Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
 
   6 *
   7 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   8 *	Added handling for CPU hotplug
   9 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  10 *	Fix handling for CPU hotplug -- affected CPUs
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/init.h>
  21#include <linux/notifier.h>
  22#include <linux/cpufreq.h>
 
  23#include <linux/delay.h>
  24#include <linux/interrupt.h>
  25#include <linux/spinlock.h>
  26#include <linux/device.h>
  27#include <linux/slab.h>
  28#include <linux/cpu.h>
  29#include <linux/completion.h>
  30#include <linux/mutex.h>
 
 
 
  31#include <linux/syscore_ops.h>
  32
 
  33#include <trace/events/power.h>
  34
  35/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36 * The "cpufreq driver" - the arch- or hardware-dependent low
  37 * level driver of CPUFreq support, and its spinlock. This lock
  38 * also protects the cpufreq_cpu_data array.
  39 */
  40static struct cpufreq_driver *cpufreq_driver;
  41static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  42#ifdef CONFIG_HOTPLUG_CPU
  43/* This one keeps track of the previously set governor of a removed CPU */
  44static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
  45#endif
  46static DEFINE_SPINLOCK(cpufreq_driver_lock);
  47
  48/*
  49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
  50 * all cpufreq/hotplug/workqueue/etc related lock issues.
  51 *
  52 * The rules for this semaphore:
  53 * - Any routine that wants to read from the policy structure will
  54 *   do a down_read on this semaphore.
  55 * - Any routine that will write to the policy structure and/or may take away
  56 *   the policy altogether (eg. CPU hotplug), will hold this lock in write
  57 *   mode before doing so.
  58 *
  59 * Additional rules:
  60 * - All holders of the lock should check to make sure that the CPU they
  61 *   are concerned with are online after they get the lock.
  62 * - Governor routines that can be called in cpufreq hotplug path should not
  63 *   take this sem as top level hotplug notifier handler takes this.
  64 * - Lock should not be held across
  65 *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
  66 */
  67static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
  68static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
  69
  70#define lock_policy_rwsem(mode, cpu)					\
  71static int lock_policy_rwsem_##mode					\
  72(int cpu)								\
  73{									\
  74	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);		\
  75	BUG_ON(policy_cpu == -1);					\
  76	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
  77	if (unlikely(!cpu_online(cpu))) {				\
  78		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
  79		return -1;						\
  80	}								\
  81									\
  82	return 0;							\
  83}
  84
  85lock_policy_rwsem(read, cpu);
 
  86
  87lock_policy_rwsem(write, cpu);
  88
  89static void unlock_policy_rwsem_read(int cpu)
  90{
  91	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  92	BUG_ON(policy_cpu == -1);
  93	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
  94}
  95
  96static void unlock_policy_rwsem_write(int cpu)
  97{
  98	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  99	BUG_ON(policy_cpu == -1);
 100	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
 101}
 102
 103
 104/* internal prototypes */
 105static int __cpufreq_governor(struct cpufreq_policy *policy,
 106		unsigned int event);
 107static unsigned int __cpufreq_get(unsigned int cpu);
 108static void handle_update(struct work_struct *work);
 
 
 
 
 109
 110/**
 111 * Two notifier lists: the "policy" list is involved in the
 112 * validation process for a new CPU frequency policy; the
 113 * "transition" list for kernel code that needs to handle
 114 * changes to devices when the CPU clock speed changes.
 115 * The mutex locks both lists.
 116 */
 117static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
 118static struct srcu_notifier_head cpufreq_transition_notifier_list;
 119
 120static bool init_cpufreq_transition_notifier_list_called;
 121static int __init init_cpufreq_transition_notifier_list(void)
 122{
 123	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
 124	init_cpufreq_transition_notifier_list_called = true;
 125	return 0;
 
 
 126}
 127pure_initcall(init_cpufreq_transition_notifier_list);
 128
 129static LIST_HEAD(cpufreq_governor_list);
 130static DEFINE_MUTEX(cpufreq_governor_mutex);
 131
 132struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 133{
 134	struct cpufreq_policy *data;
 135	unsigned long flags;
 
 136
 137	if (cpu >= nr_cpu_ids)
 138		goto err_out;
 139
 140	/* get the cpufreq driver */
 141	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 142
 143	if (!cpufreq_driver)
 144		goto err_out_unlock;
 
 
 
 
 145
 146	if (!try_module_get(cpufreq_driver->owner))
 147		goto err_out_unlock;
 148
 
 149
 150	/* get the CPU */
 151	data = per_cpu(cpufreq_cpu_data, cpu);
 
 
 
 
 152
 153	if (!data)
 154		goto err_out_put_module;
 
 
 
 
 155
 156	if (!kobject_get(&data->kobj))
 157		goto err_out_put_module;
 
 158
 159	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 160	return data;
 
 
 161
 162err_out_put_module:
 163	module_put(cpufreq_driver->owner);
 164err_out_unlock:
 165	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 166err_out:
 167	return NULL;
 168}
 169EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170
 
 
 
 171
 172void cpufreq_cpu_put(struct cpufreq_policy *data)
 173{
 174	kobject_put(&data->kobj);
 175	module_put(cpufreq_driver->owner);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176}
 177EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180/*********************************************************************
 181 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 182 *********************************************************************/
 183
 184/**
 185 * adjust_jiffies - adjust the system "loops_per_jiffy"
 
 
 186 *
 187 * This function alters the system "loops_per_jiffy" for the clock
 188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 189 * systems as each CPU might be scaled differently. So, use the arch
 190 * per-CPU loops_per_jiffy value wherever possible.
 191 */
 192#ifndef CONFIG_SMP
 193static unsigned long l_p_j_ref;
 194static unsigned int  l_p_j_ref_freq;
 195
 196static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 197{
 
 
 
 
 198	if (ci->flags & CPUFREQ_CONST_LOOPS)
 199		return;
 200
 201	if (!l_p_j_ref_freq) {
 202		l_p_j_ref = loops_per_jiffy;
 203		l_p_j_ref_freq = ci->old;
 204		pr_debug("saving %lu as reference value for loops_per_jiffy; "
 205			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
 206	}
 207	if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
 208	    (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
 209	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
 210		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 211								ci->new);
 212		pr_debug("scaling loops_per_jiffy to %lu "
 213			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
 214	}
 215}
 216#else
 217static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 218{
 219	return;
 220}
 221#endif
 222
 223
 224/**
 225 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 226 * on frequency transition.
 227 *
 228 * This function calls the transition notifiers and the "adjust_jiffies"
 229 * function. It is called twice on all CPU frequency changes that have
 230 * external effects.
 231 */
 232void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 233{
 234	struct cpufreq_policy *policy;
 235
 236	BUG_ON(irqs_disabled());
 237
 
 
 
 
 238	freqs->flags = cpufreq_driver->flags;
 239	pr_debug("notification %u of frequency transition to %u kHz\n",
 240		state, freqs->new);
 241
 242	policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
 243	switch (state) {
 244
 245	case CPUFREQ_PRECHANGE:
 246		/* detect if the driver reported a value as "old frequency"
 
 247		 * which is not equal to what the cpufreq core thinks is
 248		 * "old frequency".
 249		 */
 250		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 251			if ((policy) && (policy->cpu == freqs->cpu) &&
 252			    (policy->cur) && (policy->cur != freqs->old)) {
 253				pr_debug("Warning: CPU frequency is"
 254					" %u, cpufreq assumed %u kHz.\n",
 255					freqs->old, policy->cur);
 256				freqs->old = policy->cur;
 257			}
 258		}
 
 259		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 260				CPUFREQ_PRECHANGE, freqs);
 
 261		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 262		break;
 263
 264	case CPUFREQ_POSTCHANGE:
 265		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 266		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
 267			(unsigned long)freqs->cpu);
 268		trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
 269		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 270		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 271				CPUFREQ_POSTCHANGE, freqs);
 272		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 273			policy->cur = freqs->new;
 274		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275	}
 
 
 
 
 
 
 
 276}
 277EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
 
 
 
 
 
 
 
 
 
 
 
 
 278
 
 
 
 
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280
 281/*********************************************************************
 282 *                          SYSFS INTERFACE                          *
 283 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285static struct cpufreq_governor *__find_governor(const char *str_governor)
 
 
 286{
 287	struct cpufreq_governor *t;
 288
 289	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 290		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 291			return t;
 292
 293	return NULL;
 294}
 295
 296/**
 297 * cpufreq_parse_governor - parse a governor string
 298 */
 299static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 300				struct cpufreq_governor **governor)
 301{
 302	int err = -EINVAL;
 303
 304	if (!cpufreq_driver)
 305		goto out;
 
 
 306
 307	if (cpufreq_driver->setpolicy) {
 308		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 309			*policy = CPUFREQ_POLICY_PERFORMANCE;
 310			err = 0;
 311		} else if (!strnicmp(str_governor, "powersave",
 312						CPUFREQ_NAME_LEN)) {
 313			*policy = CPUFREQ_POLICY_POWERSAVE;
 314			err = 0;
 315		}
 316	} else if (cpufreq_driver->target) {
 317		struct cpufreq_governor *t;
 318
 319		mutex_lock(&cpufreq_governor_mutex);
 
 320
 321		t = __find_governor(str_governor);
 
 322
 323		if (t == NULL) {
 324			int ret;
 
 
 325
 326			mutex_unlock(&cpufreq_governor_mutex);
 327			ret = request_module("cpufreq_%s", str_governor);
 328			mutex_lock(&cpufreq_governor_mutex);
 329
 330			if (ret == 0)
 331				t = __find_governor(str_governor);
 332		}
 333
 334		if (t != NULL) {
 335			*governor = t;
 336			err = 0;
 337		}
 
 
 
 338
 339		mutex_unlock(&cpufreq_governor_mutex);
 340	}
 341out:
 342	return err;
 343}
 344
 
 
 345
 346/**
 
 
 
 347 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 348 * print out cpufreq information
 349 *
 350 * Write out information from cpufreq_driver->policy[cpu]; object must be
 351 * "unsigned int".
 352 */
 353
 354#define show_one(file_name, object)			\
 355static ssize_t show_##file_name				\
 356(struct cpufreq_policy *policy, char *buf)		\
 357{							\
 358	return sprintf(buf, "%u\n", policy->object);	\
 359}
 360
 361show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 362show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 363show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 364show_one(scaling_min_freq, min);
 365show_one(scaling_max_freq, max);
 366show_one(scaling_cur_freq, cur);
 367
 368static int __cpufreq_set_policy(struct cpufreq_policy *data,
 369				struct cpufreq_policy *policy);
 
 
 370
 371/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 373 */
 374#define store_one(file_name, object)			\
 375static ssize_t store_##file_name					\
 376(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 377{									\
 378	unsigned int ret = -EINVAL;					\
 379	struct cpufreq_policy new_policy;				\
 380									\
 381	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 382	if (ret)							\
 383		return -EINVAL;						\
 384									\
 385	ret = sscanf(buf, "%u", &new_policy.object);			\
 386	if (ret != 1)							\
 387		return -EINVAL;						\
 388									\
 389	ret = __cpufreq_set_policy(policy, &new_policy);		\
 390	policy->user_policy.object = policy->object;			\
 391									\
 392	return ret ? ret : count;					\
 393}
 394
 395store_one(scaling_min_freq, min);
 396store_one(scaling_max_freq, max);
 397
 398/**
 399 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 400 */
 401static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 402					char *buf)
 403{
 404	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 405	if (!cur_freq)
 406		return sprintf(buf, "<unknown>");
 407	return sprintf(buf, "%u\n", cur_freq);
 408}
 409
 
 
 410
 411/**
 
 
 
 412 * show_scaling_governor - show the current policy for the specified CPU
 413 */
 414static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 415{
 416	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 417		return sprintf(buf, "powersave\n");
 418	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 419		return sprintf(buf, "performance\n");
 420	else if (policy->governor)
 421		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
 422				policy->governor->name);
 423	return -EINVAL;
 424}
 425
 426
 427/**
 428 * store_scaling_governor - store policy for the specified CPU
 429 */
 430static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 431					const char *buf, size_t count)
 432{
 433	unsigned int ret = -EINVAL;
 434	char	str_governor[16];
 435	struct cpufreq_policy new_policy;
 436
 437	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 438	if (ret)
 439		return ret;
 440
 441	ret = sscanf(buf, "%15s", str_governor);
 442	if (ret != 1)
 443		return -EINVAL;
 444
 445	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 446						&new_policy.governor))
 447		return -EINVAL;
 448
 449	/* Do not use cpufreq_set_policy here or the user_policy.max
 450	   will be wrongly overridden */
 451	ret = __cpufreq_set_policy(policy, &new_policy);
 452
 453	policy->user_policy.policy = policy->policy;
 454	policy->user_policy.governor = policy->governor;
 
 455
 456	if (ret)
 457		return ret;
 458	else
 459		return count;
 
 
 
 
 
 
 
 460}
 461
 462/**
 463 * show_scaling_driver - show the cpufreq driver currently loaded
 464 */
 465static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 466{
 467	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
 468}
 469
 470/**
 471 * show_scaling_available_governors - show the available CPUfreq governors
 472 */
 473static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 474						char *buf)
 475{
 476	ssize_t i = 0;
 477	struct cpufreq_governor *t;
 478
 479	if (!cpufreq_driver->target) {
 480		i += sprintf(buf, "performance powersave");
 481		goto out;
 482	}
 483
 484	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 
 485		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 486		    - (CPUFREQ_NAME_LEN + 2)))
 487			goto out;
 488		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
 489	}
 
 490out:
 491	i += sprintf(&buf[i], "\n");
 492	return i;
 493}
 494
 495static ssize_t show_cpus(const struct cpumask *mask, char *buf)
 496{
 497	ssize_t i = 0;
 498	unsigned int cpu;
 499
 500	for_each_cpu(cpu, mask) {
 501		if (i)
 502			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 503		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 504		if (i >= (PAGE_SIZE - 5))
 505			break;
 506	}
 
 
 
 
 507	i += sprintf(&buf[i], "\n");
 508	return i;
 509}
 
 510
 511/**
 512 * show_related_cpus - show the CPUs affected by each transition even if
 513 * hw coordination is in use
 514 */
 515static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 516{
 517	if (cpumask_empty(policy->related_cpus))
 518		return show_cpus(policy->cpus, buf);
 519	return show_cpus(policy->related_cpus, buf);
 520}
 521
 522/**
 523 * show_affected_cpus - show the CPUs affected by each transition
 524 */
 525static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 526{
 527	return show_cpus(policy->cpus, buf);
 528}
 529
 530static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 531					const char *buf, size_t count)
 532{
 533	unsigned int freq = 0;
 534	unsigned int ret;
 535
 536	if (!policy->governor || !policy->governor->store_setspeed)
 537		return -EINVAL;
 538
 539	ret = sscanf(buf, "%u", &freq);
 540	if (ret != 1)
 541		return -EINVAL;
 542
 543	policy->governor->store_setspeed(policy, freq);
 544
 545	return count;
 546}
 547
 548static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (!policy->governor || !policy->governor->show_setspeed)
 551		return sprintf(buf, "<unsupported>\n");
 552
 553	return policy->governor->show_setspeed(policy, buf);
 554}
 555
 556/**
 557 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
 558 */
 559static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 560{
 561	unsigned int limit;
 562	int ret;
 563	if (cpufreq_driver->bios_limit) {
 564		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 565		if (!ret)
 566			return sprintf(buf, "%u\n", limit);
 567	}
 568	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 569}
 570
 571cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 572cpufreq_freq_attr_ro(cpuinfo_min_freq);
 573cpufreq_freq_attr_ro(cpuinfo_max_freq);
 574cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 575cpufreq_freq_attr_ro(scaling_available_governors);
 576cpufreq_freq_attr_ro(scaling_driver);
 577cpufreq_freq_attr_ro(scaling_cur_freq);
 578cpufreq_freq_attr_ro(bios_limit);
 579cpufreq_freq_attr_ro(related_cpus);
 580cpufreq_freq_attr_ro(affected_cpus);
 581cpufreq_freq_attr_rw(scaling_min_freq);
 582cpufreq_freq_attr_rw(scaling_max_freq);
 583cpufreq_freq_attr_rw(scaling_governor);
 584cpufreq_freq_attr_rw(scaling_setspeed);
 585
 586static struct attribute *default_attrs[] = {
 587	&cpuinfo_min_freq.attr,
 588	&cpuinfo_max_freq.attr,
 589	&cpuinfo_transition_latency.attr,
 590	&scaling_min_freq.attr,
 591	&scaling_max_freq.attr,
 592	&affected_cpus.attr,
 593	&related_cpus.attr,
 594	&scaling_governor.attr,
 595	&scaling_driver.attr,
 596	&scaling_available_governors.attr,
 597	&scaling_setspeed.attr,
 598	NULL
 599};
 600
 601struct kobject *cpufreq_global_kobject;
 602EXPORT_SYMBOL(cpufreq_global_kobject);
 603
 604#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 605#define to_attr(a) container_of(a, struct freq_attr, attr)
 606
 607static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 608{
 609	struct cpufreq_policy *policy = to_policy(kobj);
 610	struct freq_attr *fattr = to_attr(attr);
 611	ssize_t ret = -EINVAL;
 612	policy = cpufreq_cpu_get(policy->cpu);
 613	if (!policy)
 614		goto no_policy;
 615
 616	if (lock_policy_rwsem_read(policy->cpu) < 0)
 617		goto fail;
 618
 619	if (fattr->show)
 
