951	if (ret) {
 952		if (ret > 0)
 953			/* This is a managed cpu, symlink created,
 954			   exit with 0 */
 955			ret = 0;
 956		goto err_unlock_policy;
 957	}
 958
 959	ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
 960	if (ret)
 961		goto err_out_unregister;
 
 
 
 962
 963	unlock_policy_rwsem_write(cpu);
 
 964
 965	kobject_uevent(&policy->kobj, KOBJ_ADD);
 966	module_put(cpufreq_driver->owner);
 967	pr_debug("initialization complete\n");
 
 
 
 
 
 
 
 
 
 
 968
 969	return 0;
 
 970
 
 
 
 
 971
 972err_out_unregister:
 973	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 974	for_each_cpu(j, policy->cpus)
 975		per_cpu(cpufreq_cpu_data, j) = NULL;
 976	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977
 978	kobject_put(&policy->kobj);
 979	wait_for_completion(&policy->kobj_unregister);
 980
 981err_unlock_policy:
 982	unlock_policy_rwsem_write(cpu);
 983	free_cpumask_var(policy->related_cpus);
 984err_free_cpumask:
 985	free_cpumask_var(policy->cpus);
 986err_free_policy:
 987	kfree(policy);
 988nomem_out:
 989	module_put(cpufreq_driver->owner);
 990module_out:
 991	return ret;
 992}
 993
 994
 995/**
 996 * __cpufreq_remove_dev - remove a CPU device
 997 *
 998 * Removes the cpufreq interface for a CPU device.
 999 * Caller should already have policy_rwsem in write mode for this CPU.
1000 * This routine frees the rwsem before returning.
1001 */
1002static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1003{
1004	unsigned int cpu = sys_dev->id;
 
1005	unsigned long flags;
1006	struct cpufreq_policy *data;
1007	struct kobject *kobj;
1008	struct completion *cmp;
1009#ifdef CONFIG_SMP
1010	struct sys_device *cpu_sys_dev;
1011	unsigned int j;
1012#endif
1013
1014	pr_debug("unregistering CPU %u\n", cpu);
1015
1016	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1017	data = per_cpu(cpufreq_cpu_data, cpu);
1018
1019	if (!data) {
1020		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1021		unlock_policy_rwsem_write(cpu);
1022		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023	}
1024	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1025
 
 
 
 
 
 
 
1026
1027#ifdef CONFIG_SMP
1028	/* if this isn't the CPU which is the parent of the kobj, we
1029	 * only need to unlink, put and exit
1030	 */
1031	if (unlikely(cpu != data->cpu)) {
1032		pr_debug("removing link\n");
1033		cpumask_clear_cpu(cpu, data->cpus);
1034		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1035		kobj = &sys_dev->kobj;
1036		cpufreq_cpu_put(data);
1037		unlock_policy_rwsem_write(cpu);
1038		sysfs_remove_link(kobj, "cpufreq");
1039		return 0;
1040	}
1041#endif
1042
1043#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
1044
1045#ifdef CONFIG_HOTPLUG_CPU
1046	strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1047			CPUFREQ_NAME_LEN);
1048#endif
 
 
 
1049
1050	/* if we have other CPUs still registered, we need to unlink them,
1051	 * or else wait_for_completion below will lock up. Clean the
1052	 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1053	 * the sysfs links afterwards.
1054	 */
1055	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1056		for_each_cpu(j, data->cpus) {
1057			if (j == cpu)
1058				continue;
1059			per_cpu(cpufreq_cpu_data, j) = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060		}
 
 
 
1061	}
1062
1063	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064
1065	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1066		for_each_cpu(j, data->cpus) {
1067			if (j == cpu)
1068				continue;
1069			pr_debug("removing link for cpu %u\n", j);
1070#ifdef CONFIG_HOTPLUG_CPU
1071			strncpy(per_cpu(cpufreq_cpu_governor, j),
1072				data->governor->name, CPUFREQ_NAME_LEN);
1073#endif
1074			cpu_sys_dev = get_cpu_sysdev(j);
1075			kobj = &cpu_sys_dev->kobj;
1076			unlock_policy_rwsem_write(cpu);
1077			sysfs_remove_link(kobj, "cpufreq");
1078			lock_policy_rwsem_write(cpu);
1079			cpufreq_cpu_put(data);
1080		}
1081	}
1082#else
1083	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084#endif
1085
1086	if (cpufreq_driver->target)
1087		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088
1089	kobj = &data->kobj;
1090	cmp = &data->kobj_unregister;
1091	unlock_policy_rwsem_write(cpu);
1092	kobject_put(kobj);
 
 
 
 
 
 
1093
1094	/* we need to make sure that the underlying kobj is actually
1095	 * not referenced anymore by anybody before we proceed with
1096	 * unloading.
1097	 */
1098	pr_debug("waiting for dropping of refcount\n");
1099	wait_for_completion(cmp);
1100	pr_debug("wait complete\n");
1101
1102	lock_policy_rwsem_write(cpu);
1103	if (cpufreq_driver->exit)
1104		cpufreq_driver->exit(data);
1105	unlock_policy_rwsem_write(cpu);
1106
1107#ifdef CONFIG_HOTPLUG_CPU
1108	/* when the CPU which is the parent of the kobj is hotplugged
1109	 * offline, check for siblings, and create cpufreq sysfs interface
1110	 * and symlinks
1111	 */
1112	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1113		/* first sibling now owns the new sysfs dir */
1114		cpumask_clear_cpu(cpu, data->cpus);
1115		cpufreq_add_dev(get_cpu_sysdev(cpumask_first(data->cpus)));
1116
1117		/* finally remove our own symlink */
1118		lock_policy_rwsem_write(cpu);
1119		__cpufreq_remove_dev(sys_dev);
1120	}
1121#endif
1122
1123	free_cpumask_var(data->related_cpus);
1124	free_cpumask_var(data->cpus);
1125	kfree(data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126
1127	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128}
1129
 
 
 
 
 
 
 
 
 
 
 
 
1130
1131static int cpufreq_remove_dev(struct sys_device *sys_dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132{
1133	unsigned int cpu = sys_dev->id;
1134	int retval;
1135
1136	if (cpu_is_offline(cpu))
 
 
 
 
1137		return 0;
 
1138
1139	if (unlikely(lock_policy_rwsem_write(cpu)))
1140		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141
1142	retval = __cpufreq_remove_dev(sys_dev);
1143	return retval;
1144}
1145
 
 
 
 
1146
1147static void handle_update(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148{
1149	struct cpufreq_policy *policy =
1150		container_of(work, struct cpufreq_policy, update);
1151	unsigned int cpu = policy->cpu;
1152	pr_debug("handle_update for cpu %u called\n", cpu);
1153	cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154}
1155
1156/**
1157 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1158 *	@cpu: cpu number
1159 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1160 *	@new_freq: CPU frequency the CPU actually runs at
1161 *
1162 *	We adjust to current frequency first, and need to clean up later.
1163 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1164 */
1165static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1166				unsigned int new_freq)
1167{
1168	struct cpufreq_freqs freqs;
1169
1170	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1171	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172
1173	freqs.cpu = cpu;
1174	freqs.old = old_freq;
1175	freqs.new = new_freq;
1176	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1177	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
 
1178}
1179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181/**
1182 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1183 * @cpu: CPU number
1184 *
1185 * This is the last known freq, without actually getting it from the driver.
1186 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187 */
1188unsigned int cpufreq_quick_get(unsigned int cpu)
1189{
1190	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1191	unsigned int ret_freq = 0;
 
 
 
1192
 
 
 
 
 
 
 
 
 
1193	if (policy) {
1194		ret_freq = policy->cur;
1195		cpufreq_cpu_put(policy);
1196	}
1197
1198	return ret_freq;
1199}
1200EXPORT_SYMBOL(cpufreq_quick_get);
1201
1202/**
1203 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1204 * @cpu: CPU number
1205 *
1206 * Just return the max possible frequency for a given CPU.
1207 */
1208unsigned int cpufreq_quick_get_max(unsigned int cpu)
1209{
1210	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1211	unsigned int ret_freq = 0;
1212
1213	if (policy) {
1214		ret_freq = policy->max;
1215		cpufreq_cpu_put(policy);
1216	}
1217
1218	return ret_freq;
1219}
1220EXPORT_SYMBOL(cpufreq_quick_get_max);
1221
1222
1223static unsigned int __cpufreq_get(unsigned int cpu)
1224{
1225	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1226	unsigned int ret_freq = 0;
1227
1228	if (!cpufreq_driver->get)
1229		return ret_freq;
1230
1231	ret_freq = cpufreq_driver->get(cpu);
1232
1233	if (ret_freq && policy->cur &&
1234		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1235		/* verify no discrepancy between actual and
1236					saved value exists */
1237		if (unlikely(ret_freq != policy->cur)) {
1238			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1239			schedule_work(&policy->update);
1240		}
1241	}
1242
1243	return ret_freq;
1244}
1245
1246/**
1247 * cpufreq_get - get the current CPU frequency (in kHz)
1248 * @cpu: CPU number
1249 *
1250 * Get the CPU current (static) CPU frequency
1251 */
1252unsigned int cpufreq_get(unsigned int cpu)
1253{
1254	unsigned int ret_freq = 0;
1255	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 
1256
1257	if (!policy)
1258		goto out;
1259
1260	if (unlikely(lock_policy_rwsem_read(cpu)))
1261		goto out_policy;
1262
1263	ret_freq = __cpufreq_get(cpu);
1264
1265	unlock_policy_rwsem_read(cpu);
 
1266
1267out_policy:
1268	cpufreq_cpu_put(policy);
1269out:
1270	return ret_freq;
1271}
1272EXPORT_SYMBOL(cpufreq_get);
1273
1274static struct sysdev_driver cpufreq_sysdev_driver = {
1275	.add		= cpufreq_add_dev,
1276	.remove		= cpufreq_remove_dev,
 
 
1277};
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279
1280/**
1281 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1282 *
1283 * This function is only executed for the boot processor.  The other CPUs
1284 * have been put offline by means of CPU hotplug.
 
 
1285 */
1286static int cpufreq_bp_suspend(void)
1287{
1288	int ret = 0;
1289
1290	int cpu = smp_processor_id();
1291	struct cpufreq_policy *cpu_policy;
1292
1293	pr_debug("suspending cpu %u\n", cpu);
 
1294
1295	/* If there's no policy for the boot CPU, we have nothing to do. */
1296	cpu_policy = cpufreq_cpu_get(cpu);
1297	if (!cpu_policy)
1298		return 0;
1299
1300	if (cpufreq_driver->suspend) {
1301		ret = cpufreq_driver->suspend(cpu_policy);
1302		if (ret)
1303			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1304					"step on CPU %u\n", cpu_policy->cpu);
 
 
 
 
 
1305	}
1306
1307	cpufreq_cpu_put(cpu_policy);
1308	return ret;
1309}
1310
1311/**
1312 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1313 *
1314 *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1315 *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1316 *	    restored. It will verify that the current freq is in sync with
1317 *	    what we believe it to be. This is a bit later than when it
1318 *	    should be, but nonethteless it's better than calling
1319 *	    cpufreq_driver->get() here which might re-enable interrupts...
1320 *
1321 * This function is only executed for the boot CPU.  The other CPUs have not
1322 * been turned on yet.
1323 */
1324static void cpufreq_bp_resume(void)
1325{
1326	int ret = 0;
 
1327
1328	int cpu = smp_processor_id();
1329	struct cpufreq_policy *cpu_policy;
1330
1331	pr_debug("resuming cpu %u\n", cpu);
 
1332
1333	/* If there's no policy for the boot CPU, we have nothing to do. */
1334	cpu_policy = cpufreq_cpu_get(cpu);
1335	if (!cpu_policy)
1336		return;
1337
1338	if (cpufreq_driver->resume) {
1339		ret = cpufreq_driver->resume(cpu_policy);
1340		if (ret) {
1341			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1342					"step on CPU %u\n", cpu_policy->cpu);
1343			goto fail;
 
 
 
 
 
 
 
 
1344		}
1345	}
 
1346
1347	schedule_work(&cpu_policy->update);
 
 
 
 
 
 
 
 
 
1348
1349fail:
1350	cpufreq_cpu_put(cpu_policy);
1351}
 
1352
1353static struct syscore_ops cpufreq_syscore_ops = {
1354	.suspend	= cpufreq_bp_suspend,
1355	.resume		= cpufreq_bp_resume,
1356};
 
 
 
 
 
 
1357
 
 
 
1358
1359/*********************************************************************
1360 *                     NOTIFIER LISTS INTERFACE                      *
1361 *********************************************************************/
1362
1363/**
1364 *	cpufreq_register_notifier - register a driver with cpufreq
1365 *	@nb: notifier function to register
1366 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1367 *
1368 *	Add a driver to one of two lists: either a list of drivers that
1369 *      are notified about clock rate changes (once before and once after
1370 *      the transition), or a list of drivers that are notified about
1371 *      changes in cpufreq policy.
1372 *
1373 *	This function may sleep, and has the same return conditions as
1374 *	blocking_notifier_chain_register.
1375 */
1376int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1377{
1378	int ret;
1379
1380	WARN_ON(!init_cpufreq_transition_notifier_list_called);
 
