Loading...
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
18#include <linux/freezer.h>
19#include <linux/mman.h>
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
31unsigned long transparent_hugepage_flags __read_mostly =
32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
92} khugepaged_scan = {
93 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
94};
95
96
97static int set_recommended_min_free_kbytes(void)
98{
99 struct zone *zone;
100 int nr_zones = 0;
101 unsigned long recommended_min;
102 extern int min_free_kbytes;
103
104 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
105 &transparent_hugepage_flags) &&
106 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
107 &transparent_hugepage_flags))
108 return 0;
109
110 for_each_populated_zone(zone)
111 nr_zones++;
112
113 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116 /*
117 * Make sure that on average at least two pageblocks are almost free
118 * of another type, one for a migratetype to fall back to and a
119 * second to avoid subsequent fallbacks of other types There are 3
120 * MIGRATE_TYPES we care about.
121 */
122 recommended_min += pageblock_nr_pages * nr_zones *
123 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125 /* don't ever allow to reserve more than 5% of the lowmem */
126 recommended_min = min(recommended_min,
127 (unsigned long) nr_free_buffer_pages() / 20);
128 recommended_min <<= (PAGE_SHIFT-10);
129
130 if (recommended_min > min_free_kbytes)
131 min_free_kbytes = recommended_min;
132 setup_per_zone_wmarks();
133 return 0;
134}
135late_initcall(set_recommended_min_free_kbytes);
136
137static int start_khugepaged(void)
138{
139 int err = 0;
140 if (khugepaged_enabled()) {
141 int wakeup;
142 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
143 err = -ENOMEM;
144 goto out;
145 }
146 mutex_lock(&khugepaged_mutex);
147 if (!khugepaged_thread)
148 khugepaged_thread = kthread_run(khugepaged, NULL,
149 "khugepaged");
150 if (unlikely(IS_ERR(khugepaged_thread))) {
151 printk(KERN_ERR
152 "khugepaged: kthread_run(khugepaged) failed\n");
153 err = PTR_ERR(khugepaged_thread);
154 khugepaged_thread = NULL;
155 }
156 wakeup = !list_empty(&khugepaged_scan.mm_head);
157 mutex_unlock(&khugepaged_mutex);
158 if (wakeup)
159 wake_up_interruptible(&khugepaged_wait);
160
161 set_recommended_min_free_kbytes();
162 } else
163 /* wakeup to exit */
164 wake_up_interruptible(&khugepaged_wait);
165out:
166 return err;
167}
168
169#ifdef CONFIG_SYSFS
170
171static ssize_t double_flag_show(struct kobject *kobj,
172 struct kobj_attribute *attr, char *buf,
173 enum transparent_hugepage_flag enabled,
174 enum transparent_hugepage_flag req_madv)
175{
176 if (test_bit(enabled, &transparent_hugepage_flags)) {
177 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
178 return sprintf(buf, "[always] madvise never\n");
179 } else if (test_bit(req_madv, &transparent_hugepage_flags))
180 return sprintf(buf, "always [madvise] never\n");
181 else
182 return sprintf(buf, "always madvise [never]\n");
183}
184static ssize_t double_flag_store(struct kobject *kobj,
185 struct kobj_attribute *attr,
186 const char *buf, size_t count,
187 enum transparent_hugepage_flag enabled,
188 enum transparent_hugepage_flag req_madv)
189{
190 if (!memcmp("always", buf,
191 min(sizeof("always")-1, count))) {
192 set_bit(enabled, &transparent_hugepage_flags);
193 clear_bit(req_madv, &transparent_hugepage_flags);
194 } else if (!memcmp("madvise", buf,
195 min(sizeof("madvise")-1, count))) {
196 clear_bit(enabled, &transparent_hugepage_flags);
197 set_bit(req_madv, &transparent_hugepage_flags);
198 } else if (!memcmp("never", buf,
199 min(sizeof("never")-1, count))) {
200 clear_bit(enabled, &transparent_hugepage_flags);
201 clear_bit(req_madv, &transparent_hugepage_flags);
202 } else
203 return -EINVAL;
204
205 return count;
206}
207
208static ssize_t enabled_show(struct kobject *kobj,
209 struct kobj_attribute *attr, char *buf)
210{
211 return double_flag_show(kobj, attr, buf,
212 TRANSPARENT_HUGEPAGE_FLAG,
213 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
214}
215static ssize_t enabled_store(struct kobject *kobj,
216 struct kobj_attribute *attr,
217 const char *buf, size_t count)
218{
219 ssize_t ret;
220
221 ret = double_flag_store(kobj, attr, buf, count,
222 TRANSPARENT_HUGEPAGE_FLAG,
223 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
224
225 if (ret > 0) {
226 int err = start_khugepaged();
227 if (err)
228 ret = err;
229 }
230
231 if (ret > 0 &&
232 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
233 &transparent_hugepage_flags) ||
234 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
235 &transparent_hugepage_flags)))
236 set_recommended_min_free_kbytes();
237
238 return ret;
239}
240static struct kobj_attribute enabled_attr =
241 __ATTR(enabled, 0644, enabled_show, enabled_store);
242
243static ssize_t single_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag flag)
246{
247 return sprintf(buf, "%d\n",
248 !!test_bit(flag, &transparent_hugepage_flags));
249}
250
251static ssize_t single_flag_store(struct kobject *kobj,
252 struct kobj_attribute *attr,
253 const char *buf, size_t count,
254 enum transparent_hugepage_flag flag)
255{
256 unsigned long value;
257 int ret;
258
259 ret = kstrtoul(buf, 10, &value);
260 if (ret < 0)
261 return ret;
262 if (value > 1)
263 return -EINVAL;
264
265 if (value)
266 set_bit(flag, &transparent_hugepage_flags);
267 else
268 clear_bit(flag, &transparent_hugepage_flags);
269
270 return count;
271}
272
273/*
274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
276 * memory just to allocate one more hugepage.
277 */
278static ssize_t defrag_show(struct kobject *kobj,
279 struct kobj_attribute *attr, char *buf)
280{
281 return double_flag_show(kobj, attr, buf,
282 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
283 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
284}
285static ssize_t defrag_store(struct kobject *kobj,
286 struct kobj_attribute *attr,
287 const char *buf, size_t count)
288{
289 return double_flag_store(kobj, attr, buf, count,
290 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
291 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
292}
293static struct kobj_attribute defrag_attr =
294 __ATTR(defrag, 0644, defrag_show, defrag_store);
295
296#ifdef CONFIG_DEBUG_VM
297static ssize_t debug_cow_show(struct kobject *kobj,
298 struct kobj_attribute *attr, char *buf)
299{
300 return single_flag_show(kobj, attr, buf,
301 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302}
303static ssize_t debug_cow_store(struct kobject *kobj,
304 struct kobj_attribute *attr,
305 const char *buf, size_t count)
306{
307 return single_flag_store(kobj, attr, buf, count,
308 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
309}
310static struct kobj_attribute debug_cow_attr =
311 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
312#endif /* CONFIG_DEBUG_VM */
313
314static struct attribute *hugepage_attr[] = {
315 &enabled_attr.attr,
316 &defrag_attr.attr,
317#ifdef CONFIG_DEBUG_VM
318 &debug_cow_attr.attr,
319#endif
320 NULL,
321};
322
323static struct attribute_group hugepage_attr_group = {
324 .attrs = hugepage_attr,
325};
326
327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
328 struct kobj_attribute *attr,
329 char *buf)
330{
331 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
332}
333
334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
335 struct kobj_attribute *attr,
336 const char *buf, size_t count)
337{
338 unsigned long msecs;
339 int err;
340
341 err = strict_strtoul(buf, 10, &msecs);
342 if (err || msecs > UINT_MAX)
343 return -EINVAL;
344
345 khugepaged_scan_sleep_millisecs = msecs;
346 wake_up_interruptible(&khugepaged_wait);
347
348 return count;
349}
350static struct kobj_attribute scan_sleep_millisecs_attr =
351 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
352 scan_sleep_millisecs_store);
353
354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 char *buf)
357{
358 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
359}
360
361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
362 struct kobj_attribute *attr,
363 const char *buf, size_t count)
364{
365 unsigned long msecs;
366 int err;
367
368 err = strict_strtoul(buf, 10, &msecs);
369 if (err || msecs > UINT_MAX)
370 return -EINVAL;
371
372 khugepaged_alloc_sleep_millisecs = msecs;
373 wake_up_interruptible(&khugepaged_wait);
374
375 return count;
376}
377static struct kobj_attribute alloc_sleep_millisecs_attr =
378 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
379 alloc_sleep_millisecs_store);
380
381static ssize_t pages_to_scan_show(struct kobject *kobj,
382 struct kobj_attribute *attr,
383 char *buf)
384{
385 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
386}
387static ssize_t pages_to_scan_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
390{
391 int err;
392 unsigned long pages;
393
394 err = strict_strtoul(buf, 10, &pages);
395 if (err || !pages || pages > UINT_MAX)
396 return -EINVAL;
397
398 khugepaged_pages_to_scan = pages;
399
400 return count;
401}
402static struct kobj_attribute pages_to_scan_attr =
403 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
404 pages_to_scan_store);
405
406static ssize_t pages_collapsed_show(struct kobject *kobj,
407 struct kobj_attribute *attr,
408 char *buf)
409{
410 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
411}
412static struct kobj_attribute pages_collapsed_attr =
413 __ATTR_RO(pages_collapsed);
414
415static ssize_t full_scans_show(struct kobject *kobj,
416 struct kobj_attribute *attr,
417 char *buf)
418{
419 return sprintf(buf, "%u\n", khugepaged_full_scans);
420}
421static struct kobj_attribute full_scans_attr =
422 __ATTR_RO(full_scans);
423
424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
425 struct kobj_attribute *attr, char *buf)
426{
427 return single_flag_show(kobj, attr, buf,
428 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
429}
430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
431 struct kobj_attribute *attr,
432 const char *buf, size_t count)
433{
434 return single_flag_store(kobj, attr, buf, count,
435 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
436}
437static struct kobj_attribute khugepaged_defrag_attr =
438 __ATTR(defrag, 0644, khugepaged_defrag_show,
439 khugepaged_defrag_store);
440
441/*
442 * max_ptes_none controls if khugepaged should collapse hugepages over
443 * any unmapped ptes in turn potentially increasing the memory
444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
445 * reduce the available free memory in the system as it
446 * runs. Increasing max_ptes_none will instead potentially reduce the
447 * free memory in the system during the khugepaged scan.
448 */
449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
450 struct kobj_attribute *attr,
451 char *buf)
452{
453 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
454}
455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
456 struct kobj_attribute *attr,
457 const char *buf, size_t count)
458{
459 int err;
460 unsigned long max_ptes_none;
461
462 err = strict_strtoul(buf, 10, &max_ptes_none);
463 if (err || max_ptes_none > HPAGE_PMD_NR-1)
464 return -EINVAL;
465
466 khugepaged_max_ptes_none = max_ptes_none;
467
468 return count;
469}
470static struct kobj_attribute khugepaged_max_ptes_none_attr =
471 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
472 khugepaged_max_ptes_none_store);
473
474static struct attribute *khugepaged_attr[] = {
475 &khugepaged_defrag_attr.attr,
476 &khugepaged_max_ptes_none_attr.attr,
477 &pages_to_scan_attr.attr,
478 &pages_collapsed_attr.attr,
479 &full_scans_attr.attr,
480 &scan_sleep_millisecs_attr.attr,
481 &alloc_sleep_millisecs_attr.attr,
482 NULL,
483};
484
485static struct attribute_group khugepaged_attr_group = {
486 .attrs = khugepaged_attr,
487 .name = "khugepaged",
488};
489#endif /* CONFIG_SYSFS */
490
491static int __init hugepage_init(void)
492{
493 int err;
494#ifdef CONFIG_SYSFS
495 static struct kobject *hugepage_kobj;
496#endif
497
498 err = -EINVAL;
499 if (!has_transparent_hugepage()) {
500 transparent_hugepage_flags = 0;
501 goto out;
502 }
503
504#ifdef CONFIG_SYSFS
505 err = -ENOMEM;
506 hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
507 if (unlikely(!hugepage_kobj)) {
508 printk(KERN_ERR "hugepage: failed kobject create\n");
509 goto out;
510 }
511
512 err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
513 if (err) {
514 printk(KERN_ERR "hugepage: failed register hugeage group\n");
515 goto out;
516 }
517
518 err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
519 if (err) {
520 printk(KERN_ERR "hugepage: failed register hugeage group\n");
521 goto out;
522 }
523#endif
524
525 err = khugepaged_slab_init();
526 if (err)
527 goto out;
528
529 err = mm_slots_hash_init();
530 if (err) {
531 khugepaged_slab_free();
532 goto out;
533 }
534
535 /*
536 * By default disable transparent hugepages on smaller systems,
537 * where the extra memory used could hurt more than TLB overhead
538 * is likely to save. The admin can still enable it through /sys.
539 */
540 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
541 transparent_hugepage_flags = 0;
542
543 start_khugepaged();
544
545 set_recommended_min_free_kbytes();
546
547out:
548 return err;
549}
550module_init(hugepage_init)
551
552static int __init setup_transparent_hugepage(char *str)
553{
554 int ret = 0;
555 if (!str)
556 goto out;
557 if (!strcmp(str, "always")) {
558 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
559 &transparent_hugepage_flags);
560 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
561 &transparent_hugepage_flags);
562 ret = 1;
563 } else if (!strcmp(str, "madvise")) {
564 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
565 &transparent_hugepage_flags);
566 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
567 &transparent_hugepage_flags);
568 ret = 1;
569 } else if (!strcmp(str, "never")) {
570 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
571 &transparent_hugepage_flags);
572 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
573 &transparent_hugepage_flags);
574 ret = 1;
575 }
576out:
577 if (!ret)
578 printk(KERN_WARNING
579 "transparent_hugepage= cannot parse, ignored\n");
580 return ret;
581}
582__setup("transparent_hugepage=", setup_transparent_hugepage);
583
584static void prepare_pmd_huge_pte(pgtable_t pgtable,
585 struct mm_struct *mm)
586{
587 assert_spin_locked(&mm->page_table_lock);
588
589 /* FIFO */
590 if (!mm->pmd_huge_pte)
591 INIT_LIST_HEAD(&pgtable->lru);
592 else
593 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
594 mm->pmd_huge_pte = pgtable;
595}
596
597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
598{
599 if (likely(vma->vm_flags & VM_WRITE))
600 pmd = pmd_mkwrite(pmd);
601 return pmd;
602}
603
604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
605 struct vm_area_struct *vma,
606 unsigned long haddr, pmd_t *pmd,
607 struct page *page)
608{
609 int ret = 0;
610 pgtable_t pgtable;
611
612 VM_BUG_ON(!PageCompound(page));
613 pgtable = pte_alloc_one(mm, haddr);
614 if (unlikely(!pgtable)) {
615 mem_cgroup_uncharge_page(page);
616 put_page(page);
617 return VM_FAULT_OOM;
618 }
619
620 clear_huge_page(page, haddr, HPAGE_PMD_NR);
621 __SetPageUptodate(page);
622
623 spin_lock(&mm->page_table_lock);
624 if (unlikely(!pmd_none(*pmd))) {
625 spin_unlock(&mm->page_table_lock);
626 mem_cgroup_uncharge_page(page);
627 put_page(page);
628 pte_free(mm, pgtable);
629 } else {
630 pmd_t entry;
631 entry = mk_pmd(page, vma->vm_page_prot);
632 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
633 entry = pmd_mkhuge(entry);
634 /*
635 * The spinlocking to take the lru_lock inside
636 * page_add_new_anon_rmap() acts as a full memory
637 * barrier to be sure clear_huge_page writes become
638 * visible after the set_pmd_at() write.
639 */
640 page_add_new_anon_rmap(page, vma, haddr);
641 set_pmd_at(mm, haddr, pmd, entry);
642 prepare_pmd_huge_pte(pgtable, mm);
643 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
644 spin_unlock(&mm->page_table_lock);
645 }
646
647 return ret;
648}
649
650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
651{
652 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
653}
654
655static inline struct page *alloc_hugepage_vma(int defrag,
656 struct vm_area_struct *vma,
657 unsigned long haddr, int nd,
658 gfp_t extra_gfp)
659{
660 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
661 HPAGE_PMD_ORDER, vma, haddr, nd);
662}
663
664#ifndef CONFIG_NUMA
665static inline struct page *alloc_hugepage(int defrag)
666{
667 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
668 HPAGE_PMD_ORDER);
669}
670#endif
671
672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
673 unsigned long address, pmd_t *pmd,
674 unsigned int flags)
675{
676 struct page *page;
677 unsigned long haddr = address & HPAGE_PMD_MASK;
678 pte_t *pte;
679
680 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
681 if (unlikely(anon_vma_prepare(vma)))
682 return VM_FAULT_OOM;
683 if (unlikely(khugepaged_enter(vma)))
684 return VM_FAULT_OOM;
685 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
686 vma, haddr, numa_node_id(), 0);
687 if (unlikely(!page)) {
688 count_vm_event(THP_FAULT_FALLBACK);
689 goto out;
690 }
691 count_vm_event(THP_FAULT_ALLOC);
692 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
693 put_page(page);
694 goto out;
695 }
696
697 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
698 }
699out:
700 /*
701 * Use __pte_alloc instead of pte_alloc_map, because we can't
702 * run pte_offset_map on the pmd, if an huge pmd could
703 * materialize from under us from a different thread.
