Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
 
   6 *
   7 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   8 *	Added handling for CPU hotplug
   9 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  10 *	Fix handling for CPU hotplug -- affected CPUs
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/init.h>
  21#include <linux/notifier.h>
  22#include <linux/cpufreq.h>
 
  23#include <linux/delay.h>
  24#include <linux/interrupt.h>
  25#include <linux/spinlock.h>
  26#include <linux/device.h>
  27#include <linux/slab.h>
  28#include <linux/cpu.h>
  29#include <linux/completion.h>
  30#include <linux/mutex.h>
 
 
 
  31#include <linux/syscore_ops.h>
  32
 
  33#include <trace/events/power.h>
  34
  35/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36 * The "cpufreq driver" - the arch- or hardware-dependent low
  37 * level driver of CPUFreq support, and its spinlock. This lock
  38 * also protects the cpufreq_cpu_data array.
  39 */
  40static struct cpufreq_driver *cpufreq_driver;
  41static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  42#ifdef CONFIG_HOTPLUG_CPU
  43/* This one keeps track of the previously set governor of a removed CPU */
  44static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
  45#endif
  46static DEFINE_SPINLOCK(cpufreq_driver_lock);
  47
  48/*
  49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
  50 * all cpufreq/hotplug/workqueue/etc related lock issues.
  51 *
  52 * The rules for this semaphore:
  53 * - Any routine that wants to read from the policy structure will
  54 *   do a down_read on this semaphore.
  55 * - Any routine that will write to the policy structure and/or may take away
  56 *   the policy altogether (eg. CPU hotplug), will hold this lock in write
  57 *   mode before doing so.
  58 *
  59 * Additional rules:
  60 * - All holders of the lock should check to make sure that the CPU they
  61 *   are concerned with are online after they get the lock.
  62 * - Governor routines that can be called in cpufreq hotplug path should not
  63 *   take this sem as top level hotplug notifier handler takes this.
  64 * - Lock should not be held across
  65 *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
  66 */
  67static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
  68static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
  69
  70#define lock_policy_rwsem(mode, cpu)					\
  71static int lock_policy_rwsem_##mode					\
  72(int cpu)								\
  73{									\
  74	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);		\
  75	BUG_ON(policy_cpu == -1);					\
  76	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
  77	if (unlikely(!cpu_online(cpu))) {				\
  78		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
  79		return -1;						\
  80	}								\
  81									\
  82	return 0;							\
  83}
  84
  85lock_policy_rwsem(read, cpu);
  86
  87lock_policy_rwsem(write, cpu);
  88
  89static void unlock_policy_rwsem_read(int cpu)
 
  90{
  91	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  92	BUG_ON(policy_cpu == -1);
  93	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
  94}
  95
  96static void unlock_policy_rwsem_write(int cpu)
 
 
 
  97{
  98	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  99	BUG_ON(policy_cpu == -1);
 100	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
 101}
 102
 103
 104/* internal prototypes */
 105static int __cpufreq_governor(struct cpufreq_policy *policy,
 106		unsigned int event);
 107static unsigned int __cpufreq_get(unsigned int cpu);
 108static void handle_update(struct work_struct *work);
 
 
 
 109
 110/**
 111 * Two notifier lists: the "policy" list is involved in the
 112 * validation process for a new CPU frequency policy; the
 113 * "transition" list for kernel code that needs to handle
 114 * changes to devices when the CPU clock speed changes.
 115 * The mutex locks both lists.
 116 */
 117static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
 118static struct srcu_notifier_head cpufreq_transition_notifier_list;
 119
 120static bool init_cpufreq_transition_notifier_list_called;
 121static int __init init_cpufreq_transition_notifier_list(void)
 122{
 123	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
 124	init_cpufreq_transition_notifier_list_called = true;
 125	return 0;
 
 
 126}
 127pure_initcall(init_cpufreq_transition_notifier_list);
 128
 129static LIST_HEAD(cpufreq_governor_list);
 130static DEFINE_MUTEX(cpufreq_governor_mutex);
 131
 132struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 133{
 134	struct cpufreq_policy *data;
 135	unsigned long flags;
 
 136
 137	if (cpu >= nr_cpu_ids)
 138		goto err_out;
 139
 140	/* get the cpufreq driver */
 141	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 142
 143	if (!cpufreq_driver)
 144		goto err_out_unlock;
 
 
 
 
 145
 146	if (!try_module_get(cpufreq_driver->owner))
 147		goto err_out_unlock;
 148
 
 149
 150	/* get the CPU */
 151	data = per_cpu(cpufreq_cpu_data, cpu);
 
 
 
 
 152
 153	if (!data)
 154		goto err_out_put_module;
 
 155
 156	if (!kobject_get(&data->kobj))
 157		goto err_out_put_module;
 158
 159	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 160	return data;
 
 161
 162err_out_put_module:
 163	module_put(cpufreq_driver->owner);
 164err_out_unlock:
 165	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 166err_out:
 167	return NULL;
 168}
 169EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170
 
 
 
 
 
 171
 172void cpufreq_cpu_put(struct cpufreq_policy *data)
 
 
 
 
 173{
 174	kobject_put(&data->kobj);
 175	module_put(cpufreq_driver->owner);
 176}
 177EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180/*********************************************************************
 181 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 182 *********************************************************************/
 183
 184/**
 185 * adjust_jiffies - adjust the system "loops_per_jiffy"
 
 
 186 *
 187 * This function alters the system "loops_per_jiffy" for the clock
 188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 189 * systems as each CPU might be scaled differently. So, use the arch
 190 * per-CPU loops_per_jiffy value wherever possible.
 191 */
 192#ifndef CONFIG_SMP
 193static unsigned long l_p_j_ref;
 194static unsigned int  l_p_j_ref_freq;
 195
 196static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 197{
 
 
 
 
 198	if (ci->flags & CPUFREQ_CONST_LOOPS)
 199		return;
 200
 201	if (!l_p_j_ref_freq) {
 202		l_p_j_ref = loops_per_jiffy;
 203		l_p_j_ref_freq = ci->old;
 204		pr_debug("saving %lu as reference value for loops_per_jiffy; "
 205			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
 206	}
 207	if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
 208	    (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
 209	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
 210		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 211								ci->new);
 212		pr_debug("scaling loops_per_jiffy to %lu "
 213			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
 214	}
 215}
 216#else
 217static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 218{
 219	return;
 220}
 221#endif
 222
 223
 224/**
 225 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 226 * on frequency transition.
 227 *
 228 * This function calls the transition notifiers and the "adjust_jiffies"
 229 * function. It is called twice on all CPU frequency changes that have
 230 * external effects.
 231 */
 232void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 233{
 234	struct cpufreq_policy *policy;
 235
 236	BUG_ON(irqs_disabled());
 237
 
 
 
 
 238	freqs->flags = cpufreq_driver->flags;
 239	pr_debug("notification %u of frequency transition to %u kHz\n",
 240		state, freqs->new);
 241
 242	policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
 243	switch (state) {
 244
 245	case CPUFREQ_PRECHANGE:
 246		/* detect if the driver reported a value as "old frequency"
 
 247		 * which is not equal to what the cpufreq core thinks is
 248		 * "old frequency".
 249		 */
 250		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 251			if ((policy) && (policy->cpu == freqs->cpu) &&
 252			    (policy->cur) && (policy->cur != freqs->old)) {
 253				pr_debug("Warning: CPU frequency is"
 254					" %u, cpufreq assumed %u kHz.\n",
 255					freqs->old, policy->cur);
 256				freqs->old = policy->cur;
 257			}
 258		}
 
 259		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 260				CPUFREQ_PRECHANGE, freqs);
 
 261		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 262		break;
 263
 264	case CPUFREQ_POSTCHANGE:
 265		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 266		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
 267			(unsigned long)freqs->cpu);
 268		trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
 269		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 270		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 271				CPUFREQ_POSTCHANGE, freqs);
 272		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 273			policy->cur = freqs->new;
 274		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276}
 277EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
 278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279
 
 
 
 280
 281/*********************************************************************
 282 *                          SYSFS INTERFACE                          *
 283 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285static struct cpufreq_governor *__find_governor(const char *str_governor)
 
 
 
 
 
 
 
 
 
 
 
 
 
 286{
 287	struct cpufreq_governor *t;
 288
 289	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 290		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 291			return t;
 292
 293	return NULL;
 294}
 295
 296/**
 297 * cpufreq_parse_governor - parse a governor string
 298 */
 299static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 300				struct cpufreq_governor **governor)
 301{
 302	int err = -EINVAL;
 303
 304	if (!cpufreq_driver)
 305		goto out;
 
 
 306
 307	if (cpufreq_driver->setpolicy) {
 308		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 309			*policy = CPUFREQ_POLICY_PERFORMANCE;
 310			err = 0;
 311		} else if (!strnicmp(str_governor, "powersave",
 312						CPUFREQ_NAME_LEN)) {
 313			*policy = CPUFREQ_POLICY_POWERSAVE;
 314			err = 0;
 315		}
 316	} else if (cpufreq_driver->target) {
 317		struct cpufreq_governor *t;
 318
 319		mutex_lock(&cpufreq_governor_mutex);
 
 320
 321		t = __find_governor(str_governor);
 
 322
 323		if (t == NULL) {
 324			int ret;
 
 
 325
 326			mutex_unlock(&cpufreq_governor_mutex);
 327			ret = request_module("cpufreq_%s", str_governor);
 328			mutex_lock(&cpufreq_governor_mutex);
 329
 330			if (ret == 0)
 331				t = __find_governor(str_governor);
 332		}
 333
 334		if (t != NULL) {
 335			*governor = t;
 336			err = 0;
 337		}
 
 
 
 338
 339		mutex_unlock(&cpufreq_governor_mutex);
 340	}
 341out:
 342	return err;
 343}
 344
 
 
 345
 346/**
 
 
 
 347 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 348 * print out cpufreq information
 349 *
 350 * Write out information from cpufreq_driver->policy[cpu]; object must be
 351 * "unsigned int".
 352 */
 353
 354#define show_one(file_name, object)			\
 355static ssize_t show_##file_name				\
 356(struct cpufreq_policy *policy, char *buf)		\
 357{							\
 358	return sprintf(buf, "%u\n", policy->object);	\
 359}
 360
 361show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 362show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 363show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 364show_one(scaling_min_freq, min);
 365show_one(scaling_max_freq, max);
 366show_one(scaling_cur_freq, cur);
 367
 368static int __cpufreq_set_policy(struct cpufreq_policy *data,
 369				struct cpufreq_policy *policy);
 
 
 
 
 
 
 
 370
 371/**
 
 
 
 
 
 
 
 
 
 
 372 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 373 */
 374#define store_one(file_name, object)			\
 375static ssize_t store_##file_name					\
 376(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 377{									\
 378	unsigned int ret = -EINVAL;					\
 379	struct cpufreq_policy new_policy;				\
 380									\
 381	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 382	if (ret)							\
 383		return -EINVAL;						\
 384									\
 385	ret = sscanf(buf, "%u", &new_policy.object);			\
 386	if (ret != 1)							\
 387		return -EINVAL;						\
 388									\
 389	ret = __cpufreq_set_policy(policy, &new_policy);		\
 390	policy->user_policy.object = policy->object;			\
 391									\
 392	return ret ? ret : count;					\
 393}
 394
 395store_one(scaling_min_freq, min);
 396store_one(scaling_max_freq, max);
 397
 398/**
 399 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 400 */
 401static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 402					char *buf)
 403{
 404	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 405	if (!cur_freq)
 406		return sprintf(buf, "<unknown>");
 407	return sprintf(buf, "%u\n", cur_freq);
 408}
 409
 
 
 410
 411/**
 
 
 
 412 * show_scaling_governor - show the current policy for the specified CPU
 413 */
 414static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 415{
 416	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 417		return sprintf(buf, "powersave\n");
 418	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 419		return sprintf(buf, "performance\n");
 420	else if (policy->governor)
 421		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
 422				policy->governor->name);
 423	return -EINVAL;
 424}
 425
 426
 427/**
 428 * store_scaling_governor - store policy for the specified CPU
 429 */
 430static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 431					const char *buf, size_t count)
 432{
 433	unsigned int ret = -EINVAL;
 434	char	str_governor[16];
 435	struct cpufreq_policy new_policy;
 436
 437	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 438	if (ret)
 439		return ret;
 440
 441	ret = sscanf(buf, "%15s", str_governor);
 442	if (ret != 1)
 443		return -EINVAL;
 444
 445	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 446						&new_policy.governor))
 447		return -EINVAL;
 448
 449	/* Do not use cpufreq_set_policy here or the user_policy.max
 450	   will be wrongly overridden */
 451	ret = __cpufreq_set_policy(policy, &new_policy);
 452
 453	policy->user_policy.policy = policy->policy;
 454	policy->user_policy.governor = policy->governor;
 
 455
 456	if (ret)
 457		return ret;
 458	else
 459		return count;
 
 
 
 
 
 
 
 460}
 461
 462/**
 463 * show_scaling_driver - show the cpufreq driver currently loaded
 464 */
 465static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 466{
 467	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
 468}
 469
 470/**
 471 * show_scaling_available_governors - show the available CPUfreq governors
 472 */
 473static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 474						char *buf)
 475{
 476	ssize_t i = 0;
 477	struct cpufreq_governor *t;
 478
 479	if (!cpufreq_driver->target) {
 480		i += sprintf(buf, "performance powersave");
 481		goto out;
 482	}
 483
 484	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 
 485		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 486		    - (CPUFREQ_NAME_LEN + 2)))
 487			goto out;
 488		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
 489	}
 
 490out:
 491	i += sprintf(&buf[i], "\n");
 492	return i;
 493}
 494
 495static ssize_t show_cpus(const struct cpumask *mask, char *buf)
 496{
 497	ssize_t i = 0;
 498	unsigned int cpu;
 499
 500	for_each_cpu(cpu, mask) {
 501		if (i)
 502			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 503		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 504		if (i >= (PAGE_SIZE - 5))
 505			break;
 506	}
 
 
 
 
 507	i += sprintf(&buf[i], "\n");
 508	return i;
 509}
 
 510
 511/**
 512 * show_related_cpus - show the CPUs affected by each transition even if
 513 * hw coordination is in use
 514 */
 515static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 516{
 517	if (cpumask_empty(policy->related_cpus))
 518		return show_cpus(policy->cpus, buf);
 519	return show_cpus(policy->related_cpus, buf);
 520}
 521
 522/**
 523 * show_affected_cpus - show the CPUs affected by each transition
 524 */
 525static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 526{
 527	return show_cpus(policy->cpus, buf);
 528}
 529
 530static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 531					const char *buf, size_t count)
 532{
 533	unsigned int freq = 0;
 534	unsigned int ret;
 535
 536	if (!policy->governor || !policy->governor->store_setspeed)
 537		return -EINVAL;
 538
 539	ret = sscanf(buf, "%u", &freq);
 540	if (ret != 1)
 541		return -EINVAL;
 542
 543	policy->governor->store_setspeed(policy, freq);
 544
 545	return count;
 546}
 547
 548static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (!policy->governor || !policy->governor->show_setspeed)
 551		return sprintf(buf, "<unsupported>\n");
 552
 553	return policy->governor->show_setspeed(policy, buf);
 554}
 555
 556/**
 557 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
 558 */
 559static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 560{
 561	unsigned int limit;
 562	int ret;
 563	if (cpufreq_driver->bios_limit) {
 564		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 565		if (!ret)
 566			return sprintf(buf, "%u\n", limit);
 567	}
 568	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 569}
 570
 571cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 572cpufreq_freq_attr_ro(cpuinfo_min_freq);
 573cpufreq_freq_attr_ro(cpuinfo_max_freq);
 574cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 575cpufreq_freq_attr_ro(scaling_available_governors);
 576cpufreq_freq_attr_ro(scaling_driver);
 577cpufreq_freq_attr_ro(scaling_cur_freq);
 578cpufreq_freq_attr_ro(bios_limit);
 579cpufreq_freq_attr_ro(related_cpus);
 580cpufreq_freq_attr_ro(affected_cpus);
 581cpufreq_freq_attr_rw(scaling_min_freq);
 582cpufreq_freq_attr_rw(scaling_max_freq);
 583cpufreq_freq_attr_rw(scaling_governor);
 584cpufreq_freq_attr_rw(scaling_setspeed);
 585
 586static struct attribute *default_attrs[] = {
 587	&cpuinfo_min_freq.attr,
 588	&cpuinfo_max_freq.attr,
 589	&cpuinfo_transition_latency.attr,
 590	&scaling_min_freq.attr,
 591	&scaling_max_freq.attr,
 592	&affected_cpus.attr,
 593	&related_cpus.attr,
 594	&scaling_governor.attr,
 595	&scaling_driver.attr,
 596	&scaling_available_governors.attr,
 597	&scaling_setspeed.attr,
 598	NULL
 599};
 600
 601struct kobject *cpufreq_global_kobject;
 602EXPORT_SYMBOL(cpufreq_global_kobject);
 603
 604#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 605#define to_attr(a) container_of(a, struct freq_attr, attr)
 606
 607static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 608{
 609	struct cpufreq_policy *policy = to_policy(kobj);
 610	struct freq_attr *fattr = to_attr(attr);
 611	ssize_t ret = -EINVAL;
 612	policy = cpufreq_cpu_get(policy->cpu);
 613	if (!policy)
 614		goto no_policy;
 615
 616	if (lock_policy_rwsem_read(policy->cpu) < 0)
 617		goto fail;
 618
 619	if (fattr->show)
 