1381
1382	switch (list) {
1383	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1384		ret = srcu_notifier_chain_register(
1385				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1386		break;
1387	case CPUFREQ_POLICY_NOTIFIER:
1388		ret = blocking_notifier_chain_register(
1389				&cpufreq_policy_notifier_list, nb);
1390		break;
1391	default:
1392		ret = -EINVAL;
1393	}
1394
1395	return ret;
1396}
1397EXPORT_SYMBOL(cpufreq_register_notifier);
1398
1399
1400/**
1401 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1402 *	@nb: notifier block to be unregistered
1403 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1404 *
1405 *	Remove a driver from the CPU frequency notifier list.
1406 *
1407 *	This function may sleep, and has the same return conditions as
1408 *	blocking_notifier_chain_unregister.
1409 */
1410int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1411{
1412	int ret;
1413
 
 
 
1414	switch (list) {
1415	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1416		ret = srcu_notifier_chain_unregister(
1417				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1418		break;
1419	case CPUFREQ_POLICY_NOTIFIER:
1420		ret = blocking_notifier_chain_unregister(
1421				&cpufreq_policy_notifier_list, nb);
1422		break;
1423	default:
1424		ret = -EINVAL;
1425	}
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL(cpufreq_unregister_notifier);
1430
1431
1432/*********************************************************************
1433 *                              GOVERNORS                            *
1434 *********************************************************************/
1435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436
1437int __cpufreq_driver_target(struct cpufreq_policy *policy,
1438			    unsigned int target_freq,
1439			    unsigned int relation)
1440{
1441	int retval = -EINVAL;
 
1442
1443	pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1444		target_freq, relation);
1445	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1446		retval = cpufreq_driver->target(policy, target_freq, relation);
1447
1448	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449}
1450EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1451
1452int cpufreq_driver_target(struct cpufreq_policy *policy,
1453			  unsigned int target_freq,
1454			  unsigned int relation)
1455{
1456	int ret = -EINVAL;
1457
1458	policy = cpufreq_cpu_get(policy->cpu);
1459	if (!policy)
1460		goto no_policy;
1461
1462	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1463		goto fail;
1464
1465	ret = __cpufreq_driver_target(policy, target_freq, relation);
1466
1467	unlock_policy_rwsem_write(policy->cpu);
1468
1469fail:
1470	cpufreq_cpu_put(policy);
1471no_policy:
1472	return ret;
1473}
1474EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1475
1476int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1477{
1478	int ret = 0;
 
1479
1480	policy = cpufreq_cpu_get(policy->cpu);
1481	if (!policy)
 
 
 
 
 
 
 
 
 
 
1482		return -EINVAL;
1483
1484	if (cpu_online(cpu) && cpufreq_driver->getavg)
1485		ret = cpufreq_driver->getavg(policy, cpu);
 
 
 
 
 
 
 
 
 
 
 
1486
1487	cpufreq_cpu_put(policy);
1488	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1489}
1490EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1491
1492/*
1493 * when "event" is CPUFREQ_GOV_LIMITS
1494 */
 
 
 
1495
1496static int __cpufreq_governor(struct cpufreq_policy *policy,
1497					unsigned int event)
 
 
 
 
 
1498{
1499	int ret;
1500
1501	/* Only must be defined when default governor is known to have latency
1502	   restrictions, like e.g. conservative or ondemand.
1503	   That this is the case is already ensured in Kconfig
1504	*/
1505#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1506	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1507#else
1508	struct cpufreq_governor *gov = NULL;
1509#endif
1510
1511	if (policy->governor->max_transition_latency &&
1512	    policy->cpuinfo.transition_latency >
1513	    policy->governor->max_transition_latency) {
1514		if (!gov)
1515			return -EINVAL;
1516		else {
1517			printk(KERN_WARNING "%s governor failed, too long"
1518			       " transition latency of HW, fallback"
1519			       " to %s governor\n",
1520			       policy->governor->name,
1521			       gov->name);
1522			policy->governor = gov;
1523		}
1524	}
1525
1526	if (!try_module_get(policy->governor->owner))
1527		return -EINVAL;
 
 
 
1528
1529	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1530						policy->cpu, event);
1531	ret = policy->governor->governor(policy, event);
1532
1533	/* we keep one module reference alive for
1534			each CPU governed by this CPU */
1535	if ((event != CPUFREQ_GOV_START) || ret)
1536		module_put(policy->governor->owner);
1537	if ((event == CPUFREQ_GOV_STOP) && !ret)
1538		module_put(policy->governor->owner);
1539
1540	return ret;
 
 
 
1541}
1542
 
 
 
 
 
 
 
 
 
 
1543
1544int cpufreq_register_governor(struct cpufreq_governor *governor)
1545{
1546	int err;
1547
1548	if (!governor)
1549		return -EINVAL;
1550
 
 
 
1551	mutex_lock(&cpufreq_governor_mutex);
1552
1553	err = -EBUSY;
1554	if (__find_governor(governor->name) == NULL) {
1555		err = 0;
1556		list_add(&governor->governor_list, &cpufreq_governor_list);
1557	}
1558
1559	mutex_unlock(&cpufreq_governor_mutex);
1560	return err;
1561}
1562EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1563
1564
1565void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1566{
1567#ifdef CONFIG_HOTPLUG_CPU
1568	int cpu;
1569#endif
1570
1571	if (!governor)
1572		return;
1573
1574#ifdef CONFIG_HOTPLUG_CPU
1575	for_each_present_cpu(cpu) {
1576		if (cpu_online(cpu))
1577			continue;
1578		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1579			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
 
 
 
1580	}
1581#endif
1582
1583	mutex_lock(&cpufreq_governor_mutex);
1584	list_del(&governor->governor_list);
1585	mutex_unlock(&cpufreq_governor_mutex);
1586	return;
1587}
1588EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1589
1590
1591
1592/*********************************************************************
1593 *                          POLICY INTERFACE                         *
1594 *********************************************************************/
1595
1596/**
1597 * cpufreq_get_policy - get the current cpufreq_policy
1598 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1599 *	is written
1600 *
1601 * Reads the current cpufreq policy.
1602 */
1603int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1604{
1605	struct cpufreq_policy *cpu_policy;
1606	if (!policy)
1607		return -EINVAL;
1608
1609	cpu_policy = cpufreq_cpu_get(cpu);
1610	if (!cpu_policy)
1611		return -EINVAL;
1612
1613	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1614
1615	cpufreq_cpu_put(cpu_policy);
1616	return 0;
1617}
1618EXPORT_SYMBOL(cpufreq_get_policy);
1619
1620
1621/*
1622 * data   : current policy.
1623 * policy : policy to be set.
 
 
 
 
 
 
 
 
 
 
1624 */
1625static int __cpufreq_set_policy(struct cpufreq_policy *data,
1626				struct cpufreq_policy *policy)
1627{
1628	int ret = 0;
 
1629
1630	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1631		policy->min, policy->max);
1632
1633	memcpy(&policy->cpuinfo, &data->cpuinfo,
1634				sizeof(struct cpufreq_cpuinfo));
1635
1636	if (policy->min > data->max || policy->max < data->min) {
1637		ret = -EINVAL;
1638		goto error_out;
1639	}
 
 
1640
1641	/* verify the cpu speed can be set within this limit */
1642	ret = cpufreq_driver->verify(policy);
1643	if (ret)
1644		goto error_out;
1645
1646	/* adjust if necessary - all reasons */
1647	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1648			CPUFREQ_ADJUST, policy);
1649
1650	/* adjust if necessary - hardware incompatibility*/
1651	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1652			CPUFREQ_INCOMPATIBLE, policy);
1653
1654	/* verify the cpu speed can be set within this limit,
1655	   which might be different to the first one */
1656	ret = cpufreq_driver->verify(policy);
1657	if (ret)
1658		goto error_out;
1659
1660	/* notification of the new policy */
1661	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1662			CPUFREQ_NOTIFY, policy);
1663
1664	data->min = policy->min;
1665	data->max = policy->max;
1666
1667	pr_debug("new min and max freqs are %u - %u kHz\n",
1668					data->min, data->max);
1669
1670	if (cpufreq_driver->setpolicy) {
1671		data->policy = policy->policy;
1672		pr_debug("setting range\n");
1673		ret = cpufreq_driver->setpolicy(policy);
1674	} else {
1675		if (policy->governor != data->governor) {
1676			/* save old, working values */
1677			struct cpufreq_governor *old_gov = data->governor;
1678
1679			pr_debug("governor switch\n");
1680
1681			/* end old governor */
1682			if (data->governor)
1683				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1684
1685			/* start new governor */
1686			data->governor = policy->governor;
1687			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1688				/* new governor failed, so re-start old one */
1689				pr_debug("starting governor %s failed\n",
1690							data->governor->name);
1691				if (old_gov) {
1692					data->governor = old_gov;
1693					__cpufreq_governor(data,
1694							   CPUFREQ_GOV_START);
1695				}
1696				ret = -EINVAL;
1697				goto error_out;
1698			}
1699			/* might be a policy change, too, so fall through */
 
1700		}
1701		pr_debug("governor: change or update limits\n");
1702		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
 
 
 
 
 
 
 
 
 
1703	}
1704
1705error_out:
1706	return ret;
1707}
1708
1709/**
1710 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1711 *	@cpu: CPU which shall be re-evaluated
1712 *
1713 *	Useful for policy notifiers which have different necessities
1714 *	at different times.
 
 
1715 */
1716int cpufreq_update_policy(unsigned int cpu)
1717{
1718	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1719	struct cpufreq_policy policy;
1720	int ret;
1721
1722	if (!data) {
1723		ret = -ENODEV;
1724		goto no_policy;
1725	}
1726
1727	if (unlikely(lock_policy_rwsem_write(cpu))) {
1728		ret = -EINVAL;
1729		goto fail;
1730	}
 
 
 
1731
1732	pr_debug("updating policy for CPU %u\n", cpu);
1733	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1734	policy.min = data->user_policy.min;
1735	policy.max = data->user_policy.max;
1736	policy.policy = data->user_policy.policy;
1737	policy.governor = data->user_policy.governor;
1738
1739	/* BIOS might change freq behind our back
1740	  -> ask driver for current freq and notify governors about a change */
1741	if (cpufreq_driver->get) {
1742		policy.cur = cpufreq_driver->get(cpu);
1743		if (!data->cur) {
1744			pr_debug("Driver did not initialize current freq");
1745			data->cur = policy.cur;
1746		} else {
1747			if (data->cur != policy.cur)
1748				cpufreq_out_of_sync(cpu, data->cur,
1749								policy.cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1750		}
 
 
 
 
1751	}
1752
1753	ret = __cpufreq_set_policy(data, &policy);
 
1754
1755	unlock_policy_rwsem_write(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756
1757fail:
1758	cpufreq_cpu_put(data);
1759no_policy:
1760	return ret;
1761}
1762EXPORT_SYMBOL(cpufreq_update_policy);
1763
1764static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1765					unsigned long action, void *hcpu)
1766{
1767	unsigned int cpu = (unsigned long)hcpu;
1768	struct sys_device *sys_dev;
1769
1770	sys_dev = get_cpu_sysdev(cpu);
1771	if (sys_dev) {
1772		switch (action) {
1773		case CPU_ONLINE:
1774		case CPU_ONLINE_FROZEN:
1775			cpufreq_add_dev(sys_dev);
1776			break;
1777		case CPU_DOWN_PREPARE:
1778		case CPU_DOWN_PREPARE_FROZEN:
1779			if (unlikely(lock_policy_rwsem_write(cpu)))
1780				BUG();
1781
1782			__cpufreq_remove_dev(sys_dev);
1783			break;
1784		case CPU_DOWN_FAILED:
1785		case CPU_DOWN_FAILED_FROZEN:
1786			cpufreq_add_dev(sys_dev);
1787			break;
1788		}
1789	}
1790	return NOTIFY_OK;
1791}
1792
1793static struct notifier_block __refdata cpufreq_cpu_notifier = {
1794    .notifier_call = cpufreq_cpu_callback,
1795};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796
1797/*********************************************************************
1798 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1799 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
1801/**
1802 * cpufreq_register_driver - register a CPU Frequency driver
1803 * @driver_data: A struct cpufreq_driver containing the values#
1804 * submitted by the CPU Frequency driver.
1805 *
1806 *   Registers a CPU Frequency driver to this core code. This code
1807 * returns zero on success, -EBUSY when another driver got here first
1808 * (and isn't unregistered in the meantime).
1809 *
1810 */
1811int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1812{
1813	unsigned long flags;
1814	int ret;
1815
 
 
 
1816	if (!driver_data || !driver_data->verify || !driver_data->init ||
1817	    ((!driver_data->setpolicy) && (!driver_data->target)))
 
 
 
 
 
1818		return -EINVAL;
1819
1820	pr_debug("trying to register driver %s\n", driver_data->name);
1821
1822	if (driver_data->setpolicy)
1823		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1824
1825	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1826	if (cpufreq_driver) {
1827		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828		return -EBUSY;
 
1829	}
1830	cpufreq_driver = driver_data;
1831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1832
1833	ret = sysdev_driver_register(&cpu_sysdev_class,
1834					&cpufreq_sysdev_driver);
1835	if (ret)
1836		goto err_null_driver;
1837
1838	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839		int i;
1840		ret = -ENODEV;
 