704 */
705 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
706 return VM_FAULT_OOM;
707 /* if an huge pmd materialized from under us just retry later */
708 if (unlikely(pmd_trans_huge(*pmd)))
709 return 0;
710 /*
711 * A regular pmd is established and it can't morph into a huge pmd
712 * from under us anymore at this point because we hold the mmap_sem
713 * read mode and khugepaged takes it in write mode. So now it's
714 * safe to run pte_offset_map().
715 */
716 pte = pte_offset_map(pmd, address);
717 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
718}
719
720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
721 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
722 struct vm_area_struct *vma)
723{
724 struct page *src_page;
725 pmd_t pmd;
726 pgtable_t pgtable;
727 int ret;
728
729 ret = -ENOMEM;
730 pgtable = pte_alloc_one(dst_mm, addr);
731 if (unlikely(!pgtable))
732 goto out;
733
734 spin_lock(&dst_mm->page_table_lock);
735 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
736
737 ret = -EAGAIN;
738 pmd = *src_pmd;
739 if (unlikely(!pmd_trans_huge(pmd))) {
740 pte_free(dst_mm, pgtable);
741 goto out_unlock;
742 }
743 if (unlikely(pmd_trans_splitting(pmd))) {
744 /* split huge page running from under us */
745 spin_unlock(&src_mm->page_table_lock);
746 spin_unlock(&dst_mm->page_table_lock);
747 pte_free(dst_mm, pgtable);
748
749 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
750 goto out;
751 }
752 src_page = pmd_page(pmd);
753 VM_BUG_ON(!PageHead(src_page));
754 get_page(src_page);
755 page_dup_rmap(src_page);
756 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
757
758 pmdp_set_wrprotect(src_mm, addr, src_pmd);
759 pmd = pmd_mkold(pmd_wrprotect(pmd));
760 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
761 prepare_pmd_huge_pte(pgtable, dst_mm);
762
763 ret = 0;
764out_unlock:
765 spin_unlock(&src_mm->page_table_lock);
766 spin_unlock(&dst_mm->page_table_lock);
767out:
768 return ret;
769}
770
771/* no "address" argument so destroys page coloring of some arch */
772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
773{
774 pgtable_t pgtable;
775
776 assert_spin_locked(&mm->page_table_lock);
777
778 /* FIFO */
779 pgtable = mm->pmd_huge_pte;
780 if (list_empty(&pgtable->lru))
781 mm->pmd_huge_pte = NULL;
782 else {
783 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
784 struct page, lru);
785 list_del(&pgtable->lru);
786 }
787 return pgtable;
788}
789
790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
791 struct vm_area_struct *vma,
792 unsigned long address,
793 pmd_t *pmd, pmd_t orig_pmd,
794 struct page *page,
795 unsigned long haddr)
796{
797 pgtable_t pgtable;
798 pmd_t _pmd;
799 int ret = 0, i;
800 struct page **pages;
801
802 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
803 GFP_KERNEL);
804 if (unlikely(!pages)) {
805 ret |= VM_FAULT_OOM;
806 goto out;
807 }
808
809 for (i = 0; i < HPAGE_PMD_NR; i++) {
810 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
811 __GFP_OTHER_NODE,
812 vma, address, page_to_nid(page));
813 if (unlikely(!pages[i] ||
814 mem_cgroup_newpage_charge(pages[i], mm,
815 GFP_KERNEL))) {
816 if (pages[i])
817 put_page(pages[i]);
818 mem_cgroup_uncharge_start();
819 while (--i >= 0) {
820 mem_cgroup_uncharge_page(pages[i]);
821 put_page(pages[i]);
822 }
823 mem_cgroup_uncharge_end();
824 kfree(pages);
825 ret |= VM_FAULT_OOM;
826 goto out;
827 }
828 }
829
830 for (i = 0; i < HPAGE_PMD_NR; i++) {
831 copy_user_highpage(pages[i], page + i,
832 haddr + PAGE_SHIFT*i, vma);
833 __SetPageUptodate(pages[i]);
834 cond_resched();
835 }
836
837 spin_lock(&mm->page_table_lock);
838 if (unlikely(!pmd_same(*pmd, orig_pmd)))
839 goto out_free_pages;
840 VM_BUG_ON(!PageHead(page));
841
842 pmdp_clear_flush_notify(vma, haddr, pmd);
843 /* leave pmd empty until pte is filled */
844
845 pgtable = get_pmd_huge_pte(mm);
846 pmd_populate(mm, &_pmd, pgtable);
847
848 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
849 pte_t *pte, entry;
850 entry = mk_pte(pages[i], vma->vm_page_prot);
851 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
852 page_add_new_anon_rmap(pages[i], vma, haddr);
853 pte = pte_offset_map(&_pmd, haddr);
854 VM_BUG_ON(!pte_none(*pte));
855 set_pte_at(mm, haddr, pte, entry);
856 pte_unmap(pte);
857 }
858 kfree(pages);
859
860 mm->nr_ptes++;
861 smp_wmb(); /* make pte visible before pmd */
862 pmd_populate(mm, pmd, pgtable);
863 page_remove_rmap(page);
864 spin_unlock(&mm->page_table_lock);
865
866 ret |= VM_FAULT_WRITE;
867 put_page(page);
868
869out:
870 return ret;
871
872out_free_pages:
873 spin_unlock(&mm->page_table_lock);
874 mem_cgroup_uncharge_start();
875 for (i = 0; i < HPAGE_PMD_NR; i++) {
876 mem_cgroup_uncharge_page(pages[i]);
877 put_page(pages[i]);
878 }
879 mem_cgroup_uncharge_end();
880 kfree(pages);
881 goto out;
882}
883
884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
885 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
886{
887 int ret = 0;
888 struct page *page, *new_page;
889 unsigned long haddr;
890
891 VM_BUG_ON(!vma->anon_vma);
892 spin_lock(&mm->page_table_lock);
893 if (unlikely(!pmd_same(*pmd, orig_pmd)))
894 goto out_unlock;
895
896 page = pmd_page(orig_pmd);
897 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
898 haddr = address & HPAGE_PMD_MASK;
899 if (page_mapcount(page) == 1) {
900 pmd_t entry;
901 entry = pmd_mkyoung(orig_pmd);
902 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
903 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
904 update_mmu_cache(vma, address, entry);
905 ret |= VM_FAULT_WRITE;
906 goto out_unlock;
907 }
908 get_page(page);
909 spin_unlock(&mm->page_table_lock);
910
911 if (transparent_hugepage_enabled(vma) &&
912 !transparent_hugepage_debug_cow())
913 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
914 vma, haddr, numa_node_id(), 0);
915 else
916 new_page = NULL;
917
918 if (unlikely(!new_page)) {
919 count_vm_event(THP_FAULT_FALLBACK);
920 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
921 pmd, orig_pmd, page, haddr);
922 put_page(page);
923 goto out;
924 }
925 count_vm_event(THP_FAULT_ALLOC);
926
927 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
928 put_page(new_page);
929 put_page(page);
930 ret |= VM_FAULT_OOM;
931 goto out;
932 }
933
934 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
935 __SetPageUptodate(new_page);
936
937 spin_lock(&mm->page_table_lock);
938 put_page(page);
939 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
940 mem_cgroup_uncharge_page(new_page);
941 put_page(new_page);
942 } else {
943 pmd_t entry;
944 VM_BUG_ON(!PageHead(page));
945 entry = mk_pmd(new_page, vma->vm_page_prot);
946 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
947 entry = pmd_mkhuge(entry);
948 pmdp_clear_flush_notify(vma, haddr, pmd);
949 page_add_new_anon_rmap(new_page, vma, haddr);
950 set_pmd_at(mm, haddr, pmd, entry);
951 update_mmu_cache(vma, address, entry);
952 page_remove_rmap(page);
953 put_page(page);
954 ret |= VM_FAULT_WRITE;
955 }
956out_unlock:
957 spin_unlock(&mm->page_table_lock);
958out:
959 return ret;
960}
961
962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
963 unsigned long addr,
964 pmd_t *pmd,
965 unsigned int flags)
966{
967 struct page *page = NULL;
968
969 assert_spin_locked(&mm->page_table_lock);
970
971 if (flags & FOLL_WRITE && !pmd_write(*pmd))
972 goto out;
973
974 page = pmd_page(*pmd);
975 VM_BUG_ON(!PageHead(page));
976 if (flags & FOLL_TOUCH) {
977 pmd_t _pmd;
978 /*
979 * We should set the dirty bit only for FOLL_WRITE but
980 * for now the dirty bit in the pmd is meaningless.
981 * And if the dirty bit will become meaningful and
982 * we'll only set it with FOLL_WRITE, an atomic
983 * set_bit will be required on the pmd to set the
984 * young bit, instead of the current set_pmd_at.
985 */
986 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
987 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
988 }
989 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
990 VM_BUG_ON(!PageCompound(page));
991 if (flags & FOLL_GET)
992 get_page(page);
993
994out:
995 return page;
996}
997
998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
999 pmd_t *pmd)
1000{
1001 int ret = 0;
1002
1003 spin_lock(&tlb->mm->page_table_lock);
1004 if (likely(pmd_trans_huge(*pmd))) {
1005 if (unlikely(pmd_trans_splitting(*pmd))) {
1006 spin_unlock(&tlb->mm->page_table_lock);
1007 wait_split_huge_page(vma->anon_vma,
1008 pmd);
1009 } else {
1010 struct page *page;
1011 pgtable_t pgtable;
1012 pgtable = get_pmd_huge_pte(tlb->mm);
1013 page = pmd_page(*pmd);
1014 pmd_clear(pmd);
1015 page_remove_rmap(page);
1016 VM_BUG_ON(page_mapcount(page) < 0);
1017 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018 VM_BUG_ON(!PageHead(page));
1019 spin_unlock(&tlb->mm->page_table_lock);
1020 tlb_remove_page(tlb, page);
1021 pte_free(tlb->mm, pgtable);
1022 ret = 1;
1023 }
1024 } else
1025 spin_unlock(&tlb->mm->page_table_lock);
1026
1027 return ret;
1028}
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031 unsigned long addr, unsigned long end,
1032 unsigned char *vec)
1033{
1034 int ret = 0;
1035
1036 spin_lock(&vma->vm_mm->page_table_lock);
1037 if (likely(pmd_trans_huge(*pmd))) {
1038 ret = !pmd_trans_splitting(*pmd);
1039 spin_unlock(&vma->vm_mm->page_table_lock);
1040 if (unlikely(!ret))
1041 wait_split_huge_page(vma->anon_vma, pmd);
1042 else {
1043 /*
1044 * All logical pages in the range are present
1045 * if backed by a huge page.
1046 */
1047 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048 }
1049 } else
1050 spin_unlock(&vma->vm_mm->page_table_lock);
1051
1052 return ret;
1053}
1054
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056 unsigned long addr, pgprot_t newprot)
1057{
1058 struct mm_struct *mm = vma->vm_mm;
1059 int ret = 0;
1060
1061 spin_lock(&mm->page_table_lock);
1062 if (likely(pmd_trans_huge(*pmd))) {
1063 if (unlikely(pmd_trans_splitting(*pmd))) {
1064 spin_unlock(&mm->page_table_lock);
1065 wait_split_huge_page(vma->anon_vma, pmd);
1066 } else {
1067 pmd_t entry;
1068
1069 entry = pmdp_get_and_clear(mm, addr, pmd);
1070 entry = pmd_modify(entry, newprot);
1071 set_pmd_at(mm, addr, pmd, entry);
1072 spin_unlock(&vma->vm_mm->page_table_lock);
1073 flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074 ret = 1;
1075 }
1076 } else
1077 spin_unlock(&vma->vm_mm->page_table_lock);
1078
1079 return ret;
1080}
1081
1082pmd_t *page_check_address_pmd(struct page *page,
1083 struct mm_struct *mm,
1084 unsigned long address,
1085 enum page_check_address_pmd_flag flag)
1086{
1087 pgd_t *pgd;
1088 pud_t *pud;
1089 pmd_t *pmd, *ret = NULL;
1090
1091 if (address & ~HPAGE_PMD_MASK)
1092 goto out;
1093
1094 pgd = pgd_offset(mm, address);
1095 if (!pgd_present(*pgd))
1096 goto out;
1097
1098 pud = pud_offset(pgd, address);
1099 if (!pud_present(*pud))
1100 goto out;
1101
1102 pmd = pmd_offset(pud, address);
1103 if (pmd_none(*pmd))
1104 goto out;
1105 if (pmd_page(*pmd) != page)
1106 goto out;
1107 /*
1108 * split_vma() may create temporary aliased mappings. There is
1109 * no risk as long as all huge pmd are found and have their
1110 * splitting bit set before __split_huge_page_refcount
1111 * runs. Finding the same huge pmd more than once during the
1112 * same rmap walk is not a problem.
1113 */
1114 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115 pmd_trans_splitting(*pmd))
1116 goto out;
1117 if (pmd_trans_huge(*pmd)) {
1118 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119 !pmd_trans_splitting(*pmd));
1120 ret = pmd;
1121 }
1122out:
1123 return ret;
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127 struct vm_area_struct *vma,
1128 unsigned long address)
1129{
1130 struct mm_struct *mm = vma->vm_mm;
1131 pmd_t *pmd;
1132 int ret = 0;
1133
1134 spin_lock(&mm->page_table_lock);
1135 pmd = page_check_address_pmd(page, mm, address,
1136 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137 if (pmd) {
1138 /*
1139 * We can't temporarily set the pmd to null in order
1140 * to split it, the pmd must remain marked huge at all
1141 * times or the VM won't take the pmd_trans_huge paths
1142 * and it won't wait on the anon_vma->root->mutex to
1143 * serialize against split_huge_page*.
1144 */
1145 pmdp_splitting_flush_notify(vma, address, pmd);
1146 ret = 1;
1147 }
1148 spin_unlock(&mm->page_table_lock);
1149
1150 return ret;
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
1154{
1155 int i;
1156 unsigned long head_index = page->index;
1157 struct zone *zone = page_zone(page);
1158 int zonestat;
1159
1160 /* prevent PageLRU to go away from under us, and freeze lru stats */
1161 spin_lock_irq(&zone->lru_lock);
1162 compound_lock(page);
1163
1164 for (i = 1; i < HPAGE_PMD_NR; i++) {
1165 struct page *page_tail = page + i;
1166
1167 /* tail_page->_count cannot change */
1168 atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169 BUG_ON(page_count(page) <= 0);
1170 atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171 BUG_ON(atomic_read(&page_tail->_count) <= 0);
1172
1173 /* after clearing PageTail the gup refcount can be released */
1174 smp_mb();
1175
1176 /*
1177 * retain hwpoison flag of the poisoned tail page:
1178 * fix for the unsuitable process killed on Guest Machine(KVM)
1179 * by the memory-failure.
1180 */
1181 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182 page_tail->flags |= (page->flags &
1183 ((1L << PG_referenced) |
1184 (1L << PG_swapbacked) |
1185 (1L << PG_mlocked) |
1186 (1L << PG_uptodate)));
1187 page_tail->flags |= (1L << PG_dirty);
1188
1189 /*
1190 * 1) clear PageTail before overwriting first_page
1191 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192 */
1193 smp_wmb();
1194
1195 /*
1196 * __split_huge_page_splitting() already set the
1197 * splitting bit in all pmd that could map this
1198 * hugepage, that will ensure no CPU can alter the
1199 * mapcount on the head page. The mapcount is only
1200 * accounted in the head page and it has to be
1201 * transferred to all tail pages in the below code. So
1202 * for this code to be safe, the split the mapcount
1203 * can't change. But that doesn't mean userland can't
1204 * keep changing and reading the page contents while
1205 * we transfer the mapcount, so the pmd splitting
1206 * status is achieved setting a reserved bit in the
1207 * pmd, not by clearing the present bit.