 620		ret = fattr->show(policy, buf);
 621	else
 622		ret = -EIO;
 623
 624	unlock_policy_rwsem_read(policy->cpu);
 625fail:
 626	cpufreq_cpu_put(policy);
 627no_policy:
 628	return ret;
 629}
 630
 631static ssize_t store(struct kobject *kobj, struct attribute *attr,
 632		     const char *buf, size_t count)
 633{
 634	struct cpufreq_policy *policy = to_policy(kobj);
 635	struct freq_attr *fattr = to_attr(attr);
 636	ssize_t ret = -EINVAL;
 637	policy = cpufreq_cpu_get(policy->cpu);
 638	if (!policy)
 639		goto no_policy;
 640
 641	if (lock_policy_rwsem_write(policy->cpu) < 0)
 642		goto fail;
 643
 644	if (fattr->store)
 
 645		ret = fattr->store(policy, buf, count);
 646	else
 647		ret = -EIO;
 648
 649	unlock_policy_rwsem_write(policy->cpu);
 650fail:
 651	cpufreq_cpu_put(policy);
 652no_policy:
 653	return ret;
 654}
 655
 656static void cpufreq_sysfs_release(struct kobject *kobj)
 657{
 658	struct cpufreq_policy *policy = to_policy(kobj);
 659	pr_debug("last reference is dropped\n");
 660	complete(&policy->kobj_unregister);
 661}
 662
 663static const struct sysfs_ops sysfs_ops = {
 664	.show	= show,
 665	.store	= store,
 666};
 667
 668static struct kobj_type ktype_cpufreq = {
 669	.sysfs_ops	= &sysfs_ops,
 670	.default_attrs	= default_attrs,
 671	.release	= cpufreq_sysfs_release,
 672};
 673
 674/*
 675 * Returns:
 676 *   Negative: Failure
 677 *   0:        Success
 678 *   Positive: When we have a managed CPU and the sysfs got symlinked
 679 */
 680static int cpufreq_add_dev_policy(unsigned int cpu,
 681				  struct cpufreq_policy *policy,
 682				  struct sys_device *sys_dev)
 683{
 684	int ret = 0;
 685#ifdef CONFIG_SMP
 686	unsigned long flags;
 687	unsigned int j;
 688#ifdef CONFIG_HOTPLUG_CPU
 689	struct cpufreq_governor *gov;
 690
 691	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
 692	if (gov) {
 693		policy->governor = gov;
 694		pr_debug("Restoring governor %s for cpu %d\n",
 695		       policy->governor->name, cpu);
 696	}
 697#endif
 698
 699	for_each_cpu(j, policy->cpus) {
 700		struct cpufreq_policy *managed_policy;
 701
 702		if (cpu == j)
 703			continue;
 704
 705		/* Check for existing affected CPUs.
 706		 * They may not be aware of it due to CPU Hotplug.
 707		 * cpufreq_cpu_put is called when the device is removed
 708		 * in __cpufreq_remove_dev()
 709		 */
 710		managed_policy = cpufreq_cpu_get(j);
 711		if (unlikely(managed_policy)) {
 712
 713			/* Set proper policy_cpu */
 714			unlock_policy_rwsem_write(cpu);
 715			per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
 716
 717			if (lock_policy_rwsem_write(cpu) < 0) {
 718				/* Should not go through policy unlock path */
 719				if (cpufreq_driver->exit)
 720					cpufreq_driver->exit(policy);
 721				cpufreq_cpu_put(managed_policy);
 722				return -EBUSY;
 723			}
 724
 725			spin_lock_irqsave(&cpufreq_driver_lock, flags);
 726			cpumask_copy(managed_policy->cpus, policy->cpus);
 727			per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
 728			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 729
 730			pr_debug("CPU already managed, adding link\n");
 731			ret = sysfs_create_link(&sys_dev->kobj,
 732						&managed_policy->kobj,
 733						"cpufreq");
 734			if (ret)
 735				cpufreq_cpu_put(managed_policy);
 736			/*
 737			 * Success. We only needed to be added to the mask.
 738			 * Call driver->exit() because only the cpu parent of
 739			 * the kobj needed to call init().
 740			 */
 741			if (cpufreq_driver->exit)
 742				cpufreq_driver->exit(policy);
 743
 744			if (!ret)
 745				return 1;
 746			else
 747				return ret;
 748		}
 749	}
 750#endif
 751	return ret;
 752}
 753
 754
 755/* symlink affected CPUs */
 756static int cpufreq_add_dev_symlink(unsigned int cpu,
 757				   struct cpufreq_policy *policy)
 758{
 759	unsigned int j;
 760	int ret = 0;
 761
 762	for_each_cpu(j, policy->cpus) {
 763		struct cpufreq_policy *managed_policy;
 764		struct sys_device *cpu_sys_dev;
 765
 766		if (j == cpu)
 767			continue;
 768		if (!cpu_online(j))
 769			continue;
 770
 771		pr_debug("CPU %u already managed, adding link\n", j);
 772		managed_policy = cpufreq_cpu_get(cpu);
 773		cpu_sys_dev = get_cpu_sysdev(j);
 774		ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
 775					"cpufreq");
 776		if (ret) {
 777			cpufreq_cpu_put(managed_policy);
 778			return ret;
 779		}
 780	}
 781	return ret;
 782}
 783
 784static int cpufreq_add_dev_interface(unsigned int cpu,
 785				     struct cpufreq_policy *policy,
 786				     struct sys_device *sys_dev)
 787{
 788	struct cpufreq_policy new_policy;
 789	struct freq_attr **drv_attr;
 790	unsigned long flags;
 791	int ret = 0;
 792	unsigned int j;
 793
 794	/* prepare interface data */
 795	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 796				   &sys_dev->kobj, "cpufreq");
 797	if (ret)
 798		return ret;
 799
 800	/* set up files for this cpu device */
 801	drv_attr = cpufreq_driver->attr;
 802	while ((drv_attr) && (*drv_attr)) {
 803		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 804		if (ret)
 805			goto err_out_kobj_put;
 806		drv_attr++;
 807	}
 808	if (cpufreq_driver->get) {
 809		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 810		if (ret)
 811			goto err_out_kobj_put;
 812	}
 813	if (cpufreq_driver->target) {
 814		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 815		if (ret)
 816			goto err_out_kobj_put;
 817	}
 
 
 
 
 
 818	if (cpufreq_driver->bios_limit) {
 819		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 820		if (ret)
 821			goto err_out_kobj_put;
 822	}
 823
 824	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 825	for_each_cpu(j, policy->cpus) {
 826		if (!cpu_online(j))
 827			continue;
 828		per_cpu(cpufreq_cpu_data, j) = policy;
 829		per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
 830	}
 831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 832
 833	ret = cpufreq_add_dev_symlink(cpu, policy);
 834	if (ret)
 835		goto err_out_kobj_put;
 
 
 836
 837	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
 838	/* assure that the starting sequence is run in __cpufreq_set_policy */
 839	policy->governor = NULL;
 840
 841	/* set default policy */
 842	ret = __cpufreq_set_policy(policy, &new_policy);
 843	policy->user_policy.policy = policy->policy;
 844	policy->user_policy.governor = policy->governor;
 
 845
 846	if (ret) {
 847		pr_debug("setting policy failed\n");
 848		if (cpufreq_driver->exit)
 849			cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	}
 851	return ret;
 852
 853err_out_kobj_put:
 854	kobject_put(&policy->kobj);
 855	wait_for_completion(&policy->kobj_unregister);
 
 856	return ret;
 857}
 858
 859
 860/**
 861 * cpufreq_add_dev - add a CPU device
 862 *
 863 * Adds the cpufreq interface for a CPU device.
 864 *
 865 * The Oracle says: try running cpufreq registration/unregistration concurrently
 866 * with with cpu hotplugging and all hell will break loose. Tried to clean this
 867 * mess up, but more thorough testing is needed. - Mathieu
 868 */
 869static int cpufreq_add_dev(struct sys_device *sys_dev)
 870{
 871	unsigned int cpu = sys_dev->id;
 872	int ret = 0, found = 0;
 873	struct cpufreq_policy *policy;
 874	unsigned long flags;
 875	unsigned int j;
 876#ifdef CONFIG_HOTPLUG_CPU
 877	int sibling;
 878#endif
 879
 880	if (cpu_is_offline(cpu))
 
 881		return 0;
 882
 883	pr_debug("adding CPU %u\n", cpu);
 
 
 884
 885#ifdef CONFIG_SMP
 886	/* check whether a different CPU already registered this
 887	 * CPU because it is in the same boat. */
 888	policy = cpufreq_cpu_get(cpu);
 889	if (unlikely(policy)) {
 890		cpufreq_cpu_put(policy);
 891		return 0;
 892	}
 893#endif
 
 
 894
 895	if (!try_module_get(cpufreq_driver->owner)) {
 896		ret = -EINVAL;
 897		goto module_out;
 
 
 
 898	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900	ret = -ENOMEM;
 901	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902	if (!policy)
 903		goto nomem_out;
 904
 905	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
 906		goto err_free_policy;
 907
 908	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
 909		goto err_free_cpumask;
 910
 911	policy->cpu = cpu;
 912	cpumask_copy(policy->cpus, cpumask_of(cpu));
 913
 914	/* Initially set CPU itself as the policy_cpu */
 915	per_cpu(cpufreq_policy_cpu, cpu) = cpu;
 916	ret = (lock_policy_rwsem_write(cpu) < 0);
 917	WARN_ON(ret);
 918
 919	init_completion(&policy->kobj_unregister);
 920	INIT_WORK(&policy->update, handle_update);
 921
 922	/* Set governor before ->init, so that driver could check it */
 923#ifdef CONFIG_HOTPLUG_CPU
 924	for_each_online_cpu(sibling) {
 925		struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
 926		if (cp && cp->governor &&
 927		    (cpumask_test_cpu(cpu, cp->related_cpus))) {
 928			policy->governor = cp->governor;
 929			found = 1;
 930			break;
 931		}
 932	}
 933#endif
 934	if (!found)
 935		policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
 936	/* call driver. From then on the cpufreq must be able
 937	 * to accept all calls to ->verify and ->setpolicy for this CPU
 938	 */
 939	ret = cpufreq_driver->init(policy);
 940	if (ret) {
 941		pr_debug("initialization failed\n");
 942		goto err_unlock_policy;
 
 
 
 
 
 
 943	}
 944	policy->user_policy.min = policy->min;
 945	policy->user_policy.max = policy->max;
 946
 947	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
 948				     CPUFREQ_START, policy);
 949
 950	ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
 
 
 
 
 951	if (ret) {
 952		if (ret > 0)
 953			/* This is a managed cpu, symlink created,
 954			   exit with 0 */
 955			ret = 0;
 956		goto err_unlock_policy;
 957	}
 958
 959	ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
 960	if (ret)
 961		goto err_out_unregister;
 
 
 
 
 962
 963	unlock_policy_rwsem_write(cpu);
 
 
 
 
 964
 965	kobject_uevent(&policy->kobj, KOBJ_ADD);
 966	module_put(cpufreq_driver->owner);
 967	pr_debug("initialization complete\n");
 968
 969	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 970
 
 
 971
 972err_out_unregister:
 973	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 974	for_each_cpu(j, policy->cpus)
 975		per_cpu(cpufreq_cpu_data, j) = NULL;
 976	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 977
 978	kobject_put(&policy->kobj);
 979	wait_for_completion(&policy->kobj_unregister);
 
 
 
 
 980
 981err_unlock_policy:
 982	unlock_policy_rwsem_write(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983	free_cpumask_var(policy->related_cpus);
 984err_free_cpumask:
 985	free_cpumask_var(policy->cpus);
 986err_free_policy:
 987	kfree(policy);
 988nomem_out:
 989	module_put(cpufreq_driver->owner);
 990module_out:
 991	return ret;
 992}
 993
 994
 995/**
 996 * __cpufreq_remove_dev - remove a CPU device
 997 *
 998 * Removes the cpufreq interface for a CPU device.
 999 * Caller should already have policy_rwsem in write mode for this CPU.
1000 * This routine frees the rwsem before returning.
1001 */
1002static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1003{
1004	unsigned int cpu = sys_dev->id;
 
1005	unsigned long flags;
1006	struct cpufreq_policy *data;
1007	struct kobject *kobj;
1008	struct completion *cmp;
1009#ifdef CONFIG_SMP
1010	struct sys_device *cpu_sys_dev;
1011	unsigned int j;
1012#endif
1013
1014	pr_debug("unregistering CPU %u\n", cpu);
1015
1016	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1017	data = per_cpu(cpufreq_cpu_data, cpu);
1018
1019	if (!data) {
1020		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1021		unlock_policy_rwsem_write(cpu);
1022		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023	}
1024	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1025
 
 
 
1026
1027#ifdef CONFIG_SMP
1028	/* if this isn't the CPU which is the parent of the kobj, we
1029	 * only need to unlink, put and exit
1030	 */
1031	if (unlikely(cpu != data->cpu)) {
1032		pr_debug("removing link\n");
1033		cpumask_clear_cpu(cpu, data->cpus);
1034		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1035		kobj = &sys_dev->kobj;
1036		cpufreq_cpu_put(data);
1037		unlock_policy_rwsem_write(cpu);
1038		sysfs_remove_link(kobj, "cpufreq");
1039		return 0;
1040	}
1041#endif
1042
1043#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
1044
1045#ifdef CONFIG_HOTPLUG_CPU
1046	strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1047			CPUFREQ_NAME_LEN);
1048#endif
 
 
 
 
1049
1050	/* if we have other CPUs still registered, we need to unlink them,
1051	 * or else wait_for_completion below will lock up. Clean the
1052	 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1053	 * the sysfs links afterwards.
 
 
 
1054	 */
1055	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1056		for_each_cpu(j, data->cpus) {
1057			if (j == cpu)
1058				continue;
1059			per_cpu(cpufreq_cpu_data, j) = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060		}
 
 
 
1061	}
1062
1063	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064
1065	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1066		for_each_cpu(j, data->cpus) {
1067			if (j == cpu)
1068				continue;
1069			pr_debug("removing link for cpu %u\n", j);
1070#ifdef CONFIG_HOTPLUG_CPU
1071			strncpy(per_cpu(cpufreq_cpu_governor, j),
1072				data->governor->name, CPUFREQ_NAME_LEN);
1073#endif
1074			cpu_sys_dev = get_cpu_sysdev(j);
1075			kobj = &cpu_sys_dev->kobj;
1076			unlock_policy_rwsem_write(cpu);
1077			sysfs_remove_link(kobj, "cpufreq");
1078			lock_policy_rwsem_write(cpu);
1079			cpufreq_cpu_put(data);
1080		}
1081	}
1082#else
1083	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084#endif
1085
1086	if (cpufreq_driver->target)
1087		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088
1089	kobj = &data->kobj;
1090	cmp = &data->kobj_unregister;
1091	unlock_policy_rwsem_write(cpu);
1092	kobject_put(kobj);
 
 
 
 
 
 
1093
1094	/* we need to make sure that the underlying kobj is actually
1095	 * not referenced anymore by anybody before we proceed with
1096	 * unloading.
1097	 */
1098	pr_debug("waiting for dropping of refcount\n");
1099	wait_for_completion(cmp);
1100	pr_debug("wait complete\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101
1102	lock_policy_rwsem_write(cpu);
 
 
 
 
 
 
 
 
1103	if (cpufreq_driver->exit)
1104		cpufreq_driver->exit(data);
1105	unlock_policy_rwsem_write(cpu);
1106
1107#ifdef CONFIG_HOTPLUG_CPU
1108	/* when the CPU which is the parent of the kobj is hotplugged
1109	 * offline, check for siblings, and create cpufreq sysfs interface
1110	 * and symlinks
1111	 */
1112	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1113		/* first sibling now owns the new sysfs dir */
1114		cpumask_clear_cpu(cpu, data->cpus);
1115		cpufreq_add_dev(get_cpu_sysdev(cpumask_first(data->cpus)));
1116
1117		/* finally remove our own symlink */
1118		lock_policy_rwsem_write(cpu);
1119		__cpufreq_remove_dev(sys_dev);
 
 
 
 
 
 
 
 
 
 
 
 
1120	}
1121#endif
1122
1123	free_cpumask_var(data->related_cpus);
1124	free_cpumask_var(data->cpus);
1125	kfree(data);
 
1126
1127	return 0;
1128}
1129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130
1131static int cpufreq_remove_dev(struct sys_device *sys_dev)
1132{
1133	unsigned int cpu = sys_dev->id;
1134	int retval;
1135
1136	if (cpu_is_offline(cpu))
 
 
 
 
1137		return 0;
 
1138
1139	if (unlikely(lock_policy_rwsem_write(cpu)))
1140		BUG();
1141
1142	retval = __cpufreq_remove_dev(sys_dev);
1143	return retval;
1144}
1145
 
 
 
1146
1147static void handle_update(struct work_struct *work)
 
 
 
 
 