 
1841
1842		/* check for at least one working CPU */
1843		for (i = 0; i < nr_cpu_ids; i++)
1844			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845				ret = 0;
1846				break;
1847			}
1848
 
 
1849		/* if all ->init() calls failed, unregister */
1850		if (ret) {
1851			pr_debug("no CPU initialized for driver %s\n",
1852							driver_data->name);
1853			goto err_sysdev_unreg;
1854		}
1855	}
1856
1857	register_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
 
 
1858	pr_debug("driver %s up and running\n", driver_data->name);
 
1859
1860	return 0;
1861err_sysdev_unreg:
1862	sysdev_driver_unregister(&cpu_sysdev_class,
1863			&cpufreq_sysdev_driver);
1864err_null_driver:
1865	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1866	cpufreq_driver = NULL;
1867	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1868	return ret;
1869}
1870EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1871
1872
1873/**
1874 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1875 *
1876 *    Unregister the current CPUFreq driver. Only call this if you have
1877 * the right to do so, i.e. if you have succeeded in initialising before!
1878 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1879 * currently not initialised.
1880 */
1881int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1882{
1883	unsigned long flags;
1884
1885	if (!cpufreq_driver || (driver != cpufreq_driver))
1886		return -EINVAL;
1887
1888	pr_debug("unregistering driver %s\n", driver->name);
1889
1890	sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1891	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
1892
1893	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1894	cpufreq_driver = NULL;
1895	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1896
1897	return 0;
1898}
1899EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1900
 
 
 
1901static int __init cpufreq_core_init(void)
1902{
1903	int cpu;
1904
1905	for_each_possible_cpu(cpu) {
1906		per_cpu(cpufreq_policy_cpu, cpu) = -1;
1907		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1908	}
1909
1910	cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1911						&cpu_sysdev_class.kset.kobj);
1912	BUG_ON(!cpufreq_global_kobject);
1913	register_syscore_ops(&cpufreq_syscore_ops);
1914
1915	return 0;
1916}
 
1917core_initcall(cpufreq_core_init);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
 
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
 
 
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <trace/events/power.h>
  32
  33static LIST_HEAD(cpufreq_policy_list);
  34
  35/* Macros to iterate over CPU policies */
  36#define for_each_suitable_policy(__policy, __active)			 \
  37	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  38		if ((__active) == !policy_is_inactive(__policy))
  39
  40#define for_each_active_policy(__policy)		\
  41	for_each_suitable_policy(__policy, true)
  42#define for_each_inactive_policy(__policy)		\
  43	for_each_suitable_policy(__policy, false)
  44
  45#define for_each_policy(__policy)			\
  46	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
  47
  48/* Iterate over governors */
  49static LIST_HEAD(cpufreq_governor_list);
  50#define for_each_governor(__governor)				\
  51	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  52
  53/**
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
 
 
  61
  62/* Flag to suspend/resume CPUFreq governors */
  63static bool cpufreq_suspended;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65static inline bool has_target(void)
 
 
 
 
  66{
  67	return cpufreq_driver->target_index || cpufreq_driver->target;
 
 
  68}
  69
 
 
 
 
 
 
 
 
  70/* internal prototypes */
  71static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  72static int cpufreq_init_governor(struct cpufreq_policy *policy);
  73static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  74static int cpufreq_start_governor(struct cpufreq_policy *policy);
  75static void cpufreq_stop_governor(struct cpufreq_policy *policy);
  76static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  77
  78/**
  79 * Two notifier lists: the "policy" list is involved in the
  80 * validation process for a new CPU frequency policy; the
  81 * "transition" list for kernel code that needs to handle
  82 * changes to devices when the CPU clock speed changes.
  83 * The mutex locks both lists.
  84 */
  85static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  86SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
  87
  88static int off __read_mostly;
  89static int cpufreq_disabled(void)
  90{
  91	return off;
  92}
  93void disable_cpufreq(void)
  94{
  95	off = 1;
  96}
 
 
 
  97static DEFINE_MUTEX(cpufreq_governor_mutex);
  98
  99bool have_governor_per_policy(void)
 100{
 101	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 102}
 103EXPORT_SYMBOL_GPL(have_governor_per_policy);
 104
 105struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 106{
 107	if (have_governor_per_policy())
 108		return &policy->kobj;
 109	else
 110		return cpufreq_global_kobject;
 111}
 112EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 113
 114static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 115{
 116	u64 idle_time;
 117	u64 cur_wall_time;
 118	u64 busy_time;
 119
 120	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 
 121
 122	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 123	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 124	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 125	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 126	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 127	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 128
 129	idle_time = cur_wall_time - busy_time;
 130	if (wall)
 131		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 132
 133	return div_u64(idle_time, NSEC_PER_USEC);
 134}
 135
 136u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 137{
 138	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 139
 140	if (idle_time == -1ULL)
 141		return get_cpu_idle_time_jiffy(cpu, wall);
 142	else if (!io_busy)
 143		idle_time += get_cpu_iowait_time_us(cpu, wall);
 144
 145	return idle_time;
 146}
 147EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 148
 149__weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
 150		unsigned long max_freq)
 151{
 
 
 
 152}
 153EXPORT_SYMBOL_GPL(arch_set_freq_scale);
 154
 155/*
 156 * This is a generic cpufreq init() routine which can be used by cpufreq
 157 * drivers of SMP systems. It will do following:
 158 * - validate & show freq table passed
 159 * - set policies transition latency
 160 * - policy->cpus with all possible CPUs
 161 */
 162void cpufreq_generic_init(struct cpufreq_policy *policy,
 163		struct cpufreq_frequency_table *table,
 164		unsigned int transition_latency)
 165{
 166	policy->freq_table = table;
 167	policy->cpuinfo.transition_latency = transition_latency;
 168
 169	/*
 170	 * The driver only supports the SMP configuration where all processors
 171	 * share the clock and voltage and clock.
 172	 */
 173	cpumask_setall(policy->cpus);
 174}
 175EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 176
 177struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 178{
 179	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 180
 181	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 182}
 183EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 184
 185unsigned int cpufreq_generic_get(unsigned int cpu)
 186{
 187	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 188
 189	if (!policy || IS_ERR(policy->clk)) {
 190		pr_err("%s: No %s associated to cpu: %d\n",
 191		       __func__, policy ? "clk" : "policy", cpu);
 192		return 0;
 193	}
 194
 195	return clk_get_rate(policy->clk) / 1000;
 196}
 197EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 198
 199/**
 200 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 201 * @cpu: CPU to find the policy for.
 202 *
 203 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 204 * the kobject reference counter of that policy.  Return a valid policy on
 205 * success or NULL on failure.
 206 *
 207 * The policy returned by this function has to be released with the help of
 208 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 209 */
 210struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 211{
 212	struct cpufreq_policy *policy = NULL;
 213	unsigned long flags;
 214
 215	if (WARN_ON(cpu >= nr_cpu_ids))
 216		return NULL;
 217
 218	/* get the cpufreq driver */
 219	read_lock_irqsave(&cpufreq_driver_lock, flags);
 220
 221	if (cpufreq_driver) {
 222		/* get the CPU */
 223		policy = cpufreq_cpu_get_raw(cpu);
 224		if (policy)
 225			kobject_get(&policy->kobj);
 226	}
 227
 228	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 229
 230	return policy;
 231}
 232EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 233
 234/**
 235 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 236 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 237 */
 238void cpufreq_cpu_put(struct cpufreq_policy *policy)
 239{
 240	kobject_put(&policy->kobj);
 241}
 242EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 243
 244/**
 245 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 246 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 247 */
 248void cpufreq_cpu_release(struct cpufreq_policy *policy)
 249{
 250	if (WARN_ON(!policy))
 251		return;
 252
 253	lockdep_assert_held(&policy->rwsem);
 254
 255	up_write(&policy->rwsem);
 256
 257	cpufreq_cpu_put(policy);
 258}
 259
 260/**
 261 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 262 * @cpu: CPU to find the policy for.
 263 *
 264 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 265 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 266 * Return the policy if it is active or release it and return NULL otherwise.
 267 *
 268 * The policy returned by this function has to be released with the help of
 269 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 270 * counter properly.
 271 */
 272struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 273{
 274	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 275
 276	if (!policy)
 277		return NULL;
 278
 279	down_write(&policy->rwsem);
 280
 281	if (policy_is_inactive(policy)) {
 282		cpufreq_cpu_release(policy);
 283		return NULL;
 284	}
 285
 286	return policy;
 287}
 288
 289/*********************************************************************
 290 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 291 *********************************************************************/
 292
 293/**
 294 * adjust_jiffies - adjust the system "loops_per_jiffy"
 295 *
 296 * This function alters the system "loops_per_jiffy" for the clock
 297 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 298 * systems as each CPU might be scaled differently. So, use the arch
 299 * per-CPU loops_per_jiffy value wherever possible.
 300 */
 
 
 
 
 301static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 302{
 303#ifndef CONFIG_SMP
 304	static unsigned long l_p_j_ref;
 305	static unsigned int l_p_j_ref_freq;
 306
 307	if (ci->flags & CPUFREQ_CONST_LOOPS)
 308		return;
 309
 310	if (!l_p_j_ref_freq) {
 311		l_p_j_ref = loops_per_jiffy;
 312		l_p_j_ref_freq = ci->old;
 313		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 314			 l_p_j_ref, l_p_j_ref_freq);
 315	}
 316	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 
 
 317		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 318								ci->new);
 319		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 320			 loops_per_jiffy, ci->new);
 321	}
 
 
 
 
 
 
 322#endif
 323}
 324
 325/**
 326 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
 327 * @policy: cpufreq policy to enable fast frequency switching for.
 328 * @freqs: contain details of the frequency update.
 329 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 330 *
 331 * This function calls the transition notifiers and the "adjust_jiffies"
 332 * function. It is called twice on all CPU frequency changes that have
 333 * external effects.
 334 */
 335static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 336				      struct cpufreq_freqs *freqs,
 337				      unsigned int state)
 338{
 339	int cpu;
 340
 341	BUG_ON(irqs_disabled());
 342
 343	if (cpufreq_disabled())
 344		return;
 345
 346	freqs->policy = policy;
 347	freqs->flags = cpufreq_driver->flags;
 348	pr_debug("notification %u of frequency transition to %u kHz\n",
 349		 state, freqs->new);
 350
 
 351	switch (state) {
 
 352	case CPUFREQ_PRECHANGE:
 353		/*
 354		 * Detect if the driver reported a value as "old frequency"
 355		 * which is not equal to what the cpufreq core thinks is
 356		 * "old frequency".
 357		 */
 358		if (policy->cur && policy->cur != freqs->old) {
 359			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 360				 freqs->old, policy->cur);
 361			freqs->old = policy->cur;
 
 
 
