Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
 
   6 *
   7 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   8 *	Added handling for CPU hotplug
   9 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  10 *	Fix handling for CPU hotplug -- affected CPUs
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/init.h>
  21#include <linux/notifier.h>
  22#include <linux/cpufreq.h>
  23#include <linux/delay.h>
  24#include <linux/interrupt.h>
  25#include <linux/spinlock.h>
  26#include <linux/device.h>
  27#include <linux/slab.h>
  28#include <linux/cpu.h>
  29#include <linux/completion.h>
  30#include <linux/mutex.h>
 
 
  31#include <linux/syscore_ops.h>
  32
  33#include <trace/events/power.h>
  34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35/**
  36 * The "cpufreq driver" - the arch- or hardware-dependent low
  37 * level driver of CPUFreq support, and its spinlock. This lock
  38 * also protects the cpufreq_cpu_data array.
  39 */
  40static struct cpufreq_driver *cpufreq_driver;
  41static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  42#ifdef CONFIG_HOTPLUG_CPU
  43/* This one keeps track of the previously set governor of a removed CPU */
  44static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
  45#endif
  46static DEFINE_SPINLOCK(cpufreq_driver_lock);
  47
  48/*
  49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
  50 * all cpufreq/hotplug/workqueue/etc related lock issues.
  51 *
  52 * The rules for this semaphore:
  53 * - Any routine that wants to read from the policy structure will
  54 *   do a down_read on this semaphore.
  55 * - Any routine that will write to the policy structure and/or may take away
  56 *   the policy altogether (eg. CPU hotplug), will hold this lock in write
  57 *   mode before doing so.
  58 *
  59 * Additional rules:
  60 * - All holders of the lock should check to make sure that the CPU they
  61 *   are concerned with are online after they get the lock.
  62 * - Governor routines that can be called in cpufreq hotplug path should not
  63 *   take this sem as top level hotplug notifier handler takes this.
  64 * - Lock should not be held across
  65 *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
  66 */
  67static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
  68static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
  69
  70#define lock_policy_rwsem(mode, cpu)					\
  71static int lock_policy_rwsem_##mode					\
  72(int cpu)								\
  73{									\
  74	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);		\
  75	BUG_ON(policy_cpu == -1);					\
  76	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
  77	if (unlikely(!cpu_online(cpu))) {				\
  78		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
  79		return -1;						\
  80	}								\
  81									\
  82	return 0;							\
  83}
  84
  85lock_policy_rwsem(read, cpu);
 
  86
  87lock_policy_rwsem(write, cpu);
  88
  89static void unlock_policy_rwsem_read(int cpu)
  90{
  91	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  92	BUG_ON(policy_cpu == -1);
  93	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
  94}
  95
  96static void unlock_policy_rwsem_write(int cpu)
  97{
  98	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  99	BUG_ON(policy_cpu == -1);
 100	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
 101}
 102
 103
 104/* internal prototypes */
 105static int __cpufreq_governor(struct cpufreq_policy *policy,
 106		unsigned int event);
 107static unsigned int __cpufreq_get(unsigned int cpu);
 108static void handle_update(struct work_struct *work);
 
 
 109
 110/**
 111 * Two notifier lists: the "policy" list is involved in the
 112 * validation process for a new CPU frequency policy; the
 113 * "transition" list for kernel code that needs to handle
 114 * changes to devices when the CPU clock speed changes.
 115 * The mutex locks both lists.
 116 */
 117static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
 118static struct srcu_notifier_head cpufreq_transition_notifier_list;
 119
 120static bool init_cpufreq_transition_notifier_list_called;
 121static int __init init_cpufreq_transition_notifier_list(void)
 122{
 123	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
 124	init_cpufreq_transition_notifier_list_called = true;
 125	return 0;
 126}
 127pure_initcall(init_cpufreq_transition_notifier_list);
 128
 129static LIST_HEAD(cpufreq_governor_list);
 
 
 
 
 
 
 
 
 130static DEFINE_MUTEX(cpufreq_governor_mutex);
 131
 132struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 133{
 134	struct cpufreq_policy *data;
 135	unsigned long flags;
 
 136
 137	if (cpu >= nr_cpu_ids)
 138		goto err_out;
 
 
 
 
 
 
 139
 140	/* get the cpufreq driver */
 141	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 
 142
 143	if (!cpufreq_driver)
 144		goto err_out_unlock;
 145
 146	if (!try_module_get(cpufreq_driver->owner))
 147		goto err_out_unlock;
 
 
 
 
 148
 
 
 
 149
 150	/* get the CPU */
 151	data = per_cpu(cpufreq_cpu_data, cpu);
 152
 153	if (!data)
 154		goto err_out_put_module;
 
 155
 156	if (!kobject_get(&data->kobj))
 157		goto err_out_put_module;
 
 
 158
 159	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 160	return data;
 
 161
 162err_out_put_module:
 163	module_put(cpufreq_driver->owner);
 164err_out_unlock:
 165	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 166err_out:
 167	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168}
 169EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 170
 
 
 
 171
 172void cpufreq_cpu_put(struct cpufreq_policy *data)
 
 
 
 
 173{
 174	kobject_put(&data->kobj);
 175	module_put(cpufreq_driver->owner);
 
 
 
 
 
 
 
 176}
 177EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180/*********************************************************************
 181 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 182 *********************************************************************/
 183
 184/**
 185 * adjust_jiffies - adjust the system "loops_per_jiffy"
 186 *
 187 * This function alters the system "loops_per_jiffy" for the clock
 188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 189 * systems as each CPU might be scaled differently. So, use the arch
 190 * per-CPU loops_per_jiffy value wherever possible.
 191 */
 192#ifndef CONFIG_SMP
 193static unsigned long l_p_j_ref;
 194static unsigned int  l_p_j_ref_freq;
 195
 196static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 197{
 
 
 
 
 198	if (ci->flags & CPUFREQ_CONST_LOOPS)
 199		return;
 200
 201	if (!l_p_j_ref_freq) {
 202		l_p_j_ref = loops_per_jiffy;
 203		l_p_j_ref_freq = ci->old;
 204		pr_debug("saving %lu as reference value for loops_per_jiffy; "
 205			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
 206	}
 207	if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
 208	    (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
 209	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
 210		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 211								ci->new);
 212		pr_debug("scaling loops_per_jiffy to %lu "
 213			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
 214	}
 215}
 216#else
 217static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 218{
 219	return;
 220}
 221#endif
 
 222
 223
 224/**
 225 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 226 * on frequency transition.
 227 *
 228 * This function calls the transition notifiers and the "adjust_jiffies"
 229 * function. It is called twice on all CPU frequency changes that have
 230 * external effects.
 231 */
 232void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
 233{
 234	struct cpufreq_policy *policy;
 235
 236	BUG_ON(irqs_disabled());
 237
 
 
 
 238	freqs->flags = cpufreq_driver->flags;
 239	pr_debug("notification %u of frequency transition to %u kHz\n",
 240		state, freqs->new);
 241
 242	policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
 243	switch (state) {
 244
 245	case CPUFREQ_PRECHANGE:
 246		/* detect if the driver reported a value as "old frequency"
 247		 * which is not equal to what the cpufreq core thinks is
 248		 * "old frequency".
 249		 */
 250		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 251			if ((policy) && (policy->cpu == freqs->cpu) &&
 252			    (policy->cur) && (policy->cur != freqs->old)) {
 253				pr_debug("Warning: CPU frequency is"
 254					" %u, cpufreq assumed %u kHz.\n",
 255					freqs->old, policy->cur);
 256				freqs->old = policy->cur;
 257			}
 258		}
 259		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 260				CPUFREQ_PRECHANGE, freqs);
 261		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 262		break;
 263
 264	case CPUFREQ_POSTCHANGE:
 265		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 266		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
 267			(unsigned long)freqs->cpu);
 268		trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
 269		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 270		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 271				CPUFREQ_POSTCHANGE, freqs);
 272		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 273			policy->cur = freqs->new;
 274		break;
 275	}
 276}
 277EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
 278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280
 281/*********************************************************************
 282 *                          SYSFS INTERFACE                          *
 283 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285static struct cpufreq_governor *__find_governor(const char *str_governor)
 
 
 
 
 286{
 287	struct cpufreq_governor *t;
 288
 289	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 290		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 291			return t;
 292
 293	return NULL;
 294}
 295
 296/**
 297 * cpufreq_parse_governor - parse a governor string
 298 */
 299static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 300				struct cpufreq_governor **governor)
 301{
 302	int err = -EINVAL;
 303
 304	if (!cpufreq_driver)
 305		goto out;
 306
 307	if (cpufreq_driver->setpolicy) {
 308		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 309			*policy = CPUFREQ_POLICY_PERFORMANCE;
 310			err = 0;
 311		} else if (!strnicmp(str_governor, "powersave",
 312						CPUFREQ_NAME_LEN)) {
 313			*policy = CPUFREQ_POLICY_POWERSAVE;
 314			err = 0;
 315		}
 316	} else if (cpufreq_driver->target) {
 317		struct cpufreq_governor *t;
 318
 319		mutex_lock(&cpufreq_governor_mutex);
 320
 321		t = __find_governor(str_governor);
 322
 323		if (t == NULL) {
 324			int ret;
 325
 326			mutex_unlock(&cpufreq_governor_mutex);
 327			ret = request_module("cpufreq_%s", str_governor);
 328			mutex_lock(&cpufreq_governor_mutex);
 329
 330			if (ret == 0)
 331				t = __find_governor(str_governor);
 332		}
 333
 334		if (t != NULL) {
 335			*governor = t;
 336			err = 0;
 337		}
 338
 339		mutex_unlock(&cpufreq_governor_mutex);
 340	}
 341out:
 342	return err;
 343}
 344
 345
 346/**
 347 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 348 * print out cpufreq information
 349 *
 350 * Write out information from cpufreq_driver->policy[cpu]; object must be
 351 * "unsigned int".
 352 */
 353
 354#define show_one(file_name, object)			\
 355static ssize_t show_##file_name				\
 356(struct cpufreq_policy *policy, char *buf)		\
 357{							\
 358	return sprintf(buf, "%u\n", policy->object);	\
 359}
 360
 361show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 362show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 363show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 364show_one(scaling_min_freq, min);
 365show_one(scaling_max_freq, max);
 366show_one(scaling_cur_freq, cur);
 367
 368static int __cpufreq_set_policy(struct cpufreq_policy *data,
 369				struct cpufreq_policy *policy);
 
 
 
 
 
 
 
 
 
 
 
 370
 371/**
 372 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 373 */
 374#define store_one(file_name, object)			\
 375static ssize_t store_##file_name					\
 376(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 377{									\
 378	unsigned int ret = -EINVAL;					\
 379	struct cpufreq_policy new_policy;				\
 380									\
 381	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 382	if (ret)							\
 383		return -EINVAL;						\
 384									\
 385	ret = sscanf(buf, "%u", &new_policy.object);			\
 386	if (ret != 1)							\
 387		return -EINVAL;						\
 388									\
 389	ret = __cpufreq_set_policy(policy, &new_policy);		\
 390	policy->user_policy.object = policy->object;			\
 
 
 391									\
 392	return ret ? ret : count;					\
 393}
 394
 395store_one(scaling_min_freq, min);
 396store_one(scaling_max_freq, max);
 397
 398/**
 399 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 400 */
 401static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 402					char *buf)
 403{
 404	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 405	if (!cur_freq)
 406		return sprintf(buf, "<unknown>");
 407	return sprintf(buf, "%u\n", cur_freq);
 408}
 409
 
 
 
 
 
 410
 411/**
 412 * show_scaling_governor - show the current policy for the specified CPU
 413 */
 414static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 415{
 416	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 417		return sprintf(buf, "powersave\n");
 418	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 419		return sprintf(buf, "performance\n");
 420	else if (policy->governor)
 421		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
 422				policy->governor->name);
 423	return -EINVAL;
 424}
 425
 426
 427/**
 428 * store_scaling_governor - store policy for the specified CPU
 429 */
 430static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 431					const char *buf, size_t count)
 432{
 433	unsigned int ret = -EINVAL;
 434	char	str_governor[16];
 435	struct cpufreq_policy new_policy;
 436
 437	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 438	if (ret)
 439		return ret;
 440
 441	ret = sscanf(buf, "%15s", str_governor);
 442	if (ret != 1)
 443		return -EINVAL;
 444
 445	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 446						&new_policy.governor))
 447		return -EINVAL;
 448
 449	/* Do not use cpufreq_set_policy here or the user_policy.max
 450	   will be wrongly overridden */
 451	ret = __cpufreq_set_policy(policy, &new_policy);
 452
 453	policy->user_policy.policy = policy->policy;
 454	policy->user_policy.governor = policy->governor;
 455
 456	if (ret)
 457		return ret;
 458	else
 459		return count;
 460}
 461
 462/**
 463 * show_scaling_driver - show the cpufreq driver currently loaded
 464 */
 465static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 466{
 467	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
 468}
 469
 470/**
 471 * show_scaling_available_governors - show the available CPUfreq governors
 472 */
 473static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 474						char *buf)
 475{
 476	ssize_t i = 0;
 477	struct cpufreq_governor *t;
 478
 479	if (!cpufreq_driver->target) {
 480		i += sprintf(buf, "performance powersave");
 481		goto out;
 482	}
 483
 484	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 485		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 486		    - (CPUFREQ_NAME_LEN + 2)))
 487			goto out;
 488		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
 489	}
 490out:
 491	i += sprintf(&buf[i], "\n");
 492	return i;
 493}
 494
 495static ssize_t show_cpus(const struct cpumask *mask, char *buf)
 496{
 497	ssize_t i = 0;
 498	unsigned int cpu;
 499
 500	for_each_cpu(cpu, mask) {
 501		if (i)
 502			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 503		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 504		if (i >= (PAGE_SIZE - 5))
 505			break;
 506	}
 507	i += sprintf(&buf[i], "\n");
 508	return i;
 509}
 
 510
 511/**
 512 * show_related_cpus - show the CPUs affected by each transition even if
 513 * hw coordination is in use
 514 */
 515static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 516{
 517	if (cpumask_empty(policy->related_cpus))
 518		return show_cpus(policy->cpus, buf);
 519	return show_cpus(policy->related_cpus, buf);
 520}
 521
 522/**
 523 * show_affected_cpus - show the CPUs affected by each transition
 524 */
 525static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 526{
 527	return show_cpus(policy->cpus, buf);
 528}
 529
 530static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 531					const char *buf, size_t count)
 532{
 533	unsigned int freq = 0;
 534	unsigned int ret;
 535
 536	if (!policy->governor || !policy->governor->store_setspeed)
 537		return -EINVAL;
 538
 539	ret = sscanf(buf, "%u", &freq);
 540	if (ret != 1)
 541		return -EINVAL;
 542
 543	policy->governor->store_setspeed(policy, freq);
 544
 545	return count;
 546}
 547
 548static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (!policy->governor || !policy->governor->show_setspeed)
 551		return sprintf(buf, "<unsupported>\n");
 552
 553	return policy->governor->show_setspeed(policy, buf);
 554}
 555
 556/**
 557 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
 558 */
 559static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 560{
 561	unsigned int limit;
 562	int ret;
 563	if (cpufreq_driver->bios_limit) {
 564		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 565		if (!ret)
 566			return sprintf(buf, "%u\n", limit);
 567	}
 568	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 569}
 570
 571cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 572cpufreq_freq_attr_ro(cpuinfo_min_freq);
 573cpufreq_freq_attr_ro(cpuinfo_max_freq);
 574cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 575cpufreq_freq_attr_ro(scaling_available_governors);
 576cpufreq_freq_attr_ro(scaling_driver);
 577cpufreq_freq_attr_ro(scaling_cur_freq);
 578cpufreq_freq_attr_ro(bios_limit);
 579cpufreq_freq_attr_ro(related_cpus);
 580cpufreq_freq_attr_ro(affected_cpus);
 581cpufreq_freq_attr_rw(scaling_min_freq);
 582cpufreq_freq_attr_rw(scaling_max_freq);
 583cpufreq_freq_attr_rw(scaling_governor);
 584cpufreq_freq_attr_rw(scaling_setspeed);
 585
 586static struct attribute *default_attrs[] = {
 587	&cpuinfo_min_freq.attr,
 588	&cpuinfo_max_freq.attr,
 589	&cpuinfo_transition_latency.attr,
 590	&scaling_min_freq.attr,
 591	&scaling_max_freq.attr,
 592	&affected_cpus.attr,
 593	&related_cpus.attr,
 594	&scaling_governor.attr,
 595	&scaling_driver.attr,
 596	&scaling_available_governors.attr,
 597	&scaling_setspeed.attr,
 598	NULL
 599};
 600
 601struct kobject *cpufreq_global_kobject;
 602EXPORT_SYMBOL(cpufreq_global_kobject);
 603
 604#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 605#define to_attr(a) container_of(a, struct freq_attr, attr)
 606
 607static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 608{
 609	struct cpufreq_policy *policy = to_policy(kobj);
 610	struct freq_attr *fattr = to_attr(attr);
 611	ssize_t ret = -EINVAL;
 612	policy = cpufreq_cpu_get(policy->cpu);
 613	if (!policy)
 614		goto no_policy;
 615
 616	if (lock_policy_rwsem_read(policy->cpu) < 0)
 617		goto fail;
 