1208 */
1209 BUG_ON(page_mapcount(page_tail));
1210 page_tail->_mapcount = page->_mapcount;
1211
1212 BUG_ON(page_tail->mapping);
1213 page_tail->mapping = page->mapping;
1214
1215 page_tail->index = ++head_index;
1216
1217 BUG_ON(!PageAnon(page_tail));
1218 BUG_ON(!PageUptodate(page_tail));
1219 BUG_ON(!PageDirty(page_tail));
1220 BUG_ON(!PageSwapBacked(page_tail));
1221
1222 mem_cgroup_split_huge_fixup(page, page_tail);
1223
1224 lru_add_page_tail(zone, page, page_tail);
1225 }
1226
1227 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1229
1230 /*
1231 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232 * so adjust those appropriately if this page is on the LRU.
1233 */
1234 if (PageLRU(page)) {
1235 zonestat = NR_LRU_BASE + page_lru(page);
1236 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237 }
1238
1239 ClearPageCompound(page);
1240 compound_unlock(page);
1241 spin_unlock_irq(&zone->lru_lock);
1242
1243 for (i = 1; i < HPAGE_PMD_NR; i++) {
1244 struct page *page_tail = page + i;
1245 BUG_ON(page_count(page_tail) <= 0);
1246 /*
1247 * Tail pages may be freed if there wasn't any mapping
1248 * like if add_to_swap() is running on a lru page that
1249 * had its mapping zapped. And freeing these pages
1250 * requires taking the lru_lock so we do the put_page
1251 * of the tail pages after the split is complete.
1252 */
1253 put_page(page_tail);
1254 }
1255
1256 /*
1257 * Only the head page (now become a regular page) is required
1258 * to be pinned by the caller.
1259 */
1260 BUG_ON(page_count(page) <= 0);
1261}
1262
1263static int __split_huge_page_map(struct page *page,
1264 struct vm_area_struct *vma,
1265 unsigned long address)
1266{
1267 struct mm_struct *mm = vma->vm_mm;
1268 pmd_t *pmd, _pmd;
1269 int ret = 0, i;
1270 pgtable_t pgtable;
1271 unsigned long haddr;
1272
1273 spin_lock(&mm->page_table_lock);
1274 pmd = page_check_address_pmd(page, mm, address,
1275 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276 if (pmd) {
1277 pgtable = get_pmd_huge_pte(mm);
1278 pmd_populate(mm, &_pmd, pgtable);
1279
1280 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281 i++, haddr += PAGE_SIZE) {
1282 pte_t *pte, entry;
1283 BUG_ON(PageCompound(page+i));
1284 entry = mk_pte(page + i, vma->vm_page_prot);
1285 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286 if (!pmd_write(*pmd))
1287 entry = pte_wrprotect(entry);
1288 else
1289 BUG_ON(page_mapcount(page) != 1);
1290 if (!pmd_young(*pmd))
1291 entry = pte_mkold(entry);
1292 pte = pte_offset_map(&_pmd, haddr);
1293 BUG_ON(!pte_none(*pte));
1294 set_pte_at(mm, haddr, pte, entry);
1295 pte_unmap(pte);
1296 }
1297
1298 mm->nr_ptes++;
1299 smp_wmb(); /* make pte visible before pmd */
1300 /*
1301 * Up to this point the pmd is present and huge and
1302 * userland has the whole access to the hugepage
1303 * during the split (which happens in place). If we
1304 * overwrite the pmd with the not-huge version
1305 * pointing to the pte here (which of course we could
1306 * if all CPUs were bug free), userland could trigger
1307 * a small page size TLB miss on the small sized TLB
1308 * while the hugepage TLB entry is still established
1309 * in the huge TLB. Some CPU doesn't like that. See
1310 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311 * Erratum 383 on page 93. Intel should be safe but is
1312 * also warns that it's only safe if the permission
1313 * and cache attributes of the two entries loaded in
1314 * the two TLB is identical (which should be the case
1315 * here). But it is generally safer to never allow
1316 * small and huge TLB entries for the same virtual
1317 * address to be loaded simultaneously. So instead of
1318 * doing "pmd_populate(); flush_tlb_range();" we first
1319 * mark the current pmd notpresent (atomically because
1320 * here the pmd_trans_huge and pmd_trans_splitting
1321 * must remain set at all times on the pmd until the
1322 * split is complete for this pmd), then we flush the
1323 * SMP TLB and finally we write the non-huge version
1324 * of the pmd entry with pmd_populate.
1325 */
1326 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328 pmd_populate(mm, pmd, pgtable);
1329 ret = 1;
1330 }
1331 spin_unlock(&mm->page_table_lock);
1332
1333 return ret;
1334}
1335
1336/* must be called with anon_vma->root->mutex hold */
1337static void __split_huge_page(struct page *page,
1338 struct anon_vma *anon_vma)
1339{
1340 int mapcount, mapcount2;
1341 struct anon_vma_chain *avc;
1342
1343 BUG_ON(!PageHead(page));
1344 BUG_ON(PageTail(page));
1345
1346 mapcount = 0;
1347 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348 struct vm_area_struct *vma = avc->vma;
1349 unsigned long addr = vma_address(page, vma);
1350 BUG_ON(is_vma_temporary_stack(vma));
1351 if (addr == -EFAULT)
1352 continue;
1353 mapcount += __split_huge_page_splitting(page, vma, addr);
1354 }
1355 /*
1356 * It is critical that new vmas are added to the tail of the
1357 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358 * and establishes a child pmd before
1359 * __split_huge_page_splitting() freezes the parent pmd (so if
1360 * we fail to prevent copy_huge_pmd() from running until the
1361 * whole __split_huge_page() is complete), we will still see
1362 * the newly established pmd of the child later during the
1363 * walk, to be able to set it as pmd_trans_splitting too.
1364 */
1365 if (mapcount != page_mapcount(page))
1366 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367 mapcount, page_mapcount(page));
1368 BUG_ON(mapcount != page_mapcount(page));
1369
1370 __split_huge_page_refcount(page);
1371
1372 mapcount2 = 0;
1373 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374 struct vm_area_struct *vma = avc->vma;
1375 unsigned long addr = vma_address(page, vma);
1376 BUG_ON(is_vma_temporary_stack(vma));
1377 if (addr == -EFAULT)
1378 continue;
1379 mapcount2 += __split_huge_page_map(page, vma, addr);
1380 }
1381 if (mapcount != mapcount2)
1382 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383 mapcount, mapcount2, page_mapcount(page));
1384 BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
1388{
1389 struct anon_vma *anon_vma;
1390 int ret = 1;
1391
1392 BUG_ON(!PageAnon(page));
1393 anon_vma = page_lock_anon_vma(page);
1394 if (!anon_vma)
1395 goto out;
1396 ret = 0;
1397 if (!PageCompound(page))
1398 goto out_unlock;
1399
1400 BUG_ON(!PageSwapBacked(page));
1401 __split_huge_page(page, anon_vma);
1402 count_vm_event(THP_SPLIT);
1403
1404 BUG_ON(PageCompound(page));
1405out_unlock:
1406 page_unlock_anon_vma(anon_vma);
1407out:
1408 return ret;
1409}
1410
1411#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1412 VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1413
1414int hugepage_madvise(struct vm_area_struct *vma,
1415 unsigned long *vm_flags, int advice)
1416{
1417 switch (advice) {
1418 case MADV_HUGEPAGE:
1419 /*
1420 * Be somewhat over-protective like KSM for now!
1421 */
1422 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1423 return -EINVAL;
1424 *vm_flags &= ~VM_NOHUGEPAGE;
1425 *vm_flags |= VM_HUGEPAGE;
1426 /*
1427 * If the vma become good for khugepaged to scan,
1428 * register it here without waiting a page fault that
1429 * may not happen any time soon.
1430 */
1431 if (unlikely(khugepaged_enter_vma_merge(vma)))
1432 return -ENOMEM;
1433 break;
1434 case MADV_NOHUGEPAGE:
1435 /*
1436 * Be somewhat over-protective like KSM for now!
1437 */
1438 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1439 return -EINVAL;
1440 *vm_flags &= ~VM_HUGEPAGE;
1441 *vm_flags |= VM_NOHUGEPAGE;
1442 /*
1443 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1444 * this vma even if we leave the mm registered in khugepaged if
1445 * it got registered before VM_NOHUGEPAGE was set.
1446 */
1447 break;
1448 }
1449
1450 return 0;
1451}
1452
1453static int __init khugepaged_slab_init(void)
1454{
1455 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1456 sizeof(struct mm_slot),
1457 __alignof__(struct mm_slot), 0, NULL);
1458 if (!mm_slot_cache)
1459 return -ENOMEM;
1460
1461 return 0;
1462}
1463
1464static void __init khugepaged_slab_free(void)
1465{
1466 kmem_cache_destroy(mm_slot_cache);
1467 mm_slot_cache = NULL;
1468}
1469
1470static inline struct mm_slot *alloc_mm_slot(void)
1471{
1472 if (!mm_slot_cache) /* initialization failed */
1473 return NULL;
1474 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1475}
1476
1477static inline void free_mm_slot(struct mm_slot *mm_slot)
1478{
1479 kmem_cache_free(mm_slot_cache, mm_slot);
1480}
1481
1482static int __init mm_slots_hash_init(void)
1483{
1484 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1485 GFP_KERNEL);
1486 if (!mm_slots_hash)
1487 return -ENOMEM;
1488 return 0;
1489}
1490
1491#if 0
1492static void __init mm_slots_hash_free(void)
1493{
1494 kfree(mm_slots_hash);
1495 mm_slots_hash = NULL;
1496}
1497#endif
1498
1499static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1500{
1501 struct mm_slot *mm_slot;
1502 struct hlist_head *bucket;
1503 struct hlist_node *node;
1504
1505 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1506 % MM_SLOTS_HASH_HEADS];
1507 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1508 if (mm == mm_slot->mm)
1509 return mm_slot;
1510 }
1511 return NULL;
1512}
1513
1514static void insert_to_mm_slots_hash(struct mm_struct *mm,
1515 struct mm_slot *mm_slot)
1516{
1517 struct hlist_head *bucket;
1518
1519 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1520 % MM_SLOTS_HASH_HEADS];
1521 mm_slot->mm = mm;
1522 hlist_add_head(&mm_slot->hash, bucket);
1523}
1524
1525static inline int khugepaged_test_exit(struct mm_struct *mm)
1526{
1527 return atomic_read(&mm->mm_users) == 0;
1528}
1529
1530int __khugepaged_enter(struct mm_struct *mm)
1531{
1532 struct mm_slot *mm_slot;
1533 int wakeup;
1534
1535 mm_slot = alloc_mm_slot();
1536 if (!mm_slot)
1537 return -ENOMEM;
1538
1539 /* __khugepaged_exit() must not run from under us */
1540 VM_BUG_ON(khugepaged_test_exit(mm));
1541 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1542 free_mm_slot(mm_slot);
1543 return 0;
1544 }
1545
1546 spin_lock(&khugepaged_mm_lock);
1547 insert_to_mm_slots_hash(mm, mm_slot);
1548 /*
1549 * Insert just behind the scanning cursor, to let the area settle
1550 * down a little.
1551 */
1552 wakeup = list_empty(&khugepaged_scan.mm_head);
1553 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1554 spin_unlock(&khugepaged_mm_lock);
1555
1556 atomic_inc(&mm->mm_count);
1557 if (wakeup)
1558 wake_up_interruptible(&khugepaged_wait);
1559
1560 return 0;
1561}
1562
1563int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1564{
1565 unsigned long hstart, hend;
1566 if (!vma->anon_vma)
1567 /*
1568 * Not yet faulted in so we will register later in the
1569 * page fault if needed.
1570 */
1571 return 0;
1572 if (vma->vm_ops)
1573 /* khugepaged not yet working on file or special mappings */
1574 return 0;
1575 /*
1576 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1577 * true too, verify it here.
1578 */
1579 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1580 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1581 hend = vma->vm_end & HPAGE_PMD_MASK;
1582 if (hstart < hend)
1583 return khugepaged_enter(vma);
1584 return 0;
1585}
1586
1587void __khugepaged_exit(struct mm_struct *mm)
1588{
1589 struct mm_slot *mm_slot;
1590 int free = 0;
1591
1592 spin_lock(&khugepaged_mm_lock);
1593 mm_slot = get_mm_slot(mm);
1594 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1595 hlist_del(&mm_slot->hash);
1596 list_del(&mm_slot->mm_node);
1597 free = 1;
1598 }
1599 spin_unlock(&khugepaged_mm_lock);
1600
1601 if (free) {
1602 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1603 free_mm_slot(mm_slot);
1604 mmdrop(mm);
1605 } else if (mm_slot) {
1606 /*
1607 * This is required to serialize against
1608 * khugepaged_test_exit() (which is guaranteed to run
1609 * under mmap sem read mode). Stop here (after we
1610 * return all pagetables will be destroyed) until
1611 * khugepaged has finished working on the pagetables
1612 * under the mmap_sem.
1613 */
1614 down_write(&mm->mmap_sem);
1615 up_write(&mm->mmap_sem);
1616 }
1617}
1618
1619static void release_pte_page(struct page *page)
1620{
1621 /* 0 stands for page_is_file_cache(page) == false */
1622 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1623 unlock_page(page);
1624 putback_lru_page(page);
1625}
1626
1627static void release_pte_pages(pte_t *pte, pte_t *_pte)
1628{
1629 while (--_pte >= pte) {
1630 pte_t pteval = *_pte;
1631 if (!pte_none(pteval))
1632 release_pte_page(pte_page(pteval));
1633 }
1634}
1635
1636static void release_all_pte_pages(pte_t *pte)
1637{
1638 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1639}
1640
1641static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1642 unsigned long address,
1643 pte_t *pte)
1644{
1645 struct page *page;
1646 pte_t *_pte;
1647 int referenced = 0, isolated = 0, none = 0;
1648 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1649 _pte++, address += PAGE_SIZE) {
1650 pte_t pteval = *_pte;
1651 if (pte_none(pteval)) {
1652 if (++none <= khugepaged_max_ptes_none)
1653 continue;
1654 else {
1655 release_pte_pages(pte, _pte);
1656 goto out;
1657 }
1658 }
1659 if (!pte_present(pteval) || !pte_write(pteval)) {
1660 release_pte_pages(pte, _pte);
1661 goto out;
1662 }
1663 page = vm_normal_page(vma, address, pteval);
1664 if (unlikely(!page)) {
1665 release_pte_pages(pte, _pte);
1666 goto out;
1667 }
1668 VM_BUG_ON(PageCompound(page));
1669 BUG_ON(!PageAnon(page));
1670 VM_BUG_ON(!PageSwapBacked(page));
1671
1672 /* cannot use mapcount: can't collapse if there's a gup pin */
1673 if (page_count(page) != 1) {
1674 release_pte_pages(pte, _pte);
1675 goto out;
1676 }
1677 /*
1678 * We can do it before isolate_lru_page because the
1679 * page can't be freed from under us. NOTE: PG_lock
1680 * is needed to serialize against split_huge_page
1681 * when invoked from the VM.
1682 */
1683 if (!trylock_page(page)) {
1684 release_pte_pages(pte, _pte);
1685 goto out;
1686 }
1687 /*
1688 * Isolate the page to avoid collapsing an hugepage
1689 * currently in use by the VM.
1690 */
1691 if (isolate_lru_page(page)) {
1692 unlock_page(page);
1693 release_pte_pages(pte, _pte);
1694 goto out;
1695 }
1696 /* 0 stands for page_is_file_cache(page) == false */
1697 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698 VM_BUG_ON(!PageLocked(page));
1699 VM_BUG_ON(PageLRU(page));
1700
1701 /* If there is no mapped pte young don't collapse the page */
1702 if (pte_young(pteval) || PageReferenced(page) ||
1703 mmu_notifier_test_young(vma->vm_mm, address))
1704 referenced = 1;
1705 }
1706 if (unlikely(!referenced))
1707 release_all_pte_pages(pte);
1708 else
1709 isolated = 1;
1710out:
1711 return isolated;
1712}
1713
1714static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1715 struct vm_area_struct *vma,
1716 unsigned long address,
1717 spinlock_t *ptl)
1718{
1719 pte_t *_pte;
1720 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1721 pte_t pteval = *_pte;
1722 struct page *src_page;
1723
1724 if (pte_none(pteval)) {
1725 clear_user_highpage(page, address);
1726 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1727 } else {
1728 src_page = pte_page(pteval);
1729 copy_user_highpage(page, src_page, address, vma);
1730 VM_BUG_ON(page_mapcount(src_page) != 1);
1731 VM_BUG_ON(page_count(src_page) != 2);
1732 release_pte_page(src_page);
1733 /*
1734 * ptl mostly unnecessary, but preempt has to
1735 * be disabled to update the per-cpu stats
1736 * inside page_remove_rmap().
1737 */
1738 spin_lock(ptl);
1739 /*
1740 * paravirt calls inside pte_clear here are
1741 * superfluous.