 
 362		}
 363
 364		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 365					 CPUFREQ_PRECHANGE, freqs);
 366
 367		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 368		break;
 369
 370	case CPUFREQ_POSTCHANGE:
 371		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 372		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 373			 cpumask_pr_args(policy->cpus));
 374
 375		for_each_cpu(cpu, policy->cpus)
 376			trace_cpu_frequency(freqs->new, cpu);
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_POSTCHANGE, freqs);
 380
 381		cpufreq_stats_record_transition(policy, freqs->new);
 382		policy->cur = freqs->new;
 383	}
 384}
 385
 386/* Do post notifications when there are chances that transition has failed */
 387static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 388		struct cpufreq_freqs *freqs, int transition_failed)
 389{
 390	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 391	if (!transition_failed)
 392		return;
 393
 394	swap(freqs->old, freqs->new);
 395	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 396	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 397}
 398
 399void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 400		struct cpufreq_freqs *freqs)
 401{
 402
 403	/*
 404	 * Catch double invocations of _begin() which lead to self-deadlock.
 405	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 406	 * doesn't invoke _begin() on their behalf, and hence the chances of
 407	 * double invocations are very low. Moreover, there are scenarios
 408	 * where these checks can emit false-positive warnings in these
 409	 * drivers; so we avoid that by skipping them altogether.
 410	 */
 411	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 412				&& current == policy->transition_task);
 413
 414wait:
 415	wait_event(policy->transition_wait, !policy->transition_ongoing);
 416
 417	spin_lock(&policy->transition_lock);
 418
 419	if (unlikely(policy->transition_ongoing)) {
 420		spin_unlock(&policy->transition_lock);
 421		goto wait;
 422	}
 423
 424	policy->transition_ongoing = true;
 425	policy->transition_task = current;
 426
 427	spin_unlock(&policy->transition_lock);
 428
 429	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 430}
 431EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 432
 433void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 434		struct cpufreq_freqs *freqs, int transition_failed)
 435{
 436	if (WARN_ON(!policy->transition_ongoing))
 437		return;
 438
 439	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 440
 441	policy->transition_ongoing = false;
 442	policy->transition_task = NULL;
 443
 444	wake_up(&policy->transition_wait);
 445}
 446EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 447
 448/*
 449 * Fast frequency switching status count.  Positive means "enabled", negative
 450 * means "disabled" and 0 means "not decided yet".
 451 */
 452static int cpufreq_fast_switch_count;
 453static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 454
 455static void cpufreq_list_transition_notifiers(void)
 456{
 457	struct notifier_block *nb;
 458
 459	pr_info("Registered transition notifiers:\n");
 460
 461	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 462
 463	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 464		pr_info("%pS\n", nb->notifier_call);
 465
 466	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 467}
 468
 469/**
 470 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 471 * @policy: cpufreq policy to enable fast frequency switching for.
 472 *
 473 * Try to enable fast frequency switching for @policy.
 474 *
 475 * The attempt will fail if there is at least one transition notifier registered
 476 * at this point, as fast frequency switching is quite fundamentally at odds
 477 * with transition notifiers.  Thus if successful, it will make registration of
 478 * transition notifiers fail going forward.
 479 */
 480void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 481{
 482	lockdep_assert_held(&policy->rwsem);
 483
 484	if (!policy->fast_switch_possible)
 485		return;
 486
 487	mutex_lock(&cpufreq_fast_switch_lock);
 488	if (cpufreq_fast_switch_count >= 0) {
 489		cpufreq_fast_switch_count++;
 490		policy->fast_switch_enabled = true;
 491	} else {
 492		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 493			policy->cpu);
 494		cpufreq_list_transition_notifiers();
 495	}
 496	mutex_unlock(&cpufreq_fast_switch_lock);
 497}
 498EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 499
 500/**
 501 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 502 * @policy: cpufreq policy to disable fast frequency switching for.
 503 */
 504void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 505{
 506	mutex_lock(&cpufreq_fast_switch_lock);
 507	if (policy->fast_switch_enabled) {
 508		policy->fast_switch_enabled = false;
 509		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 510			cpufreq_fast_switch_count--;
 511	}
 512	mutex_unlock(&cpufreq_fast_switch_lock);
 513}
 514EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 515
 516/**
 517 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 518 * one.
 519 * @target_freq: target frequency to resolve.
 520 *
 521 * The target to driver frequency mapping is cached in the policy.
 522 *
 523 * Return: Lowest driver-supported frequency greater than or equal to the
 524 * given target_freq, subject to policy (min/max) and driver limitations.
 525 */
 526unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 527					 unsigned int target_freq)
 528{
 529	target_freq = clamp_val(target_freq, policy->min, policy->max);
 530	policy->cached_target_freq = target_freq;
 531
 532	if (cpufreq_driver->target_index) {
 533		int idx;
 534
 535		idx = cpufreq_frequency_table_target(policy, target_freq,
 536						     CPUFREQ_RELATION_L);
 537		policy->cached_resolved_idx = idx;
 538		return policy->freq_table[idx].frequency;
 539	}
 540
 541	if (cpufreq_driver->resolve_freq)
 542		return cpufreq_driver->resolve_freq(policy, target_freq);
 543
 544	return target_freq;
 545}
 546EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 547
 548unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 549{
 550	unsigned int latency;
 551
 552	if (policy->transition_delay_us)
 553		return policy->transition_delay_us;
 554
 555	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 556	if (latency) {
 557		/*
 558		 * For platforms that can change the frequency very fast (< 10
 559		 * us), the above formula gives a decent transition delay. But
 560		 * for platforms where transition_latency is in milliseconds, it
 561		 * ends up giving unrealistic values.
 562		 *
 563		 * Cap the default transition delay to 10 ms, which seems to be
 564		 * a reasonable amount of time after which we should reevaluate
 565		 * the frequency.
 566		 */
 567		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 568	}
 569
 570	return LATENCY_MULTIPLIER;
 571}
 572EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 573
 574/*********************************************************************
 575 *                          SYSFS INTERFACE                          *
 576 *********************************************************************/
 577static ssize_t show_boost(struct kobject *kobj,
 578			  struct kobj_attribute *attr, char *buf)
 579{
 580	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 581}
 582
 583static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 584			   const char *buf, size_t count)
 585{
 586	int ret, enable;
 587
 588	ret = sscanf(buf, "%d", &enable);
 589	if (ret != 1 || enable < 0 || enable > 1)
 590		return -EINVAL;
 591
 592	if (cpufreq_boost_trigger_state(enable)) {
 593		pr_err("%s: Cannot %s BOOST!\n",
 594		       __func__, enable ? "enable" : "disable");
 595		return -EINVAL;
 596	}
 597
 598	pr_debug("%s: cpufreq BOOST %s\n",
 599		 __func__, enable ? "enabled" : "disabled");
 600
 601	return count;
 602}
 603define_one_global_rw(boost);
 604
 605static struct cpufreq_governor *find_governor(const char *str_governor)
 606{
 607	struct cpufreq_governor *t;
 608
 609	for_each_governor(t)
 610		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 611			return t;
 612
 613	return NULL;
 614}
 615
 616static int cpufreq_parse_policy(char *str_governor,
 617				struct cpufreq_policy *policy)
 618{
 619	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 620		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
 621		return 0;
 622	}
 623	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
 624		policy->policy = CPUFREQ_POLICY_POWERSAVE;
 625		return 0;
 626	}
 627	return -EINVAL;
 628}
 629
 630/**
 631 * cpufreq_parse_governor - parse a governor string only for has_target()
 632 */
 633static int cpufreq_parse_governor(char *str_governor,
 634				  struct cpufreq_policy *policy)
 635{
 636	struct cpufreq_governor *t;
 
 
 
 637
 638	mutex_lock(&cpufreq_governor_mutex);
 
 
 
 
 
 
 
 
 
 
 639
 640	t = find_governor(str_governor);
 641	if (!t) {
 642		int ret;
 643
 644		mutex_unlock(&cpufreq_governor_mutex);
 645
 646		ret = request_module("cpufreq_%s", str_governor);
 647		if (ret)
 648			return -EINVAL;
 649
 650		mutex_lock(&cpufreq_governor_mutex);
 
 
 651
 652		t = find_governor(str_governor);
 653	}
 654	if (t && !try_module_get(t->owner))
 655		t = NULL;
 656
 657	mutex_unlock(&cpufreq_governor_mutex);
 
 
 
 658
 659	if (t) {
 660		policy->governor = t;
 661		return 0;
 662	}
 
 
 
 663
 664	return -EINVAL;
 665}
 666
 667/**
 668 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 669 * print out cpufreq information
 670 *
 671 * Write out information from cpufreq_driver->policy[cpu]; object must be
 672 * "unsigned int".
 673 */
 674
 675#define show_one(file_name, object)			\
 676static ssize_t show_##file_name				\
 677(struct cpufreq_policy *policy, char *buf)		\
 678{							\
 679	return sprintf(buf, "%u\n", policy->object);	\
 680}
 681
 682show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 683show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 684show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 685show_one(scaling_min_freq, min);
 686show_one(scaling_max_freq, max);
 
 687
 688__weak unsigned int arch_freq_get_on_cpu(int cpu)
 689{
 690	return 0;
 691}
 692
 693static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 694{
 695	ssize_t ret;
 696	unsigned int freq;
 697
 698	freq = arch_freq_get_on_cpu(policy->cpu);
 699	if (freq)
 700		ret = sprintf(buf, "%u\n", freq);
 701	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
 702			cpufreq_driver->get)
 703		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 704	else
 705		ret = sprintf(buf, "%u\n", policy->cur);
 706	return ret;
 707}
 708
 709/**
 710 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 711 */
 712#define store_one(file_name, object)			\
 713static ssize_t store_##file_name					\
 714(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 715{									\
 716	unsigned long val;						\
 717	int ret;							\
 
 
 
 
 718									\
 719	ret = sscanf(buf, "%lu", &val);					\
 720	if (ret != 1)							\
 721		return -EINVAL;						\
 722									\
 723	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 724	return ret >= 0 ? count : ret;					\
 
 
 725}
 726
 727store_one(scaling_min_freq, min);
 728store_one(scaling_max_freq, max);
 729
 730/**
 731 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 732 */
 733static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 734					char *buf)
 735{
 736	unsigned int cur_freq = __cpufreq_get(policy);
 
 
 
 
 737
 738	if (cur_freq)
 739		return sprintf(buf, "%u\n", cur_freq);
 740
 741	return sprintf(buf, "<unknown>\n");
 742}
 743
 744/**
 745 * show_scaling_governor - show the current policy for the specified CPU
 746 */
 747static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 748{
 749	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 750		return sprintf(buf, "powersave\n");
 751	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 752		return sprintf(buf, "performance\n");
 753	else if (policy->governor)
 754		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 755				policy->governor->name);
 756	return -EINVAL;
 757}
 758
 
 759/**
 760 * store_scaling_governor - store policy for the specified CPU
 761 */
 762static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 763					const char *buf, size_t count)
 764{
 765	int ret;
 766	char	str_governor[16];
 767	struct cpufreq_policy new_policy;
 768
 769	memcpy(&new_policy, policy, sizeof(*policy));
 
 
 770
 771	ret = sscanf(buf, "%15s", str_governor);
 772	if (ret != 1)
 773		return -EINVAL;
 774
 775	if (cpufreq_driver->setpolicy) {
 776		if (cpufreq_parse_policy(str_governor, &new_policy))
 777			return -EINVAL;
 778	} else {
 779		if (cpufreq_parse_governor(str_governor, &new_policy))
 780			return -EINVAL;
 781	}
 782
 783	ret = cpufreq_set_policy(policy, &new_policy);
 
 
 784
 785	if (new_policy.governor)
 786		module_put(new_policy.governor->owner);
 787
 788	return ret ? ret : count;
 
 
 
 789}
 790
 791/**
 792 * show_scaling_driver - show the cpufreq driver currently loaded
 793 */
 794static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 795{
 796	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 797}
 798
 799/**
 800 * show_scaling_available_governors - show the available CPUfreq governors
 801 */
 802static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 803						char *buf)
 804{
 805	ssize_t i = 0;
 806	struct cpufreq_governor *t;
 807
 808	if (!has_target()) {
 809		i += sprintf(buf, "performance powersave");
 810		goto out;
 811	}
 812
 813	for_each_governor(t) {
 814		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 815		    - (CPUFREQ_NAME_LEN + 2)))
 816			goto out;
 817		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 818	}
 819out:
 820	i += sprintf(&buf[i], "\n");
 821	return i;
 822}
 823
 824ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 825{
 826	ssize_t i = 0;
 827	unsigned int cpu;
 828
 829	for_each_cpu(cpu, mask) {
 830		if (i)
 831			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 832		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 833		if (i >= (PAGE_SIZE - 5))
 834			break;
 835	}
 836	i += sprintf(&buf[i], "\n");
 837	return i;
 838}
 839EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 840
 841/**
 842 * show_related_cpus - show the CPUs affected by each transition even if
 843 * hw coordination is in use
 844 */
 845static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 846{
 847	return cpufreq_show_cpus(policy->related_cpus, buf);
 
 
 848}
 849
 850/**
 851 * show_affected_cpus - show the CPUs affected by each transition
 852 */
 853static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 854{
 855	return cpufreq_show_cpus(policy->cpus, buf);
 856}
 857
 858static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 859					const char *buf, size_t count)
 860{
 861	unsigned int freq = 0;
 862	unsigned int ret;
 863
 864	if (!policy->governor || !policy->governor->store_setspeed)
 865		return -EINVAL;
 866
 867	ret = sscanf(buf, "%u", &freq);
 868	if (ret != 1)
 869		return -EINVAL;
 870
 871	policy->governor->store_setspeed(policy, freq);
 872
 873	return count;
 874}
 875
 876static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 877{
 878	if (!policy->governor || !policy->governor->show_setspeed)
 879		return sprintf(buf, "<unsupported>\n");
 880
 881	return policy->governor->show_setspeed(policy, buf);
 882}
 883
 884/**
 885 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 886 */
 887static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 888{
 889	unsigned int limit;
 890	int ret;
 891	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 892	if (!ret)
 893		return sprintf(buf, "%u\n", limit);
 
 
 894	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 895}
 896
 897cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 898cpufreq_freq_attr_ro(cpuinfo_min_freq);
 899cpufreq_freq_attr_ro(cpuinfo_max_freq);
 900cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 901cpufreq_freq_attr_ro(scaling_available_governors);
 902cpufreq_freq_attr_ro(scaling_driver);
 903cpufreq_freq_attr_ro(scaling_cur_freq);
 904cpufreq_freq_attr_ro(bios_limit);
 905cpufreq_freq_attr_ro(related_cpus);
 906cpufreq_freq_attr_ro(affected_cpus);
 907cpufreq_freq_attr_rw(scaling_min_freq);
 908cpufreq_freq_attr_rw(scaling_max_freq);
 909cpufreq_freq_attr_rw(scaling_governor);
 910cpufreq_freq_attr_rw(scaling_setspeed);
 911
 912static struct attribute *default_attrs[] = {
 913	&cpuinfo_min_freq.attr,
 914	&cpuinfo_max_freq.attr,
 915	&cpuinfo_transition_latency.attr,
 916	&scaling_min_freq.attr,
 917	&scaling_max_freq.attr,
 918	&affected_cpus.attr,
 919	&related_cpus.attr,
 920	&scaling_governor.attr,
 921	&scaling_driver.attr,
 922	&scaling_available_governors.attr,
 923	&scaling_setspeed.attr,
 924	NULL
 925};
 926
 
 
 
 927#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 928#define to_attr(a) container_of(a, struct freq_attr, attr)
 929
 930static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 931{
 932	struct cpufreq_policy *policy = to_policy(kobj);
 933	struct freq_attr *fattr = to_attr(attr);
 934	ssize_t ret;
 
 
 
 935
 936	down_read(&policy->rwsem);
 937	ret = fattr->show(policy, buf);
 938	up_read(&policy->rwsem);
 