1148{
1149	struct cpufreq_policy *policy =
1150		container_of(work, struct cpufreq_policy, update);
1151	unsigned int cpu = policy->cpu;
1152	pr_debug("handle_update for cpu %u called\n", cpu);
1153	cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154}
1155
1156/**
1157 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1158 *	@cpu: cpu number
1159 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1160 *	@new_freq: CPU frequency the CPU actually runs at
1161 *
1162 *	We adjust to current frequency first, and need to clean up later.
1163 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1164 */
1165static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1166				unsigned int new_freq)
1167{
1168	struct cpufreq_freqs freqs;
1169
1170	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1171	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172
1173	freqs.cpu = cpu;
1174	freqs.old = old_freq;
1175	freqs.new = new_freq;
1176	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1177	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
 
1178}
1179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181/**
1182 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1183 * @cpu: CPU number
1184 *
1185 * This is the last known freq, without actually getting it from the driver.
1186 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187 */
1188unsigned int cpufreq_quick_get(unsigned int cpu)
1189{
1190	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1191	unsigned int ret_freq = 0;
 
1192
 
 
 
 
 
 
 
 
 
 
 
1193	if (policy) {
1194		ret_freq = policy->cur;
1195		cpufreq_cpu_put(policy);
1196	}
1197
1198	return ret_freq;
1199}
1200EXPORT_SYMBOL(cpufreq_quick_get);
1201
1202/**
1203 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1204 * @cpu: CPU number
1205 *
1206 * Just return the max possible frequency for a given CPU.
1207 */
1208unsigned int cpufreq_quick_get_max(unsigned int cpu)
1209{
1210	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1211	unsigned int ret_freq = 0;
1212
1213	if (policy) {
1214		ret_freq = policy->max;
1215		cpufreq_cpu_put(policy);
1216	}
1217
1218	return ret_freq;
1219}
1220EXPORT_SYMBOL(cpufreq_quick_get_max);
1221
1222
1223static unsigned int __cpufreq_get(unsigned int cpu)
 
 
 
 
 
1224{
1225	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1226	unsigned int ret_freq = 0;
1227
1228	if (!cpufreq_driver->get)
1229		return ret_freq;
1230
1231	ret_freq = cpufreq_driver->get(cpu);
1232
1233	if (ret_freq && policy->cur &&
1234		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1235		/* verify no discrepancy between actual and
1236					saved value exists */
1237		if (unlikely(ret_freq != policy->cur)) {
1238			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1239			schedule_work(&policy->update);
1240		}
1241	}
1242
1243	return ret_freq;
1244}
 
 
 
 
 
 
 
 
 
1245
1246/**
1247 * cpufreq_get - get the current CPU frequency (in kHz)
1248 * @cpu: CPU number
1249 *
1250 * Get the CPU current (static) CPU frequency
1251 */
1252unsigned int cpufreq_get(unsigned int cpu)
1253{
1254	unsigned int ret_freq = 0;
1255	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 
1256
1257	if (!policy)
1258		goto out;
1259
1260	if (unlikely(lock_policy_rwsem_read(cpu)))
1261		goto out_policy;
1262
1263	ret_freq = __cpufreq_get(cpu);
1264
1265	unlock_policy_rwsem_read(cpu);
 
1266
1267out_policy:
1268	cpufreq_cpu_put(policy);
1269out:
1270	return ret_freq;
1271}
1272EXPORT_SYMBOL(cpufreq_get);
1273
1274static struct sysdev_driver cpufreq_sysdev_driver = {
1275	.add		= cpufreq_add_dev,
1276	.remove		= cpufreq_remove_dev,
 
 
1277};
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279
1280/**
1281 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1282 *
1283 * This function is only executed for the boot processor.  The other CPUs
1284 * have been put offline by means of CPU hotplug.
 
 
1285 */
1286static int cpufreq_bp_suspend(void)
1287{
1288	int ret = 0;
1289
1290	int cpu = smp_processor_id();
1291	struct cpufreq_policy *cpu_policy;
1292
1293	pr_debug("suspending cpu %u\n", cpu);
 
1294
1295	/* If there's no policy for the boot CPU, we have nothing to do. */
1296	cpu_policy = cpufreq_cpu_get(cpu);
1297	if (!cpu_policy)
1298		return 0;
1299
1300	if (cpufreq_driver->suspend) {
1301		ret = cpufreq_driver->suspend(cpu_policy);
1302		if (ret)
1303			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1304					"step on CPU %u\n", cpu_policy->cpu);
 
 
 
 
 
1305	}
1306
1307	cpufreq_cpu_put(cpu_policy);
1308	return ret;
1309}
1310
1311/**
1312 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1313 *
1314 *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1315 *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1316 *	    restored. It will verify that the current freq is in sync with
1317 *	    what we believe it to be. This is a bit later than when it
1318 *	    should be, but nonethteless it's better than calling
1319 *	    cpufreq_driver->get() here which might re-enable interrupts...
1320 *
1321 * This function is only executed for the boot CPU.  The other CPUs have not
1322 * been turned on yet.
1323 */
1324static void cpufreq_bp_resume(void)
1325{
1326	int ret = 0;
 
1327
1328	int cpu = smp_processor_id();
1329	struct cpufreq_policy *cpu_policy;
1330
1331	pr_debug("resuming cpu %u\n", cpu);
 
1332
1333	/* If there's no policy for the boot CPU, we have nothing to do. */
1334	cpu_policy = cpufreq_cpu_get(cpu);
1335	if (!cpu_policy)
1336		return;
1337
1338	if (cpufreq_driver->resume) {
1339		ret = cpufreq_driver->resume(cpu_policy);
1340		if (ret) {
1341			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1342					"step on CPU %u\n", cpu_policy->cpu);
1343			goto fail;
 
 
 
 
 
 
 
 
1344		}
1345	}
 
1346
1347	schedule_work(&cpu_policy->update);
 
 
 
 
 
 
 
 
 
 
1348
1349fail:
1350	cpufreq_cpu_put(cpu_policy);
 
 
 
 
 
 
 
 
 
 
1351}
 
1352
1353static struct syscore_ops cpufreq_syscore_ops = {
1354	.suspend	= cpufreq_bp_suspend,
1355	.resume		= cpufreq_bp_resume,
1356};
 
 
 
 
 
 
1357
 
 
 
1358
1359/*********************************************************************
1360 *                     NOTIFIER LISTS INTERFACE                      *
1361 *********************************************************************/
1362
1363/**
1364 *	cpufreq_register_notifier - register a driver with cpufreq
1365 *	@nb: notifier function to register
1366 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1367 *
1368 *	Add a driver to one of two lists: either a list of drivers that
1369 *      are notified about clock rate changes (once before and once after
1370 *      the transition), or a list of drivers that are notified about
1371 *      changes in cpufreq policy.
1372 *
1373 *	This function may sleep, and has the same return conditions as
1374 *	blocking_notifier_chain_register.
1375 */
1376int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1377{
1378	int ret;
1379
1380	WARN_ON(!init_cpufreq_transition_notifier_list_called);
 
1381
1382	switch (list) {
1383	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1384		ret = srcu_notifier_chain_register(
1385				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1386		break;
1387	case CPUFREQ_POLICY_NOTIFIER:
1388		ret = blocking_notifier_chain_register(
1389				&cpufreq_policy_notifier_list, nb);
1390		break;
1391	default:
1392		ret = -EINVAL;
1393	}
1394
1395	return ret;
1396}
1397EXPORT_SYMBOL(cpufreq_register_notifier);
1398
1399
1400/**
1401 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1402 *	@nb: notifier block to be unregistered
1403 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1404 *
1405 *	Remove a driver from the CPU frequency notifier list.
1406 *
1407 *	This function may sleep, and has the same return conditions as
1408 *	blocking_notifier_chain_unregister.
1409 */
1410int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1411{
1412	int ret;
1413
 
 
 
1414	switch (list) {
1415	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1416		ret = srcu_notifier_chain_unregister(
1417				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1418		break;
1419	case CPUFREQ_POLICY_NOTIFIER:
1420		ret = blocking_notifier_chain_unregister(
1421				&cpufreq_policy_notifier_list, nb);
1422		break;
1423	default:
1424		ret = -EINVAL;
1425	}
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL(cpufreq_unregister_notifier);
1430
1431
1432/*********************************************************************
1433 *                              GOVERNORS                            *
1434 *********************************************************************/
1435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436
1437int __cpufreq_driver_target(struct cpufreq_policy *policy,
1438			    unsigned int target_freq,
1439			    unsigned int relation)
1440{
1441	int retval = -EINVAL;
1442
1443	pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1444		target_freq, relation);
1445	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1446		retval = cpufreq_driver->target(policy, target_freq, relation);
1447
1448	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449}
1450EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1451
1452int cpufreq_driver_target(struct cpufreq_policy *policy,
1453			  unsigned int target_freq,
1454			  unsigned int relation)
1455{
1456	int ret = -EINVAL;
1457
1458	policy = cpufreq_cpu_get(policy->cpu);
1459	if (!policy)
1460		goto no_policy;
1461
1462	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1463		goto fail;
1464
1465	ret = __cpufreq_driver_target(policy, target_freq, relation);
1466
1467	unlock_policy_rwsem_write(policy->cpu);
1468
1469fail:
1470	cpufreq_cpu_put(policy);
1471no_policy:
1472	return ret;
1473}
1474EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1475
1476int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1477{
1478	int ret = 0;
 
1479
1480	policy = cpufreq_cpu_get(policy->cpu);
1481	if (!policy)
 
 
 
 
 
 
 
 
 
 
1482		return -EINVAL;
1483
1484	if (cpu_online(cpu) && cpufreq_driver->getavg)
1485		ret = cpufreq_driver->getavg(policy, cpu);
 
 
 
 
 
 
 
 
 
 
 
1486
1487	cpufreq_cpu_put(policy);
1488	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489}
1490EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1491
1492/*
1493 * when "event" is CPUFREQ_GOV_LIMITS
1494 */
 
 
 
 
 
 
 
 
 
1495
1496static int __cpufreq_governor(struct cpufreq_policy *policy,
1497					unsigned int event)
1498{
1499	int ret;
1500
1501	/* Only must be defined when default governor is known to have latency
1502	   restrictions, like e.g. conservative or ondemand.
1503	   That this is the case is already ensured in Kconfig
1504	*/
1505#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1506	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1507#else
1508	struct cpufreq_governor *gov = NULL;
1509#endif
1510
1511	if (policy->governor->max_transition_latency &&
1512	    policy->cpuinfo.transition_latency >
1513	    policy->governor->max_transition_latency) {
1514		if (!gov)
1515			return -EINVAL;
1516		else {
1517			printk(KERN_WARNING "%s governor failed, too long"
1518			       " transition latency of HW, fallback"
1519			       " to %s governor\n",
1520			       policy->governor->name,
1521			       gov->name);
1522			policy->governor = gov;
1523		}
1524	}
1525
1526	if (!try_module_get(policy->governor->owner))
1527		return -EINVAL;
1528
1529	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1530						policy->cpu, event);
1531	ret = policy->governor->governor(policy, event);
1532
1533	/* we keep one module reference alive for
1534			each CPU governed by this CPU */
1535	if ((event != CPUFREQ_GOV_START) || ret)
1536		module_put(policy->governor->owner);
1537	if ((event == CPUFREQ_GOV_STOP) && !ret)
1538		module_put(policy->governor->owner);
1539
1540	return ret;
 
 
 
 
 
 
 
 
1541}
1542
 
 
 
 
 
 
 
 
 
 
1543
1544int cpufreq_register_governor(struct cpufreq_governor *governor)
1545{
1546	int err;
1547
1548	if (!governor)
1549		return -EINVAL;
1550
 
 
 
1551	mutex_lock(&cpufreq_governor_mutex);
1552
1553	err = -EBUSY;
1554	if (__find_governor(governor->name) == NULL) {
1555		err = 0;
1556		list_add(&governor->governor_list, &cpufreq_governor_list);
1557	}
1558
1559	mutex_unlock(&cpufreq_governor_mutex);
1560	return err;
1561}
1562EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1563
1564
1565void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1566{
1567#ifdef CONFIG_HOTPLUG_CPU
1568	int cpu;
1569#endif
1570
1571	if (!governor)
1572		return;
1573
1574#ifdef CONFIG_HOTPLUG_CPU
1575	for_each_present_cpu(cpu) {
1576		if (cpu_online(cpu))
1577			continue;
1578		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1579			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
 
 
 
1580	}
1581#endif
1582
1583	mutex_lock(&cpufreq_governor_mutex);
1584	list_del(&governor->governor_list);
1585	mutex_unlock(&cpufreq_governor_mutex);
1586	return;
1587}
1588EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1589
1590
1591
1592/*********************************************************************
1593 *                          POLICY INTERFACE                         *
1594 *********************************************************************/
1595
1596/**
1597 * cpufreq_get_policy - get the current cpufreq_policy
1598 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1599 *	is written
 
1600 *
1601 * Reads the current cpufreq policy.
1602 */
1603int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1604{
1605	struct cpufreq_policy *cpu_policy;
1606	if (!policy)
1607		return -EINVAL;
1608
1609	cpu_policy = cpufreq_cpu_get(cpu);
1610	if (!cpu_policy)
1611		return -EINVAL;
1612
1613	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1614
1615	cpufreq_cpu_put(cpu_policy);
1616	return 0;
1617}
1618EXPORT_SYMBOL(cpufreq_get_policy);
1619
1620
1621/*
1622 * data   : current policy.
1623 * policy : policy to be set.
1624 */
1625static int __cpufreq_set_policy(struct cpufreq_policy *data,
1626				struct cpufreq_policy *policy)
 
 
 
 
 
 
 
 
 
 
 
1627{
1628	int ret = 0;
1629
1630	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1631		policy->min, policy->max);
1632
1633	memcpy(&policy->cpuinfo, &data->cpuinfo,
1634				sizeof(struct cpufreq_cpuinfo));
1635
1636	if (policy->min > data->max || policy->max < data->min) {
1637		ret = -EINVAL;
1638		goto error_out;
1639	}
 
 
 
 
 
1640
1641	/* verify the cpu speed can be set within this limit */
1642	ret = cpufreq_driver->verify(policy);
1643	if (ret)
1644		goto error_out;
1645
1646	/* adjust if necessary - all reasons */
1647	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1648			CPUFREQ_ADJUST, policy);
1649
1650	/* adjust if necessary - hardware incompatibility*/
1651	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1652			CPUFREQ_INCOMPATIBLE, policy);
1653
1654	/* verify the cpu speed can be set within this limit,
1655	   which might be different to the first one */
1656	ret = cpufreq_driver->verify(policy);
1657	if (ret)
1658		goto error_out;
1659
1660	/* notification of the new policy */
1661	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1662			CPUFREQ_NOTIFY, policy);
 
 
 
 
 
 
 
1663
1664	data->min = policy->min;
1665	data->max = policy->max;
1666
1667	pr_debug("new min and max freqs are %u - %u kHz\n",
1668					data->min, data->max);
1669
1670	if (cpufreq_driver->setpolicy) {
1671		data->policy = policy->policy;
1672		pr_debug("setting range\n");
1673		ret = cpufreq_driver->setpolicy(policy);
1674	} else {
1675		if (policy->governor != data->governor) {
1676			/* save old, working values */
1677			struct cpufreq_governor *old_gov = data->governor;
1678
1679			pr_debug("governor switch\n");
1680
1681			/* end old governor */
1682			if (data->governor)
1683				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1684
1685			/* start new governor */
1686			data->governor = policy->governor;
1687			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1688				/* new governor failed, so re-start old one */
1689				pr_debug("starting governor %s failed\n",
1690							data->governor->name);
1691				if (old_gov) {
1692					data->governor = old_gov;
1693					__cpufreq_governor(data,
1694							   CPUFREQ_GOV_START);
1695				}
1696				ret = -EINVAL;
1697				goto error_out;
1698			}
1699			/* might be a policy change, too, so fall through */
 
1700		}
1701		pr_debug("governor: change or update limits\n");
1702		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
 
 
 
 
 
 
 
 
 
1703	}
1704
1705error_out:
1706	return ret;
1707}
1708
1709/**
1710 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1711 *	@cpu: CPU which shall be re-evaluated
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712 *
1713 *	Useful for policy notifiers which have different necessities
1714 *	at different times.
1715 */
1716int cpufreq_update_policy(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
1717{
1718	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1719	struct cpufreq_policy policy;
1720	int ret;
1721
1722	if (!data) {
1723		ret = -ENODEV;
1724		goto no_policy;
1725	}
1726
1727	if (unlikely(lock_policy_rwsem_write(cpu))) {
1728		ret = -EINVAL;
1729		goto fail;
 
1730	}
1731
1732	pr_debug("updating policy for CPU %u\n", cpu);
1733	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1734	policy.min = data->user_policy.min;
1735	policy.max = data->user_policy.max;
1736	policy.policy = data->user_policy.policy;
1737	policy.governor = data->user_policy.governor;
1738
1739	/* BIOS might change freq behind our back
1740	  -> ask driver for current freq and notify governors about a change */
1741	if (cpufreq_driver->get) {
1742		policy.cur = cpufreq_driver->get(cpu);
1743		if (!data->cur) {
1744			pr_debug("Driver did not initialize current freq");
1745			data->cur = policy.cur;
1746		} else {
1747			if (data->cur != policy.cur)
1748				cpufreq_out_of_sync(cpu, data->cur,
1749								policy.cur);
1750		}
 
 
 
 
 
 
 
 
 
1751	}
 
1752
1753	ret = __cpufreq_set_policy(data, &policy);
1754
1755	unlock_policy_rwsem_write(cpu);
 
 
 
 
 
 
 
