Loading...
1/*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/init.h>
21#include <linux/notifier.h>
22#include <linux/cpufreq.h>
23#include <linux/delay.h>
24#include <linux/interrupt.h>
25#include <linux/spinlock.h>
26#include <linux/device.h>
27#include <linux/slab.h>
28#include <linux/cpu.h>
29#include <linux/completion.h>
30#include <linux/mutex.h>
31#include <linux/syscore_ops.h>
32
33#include <trace/events/power.h>
34
35/**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
39 */
40static struct cpufreq_driver *cpufreq_driver;
41static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42#ifdef CONFIG_HOTPLUG_CPU
43/* This one keeps track of the previously set governor of a removed CPU */
44static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
45#endif
46static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48/*
49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50 * all cpufreq/hotplug/workqueue/etc related lock issues.
51 *
52 * The rules for this semaphore:
53 * - Any routine that wants to read from the policy structure will
54 * do a down_read on this semaphore.
55 * - Any routine that will write to the policy structure and/or may take away
56 * the policy altogether (eg. CPU hotplug), will hold this lock in write
57 * mode before doing so.
58 *
59 * Additional rules:
60 * - All holders of the lock should check to make sure that the CPU they
61 * are concerned with are online after they get the lock.
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 * - Lock should not be held across
65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP);
66 */
67static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
68static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
69
70#define lock_policy_rwsem(mode, cpu) \
71static int lock_policy_rwsem_##mode \
72(int cpu) \
73{ \
74 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \
75 BUG_ON(policy_cpu == -1); \
76 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77 if (unlikely(!cpu_online(cpu))) { \
78 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
79 return -1; \
80 } \
81 \
82 return 0; \
83}
84
85lock_policy_rwsem(read, cpu);
86
87lock_policy_rwsem(write, cpu);
88
89static void unlock_policy_rwsem_read(int cpu)
90{
91 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
92 BUG_ON(policy_cpu == -1);
93 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94}
95
96static void unlock_policy_rwsem_write(int cpu)
97{
98 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
99 BUG_ON(policy_cpu == -1);
100 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
101}
102
103
104/* internal prototypes */
105static int __cpufreq_governor(struct cpufreq_policy *policy,
106 unsigned int event);
107static unsigned int __cpufreq_get(unsigned int cpu);
108static void handle_update(struct work_struct *work);
109
110/**
111 * Two notifier lists: the "policy" list is involved in the
112 * validation process for a new CPU frequency policy; the
113 * "transition" list for kernel code that needs to handle
114 * changes to devices when the CPU clock speed changes.
115 * The mutex locks both lists.
116 */
117static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
118static struct srcu_notifier_head cpufreq_transition_notifier_list;
119
120static bool init_cpufreq_transition_notifier_list_called;
121static int __init init_cpufreq_transition_notifier_list(void)
122{
123 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
124 init_cpufreq_transition_notifier_list_called = true;
125 return 0;
126}
127pure_initcall(init_cpufreq_transition_notifier_list);
128
129static LIST_HEAD(cpufreq_governor_list);
130static DEFINE_MUTEX(cpufreq_governor_mutex);
131
132struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
133{
134 struct cpufreq_policy *data;
135 unsigned long flags;
136
137 if (cpu >= nr_cpu_ids)
138 goto err_out;
139
140 /* get the cpufreq driver */
141 spin_lock_irqsave(&cpufreq_driver_lock, flags);
142
143 if (!cpufreq_driver)
144 goto err_out_unlock;
145
146 if (!try_module_get(cpufreq_driver->owner))
147 goto err_out_unlock;
148
149
150 /* get the CPU */
151 data = per_cpu(cpufreq_cpu_data, cpu);
152
153 if (!data)
154 goto err_out_put_module;
155
156 if (!kobject_get(&data->kobj))
157 goto err_out_put_module;
158
159 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
160 return data;
161
162err_out_put_module:
163 module_put(cpufreq_driver->owner);
164err_out_unlock:
165 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
166err_out:
167 return NULL;
168}
169EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
170
171
172void cpufreq_cpu_put(struct cpufreq_policy *data)
173{
174 kobject_put(&data->kobj);
175 module_put(cpufreq_driver->owner);
176}
177EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
178
179
180/*********************************************************************
181 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
182 *********************************************************************/
183
184/**
185 * adjust_jiffies - adjust the system "loops_per_jiffy"
186 *
187 * This function alters the system "loops_per_jiffy" for the clock
188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
189 * systems as each CPU might be scaled differently. So, use the arch
190 * per-CPU loops_per_jiffy value wherever possible.
191 */
192#ifndef CONFIG_SMP
193static unsigned long l_p_j_ref;
194static unsigned int l_p_j_ref_freq;
195
196static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
197{
198 if (ci->flags & CPUFREQ_CONST_LOOPS)
199 return;
200
201 if (!l_p_j_ref_freq) {
202 l_p_j_ref = loops_per_jiffy;
203 l_p_j_ref_freq = ci->old;
204 pr_debug("saving %lu as reference value for loops_per_jiffy; "
205 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
206 }
207 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
208 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
209 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
210 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
211 ci->new);
212 pr_debug("scaling loops_per_jiffy to %lu "
213 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
214 }
215}
216#else
217static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
218{
219 return;
220}
221#endif
222
223
224/**
225 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
226 * on frequency transition.
227 *
228 * This function calls the transition notifiers and the "adjust_jiffies"
229 * function. It is called twice on all CPU frequency changes that have
230 * external effects.
231 */
232void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
233{
234 struct cpufreq_policy *policy;
235
236 BUG_ON(irqs_disabled());
237
238 freqs->flags = cpufreq_driver->flags;
239 pr_debug("notification %u of frequency transition to %u kHz\n",
240 state, freqs->new);
241
242 policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
243 switch (state) {
244
245 case CPUFREQ_PRECHANGE:
246 /* detect if the driver reported a value as "old frequency"
247 * which is not equal to what the cpufreq core thinks is
248 * "old frequency".
249 */
250 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
251 if ((policy) && (policy->cpu == freqs->cpu) &&
252 (policy->cur) && (policy->cur != freqs->old)) {
253 pr_debug("Warning: CPU frequency is"
254 " %u, cpufreq assumed %u kHz.\n",
255 freqs->old, policy->cur);
256 freqs->old = policy->cur;
257 }
258 }
259 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
260 CPUFREQ_PRECHANGE, freqs);
261 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
262 break;
263
264 case CPUFREQ_POSTCHANGE:
265 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
266 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
267 (unsigned long)freqs->cpu);
268 trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
269 trace_cpu_frequency(freqs->new, freqs->cpu);
270 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
271 CPUFREQ_POSTCHANGE, freqs);
272 if (likely(policy) && likely(policy->cpu == freqs->cpu))
273 policy->cur = freqs->new;
274 break;
275 }
276}
277EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
278
279
280
281/*********************************************************************
282 * SYSFS INTERFACE *
283 *********************************************************************/
284
285static struct cpufreq_governor *__find_governor(const char *str_governor)
286{
287 struct cpufreq_governor *t;
288
289 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
290 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
291 return t;
292
293 return NULL;
294}
295
296/**
297 * cpufreq_parse_governor - parse a governor string
298 */
299static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
300 struct cpufreq_governor **governor)
301{
302 int err = -EINVAL;
303
304 if (!cpufreq_driver)
305 goto out;
306
307 if (cpufreq_driver->setpolicy) {
308 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
309 *policy = CPUFREQ_POLICY_PERFORMANCE;
310 err = 0;
311 } else if (!strnicmp(str_governor, "powersave",
312 CPUFREQ_NAME_LEN)) {
313 *policy = CPUFREQ_POLICY_POWERSAVE;
314 err = 0;
315 }
316 } else if (cpufreq_driver->target) {
317 struct cpufreq_governor *t;
318
319 mutex_lock(&cpufreq_governor_mutex);
320
321 t = __find_governor(str_governor);
322
323 if (t == NULL) {
324 int ret;
325
326 mutex_unlock(&cpufreq_governor_mutex);
327 ret = request_module("cpufreq_%s", str_governor);
328 mutex_lock(&cpufreq_governor_mutex);
329
330 if (ret == 0)
331 t = __find_governor(str_governor);
332 }
333
334 if (t != NULL) {
335 *governor = t;
336 err = 0;
337 }
338
339 mutex_unlock(&cpufreq_governor_mutex);
340 }
341out:
342 return err;
343}
344
345
346/**
347 * cpufreq_per_cpu_attr_read() / show_##file_name() -
348 * print out cpufreq information
349 *
350 * Write out information from cpufreq_driver->policy[cpu]; object must be
351 * "unsigned int".
352 */
353
354#define show_one(file_name, object) \
355static ssize_t show_##file_name \
356(struct cpufreq_policy *policy, char *buf) \
357{ \
358 return sprintf(buf, "%u\n", policy->object); \
359}
360
361show_one(cpuinfo_min_freq, cpuinfo.min_freq);
362show_one(cpuinfo_max_freq, cpuinfo.max_freq);
363show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
364show_one(scaling_min_freq, min);
365show_one(scaling_max_freq, max);
366show_one(scaling_cur_freq, cur);
367
368static int __cpufreq_set_policy(struct cpufreq_policy *data,
369 struct cpufreq_policy *policy);
370
371/**
372 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
373 */
374#define store_one(file_name, object) \
375static ssize_t store_##file_name \
376(struct cpufreq_policy *policy, const char *buf, size_t count) \
377{ \
378 unsigned int ret = -EINVAL; \
379 struct cpufreq_policy new_policy; \
380 \
381 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
382 if (ret) \
383 return -EINVAL; \
384 \
385 ret = sscanf(buf, "%u", &new_policy.object); \
386 if (ret != 1) \
387 return -EINVAL; \
388 \
389 ret = __cpufreq_set_policy(policy, &new_policy); \
390 policy->user_policy.object = policy->object; \
391 \
392 return ret ? ret : count; \
393}
394
395store_one(scaling_min_freq, min);
396store_one(scaling_max_freq, max);
397
398/**
399 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
400 */
401static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
402 char *buf)
403{
404 unsigned int cur_freq = __cpufreq_get(policy->cpu);
405 if (!cur_freq)
406 return sprintf(buf, "<unknown>");
407 return sprintf(buf, "%u\n", cur_freq);
408}
409
410
411/**
412 * show_scaling_governor - show the current policy for the specified CPU
413 */
414static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
415{
416 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
417 return sprintf(buf, "powersave\n");
418 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
419 return sprintf(buf, "performance\n");
420 else if (policy->governor)
421 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
422 policy->governor->name);
423 return -EINVAL;
424}
425
426
427/**
428 * store_scaling_governor - store policy for the specified CPU
429 */
430static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
431 const char *buf, size_t count)
432{
433 unsigned int ret = -EINVAL;
434 char str_governor[16];
435 struct cpufreq_policy new_policy;
436
437 ret = cpufreq_get_policy(&new_policy, policy->cpu);
438 if (ret)
439 return ret;
440
441 ret = sscanf(buf, "%15s", str_governor);
442 if (ret != 1)
443 return -EINVAL;
444
445 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
446 &new_policy.governor))
447 return -EINVAL;
448
449 /* Do not use cpufreq_set_policy here or the user_policy.max
450 will be wrongly overridden */
451 ret = __cpufreq_set_policy(policy, &new_policy);
452
453 policy->user_policy.policy = policy->policy;
454 policy->user_policy.governor = policy->governor;
455
456 if (ret)
457 return ret;
458 else
459 return count;
460}
461
462/**
463 * show_scaling_driver - show the cpufreq driver currently loaded
464 */
465static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
466{
467 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
468}
469
470/**
471 * show_scaling_available_governors - show the available CPUfreq governors
472 */
473static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
474 char *buf)
475{
476 ssize_t i = 0;
477 struct cpufreq_governor *t;
478
479 if (!cpufreq_driver->target) {
480 i += sprintf(buf, "performance powersave");
481 goto out;
482 }
483
484 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
485 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
486 - (CPUFREQ_NAME_LEN + 2)))
487 goto out;
488 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
489 }
490out:
491 i += sprintf(&buf[i], "\n");
492 return i;
493}
494
495static ssize_t show_cpus(const struct cpumask *mask, char *buf)
496{
497 ssize_t i = 0;
498 unsigned int cpu;
499
500 for_each_cpu(cpu, mask) {
501 if (i)
502 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
503 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
504 if (i >= (PAGE_SIZE - 5))
505 break;
506 }
507 i += sprintf(&buf[i], "\n");
508 return i;
509}
510
511/**
512 * show_related_cpus - show the CPUs affected by each transition even if
513 * hw coordination is in use
514 */
515static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
516{
517 if (cpumask_empty(policy->related_cpus))
518 return show_cpus(policy->cpus, buf);
519 return show_cpus(policy->related_cpus, buf);
520}
521
522/**
523 * show_affected_cpus - show the CPUs affected by each transition
524 */
525static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
526{
527 return show_cpus(policy->cpus, buf);
528}
529
530static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
531 const char *buf, size_t count)
532{
533 unsigned int freq = 0;
534 unsigned int ret;
535
536 if (!policy->governor || !policy->governor->store_setspeed)
537 return -EINVAL;
538
539 ret = sscanf(buf, "%u", &freq);
540 if (ret != 1)
541 return -EINVAL;
542
543 policy->governor->store_setspeed(policy, freq);
544
545 return count;
546}
547
548static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
549{
550 if (!policy->governor || !policy->governor->show_setspeed)
551 return sprintf(buf, "<unsupported>\n");
552
553 return policy->governor->show_setspeed(policy, buf);
554}
555
556/**
557 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
558 */
559static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
560{
561 unsigned int limit;
562 int ret;
563 if (cpufreq_driver->bios_limit) {
564 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
565 if (!ret)
566 return sprintf(buf, "%u\n", limit);
567 }
568 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
569}
570
571cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
572cpufreq_freq_attr_ro(cpuinfo_min_freq);
573cpufreq_freq_attr_ro(cpuinfo_max_freq);
574cpufreq_freq_attr_ro(cpuinfo_transition_latency);
575cpufreq_freq_attr_ro(scaling_available_governors);
576cpufreq_freq_attr_ro(scaling_driver);
577cpufreq_freq_attr_ro(scaling_cur_freq);
578cpufreq_freq_attr_ro(bios_limit);
579cpufreq_freq_attr_ro(related_cpus);
580cpufreq_freq_attr_ro(affected_cpus);
581cpufreq_freq_attr_rw(scaling_min_freq);
582cpufreq_freq_attr_rw(scaling_max_freq);
583cpufreq_freq_attr_rw(scaling_governor);
584cpufreq_freq_attr_rw(scaling_setspeed);
585
586static struct attribute *default_attrs[] = {
587 &cpuinfo_min_freq.attr,
588 &cpuinfo_max_freq.attr,
589 &cpuinfo_transition_latency.attr,
590 &scaling_min_freq.attr,
591 &scaling_max_freq.attr,
592 &affected_cpus.attr,
593 &related_cpus.attr,
594 &scaling_governor.attr,
595 &scaling_driver.attr,
596 &scaling_available_governors.attr,
597 &scaling_setspeed.attr,
598 NULL
599};
600
601struct kobject *cpufreq_global_kobject;
602EXPORT_SYMBOL(cpufreq_global_kobject);
603
604#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
605#define to_attr(a) container_of(a, struct freq_attr, attr)
606
607static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
608{
609 struct cpufreq_policy *policy = to_policy(kobj);
610 struct freq_attr *fattr = to_attr(attr);
611 ssize_t ret = -EINVAL;
612 policy = cpufreq_cpu_get(policy->cpu);
613 if (!policy)
614 goto no_policy;
615
616 if (lock_policy_rwsem_read(policy->cpu) < 0)
617 goto fail;
618
619 if (fattr->show)
620 ret = fattr->show(policy, buf);
621 else
622 ret = -EIO;
623
624 unlock_policy_rwsem_read(policy->cpu);
625fail:
626 cpufreq_cpu_put(policy);
627no_policy:
628 return ret;
629}
630
631static ssize_t store(struct kobject *kobj, struct attribute *attr,
632 const char *buf, size_t count)
633{
634 struct cpufreq_policy *policy = to_policy(kobj);
635 struct freq_attr *fattr = to_attr(attr);
636 ssize_t ret = -EINVAL;
637 policy = cpufreq_cpu_get(policy->cpu);
638 if (!policy)
639 goto no_policy;
640
641 if (lock_policy_rwsem_write(policy->cpu) < 0)
642 goto fail;
643
644 if (fattr->store)
645 ret = fattr->store(policy, buf, count);
646 else
647 ret = -EIO;
648
649 unlock_policy_rwsem_write(policy->cpu);
650fail:
651 cpufreq_cpu_put(policy);
652no_policy:
653 return ret;
654}
655
656static void cpufreq_sysfs_release(struct kobject *kobj)
657{
658 struct cpufreq_policy *policy = to_policy(kobj);
659 pr_debug("last reference is dropped\n");
660 complete(&policy->kobj_unregister);
661}
662
663static const struct sysfs_ops sysfs_ops = {
664 .show = show,
665 .store = store,
666};
667
668static struct kobj_type ktype_cpufreq = {
669 .sysfs_ops = &sysfs_ops,
670 .default_attrs = default_attrs,
671 .release = cpufreq_sysfs_release,
672};
673
674/*
675 * Returns:
676 * Negative: Failure
677 * 0: Success
678 * Positive: When we have a managed CPU and the sysfs got symlinked
679 */
680static int cpufreq_add_dev_policy(unsigned int cpu,
681 struct cpufreq_policy *policy,
682 struct sys_device *sys_dev)
683{
684 int ret = 0;
685#ifdef CONFIG_SMP
686 unsigned long flags;
687 unsigned int j;
688#ifdef CONFIG_HOTPLUG_CPU
689 struct cpufreq_governor *gov;
690
691 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
692 if (gov) {
693 policy->governor = gov;
694 pr_debug("Restoring governor %s for cpu %d\n",
695 policy->governor->name, cpu);
696 }
697#endif
698
699 for_each_cpu(j, policy->cpus) {
700 struct cpufreq_policy *managed_policy;
701
702 if (cpu == j)
703 continue;
704
705 /* Check for existing affected CPUs.