 620		ret = fattr->show(policy, buf);
 621	else
 622		ret = -EIO;
 623
 624	unlock_policy_rwsem_read(policy->cpu);
 625fail:
 626	cpufreq_cpu_put(policy);
 627no_policy:
 628	return ret;
 629}
 630
 631static ssize_t store(struct kobject *kobj, struct attribute *attr,
 632		     const char *buf, size_t count)
 633{
 634	struct cpufreq_policy *policy = to_policy(kobj);
 635	struct freq_attr *fattr = to_attr(attr);
 636	ssize_t ret = -EINVAL;
 637	policy = cpufreq_cpu_get(policy->cpu);
 638	if (!policy)
 639		goto no_policy;
 640
 641	if (lock_policy_rwsem_write(policy->cpu) < 0)
 642		goto fail;
 643
 644	if (fattr->store)
 
 645		ret = fattr->store(policy, buf, count);
 646	else
 647		ret = -EIO;
 648
 649	unlock_policy_rwsem_write(policy->cpu);
 650fail:
 651	cpufreq_cpu_put(policy);
 652no_policy:
 653	return ret;
 654}
 655
 656static void cpufreq_sysfs_release(struct kobject *kobj)
 657{
 658	struct cpufreq_policy *policy = to_policy(kobj);
 659	pr_debug("last reference is dropped\n");
 660	complete(&policy->kobj_unregister);
 661}
 662
 663static const struct sysfs_ops sysfs_ops = {
 664	.show	= show,
 665	.store	= store,
 666};
 667
 668static struct kobj_type ktype_cpufreq = {
 669	.sysfs_ops	= &sysfs_ops,
 670	.default_attrs	= default_attrs,
 671	.release	= cpufreq_sysfs_release,
 672};
 673
 674/*
 675 * Returns:
 676 *   Negative: Failure
 677 *   0:        Success
 678 *   Positive: When we have a managed CPU and the sysfs got symlinked
 679 */
 680static int cpufreq_add_dev_policy(unsigned int cpu,
 681				  struct cpufreq_policy *policy,
 682				  struct sys_device *sys_dev)
 683{
 684	int ret = 0;
 685#ifdef CONFIG_SMP
 686	unsigned long flags;
 687	unsigned int j;
 688#ifdef CONFIG_HOTPLUG_CPU
 689	struct cpufreq_governor *gov;
 690
 691	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
 692	if (gov) {
 693		policy->governor = gov;
 694		pr_debug("Restoring governor %s for cpu %d\n",
 695		       policy->governor->name, cpu);
 696	}
 697#endif
 698
 699	for_each_cpu(j, policy->cpus) {
 700		struct cpufreq_policy *managed_policy;
 701
 702		if (cpu == j)
 703			continue;
 704
 705		/* Check for existing affected CPUs.
 706		 * They may not be aware of it due to CPU Hotplug.
 707		 * cpufreq_cpu_put is called when the device is removed
 708		 * in __cpufreq_remove_dev()
 709		 */
 710		managed_policy = cpufreq_cpu_get(j);
 711		if (unlikely(managed_policy)) {
 712
 713			/* Set proper policy_cpu */
 714			unlock_policy_rwsem_write(cpu);
 715			per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
 716
 717			if (lock_policy_rwsem_write(cpu) < 0) {
 718				/* Should not go through policy unlock path */
 719				if (cpufreq_driver->exit)
 720					cpufreq_driver->exit(policy);
 721				cpufreq_cpu_put(managed_policy);
 722				return -EBUSY;
 723			}
 724
 725			spin_lock_irqsave(&cpufreq_driver_lock, flags);
 726			cpumask_copy(managed_policy->cpus, policy->cpus);
 727			per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
 728			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 729
 730			pr_debug("CPU already managed, adding link\n");
 731			ret = sysfs_create_link(&sys_dev->kobj,
 732						&managed_policy->kobj,
 733						"cpufreq");
 734			if (ret)
 735				cpufreq_cpu_put(managed_policy);
 736			/*
 737			 * Success. We only needed to be added to the mask.
 738			 * Call driver->exit() because only the cpu parent of
 739			 * the kobj needed to call init().
 740			 */
 741			if (cpufreq_driver->exit)
 742				cpufreq_driver->exit(policy);
 743
 744			if (!ret)
 745				return 1;
 746			else
 747				return ret;
 748		}
 749	}
 750#endif
 751	return ret;
 752}
 753
 754
 755/* symlink affected CPUs */
 756static int cpufreq_add_dev_symlink(unsigned int cpu,
 757				   struct cpufreq_policy *policy)
 758{
 759	unsigned int j;
 760	int ret = 0;
 761
 762	for_each_cpu(j, policy->cpus) {
 763		struct cpufreq_policy *managed_policy;
 764		struct sys_device *cpu_sys_dev;
 765
 766		if (j == cpu)
 767			continue;
 768		if (!cpu_online(j))
 769			continue;
 770
 771		pr_debug("CPU %u already managed, adding link\n", j);
 772		managed_policy = cpufreq_cpu_get(cpu);
 773		cpu_sys_dev = get_cpu_sysdev(j);
 774		ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
 775					"cpufreq");
 776		if (ret) {
 777			cpufreq_cpu_put(managed_policy);
 778			return ret;
 779		}
 780	}
 781	return ret;
 782}
 783
 784static int cpufreq_add_dev_interface(unsigned int cpu,
 785				     struct cpufreq_policy *policy,
 786				     struct sys_device *sys_dev)
 787{
 788	struct cpufreq_policy new_policy;
 789	struct freq_attr **drv_attr;
 790	unsigned long flags;
 791	int ret = 0;
 792	unsigned int j;
 793
 794	/* prepare interface data */
 795	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 796				   &sys_dev->kobj, "cpufreq");
 797	if (ret)
 798		return ret;
 799
 800	/* set up files for this cpu device */
 801	drv_attr = cpufreq_driver->attr;
 802	while ((drv_attr) && (*drv_attr)) {
 803		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 804		if (ret)
 805			goto err_out_kobj_put;
 806		drv_attr++;
 807	}
 808	if (cpufreq_driver->get) {
 809		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 810		if (ret)
 811			goto err_out_kobj_put;
 812	}
 813	if (cpufreq_driver->target) {
 814		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 815		if (ret)
 816			goto err_out_kobj_put;
 817	}
 
 
 
 
 
 818	if (cpufreq_driver->bios_limit) {
 819		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 820		if (ret)
 821			goto err_out_kobj_put;
 822	}
 823
 824	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 825	for_each_cpu(j, policy->cpus) {
 826		if (!cpu_online(j))
 827			continue;
 828		per_cpu(cpufreq_cpu_data, j) = policy;
 829		per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
 830	}
 831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 832
 833	ret = cpufreq_add_dev_symlink(cpu, policy);
 834	if (ret)
 835		goto err_out_kobj_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836
 837	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
 838	/* assure that the starting sequence is run in __cpufreq_set_policy */
 839	policy->governor = NULL;
 840
 841	/* set default policy */
 842	ret = __cpufreq_set_policy(policy, &new_policy);
 843	policy->user_policy.policy = policy->policy;
 844	policy->user_policy.governor = policy->governor;
 845
 846	if (ret) {
 847		pr_debug("setting policy failed\n");
 848		if (cpufreq_driver->exit)
 849			cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	}
 851	return ret;
 852
 853err_out_kobj_put:
 854	kobject_put(&policy->kobj);
 855	wait_for_completion(&policy->kobj_unregister);
 
 856	return ret;
 857}
 858
 859
 860/**
 861 * cpufreq_add_dev - add a CPU device
 862 *
 863 * Adds the cpufreq interface for a CPU device.
 864 *
 865 * The Oracle says: try running cpufreq registration/unregistration concurrently
 866 * with with cpu hotplugging and all hell will break loose. Tried to clean this
 867 * mess up, but more thorough testing is needed. - Mathieu
 868 */
 869static int cpufreq_add_dev(struct sys_device *sys_dev)
 870{
 871	unsigned int cpu = sys_dev->id;
 872	int ret = 0, found = 0;
 873	struct cpufreq_policy *policy;
 874	unsigned long flags;
 875	unsigned int j;
 876#ifdef CONFIG_HOTPLUG_CPU
 877	int sibling;
 878#endif
 879
 880	if (cpu_is_offline(cpu))
 
 881		return 0;
 882
 883	pr_debug("adding CPU %u\n", cpu);
 
 
 884
 885#ifdef CONFIG_SMP
 886	/* check whether a different CPU already registered this
 887	 * CPU because it is in the same boat. */
 888	policy = cpufreq_cpu_get(cpu);
 889	if (unlikely(policy)) {
 890		cpufreq_cpu_put(policy);
 891		return 0;
 892	}
 893#endif
 
 
 894
 895	if (!try_module_get(cpufreq_driver->owner)) {
 896		ret = -EINVAL;
 897		goto module_out;
 
 
 
 898	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900	ret = -ENOMEM;
 901	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902	if (!policy)
 903		goto nomem_out;
 904
 905	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
 906		goto err_free_policy;
 907
 908	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
 909		goto err_free_cpumask;
 910
 911	policy->cpu = cpu;
 912	cpumask_copy(policy->cpus, cpumask_of(cpu));
 913
 914	/* Initially set CPU itself as the policy_cpu */
 915	per_cpu(cpufreq_policy_cpu, cpu) = cpu;
 916	ret = (lock_policy_rwsem_write(cpu) < 0);
 917	WARN_ON(ret);
 918
 919	init_completion(&policy->kobj_unregister);
 920	INIT_WORK(&policy->update, handle_update);
 921
 922	/* Set governor before ->init, so that driver could check it */
 923#ifdef CONFIG_HOTPLUG_CPU
 924	for_each_online_cpu(sibling) {
 925		struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
 926		if (cp && cp->governor &&
 927		    (cpumask_test_cpu(cpu, cp->related_cpus))) {
 928			policy->governor = cp->governor;
 929			found = 1;
 930			break;
 931		}
 932	}
 933#endif
 934	if (!found)
 935		policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
 936	/* call driver. From then on the cpufreq must be able
 937	 * to accept all calls to ->verify and ->setpolicy for this CPU
 938	 */
 939	ret = cpufreq_driver->init(policy);
 940	if (ret) {
 941		pr_debug("initialization failed\n");
 942		goto err_unlock_policy;
 
 
 
 
 
 
 943	}
 944	policy->user_policy.min = policy->min;
 945	policy->user_policy.max = policy->max;
 946
 947	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
 948				     CPUFREQ_START, policy);
 949
 950	ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
 
 
 
 
 951	if (ret) {
 952		if (ret > 0)
 953			/* This is a managed cpu, symlink created,
 954			   exit with 0 */
 955			ret = 0;
 956		goto err_unlock_policy;
 957	}
 958
 959	ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
 960	if (ret)
 961		goto err_out_unregister;
 
 
 
 
 962
 963	unlock_policy_rwsem_write(cpu);
 
 
 
 
 964
 965	kobject_uevent(&policy->kobj, KOBJ_ADD);
 966	module_put(cpufreq_driver->owner);
 967	pr_debug("initialization complete\n");
 968
 969	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 970
 
 
 971
 972err_out_unregister:
 973	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 974	for_each_cpu(j, policy->cpus)
 975		per_cpu(cpufreq_cpu_data, j) = NULL;
 976	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 977
 978	kobject_put(&policy->kobj);
 979	wait_for_completion(&policy->kobj_unregister);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980
 981err_unlock_policy:
 982	unlock_policy_rwsem_write(cpu);
 
 
 
 983	free_cpumask_var(policy->related_cpus);
 984err_free_cpumask:
 985	free_cpumask_var(policy->cpus);
 986err_free_policy:
 987	kfree(policy);
 988nomem_out:
 989	module_put(cpufreq_driver->owner);
 990module_out:
 991	return ret;
 992}
 993
 994
 995/**
 996 * __cpufreq_remove_dev - remove a CPU device
 997 *
 998 * Removes the cpufreq interface for a CPU device.
 999 * Caller should already have policy_rwsem in write mode for this CPU.
1000 * This routine frees the rwsem before returning.
1001 */
1002static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1003{
1004	unsigned int cpu = sys_dev->id;
 
1005	unsigned long flags;
1006	struct cpufreq_policy *data;
1007	struct kobject *kobj;
1008	struct completion *cmp;
1009#ifdef CONFIG_SMP
1010	struct sys_device *cpu_sys_dev;
1011	unsigned int j;
1012#endif
1013
1014	pr_debug("unregistering CPU %u\n", cpu);
1015
1016	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1017	data = per_cpu(cpufreq_cpu_data, cpu);
1018
1019	if (!data) {
1020		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1021		unlock_policy_rwsem_write(cpu);
1022		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023	}
1024	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1025
 
 
 
1026
1027#ifdef CONFIG_SMP
1028	/* if this isn't the CPU which is the parent of the kobj, we
1029	 * only need to unlink, put and exit
1030	 */
1031	if (unlikely(cpu != data->cpu)) {
1032		pr_debug("removing link\n");
1033		cpumask_clear_cpu(cpu, data->cpus);
1034		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1035		kobj = &sys_dev->kobj;
1036		cpufreq_cpu_put(data);
1037		unlock_policy_rwsem_write(cpu);
1038		sysfs_remove_link(kobj, "cpufreq");
1039		return 0;
1040	}
1041#endif
 
 
 
 
1042
1043#ifdef CONFIG_SMP
 
 
 
 
 
 
 
1044
1045#ifdef CONFIG_HOTPLUG_CPU
1046	strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1047			CPUFREQ_NAME_LEN);
1048#endif
1049
1050	/* if we have other CPUs still registered, we need to unlink them,
1051	 * or else wait_for_completion below will lock up. Clean the
1052	 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1053	 * the sysfs links afterwards.
1054	 */
1055	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1056		for_each_cpu(j, data->cpus) {
1057			if (j == cpu)
1058				continue;
1059			per_cpu(cpufreq_cpu_data, j) = NULL;
 