1742 */
1743 pte_clear(vma->vm_mm, address, _pte);
1744 page_remove_rmap(src_page);
1745 spin_unlock(ptl);
1746 free_page_and_swap_cache(src_page);
1747 }
1748
1749 address += PAGE_SIZE;
1750 page++;
1751 }
1752}
1753
1754static void collapse_huge_page(struct mm_struct *mm,
1755 unsigned long address,
1756 struct page **hpage,
1757 struct vm_area_struct *vma,
1758 int node)
1759{
1760 pgd_t *pgd;
1761 pud_t *pud;
1762 pmd_t *pmd, _pmd;
1763 pte_t *pte;
1764 pgtable_t pgtable;
1765 struct page *new_page;
1766 spinlock_t *ptl;
1767 int isolated;
1768 unsigned long hstart, hend;
1769
1770 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1771#ifndef CONFIG_NUMA
1772 up_read(&mm->mmap_sem);
1773 VM_BUG_ON(!*hpage);
1774 new_page = *hpage;
1775#else
1776 VM_BUG_ON(*hpage);
1777 /*
1778 * Allocate the page while the vma is still valid and under
1779 * the mmap_sem read mode so there is no memory allocation
1780 * later when we take the mmap_sem in write mode. This is more
1781 * friendly behavior (OTOH it may actually hide bugs) to
1782 * filesystems in userland with daemons allocating memory in
1783 * the userland I/O paths. Allocating memory with the
1784 * mmap_sem in read mode is good idea also to allow greater
1785 * scalability.
1786 */
1787 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1788 node, __GFP_OTHER_NODE);
1789
1790 /*
1791 * After allocating the hugepage, release the mmap_sem read lock in
1792 * preparation for taking it in write mode.
1793 */
1794 up_read(&mm->mmap_sem);
1795 if (unlikely(!new_page)) {
1796 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1797 *hpage = ERR_PTR(-ENOMEM);
1798 return;
1799 }
1800#endif
1801
1802 count_vm_event(THP_COLLAPSE_ALLOC);
1803 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1804#ifdef CONFIG_NUMA
1805 put_page(new_page);
1806#endif
1807 return;
1808 }
1809
1810 /*
1811 * Prevent all access to pagetables with the exception of
1812 * gup_fast later hanlded by the ptep_clear_flush and the VM
1813 * handled by the anon_vma lock + PG_lock.
1814 */
1815 down_write(&mm->mmap_sem);
1816 if (unlikely(khugepaged_test_exit(mm)))
1817 goto out;
1818
1819 vma = find_vma(mm, address);
1820 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1821 hend = vma->vm_end & HPAGE_PMD_MASK;
1822 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1823 goto out;
1824
1825 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1826 (vma->vm_flags & VM_NOHUGEPAGE))
1827 goto out;
1828
1829 if (!vma->anon_vma || vma->vm_ops)
1830 goto out;
1831 if (is_vma_temporary_stack(vma))
1832 goto out;
1833 /*
1834 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1835 * true too, verify it here.
1836 */
1837 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1838
1839 pgd = pgd_offset(mm, address);
1840 if (!pgd_present(*pgd))
1841 goto out;
1842
1843 pud = pud_offset(pgd, address);
1844 if (!pud_present(*pud))
1845 goto out;
1846
1847 pmd = pmd_offset(pud, address);
1848 /* pmd can't go away or become huge under us */
1849 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1850 goto out;
1851
1852 anon_vma_lock(vma->anon_vma);
1853
1854 pte = pte_offset_map(pmd, address);
1855 ptl = pte_lockptr(mm, pmd);
1856
1857 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1858 /*
1859 * After this gup_fast can't run anymore. This also removes
1860 * any huge TLB entry from the CPU so we won't allow
1861 * huge and small TLB entries for the same virtual address
1862 * to avoid the risk of CPU bugs in that area.
1863 */
1864 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1865 spin_unlock(&mm->page_table_lock);
1866
1867 spin_lock(ptl);
1868 isolated = __collapse_huge_page_isolate(vma, address, pte);
1869 spin_unlock(ptl);
1870
1871 if (unlikely(!isolated)) {
1872 pte_unmap(pte);
1873 spin_lock(&mm->page_table_lock);
1874 BUG_ON(!pmd_none(*pmd));
1875 set_pmd_at(mm, address, pmd, _pmd);
1876 spin_unlock(&mm->page_table_lock);
1877 anon_vma_unlock(vma->anon_vma);
1878 goto out;
1879 }
1880
1881 /*
1882 * All pages are isolated and locked so anon_vma rmap
1883 * can't run anymore.
1884 */
1885 anon_vma_unlock(vma->anon_vma);
1886
1887 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1888 pte_unmap(pte);
1889 __SetPageUptodate(new_page);
1890 pgtable = pmd_pgtable(_pmd);
1891 VM_BUG_ON(page_count(pgtable) != 1);
1892 VM_BUG_ON(page_mapcount(pgtable) != 0);
1893
1894 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1895 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1896 _pmd = pmd_mkhuge(_pmd);
1897
1898 /*
1899 * spin_lock() below is not the equivalent of smp_wmb(), so
1900 * this is needed to avoid the copy_huge_page writes to become
1901 * visible after the set_pmd_at() write.
1902 */
1903 smp_wmb();
1904
1905 spin_lock(&mm->page_table_lock);
1906 BUG_ON(!pmd_none(*pmd));
1907 page_add_new_anon_rmap(new_page, vma, address);
1908 set_pmd_at(mm, address, pmd, _pmd);
1909 update_mmu_cache(vma, address, entry);
1910 prepare_pmd_huge_pte(pgtable, mm);
1911 mm->nr_ptes--;
1912 spin_unlock(&mm->page_table_lock);
1913
1914#ifndef CONFIG_NUMA
1915 *hpage = NULL;
1916#endif
1917 khugepaged_pages_collapsed++;
1918out_up_write:
1919 up_write(&mm->mmap_sem);
1920 return;
1921
1922out:
1923 mem_cgroup_uncharge_page(new_page);
1924#ifdef CONFIG_NUMA
1925 put_page(new_page);
1926#endif
1927 goto out_up_write;
1928}
1929
1930static int khugepaged_scan_pmd(struct mm_struct *mm,
1931 struct vm_area_struct *vma,
1932 unsigned long address,
1933 struct page **hpage)
1934{
1935 pgd_t *pgd;
1936 pud_t *pud;
1937 pmd_t *pmd;
1938 pte_t *pte, *_pte;
1939 int ret = 0, referenced = 0, none = 0;
1940 struct page *page;
1941 unsigned long _address;
1942 spinlock_t *ptl;
1943 int node = -1;
1944
1945 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1946
1947 pgd = pgd_offset(mm, address);
1948 if (!pgd_present(*pgd))
1949 goto out;
1950
1951 pud = pud_offset(pgd, address);
1952 if (!pud_present(*pud))
1953 goto out;
1954
1955 pmd = pmd_offset(pud, address);
1956 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1957 goto out;
1958
1959 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1960 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1961 _pte++, _address += PAGE_SIZE) {
1962 pte_t pteval = *_pte;
1963 if (pte_none(pteval)) {
1964 if (++none <= khugepaged_max_ptes_none)
1965 continue;
1966 else
1967 goto out_unmap;
1968 }
1969 if (!pte_present(pteval) || !pte_write(pteval))
1970 goto out_unmap;
1971 page = vm_normal_page(vma, _address, pteval);
1972 if (unlikely(!page))
1973 goto out_unmap;
1974 /*
1975 * Chose the node of the first page. This could
1976 * be more sophisticated and look at more pages,
1977 * but isn't for now.
1978 */
1979 if (node == -1)
1980 node = page_to_nid(page);
1981 VM_BUG_ON(PageCompound(page));
1982 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1983 goto out_unmap;
1984 /* cannot use mapcount: can't collapse if there's a gup pin */
1985 if (page_count(page) != 1)
1986 goto out_unmap;
1987 if (pte_young(pteval) || PageReferenced(page) ||
1988 mmu_notifier_test_young(vma->vm_mm, address))
1989 referenced = 1;
1990 }
1991 if (referenced)
1992 ret = 1;
1993out_unmap:
1994 pte_unmap_unlock(pte, ptl);
1995 if (ret)
1996 /* collapse_huge_page will return with the mmap_sem released */
1997 collapse_huge_page(mm, address, hpage, vma, node);
1998out:
1999 return ret;
2000}
2001
2002static void collect_mm_slot(struct mm_slot *mm_slot)
2003{
2004 struct mm_struct *mm = mm_slot->mm;
2005
2006 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2007
2008 if (khugepaged_test_exit(mm)) {
2009 /* free mm_slot */
2010 hlist_del(&mm_slot->hash);
2011 list_del(&mm_slot->mm_node);
2012
2013 /*
2014 * Not strictly needed because the mm exited already.
2015 *
2016 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2017 */
2018
2019 /* khugepaged_mm_lock actually not necessary for the below */
2020 free_mm_slot(mm_slot);
2021 mmdrop(mm);
2022 }
2023}
2024
2025static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2026 struct page **hpage)
2027{
2028 struct mm_slot *mm_slot;
2029 struct mm_struct *mm;
2030 struct vm_area_struct *vma;
2031 int progress = 0;
2032
2033 VM_BUG_ON(!pages);
2034 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2035
2036 if (khugepaged_scan.mm_slot)
2037 mm_slot = khugepaged_scan.mm_slot;
2038 else {
2039 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2040 struct mm_slot, mm_node);
2041 khugepaged_scan.address = 0;
2042 khugepaged_scan.mm_slot = mm_slot;
2043 }
2044 spin_unlock(&khugepaged_mm_lock);
2045
2046 mm = mm_slot->mm;
2047 down_read(&mm->mmap_sem);
2048 if (unlikely(khugepaged_test_exit(mm)))
2049 vma = NULL;
2050 else
2051 vma = find_vma(mm, khugepaged_scan.address);
2052
2053 progress++;
2054 for (; vma; vma = vma->vm_next) {
2055 unsigned long hstart, hend;
2056
2057 cond_resched();
2058 if (unlikely(khugepaged_test_exit(mm))) {
2059 progress++;
2060 break;
2061 }
2062
2063 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2064 !khugepaged_always()) ||
2065 (vma->vm_flags & VM_NOHUGEPAGE)) {
2066 skip:
2067 progress++;
2068 continue;
2069 }
2070 if (!vma->anon_vma || vma->vm_ops)
2071 goto skip;
2072 if (is_vma_temporary_stack(vma))
2073 goto skip;
2074 /*
2075 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2076 * must be true too, verify it here.
2077 */
2078 VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2079 vma->vm_flags & VM_NO_THP);
2080
2081 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2082 hend = vma->vm_end & HPAGE_PMD_MASK;
2083 if (hstart >= hend)
2084 goto skip;
2085 if (khugepaged_scan.address > hend)
2086 goto skip;
2087 if (khugepaged_scan.address < hstart)
2088 khugepaged_scan.address = hstart;
2089 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2090
2091 while (khugepaged_scan.address < hend) {
2092 int ret;
2093 cond_resched();
2094 if (unlikely(khugepaged_test_exit(mm)))
2095 goto breakouterloop;
2096
2097 VM_BUG_ON(khugepaged_scan.address < hstart ||
2098 khugepaged_scan.address + HPAGE_PMD_SIZE >
2099 hend);
2100 ret = khugepaged_scan_pmd(mm, vma,
2101 khugepaged_scan.address,
2102 hpage);
2103 /* move to next address */
2104 khugepaged_scan.address += HPAGE_PMD_SIZE;
2105 progress += HPAGE_PMD_NR;
2106 if (ret)
2107 /* we released mmap_sem so break loop */
2108 goto breakouterloop_mmap_sem;
2109 if (progress >= pages)
2110 goto breakouterloop;
2111 }
2112 }
2113breakouterloop:
2114 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2115breakouterloop_mmap_sem:
2116
2117 spin_lock(&khugepaged_mm_lock);
2118 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2119 /*
2120 * Release the current mm_slot if this mm is about to die, or
2121 * if we scanned all vmas of this mm.
2122 */
2123 if (khugepaged_test_exit(mm) || !vma) {
2124 /*
2125 * Make sure that if mm_users is reaching zero while
2126 * khugepaged runs here, khugepaged_exit will find
2127 * mm_slot not pointing to the exiting mm.
2128 */
2129 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2130 khugepaged_scan.mm_slot = list_entry(
2131 mm_slot->mm_node.next,
2132 struct mm_slot, mm_node);
2133 khugepaged_scan.address = 0;
2134 } else {
2135 khugepaged_scan.mm_slot = NULL;
2136 khugepaged_full_scans++;
2137 }
2138
2139 collect_mm_slot(mm_slot);
2140 }
2141
2142 return progress;
2143}
2144
2145static int khugepaged_has_work(void)
2146{
2147 return !list_empty(&khugepaged_scan.mm_head) &&
2148 khugepaged_enabled();
2149}
2150
2151static int khugepaged_wait_event(void)
2152{
2153 return !list_empty(&khugepaged_scan.mm_head) ||
2154 !khugepaged_enabled();
2155}
2156
2157static void khugepaged_do_scan(struct page **hpage)
2158{
2159 unsigned int progress = 0, pass_through_head = 0;
2160 unsigned int pages = khugepaged_pages_to_scan;
2161
2162 barrier(); /* write khugepaged_pages_to_scan to local stack */
2163
2164 while (progress < pages) {
2165 cond_resched();
2166
2167#ifndef CONFIG_NUMA
2168 if (!*hpage) {
2169 *hpage = alloc_hugepage(khugepaged_defrag());
2170 if (unlikely(!*hpage)) {
2171 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2172 break;
2173 }
2174 count_vm_event(THP_COLLAPSE_ALLOC);
2175 }
2176#else
2177 if (IS_ERR(*hpage))
2178 break;
2179#endif
2180
2181 if (unlikely(kthread_should_stop() || freezing(current)))
2182 break;
2183
2184 spin_lock(&khugepaged_mm_lock);
2185 if (!khugepaged_scan.mm_slot)
2186 pass_through_head++;
2187 if (khugepaged_has_work() &&
2188 pass_through_head < 2)
2189 progress += khugepaged_scan_mm_slot(pages - progress,
2190 hpage);
2191 else
2192 progress = pages;
2193 spin_unlock(&khugepaged_mm_lock);
2194 }
2195}
2196
2197static void khugepaged_alloc_sleep(void)
2198{
2199 DEFINE_WAIT(wait);
2200 add_wait_queue(&khugepaged_wait, &wait);
2201 schedule_timeout_interruptible(
2202 msecs_to_jiffies(
2203 khugepaged_alloc_sleep_millisecs));
2204 remove_wait_queue(&khugepaged_wait, &wait);
2205}
2206
2207#ifndef CONFIG_NUMA
2208static struct page *khugepaged_alloc_hugepage(void)
2209{
2210 struct page *hpage;
2211
2212 do {
2213 hpage = alloc_hugepage(khugepaged_defrag());
2214 if (!hpage) {
2215 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2216 khugepaged_alloc_sleep();
2217 } else
2218 count_vm_event(THP_COLLAPSE_ALLOC);
2219 } while (unlikely(!hpage) &&
2220 likely(khugepaged_enabled()));
2221 return hpage;
2222}
2223#endif
2224
2225static void khugepaged_loop(void)
2226{
2227 struct page *hpage;
2228
2229#ifdef CONFIG_NUMA
2230 hpage = NULL;
2231#endif
2232 while (likely(khugepaged_enabled())) {
2233#ifndef CONFIG_NUMA
2234 hpage = khugepaged_alloc_hugepage();
2235 if (unlikely(!hpage))
2236 break;
2237#else
2238 if (IS_ERR(hpage)) {
2239 khugepaged_alloc_sleep();
2240 hpage = NULL;
2241 }
2242#endif
2243
2244 khugepaged_do_scan(&hpage);
2245#ifndef CONFIG_NUMA
2246 if (hpage)
2247 put_page(hpage);
2248#endif
2249 try_to_freeze();
2250 if (unlikely(kthread_should_stop()))
2251 break;
2252 if (khugepaged_has_work()) {
2253 DEFINE_WAIT(wait);
2254 if (!khugepaged_scan_sleep_millisecs)
2255 continue;
2256 add_wait_queue(&khugepaged_wait, &wait);
2257 schedule_timeout_interruptible(
2258 msecs_to_jiffies(
2259 khugepaged_scan_sleep_millisecs));
2260 remove_wait_queue(&khugepaged_wait, &wait);
2261 } else if (khugepaged_enabled())
2262 wait_event_freezable(khugepaged_wait,
2263 khugepaged_wait_event());
2264 }
2265}
2266
2267static int khugepaged(void *none)
2268{
2269 struct mm_slot *mm_slot;
2270
2271 set_freezable();
2272 set_user_nice(current, 19);
2273
2274 /* serialize with start_khugepaged() */
2275 mutex_lock(&khugepaged_mutex);
2276
2277 for (;;) {
2278 mutex_unlock(&khugepaged_mutex);
2279 VM_BUG_ON(khugepaged_thread != current);
2280 khugepaged_loop();
2281 VM_BUG_ON(khugepaged_thread != current);
2282
2283 mutex_lock(&khugepaged_mutex);
2284 if (!khugepaged_enabled())
2285 break;
2286 if (unlikely(kthread_should_stop()))
2287 break;
2288 }
2289
2290 spin_lock(&khugepaged_mm_lock);
2291 mm_slot = khugepaged_scan.mm_slot;
2292 khugepaged_scan.mm_slot = NULL;
2293 if (mm_slot)
2294 collect_mm_slot(mm_slot);
2295 spin_unlock(&khugepaged_mm_lock);
2296
2297 khugepaged_thread = NULL;
2298 mutex_unlock(&khugepaged_mutex);
2299
2300 return 0;
2301}
2302
2303void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2304{
2305 struct page *page;
2306
2307 spin_lock(&mm->page_table_lock);
2308 if (unlikely(!pmd_trans_huge(*pmd))) {
2309 spin_unlock(&mm->page_table_lock);
2310 return;
2311 }
2312 page = pmd_page(*pmd);
2313 VM_BUG_ON(!page_count(page));
2314 get_page(page);
2315 spin_unlock(&mm->page_table_lock);
2316
2317 split_huge_page(page);
2318
2319 put_page(page);
2320 BUG_ON(pmd_trans_huge(*pmd));
2321}
2322
2323static void split_huge_page_address(struct mm_struct *mm,
2324 unsigned long address)
2325{
2326 pgd_t *pgd;
2327 pud_t *pud;
2328 pmd_t *pmd;
2329
2330 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2331
2332 pgd = pgd_offset(mm, address);
2333 if (!pgd_present(*pgd))
2334 return;
2335
2336 pud = pud_offset(pgd, address);
2337 if (!pud_present(*pud))
2338 return;
2339
2340 pmd = pmd_offset(pud, address);
2341 if (!pmd_present(*pmd))
2342 return;
2343 /*
2344 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2345 * materialize from under us.