 
1756
1757fail:
1758	cpufreq_cpu_put(data);
1759no_policy:
1760	return ret;
1761}
1762EXPORT_SYMBOL(cpufreq_update_policy);
1763
1764static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1765					unsigned long action, void *hcpu)
1766{
1767	unsigned int cpu = (unsigned long)hcpu;
1768	struct sys_device *sys_dev;
1769
1770	sys_dev = get_cpu_sysdev(cpu);
1771	if (sys_dev) {
1772		switch (action) {
1773		case CPU_ONLINE:
1774		case CPU_ONLINE_FROZEN:
1775			cpufreq_add_dev(sys_dev);
1776			break;
1777		case CPU_DOWN_PREPARE:
1778		case CPU_DOWN_PREPARE_FROZEN:
1779			if (unlikely(lock_policy_rwsem_write(cpu)))
1780				BUG();
1781
1782			__cpufreq_remove_dev(sys_dev);
1783			break;
1784		case CPU_DOWN_FAILED:
1785		case CPU_DOWN_FAILED_FROZEN:
1786			cpufreq_add_dev(sys_dev);
1787			break;
1788		}
1789	}
1790	return NOTIFY_OK;
1791}
1792
1793static struct notifier_block __refdata cpufreq_cpu_notifier = {
1794    .notifier_call = cpufreq_cpu_callback,
1795};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796
1797/*********************************************************************
1798 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1799 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
1801/**
1802 * cpufreq_register_driver - register a CPU Frequency driver
1803 * @driver_data: A struct cpufreq_driver containing the values#
1804 * submitted by the CPU Frequency driver.
1805 *
1806 *   Registers a CPU Frequency driver to this core code. This code
1807 * returns zero on success, -EBUSY when another driver got here first
1808 * (and isn't unregistered in the meantime).
1809 *
1810 */
1811int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1812{
1813	unsigned long flags;
1814	int ret;
1815
 
 
 
 
 
 
 
 
 
 
1816	if (!driver_data || !driver_data->verify || !driver_data->init ||
1817	    ((!driver_data->setpolicy) && (!driver_data->target)))
 
 
 
 
 
1818		return -EINVAL;
1819
1820	pr_debug("trying to register driver %s\n", driver_data->name);
1821
1822	if (driver_data->setpolicy)
1823		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1824
1825	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1826	if (cpufreq_driver) {
1827		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828		return -EBUSY;
 
1829	}
1830	cpufreq_driver = driver_data;
1831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1832
1833	ret = sysdev_driver_register(&cpu_sysdev_class,
1834					&cpufreq_sysdev_driver);
1835	if (ret)
1836		goto err_null_driver;
 
 
 
 
1837
1838	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839		int i;
1840		ret = -ENODEV;
1841
1842		/* check for at least one working CPU */
1843		for (i = 0; i < nr_cpu_ids; i++)
1844			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845				ret = 0;
1846				break;
1847			}
1848
 
 
 
 
 
1849		/* if all ->init() calls failed, unregister */
1850		if (ret) {
1851			pr_debug("no CPU initialized for driver %s\n",
1852							driver_data->name);
1853			goto err_sysdev_unreg;
1854		}
1855	}
1856
1857	register_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
 
 
1858	pr_debug("driver %s up and running\n", driver_data->name);
 
1859
1860	return 0;
1861err_sysdev_unreg:
1862	sysdev_driver_unregister(&cpu_sysdev_class,
1863			&cpufreq_sysdev_driver);
1864err_null_driver:
1865	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1866	cpufreq_driver = NULL;
1867	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1868	return ret;
1869}
1870EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1871
1872
1873/**
1874 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1875 *
1876 *    Unregister the current CPUFreq driver. Only call this if you have
1877 * the right to do so, i.e. if you have succeeded in initialising before!
1878 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1879 * currently not initialised.
1880 */
1881int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1882{
1883	unsigned long flags;
1884
1885	if (!cpufreq_driver || (driver != cpufreq_driver))
1886		return -EINVAL;
1887
1888	pr_debug("unregistering driver %s\n", driver->name);
1889
1890	sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1891	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
1892
1893	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1894	cpufreq_driver = NULL;
1895	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1896
1897	return 0;
1898}
1899EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1900
1901static int __init cpufreq_core_init(void)
1902{
1903	int cpu;
1904
1905	for_each_possible_cpu(cpu) {
1906		per_cpu(cpufreq_policy_cpu, cpu) = -1;
1907		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1908	}
1909
1910	cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1911						&cpu_sysdev_class.kset.kobj);
1912	BUG_ON(!cpufreq_global_kobject);
1913	register_syscore_ops(&cpufreq_syscore_ops);
 
 
1914
1915	return 0;
1916}
 
 
1917core_initcall(cpufreq_core_init);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
 
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
 
 
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
 
 
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
 
 
  74}
  75
 
  76/* internal prototypes */
  77static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  78static int cpufreq_init_governor(struct cpufreq_policy *policy);
  79static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  80static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  81static int cpufreq_set_policy(struct cpufreq_policy *policy,
  82			      struct cpufreq_governor *new_gov,
  83			      unsigned int new_pol);
  84
  85/*
  86 * Two notifier lists: the "policy" list is involved in the
  87 * validation process for a new CPU frequency policy; the
  88 * "transition" list for kernel code that needs to handle
  89 * changes to devices when the CPU clock speed changes.
  90 * The mutex locks both lists.
  91 */
  92static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  93SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
  94
  95static int off __read_mostly;
  96static int cpufreq_disabled(void)
  97{
  98	return off;
  99}
 100void disable_cpufreq(void)
 101{
 102	off = 1;
 103}
 
 
 
 104static DEFINE_MUTEX(cpufreq_governor_mutex);
 105
 106bool have_governor_per_policy(void)
 107{
 108	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 109}
 110EXPORT_SYMBOL_GPL(have_governor_per_policy);
 111
 112static struct kobject *cpufreq_global_kobject;
 
 113
 114struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 115{
 116	if (have_governor_per_policy())
 117		return &policy->kobj;
 118	else
 119		return cpufreq_global_kobject;
 120}
 121EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 122
 123static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 124{
 125	struct kernel_cpustat kcpustat;
 126	u64 cur_wall_time;
 127	u64 idle_time;
 128	u64 busy_time;
 129
 130	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 
 131
 132	kcpustat_cpu_fetch(&kcpustat, cpu);
 133
 134	busy_time = kcpustat.cpustat[CPUTIME_USER];
 135	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 136	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 137	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 138	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 139	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 140
 141	idle_time = cur_wall_time - busy_time;
 142	if (wall)
 143		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 144
 145	return div_u64(idle_time, NSEC_PER_USEC);
 146}
 147
 148u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 149{
 150	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 151
 152	if (idle_time == -1ULL)
 153		return get_cpu_idle_time_jiffy(cpu, wall);
 154	else if (!io_busy)
 155		idle_time += get_cpu_iowait_time_us(cpu, wall);
 156
 157	return idle_time;
 158}
 159EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 160
 161/*
 162 * This is a generic cpufreq init() routine which can be used by cpufreq
 163 * drivers of SMP systems. It will do following:
 164 * - validate & show freq table passed
 165 * - set policies transition latency
 166 * - policy->cpus with all possible CPUs
 167 */
 168void cpufreq_generic_init(struct cpufreq_policy *policy,
 169		struct cpufreq_frequency_table *table,
 170		unsigned int transition_latency)
 171{
 172	policy->freq_table = table;
 173	policy->cpuinfo.transition_latency = transition_latency;
 174
 175	/*
 176	 * The driver only supports the SMP configuration where all processors
 177	 * share the clock and voltage and clock.
 178	 */
 179	cpumask_setall(policy->cpus);
 180}
 181EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 182
 183struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 184{
 185	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 186
 187	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 188}
 189EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 190
 191unsigned int cpufreq_generic_get(unsigned int cpu)
 192{
 193	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 194
 195	if (!policy || IS_ERR(policy->clk)) {
 196		pr_err("%s: No %s associated to cpu: %d\n",
 197		       __func__, policy ? "clk" : "policy", cpu);
 198		return 0;
 199	}
 200
 201	return clk_get_rate(policy->clk) / 1000;
 202}
 203EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 204
 205/**
 206 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 207 * @cpu: CPU to find the policy for.
 208 *
 209 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 210 * the kobject reference counter of that policy.  Return a valid policy on
 211 * success or NULL on failure.
 212 *
 213 * The policy returned by this function has to be released with the help of
 214 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 215 */
 216struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 217{
 218	struct cpufreq_policy *policy = NULL;
 219	unsigned long flags;
 220
 221	if (WARN_ON(cpu >= nr_cpu_ids))
 222		return NULL;
 223
 224	/* get the cpufreq driver */
 225	read_lock_irqsave(&cpufreq_driver_lock, flags);
 226
 227	if (cpufreq_driver) {
 228		/* get the CPU */
 229		policy = cpufreq_cpu_get_raw(cpu);
 230		if (policy)
 231			kobject_get(&policy->kobj);
 232	}
 233
 234	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 235
 236	return policy;
 237}
 238EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 239
 240/**
 241 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 242 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 243 */
 244void cpufreq_cpu_put(struct cpufreq_policy *policy)
 245{
 246	kobject_put(&policy->kobj);
 
 247}
 248EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 249
 250/**
 251 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 252 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 253 */
 254void cpufreq_cpu_release(struct cpufreq_policy *policy)
 255{
 256	if (WARN_ON(!policy))
 257		return;
 258
 259	lockdep_assert_held(&policy->rwsem);
 260
 261	up_write(&policy->rwsem);
 262
 263	cpufreq_cpu_put(policy);
 264}
 265
 266/**
 267 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 268 * @cpu: CPU to find the policy for.
 269 *
 270 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 271 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 272 * Return the policy if it is active or release it and return NULL otherwise.
 273 *
 274 * The policy returned by this function has to be released with the help of
 275 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 276 * counter properly.
 277 */
 278struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 279{
 280	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 281
 282	if (!policy)
 283		return NULL;
 284
 285	down_write(&policy->rwsem);
 286
 287	if (policy_is_inactive(policy)) {
 288		cpufreq_cpu_release(policy);
 289		return NULL;
 290	}
 291
 292	return policy;
 293}
 294
 295/*********************************************************************
 296 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 297 *********************************************************************/
 298
 299/**
 300 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 301 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 302 * @ci: Frequency change information.
 303 *
 304 * This function alters the system "loops_per_jiffy" for the clock
 305 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 306 * systems as each CPU might be scaled differently. So, use the arch
 307 * per-CPU loops_per_jiffy value wherever possible.
 308 */
 
 
 
 
 309static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 310{
 311#ifndef CONFIG_SMP
 312	static unsigned long l_p_j_ref;
 313	static unsigned int l_p_j_ref_freq;
 314
 315	if (ci->flags & CPUFREQ_CONST_LOOPS)
 316		return;
 317
 318	if (!l_p_j_ref_freq) {
 319		l_p_j_ref = loops_per_jiffy;
 320		l_p_j_ref_freq = ci->old;
 321		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 322			 l_p_j_ref, l_p_j_ref_freq);
 323	}
 324	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 
 
 325		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 326								ci->new);
 327		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 328			 loops_per_jiffy, ci->new);
 329	}
 
 
 
 
 
 
 330#endif
 331}
 332
 333/**
 334 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 335 * @policy: cpufreq policy to enable fast frequency switching for.
 336 * @freqs: contain details of the frequency update.
 337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 338 *
 339 * This function calls the transition notifiers and adjust_jiffies().
 340 *
 341 * It is called twice on all CPU frequency changes that have external effects.
 342 */
 343static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 344				      struct cpufreq_freqs *freqs,
 345				      unsigned int state)
 346{
 347	int cpu;
 348
 349	BUG_ON(irqs_disabled());
 350
 351	if (cpufreq_disabled())
 352		return;
 353
 354	freqs->policy = policy;
 355	freqs->flags = cpufreq_driver->flags;
 356	pr_debug("notification %u of frequency transition to %u kHz\n",
 357		 state, freqs->new);
 358
 
 359	switch (state) {
 
 360	case CPUFREQ_PRECHANGE:
 361		/*
 362		 * Detect if the driver reported a value as "old frequency"
 363		 * which is not equal to what the cpufreq core thinks is
 364		 * "old frequency".
 365		 */
 366		if (policy->cur && policy->cur != freqs->old) {
 367			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 368				 freqs->old, policy->cur);
 369			freqs->old = policy->cur;
 
 
 
 
 370		}
 371
 372		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 373					 CPUFREQ_PRECHANGE, freqs);
 374
 375		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 376		break;
 377
 378	case CPUFREQ_POSTCHANGE:
 379		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 380		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 381			 cpumask_pr_args(policy->cpus));
 382
 383		for_each_cpu(cpu, policy->cpus)
 384			trace_cpu_frequency(freqs->new, cpu);
 385
 386		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 387					 CPUFREQ_POSTCHANGE, freqs);
 388
 389		cpufreq_stats_record_transition(policy, freqs->new);
 390		policy->cur = freqs->new;
 391	}
 392}
 393
 394/* Do post notifications when there are chances that transition has failed */
 395static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 396		struct cpufreq_freqs *freqs, int transition_failed)
 397{
 398	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 399	if (!transition_failed)
 400		return;
 401
 402	swap(freqs->old, freqs->new);
 403	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405}
 406
 407void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 408		struct cpufreq_freqs *freqs)
 409{
 410
 411	/*
 412	 * Catch double invocations of _begin() which lead to self-deadlock.
 413	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 414	 * doesn't invoke _begin() on their behalf, and hence the chances of
 415	 * double invocations are very low. Moreover, there are scenarios
 416	 * where these checks can emit false-positive warnings in these
 417	 * drivers; so we avoid that by skipping them altogether.
 418	 */
 419	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 420				&& current == policy->transition_task);
 421
 422wait:
 423	wait_event(policy->transition_wait, !policy->transition_ongoing);
 424
 425	spin_lock(&policy->transition_lock);
 426
 427	if (unlikely(policy->transition_ongoing)) {
 428		spin_unlock(&policy->transition_lock);
 429		goto wait;
 430	}
 431
 432	policy->transition_ongoing = true;
 433	policy->transition_task = current;
 434
 435	spin_unlock(&policy->transition_lock);
 436
 437	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 438}
 439EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 440
 441void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 442		struct cpufreq_freqs *freqs, int transition_failed)
 443{
 444	if (WARN_ON(!policy->transition_ongoing))
 445		return;
 446
 447	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 448
 449	arch_set_freq_scale(policy->related_cpus,
 450			    policy->cur,
 451			    policy->cpuinfo.max_freq);
 452
 453	policy->transition_ongoing = false;
 454	policy->transition_task = NULL;
 455
 456	wake_up(&policy->transition_wait);
 457}
 458EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 459
 460/*
 461 * Fast frequency switching status count.  Positive means "enabled", negative
 462 * means "disabled" and 0 means "not decided yet".
 463 */
 464static int cpufreq_fast_switch_count;
 465static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 466
 467static void cpufreq_list_transition_notifiers(void)
 468{
 469	struct notifier_block *nb;
 470
 471	pr_info("Registered transition notifiers:\n");
 472
 473	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 474
 475	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 476		pr_info("%pS\n", nb->notifier_call);
 477
 478	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 479}
 480
 481/**
 482 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 483 * @policy: cpufreq policy to enable fast frequency switching for.
 484 *
 485 * Try to enable fast frequency switching for @policy.
 486 *
 487 * The attempt will fail if there is at least one transition notifier registered
 488 * at this point, as fast frequency switching is quite fundamentally at odds
 489 * with transition notifiers.  Thus if successful, it will make registration of
 490 * transition notifiers fail going forward.
 491 */
 492void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 493{
 494	lockdep_assert_held(&policy->rwsem);
 495
 496	if (!policy->fast_switch_possible)
 497		return;
 498
 499	mutex_lock(&cpufreq_fast_switch_lock);
 500	if (cpufreq_fast_switch_count >= 0) {
 501		cpufreq_fast_switch_count++;
 502		policy->fast_switch_enabled = true;
 503	} else {
 504		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 505			policy->cpu);
 506		cpufreq_list_transition_notifiers();
 507	}
 508	mutex_unlock(&cpufreq_fast_switch_lock);
 509}
 510EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 511
 512/**
 513 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 514 * @policy: cpufreq policy to disable fast frequency switching for.
 515 */
 516void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 517{
 518	mutex_lock(&cpufreq_fast_switch_lock);
 519	if (policy->fast_switch_enabled) {
 520		policy->fast_switch_enabled = false;
 521		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 522			cpufreq_fast_switch_count--;
 523	}
 524	mutex_unlock(&cpufreq_fast_switch_lock);
 525}
 526EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 527
 528static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 529		unsigned int target_freq, unsigned int relation)
 530{
 531	unsigned int idx;
 532
 533	target_freq = clamp_val(target_freq, policy->min, policy->max);
 534
 535	if (!policy->freq_table)
 536		return target_freq;
 537
 538	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 539	policy->cached_resolved_idx = idx;
 540	policy->cached_target_freq = target_freq;
 541	return policy->freq_table[idx].frequency;
 542}
 543
 544/**
 545 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 546 * one.
 547 * @policy: associated policy to interrogate
 548 * @target_freq: target frequency to resolve.
 549 *
 550 * The target to driver frequency mapping is cached in the policy.
 551 *
 552 * Return: Lowest driver-supported frequency greater than or equal to the
 553 * given target_freq, subject to policy (min/max) and driver limitations.
 554 */
 555unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 556					 unsigned int target_freq)
 557{
 558	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 559}
 560EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 561
 562unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 563{
 564	unsigned int latency;
 565
 566	if (policy->transition_delay_us)
 567		return policy->transition_delay_us;
 568
 569	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 570	if (latency) {
 571		/*
 572		 * For platforms that can change the frequency very fast (< 10
 573		 * us), the above formula gives a decent transition delay. But
 574		 * for platforms where transition_latency is in milliseconds, it
 575		 * ends up giving unrealistic values.
 576		 *
 577		 * Cap the default transition delay to 10 ms, which seems to be
 578		 * a reasonable amount of time after which we should reevaluate
 579		 * the frequency.
 580		 */
 581		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 582	}
 583
 584	return LATENCY_MULTIPLIER;
 585}
 586EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 587
 588/*********************************************************************
 589 *                          SYSFS INTERFACE                          *
 590 *********************************************************************/
 591static ssize_t show_boost(struct kobject *kobj,
 592			  struct kobj_attribute *attr, char *buf)
 593{
 594	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 595}
 596
 597static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 598			   const char *buf, size_t count)
 599{
 600	int ret, enable;
 601
 602	ret = sscanf(buf, "%d", &enable);
 603	if (ret != 1 || enable < 0 || enable > 1)
 604		return -EINVAL;
 605
 606	if (cpufreq_boost_trigger_state(enable)) {
 607		pr_err("%s: Cannot %s BOOST!\n",
 608		       __func__, enable ? "enable" : "disable");
 609		return -EINVAL;
 610	}
 611
 612	pr_debug("%s: cpufreq BOOST %s\n",
 613		 __func__, enable ? "enabled" : "disabled");
 614
 615	return count;
 616}
 617define_one_global_rw(boost);
 618
 619static struct cpufreq_governor *find_governor(const char *str_governor)
 620{
 621	struct cpufreq_governor *t;
 622
 623	for_each_governor(t)
 624		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 625			return t;
 626
 627	return NULL;
 628}
 629
 630static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 631{
 632	struct cpufreq_governor *t;
 633
 634	mutex_lock(&cpufreq_governor_mutex);
 635	t = find_governor(str_governor);
 636	if (!t)
 637		goto unlock;
 638
 639	if (!try_module_get(t->owner))
 640		t = NULL;
 