1060		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061	}
1062
1063	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064
1065	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1066		for_each_cpu(j, data->cpus) {
1067			if (j == cpu)
1068				continue;
1069			pr_debug("removing link for cpu %u\n", j);
1070#ifdef CONFIG_HOTPLUG_CPU
1071			strncpy(per_cpu(cpufreq_cpu_governor, j),
1072				data->governor->name, CPUFREQ_NAME_LEN);
1073#endif
1074			cpu_sys_dev = get_cpu_sysdev(j);
1075			kobj = &cpu_sys_dev->kobj;
1076			unlock_policy_rwsem_write(cpu);
1077			sysfs_remove_link(kobj, "cpufreq");
1078			lock_policy_rwsem_write(cpu);
1079			cpufreq_cpu_put(data);
1080		}
1081	}
1082#else
1083	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084#endif
1085
1086	if (cpufreq_driver->target)
1087		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088
1089	kobj = &data->kobj;
1090	cmp = &data->kobj_unregister;
1091	unlock_policy_rwsem_write(cpu);
1092	kobject_put(kobj);
 
 
 
 
 
 
1093
1094	/* we need to make sure that the underlying kobj is actually
1095	 * not referenced anymore by anybody before we proceed with
1096	 * unloading.
1097	 */
1098	pr_debug("waiting for dropping of refcount\n");
1099	wait_for_completion(cmp);
1100	pr_debug("wait complete\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101
1102	lock_policy_rwsem_write(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103	if (cpufreq_driver->exit)
1104		cpufreq_driver->exit(data);
1105	unlock_policy_rwsem_write(cpu);
1106
1107#ifdef CONFIG_HOTPLUG_CPU
1108	/* when the CPU which is the parent of the kobj is hotplugged
1109	 * offline, check for siblings, and create cpufreq sysfs interface
1110	 * and symlinks
1111	 */
1112	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1113		/* first sibling now owns the new sysfs dir */
1114		cpumask_clear_cpu(cpu, data->cpus);
1115		cpufreq_add_dev(get_cpu_sysdev(cpumask_first(data->cpus)));
1116
1117		/* finally remove our own symlink */
1118		lock_policy_rwsem_write(cpu);
1119		__cpufreq_remove_dev(sys_dev);
 
 
 
 
 
 
 
 
 
 
 
 
1120	}
1121#endif
1122
1123	free_cpumask_var(data->related_cpus);
1124	free_cpumask_var(data->cpus);
1125	kfree(data);
 
1126
1127	return 0;
1128}
1129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130
1131static int cpufreq_remove_dev(struct sys_device *sys_dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132{
1133	unsigned int cpu = sys_dev->id;
1134	int retval;
 
1135
1136	if (cpu_is_offline(cpu))
 
 
1137		return 0;
 
1138
1139	if (unlikely(lock_policy_rwsem_write(cpu)))
1140		BUG();
1141
1142	retval = __cpufreq_remove_dev(sys_dev);
1143	return retval;
1144}
1145
 
 
 
1146
1147static void handle_update(struct work_struct *work)
 
 
 
 
 
1148{
1149	struct cpufreq_policy *policy =
1150		container_of(work, struct cpufreq_policy, update);
1151	unsigned int cpu = policy->cpu;
1152	pr_debug("handle_update for cpu %u called\n", cpu);
1153	cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154}
1155
1156/**
1157 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1158 *	@cpu: cpu number
1159 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1160 *	@new_freq: CPU frequency the CPU actually runs at
1161 *
1162 *	We adjust to current frequency first, and need to clean up later.
1163 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1164 */
1165static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1166				unsigned int new_freq)
1167{
1168	struct cpufreq_freqs freqs;
1169
1170	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1171	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172
1173	freqs.cpu = cpu;
1174	freqs.old = old_freq;
1175	freqs.new = new_freq;
1176	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1177	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
 
1178}
1179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181/**
1182 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1183 * @cpu: CPU number
1184 *
1185 * This is the last known freq, without actually getting it from the driver.
1186 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187 */
1188unsigned int cpufreq_quick_get(unsigned int cpu)
1189{
1190	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1191	unsigned int ret_freq = 0;
 
 
 
 
 
 
 
 
 
 
 
1192
 
1193	if (policy) {
1194		ret_freq = policy->cur;
1195		cpufreq_cpu_put(policy);
1196	}
1197
1198	return ret_freq;
1199}
1200EXPORT_SYMBOL(cpufreq_quick_get);
1201
1202/**
1203 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1204 * @cpu: CPU number
1205 *
1206 * Just return the max possible frequency for a given CPU.
1207 */
1208unsigned int cpufreq_quick_get_max(unsigned int cpu)
1209{
1210	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1211	unsigned int ret_freq = 0;
1212
1213	if (policy) {
1214		ret_freq = policy->max;
1215		cpufreq_cpu_put(policy);
1216	}
1217
1218	return ret_freq;
1219}
1220EXPORT_SYMBOL(cpufreq_quick_get_max);
1221
1222
1223static unsigned int __cpufreq_get(unsigned int cpu)
 
 
 
 
 
1224{
1225	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1226	unsigned int ret_freq = 0;
1227
1228	if (!cpufreq_driver->get)
1229		return ret_freq;
1230
1231	ret_freq = cpufreq_driver->get(cpu);
1232
1233	if (ret_freq && policy->cur &&
1234		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1235		/* verify no discrepancy between actual and
1236					saved value exists */
1237		if (unlikely(ret_freq != policy->cur)) {
1238			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1239			schedule_work(&policy->update);
1240		}
1241	}
1242
1243	return ret_freq;
1244}
 
 
 
 
 
 
 
 
 
1245
1246/**
1247 * cpufreq_get - get the current CPU frequency (in kHz)
1248 * @cpu: CPU number
1249 *
1250 * Get the CPU current (static) CPU frequency
1251 */
1252unsigned int cpufreq_get(unsigned int cpu)
1253{
1254	unsigned int ret_freq = 0;
1255	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 
1256
1257	if (!policy)
1258		goto out;
1259
1260	if (unlikely(lock_policy_rwsem_read(cpu)))
1261		goto out_policy;
1262
1263	ret_freq = __cpufreq_get(cpu);
1264
1265	unlock_policy_rwsem_read(cpu);
 
1266
1267out_policy:
1268	cpufreq_cpu_put(policy);
1269out:
1270	return ret_freq;
1271}
1272EXPORT_SYMBOL(cpufreq_get);
1273
1274static struct sysdev_driver cpufreq_sysdev_driver = {
1275	.add		= cpufreq_add_dev,
1276	.remove		= cpufreq_remove_dev,
 
 
1277};
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279
1280/**
1281 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1282 *
1283 * This function is only executed for the boot processor.  The other CPUs
1284 * have been put offline by means of CPU hotplug.
 
 
1285 */
1286static int cpufreq_bp_suspend(void)
1287{
1288	int ret = 0;
1289
1290	int cpu = smp_processor_id();
1291	struct cpufreq_policy *cpu_policy;
1292
1293	pr_debug("suspending cpu %u\n", cpu);
 
1294
1295	/* If there's no policy for the boot CPU, we have nothing to do. */
1296	cpu_policy = cpufreq_cpu_get(cpu);
1297	if (!cpu_policy)
1298		return 0;
1299
1300	if (cpufreq_driver->suspend) {
1301		ret = cpufreq_driver->suspend(cpu_policy);
1302		if (ret)
1303			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1304					"step on CPU %u\n", cpu_policy->cpu);
 
 
 
 
 
1305	}
1306
1307	cpufreq_cpu_put(cpu_policy);
1308	return ret;
1309}
1310
1311/**
1312 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1313 *
1314 *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1315 *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1316 *	    restored. It will verify that the current freq is in sync with
1317 *	    what we believe it to be. This is a bit later than when it
1318 *	    should be, but nonethteless it's better than calling
1319 *	    cpufreq_driver->get() here which might re-enable interrupts...
1320 *
1321 * This function is only executed for the boot CPU.  The other CPUs have not
1322 * been turned on yet.
1323 */
1324static void cpufreq_bp_resume(void)
1325{
1326	int ret = 0;
 
1327
1328	int cpu = smp_processor_id();
1329	struct cpufreq_policy *cpu_policy;
1330
1331	pr_debug("resuming cpu %u\n", cpu);
 
1332
1333	/* If there's no policy for the boot CPU, we have nothing to do. */
1334	cpu_policy = cpufreq_cpu_get(cpu);
1335	if (!cpu_policy)
1336		return;
1337
1338	if (cpufreq_driver->resume) {
1339		ret = cpufreq_driver->resume(cpu_policy);
1340		if (ret) {
1341			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1342					"step on CPU %u\n", cpu_policy->cpu);
1343			goto fail;
 
 
 
 
 
 
 
 
1344		}
1345	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1346
1347	schedule_work(&cpu_policy->update);
 
 
 
 
 
 
 
 
 
1348
1349fail:
1350	cpufreq_cpu_put(cpu_policy);
1351}
 
1352
1353static struct syscore_ops cpufreq_syscore_ops = {
1354	.suspend	= cpufreq_bp_suspend,
1355	.resume		= cpufreq_bp_resume,
1356};
 
 
 
 
 
 
1357
 
 
 
1358
1359/*********************************************************************
1360 *                     NOTIFIER LISTS INTERFACE                      *
1361 *********************************************************************/
1362
1363/**
1364 *	cpufreq_register_notifier - register a driver with cpufreq
1365 *	@nb: notifier function to register
1366 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1367 *
1368 *	Add a driver to one of two lists: either a list of drivers that
1369 *      are notified about clock rate changes (once before and once after
1370 *      the transition), or a list of drivers that are notified about
1371 *      changes in cpufreq policy.
1372 *
1373 *	This function may sleep, and has the same return conditions as
1374 *	blocking_notifier_chain_register.
1375 */
1376int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1377{
1378	int ret;
1379
1380	WARN_ON(!init_cpufreq_transition_notifier_list_called);
 
1381
1382	switch (list) {
1383	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1384		ret = srcu_notifier_chain_register(
1385				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1386		break;
1387	case CPUFREQ_POLICY_NOTIFIER:
1388		ret = blocking_notifier_chain_register(
1389				&cpufreq_policy_notifier_list, nb);
1390		break;
1391	default:
1392		ret = -EINVAL;
1393	}
1394
1395	return ret;
1396}
1397EXPORT_SYMBOL(cpufreq_register_notifier);
1398
1399
1400/**
1401 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1402 *	@nb: notifier block to be unregistered
1403 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1404 *
1405 *	Remove a driver from the CPU frequency notifier list.
1406 *
1407 *	This function may sleep, and has the same return conditions as
1408 *	blocking_notifier_chain_unregister.
1409 */
1410int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1411{
1412	int ret;
1413
 
 
 
1414	switch (list) {
1415	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1416		ret = srcu_notifier_chain_unregister(
1417				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1418		break;
1419	case CPUFREQ_POLICY_NOTIFIER:
1420		ret = blocking_notifier_chain_unregister(
1421				&cpufreq_policy_notifier_list, nb);
1422		break;
1423	default:
1424		ret = -EINVAL;
1425	}
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL(cpufreq_unregister_notifier);
1430
1431
1432/*********************************************************************
1433 *                              GOVERNORS                            *
1434 *********************************************************************/
1435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436
1437int __cpufreq_driver_target(struct cpufreq_policy *policy,
1438			    unsigned int target_freq,
1439			    unsigned int relation)
1440{
1441	int retval = -EINVAL;
1442
1443	pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1444		target_freq, relation);
1445	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1446		retval = cpufreq_driver->target(policy, target_freq, relation);
1447
1448	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449}
1450EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1451
1452int cpufreq_driver_target(struct cpufreq_policy *policy,
1453			  unsigned int target_freq,
1454			  unsigned int relation)
1455{
1456	int ret = -EINVAL;
1457
1458	policy = cpufreq_cpu_get(policy->cpu);
1459	if (!policy)
1460		goto no_policy;
1461
1462	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1463		goto fail;
1464
1465	ret = __cpufreq_driver_target(policy, target_freq, relation);
1466
1467	unlock_policy_rwsem_write(policy->cpu);
1468
1469fail:
1470	cpufreq_cpu_put(policy);
1471no_policy:
1472	return ret;
1473}
1474EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1475
1476int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1477{
1478	int ret = 0;
 
1479
1480	policy = cpufreq_cpu_get(policy->cpu);
1481	if (!policy)
 
 
 
 
 
 
 
 
 
 
1482		return -EINVAL;
1483
1484	if (cpu_online(cpu) && cpufreq_driver->getavg)
1485		ret = cpufreq_driver->getavg(policy, cpu);
 
 
 
 
 
 
 
 
 
 
 
1486
1487	cpufreq_cpu_put(policy);
1488	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489}
1490EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1491
1492/*
1493 * when "event" is CPUFREQ_GOV_LIMITS
1494 */
 
 
 
 
 
 
 
 
 
1495
1496static int __cpufreq_governor(struct cpufreq_policy *policy,
1497					unsigned int event)
1498{
1499	int ret;
1500
1501	/* Only must be defined when default governor is known to have latency
1502	   restrictions, like e.g. conservative or ondemand.
1503	   That this is the case is already ensured in Kconfig
1504	*/
1505#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1506	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1507#else
1508	struct cpufreq_governor *gov = NULL;
1509#endif
1510
1511	if (policy->governor->max_transition_latency &&
1512	    policy->cpuinfo.transition_latency >
1513	    policy->governor->max_transition_latency) {
1514		if (!gov)
1515			return -EINVAL;
1516		else {
1517			printk(KERN_WARNING "%s governor failed, too long"
1518			       " transition latency of HW, fallback"
1519			       " to %s governor\n",
1520			       policy->governor->name,
1521			       gov->name);
1522			policy->governor = gov;
1523		}
1524	}
1525
1526	if (!try_module_get(policy->governor->owner))
1527		return -EINVAL;
 
 
 
 
 
 
 
 
1528
1529	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1530						policy->cpu, event);
1531	ret = policy->governor->governor(policy, event);
1532
1533	/* we keep one module reference alive for
1534			each CPU governed by this CPU */
1535	if ((event != CPUFREQ_GOV_START) || ret)
1536		module_put(policy->governor->owner);
1537	if ((event == CPUFREQ_GOV_STOP) && !ret)
1538		module_put(policy->governor->owner);
1539
1540	return ret;
 
1541}
1542
 
 
 
 
 
 
 
 
 
 
1543
1544int cpufreq_register_governor(struct cpufreq_governor *governor)
1545{
1546	int err;
1547
1548	if (!governor)
1549		return -EINVAL;
1550
 
 
 
1551	mutex_lock(&cpufreq_governor_mutex);
1552
1553	err = -EBUSY;
1554	if (__find_governor(governor->name) == NULL) {
1555		err = 0;
1556		list_add(&governor->governor_list, &cpufreq_governor_list);
1557	}
1558
1559	mutex_unlock(&cpufreq_governor_mutex);
1560	return err;
1561}
1562EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1563
1564
1565void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1566{
1567#ifdef CONFIG_HOTPLUG_CPU
1568	int cpu;
1569#endif
1570
1571	if (!governor)
1572		return;
1573
1574#ifdef CONFIG_HOTPLUG_CPU
1575	for_each_present_cpu(cpu) {
1576		if (cpu_online(cpu))
1577			continue;
1578		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1579			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
 
 
 
1580	}
1581#endif
1582
1583	mutex_lock(&cpufreq_governor_mutex);
1584	list_del(&governor->governor_list);
1585	mutex_unlock(&cpufreq_governor_mutex);
1586	return;
1587}
1588EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1589
1590
1591
1592/*********************************************************************
1593 *                          POLICY INTERFACE                         *
1594 *********************************************************************/
1595
1596/**
1597 * cpufreq_get_policy - get the current cpufreq_policy
1598 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1599 *	is written
 
1600 *
1601 * Reads the current cpufreq policy.
1602 */
1603int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1604{
1605	struct cpufreq_policy *cpu_policy;
1606	if (!policy)
1607		return -EINVAL;
1608
1609	cpu_policy = cpufreq_cpu_get(cpu);
1610	if (!cpu_policy)
1611		return -EINVAL;
1612
1613	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1614
1615	cpufreq_cpu_put(cpu_policy);
1616	return 0;
1617}
1618EXPORT_SYMBOL(cpufreq_get_policy);
1619
1620
1621/*
1622 * data   : current policy.
1623 * policy : policy to be set.
1624 */
1625static int __cpufreq_set_policy(struct cpufreq_policy *data,
1626				struct cpufreq_policy *policy)
 