2346 */
2347 split_huge_page_pmd(mm, pmd);
2348}
2349
2350void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2351 unsigned long start,
2352 unsigned long end,
2353 long adjust_next)
2354{
2355 /*
2356 * If the new start address isn't hpage aligned and it could
2357 * previously contain an hugepage: check if we need to split
2358 * an huge pmd.
2359 */
2360 if (start & ~HPAGE_PMD_MASK &&
2361 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2362 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2363 split_huge_page_address(vma->vm_mm, start);
2364
2365 /*
2366 * If the new end address isn't hpage aligned and it could
2367 * previously contain an hugepage: check if we need to split
2368 * an huge pmd.
2369 */
2370 if (end & ~HPAGE_PMD_MASK &&
2371 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2372 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2373 split_huge_page_address(vma->vm_mm, end);
2374
2375 /*
2376 * If we're also updating the vma->vm_next->vm_start, if the new
2377 * vm_next->vm_start isn't page aligned and it could previously
2378 * contain an hugepage: check if we need to split an huge pmd.
2379 */
2380 if (adjust_next > 0) {
2381 struct vm_area_struct *next = vma->vm_next;
2382 unsigned long nstart = next->vm_start;
2383 nstart += adjust_next << PAGE_SHIFT;
2384 if (nstart & ~HPAGE_PMD_MASK &&
2385 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2386 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2387 split_huge_page_address(next->vm_mm, nstart);
2388 }
2389}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/sched/mm.h>
11#include <linux/sched/numa_balancing.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
17#include <linux/shrinker.h>
18#include <linux/mm_inline.h>
19#include <linux/swapops.h>
20#include <linux/backing-dev.h>
21#include <linux/dax.h>
22#include <linux/mm_types.h>
23#include <linux/khugepaged.h>
24#include <linux/freezer.h>
25#include <linux/pfn_t.h>
26#include <linux/mman.h>
27#include <linux/memremap.h>
28#include <linux/pagemap.h>
29#include <linux/debugfs.h>
30#include <linux/migrate.h>
31#include <linux/hashtable.h>
32#include <linux/userfaultfd_k.h>
33#include <linux/page_idle.h>
34#include <linux/shmem_fs.h>
35#include <linux/oom.h>
36#include <linux/numa.h>
37#include <linux/page_owner.h>
38#include <linux/sched/sysctl.h>
39#include <linux/memory-tiers.h>
40#include <linux/compat.h>
41#include <linux/pgalloc_tag.h>
42#include <linux/pagewalk.h>
43
44#include <asm/tlb.h>
45#include <asm/pgalloc.h>
46#include "internal.h"
47#include "swap.h"
48
49#define CREATE_TRACE_POINTS
50#include <trace/events/thp.h>
51
52/*
53 * By default, transparent hugepage support is disabled in order to avoid
54 * risking an increased memory footprint for applications that are not
55 * guaranteed to benefit from it. When transparent hugepage support is
56 * enabled, it is for all mappings, and khugepaged scans all mappings.
57 * Defrag is invoked by khugepaged hugepage allocations and by page faults
58 * for all hugepage allocations.
59 */
60unsigned long transparent_hugepage_flags __read_mostly =
61#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
62 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
63#endif
64#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
65 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
66#endif
67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
68 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
69 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
70
71static struct shrinker *deferred_split_shrinker;
72static unsigned long deferred_split_count(struct shrinker *shrink,
73 struct shrink_control *sc);
74static unsigned long deferred_split_scan(struct shrinker *shrink,
75 struct shrink_control *sc);
76static bool split_underused_thp = true;
77
78static atomic_t huge_zero_refcount;
79struct folio *huge_zero_folio __read_mostly;
80unsigned long huge_zero_pfn __read_mostly = ~0UL;
81unsigned long huge_anon_orders_always __read_mostly;
82unsigned long huge_anon_orders_madvise __read_mostly;
83unsigned long huge_anon_orders_inherit __read_mostly;
84static bool anon_orders_configured __initdata;
85
86static inline bool file_thp_enabled(struct vm_area_struct *vma)
87{
88 struct inode *inode;
89
90 if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
91 return false;
92
93 if (!vma->vm_file)
94 return false;
95
96 inode = file_inode(vma->vm_file);
97
98 return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
99}
100
101unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
102 unsigned long vm_flags,
103 unsigned long tva_flags,
104 unsigned long orders)
105{
106 bool smaps = tva_flags & TVA_SMAPS;
107 bool in_pf = tva_flags & TVA_IN_PF;
108 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
109 unsigned long supported_orders;
110
111 /* Check the intersection of requested and supported orders. */
112 if (vma_is_anonymous(vma))
113 supported_orders = THP_ORDERS_ALL_ANON;
114 else if (vma_is_special_huge(vma))
115 supported_orders = THP_ORDERS_ALL_SPECIAL;
116 else
117 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
118
119 orders &= supported_orders;
120 if (!orders)
121 return 0;
122
123 if (!vma->vm_mm) /* vdso */
124 return 0;
125
126 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags))
127 return 0;
128
129 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
130 if (vma_is_dax(vma))
131 return in_pf ? orders : 0;
132
133 /*
134 * khugepaged special VMA and hugetlb VMA.
135 * Must be checked after dax since some dax mappings may have
136 * VM_MIXEDMAP set.
137 */
138 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
139 return 0;
140
141 /*
142 * Check alignment for file vma and size for both file and anon vma by
143 * filtering out the unsuitable orders.
144 *
145 * Skip the check for page fault. Huge fault does the check in fault
146 * handlers.
147 */
148 if (!in_pf) {
149 int order = highest_order(orders);
150 unsigned long addr;
151
152 while (orders) {
153 addr = vma->vm_end - (PAGE_SIZE << order);
154 if (thp_vma_suitable_order(vma, addr, order))
155 break;
156 order = next_order(&orders, order);
157 }
158
159 if (!orders)
160 return 0;
161 }
162
163 /*
164 * Enabled via shmem mount options or sysfs settings.
165 * Must be done before hugepage flags check since shmem has its
166 * own flags.
167 */
168 if (!in_pf && shmem_file(vma->vm_file))
169 return shmem_allowable_huge_orders(file_inode(vma->vm_file),
170 vma, vma->vm_pgoff, 0,
171 !enforce_sysfs);
172
173 if (!vma_is_anonymous(vma)) {
174 /*
175 * Enforce sysfs THP requirements as necessary. Anonymous vmas
176 * were already handled in thp_vma_allowable_orders().
177 */
178 if (enforce_sysfs &&
179 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
180 !hugepage_global_always())))
181 return 0;
182
183 /*
184 * Trust that ->huge_fault() handlers know what they are doing
185 * in fault path.
186 */
187 if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
188 return orders;
189 /* Only regular file is valid in collapse path */
190 if (((!in_pf || smaps)) && file_thp_enabled(vma))
191 return orders;
192 return 0;
193 }
194
195 if (vma_is_temporary_stack(vma))
196 return 0;
197
198 /*
199 * THPeligible bit of smaps should show 1 for proper VMAs even
200 * though anon_vma is not initialized yet.
201 *
202 * Allow page fault since anon_vma may be not initialized until
203 * the first page fault.
204 */
205 if (!vma->anon_vma)
206 return (smaps || in_pf) ? orders : 0;
207
208 return orders;
209}
210
211static bool get_huge_zero_page(void)
212{
213 struct folio *zero_folio;
214retry:
215 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
216 return true;
217
218 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
219 HPAGE_PMD_ORDER);
220 if (!zero_folio) {
221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222 return false;
223 }
224 /* Ensure zero folio won't have large_rmappable flag set. */
225 folio_clear_large_rmappable(zero_folio);
226 preempt_disable();
227 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
228 preempt_enable();
229 folio_put(zero_folio);
230 goto retry;
231 }
232 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
233
234 /* We take additional reference here. It will be put back by shrinker */
235 atomic_set(&huge_zero_refcount, 2);
236 preempt_enable();
237 count_vm_event(THP_ZERO_PAGE_ALLOC);
238 return true;
239}
240
241static void put_huge_zero_page(void)
242{
243 /*
244 * Counter should never go to zero here. Only shrinker can put
245 * last reference.
246 */
247 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
248}
249
250struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
251{
252 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
253 return READ_ONCE(huge_zero_folio);
254
255 if (!get_huge_zero_page())
256 return NULL;
257
258 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
259 put_huge_zero_page();
260
261 return READ_ONCE(huge_zero_folio);
262}
263
264void mm_put_huge_zero_folio(struct mm_struct *mm)
265{
266 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
267 put_huge_zero_page();
268}
269
270static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
271 struct shrink_control *sc)
272{
273 /* we can free zero page only if last reference remains */
274 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
275}
276
277static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
278 struct shrink_control *sc)
279{
280 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
281 struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
282 BUG_ON(zero_folio == NULL);
283 WRITE_ONCE(huge_zero_pfn, ~0UL);
284 folio_put(zero_folio);
285 return HPAGE_PMD_NR;
286 }
287
288 return 0;
289}
290
291static struct shrinker *huge_zero_page_shrinker;
292
293#ifdef CONFIG_SYSFS
294static ssize_t enabled_show(struct kobject *kobj,
295 struct kobj_attribute *attr, char *buf)
296{
297 const char *output;
298
299 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
300 output = "[always] madvise never";
301 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
302 &transparent_hugepage_flags))
303 output = "always [madvise] never";
304 else
305 output = "always madvise [never]";
306
307 return sysfs_emit(buf, "%s\n", output);
308}
309
310static ssize_t enabled_store(struct kobject *kobj,
311 struct kobj_attribute *attr,
312 const char *buf, size_t count)
313{
314 ssize_t ret = count;
315
316 if (sysfs_streq(buf, "always")) {
317 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
318 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
319 } else if (sysfs_streq(buf, "madvise")) {
320 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
321 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
322 } else if (sysfs_streq(buf, "never")) {
323 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
324 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
325 } else
326 ret = -EINVAL;
327
328 if (ret > 0) {
329 int err = start_stop_khugepaged();
330 if (err)
331 ret = err;
332 }
333 return ret;
334}
335
336static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
337
338ssize_t single_hugepage_flag_show(struct kobject *kobj,
339 struct kobj_attribute *attr, char *buf,
340 enum transparent_hugepage_flag flag)
341{
342 return sysfs_emit(buf, "%d\n",
343 !!test_bit(flag, &transparent_hugepage_flags));
344}
345
346ssize_t single_hugepage_flag_store(struct kobject *kobj,
347 struct kobj_attribute *attr,
348 const char *buf, size_t count,
349 enum transparent_hugepage_flag flag)
350{
351 unsigned long value;
352 int ret;
353
354 ret = kstrtoul(buf, 10, &value);
355 if (ret < 0)
356 return ret;
357 if (value > 1)
358 return -EINVAL;
359
360 if (value)
361 set_bit(flag, &transparent_hugepage_flags);
362 else
363 clear_bit(flag, &transparent_hugepage_flags);
364
365 return count;
366}
367
368static ssize_t defrag_show(struct kobject *kobj,
369 struct kobj_attribute *attr, char *buf)
370{
371 const char *output;
372
373 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
374 &transparent_hugepage_flags))
375 output = "[always] defer defer+madvise madvise never";
376 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
377 &transparent_hugepage_flags))
378 output = "always [defer] defer+madvise madvise never";
379 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
380 &transparent_hugepage_flags))
381 output = "always defer [defer+madvise] madvise never";
382 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
383 &transparent_hugepage_flags))
384 output = "always defer defer+madvise [madvise] never";
385 else
386 output = "always defer defer+madvise madvise [never]";
387
388 return sysfs_emit(buf, "%s\n", output);
389}
390
391static ssize_t defrag_store(struct kobject *kobj,
392 struct kobj_attribute *attr,
393 const char *buf, size_t count)
394{
395 if (sysfs_streq(buf, "always")) {
396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
399 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
400 } else if (sysfs_streq(buf, "defer+madvise")) {
401 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
404 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
405 } else if (sysfs_streq(buf, "defer")) {
406 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
407 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
408 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
409 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
410 } else if (sysfs_streq(buf, "madvise")) {
411 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
412 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
413 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
414 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
415 } else if (sysfs_streq(buf, "never")) {
416 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
417 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
418 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
419 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
420 } else
421 return -EINVAL;
422
423 return count;
424}
425static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
426
427static ssize_t use_zero_page_show(struct kobject *kobj,
428 struct kobj_attribute *attr, char *buf)
429{
430 return single_hugepage_flag_show(kobj, attr, buf,
431 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
432}
433static ssize_t use_zero_page_store(struct kobject *kobj,
434 struct kobj_attribute *attr, const char *buf, size_t count)
435{
436 return single_hugepage_flag_store(kobj, attr, buf, count,
437 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
438}
439static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
440
441static ssize_t hpage_pmd_size_show(struct kobject *kobj,
442 struct kobj_attribute *attr, char *buf)
443{
444 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
445}
446static struct kobj_attribute hpage_pmd_size_attr =
447 __ATTR_RO(hpage_pmd_size);
448
449static ssize_t split_underused_thp_show(struct kobject *kobj,
450 struct kobj_attribute *attr, char *buf)
451{
452 return sysfs_emit(buf, "%d\n", split_underused_thp);
453}
454
455static ssize_t split_underused_thp_store(struct kobject *kobj,
456 struct kobj_attribute *attr,
457 const char *buf, size_t count)
458{
459 int err = kstrtobool(buf, &split_underused_thp);
460
461 if (err < 0)
462 return err;
463
464 return count;
465}
466
467static struct kobj_attribute split_underused_thp_attr = __ATTR(
468 shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
469
470static struct attribute *hugepage_attr[] = {
471 &enabled_attr.attr,
472 &defrag_attr.attr,
473 &use_zero_page_attr.attr,
474 &hpage_pmd_size_attr.attr,
475#ifdef CONFIG_SHMEM
476 &shmem_enabled_attr.attr,
477#endif
478 &split_underused_thp_attr.attr,
479 NULL,
480};
481
482static const struct attribute_group hugepage_attr_group = {
483 .attrs = hugepage_attr,
484};
485
486static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
487static void thpsize_release(struct kobject *kobj);
488static DEFINE_SPINLOCK(huge_anon_orders_lock);
489static LIST_HEAD(thpsize_list);
490
491static ssize_t anon_enabled_show(struct kobject *kobj,
492 struct kobj_attribute *attr, char *buf)
493{
494 int order = to_thpsize(kobj)->order;
495 const char *output;
496
497 if (test_bit(order, &huge_anon_orders_always))
498 output = "[always] inherit madvise never";
499 else if (test_bit(order, &huge_anon_orders_inherit))
500 output = "always [inherit] madvise never";
501 else if (test_bit(order, &huge_anon_orders_madvise))
502 output = "always inherit [madvise] never";
503 else
504 output = "always inherit madvise [never]";
505
506 return sysfs_emit(buf, "%s\n", output);
507}
508