 618
 619	if (fattr->show)
 620		ret = fattr->show(policy, buf);
 621	else
 622		ret = -EIO;
 623
 624	unlock_policy_rwsem_read(policy->cpu);
 625fail:
 626	cpufreq_cpu_put(policy);
 627no_policy:
 628	return ret;
 629}
 630
 631static ssize_t store(struct kobject *kobj, struct attribute *attr,
 632		     const char *buf, size_t count)
 633{
 634	struct cpufreq_policy *policy = to_policy(kobj);
 635	struct freq_attr *fattr = to_attr(attr);
 636	ssize_t ret = -EINVAL;
 637	policy = cpufreq_cpu_get(policy->cpu);
 638	if (!policy)
 639		goto no_policy;
 640
 641	if (lock_policy_rwsem_write(policy->cpu) < 0)
 642		goto fail;
 643
 644	if (fattr->store)
 
 645		ret = fattr->store(policy, buf, count);
 646	else
 647		ret = -EIO;
 
 
 648
 649	unlock_policy_rwsem_write(policy->cpu);
 650fail:
 651	cpufreq_cpu_put(policy);
 652no_policy:
 653	return ret;
 654}
 655
 656static void cpufreq_sysfs_release(struct kobject *kobj)
 657{
 658	struct cpufreq_policy *policy = to_policy(kobj);
 659	pr_debug("last reference is dropped\n");
 660	complete(&policy->kobj_unregister);
 661}
 662
 663static const struct sysfs_ops sysfs_ops = {
 664	.show	= show,
 665	.store	= store,
 666};
 667
 668static struct kobj_type ktype_cpufreq = {
 669	.sysfs_ops	= &sysfs_ops,
 670	.default_attrs	= default_attrs,
 671	.release	= cpufreq_sysfs_release,
 672};
 673
 674/*
 675 * Returns:
 676 *   Negative: Failure
 677 *   0:        Success
 678 *   Positive: When we have a managed CPU and the sysfs got symlinked
 679 */
 680static int cpufreq_add_dev_policy(unsigned int cpu,
 681				  struct cpufreq_policy *policy,
 682				  struct sys_device *sys_dev)
 683{
 684	int ret = 0;
 685#ifdef CONFIG_SMP
 686	unsigned long flags;
 687	unsigned int j;
 688#ifdef CONFIG_HOTPLUG_CPU
 689	struct cpufreq_governor *gov;
 690
 691	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
 692	if (gov) {
 693		policy->governor = gov;
 694		pr_debug("Restoring governor %s for cpu %d\n",
 695		       policy->governor->name, cpu);
 696	}
 697#endif
 698
 699	for_each_cpu(j, policy->cpus) {
 700		struct cpufreq_policy *managed_policy;
 701
 702		if (cpu == j)
 703			continue;
 704
 705		/* Check for existing affected CPUs.
 706		 * They may not be aware of it due to CPU Hotplug.
 707		 * cpufreq_cpu_put is called when the device is removed
 708		 * in __cpufreq_remove_dev()
 709		 */
 710		managed_policy = cpufreq_cpu_get(j);
 711		if (unlikely(managed_policy)) {
 712
 713			/* Set proper policy_cpu */
 714			unlock_policy_rwsem_write(cpu);
 715			per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
 716
 717			if (lock_policy_rwsem_write(cpu) < 0) {
 718				/* Should not go through policy unlock path */
 719				if (cpufreq_driver->exit)
 720					cpufreq_driver->exit(policy);
 721				cpufreq_cpu_put(managed_policy);
 722				return -EBUSY;
 723			}
 724
 725			spin_lock_irqsave(&cpufreq_driver_lock, flags);
 726			cpumask_copy(managed_policy->cpus, policy->cpus);
 727			per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
 728			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 729
 730			pr_debug("CPU already managed, adding link\n");
 731			ret = sysfs_create_link(&sys_dev->kobj,
 732						&managed_policy->kobj,
 733						"cpufreq");
 734			if (ret)
 735				cpufreq_cpu_put(managed_policy);
 736			/*
 737			 * Success. We only needed to be added to the mask.
 738			 * Call driver->exit() because only the cpu parent of
 739			 * the kobj needed to call init().
 740			 */
 741			if (cpufreq_driver->exit)
 742				cpufreq_driver->exit(policy);
 743
 744			if (!ret)
 745				return 1;
 746			else
 747				return ret;
 748		}
 749	}
 750#endif
 751	return ret;
 752}
 753
 754
 755/* symlink affected CPUs */
 756static int cpufreq_add_dev_symlink(unsigned int cpu,
 757				   struct cpufreq_policy *policy)
 758{
 759	unsigned int j;
 760	int ret = 0;
 761
 762	for_each_cpu(j, policy->cpus) {
 763		struct cpufreq_policy *managed_policy;
 764		struct sys_device *cpu_sys_dev;
 765
 766		if (j == cpu)
 767			continue;
 768		if (!cpu_online(j))
 769			continue;
 770
 771		pr_debug("CPU %u already managed, adding link\n", j);
 772		managed_policy = cpufreq_cpu_get(cpu);
 773		cpu_sys_dev = get_cpu_sysdev(j);
 774		ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
 775					"cpufreq");
 776		if (ret) {
 777			cpufreq_cpu_put(managed_policy);
 778			return ret;
 779		}
 780	}
 781	return ret;
 782}
 783
 784static int cpufreq_add_dev_interface(unsigned int cpu,
 785				     struct cpufreq_policy *policy,
 786				     struct sys_device *sys_dev)
 787{
 788	struct cpufreq_policy new_policy;
 789	struct freq_attr **drv_attr;
 790	unsigned long flags;
 791	int ret = 0;
 792	unsigned int j;
 793
 794	/* prepare interface data */
 795	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 796				   &sys_dev->kobj, "cpufreq");
 797	if (ret)
 798		return ret;
 799
 800	/* set up files for this cpu device */
 801	drv_attr = cpufreq_driver->attr;
 802	while ((drv_attr) && (*drv_attr)) {
 803		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 804		if (ret)
 805			goto err_out_kobj_put;
 806		drv_attr++;
 807	}
 808	if (cpufreq_driver->get) {
 809		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 810		if (ret)
 811			goto err_out_kobj_put;
 812	}
 813	if (cpufreq_driver->target) {
 814		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 815		if (ret)
 816			goto err_out_kobj_put;
 817	}
 
 
 
 
 
 818	if (cpufreq_driver->bios_limit) {
 819		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 820		if (ret)
 821			goto err_out_kobj_put;
 822	}
 823
 824	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 825	for_each_cpu(j, policy->cpus) {
 826		if (!cpu_online(j))
 827			continue;
 828		per_cpu(cpufreq_cpu_data, j) = policy;
 829		per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
 830	}
 831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 832
 833	ret = cpufreq_add_dev_symlink(cpu, policy);
 834	if (ret)
 835		goto err_out_kobj_put;
 
 836
 837	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
 838	/* assure that the starting sequence is run in __cpufreq_set_policy */
 839	policy->governor = NULL;
 
 840
 841	/* set default policy */
 842	ret = __cpufreq_set_policy(policy, &new_policy);
 843	policy->user_policy.policy = policy->policy;
 844	policy->user_policy.governor = policy->governor;
 845
 846	if (ret) {
 847		pr_debug("setting policy failed\n");
 848		if (cpufreq_driver->exit)
 849			cpufreq_driver->exit(policy);
 
 
 
 
 
 850	}
 851	return ret;
 852
 853err_out_kobj_put:
 854	kobject_put(&policy->kobj);
 855	wait_for_completion(&policy->kobj_unregister);
 856	return ret;
 857}
 858
 
 
 
 
 
 
 
 
 
 
 
 859
 860/**
 861 * cpufreq_add_dev - add a CPU device
 862 *
 863 * Adds the cpufreq interface for a CPU device.
 864 *
 865 * The Oracle says: try running cpufreq registration/unregistration concurrently
 866 * with with cpu hotplugging and all hell will break loose. Tried to clean this
 867 * mess up, but more thorough testing is needed. - Mathieu
 868 */
 869static int cpufreq_add_dev(struct sys_device *sys_dev)
 870{
 871	unsigned int cpu = sys_dev->id;
 872	int ret = 0, found = 0;
 873	struct cpufreq_policy *policy;
 874	unsigned long flags;
 875	unsigned int j;
 876#ifdef CONFIG_HOTPLUG_CPU
 877	int sibling;
 878#endif
 879
 880	if (cpu_is_offline(cpu))
 
 881		return 0;
 882
 883	pr_debug("adding CPU %u\n", cpu);
 
 
 884
 885#ifdef CONFIG_SMP
 886	/* check whether a different CPU already registered this
 887	 * CPU because it is in the same boat. */
 888	policy = cpufreq_cpu_get(cpu);
 889	if (unlikely(policy)) {
 890		cpufreq_cpu_put(policy);
 891		return 0;
 892	}
 893#endif
 894
 895	if (!try_module_get(cpufreq_driver->owner)) {
 896		ret = -EINVAL;
 897		goto module_out;
 
 898	}
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900	ret = -ENOMEM;
 901	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
 
 
 
 
 902	if (!policy)
 903		goto nomem_out;
 904
 905	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
 906		goto err_free_policy;
 907
 908	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
 909		goto err_free_cpumask;
 910
 911	policy->cpu = cpu;
 912	cpumask_copy(policy->cpus, cpumask_of(cpu));
 913
 914	/* Initially set CPU itself as the policy_cpu */
 915	per_cpu(cpufreq_policy_cpu, cpu) = cpu;
 916	ret = (lock_policy_rwsem_write(cpu) < 0);
 917	WARN_ON(ret);
 
 
 918
 
 
 
 
 919	init_completion(&policy->kobj_unregister);
 920	INIT_WORK(&policy->update, handle_update);
 921
 922	/* Set governor before ->init, so that driver could check it */
 923#ifdef CONFIG_HOTPLUG_CPU
 924	for_each_online_cpu(sibling) {
 925		struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
 926		if (cp && cp->governor &&
 927		    (cpumask_test_cpu(cpu, cp->related_cpus))) {
 928			policy->governor = cp->governor;
 929			found = 1;
 930			break;
 931		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932	}
 933#endif
 934	if (!found)
 935		policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
 936	/* call driver. From then on the cpufreq must be able
 937	 * to accept all calls to ->verify and ->setpolicy for this CPU
 938	 */
 939	ret = cpufreq_driver->init(policy);
 940	if (ret) {
 941		pr_debug("initialization failed\n");
 942		goto err_unlock_policy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943	}
 944	policy->user_policy.min = policy->min;
 945	policy->user_policy.max = policy->max;
 946
 947	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
 948				     CPUFREQ_START, policy);
 949
 950	ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
 951	if (ret) {
 952		if (ret > 0)
 953			/* This is a managed cpu, symlink created,
 954			   exit with 0 */
 955			ret = 0;
 956		goto err_unlock_policy;
 957	}
 958
 959	ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
 960	if (ret)
 961		goto err_out_unregister;
 962
 963	unlock_policy_rwsem_write(cpu);
 964
 965	kobject_uevent(&policy->kobj, KOBJ_ADD);
 966	module_put(cpufreq_driver->owner);
 967	pr_debug("initialization complete\n");
 968
 969	return 0;
 
 
 970
 
 971
 972err_out_unregister:
 973	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 974	for_each_cpu(j, policy->cpus)
 975		per_cpu(cpufreq_cpu_data, j) = NULL;
 976	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 977
 978	kobject_put(&policy->kobj);
 979	wait_for_completion(&policy->kobj_unregister);
 980
 981err_unlock_policy:
 982	unlock_policy_rwsem_write(cpu);
 983	free_cpumask_var(policy->related_cpus);
 984err_free_cpumask:
 985	free_cpumask_var(policy->cpus);
 986err_free_policy:
 987	kfree(policy);
 988nomem_out:
 989	module_put(cpufreq_driver->owner);
 990module_out:
 991	return ret;
 992}
 993
 
 994
 995/**
 996 * __cpufreq_remove_dev - remove a CPU device
 997 *
 998 * Removes the cpufreq interface for a CPU device.
 999 * Caller should already have policy_rwsem in write mode for this CPU.
1000 * This routine frees the rwsem before returning.
1001 */
1002static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1003{
1004	unsigned int cpu = sys_dev->id;
1005	unsigned long flags;
1006	struct cpufreq_policy *data;
1007	struct kobject *kobj;
1008	struct completion *cmp;
1009#ifdef CONFIG_SMP
1010	struct sys_device *cpu_sys_dev;
1011	unsigned int j;
1012#endif
1013
1014	pr_debug("unregistering CPU %u\n", cpu);
1015
1016	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1017	data = per_cpu(cpufreq_cpu_data, cpu);
1018
1019	if (!data) {
1020		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1021		unlock_policy_rwsem_write(cpu);
1022		return -EINVAL;
1023	}
1024	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1025
1026
1027#ifdef CONFIG_SMP
1028	/* if this isn't the CPU which is the parent of the kobj, we
1029	 * only need to unlink, put and exit
1030	 */
1031	if (unlikely(cpu != data->cpu)) {
1032		pr_debug("removing link\n");
1033		cpumask_clear_cpu(cpu, data->cpus);
1034		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1035		kobj = &sys_dev->kobj;
1036		cpufreq_cpu_put(data);
1037		unlock_policy_rwsem_write(cpu);
1038		sysfs_remove_link(kobj, "cpufreq");
1039		return 0;
 
 
 
 
 
1040	}
1041#endif
1042
1043#ifdef CONFIG_SMP
 
1044
1045#ifdef CONFIG_HOTPLUG_CPU
1046	strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1047			CPUFREQ_NAME_LEN);
1048#endif
1049
1050	/* if we have other CPUs still registered, we need to unlink them,
1051	 * or else wait_for_completion below will lock up. Clean the
1052	 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1053	 * the sysfs links afterwards.
1054	 */
1055	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1056		for_each_cpu(j, data->cpus) {
1057			if (j == cpu)
1058				continue;
1059			per_cpu(cpufreq_cpu_data, j) = NULL;
1060		}
1061	}
1062
1063	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
1064
1065	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1066		for_each_cpu(j, data->cpus) {
1067			if (j == cpu)
1068				continue;
1069			pr_debug("removing link for cpu %u\n", j);
1070#ifdef CONFIG_HOTPLUG_CPU
1071			strncpy(per_cpu(cpufreq_cpu_governor, j),
1072				data->governor->name, CPUFREQ_NAME_LEN);
1073#endif
1074			cpu_sys_dev = get_cpu_sysdev(j);
1075			kobj = &cpu_sys_dev->kobj;
1076			unlock_policy_rwsem_write(cpu);
1077			sysfs_remove_link(kobj, "cpufreq");
1078			lock_policy_rwsem_write(cpu);
1079			cpufreq_cpu_put(data);
 
 
 
 
 
 
 
 
1080		}
 
 
1081	}
1082#else
1083	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084#endif
1085
1086	if (cpufreq_driver->target)
1087		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1088
1089	kobj = &data->kobj;
1090	cmp = &data->kobj_unregister;
1091	unlock_policy_rwsem_write(cpu);
1092	kobject_put(kobj);
1093
1094	/* we need to make sure that the underlying kobj is actually
1095	 * not referenced anymore by anybody before we proceed with
1096	 * unloading.
 