 
 
 
 
 
 
 
 
 641
 642unlock:
 643	mutex_unlock(&cpufreq_governor_mutex);
 644
 645	return t;
 646}
 647
 648static unsigned int cpufreq_parse_policy(char *str_governor)
 649{
 650	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 651		return CPUFREQ_POLICY_PERFORMANCE;
 652
 653	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 654		return CPUFREQ_POLICY_POWERSAVE;
 
 655
 656	return CPUFREQ_POLICY_UNKNOWN;
 657}
 
 658
 659/**
 660 * cpufreq_parse_governor - parse a governor string only for has_target()
 661 * @str_governor: Governor name.
 662 */
 663static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 664{
 665	struct cpufreq_governor *t;
 666
 667	t = get_governor(str_governor);
 668	if (t)
 669		return t;
 
 
 670
 671	if (request_module("cpufreq_%s", str_governor))
 672		return NULL;
 673
 674	return get_governor(str_governor);
 675}
 676
 677/*
 678 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 679 * print out cpufreq information
 680 *
 681 * Write out information from cpufreq_driver->policy[cpu]; object must be
 682 * "unsigned int".
 683 */
 684
 685#define show_one(file_name, object)			\
 686static ssize_t show_##file_name				\
 687(struct cpufreq_policy *policy, char *buf)		\
 688{							\
 689	return sprintf(buf, "%u\n", policy->object);	\
 690}
 691
 692show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 693show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 694show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 695show_one(scaling_min_freq, min);
 696show_one(scaling_max_freq, max);
 
 697
 698__weak unsigned int arch_freq_get_on_cpu(int cpu)
 699{
 700	return 0;
 701}
 702
 703static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 704{
 705	ssize_t ret;
 706	unsigned int freq;
 707
 708	freq = arch_freq_get_on_cpu(policy->cpu);
 709	if (freq)
 710		ret = sprintf(buf, "%u\n", freq);
 711	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 712		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 713	else
 714		ret = sprintf(buf, "%u\n", policy->cur);
 715	return ret;
 716}
 717
 718/*
 719 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 720 */
 721#define store_one(file_name, object)			\
 722static ssize_t store_##file_name					\
 723(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 724{									\
 725	unsigned long val;						\
 726	int ret;							\
 727									\
 728	ret = sscanf(buf, "%lu", &val);					\
 
 
 
 
 729	if (ret != 1)							\
 730		return -EINVAL;						\
 731									\
 732	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 733	return ret >= 0 ? count : ret;					\
 
 
 734}
 735
 736store_one(scaling_min_freq, min);
 737store_one(scaling_max_freq, max);
 738
 739/*
 740 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 741 */
 742static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 743					char *buf)
 744{
 745	unsigned int cur_freq = __cpufreq_get(policy);
 
 
 
 
 746
 747	if (cur_freq)
 748		return sprintf(buf, "%u\n", cur_freq);
 749
 750	return sprintf(buf, "<unknown>\n");
 751}
 752
 753/*
 754 * show_scaling_governor - show the current policy for the specified CPU
 755 */
 756static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 757{
 758	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 759		return sprintf(buf, "powersave\n");
 760	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 761		return sprintf(buf, "performance\n");
 762	else if (policy->governor)
 763		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 764				policy->governor->name);
 765	return -EINVAL;
 766}
 767
 768/*
 
 769 * store_scaling_governor - store policy for the specified CPU
 770 */
 771static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 772					const char *buf, size_t count)
 773{
 774	char str_governor[16];
 775	int ret;
 
 
 
 
 
 776
 777	ret = sscanf(buf, "%15s", str_governor);
 778	if (ret != 1)
 779		return -EINVAL;
 780
 781	if (cpufreq_driver->setpolicy) {
 782		unsigned int new_pol;
 
 783
 784		new_pol = cpufreq_parse_policy(str_governor);
 785		if (!new_pol)
 786			return -EINVAL;
 787
 788		ret = cpufreq_set_policy(policy, NULL, new_pol);
 789	} else {
 790		struct cpufreq_governor *new_gov;
 791
 792		new_gov = cpufreq_parse_governor(str_governor);
 793		if (!new_gov)
 794			return -EINVAL;
 795
 796		ret = cpufreq_set_policy(policy, new_gov,
 797					 CPUFREQ_POLICY_UNKNOWN);
 798
 799		module_put(new_gov->owner);
 800	}
 801
 802	return ret ? ret : count;
 803}
 804
 805/*
 806 * show_scaling_driver - show the cpufreq driver currently loaded
 807 */
 808static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 809{
 810	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 811}
 812
 813/*
 814 * show_scaling_available_governors - show the available CPUfreq governors
 815 */
 816static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 817						char *buf)
 818{
 819	ssize_t i = 0;
 820	struct cpufreq_governor *t;
 821
 822	if (!has_target()) {
 823		i += sprintf(buf, "performance powersave");
 824		goto out;
 825	}
 826
 827	mutex_lock(&cpufreq_governor_mutex);
 828	for_each_governor(t) {
 829		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 830		    - (CPUFREQ_NAME_LEN + 2)))
 831			break;
 832		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 833	}
 834	mutex_unlock(&cpufreq_governor_mutex);
 835out:
 836	i += sprintf(&buf[i], "\n");
 837	return i;
 838}
 839
 840ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 841{
 842	ssize_t i = 0;
 843	unsigned int cpu;
 844
 845	for_each_cpu(cpu, mask) {
 846		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
 
 
 847		if (i >= (PAGE_SIZE - 5))
 848			break;
 849	}
 850
 851	/* Remove the extra space at the end */
 852	i--;
 853
 854	i += sprintf(&buf[i], "\n");
 855	return i;
 856}
 857EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 858
 859/*
 860 * show_related_cpus - show the CPUs affected by each transition even if
 861 * hw coordination is in use
 862 */
 863static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 864{
 865	return cpufreq_show_cpus(policy->related_cpus, buf);
 
 
 866}
 867
 868/*
 869 * show_affected_cpus - show the CPUs affected by each transition
 870 */
 871static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 872{
 873	return cpufreq_show_cpus(policy->cpus, buf);
 874}
 875
 876static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 877					const char *buf, size_t count)
 878{
 879	unsigned int freq = 0;
 880	unsigned int ret;
 881
 882	if (!policy->governor || !policy->governor->store_setspeed)
 883		return -EINVAL;
 884
 885	ret = sscanf(buf, "%u", &freq);
 886	if (ret != 1)
 887		return -EINVAL;
 888
 889	policy->governor->store_setspeed(policy, freq);
 890
 891	return count;
 892}
 893
 894static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 895{
 896	if (!policy->governor || !policy->governor->show_setspeed)
 897		return sprintf(buf, "<unsupported>\n");
 898
 899	return policy->governor->show_setspeed(policy, buf);
 900}
 901
 902/*
 903 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 904 */
 905static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 906{
 907	unsigned int limit;
 908	int ret;
 909	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 910	if (!ret)
 911		return sprintf(buf, "%u\n", limit);
 
 
 912	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 913}
 914
 915cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 916cpufreq_freq_attr_ro(cpuinfo_min_freq);
 917cpufreq_freq_attr_ro(cpuinfo_max_freq);
 918cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 919cpufreq_freq_attr_ro(scaling_available_governors);
 920cpufreq_freq_attr_ro(scaling_driver);
 921cpufreq_freq_attr_ro(scaling_cur_freq);
 922cpufreq_freq_attr_ro(bios_limit);
 923cpufreq_freq_attr_ro(related_cpus);
 924cpufreq_freq_attr_ro(affected_cpus);
 925cpufreq_freq_attr_rw(scaling_min_freq);
 926cpufreq_freq_attr_rw(scaling_max_freq);
 927cpufreq_freq_attr_rw(scaling_governor);
 928cpufreq_freq_attr_rw(scaling_setspeed);
 929
 930static struct attribute *cpufreq_attrs[] = {
 931	&cpuinfo_min_freq.attr,
 932	&cpuinfo_max_freq.attr,
 933	&cpuinfo_transition_latency.attr,
 934	&scaling_min_freq.attr,
 935	&scaling_max_freq.attr,
 936	&affected_cpus.attr,
 937	&related_cpus.attr,
 938	&scaling_governor.attr,
 939	&scaling_driver.attr,
 940	&scaling_available_governors.attr,
 941	&scaling_setspeed.attr,
 942	NULL
 943};
 944ATTRIBUTE_GROUPS(cpufreq);
 
 
 945
 946#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 947#define to_attr(a) container_of(a, struct freq_attr, attr)
 948
 949static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 950{
 951	struct cpufreq_policy *policy = to_policy(kobj);
 952	struct freq_attr *fattr = to_attr(attr);
 953	ssize_t ret = -EBUSY;
 
 
 
 954
 955	if (!fattr->show)
 956		return -EIO;
 957
 958	down_read(&policy->rwsem);
 959	if (likely(!policy_is_inactive(policy)))
 960		ret = fattr->show(policy, buf);
 961	up_read(&policy->rwsem);
 
 962
 
 
 
 
 963	return ret;
 964}
 965
 966static ssize_t store(struct kobject *kobj, struct attribute *attr,
 967		     const char *buf, size_t count)
 968{
 969	struct cpufreq_policy *policy = to_policy(kobj);
 970	struct freq_attr *fattr = to_attr(attr);
 971	ssize_t ret = -EBUSY;
 
 
 
 972
 973	if (!fattr->store)
 974		return -EIO;
 975
 976	down_write(&policy->rwsem);
 977	if (likely(!policy_is_inactive(policy)))
 978		ret = fattr->store(policy, buf, count);
 979	up_write(&policy->rwsem);
 
 980
 
 
 
 
 981	return ret;
 982}
 983
 984static void cpufreq_sysfs_release(struct kobject *kobj)
 985{
 986	struct cpufreq_policy *policy = to_policy(kobj);
 987	pr_debug("last reference is dropped\n");
 988	complete(&policy->kobj_unregister);
 989}
 990
 991static const struct sysfs_ops sysfs_ops = {
 992	.show	= show,
 993	.store	= store,
 994};
 995
 996static struct kobj_type ktype_cpufreq = {
 997	.sysfs_ops	= &sysfs_ops,
 998	.default_groups	= cpufreq_groups,
 999	.release	= cpufreq_sysfs_release,
1000};
1001
1002static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1003				struct device *dev)
 
 
 
 
 
 
 
1004{
1005	if (unlikely(!dev))
1006		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007
1008	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1009		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010
1011	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1012	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1013		dev_err(dev, "cpufreq symlink creation failed\n");
 
 
 
 
 
1014}
1015
1016static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1017				   struct device *dev)
 
 
1018{
1019	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1020	sysfs_remove_link(&dev->kobj, "cpufreq");
1021	cpumask_clear_cpu(cpu, policy->real_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022}
1023
1024static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
 
1025{
 
1026	struct freq_attr **drv_attr;
 
1027	int ret = 0;
 
 
 
 
 
 
 
1028
1029	/* set up files for this cpu device */
1030	drv_attr = cpufreq_driver->attr;
1031	while (drv_attr && *drv_attr) {
1032		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1033		if (ret)
1034			return ret;
1035		drv_attr++;
1036	}
1037	if (cpufreq_driver->get) {
1038		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1039		if (ret)
1040			return ret;
 
 
 
 
 
1041	}
1042
1043	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1044	if (ret)
1045		return ret;
1046
1047	if (cpufreq_driver->bios_limit) {
1048		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1049		if (ret)
1050			return ret;
1051	}
1052
1053	return 0;
1054}
 
 
 
 
 
 
1055
1056static int cpufreq_init_policy(struct cpufreq_policy *policy)
1057{
1058	struct cpufreq_governor *gov = NULL;
1059	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1060	int ret;
1061
1062	if (has_target()) {
1063		/* Update policy governor to the one used before hotplug. */
1064		gov = get_governor(policy->last_governor);
1065		if (gov) {
1066			pr_debug("Restoring governor %s for cpu %d\n",
1067				 gov->name, policy->cpu);
1068		} else {
1069			gov = get_governor(default_governor);
1070		}
1071
1072		if (!gov) {
1073			gov = cpufreq_default_governor();
1074			__module_get(gov->owner);
1075		}
1076
1077	} else {
1078
1079		/* Use the default policy if there is no last_policy. */
1080		if (policy->last_policy) {
1081			pol = policy->last_policy;
1082		} else {
1083			pol = cpufreq_parse_policy(default_governor);
1084			/*
1085			 * In case the default governor is neither "performance"
1086			 * nor "powersave", fall back to the initial policy
1087			 * value set by the driver.
1088			 */
1089			if (pol == CPUFREQ_POLICY_UNKNOWN)
1090				pol = policy->policy;
1091		}
1092		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1093		    pol != CPUFREQ_POLICY_POWERSAVE)
1094			return -ENODATA;
1095	}
 
1096
1097	ret = cpufreq_set_policy(policy, gov, pol);
1098	if (gov)
1099		module_put(gov->owner);
1100
1101	return ret;
1102}
1103
1104static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
1105{
1106	int ret = 0;
 
 
 
 
 
 
 
1107
1108	/* Has this CPU been taken care of already? */
1109	if (cpumask_test_cpu(cpu, policy->cpus))
1110		return 0;
1111
1112	down_write(&policy->rwsem);
1113	if (has_target())
1114		cpufreq_stop_governor(policy);
1115
1116	cpumask_set_cpu(cpu, policy->cpus);
1117
1118	if (has_target()) {
1119		ret = cpufreq_start_governor(policy);
1120		if (ret)
1121			pr_err("%s: Failed to start governor\n", __func__);
 
1122	}
1123	up_write(&policy->rwsem);
1124	return ret;
1125}
1126
1127void refresh_frequency_limits(struct cpufreq_policy *policy)
1128{
1129	if (!policy_is_inactive(policy)) {
1130		pr_debug("updating policy for CPU %u\n", policy->cpu);
1131
1132		cpufreq_set_policy(policy, policy->governor, policy->policy);
1133	}
1134}
1135EXPORT_SYMBOL(refresh_frequency_limits);
1136
1137static void handle_update(struct work_struct *work)
1138{
1139	struct cpufreq_policy *policy =
1140		container_of(work, struct cpufreq_policy, update);
1141
1142	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1143	down_write(&policy->rwsem);
1144	refresh_frequency_limits(policy);
1145	up_write(&policy->rwsem);
1146}
1147
1148static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1149				void *data)
1150{
1151	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1152
1153	schedule_work(&policy->update);
1154	return 0;
1155}
1156
1157static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1158				void *data)
1159{
1160	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1161
1162	schedule_work(&policy->update);
1163	return 0;
1164}
1165
1166static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1167{
1168	struct kobject *kobj;
1169	struct completion *cmp;
1170
1171	down_write(&policy->rwsem);
1172	cpufreq_stats_free_table(policy);
1173	kobj = &policy->kobj;
1174	cmp = &policy->kobj_unregister;
1175	up_write(&policy->rwsem);
1176	kobject_put(kobj);
1177
1178	/*
1179	 * We need to make sure that the underlying kobj is
1180	 * actually not referenced anymore by anybody before we
1181	 * proceed with unloading.
1182	 */
1183	pr_debug("waiting for dropping of refcount\n");
1184	wait_for_completion(cmp);
1185	pr_debug("wait complete\n");
1186}
1187
1188static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1189{
1190	struct cpufreq_policy *policy;
1191	struct device *dev = get_cpu_device(cpu);
1192	int ret;
1193
1194	if (!dev)
1195		return NULL;
1196
1197	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1198	if (!policy)
1199		return NULL;
1200
1201	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1202		goto err_free_policy;
1203
1204	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1205		goto err_free_cpumask;
1206
1207	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1208		goto err_free_rcpumask;
 