 
 
 
 
 
 
 
 
 
 
1627{
1628	int ret = 0;
1629
1630	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1631		policy->min, policy->max);
1632
1633	memcpy(&policy->cpuinfo, &data->cpuinfo,
1634				sizeof(struct cpufreq_cpuinfo));
1635
1636	if (policy->min > data->max || policy->max < data->min) {
1637		ret = -EINVAL;
1638		goto error_out;
1639	}
 
 
 
 
 
1640
1641	/* verify the cpu speed can be set within this limit */
1642	ret = cpufreq_driver->verify(policy);
1643	if (ret)
1644		goto error_out;
1645
1646	/* adjust if necessary - all reasons */
1647	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1648			CPUFREQ_ADJUST, policy);
1649
1650	/* adjust if necessary - hardware incompatibility*/
1651	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1652			CPUFREQ_INCOMPATIBLE, policy);
1653
1654	/* verify the cpu speed can be set within this limit,
1655	   which might be different to the first one */
1656	ret = cpufreq_driver->verify(policy);
1657	if (ret)
1658		goto error_out;
1659
1660	/* notification of the new policy */
1661	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1662			CPUFREQ_NOTIFY, policy);
 
 
 
 
 
 
 
1663
1664	data->min = policy->min;
1665	data->max = policy->max;
1666
1667	pr_debug("new min and max freqs are %u - %u kHz\n",
1668					data->min, data->max);
1669
1670	if (cpufreq_driver->setpolicy) {
1671		data->policy = policy->policy;
1672		pr_debug("setting range\n");
1673		ret = cpufreq_driver->setpolicy(policy);
1674	} else {
1675		if (policy->governor != data->governor) {
1676			/* save old, working values */
1677			struct cpufreq_governor *old_gov = data->governor;
1678
1679			pr_debug("governor switch\n");
1680
1681			/* end old governor */
1682			if (data->governor)
1683				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1684
1685			/* start new governor */
1686			data->governor = policy->governor;
1687			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1688				/* new governor failed, so re-start old one */
1689				pr_debug("starting governor %s failed\n",
1690							data->governor->name);
1691				if (old_gov) {
1692					data->governor = old_gov;
1693					__cpufreq_governor(data,
1694							   CPUFREQ_GOV_START);
1695				}
1696				ret = -EINVAL;
1697				goto error_out;
1698			}
1699			/* might be a policy change, too, so fall through */
1700		}
1701		pr_debug("governor: change or update limits\n");
1702		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
 
 
 
 
 
 
 
 
 
1703	}
1704
1705error_out:
1706	return ret;
1707}
1708
1709/**
1710 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1711 *	@cpu: CPU which shall be re-evaluated
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712 *
1713 *	Useful for policy notifiers which have different necessities
1714 *	at different times.
1715 */
1716int cpufreq_update_policy(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
1717{
1718	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1719	struct cpufreq_policy policy;
1720	int ret;
1721
1722	if (!data) {
1723		ret = -ENODEV;
1724		goto no_policy;
1725	}
1726
1727	if (unlikely(lock_policy_rwsem_write(cpu))) {
1728		ret = -EINVAL;
1729		goto fail;
 
1730	}
1731
1732	pr_debug("updating policy for CPU %u\n", cpu);
1733	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1734	policy.min = data->user_policy.min;
1735	policy.max = data->user_policy.max;
1736	policy.policy = data->user_policy.policy;
1737	policy.governor = data->user_policy.governor;
1738
1739	/* BIOS might change freq behind our back
1740	  -> ask driver for current freq and notify governors about a change */
1741	if (cpufreq_driver->get) {
1742		policy.cur = cpufreq_driver->get(cpu);
1743		if (!data->cur) {
1744			pr_debug("Driver did not initialize current freq");
1745			data->cur = policy.cur;
1746		} else {
1747			if (data->cur != policy.cur)
1748				cpufreq_out_of_sync(cpu, data->cur,
1749								policy.cur);
1750		}
 
 
 
 
 
 
 
 
1751	}
 
 
 
 
 
 
1752
1753	ret = __cpufreq_set_policy(data, &policy);
 
 
1754
1755	unlock_policy_rwsem_write(cpu);
 
1756
1757fail:
1758	cpufreq_cpu_put(data);
1759no_policy:
1760	return ret;
1761}
1762EXPORT_SYMBOL(cpufreq_update_policy);
1763
1764static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1765					unsigned long action, void *hcpu)
1766{
1767	unsigned int cpu = (unsigned long)hcpu;
1768	struct sys_device *sys_dev;
1769
1770	sys_dev = get_cpu_sysdev(cpu);
1771	if (sys_dev) {
1772		switch (action) {
1773		case CPU_ONLINE:
1774		case CPU_ONLINE_FROZEN:
1775			cpufreq_add_dev(sys_dev);
1776			break;
1777		case CPU_DOWN_PREPARE:
1778		case CPU_DOWN_PREPARE_FROZEN:
1779			if (unlikely(lock_policy_rwsem_write(cpu)))
1780				BUG();
1781
1782			__cpufreq_remove_dev(sys_dev);
1783			break;
1784		case CPU_DOWN_FAILED:
1785		case CPU_DOWN_FAILED_FROZEN:
1786			cpufreq_add_dev(sys_dev);
1787			break;
1788		}
1789	}
1790	return NOTIFY_OK;
1791}
1792
1793static struct notifier_block __refdata cpufreq_cpu_notifier = {
1794    .notifier_call = cpufreq_cpu_callback,
1795};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796
1797/*********************************************************************
1798 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1799 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
1801/**
1802 * cpufreq_register_driver - register a CPU Frequency driver
1803 * @driver_data: A struct cpufreq_driver containing the values#
1804 * submitted by the CPU Frequency driver.
1805 *
1806 *   Registers a CPU Frequency driver to this core code. This code
1807 * returns zero on success, -EBUSY when another driver got here first
1808 * (and isn't unregistered in the meantime).
1809 *
1810 */
1811int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1812{
1813	unsigned long flags;
1814	int ret;
1815
 
 
 
 
 
 
 
 
 
 
1816	if (!driver_data || !driver_data->verify || !driver_data->init ||
1817	    ((!driver_data->setpolicy) && (!driver_data->target)))
 
 
 
 
 
 
1818		return -EINVAL;
1819
1820	pr_debug("trying to register driver %s\n", driver_data->name);
1821
1822	if (driver_data->setpolicy)
1823		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1824
1825	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1826	if (cpufreq_driver) {
1827		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828		return -EBUSY;
 
1829	}
1830	cpufreq_driver = driver_data;
1831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1832
1833	ret = sysdev_driver_register(&cpu_sysdev_class,
1834					&cpufreq_sysdev_driver);
1835	if (ret)
1836		goto err_null_driver;
 
 
 
 
1837
1838	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839		int i;
1840		ret = -ENODEV;
 
 
 
 
 
1841
1842		/* check for at least one working CPU */
1843		for (i = 0; i < nr_cpu_ids; i++)
1844			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845				ret = 0;
1846				break;
1847			}
1848
 
1849		/* if all ->init() calls failed, unregister */
1850		if (ret) {
1851			pr_debug("no CPU initialized for driver %s\n",
1852							driver_data->name);
1853			goto err_sysdev_unreg;
1854		}
1855	}
1856
1857	register_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
 
 
1858	pr_debug("driver %s up and running\n", driver_data->name);
 
1859
1860	return 0;
1861err_sysdev_unreg:
1862	sysdev_driver_unregister(&cpu_sysdev_class,
1863			&cpufreq_sysdev_driver);
1864err_null_driver:
1865	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1866	cpufreq_driver = NULL;
1867	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1868	return ret;
1869}
1870EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1871
1872
1873/**
1874 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1875 *
1876 *    Unregister the current CPUFreq driver. Only call this if you have
1877 * the right to do so, i.e. if you have succeeded in initialising before!
1878 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1879 * currently not initialised.
1880 */
1881int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1882{
1883	unsigned long flags;
1884
1885	if (!cpufreq_driver || (driver != cpufreq_driver))
1886		return -EINVAL;
1887
1888	pr_debug("unregistering driver %s\n", driver->name);
1889
1890	sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1891	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
1892
1893	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1894	cpufreq_driver = NULL;
1895	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1896
1897	return 0;
 
1898}
1899EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1900
1901static int __init cpufreq_core_init(void)
1902{
1903	int cpu;
 
1904
1905	for_each_possible_cpu(cpu) {
1906		per_cpu(cpufreq_policy_cpu, cpu) = -1;
1907		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1908	}
1909
1910	cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1911						&cpu_sysdev_class.kset.kobj);
 
 
 
1912	BUG_ON(!cpufreq_global_kobject);
1913	register_syscore_ops(&cpufreq_syscore_ops);
 
 
1914
1915	return 0;
1916}
 
 
1917core_initcall(cpufreq_core_init);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
 
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
 
 
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
 
 
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
 
 
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
 
 
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
 
 
  79}
  80
 
  81/* internal prototypes */
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 
 
 
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 
 
 
 
 
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 241
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 252	kobject_put(&policy->kobj);
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 266
 267	up_write(&policy->rwsem);
 268
 269	cpufreq_cpu_put(policy);
 270}
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 299}
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 
 
 
 
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 
 
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 
 
 
 
 
 
 336#endif
 337}
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 354
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 
 365	switch (state) {
 
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 
 
 
 
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 397	}
 398}
 399
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency) {
 579		/*
 580		 * For platforms that can change the frequency very fast (< 10
 581		 * us), the above formula gives a decent transition delay. But
 582		 * for platforms where transition_latency is in milliseconds, it
 583		 * ends up giving unrealistic values.
 584		 *
 585		 * Cap the default transition delay to 10 ms, which seems to be
 586		 * a reasonable amount of time after which we should reevaluate
 587		 * the frequency.
 588		 */
 589		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 590	}
 591
 592	return LATENCY_MULTIPLIER;
 593}
 594EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 595
 596/*********************************************************************
 597 *                          SYSFS INTERFACE                          *
 598 *********************************************************************/
 599static ssize_t show_boost(struct kobject *kobj,
 600			  struct kobj_attribute *attr, char *buf)
 601{
 602	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 603}
 604
 605static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 606			   const char *buf, size_t count)
 607{
 608	int ret, enable;
 609
 610	ret = sscanf(buf, "%d", &enable);
 611	if (ret != 1 || enable < 0 || enable > 1)
 612		return -EINVAL;
 613
 614	if (cpufreq_boost_trigger_state(enable)) {
 615		pr_err("%s: Cannot %s BOOST!\n",
 616		       __func__, enable ? "enable" : "disable");
 617		return -EINVAL;
 618	}
 619
 620	pr_debug("%s: cpufreq BOOST %s\n",
 621		 __func__, enable ? "enabled" : "disabled");
 622
 623	return count;
 624}
 625define_one_global_rw(boost);
 626
 627static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 628{
 629	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 630}
 631
 632static ssize_t store_local_boost(struct cpufreq_policy *policy,
 633				 const char *buf, size_t count)
 634{
 635	int ret, enable;
 636
 637	ret = kstrtoint(buf, 10, &enable);
 638	if (ret || enable < 0 || enable > 1)
 639		return -EINVAL;
 640
 641	if (!cpufreq_driver->boost_enabled)
 642		return -EINVAL;
 643
 644	if (policy->boost_enabled == enable)
 645		return count;
 646
 647	cpus_read_lock();
 648	ret = cpufreq_driver->set_boost(policy, enable);
 649	cpus_read_unlock();
 650
 651	if (ret)
 652		return ret;
 653
 654	policy->boost_enabled = enable;
 655
 656	return count;
 657}
 658
 659static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 660
 661static struct cpufreq_governor *find_governor(const char *str_governor)
 662{
 663	struct cpufreq_governor *t;
 664
 665	for_each_governor(t)
 666		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 667			return t;
 668
 669	return NULL;
 670}
 671
 672static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 673{
 674	struct cpufreq_governor *t;
 675
 676	mutex_lock(&cpufreq_governor_mutex);
 677	t = find_governor(str_governor);
 678	if (!t)
 679		goto unlock;
 680
 681	if (!try_module_get(t->owner))
 682		t = NULL;
 
 
 
 
 
 
 
 
 
 683
 684unlock:
 685	mutex_unlock(&cpufreq_governor_mutex);
 686
 687	return t;
 688}
 689
 690static unsigned int cpufreq_parse_policy(char *str_governor)
 691{
 692	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 693		return CPUFREQ_POLICY_PERFORMANCE;
 694
 695	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 696		return CPUFREQ_POLICY_POWERSAVE;
 
 697
 698	return CPUFREQ_POLICY_UNKNOWN;
 699}
 
 700
 701/**
 702 * cpufreq_parse_governor - parse a governor string only for has_target()
 703 * @str_governor: Governor name.
 704 */
 705static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 706{
 707	struct cpufreq_governor *t;
 708
 709	t = get_governor(str_governor);
 710	if (t)
 711		return t;
 
 
 712
 713	if (request_module("cpufreq_%s", str_governor))
 714		return NULL;
 715
 716	return get_governor(str_governor);
 717}
 718
 719/*
 720 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 721 * print out cpufreq information
 722 *
 723 * Write out information from cpufreq_driver->policy[cpu]; object must be
 724 * "unsigned int".
 725 */
 726
 727#define show_one(file_name, object)			\
 728static ssize_t show_##file_name				\
 729(struct cpufreq_policy *policy, char *buf)		\
 730{							\
 731	return sprintf(buf, "%u\n", policy->object);	\
 732}
 733
 734show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 735show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 736show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 737show_one(scaling_min_freq, min);
 738show_one(scaling_max_freq, max);
 
 739
 740__weak unsigned int arch_freq_get_on_cpu(int cpu)
 741{
 742	return 0;
 743}
 744
 745static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 746{
 747	ssize_t ret;
 748	unsigned int freq;
 749
 750	freq = arch_freq_get_on_cpu(policy->cpu);
 751	if (freq)
 752		ret = sprintf(buf, "%u\n", freq);
 753	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 754		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 755	else
 756		ret = sprintf(buf, "%u\n", policy->cur);
 757	return ret;
 758}
 759
 760/*
 761 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 762 */
 763#define store_one(file_name, object)			\
 764static ssize_t store_##file_name					\
 765(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 766{									\
 767	unsigned long val;						\
 768	int ret;							\
 769									\
 770	ret = kstrtoul(buf, 0, &val);					\
 771	if (ret)							\
 772		return ret;						\
 
 
 
 
 773									\
 774	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 775	return ret >= 0 ? count : ret;					\
 
 
 776}
 777
 778store_one(scaling_min_freq, min);
 779store_one(scaling_max_freq, max);
 780
 781/*
 782 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 783 */
 784static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 785					char *buf)
 786{
 787	unsigned int cur_freq = __cpufreq_get(policy);
 
 
 
 
 788
 789	if (cur_freq)
 790		return sprintf(buf, "%u\n", cur_freq);
 791
 792	return sprintf(buf, "<unknown>\n");
 793}
 794
 795/*
 796 * show_scaling_governor - show the current policy for the specified CPU
 797 */
 798static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 799{
 800	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 801		return sprintf(buf, "powersave\n");
 802	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 803		return sprintf(buf, "performance\n");
 804	else if (policy->governor)
 805		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 806				policy->governor->name);
 807	return -EINVAL;
 808}
 809
 810/*
 
 811 * store_scaling_governor - store policy for the specified CPU
 812 */
 813static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 814					const char *buf, size_t count)
 815{
 816	char str_governor[16];
 817	int ret;
 
 
 
 
 
 818
 819	ret = sscanf(buf, "%15s", str_governor);
 820	if (ret != 1)
 821		return -EINVAL;
 822
 823	if (cpufreq_driver->setpolicy) {
 824		unsigned int new_pol;
 