1097	 */
1098	pr_debug("waiting for dropping of refcount\n");
1099	wait_for_completion(cmp);
1100	pr_debug("wait complete\n");
1101
1102	lock_policy_rwsem_write(cpu);
1103	if (cpufreq_driver->exit)
1104		cpufreq_driver->exit(data);
1105	unlock_policy_rwsem_write(cpu);
1106
1107#ifdef CONFIG_HOTPLUG_CPU
1108	/* when the CPU which is the parent of the kobj is hotplugged
1109	 * offline, check for siblings, and create cpufreq sysfs interface
1110	 * and symlinks
1111	 */
1112	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1113		/* first sibling now owns the new sysfs dir */
1114		cpumask_clear_cpu(cpu, data->cpus);
1115		cpufreq_add_dev(get_cpu_sysdev(cpumask_first(data->cpus)));
1116
1117		/* finally remove our own symlink */
1118		lock_policy_rwsem_write(cpu);
1119		__cpufreq_remove_dev(sys_dev);
1120	}
1121#endif
1122
1123	free_cpumask_var(data->related_cpus);
1124	free_cpumask_var(data->cpus);
1125	kfree(data);
1126
 
 
1127	return 0;
1128}
1129
1130
1131static int cpufreq_remove_dev(struct sys_device *sys_dev)
 
 
 
 
1132{
1133	unsigned int cpu = sys_dev->id;
1134	int retval;
1135
1136	if (cpu_is_offline(cpu))
1137		return 0;
1138
1139	if (unlikely(lock_policy_rwsem_write(cpu)))
1140		BUG();
1141
1142	retval = __cpufreq_remove_dev(sys_dev);
1143	return retval;
1144}
1145
1146
1147static void handle_update(struct work_struct *work)
1148{
1149	struct cpufreq_policy *policy =
1150		container_of(work, struct cpufreq_policy, update);
1151	unsigned int cpu = policy->cpu;
1152	pr_debug("handle_update for cpu %u called\n", cpu);
1153	cpufreq_update_policy(cpu);
1154}
1155
1156/**
1157 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1158 *	@cpu: cpu number
1159 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1160 *	@new_freq: CPU frequency the CPU actually runs at
1161 *
1162 *	We adjust to current frequency first, and need to clean up later.
1163 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1164 */
1165static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1166				unsigned int new_freq)
1167{
1168	struct cpufreq_freqs freqs;
1169
1170	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1171	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172
1173	freqs.cpu = cpu;
1174	freqs.old = old_freq;
1175	freqs.new = new_freq;
1176	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1177	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1178}
1179
 
 
 
1180
1181/**
1182 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1183 * @cpu: CPU number
1184 *
1185 * This is the last known freq, without actually getting it from the driver.
1186 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187 */
1188unsigned int cpufreq_quick_get(unsigned int cpu)
1189{
1190	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1191	unsigned int ret_freq = 0;
 
1192
 
 
 
 
 
 
 
 
 
 
 
1193	if (policy) {
1194		ret_freq = policy->cur;
1195		cpufreq_cpu_put(policy);
1196	}
1197
1198	return ret_freq;
1199}
1200EXPORT_SYMBOL(cpufreq_quick_get);
1201
1202/**
1203 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1204 * @cpu: CPU number
1205 *
1206 * Just return the max possible frequency for a given CPU.
1207 */
1208unsigned int cpufreq_quick_get_max(unsigned int cpu)
1209{
1210	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1211	unsigned int ret_freq = 0;
1212
1213	if (policy) {
1214		ret_freq = policy->max;
1215		cpufreq_cpu_put(policy);
1216	}
1217
1218	return ret_freq;
1219}
1220EXPORT_SYMBOL(cpufreq_quick_get_max);
1221
1222
1223static unsigned int __cpufreq_get(unsigned int cpu)
1224{
1225	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1226	unsigned int ret_freq = 0;
1227
1228	if (!cpufreq_driver->get)
1229		return ret_freq;
1230
1231	ret_freq = cpufreq_driver->get(cpu);
 
 
 
 
 
 
 
 
1232
1233	if (ret_freq && policy->cur &&
1234		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1235		/* verify no discrepancy between actual and
1236					saved value exists */
1237		if (unlikely(ret_freq != policy->cur)) {
1238			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1239			schedule_work(&policy->update);
1240		}
1241	}
1242
1243	return ret_freq;
1244}
1245
1246/**
1247 * cpufreq_get - get the current CPU frequency (in kHz)
1248 * @cpu: CPU number
1249 *
1250 * Get the CPU current (static) CPU frequency
1251 */
1252unsigned int cpufreq_get(unsigned int cpu)
1253{
1254	unsigned int ret_freq = 0;
1255	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 
1256
1257	if (!policy)
1258		goto out;
1259
1260	if (unlikely(lock_policy_rwsem_read(cpu)))
1261		goto out_policy;
1262
1263	ret_freq = __cpufreq_get(cpu);
1264
1265	unlock_policy_rwsem_read(cpu);
 
1266
1267out_policy:
1268	cpufreq_cpu_put(policy);
1269out:
1270	return ret_freq;
1271}
1272EXPORT_SYMBOL(cpufreq_get);
1273
1274static struct sysdev_driver cpufreq_sysdev_driver = {
1275	.add		= cpufreq_add_dev,
1276	.remove		= cpufreq_remove_dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277};
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279
1280/**
1281 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1282 *
1283 * This function is only executed for the boot processor.  The other CPUs
1284 * have been put offline by means of CPU hotplug.
 
 
1285 */
1286static int cpufreq_bp_suspend(void)
1287{
1288	int ret = 0;
1289
1290	int cpu = smp_processor_id();
1291	struct cpufreq_policy *cpu_policy;
1292
1293	pr_debug("suspending cpu %u\n", cpu);
 
1294
1295	/* If there's no policy for the boot CPU, we have nothing to do. */
1296	cpu_policy = cpufreq_cpu_get(cpu);
1297	if (!cpu_policy)
1298		return 0;
1299
1300	if (cpufreq_driver->suspend) {
1301		ret = cpufreq_driver->suspend(cpu_policy);
1302		if (ret)
1303			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1304					"step on CPU %u\n", cpu_policy->cpu);
 
 
 
 
 
1305	}
1306
1307	cpufreq_cpu_put(cpu_policy);
1308	return ret;
1309}
1310
1311/**
1312 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1313 *
1314 *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1315 *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1316 *	    restored. It will verify that the current freq is in sync with
1317 *	    what we believe it to be. This is a bit later than when it
1318 *	    should be, but nonethteless it's better than calling
1319 *	    cpufreq_driver->get() here which might re-enable interrupts...
1320 *
1321 * This function is only executed for the boot CPU.  The other CPUs have not
1322 * been turned on yet.
1323 */
1324static void cpufreq_bp_resume(void)
1325{
1326	int ret = 0;
 
1327
1328	int cpu = smp_processor_id();
1329	struct cpufreq_policy *cpu_policy;
1330
1331	pr_debug("resuming cpu %u\n", cpu);
1332
1333	/* If there's no policy for the boot CPU, we have nothing to do. */
1334	cpu_policy = cpufreq_cpu_get(cpu);
1335	if (!cpu_policy)
1336		return;
1337
1338	if (cpufreq_driver->resume) {
1339		ret = cpufreq_driver->resume(cpu_policy);
1340		if (ret) {
1341			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1342					"step on CPU %u\n", cpu_policy->cpu);
1343			goto fail;
 
 
 
 
 
 
 
 
1344		}
1345	}
 
1346
1347	schedule_work(&cpu_policy->update);
 
 
 
 
 
 
 
 
 
1348
1349fail:
1350	cpufreq_cpu_put(cpu_policy);
1351}
 
1352
1353static struct syscore_ops cpufreq_syscore_ops = {
1354	.suspend	= cpufreq_bp_suspend,
1355	.resume		= cpufreq_bp_resume,
1356};
 
 
 
 
 
 
1357
 
 
 
1358
1359/*********************************************************************
1360 *                     NOTIFIER LISTS INTERFACE                      *
1361 *********************************************************************/
1362
1363/**
1364 *	cpufreq_register_notifier - register a driver with cpufreq
1365 *	@nb: notifier function to register
1366 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1367 *
1368 *	Add a driver to one of two lists: either a list of drivers that
1369 *      are notified about clock rate changes (once before and once after
1370 *      the transition), or a list of drivers that are notified about
1371 *      changes in cpufreq policy.
1372 *
1373 *	This function may sleep, and has the same return conditions as
1374 *	blocking_notifier_chain_register.
1375 */
1376int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1377{
1378	int ret;
1379
 
 
 
1380	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1381
1382	switch (list) {
1383	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1384		ret = srcu_notifier_chain_register(
1385				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1386		break;
1387	case CPUFREQ_POLICY_NOTIFIER:
1388		ret = blocking_notifier_chain_register(
1389				&cpufreq_policy_notifier_list, nb);
1390		break;
1391	default:
1392		ret = -EINVAL;
1393	}
1394
1395	return ret;
1396}
1397EXPORT_SYMBOL(cpufreq_register_notifier);
1398
1399
1400/**
1401 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1402 *	@nb: notifier block to be unregistered
1403 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1404 *
1405 *	Remove a driver from the CPU frequency notifier list.
1406 *
1407 *	This function may sleep, and has the same return conditions as
1408 *	blocking_notifier_chain_unregister.
1409 */
1410int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1411{
1412	int ret;
1413
 
 
 
1414	switch (list) {
1415	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1416		ret = srcu_notifier_chain_unregister(
1417				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1418		break;
1419	case CPUFREQ_POLICY_NOTIFIER:
1420		ret = blocking_notifier_chain_unregister(
1421				&cpufreq_policy_notifier_list, nb);
1422		break;
1423	default:
1424		ret = -EINVAL;
1425	}
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL(cpufreq_unregister_notifier);
1430
1431
1432/*********************************************************************
1433 *                              GOVERNORS                            *
1434 *********************************************************************/
1435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436
1437int __cpufreq_driver_target(struct cpufreq_policy *policy,
1438			    unsigned int target_freq,
1439			    unsigned int relation)
1440{
1441	int retval = -EINVAL;
 
1442
1443	pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1444		target_freq, relation);
1445	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1446		retval = cpufreq_driver->target(policy, target_freq, relation);
1447
1448	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449}
1450EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1451
1452int cpufreq_driver_target(struct cpufreq_policy *policy,
1453			  unsigned int target_freq,
1454			  unsigned int relation)
1455{
1456	int ret = -EINVAL;
1457
1458	policy = cpufreq_cpu_get(policy->cpu);
1459	if (!policy)
1460		goto no_policy;
1461
1462	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1463		goto fail;
1464
1465	ret = __cpufreq_driver_target(policy, target_freq, relation);
1466
1467	unlock_policy_rwsem_write(policy->cpu);
1468
1469fail:
1470	cpufreq_cpu_put(policy);
1471no_policy:
1472	return ret;
1473}
1474EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1475
1476int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1477{
1478	int ret = 0;
1479
1480	policy = cpufreq_cpu_get(policy->cpu);
1481	if (!policy)
1482		return -EINVAL;
1483
1484	if (cpu_online(cpu) && cpufreq_driver->getavg)
1485		ret = cpufreq_driver->getavg(policy, cpu);
1486
1487	cpufreq_cpu_put(policy);
1488	return ret;
1489}
1490EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1491
1492/*
1493 * when "event" is CPUFREQ_GOV_LIMITS
1494 */
1495
1496static int __cpufreq_governor(struct cpufreq_policy *policy,
1497					unsigned int event)
1498{
1499	int ret;
1500
1501	/* Only must be defined when default governor is known to have latency
1502	   restrictions, like e.g. conservative or ondemand.
1503	   That this is the case is already ensured in Kconfig
1504	*/
1505#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1506	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1507#else
1508	struct cpufreq_governor *gov = NULL;
1509#endif
1510
1511	if (policy->governor->max_transition_latency &&
1512	    policy->cpuinfo.transition_latency >
1513	    policy->governor->max_transition_latency) {
1514		if (!gov)
1515			return -EINVAL;
1516		else {
1517			printk(KERN_WARNING "%s governor failed, too long"
1518			       " transition latency of HW, fallback"
1519			       " to %s governor\n",
1520			       policy->governor->name,
1521			       gov->name);
1522			policy->governor = gov;
 
 
1523		}
1524	}
1525
1526	if (!try_module_get(policy->governor->owner))
1527		return -EINVAL;
1528
1529	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1530						policy->cpu, event);
1531	ret = policy->governor->governor(policy, event);
1532
1533	/* we keep one module reference alive for
1534			each CPU governed by this CPU */
1535	if ((event != CPUFREQ_GOV_START) || ret)
1536		module_put(policy->governor->owner);
1537	if ((event == CPUFREQ_GOV_STOP) && !ret)
1538		module_put(policy->governor->owner);
1539
1540	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1541}
1542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1543
1544int cpufreq_register_governor(struct cpufreq_governor *governor)
1545{
1546	int err;
1547
1548	if (!governor)
1549		return -EINVAL;
1550
 
 
 
1551	mutex_lock(&cpufreq_governor_mutex);
1552
1553	err = -EBUSY;
1554	if (__find_governor(governor->name) == NULL) {
1555		err = 0;
1556		list_add(&governor->governor_list, &cpufreq_governor_list);
1557	}
1558
1559	mutex_unlock(&cpufreq_governor_mutex);
1560	return err;
1561}
1562EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1563
1564
1565void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1566{
1567#ifdef CONFIG_HOTPLUG_CPU
1568	int cpu;
1569#endif
1570
1571	if (!governor)
1572		return;
1573
1574#ifdef CONFIG_HOTPLUG_CPU
1575	for_each_present_cpu(cpu) {
1576		if (cpu_online(cpu))
1577			continue;
1578		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1579			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
 
 
 
1580	}
1581#endif
1582
1583	mutex_lock(&cpufreq_governor_mutex);
1584	list_del(&governor->governor_list);
1585	mutex_unlock(&cpufreq_governor_mutex);
1586	return;
1587}
1588EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1589
1590
1591
1592/*********************************************************************
1593 *                          POLICY INTERFACE                         *
1594 *********************************************************************/
1595
1596/**
1597 * cpufreq_get_policy - get the current cpufreq_policy
1598 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1599 *	is written
1600 *
1601 * Reads the current cpufreq policy.
1602 */
1603int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1604{
1605	struct cpufreq_policy *cpu_policy;
1606	if (!policy)
1607		return -EINVAL;
1608
1609	cpu_policy = cpufreq_cpu_get(cpu);
1610	if (!cpu_policy)
1611		return -EINVAL;
1612
1613	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1614
1615	cpufreq_cpu_put(cpu_policy);
1616	return 0;
1617}
1618EXPORT_SYMBOL(cpufreq_get_policy);
1619
1620
1621/*
1622 * data   : current policy.
1623 * policy : policy to be set.
1624 */
1625static int __cpufreq_set_policy(struct cpufreq_policy *data,
1626				struct cpufreq_policy *policy)
1627{
1628	int ret = 0;
 
1629
1630	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1631		policy->min, policy->max);
1632
1633	memcpy(&policy->cpuinfo, &data->cpuinfo,
1634				sizeof(struct cpufreq_cpuinfo));
1635
1636	if (policy->min > data->max || policy->max < data->min) {
1637		ret = -EINVAL;
1638		goto error_out;
1639	}
 
 
1640
1641	/* verify the cpu speed can be set within this limit */
1642	ret = cpufreq_driver->verify(policy);
1643	if (ret)
1644		goto error_out;
1645
1646	/* adjust if necessary - all reasons */
1647	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1648			CPUFREQ_ADJUST, policy);
1649
1650	/* adjust if necessary - hardware incompatibility*/
1651	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1652			CPUFREQ_INCOMPATIBLE, policy);
1653
1654	/* verify the cpu speed can be set within this limit,
1655	   which might be different to the first one */
1656	ret = cpufreq_driver->verify(policy);
1657	if (ret)
1658		goto error_out;
1659
1660	/* notification of the new policy */
1661	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1662			CPUFREQ_NOTIFY, policy);
1663
1664	data->min = policy->min;
1665	data->max = policy->max;
 