 
 
 
 
1209
1210	init_completion(&policy->kobj_unregister);
1211	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1212				   cpufreq_global_kobject, "policy%u", cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1213	if (ret) {
1214		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1215		/*
1216		 * The entire policy object will be freed below, but the extra
1217		 * memory allocated for the kobject name needs to be freed by
1218		 * releasing the kobject.
1219		 */
1220		kobject_put(&policy->kobj);
1221		goto err_free_real_cpus;
1222	}
 
 
1223
1224	freq_constraints_init(&policy->constraints);
 
1225
1226	policy->nb_min.notifier_call = cpufreq_notifier_min;
1227	policy->nb_max.notifier_call = cpufreq_notifier_max;
1228
1229	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1230				    &policy->nb_min);
1231	if (ret) {
1232		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1233			ret, cpumask_pr_args(policy->cpus));
1234		goto err_kobj_remove;
 
 
1235	}
1236
1237	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1238				    &policy->nb_max);
1239	if (ret) {
1240		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1241			ret, cpumask_pr_args(policy->cpus));
1242		goto err_min_qos_notifier;
1243	}
1244
1245	INIT_LIST_HEAD(&policy->policy_list);
1246	init_rwsem(&policy->rwsem);
1247	spin_lock_init(&policy->transition_lock);
1248	init_waitqueue_head(&policy->transition_wait);
1249	INIT_WORK(&policy->update, handle_update);
1250
1251	policy->cpu = cpu;
1252	return policy;
 
1253
1254err_min_qos_notifier:
1255	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1256				 &policy->nb_min);
1257err_kobj_remove:
1258	cpufreq_policy_put_kobj(policy);
1259err_free_real_cpus:
1260	free_cpumask_var(policy->real_cpus);
1261err_free_rcpumask:
1262	free_cpumask_var(policy->related_cpus);
1263err_free_cpumask:
1264	free_cpumask_var(policy->cpus);
1265err_free_policy:
1266	kfree(policy);
1267
1268	return NULL;
1269}
1270
1271static void cpufreq_policy_free(struct cpufreq_policy *policy)
1272{
1273	unsigned long flags;
1274	int cpu;
 
1275
1276	/*
1277	 * The callers must ensure the policy is inactive by now, to avoid any
1278	 * races with show()/store() callbacks.
1279	 */
1280	if (unlikely(!policy_is_inactive(policy)))
1281		pr_warn("%s: Freeing active policy\n", __func__);
1282
1283	/* Remove policy from list */
1284	write_lock_irqsave(&cpufreq_driver_lock, flags);
1285	list_del(&policy->policy_list);
1286
1287	for_each_cpu(cpu, policy->related_cpus)
1288		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1289	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1290
1291	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1292				 &policy->nb_max);
1293	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1294				 &policy->nb_min);
1295
1296	/* Cancel any pending policy->update work before freeing the policy. */
1297	cancel_work_sync(&policy->update);
1298
1299	if (policy->max_freq_req) {
1300		/*
1301		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1302		 * notification, since CPUFREQ_CREATE_POLICY notification was
1303		 * sent after adding max_freq_req earlier.
1304		 */
1305		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1306					     CPUFREQ_REMOVE_POLICY, policy);
1307		freq_qos_remove_request(policy->max_freq_req);
1308	}
1309
1310	freq_qos_remove_request(policy->min_freq_req);
1311	kfree(policy->min_freq_req);
1312
1313	cpufreq_policy_put_kobj(policy);
1314	free_cpumask_var(policy->real_cpus);
1315	free_cpumask_var(policy->related_cpus);
 
1316	free_cpumask_var(policy->cpus);
 
1317	kfree(policy);
 
 
 
 
1318}
1319
1320static int cpufreq_online(unsigned int cpu)
 
 
 
 
 
 
 
 
1321{
1322	struct cpufreq_policy *policy;
1323	bool new_policy;
1324	unsigned long flags;
 
 
 
 
 
1325	unsigned int j;
1326	int ret;
 
 
1327
1328	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
 
1329
1330	/* Check if this CPU already has a policy to manage it */
1331	policy = per_cpu(cpufreq_cpu_data, cpu);
1332	if (policy) {
1333		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1334		if (!policy_is_inactive(policy))
1335			return cpufreq_add_policy_cpu(policy, cpu);
1336
1337		/* This is the only online CPU for the policy.  Start over. */
1338		new_policy = false;
1339		down_write(&policy->rwsem);
1340		policy->cpu = cpu;
1341		policy->governor = NULL;
1342	} else {
1343		new_policy = true;
1344		policy = cpufreq_policy_alloc(cpu);
1345		if (!policy)
1346			return -ENOMEM;
1347		down_write(&policy->rwsem);
1348	}
 
1349
1350	if (!new_policy && cpufreq_driver->online) {
1351		/* Recover policy->cpus using related_cpus */
1352		cpumask_copy(policy->cpus, policy->related_cpus);
1353
1354		ret = cpufreq_driver->online(policy);
1355		if (ret) {
1356			pr_debug("%s: %d: initialization failed\n", __func__,
1357				 __LINE__);
1358			goto out_exit_policy;
1359		}
1360	} else {
1361		cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
 
 
 
 
 
1362
1363		/*
1364		 * Call driver. From then on the cpufreq must be able
1365		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1366		 */
1367		ret = cpufreq_driver->init(policy);
1368		if (ret) {
1369			pr_debug("%s: %d: initialization failed\n", __func__,
1370				 __LINE__);
1371			goto out_free_policy;
1372		}
1373
1374		/*
1375		 * The initialization has succeeded and the policy is online.
1376		 * If there is a problem with its frequency table, take it
1377		 * offline and drop it.
1378		 */
1379		ret = cpufreq_table_validate_and_sort(policy);
1380		if (ret)
1381			goto out_offline_policy;
1382
1383		/* related_cpus should at least include policy->cpus. */
1384		cpumask_copy(policy->related_cpus, policy->cpus);
1385	}
1386
1387	/*
1388	 * affected cpus must always be the one, which are online. We aren't
1389	 * managing offline cpus here.
1390	 */
1391	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1392
1393	if (new_policy) {
1394		for_each_cpu(j, policy->related_cpus) {
1395			per_cpu(cpufreq_cpu_data, j) = policy;
1396			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1397		}
1398
1399		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1400					       GFP_KERNEL);
1401		if (!policy->min_freq_req) {
1402			ret = -ENOMEM;
1403			goto out_destroy_policy;
1404		}
1405
1406		ret = freq_qos_add_request(&policy->constraints,
1407					   policy->min_freq_req, FREQ_QOS_MIN,
1408					   FREQ_QOS_MIN_DEFAULT_VALUE);
1409		if (ret < 0) {
1410			/*
1411			 * So we don't call freq_qos_remove_request() for an
1412			 * uninitialized request.
1413			 */
1414			kfree(policy->min_freq_req);
1415			policy->min_freq_req = NULL;
1416			goto out_destroy_policy;
1417		}
1418
1419		/*
1420		 * This must be initialized right here to avoid calling
1421		 * freq_qos_remove_request() on uninitialized request in case
1422		 * of errors.
1423		 */
1424		policy->max_freq_req = policy->min_freq_req + 1;
1425
1426		ret = freq_qos_add_request(&policy->constraints,
1427					   policy->max_freq_req, FREQ_QOS_MAX,
1428					   FREQ_QOS_MAX_DEFAULT_VALUE);
1429		if (ret < 0) {
1430			policy->max_freq_req = NULL;
1431			goto out_destroy_policy;
1432		}
1433
1434		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1435				CPUFREQ_CREATE_POLICY, policy);
1436	}
1437
1438	if (cpufreq_driver->get && has_target()) {
1439		policy->cur = cpufreq_driver->get(policy->cpu);
1440		if (!policy->cur) {
1441			ret = -EIO;
1442			pr_err("%s: ->get() failed\n", __func__);
1443			goto out_destroy_policy;
 
 
 
 
 
 
 
 
 
 
 
1444		}
1445	}
 
 
 
1446
1447	/*
1448	 * Sometimes boot loaders set CPU frequency to a value outside of
1449	 * frequency table present with cpufreq core. In such cases CPU might be
1450	 * unstable if it has to run on that frequency for long duration of time
1451	 * and so its better to set it to a frequency which is specified in
1452	 * freq-table. This also makes cpufreq stats inconsistent as
1453	 * cpufreq-stats would fail to register because current frequency of CPU
1454	 * isn't found in freq-table.
1455	 *
1456	 * Because we don't want this change to effect boot process badly, we go
1457	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1458	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1459	 * is initialized to zero).
1460	 *
1461	 * We are passing target-freq as "policy->cur - 1" otherwise
1462	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1463	 * equal to target-freq.
1464	 */
1465	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1466	    && has_target()) {
1467		unsigned int old_freq = policy->cur;
1468
1469		/* Are we running at unknown frequency ? */
1470		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1471		if (ret == -EINVAL) {
1472			ret = __cpufreq_driver_target(policy, old_freq - 1,
1473						      CPUFREQ_RELATION_L);
1474
1475			/*
1476			 * Reaching here after boot in a few seconds may not
1477			 * mean that system will remain stable at "unknown"
1478			 * frequency for longer duration. Hence, a BUG_ON().
1479			 */
1480			BUG_ON(ret);
1481			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1482				__func__, policy->cpu, old_freq, policy->cur);
1483		}
1484	}
1485
1486	if (new_policy) {
1487		ret = cpufreq_add_dev_interface(policy);
1488		if (ret)
1489			goto out_destroy_policy;
1490
1491		cpufreq_stats_create_table(policy);
1492
1493		write_lock_irqsave(&cpufreq_driver_lock, flags);
1494		list_add(&policy->policy_list, &cpufreq_policy_list);
1495		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1496
1497		/*
1498		 * Register with the energy model before
1499		 * sched_cpufreq_governor_change() is called, which will result
1500		 * in rebuilding of the sched domains, which should only be done
1501		 * once the energy model is properly initialized for the policy
1502		 * first.
1503		 *
1504		 * Also, this should be called before the policy is registered
1505		 * with cooling framework.
1506		 */
1507		if (cpufreq_driver->register_em)
1508			cpufreq_driver->register_em(policy);
1509	}
1510
1511	ret = cpufreq_init_policy(policy);
1512	if (ret) {
1513		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1514		       __func__, cpu, ret);
1515		goto out_destroy_policy;
1516	}
1517
1518	up_write(&policy->rwsem);
1519
1520	kobject_uevent(&policy->kobj, KOBJ_ADD);
1521
1522	/* Callback for handling stuff after policy is ready */
1523	if (cpufreq_driver->ready)
1524		cpufreq_driver->ready(policy);
1525
1526	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1527		policy->cdev = of_cpufreq_cooling_register(policy);
1528
1529	pr_debug("initialization complete\n");
1530
1531	return 0;
1532
1533out_destroy_policy:
1534	for_each_cpu(j, policy->real_cpus)
1535		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1536
1537out_offline_policy:
1538	if (cpufreq_driver->offline)
1539		cpufreq_driver->offline(policy);
1540
1541out_exit_policy:
1542	if (cpufreq_driver->exit)
1543		cpufreq_driver->exit(policy);
 
1544
1545out_free_policy:
1546	cpumask_clear(policy->cpus);
1547	up_write(&policy->rwsem);
1548
1549	cpufreq_policy_free(policy);
1550	return ret;
1551}
1552
1553/**
1554 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1555 * @dev: CPU device.
1556 * @sif: Subsystem interface structure pointer (not used)
1557 */
1558static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1559{
1560	struct cpufreq_policy *policy;
1561	unsigned cpu = dev->id;
1562	int ret;
1563
1564	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1565
1566	if (cpu_online(cpu)) {
1567		ret = cpufreq_online(cpu);
1568		if (ret)
1569			return ret;
1570	}
 
1571
1572	/* Create sysfs link on CPU registration */
1573	policy = per_cpu(cpufreq_cpu_data, cpu);
1574	if (policy)
1575		add_cpu_dev_symlink(policy, cpu, dev);
1576
1577	return 0;
1578}
1579
1580static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1581{
1582	int ret;
1583
1584	if (has_target())
1585		cpufreq_stop_governor(policy);
1586
1587	cpumask_clear_cpu(cpu, policy->cpus);
1588
1589	if (!policy_is_inactive(policy)) {
1590		/* Nominate a new CPU if necessary. */
1591		if (cpu == policy->cpu)
1592			policy->cpu = cpumask_any(policy->cpus);
1593
1594		/* Start the governor again for the active policy. */
1595		if (has_target()) {
1596			ret = cpufreq_start_governor(policy);
1597			if (ret)
1598				pr_err("%s: Failed to start governor\n", __func__);
1599		}
1600
1601		return;
1602	}
1603
1604	if (has_target())
1605		strncpy(policy->last_governor, policy->governor->name,
1606			CPUFREQ_NAME_LEN);
1607	else
1608		policy->last_policy = policy->policy;
1609
1610	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1611		cpufreq_cooling_unregister(policy->cdev);
1612		policy->cdev = NULL;
1613	}
1614
1615	if (has_target())
1616		cpufreq_exit_governor(policy);
1617
1618	/*
1619	 * Perform the ->offline() during light-weight tear-down, as
1620	 * that allows fast recovery when the CPU comes back.
1621	 */
1622	if (cpufreq_driver->offline) {
1623		cpufreq_driver->offline(policy);
1624	} else if (cpufreq_driver->exit) {
1625		cpufreq_driver->exit(policy);
1626		policy->freq_table = NULL;
1627	}
1628}
1629
1630static int cpufreq_offline(unsigned int cpu)
1631{
1632	struct cpufreq_policy *policy;
 
1633
1634	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1635
1636	policy = cpufreq_cpu_get_raw(cpu);
1637	if (!policy) {
1638		pr_debug("%s: No cpu_data found\n", __func__);
1639		return 0;
1640	}
1641
1642	down_write(&policy->rwsem);
 
1643
1644	__cpufreq_offline(cpu, policy);
 
 
1645
1646	up_write(&policy->rwsem);
1647	return 0;
1648}
1649
1650/*
1651 * cpufreq_remove_dev - remove a CPU device
1652 *
1653 * Removes the cpufreq interface for a CPU device.
1654 */
1655static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1656{
1657	unsigned int cpu = dev->id;
1658	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1659
1660	if (!policy)
1661		return;
1662
1663	down_write(&policy->rwsem);
1664
1665	if (cpu_online(cpu))
1666		__cpufreq_offline(cpu, policy);
1667
1668	remove_cpu_dev_symlink(policy, cpu, dev);
1669
1670	if (!cpumask_empty(policy->real_cpus)) {
1671		up_write(&policy->rwsem);
1672		return;
1673	}
1674
1675	/* We did light-weight exit earlier, do full tear down now */
1676	if (cpufreq_driver->offline)
1677		cpufreq_driver->exit(policy);
1678
1679	up_write(&policy->rwsem);
1680
1681	cpufreq_policy_free(policy);
1682}
1683
1684/**
1685 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1686 * @policy: Policy managing CPUs.
1687 * @new_freq: New CPU frequency.
 