509static ssize_t anon_enabled_store(struct kobject *kobj,
510 struct kobj_attribute *attr,
511 const char *buf, size_t count)
512{
513 int order = to_thpsize(kobj)->order;
514 ssize_t ret = count;
515
516 if (sysfs_streq(buf, "always")) {
517 spin_lock(&huge_anon_orders_lock);
518 clear_bit(order, &huge_anon_orders_inherit);
519 clear_bit(order, &huge_anon_orders_madvise);
520 set_bit(order, &huge_anon_orders_always);
521 spin_unlock(&huge_anon_orders_lock);
522 } else if (sysfs_streq(buf, "inherit")) {
523 spin_lock(&huge_anon_orders_lock);
524 clear_bit(order, &huge_anon_orders_always);
525 clear_bit(order, &huge_anon_orders_madvise);
526 set_bit(order, &huge_anon_orders_inherit);
527 spin_unlock(&huge_anon_orders_lock);
528 } else if (sysfs_streq(buf, "madvise")) {
529 spin_lock(&huge_anon_orders_lock);
530 clear_bit(order, &huge_anon_orders_always);
531 clear_bit(order, &huge_anon_orders_inherit);
532 set_bit(order, &huge_anon_orders_madvise);
533 spin_unlock(&huge_anon_orders_lock);
534 } else if (sysfs_streq(buf, "never")) {
535 spin_lock(&huge_anon_orders_lock);
536 clear_bit(order, &huge_anon_orders_always);
537 clear_bit(order, &huge_anon_orders_inherit);
538 clear_bit(order, &huge_anon_orders_madvise);
539 spin_unlock(&huge_anon_orders_lock);
540 } else
541 ret = -EINVAL;
542
543 if (ret > 0) {
544 int err;
545
546 err = start_stop_khugepaged();
547 if (err)
548 ret = err;
549 }
550 return ret;
551}
552
553static struct kobj_attribute anon_enabled_attr =
554 __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
555
556static struct attribute *anon_ctrl_attrs[] = {
557 &anon_enabled_attr.attr,
558 NULL,
559};
560
561static const struct attribute_group anon_ctrl_attr_grp = {
562 .attrs = anon_ctrl_attrs,
563};
564
565static struct attribute *file_ctrl_attrs[] = {
566#ifdef CONFIG_SHMEM
567 &thpsize_shmem_enabled_attr.attr,
568#endif
569 NULL,
570};
571
572static const struct attribute_group file_ctrl_attr_grp = {
573 .attrs = file_ctrl_attrs,
574};
575
576static struct attribute *any_ctrl_attrs[] = {
577 NULL,
578};
579
580static const struct attribute_group any_ctrl_attr_grp = {
581 .attrs = any_ctrl_attrs,
582};
583
584static const struct kobj_type thpsize_ktype = {
585 .release = &thpsize_release,
586 .sysfs_ops = &kobj_sysfs_ops,
587};
588
589DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
590
591static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
592{
593 unsigned long sum = 0;
594 int cpu;
595
596 for_each_possible_cpu(cpu) {
597 struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
598
599 sum += this->stats[order][item];
600 }
601
602 return sum;
603}
604
605#define DEFINE_MTHP_STAT_ATTR(_name, _index) \
606static ssize_t _name##_show(struct kobject *kobj, \
607 struct kobj_attribute *attr, char *buf) \
608{ \
609 int order = to_thpsize(kobj)->order; \
610 \
611 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \
612} \
613static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
614
615DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
616DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
617DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
618DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT);
619DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN);
620DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
621DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
622#ifdef CONFIG_SHMEM
623DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
624DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
625DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
626#endif
627DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
628DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
629DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
630DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
631DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
632
633static struct attribute *anon_stats_attrs[] = {
634 &anon_fault_alloc_attr.attr,
635 &anon_fault_fallback_attr.attr,
636 &anon_fault_fallback_charge_attr.attr,
637#ifndef CONFIG_SHMEM
638 &zswpout_attr.attr,
639 &swpin_attr.attr,
640 &swpout_attr.attr,
641 &swpout_fallback_attr.attr,
642#endif
643 &split_deferred_attr.attr,
644 &nr_anon_attr.attr,
645 &nr_anon_partially_mapped_attr.attr,
646 NULL,
647};
648
649static struct attribute_group anon_stats_attr_grp = {
650 .name = "stats",
651 .attrs = anon_stats_attrs,
652};
653
654static struct attribute *file_stats_attrs[] = {
655#ifdef CONFIG_SHMEM
656 &shmem_alloc_attr.attr,
657 &shmem_fallback_attr.attr,
658 &shmem_fallback_charge_attr.attr,
659#endif
660 NULL,
661};
662
663static struct attribute_group file_stats_attr_grp = {
664 .name = "stats",
665 .attrs = file_stats_attrs,
666};
667
668static struct attribute *any_stats_attrs[] = {
669#ifdef CONFIG_SHMEM
670 &zswpout_attr.attr,
671 &swpin_attr.attr,
672 &swpout_attr.attr,
673 &swpout_fallback_attr.attr,
674#endif
675 &split_attr.attr,
676 &split_failed_attr.attr,
677 NULL,
678};
679
680static struct attribute_group any_stats_attr_grp = {
681 .name = "stats",
682 .attrs = any_stats_attrs,
683};
684
685static int sysfs_add_group(struct kobject *kobj,
686 const struct attribute_group *grp)
687{
688 int ret = -ENOENT;
689
690 /*
691 * If the group is named, try to merge first, assuming the subdirectory
692 * was already created. This avoids the warning emitted by
693 * sysfs_create_group() if the directory already exists.
694 */
695 if (grp->name)
696 ret = sysfs_merge_group(kobj, grp);
697 if (ret)
698 ret = sysfs_create_group(kobj, grp);
699
700 return ret;
701}
702
703static struct thpsize *thpsize_create(int order, struct kobject *parent)
704{
705 unsigned long size = (PAGE_SIZE << order) / SZ_1K;
706 struct thpsize *thpsize;
707 int ret = -ENOMEM;
708
709 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
710 if (!thpsize)
711 goto err;
712
713 thpsize->order = order;
714
715 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
716 "hugepages-%lukB", size);
717 if (ret) {
718 kfree(thpsize);
719 goto err;
720 }
721
722
723 ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
724 if (ret)
725 goto err_put;
726
727 ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
728 if (ret)
729 goto err_put;
730
731 if (BIT(order) & THP_ORDERS_ALL_ANON) {
732 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
733 if (ret)
734 goto err_put;
735
736 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
737 if (ret)
738 goto err_put;
739 }
740
741 if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
742 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
743 if (ret)
744 goto err_put;
745
746 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
747 if (ret)
748 goto err_put;
749 }
750
751 return thpsize;
752err_put:
753 kobject_put(&thpsize->kobj);
754err:
755 return ERR_PTR(ret);
756}
757
758static void thpsize_release(struct kobject *kobj)
759{
760 kfree(to_thpsize(kobj));
761}
762
763static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
764{
765 int err;
766 struct thpsize *thpsize;
767 unsigned long orders;
768 int order;
769
770 /*
771 * Default to setting PMD-sized THP to inherit the global setting and
772 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
773 * constant so we have to do this here.
774 */
775 if (!anon_orders_configured)
776 huge_anon_orders_inherit = BIT(PMD_ORDER);
777
778 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
779 if (unlikely(!*hugepage_kobj)) {
780 pr_err("failed to create transparent hugepage kobject\n");
781 return -ENOMEM;
782 }
783
784 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
785 if (err) {
786 pr_err("failed to register transparent hugepage group\n");
787 goto delete_obj;
788 }
789
790 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
791 if (err) {
792 pr_err("failed to register transparent hugepage group\n");
793 goto remove_hp_group;
794 }
795
796 orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
797 order = highest_order(orders);
798 while (orders) {
799 thpsize = thpsize_create(order, *hugepage_kobj);
800 if (IS_ERR(thpsize)) {
801 pr_err("failed to create thpsize for order %d\n", order);
802 err = PTR_ERR(thpsize);
803 goto remove_all;
804 }
805 list_add(&thpsize->node, &thpsize_list);
806 order = next_order(&orders, order);
807 }
808
809 return 0;
810
811remove_all:
812 hugepage_exit_sysfs(*hugepage_kobj);
813 return err;
814remove_hp_group:
815 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
816delete_obj:
817 kobject_put(*hugepage_kobj);
818 return err;
819}
820
821static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
822{
823 struct thpsize *thpsize, *tmp;
824
825 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
826 list_del(&thpsize->node);
827 kobject_put(&thpsize->kobj);
828 }
829
830 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
831 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
832 kobject_put(hugepage_kobj);
833}
834#else
835static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
836{
837 return 0;
838}
839
840static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
841{
842}
843#endif /* CONFIG_SYSFS */
844
845static int __init thp_shrinker_init(void)
846{
847 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
848 if (!huge_zero_page_shrinker)
849 return -ENOMEM;
850
851 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
852 SHRINKER_MEMCG_AWARE |
853 SHRINKER_NONSLAB,
854 "thp-deferred_split");
855 if (!deferred_split_shrinker) {
856 shrinker_free(huge_zero_page_shrinker);
857 return -ENOMEM;
858 }
859
860 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
861 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
862 shrinker_register(huge_zero_page_shrinker);
863
864 deferred_split_shrinker->count_objects = deferred_split_count;
865 deferred_split_shrinker->scan_objects = deferred_split_scan;
866 shrinker_register(deferred_split_shrinker);
867
868 return 0;
869}
870
871static void __init thp_shrinker_exit(void)
872{
873 shrinker_free(huge_zero_page_shrinker);
874 shrinker_free(deferred_split_shrinker);
875}
876
877static int __init hugepage_init(void)
878{
879 int err;
880 struct kobject *hugepage_kobj;
881
882 if (!has_transparent_hugepage()) {
883 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
884 return -EINVAL;
885 }
886
887 /*
888 * hugepages can't be allocated by the buddy allocator
889 */
890 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
891
892 err = hugepage_init_sysfs(&hugepage_kobj);
893 if (err)
894 goto err_sysfs;
895
896 err = khugepaged_init();
897 if (err)
898 goto err_slab;
899
900 err = thp_shrinker_init();
901 if (err)
902 goto err_shrinker;
903
904 /*
905 * By default disable transparent hugepages on smaller systems,
906 * where the extra memory used could hurt more than TLB overhead
907 * is likely to save. The admin can still enable it through /sys.
908 */
909 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
910 transparent_hugepage_flags = 0;
911 return 0;
912 }
913
914 err = start_stop_khugepaged();
915 if (err)
916 goto err_khugepaged;
917
918 return 0;
919err_khugepaged:
920 thp_shrinker_exit();
921err_shrinker:
922 khugepaged_destroy();
923err_slab:
924 hugepage_exit_sysfs(hugepage_kobj);
925err_sysfs:
926 return err;
927}
928subsys_initcall(hugepage_init);
929
930static int __init setup_transparent_hugepage(char *str)
931{
932 int ret = 0;
933 if (!str)
934 goto out;
935 if (!strcmp(str, "always")) {
936 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
937 &transparent_hugepage_flags);
938 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
939 &transparent_hugepage_flags);
940 ret = 1;
941 } else if (!strcmp(str, "madvise")) {
942 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
943 &transparent_hugepage_flags);
944 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
945 &transparent_hugepage_flags);
946 ret = 1;
947 } else if (!strcmp(str, "never")) {
948 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
949 &transparent_hugepage_flags);
950 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
951 &transparent_hugepage_flags);
952 ret = 1;
953 }
954out:
955 if (!ret)
956 pr_warn("transparent_hugepage= cannot parse, ignored\n");
957 return ret;
958}
959__setup("transparent_hugepage=", setup_transparent_hugepage);
960
961static char str_dup[PAGE_SIZE] __initdata;
962static int __init setup_thp_anon(char *str)
963{
964 char *token, *range, *policy, *subtoken;
965 unsigned long always, inherit, madvise;
966 char *start_size, *end_size;
967 int start, end, nr;
968 char *p;
969
970 if (!str || strlen(str) + 1 > PAGE_SIZE)
971 goto err;
972 strscpy(str_dup, str);
973
974 always = huge_anon_orders_always;
975 madvise = huge_anon_orders_madvise;
976 inherit = huge_anon_orders_inherit;
977 p = str_dup;
978 while ((token = strsep(&p, ";")) != NULL) {
979 range = strsep(&token, ":");
980 policy = token;
981
982 if (!policy)
983 goto err;
984
985 while ((subtoken = strsep(&range, ",")) != NULL) {
986 if (strchr(subtoken, '-')) {
987 start_size = strsep(&subtoken, "-");
988 end_size = subtoken;
989
990 start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON);
991 end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON);
992 } else {
993 start_size = end_size = subtoken;
994 start = end = get_order_from_str(subtoken,
995 THP_ORDERS_ALL_ANON);
996 }
997
998 if (start == -EINVAL) {
999 pr_err("invalid size %s in thp_anon boot parameter\n", start_size);
1000 goto err;
1001 }
1002
1003 if (end == -EINVAL) {
1004 pr_err("invalid size %s in thp_anon boot parameter\n", end_size);
1005 goto err;
1006 }
1007
1008 if (start < 0 || end < 0 || start > end)
1009 goto err;
1010
1011 nr = end - start + 1;
1012 if (!strcmp(policy, "always")) {
1013 bitmap_set(&always, start, nr);
1014 bitmap_clear(&inherit, start, nr);
1015 bitmap_clear(&madvise, start, nr);
1016 } else if (!strcmp(policy, "madvise")) {
1017 bitmap_set(&madvise, start, nr);
1018 bitmap_clear(&inherit, start, nr);
1019 bitmap_clear(&always, start, nr);
1020 } else if (!strcmp(policy, "inherit")) {
1021 bitmap_set(&inherit, start, nr);
1022 bitmap_clear(&madvise, start, nr);
1023 bitmap_clear(&always, start, nr);
1024 } else if (!strcmp(policy, "never")) {
1025 bitmap_clear(&inherit, start, nr);
1026 bitmap_clear(&madvise, start, nr);
1027 bitmap_clear(&always, start, nr);
1028 } else {
1029 pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1030 goto err;
1031 }
1032 }
1033 }
1034
1035 huge_anon_orders_always = always;
1036 huge_anon_orders_madvise = madvise;
1037 huge_anon_orders_inherit = inherit;
1038 anon_orders_configured = true;
1039 return 1;
1040
1041err:
1042 pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1043 return 0;
1044}
1045__setup("thp_anon=", setup_thp_anon);
1046
1047pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1048{
1049 if (likely(vma->vm_flags & VM_WRITE))
1050 pmd = pmd_mkwrite(pmd, vma);
1051 return pmd;
1052}
1053
1054#ifdef CONFIG_MEMCG
1055static inline
1056struct deferred_split *get_deferred_split_queue(struct folio *folio)
1057{
1058 struct mem_cgroup *memcg = folio_memcg(folio);
1059 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1060
1061 if (memcg)
1062 return &memcg->deferred_split_queue;
1063 else
1064 return &pgdat->deferred_split_queue;
1065}
1066#else
1067static inline
1068struct deferred_split *get_deferred_split_queue(struct folio *folio)
1069{
1070 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1071
1072 return &pgdat->deferred_split_queue;
1073}
1074#endif
1075
1076static inline bool is_transparent_hugepage(const struct folio *folio)
1077{
1078 if (!folio_test_large(folio))
1079 return false;
1080
1081 return is_huge_zero_folio(folio) ||
1082 folio_test_large_rmappable(folio);
1083}
1084
1085static unsigned long __thp_get_unmapped_area(struct file *filp,
1086 unsigned long addr, unsigned long len,
1087 loff_t off, unsigned long flags, unsigned long size,
1088 vm_flags_t vm_flags)
1089{
1090 loff_t off_end = off + len;
1091 loff_t off_align = round_up(off, size);
1092 unsigned long len_pad, ret, off_sub;
1093
1094 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1095 return 0;
1096
1097 if (off_end <= off_align || (off_end - off_align) < size)
1098 return 0;
1099
1100 len_pad = len + size;
1101 if (len_pad < len || (off + len_pad) < off)
1102 return 0;
1103
1104 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1105 off >> PAGE_SHIFT, flags, vm_flags);
1106
1107 /*
1108 * The failure might be due to length padding. The caller will retry
1109 * without the padding.
1110 */
1111 if (IS_ERR_VALUE(ret))
1112 return 0;
1113
1114 /*
1115 * Do not try to align to THP boundary if allocation at the address
1116 * hint succeeds.