 
1666
1667	pr_debug("new min and max freqs are %u - %u kHz\n",
1668					data->min, data->max);
1669
1670	if (cpufreq_driver->setpolicy) {
1671		data->policy = policy->policy;
1672		pr_debug("setting range\n");
1673		ret = cpufreq_driver->setpolicy(policy);
1674	} else {
1675		if (policy->governor != data->governor) {
1676			/* save old, working values */
1677			struct cpufreq_governor *old_gov = data->governor;
1678
1679			pr_debug("governor switch\n");
1680
1681			/* end old governor */
1682			if (data->governor)
1683				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1684
1685			/* start new governor */
1686			data->governor = policy->governor;
1687			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1688				/* new governor failed, so re-start old one */
1689				pr_debug("starting governor %s failed\n",
1690							data->governor->name);
1691				if (old_gov) {
1692					data->governor = old_gov;
1693					__cpufreq_governor(data,
1694							   CPUFREQ_GOV_START);
1695				}
1696				ret = -EINVAL;
1697				goto error_out;
1698			}
1699			/* might be a policy change, too, so fall through */
1700		}
1701		pr_debug("governor: change or update limits\n");
1702		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
 
 
 
 
 
 
 
 
 
1703	}
1704
1705error_out:
1706	return ret;
1707}
1708
1709/**
1710 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1711 *	@cpu: CPU which shall be re-evaluated
1712 *
1713 *	Useful for policy notifiers which have different necessities
1714 *	at different times.
1715 */
1716int cpufreq_update_policy(unsigned int cpu)
1717{
1718	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1719	struct cpufreq_policy policy;
1720	int ret;
1721
1722	if (!data) {
1723		ret = -ENODEV;
1724		goto no_policy;
1725	}
1726
1727	if (unlikely(lock_policy_rwsem_write(cpu))) {
1728		ret = -EINVAL;
1729		goto fail;
1730	}
1731
1732	pr_debug("updating policy for CPU %u\n", cpu);
1733	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1734	policy.min = data->user_policy.min;
1735	policy.max = data->user_policy.max;
1736	policy.policy = data->user_policy.policy;
1737	policy.governor = data->user_policy.governor;
 
 
 
 
 
 
1738
1739	/* BIOS might change freq behind our back
1740	  -> ask driver for current freq and notify governors about a change */
1741	if (cpufreq_driver->get) {
1742		policy.cur = cpufreq_driver->get(cpu);
1743		if (!data->cur) {
1744			pr_debug("Driver did not initialize current freq");
1745			data->cur = policy.cur;
1746		} else {
1747			if (data->cur != policy.cur)
1748				cpufreq_out_of_sync(cpu, data->cur,
1749								policy.cur);
1750		}
1751	}
1752
1753	ret = __cpufreq_set_policy(data, &policy);
1754
1755	unlock_policy_rwsem_write(cpu);
 
1756
1757fail:
1758	cpufreq_cpu_put(data);
1759no_policy:
1760	return ret;
1761}
1762EXPORT_SYMBOL(cpufreq_update_policy);
1763
1764static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1765					unsigned long action, void *hcpu)
 
 
1766{
1767	unsigned int cpu = (unsigned long)hcpu;
1768	struct sys_device *sys_dev;
1769
1770	sys_dev = get_cpu_sysdev(cpu);
1771	if (sys_dev) {
1772		switch (action) {
1773		case CPU_ONLINE:
1774		case CPU_ONLINE_FROZEN:
1775			cpufreq_add_dev(sys_dev);
1776			break;
1777		case CPU_DOWN_PREPARE:
1778		case CPU_DOWN_PREPARE_FROZEN:
1779			if (unlikely(lock_policy_rwsem_write(cpu)))
1780				BUG();
1781
1782			__cpufreq_remove_dev(sys_dev);
1783			break;
1784		case CPU_DOWN_FAILED:
1785		case CPU_DOWN_FAILED_FROZEN:
1786			cpufreq_add_dev(sys_dev);
1787			break;
1788		}
 
 
 
 
 
1789	}
1790	return NOTIFY_OK;
 
1791}
1792
1793static struct notifier_block __refdata cpufreq_cpu_notifier = {
1794    .notifier_call = cpufreq_cpu_callback,
1795};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796
1797/*********************************************************************
1798 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1799 *********************************************************************/
 
1800
1801/**
1802 * cpufreq_register_driver - register a CPU Frequency driver
1803 * @driver_data: A struct cpufreq_driver containing the values#
1804 * submitted by the CPU Frequency driver.
1805 *
1806 *   Registers a CPU Frequency driver to this core code. This code
1807 * returns zero on success, -EBUSY when another driver got here first
1808 * (and isn't unregistered in the meantime).
1809 *
1810 */
1811int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1812{
1813	unsigned long flags;
1814	int ret;
1815
 
 
 
1816	if (!driver_data || !driver_data->verify || !driver_data->init ||
1817	    ((!driver_data->setpolicy) && (!driver_data->target)))
 
 
 
 
1818		return -EINVAL;
1819
1820	pr_debug("trying to register driver %s\n", driver_data->name);
1821
1822	if (driver_data->setpolicy)
1823		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1824
1825	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1826	if (cpufreq_driver) {
1827		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828		return -EBUSY;
 
1829	}
1830	cpufreq_driver = driver_data;
1831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1832
1833	ret = sysdev_driver_register(&cpu_sysdev_class,
1834					&cpufreq_sysdev_driver);
1835	if (ret)
1836		goto err_null_driver;
1837
1838	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839		int i;
1840		ret = -ENODEV;
1841
1842		/* check for at least one working CPU */
1843		for (i = 0; i < nr_cpu_ids; i++)
1844			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845				ret = 0;
1846				break;
1847			}
1848
 
 
 
 
 
 
1849		/* if all ->init() calls failed, unregister */
1850		if (ret) {
1851			pr_debug("no CPU initialized for driver %s\n",
1852							driver_data->name);
1853			goto err_sysdev_unreg;
1854		}
1855	}
1856
1857	register_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
 
1858	pr_debug("driver %s up and running\n", driver_data->name);
 
1859
1860	return 0;
1861err_sysdev_unreg:
1862	sysdev_driver_unregister(&cpu_sysdev_class,
1863			&cpufreq_sysdev_driver);
1864err_null_driver:
1865	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1866	cpufreq_driver = NULL;
1867	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1868	return ret;
1869}
1870EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1871
1872
1873/**
1874 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1875 *
1876 *    Unregister the current CPUFreq driver. Only call this if you have
1877 * the right to do so, i.e. if you have succeeded in initialising before!
1878 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1879 * currently not initialised.
1880 */
1881int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1882{
1883	unsigned long flags;
1884
1885	if (!cpufreq_driver || (driver != cpufreq_driver))
1886		return -EINVAL;
1887
1888	pr_debug("unregistering driver %s\n", driver->name);
1889
1890	sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1891	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
1892
1893	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1894	cpufreq_driver = NULL;
1895	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1896
1897	return 0;
1898}
1899EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1900
 
 
 
 
 
 
 
 
 
 
 
1901static int __init cpufreq_core_init(void)
1902{
1903	int cpu;
 
1904
1905	for_each_possible_cpu(cpu) {
1906		per_cpu(cpufreq_policy_cpu, cpu) = -1;
1907		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1908	}
1909
1910	cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1911						&cpu_sysdev_class.kset.kobj);
1912	BUG_ON(!cpufreq_global_kobject);
 
1913	register_syscore_ops(&cpufreq_syscore_ops);
1914
1915	return 0;
1916}
1917core_initcall(cpufreq_core_init);
v4.10.11
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   6 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   7 *
   8 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   9 *	Added handling for CPU hotplug
  10 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  11 *	Fix handling for CPU hotplug -- affected CPUs
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
 
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/cpu.h>
 
  21#include <linux/cpufreq.h>
  22#include <linux/delay.h>
 
 
  23#include <linux/device.h>
  24#include <linux/init.h>
  25#include <linux/kernel_stat.h>
  26#include <linux/module.h>
  27#include <linux/mutex.h>
  28#include <linux/slab.h>
  29#include <linux/suspend.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/tick.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36static inline bool policy_is_inactive(struct cpufreq_policy *policy)
  37{
  38	return cpumask_empty(policy->cpus);
  39}
  40
  41/* Macros to iterate over CPU policies */
  42#define for_each_suitable_policy(__policy, __active)			 \
  43	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  44		if ((__active) == !policy_is_inactive(__policy))
  45
  46#define for_each_active_policy(__policy)		\
  47	for_each_suitable_policy(__policy, true)
  48#define for_each_inactive_policy(__policy)		\
  49	for_each_suitable_policy(__policy, false)
  50
  51#define for_each_policy(__policy)			\
  52	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
  53
  54/* Iterate over governors */
  55static LIST_HEAD(cpufreq_governor_list);
  56#define for_each_governor(__governor)				\
  57	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  58
  59/**
  60 * The "cpufreq driver" - the arch- or hardware-dependent low
  61 * level driver of CPUFreq support, and its spinlock. This lock
  62 * also protects the cpufreq_cpu_data array.
  63 */
  64static struct cpufreq_driver *cpufreq_driver;
  65static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  66static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
 
 
 
 
 
 
 
 
 
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
 
 
  74}
  75
 
  76/* internal prototypes */
  77static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  78static int cpufreq_init_governor(struct cpufreq_policy *policy);
  79static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  80static int cpufreq_start_governor(struct cpufreq_policy *policy);
  81static void cpufreq_stop_governor(struct cpufreq_policy *policy);
  82static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  83
  84/**
  85 * Two notifier lists: the "policy" list is involved in the
  86 * validation process for a new CPU frequency policy; the
  87 * "transition" list for kernel code that needs to handle
  88 * changes to devices when the CPU clock speed changes.
  89 * The mutex locks both lists.
  90 */
  91static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  92static struct srcu_notifier_head cpufreq_transition_notifier_list;
  93
  94static bool init_cpufreq_transition_notifier_list_called;
  95static int __init init_cpufreq_transition_notifier_list(void)
  96{
  97	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
  98	init_cpufreq_transition_notifier_list_called = true;
  99	return 0;
 100}
 101pure_initcall(init_cpufreq_transition_notifier_list);
 102
 103static int off __read_mostly;
 104static int cpufreq_disabled(void)
 105{
 106	return off;
 107}
 108void disable_cpufreq(void)
 109{
 110	off = 1;
 111}
 112static DEFINE_MUTEX(cpufreq_governor_mutex);
 113
 114bool have_governor_per_policy(void)
 115{
 116	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 117}
 118EXPORT_SYMBOL_GPL(have_governor_per_policy);
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	u64 idle_time;
 132	u64 cur_wall_time;
 133	u64 busy_time;
 134
 135	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
 
 136
 137	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 138	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 139	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 140	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 141	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 142	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 143
 144	idle_time = cur_wall_time - busy_time;
 145	if (wall)
 146		*wall = cputime_to_usecs(cur_wall_time);
 147
 148	return cputime_to_usecs(idle_time);
 149}
 150
 151u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 152{
 153	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 154
 155	if (idle_time == -1ULL)
 156		return get_cpu_idle_time_jiffy(cpu, wall);
 157	else if (!io_busy)
 158		idle_time += get_cpu_iowait_time_us(cpu, wall);
 159
 160	return idle_time;
 161}
 162EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 163
 164/*
 165 * This is a generic cpufreq init() routine which can be used by cpufreq
 166 * drivers of SMP systems. It will do following:
 167 * - validate & show freq table passed
 168 * - set policies transition latency
 169 * - policy->cpus with all possible CPUs
 170 */
 171int cpufreq_generic_init(struct cpufreq_policy *policy,
 172		struct cpufreq_frequency_table *table,
 173		unsigned int transition_latency)
 174{
 175	int ret;
 176
 177	ret = cpufreq_table_validate_and_show(policy, table);
 178	if (ret) {
 179		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
 180		return ret;
 181	}
 182
 183	policy->cpuinfo.transition_latency = transition_latency;
 184
 185	/*
 186	 * The driver only supports the SMP configuration where all processors
 187	 * share the clock and voltage and clock.
 188	 */
 189	cpumask_setall(policy->cpus);
 190
 191	return 0;
 192}
 193EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 194
 195struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 196{
 197	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 198
 199	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 200}
 201EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 202
 203unsigned int cpufreq_generic_get(unsigned int cpu)
 204{
 205	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 206
 207	if (!policy || IS_ERR(policy->clk)) {
 208		pr_err("%s: No %s associated to cpu: %d\n",
 209		       __func__, policy ? "clk" : "policy", cpu);
 210		return 0;
 211	}
 212
 213	return clk_get_rate(policy->clk) / 1000;
 214}
 215EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 216
 217/**
 218 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
 219 *
 220 * @cpu: cpu to find policy for.
 221 *
 222 * This returns policy for 'cpu', returns NULL if it doesn't exist.
 223 * It also increments the kobject reference count to mark it busy and so would
 224 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
 225 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
 226 * freed as that depends on the kobj count.
 227 *
 228 * Return: A valid policy on success, otherwise NULL on failure.
 229 */
 230struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 231{
 232	struct cpufreq_policy *policy = NULL;
 233	unsigned long flags;
 234
 235	if (WARN_ON(cpu >= nr_cpu_ids))
 236		return NULL;
 237
 238	/* get the cpufreq driver */
 239	read_lock_irqsave(&cpufreq_driver_lock, flags);
 240
 241	if (cpufreq_driver) {
 242		/* get the CPU */
 243		policy = cpufreq_cpu_get_raw(cpu);
 244		if (policy)
 245			kobject_get(&policy->kobj);
 246	}
 247
 248	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 249
 250	return policy;
 251}
 252EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 253
 254/**
 255 * cpufreq_cpu_put: Decrements the usage count of a policy
 256 *
 257 * @policy: policy earlier returned by cpufreq_cpu_get().
 258 *
 259 * This decrements the kobject reference count incremented earlier by calling
 260 * cpufreq_cpu_get().
 261 */
 262void cpufreq_cpu_put(struct cpufreq_policy *policy)
 263{
 264	kobject_put(&policy->kobj);
 265}
 266EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 267
 268/*********************************************************************
 269 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 270 *********************************************************************/
 271
 272/**
 273 * adjust_jiffies - adjust the system "loops_per_jiffy"
 274 *
 275 * This function alters the system "loops_per_jiffy" for the clock
 276 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 277 * systems as each CPU might be scaled differently. So, use the arch
 278 * per-CPU loops_per_jiffy value wherever possible.
 279 */
 
 
 
 
 280static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 281{
 282#ifndef CONFIG_SMP
 283	static unsigned long l_p_j_ref;
 284	static unsigned int l_p_j_ref_freq;
 285
 286	if (ci->flags & CPUFREQ_CONST_LOOPS)
 287		return;
 288
 289	if (!l_p_j_ref_freq) {
 290		l_p_j_ref = loops_per_jiffy;
 291		l_p_j_ref_freq = ci->old;
 292		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 293			 l_p_j_ref, l_p_j_ref_freq);
 294	}
 295	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 
 
 296		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 297								ci->new);
 298		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 299			 loops_per_jiffy, ci->new);
 300	}
 
 
 
 
 
 
 301#endif
 302}
 303
 304static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
 305		struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 
 
 
 
 306{
 
 
 307	BUG_ON(irqs_disabled());
 308
 309	if (cpufreq_disabled())
 310		return;
 311
 312	freqs->flags = cpufreq_driver->flags;
 313	pr_debug("notification %u of frequency transition to %u kHz\n",
 314		 state, freqs->new);
 315
 
 316	switch (state) {
 317
 318	case CPUFREQ_PRECHANGE:
 319		/* detect if the driver reported a value as "old frequency"
 320		 * which is not equal to what the cpufreq core thinks is
 321		 * "old frequency".
 322		 */
 323		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 324			if ((policy) && (policy->cpu == freqs->cpu) &&
 325			    (policy->cur) && (policy->cur != freqs->old)) {
 326				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 327					 freqs->old, policy->cur);
 