 825
 826		new_pol = cpufreq_parse_policy(str_governor);
 827		if (!new_pol)
 828			return -EINVAL;
 829
 830		ret = cpufreq_set_policy(policy, NULL, new_pol);
 831	} else {
 832		struct cpufreq_governor *new_gov;
 833
 834		new_gov = cpufreq_parse_governor(str_governor);
 835		if (!new_gov)
 836			return -EINVAL;
 837
 838		ret = cpufreq_set_policy(policy, new_gov,
 839					 CPUFREQ_POLICY_UNKNOWN);
 840
 841		module_put(new_gov->owner);
 842	}
 843
 844	return ret ? ret : count;
 845}
 846
 847/*
 848 * show_scaling_driver - show the cpufreq driver currently loaded
 849 */
 850static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 851{
 852	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 853}
 854
 855/*
 856 * show_scaling_available_governors - show the available CPUfreq governors
 857 */
 858static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 859						char *buf)
 860{
 861	ssize_t i = 0;
 862	struct cpufreq_governor *t;
 863
 864	if (!has_target()) {
 865		i += sprintf(buf, "performance powersave");
 866		goto out;
 867	}
 868
 869	mutex_lock(&cpufreq_governor_mutex);
 870	for_each_governor(t) {
 871		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 872		    - (CPUFREQ_NAME_LEN + 2)))
 873			break;
 874		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 875	}
 876	mutex_unlock(&cpufreq_governor_mutex);
 877out:
 878	i += sprintf(&buf[i], "\n");
 879	return i;
 880}
 881
 882ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 883{
 884	ssize_t i = 0;
 885	unsigned int cpu;
 886
 887	for_each_cpu(cpu, mask) {
 888		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
 
 
 889		if (i >= (PAGE_SIZE - 5))
 890			break;
 891	}
 892
 893	/* Remove the extra space at the end */
 894	i--;
 895
 896	i += sprintf(&buf[i], "\n");
 897	return i;
 898}
 899EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 900
 901/*
 902 * show_related_cpus - show the CPUs affected by each transition even if
 903 * hw coordination is in use
 904 */
 905static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 906{
 907	return cpufreq_show_cpus(policy->related_cpus, buf);
 
 
 908}
 909
 910/*
 911 * show_affected_cpus - show the CPUs affected by each transition
 912 */
 913static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 914{
 915	return cpufreq_show_cpus(policy->cpus, buf);
 916}
 917
 918static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 919					const char *buf, size_t count)
 920{
 921	unsigned int freq = 0;
 922	unsigned int ret;
 923
 924	if (!policy->governor || !policy->governor->store_setspeed)
 925		return -EINVAL;
 926
 927	ret = sscanf(buf, "%u", &freq);
 928	if (ret != 1)
 929		return -EINVAL;
 930
 931	policy->governor->store_setspeed(policy, freq);
 932
 933	return count;
 934}
 935
 936static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 937{
 938	if (!policy->governor || !policy->governor->show_setspeed)
 939		return sprintf(buf, "<unsupported>\n");
 940
 941	return policy->governor->show_setspeed(policy, buf);
 942}
 943
 944/*
 945 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 946 */
 947static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 948{
 949	unsigned int limit;
 950	int ret;
 951	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 952	if (!ret)
 953		return sprintf(buf, "%u\n", limit);
 
 
 954	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 955}
 956
 957cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 958cpufreq_freq_attr_ro(cpuinfo_min_freq);
 959cpufreq_freq_attr_ro(cpuinfo_max_freq);
 960cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 961cpufreq_freq_attr_ro(scaling_available_governors);
 962cpufreq_freq_attr_ro(scaling_driver);
 963cpufreq_freq_attr_ro(scaling_cur_freq);
 964cpufreq_freq_attr_ro(bios_limit);
 965cpufreq_freq_attr_ro(related_cpus);
 966cpufreq_freq_attr_ro(affected_cpus);
 967cpufreq_freq_attr_rw(scaling_min_freq);
 968cpufreq_freq_attr_rw(scaling_max_freq);
 969cpufreq_freq_attr_rw(scaling_governor);
 970cpufreq_freq_attr_rw(scaling_setspeed);
 971
 972static struct attribute *cpufreq_attrs[] = {
 973	&cpuinfo_min_freq.attr,
 974	&cpuinfo_max_freq.attr,
 975	&cpuinfo_transition_latency.attr,
 976	&scaling_min_freq.attr,
 977	&scaling_max_freq.attr,
 978	&affected_cpus.attr,
 979	&related_cpus.attr,
 980	&scaling_governor.attr,
 981	&scaling_driver.attr,
 982	&scaling_available_governors.attr,
 983	&scaling_setspeed.attr,
 984	NULL
 985};
 986ATTRIBUTE_GROUPS(cpufreq);
 
 
 987
 988#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 989#define to_attr(a) container_of(a, struct freq_attr, attr)
 990
 991static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 992{
 993	struct cpufreq_policy *policy = to_policy(kobj);
 994	struct freq_attr *fattr = to_attr(attr);
 995	ssize_t ret = -EBUSY;
 
 
 
 996
 997	if (!fattr->show)
 998		return -EIO;
 999
1000	down_read(&policy->rwsem);
1001	if (likely(!policy_is_inactive(policy)))
1002		ret = fattr->show(policy, buf);
1003	up_read(&policy->rwsem);
 
1004
 
 
 
 
1005	return ret;
1006}
1007
1008static ssize_t store(struct kobject *kobj, struct attribute *attr,
1009		     const char *buf, size_t count)
1010{
1011	struct cpufreq_policy *policy = to_policy(kobj);
1012	struct freq_attr *fattr = to_attr(attr);
1013	ssize_t ret = -EBUSY;
 
 
 
1014
1015	if (!fattr->store)
1016		return -EIO;
1017
1018	down_write(&policy->rwsem);
1019	if (likely(!policy_is_inactive(policy)))
1020		ret = fattr->store(policy, buf, count);
1021	up_write(&policy->rwsem);
 
1022
 
 
 
 
1023	return ret;
1024}
1025
1026static void cpufreq_sysfs_release(struct kobject *kobj)
1027{
1028	struct cpufreq_policy *policy = to_policy(kobj);
1029	pr_debug("last reference is dropped\n");
1030	complete(&policy->kobj_unregister);
1031}
1032
1033static const struct sysfs_ops sysfs_ops = {
1034	.show	= show,
1035	.store	= store,
1036};
1037
1038static const struct kobj_type ktype_cpufreq = {
1039	.sysfs_ops	= &sysfs_ops,
1040	.default_groups	= cpufreq_groups,
1041	.release	= cpufreq_sysfs_release,
1042};
1043
1044static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1045				struct device *dev)
 
 
 
 
 
 
 
1046{
1047	if (unlikely(!dev))
1048		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049
1050	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1051		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052
1053	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1054	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1055		dev_err(dev, "cpufreq symlink creation failed\n");
 
 
 
 
 
1056}
1057
1058static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1059				   struct device *dev)
 
 
1060{
1061	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1062	sysfs_remove_link(&dev->kobj, "cpufreq");
1063	cpumask_clear_cpu(cpu, policy->real_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064}
1065
1066static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
 
1067{
 
1068	struct freq_attr **drv_attr;
 
1069	int ret = 0;
 
 
 
 
 
 
 
1070
1071	/* set up files for this cpu device */
1072	drv_attr = cpufreq_driver->attr;
1073	while (drv_attr && *drv_attr) {
1074		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1075		if (ret)
1076			return ret;
1077		drv_attr++;
1078	}
1079	if (cpufreq_driver->get) {
1080		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1081		if (ret)
1082			return ret;
 
 
 
 
 
1083	}
1084
1085	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1086	if (ret)
1087		return ret;
1088
1089	if (cpufreq_driver->bios_limit) {
1090		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1091		if (ret)
1092			return ret;
1093	}
1094
1095	if (cpufreq_boost_supported()) {
1096		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1097		if (ret)
1098			return ret;
 
 
1099	}
 
1100
1101	return 0;
1102}
1103
1104static int cpufreq_init_policy(struct cpufreq_policy *policy)
1105{
1106	struct cpufreq_governor *gov = NULL;
1107	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1108	int ret;
1109
1110	if (has_target()) {
1111		/* Update policy governor to the one used before hotplug. */
1112		gov = get_governor(policy->last_governor);
1113		if (gov) {
1114			pr_debug("Restoring governor %s for cpu %d\n",
1115				 gov->name, policy->cpu);
1116		} else {
1117			gov = get_governor(default_governor);
1118		}
1119
1120		if (!gov) {
1121			gov = cpufreq_default_governor();
1122			__module_get(gov->owner);
1123		}
 
 
 
 
1124
1125	} else {
1126
1127		/* Use the default policy if there is no last_policy. */
1128		if (policy->last_policy) {
1129			pol = policy->last_policy;
1130		} else {
1131			pol = cpufreq_parse_policy(default_governor);
1132			/*
1133			 * In case the default governor is neither "performance"
1134			 * nor "powersave", fall back to the initial policy
1135			 * value set by the driver.
1136			 */
1137			if (pol == CPUFREQ_POLICY_UNKNOWN)
1138				pol = policy->policy;
1139		}
1140		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1141		    pol != CPUFREQ_POLICY_POWERSAVE)
1142			return -ENODATA;
1143	}
 
1144
1145	ret = cpufreq_set_policy(policy, gov, pol);
1146	if (gov)
1147		module_put(gov->owner);
1148
1149	return ret;
1150}
1151
1152static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
1153{
1154	int ret = 0;
 
 
 
 
 
 
 
1155
1156	/* Has this CPU been taken care of already? */
1157	if (cpumask_test_cpu(cpu, policy->cpus))
1158		return 0;
1159
1160	down_write(&policy->rwsem);
1161	if (has_target())
1162		cpufreq_stop_governor(policy);
1163
1164	cpumask_set_cpu(cpu, policy->cpus);
1165
1166	if (has_target()) {
1167		ret = cpufreq_start_governor(policy);
1168		if (ret)
1169			pr_err("%s: Failed to start governor\n", __func__);
 
1170	}
1171	up_write(&policy->rwsem);
1172	return ret;
1173}
1174
1175void refresh_frequency_limits(struct cpufreq_policy *policy)
1176{
1177	if (!policy_is_inactive(policy)) {
1178		pr_debug("updating policy for CPU %u\n", policy->cpu);
1179
1180		cpufreq_set_policy(policy, policy->governor, policy->policy);
1181	}
1182}
1183EXPORT_SYMBOL(refresh_frequency_limits);
1184
1185static void handle_update(struct work_struct *work)
1186{
1187	struct cpufreq_policy *policy =
1188		container_of(work, struct cpufreq_policy, update);
1189
1190	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1191	down_write(&policy->rwsem);
1192	refresh_frequency_limits(policy);
1193	up_write(&policy->rwsem);
1194}
1195
1196static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1197				void *data)
1198{
1199	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1200
1201	schedule_work(&policy->update);
1202	return 0;
1203}
1204
1205static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1206				void *data)
1207{
1208	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1209
1210	schedule_work(&policy->update);
1211	return 0;
1212}
1213
1214static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1215{
1216	struct kobject *kobj;
1217	struct completion *cmp;
1218
1219	down_write(&policy->rwsem);
1220	cpufreq_stats_free_table(policy);
1221	kobj = &policy->kobj;
1222	cmp = &policy->kobj_unregister;
1223	up_write(&policy->rwsem);
1224	kobject_put(kobj);
1225
1226	/*
1227	 * We need to make sure that the underlying kobj is
1228	 * actually not referenced anymore by anybody before we
1229	 * proceed with unloading.
1230	 */
1231	pr_debug("waiting for dropping of refcount\n");
1232	wait_for_completion(cmp);
1233	pr_debug("wait complete\n");
1234}
1235
1236static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1237{
1238	struct cpufreq_policy *policy;
1239	struct device *dev = get_cpu_device(cpu);
1240	int ret;
1241
1242	if (!dev)
1243		return NULL;
1244
1245	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1246	if (!policy)
1247		return NULL;
1248
1249	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1250		goto err_free_policy;
1251
1252	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1253		goto err_free_cpumask;
1254
1255	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1256		goto err_free_rcpumask;
 
 
 
 
 
1257
1258	init_completion(&policy->kobj_unregister);
1259	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1260				   cpufreq_global_kobject, "policy%u", cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261	if (ret) {
1262		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1263		/*
1264		 * The entire policy object will be freed below, but the extra
1265		 * memory allocated for the kobject name needs to be freed by
1266		 * releasing the kobject.
1267		 */
1268		kobject_put(&policy->kobj);
1269		goto err_free_real_cpus;
1270	}
 
 
1271
1272	freq_constraints_init(&policy->constraints);
 
1273
1274	policy->nb_min.notifier_call = cpufreq_notifier_min;
1275	policy->nb_max.notifier_call = cpufreq_notifier_max;
1276
1277	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1278				    &policy->nb_min);
1279	if (ret) {
1280		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1281			ret, cpu);
1282		goto err_kobj_remove;
 
 
1283	}
1284
1285	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1286				    &policy->nb_max);
1287	if (ret) {
1288		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1289			ret, cpu);
1290		goto err_min_qos_notifier;
1291	}
1292
1293	INIT_LIST_HEAD(&policy->policy_list);
1294	init_rwsem(&policy->rwsem);
1295	spin_lock_init(&policy->transition_lock);
1296	init_waitqueue_head(&policy->transition_wait);
1297	INIT_WORK(&policy->update, handle_update);
1298
1299	policy->cpu = cpu;
1300	return policy;
 
1301
1302err_min_qos_notifier:
1303	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1304				 &policy->nb_min);
1305err_kobj_remove:
1306	cpufreq_policy_put_kobj(policy);
1307err_free_real_cpus:
1308	free_cpumask_var(policy->real_cpus);
1309err_free_rcpumask:
1310	free_cpumask_var(policy->related_cpus);
1311err_free_cpumask:
1312	free_cpumask_var(policy->cpus);
1313err_free_policy:
1314	kfree(policy);
1315
1316	return NULL;
1317}
1318
1319static void cpufreq_policy_free(struct cpufreq_policy *policy)
1320{
1321	unsigned long flags;
1322	int cpu;
 
1323
1324	/*
1325	 * The callers must ensure the policy is inactive by now, to avoid any
1326	 * races with show()/store() callbacks.
1327	 */
1328	if (unlikely(!policy_is_inactive(policy)))
1329		pr_warn("%s: Freeing active policy\n", __func__);
1330
1331	/* Remove policy from list */
1332	write_lock_irqsave(&cpufreq_driver_lock, flags);
1333	list_del(&policy->policy_list);
1334
1335	for_each_cpu(cpu, policy->related_cpus)
1336		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1337	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1338
1339	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1340				 &policy->nb_max);
1341	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1342				 &policy->nb_min);
1343
1344	/* Cancel any pending policy->update work before freeing the policy. */
1345	cancel_work_sync(&policy->update);
1346
1347	if (policy->max_freq_req) {
1348		/*
1349		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1350		 * notification, since CPUFREQ_CREATE_POLICY notification was
1351		 * sent after adding max_freq_req earlier.
1352		 */
1353		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1354					     CPUFREQ_REMOVE_POLICY, policy);
1355		freq_qos_remove_request(policy->max_freq_req);
1356	}
1357
1358	freq_qos_remove_request(policy->min_freq_req);
1359	kfree(policy->min_freq_req);
1360
1361	cpufreq_policy_put_kobj(policy);
1362	free_cpumask_var(policy->real_cpus);
1363	free_cpumask_var(policy->related_cpus);
 
1364	free_cpumask_var(policy->cpus);
 
1365	kfree(policy);
 
 
 
 
1366}
1367
1368static int cpufreq_online(unsigned int cpu)
 
 
 
 
 
 
 
 
1369{
1370	struct cpufreq_policy *policy;
1371	bool new_policy;
1372	unsigned long flags;
 
 
 
 
 
1373	unsigned int j;
1374	int ret;
 
 
1375
1376	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
 
1377
1378	/* Check if this CPU already has a policy to manage it */
1379	policy = per_cpu(cpufreq_cpu_data, cpu);
1380	if (policy) {
1381		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1382		if (!policy_is_inactive(policy))
1383			return cpufreq_add_policy_cpu(policy, cpu);
1384
1385		/* This is the only online CPU for the policy.  Start over. */
1386		new_policy = false;
1387		down_write(&policy->rwsem);
1388		policy->cpu = cpu;
1389		policy->governor = NULL;
1390	} else {
1391		new_policy = true;
1392		policy = cpufreq_policy_alloc(cpu);
1393		if (!policy)
1394			return -ENOMEM;
1395		down_write(&policy->rwsem);
1396	}
 
1397
1398	if (!new_policy && cpufreq_driver->online) {
1399		/* Recover policy->cpus using related_cpus */
1400		cpumask_copy(policy->cpus, policy->related_cpus);
1401
1402		ret = cpufreq_driver->online(policy);
1403		if (ret) {
1404			pr_debug("%s: %d: initialization failed\n", __func__,
1405				 __LINE__);
1406			goto out_exit_policy;
1407		}
1408	} else {
1409		cpumask_copy(policy->cpus, cpumask_of(cpu));
1410
1411		/*
1412		 * Call driver. From then on the cpufreq must be able
1413		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1414		 */
1415		ret = cpufreq_driver->init(policy);
1416		if (ret) {
1417			pr_debug("%s: %d: initialization failed\n", __func__,
1418				 __LINE__);
1419			goto out_free_policy;
1420		}
1421
1422		/*
1423		 * The initialization has succeeded and the policy is online.
1424		 * If there is a problem with its frequency table, take it
1425		 * offline and drop it.
1426		 */
1427		ret = cpufreq_table_validate_and_sort(policy);
1428		if (ret)
1429			goto out_offline_policy;
1430
1431		/* related_cpus should at least include policy->cpus. */
1432		cpumask_copy(policy->related_cpus, policy->cpus);
1433	}
 
1434
1435	/*
1436	 * affected cpus must always be the one, which are online. We aren't
1437	 * managing offline cpus here.
 