 
 
 
 939
 
 
 
 
 940	return ret;
 941}
 942
 943static ssize_t store(struct kobject *kobj, struct attribute *attr,
 944		     const char *buf, size_t count)
 945{
 946	struct cpufreq_policy *policy = to_policy(kobj);
 947	struct freq_attr *fattr = to_attr(attr);
 948	ssize_t ret = -EINVAL;
 
 
 
 949
 950	/*
 951	 * cpus_read_trylock() is used here to work around a circular lock
 952	 * dependency problem with respect to the cpufreq_register_driver().
 953	 */
 954	if (!cpus_read_trylock())
 955		return -EBUSY;
 956
 957	if (cpu_online(policy->cpu)) {
 958		down_write(&policy->rwsem);
 959		ret = fattr->store(policy, buf, count);
 960		up_write(&policy->rwsem);
 961	}
 962
 963	cpus_read_unlock();
 964
 
 
 
 
 965	return ret;
 966}
 967
 968static void cpufreq_sysfs_release(struct kobject *kobj)
 969{
 970	struct cpufreq_policy *policy = to_policy(kobj);
 971	pr_debug("last reference is dropped\n");
 972	complete(&policy->kobj_unregister);
 973}
 974
 975static const struct sysfs_ops sysfs_ops = {
 976	.show	= show,
 977	.store	= store,
 978};
 979
 980static struct kobj_type ktype_cpufreq = {
 981	.sysfs_ops	= &sysfs_ops,
 982	.default_attrs	= default_attrs,
 983	.release	= cpufreq_sysfs_release,
 984};
 985
 986static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
 987{
 988	struct device *dev = get_cpu_device(cpu);
 
 
 
 
 
 989
 990	if (unlikely(!dev))
 991		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992
 993	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
 994		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995
 996	dev_dbg(dev, "%s: Adding symlink\n", __func__);
 997	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
 998		dev_err(dev, "cpufreq symlink creation failed\n");
 
 
 
 
 
 999}
1000
1001static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1002				   struct device *dev)
 
 
1003{
1004	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1005	sysfs_remove_link(&dev->kobj, "cpufreq");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006}
1007
1008static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
 
1009{
 
1010	struct freq_attr **drv_attr;
 
1011	int ret = 0;
 
 
 
 
 
 
 
1012
1013	/* set up files for this cpu device */
1014	drv_attr = cpufreq_driver->attr;
1015	while (drv_attr && *drv_attr) {
1016		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1017		if (ret)
1018			return ret;
1019		drv_attr++;
1020	}
1021	if (cpufreq_driver->get) {
1022		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1023		if (ret)
1024			return ret;
 
 
 
 
 
1025	}
1026
1027	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1028	if (ret)
1029		return ret;
1030
1031	if (cpufreq_driver->bios_limit) {
1032		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1033		if (ret)
1034			return ret;
1035	}
1036
1037	return 0;
1038}
 
 
 
 
 
 
1039
1040__weak struct cpufreq_governor *cpufreq_default_governor(void)
1041{
1042	return NULL;
1043}
1044
1045static int cpufreq_init_policy(struct cpufreq_policy *policy)
1046{
1047	struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1048	struct cpufreq_policy new_policy;
 
 
 
 
1049
1050	memcpy(&new_policy, policy, sizeof(*policy));
1051
1052	def_gov = cpufreq_default_governor();
1053
1054	if (has_target()) {
1055		/*
1056		 * Update governor of new_policy to the governor used before
1057		 * hotplug
1058		 */
1059		gov = find_governor(policy->last_governor);
1060		if (gov) {
1061			pr_debug("Restoring governor %s for cpu %d\n",
1062				policy->governor->name, policy->cpu);
1063		} else {
1064			if (!def_gov)
1065				return -ENODATA;
1066			gov = def_gov;
1067		}
1068		new_policy.governor = gov;
1069	} else {
1070		/* Use the default policy if there is no last_policy. */
1071		if (policy->last_policy) {
1072			new_policy.policy = policy->last_policy;
1073		} else {
1074			if (!def_gov)
1075				return -ENODATA;
1076			cpufreq_parse_policy(def_gov->name, &new_policy);
1077		}
1078	}
 
1079
1080	return cpufreq_set_policy(policy, &new_policy);
 
 
 
1081}
1082
1083static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
1084{
1085	int ret = 0;
 
 
 
 
 
 
 
1086
1087	/* Has this CPU been taken care of already? */
1088	if (cpumask_test_cpu(cpu, policy->cpus))
1089		return 0;
1090
1091	down_write(&policy->rwsem);
1092	if (has_target())
1093		cpufreq_stop_governor(policy);
1094
1095	cpumask_set_cpu(cpu, policy->cpus);
1096
1097	if (has_target()) {
1098		ret = cpufreq_start_governor(policy);
1099		if (ret)
1100			pr_err("%s: Failed to start governor\n", __func__);
 
1101	}
1102	up_write(&policy->rwsem);
1103	return ret;
1104}
1105
1106void refresh_frequency_limits(struct cpufreq_policy *policy)
1107{
1108	struct cpufreq_policy new_policy;
1109
1110	if (!policy_is_inactive(policy)) {
1111		new_policy = *policy;
1112		pr_debug("updating policy for CPU %u\n", policy->cpu);
1113
1114		cpufreq_set_policy(policy, &new_policy);
1115	}
1116}
1117EXPORT_SYMBOL(refresh_frequency_limits);
1118
1119static void handle_update(struct work_struct *work)
1120{
1121	struct cpufreq_policy *policy =
1122		container_of(work, struct cpufreq_policy, update);
1123
1124	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1125	down_write(&policy->rwsem);
1126	refresh_frequency_limits(policy);
1127	up_write(&policy->rwsem);
1128}
1129
1130static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1131				void *data)
1132{
1133	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1134
1135	schedule_work(&policy->update);
1136	return 0;
1137}
1138
1139static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1140				void *data)
1141{
1142	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1143
1144	schedule_work(&policy->update);
1145	return 0;
1146}
1147
1148static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1149{
1150	struct kobject *kobj;
1151	struct completion *cmp;
1152
1153	down_write(&policy->rwsem);
1154	cpufreq_stats_free_table(policy);
1155	kobj = &policy->kobj;
1156	cmp = &policy->kobj_unregister;
1157	up_write(&policy->rwsem);
1158	kobject_put(kobj);
1159
1160	/*
1161	 * We need to make sure that the underlying kobj is
1162	 * actually not referenced anymore by anybody before we
1163	 * proceed with unloading.
1164	 */
1165	pr_debug("waiting for dropping of refcount\n");
1166	wait_for_completion(cmp);
1167	pr_debug("wait complete\n");
1168}
1169
1170static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1171{
1172	struct cpufreq_policy *policy;
1173	struct device *dev = get_cpu_device(cpu);
1174	int ret;
1175
1176	if (!dev)
1177		return NULL;
1178
1179	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1180	if (!policy)
1181		return NULL;
1182
1183	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1184		goto err_free_policy;
1185
1186	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1187		goto err_free_cpumask;
1188
1189	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1190		goto err_free_rcpumask;
1191
1192	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1193				   cpufreq_global_kobject, "policy%u", cpu);
1194	if (ret) {
1195		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1196		/*
1197		 * The entire policy object will be freed below, but the extra
1198		 * memory allocated for the kobject name needs to be freed by
1199		 * releasing the kobject.
1200		 */
1201		kobject_put(&policy->kobj);
1202		goto err_free_real_cpus;
1203	}
1204
1205	freq_constraints_init(&policy->constraints);
 
1206
1207	policy->nb_min.notifier_call = cpufreq_notifier_min;
1208	policy->nb_max.notifier_call = cpufreq_notifier_max;
1209
1210	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1211				    &policy->nb_min);
 
 
 
 
 
 
 
 
 
 
 
 
 
1212	if (ret) {
1213		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1214			ret, cpumask_pr_args(policy->cpus));
1215		goto err_kobj_remove;
1216	}
 
 
1217
1218	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1219				    &policy->nb_max);
 
 
1220	if (ret) {
1221		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1222			ret, cpumask_pr_args(policy->cpus));
1223		goto err_min_qos_notifier;
 
 
1224	}
1225
1226	INIT_LIST_HEAD(&policy->policy_list);
1227	init_rwsem(&policy->rwsem);
1228	spin_lock_init(&policy->transition_lock);
1229	init_waitqueue_head(&policy->transition_wait);
1230	init_completion(&policy->kobj_unregister);
1231	INIT_WORK(&policy->update, handle_update);
1232
1233	policy->cpu = cpu;
1234	return policy;
1235
1236err_min_qos_notifier:
1237	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1238				 &policy->nb_min);
1239err_kobj_remove:
1240	cpufreq_policy_put_kobj(policy);
1241err_free_real_cpus:
1242	free_cpumask_var(policy->real_cpus);
1243err_free_rcpumask:
1244	free_cpumask_var(policy->related_cpus);
1245err_free_cpumask:
1246	free_cpumask_var(policy->cpus);
1247err_free_policy:
1248	kfree(policy);
1249
1250	return NULL;
1251}
1252
1253static void cpufreq_policy_free(struct cpufreq_policy *policy)
1254{
1255	unsigned long flags;
1256	int cpu;
1257
1258	/* Remove policy from list */
1259	write_lock_irqsave(&cpufreq_driver_lock, flags);
1260	list_del(&policy->policy_list);
1261
1262	for_each_cpu(cpu, policy->related_cpus)
1263		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1264	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1265
1266	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1267				 &policy->nb_max);
1268	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1269				 &policy->nb_min);
1270
1271	/* Cancel any pending policy->update work before freeing the policy. */
1272	cancel_work_sync(&policy->update);
1273
1274	if (policy->max_freq_req) {
1275		/*
1276		 * CPUFREQ_CREATE_POLICY notification is sent only after
1277		 * successfully adding max_freq_req request.
1278		 */
1279		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1280					     CPUFREQ_REMOVE_POLICY, policy);
1281		freq_qos_remove_request(policy->max_freq_req);
1282	}
1283
1284	freq_qos_remove_request(policy->min_freq_req);
1285	kfree(policy->min_freq_req);
1286
1287	cpufreq_policy_put_kobj(policy);
1288	free_cpumask_var(policy->real_cpus);
1289	free_cpumask_var(policy->related_cpus);
 
1290	free_cpumask_var(policy->cpus);
 
1291	kfree(policy);
 
 
 
 
1292}
1293
1294static int cpufreq_online(unsigned int cpu)
 
 
 
 
 
 
 
 
1295{
1296	struct cpufreq_policy *policy;
1297	bool new_policy;
1298	unsigned long flags;
 
 
 
 
 
1299	unsigned int j;
1300	int ret;
 
 
1301
1302	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
 
1303
1304	/* Check if this CPU already has a policy to manage it */
1305	policy = per_cpu(cpufreq_cpu_data, cpu);
1306	if (policy) {
1307		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1308		if (!policy_is_inactive(policy))
1309			return cpufreq_add_policy_cpu(policy, cpu);
1310
1311		/* This is the only online CPU for the policy.  Start over. */
1312		new_policy = false;
1313		down_write(&policy->rwsem);
1314		policy->cpu = cpu;
1315		policy->governor = NULL;
1316		up_write(&policy->rwsem);
1317	} else {
1318		new_policy = true;
1319		policy = cpufreq_policy_alloc(cpu);
1320		if (!policy)
1321			return -ENOMEM;
1322	}
 
1323
1324	if (!new_policy && cpufreq_driver->online) {
1325		ret = cpufreq_driver->online(policy);
1326		if (ret) {
1327			pr_debug("%s: %d: initialization failed\n", __func__,
1328				 __LINE__);
1329			goto out_exit_policy;
1330		}
1331
1332		/* Recover policy->cpus using related_cpus */
1333		cpumask_copy(policy->cpus, policy->related_cpus);
1334	} else {
1335		cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
 
 
 
 
 
 
 
 
 
1336
1337		/*
1338		 * Call driver. From then on the cpufreq must be able
1339		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1340		 */
1341		ret = cpufreq_driver->init(policy);
1342		if (ret) {
1343			pr_debug("%s: %d: initialization failed\n", __func__,
1344				 __LINE__);
1345			goto out_free_policy;
1346		}
1347
1348		ret = cpufreq_table_validate_and_sort(policy);
1349		if (ret)
1350			goto out_exit_policy;
1351
1352		/* related_cpus should at least include policy->cpus. */
1353		cpumask_copy(policy->related_cpus, policy->cpus);
1354	}
1355
1356	down_write(&policy->rwsem);
1357	/*
1358	 * affected cpus must always be the one, which are online. We aren't
1359	 * managing offline cpus here.
1360	 */
1361	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1362
1363	if (new_policy) {
1364		for_each_cpu(j, policy->related_cpus) {
1365			per_cpu(cpufreq_cpu_data, j) = policy;
1366			add_cpu_dev_symlink(policy, j);
1367		}
1368
1369		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1370					       GFP_KERNEL);
1371		if (!policy->min_freq_req)
1372			goto out_destroy_policy;
1373
1374		ret = freq_qos_add_request(&policy->constraints,
1375					   policy->min_freq_req, FREQ_QOS_MIN,
1376					   policy->min);
1377		if (ret < 0) {
1378			/*
1379			 * So we don't call freq_qos_remove_request() for an
1380			 * uninitialized request.
1381			 */
1382			kfree(policy->min_freq_req);
1383			policy->min_freq_req = NULL;
1384			goto out_destroy_policy;
1385		}
1386
1387		/*
1388		 * This must be initialized right here to avoid calling
1389		 * freq_qos_remove_request() on uninitialized request in case
1390		 * of errors.
1391		 */
1392		policy->max_freq_req = policy->min_freq_req + 1;
1393
1394		ret = freq_qos_add_request(&policy->constraints,
1395					   policy->max_freq_req, FREQ_QOS_MAX,
1396					   policy->max);
1397		if (ret < 0) {
1398			policy->max_freq_req = NULL;
1399			goto out_destroy_policy;
1400		}
1401
1402		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1403				CPUFREQ_CREATE_POLICY, policy);
1404	}
1405
1406	if (cpufreq_driver->get && has_target()) {
1407		policy->cur = cpufreq_driver->get(policy->cpu);
1408		if (!policy->cur) {
1409			pr_err("%s: ->get() failed\n", __func__);
1410			goto out_destroy_policy;
 