1688 *
1689 * Adjust to the current frequency first and clean up later by either calling
1690 * cpufreq_update_policy(), or scheduling handle_update().
1691 */
1692static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1693				unsigned int new_freq)
1694{
1695	struct cpufreq_freqs freqs;
1696
1697	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1698		 policy->cur, new_freq);
1699
1700	freqs.old = policy->cur;
 
1701	freqs.new = new_freq;
1702
1703	cpufreq_freq_transition_begin(policy, &freqs);
1704	cpufreq_freq_transition_end(policy, &freqs, 0);
1705}
1706
1707static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1708{
1709	unsigned int new_freq;
1710
1711	new_freq = cpufreq_driver->get(policy->cpu);
1712	if (!new_freq)
1713		return 0;
1714
1715	/*
1716	 * If fast frequency switching is used with the given policy, the check
1717	 * against policy->cur is pointless, so skip it in that case.
1718	 */
1719	if (policy->fast_switch_enabled || !has_target())
1720		return new_freq;
1721
1722	if (policy->cur != new_freq) {
1723		/*
1724		 * For some platforms, the frequency returned by hardware may be
1725		 * slightly different from what is provided in the frequency
1726		 * table, for example hardware may return 499 MHz instead of 500
1727		 * MHz. In such cases it is better to avoid getting into
1728		 * unnecessary frequency updates.
1729		 */
1730		if (abs(policy->cur - new_freq) < HZ_PER_MHZ)
1731			return policy->cur;
1732
1733		cpufreq_out_of_sync(policy, new_freq);
1734		if (update)
1735			schedule_work(&policy->update);
1736	}
1737
1738	return new_freq;
1739}
1740
1741/**
1742 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1743 * @cpu: CPU number
1744 *
1745 * This is the last known freq, without actually getting it from the driver.
1746 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1747 */
1748unsigned int cpufreq_quick_get(unsigned int cpu)
1749{
1750	struct cpufreq_policy *policy;
1751	unsigned int ret_freq = 0;
1752	unsigned long flags;
1753
1754	read_lock_irqsave(&cpufreq_driver_lock, flags);
1755
1756	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1757		ret_freq = cpufreq_driver->get(cpu);
1758		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1759		return ret_freq;
1760	}
1761
1762	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1763
1764	policy = cpufreq_cpu_get(cpu);
1765	if (policy) {
1766		ret_freq = policy->cur;
1767		cpufreq_cpu_put(policy);
1768	}
1769
1770	return ret_freq;
1771}
1772EXPORT_SYMBOL(cpufreq_quick_get);
1773
1774/**
1775 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1776 * @cpu: CPU number
1777 *
1778 * Just return the max possible frequency for a given CPU.
1779 */
1780unsigned int cpufreq_quick_get_max(unsigned int cpu)
1781{
1782	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1783	unsigned int ret_freq = 0;
1784
1785	if (policy) {
1786		ret_freq = policy->max;
1787		cpufreq_cpu_put(policy);
1788	}
1789
1790	return ret_freq;
1791}
1792EXPORT_SYMBOL(cpufreq_quick_get_max);
1793
1794/**
1795 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1796 * @cpu: CPU number
1797 *
1798 * The default return value is the max_freq field of cpuinfo.
1799 */
1800__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1801{
1802	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1803	unsigned int ret_freq = 0;
1804
1805	if (policy) {
1806		ret_freq = policy->cpuinfo.max_freq;
1807		cpufreq_cpu_put(policy);
 
 
 
 
 
 
 
 
 
 
1808	}
1809
1810	return ret_freq;
1811}
1812EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1813
1814static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1815{
1816	if (unlikely(policy_is_inactive(policy)))
1817		return 0;
1818
1819	return cpufreq_verify_current_freq(policy, true);
1820}
1821
1822/**
1823 * cpufreq_get - get the current CPU frequency (in kHz)
1824 * @cpu: CPU number
1825 *
1826 * Get the CPU current (static) CPU frequency
1827 */
1828unsigned int cpufreq_get(unsigned int cpu)
1829{
 
1830	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831	unsigned int ret_freq = 0;
1832
1833	if (policy) {
1834		down_read(&policy->rwsem);
1835		if (cpufreq_driver->get)
1836			ret_freq = __cpufreq_get(policy);
1837		up_read(&policy->rwsem);
 
 
1838
1839		cpufreq_cpu_put(policy);
1840	}
1841
 
 
 
1842	return ret_freq;
1843}
1844EXPORT_SYMBOL(cpufreq_get);
1845
1846static struct subsys_interface cpufreq_interface = {
1847	.name		= "cpufreq",
1848	.subsys		= &cpu_subsys,
1849	.add_dev	= cpufreq_add_dev,
1850	.remove_dev	= cpufreq_remove_dev,
1851};
1852
1853/*
1854 * In case platform wants some specific frequency to be configured
1855 * during suspend..
1856 */
1857int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1858{
1859	int ret;
1860
1861	if (!policy->suspend_freq) {
1862		pr_debug("%s: suspend_freq not defined\n", __func__);
1863		return 0;
1864	}
1865
1866	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1867			policy->suspend_freq);
1868
1869	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1870			CPUFREQ_RELATION_H);
1871	if (ret)
1872		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1873				__func__, policy->suspend_freq, ret);
1874
1875	return ret;
1876}
1877EXPORT_SYMBOL(cpufreq_generic_suspend);
1878
1879/**
1880 * cpufreq_suspend() - Suspend CPUFreq governors.
1881 *
1882 * Called during system wide Suspend/Hibernate cycles for suspending governors
1883 * as some platforms can't change frequency after this point in suspend cycle.
1884 * Because some of the devices (like: i2c, regulators, etc) they use for
1885 * changing frequency are suspended quickly after this point.
1886 */
1887void cpufreq_suspend(void)
1888{
1889	struct cpufreq_policy *policy;
1890
1891	if (!cpufreq_driver)
1892		return;
1893
1894	if (!has_target() && !cpufreq_driver->suspend)
1895		goto suspend;
1896
1897	pr_debug("%s: Suspending Governors\n", __func__);
 
 
 
1898
1899	for_each_active_policy(policy) {
1900		if (has_target()) {
1901			down_write(&policy->rwsem);
1902			cpufreq_stop_governor(policy);
1903			up_write(&policy->rwsem);
1904		}
1905
1906		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1907			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1908				cpufreq_driver->name);
1909	}
1910
1911suspend:
1912	cpufreq_suspended = true;
1913}
1914
1915/**
1916 * cpufreq_resume() - Resume CPUFreq governors.
 
 
 
 
 
 
 
1917 *
1918 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1919 * are suspended with cpufreq_suspend().
1920 */
1921void cpufreq_resume(void)
1922{
1923	struct cpufreq_policy *policy;
1924	int ret;
1925
1926	if (!cpufreq_driver)
1927		return;
1928
1929	if (unlikely(!cpufreq_suspended))
1930		return;
1931
1932	cpufreq_suspended = false;
1933
1934	if (!has_target() && !cpufreq_driver->resume)
1935		return;
1936
1937	pr_debug("%s: Resuming Governors\n", __func__);
1938
1939	for_each_active_policy(policy) {
1940		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1941			pr_err("%s: Failed to resume driver: %p\n", __func__,
1942				policy);
1943		} else if (has_target()) {
1944			down_write(&policy->rwsem);
1945			ret = cpufreq_start_governor(policy);
1946			up_write(&policy->rwsem);
1947
1948			if (ret)
1949				pr_err("%s: Failed to start governor for policy: %p\n",
1950				       __func__, policy);
1951		}
1952	}
1953}
1954
1955/**
1956 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1957 * @flags: Flags to test against the current cpufreq driver's flags.
1958 *
1959 * Assumes that the driver is there, so callers must ensure that this is the
1960 * case.
1961 */
1962bool cpufreq_driver_test_flags(u16 flags)
1963{
1964	return !!(cpufreq_driver->flags & flags);
1965}
1966
1967/**
1968 * cpufreq_get_current_driver - Return the current driver's name.
1969 *
1970 * Return the name string of the currently registered cpufreq driver or NULL if
1971 * none.
1972 */
1973const char *cpufreq_get_current_driver(void)
1974{
1975	if (cpufreq_driver)
1976		return cpufreq_driver->name;
1977
1978	return NULL;
1979}
1980EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1981
1982/**
1983 * cpufreq_get_driver_data - Return current driver data.
1984 *
1985 * Return the private data of the currently registered cpufreq driver, or NULL
1986 * if no cpufreq driver has been registered.
1987 */
1988void *cpufreq_get_driver_data(void)
1989{
1990	if (cpufreq_driver)
1991		return cpufreq_driver->driver_data;
1992
1993	return NULL;
1994}
1995EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1996
1997/*********************************************************************
1998 *                     NOTIFIER LISTS INTERFACE                      *
1999 *********************************************************************/
2000
2001/**
2002 * cpufreq_register_notifier - Register a notifier with cpufreq.
2003 * @nb: notifier function to register.
2004 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2005 *
2006 * Add a notifier to one of two lists: either a list of notifiers that run on
2007 * clock rate changes (once before and once after every transition), or a list
2008 * of notifiers that ron on cpufreq policy changes.
 
2009 *
2010 * This function may sleep and it has the same return values as
2011 * blocking_notifier_chain_register().
2012 */
2013int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2014{
2015	int ret;
2016
2017	if (cpufreq_disabled())
2018		return -EINVAL;
2019
2020	switch (list) {
2021	case CPUFREQ_TRANSITION_NOTIFIER:
2022		mutex_lock(&cpufreq_fast_switch_lock);
2023
2024		if (cpufreq_fast_switch_count > 0) {
2025			mutex_unlock(&cpufreq_fast_switch_lock);
2026			return -EBUSY;
2027		}
2028		ret = srcu_notifier_chain_register(
2029				&cpufreq_transition_notifier_list, nb);
2030		if (!ret)
2031			cpufreq_fast_switch_count--;
2032
2033		mutex_unlock(&cpufreq_fast_switch_lock);
2034		break;
2035	case CPUFREQ_POLICY_NOTIFIER:
2036		ret = blocking_notifier_chain_register(
2037				&cpufreq_policy_notifier_list, nb);
2038		break;
2039	default:
2040		ret = -EINVAL;
2041	}
2042
2043	return ret;
2044}
2045EXPORT_SYMBOL(cpufreq_register_notifier);
2046
 
2047/**
2048 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2049 * @nb: notifier block to be unregistered.
2050 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2051 *
2052 * Remove a notifier from one of the cpufreq notifier lists.
2053 *
2054 * This function may sleep and it has the same return values as
2055 * blocking_notifier_chain_unregister().
2056 */
2057int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2058{
2059	int ret;
2060
2061	if (cpufreq_disabled())
2062		return -EINVAL;
2063
2064	switch (list) {
2065	case CPUFREQ_TRANSITION_NOTIFIER:
2066		mutex_lock(&cpufreq_fast_switch_lock);
2067
2068		ret = srcu_notifier_chain_unregister(
2069				&cpufreq_transition_notifier_list, nb);
2070		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2071			cpufreq_fast_switch_count++;
2072
2073		mutex_unlock(&cpufreq_fast_switch_lock);
2074		break;
2075	case CPUFREQ_POLICY_NOTIFIER:
2076		ret = blocking_notifier_chain_unregister(
2077				&cpufreq_policy_notifier_list, nb);
2078		break;
2079	default:
2080		ret = -EINVAL;
2081	}
2082
2083	return ret;
2084}
2085EXPORT_SYMBOL(cpufreq_unregister_notifier);
2086
2087
2088/*********************************************************************
2089 *                              GOVERNORS                            *
2090 *********************************************************************/
2091
2092/**
2093 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2094 * @policy: cpufreq policy to switch the frequency for.
2095 * @target_freq: New frequency to set (may be approximate).
2096 *
2097 * Carry out a fast frequency switch without sleeping.
2098 *
2099 * The driver's ->fast_switch() callback invoked by this function must be
2100 * suitable for being called from within RCU-sched read-side critical sections
2101 * and it is expected to select the minimum available frequency greater than or
2102 * equal to @target_freq (CPUFREQ_RELATION_L).
2103 *
2104 * This function must not be called if policy->fast_switch_enabled is unset.
2105 *
2106 * Governors calling this function must guarantee that it will never be invoked
2107 * twice in parallel for the same policy and that it will never be called in
2108 * parallel with either ->target() or ->target_index() for the same policy.
2109 *
2110 * Returns the actual frequency set for the CPU.
2111 *
2112 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2113 * error condition, the hardware configuration must be preserved.
2114 */
2115unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2116					unsigned int target_freq)
2117{
2118	unsigned int freq;
2119	int cpu;
2120
2121	target_freq = clamp_val(target_freq, policy->min, policy->max);
2122	freq = cpufreq_driver->fast_switch(policy, target_freq);
2123
2124	if (!freq)
2125		return 0;
2126
2127	policy->cur = freq;
2128	arch_set_freq_scale(policy->related_cpus, freq,
2129			    policy->cpuinfo.max_freq);
2130	cpufreq_stats_record_transition(policy, freq);
2131
2132	if (trace_cpu_frequency_enabled()) {
2133		for_each_cpu(cpu, policy->cpus)
2134			trace_cpu_frequency(freq, cpu);
2135	}
2136
2137	return freq;
2138}
2139EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2140
2141/**
2142 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2143 * @cpu: Target CPU.
2144 * @min_perf: Minimum (required) performance level (units of @capacity).
2145 * @target_perf: Target (desired) performance level (units of @capacity).
2146 * @capacity: Capacity of the target CPU.
2147 *
2148 * Carry out a fast performance level switch of @cpu without sleeping.
2149 *
2150 * The driver's ->adjust_perf() callback invoked by this function must be
2151 * suitable for being called from within RCU-sched read-side critical sections
2152 * and it is expected to select a suitable performance level equal to or above
2153 * @min_perf and preferably equal to or below @target_perf.
2154 *
2155 * This function must not be called if policy->fast_switch_enabled is unset.
2156 *
2157 * Governors calling this function must guarantee that it will never be invoked
2158 * twice in parallel for the same CPU and that it will never be called in
2159 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2160 * the same CPU.
2161 */
2162void cpufreq_driver_adjust_perf(unsigned int cpu,
2163				 unsigned long min_perf,
2164				 unsigned long target_perf,
2165				 unsigned long capacity)
2166{
2167	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2168}
2169
2170/**
2171 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2172 *
2173 * Return 'true' if the ->adjust_perf callback is present for the
2174 * current driver or 'false' otherwise.
2175 */
2176bool cpufreq_driver_has_adjust_perf(void)
2177{
2178	return !!cpufreq_driver->adjust_perf;
2179}
2180
2181/* Must set freqs->new to intermediate frequency */
2182static int __target_intermediate(struct cpufreq_policy *policy,
2183				 struct cpufreq_freqs *freqs, int index)
2184{
2185	int ret;
2186
2187	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2188
2189	/* We don't need to switch to intermediate freq */
2190	if (!freqs->new)
2191		return 0;
2192
2193	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2194		 __func__, policy->cpu, freqs->old, freqs->new);
2195
2196	cpufreq_freq_transition_begin(policy, freqs);
2197	ret = cpufreq_driver->target_intermediate(policy, index);
2198	cpufreq_freq_transition_end(policy, freqs, ret);
2199
2200	if (ret)
2201		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2202		       __func__, ret);
2203
2204	return ret;
2205}
2206
2207static int __target_index(struct cpufreq_policy *policy, int index)
2208{
2209	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2210	unsigned int restore_freq, intermediate_freq = 0;
2211	unsigned int newfreq = policy->freq_table[index].frequency;
2212	int retval = -EINVAL;
2213	bool notify;
2214
2215	if (newfreq == policy->cur)
2216		return 0;
2217
2218	/* Save last value to restore later on errors */
2219	restore_freq = policy->cur;
2220
2221	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2222	if (notify) {
2223		/* Handle switching to intermediate frequency */
2224		if (cpufreq_driver->get_intermediate) {
2225			retval = __target_intermediate(policy, &freqs, index);
2226			if (retval)
2227				return retval;
2228
2229			intermediate_freq = freqs.new;
2230			/* Set old freq to intermediate */
2231			if (intermediate_freq)
2232				freqs.old = freqs.new;
2233		}
2234
2235		freqs.new = newfreq;
2236		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2237			 __func__, policy->cpu, freqs.old, freqs.new);
2238
2239		cpufreq_freq_transition_begin(policy, &freqs);
2240	}
2241
2242	retval = cpufreq_driver->target_index(policy, index);
2243	if (retval)
2244		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2245		       retval);
2246
2247	if (notify) {
2248		cpufreq_freq_transition_end(policy, &freqs, retval);
2249
2250		/*
2251		 * Failed after setting to intermediate freq? Driver should have
2252		 * reverted back to initial frequency and so should we. Check
2253		 * here for intermediate_freq instead of get_intermediate, in
2254		 * case we haven't switched to intermediate freq at all.
2255		 */
2256		if (unlikely(retval && intermediate_freq)) {
2257			freqs.old = intermediate_freq;
2258			freqs.new = restore_freq;
2259			cpufreq_freq_transition_begin(policy, &freqs);
2260			cpufreq_freq_transition_end(policy, &freqs, 0);
2261		}
2262	}
2263
2264	return retval;
2265}
2266
2267int __cpufreq_driver_target(struct cpufreq_policy *policy,
2268			    unsigned int target_freq,
2269			    unsigned int relation)
2270{
2271	unsigned int old_target_freq = target_freq;
2272
2273	if (cpufreq_disabled())
2274		return -ENODEV;
 
 
2275
2276	target_freq = __resolve_freq(policy, target_freq, relation);
2277
2278	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2279		 policy->cpu, target_freq, relation, old_target_freq);
2280
2281	/*
2282	 * This might look like a redundant call as we are checking it again
2283	 * after finding index. But it is left intentionally for cases where
2284	 * exactly same freq is called again and so we can save on few function
2285	 * calls.
2286	 */
2287	if (target_freq == policy->cur &&
2288	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2289		return 0;
2290
2291	if (cpufreq_driver->target) {
2292		/*
2293		 * If the driver hasn't setup a single inefficient frequency,
2294		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2295		 */
2296		if (!policy->efficiencies_available)
2297			relation &= ~CPUFREQ_RELATION_E;
2298
2299		return cpufreq_driver->target(policy, target_freq, relation);
2300	}
2301
2302	if (!cpufreq_driver->target_index)
2303		return -EINVAL;
2304
2305	return __target_index(policy, policy->cached_resolved_idx);
2306}
2307EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2308
2309int cpufreq_driver_target(struct cpufreq_policy *policy,
2310			  unsigned int target_freq,
2311			  unsigned int relation)
2312{
2313	int ret;
 
 
 
 
2314
2315	down_write(&policy->rwsem);
 
2316
2317	ret = __cpufreq_driver_target(policy, target_freq, relation);
2318
2319	up_write(&policy->rwsem);
2320
 
 
 