 328				freqs->old = policy->cur;
 329			}
 330		}
 331		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 332				CPUFREQ_PRECHANGE, freqs);
 333		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 334		break;
 335
 336	case CPUFREQ_POSTCHANGE:
 337		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 338		pr_debug("FREQ: %lu - CPU: %lu\n",
 339			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
 
 340		trace_cpu_frequency(freqs->new, freqs->cpu);
 341		cpufreq_stats_record_transition(policy, freqs->new);
 342		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 343				CPUFREQ_POSTCHANGE, freqs);
 344		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 345			policy->cur = freqs->new;
 346		break;
 347	}
 348}
 
 349
 350/**
 351 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 352 * on frequency transition.
 353 *
 354 * This function calls the transition notifiers and the "adjust_jiffies"
 355 * function. It is called twice on all CPU frequency changes that have
 356 * external effects.
 357 */
 358static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 359		struct cpufreq_freqs *freqs, unsigned int state)
 360{
 361	for_each_cpu(freqs->cpu, policy->cpus)
 362		__cpufreq_notify_transition(policy, freqs, state);
 363}
 364
 365/* Do post notifications when there are chances that transition has failed */
 366static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 367		struct cpufreq_freqs *freqs, int transition_failed)
 368{
 369	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 370	if (!transition_failed)
 371		return;
 372
 373	swap(freqs->old, freqs->new);
 374	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 375	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 376}
 377
 378void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 379		struct cpufreq_freqs *freqs)
 380{
 381
 382	/*
 383	 * Catch double invocations of _begin() which lead to self-deadlock.
 384	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 385	 * doesn't invoke _begin() on their behalf, and hence the chances of
 386	 * double invocations are very low. Moreover, there are scenarios
 387	 * where these checks can emit false-positive warnings in these
 388	 * drivers; so we avoid that by skipping them altogether.
 389	 */
 390	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 391				&& current == policy->transition_task);
 392
 393wait:
 394	wait_event(policy->transition_wait, !policy->transition_ongoing);
 395
 396	spin_lock(&policy->transition_lock);
 397
 398	if (unlikely(policy->transition_ongoing)) {
 399		spin_unlock(&policy->transition_lock);
 400		goto wait;
 401	}
 402
 403	policy->transition_ongoing = true;
 404	policy->transition_task = current;
 405
 406	spin_unlock(&policy->transition_lock);
 407
 408	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 409}
 410EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 411
 412void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 413		struct cpufreq_freqs *freqs, int transition_failed)
 414{
 415	if (unlikely(WARN_ON(!policy->transition_ongoing)))
 416		return;
 417
 418	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 419
 420	policy->transition_ongoing = false;
 421	policy->transition_task = NULL;
 422
 423	wake_up(&policy->transition_wait);
 424}
 425EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 426
 427/*
 428 * Fast frequency switching status count.  Positive means "enabled", negative
 429 * means "disabled" and 0 means "not decided yet".
 430 */
 431static int cpufreq_fast_switch_count;
 432static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 433
 434static void cpufreq_list_transition_notifiers(void)
 435{
 436	struct notifier_block *nb;
 437
 438	pr_info("Registered transition notifiers:\n");
 439
 440	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 441
 442	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 443		pr_info("%pF\n", nb->notifier_call);
 444
 445	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 446}
 447
 448/**
 449 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 450 * @policy: cpufreq policy to enable fast frequency switching for.
 451 *
 452 * Try to enable fast frequency switching for @policy.
 453 *
 454 * The attempt will fail if there is at least one transition notifier registered
 455 * at this point, as fast frequency switching is quite fundamentally at odds
 456 * with transition notifiers.  Thus if successful, it will make registration of
 457 * transition notifiers fail going forward.
 458 */
 459void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 460{
 461	lockdep_assert_held(&policy->rwsem);
 462
 463	if (!policy->fast_switch_possible)
 464		return;
 465
 466	mutex_lock(&cpufreq_fast_switch_lock);
 467	if (cpufreq_fast_switch_count >= 0) {
 468		cpufreq_fast_switch_count++;
 469		policy->fast_switch_enabled = true;
 470	} else {
 471		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 472			policy->cpu);
 473		cpufreq_list_transition_notifiers();
 474	}
 475	mutex_unlock(&cpufreq_fast_switch_lock);
 476}
 477EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 478
 479/**
 480 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 481 * @policy: cpufreq policy to disable fast frequency switching for.
 482 */
 483void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 484{
 485	mutex_lock(&cpufreq_fast_switch_lock);
 486	if (policy->fast_switch_enabled) {
 487		policy->fast_switch_enabled = false;
 488		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 489			cpufreq_fast_switch_count--;
 490	}
 491	mutex_unlock(&cpufreq_fast_switch_lock);
 492}
 493EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 494
 495/**
 496 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 497 * one.
 498 * @target_freq: target frequency to resolve.
 499 *
 500 * The target to driver frequency mapping is cached in the policy.
 501 *
 502 * Return: Lowest driver-supported frequency greater than or equal to the
 503 * given target_freq, subject to policy (min/max) and driver limitations.
 504 */
 505unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 506					 unsigned int target_freq)
 507{
 508	target_freq = clamp_val(target_freq, policy->min, policy->max);
 509	policy->cached_target_freq = target_freq;
 510
 511	if (cpufreq_driver->target_index) {
 512		int idx;
 513
 514		idx = cpufreq_frequency_table_target(policy, target_freq,
 515						     CPUFREQ_RELATION_L);
 516		policy->cached_resolved_idx = idx;
 517		return policy->freq_table[idx].frequency;
 518	}
 519
 520	if (cpufreq_driver->resolve_freq)
 521		return cpufreq_driver->resolve_freq(policy, target_freq);
 522
 523	return target_freq;
 524}
 525EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 526
 527/*********************************************************************
 528 *                          SYSFS INTERFACE                          *
 529 *********************************************************************/
 530static ssize_t show_boost(struct kobject *kobj,
 531				 struct attribute *attr, char *buf)
 532{
 533	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 534}
 535
 536static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
 537				  const char *buf, size_t count)
 538{
 539	int ret, enable;
 540
 541	ret = sscanf(buf, "%d", &enable);
 542	if (ret != 1 || enable < 0 || enable > 1)
 543		return -EINVAL;
 544
 545	if (cpufreq_boost_trigger_state(enable)) {
 546		pr_err("%s: Cannot %s BOOST!\n",
 547		       __func__, enable ? "enable" : "disable");
 548		return -EINVAL;
 549	}
 550
 551	pr_debug("%s: cpufreq BOOST %s\n",
 552		 __func__, enable ? "enabled" : "disabled");
 553
 554	return count;
 555}
 556define_one_global_rw(boost);
 557
 558static struct cpufreq_governor *find_governor(const char *str_governor)
 559{
 560	struct cpufreq_governor *t;
 561
 562	for_each_governor(t)
 563		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 564			return t;
 565
 566	return NULL;
 567}
 568
 569/**
 570 * cpufreq_parse_governor - parse a governor string
 571 */
 572static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 573				struct cpufreq_governor **governor)
 574{
 575	int err = -EINVAL;
 576
 
 
 
 577	if (cpufreq_driver->setpolicy) {
 578		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 579			*policy = CPUFREQ_POLICY_PERFORMANCE;
 580			err = 0;
 581		} else if (!strncasecmp(str_governor, "powersave",
 582						CPUFREQ_NAME_LEN)) {
 583			*policy = CPUFREQ_POLICY_POWERSAVE;
 584			err = 0;
 585		}
 586	} else {
 587		struct cpufreq_governor *t;
 588
 589		mutex_lock(&cpufreq_governor_mutex);
 590
 591		t = find_governor(str_governor);
 592
 593		if (t == NULL) {
 594			int ret;
 595
 596			mutex_unlock(&cpufreq_governor_mutex);
 597			ret = request_module("cpufreq_%s", str_governor);
 598			mutex_lock(&cpufreq_governor_mutex);
 599
 600			if (ret == 0)
 601				t = find_governor(str_governor);
 602		}
 603
 604		if (t != NULL) {
 605			*governor = t;
 606			err = 0;
 607		}
 608
 609		mutex_unlock(&cpufreq_governor_mutex);
 610	}
 
 611	return err;
 612}
 613
 
 614/**
 615 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 616 * print out cpufreq information
 617 *
 618 * Write out information from cpufreq_driver->policy[cpu]; object must be
 619 * "unsigned int".
 620 */
 621
 622#define show_one(file_name, object)			\
 623static ssize_t show_##file_name				\
 624(struct cpufreq_policy *policy, char *buf)		\
 625{							\
 626	return sprintf(buf, "%u\n", policy->object);	\
 627}
 628
 629show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 630show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 631show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 632show_one(scaling_min_freq, min);
 633show_one(scaling_max_freq, max);
 
 634
 635static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 636{
 637	ssize_t ret;
 638
 639	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
 640		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 641	else
 642		ret = sprintf(buf, "%u\n", policy->cur);
 643	return ret;
 644}
 645
 646static int cpufreq_set_policy(struct cpufreq_policy *policy,
 647				struct cpufreq_policy *new_policy);
 648
 649/**
 650 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 651 */
 652#define store_one(file_name, object)			\
 653static ssize_t store_##file_name					\
 654(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 655{									\
 656	int ret, temp;							\
 657	struct cpufreq_policy new_policy;				\
 658									\
 659	memcpy(&new_policy, policy, sizeof(*policy));			\
 
 
 660									\
 661	ret = sscanf(buf, "%u", &new_policy.object);			\
 662	if (ret != 1)							\
 663		return -EINVAL;						\
 664									\
 665	temp = new_policy.object;					\
 666	ret = cpufreq_set_policy(policy, &new_policy);		\
 667	if (!ret)							\
 668		policy->user_policy.object = temp;			\
 669									\
 670	return ret ? ret : count;					\
 671}
 672
 673store_one(scaling_min_freq, min);
 674store_one(scaling_max_freq, max);
 675
 676/**
 677 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 678 */
 679static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 680					char *buf)
 681{
 682	unsigned int cur_freq = __cpufreq_get(policy);
 
 
 
 
 683
 684	if (cur_freq)
 685		return sprintf(buf, "%u\n", cur_freq);
 686
 687	return sprintf(buf, "<unknown>\n");
 688}
 689
 690/**
 691 * show_scaling_governor - show the current policy for the specified CPU
 692 */
 693static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 694{
 695	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 696		return sprintf(buf, "powersave\n");
 697	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 698		return sprintf(buf, "performance\n");
 699	else if (policy->governor)
 700		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 701				policy->governor->name);
 702	return -EINVAL;
 703}
 704
 
 705/**
 706 * store_scaling_governor - store policy for the specified CPU
 707 */
 708static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 709					const char *buf, size_t count)
 710{
 711	int ret;
 712	char	str_governor[16];
 713	struct cpufreq_policy new_policy;
 714
 715	memcpy(&new_policy, policy, sizeof(*policy));
 
 
 716
 717	ret = sscanf(buf, "%15s", str_governor);
 718	if (ret != 1)
 719		return -EINVAL;
 720
 721	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 722						&new_policy.governor))
 723		return -EINVAL;
 724
 725	ret = cpufreq_set_policy(policy, &new_policy);
 726	return ret ? ret : count;
 
 
 
 
 
 
 
 
 
 727}
 728
 729/**
 730 * show_scaling_driver - show the cpufreq driver currently loaded
 731 */
 732static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 733{
 734	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 735}
 736
 737/**
 738 * show_scaling_available_governors - show the available CPUfreq governors
 739 */
 740static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 741						char *buf)
 742{
 743	ssize_t i = 0;
 744	struct cpufreq_governor *t;
 745
 746	if (!has_target()) {
 747		i += sprintf(buf, "performance powersave");
 748		goto out;
 749	}
 750
 751	for_each_governor(t) {
 752		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 753		    - (CPUFREQ_NAME_LEN + 2)))
 754			goto out;
 755		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 756	}
 757out:
 758	i += sprintf(&buf[i], "\n");
 759	return i;
 760}
 761
 762ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 763{
 764	ssize_t i = 0;
 765	unsigned int cpu;
 766
 767	for_each_cpu(cpu, mask) {
 768		if (i)
 769			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 770		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 771		if (i >= (PAGE_SIZE - 5))
 772			break;
 773	}
 774	i += sprintf(&buf[i], "\n");
 775	return i;
 776}
 777EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 778
 779/**
 780 * show_related_cpus - show the CPUs affected by each transition even if
 781 * hw coordination is in use
 782 */
 783static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 784{
 785	return cpufreq_show_cpus(policy->related_cpus, buf);
 
 
 786}
 787
 788/**
 789 * show_affected_cpus - show the CPUs affected by each transition
 790 */
 791static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 792{
 793	return cpufreq_show_cpus(policy->cpus, buf);
 794}
 795
 796static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 797					const char *buf, size_t count)
 798{
 799	unsigned int freq = 0;
 800	unsigned int ret;
 801
 802	if (!policy->governor || !policy->governor->store_setspeed)
 803		return -EINVAL;
 804
 805	ret = sscanf(buf, "%u", &freq);
 806	if (ret != 1)
 807		return -EINVAL;
 808
 809	policy->governor->store_setspeed(policy, freq);
 810
 811	return count;
 812}
 813
 814static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 815{
 816	if (!policy->governor || !policy->governor->show_setspeed)
 817		return sprintf(buf, "<unsupported>\n");
 818
 819	return policy->governor->show_setspeed(policy, buf);
 820}
 821
 822/**
 823 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 824 */
 825static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 826{
 827	unsigned int limit;
 828	int ret;
 829	if (cpufreq_driver->bios_limit) {
 830		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 831		if (!ret)
 832			return sprintf(buf, "%u\n", limit);
 833	}
 834	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 835}
 836
 837cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 838cpufreq_freq_attr_ro(cpuinfo_min_freq);
 839cpufreq_freq_attr_ro(cpuinfo_max_freq);
 840cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 841cpufreq_freq_attr_ro(scaling_available_governors);
 842cpufreq_freq_attr_ro(scaling_driver);
 843cpufreq_freq_attr_ro(scaling_cur_freq);
 844cpufreq_freq_attr_ro(bios_limit);
 845cpufreq_freq_attr_ro(related_cpus);
 846cpufreq_freq_attr_ro(affected_cpus);
 847cpufreq_freq_attr_rw(scaling_min_freq);
 848cpufreq_freq_attr_rw(scaling_max_freq);
 849cpufreq_freq_attr_rw(scaling_governor);
 850cpufreq_freq_attr_rw(scaling_setspeed);
 851
 852static struct attribute *default_attrs[] = {
 853	&cpuinfo_min_freq.attr,
 854	&cpuinfo_max_freq.attr,
 855	&cpuinfo_transition_latency.attr,
 856	&scaling_min_freq.attr,
 857	&scaling_max_freq.attr,
 858	&affected_cpus.attr,
 859	&related_cpus.attr,
 860	&scaling_governor.attr,
 861	&scaling_driver.attr,
 862	&scaling_available_governors.attr,
 863	&scaling_setspeed.attr,
 864	NULL
 865};
 866
 
 
 
 867#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 868#define to_attr(a) container_of(a, struct freq_attr, attr)
 869
 870static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 871{
 872	struct cpufreq_policy *policy = to_policy(kobj);
 873	struct freq_attr *fattr = to_attr(attr);
 874	ssize_t ret;
 
 
 
 875
 876	down_read(&policy->rwsem);
 877	ret = fattr->show(policy, buf);
 878	up_read(&policy->rwsem);
 879
 
 
 
 
 
 
 
 
 
 880	return ret;
 881}
 882
 883static ssize_t store(struct kobject *kobj, struct attribute *attr,
 884		     const char *buf, size_t count)
 885{
 886	struct cpufreq_policy *policy = to_policy(kobj);
 887	struct freq_attr *fattr = to_attr(attr);
 888	ssize_t ret = -EINVAL;
 
 
 
 889
 890	get_online_cpus();
 
 891
 892	if (cpu_online(policy->cpu)) {
 893		down_write(&policy->rwsem);
 894		ret = fattr->store(policy, buf, count);
 895		up_write(&policy->rwsem);
 896	}
 897
 898	put_online_cpus();
 899
 
 
 