 
 
 
 
 
 
 
 
 
 
 
1411		}
1412	}
 
 
 
1413
1414	/*
1415	 * Sometimes boot loaders set CPU frequency to a value outside of
1416	 * frequency table present with cpufreq core. In such cases CPU might be
1417	 * unstable if it has to run on that frequency for long duration of time
1418	 * and so its better to set it to a frequency which is specified in
1419	 * freq-table. This also makes cpufreq stats inconsistent as
1420	 * cpufreq-stats would fail to register because current frequency of CPU
1421	 * isn't found in freq-table.
1422	 *
1423	 * Because we don't want this change to effect boot process badly, we go
1424	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1425	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1426	 * is initialized to zero).
1427	 *
1428	 * We are passing target-freq as "policy->cur - 1" otherwise
1429	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1430	 * equal to target-freq.
1431	 */
1432	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1433	    && has_target()) {
1434		/* Are we running at unknown frequency ? */
1435		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1436		if (ret == -EINVAL) {
1437			/* Warn user and fix it */
1438			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1439				__func__, policy->cpu, policy->cur);
1440			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1441				CPUFREQ_RELATION_L);
1442
1443			/*
1444			 * Reaching here after boot in a few seconds may not
1445			 * mean that system will remain stable at "unknown"
1446			 * frequency for longer duration. Hence, a BUG_ON().
1447			 */
1448			BUG_ON(ret);
1449			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1450				__func__, policy->cpu, policy->cur);
1451		}
1452	}
1453
1454	if (new_policy) {
1455		ret = cpufreq_add_dev_interface(policy);
1456		if (ret)
1457			goto out_destroy_policy;
 
 
 
1458
1459		cpufreq_stats_create_table(policy);
 
 
 
1460
1461		write_lock_irqsave(&cpufreq_driver_lock, flags);
1462		list_add(&policy->policy_list, &cpufreq_policy_list);
1463		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
1464	}
 
1465
1466	ret = cpufreq_init_policy(policy);
1467	if (ret) {
1468		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1469		       __func__, cpu, ret);
1470		goto out_destroy_policy;
1471	}
1472
1473	up_write(&policy->rwsem);
1474
1475	kobject_uevent(&policy->kobj, KOBJ_ADD);
1476
1477	/* Callback for handling stuff after policy is ready */
1478	if (cpufreq_driver->ready)
1479		cpufreq_driver->ready(policy);
1480
1481	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1482		policy->cdev = of_cpufreq_cooling_register(policy);
1483
1484	pr_debug("initialization complete\n");
1485
1486	return 0;
1487
1488out_destroy_policy:
1489	for_each_cpu(j, policy->real_cpus)
1490		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1491
1492	up_write(&policy->rwsem);
1493
1494out_exit_policy:
1495	if (cpufreq_driver->exit)
1496		cpufreq_driver->exit(policy);
1497
1498out_free_policy:
1499	cpufreq_policy_free(policy);
1500	return ret;
1501}
1502
1503/**
1504 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1505 * @dev: CPU device.
1506 * @sif: Subsystem interface structure pointer (not used)
1507 */
1508static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1509{
1510	struct cpufreq_policy *policy;
1511	unsigned cpu = dev->id;
1512	int ret;
1513
1514	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1515
1516	if (cpu_online(cpu)) {
1517		ret = cpufreq_online(cpu);
1518		if (ret)
1519			return ret;
1520	}
1521
1522	/* Create sysfs link on CPU registration */
1523	policy = per_cpu(cpufreq_cpu_data, cpu);
1524	if (policy)
1525		add_cpu_dev_symlink(policy, cpu);
1526
1527	return 0;
1528}
1529
1530static int cpufreq_offline(unsigned int cpu)
1531{
1532	struct cpufreq_policy *policy;
1533	int ret;
1534
1535	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1536
1537	policy = cpufreq_cpu_get_raw(cpu);
1538	if (!policy) {
1539		pr_debug("%s: No cpu_data found\n", __func__);
1540		return 0;
1541	}
1542
1543	down_write(&policy->rwsem);
1544	if (has_target())
1545		cpufreq_stop_governor(policy);
1546
1547	cpumask_clear_cpu(cpu, policy->cpus);
1548
1549	if (policy_is_inactive(policy)) {
1550		if (has_target())
1551			strncpy(policy->last_governor, policy->governor->name,
1552				CPUFREQ_NAME_LEN);
1553		else
1554			policy->last_policy = policy->policy;
1555	} else if (cpu == policy->cpu) {
1556		/* Nominate new CPU */
1557		policy->cpu = cpumask_any(policy->cpus);
1558	}
1559
1560	/* Start governor again for active policy */
1561	if (!policy_is_inactive(policy)) {
1562		if (has_target()) {
1563			ret = cpufreq_start_governor(policy);
1564			if (ret)
1565				pr_err("%s: Failed to start governor\n", __func__);
1566		}
1567
1568		goto unlock;
1569	}
 
1570
1571	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1572		cpufreq_cooling_unregister(policy->cdev);
1573		policy->cdev = NULL;
1574	}
1575
1576	if (cpufreq_driver->stop_cpu)
1577		cpufreq_driver->stop_cpu(policy);
1578
1579	if (has_target())
1580		cpufreq_exit_governor(policy);
1581
1582	/*
1583	 * Perform the ->offline() during light-weight tear-down, as
1584	 * that allows fast recovery when the CPU comes back.
1585	 */
1586	if (cpufreq_driver->offline) {
1587		cpufreq_driver->offline(policy);
1588	} else if (cpufreq_driver->exit) {
1589		cpufreq_driver->exit(policy);
1590		policy->freq_table = NULL;
1591	}
1592
1593unlock:
1594	up_write(&policy->rwsem);
1595	return 0;
1596}
1597
1598/**
1599 * cpufreq_remove_dev - remove a CPU device
1600 *
1601 * Removes the cpufreq interface for a CPU device.
1602 */
1603static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1604{
1605	unsigned int cpu = dev->id;
1606	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1607
1608	if (!policy)
1609		return;
1610
1611	if (cpu_online(cpu))
1612		cpufreq_offline(cpu);
1613
1614	cpumask_clear_cpu(cpu, policy->real_cpus);
1615	remove_cpu_dev_symlink(policy, dev);
1616
1617	if (cpumask_empty(policy->real_cpus)) {
1618		/* We did light-weight exit earlier, do full tear down now */
1619		if (cpufreq_driver->offline)
1620			cpufreq_driver->exit(policy);
1621
1622		cpufreq_policy_free(policy);
1623	}
1624}
1625
1626/**
1627 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1628 *	in deep trouble.
1629 *	@policy: policy managing CPUs
1630 *	@new_freq: CPU frequency the CPU actually runs at
1631 *
1632 *	We adjust to current frequency first, and need to clean up later.
1633 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1634 */
1635static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1636				unsigned int new_freq)
1637{
1638	struct cpufreq_freqs freqs;
1639
1640	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1641		 policy->cur, new_freq);
1642
1643	freqs.old = policy->cur;
 
1644	freqs.new = new_freq;
1645
1646	cpufreq_freq_transition_begin(policy, &freqs);
1647	cpufreq_freq_transition_end(policy, &freqs, 0);
1648}
1649
1650static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1651{
1652	unsigned int new_freq;
1653
1654	new_freq = cpufreq_driver->get(policy->cpu);
1655	if (!new_freq)
1656		return 0;
1657
1658	/*
1659	 * If fast frequency switching is used with the given policy, the check
1660	 * against policy->cur is pointless, so skip it in that case.
1661	 */
1662	if (policy->fast_switch_enabled || !has_target())
1663		return new_freq;
1664
1665	if (policy->cur != new_freq) {
1666		cpufreq_out_of_sync(policy, new_freq);
1667		if (update)
1668			schedule_work(&policy->update);
1669	}
1670
1671	return new_freq;
1672}
1673
1674/**
1675 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1676 * @cpu: CPU number
1677 *
1678 * This is the last known freq, without actually getting it from the driver.
1679 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1680 */
1681unsigned int cpufreq_quick_get(unsigned int cpu)
1682{
1683	struct cpufreq_policy *policy;
1684	unsigned int ret_freq = 0;
1685	unsigned long flags;
1686
1687	read_lock_irqsave(&cpufreq_driver_lock, flags);
1688
1689	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1690		ret_freq = cpufreq_driver->get(cpu);
1691		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1692		return ret_freq;
1693	}
1694
1695	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1696
1697	policy = cpufreq_cpu_get(cpu);
1698	if (policy) {
1699		ret_freq = policy->cur;
1700		cpufreq_cpu_put(policy);
1701	}
1702
1703	return ret_freq;
1704}
1705EXPORT_SYMBOL(cpufreq_quick_get);
1706
1707/**
1708 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1709 * @cpu: CPU number
1710 *
1711 * Just return the max possible frequency for a given CPU.
1712 */
1713unsigned int cpufreq_quick_get_max(unsigned int cpu)
1714{
1715	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1716	unsigned int ret_freq = 0;
1717
1718	if (policy) {
1719		ret_freq = policy->max;
1720		cpufreq_cpu_put(policy);
1721	}
1722
1723	return ret_freq;
1724}
1725EXPORT_SYMBOL(cpufreq_quick_get_max);
1726
1727static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
 
1728{
1729	if (unlikely(policy_is_inactive(policy)))
1730		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731
1732	return cpufreq_verify_current_freq(policy, true);
1733}
1734
1735/**
1736 * cpufreq_get - get the current CPU frequency (in kHz)
1737 * @cpu: CPU number
1738 *
1739 * Get the CPU current (static) CPU frequency
1740 */
1741unsigned int cpufreq_get(unsigned int cpu)
1742{
 
1743	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1744	unsigned int ret_freq = 0;
1745
1746	if (policy) {
1747		down_read(&policy->rwsem);
1748		if (cpufreq_driver->get)
1749			ret_freq = __cpufreq_get(policy);
1750		up_read(&policy->rwsem);
 
 
1751
1752		cpufreq_cpu_put(policy);
1753	}
1754
 
 
 
1755	return ret_freq;
1756}
1757EXPORT_SYMBOL(cpufreq_get);
1758
1759static struct subsys_interface cpufreq_interface = {
1760	.name		= "cpufreq",
1761	.subsys		= &cpu_subsys,
1762	.add_dev	= cpufreq_add_dev,
1763	.remove_dev	= cpufreq_remove_dev,
1764};
1765
1766/*
1767 * In case platform wants some specific frequency to be configured
1768 * during suspend..
1769 */
1770int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1771{
1772	int ret;
1773
1774	if (!policy->suspend_freq) {
1775		pr_debug("%s: suspend_freq not defined\n", __func__);
1776		return 0;
1777	}
1778
1779	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1780			policy->suspend_freq);
1781
1782	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1783			CPUFREQ_RELATION_H);
1784	if (ret)
1785		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1786				__func__, policy->suspend_freq, ret);
1787
1788	return ret;
1789}
1790EXPORT_SYMBOL(cpufreq_generic_suspend);
1791
1792/**
1793 * cpufreq_suspend() - Suspend CPUFreq governors
1794 *
1795 * Called during system wide Suspend/Hibernate cycles for suspending governors
1796 * as some platforms can't change frequency after this point in suspend cycle.
1797 * Because some of the devices (like: i2c, regulators, etc) they use for
1798 * changing frequency are suspended quickly after this point.
1799 */
1800void cpufreq_suspend(void)
1801{
1802	struct cpufreq_policy *policy;
1803
1804	if (!cpufreq_driver)
1805		return;
1806
1807	if (!has_target() && !cpufreq_driver->suspend)
1808		goto suspend;
1809
1810	pr_debug("%s: Suspending Governors\n", __func__);
 
 
 
1811
1812	for_each_active_policy(policy) {
1813		if (has_target()) {
1814			down_write(&policy->rwsem);
1815			cpufreq_stop_governor(policy);
1816			up_write(&policy->rwsem);
1817		}
1818
1819		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1820			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1821				cpufreq_driver->name);
1822	}
1823
1824suspend:
1825	cpufreq_suspended = true;
1826}
1827
1828/**
1829 * cpufreq_resume() - Resume CPUFreq governors
1830 *
1831 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1832 * are suspended with cpufreq_suspend().
 