1438	 */
1439	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1440
1441	if (new_policy) {
1442		for_each_cpu(j, policy->related_cpus) {
1443			per_cpu(cpufreq_cpu_data, j) = policy;
1444			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1445		}
1446
1447		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1448					       GFP_KERNEL);
1449		if (!policy->min_freq_req) {
1450			ret = -ENOMEM;
1451			goto out_destroy_policy;
1452		}
1453
1454		ret = freq_qos_add_request(&policy->constraints,
1455					   policy->min_freq_req, FREQ_QOS_MIN,
1456					   FREQ_QOS_MIN_DEFAULT_VALUE);
1457		if (ret < 0) {
1458			/*
1459			 * So we don't call freq_qos_remove_request() for an
1460			 * uninitialized request.
1461			 */
1462			kfree(policy->min_freq_req);
1463			policy->min_freq_req = NULL;
1464			goto out_destroy_policy;
1465		}
1466
1467		/*
1468		 * This must be initialized right here to avoid calling
1469		 * freq_qos_remove_request() on uninitialized request in case
1470		 * of errors.
1471		 */
1472		policy->max_freq_req = policy->min_freq_req + 1;
1473
1474		ret = freq_qos_add_request(&policy->constraints,
1475					   policy->max_freq_req, FREQ_QOS_MAX,
1476					   FREQ_QOS_MAX_DEFAULT_VALUE);
1477		if (ret < 0) {
1478			policy->max_freq_req = NULL;
1479			goto out_destroy_policy;
1480		}
1481
1482		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1483				CPUFREQ_CREATE_POLICY, policy);
1484	}
1485
1486	if (cpufreq_driver->get && has_target()) {
1487		policy->cur = cpufreq_driver->get(policy->cpu);
1488		if (!policy->cur) {
1489			ret = -EIO;
1490			pr_err("%s: ->get() failed\n", __func__);
1491			goto out_destroy_policy;
 
 
 
 
 
 
 
 
 
 
 
1492		}
1493	}
 
 
 
1494
1495	/*
1496	 * Sometimes boot loaders set CPU frequency to a value outside of
1497	 * frequency table present with cpufreq core. In such cases CPU might be
1498	 * unstable if it has to run on that frequency for long duration of time
1499	 * and so its better to set it to a frequency which is specified in
1500	 * freq-table. This also makes cpufreq stats inconsistent as
1501	 * cpufreq-stats would fail to register because current frequency of CPU
1502	 * isn't found in freq-table.
1503	 *
1504	 * Because we don't want this change to effect boot process badly, we go
1505	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1506	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1507	 * is initialized to zero).
1508	 *
1509	 * We are passing target-freq as "policy->cur - 1" otherwise
1510	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1511	 * equal to target-freq.
1512	 */
1513	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1514	    && has_target()) {
1515		unsigned int old_freq = policy->cur;
1516
1517		/* Are we running at unknown frequency ? */
1518		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1519		if (ret == -EINVAL) {
1520			ret = __cpufreq_driver_target(policy, old_freq - 1,
1521						      CPUFREQ_RELATION_L);
1522
1523			/*
1524			 * Reaching here after boot in a few seconds may not
1525			 * mean that system will remain stable at "unknown"
1526			 * frequency for longer duration. Hence, a BUG_ON().
1527			 */
1528			BUG_ON(ret);
1529			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1530				__func__, policy->cpu, old_freq, policy->cur);
1531		}
1532	}
1533
1534	if (new_policy) {
1535		ret = cpufreq_add_dev_interface(policy);
1536		if (ret)
1537			goto out_destroy_policy;
1538
1539		cpufreq_stats_create_table(policy);
1540
1541		write_lock_irqsave(&cpufreq_driver_lock, flags);
1542		list_add(&policy->policy_list, &cpufreq_policy_list);
1543		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544
1545		/*
1546		 * Register with the energy model before
1547		 * sugov_eas_rebuild_sd() is called, which will result
1548		 * in rebuilding of the sched domains, which should only be done
1549		 * once the energy model is properly initialized for the policy
1550		 * first.
1551		 *
1552		 * Also, this should be called before the policy is registered
1553		 * with cooling framework.
1554		 */
1555		if (cpufreq_driver->register_em)
1556			cpufreq_driver->register_em(policy);
1557	}
1558
1559	ret = cpufreq_init_policy(policy);
1560	if (ret) {
1561		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1562		       __func__, cpu, ret);
1563		goto out_destroy_policy;
1564	}
1565
1566	up_write(&policy->rwsem);
1567
1568	kobject_uevent(&policy->kobj, KOBJ_ADD);
1569
1570	/* Callback for handling stuff after policy is ready */
1571	if (cpufreq_driver->ready)
1572		cpufreq_driver->ready(policy);
1573
1574	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1575		policy->cdev = of_cpufreq_cooling_register(policy);
1576
1577	pr_debug("initialization complete\n");
1578
1579	return 0;
1580
1581out_destroy_policy:
1582	for_each_cpu(j, policy->real_cpus)
1583		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1584
1585out_offline_policy:
1586	if (cpufreq_driver->offline)
1587		cpufreq_driver->offline(policy);
1588
1589out_exit_policy:
1590	if (cpufreq_driver->exit)
1591		cpufreq_driver->exit(policy);
 
1592
1593out_free_policy:
1594	cpumask_clear(policy->cpus);
1595	up_write(&policy->rwsem);
1596
1597	cpufreq_policy_free(policy);
1598	return ret;
1599}
1600
1601/**
1602 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1603 * @dev: CPU device.
1604 * @sif: Subsystem interface structure pointer (not used)
1605 */
1606static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1607{
1608	struct cpufreq_policy *policy;
1609	unsigned cpu = dev->id;
1610	int ret;
1611
1612	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1613
1614	if (cpu_online(cpu)) {
1615		ret = cpufreq_online(cpu);
1616		if (ret)
1617			return ret;
1618	}
 
1619
1620	/* Create sysfs link on CPU registration */
1621	policy = per_cpu(cpufreq_cpu_data, cpu);
1622	if (policy)
1623		add_cpu_dev_symlink(policy, cpu, dev);
1624
1625	return 0;
1626}
1627
1628static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1629{
1630	int ret;
1631
1632	if (has_target())
1633		cpufreq_stop_governor(policy);
1634
1635	cpumask_clear_cpu(cpu, policy->cpus);
1636
1637	if (!policy_is_inactive(policy)) {
1638		/* Nominate a new CPU if necessary. */
1639		if (cpu == policy->cpu)
1640			policy->cpu = cpumask_any(policy->cpus);
1641
1642		/* Start the governor again for the active policy. */
1643		if (has_target()) {
1644			ret = cpufreq_start_governor(policy);
1645			if (ret)
1646				pr_err("%s: Failed to start governor\n", __func__);
1647		}
1648
1649		return;
1650	}
1651
1652	if (has_target())
1653		strscpy(policy->last_governor, policy->governor->name,
1654			CPUFREQ_NAME_LEN);
1655	else
1656		policy->last_policy = policy->policy;
1657
1658	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1659		cpufreq_cooling_unregister(policy->cdev);
1660		policy->cdev = NULL;
1661	}
1662
1663	if (has_target())
1664		cpufreq_exit_governor(policy);
1665
1666	/*
1667	 * Perform the ->offline() during light-weight tear-down, as
1668	 * that allows fast recovery when the CPU comes back.
1669	 */
1670	if (cpufreq_driver->offline) {
1671		cpufreq_driver->offline(policy);
1672	} else if (cpufreq_driver->exit) {
1673		cpufreq_driver->exit(policy);
1674		policy->freq_table = NULL;
1675	}
1676}
1677
1678static int cpufreq_offline(unsigned int cpu)
1679{
1680	struct cpufreq_policy *policy;
1681
1682	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1683
1684	policy = cpufreq_cpu_get_raw(cpu);
1685	if (!policy) {
1686		pr_debug("%s: No cpu_data found\n", __func__);
1687		return 0;
1688	}
1689
1690	down_write(&policy->rwsem);
 
1691
1692	__cpufreq_offline(cpu, policy);
 
 
1693
1694	up_write(&policy->rwsem);
1695	return 0;
1696}
1697
1698/*
1699 * cpufreq_remove_dev - remove a CPU device
1700 *
1701 * Removes the cpufreq interface for a CPU device.
1702 */
1703static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1704{
1705	unsigned int cpu = dev->id;
1706	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1707
1708	if (!policy)
1709		return;
1710
1711	down_write(&policy->rwsem);
1712
1713	if (cpu_online(cpu))
1714		__cpufreq_offline(cpu, policy);
1715
1716	remove_cpu_dev_symlink(policy, cpu, dev);
1717
1718	if (!cpumask_empty(policy->real_cpus)) {
1719		up_write(&policy->rwsem);
1720		return;
1721	}
1722
1723	/* We did light-weight exit earlier, do full tear down now */
1724	if (cpufreq_driver->offline)
1725		cpufreq_driver->exit(policy);
1726
1727	up_write(&policy->rwsem);
1728
1729	cpufreq_policy_free(policy);
1730}
1731
1732/**
1733 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1734 * @policy: Policy managing CPUs.
1735 * @new_freq: New CPU frequency.
 
1736 *
1737 * Adjust to the current frequency first and clean up later by either calling
1738 * cpufreq_update_policy(), or scheduling handle_update().
1739 */
1740static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1741				unsigned int new_freq)
1742{
1743	struct cpufreq_freqs freqs;
1744
1745	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1746		 policy->cur, new_freq);
1747
1748	freqs.old = policy->cur;
 
1749	freqs.new = new_freq;
1750
1751	cpufreq_freq_transition_begin(policy, &freqs);
1752	cpufreq_freq_transition_end(policy, &freqs, 0);
1753}
1754
1755static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1756{
1757	unsigned int new_freq;
1758
1759	new_freq = cpufreq_driver->get(policy->cpu);
1760	if (!new_freq)
1761		return 0;
1762
1763	/*
1764	 * If fast frequency switching is used with the given policy, the check
1765	 * against policy->cur is pointless, so skip it in that case.
1766	 */
1767	if (policy->fast_switch_enabled || !has_target())
1768		return new_freq;
1769
1770	if (policy->cur != new_freq) {
1771		/*
1772		 * For some platforms, the frequency returned by hardware may be
1773		 * slightly different from what is provided in the frequency
1774		 * table, for example hardware may return 499 MHz instead of 500
1775		 * MHz. In such cases it is better to avoid getting into
1776		 * unnecessary frequency updates.
1777		 */
1778		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1779			return policy->cur;
1780
1781		cpufreq_out_of_sync(policy, new_freq);
1782		if (update)
1783			schedule_work(&policy->update);
1784	}
1785
1786	return new_freq;
1787}
1788
1789/**
1790 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1791 * @cpu: CPU number
1792 *
1793 * This is the last known freq, without actually getting it from the driver.
1794 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1795 */
1796unsigned int cpufreq_quick_get(unsigned int cpu)
1797{
1798	struct cpufreq_policy *policy;
1799	unsigned int ret_freq = 0;
1800	unsigned long flags;
1801
1802	read_lock_irqsave(&cpufreq_driver_lock, flags);
1803
1804	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1805		ret_freq = cpufreq_driver->get(cpu);
1806		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1807		return ret_freq;
1808	}
1809
1810	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1811
1812	policy = cpufreq_cpu_get(cpu);
1813	if (policy) {
1814		ret_freq = policy->cur;
1815		cpufreq_cpu_put(policy);
1816	}
1817
1818	return ret_freq;
1819}
1820EXPORT_SYMBOL(cpufreq_quick_get);
1821
1822/**
1823 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1824 * @cpu: CPU number
1825 *
1826 * Just return the max possible frequency for a given CPU.
1827 */
1828unsigned int cpufreq_quick_get_max(unsigned int cpu)
1829{
1830	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831	unsigned int ret_freq = 0;
1832
1833	if (policy) {
1834		ret_freq = policy->max;
1835		cpufreq_cpu_put(policy);
1836	}
1837
1838	return ret_freq;
1839}
1840EXPORT_SYMBOL(cpufreq_quick_get_max);
1841
1842/**
1843 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1844 * @cpu: CPU number
1845 *
1846 * The default return value is the max_freq field of cpuinfo.
1847 */
1848__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1849{
1850	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1851	unsigned int ret_freq = 0;
1852
1853	if (policy) {
1854		ret_freq = policy->cpuinfo.max_freq;
1855		cpufreq_cpu_put(policy);
 
 
 
 
 
 
 
 
 
 
1856	}
1857
1858	return ret_freq;
1859}
1860EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1861
1862static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1863{
1864	if (unlikely(policy_is_inactive(policy)))
1865		return 0;
1866
1867	return cpufreq_verify_current_freq(policy, true);
1868}
1869
1870/**
1871 * cpufreq_get - get the current CPU frequency (in kHz)
1872 * @cpu: CPU number
1873 *
1874 * Get the CPU current (static) CPU frequency
1875 */
1876unsigned int cpufreq_get(unsigned int cpu)
1877{
 
1878	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1879	unsigned int ret_freq = 0;
1880
1881	if (policy) {
1882		down_read(&policy->rwsem);
1883		if (cpufreq_driver->get)
1884			ret_freq = __cpufreq_get(policy);
1885		up_read(&policy->rwsem);
 
 
1886
1887		cpufreq_cpu_put(policy);
1888	}
1889
 
 
 
1890	return ret_freq;
1891}
1892EXPORT_SYMBOL(cpufreq_get);
1893
1894static struct subsys_interface cpufreq_interface = {
1895	.name		= "cpufreq",
1896	.subsys		= &cpu_subsys,
1897	.add_dev	= cpufreq_add_dev,
1898	.remove_dev	= cpufreq_remove_dev,
1899};
1900
1901/*
1902 * In case platform wants some specific frequency to be configured
1903 * during suspend..
1904 */
1905int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1906{
1907	int ret;
1908
1909	if (!policy->suspend_freq) {
1910		pr_debug("%s: suspend_freq not defined\n", __func__);
1911		return 0;
1912	}
1913
1914	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1915			policy->suspend_freq);
1916
1917	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1918			CPUFREQ_RELATION_H);
1919	if (ret)
1920		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1921				__func__, policy->suspend_freq, ret);
1922
1923	return ret;
1924}
1925EXPORT_SYMBOL(cpufreq_generic_suspend);
1926
1927/**
1928 * cpufreq_suspend() - Suspend CPUFreq governors.
1929 *
1930 * Called during system wide Suspend/Hibernate cycles for suspending governors
1931 * as some platforms can't change frequency after this point in suspend cycle.
1932 * Because some of the devices (like: i2c, regulators, etc) they use for
1933 * changing frequency are suspended quickly after this point.
1934 */
1935void cpufreq_suspend(void)
1936{
1937	struct cpufreq_policy *policy;
1938
1939	if (!cpufreq_driver)
1940		return;
1941
1942	if (!has_target() && !cpufreq_driver->suspend)
1943		goto suspend;
1944
1945	pr_debug("%s: Suspending Governors\n", __func__);
 
 
 
1946
1947	for_each_active_policy(policy) {
1948		if (has_target()) {
1949			down_write(&policy->rwsem);
1950			cpufreq_stop_governor(policy);
1951			up_write(&policy->rwsem);
1952		}
1953
1954		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1955			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1956				cpufreq_driver->name);
1957	}
1958
1959suspend:
1960	cpufreq_suspended = true;
1961}
1962
1963/**
1964 * cpufreq_resume() - Resume CPUFreq governors.
 