706 * They may not be aware of it due to CPU Hotplug.
707 * cpufreq_cpu_put is called when the device is removed
708 * in __cpufreq_remove_dev()
709 */
710 managed_policy = cpufreq_cpu_get(j);
711 if (unlikely(managed_policy)) {
712
713 /* Set proper policy_cpu */
714 unlock_policy_rwsem_write(cpu);
715 per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
716
717 if (lock_policy_rwsem_write(cpu) < 0) {
718 /* Should not go through policy unlock path */
719 if (cpufreq_driver->exit)
720 cpufreq_driver->exit(policy);
721 cpufreq_cpu_put(managed_policy);
722 return -EBUSY;
723 }
724
725 spin_lock_irqsave(&cpufreq_driver_lock, flags);
726 cpumask_copy(managed_policy->cpus, policy->cpus);
727 per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
728 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
729
730 pr_debug("CPU already managed, adding link\n");
731 ret = sysfs_create_link(&sys_dev->kobj,
732 &managed_policy->kobj,
733 "cpufreq");
734 if (ret)
735 cpufreq_cpu_put(managed_policy);
736 /*
737 * Success. We only needed to be added to the mask.
738 * Call driver->exit() because only the cpu parent of
739 * the kobj needed to call init().
740 */
741 if (cpufreq_driver->exit)
742 cpufreq_driver->exit(policy);
743
744 if (!ret)
745 return 1;
746 else
747 return ret;
748 }
749 }
750#endif
751 return ret;
752}
753
754
755/* symlink affected CPUs */
756static int cpufreq_add_dev_symlink(unsigned int cpu,
757 struct cpufreq_policy *policy)
758{
759 unsigned int j;
760 int ret = 0;
761
762 for_each_cpu(j, policy->cpus) {
763 struct cpufreq_policy *managed_policy;
764 struct sys_device *cpu_sys_dev;
765
766 if (j == cpu)
767 continue;
768 if (!cpu_online(j))
769 continue;
770
771 pr_debug("CPU %u already managed, adding link\n", j);
772 managed_policy = cpufreq_cpu_get(cpu);
773 cpu_sys_dev = get_cpu_sysdev(j);
774 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
775 "cpufreq");
776 if (ret) {
777 cpufreq_cpu_put(managed_policy);
778 return ret;
779 }
780 }
781 return ret;
782}
783
784static int cpufreq_add_dev_interface(unsigned int cpu,
785 struct cpufreq_policy *policy,
786 struct sys_device *sys_dev)
787{
788 struct cpufreq_policy new_policy;
789 struct freq_attr **drv_attr;
790 unsigned long flags;
791 int ret = 0;
792 unsigned int j;
793
794 /* prepare interface data */
795 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
796 &sys_dev->kobj, "cpufreq");
797 if (ret)
798 return ret;
799
800 /* set up files for this cpu device */
801 drv_attr = cpufreq_driver->attr;
802 while ((drv_attr) && (*drv_attr)) {
803 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
804 if (ret)
805 goto err_out_kobj_put;
806 drv_attr++;
807 }
808 if (cpufreq_driver->get) {
809 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
810 if (ret)
811 goto err_out_kobj_put;
812 }
813 if (cpufreq_driver->target) {
814 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
815 if (ret)
816 goto err_out_kobj_put;
817 }
818 if (cpufreq_driver->bios_limit) {
819 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
820 if (ret)
821 goto err_out_kobj_put;
822 }
823
824 spin_lock_irqsave(&cpufreq_driver_lock, flags);
825 for_each_cpu(j, policy->cpus) {
826 if (!cpu_online(j))
827 continue;
828 per_cpu(cpufreq_cpu_data, j) = policy;
829 per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
830 }
831 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
832
833 ret = cpufreq_add_dev_symlink(cpu, policy);
834 if (ret)
835 goto err_out_kobj_put;
836
837 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
838 /* assure that the starting sequence is run in __cpufreq_set_policy */
839 policy->governor = NULL;
840
841 /* set default policy */
842 ret = __cpufreq_set_policy(policy, &new_policy);
843 policy->user_policy.policy = policy->policy;
844 policy->user_policy.governor = policy->governor;
845
846 if (ret) {
847 pr_debug("setting policy failed\n");
848 if (cpufreq_driver->exit)
849 cpufreq_driver->exit(policy);
850 }
851 return ret;
852
853err_out_kobj_put:
854 kobject_put(&policy->kobj);
855 wait_for_completion(&policy->kobj_unregister);
856 return ret;
857}
858
859
860/**
861 * cpufreq_add_dev - add a CPU device
862 *
863 * Adds the cpufreq interface for a CPU device.
864 *
865 * The Oracle says: try running cpufreq registration/unregistration concurrently
866 * with with cpu hotplugging and all hell will break loose. Tried to clean this
867 * mess up, but more thorough testing is needed. - Mathieu
868 */
869static int cpufreq_add_dev(struct sys_device *sys_dev)
870{
871 unsigned int cpu = sys_dev->id;
872 int ret = 0, found = 0;
873 struct cpufreq_policy *policy;
874 unsigned long flags;
875 unsigned int j;
876#ifdef CONFIG_HOTPLUG_CPU
877 int sibling;
878#endif
879
880 if (cpu_is_offline(cpu))
881 return 0;
882
883 pr_debug("adding CPU %u\n", cpu);
884
885#ifdef CONFIG_SMP
886 /* check whether a different CPU already registered this
887 * CPU because it is in the same boat. */
888 policy = cpufreq_cpu_get(cpu);
889 if (unlikely(policy)) {
890 cpufreq_cpu_put(policy);
891 return 0;
892 }
893#endif
894
895 if (!try_module_get(cpufreq_driver->owner)) {
896 ret = -EINVAL;
897 goto module_out;
898 }
899
900 ret = -ENOMEM;
901 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
902 if (!policy)
903 goto nomem_out;
904
905 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
906 goto err_free_policy;
907
908 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
909 goto err_free_cpumask;
910
911 policy->cpu = cpu;
912 cpumask_copy(policy->cpus, cpumask_of(cpu));
913
914 /* Initially set CPU itself as the policy_cpu */
915 per_cpu(cpufreq_policy_cpu, cpu) = cpu;
916 ret = (lock_policy_rwsem_write(cpu) < 0);
917 WARN_ON(ret);
918
919 init_completion(&policy->kobj_unregister);
920 INIT_WORK(&policy->update, handle_update);
921
922 /* Set governor before ->init, so that driver could check it */
923#ifdef CONFIG_HOTPLUG_CPU
924 for_each_online_cpu(sibling) {
925 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
926 if (cp && cp->governor &&
927 (cpumask_test_cpu(cpu, cp->related_cpus))) {
928 policy->governor = cp->governor;
929 found = 1;
930 break;
931 }
932 }
933#endif
934 if (!found)
935 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
936 /* call driver. From then on the cpufreq must be able
937 * to accept all calls to ->verify and ->setpolicy for this CPU
938 */
939 ret = cpufreq_driver->init(policy);
940 if (ret) {
941 pr_debug("initialization failed\n");
942 goto err_unlock_policy;
943 }
944 policy->user_policy.min = policy->min;
945 policy->user_policy.max = policy->max;
946
947 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
948 CPUFREQ_START, policy);
949
950 ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
951 if (ret) {
952 if (ret > 0)
953 /* This is a managed cpu, symlink created,
954 exit with 0 */
955 ret = 0;
956 goto err_unlock_policy;
957 }
958
959 ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
960 if (ret)
961 goto err_out_unregister;
962
963 unlock_policy_rwsem_write(cpu);
964
965 kobject_uevent(&policy->kobj, KOBJ_ADD);
966 module_put(cpufreq_driver->owner);
967 pr_debug("initialization complete\n");
968
969 return 0;
970
971
972err_out_unregister:
973 spin_lock_irqsave(&cpufreq_driver_lock, flags);
974 for_each_cpu(j, policy->cpus)
975 per_cpu(cpufreq_cpu_data, j) = NULL;
976 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
977
978 kobject_put(&policy->kobj);
979 wait_for_completion(&policy->kobj_unregister);
980
981err_unlock_policy:
982 unlock_policy_rwsem_write(cpu);
983 free_cpumask_var(policy->related_cpus);
984err_free_cpumask:
985 free_cpumask_var(policy->cpus);
986err_free_policy:
987 kfree(policy);
988nomem_out:
989 module_put(cpufreq_driver->owner);
990module_out:
991 return ret;
992}
993
994
995/**
996 * __cpufreq_remove_dev - remove a CPU device
997 *
998 * Removes the cpufreq interface for a CPU device.
999 * Caller should already have policy_rwsem in write mode for this CPU.
1000 * This routine frees the rwsem before returning.
1001 */
1002static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1003{
1004 unsigned int cpu = sys_dev->id;
1005 unsigned long flags;
1006 struct cpufreq_policy *data;
1007 struct kobject *kobj;
1008 struct completion *cmp;
1009#ifdef CONFIG_SMP
1010 struct sys_device *cpu_sys_dev;
1011 unsigned int j;
1012#endif
1013
1014 pr_debug("unregistering CPU %u\n", cpu);
1015
1016 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1017 data = per_cpu(cpufreq_cpu_data, cpu);
1018
1019 if (!data) {
1020 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1021 unlock_policy_rwsem_write(cpu);
1022 return -EINVAL;
1023 }
1024 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1025
1026
1027#ifdef CONFIG_SMP
1028 /* if this isn't the CPU which is the parent of the kobj, we
1029 * only need to unlink, put and exit
1030 */
1031 if (unlikely(cpu != data->cpu)) {
1032 pr_debug("removing link\n");
1033 cpumask_clear_cpu(cpu, data->cpus);
1034 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1035 kobj = &sys_dev->kobj;
1036 cpufreq_cpu_put(data);
1037 unlock_policy_rwsem_write(cpu);
1038 sysfs_remove_link(kobj, "cpufreq");
1039 return 0;
1040 }
1041#endif
1042
1043#ifdef CONFIG_SMP
1044
1045#ifdef CONFIG_HOTPLUG_CPU
1046 strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1047 CPUFREQ_NAME_LEN);
1048#endif
1049
1050 /* if we have other CPUs still registered, we need to unlink them,
1051 * or else wait_for_completion below will lock up. Clean the
1052 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1053 * the sysfs links afterwards.
1054 */
1055 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1056 for_each_cpu(j, data->cpus) {
1057 if (j == cpu)
1058 continue;
1059 per_cpu(cpufreq_cpu_data, j) = NULL;
1060 }
1061 }
1062
1063 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064
1065 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1066 for_each_cpu(j, data->cpus) {
1067 if (j == cpu)
1068 continue;
1069 pr_debug("removing link for cpu %u\n", j);
1070#ifdef CONFIG_HOTPLUG_CPU
1071 strncpy(per_cpu(cpufreq_cpu_governor, j),
1072 data->governor->name, CPUFREQ_NAME_LEN);
1073#endif
1074 cpu_sys_dev = get_cpu_sysdev(j);
1075 kobj = &cpu_sys_dev->kobj;
1076 unlock_policy_rwsem_write(cpu);
1077 sysfs_remove_link(kobj, "cpufreq");
1078 lock_policy_rwsem_write(cpu);
1079 cpufreq_cpu_put(data);
1080 }
1081 }
1082#else
1083 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084#endif
1085
1086 if (cpufreq_driver->target)
1087 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1088
1089 kobj = &data->kobj;
1090 cmp = &data->kobj_unregister;
1091 unlock_policy_rwsem_write(cpu);
1092 kobject_put(kobj);
1093
1094 /* we need to make sure that the underlying kobj is actually
1095 * not referenced anymore by anybody before we proceed with
1096 * unloading.
1097 */
1098 pr_debug("waiting for dropping of refcount\n");
1099 wait_for_completion(cmp);
1100 pr_debug("wait complete\n");
1101
1102 lock_policy_rwsem_write(cpu);
1103 if (cpufreq_driver->exit)
1104 cpufreq_driver->exit(data);
1105 unlock_policy_rwsem_write(cpu);
1106
1107#ifdef CONFIG_HOTPLUG_CPU
1108 /* when the CPU which is the parent of the kobj is hotplugged
1109 * offline, check for siblings, and create cpufreq sysfs interface
1110 * and symlinks
1111 */
1112 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1113 /* first sibling now owns the new sysfs dir */
1114 cpumask_clear_cpu(cpu, data->cpus);
1115 cpufreq_add_dev(get_cpu_sysdev(cpumask_first(data->cpus)));
1116
1117 /* finally remove our own symlink */
1118 lock_policy_rwsem_write(cpu);
1119 __cpufreq_remove_dev(sys_dev);
1120 }
1121#endif
1122
1123 free_cpumask_var(data->related_cpus);
1124 free_cpumask_var(data->cpus);
1125 kfree(data);
1126
1127 return 0;
1128}
1129
1130
1131static int cpufreq_remove_dev(struct sys_device *sys_dev)
1132{
1133 unsigned int cpu = sys_dev->id;
1134 int retval;
1135
1136 if (cpu_is_offline(cpu))
1137 return 0;
1138
1139 if (unlikely(lock_policy_rwsem_write(cpu)))
1140 BUG();
1141
1142 retval = __cpufreq_remove_dev(sys_dev);
1143 return retval;
1144}
1145
1146
1147static void handle_update(struct work_struct *work)
1148{
1149 struct cpufreq_policy *policy =
1150 container_of(work, struct cpufreq_policy, update);
1151 unsigned int cpu = policy->cpu;
1152 pr_debug("handle_update for cpu %u called\n", cpu);
1153 cpufreq_update_policy(cpu);
1154}
1155
1156/**
1157 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1158 * @cpu: cpu number
1159 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1160 * @new_freq: CPU frequency the CPU actually runs at
1161 *
1162 * We adjust to current frequency first, and need to clean up later.
1163 * So either call to cpufreq_update_policy() or schedule handle_update()).
1164 */
1165static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1166 unsigned int new_freq)
1167{
1168 struct cpufreq_freqs freqs;
1169
1170 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1171 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172
1173 freqs.cpu = cpu;
1174 freqs.old = old_freq;
1175 freqs.new = new_freq;
1176 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1177 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1178}
1179
1180
1181/**
1182 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1183 * @cpu: CPU number
1184 *
1185 * This is the last known freq, without actually getting it from the driver.
1186 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187 */
1188unsigned int cpufreq_quick_get(unsigned int cpu)
1189{
1190 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1191 unsigned int ret_freq = 0;
1192
1193 if (policy) {
1194 ret_freq = policy->cur;
1195 cpufreq_cpu_put(policy);
1196 }
1197
1198 return ret_freq;
1199}
1200EXPORT_SYMBOL(cpufreq_quick_get);
1201
1202/**
1203 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1204 * @cpu: CPU number
1205 *
1206 * Just return the max possible frequency for a given CPU.