 
 900	return ret;
 901}
 902
 903static void cpufreq_sysfs_release(struct kobject *kobj)
 904{
 905	struct cpufreq_policy *policy = to_policy(kobj);
 906	pr_debug("last reference is dropped\n");
 907	complete(&policy->kobj_unregister);
 908}
 909
 910static const struct sysfs_ops sysfs_ops = {
 911	.show	= show,
 912	.store	= store,
 913};
 914
 915static struct kobj_type ktype_cpufreq = {
 916	.sysfs_ops	= &sysfs_ops,
 917	.default_attrs	= default_attrs,
 918	.release	= cpufreq_sysfs_release,
 919};
 920
 921static int add_cpu_dev_symlink(struct cpufreq_policy *policy,
 922			       struct device *dev)
 
 
 
 
 
 
 
 923{
 924	dev_dbg(dev, "%s: Adding symlink\n", __func__);
 925	return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926}
 927
 928static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
 929				   struct device *dev)
 
 
 930{
 931	dev_dbg(dev, "%s: Removing symlink\n", __func__);
 932	sysfs_remove_link(&dev->kobj, "cpufreq");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933}
 934
 935static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
 
 936{
 
 937	struct freq_attr **drv_attr;
 
 938	int ret = 0;
 
 
 
 
 
 
 
 939
 940	/* set up files for this cpu device */
 941	drv_attr = cpufreq_driver->attr;
 942	while (drv_attr && *drv_attr) {
 943		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 944		if (ret)
 945			return ret;
 946		drv_attr++;
 947	}
 948	if (cpufreq_driver->get) {
 949		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 950		if (ret)
 951			return ret;
 
 
 
 
 
 952	}
 953
 954	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 955	if (ret)
 956		return ret;
 957
 958	if (cpufreq_driver->bios_limit) {
 959		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 960		if (ret)
 961			return ret;
 962	}
 963
 964	return 0;
 965}
 
 
 
 
 
 
 966
 967__weak struct cpufreq_governor *cpufreq_default_governor(void)
 968{
 969	return NULL;
 970}
 971
 972static int cpufreq_init_policy(struct cpufreq_policy *policy)
 973{
 974	struct cpufreq_governor *gov = NULL;
 975	struct cpufreq_policy new_policy;
 976
 977	memcpy(&new_policy, policy, sizeof(*policy));
 
 
 
 978
 979	/* Update governor of new_policy to the governor used before hotplug */
 980	gov = find_governor(policy->last_governor);
 981	if (gov) {
 982		pr_debug("Restoring governor %s for cpu %d\n",
 983				policy->governor->name, policy->cpu);
 984	} else {
 985		gov = cpufreq_default_governor();
 986		if (!gov)
 987			return -ENODATA;
 988	}
 
 989
 990	new_policy.governor = gov;
 
 
 
 
 991
 992	/* Use the default policy if there is no last_policy. */
 993	if (cpufreq_driver->setpolicy) {
 994		if (policy->last_policy)
 995			new_policy.policy = policy->last_policy;
 996		else
 997			cpufreq_parse_governor(gov->name, &new_policy.policy,
 998					       NULL);
 999	}
1000	/* set default policy */
1001	return cpufreq_set_policy(policy, &new_policy);
1002}
1003
1004static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
 
1005{
1006	int ret = 0;
 
 
 
 
 
 
 
1007
1008	/* Has this CPU been taken care of already? */
1009	if (cpumask_test_cpu(cpu, policy->cpus))
1010		return 0;
1011
1012	down_write(&policy->rwsem);
1013	if (has_target())
1014		cpufreq_stop_governor(policy);
1015
1016	cpumask_set_cpu(cpu, policy->cpus);
 
 
 
 
 
 
 
 
1017
1018	if (has_target()) {
1019		ret = cpufreq_start_governor(policy);
1020		if (ret)
1021			pr_err("%s: Failed to start governor\n", __func__);
1022	}
1023	up_write(&policy->rwsem);
1024	return ret;
1025}
1026
1027static void handle_update(struct work_struct *work)
1028{
1029	struct cpufreq_policy *policy =
1030		container_of(work, struct cpufreq_policy, update);
1031	unsigned int cpu = policy->cpu;
1032	pr_debug("handle_update for cpu %u called\n", cpu);
1033	cpufreq_update_policy(cpu);
1034}
1035
1036static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1037{
1038	struct cpufreq_policy *policy;
1039	int ret;
1040
1041	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1042	if (!policy)
1043		return NULL;
1044
1045	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1046		goto err_free_policy;
1047
1048	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1049		goto err_free_cpumask;
1050
1051	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1052		goto err_free_rcpumask;
1053
1054	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1055				   cpufreq_global_kobject, "policy%u", cpu);
1056	if (ret) {
1057		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1058		goto err_free_real_cpus;
1059	}
1060
1061	INIT_LIST_HEAD(&policy->policy_list);
1062	init_rwsem(&policy->rwsem);
1063	spin_lock_init(&policy->transition_lock);
1064	init_waitqueue_head(&policy->transition_wait);
1065	init_completion(&policy->kobj_unregister);
1066	INIT_WORK(&policy->update, handle_update);
1067
1068	policy->cpu = cpu;
1069	return policy;
1070
1071err_free_real_cpus:
1072	free_cpumask_var(policy->real_cpus);
1073err_free_rcpumask:
1074	free_cpumask_var(policy->related_cpus);
1075err_free_cpumask:
1076	free_cpumask_var(policy->cpus);
1077err_free_policy:
1078	kfree(policy);
1079
1080	return NULL;
1081}
1082
1083static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1084{
1085	struct kobject *kobj;
1086	struct completion *cmp;
1087
1088	if (notify)
1089		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1090					     CPUFREQ_REMOVE_POLICY, policy);
1091
1092	down_write(&policy->rwsem);
1093	cpufreq_stats_free_table(policy);
1094	kobj = &policy->kobj;
1095	cmp = &policy->kobj_unregister;
1096	up_write(&policy->rwsem);
1097	kobject_put(kobj);
1098
1099	/*
1100	 * We need to make sure that the underlying kobj is
1101	 * actually not referenced anymore by anybody before we
1102	 * proceed with unloading.
1103	 */
1104	pr_debug("waiting for dropping of refcount\n");
1105	wait_for_completion(cmp);
1106	pr_debug("wait complete\n");
1107}
1108
1109static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1110{
1111	unsigned long flags;
1112	int cpu;
1113
1114	/* Remove policy from list */
1115	write_lock_irqsave(&cpufreq_driver_lock, flags);
1116	list_del(&policy->policy_list);
1117
1118	for_each_cpu(cpu, policy->related_cpus)
1119		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1120	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1121
1122	cpufreq_policy_put_kobj(policy, notify);
1123	free_cpumask_var(policy->real_cpus);
1124	free_cpumask_var(policy->related_cpus);
1125	free_cpumask_var(policy->cpus);
1126	kfree(policy);
1127}
1128
1129static int cpufreq_online(unsigned int cpu)
1130{
1131	struct cpufreq_policy *policy;
1132	bool new_policy;
1133	unsigned long flags;
1134	unsigned int j;
1135	int ret;
1136
1137	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1138
1139	/* Check if this CPU already has a policy to manage it */
1140	policy = per_cpu(cpufreq_cpu_data, cpu);
1141	if (policy) {
1142		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1143		if (!policy_is_inactive(policy))
1144			return cpufreq_add_policy_cpu(policy, cpu);
1145
1146		/* This is the only online CPU for the policy.  Start over. */
1147		new_policy = false;
1148		down_write(&policy->rwsem);
1149		policy->cpu = cpu;
1150		policy->governor = NULL;
1151		up_write(&policy->rwsem);
1152	} else {
1153		new_policy = true;
1154		policy = cpufreq_policy_alloc(cpu);
1155		if (!policy)
1156			return -ENOMEM;
1157	}
1158
1159	cpumask_copy(policy->cpus, cpumask_of(cpu));
1160
1161	/* call driver. From then on the cpufreq must be able
1162	 * to accept all calls to ->verify and ->setpolicy for this CPU
1163	 */
1164	ret = cpufreq_driver->init(policy);
1165	if (ret) {
1166		pr_debug("initialization failed\n");
1167		goto out_free_policy;
1168	}
1169
1170	down_write(&policy->rwsem);
1171
1172	if (new_policy) {
1173		/* related_cpus should at least include policy->cpus. */
1174		cpumask_copy(policy->related_cpus, policy->cpus);
1175		/* Clear mask of registered CPUs */
1176		cpumask_clear(policy->real_cpus);
1177	}
1178
1179	/*
1180	 * affected cpus must always be the one, which are online. We aren't
1181	 * managing offline cpus here.
1182	 */
1183	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1184
1185	if (new_policy) {
1186		policy->user_policy.min = policy->min;
1187		policy->user_policy.max = policy->max;
1188
1189		write_lock_irqsave(&cpufreq_driver_lock, flags);
1190		for_each_cpu(j, policy->related_cpus)
1191			per_cpu(cpufreq_cpu_data, j) = policy;
1192		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1193	} else {
1194		policy->min = policy->user_policy.min;
1195		policy->max = policy->user_policy.max;
1196	}
1197
1198	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1199		policy->cur = cpufreq_driver->get(policy->cpu);
1200		if (!policy->cur) {
1201			pr_err("%s: ->get() failed\n", __func__);
1202			goto out_exit_policy;
1203		}
1204	}
1205
1206	/*
1207	 * Sometimes boot loaders set CPU frequency to a value outside of
1208	 * frequency table present with cpufreq core. In such cases CPU might be
1209	 * unstable if it has to run on that frequency for long duration of time
1210	 * and so its better to set it to a frequency which is specified in
1211	 * freq-table. This also makes cpufreq stats inconsistent as
1212	 * cpufreq-stats would fail to register because current frequency of CPU
1213	 * isn't found in freq-table.
1214	 *
1215	 * Because we don't want this change to effect boot process badly, we go
1216	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1217	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1218	 * is initialized to zero).
1219	 *
1220	 * We are passing target-freq as "policy->cur - 1" otherwise
1221	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1222	 * equal to target-freq.
1223	 */
1224	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1225	    && has_target()) {
1226		/* Are we running at unknown frequency ? */
1227		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1228		if (ret == -EINVAL) {
1229			/* Warn user and fix it */
1230			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1231				__func__, policy->cpu, policy->cur);
1232			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1233				CPUFREQ_RELATION_L);
1234
1235			/*
1236			 * Reaching here after boot in a few seconds may not
1237			 * mean that system will remain stable at "unknown"
1238			 * frequency for longer duration. Hence, a BUG_ON().
1239			 */
1240			BUG_ON(ret);
1241			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1242				__func__, policy->cpu, policy->cur);
1243		}
1244	}
1245
1246	if (new_policy) {
1247		ret = cpufreq_add_dev_interface(policy);
1248		if (ret)
1249			goto out_exit_policy;
1250
1251		cpufreq_stats_create_table(policy);
1252		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1253				CPUFREQ_CREATE_POLICY, policy);
1254
1255		write_lock_irqsave(&cpufreq_driver_lock, flags);
1256		list_add(&policy->policy_list, &cpufreq_policy_list);
1257		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1258	}
 
 
1259
1260	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1261				     CPUFREQ_START, policy);
1262
1263	ret = cpufreq_init_policy(policy);
1264	if (ret) {
1265		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1266		       __func__, cpu, ret);
1267		/* cpufreq_policy_free() will notify based on this */
1268		new_policy = false;
1269		goto out_exit_policy;
1270	}
1271
1272	up_write(&policy->rwsem);
 
 
 
 
1273
1274	kobject_uevent(&policy->kobj, KOBJ_ADD);
 
 
1275
1276	/* Callback for handling stuff after policy is ready */
1277	if (cpufreq_driver->ready)
1278		cpufreq_driver->ready(policy);
1279
1280	pr_debug("initialization complete\n");
1281
1282	return 0;
 
 
 
 
1283
1284out_exit_policy:
1285	up_write(&policy->rwsem);
1286
1287	if (cpufreq_driver->exit)
1288		cpufreq_driver->exit(policy);
1289out_free_policy:
1290	cpufreq_policy_free(policy, !new_policy);
 
 
 
 
 
 
1291	return ret;
1292}
1293
1294static int cpufreq_offline(unsigned int cpu);
1295
1296/**
1297 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1298 * @dev: CPU device.
1299 * @sif: Subsystem interface structure pointer (not used)
 
 
1300 */
1301static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1302{
1303	struct cpufreq_policy *policy;
1304	unsigned cpu = dev->id;
1305	int ret;
 
 
 
 
 
 
 
 
1306
1307	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
 
1308
1309	if (cpu_online(cpu)) {
1310		ret = cpufreq_online(cpu);
1311		if (ret)
1312			return ret;
1313	}
 
 
1314
1315	/* Create sysfs link on CPU registration */
1316	policy = per_cpu(cpufreq_cpu_data, cpu);
1317	if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus))
 
 
 
 
 
 
 
 
 
1318		return 0;
1319
1320	ret = add_cpu_dev_symlink(policy, dev);
1321	if (ret) {
1322		cpumask_clear_cpu(cpu, policy->real_cpus);
1323		cpufreq_offline(cpu);
1324	}
 
1325
1326	return ret;
1327}
1328
1329static int cpufreq_offline(unsigned int cpu)
1330{
1331	struct cpufreq_policy *policy;
1332	int ret;
1333
1334	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
 
 
 
 
 
 
 
 
 
 
 
1335
1336	policy = cpufreq_cpu_get_raw(cpu);
1337	if (!policy) {
1338		pr_debug("%s: No cpu_data found\n", __func__);
1339		return 0;
1340	}
1341
1342	down_write(&policy->rwsem);
1343	if (has_target())
1344		cpufreq_stop_governor(policy);
1345
1346	cpumask_clear_cpu(cpu, policy->cpus);
1347
1348	if (policy_is_inactive(policy)) {
1349		if (has_target())
1350			strncpy(policy->last_governor, policy->governor->name,
1351				CPUFREQ_NAME_LEN);
1352		else
1353			policy->last_policy = policy->policy;
1354	} else if (cpu == policy->cpu) {
1355		/* Nominate new CPU */
1356		policy->cpu = cpumask_any(policy->cpus);
1357	}
1358
1359	/* Start governor again for active policy */
1360	if (!policy_is_inactive(policy)) {
1361		if (has_target()) {
1362			ret = cpufreq_start_governor(policy);
1363			if (ret)
1364				pr_err("%s: Failed to start governor\n", __func__);
1365		}
1366
1367		goto unlock;
1368	}
 
 
 
1369
1370	if (cpufreq_driver->stop_cpu)
1371		cpufreq_driver->stop_cpu(policy);
1372
1373	if (has_target())
1374		cpufreq_exit_governor(policy);
 
 
1375
1376	/*
1377	 * Perform the ->exit() even during light-weight tear-down,
1378	 * since this is a core component, and is essential for the
1379	 * subsequent light-weight ->init() to succeed.
1380	 */
1381	if (cpufreq_driver->exit) {
1382		cpufreq_driver->exit(policy);
1383		policy->freq_table = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1384	}
 
 
 
 
 
1385
1386unlock:
1387	up_write(&policy->rwsem);
1388	return 0;
1389}
1390
1391/**
1392 * cpufreq_remove_dev - remove a CPU device
1393 *
1394 * Removes the cpufreq interface for a CPU device.
1395 */
1396static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1397{
1398	unsigned int cpu = dev->id;
1399	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1400
1401	if (!policy)
1402		return;
1403
1404	if (cpu_online(cpu))
1405		cpufreq_offline(cpu);
1406
1407	cpumask_clear_cpu(cpu, policy->real_cpus);
1408	remove_cpu_dev_symlink(policy, dev);
 
1409
1410	if (cpumask_empty(policy->real_cpus))
1411		cpufreq_policy_free(policy, true);
 
 
 
 
 
 
1412}
1413
1414/**
1415 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1416 *	in deep trouble.
1417 *	@policy: policy managing CPUs
1418 *	@new_freq: CPU frequency the CPU actually runs at
1419 *
1420 *	We adjust to current frequency first, and need to clean up later.
1421 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1422 */
1423static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1424				unsigned int new_freq)
1425{
1426	struct cpufreq_freqs freqs;
1427
1428	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1429		 policy->cur, new_freq);
1430
1431	freqs.old = policy->cur;
 