2321	return ret;
2322}
2323EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2324
2325__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2326{
2327	return NULL;
2328}
2329
2330static int cpufreq_init_governor(struct cpufreq_policy *policy)
2331{
2332	int ret;
2333
2334	/* Don't start any governor operations if we are entering suspend */
2335	if (cpufreq_suspended)
2336		return 0;
2337	/*
2338	 * Governor might not be initiated here if ACPI _PPC changed
2339	 * notification happened, so check it.
2340	 */
2341	if (!policy->governor)
2342		return -EINVAL;
2343
2344	/* Platform doesn't want dynamic frequency switching ? */
2345	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2346	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2347		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2348
2349		if (gov) {
2350			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2351				policy->governor->name, gov->name);
2352			policy->governor = gov;
2353		} else {
2354			return -EINVAL;
2355		}
2356	}
2357
2358	if (!try_module_get(policy->governor->owner))
2359		return -EINVAL;
2360
2361	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2362
2363	if (policy->governor->init) {
2364		ret = policy->governor->init(policy);
2365		if (ret) {
2366			module_put(policy->governor->owner);
2367			return ret;
2368		}
2369	}
2370
2371	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2372
2373	return 0;
2374}
 
2375
2376static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2377{
2378	if (cpufreq_suspended || !policy->governor)
2379		return;
2380
2381	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2382
2383	if (policy->governor->exit)
2384		policy->governor->exit(policy);
2385
2386	module_put(policy->governor->owner);
2387}
2388
2389int cpufreq_start_governor(struct cpufreq_policy *policy)
 
2390{
2391	int ret;
2392
2393	if (cpufreq_suspended)
2394		return 0;
 
 
 
 
 
 
 
2395
2396	if (!policy->governor)
2397		return -EINVAL;
2398
2399	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2400
2401	if (cpufreq_driver->get)
2402		cpufreq_verify_current_freq(policy, false);
2403
2404	if (policy->governor->start) {
2405		ret = policy->governor->start(policy);
2406		if (ret)
2407			return ret;
 
2408	}
2409
2410	if (policy->governor->limits)
2411		policy->governor->limits(policy);
2412
2413	return 0;
2414}
 
 
 
 
 
 
 
 
2415
2416void cpufreq_stop_governor(struct cpufreq_policy *policy)
2417{
2418	if (cpufreq_suspended || !policy->governor)
2419		return;
2420
2421	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2422
2423	if (policy->governor->stop)
2424		policy->governor->stop(policy);
2425}
2426
2427static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2428{
2429	if (cpufreq_suspended || !policy->governor)
2430		return;
2431
2432	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2433
2434	if (policy->governor->limits)
2435		policy->governor->limits(policy);
2436}
2437
2438int cpufreq_register_governor(struct cpufreq_governor *governor)
2439{
2440	int err;
2441
2442	if (!governor)
2443		return -EINVAL;
2444
2445	if (cpufreq_disabled())
2446		return -ENODEV;
2447
2448	mutex_lock(&cpufreq_governor_mutex);
2449
2450	err = -EBUSY;
2451	if (!find_governor(governor->name)) {
2452		err = 0;
2453		list_add(&governor->governor_list, &cpufreq_governor_list);
2454	}
2455
2456	mutex_unlock(&cpufreq_governor_mutex);
2457	return err;
2458}
2459EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2460
 
2461void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2462{
2463	struct cpufreq_policy *policy;
2464	unsigned long flags;
 
2465
2466	if (!governor)
2467		return;
2468
2469	if (cpufreq_disabled())
2470		return;
2471
2472	/* clear last_governor for all inactive policies */
2473	read_lock_irqsave(&cpufreq_driver_lock, flags);
2474	for_each_inactive_policy(policy) {
2475		if (!strcmp(policy->last_governor, governor->name)) {
2476			policy->governor = NULL;
2477			strcpy(policy->last_governor, "\0");
2478		}
2479	}
2480	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2481
2482	mutex_lock(&cpufreq_governor_mutex);
2483	list_del(&governor->governor_list);
2484	mutex_unlock(&cpufreq_governor_mutex);
 
2485}
2486EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2487
2488
 
2489/*********************************************************************
2490 *                          POLICY INTERFACE                         *
2491 *********************************************************************/
2492
2493/**
2494 * cpufreq_get_policy - get the current cpufreq_policy
2495 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2496 *	is written
2497 * @cpu: CPU to find the policy for
2498 *
2499 * Reads the current cpufreq policy.
2500 */
2501int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2502{
2503	struct cpufreq_policy *cpu_policy;
2504	if (!policy)
2505		return -EINVAL;
2506
2507	cpu_policy = cpufreq_cpu_get(cpu);
2508	if (!cpu_policy)
2509		return -EINVAL;
2510
2511	memcpy(policy, cpu_policy, sizeof(*policy));
2512
2513	cpufreq_cpu_put(cpu_policy);
2514	return 0;
2515}
2516EXPORT_SYMBOL(cpufreq_get_policy);
2517
2518/**
2519 * cpufreq_set_policy - Modify cpufreq policy parameters.
2520 * @policy: Policy object to modify.
2521 * @new_gov: Policy governor pointer.
2522 * @new_pol: Policy value (for drivers with built-in governors).
2523 *
2524 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2525 * limits to be set for the policy, update @policy with the verified limits
2526 * values and either invoke the driver's ->setpolicy() callback (if present) or
2527 * carry out a governor update for @policy.  That is, run the current governor's
2528 * ->limits() callback (if @new_gov points to the same object as the one in
2529 * @policy) or replace the governor for @policy with @new_gov.
2530 *
2531 * The cpuinfo part of @policy is not updated by this function.
2532 */
2533static int cpufreq_set_policy(struct cpufreq_policy *policy,
2534			      struct cpufreq_governor *new_gov,
2535			      unsigned int new_pol)
2536{
2537	struct cpufreq_policy_data new_data;
2538	struct cpufreq_governor *old_gov;
2539	int ret;
 
 
 
 
2540
2541	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2542	new_data.freq_table = policy->freq_table;
2543	new_data.cpu = policy->cpu;
2544	/*
2545	 * PM QoS framework collects all the requests from users and provide us
2546	 * the final aggregated value here.
2547	 */
2548	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2549	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2550
2551	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2552		 new_data.cpu, new_data.min, new_data.max);
 
 
2553
2554	/*
2555	 * Verify that the CPU speed can be set within these limits and make sure
2556	 * that min <= max.
2557	 */
2558	ret = cpufreq_driver->verify(&new_data);
 
 
 
 
 
 
2559	if (ret)
2560		return ret;
2561
2562	/*
2563	 * Resolve policy min/max to available frequencies. It ensures
2564	 * no frequency resolution will neither overshoot the requested maximum
2565	 * nor undershoot the requested minimum.
2566	 */
2567	policy->min = new_data.min;
2568	policy->max = new_data.max;
2569	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2570	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2571	trace_cpu_frequency_limits(policy);
2572
2573	policy->cached_target_freq = UINT_MAX;
 
2574
2575	pr_debug("new min and max freqs are %u - %u kHz\n",
2576		 policy->min, policy->max);
2577
2578	if (cpufreq_driver->setpolicy) {
2579		policy->policy = new_pol;
2580		pr_debug("setting range\n");
2581		return cpufreq_driver->setpolicy(policy);
2582	}
2583
2584	if (new_gov == policy->governor) {
2585		pr_debug("governor limits update\n");
2586		cpufreq_governor_limits(policy);
2587		return 0;
2588	}
2589
2590	pr_debug("governor switch\n");
2591
2592	/* save old, working values */
2593	old_gov = policy->governor;
2594	/* end old governor */
2595	if (old_gov) {
2596		cpufreq_stop_governor(policy);
2597		cpufreq_exit_governor(policy);
2598	}
2599
2600	/* start new governor */
2601	policy->governor = new_gov;
2602	ret = cpufreq_init_governor(policy);
2603	if (!ret) {
2604		ret = cpufreq_start_governor(policy);
2605		if (!ret) {
2606			pr_debug("governor change\n");
2607			sched_cpufreq_governor_change(policy, old_gov);
2608			return 0;
2609		}
2610		cpufreq_exit_governor(policy);
2611	}
2612
2613	/* new governor failed, so re-start old one */
2614	pr_debug("starting governor %s failed\n", policy->governor->name);
2615	if (old_gov) {
2616		policy->governor = old_gov;
2617		if (cpufreq_init_governor(policy))
2618			policy->governor = NULL;
2619		else
2620			cpufreq_start_governor(policy);
2621	}
2622
 
2623	return ret;
2624}
2625
2626/**
2627 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2628 * @cpu: CPU to re-evaluate the policy for.
2629 *
2630 * Update the current frequency for the cpufreq policy of @cpu and use
2631 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2632 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2633 * for the policy in question, among other things.
2634 */
2635void cpufreq_update_policy(unsigned int cpu)
2636{
2637	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2638
2639	if (!policy)
2640		return;
2641
2642	/*
2643	 * BIOS might change freq behind our back
2644	 * -> ask driver for current freq and notify governors about a change
2645	 */
2646	if (cpufreq_driver->get && has_target() &&
2647	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2648		goto unlock;
2649
2650	refresh_frequency_limits(policy);
2651
2652unlock:
2653	cpufreq_cpu_release(policy);
2654}
2655EXPORT_SYMBOL(cpufreq_update_policy);
2656
2657/**
2658 * cpufreq_update_limits - Update policy limits for a given CPU.
2659 * @cpu: CPU to update the policy limits for.
2660 *
2661 * Invoke the driver's ->update_limits callback if present or call
2662 * cpufreq_update_policy() for @cpu.
2663 */
2664void cpufreq_update_limits(unsigned int cpu)
2665{
2666	if (cpufreq_driver->update_limits)
2667		cpufreq_driver->update_limits(cpu);
2668	else
2669		cpufreq_update_policy(cpu);
2670}
2671EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2672
2673/*********************************************************************
2674 *               BOOST						     *
2675 *********************************************************************/
2676static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2677{
 
 
2678	int ret;
2679
2680	if (!policy->freq_table)
2681		return -ENXIO;
 
 
2682
2683	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2684	if (ret) {
2685		pr_err("%s: Policy frequency update failed\n", __func__);
2686		return ret;
2687	}
2688
2689	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2690	if (ret < 0)
2691		return ret;
 
 
 
2692
2693	return 0;
2694}
2695
2696int cpufreq_boost_trigger_state(int state)
2697{
2698	struct cpufreq_policy *policy;
2699	unsigned long flags;
2700	int ret = 0;
2701
2702	if (cpufreq_driver->boost_enabled == state)
2703		return 0;
2704
2705	write_lock_irqsave(&cpufreq_driver_lock, flags);
2706	cpufreq_driver->boost_enabled = state;
2707	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2708
2709	cpus_read_lock();
2710	for_each_active_policy(policy) {
2711		ret = cpufreq_driver->set_boost(policy, state);
2712		if (ret)
2713			goto err_reset_state;
2714	}
2715	cpus_read_unlock();
2716
2717	return 0;
2718
2719err_reset_state:
2720	cpus_read_unlock();
2721
2722	write_lock_irqsave(&cpufreq_driver_lock, flags);
2723	cpufreq_driver->boost_enabled = !state;
2724	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2725
2726	pr_err("%s: Cannot %s BOOST\n",
2727	       __func__, state ? "enable" : "disable");
2728
 
 
 
2729	return ret;
2730}
 
2731
2732static bool cpufreq_boost_supported(void)
 
2733{
2734	return cpufreq_driver->set_boost;
2735}
2736
2737static int create_boost_sysfs_file(void)
2738{
2739	int ret;
 
 
 
 
 
 
 
 
2740
2741	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2742	if (ret)
2743		pr_err("%s: cannot register global BOOST sysfs file\n",
2744		       __func__);
2745
2746	return ret;
 
 
 
2747}
2748
2749static void remove_boost_sysfs_file(void)
2750{
2751	if (cpufreq_boost_supported())
2752		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2753}
2754
2755int cpufreq_enable_boost_support(void)
2756{
2757	if (!cpufreq_driver)
2758		return -EINVAL;
2759
2760	if (cpufreq_boost_supported())
2761		return 0;
2762
2763	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2764
2765	/* This will get removed on driver unregister */
2766	return create_boost_sysfs_file();
2767}
2768EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2769
2770int cpufreq_boost_enabled(void)
2771{
2772	return cpufreq_driver->boost_enabled;
2773}
2774EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2775
2776/*********************************************************************
2777 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2778 *********************************************************************/
2779static enum cpuhp_state hp_online;
2780
2781static int cpuhp_cpufreq_online(unsigned int cpu)
2782{
2783	cpufreq_online(cpu);
2784
2785	return 0;
2786}
2787
2788static int cpuhp_cpufreq_offline(unsigned int cpu)
2789{
2790	cpufreq_offline(cpu);
2791
2792	return 0;
2793}
2794
2795/**
2796 * cpufreq_register_driver - register a CPU Frequency driver
2797 * @driver_data: A struct cpufreq_driver containing the values#
2798 * submitted by the CPU Frequency driver.
2799 *
2800 * Registers a CPU Frequency driver to this core code. This code
2801 * returns zero on success, -EEXIST when another driver got here first
2802 * (and isn't unregistered in the meantime).
2803 *
2804 */
2805int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2806{
2807	unsigned long flags;
2808	int ret;
2809
2810	if (cpufreq_disabled())
2811		return -ENODEV;
2812
2813	/*
2814	 * The cpufreq core depends heavily on the availability of device
2815	 * structure, make sure they are available before proceeding further.
2816	 */
2817	if (!get_cpu_device(0))
2818		return -EPROBE_DEFER;
2819
2820	if (!driver_data || !driver_data->verify || !driver_data->init ||
2821	    !(driver_data->setpolicy || driver_data->target_index ||
2822		    driver_data->target) ||
2823	     (driver_data->setpolicy && (driver_data->target_index ||
2824		    driver_data->target)) ||
2825	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2826	     (!driver_data->online != !driver_data->offline))
2827		return -EINVAL;
2828
2829	pr_debug("trying to register driver %s\n", driver_data->name);
2830
2831	/* Protect against concurrent CPU online/offline. */
2832	cpus_read_lock();
2833
2834	write_lock_irqsave(&cpufreq_driver_lock, flags);
2835	if (cpufreq_driver) {
2836		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2837		ret = -EEXIST;
2838		goto out;
2839	}
2840	cpufreq_driver = driver_data;
2841	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2842
2843	/*
2844	 * Mark support for the scheduler's frequency invariance engine for
2845	 * drivers that implement target(), target_index() or fast_switch().
2846	 */
2847	if (!cpufreq_driver->setpolicy) {
2848		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2849		pr_debug("supports frequency invariance");
2850	}
2851
2852	if (driver_data->setpolicy)
2853		driver_data->flags |= CPUFREQ_CONST_LOOPS;
 
2854
2855	if (cpufreq_boost_supported()) {
2856		ret = create_boost_sysfs_file();
2857		if (ret)
2858			goto err_null_driver;
2859	}
 
2860
2861	ret = subsys_interface_register(&cpufreq_interface);
2862	if (ret)
2863		goto err_boost_unreg;
2864
2865	if (unlikely(list_empty(&cpufreq_policy_list))) {
2866		/* if all ->init() calls failed, unregister */
2867		ret = -ENODEV;
2868		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2869			 driver_data->name);
2870		goto err_if_unreg;
 
2871	}
2872
2873	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2874						   "cpufreq:online",
2875						   cpuhp_cpufreq_online,
2876						   cpuhp_cpufreq_offline);
2877	if (ret < 0)
2878		goto err_if_unreg;
2879	hp_online = ret;
2880	ret = 0;
2881
2882	pr_debug("driver %s up and running\n", driver_data->name);
2883	goto out;
2884
2885err_if_unreg:
2886	subsys_interface_unregister(&cpufreq_interface);
2887err_boost_unreg:
2888	remove_boost_sysfs_file();
2889err_null_driver:
2890	write_lock_irqsave(&cpufreq_driver_lock, flags);
2891	cpufreq_driver = NULL;
2892	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2893out:
2894	cpus_read_unlock();
2895	return ret;
2896}
2897EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2898
2899/*
 
2900 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2901 *
2902 * Unregister the current CPUFreq driver. Only call this if you have
2903 * the right to do so, i.e. if you have succeeded in initialising before!
2904 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2905 * currently not initialised.
2906 */
2907int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2908{
2909	unsigned long flags;
2910
2911	if (!cpufreq_driver || (driver != cpufreq_driver))
2912		return -EINVAL;
2913
2914	pr_debug("unregistering driver %s\n", driver->name);
2915
2916	/* Protect against concurrent cpu hotplug */
2917	cpus_read_lock();
2918	subsys_interface_unregister(&cpufreq_interface);
2919	remove_boost_sysfs_file();
2920	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2921	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2922
2923	write_lock_irqsave(&cpufreq_driver_lock, flags);
2924
 
2925	cpufreq_driver = NULL;
2926
2927	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2928	cpus_read_unlock();
2929
2930	return 0;
2931}
2932EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2933
2934static int __init cpufreq_core_init(void)
2935{
2936	struct cpufreq_governor *gov = cpufreq_default_governor();
2937
2938	if (cpufreq_disabled())
2939		return -ENODEV;
 
 
2940
2941	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
 
2942	BUG_ON(!cpufreq_global_kobject);
2943
2944	if (!strlen(default_governor))
2945		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2946
2947	return 0;
2948}
2949module_param(off, int, 0444);
2950module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2951core_initcall(cpufreq_core_init);