1207 */
1208unsigned int cpufreq_quick_get_max(unsigned int cpu)
1209{
1210 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1211 unsigned int ret_freq = 0;
1212
1213 if (policy) {
1214 ret_freq = policy->max;
1215 cpufreq_cpu_put(policy);
1216 }
1217
1218 return ret_freq;
1219}
1220EXPORT_SYMBOL(cpufreq_quick_get_max);
1221
1222
1223static unsigned int __cpufreq_get(unsigned int cpu)
1224{
1225 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1226 unsigned int ret_freq = 0;
1227
1228 if (!cpufreq_driver->get)
1229 return ret_freq;
1230
1231 ret_freq = cpufreq_driver->get(cpu);
1232
1233 if (ret_freq && policy->cur &&
1234 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1235 /* verify no discrepancy between actual and
1236 saved value exists */
1237 if (unlikely(ret_freq != policy->cur)) {
1238 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1239 schedule_work(&policy->update);
1240 }
1241 }
1242
1243 return ret_freq;
1244}
1245
1246/**
1247 * cpufreq_get - get the current CPU frequency (in kHz)
1248 * @cpu: CPU number
1249 *
1250 * Get the CPU current (static) CPU frequency
1251 */
1252unsigned int cpufreq_get(unsigned int cpu)
1253{
1254 unsigned int ret_freq = 0;
1255 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1256
1257 if (!policy)
1258 goto out;
1259
1260 if (unlikely(lock_policy_rwsem_read(cpu)))
1261 goto out_policy;
1262
1263 ret_freq = __cpufreq_get(cpu);
1264
1265 unlock_policy_rwsem_read(cpu);
1266
1267out_policy:
1268 cpufreq_cpu_put(policy);
1269out:
1270 return ret_freq;
1271}
1272EXPORT_SYMBOL(cpufreq_get);
1273
1274static struct sysdev_driver cpufreq_sysdev_driver = {
1275 .add = cpufreq_add_dev,
1276 .remove = cpufreq_remove_dev,
1277};
1278
1279
1280/**
1281 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1282 *
1283 * This function is only executed for the boot processor. The other CPUs
1284 * have been put offline by means of CPU hotplug.
1285 */
1286static int cpufreq_bp_suspend(void)
1287{
1288 int ret = 0;
1289
1290 int cpu = smp_processor_id();
1291 struct cpufreq_policy *cpu_policy;
1292
1293 pr_debug("suspending cpu %u\n", cpu);
1294
1295 /* If there's no policy for the boot CPU, we have nothing to do. */
1296 cpu_policy = cpufreq_cpu_get(cpu);
1297 if (!cpu_policy)
1298 return 0;
1299
1300 if (cpufreq_driver->suspend) {
1301 ret = cpufreq_driver->suspend(cpu_policy);
1302 if (ret)
1303 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1304 "step on CPU %u\n", cpu_policy->cpu);
1305 }
1306
1307 cpufreq_cpu_put(cpu_policy);
1308 return ret;
1309}
1310
1311/**
1312 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1313 *
1314 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1315 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1316 * restored. It will verify that the current freq is in sync with
1317 * what we believe it to be. This is a bit later than when it
1318 * should be, but nonethteless it's better than calling
1319 * cpufreq_driver->get() here which might re-enable interrupts...
1320 *
1321 * This function is only executed for the boot CPU. The other CPUs have not
1322 * been turned on yet.
1323 */
1324static void cpufreq_bp_resume(void)
1325{
1326 int ret = 0;
1327
1328 int cpu = smp_processor_id();
1329 struct cpufreq_policy *cpu_policy;
1330
1331 pr_debug("resuming cpu %u\n", cpu);
1332
1333 /* If there's no policy for the boot CPU, we have nothing to do. */
1334 cpu_policy = cpufreq_cpu_get(cpu);
1335 if (!cpu_policy)
1336 return;
1337
1338 if (cpufreq_driver->resume) {
1339 ret = cpufreq_driver->resume(cpu_policy);
1340 if (ret) {
1341 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1342 "step on CPU %u\n", cpu_policy->cpu);
1343 goto fail;
1344 }
1345 }
1346
1347 schedule_work(&cpu_policy->update);
1348
1349fail:
1350 cpufreq_cpu_put(cpu_policy);
1351}
1352
1353static struct syscore_ops cpufreq_syscore_ops = {
1354 .suspend = cpufreq_bp_suspend,
1355 .resume = cpufreq_bp_resume,
1356};
1357
1358
1359/*********************************************************************
1360 * NOTIFIER LISTS INTERFACE *
1361 *********************************************************************/
1362
1363/**
1364 * cpufreq_register_notifier - register a driver with cpufreq
1365 * @nb: notifier function to register
1366 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1367 *
1368 * Add a driver to one of two lists: either a list of drivers that
1369 * are notified about clock rate changes (once before and once after
1370 * the transition), or a list of drivers that are notified about
1371 * changes in cpufreq policy.
1372 *
1373 * This function may sleep, and has the same return conditions as
1374 * blocking_notifier_chain_register.
1375 */
1376int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1377{
1378 int ret;
1379
1380 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1381
1382 switch (list) {
1383 case CPUFREQ_TRANSITION_NOTIFIER:
1384 ret = srcu_notifier_chain_register(
1385 &cpufreq_transition_notifier_list, nb);
1386 break;
1387 case CPUFREQ_POLICY_NOTIFIER:
1388 ret = blocking_notifier_chain_register(
1389 &cpufreq_policy_notifier_list, nb);
1390 break;
1391 default:
1392 ret = -EINVAL;
1393 }
1394
1395 return ret;
1396}
1397EXPORT_SYMBOL(cpufreq_register_notifier);
1398
1399
1400/**
1401 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1402 * @nb: notifier block to be unregistered
1403 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1404 *
1405 * Remove a driver from the CPU frequency notifier list.
1406 *
1407 * This function may sleep, and has the same return conditions as
1408 * blocking_notifier_chain_unregister.
1409 */
1410int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1411{
1412 int ret;
1413
1414 switch (list) {
1415 case CPUFREQ_TRANSITION_NOTIFIER:
1416 ret = srcu_notifier_chain_unregister(
1417 &cpufreq_transition_notifier_list, nb);
1418 break;
1419 case CPUFREQ_POLICY_NOTIFIER:
1420 ret = blocking_notifier_chain_unregister(
1421 &cpufreq_policy_notifier_list, nb);
1422 break;
1423 default:
1424 ret = -EINVAL;
1425 }
1426
1427 return ret;
1428}
1429EXPORT_SYMBOL(cpufreq_unregister_notifier);
1430
1431
1432/*********************************************************************
1433 * GOVERNORS *
1434 *********************************************************************/
1435
1436
1437int __cpufreq_driver_target(struct cpufreq_policy *policy,
1438 unsigned int target_freq,
1439 unsigned int relation)
1440{
1441 int retval = -EINVAL;
1442
1443 pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1444 target_freq, relation);
1445 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1446 retval = cpufreq_driver->target(policy, target_freq, relation);
1447
1448 return retval;
1449}
1450EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1451
1452int cpufreq_driver_target(struct cpufreq_policy *policy,
1453 unsigned int target_freq,
1454 unsigned int relation)
1455{
1456 int ret = -EINVAL;
1457
1458 policy = cpufreq_cpu_get(policy->cpu);
1459 if (!policy)
1460 goto no_policy;
1461
1462 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1463 goto fail;
1464
1465 ret = __cpufreq_driver_target(policy, target_freq, relation);
1466
1467 unlock_policy_rwsem_write(policy->cpu);
1468
1469fail:
1470 cpufreq_cpu_put(policy);
1471no_policy:
1472 return ret;
1473}
1474EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1475
1476int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1477{
1478 int ret = 0;
1479
1480 policy = cpufreq_cpu_get(policy->cpu);
1481 if (!policy)
1482 return -EINVAL;
1483
1484 if (cpu_online(cpu) && cpufreq_driver->getavg)
1485 ret = cpufreq_driver->getavg(policy, cpu);
1486
1487 cpufreq_cpu_put(policy);
1488 return ret;
1489}
1490EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1491
1492/*
1493 * when "event" is CPUFREQ_GOV_LIMITS
1494 */
1495
1496static int __cpufreq_governor(struct cpufreq_policy *policy,
1497 unsigned int event)
1498{
1499 int ret;
1500
1501 /* Only must be defined when default governor is known to have latency
1502 restrictions, like e.g. conservative or ondemand.
1503 That this is the case is already ensured in Kconfig
1504 */
1505#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1506 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1507#else
1508 struct cpufreq_governor *gov = NULL;
1509#endif
1510
1511 if (policy->governor->max_transition_latency &&
1512 policy->cpuinfo.transition_latency >
1513 policy->governor->max_transition_latency) {
1514 if (!gov)
1515 return -EINVAL;
1516 else {
1517 printk(KERN_WARNING "%s governor failed, too long"
1518 " transition latency of HW, fallback"
1519 " to %s governor\n",
1520 policy->governor->name,
1521 gov->name);
1522 policy->governor = gov;
1523 }
1524 }
1525
1526 if (!try_module_get(policy->governor->owner))
1527 return -EINVAL;
1528
1529 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1530 policy->cpu, event);
1531 ret = policy->governor->governor(policy, event);
1532
1533 /* we keep one module reference alive for
1534 each CPU governed by this CPU */
1535 if ((event != CPUFREQ_GOV_START) || ret)
1536 module_put(policy->governor->owner);
1537 if ((event == CPUFREQ_GOV_STOP) && !ret)
1538 module_put(policy->governor->owner);
1539
1540 return ret;
1541}
1542
1543
1544int cpufreq_register_governor(struct cpufreq_governor *governor)
1545{
1546 int err;
1547
1548 if (!governor)
1549 return -EINVAL;
1550
1551 mutex_lock(&cpufreq_governor_mutex);
1552
1553 err = -EBUSY;
1554 if (__find_governor(governor->name) == NULL) {
1555 err = 0;
1556 list_add(&governor->governor_list, &cpufreq_governor_list);
1557 }
1558
1559 mutex_unlock(&cpufreq_governor_mutex);
1560 return err;
1561}
1562EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1563
1564
1565void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1566{
1567#ifdef CONFIG_HOTPLUG_CPU
1568 int cpu;
1569#endif
1570
1571 if (!governor)
1572 return;
1573
1574#ifdef CONFIG_HOTPLUG_CPU
1575 for_each_present_cpu(cpu) {
1576 if (cpu_online(cpu))
1577 continue;
1578 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1579 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1580 }
1581#endif
1582
1583 mutex_lock(&cpufreq_governor_mutex);
1584 list_del(&governor->governor_list);
1585 mutex_unlock(&cpufreq_governor_mutex);
1586 return;
1587}
1588EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1589
1590
1591
1592/*********************************************************************
1593 * POLICY INTERFACE *
1594 *********************************************************************/
1595
1596/**
1597 * cpufreq_get_policy - get the current cpufreq_policy
1598 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1599 * is written
1600 *
1601 * Reads the current cpufreq policy.
1602 */
1603int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1604{
1605 struct cpufreq_policy *cpu_policy;
1606 if (!policy)
1607 return -EINVAL;
1608
1609 cpu_policy = cpufreq_cpu_get(cpu);
1610 if (!cpu_policy)
1611 return -EINVAL;
1612
1613 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1614
1615 cpufreq_cpu_put(cpu_policy);
1616 return 0;
1617}
1618EXPORT_SYMBOL(cpufreq_get_policy);
1619
1620
1621/*
1622 * data : current policy.
1623 * policy : policy to be set.
1624 */
1625static int __cpufreq_set_policy(struct cpufreq_policy *data,
1626 struct cpufreq_policy *policy)
1627{
1628 int ret = 0;
1629
1630 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1631 policy->min, policy->max);
1632
1633 memcpy(&policy->cpuinfo, &data->cpuinfo,
1634 sizeof(struct cpufreq_cpuinfo));
1635
1636 if (policy->min > data->max || policy->max < data->min) {
1637 ret = -EINVAL;
1638 goto error_out;
1639 }
1640
1641 /* verify the cpu speed can be set within this limit */
1642 ret = cpufreq_driver->verify(policy);
1643 if (ret)
1644 goto error_out;
1645
1646 /* adjust if necessary - all reasons */
1647 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1648 CPUFREQ_ADJUST, policy);
1649
1650 /* adjust if necessary - hardware incompatibility*/
1651 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1652 CPUFREQ_INCOMPATIBLE, policy);
1653
1654 /* verify the cpu speed can be set within this limit,
1655 which might be different to the first one */
1656 ret = cpufreq_driver->verify(policy);
1657 if (ret)
1658 goto error_out;
1659
1660 /* notification of the new policy */
1661 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1662 CPUFREQ_NOTIFY, policy);
1663
1664 data->min = policy->min;
1665 data->max = policy->max;
1666
1667 pr_debug("new min and max freqs are %u - %u kHz\n",
1668 data->min, data->max);
1669
1670 if (cpufreq_driver->setpolicy) {
1671 data->policy = policy->policy;
1672 pr_debug("setting range\n");
1673 ret = cpufreq_driver->setpolicy(policy);
1674 } else {
1675 if (policy->governor != data->governor) {
1676 /* save old, working values */
1677 struct cpufreq_governor *old_gov = data->governor;
1678
1679 pr_debug("governor switch\n");
1680
1681 /* end old governor */
1682 if (data->governor)
1683 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1684
1685 /* start new governor */
1686 data->governor = policy->governor;
1687 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1688 /* new governor failed, so re-start old one */
1689 pr_debug("starting governor %s failed\n",
1690 data->governor->name);
1691 if (old_gov) {
1692 data->governor = old_gov;
1693 __cpufreq_governor(data,
1694 CPUFREQ_GOV_START);
1695 }
1696 ret = -EINVAL;
1697 goto error_out;
1698 }
1699 /* might be a policy change, too, so fall through */
1700 }
1701 pr_debug("governor: change or update limits\n");
1702 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1703 }
1704
1705error_out:
1706 return ret;
1707}
1708
1709/**
1710 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1711 * @cpu: CPU which shall be re-evaluated
1712 *
1713 * Useful for policy notifiers which have different necessities
1714 * at different times.
1715 */
1716int cpufreq_update_policy(unsigned int cpu)
1717{
1718 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1719 struct cpufreq_policy policy;
1720 int ret;
1721
1722 if (!data) {
1723 ret = -ENODEV;
1724 goto no_policy;
1725 }
1726
1727 if (unlikely(lock_policy_rwsem_write(cpu))) {
1728 ret = -EINVAL;
1729 goto fail;
1730 }
1731
1732 pr_debug("updating policy for CPU %u\n", cpu);
1733 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1734 policy.min = data->user_policy.min;
1735 policy.max = data->user_policy.max;
1736 policy.policy = data->user_policy.policy;
1737 policy.governor = data->user_policy.governor;
1738
1739 /* BIOS might change freq behind our back
1740 -> ask driver for current freq and notify governors about a change */
1741 if (cpufreq_driver->get) {
1742 policy.cur = cpufreq_driver->get(cpu);
1743 if (!data->cur) {
1744 pr_debug("Driver did not initialize current freq");
1745 data->cur = policy.cur;
1746 } else {
1747 if (data->cur != policy.cur)
1748 cpufreq_out_of_sync(cpu, data->cur,
1749 policy.cur);
1750 }
1751 }
1752
1753 ret = __cpufreq_set_policy(data, &policy);
1754
1755 unlock_policy_rwsem_write(cpu);
1756
1757fail:
1758 cpufreq_cpu_put(data);
1759no_policy:
1760 return ret;
1761}
1762EXPORT_SYMBOL(cpufreq_update_policy);
1763
1764static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1765 unsigned long action, void *hcpu)
1766{
1767 unsigned int cpu = (unsigned long)hcpu;
1768 struct sys_device *sys_dev;
1769
1770 sys_dev = get_cpu_sysdev(cpu);
1771 if (sys_dev) {
1772 switch (action) {
1773 case CPU_ONLINE:
1774 case CPU_ONLINE_FROZEN:
1775 cpufreq_add_dev(sys_dev);
1776 break;
1777 case CPU_DOWN_PREPARE:
1778 case CPU_DOWN_PREPARE_FROZEN:
1779 if (unlikely(lock_policy_rwsem_write(cpu)))
1780 BUG();
1781
1782 __cpufreq_remove_dev(sys_dev);
1783 break;
1784 case CPU_DOWN_FAILED:
1785 case CPU_DOWN_FAILED_FROZEN:
1786 cpufreq_add_dev(sys_dev);
1787 break;
1788 }
1789 }
1790 return NOTIFY_OK;
1791}
1792
1793static struct notifier_block __refdata cpufreq_cpu_notifier = {
1794 .notifier_call = cpufreq_cpu_callback,
1795};
1796
1797/*********************************************************************
1798 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1799 *********************************************************************/
1800
1801/**
1802 * cpufreq_register_driver - register a CPU Frequency driver
1803 * @driver_data: A struct cpufreq_driver containing the values#
1804 * submitted by the CPU Frequency driver.
1805 *
1806 * Registers a CPU Frequency driver to this core code. This code
1807 * returns zero on success, -EBUSY when another driver got here first
1808 * (and isn't unregistered in the meantime).