1117 */
1118 if (ret == addr)
1119 return addr;
1120
1121 off_sub = (off - ret) & (size - 1);
1122
1123 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub)
1124 return ret + size;
1125
1126 ret += off_sub;
1127 return ret;
1128}
1129
1130unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1131 unsigned long len, unsigned long pgoff, unsigned long flags,
1132 vm_flags_t vm_flags)
1133{
1134 unsigned long ret;
1135 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1136
1137 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1138 if (ret)
1139 return ret;
1140
1141 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1142 vm_flags);
1143}
1144
1145unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1146 unsigned long len, unsigned long pgoff, unsigned long flags)
1147{
1148 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1149}
1150EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1151
1152static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma,
1153 unsigned long addr)
1154{
1155 gfp_t gfp = vma_thp_gfp_mask(vma);
1156 const int order = HPAGE_PMD_ORDER;
1157 struct folio *folio;
1158
1159 folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK);
1160
1161 if (unlikely(!folio)) {
1162 count_vm_event(THP_FAULT_FALLBACK);
1163 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1164 return NULL;
1165 }
1166
1167 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1168 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1169 folio_put(folio);
1170 count_vm_event(THP_FAULT_FALLBACK);
1171 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1172 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1173 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1174 return NULL;
1175 }
1176 folio_throttle_swaprate(folio, gfp);
1177
1178 /*
1179 * When a folio is not zeroed during allocation (__GFP_ZERO not used)
1180 * or user folios require special handling, folio_zero_user() is used to
1181 * make sure that the page corresponding to the faulting address will be
1182 * hot in the cache after zeroing.
1183 */
1184 if (user_alloc_needs_zeroing())
1185 folio_zero_user(folio, addr);
1186 /*
1187 * The memory barrier inside __folio_mark_uptodate makes sure that
1188 * folio_zero_user writes become visible before the set_pmd_at()
1189 * write.
1190 */
1191 __folio_mark_uptodate(folio);
1192 return folio;
1193}
1194
1195static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd,
1196 struct vm_area_struct *vma, unsigned long haddr)
1197{
1198 pmd_t entry;
1199
1200 entry = mk_huge_pmd(&folio->page, vma->vm_page_prot);
1201 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1202 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1203 folio_add_lru_vma(folio, vma);
1204 set_pmd_at(vma->vm_mm, haddr, pmd, entry);
1205 update_mmu_cache_pmd(vma, haddr, pmd);
1206 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1207 count_vm_event(THP_FAULT_ALLOC);
1208 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1209 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1210}
1211
1212static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1213{
1214 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1215 struct vm_area_struct *vma = vmf->vma;
1216 struct folio *folio;
1217 pgtable_t pgtable;
1218 vm_fault_t ret = 0;
1219
1220 folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1221 if (unlikely(!folio))
1222 return VM_FAULT_FALLBACK;
1223
1224 pgtable = pte_alloc_one(vma->vm_mm);
1225 if (unlikely(!pgtable)) {
1226 ret = VM_FAULT_OOM;
1227 goto release;
1228 }
1229
1230 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1231 if (unlikely(!pmd_none(*vmf->pmd))) {
1232 goto unlock_release;
1233 } else {
1234 ret = check_stable_address_space(vma->vm_mm);
1235 if (ret)
1236 goto unlock_release;
1237
1238 /* Deliver the page fault to userland */
1239 if (userfaultfd_missing(vma)) {
1240 spin_unlock(vmf->ptl);
1241 folio_put(folio);
1242 pte_free(vma->vm_mm, pgtable);
1243 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1244 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1245 return ret;
1246 }
1247 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1248 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1249 mm_inc_nr_ptes(vma->vm_mm);
1250 deferred_split_folio(folio, false);
1251 spin_unlock(vmf->ptl);
1252 }
1253
1254 return 0;
1255unlock_release:
1256 spin_unlock(vmf->ptl);
1257release:
1258 if (pgtable)
1259 pte_free(vma->vm_mm, pgtable);
1260 folio_put(folio);
1261 return ret;
1262
1263}
1264
1265/*
1266 * always: directly stall for all thp allocations
1267 * defer: wake kswapd and fail if not immediately available
1268 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1269 * fail if not immediately available
1270 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1271 * available
1272 * never: never stall for any thp allocation
1273 */
1274gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1275{
1276 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1277
1278 /* Always do synchronous compaction */
1279 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1280 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1281
1282 /* Kick kcompactd and fail quickly */
1283 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1284 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1285
1286 /* Synchronous compaction if madvised, otherwise kick kcompactd */
1287 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1288 return GFP_TRANSHUGE_LIGHT |
1289 (vma_madvised ? __GFP_DIRECT_RECLAIM :
1290 __GFP_KSWAPD_RECLAIM);
1291
1292 /* Only do synchronous compaction if madvised */
1293 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1294 return GFP_TRANSHUGE_LIGHT |
1295 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1296
1297 return GFP_TRANSHUGE_LIGHT;
1298}
1299
1300/* Caller must hold page table lock. */
1301static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1302 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1303 struct folio *zero_folio)
1304{
1305 pmd_t entry;
1306 if (!pmd_none(*pmd))
1307 return;
1308 entry = mk_pmd(&zero_folio->page, vma->vm_page_prot);
1309 entry = pmd_mkhuge(entry);
1310 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1311 set_pmd_at(mm, haddr, pmd, entry);
1312 mm_inc_nr_ptes(mm);
1313}
1314
1315vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1316{
1317 struct vm_area_struct *vma = vmf->vma;
1318 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1319 vm_fault_t ret;
1320
1321 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1322 return VM_FAULT_FALLBACK;
1323 ret = vmf_anon_prepare(vmf);
1324 if (ret)
1325 return ret;
1326 khugepaged_enter_vma(vma, vma->vm_flags);
1327
1328 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1329 !mm_forbids_zeropage(vma->vm_mm) &&
1330 transparent_hugepage_use_zero_page()) {
1331 pgtable_t pgtable;
1332 struct folio *zero_folio;
1333 vm_fault_t ret;
1334
1335 pgtable = pte_alloc_one(vma->vm_mm);
1336 if (unlikely(!pgtable))
1337 return VM_FAULT_OOM;
1338 zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1339 if (unlikely(!zero_folio)) {
1340 pte_free(vma->vm_mm, pgtable);
1341 count_vm_event(THP_FAULT_FALLBACK);
1342 return VM_FAULT_FALLBACK;
1343 }
1344 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1345 ret = 0;
1346 if (pmd_none(*vmf->pmd)) {
1347 ret = check_stable_address_space(vma->vm_mm);
1348 if (ret) {
1349 spin_unlock(vmf->ptl);
1350 pte_free(vma->vm_mm, pgtable);
1351 } else if (userfaultfd_missing(vma)) {
1352 spin_unlock(vmf->ptl);
1353 pte_free(vma->vm_mm, pgtable);
1354 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1355 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1356 } else {
1357 set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1358 haddr, vmf->pmd, zero_folio);
1359 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1360 spin_unlock(vmf->ptl);
1361 }
1362 } else {
1363 spin_unlock(vmf->ptl);
1364 pte_free(vma->vm_mm, pgtable);
1365 }
1366 return ret;
1367 }
1368
1369 return __do_huge_pmd_anonymous_page(vmf);
1370}
1371
1372static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1373 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1374 pgtable_t pgtable)
1375{
1376 struct mm_struct *mm = vma->vm_mm;
1377 pmd_t entry;
1378 spinlock_t *ptl;
1379
1380 ptl = pmd_lock(mm, pmd);
1381 if (!pmd_none(*pmd)) {
1382 if (write) {
1383 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1384 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1385 goto out_unlock;
1386 }
1387 entry = pmd_mkyoung(*pmd);
1388 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1389 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1390 update_mmu_cache_pmd(vma, addr, pmd);
1391 }
1392
1393 goto out_unlock;
1394 }
1395
1396 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1397 if (pfn_t_devmap(pfn))
1398 entry = pmd_mkdevmap(entry);
1399 else
1400 entry = pmd_mkspecial(entry);
1401 if (write) {
1402 entry = pmd_mkyoung(pmd_mkdirty(entry));
1403 entry = maybe_pmd_mkwrite(entry, vma);
1404 }
1405
1406 if (pgtable) {
1407 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1408 mm_inc_nr_ptes(mm);
1409 pgtable = NULL;
1410 }
1411
1412 set_pmd_at(mm, addr, pmd, entry);
1413 update_mmu_cache_pmd(vma, addr, pmd);
1414
1415out_unlock:
1416 spin_unlock(ptl);
1417 if (pgtable)
1418 pte_free(mm, pgtable);
1419}
1420
1421/**
1422 * vmf_insert_pfn_pmd - insert a pmd size pfn
1423 * @vmf: Structure describing the fault
1424 * @pfn: pfn to insert
1425 * @write: whether it's a write fault
1426 *
1427 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1428 *
1429 * Return: vm_fault_t value.
1430 */
1431vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1432{
1433 unsigned long addr = vmf->address & PMD_MASK;
1434 struct vm_area_struct *vma = vmf->vma;
1435 pgprot_t pgprot = vma->vm_page_prot;
1436 pgtable_t pgtable = NULL;
1437
1438 /*
1439 * If we had pmd_special, we could avoid all these restrictions,
1440 * but we need to be consistent with PTEs and architectures that
1441 * can't support a 'special' bit.
1442 */
1443 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1444 !pfn_t_devmap(pfn));
1445 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1446 (VM_PFNMAP|VM_MIXEDMAP));
1447 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1448
1449 if (addr < vma->vm_start || addr >= vma->vm_end)
1450 return VM_FAULT_SIGBUS;
1451
1452 if (arch_needs_pgtable_deposit()) {
1453 pgtable = pte_alloc_one(vma->vm_mm);
1454 if (!pgtable)
1455 return VM_FAULT_OOM;
1456 }
1457
1458 track_pfn_insert(vma, &pgprot, pfn);
1459
1460 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1461 return VM_FAULT_NOPAGE;
1462}
1463EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1464
1465#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1466static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1467{
1468 if (likely(vma->vm_flags & VM_WRITE))
1469 pud = pud_mkwrite(pud);
1470 return pud;
1471}
1472
1473static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1474 pud_t *pud, pfn_t pfn, bool write)
1475{
1476 struct mm_struct *mm = vma->vm_mm;
1477 pgprot_t prot = vma->vm_page_prot;
1478 pud_t entry;
1479 spinlock_t *ptl;
1480
1481 ptl = pud_lock(mm, pud);
1482 if (!pud_none(*pud)) {
1483 if (write) {
1484 if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn)))
1485 goto out_unlock;
1486 entry = pud_mkyoung(*pud);
1487 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1488 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1489 update_mmu_cache_pud(vma, addr, pud);
1490 }
1491 goto out_unlock;
1492 }
1493
1494 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1495 if (pfn_t_devmap(pfn))
1496 entry = pud_mkdevmap(entry);
1497 else
1498 entry = pud_mkspecial(entry);
1499 if (write) {
1500 entry = pud_mkyoung(pud_mkdirty(entry));
1501 entry = maybe_pud_mkwrite(entry, vma);
1502 }
1503 set_pud_at(mm, addr, pud, entry);
1504 update_mmu_cache_pud(vma, addr, pud);
1505
1506out_unlock:
1507 spin_unlock(ptl);
1508}
1509
1510/**
1511 * vmf_insert_pfn_pud - insert a pud size pfn
1512 * @vmf: Structure describing the fault
1513 * @pfn: pfn to insert
1514 * @write: whether it's a write fault
1515 *
1516 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1517 *
1518 * Return: vm_fault_t value.
1519 */
1520vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1521{
1522 unsigned long addr = vmf->address & PUD_MASK;
1523 struct vm_area_struct *vma = vmf->vma;
1524 pgprot_t pgprot = vma->vm_page_prot;
1525
1526 /*
1527 * If we had pud_special, we could avoid all these restrictions,
1528 * but we need to be consistent with PTEs and architectures that
1529 * can't support a 'special' bit.
1530 */
1531 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1532 !pfn_t_devmap(pfn));
1533 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1534 (VM_PFNMAP|VM_MIXEDMAP));
1535 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1536
1537 if (addr < vma->vm_start || addr >= vma->vm_end)
1538 return VM_FAULT_SIGBUS;
1539
1540 track_pfn_insert(vma, &pgprot, pfn);
1541
1542 insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1543 return VM_FAULT_NOPAGE;
1544}
1545EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1546#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1547
1548void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1549 pmd_t *pmd, bool write)
1550{
1551 pmd_t _pmd;
1552
1553 _pmd = pmd_mkyoung(*pmd);
1554 if (write)
1555 _pmd = pmd_mkdirty(_pmd);
1556 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1557 pmd, _pmd, write))
1558 update_mmu_cache_pmd(vma, addr, pmd);
1559}
1560
1561struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1562 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1563{
1564 unsigned long pfn = pmd_pfn(*pmd);
1565 struct mm_struct *mm = vma->vm_mm;
1566 struct page *page;
1567 int ret;
1568
1569 assert_spin_locked(pmd_lockptr(mm, pmd));
1570
1571 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1572 return NULL;
1573
1574 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1575 /* pass */;
1576 else
1577 return NULL;
1578
1579 if (flags & FOLL_TOUCH)
1580 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1581
1582 /*
1583 * device mapped pages can only be returned if the
1584 * caller will manage the page reference count.
1585 */
1586 if (!(flags & (FOLL_GET | FOLL_PIN)))
1587 return ERR_PTR(-EEXIST);
1588
1589 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1590 *pgmap = get_dev_pagemap(pfn, *pgmap);
1591 if (!*pgmap)
1592 return ERR_PTR(-EFAULT);
1593 page = pfn_to_page(pfn);
1594 ret = try_grab_folio(page_folio(page), 1, flags);
1595 if (ret)
1596 page = ERR_PTR(ret);
1597
1598 return page;
1599}
1600
1601int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1602 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1603 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1604{
1605 spinlock_t *dst_ptl, *src_ptl;
1606 struct page *src_page;
1607 struct folio *src_folio;
1608 pmd_t pmd;
1609 pgtable_t pgtable = NULL;
1610 int ret = -ENOMEM;
1611
1612 pmd = pmdp_get_lockless(src_pmd);
1613 if (unlikely(pmd_present(pmd) && pmd_special(pmd))) {
1614 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1615 src_ptl = pmd_lockptr(src_mm, src_pmd);
1616 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1617 /*
1618 * No need to recheck the pmd, it can't change with write
1619 * mmap lock held here.
1620 *
1621 * Meanwhile, making sure it's not a CoW VMA with writable
1622 * mapping, otherwise it means either the anon page wrongly
1623 * applied special bit, or we made the PRIVATE mapping be
1624 * able to wrongly write to the backend MMIO.
1625 */
1626 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1627 goto set_pmd;
1628 }
1629
1630 /* Skip if can be re-fill on fault */
1631 if (!vma_is_anonymous(dst_vma))
1632 return 0;
1633
1634 pgtable = pte_alloc_one(dst_mm);
1635 if (unlikely(!pgtable))
1636 goto out;
1637
1638 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1639 src_ptl = pmd_lockptr(src_mm, src_pmd);
1640 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1641
1642 ret = -EAGAIN;
1643 pmd = *src_pmd;
1644
1645#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1646 if (unlikely(is_swap_pmd(pmd))) {
1647 swp_entry_t entry = pmd_to_swp_entry(pmd);
1648
1649 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1650 if (!is_readable_migration_entry(entry)) {
1651 entry = make_readable_migration_entry(
1652 swp_offset(entry));
1653 pmd = swp_entry_to_pmd(entry);
1654 if (pmd_swp_soft_dirty(*src_pmd))
1655 pmd = pmd_swp_mksoft_dirty(pmd);
1656 if (pmd_swp_uffd_wp(*src_pmd))
1657 pmd = pmd_swp_mkuffd_wp(pmd);
1658 set_pmd_at(src_mm, addr, src_pmd, pmd);
1659 }
1660 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1661 mm_inc_nr_ptes(dst_mm);
1662 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1663 if (!userfaultfd_wp(dst_vma))
1664 pmd = pmd_swp_clear_uffd_wp(pmd);
1665 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1666 ret = 0;
1667 goto out_unlock;
1668 }
1669#endif
1670
1671 if (unlikely(!pmd_trans_huge(pmd))) {
1672 pte_free(dst_mm, pgtable);
1673 goto out_unlock;
1674 }
1675 /*
1676 * When page table lock is held, the huge zero pmd should not be
1677 * under splitting since we don't split the page itself, only pmd to
1678 * a page table.
1679 */
1680 if (is_huge_zero_pmd(pmd)) {
1681 /*
1682 * mm_get_huge_zero_folio() will never allocate a new
1683 * folio here, since we already have a zero page to
1684 * copy. It just takes a reference.