1432	freqs.new = new_freq;
 
 
 
1433
1434	cpufreq_freq_transition_begin(policy, &freqs);
1435	cpufreq_freq_transition_end(policy, &freqs, 0);
1436}
1437
1438/**
1439 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1440 * @cpu: CPU number
1441 *
1442 * This is the last known freq, without actually getting it from the driver.
1443 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1444 */
1445unsigned int cpufreq_quick_get(unsigned int cpu)
1446{
1447	struct cpufreq_policy *policy;
1448	unsigned int ret_freq = 0;
1449	unsigned long flags;
1450
1451	read_lock_irqsave(&cpufreq_driver_lock, flags);
1452
1453	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1454		ret_freq = cpufreq_driver->get(cpu);
1455		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1456		return ret_freq;
1457	}
1458
1459	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1460
1461	policy = cpufreq_cpu_get(cpu);
1462	if (policy) {
1463		ret_freq = policy->cur;
1464		cpufreq_cpu_put(policy);
1465	}
1466
1467	return ret_freq;
1468}
1469EXPORT_SYMBOL(cpufreq_quick_get);
1470
1471/**
1472 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1473 * @cpu: CPU number
1474 *
1475 * Just return the max possible frequency for a given CPU.
1476 */
1477unsigned int cpufreq_quick_get_max(unsigned int cpu)
1478{
1479	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1480	unsigned int ret_freq = 0;
1481
1482	if (policy) {
1483		ret_freq = policy->max;
1484		cpufreq_cpu_put(policy);
1485	}
1486
1487	return ret_freq;
1488}
1489EXPORT_SYMBOL(cpufreq_quick_get_max);
1490
1491static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
 
1492{
 
1493	unsigned int ret_freq = 0;
1494
1495	if (!cpufreq_driver->get)
1496		return ret_freq;
1497
1498	ret_freq = cpufreq_driver->get(policy->cpu);
1499
1500	/*
1501	 * Updating inactive policies is invalid, so avoid doing that.  Also
1502	 * if fast frequency switching is used with the given policy, the check
1503	 * against policy->cur is pointless, so skip it in that case too.
1504	 */
1505	if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1506		return ret_freq;
1507
1508	if (ret_freq && policy->cur &&
1509		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1510		/* verify no discrepancy between actual and
1511					saved value exists */
1512		if (unlikely(ret_freq != policy->cur)) {
1513			cpufreq_out_of_sync(policy, ret_freq);
1514			schedule_work(&policy->update);
1515		}
1516	}
1517
1518	return ret_freq;
1519}
1520
1521/**
1522 * cpufreq_get - get the current CPU frequency (in kHz)
1523 * @cpu: CPU number
1524 *
1525 * Get the CPU current (static) CPU frequency
1526 */
1527unsigned int cpufreq_get(unsigned int cpu)
1528{
 
1529	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1530	unsigned int ret_freq = 0;
1531
1532	if (policy) {
1533		down_read(&policy->rwsem);
1534
1535		if (!policy_is_inactive(policy))
1536			ret_freq = __cpufreq_get(policy);
1537
1538		up_read(&policy->rwsem);
1539
1540		cpufreq_cpu_put(policy);
1541	}
1542
 
 
 
1543	return ret_freq;
1544}
1545EXPORT_SYMBOL(cpufreq_get);
1546
1547static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1548{
1549	unsigned int new_freq;
1550
1551	new_freq = cpufreq_driver->get(policy->cpu);
1552	if (!new_freq)
1553		return 0;
1554
1555	if (!policy->cur) {
1556		pr_debug("cpufreq: Driver did not initialize current freq\n");
1557		policy->cur = new_freq;
1558	} else if (policy->cur != new_freq && has_target()) {
1559		cpufreq_out_of_sync(policy, new_freq);
1560	}
1561
1562	return new_freq;
1563}
1564
1565static struct subsys_interface cpufreq_interface = {
1566	.name		= "cpufreq",
1567	.subsys		= &cpu_subsys,
1568	.add_dev	= cpufreq_add_dev,
1569	.remove_dev	= cpufreq_remove_dev,
1570};
1571
1572/*
1573 * In case platform wants some specific frequency to be configured
1574 * during suspend..
1575 */
1576int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1577{
1578	int ret;
1579
1580	if (!policy->suspend_freq) {
1581		pr_debug("%s: suspend_freq not defined\n", __func__);
1582		return 0;
1583	}
1584
1585	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1586			policy->suspend_freq);
1587
1588	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1589			CPUFREQ_RELATION_H);
1590	if (ret)
1591		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1592				__func__, policy->suspend_freq, ret);
1593
1594	return ret;
1595}
1596EXPORT_SYMBOL(cpufreq_generic_suspend);
1597
1598/**
1599 * cpufreq_suspend() - Suspend CPUFreq governors
1600 *
1601 * Called during system wide Suspend/Hibernate cycles for suspending governors
1602 * as some platforms can't change frequency after this point in suspend cycle.
1603 * Because some of the devices (like: i2c, regulators, etc) they use for
1604 * changing frequency are suspended quickly after this point.
1605 */
1606void cpufreq_suspend(void)
1607{
1608	struct cpufreq_policy *policy;
1609
1610	if (!cpufreq_driver)
1611		return;
1612
1613	if (!has_target() && !cpufreq_driver->suspend)
1614		goto suspend;
1615
1616	pr_debug("%s: Suspending Governors\n", __func__);
 
 
 
1617
1618	for_each_active_policy(policy) {
1619		if (has_target()) {
1620			down_write(&policy->rwsem);
1621			cpufreq_stop_governor(policy);
1622			up_write(&policy->rwsem);
1623		}
1624
1625		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1626			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1627				policy);
1628	}
1629
1630suspend:
1631	cpufreq_suspended = true;
1632}
1633
1634/**
1635 * cpufreq_resume() - Resume CPUFreq governors
 
 
 
 
 
 
 
1636 *
1637 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1638 * are suspended with cpufreq_suspend().
1639 */
1640void cpufreq_resume(void)
1641{
1642	struct cpufreq_policy *policy;
1643	int ret;
1644
1645	if (!cpufreq_driver)
1646		return;
1647
1648	cpufreq_suspended = false;
1649
1650	if (!has_target() && !cpufreq_driver->resume)
 
 
1651		return;
1652
1653	pr_debug("%s: Resuming Governors\n", __func__);
1654
1655	for_each_active_policy(policy) {
1656		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1657			pr_err("%s: Failed to resume driver: %p\n", __func__,
1658				policy);
1659		} else if (has_target()) {
1660			down_write(&policy->rwsem);
1661			ret = cpufreq_start_governor(policy);
1662			up_write(&policy->rwsem);
1663
1664			if (ret)
1665				pr_err("%s: Failed to start governor for policy: %p\n",
1666				       __func__, policy);
1667		}
1668	}
1669}
1670
1671/**
1672 *	cpufreq_get_current_driver - return current driver's name
1673 *
1674 *	Return the name string of the currently loaded cpufreq driver
1675 *	or NULL, if none.
1676 */
1677const char *cpufreq_get_current_driver(void)
1678{
1679	if (cpufreq_driver)
1680		return cpufreq_driver->name;
1681
1682	return NULL;
 
1683}
1684EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1685
1686/**
1687 *	cpufreq_get_driver_data - return current driver data
1688 *
1689 *	Return the private data of the currently loaded cpufreq
1690 *	driver, or NULL if no cpufreq driver is loaded.
1691 */
1692void *cpufreq_get_driver_data(void)
1693{
1694	if (cpufreq_driver)
1695		return cpufreq_driver->driver_data;
1696
1697	return NULL;
1698}
1699EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1700
1701/*********************************************************************
1702 *                     NOTIFIER LISTS INTERFACE                      *
1703 *********************************************************************/
1704
1705/**
1706 *	cpufreq_register_notifier - register a driver with cpufreq
1707 *	@nb: notifier function to register
1708 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1709 *
1710 *	Add a driver to one of two lists: either a list of drivers that
1711 *      are notified about clock rate changes (once before and once after
1712 *      the transition), or a list of drivers that are notified about
1713 *      changes in cpufreq policy.
1714 *
1715 *	This function may sleep, and has the same return conditions as
1716 *	blocking_notifier_chain_register.
1717 */
1718int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1719{
1720	int ret;
1721
1722	if (cpufreq_disabled())
1723		return -EINVAL;
1724
1725	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1726
1727	switch (list) {
1728	case CPUFREQ_TRANSITION_NOTIFIER:
1729		mutex_lock(&cpufreq_fast_switch_lock);
1730
1731		if (cpufreq_fast_switch_count > 0) {
1732			mutex_unlock(&cpufreq_fast_switch_lock);
1733			return -EBUSY;
1734		}
1735		ret = srcu_notifier_chain_register(
1736				&cpufreq_transition_notifier_list, nb);
1737		if (!ret)
1738			cpufreq_fast_switch_count--;
1739
1740		mutex_unlock(&cpufreq_fast_switch_lock);
1741		break;
1742	case CPUFREQ_POLICY_NOTIFIER:
1743		ret = blocking_notifier_chain_register(
1744				&cpufreq_policy_notifier_list, nb);
1745		break;
1746	default:
1747		ret = -EINVAL;
1748	}
1749
1750	return ret;
1751}
1752EXPORT_SYMBOL(cpufreq_register_notifier);
1753
 
1754/**
1755 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1756 *	@nb: notifier block to be unregistered
1757 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1758 *
1759 *	Remove a driver from the CPU frequency notifier list.
1760 *
1761 *	This function may sleep, and has the same return conditions as
1762 *	blocking_notifier_chain_unregister.
1763 */
1764int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1765{
1766	int ret;
1767
1768	if (cpufreq_disabled())
1769		return -EINVAL;
1770
1771	switch (list) {
1772	case CPUFREQ_TRANSITION_NOTIFIER:
1773		mutex_lock(&cpufreq_fast_switch_lock);
1774
1775		ret = srcu_notifier_chain_unregister(
1776				&cpufreq_transition_notifier_list, nb);
1777		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1778			cpufreq_fast_switch_count++;
1779
1780		mutex_unlock(&cpufreq_fast_switch_lock);
1781		break;
1782	case CPUFREQ_POLICY_NOTIFIER:
1783		ret = blocking_notifier_chain_unregister(
1784				&cpufreq_policy_notifier_list, nb);
1785		break;
1786	default:
1787		ret = -EINVAL;
1788	}
1789
1790	return ret;
1791}
1792EXPORT_SYMBOL(cpufreq_unregister_notifier);
1793
1794
1795/*********************************************************************
1796 *                              GOVERNORS                            *
1797 *********************************************************************/
1798
1799/**
1800 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1801 * @policy: cpufreq policy to switch the frequency for.
1802 * @target_freq: New frequency to set (may be approximate).
1803 *
1804 * Carry out a fast frequency switch without sleeping.
1805 *
1806 * The driver's ->fast_switch() callback invoked by this function must be
1807 * suitable for being called from within RCU-sched read-side critical sections
1808 * and it is expected to select the minimum available frequency greater than or
1809 * equal to @target_freq (CPUFREQ_RELATION_L).
1810 *
1811 * This function must not be called if policy->fast_switch_enabled is unset.
1812 *
1813 * Governors calling this function must guarantee that it will never be invoked
1814 * twice in parallel for the same policy and that it will never be called in
1815 * parallel with either ->target() or ->target_index() for the same policy.
1816 *
1817 * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch()
1818 * callback to indicate an error condition, the hardware configuration must be
1819 * preserved.
1820 */
1821unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1822					unsigned int target_freq)
1823{
1824	target_freq = clamp_val(target_freq, policy->min, policy->max);
1825
1826	return cpufreq_driver->fast_switch(policy, target_freq);
1827}
1828EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1829
1830/* Must set freqs->new to intermediate frequency */
1831static int __target_intermediate(struct cpufreq_policy *policy,
1832				 struct cpufreq_freqs *freqs, int index)
1833{
1834	int ret;
1835
1836	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1837
1838	/* We don't need to switch to intermediate freq */
1839	if (!freqs->new)
1840		return 0;
1841
1842	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1843		 __func__, policy->cpu, freqs->old, freqs->new);
1844
1845	cpufreq_freq_transition_begin(policy, freqs);
1846	ret = cpufreq_driver->target_intermediate(policy, index);
1847	cpufreq_freq_transition_end(policy, freqs, ret);
1848
1849	if (ret)
1850		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1851		       __func__, ret);
1852
1853	return ret;
1854}
1855
1856static int __target_index(struct cpufreq_policy *policy, int index)
1857{
1858	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1859	unsigned int intermediate_freq = 0;
1860	unsigned int newfreq = policy->freq_table[index].frequency;
1861	int retval = -EINVAL;
1862	bool notify;
1863
1864	if (newfreq == policy->cur)
1865		return 0;
1866
1867	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1868	if (notify) {
1869		/* Handle switching to intermediate frequency */
1870		if (cpufreq_driver->get_intermediate) {
1871			retval = __target_intermediate(policy, &freqs, index);
1872			if (retval)
1873				return retval;
1874
1875			intermediate_freq = freqs.new;
1876			/* Set old freq to intermediate */
1877			if (intermediate_freq)
1878				freqs.old = freqs.new;
1879		}
1880
1881		freqs.new = newfreq;
1882		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1883			 __func__, policy->cpu, freqs.old, freqs.new);
1884
1885		cpufreq_freq_transition_begin(policy, &freqs);
1886	}
1887
1888	retval = cpufreq_driver->target_index(policy, index);
1889	if (retval)
1890		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1891		       retval);
1892
1893	if (notify) {
1894		cpufreq_freq_transition_end(policy, &freqs, retval);
1895
1896		/*
1897		 * Failed after setting to intermediate freq? Driver should have
1898		 * reverted back to initial frequency and so should we. Check
1899		 * here for intermediate_freq instead of get_intermediate, in
1900		 * case we haven't switched to intermediate freq at all.
1901		 */
1902		if (unlikely(retval && intermediate_freq)) {
1903			freqs.old = intermediate_freq;
1904			freqs.new = policy->restore_freq;
1905			cpufreq_freq_transition_begin(policy, &freqs);
1906			cpufreq_freq_transition_end(policy, &freqs, 0);
1907		}
1908	}
1909
1910	return retval;
1911}
1912
1913int __cpufreq_driver_target(struct cpufreq_policy *policy,
1914			    unsigned int target_freq,
1915			    unsigned int relation)
1916{
1917	unsigned int old_target_freq = target_freq;
1918	int index;
1919
1920	if (cpufreq_disabled())
1921		return -ENODEV;
 
 
1922
1923	/* Make sure that target_freq is within supported range */
1924	target_freq = clamp_val(target_freq, policy->min, policy->max);
1925
1926	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1927		 policy->cpu, target_freq, relation, old_target_freq);
1928
1929	/*
1930	 * This might look like a redundant call as we are checking it again
1931	 * after finding index. But it is left intentionally for cases where
1932	 * exactly same freq is called again and so we can save on few function
1933	 * calls.
1934	 */
1935	if (target_freq == policy->cur)
1936		return 0;
1937
1938	/* Save last value to restore later on errors */
1939	policy->restore_freq = policy->cur;
1940
1941	if (cpufreq_driver->target)
1942		return cpufreq_driver->target(policy, target_freq, relation);
1943
1944	if (!cpufreq_driver->target_index)
1945		return -EINVAL;
1946
1947	index = cpufreq_frequency_table_target(policy, target_freq, relation);
1948
1949	return __target_index(policy, index);
1950}
1951EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1952
1953int cpufreq_driver_target(struct cpufreq_policy *policy,
1954			  unsigned int target_freq,
1955			  unsigned int relation)
1956{
1957	int ret = -EINVAL;
1958
1959	down_write(&policy->rwsem);
 
 
 
 
 
1960
1961	ret = __cpufreq_driver_target(policy, target_freq, relation);
1962
1963	up_write(&policy->rwsem);
1964
 
 
 
1965	return ret;
1966}
1967EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1968
1969__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1970{
1971	return NULL;
 
 
 
 
 
 
 
 
 
 
1972}
 
 
 