1809 *
1810 */
1811int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1812{
1813 unsigned long flags;
1814 int ret;
1815
1816 if (!driver_data || !driver_data->verify || !driver_data->init ||
1817 ((!driver_data->setpolicy) && (!driver_data->target)))
1818 return -EINVAL;
1819
1820 pr_debug("trying to register driver %s\n", driver_data->name);
1821
1822 if (driver_data->setpolicy)
1823 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1824
1825 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1826 if (cpufreq_driver) {
1827 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828 return -EBUSY;
1829 }
1830 cpufreq_driver = driver_data;
1831 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1832
1833 ret = sysdev_driver_register(&cpu_sysdev_class,
1834 &cpufreq_sysdev_driver);
1835 if (ret)
1836 goto err_null_driver;
1837
1838 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839 int i;
1840 ret = -ENODEV;
1841
1842 /* check for at least one working CPU */
1843 for (i = 0; i < nr_cpu_ids; i++)
1844 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845 ret = 0;
1846 break;
1847 }
1848
1849 /* if all ->init() calls failed, unregister */
1850 if (ret) {
1851 pr_debug("no CPU initialized for driver %s\n",
1852 driver_data->name);
1853 goto err_sysdev_unreg;
1854 }
1855 }
1856
1857 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1858 pr_debug("driver %s up and running\n", driver_data->name);
1859
1860 return 0;
1861err_sysdev_unreg:
1862 sysdev_driver_unregister(&cpu_sysdev_class,
1863 &cpufreq_sysdev_driver);
1864err_null_driver:
1865 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1866 cpufreq_driver = NULL;
1867 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1868 return ret;
1869}
1870EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1871
1872
1873/**
1874 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1875 *
1876 * Unregister the current CPUFreq driver. Only call this if you have
1877 * the right to do so, i.e. if you have succeeded in initialising before!
1878 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1879 * currently not initialised.
1880 */
1881int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1882{
1883 unsigned long flags;
1884
1885 if (!cpufreq_driver || (driver != cpufreq_driver))
1886 return -EINVAL;
1887
1888 pr_debug("unregistering driver %s\n", driver->name);
1889
1890 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1891 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1892
1893 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1894 cpufreq_driver = NULL;
1895 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1896
1897 return 0;
1898}
1899EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1900
1901static int __init cpufreq_core_init(void)
1902{
1903 int cpu;
1904
1905 for_each_possible_cpu(cpu) {
1906 per_cpu(cpufreq_policy_cpu, cpu) = -1;
1907 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1908 }
1909
1910 cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1911 &cpu_sysdev_class.kset.kobj);
1912 BUG_ON(!cpufreq_global_kobject);
1913 register_syscore_ops(&cpufreq_syscore_ops);
1914
1915 return 0;
1916}
1917core_initcall(cpufreq_core_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/cpu_cooling.h>
20#include <linux/delay.h>
21#include <linux/device.h>
22#include <linux/init.h>
23#include <linux/kernel_stat.h>
24#include <linux/module.h>
25#include <linux/mutex.h>
26#include <linux/pm_qos.h>
27#include <linux/slab.h>
28#include <linux/suspend.h>
29#include <linux/syscore_ops.h>
30#include <linux/tick.h>
31#include <linux/units.h>
32#include <trace/events/power.h>
33
34static LIST_HEAD(cpufreq_policy_list);
35
36/* Macros to iterate over CPU policies */
37#define for_each_suitable_policy(__policy, __active) \
38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 if ((__active) == !policy_is_inactive(__policy))
40
41#define for_each_active_policy(__policy) \
42 for_each_suitable_policy(__policy, true)
43#define for_each_inactive_policy(__policy) \
44 for_each_suitable_policy(__policy, false)
45
46/* Iterate over governors */
47static LIST_HEAD(cpufreq_governor_list);
48#define for_each_governor(__governor) \
49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51static char default_governor[CPUFREQ_NAME_LEN];
52
53/*
54 * The "cpufreq driver" - the arch- or hardware-dependent low
55 * level driver of CPUFreq support, and its spinlock. This lock
56 * also protects the cpufreq_cpu_data array.
57 */
58static struct cpufreq_driver *cpufreq_driver;
59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63bool cpufreq_supports_freq_invariance(void)
64{
65 return static_branch_likely(&cpufreq_freq_invariance);
66}
67
68/* Flag to suspend/resume CPUFreq governors */
69static bool cpufreq_suspended;
70
71static inline bool has_target(void)
72{
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74}
75
76bool has_target_index(void)
77{
78 return !!cpufreq_driver->target_index;
79}
80
81/* internal prototypes */
82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83static int cpufreq_init_governor(struct cpufreq_policy *policy);
84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86static int cpufreq_set_policy(struct cpufreq_policy *policy,
87 struct cpufreq_governor *new_gov,
88 unsigned int new_pol);
89static bool cpufreq_boost_supported(void);
90
91/*
92 * Two notifier lists: the "policy" list is involved in the
93 * validation process for a new CPU frequency policy; the
94 * "transition" list for kernel code that needs to handle
95 * changes to devices when the CPU clock speed changes.
96 * The mutex locks both lists.
97 */
98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100
101static int off __read_mostly;
102static int cpufreq_disabled(void)
103{
104 return off;
105}
106void disable_cpufreq(void)
107{
108 off = 1;
109}
110static DEFINE_MUTEX(cpufreq_governor_mutex);
111
112bool have_governor_per_policy(void)
113{
114 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115}
116EXPORT_SYMBOL_GPL(have_governor_per_policy);
117
118static struct kobject *cpufreq_global_kobject;
119
120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121{
122 if (have_governor_per_policy())
123 return &policy->kobj;
124 else
125 return cpufreq_global_kobject;
126}
127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130{
131 struct kernel_cpustat kcpustat;
132 u64 cur_wall_time;
133 u64 idle_time;
134 u64 busy_time;
135
136 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137
138 kcpustat_cpu_fetch(&kcpustat, cpu);
139
140 busy_time = kcpustat.cpustat[CPUTIME_USER];
141 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145 busy_time += kcpustat.cpustat[CPUTIME_NICE];
146
147 idle_time = cur_wall_time - busy_time;
148 if (wall)
149 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150
151 return div_u64(idle_time, NSEC_PER_USEC);
152}
153
154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155{
156 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157
158 if (idle_time == -1ULL)
159 return get_cpu_idle_time_jiffy(cpu, wall);
160 else if (!io_busy)
161 idle_time += get_cpu_iowait_time_us(cpu, wall);
162
163 return idle_time;
164}
165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166
167/*
168 * This is a generic cpufreq init() routine which can be used by cpufreq
169 * drivers of SMP systems. It will do following:
170 * - validate & show freq table passed
171 * - set policies transition latency
172 * - policy->cpus with all possible CPUs
173 */
174void cpufreq_generic_init(struct cpufreq_policy *policy,
175 struct cpufreq_frequency_table *table,
176 unsigned int transition_latency)
177{
178 policy->freq_table = table;
179 policy->cpuinfo.transition_latency = transition_latency;
180
181 /*
182 * The driver only supports the SMP configuration where all processors
183 * share the clock and voltage and clock.
184 */
185 cpumask_setall(policy->cpus);
186}
187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188
189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190{
191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192
193 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194}
195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196
197unsigned int cpufreq_generic_get(unsigned int cpu)
198{
199 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200
201 if (!policy || IS_ERR(policy->clk)) {
202 pr_err("%s: No %s associated to cpu: %d\n",
203 __func__, policy ? "clk" : "policy", cpu);
204 return 0;
205 }
206
207 return clk_get_rate(policy->clk) / 1000;
208}
209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210
211/**
212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213 * @cpu: CPU to find the policy for.
214 *
215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216 * the kobject reference counter of that policy. Return a valid policy on
217 * success or NULL on failure.
218 *
219 * The policy returned by this function has to be released with the help of
220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
221 */
222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223{
224 struct cpufreq_policy *policy = NULL;
225 unsigned long flags;
226
227 if (WARN_ON(cpu >= nr_cpu_ids))
228 return NULL;
229
230 /* get the cpufreq driver */
231 read_lock_irqsave(&cpufreq_driver_lock, flags);
232
233 if (cpufreq_driver) {
234 /* get the CPU */
235 policy = cpufreq_cpu_get_raw(cpu);
236 if (policy)
237 kobject_get(&policy->kobj);
238 }
239
240 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241
242 return policy;
243}
244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245
246/**
247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
249 */
250void cpufreq_cpu_put(struct cpufreq_policy *policy)
251{
252 kobject_put(&policy->kobj);
253}
254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255
256/**
257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259 */
260void cpufreq_cpu_release(struct cpufreq_policy *policy)
261{
262 if (WARN_ON(!policy))
263 return;
264
265 lockdep_assert_held(&policy->rwsem);
266
267 up_write(&policy->rwsem);
268
269 cpufreq_cpu_put(policy);
270}
271
272/**
273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274 * @cpu: CPU to find the policy for.
275 *
276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
278 * Return the policy if it is active or release it and return NULL otherwise.
279 *
280 * The policy returned by this function has to be released with the help of
281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282 * counter properly.
283 */
284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285{
286 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287
288 if (!policy)
289 return NULL;
290
291 down_write(&policy->rwsem);
292
293 if (policy_is_inactive(policy)) {
294 cpufreq_cpu_release(policy);
295 return NULL;
296 }
297
298 return policy;
299}
300
301/*********************************************************************
302 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
303 *********************************************************************/
304
305/**
306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308 * @ci: Frequency change information.
309 *
310 * This function alters the system "loops_per_jiffy" for the clock
311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
312 * systems as each CPU might be scaled differently. So, use the arch
313 * per-CPU loops_per_jiffy value wherever possible.
314 */
315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316{
317#ifndef CONFIG_SMP
318 static unsigned long l_p_j_ref;
319 static unsigned int l_p_j_ref_freq;
320
321 if (ci->flags & CPUFREQ_CONST_LOOPS)
322 return;
323
324 if (!l_p_j_ref_freq) {
325 l_p_j_ref = loops_per_jiffy;
326 l_p_j_ref_freq = ci->old;
327 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328 l_p_j_ref, l_p_j_ref_freq);
329 }
330 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332 ci->new);
333 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334 loops_per_jiffy, ci->new);
335 }
336#endif
337}
338
339/**
340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341 * @policy: cpufreq policy to enable fast frequency switching for.
342 * @freqs: contain details of the frequency update.
343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344 *
345 * This function calls the transition notifiers and adjust_jiffies().
346 *
347 * It is called twice on all CPU frequency changes that have external effects.
348 */
349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350 struct cpufreq_freqs *freqs,
351 unsigned int state)
352{
353 int cpu;
354
355 BUG_ON(irqs_disabled());
356
357 if (cpufreq_disabled())
358 return;
359
360 freqs->policy = policy;
361 freqs->flags = cpufreq_driver->flags;
362 pr_debug("notification %u of frequency transition to %u kHz\n",
363 state, freqs->new);
364
365 switch (state) {
366 case CPUFREQ_PRECHANGE:
367 /*
368 * Detect if the driver reported a value as "old frequency"
369 * which is not equal to what the cpufreq core thinks is
370 * "old frequency".
371 */
372 if (policy->cur && policy->cur != freqs->old) {
373 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374 freqs->old, policy->cur);
375 freqs->old = policy->cur;
376 }
377
378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379 CPUFREQ_PRECHANGE, freqs);
380
381 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382 break;
383
384 case CPUFREQ_POSTCHANGE:
385 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387 cpumask_pr_args(policy->cpus));
388
389 for_each_cpu(cpu, policy->cpus)
390 trace_cpu_frequency(freqs->new, cpu);
391
392 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393 CPUFREQ_POSTCHANGE, freqs);
394
395 cpufreq_stats_record_transition(policy, freqs->new);
396 policy->cur = freqs->new;
397 }
398}
399
400/* Do post notifications when there are chances that transition has failed */
401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402 struct cpufreq_freqs *freqs, int transition_failed)
403{
404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 if (!transition_failed)
406 return;
407
408 swap(freqs->old, freqs->new);
409 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411}
412
413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414 struct cpufreq_freqs *freqs)
415{
416
417 /*
418 * Catch double invocations of _begin() which lead to self-deadlock.
419 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420 * doesn't invoke _begin() on their behalf, and hence the chances of
421 * double invocations are very low. Moreover, there are scenarios
422 * where these checks can emit false-positive warnings in these
423 * drivers; so we avoid that by skipping them altogether.
424 */
425 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426 && current == policy->transition_task);
427
428wait:
429 wait_event(policy->transition_wait, !policy->transition_ongoing);
430
431 spin_lock(&policy->transition_lock);
432
433 if (unlikely(policy->transition_ongoing)) {
434 spin_unlock(&policy->transition_lock);
435 goto wait;
436 }
437
438 policy->transition_ongoing = true;
439 policy->transition_task = current;
440
441 spin_unlock(&policy->transition_lock);
442
443 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444}
445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446
447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448 struct cpufreq_freqs *freqs, int transition_failed)
449{
450 if (WARN_ON(!policy->transition_ongoing))
451 return;
452
453 cpufreq_notify_post_transition(policy, freqs, transition_failed);
454
455 arch_set_freq_scale(policy->related_cpus,
456 policy->cur,
457 arch_scale_freq_ref(policy->cpu));
458
459 spin_lock(&policy->transition_lock);
460 policy->transition_ongoing = false;
461 policy->transition_task = NULL;
462 spin_unlock(&policy->transition_lock);
463
464 wake_up(&policy->transition_wait);
465}
466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467
468/*
469 * Fast frequency switching status count. Positive means "enabled", negative
470 * means "disabled" and 0 means "not decided yet".
471 */
472static int cpufreq_fast_switch_count;
473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474
475static void cpufreq_list_transition_notifiers(void)
476{
477 struct notifier_block *nb;
478
479 pr_info("Registered transition notifiers:\n");
480
481 mutex_lock(&cpufreq_transition_notifier_list.mutex);
482
483 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484 pr_info("%pS\n", nb->notifier_call);
485
486 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487}
488
489/**
490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491 * @policy: cpufreq policy to enable fast frequency switching for.
492 *
493 * Try to enable fast frequency switching for @policy.
494 *
495 * The attempt will fail if there is at least one transition notifier registered
496 * at this point, as fast frequency switching is quite fundamentally at odds
497 * with transition notifiers. Thus if successful, it will make registration of
498 * transition notifiers fail going forward.
499 */
500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501{
502 lockdep_assert_held(&policy->rwsem);
503
504 if (!policy->fast_switch_possible)
505 return;
506
507 mutex_lock(&cpufreq_fast_switch_lock);
508 if (cpufreq_fast_switch_count >= 0) {
509 cpufreq_fast_switch_count++;
510 policy->fast_switch_enabled = true;
511 } else {
512 pr_warn("CPU%u: Fast frequency switching not enabled\n",
513 policy->cpu);
514 cpufreq_list_transition_notifiers();
515 }
516 mutex_unlock(&cpufreq_fast_switch_lock);
517}
518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519
520/**
521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522 * @policy: cpufreq policy to disable fast frequency switching for.
523 */
524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525{
526 mutex_lock(&cpufreq_fast_switch_lock);
527 if (policy->fast_switch_enabled) {
528 policy->fast_switch_enabled = false;
529 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530 cpufreq_fast_switch_count--;
531 }
532 mutex_unlock(&cpufreq_fast_switch_lock);
533}
534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535
536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537 unsigned int target_freq, unsigned int relation)
538{
539 unsigned int idx;
540
541 target_freq = clamp_val(target_freq, policy->min, policy->max);
542
543 if (!policy->freq_table)
544 return target_freq;
545
546 idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547 policy->cached_resolved_idx = idx;
548 policy->cached_target_freq = target_freq;
549 return policy->freq_table[idx].frequency;
550}
551
552/**
553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554 * one.
555 * @policy: associated policy to interrogate
556 * @target_freq: target frequency to resolve.
557 *
558 * The target to driver frequency mapping is cached in the policy.
559 *
560 * Return: Lowest driver-supported frequency greater than or equal to the
561 * given target_freq, subject to policy (min/max) and driver limitations.
562 */
563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564 unsigned int target_freq)
565{
566 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567}
568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569
570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571{
572 unsigned int latency;
573
574 if (policy->transition_delay_us)
575 return policy->transition_delay_us;
576
577 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578 if (latency) {
579 /*
580 * For platforms that can change the frequency very fast (< 10
581 * us), the above formula gives a decent transition delay. But
582 * for platforms where transition_latency is in milliseconds, it
583 * ends up giving unrealistic values.
584 *
585 * Cap the default transition delay to 10 ms, which seems to be
586 * a reasonable amount of time after which we should reevaluate
587 * the frequency.