 
 
 
 
 
 
1965 *
1966 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1967 * are suspended with cpufreq_suspend().
1968 */
1969void cpufreq_resume(void)
1970{
1971	struct cpufreq_policy *policy;
1972	int ret;
1973
1974	if (!cpufreq_driver)
1975		return;
1976
1977	if (unlikely(!cpufreq_suspended))
1978		return;
1979
1980	cpufreq_suspended = false;
1981
1982	if (!has_target() && !cpufreq_driver->resume)
1983		return;
1984
1985	pr_debug("%s: Resuming Governors\n", __func__);
1986
1987	for_each_active_policy(policy) {
1988		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1989			pr_err("%s: Failed to resume driver: %s\n", __func__,
1990				cpufreq_driver->name);
1991		} else if (has_target()) {
1992			down_write(&policy->rwsem);
1993			ret = cpufreq_start_governor(policy);
1994			up_write(&policy->rwsem);
1995
1996			if (ret)
1997				pr_err("%s: Failed to start governor for CPU%u's policy\n",
1998				       __func__, policy->cpu);
1999		}
2000	}
2001}
2002
2003/**
2004 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2005 * @flags: Flags to test against the current cpufreq driver's flags.
2006 *
2007 * Assumes that the driver is there, so callers must ensure that this is the
2008 * case.
2009 */
2010bool cpufreq_driver_test_flags(u16 flags)
2011{
2012	return !!(cpufreq_driver->flags & flags);
2013}
2014
2015/**
2016 * cpufreq_get_current_driver - Return the current driver's name.
2017 *
2018 * Return the name string of the currently registered cpufreq driver or NULL if
2019 * none.
2020 */
2021const char *cpufreq_get_current_driver(void)
2022{
2023	if (cpufreq_driver)
2024		return cpufreq_driver->name;
2025
2026	return NULL;
 
2027}
2028EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2029
2030/**
2031 * cpufreq_get_driver_data - Return current driver data.
2032 *
2033 * Return the private data of the currently registered cpufreq driver, or NULL
2034 * if no cpufreq driver has been registered.
2035 */
2036void *cpufreq_get_driver_data(void)
2037{
2038	if (cpufreq_driver)
2039		return cpufreq_driver->driver_data;
2040
2041	return NULL;
2042}
2043EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2044
2045/*********************************************************************
2046 *                     NOTIFIER LISTS INTERFACE                      *
2047 *********************************************************************/
2048
2049/**
2050 * cpufreq_register_notifier - Register a notifier with cpufreq.
2051 * @nb: notifier function to register.
2052 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2053 *
2054 * Add a notifier to one of two lists: either a list of notifiers that run on
2055 * clock rate changes (once before and once after every transition), or a list
2056 * of notifiers that ron on cpufreq policy changes.
 
2057 *
2058 * This function may sleep and it has the same return values as
2059 * blocking_notifier_chain_register().
2060 */
2061int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2062{
2063	int ret;
2064
2065	if (cpufreq_disabled())
2066		return -EINVAL;
2067
2068	switch (list) {
2069	case CPUFREQ_TRANSITION_NOTIFIER:
2070		mutex_lock(&cpufreq_fast_switch_lock);
2071
2072		if (cpufreq_fast_switch_count > 0) {
2073			mutex_unlock(&cpufreq_fast_switch_lock);
2074			return -EBUSY;
2075		}
2076		ret = srcu_notifier_chain_register(
2077				&cpufreq_transition_notifier_list, nb);
2078		if (!ret)
2079			cpufreq_fast_switch_count--;
2080
2081		mutex_unlock(&cpufreq_fast_switch_lock);
2082		break;
2083	case CPUFREQ_POLICY_NOTIFIER:
2084		ret = blocking_notifier_chain_register(
2085				&cpufreq_policy_notifier_list, nb);
2086		break;
2087	default:
2088		ret = -EINVAL;
2089	}
2090
2091	return ret;
2092}
2093EXPORT_SYMBOL(cpufreq_register_notifier);
2094
 
2095/**
2096 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2097 * @nb: notifier block to be unregistered.
2098 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2099 *
2100 * Remove a notifier from one of the cpufreq notifier lists.
2101 *
2102 * This function may sleep and it has the same return values as
2103 * blocking_notifier_chain_unregister().
2104 */
2105int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2106{
2107	int ret;
2108
2109	if (cpufreq_disabled())
2110		return -EINVAL;
2111
2112	switch (list) {
2113	case CPUFREQ_TRANSITION_NOTIFIER:
2114		mutex_lock(&cpufreq_fast_switch_lock);
2115
2116		ret = srcu_notifier_chain_unregister(
2117				&cpufreq_transition_notifier_list, nb);
2118		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2119			cpufreq_fast_switch_count++;
2120
2121		mutex_unlock(&cpufreq_fast_switch_lock);
2122		break;
2123	case CPUFREQ_POLICY_NOTIFIER:
2124		ret = blocking_notifier_chain_unregister(
2125				&cpufreq_policy_notifier_list, nb);
2126		break;
2127	default:
2128		ret = -EINVAL;
2129	}
2130
2131	return ret;
2132}
2133EXPORT_SYMBOL(cpufreq_unregister_notifier);
2134
2135
2136/*********************************************************************
2137 *                              GOVERNORS                            *
2138 *********************************************************************/
2139
2140/**
2141 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2142 * @policy: cpufreq policy to switch the frequency for.
2143 * @target_freq: New frequency to set (may be approximate).
2144 *
2145 * Carry out a fast frequency switch without sleeping.
2146 *
2147 * The driver's ->fast_switch() callback invoked by this function must be
2148 * suitable for being called from within RCU-sched read-side critical sections
2149 * and it is expected to select the minimum available frequency greater than or
2150 * equal to @target_freq (CPUFREQ_RELATION_L).
2151 *
2152 * This function must not be called if policy->fast_switch_enabled is unset.
2153 *
2154 * Governors calling this function must guarantee that it will never be invoked
2155 * twice in parallel for the same policy and that it will never be called in
2156 * parallel with either ->target() or ->target_index() for the same policy.
2157 *
2158 * Returns the actual frequency set for the CPU.
2159 *
2160 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2161 * error condition, the hardware configuration must be preserved.
2162 */
2163unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2164					unsigned int target_freq)
2165{
2166	unsigned int freq;
2167	int cpu;
2168
2169	target_freq = clamp_val(target_freq, policy->min, policy->max);
2170	freq = cpufreq_driver->fast_switch(policy, target_freq);
2171
2172	if (!freq)
2173		return 0;
2174
2175	policy->cur = freq;
2176	arch_set_freq_scale(policy->related_cpus, freq,
2177			    arch_scale_freq_ref(policy->cpu));
2178	cpufreq_stats_record_transition(policy, freq);
2179
2180	if (trace_cpu_frequency_enabled()) {
2181		for_each_cpu(cpu, policy->cpus)
2182			trace_cpu_frequency(freq, cpu);
2183	}
2184
2185	return freq;
2186}
2187EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2188
2189/**
2190 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2191 * @cpu: Target CPU.
2192 * @min_perf: Minimum (required) performance level (units of @capacity).
2193 * @target_perf: Target (desired) performance level (units of @capacity).
2194 * @capacity: Capacity of the target CPU.
2195 *
2196 * Carry out a fast performance level switch of @cpu without sleeping.
2197 *
2198 * The driver's ->adjust_perf() callback invoked by this function must be
2199 * suitable for being called from within RCU-sched read-side critical sections
2200 * and it is expected to select a suitable performance level equal to or above
2201 * @min_perf and preferably equal to or below @target_perf.
2202 *
2203 * This function must not be called if policy->fast_switch_enabled is unset.
2204 *
2205 * Governors calling this function must guarantee that it will never be invoked
2206 * twice in parallel for the same CPU and that it will never be called in
2207 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2208 * the same CPU.
2209 */
2210void cpufreq_driver_adjust_perf(unsigned int cpu,
2211				 unsigned long min_perf,
2212				 unsigned long target_perf,
2213				 unsigned long capacity)
2214{
2215	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2216}
2217
2218/**
2219 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2220 *
2221 * Return 'true' if the ->adjust_perf callback is present for the
2222 * current driver or 'false' otherwise.
2223 */
2224bool cpufreq_driver_has_adjust_perf(void)
2225{
2226	return !!cpufreq_driver->adjust_perf;
2227}
2228
2229/* Must set freqs->new to intermediate frequency */
2230static int __target_intermediate(struct cpufreq_policy *policy,
2231				 struct cpufreq_freqs *freqs, int index)
2232{
2233	int ret;
2234
2235	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2236
2237	/* We don't need to switch to intermediate freq */
2238	if (!freqs->new)
2239		return 0;
2240
2241	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2242		 __func__, policy->cpu, freqs->old, freqs->new);
2243
2244	cpufreq_freq_transition_begin(policy, freqs);
2245	ret = cpufreq_driver->target_intermediate(policy, index);
2246	cpufreq_freq_transition_end(policy, freqs, ret);
2247
2248	if (ret)
2249		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2250		       __func__, ret);
2251
2252	return ret;
2253}
2254
2255static int __target_index(struct cpufreq_policy *policy, int index)
2256{
2257	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2258	unsigned int restore_freq, intermediate_freq = 0;
2259	unsigned int newfreq = policy->freq_table[index].frequency;
2260	int retval = -EINVAL;
2261	bool notify;
2262
2263	if (newfreq == policy->cur)
2264		return 0;
2265
2266	/* Save last value to restore later on errors */
2267	restore_freq = policy->cur;
2268
2269	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2270	if (notify) {
2271		/* Handle switching to intermediate frequency */
2272		if (cpufreq_driver->get_intermediate) {
2273			retval = __target_intermediate(policy, &freqs, index);
2274			if (retval)
2275				return retval;
2276
2277			intermediate_freq = freqs.new;
2278			/* Set old freq to intermediate */
2279			if (intermediate_freq)
2280				freqs.old = freqs.new;
2281		}
2282
2283		freqs.new = newfreq;
2284		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2285			 __func__, policy->cpu, freqs.old, freqs.new);
2286
2287		cpufreq_freq_transition_begin(policy, &freqs);
2288	}
2289
2290	retval = cpufreq_driver->target_index(policy, index);
2291	if (retval)
2292		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2293		       retval);
2294
2295	if (notify) {
2296		cpufreq_freq_transition_end(policy, &freqs, retval);
2297
2298		/*
2299		 * Failed after setting to intermediate freq? Driver should have
2300		 * reverted back to initial frequency and so should we. Check
2301		 * here for intermediate_freq instead of get_intermediate, in
2302		 * case we haven't switched to intermediate freq at all.
2303		 */
2304		if (unlikely(retval && intermediate_freq)) {
2305			freqs.old = intermediate_freq;
2306			freqs.new = restore_freq;
2307			cpufreq_freq_transition_begin(policy, &freqs);
2308			cpufreq_freq_transition_end(policy, &freqs, 0);
2309		}
2310	}
2311
2312	return retval;
2313}
2314
2315int __cpufreq_driver_target(struct cpufreq_policy *policy,
2316			    unsigned int target_freq,
2317			    unsigned int relation)
2318{
2319	unsigned int old_target_freq = target_freq;
2320
2321	if (cpufreq_disabled())
2322		return -ENODEV;
 
 
2323
2324	target_freq = __resolve_freq(policy, target_freq, relation);
2325
2326	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2327		 policy->cpu, target_freq, relation, old_target_freq);
2328
2329	/*
2330	 * This might look like a redundant call as we are checking it again
2331	 * after finding index. But it is left intentionally for cases where
2332	 * exactly same freq is called again and so we can save on few function
2333	 * calls.
2334	 */
2335	if (target_freq == policy->cur &&
2336	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2337		return 0;
2338
2339	if (cpufreq_driver->target) {
2340		/*
2341		 * If the driver hasn't setup a single inefficient frequency,
2342		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2343		 */
2344		if (!policy->efficiencies_available)
2345			relation &= ~CPUFREQ_RELATION_E;
2346
2347		return cpufreq_driver->target(policy, target_freq, relation);
2348	}
2349
2350	if (!cpufreq_driver->target_index)
2351		return -EINVAL;
2352
2353	return __target_index(policy, policy->cached_resolved_idx);
2354}
2355EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2356
2357int cpufreq_driver_target(struct cpufreq_policy *policy,
2358			  unsigned int target_freq,
2359			  unsigned int relation)
2360{
2361	int ret;
 
 
 
 
2362
2363	down_write(&policy->rwsem);
 
2364
2365	ret = __cpufreq_driver_target(policy, target_freq, relation);
2366
2367	up_write(&policy->rwsem);
2368
 
 
 
2369	return ret;
2370}
2371EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2372
2373__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2374{
2375	return NULL;
2376}
2377
2378static int cpufreq_init_governor(struct cpufreq_policy *policy)
2379{
2380	int ret;
2381
2382	/* Don't start any governor operations if we are entering suspend */
2383	if (cpufreq_suspended)
2384		return 0;
2385	/*
2386	 * Governor might not be initiated here if ACPI _PPC changed
2387	 * notification happened, so check it.
2388	 */
2389	if (!policy->governor)
2390		return -EINVAL;
2391
2392	/* Platform doesn't want dynamic frequency switching ? */
2393	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2394	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2395		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2396
2397		if (gov) {
2398			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2399				policy->governor->name, gov->name);
2400			policy->governor = gov;
2401		} else {
2402			return -EINVAL;
2403		}
2404	}
2405
2406	if (!try_module_get(policy->governor->owner))
2407		return -EINVAL;
2408
2409	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2410
2411	if (policy->governor->init) {
2412		ret = policy->governor->init(policy);
2413		if (ret) {
2414			module_put(policy->governor->owner);
2415			return ret;
2416		}
2417	}
2418
2419	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2420
2421	return 0;
2422}
 
2423
2424static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2425{
2426	if (cpufreq_suspended || !policy->governor)
2427		return;
2428
2429	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2430
2431	if (policy->governor->exit)
2432		policy->governor->exit(policy);
2433
2434	module_put(policy->governor->owner);
2435}
2436
2437int cpufreq_start_governor(struct cpufreq_policy *policy)
 
2438{
2439	int ret;
2440
2441	if (cpufreq_suspended)
2442		return 0;
 
 
 
 
 
 
 