 
 
 
 
 
 
1833 */
1834void cpufreq_resume(void)
1835{
1836	struct cpufreq_policy *policy;
1837	int ret;
1838
1839	if (!cpufreq_driver)
1840		return;
1841
1842	if (unlikely(!cpufreq_suspended))
1843		return;
1844
1845	cpufreq_suspended = false;
1846
1847	if (!has_target() && !cpufreq_driver->resume)
1848		return;
1849
1850	pr_debug("%s: Resuming Governors\n", __func__);
1851
1852	for_each_active_policy(policy) {
1853		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1854			pr_err("%s: Failed to resume driver: %p\n", __func__,
1855				policy);
1856		} else if (has_target()) {
1857			down_write(&policy->rwsem);
1858			ret = cpufreq_start_governor(policy);
1859			up_write(&policy->rwsem);
1860
1861			if (ret)
1862				pr_err("%s: Failed to start governor for policy: %p\n",
1863				       __func__, policy);
1864		}
1865	}
1866}
1867
1868/**
1869 *	cpufreq_get_current_driver - return current driver's name
1870 *
1871 *	Return the name string of the currently loaded cpufreq driver
1872 *	or NULL, if none.
1873 */
1874const char *cpufreq_get_current_driver(void)
1875{
1876	if (cpufreq_driver)
1877		return cpufreq_driver->name;
1878
1879	return NULL;
 
1880}
1881EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1882
1883/**
1884 *	cpufreq_get_driver_data - return current driver data
1885 *
1886 *	Return the private data of the currently loaded cpufreq
1887 *	driver, or NULL if no cpufreq driver is loaded.
1888 */
1889void *cpufreq_get_driver_data(void)
1890{
1891	if (cpufreq_driver)
1892		return cpufreq_driver->driver_data;
1893
1894	return NULL;
1895}
1896EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1897
1898/*********************************************************************
1899 *                     NOTIFIER LISTS INTERFACE                      *
1900 *********************************************************************/
1901
1902/**
1903 *	cpufreq_register_notifier - register a driver with cpufreq
1904 *	@nb: notifier function to register
1905 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1906 *
1907 *	Add a driver to one of two lists: either a list of drivers that
1908 *      are notified about clock rate changes (once before and once after
1909 *      the transition), or a list of drivers that are notified about
1910 *      changes in cpufreq policy.
1911 *
1912 *	This function may sleep, and has the same return conditions as
1913 *	blocking_notifier_chain_register.
1914 */
1915int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1916{
1917	int ret;
1918
1919	if (cpufreq_disabled())
1920		return -EINVAL;
1921
1922	switch (list) {
1923	case CPUFREQ_TRANSITION_NOTIFIER:
1924		mutex_lock(&cpufreq_fast_switch_lock);
1925
1926		if (cpufreq_fast_switch_count > 0) {
1927			mutex_unlock(&cpufreq_fast_switch_lock);
1928			return -EBUSY;
1929		}
1930		ret = srcu_notifier_chain_register(
1931				&cpufreq_transition_notifier_list, nb);
1932		if (!ret)
1933			cpufreq_fast_switch_count--;
1934
1935		mutex_unlock(&cpufreq_fast_switch_lock);
1936		break;
1937	case CPUFREQ_POLICY_NOTIFIER:
1938		ret = blocking_notifier_chain_register(
1939				&cpufreq_policy_notifier_list, nb);
1940		break;
1941	default:
1942		ret = -EINVAL;
1943	}
1944
1945	return ret;
1946}
1947EXPORT_SYMBOL(cpufreq_register_notifier);
1948
 
1949/**
1950 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1951 *	@nb: notifier block to be unregistered
1952 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1953 *
1954 *	Remove a driver from the CPU frequency notifier list.
1955 *
1956 *	This function may sleep, and has the same return conditions as
1957 *	blocking_notifier_chain_unregister.
1958 */
1959int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1960{
1961	int ret;
1962
1963	if (cpufreq_disabled())
1964		return -EINVAL;
1965
1966	switch (list) {
1967	case CPUFREQ_TRANSITION_NOTIFIER:
1968		mutex_lock(&cpufreq_fast_switch_lock);
1969
1970		ret = srcu_notifier_chain_unregister(
1971				&cpufreq_transition_notifier_list, nb);
1972		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1973			cpufreq_fast_switch_count++;
1974
1975		mutex_unlock(&cpufreq_fast_switch_lock);
1976		break;
1977	case CPUFREQ_POLICY_NOTIFIER:
1978		ret = blocking_notifier_chain_unregister(
1979				&cpufreq_policy_notifier_list, nb);
1980		break;
1981	default:
1982		ret = -EINVAL;
1983	}
1984
1985	return ret;
1986}
1987EXPORT_SYMBOL(cpufreq_unregister_notifier);
1988
1989
1990/*********************************************************************
1991 *                              GOVERNORS                            *
1992 *********************************************************************/
1993
1994/**
1995 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1996 * @policy: cpufreq policy to switch the frequency for.
1997 * @target_freq: New frequency to set (may be approximate).
1998 *
1999 * Carry out a fast frequency switch without sleeping.
2000 *
2001 * The driver's ->fast_switch() callback invoked by this function must be
2002 * suitable for being called from within RCU-sched read-side critical sections
2003 * and it is expected to select the minimum available frequency greater than or
2004 * equal to @target_freq (CPUFREQ_RELATION_L).
2005 *
2006 * This function must not be called if policy->fast_switch_enabled is unset.
2007 *
2008 * Governors calling this function must guarantee that it will never be invoked
2009 * twice in parallel for the same policy and that it will never be called in
2010 * parallel with either ->target() or ->target_index() for the same policy.
2011 *
2012 * Returns the actual frequency set for the CPU.
2013 *
2014 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2015 * error condition, the hardware configuration must be preserved.
2016 */
2017unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2018					unsigned int target_freq)
2019{
2020	target_freq = clamp_val(target_freq, policy->min, policy->max);
2021
2022	return cpufreq_driver->fast_switch(policy, target_freq);
2023}
2024EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2025
2026/* Must set freqs->new to intermediate frequency */
2027static int __target_intermediate(struct cpufreq_policy *policy,
2028				 struct cpufreq_freqs *freqs, int index)
2029{
2030	int ret;
2031
2032	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2033
2034	/* We don't need to switch to intermediate freq */
2035	if (!freqs->new)
2036		return 0;
2037
2038	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2039		 __func__, policy->cpu, freqs->old, freqs->new);
2040
2041	cpufreq_freq_transition_begin(policy, freqs);
2042	ret = cpufreq_driver->target_intermediate(policy, index);
2043	cpufreq_freq_transition_end(policy, freqs, ret);
2044
2045	if (ret)
2046		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2047		       __func__, ret);
2048
2049	return ret;
2050}
2051
2052static int __target_index(struct cpufreq_policy *policy, int index)
2053{
2054	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2055	unsigned int intermediate_freq = 0;
2056	unsigned int newfreq = policy->freq_table[index].frequency;
2057	int retval = -EINVAL;
2058	bool notify;
2059
2060	if (newfreq == policy->cur)
2061		return 0;
2062
2063	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2064	if (notify) {
2065		/* Handle switching to intermediate frequency */
2066		if (cpufreq_driver->get_intermediate) {
2067			retval = __target_intermediate(policy, &freqs, index);
2068			if (retval)
2069				return retval;
2070
2071			intermediate_freq = freqs.new;
2072			/* Set old freq to intermediate */
2073			if (intermediate_freq)
2074				freqs.old = freqs.new;
2075		}
2076
2077		freqs.new = newfreq;
2078		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2079			 __func__, policy->cpu, freqs.old, freqs.new);
2080
2081		cpufreq_freq_transition_begin(policy, &freqs);
2082	}
2083
2084	retval = cpufreq_driver->target_index(policy, index);
2085	if (retval)
2086		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2087		       retval);
2088
2089	if (notify) {
2090		cpufreq_freq_transition_end(policy, &freqs, retval);
2091
2092		/*
2093		 * Failed after setting to intermediate freq? Driver should have
2094		 * reverted back to initial frequency and so should we. Check
2095		 * here for intermediate_freq instead of get_intermediate, in
2096		 * case we haven't switched to intermediate freq at all.
2097		 */
2098		if (unlikely(retval && intermediate_freq)) {
2099			freqs.old = intermediate_freq;
2100			freqs.new = policy->restore_freq;
2101			cpufreq_freq_transition_begin(policy, &freqs);
2102			cpufreq_freq_transition_end(policy, &freqs, 0);
2103		}
2104	}
2105
2106	return retval;
2107}
2108
2109int __cpufreq_driver_target(struct cpufreq_policy *policy,
2110			    unsigned int target_freq,
2111			    unsigned int relation)
2112{
2113	unsigned int old_target_freq = target_freq;
2114	int index;
2115
2116	if (cpufreq_disabled())
2117		return -ENODEV;
 
 
2118
2119	/* Make sure that target_freq is within supported range */
2120	target_freq = clamp_val(target_freq, policy->min, policy->max);
2121
2122	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2123		 policy->cpu, target_freq, relation, old_target_freq);
2124
2125	/*
2126	 * This might look like a redundant call as we are checking it again
2127	 * after finding index. But it is left intentionally for cases where
2128	 * exactly same freq is called again and so we can save on few function
2129	 * calls.
2130	 */
2131	if (target_freq == policy->cur)
2132		return 0;
2133
2134	/* Save last value to restore later on errors */
2135	policy->restore_freq = policy->cur;
2136
2137	if (cpufreq_driver->target)
2138		return cpufreq_driver->target(policy, target_freq, relation);
2139
2140	if (!cpufreq_driver->target_index)
2141		return -EINVAL;
2142
2143	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2144
2145	return __target_index(policy, index);
2146}
2147EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2148
2149int cpufreq_driver_target(struct cpufreq_policy *policy,
2150			  unsigned int target_freq,
2151			  unsigned int relation)
2152{
2153	int ret;
 
 
 
 
2154
2155	down_write(&policy->rwsem);
 
2156
2157	ret = __cpufreq_driver_target(policy, target_freq, relation);
2158
2159	up_write(&policy->rwsem);
2160
 
 
 
2161	return ret;
2162}
2163EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2164
2165__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2166{
2167	return NULL;
2168}
2169
2170static int cpufreq_init_governor(struct cpufreq_policy *policy)
2171{
2172	int ret;
2173
2174	/* Don't start any governor operations if we are entering suspend */
2175	if (cpufreq_suspended)
2176		return 0;
2177	/*
2178	 * Governor might not be initiated here if ACPI _PPC changed
2179	 * notification happened, so check it.
2180	 */
2181	if (!policy->governor)
2182		return -EINVAL;
2183
2184	/* Platform doesn't want dynamic frequency switching ? */
2185	if (policy->governor->dynamic_switching &&
2186	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2187		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2188
2189		if (gov) {
2190			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2191				policy->governor->name, gov->name);
2192			policy->governor = gov;
2193		} else {
2194			return -EINVAL;
2195		}
2196	}
2197
2198	if (!try_module_get(policy->governor->owner))
2199		return -EINVAL;
2200
2201	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2202
2203	if (policy->governor->init) {
2204		ret = policy->governor->init(policy);
2205		if (ret) {
2206			module_put(policy->governor->owner);
2207			return ret;
2208		}
2209	}
2210
2211	return 0;
2212}
 
2213
2214static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2215{
2216	if (cpufreq_suspended || !policy->governor)
2217		return;
2218
2219	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2220
2221	if (policy->governor->exit)
2222		policy->governor->exit(policy);
2223
2224	module_put(policy->governor->owner);
2225}
2226
2227static int cpufreq_start_governor(struct cpufreq_policy *policy)
2228{
2229	int ret;
2230
2231	if (cpufreq_suspended)
2232		return 0;
 
 
 
 
 
 
 
2233
2234	if (!policy->governor)
2235		return -EINVAL;
2236
2237	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2238
2239	if (cpufreq_driver->get)
2240		cpufreq_verify_current_freq(policy, false);
2241
2242	if (policy->governor->start) {
2243		ret = policy->governor->start(policy);
2244		if (ret)
2245			return ret;
 
2246	}
2247
2248	if (policy->governor->limits)
2249		policy->governor->limits(policy);
2250
2251	return 0;
2252}
2253
2254static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2255{
2256	if (cpufreq_suspended || !policy->governor)
2257		return;
 
 
 
 
 
 
2258
2259	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2260
2261	if (policy->governor->stop)
2262		policy->governor->stop(policy);
2263}
2264
2265static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2266{
2267	if (cpufreq_suspended || !policy->governor)
2268		return;
2269
2270	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2271
2272	if (policy->governor->limits)
2273		policy->governor->limits(policy);
2274}
2275
2276int cpufreq_register_governor(struct cpufreq_governor *governor)
2277{
2278	int err;
2279
2280	if (!governor)
2281		return -EINVAL;
2282
2283	if (cpufreq_disabled())
2284		return -ENODEV;
2285
2286	mutex_lock(&cpufreq_governor_mutex);
2287
2288	err = -EBUSY;
2289	if (!find_governor(governor->name)) {
2290		err = 0;
2291		list_add(&governor->governor_list, &cpufreq_governor_list);
2292	}
2293
2294	mutex_unlock(&cpufreq_governor_mutex);
2295	return err;
2296}
2297EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2298
 