588 */
589 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
590 }
591
592 return LATENCY_MULTIPLIER;
593}
594EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
595
596/*********************************************************************
597 * SYSFS INTERFACE *
598 *********************************************************************/
599static ssize_t show_boost(struct kobject *kobj,
600 struct kobj_attribute *attr, char *buf)
601{
602 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
603}
604
605static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
606 const char *buf, size_t count)
607{
608 int ret, enable;
609
610 ret = sscanf(buf, "%d", &enable);
611 if (ret != 1 || enable < 0 || enable > 1)
612 return -EINVAL;
613
614 if (cpufreq_boost_trigger_state(enable)) {
615 pr_err("%s: Cannot %s BOOST!\n",
616 __func__, enable ? "enable" : "disable");
617 return -EINVAL;
618 }
619
620 pr_debug("%s: cpufreq BOOST %s\n",
621 __func__, enable ? "enabled" : "disabled");
622
623 return count;
624}
625define_one_global_rw(boost);
626
627static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
628{
629 return sysfs_emit(buf, "%d\n", policy->boost_enabled);
630}
631
632static ssize_t store_local_boost(struct cpufreq_policy *policy,
633 const char *buf, size_t count)
634{
635 int ret, enable;
636
637 ret = kstrtoint(buf, 10, &enable);
638 if (ret || enable < 0 || enable > 1)
639 return -EINVAL;
640
641 if (!cpufreq_driver->boost_enabled)
642 return -EINVAL;
643
644 if (policy->boost_enabled == enable)
645 return count;
646
647 cpus_read_lock();
648 ret = cpufreq_driver->set_boost(policy, enable);
649 cpus_read_unlock();
650
651 if (ret)
652 return ret;
653
654 policy->boost_enabled = enable;
655
656 return count;
657}
658
659static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
660
661static struct cpufreq_governor *find_governor(const char *str_governor)
662{
663 struct cpufreq_governor *t;
664
665 for_each_governor(t)
666 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
667 return t;
668
669 return NULL;
670}
671
672static struct cpufreq_governor *get_governor(const char *str_governor)
673{
674 struct cpufreq_governor *t;
675
676 mutex_lock(&cpufreq_governor_mutex);
677 t = find_governor(str_governor);
678 if (!t)
679 goto unlock;
680
681 if (!try_module_get(t->owner))
682 t = NULL;
683
684unlock:
685 mutex_unlock(&cpufreq_governor_mutex);
686
687 return t;
688}
689
690static unsigned int cpufreq_parse_policy(char *str_governor)
691{
692 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
693 return CPUFREQ_POLICY_PERFORMANCE;
694
695 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
696 return CPUFREQ_POLICY_POWERSAVE;
697
698 return CPUFREQ_POLICY_UNKNOWN;
699}
700
701/**
702 * cpufreq_parse_governor - parse a governor string only for has_target()
703 * @str_governor: Governor name.
704 */
705static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
706{
707 struct cpufreq_governor *t;
708
709 t = get_governor(str_governor);
710 if (t)
711 return t;
712
713 if (request_module("cpufreq_%s", str_governor))
714 return NULL;
715
716 return get_governor(str_governor);
717}
718
719/*
720 * cpufreq_per_cpu_attr_read() / show_##file_name() -
721 * print out cpufreq information
722 *
723 * Write out information from cpufreq_driver->policy[cpu]; object must be
724 * "unsigned int".
725 */
726
727#define show_one(file_name, object) \
728static ssize_t show_##file_name \
729(struct cpufreq_policy *policy, char *buf) \
730{ \
731 return sprintf(buf, "%u\n", policy->object); \
732}
733
734show_one(cpuinfo_min_freq, cpuinfo.min_freq);
735show_one(cpuinfo_max_freq, cpuinfo.max_freq);
736show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
737show_one(scaling_min_freq, min);
738show_one(scaling_max_freq, max);
739
740__weak unsigned int arch_freq_get_on_cpu(int cpu)
741{
742 return 0;
743}
744
745static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
746{
747 ssize_t ret;
748 unsigned int freq;
749
750 freq = arch_freq_get_on_cpu(policy->cpu);
751 if (freq)
752 ret = sprintf(buf, "%u\n", freq);
753 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
754 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
755 else
756 ret = sprintf(buf, "%u\n", policy->cur);
757 return ret;
758}
759
760/*
761 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
762 */
763#define store_one(file_name, object) \
764static ssize_t store_##file_name \
765(struct cpufreq_policy *policy, const char *buf, size_t count) \
766{ \
767 unsigned long val; \
768 int ret; \
769 \
770 ret = kstrtoul(buf, 0, &val); \
771 if (ret) \
772 return ret; \
773 \
774 ret = freq_qos_update_request(policy->object##_freq_req, val);\
775 return ret >= 0 ? count : ret; \
776}
777
778store_one(scaling_min_freq, min);
779store_one(scaling_max_freq, max);
780
781/*
782 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
783 */
784static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
785 char *buf)
786{
787 unsigned int cur_freq = __cpufreq_get(policy);
788
789 if (cur_freq)
790 return sprintf(buf, "%u\n", cur_freq);
791
792 return sprintf(buf, "<unknown>\n");
793}
794
795/*
796 * show_scaling_governor - show the current policy for the specified CPU
797 */
798static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
799{
800 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
801 return sprintf(buf, "powersave\n");
802 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
803 return sprintf(buf, "performance\n");
804 else if (policy->governor)
805 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
806 policy->governor->name);
807 return -EINVAL;
808}
809
810/*
811 * store_scaling_governor - store policy for the specified CPU
812 */
813static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
814 const char *buf, size_t count)
815{
816 char str_governor[16];
817 int ret;
818
819 ret = sscanf(buf, "%15s", str_governor);
820 if (ret != 1)
821 return -EINVAL;
822
823 if (cpufreq_driver->setpolicy) {
824 unsigned int new_pol;
825
826 new_pol = cpufreq_parse_policy(str_governor);
827 if (!new_pol)
828 return -EINVAL;
829
830 ret = cpufreq_set_policy(policy, NULL, new_pol);
831 } else {
832 struct cpufreq_governor *new_gov;
833
834 new_gov = cpufreq_parse_governor(str_governor);
835 if (!new_gov)
836 return -EINVAL;
837
838 ret = cpufreq_set_policy(policy, new_gov,
839 CPUFREQ_POLICY_UNKNOWN);
840
841 module_put(new_gov->owner);
842 }
843
844 return ret ? ret : count;
845}
846
847/*
848 * show_scaling_driver - show the cpufreq driver currently loaded
849 */
850static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
851{
852 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
853}
854
855/*
856 * show_scaling_available_governors - show the available CPUfreq governors
857 */
858static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
859 char *buf)
860{
861 ssize_t i = 0;
862 struct cpufreq_governor *t;
863
864 if (!has_target()) {
865 i += sprintf(buf, "performance powersave");
866 goto out;
867 }
868
869 mutex_lock(&cpufreq_governor_mutex);
870 for_each_governor(t) {
871 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
872 - (CPUFREQ_NAME_LEN + 2)))
873 break;
874 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
875 }
876 mutex_unlock(&cpufreq_governor_mutex);
877out:
878 i += sprintf(&buf[i], "\n");
879 return i;
880}
881
882ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
883{
884 ssize_t i = 0;
885 unsigned int cpu;
886
887 for_each_cpu(cpu, mask) {
888 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
889 if (i >= (PAGE_SIZE - 5))
890 break;
891 }
892
893 /* Remove the extra space at the end */
894 i--;
895
896 i += sprintf(&buf[i], "\n");
897 return i;
898}
899EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
900
901/*
902 * show_related_cpus - show the CPUs affected by each transition even if
903 * hw coordination is in use
904 */
905static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
906{
907 return cpufreq_show_cpus(policy->related_cpus, buf);
908}
909
910/*
911 * show_affected_cpus - show the CPUs affected by each transition
912 */
913static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
914{
915 return cpufreq_show_cpus(policy->cpus, buf);
916}
917
918static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
919 const char *buf, size_t count)
920{
921 unsigned int freq = 0;
922 unsigned int ret;
923
924 if (!policy->governor || !policy->governor->store_setspeed)
925 return -EINVAL;
926
927 ret = sscanf(buf, "%u", &freq);
928 if (ret != 1)
929 return -EINVAL;
930
931 policy->governor->store_setspeed(policy, freq);
932
933 return count;
934}
935
936static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
937{
938 if (!policy->governor || !policy->governor->show_setspeed)
939 return sprintf(buf, "<unsupported>\n");
940
941 return policy->governor->show_setspeed(policy, buf);
942}
943
944/*
945 * show_bios_limit - show the current cpufreq HW/BIOS limitation
946 */
947static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
948{
949 unsigned int limit;
950 int ret;
951 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
952 if (!ret)
953 return sprintf(buf, "%u\n", limit);
954 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
955}
956
957cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
958cpufreq_freq_attr_ro(cpuinfo_min_freq);
959cpufreq_freq_attr_ro(cpuinfo_max_freq);
960cpufreq_freq_attr_ro(cpuinfo_transition_latency);
961cpufreq_freq_attr_ro(scaling_available_governors);
962cpufreq_freq_attr_ro(scaling_driver);
963cpufreq_freq_attr_ro(scaling_cur_freq);
964cpufreq_freq_attr_ro(bios_limit);
965cpufreq_freq_attr_ro(related_cpus);
966cpufreq_freq_attr_ro(affected_cpus);
967cpufreq_freq_attr_rw(scaling_min_freq);
968cpufreq_freq_attr_rw(scaling_max_freq);
969cpufreq_freq_attr_rw(scaling_governor);
970cpufreq_freq_attr_rw(scaling_setspeed);
971
972static struct attribute *cpufreq_attrs[] = {
973 &cpuinfo_min_freq.attr,
974 &cpuinfo_max_freq.attr,
975 &cpuinfo_transition_latency.attr,
976 &scaling_min_freq.attr,
977 &scaling_max_freq.attr,
978 &affected_cpus.attr,
979 &related_cpus.attr,
980 &scaling_governor.attr,
981 &scaling_driver.attr,
982 &scaling_available_governors.attr,
983 &scaling_setspeed.attr,
984 NULL
985};
986ATTRIBUTE_GROUPS(cpufreq);
987
988#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
989#define to_attr(a) container_of(a, struct freq_attr, attr)
990
991static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
992{
993 struct cpufreq_policy *policy = to_policy(kobj);
994 struct freq_attr *fattr = to_attr(attr);
995 ssize_t ret = -EBUSY;
996
997 if (!fattr->show)
998 return -EIO;
999
1000 down_read(&policy->rwsem);
1001 if (likely(!policy_is_inactive(policy)))
1002 ret = fattr->show(policy, buf);
1003 up_read(&policy->rwsem);
1004
1005 return ret;
1006}
1007
1008static ssize_t store(struct kobject *kobj, struct attribute *attr,
1009 const char *buf, size_t count)
1010{
1011 struct cpufreq_policy *policy = to_policy(kobj);
1012 struct freq_attr *fattr = to_attr(attr);
1013 ssize_t ret = -EBUSY;
1014
1015 if (!fattr->store)
1016 return -EIO;
1017
1018 down_write(&policy->rwsem);
1019 if (likely(!policy_is_inactive(policy)))
1020 ret = fattr->store(policy, buf, count);
1021 up_write(&policy->rwsem);
1022
1023 return ret;
1024}
1025
1026static void cpufreq_sysfs_release(struct kobject *kobj)
1027{
1028 struct cpufreq_policy *policy = to_policy(kobj);
1029 pr_debug("last reference is dropped\n");
1030 complete(&policy->kobj_unregister);
1031}
1032
1033static const struct sysfs_ops sysfs_ops = {
1034 .show = show,
1035 .store = store,
1036};
1037
1038static const struct kobj_type ktype_cpufreq = {
1039 .sysfs_ops = &sysfs_ops,
1040 .default_groups = cpufreq_groups,
1041 .release = cpufreq_sysfs_release,
1042};
1043
1044static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1045 struct device *dev)
1046{
1047 if (unlikely(!dev))
1048 return;
1049
1050 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1051 return;
1052
1053 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1054 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1055 dev_err(dev, "cpufreq symlink creation failed\n");
1056}
1057
1058static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1059 struct device *dev)
1060{
1061 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1062 sysfs_remove_link(&dev->kobj, "cpufreq");
1063 cpumask_clear_cpu(cpu, policy->real_cpus);
1064}
1065
1066static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1067{
1068 struct freq_attr **drv_attr;
1069 int ret = 0;
1070
1071 /* set up files for this cpu device */
1072 drv_attr = cpufreq_driver->attr;
1073 while (drv_attr && *drv_attr) {
1074 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1075 if (ret)
1076 return ret;
1077 drv_attr++;
1078 }
1079 if (cpufreq_driver->get) {
1080 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1081 if (ret)
1082 return ret;
1083 }
1084
1085 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1086 if (ret)
1087 return ret;
1088
1089 if (cpufreq_driver->bios_limit) {
1090 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1091 if (ret)
1092 return ret;
1093 }
1094
1095 if (cpufreq_boost_supported()) {
1096 ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1097 if (ret)
1098 return ret;
1099 }
1100
1101 return 0;
1102}
1103
1104static int cpufreq_init_policy(struct cpufreq_policy *policy)
1105{
1106 struct cpufreq_governor *gov = NULL;
1107 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1108 int ret;
1109
1110 if (has_target()) {
1111 /* Update policy governor to the one used before hotplug. */
1112 gov = get_governor(policy->last_governor);
1113 if (gov) {
1114 pr_debug("Restoring governor %s for cpu %d\n",
1115 gov->name, policy->cpu);
1116 } else {
1117 gov = get_governor(default_governor);
1118 }
1119
1120 if (!gov) {
1121 gov = cpufreq_default_governor();
1122 __module_get(gov->owner);
1123 }
1124
1125 } else {
1126
1127 /* Use the default policy if there is no last_policy. */
1128 if (policy->last_policy) {
1129 pol = policy->last_policy;
1130 } else {
1131 pol = cpufreq_parse_policy(default_governor);
1132 /*
1133 * In case the default governor is neither "performance"
1134 * nor "powersave", fall back to the initial policy
1135 * value set by the driver.
1136 */
1137 if (pol == CPUFREQ_POLICY_UNKNOWN)
1138 pol = policy->policy;
1139 }
1140 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1141 pol != CPUFREQ_POLICY_POWERSAVE)
1142 return -ENODATA;
1143 }
1144
1145 ret = cpufreq_set_policy(policy, gov, pol);
1146 if (gov)
1147 module_put(gov->owner);
1148
1149 return ret;
1150}
1151
1152static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1153{
1154 int ret = 0;
1155
1156 /* Has this CPU been taken care of already? */
1157 if (cpumask_test_cpu(cpu, policy->cpus))
1158 return 0;
1159
1160 down_write(&policy->rwsem);
1161 if (has_target())
1162 cpufreq_stop_governor(policy);
1163
1164 cpumask_set_cpu(cpu, policy->cpus);
1165
1166 if (has_target()) {
1167 ret = cpufreq_start_governor(policy);
1168 if (ret)
1169 pr_err("%s: Failed to start governor\n", __func__);
1170 }
1171 up_write(&policy->rwsem);
1172 return ret;
1173}
1174
1175void refresh_frequency_limits(struct cpufreq_policy *policy)
1176{
1177 if (!policy_is_inactive(policy)) {
1178 pr_debug("updating policy for CPU %u\n", policy->cpu);
1179
1180 cpufreq_set_policy(policy, policy->governor, policy->policy);
1181 }
1182}
1183EXPORT_SYMBOL(refresh_frequency_limits);
1184
1185static void handle_update(struct work_struct *work)
1186{
1187 struct cpufreq_policy *policy =
1188 container_of(work, struct cpufreq_policy, update);
1189
1190 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1191 down_write(&policy->rwsem);
1192 refresh_frequency_limits(policy);
1193 up_write(&policy->rwsem);
1194}
1195
1196static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1197 void *data)
1198{
1199 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1200
1201 schedule_work(&policy->update);
1202 return 0;
1203}
1204
1205static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1206 void *data)
1207{
1208 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1209
1210 schedule_work(&policy->update);
1211 return 0;
1212}
1213
1214static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1215{
1216 struct kobject *kobj;
1217 struct completion *cmp;
1218
1219 down_write(&policy->rwsem);
1220 cpufreq_stats_free_table(policy);
1221 kobj = &policy->kobj;
1222 cmp = &policy->kobj_unregister;
1223 up_write(&policy->rwsem);
1224 kobject_put(kobj);
1225
1226 /*
1227 * We need to make sure that the underlying kobj is
1228 * actually not referenced anymore by anybody before we
1229 * proceed with unloading.
1230 */
1231 pr_debug("waiting for dropping of refcount\n");
1232 wait_for_completion(cmp);
1233 pr_debug("wait complete\n");
1234}
1235
1236static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1237{
1238 struct cpufreq_policy *policy;
1239 struct device *dev = get_cpu_device(cpu);
1240 int ret;
1241
1242 if (!dev)
1243 return NULL;
1244
1245 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1246 if (!policy)
1247 return NULL;
1248
1249 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1250 goto err_free_policy;
1251
1252 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1253 goto err_free_cpumask;
1254
1255 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1256 goto err_free_rcpumask;
1257
1258 init_completion(&policy->kobj_unregister);
1259 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1260 cpufreq_global_kobject, "policy%u", cpu);
1261 if (ret) {
1262 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1263 /*
1264 * The entire policy object will be freed below, but the extra
1265 * memory allocated for the kobject name needs to be freed by
1266 * releasing the kobject.