 
 
1973
1974static int cpufreq_init_governor(struct cpufreq_policy *policy)
 
1975{
1976	int ret;
1977
1978	/* Don't start any governor operations if we are entering suspend */
1979	if (cpufreq_suspended)
1980		return 0;
1981	/*
1982	 * Governor might not be initiated here if ACPI _PPC changed
1983	 * notification happened, so check it.
1984	 */
1985	if (!policy->governor)
1986		return -EINVAL;
1987
1988	if (policy->governor->max_transition_latency &&
1989	    policy->cpuinfo.transition_latency >
1990	    policy->governor->max_transition_latency) {
1991		struct cpufreq_governor *gov = cpufreq_fallback_governor();
1992
1993		if (gov) {
1994			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1995				policy->governor->name, gov->name);
 
 
 
1996			policy->governor = gov;
1997		} else {
1998			return -EINVAL;
1999		}
2000	}
2001
2002	if (!try_module_get(policy->governor->owner))
2003		return -EINVAL;
2004
2005	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
 
 
 
 
 
 
 
 
 
2006
2007	if (policy->governor->init) {
2008		ret = policy->governor->init(policy);
2009		if (ret) {
2010			module_put(policy->governor->owner);
2011			return ret;
2012		}
2013	}
2014
2015	return 0;
2016}
2017
2018static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2019{
2020	if (cpufreq_suspended || !policy->governor)
2021		return;
2022
2023	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2024
2025	if (policy->governor->exit)
2026		policy->governor->exit(policy);
2027
2028	module_put(policy->governor->owner);
2029}
2030
2031static int cpufreq_start_governor(struct cpufreq_policy *policy)
2032{
2033	int ret;
2034
2035	if (cpufreq_suspended)
2036		return 0;
2037
2038	if (!policy->governor)
2039		return -EINVAL;
2040
2041	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2042
2043	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2044		cpufreq_update_current_freq(policy);
2045
2046	if (policy->governor->start) {
2047		ret = policy->governor->start(policy);
2048		if (ret)
2049			return ret;
2050	}
2051
2052	if (policy->governor->limits)
2053		policy->governor->limits(policy);
2054
2055	return 0;
2056}
2057
2058static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2059{
2060	if (cpufreq_suspended || !policy->governor)
2061		return;
2062
2063	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2064
2065	if (policy->governor->stop)
2066		policy->governor->stop(policy);
2067}
2068
2069static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2070{
2071	if (cpufreq_suspended || !policy->governor)
2072		return;
2073
2074	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2075
2076	if (policy->governor->limits)
2077		policy->governor->limits(policy);
2078}
2079
2080int cpufreq_register_governor(struct cpufreq_governor *governor)
2081{
2082	int err;
2083
2084	if (!governor)
2085		return -EINVAL;
2086
2087	if (cpufreq_disabled())
2088		return -ENODEV;
2089
2090	mutex_lock(&cpufreq_governor_mutex);
2091
2092	err = -EBUSY;
2093	if (!find_governor(governor->name)) {
2094		err = 0;
2095		list_add(&governor->governor_list, &cpufreq_governor_list);
2096	}
2097
2098	mutex_unlock(&cpufreq_governor_mutex);
2099	return err;
2100}
2101EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2102
 
2103void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2104{
2105	struct cpufreq_policy *policy;
2106	unsigned long flags;
 
2107
2108	if (!governor)
2109		return;
2110
2111	if (cpufreq_disabled())
2112		return;
2113
2114	/* clear last_governor for all inactive policies */
2115	read_lock_irqsave(&cpufreq_driver_lock, flags);
2116	for_each_inactive_policy(policy) {
2117		if (!strcmp(policy->last_governor, governor->name)) {
2118			policy->governor = NULL;
2119			strcpy(policy->last_governor, "\0");
2120		}
2121	}
2122	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2123
2124	mutex_lock(&cpufreq_governor_mutex);
2125	list_del(&governor->governor_list);
2126	mutex_unlock(&cpufreq_governor_mutex);
2127	return;
2128}
2129EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2130
2131
 
2132/*********************************************************************
2133 *                          POLICY INTERFACE                         *
2134 *********************************************************************/
2135
2136/**
2137 * cpufreq_get_policy - get the current cpufreq_policy
2138 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2139 *	is written
2140 *
2141 * Reads the current cpufreq policy.
2142 */
2143int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2144{
2145	struct cpufreq_policy *cpu_policy;
2146	if (!policy)
2147		return -EINVAL;
2148
2149	cpu_policy = cpufreq_cpu_get(cpu);
2150	if (!cpu_policy)
2151		return -EINVAL;
2152
2153	memcpy(policy, cpu_policy, sizeof(*policy));
2154
2155	cpufreq_cpu_put(cpu_policy);
2156	return 0;
2157}
2158EXPORT_SYMBOL(cpufreq_get_policy);
2159
 
2160/*
2161 * policy : current policy.
2162 * new_policy: policy to be set.
2163 */
2164static int cpufreq_set_policy(struct cpufreq_policy *policy,
2165				struct cpufreq_policy *new_policy)
2166{
2167	struct cpufreq_governor *old_gov;
2168	int ret;
2169
2170	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2171		 new_policy->cpu, new_policy->min, new_policy->max);
2172
2173	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
 
2174
2175	/*
2176	* This check works well when we store new min/max freq attributes,
2177	* because new_policy is a copy of policy with one field updated.
2178	*/
2179	if (new_policy->min > new_policy->max)
2180		return -EINVAL;
2181
2182	/* verify the cpu speed can be set within this limit */
2183	ret = cpufreq_driver->verify(new_policy);
2184	if (ret)
2185		return ret;
2186
2187	/* adjust if necessary - all reasons */
2188	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2189			CPUFREQ_ADJUST, new_policy);
2190
2191	/*
2192	 * verify the cpu speed can be set within this limit, which might be
2193	 * different to the first one
2194	 */
2195	ret = cpufreq_driver->verify(new_policy);
 
 
2196	if (ret)
2197		return ret;
2198
2199	/* notification of the new policy */
2200	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2201			CPUFREQ_NOTIFY, new_policy);
2202
2203	policy->min = new_policy->min;
2204	policy->max = new_policy->max;
2205
2206	policy->cached_target_freq = UINT_MAX;
2207
2208	pr_debug("new min and max freqs are %u - %u kHz\n",
2209		 policy->min, policy->max);
2210
2211	if (cpufreq_driver->setpolicy) {
2212		policy->policy = new_policy->policy;
2213		pr_debug("setting range\n");
2214		return cpufreq_driver->setpolicy(new_policy);
2215	}
2216
2217	if (new_policy->governor == policy->governor) {
2218		pr_debug("cpufreq: governor limits update\n");
2219		cpufreq_governor_limits(policy);
2220		return 0;
2221	}
2222
2223	pr_debug("governor switch\n");
2224
2225	/* save old, working values */
2226	old_gov = policy->governor;
2227	/* end old governor */
2228	if (old_gov) {
2229		cpufreq_stop_governor(policy);
2230		cpufreq_exit_governor(policy);
2231	}
2232
2233	/* start new governor */
2234	policy->governor = new_policy->governor;
2235	ret = cpufreq_init_governor(policy);
2236	if (!ret) {
2237		ret = cpufreq_start_governor(policy);
2238		if (!ret) {
2239			pr_debug("cpufreq: governor change\n");
2240			return 0;
2241		}
2242		cpufreq_exit_governor(policy);
2243	}
2244
2245	/* new governor failed, so re-start old one */
2246	pr_debug("starting governor %s failed\n", policy->governor->name);
2247	if (old_gov) {
2248		policy->governor = old_gov;
2249		if (cpufreq_init_governor(policy))
2250			policy->governor = NULL;
2251		else
2252			cpufreq_start_governor(policy);
2253	}
2254
 
2255	return ret;
2256}
2257
2258/**
2259 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2260 *	@cpu: CPU which shall be re-evaluated
2261 *
2262 *	Useful for policy notifiers which have different necessities
2263 *	at different times.
2264 */
2265void cpufreq_update_policy(unsigned int cpu)
2266{
2267	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2268	struct cpufreq_policy new_policy;
 
2269
2270	if (!policy)
2271		return;
 
 
2272
2273	down_write(&policy->rwsem);
2274
2275	if (policy_is_inactive(policy))
2276		goto unlock;
2277
2278	pr_debug("updating policy for CPU %u\n", cpu);
2279	memcpy(&new_policy, policy, sizeof(*policy));
2280	new_policy.min = policy->user_policy.min;
2281	new_policy.max = policy->user_policy.max;
2282
2283	/*
2284	 * BIOS might change freq behind our back
2285	 * -> ask driver for current freq and notify governors about a change
2286	 */
2287	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2288		if (cpufreq_suspended)
2289			goto unlock;
2290
2291		new_policy.cur = cpufreq_update_current_freq(policy);
2292		if (WARN_ON(!new_policy.cur))
2293			goto unlock;
 
 
 
 
 
 
 
 
 
2294	}
2295
2296	cpufreq_set_policy(policy, &new_policy);
2297
2298unlock:
2299	up_write(&policy->rwsem);
2300
2301	cpufreq_cpu_put(policy);
 
 
 
2302}
2303EXPORT_SYMBOL(cpufreq_update_policy);
2304
2305/*********************************************************************
2306 *               BOOST						     *
2307 *********************************************************************/
2308static int cpufreq_boost_set_sw(int state)
2309{
2310	struct cpufreq_policy *policy;
2311	int ret = -EINVAL;
2312
2313	for_each_active_policy(policy) {
2314		if (!policy->freq_table)
2315			continue;
 
 
 
 
 
 
 
 
2316
2317		ret = cpufreq_frequency_table_cpuinfo(policy,
2318						      policy->freq_table);
2319		if (ret) {
2320			pr_err("%s: Policy frequency update failed\n",
2321			       __func__);
2322			break;
2323		}
2324
2325		down_write(&policy->rwsem);
2326		policy->user_policy.max = policy->max;
2327		cpufreq_governor_limits(policy);
2328		up_write(&policy->rwsem);
2329	}
2330
2331	return ret;
2332}
2333
2334int cpufreq_boost_trigger_state(int state)
2335{
2336	unsigned long flags;
2337	int ret = 0;
2338
2339	if (cpufreq_driver->boost_enabled == state)
2340		return 0;
2341
2342	write_lock_irqsave(&cpufreq_driver_lock, flags);
2343	cpufreq_driver->boost_enabled = state;
2344	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2345
2346	ret = cpufreq_driver->set_boost(state);
2347	if (ret) {
2348		write_lock_irqsave(&cpufreq_driver_lock, flags);
2349		cpufreq_driver->boost_enabled = !state;
2350		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351
2352		pr_err("%s: Cannot %s BOOST\n",
2353		       __func__, state ? "enable" : "disable");
2354	}
2355
2356	return ret;
2357}
2358
2359static bool cpufreq_boost_supported(void)
2360{
2361	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2362}
2363
2364static int create_boost_sysfs_file(void)
2365{
2366	int ret;
2367
2368	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2369	if (ret)
2370		pr_err("%s: cannot register global BOOST sysfs file\n",
2371		       __func__);
2372
2373	return ret;
2374}
2375
2376static void remove_boost_sysfs_file(void)
2377{
2378	if (cpufreq_boost_supported())
2379		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2380}
2381
2382int cpufreq_enable_boost_support(void)
2383{
2384	if (!cpufreq_driver)
2385		return -EINVAL;
2386
2387	if (cpufreq_boost_supported())
2388		return 0;
2389
2390	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2391
2392	/* This will get removed on driver unregister */
2393	return create_boost_sysfs_file();
2394}
2395EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2396
2397int cpufreq_boost_enabled(void)
2398{
2399	return cpufreq_driver->boost_enabled;
2400}
2401EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2402
2403/*********************************************************************
2404 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2405 *********************************************************************/
2406static enum cpuhp_state hp_online;
2407
2408/**
2409 * cpufreq_register_driver - register a CPU Frequency driver
2410 * @driver_data: A struct cpufreq_driver containing the values#
2411 * submitted by the CPU Frequency driver.
2412 *
2413 * Registers a CPU Frequency driver to this core code. This code
2414 * returns zero on success, -EEXIST when another driver got here first
2415 * (and isn't unregistered in the meantime).
2416 *
2417 */
2418int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2419{
2420	unsigned long flags;
2421	int ret;
2422
2423	if (cpufreq_disabled())
2424		return -ENODEV;
2425
2426	if (!driver_data || !driver_data->verify || !driver_data->init ||
2427	    !(driver_data->setpolicy || driver_data->target_index ||
2428		    driver_data->target) ||
2429	     (driver_data->setpolicy && (driver_data->target_index ||
2430		    driver_data->target)) ||
2431	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2432		return -EINVAL;
2433
2434	pr_debug("trying to register driver %s\n", driver_data->name);
2435
2436	/* Protect against concurrent CPU online/offline. */
2437	get_online_cpus();
2438
2439	write_lock_irqsave(&cpufreq_driver_lock, flags);
2440	if (cpufreq_driver) {
2441		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2442		ret = -EEXIST;
2443		goto out;
2444	}
2445	cpufreq_driver = driver_data;
2446	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2447
2448	if (driver_data->setpolicy)
2449		driver_data->flags |= CPUFREQ_CONST_LOOPS;
 
 
2450
2451	if (cpufreq_boost_supported()) {
2452		ret = create_boost_sysfs_file();
2453		if (ret)
2454			goto err_null_driver;
2455	}
 
 
 
 
 
2456
2457	ret = subsys_interface_register(&cpufreq_interface);
2458	if (ret)
2459		goto err_boost_unreg;
2460
2461	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2462	    list_empty(&cpufreq_policy_list)) {
2463		/* if all ->init() calls failed, unregister */
2464		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2465			 driver_data->name);
2466		goto err_if_unreg;
 
 
2467	}
2468
2469	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "cpufreq:online",
2470					cpufreq_online,
2471					cpufreq_offline);
2472	if (ret < 0)
2473		goto err_if_unreg;
2474	hp_online = ret;
2475	ret = 0;
2476
2477	pr_debug("driver %s up and running\n", driver_data->name);
2478	goto out;
2479
2480err_if_unreg:
2481	subsys_interface_unregister(&cpufreq_interface);
2482err_boost_unreg:
2483	remove_boost_sysfs_file();
2484err_null_driver:
2485	write_lock_irqsave(&cpufreq_driver_lock, flags);
2486	cpufreq_driver = NULL;
2487	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2488out:
2489	put_online_cpus();
2490	return ret;
2491}
2492EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2493
 
2494/**
2495 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2496 *
2497 * Unregister the current CPUFreq driver. Only call this if you have
2498 * the right to do so, i.e. if you have succeeded in initialising before!
2499 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2500 * currently not initialised.
2501 */
2502int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2503{
2504	unsigned long flags;
2505
2506	if (!cpufreq_driver || (driver != cpufreq_driver))
2507		return -EINVAL;
2508
2509	pr_debug("unregistering driver %s\n", driver->name);
2510
2511	/* Protect against concurrent cpu hotplug */
2512	get_online_cpus();
2513	subsys_interface_unregister(&cpufreq_interface);
2514	remove_boost_sysfs_file();
2515	cpuhp_remove_state_nocalls(hp_online);
2516
2517	write_lock_irqsave(&cpufreq_driver_lock, flags);
2518
 
2519	cpufreq_driver = NULL;
2520
2521	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2522	put_online_cpus();
2523
2524	return 0;
2525}
2526EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2527
2528/*
2529 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2530 * or mutexes when secondary CPUs are halted.
2531 */
2532static struct syscore_ops cpufreq_syscore_ops = {
2533	.shutdown = cpufreq_suspend,
2534};
2535
2536struct kobject *cpufreq_global_kobject;
2537EXPORT_SYMBOL(cpufreq_global_kobject);
2538
2539static int __init cpufreq_core_init(void)
2540{
2541	if (cpufreq_disabled())
2542		return -ENODEV;
2543
2544	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
 
 
 
 
 
 
2545	BUG_ON(!cpufreq_global_kobject);
2546
2547	register_syscore_ops(&cpufreq_syscore_ops);
2548
2549	return 0;
2550}
2551core_initcall(cpufreq_core_init);