2299void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2300{
2301	struct cpufreq_policy *policy;
2302	unsigned long flags;
 
2303
2304	if (!governor)
2305		return;
2306
2307	if (cpufreq_disabled())
2308		return;
2309
2310	/* clear last_governor for all inactive policies */
2311	read_lock_irqsave(&cpufreq_driver_lock, flags);
2312	for_each_inactive_policy(policy) {
2313		if (!strcmp(policy->last_governor, governor->name)) {
2314			policy->governor = NULL;
2315			strcpy(policy->last_governor, "\0");
2316		}
2317	}
2318	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2319
2320	mutex_lock(&cpufreq_governor_mutex);
2321	list_del(&governor->governor_list);
2322	mutex_unlock(&cpufreq_governor_mutex);
 
2323}
2324EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2325
2326
 
2327/*********************************************************************
2328 *                          POLICY INTERFACE                         *
2329 *********************************************************************/
2330
2331/**
2332 * cpufreq_get_policy - get the current cpufreq_policy
2333 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2334 *	is written
2335 *
2336 * Reads the current cpufreq policy.
2337 */
2338int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2339{
2340	struct cpufreq_policy *cpu_policy;
2341	if (!policy)
2342		return -EINVAL;
2343
2344	cpu_policy = cpufreq_cpu_get(cpu);
2345	if (!cpu_policy)
2346		return -EINVAL;
2347
2348	memcpy(policy, cpu_policy, sizeof(*policy));
2349
2350	cpufreq_cpu_put(cpu_policy);
2351	return 0;
2352}
2353EXPORT_SYMBOL(cpufreq_get_policy);
2354
2355/**
2356 * cpufreq_set_policy - Modify cpufreq policy parameters.
2357 * @policy: Policy object to modify.
2358 * @new_policy: New policy data.
2359 *
2360 * Pass @new_policy to the cpufreq driver's ->verify() callback. Next, copy the
2361 * min and max parameters of @new_policy to @policy and either invoke the
2362 * driver's ->setpolicy() callback (if present) or carry out a governor update
2363 * for @policy.  That is, run the current governor's ->limits() callback (if the
2364 * governor field in @new_policy points to the same object as the one in
2365 * @policy) or replace the governor for @policy with the new one stored in
2366 * @new_policy.
2367 *
2368 * The cpuinfo part of @policy is not updated by this function.
2369 */
2370int cpufreq_set_policy(struct cpufreq_policy *policy,
2371		       struct cpufreq_policy *new_policy)
2372{
2373	struct cpufreq_governor *old_gov;
2374	int ret;
2375
2376	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2377		 new_policy->cpu, new_policy->min, new_policy->max);
2378
2379	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
 
2380
2381	/*
2382	 * PM QoS framework collects all the requests from users and provide us
2383	 * the final aggregated value here.
2384	 */
2385	new_policy->min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2386	new_policy->max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2387
2388	/* verify the cpu speed can be set within this limit */
2389	ret = cpufreq_driver->verify(new_policy);
2390	if (ret)
2391		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2392
2393	policy->min = new_policy->min;
2394	policy->max = new_policy->max;
2395	trace_cpu_frequency_limits(policy);
2396
2397	policy->cached_target_freq = UINT_MAX;
 
2398
2399	pr_debug("new min and max freqs are %u - %u kHz\n",
2400		 policy->min, policy->max);
2401
2402	if (cpufreq_driver->setpolicy) {
2403		policy->policy = new_policy->policy;
2404		pr_debug("setting range\n");
2405		return cpufreq_driver->setpolicy(policy);
2406	}
2407
2408	if (new_policy->governor == policy->governor) {
2409		pr_debug("governor limits update\n");
2410		cpufreq_governor_limits(policy);
2411		return 0;
2412	}
2413
2414	pr_debug("governor switch\n");
2415
2416	/* save old, working values */
2417	old_gov = policy->governor;
2418	/* end old governor */
2419	if (old_gov) {
2420		cpufreq_stop_governor(policy);
2421		cpufreq_exit_governor(policy);
2422	}
2423
2424	/* start new governor */
2425	policy->governor = new_policy->governor;
2426	ret = cpufreq_init_governor(policy);
2427	if (!ret) {
2428		ret = cpufreq_start_governor(policy);
2429		if (!ret) {
2430			pr_debug("governor change\n");
2431			sched_cpufreq_governor_change(policy, old_gov);
2432			return 0;
2433		}
2434		cpufreq_exit_governor(policy);
2435	}
2436
2437	/* new governor failed, so re-start old one */
2438	pr_debug("starting governor %s failed\n", policy->governor->name);
2439	if (old_gov) {
2440		policy->governor = old_gov;
2441		if (cpufreq_init_governor(policy))
2442			policy->governor = NULL;
2443		else
2444			cpufreq_start_governor(policy);
2445	}
2446
 
2447	return ret;
2448}
2449
2450/**
2451 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2452 * @cpu: CPU to re-evaluate the policy for.
2453 *
2454 * Update the current frequency for the cpufreq policy of @cpu and use
2455 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2456 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2457 * for the policy in question, among other things.
2458 */
2459void cpufreq_update_policy(unsigned int cpu)
2460{
2461	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
 
 
2462
2463	if (!policy)
2464		return;
 
 
2465
2466	/*
2467	 * BIOS might change freq behind our back
2468	 * -> ask driver for current freq and notify governors about a change
2469	 */
2470	if (cpufreq_driver->get && has_target() &&
2471	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2472		goto unlock;
2473
2474	refresh_frequency_limits(policy);
 
 
 
 
 
2475
2476unlock:
2477	cpufreq_cpu_release(policy);
2478}
2479EXPORT_SYMBOL(cpufreq_update_policy);
2480
2481/**
2482 * cpufreq_update_limits - Update policy limits for a given CPU.
2483 * @cpu: CPU to update the policy limits for.
2484 *
2485 * Invoke the driver's ->update_limits callback if present or call
2486 * cpufreq_update_policy() for @cpu.
2487 */
2488void cpufreq_update_limits(unsigned int cpu)
2489{
2490	if (cpufreq_driver->update_limits)
2491		cpufreq_driver->update_limits(cpu);
2492	else
2493		cpufreq_update_policy(cpu);
2494}
2495EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2496
2497/*********************************************************************
2498 *               BOOST						     *
2499 *********************************************************************/
2500static int cpufreq_boost_set_sw(int state)
2501{
2502	struct cpufreq_policy *policy;
2503	int ret = -EINVAL;
2504
2505	for_each_active_policy(policy) {
2506		if (!policy->freq_table)
2507			continue;
2508
2509		ret = cpufreq_frequency_table_cpuinfo(policy,
2510						      policy->freq_table);
2511		if (ret) {
2512			pr_err("%s: Policy frequency update failed\n",
2513			       __func__);
2514			break;
2515		}
2516
2517		ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2518		if (ret < 0)
2519			break;
2520	}
2521
2522	return ret;
2523}
2524
2525int cpufreq_boost_trigger_state(int state)
2526{
2527	unsigned long flags;
2528	int ret = 0;
2529
2530	if (cpufreq_driver->boost_enabled == state)
2531		return 0;
2532
2533	write_lock_irqsave(&cpufreq_driver_lock, flags);
2534	cpufreq_driver->boost_enabled = state;
2535	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2536
2537	ret = cpufreq_driver->set_boost(state);
2538	if (ret) {
2539		write_lock_irqsave(&cpufreq_driver_lock, flags);
2540		cpufreq_driver->boost_enabled = !state;
2541		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2542
2543		pr_err("%s: Cannot %s BOOST\n",
2544		       __func__, state ? "enable" : "disable");
2545	}
2546
 
 
 
2547	return ret;
2548}
 
2549
2550static bool cpufreq_boost_supported(void)
 
2551{
2552	return cpufreq_driver->set_boost;
2553}
2554
2555static int create_boost_sysfs_file(void)
2556{
2557	int ret;
 
 
 
 
 
 
 
 
2558
2559	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2560	if (ret)
2561		pr_err("%s: cannot register global BOOST sysfs file\n",
2562		       __func__);
2563
2564	return ret;
 
 
 
2565}
2566
2567static void remove_boost_sysfs_file(void)
2568{
2569	if (cpufreq_boost_supported())
2570		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2571}
2572
2573int cpufreq_enable_boost_support(void)
2574{
2575	if (!cpufreq_driver)
2576		return -EINVAL;
2577
2578	if (cpufreq_boost_supported())
2579		return 0;
2580
2581	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2582
2583	/* This will get removed on driver unregister */
2584	return create_boost_sysfs_file();
2585}
2586EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2587
2588int cpufreq_boost_enabled(void)
2589{
2590	return cpufreq_driver->boost_enabled;
2591}
2592EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2593
2594/*********************************************************************
2595 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2596 *********************************************************************/
2597static enum cpuhp_state hp_online;
2598
2599static int cpuhp_cpufreq_online(unsigned int cpu)
2600{
2601	cpufreq_online(cpu);
2602
2603	return 0;
2604}
2605
2606static int cpuhp_cpufreq_offline(unsigned int cpu)
2607{
2608	cpufreq_offline(cpu);
2609
2610	return 0;
2611}
2612
2613/**
2614 * cpufreq_register_driver - register a CPU Frequency driver
2615 * @driver_data: A struct cpufreq_driver containing the values#
2616 * submitted by the CPU Frequency driver.
2617 *
2618 * Registers a CPU Frequency driver to this core code. This code
2619 * returns zero on success, -EEXIST when another driver got here first
2620 * (and isn't unregistered in the meantime).
2621 *
2622 */
2623int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2624{
2625	unsigned long flags;
2626	int ret;
2627
2628	if (cpufreq_disabled())
2629		return -ENODEV;
2630
2631	if (!driver_data || !driver_data->verify || !driver_data->init ||
2632	    !(driver_data->setpolicy || driver_data->target_index ||
2633		    driver_data->target) ||
2634	     (driver_data->setpolicy && (driver_data->target_index ||
2635		    driver_data->target)) ||
2636	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2637	     (!driver_data->online != !driver_data->offline))
2638		return -EINVAL;
2639
2640	pr_debug("trying to register driver %s\n", driver_data->name);
2641
2642	/* Protect against concurrent CPU online/offline. */
2643	cpus_read_lock();
2644
2645	write_lock_irqsave(&cpufreq_driver_lock, flags);
2646	if (cpufreq_driver) {
2647		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2648		ret = -EEXIST;
2649		goto out;
2650	}
2651	cpufreq_driver = driver_data;
2652	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2653
2654	if (driver_data->setpolicy)
2655		driver_data->flags |= CPUFREQ_CONST_LOOPS;
 
 
2656
2657	if (cpufreq_boost_supported()) {
2658		ret = create_boost_sysfs_file();
2659		if (ret)
2660			goto err_null_driver;
2661	}
2662
2663	ret = subsys_interface_register(&cpufreq_interface);
2664	if (ret)
2665		goto err_boost_unreg;
 
 
 
2666
2667	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2668	    list_empty(&cpufreq_policy_list)) {
2669		/* if all ->init() calls failed, unregister */
2670		ret = -ENODEV;
2671		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2672			 driver_data->name);
2673		goto err_if_unreg;
 
2674	}
2675
2676	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2677						   "cpufreq:online",
2678						   cpuhp_cpufreq_online,
2679						   cpuhp_cpufreq_offline);
2680	if (ret < 0)
2681		goto err_if_unreg;
2682	hp_online = ret;
2683	ret = 0;
2684
2685	pr_debug("driver %s up and running\n", driver_data->name);
2686	goto out;
2687
2688err_if_unreg:
2689	subsys_interface_unregister(&cpufreq_interface);
2690err_boost_unreg:
2691	remove_boost_sysfs_file();
2692err_null_driver:
2693	write_lock_irqsave(&cpufreq_driver_lock, flags);
2694	cpufreq_driver = NULL;
2695	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2696out:
2697	cpus_read_unlock();
2698	return ret;
2699}
2700EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2701
 
2702/**
2703 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2704 *
2705 * Unregister the current CPUFreq driver. Only call this if you have
2706 * the right to do so, i.e. if you have succeeded in initialising before!
2707 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2708 * currently not initialised.
2709 */
2710int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2711{
2712	unsigned long flags;
2713
2714	if (!cpufreq_driver || (driver != cpufreq_driver))
2715		return -EINVAL;
2716
2717	pr_debug("unregistering driver %s\n", driver->name);
2718
2719	/* Protect against concurrent cpu hotplug */
2720	cpus_read_lock();
2721	subsys_interface_unregister(&cpufreq_interface);
2722	remove_boost_sysfs_file();
2723	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2724
2725	write_lock_irqsave(&cpufreq_driver_lock, flags);
2726
 
2727	cpufreq_driver = NULL;
2728
2729	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2730	cpus_read_unlock();
2731
2732	return 0;
2733}
2734EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2735
2736struct kobject *cpufreq_global_kobject;
2737EXPORT_SYMBOL(cpufreq_global_kobject);
2738
2739static int __init cpufreq_core_init(void)
2740{
2741	if (cpufreq_disabled())
2742		return -ENODEV;
 
 
 
 
2743
2744	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
 
2745	BUG_ON(!cpufreq_global_kobject);
 
2746
2747	return 0;
2748}
2749module_param(off, int, 0444);
2750core_initcall(cpufreq_core_init);