1267 */
1268 kobject_put(&policy->kobj);
1269 goto err_free_real_cpus;
1270 }
1271
1272 freq_constraints_init(&policy->constraints);
1273
1274 policy->nb_min.notifier_call = cpufreq_notifier_min;
1275 policy->nb_max.notifier_call = cpufreq_notifier_max;
1276
1277 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1278 &policy->nb_min);
1279 if (ret) {
1280 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1281 ret, cpu);
1282 goto err_kobj_remove;
1283 }
1284
1285 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1286 &policy->nb_max);
1287 if (ret) {
1288 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1289 ret, cpu);
1290 goto err_min_qos_notifier;
1291 }
1292
1293 INIT_LIST_HEAD(&policy->policy_list);
1294 init_rwsem(&policy->rwsem);
1295 spin_lock_init(&policy->transition_lock);
1296 init_waitqueue_head(&policy->transition_wait);
1297 INIT_WORK(&policy->update, handle_update);
1298
1299 policy->cpu = cpu;
1300 return policy;
1301
1302err_min_qos_notifier:
1303 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1304 &policy->nb_min);
1305err_kobj_remove:
1306 cpufreq_policy_put_kobj(policy);
1307err_free_real_cpus:
1308 free_cpumask_var(policy->real_cpus);
1309err_free_rcpumask:
1310 free_cpumask_var(policy->related_cpus);
1311err_free_cpumask:
1312 free_cpumask_var(policy->cpus);
1313err_free_policy:
1314 kfree(policy);
1315
1316 return NULL;
1317}
1318
1319static void cpufreq_policy_free(struct cpufreq_policy *policy)
1320{
1321 unsigned long flags;
1322 int cpu;
1323
1324 /*
1325 * The callers must ensure the policy is inactive by now, to avoid any
1326 * races with show()/store() callbacks.
1327 */
1328 if (unlikely(!policy_is_inactive(policy)))
1329 pr_warn("%s: Freeing active policy\n", __func__);
1330
1331 /* Remove policy from list */
1332 write_lock_irqsave(&cpufreq_driver_lock, flags);
1333 list_del(&policy->policy_list);
1334
1335 for_each_cpu(cpu, policy->related_cpus)
1336 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1337 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1338
1339 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1340 &policy->nb_max);
1341 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1342 &policy->nb_min);
1343
1344 /* Cancel any pending policy->update work before freeing the policy. */
1345 cancel_work_sync(&policy->update);
1346
1347 if (policy->max_freq_req) {
1348 /*
1349 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1350 * notification, since CPUFREQ_CREATE_POLICY notification was
1351 * sent after adding max_freq_req earlier.
1352 */
1353 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1354 CPUFREQ_REMOVE_POLICY, policy);
1355 freq_qos_remove_request(policy->max_freq_req);
1356 }
1357
1358 freq_qos_remove_request(policy->min_freq_req);
1359 kfree(policy->min_freq_req);
1360
1361 cpufreq_policy_put_kobj(policy);
1362 free_cpumask_var(policy->real_cpus);
1363 free_cpumask_var(policy->related_cpus);
1364 free_cpumask_var(policy->cpus);
1365 kfree(policy);
1366}
1367
1368static int cpufreq_online(unsigned int cpu)
1369{
1370 struct cpufreq_policy *policy;
1371 bool new_policy;
1372 unsigned long flags;
1373 unsigned int j;
1374 int ret;
1375
1376 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1377
1378 /* Check if this CPU already has a policy to manage it */
1379 policy = per_cpu(cpufreq_cpu_data, cpu);
1380 if (policy) {
1381 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1382 if (!policy_is_inactive(policy))
1383 return cpufreq_add_policy_cpu(policy, cpu);
1384
1385 /* This is the only online CPU for the policy. Start over. */
1386 new_policy = false;
1387 down_write(&policy->rwsem);
1388 policy->cpu = cpu;
1389 policy->governor = NULL;
1390 } else {
1391 new_policy = true;
1392 policy = cpufreq_policy_alloc(cpu);
1393 if (!policy)
1394 return -ENOMEM;
1395 down_write(&policy->rwsem);
1396 }
1397
1398 if (!new_policy && cpufreq_driver->online) {
1399 /* Recover policy->cpus using related_cpus */
1400 cpumask_copy(policy->cpus, policy->related_cpus);
1401
1402 ret = cpufreq_driver->online(policy);
1403 if (ret) {
1404 pr_debug("%s: %d: initialization failed\n", __func__,
1405 __LINE__);
1406 goto out_exit_policy;
1407 }
1408 } else {
1409 cpumask_copy(policy->cpus, cpumask_of(cpu));
1410
1411 /*
1412 * Call driver. From then on the cpufreq must be able
1413 * to accept all calls to ->verify and ->setpolicy for this CPU.
1414 */
1415 ret = cpufreq_driver->init(policy);
1416 if (ret) {
1417 pr_debug("%s: %d: initialization failed\n", __func__,
1418 __LINE__);
1419 goto out_free_policy;
1420 }
1421
1422 /*
1423 * The initialization has succeeded and the policy is online.
1424 * If there is a problem with its frequency table, take it
1425 * offline and drop it.
1426 */
1427 ret = cpufreq_table_validate_and_sort(policy);
1428 if (ret)
1429 goto out_offline_policy;
1430
1431 /* related_cpus should at least include policy->cpus. */
1432 cpumask_copy(policy->related_cpus, policy->cpus);
1433 }
1434
1435 /*
1436 * affected cpus must always be the one, which are online. We aren't
1437 * managing offline cpus here.
1438 */
1439 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1440
1441 if (new_policy) {
1442 for_each_cpu(j, policy->related_cpus) {
1443 per_cpu(cpufreq_cpu_data, j) = policy;
1444 add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1445 }
1446
1447 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1448 GFP_KERNEL);
1449 if (!policy->min_freq_req) {
1450 ret = -ENOMEM;
1451 goto out_destroy_policy;
1452 }
1453
1454 ret = freq_qos_add_request(&policy->constraints,
1455 policy->min_freq_req, FREQ_QOS_MIN,
1456 FREQ_QOS_MIN_DEFAULT_VALUE);
1457 if (ret < 0) {
1458 /*
1459 * So we don't call freq_qos_remove_request() for an
1460 * uninitialized request.
1461 */
1462 kfree(policy->min_freq_req);
1463 policy->min_freq_req = NULL;
1464 goto out_destroy_policy;
1465 }
1466
1467 /*
1468 * This must be initialized right here to avoid calling
1469 * freq_qos_remove_request() on uninitialized request in case
1470 * of errors.
1471 */
1472 policy->max_freq_req = policy->min_freq_req + 1;
1473
1474 ret = freq_qos_add_request(&policy->constraints,
1475 policy->max_freq_req, FREQ_QOS_MAX,
1476 FREQ_QOS_MAX_DEFAULT_VALUE);
1477 if (ret < 0) {
1478 policy->max_freq_req = NULL;
1479 goto out_destroy_policy;
1480 }
1481
1482 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1483 CPUFREQ_CREATE_POLICY, policy);
1484 }
1485
1486 if (cpufreq_driver->get && has_target()) {
1487 policy->cur = cpufreq_driver->get(policy->cpu);
1488 if (!policy->cur) {
1489 ret = -EIO;
1490 pr_err("%s: ->get() failed\n", __func__);
1491 goto out_destroy_policy;
1492 }
1493 }
1494
1495 /*
1496 * Sometimes boot loaders set CPU frequency to a value outside of
1497 * frequency table present with cpufreq core. In such cases CPU might be
1498 * unstable if it has to run on that frequency for long duration of time
1499 * and so its better to set it to a frequency which is specified in
1500 * freq-table. This also makes cpufreq stats inconsistent as
1501 * cpufreq-stats would fail to register because current frequency of CPU
1502 * isn't found in freq-table.
1503 *
1504 * Because we don't want this change to effect boot process badly, we go
1505 * for the next freq which is >= policy->cur ('cur' must be set by now,
1506 * otherwise we will end up setting freq to lowest of the table as 'cur'
1507 * is initialized to zero).
1508 *
1509 * We are passing target-freq as "policy->cur - 1" otherwise
1510 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1511 * equal to target-freq.
1512 */
1513 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1514 && has_target()) {
1515 unsigned int old_freq = policy->cur;
1516
1517 /* Are we running at unknown frequency ? */
1518 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1519 if (ret == -EINVAL) {
1520 ret = __cpufreq_driver_target(policy, old_freq - 1,
1521 CPUFREQ_RELATION_L);
1522
1523 /*
1524 * Reaching here after boot in a few seconds may not
1525 * mean that system will remain stable at "unknown"
1526 * frequency for longer duration. Hence, a BUG_ON().
1527 */
1528 BUG_ON(ret);
1529 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1530 __func__, policy->cpu, old_freq, policy->cur);
1531 }
1532 }
1533
1534 if (new_policy) {
1535 ret = cpufreq_add_dev_interface(policy);
1536 if (ret)
1537 goto out_destroy_policy;
1538
1539 cpufreq_stats_create_table(policy);
1540
1541 write_lock_irqsave(&cpufreq_driver_lock, flags);
1542 list_add(&policy->policy_list, &cpufreq_policy_list);
1543 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544
1545 /*
1546 * Register with the energy model before
1547 * sugov_eas_rebuild_sd() is called, which will result
1548 * in rebuilding of the sched domains, which should only be done
1549 * once the energy model is properly initialized for the policy
1550 * first.
1551 *
1552 * Also, this should be called before the policy is registered
1553 * with cooling framework.
1554 */
1555 if (cpufreq_driver->register_em)
1556 cpufreq_driver->register_em(policy);
1557 }
1558
1559 ret = cpufreq_init_policy(policy);
1560 if (ret) {
1561 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1562 __func__, cpu, ret);
1563 goto out_destroy_policy;
1564 }
1565
1566 up_write(&policy->rwsem);
1567
1568 kobject_uevent(&policy->kobj, KOBJ_ADD);
1569
1570 /* Callback for handling stuff after policy is ready */
1571 if (cpufreq_driver->ready)
1572 cpufreq_driver->ready(policy);
1573
1574 if (cpufreq_thermal_control_enabled(cpufreq_driver))
1575 policy->cdev = of_cpufreq_cooling_register(policy);
1576
1577 pr_debug("initialization complete\n");
1578
1579 return 0;
1580
1581out_destroy_policy:
1582 for_each_cpu(j, policy->real_cpus)
1583 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1584
1585out_offline_policy:
1586 if (cpufreq_driver->offline)
1587 cpufreq_driver->offline(policy);
1588
1589out_exit_policy:
1590 if (cpufreq_driver->exit)
1591 cpufreq_driver->exit(policy);
1592
1593out_free_policy:
1594 cpumask_clear(policy->cpus);
1595 up_write(&policy->rwsem);
1596
1597 cpufreq_policy_free(policy);
1598 return ret;
1599}
1600
1601/**
1602 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1603 * @dev: CPU device.
1604 * @sif: Subsystem interface structure pointer (not used)
1605 */
1606static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1607{
1608 struct cpufreq_policy *policy;
1609 unsigned cpu = dev->id;
1610 int ret;
1611
1612 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1613
1614 if (cpu_online(cpu)) {
1615 ret = cpufreq_online(cpu);
1616 if (ret)
1617 return ret;
1618 }
1619
1620 /* Create sysfs link on CPU registration */
1621 policy = per_cpu(cpufreq_cpu_data, cpu);
1622 if (policy)
1623 add_cpu_dev_symlink(policy, cpu, dev);
1624
1625 return 0;
1626}
1627
1628static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1629{
1630 int ret;
1631
1632 if (has_target())
1633 cpufreq_stop_governor(policy);
1634
1635 cpumask_clear_cpu(cpu, policy->cpus);
1636
1637 if (!policy_is_inactive(policy)) {
1638 /* Nominate a new CPU if necessary. */
1639 if (cpu == policy->cpu)
1640 policy->cpu = cpumask_any(policy->cpus);
1641
1642 /* Start the governor again for the active policy. */
1643 if (has_target()) {
1644 ret = cpufreq_start_governor(policy);
1645 if (ret)
1646 pr_err("%s: Failed to start governor\n", __func__);
1647 }
1648
1649 return;
1650 }
1651
1652 if (has_target())
1653 strscpy(policy->last_governor, policy->governor->name,
1654 CPUFREQ_NAME_LEN);
1655 else
1656 policy->last_policy = policy->policy;
1657
1658 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1659 cpufreq_cooling_unregister(policy->cdev);
1660 policy->cdev = NULL;
1661 }
1662
1663 if (has_target())
1664 cpufreq_exit_governor(policy);
1665
1666 /*
1667 * Perform the ->offline() during light-weight tear-down, as
1668 * that allows fast recovery when the CPU comes back.
1669 */
1670 if (cpufreq_driver->offline) {
1671 cpufreq_driver->offline(policy);
1672 } else if (cpufreq_driver->exit) {
1673 cpufreq_driver->exit(policy);
1674 policy->freq_table = NULL;
1675 }
1676}
1677
1678static int cpufreq_offline(unsigned int cpu)
1679{
1680 struct cpufreq_policy *policy;
1681
1682 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1683
1684 policy = cpufreq_cpu_get_raw(cpu);
1685 if (!policy) {
1686 pr_debug("%s: No cpu_data found\n", __func__);
1687 return 0;
1688 }
1689
1690 down_write(&policy->rwsem);
1691
1692 __cpufreq_offline(cpu, policy);
1693
1694 up_write(&policy->rwsem);
1695 return 0;
1696}
1697
1698/*
1699 * cpufreq_remove_dev - remove a CPU device
1700 *
1701 * Removes the cpufreq interface for a CPU device.
1702 */
1703static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1704{
1705 unsigned int cpu = dev->id;
1706 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1707
1708 if (!policy)
1709 return;
1710
1711 down_write(&policy->rwsem);
1712
1713 if (cpu_online(cpu))
1714 __cpufreq_offline(cpu, policy);
1715
1716 remove_cpu_dev_symlink(policy, cpu, dev);
1717
1718 if (!cpumask_empty(policy->real_cpus)) {
1719 up_write(&policy->rwsem);
1720 return;
1721 }
1722
1723 /* We did light-weight exit earlier, do full tear down now */
1724 if (cpufreq_driver->offline)
1725 cpufreq_driver->exit(policy);
1726
1727 up_write(&policy->rwsem);
1728
1729 cpufreq_policy_free(policy);
1730}
1731
1732/**
1733 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1734 * @policy: Policy managing CPUs.
1735 * @new_freq: New CPU frequency.
1736 *
1737 * Adjust to the current frequency first and clean up later by either calling
1738 * cpufreq_update_policy(), or scheduling handle_update().
1739 */
1740static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1741 unsigned int new_freq)
1742{
1743 struct cpufreq_freqs freqs;
1744
1745 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1746 policy->cur, new_freq);
1747
1748 freqs.old = policy->cur;
1749 freqs.new = new_freq;
1750
1751 cpufreq_freq_transition_begin(policy, &freqs);
1752 cpufreq_freq_transition_end(policy, &freqs, 0);
1753}
1754
1755static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1756{
1757 unsigned int new_freq;
1758
1759 new_freq = cpufreq_driver->get(policy->cpu);
1760 if (!new_freq)
1761 return 0;
1762
1763 /*
1764 * If fast frequency switching is used with the given policy, the check
1765 * against policy->cur is pointless, so skip it in that case.
1766 */
1767 if (policy->fast_switch_enabled || !has_target())
1768 return new_freq;
1769
1770 if (policy->cur != new_freq) {
1771 /*
1772 * For some platforms, the frequency returned by hardware may be
1773 * slightly different from what is provided in the frequency
1774 * table, for example hardware may return 499 MHz instead of 500
1775 * MHz. In such cases it is better to avoid getting into
1776 * unnecessary frequency updates.
1777 */
1778 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1779 return policy->cur;
1780
1781 cpufreq_out_of_sync(policy, new_freq);
1782 if (update)
1783 schedule_work(&policy->update);
1784 }
1785
1786 return new_freq;
1787}
1788
1789/**
1790 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1791 * @cpu: CPU number
1792 *
1793 * This is the last known freq, without actually getting it from the driver.
1794 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1795 */
1796unsigned int cpufreq_quick_get(unsigned int cpu)
1797{
1798 struct cpufreq_policy *policy;
1799 unsigned int ret_freq = 0;
1800 unsigned long flags;
1801
1802 read_lock_irqsave(&cpufreq_driver_lock, flags);
1803
1804 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1805 ret_freq = cpufreq_driver->get(cpu);
1806 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1807 return ret_freq;
1808 }
1809
1810 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1811
1812 policy = cpufreq_cpu_get(cpu);
1813 if (policy) {
1814 ret_freq = policy->cur;
1815 cpufreq_cpu_put(policy);
1816 }
1817
1818 return ret_freq;
1819}
1820EXPORT_SYMBOL(cpufreq_quick_get);
1821
1822/**
1823 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1824 * @cpu: CPU number
1825 *
1826 * Just return the max possible frequency for a given CPU.