2443
2444	if (!policy->governor)
2445		return -EINVAL;
2446
2447	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2448
2449	if (cpufreq_driver->get)
2450		cpufreq_verify_current_freq(policy, false);
2451
2452	if (policy->governor->start) {
2453		ret = policy->governor->start(policy);
2454		if (ret)
2455			return ret;
 
2456	}
2457
2458	if (policy->governor->limits)
2459		policy->governor->limits(policy);
2460
2461	return 0;
2462}
2463
2464void cpufreq_stop_governor(struct cpufreq_policy *policy)
2465{
2466	if (cpufreq_suspended || !policy->governor)
2467		return;
2468
2469	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
 
 
 
 
 
 
 
 
 
2470
2471	if (policy->governor->stop)
2472		policy->governor->stop(policy);
2473}
2474
2475static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2476{
2477	if (cpufreq_suspended || !policy->governor)
2478		return;
2479
2480	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2481
2482	if (policy->governor->limits)
2483		policy->governor->limits(policy);
2484}
2485
2486int cpufreq_register_governor(struct cpufreq_governor *governor)
2487{
2488	int err;
2489
2490	if (!governor)
2491		return -EINVAL;
2492
2493	if (cpufreq_disabled())
2494		return -ENODEV;
2495
2496	mutex_lock(&cpufreq_governor_mutex);
2497
2498	err = -EBUSY;
2499	if (!find_governor(governor->name)) {
2500		err = 0;
2501		list_add(&governor->governor_list, &cpufreq_governor_list);
2502	}
2503
2504	mutex_unlock(&cpufreq_governor_mutex);
2505	return err;
2506}
2507EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2508
 
2509void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2510{
2511	struct cpufreq_policy *policy;
2512	unsigned long flags;
 
2513
2514	if (!governor)
2515		return;
2516
2517	if (cpufreq_disabled())
2518		return;
2519
2520	/* clear last_governor for all inactive policies */
2521	read_lock_irqsave(&cpufreq_driver_lock, flags);
2522	for_each_inactive_policy(policy) {
2523		if (!strcmp(policy->last_governor, governor->name)) {
2524			policy->governor = NULL;
2525			strcpy(policy->last_governor, "\0");
2526		}
2527	}
2528	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2529
2530	mutex_lock(&cpufreq_governor_mutex);
2531	list_del(&governor->governor_list);
2532	mutex_unlock(&cpufreq_governor_mutex);
 
2533}
2534EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2535
2536
 
2537/*********************************************************************
2538 *                          POLICY INTERFACE                         *
2539 *********************************************************************/
2540
2541/**
2542 * cpufreq_get_policy - get the current cpufreq_policy
2543 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2544 *	is written
2545 * @cpu: CPU to find the policy for
2546 *
2547 * Reads the current cpufreq policy.
2548 */
2549int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2550{
2551	struct cpufreq_policy *cpu_policy;
2552	if (!policy)
2553		return -EINVAL;
2554
2555	cpu_policy = cpufreq_cpu_get(cpu);
2556	if (!cpu_policy)
2557		return -EINVAL;
2558
2559	memcpy(policy, cpu_policy, sizeof(*policy));
2560
2561	cpufreq_cpu_put(cpu_policy);
2562	return 0;
2563}
2564EXPORT_SYMBOL(cpufreq_get_policy);
2565
2566/**
2567 * cpufreq_set_policy - Modify cpufreq policy parameters.
2568 * @policy: Policy object to modify.
2569 * @new_gov: Policy governor pointer.
2570 * @new_pol: Policy value (for drivers with built-in governors).
2571 *
2572 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2573 * limits to be set for the policy, update @policy with the verified limits
2574 * values and either invoke the driver's ->setpolicy() callback (if present) or
2575 * carry out a governor update for @policy.  That is, run the current governor's
2576 * ->limits() callback (if @new_gov points to the same object as the one in
2577 * @policy) or replace the governor for @policy with @new_gov.
2578 *
2579 * The cpuinfo part of @policy is not updated by this function.
2580 */
2581static int cpufreq_set_policy(struct cpufreq_policy *policy,
2582			      struct cpufreq_governor *new_gov,
2583			      unsigned int new_pol)
2584{
2585	struct cpufreq_policy_data new_data;
2586	struct cpufreq_governor *old_gov;
2587	int ret;
 
 
 
 
2588
2589	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2590	new_data.freq_table = policy->freq_table;
2591	new_data.cpu = policy->cpu;
2592	/*
2593	 * PM QoS framework collects all the requests from users and provide us
2594	 * the final aggregated value here.
2595	 */
2596	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2597	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2598
2599	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2600		 new_data.cpu, new_data.min, new_data.max);
 
 
2601
2602	/*
2603	 * Verify that the CPU speed can be set within these limits and make sure
2604	 * that min <= max.
2605	 */
2606	ret = cpufreq_driver->verify(&new_data);
 
 
 
 
 
 
2607	if (ret)
2608		return ret;
2609
2610	/*
2611	 * Resolve policy min/max to available frequencies. It ensures
2612	 * no frequency resolution will neither overshoot the requested maximum
2613	 * nor undershoot the requested minimum.
2614	 */
2615	policy->min = new_data.min;
2616	policy->max = new_data.max;
2617	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2618	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2619	trace_cpu_frequency_limits(policy);
2620
2621	policy->cached_target_freq = UINT_MAX;
 
2622
2623	pr_debug("new min and max freqs are %u - %u kHz\n",
2624		 policy->min, policy->max);
2625
2626	if (cpufreq_driver->setpolicy) {
2627		policy->policy = new_pol;
2628		pr_debug("setting range\n");
2629		return cpufreq_driver->setpolicy(policy);
2630	}
2631
2632	if (new_gov == policy->governor) {
2633		pr_debug("governor limits update\n");
2634		cpufreq_governor_limits(policy);
2635		return 0;
2636	}
2637
2638	pr_debug("governor switch\n");
2639
2640	/* save old, working values */
2641	old_gov = policy->governor;
2642	/* end old governor */
2643	if (old_gov) {
2644		cpufreq_stop_governor(policy);
2645		cpufreq_exit_governor(policy);
2646	}
2647
2648	/* start new governor */
2649	policy->governor = new_gov;
2650	ret = cpufreq_init_governor(policy);
2651	if (!ret) {
2652		ret = cpufreq_start_governor(policy);
2653		if (!ret) {
2654			pr_debug("governor change\n");
2655			return 0;
2656		}
2657		cpufreq_exit_governor(policy);
2658	}
2659
2660	/* new governor failed, so re-start old one */
2661	pr_debug("starting governor %s failed\n", policy->governor->name);
2662	if (old_gov) {
2663		policy->governor = old_gov;
2664		if (cpufreq_init_governor(policy))
2665			policy->governor = NULL;
2666		else
2667			cpufreq_start_governor(policy);
2668	}
2669
 
2670	return ret;
2671}
2672
2673/**
2674 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2675 * @cpu: CPU to re-evaluate the policy for.
2676 *
2677 * Update the current frequency for the cpufreq policy of @cpu and use
2678 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2679 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2680 * for the policy in question, among other things.
2681 */
2682void cpufreq_update_policy(unsigned int cpu)
2683{
2684	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2685
2686	if (!policy)
2687		return;
2688
2689	/*
2690	 * BIOS might change freq behind our back
2691	 * -> ask driver for current freq and notify governors about a change
2692	 */
2693	if (cpufreq_driver->get && has_target() &&
2694	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2695		goto unlock;
2696
2697	refresh_frequency_limits(policy);
2698
2699unlock:
2700	cpufreq_cpu_release(policy);
2701}
2702EXPORT_SYMBOL(cpufreq_update_policy);
2703
2704/**
2705 * cpufreq_update_limits - Update policy limits for a given CPU.
2706 * @cpu: CPU to update the policy limits for.
2707 *
2708 * Invoke the driver's ->update_limits callback if present or call
2709 * cpufreq_update_policy() for @cpu.
2710 */
2711void cpufreq_update_limits(unsigned int cpu)
2712{
2713	if (cpufreq_driver->update_limits)
2714		cpufreq_driver->update_limits(cpu);
2715	else
2716		cpufreq_update_policy(cpu);
2717}
2718EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2719
2720/*********************************************************************
2721 *               BOOST						     *
2722 *********************************************************************/
2723static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2724{
 
 
2725	int ret;
2726
2727	if (!policy->freq_table)
2728		return -ENXIO;
 
 
2729
2730	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2731	if (ret) {
2732		pr_err("%s: Policy frequency update failed\n", __func__);
2733		return ret;
2734	}
2735
2736	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2737	if (ret < 0)
2738		return ret;
2739
2740	return 0;
2741}
2742
2743int cpufreq_boost_trigger_state(int state)
2744{
2745	struct cpufreq_policy *policy;
2746	unsigned long flags;
2747	int ret = 0;
2748
2749	if (cpufreq_driver->boost_enabled == state)
2750		return 0;
2751
2752	write_lock_irqsave(&cpufreq_driver_lock, flags);
2753	cpufreq_driver->boost_enabled = state;
2754	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755
2756	cpus_read_lock();
2757	for_each_active_policy(policy) {
2758		ret = cpufreq_driver->set_boost(policy, state);
2759		if (ret)
2760			goto err_reset_state;
2761
2762		policy->boost_enabled = state;
2763	}
2764	cpus_read_unlock();
2765
2766	return 0;
2767
2768err_reset_state:
2769	cpus_read_unlock();
2770
2771	write_lock_irqsave(&cpufreq_driver_lock, flags);
2772	cpufreq_driver->boost_enabled = !state;
2773	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2774
2775	pr_err("%s: Cannot %s BOOST\n",
2776	       __func__, state ? "enable" : "disable");
2777
 
 
 
2778	return ret;
2779}
 
2780
2781static bool cpufreq_boost_supported(void)
 
2782{
2783	return cpufreq_driver->set_boost;
2784}
2785
2786static int create_boost_sysfs_file(void)
2787{
2788	int ret;
 
 
 
 
 
 
 
 
2789
2790	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2791	if (ret)
2792		pr_err("%s: cannot register global BOOST sysfs file\n",
2793		       __func__);
2794
2795	return ret;
 
 
 
2796}
2797
2798static void remove_boost_sysfs_file(void)
2799{
2800	if (cpufreq_boost_supported())
2801		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2802}
2803
2804int cpufreq_enable_boost_support(void)
2805{
2806	if (!cpufreq_driver)
2807		return -EINVAL;
2808
2809	if (cpufreq_boost_supported())
2810		return 0;
2811
2812	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2813
2814	/* This will get removed on driver unregister */
2815	return create_boost_sysfs_file();
2816}
2817EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2818
2819int cpufreq_boost_enabled(void)
2820{
2821	return cpufreq_driver->boost_enabled;
2822}
2823EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2824
2825/*********************************************************************
2826 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2827 *********************************************************************/
2828static enum cpuhp_state hp_online;
2829
2830static int cpuhp_cpufreq_online(unsigned int cpu)
2831{
2832	cpufreq_online(cpu);
2833
2834	return 0;
2835}
2836
2837static int cpuhp_cpufreq_offline(unsigned int cpu)
2838{
2839	cpufreq_offline(cpu);
2840
2841	return 0;
2842}
2843
2844/**
2845 * cpufreq_register_driver - register a CPU Frequency driver
2846 * @driver_data: A struct cpufreq_driver containing the values#
2847 * submitted by the CPU Frequency driver.
2848 *
2849 * Registers a CPU Frequency driver to this core code. This code
2850 * returns zero on success, -EEXIST when another driver got here first
2851 * (and isn't unregistered in the meantime).
2852 *
2853 */
2854int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2855{
2856	unsigned long flags;
2857	int ret;
2858
2859	if (cpufreq_disabled())
2860		return -ENODEV;
2861
2862	/*
2863	 * The cpufreq core depends heavily on the availability of device
2864	 * structure, make sure they are available before proceeding further.
2865	 */
2866	if (!get_cpu_device(0))
2867		return -EPROBE_DEFER;
2868
2869	if (!driver_data || !driver_data->verify || !driver_data->init ||
2870	    !(driver_data->setpolicy || driver_data->target_index ||
2871		    driver_data->target) ||
2872	     (driver_data->setpolicy && (driver_data->target_index ||
2873		    driver_data->target)) ||
2874	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2875	     (!driver_data->online != !driver_data->offline) ||
2876		 (driver_data->adjust_perf && !driver_data->fast_switch))
2877		return -EINVAL;
2878
2879	pr_debug("trying to register driver %s\n", driver_data->name);
2880
2881	/* Protect against concurrent CPU online/offline. */
2882	cpus_read_lock();
2883
2884	write_lock_irqsave(&cpufreq_driver_lock, flags);
2885	if (cpufreq_driver) {
2886		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2887		ret = -EEXIST;
2888		goto out;
2889	}
2890	cpufreq_driver = driver_data;
2891	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2892
2893	/*
2894	 * Mark support for the scheduler's frequency invariance engine for
2895	 * drivers that implement target(), target_index() or fast_switch().
2896	 */
2897	if (!cpufreq_driver->setpolicy) {
2898		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2899		pr_debug("supports frequency invariance");
2900	}
2901
2902	if (driver_data->setpolicy)
2903		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2904
2905	if (cpufreq_boost_supported()) {
2906		ret = create_boost_sysfs_file();
2907		if (ret)
2908			goto err_null_driver;
2909	}
2910
2911	ret = subsys_interface_register(&cpufreq_interface);
2912	if (ret)
2913		goto err_boost_unreg;
 
 
 
2914
2915	if (unlikely(list_empty(&cpufreq_policy_list))) {
2916		/* if all ->init() calls failed, unregister */
2917		ret = -ENODEV;
2918		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2919			 driver_data->name);
2920		goto err_if_unreg;
 
2921	}
2922
2923	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2924						   "cpufreq:online",
2925						   cpuhp_cpufreq_online,
2926						   cpuhp_cpufreq_offline);
2927	if (ret < 0)
2928		goto err_if_unreg;
2929	hp_online = ret;
2930	ret = 0;
2931
2932	pr_debug("driver %s up and running\n", driver_data->name);
2933	goto out;
2934
2935err_if_unreg:
2936	subsys_interface_unregister(&cpufreq_interface);
2937err_boost_unreg:
2938	remove_boost_sysfs_file();
2939err_null_driver:
2940	write_lock_irqsave(&cpufreq_driver_lock, flags);
2941	cpufreq_driver = NULL;
2942	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2943out:
2944	cpus_read_unlock();
2945	return ret;
2946}
2947EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2948
2949/*
 
2950 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2951 *
2952 * Unregister the current CPUFreq driver. Only call this if you have
2953 * the right to do so, i.e. if you have succeeded in initialising before!
2954 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2955 * currently not initialised.
2956 */
2957void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2958{
2959	unsigned long flags;
2960
2961	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2962		return;
2963
2964	pr_debug("unregistering driver %s\n", driver->name);
2965
2966	/* Protect against concurrent cpu hotplug */
2967	cpus_read_lock();
2968	subsys_interface_unregister(&cpufreq_interface);
2969	remove_boost_sysfs_file();
2970	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2971	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2972
2973	write_lock_irqsave(&cpufreq_driver_lock, flags);
2974
 
2975	cpufreq_driver = NULL;
 
2976
2977	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2978	cpus_read_unlock();
2979}
2980EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2981
2982static int __init cpufreq_core_init(void)
2983{
2984	struct cpufreq_governor *gov = cpufreq_default_governor();
2985	struct device *dev_root;
2986
2987	if (cpufreq_disabled())
2988		return -ENODEV;
 
 
2989
2990	dev_root = bus_get_dev_root(&cpu_subsys);
2991	if (dev_root) {
2992		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
2993		put_device(dev_root);
2994	}
2995	BUG_ON(!cpufreq_global_kobject);
2996
2997	if (!strlen(default_governor))
2998		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2999
3000	return 0;
3001}
3002module_param(off, int, 0444);
3003module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3004core_initcall(cpufreq_core_init);