1827 */
1828unsigned int cpufreq_quick_get_max(unsigned int cpu)
1829{
1830 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831 unsigned int ret_freq = 0;
1832
1833 if (policy) {
1834 ret_freq = policy->max;
1835 cpufreq_cpu_put(policy);
1836 }
1837
1838 return ret_freq;
1839}
1840EXPORT_SYMBOL(cpufreq_quick_get_max);
1841
1842/**
1843 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1844 * @cpu: CPU number
1845 *
1846 * The default return value is the max_freq field of cpuinfo.
1847 */
1848__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1849{
1850 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1851 unsigned int ret_freq = 0;
1852
1853 if (policy) {
1854 ret_freq = policy->cpuinfo.max_freq;
1855 cpufreq_cpu_put(policy);
1856 }
1857
1858 return ret_freq;
1859}
1860EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1861
1862static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1863{
1864 if (unlikely(policy_is_inactive(policy)))
1865 return 0;
1866
1867 return cpufreq_verify_current_freq(policy, true);
1868}
1869
1870/**
1871 * cpufreq_get - get the current CPU frequency (in kHz)
1872 * @cpu: CPU number
1873 *
1874 * Get the CPU current (static) CPU frequency
1875 */
1876unsigned int cpufreq_get(unsigned int cpu)
1877{
1878 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1879 unsigned int ret_freq = 0;
1880
1881 if (policy) {
1882 down_read(&policy->rwsem);
1883 if (cpufreq_driver->get)
1884 ret_freq = __cpufreq_get(policy);
1885 up_read(&policy->rwsem);
1886
1887 cpufreq_cpu_put(policy);
1888 }
1889
1890 return ret_freq;
1891}
1892EXPORT_SYMBOL(cpufreq_get);
1893
1894static struct subsys_interface cpufreq_interface = {
1895 .name = "cpufreq",
1896 .subsys = &cpu_subsys,
1897 .add_dev = cpufreq_add_dev,
1898 .remove_dev = cpufreq_remove_dev,
1899};
1900
1901/*
1902 * In case platform wants some specific frequency to be configured
1903 * during suspend..
1904 */
1905int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1906{
1907 int ret;
1908
1909 if (!policy->suspend_freq) {
1910 pr_debug("%s: suspend_freq not defined\n", __func__);
1911 return 0;
1912 }
1913
1914 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1915 policy->suspend_freq);
1916
1917 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1918 CPUFREQ_RELATION_H);
1919 if (ret)
1920 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1921 __func__, policy->suspend_freq, ret);
1922
1923 return ret;
1924}
1925EXPORT_SYMBOL(cpufreq_generic_suspend);
1926
1927/**
1928 * cpufreq_suspend() - Suspend CPUFreq governors.
1929 *
1930 * Called during system wide Suspend/Hibernate cycles for suspending governors
1931 * as some platforms can't change frequency after this point in suspend cycle.
1932 * Because some of the devices (like: i2c, regulators, etc) they use for
1933 * changing frequency are suspended quickly after this point.
1934 */
1935void cpufreq_suspend(void)
1936{
1937 struct cpufreq_policy *policy;
1938
1939 if (!cpufreq_driver)
1940 return;
1941
1942 if (!has_target() && !cpufreq_driver->suspend)
1943 goto suspend;
1944
1945 pr_debug("%s: Suspending Governors\n", __func__);
1946
1947 for_each_active_policy(policy) {
1948 if (has_target()) {
1949 down_write(&policy->rwsem);
1950 cpufreq_stop_governor(policy);
1951 up_write(&policy->rwsem);
1952 }
1953
1954 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1955 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1956 cpufreq_driver->name);
1957 }
1958
1959suspend:
1960 cpufreq_suspended = true;
1961}
1962
1963/**
1964 * cpufreq_resume() - Resume CPUFreq governors.
1965 *
1966 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1967 * are suspended with cpufreq_suspend().
1968 */
1969void cpufreq_resume(void)
1970{
1971 struct cpufreq_policy *policy;
1972 int ret;
1973
1974 if (!cpufreq_driver)
1975 return;
1976
1977 if (unlikely(!cpufreq_suspended))
1978 return;
1979
1980 cpufreq_suspended = false;
1981
1982 if (!has_target() && !cpufreq_driver->resume)
1983 return;
1984
1985 pr_debug("%s: Resuming Governors\n", __func__);
1986
1987 for_each_active_policy(policy) {
1988 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1989 pr_err("%s: Failed to resume driver: %s\n", __func__,
1990 cpufreq_driver->name);
1991 } else if (has_target()) {
1992 down_write(&policy->rwsem);
1993 ret = cpufreq_start_governor(policy);
1994 up_write(&policy->rwsem);
1995
1996 if (ret)
1997 pr_err("%s: Failed to start governor for CPU%u's policy\n",
1998 __func__, policy->cpu);
1999 }
2000 }
2001}
2002
2003/**
2004 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2005 * @flags: Flags to test against the current cpufreq driver's flags.
2006 *
2007 * Assumes that the driver is there, so callers must ensure that this is the
2008 * case.
2009 */
2010bool cpufreq_driver_test_flags(u16 flags)
2011{
2012 return !!(cpufreq_driver->flags & flags);
2013}
2014
2015/**
2016 * cpufreq_get_current_driver - Return the current driver's name.
2017 *
2018 * Return the name string of the currently registered cpufreq driver or NULL if
2019 * none.
2020 */
2021const char *cpufreq_get_current_driver(void)
2022{
2023 if (cpufreq_driver)
2024 return cpufreq_driver->name;
2025
2026 return NULL;
2027}
2028EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2029
2030/**
2031 * cpufreq_get_driver_data - Return current driver data.
2032 *
2033 * Return the private data of the currently registered cpufreq driver, or NULL
2034 * if no cpufreq driver has been registered.
2035 */
2036void *cpufreq_get_driver_data(void)
2037{
2038 if (cpufreq_driver)
2039 return cpufreq_driver->driver_data;
2040
2041 return NULL;
2042}
2043EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2044
2045/*********************************************************************
2046 * NOTIFIER LISTS INTERFACE *
2047 *********************************************************************/
2048
2049/**
2050 * cpufreq_register_notifier - Register a notifier with cpufreq.
2051 * @nb: notifier function to register.
2052 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2053 *
2054 * Add a notifier to one of two lists: either a list of notifiers that run on
2055 * clock rate changes (once before and once after every transition), or a list
2056 * of notifiers that ron on cpufreq policy changes.
2057 *
2058 * This function may sleep and it has the same return values as
2059 * blocking_notifier_chain_register().
2060 */
2061int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2062{
2063 int ret;
2064
2065 if (cpufreq_disabled())
2066 return -EINVAL;
2067
2068 switch (list) {
2069 case CPUFREQ_TRANSITION_NOTIFIER:
2070 mutex_lock(&cpufreq_fast_switch_lock);
2071
2072 if (cpufreq_fast_switch_count > 0) {
2073 mutex_unlock(&cpufreq_fast_switch_lock);
2074 return -EBUSY;
2075 }
2076 ret = srcu_notifier_chain_register(
2077 &cpufreq_transition_notifier_list, nb);
2078 if (!ret)
2079 cpufreq_fast_switch_count--;
2080
2081 mutex_unlock(&cpufreq_fast_switch_lock);
2082 break;
2083 case CPUFREQ_POLICY_NOTIFIER:
2084 ret = blocking_notifier_chain_register(
2085 &cpufreq_policy_notifier_list, nb);
2086 break;
2087 default:
2088 ret = -EINVAL;
2089 }
2090
2091 return ret;
2092}
2093EXPORT_SYMBOL(cpufreq_register_notifier);
2094
2095/**
2096 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2097 * @nb: notifier block to be unregistered.
2098 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2099 *
2100 * Remove a notifier from one of the cpufreq notifier lists.
2101 *
2102 * This function may sleep and it has the same return values as
2103 * blocking_notifier_chain_unregister().
2104 */
2105int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2106{
2107 int ret;
2108
2109 if (cpufreq_disabled())
2110 return -EINVAL;
2111
2112 switch (list) {
2113 case CPUFREQ_TRANSITION_NOTIFIER:
2114 mutex_lock(&cpufreq_fast_switch_lock);
2115
2116 ret = srcu_notifier_chain_unregister(
2117 &cpufreq_transition_notifier_list, nb);
2118 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2119 cpufreq_fast_switch_count++;
2120
2121 mutex_unlock(&cpufreq_fast_switch_lock);
2122 break;
2123 case CPUFREQ_POLICY_NOTIFIER:
2124 ret = blocking_notifier_chain_unregister(
2125 &cpufreq_policy_notifier_list, nb);
2126 break;
2127 default:
2128 ret = -EINVAL;
2129 }
2130
2131 return ret;
2132}
2133EXPORT_SYMBOL(cpufreq_unregister_notifier);
2134
2135
2136/*********************************************************************
2137 * GOVERNORS *
2138 *********************************************************************/
2139
2140/**
2141 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2142 * @policy: cpufreq policy to switch the frequency for.
2143 * @target_freq: New frequency to set (may be approximate).
2144 *
2145 * Carry out a fast frequency switch without sleeping.
2146 *
2147 * The driver's ->fast_switch() callback invoked by this function must be
2148 * suitable for being called from within RCU-sched read-side critical sections
2149 * and it is expected to select the minimum available frequency greater than or
2150 * equal to @target_freq (CPUFREQ_RELATION_L).
2151 *
2152 * This function must not be called if policy->fast_switch_enabled is unset.
2153 *
2154 * Governors calling this function must guarantee that it will never be invoked
2155 * twice in parallel for the same policy and that it will never be called in
2156 * parallel with either ->target() or ->target_index() for the same policy.
2157 *
2158 * Returns the actual frequency set for the CPU.
2159 *
2160 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2161 * error condition, the hardware configuration must be preserved.
2162 */
2163unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2164 unsigned int target_freq)
2165{
2166 unsigned int freq;
2167 int cpu;
2168
2169 target_freq = clamp_val(target_freq, policy->min, policy->max);
2170 freq = cpufreq_driver->fast_switch(policy, target_freq);
2171
2172 if (!freq)
2173 return 0;
2174
2175 policy->cur = freq;
2176 arch_set_freq_scale(policy->related_cpus, freq,
2177 arch_scale_freq_ref(policy->cpu));
2178 cpufreq_stats_record_transition(policy, freq);
2179
2180 if (trace_cpu_frequency_enabled()) {
2181 for_each_cpu(cpu, policy->cpus)
2182 trace_cpu_frequency(freq, cpu);
2183 }
2184
2185 return freq;
2186}
2187EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2188
2189/**
2190 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2191 * @cpu: Target CPU.
2192 * @min_perf: Minimum (required) performance level (units of @capacity).
2193 * @target_perf: Target (desired) performance level (units of @capacity).
2194 * @capacity: Capacity of the target CPU.
2195 *
2196 * Carry out a fast performance level switch of @cpu without sleeping.
2197 *
2198 * The driver's ->adjust_perf() callback invoked by this function must be
2199 * suitable for being called from within RCU-sched read-side critical sections
2200 * and it is expected to select a suitable performance level equal to or above
2201 * @min_perf and preferably equal to or below @target_perf.
2202 *
2203 * This function must not be called if policy->fast_switch_enabled is unset.
2204 *
2205 * Governors calling this function must guarantee that it will never be invoked
2206 * twice in parallel for the same CPU and that it will never be called in
2207 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2208 * the same CPU.
2209 */
2210void cpufreq_driver_adjust_perf(unsigned int cpu,
2211 unsigned long min_perf,
2212 unsigned long target_perf,
2213 unsigned long capacity)
2214{
2215 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2216}
2217
2218/**
2219 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2220 *
2221 * Return 'true' if the ->adjust_perf callback is present for the
2222 * current driver or 'false' otherwise.
2223 */
2224bool cpufreq_driver_has_adjust_perf(void)
2225{
2226 return !!cpufreq_driver->adjust_perf;
2227}
2228
2229/* Must set freqs->new to intermediate frequency */
2230static int __target_intermediate(struct cpufreq_policy *policy,
2231 struct cpufreq_freqs *freqs, int index)
2232{
2233 int ret;
2234
2235 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2236
2237 /* We don't need to switch to intermediate freq */
2238 if (!freqs->new)
2239 return 0;
2240
2241 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2242 __func__, policy->cpu, freqs->old, freqs->new);
2243
2244 cpufreq_freq_transition_begin(policy, freqs);
2245 ret = cpufreq_driver->target_intermediate(policy, index);
2246 cpufreq_freq_transition_end(policy, freqs, ret);
2247
2248 if (ret)
2249 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2250 __func__, ret);
2251
2252 return ret;
2253}
2254
2255static int __target_index(struct cpufreq_policy *policy, int index)
2256{
2257 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2258 unsigned int restore_freq, intermediate_freq = 0;
2259 unsigned int newfreq = policy->freq_table[index].frequency;
2260 int retval = -EINVAL;
2261 bool notify;
2262
2263 if (newfreq == policy->cur)
2264 return 0;
2265
2266 /* Save last value to restore later on errors */
2267 restore_freq = policy->cur;
2268
2269 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2270 if (notify) {
2271 /* Handle switching to intermediate frequency */
2272 if (cpufreq_driver->get_intermediate) {
2273 retval = __target_intermediate(policy, &freqs, index);
2274 if (retval)
2275 return retval;
2276
2277 intermediate_freq = freqs.new;
2278 /* Set old freq to intermediate */
2279 if (intermediate_freq)
2280 freqs.old = freqs.new;
2281 }
2282
2283 freqs.new = newfreq;
2284 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2285 __func__, policy->cpu, freqs.old, freqs.new);
2286
2287 cpufreq_freq_transition_begin(policy, &freqs);
2288 }
2289
2290 retval = cpufreq_driver->target_index(policy, index);
2291 if (retval)
2292 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2293 retval);
2294
2295 if (notify) {
2296 cpufreq_freq_transition_end(policy, &freqs, retval);
2297
2298 /*
2299 * Failed after setting to intermediate freq? Driver should have
2300 * reverted back to initial frequency and so should we. Check
2301 * here for intermediate_freq instead of get_intermediate, in
2302 * case we haven't switched to intermediate freq at all.
2303 */
2304 if (unlikely(retval && intermediate_freq)) {
2305 freqs.old = intermediate_freq;
2306 freqs.new = restore_freq;
2307 cpufreq_freq_transition_begin(policy, &freqs);
2308 cpufreq_freq_transition_end(policy, &freqs, 0);
2309 }
2310 }
2311
2312 return retval;
2313}
2314
2315int __cpufreq_driver_target(struct cpufreq_policy *policy,
2316 unsigned int target_freq,
2317 unsigned int relation)
2318{
2319 unsigned int old_target_freq = target_freq;
2320
2321 if (cpufreq_disabled())
2322 return -ENODEV;
2323
2324 target_freq = __resolve_freq(policy, target_freq, relation);
2325
2326 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2327 policy->cpu, target_freq, relation, old_target_freq);
2328
2329 /*
2330 * This might look like a redundant call as we are checking it again
2331 * after finding index. But it is left intentionally for cases where
2332 * exactly same freq is called again and so we can save on few function
2333 * calls.
2334 */
2335 if (target_freq == policy->cur &&
2336 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2337 return 0;
2338
2339 if (cpufreq_driver->target) {
2340 /*
2341 * If the driver hasn't setup a single inefficient frequency,
2342 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2343 */
2344 if (!policy->efficiencies_available)
2345 relation &= ~CPUFREQ_RELATION_E;
2346
2347 return cpufreq_driver->target(policy, target_freq, relation);
2348 }
2349
2350 if (!cpufreq_driver->target_index)
2351 return -EINVAL;
2352
2353 return __target_index(policy, policy->cached_resolved_idx);
2354}
2355EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2356
2357int cpufreq_driver_target(struct cpufreq_policy *policy,
2358 unsigned int target_freq,
2359 unsigned int relation)
2360{
2361 int ret;
2362
2363 down_write(&policy->rwsem);
2364
2365 ret = __cpufreq_driver_target(policy, target_freq, relation);
2366
2367 up_write(&policy->rwsem);
2368
2369 return ret;
2370}
2371EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2372
2373__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2374{
2375 return NULL;
2376}
2377
2378static int cpufreq_init_governor(struct cpufreq_policy *policy)
2379{
2380 int ret;
2381
2382 /* Don't start any governor operations if we are entering suspend */
2383 if (cpufreq_suspended)
2384 return 0;
2385 /*
2386 * Governor might not be initiated here if ACPI _PPC changed
2387 * notification happened, so check it.
2388 */
2389 if (!policy->governor)
2390 return -EINVAL;
2391
2392 /* Platform doesn't want dynamic frequency switching ? */
2393 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2394 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2395 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2396
2397 if (gov) {
2398 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2399 policy->governor->name, gov->name);
2400 policy->governor = gov;
2401 } else {
2402 return -EINVAL;
2403 }
2404 }
2405
2406 if (!try_module_get(policy->governor->owner))
2407 return -EINVAL;
2408
2409 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2410
2411 if (policy->governor->init) {
2412 ret = policy->governor->init(policy);
2413 if (ret) {
2414 module_put(policy->governor->owner);
2415 return ret;
2416 }
2417 }
2418
2419 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2420
2421 return 0;
2422}
2423
2424static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2425{
2426 if (cpufreq_suspended || !policy->governor)
2427 return;
2428
2429 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2430
2431 if (policy->governor->exit)
2432 policy->governor->exit(policy);
2433
2434 module_put(policy->governor->owner);
2435}
2436
2437int cpufreq_start_governor(struct cpufreq_policy *policy)
2438{
2439 int ret;
2440
2441 if (cpufreq_suspended)
2442 return 0;
2443
2444 if (!policy->governor)
2445 return -EINVAL;
2446
2447 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2448
2449 if (cpufreq_driver->get)
2450 cpufreq_verify_current_freq(policy, false);
2451
2452 if (policy->governor->start) {
2453 ret = policy->governor->start(policy);
2454 if (ret)
2455 return ret;
2456 }
2457
2458 if (policy->governor->limits)
2459 policy->governor->limits(policy);
2460
2461 return 0;
2462}
2463
2464void cpufreq_stop_governor(struct cpufreq_policy *policy)
2465{
2466 if (cpufreq_suspended || !policy->governor)
2467 return;
2468
2469 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2470
2471 if (policy->governor->stop)
2472 policy->governor->stop(policy);
2473}
2474
2475static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2476{
2477 if (cpufreq_suspended || !policy->governor)
2478 return;
2479
2480 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2481
2482 if (policy->governor->limits)
2483 policy->governor->limits(policy);
2484}
2485
2486int cpufreq_register_governor(struct cpufreq_governor *governor)
2487{
2488 int err;
2489
2490 if (!governor)
2491 return -EINVAL;
2492
2493 if (cpufreq_disabled())
2494 return -ENODEV;
2495
2496 mutex_lock(&cpufreq_governor_mutex);
2497
2498 err = -EBUSY;
2499 if (!find_governor(governor->name)) {
2500 err = 0;
2501 list_add(&governor->governor_list, &cpufreq_governor_list);
2502 }
2503
2504 mutex_unlock(&cpufreq_governor_mutex);
2505 return err;
2506}
2507EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2508
2509void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2510{
2511 struct cpufreq_policy *policy;
2512 unsigned long flags;
2513
2514 if (!governor)
2515 return;
2516
2517 if (cpufreq_disabled())
2518 return;
2519
2520 /* clear last_governor for all inactive policies */
2521 read_lock_irqsave(&cpufreq_driver_lock, flags);
2522 for_each_inactive_policy(policy) {
2523 if (!strcmp(policy->last_governor, governor->name)) {
2524 policy->governor = NULL;
2525 strcpy(policy->last_governor, "\0");
2526 }
2527 }
2528 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2529
2530 mutex_lock(&cpufreq_governor_mutex);
2531 list_del(&governor->governor_list);
2532 mutex_unlock(&cpufreq_governor_mutex);
2533}
2534EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2535
2536
2537/*********************************************************************
2538 * POLICY INTERFACE *
2539 *********************************************************************/
2540
2541/**
2542 * cpufreq_get_policy - get the current cpufreq_policy
2543 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2544 * is written
2545 * @cpu: CPU to find the policy for
2546 *
2547 * Reads the current cpufreq policy.
2548 */
2549int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2550{
2551 struct cpufreq_policy *cpu_policy;
2552 if (!policy)
2553 return -EINVAL;
2554
2555 cpu_policy = cpufreq_cpu_get(cpu);
2556 if (!cpu_policy)
2557 return -EINVAL;
2558
2559 memcpy(policy, cpu_policy, sizeof(*policy));
2560
2561 cpufreq_cpu_put(cpu_policy);
2562 return 0;
2563}
2564EXPORT_SYMBOL(cpufreq_get_policy);
2565
2566/**
2567 * cpufreq_set_policy - Modify cpufreq policy parameters.
2568 * @policy: Policy object to modify.
2569 * @new_gov: Policy governor pointer.
2570 * @new_pol: Policy value (for drivers with built-in governors).
2571 *
2572 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2573 * limits to be set for the policy, update @policy with the verified limits
2574 * values and either invoke the driver's ->setpolicy() callback (if present) or
2575 * carry out a governor update for @policy. That is, run the current governor's
2576 * ->limits() callback (if @new_gov points to the same object as the one in
2577 * @policy) or replace the governor for @policy with @new_gov.
2578 *
2579 * The cpuinfo part of @policy is not updated by this function.
2580 */
2581static int cpufreq_set_policy(struct cpufreq_policy *policy,
2582 struct cpufreq_governor *new_gov,
2583 unsigned int new_pol)
2584{
2585 struct cpufreq_policy_data new_data;
2586 struct cpufreq_governor *old_gov;
2587 int ret;
2588
2589 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2590 new_data.freq_table = policy->freq_table;
2591 new_data.cpu = policy->cpu;
2592 /*
2593 * PM QoS framework collects all the requests from users and provide us
2594 * the final aggregated value here.
2595 */
2596 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2597 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2598
2599 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2600 new_data.cpu, new_data.min, new_data.max);
2601
2602 /*
2603 * Verify that the CPU speed can be set within these limits and make sure
2604 * that min <= max.
2605 */
2606 ret = cpufreq_driver->verify(&new_data);
2607 if (ret)
2608 return ret;
2609
2610 /*
2611 * Resolve policy min/max to available frequencies. It ensures
2612 * no frequency resolution will neither overshoot the requested maximum
2613 * nor undershoot the requested minimum.
2614 */
2615 policy->min = new_data.min;
2616 policy->max = new_data.max;
2617 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2618 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2619 trace_cpu_frequency_limits(policy);
2620
2621 policy->cached_target_freq = UINT_MAX;
2622
2623 pr_debug("new min and max freqs are %u - %u kHz\n",
2624 policy->min, policy->max);
2625
2626 if (cpufreq_driver->setpolicy) {
2627 policy->policy = new_pol;
2628 pr_debug("setting range\n");
2629 return cpufreq_driver->setpolicy(policy);
2630 }
2631
2632 if (new_gov == policy->governor) {
2633 pr_debug("governor limits update\n");
2634 cpufreq_governor_limits(policy);
2635 return 0;
2636 }
2637
2638 pr_debug("governor switch\n");
2639
2640 /* save old, working values */
2641 old_gov = policy->governor;
2642 /* end old governor */
2643 if (old_gov) {
2644 cpufreq_stop_governor(policy);
2645 cpufreq_exit_governor(policy);
2646 }
2647
2648 /* start new governor */
2649 policy->governor = new_gov;
2650 ret = cpufreq_init_governor(policy);
2651 if (!ret) {
2652 ret = cpufreq_start_governor(policy);
2653 if (!ret) {
2654 pr_debug("governor change\n");
2655 return 0;
2656 }
2657 cpufreq_exit_governor(policy);
2658 }
2659
2660 /* new governor failed, so re-start old one */
2661 pr_debug("starting governor %s failed\n", policy->governor->name);
2662 if (old_gov) {
2663 policy->governor = old_gov;
2664 if (cpufreq_init_governor(policy))
2665 policy->governor = NULL;
2666 else
2667 cpufreq_start_governor(policy);
2668 }
2669
2670 return ret;
2671}
2672
2673/**
2674 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2675 * @cpu: CPU to re-evaluate the policy for.
2676 *
2677 * Update the current frequency for the cpufreq policy of @cpu and use
2678 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2679 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2680 * for the policy in question, among other things.
2681 */
2682void cpufreq_update_policy(unsigned int cpu)
2683{
2684 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2685
2686 if (!policy)
2687 return;
2688
2689 /*
2690 * BIOS might change freq behind our back
2691 * -> ask driver for current freq and notify governors about a change
2692 */
2693 if (cpufreq_driver->get && has_target() &&
2694 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2695 goto unlock;
2696
2697 refresh_frequency_limits(policy);
2698
2699unlock:
2700 cpufreq_cpu_release(policy);
2701}
2702EXPORT_SYMBOL(cpufreq_update_policy);
2703
2704/**
2705 * cpufreq_update_limits - Update policy limits for a given CPU.
2706 * @cpu: CPU to update the policy limits for.
2707 *
2708 * Invoke the driver's ->update_limits callback if present or call
2709 * cpufreq_update_policy() for @cpu.
2710 */
2711void cpufreq_update_limits(unsigned int cpu)
2712{
2713 if (cpufreq_driver->update_limits)
2714 cpufreq_driver->update_limits(cpu);
2715 else
2716 cpufreq_update_policy(cpu);
2717}
2718EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2719
2720/*********************************************************************
2721 * BOOST *
2722 *********************************************************************/
2723static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2724{
2725 int ret;
2726
2727 if (!policy->freq_table)
2728 return -ENXIO;
2729
2730 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2731 if (ret) {
2732 pr_err("%s: Policy frequency update failed\n", __func__);
2733 return ret;
2734 }
2735
2736 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2737 if (ret < 0)
2738 return ret;
2739
2740 return 0;
2741}
2742
2743int cpufreq_boost_trigger_state(int state)
2744{
2745 struct cpufreq_policy *policy;
2746 unsigned long flags;
2747 int ret = 0;
2748
2749 if (cpufreq_driver->boost_enabled == state)
2750 return 0;
2751
2752 write_lock_irqsave(&cpufreq_driver_lock, flags);
2753 cpufreq_driver->boost_enabled = state;
2754 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755
2756 cpus_read_lock();
2757 for_each_active_policy(policy) {
2758 ret = cpufreq_driver->set_boost(policy, state);
2759 if (ret)
2760 goto err_reset_state;
2761
2762 policy->boost_enabled = state;
2763 }
2764 cpus_read_unlock();
2765
2766 return 0;
2767
2768err_reset_state:
2769 cpus_read_unlock();
2770
2771 write_lock_irqsave(&cpufreq_driver_lock, flags);
2772 cpufreq_driver->boost_enabled = !state;
2773 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2774
2775 pr_err("%s: Cannot %s BOOST\n",
2776 __func__, state ? "enable" : "disable");
2777
2778 return ret;
2779}
2780
2781static bool cpufreq_boost_supported(void)
2782{
2783 return cpufreq_driver->set_boost;
2784}
2785
2786static int create_boost_sysfs_file(void)
2787{
2788 int ret;
2789
2790 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2791 if (ret)
2792 pr_err("%s: cannot register global BOOST sysfs file\n",
2793 __func__);
2794
2795 return ret;
2796}
2797
2798static void remove_boost_sysfs_file(void)
2799{
2800 if (cpufreq_boost_supported())
2801 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2802}
2803
2804int cpufreq_enable_boost_support(void)
2805{
2806 if (!cpufreq_driver)
2807 return -EINVAL;
2808
2809 if (cpufreq_boost_supported())
2810 return 0;
2811
2812 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2813
2814 /* This will get removed on driver unregister */
2815 return create_boost_sysfs_file();
2816}
2817EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2818
2819int cpufreq_boost_enabled(void)
2820{
2821 return cpufreq_driver->boost_enabled;
2822}
2823EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2824
2825/*********************************************************************
2826 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2827 *********************************************************************/
2828static enum cpuhp_state hp_online;
2829
2830static int cpuhp_cpufreq_online(unsigned int cpu)
2831{
2832 cpufreq_online(cpu);
2833
2834 return 0;
2835}
2836
2837static int cpuhp_cpufreq_offline(unsigned int cpu)
2838{
2839 cpufreq_offline(cpu);
2840
2841 return 0;
2842}
2843
2844/**
2845 * cpufreq_register_driver - register a CPU Frequency driver
2846 * @driver_data: A struct cpufreq_driver containing the values#
2847 * submitted by the CPU Frequency driver.
2848 *
2849 * Registers a CPU Frequency driver to this core code. This code
2850 * returns zero on success, -EEXIST when another driver got here first
2851 * (and isn't unregistered in the meantime).
2852 *
2853 */
2854int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2855{
2856 unsigned long flags;
2857 int ret;
2858
2859 if (cpufreq_disabled())
2860 return -ENODEV;
2861
2862 /*
2863 * The cpufreq core depends heavily on the availability of device
2864 * structure, make sure they are available before proceeding further.
2865 */
2866 if (!get_cpu_device(0))
2867 return -EPROBE_DEFER;
2868
2869 if (!driver_data || !driver_data->verify || !driver_data->init ||
2870 !(driver_data->setpolicy || driver_data->target_index ||
2871 driver_data->target) ||
2872 (driver_data->setpolicy && (driver_data->target_index ||
2873 driver_data->target)) ||
2874 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2875 (!driver_data->online != !driver_data->offline) ||
2876 (driver_data->adjust_perf && !driver_data->fast_switch))
2877 return -EINVAL;
2878
2879 pr_debug("trying to register driver %s\n", driver_data->name);
2880
2881 /* Protect against concurrent CPU online/offline. */
2882 cpus_read_lock();
2883
2884 write_lock_irqsave(&cpufreq_driver_lock, flags);
2885 if (cpufreq_driver) {
2886 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2887 ret = -EEXIST;
2888 goto out;
2889 }
2890 cpufreq_driver = driver_data;
2891 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2892
2893 /*
2894 * Mark support for the scheduler's frequency invariance engine for
2895 * drivers that implement target(), target_index() or fast_switch().
2896 */
2897 if (!cpufreq_driver->setpolicy) {
2898 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2899 pr_debug("supports frequency invariance");
2900 }
2901
2902 if (driver_data->setpolicy)
2903 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2904
2905 if (cpufreq_boost_supported()) {
2906 ret = create_boost_sysfs_file();
2907 if (ret)
2908 goto err_null_driver;
2909 }
2910
2911 ret = subsys_interface_register(&cpufreq_interface);
2912 if (ret)
2913 goto err_boost_unreg;
2914
2915 if (unlikely(list_empty(&cpufreq_policy_list))) {
2916 /* if all ->init() calls failed, unregister */
2917 ret = -ENODEV;
2918 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2919 driver_data->name);
2920 goto err_if_unreg;
2921 }
2922
2923 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2924 "cpufreq:online",
2925 cpuhp_cpufreq_online,
2926 cpuhp_cpufreq_offline);
2927 if (ret < 0)
2928 goto err_if_unreg;
2929 hp_online = ret;
2930 ret = 0;
2931
2932 pr_debug("driver %s up and running\n", driver_data->name);
2933 goto out;
2934
2935err_if_unreg:
2936 subsys_interface_unregister(&cpufreq_interface);
2937err_boost_unreg:
2938 remove_boost_sysfs_file();
2939err_null_driver:
2940 write_lock_irqsave(&cpufreq_driver_lock, flags);
2941 cpufreq_driver = NULL;
2942 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2943out:
2944 cpus_read_unlock();
2945 return ret;
2946}
2947EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2948
2949/*
2950 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2951 *
2952 * Unregister the current CPUFreq driver. Only call this if you have
2953 * the right to do so, i.e. if you have succeeded in initialising before!
2954 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2955 * currently not initialised.
2956 */
2957void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2958{
2959 unsigned long flags;
2960
2961 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2962 return;
2963
2964 pr_debug("unregistering driver %s\n", driver->name);
2965
2966 /* Protect against concurrent cpu hotplug */
2967 cpus_read_lock();
2968 subsys_interface_unregister(&cpufreq_interface);
2969 remove_boost_sysfs_file();
2970 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2971 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2972
2973 write_lock_irqsave(&cpufreq_driver_lock, flags);
2974
2975 cpufreq_driver = NULL;
2976
2977 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2978 cpus_read_unlock();
2979}
2980EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2981
2982static int __init cpufreq_core_init(void)
2983{
2984 struct cpufreq_governor *gov = cpufreq_default_governor();
2985 struct device *dev_root;
2986
2987 if (cpufreq_disabled())
2988 return -ENODEV;
2989
2990 dev_root = bus_get_dev_root(&cpu_subsys);
2991 if (dev_root) {
2992 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
2993 put_device(dev_root);
2994 }
2995 BUG_ON(!cpufreq_global_kobject);
2996
2997 if (!strlen(default_governor))
2998 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2999
3000 return 0;
3001}
3002module_param(off, int, 0444);
3003module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3004core_initcall(cpufreq_core_init);