1685 */
1686 mm_get_huge_zero_folio(dst_mm);
1687 goto out_zero_page;
1688 }
1689
1690 src_page = pmd_page(pmd);
1691 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1692 src_folio = page_folio(src_page);
1693
1694 folio_get(src_folio);
1695 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1696 /* Page maybe pinned: split and retry the fault on PTEs. */
1697 folio_put(src_folio);
1698 pte_free(dst_mm, pgtable);
1699 spin_unlock(src_ptl);
1700 spin_unlock(dst_ptl);
1701 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1702 return -EAGAIN;
1703 }
1704 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1705out_zero_page:
1706 mm_inc_nr_ptes(dst_mm);
1707 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1708 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1709 if (!userfaultfd_wp(dst_vma))
1710 pmd = pmd_clear_uffd_wp(pmd);
1711 pmd = pmd_wrprotect(pmd);
1712set_pmd:
1713 pmd = pmd_mkold(pmd);
1714 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1715
1716 ret = 0;
1717out_unlock:
1718 spin_unlock(src_ptl);
1719 spin_unlock(dst_ptl);
1720out:
1721 return ret;
1722}
1723
1724#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1725void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1726 pud_t *pud, bool write)
1727{
1728 pud_t _pud;
1729
1730 _pud = pud_mkyoung(*pud);
1731 if (write)
1732 _pud = pud_mkdirty(_pud);
1733 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1734 pud, _pud, write))
1735 update_mmu_cache_pud(vma, addr, pud);
1736}
1737
1738int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1739 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1740 struct vm_area_struct *vma)
1741{
1742 spinlock_t *dst_ptl, *src_ptl;
1743 pud_t pud;
1744 int ret;
1745
1746 dst_ptl = pud_lock(dst_mm, dst_pud);
1747 src_ptl = pud_lockptr(src_mm, src_pud);
1748 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1749
1750 ret = -EAGAIN;
1751 pud = *src_pud;
1752 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1753 goto out_unlock;
1754
1755 /*
1756 * TODO: once we support anonymous pages, use
1757 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1758 */
1759 if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1760 pudp_set_wrprotect(src_mm, addr, src_pud);
1761 pud = pud_wrprotect(pud);
1762 }
1763 pud = pud_mkold(pud);
1764 set_pud_at(dst_mm, addr, dst_pud, pud);
1765
1766 ret = 0;
1767out_unlock:
1768 spin_unlock(src_ptl);
1769 spin_unlock(dst_ptl);
1770 return ret;
1771}
1772
1773void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1774{
1775 bool write = vmf->flags & FAULT_FLAG_WRITE;
1776
1777 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1778 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1779 goto unlock;
1780
1781 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1782unlock:
1783 spin_unlock(vmf->ptl);
1784}
1785#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1786
1787void huge_pmd_set_accessed(struct vm_fault *vmf)
1788{
1789 bool write = vmf->flags & FAULT_FLAG_WRITE;
1790
1791 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1792 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1793 goto unlock;
1794
1795 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1796
1797unlock:
1798 spin_unlock(vmf->ptl);
1799}
1800
1801static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf)
1802{
1803 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1804 struct vm_area_struct *vma = vmf->vma;
1805 struct mmu_notifier_range range;
1806 struct folio *folio;
1807 vm_fault_t ret = 0;
1808
1809 folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1810 if (unlikely(!folio))
1811 return VM_FAULT_FALLBACK;
1812
1813 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr,
1814 haddr + HPAGE_PMD_SIZE);
1815 mmu_notifier_invalidate_range_start(&range);
1816 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1817 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd)))
1818 goto release;
1819 ret = check_stable_address_space(vma->vm_mm);
1820 if (ret)
1821 goto release;
1822 (void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd);
1823 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1824 goto unlock;
1825release:
1826 folio_put(folio);
1827unlock:
1828 spin_unlock(vmf->ptl);
1829 mmu_notifier_invalidate_range_end(&range);
1830 return ret;
1831}
1832
1833vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1834{
1835 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1836 struct vm_area_struct *vma = vmf->vma;
1837 struct folio *folio;
1838 struct page *page;
1839 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1840 pmd_t orig_pmd = vmf->orig_pmd;
1841
1842 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1843 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1844
1845 if (is_huge_zero_pmd(orig_pmd)) {
1846 vm_fault_t ret = do_huge_zero_wp_pmd(vmf);
1847
1848 if (!(ret & VM_FAULT_FALLBACK))
1849 return ret;
1850
1851 /* Fallback to splitting PMD if THP cannot be allocated */
1852 goto fallback;
1853 }
1854
1855 spin_lock(vmf->ptl);
1856
1857 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1858 spin_unlock(vmf->ptl);
1859 return 0;
1860 }
1861
1862 page = pmd_page(orig_pmd);
1863 folio = page_folio(page);
1864 VM_BUG_ON_PAGE(!PageHead(page), page);
1865
1866 /* Early check when only holding the PT lock. */
1867 if (PageAnonExclusive(page))
1868 goto reuse;
1869
1870 if (!folio_trylock(folio)) {
1871 folio_get(folio);
1872 spin_unlock(vmf->ptl);
1873 folio_lock(folio);
1874 spin_lock(vmf->ptl);
1875 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1876 spin_unlock(vmf->ptl);
1877 folio_unlock(folio);
1878 folio_put(folio);
1879 return 0;
1880 }
1881 folio_put(folio);
1882 }
1883
1884 /* Recheck after temporarily dropping the PT lock. */
1885 if (PageAnonExclusive(page)) {
1886 folio_unlock(folio);
1887 goto reuse;
1888 }
1889
1890 /*
1891 * See do_wp_page(): we can only reuse the folio exclusively if
1892 * there are no additional references. Note that we always drain
1893 * the LRU cache immediately after adding a THP.
1894 */
1895 if (folio_ref_count(folio) >
1896 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1897 goto unlock_fallback;
1898 if (folio_test_swapcache(folio))
1899 folio_free_swap(folio);
1900 if (folio_ref_count(folio) == 1) {
1901 pmd_t entry;
1902
1903 folio_move_anon_rmap(folio, vma);
1904 SetPageAnonExclusive(page);
1905 folio_unlock(folio);
1906reuse:
1907 if (unlikely(unshare)) {
1908 spin_unlock(vmf->ptl);
1909 return 0;
1910 }
1911 entry = pmd_mkyoung(orig_pmd);
1912 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1913 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1914 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1915 spin_unlock(vmf->ptl);
1916 return 0;
1917 }
1918
1919unlock_fallback:
1920 folio_unlock(folio);
1921 spin_unlock(vmf->ptl);
1922fallback:
1923 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1924 return VM_FAULT_FALLBACK;
1925}
1926
1927static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1928 unsigned long addr, pmd_t pmd)
1929{
1930 struct page *page;
1931
1932 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1933 return false;
1934
1935 /* Don't touch entries that are not even readable (NUMA hinting). */
1936 if (pmd_protnone(pmd))
1937 return false;
1938
1939 /* Do we need write faults for softdirty tracking? */
1940 if (pmd_needs_soft_dirty_wp(vma, pmd))
1941 return false;
1942
1943 /* Do we need write faults for uffd-wp tracking? */
1944 if (userfaultfd_huge_pmd_wp(vma, pmd))
1945 return false;
1946
1947 if (!(vma->vm_flags & VM_SHARED)) {
1948 /* See can_change_pte_writable(). */
1949 page = vm_normal_page_pmd(vma, addr, pmd);
1950 return page && PageAnon(page) && PageAnonExclusive(page);
1951 }
1952
1953 /* See can_change_pte_writable(). */
1954 return pmd_dirty(pmd);
1955}
1956
1957/* NUMA hinting page fault entry point for trans huge pmds */
1958vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1959{
1960 struct vm_area_struct *vma = vmf->vma;
1961 struct folio *folio;
1962 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1963 int nid = NUMA_NO_NODE;
1964 int target_nid, last_cpupid;
1965 pmd_t pmd, old_pmd;
1966 bool writable = false;
1967 int flags = 0;
1968
1969 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1970 old_pmd = pmdp_get(vmf->pmd);
1971
1972 if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
1973 spin_unlock(vmf->ptl);
1974 return 0;
1975 }
1976
1977 pmd = pmd_modify(old_pmd, vma->vm_page_prot);
1978
1979 /*
1980 * Detect now whether the PMD could be writable; this information
1981 * is only valid while holding the PT lock.
1982 */
1983 writable = pmd_write(pmd);
1984 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1985 can_change_pmd_writable(vma, vmf->address, pmd))
1986 writable = true;
1987
1988 folio = vm_normal_folio_pmd(vma, haddr, pmd);
1989 if (!folio)
1990 goto out_map;
1991
1992 nid = folio_nid(folio);
1993
1994 target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
1995 &last_cpupid);
1996 if (target_nid == NUMA_NO_NODE)
1997 goto out_map;
1998 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
1999 flags |= TNF_MIGRATE_FAIL;
2000 goto out_map;
2001 }
2002 /* The folio is isolated and isolation code holds a folio reference. */
2003 spin_unlock(vmf->ptl);
2004 writable = false;
2005
2006 if (!migrate_misplaced_folio(folio, vma, target_nid)) {
2007 flags |= TNF_MIGRATED;
2008 nid = target_nid;
2009 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2010 return 0;
2011 }
2012
2013 flags |= TNF_MIGRATE_FAIL;
2014 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2015 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
2016 spin_unlock(vmf->ptl);
2017 return 0;
2018 }
2019out_map:
2020 /* Restore the PMD */
2021 pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
2022 pmd = pmd_mkyoung(pmd);
2023 if (writable)
2024 pmd = pmd_mkwrite(pmd, vma);
2025 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
2026 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2027 spin_unlock(vmf->ptl);
2028
2029 if (nid != NUMA_NO_NODE)
2030 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2031 return 0;
2032}
2033
2034/*
2035 * Return true if we do MADV_FREE successfully on entire pmd page.
2036 * Otherwise, return false.
2037 */
2038bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2039 pmd_t *pmd, unsigned long addr, unsigned long next)
2040{
2041 spinlock_t *ptl;
2042 pmd_t orig_pmd;
2043 struct folio *folio;
2044 struct mm_struct *mm = tlb->mm;
2045 bool ret = false;
2046
2047 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2048
2049 ptl = pmd_trans_huge_lock(pmd, vma);
2050 if (!ptl)
2051 goto out_unlocked;
2052
2053 orig_pmd = *pmd;
2054 if (is_huge_zero_pmd(orig_pmd))
2055 goto out;
2056
2057 if (unlikely(!pmd_present(orig_pmd))) {
2058 VM_BUG_ON(thp_migration_supported() &&
2059 !is_pmd_migration_entry(orig_pmd));
2060 goto out;
2061 }
2062
2063 folio = pmd_folio(orig_pmd);
2064 /*
2065 * If other processes are mapping this folio, we couldn't discard
2066 * the folio unless they all do MADV_FREE so let's skip the folio.
2067 */
2068 if (folio_likely_mapped_shared(folio))
2069 goto out;
2070
2071 if (!folio_trylock(folio))
2072 goto out;
2073
2074 /*
2075 * If user want to discard part-pages of THP, split it so MADV_FREE
2076 * will deactivate only them.
2077 */
2078 if (next - addr != HPAGE_PMD_SIZE) {
2079 folio_get(folio);
2080 spin_unlock(ptl);
2081 split_folio(folio);
2082 folio_unlock(folio);
2083 folio_put(folio);
2084 goto out_unlocked;
2085 }
2086
2087 if (folio_test_dirty(folio))
2088 folio_clear_dirty(folio);
2089 folio_unlock(folio);
2090
2091 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2092 pmdp_invalidate(vma, addr, pmd);
2093 orig_pmd = pmd_mkold(orig_pmd);
2094 orig_pmd = pmd_mkclean(orig_pmd);
2095
2096 set_pmd_at(mm, addr, pmd, orig_pmd);
2097 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2098 }
2099
2100 folio_mark_lazyfree(folio);
2101 ret = true;
2102out:
2103 spin_unlock(ptl);
2104out_unlocked:
2105 return ret;
2106}
2107
2108static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2109{
2110 pgtable_t pgtable;
2111
2112 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2113 pte_free(mm, pgtable);
2114 mm_dec_nr_ptes(mm);
2115}
2116
2117int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2118 pmd_t *pmd, unsigned long addr)
2119{
2120 pmd_t orig_pmd;
2121 spinlock_t *ptl;
2122
2123 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2124
2125 ptl = __pmd_trans_huge_lock(pmd, vma);
2126 if (!ptl)
2127 return 0;
2128 /*
2129 * For architectures like ppc64 we look at deposited pgtable
2130 * when calling pmdp_huge_get_and_clear. So do the
2131 * pgtable_trans_huge_withdraw after finishing pmdp related
2132 * operations.
2133 */
2134 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2135 tlb->fullmm);
2136 arch_check_zapped_pmd(vma, orig_pmd);
2137 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2138 if (vma_is_special_huge(vma)) {
2139 if (arch_needs_pgtable_deposit())
2140 zap_deposited_table(tlb->mm, pmd);
2141 spin_unlock(ptl);
2142 } else if (is_huge_zero_pmd(orig_pmd)) {
2143 zap_deposited_table(tlb->mm, pmd);
2144 spin_unlock(ptl);
2145 } else {
2146 struct folio *folio = NULL;
2147 int flush_needed = 1;
2148
2149 if (pmd_present(orig_pmd)) {
2150 struct page *page = pmd_page(orig_pmd);
2151
2152 folio = page_folio(page);
2153 folio_remove_rmap_pmd(folio, page, vma);
2154 WARN_ON_ONCE(folio_mapcount(folio) < 0);
2155 VM_BUG_ON_PAGE(!PageHead(page), page);
2156 } else if (thp_migration_supported()) {
2157 swp_entry_t entry;
2158
2159 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2160 entry = pmd_to_swp_entry(orig_pmd);
2161 folio = pfn_swap_entry_folio(entry);
2162 flush_needed = 0;
2163 } else
2164 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2165
2166 if (folio_test_anon(folio)) {
2167 zap_deposited_table(tlb->mm, pmd);
2168 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2169 } else {
2170 if (arch_needs_pgtable_deposit())
2171 zap_deposited_table(tlb->mm, pmd);
2172 add_mm_counter(tlb->mm, mm_counter_file(folio),
2173 -HPAGE_PMD_NR);
2174 }
2175
2176 spin_unlock(ptl);
2177 if (flush_needed)
2178 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2179 }
2180 return 1;
2181}
2182
2183#ifndef pmd_move_must_withdraw
2184static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2185 spinlock_t *old_pmd_ptl,
2186 struct vm_area_struct *vma)
2187{
2188 /*
2189 * With split pmd lock we also need to move preallocated
2190 * PTE page table if new_pmd is on different PMD page table.
2191 *
2192 * We also don't deposit and withdraw tables for file pages.
2193 */
2194 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2195}
2196#endif
2197
2198static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2199{
2200#ifdef CONFIG_MEM_SOFT_DIRTY
2201 if (unlikely(is_pmd_migration_entry(pmd)))
2202 pmd = pmd_swp_mksoft_dirty(pmd);
2203 else if (pmd_present(pmd))
2204 pmd = pmd_mksoft_dirty(pmd);
2205#endif
2206 return pmd;
2207}
2208
2209static pmd_t clear_uffd_wp_pmd(pmd_t pmd)
2210{
2211 if (pmd_present(pmd))
2212 pmd = pmd_clear_uffd_wp(pmd);
2213 else if (is_swap_pmd(pmd))
2214 pmd = pmd_swp_clear_uffd_wp(pmd);
2215
2216 return pmd;
2217}
2218
2219bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2220 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2221{
2222 spinlock_t *old_ptl, *new_ptl;
2223 pmd_t pmd;
2224 struct mm_struct *mm = vma->vm_mm;
2225 bool force_flush = false;
2226
2227 /*
2228 * The destination pmd shouldn't be established, free_pgtables()
2229 * should have released it; but move_page_tables() might have already
2230 * inserted a page table, if racing against shmem/file collapse.
2231 */
2232 if (!pmd_none(*new_pmd)) {
2233 VM_BUG_ON(pmd_trans_huge(*new_pmd));
2234 return false;
2235 }
2236
2237 /*
2238 * We don't have to worry about the ordering of src and dst
2239 * ptlocks because exclusive mmap_lock prevents deadlock.
2240 */
2241 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2242 if (old_ptl) {
2243 new_ptl = pmd_lockptr(mm, new_pmd);
2244 if (new_ptl != old_ptl)
2245 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2246 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2247 if (pmd_present(pmd))
2248 force_flush = true;
2249 VM_BUG_ON(!pmd_none(*new_pmd));
2250
2251 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2252 pgtable_t pgtable;
2253 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2254 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2255 }
2256 pmd = move_soft_dirty_pmd(pmd);
2257 if (vma_has_uffd_without_event_remap(vma))
2258 pmd = clear_uffd_wp_pmd(pmd);
2259 set_pmd_at(mm, new_addr, new_pmd, pmd);
2260 if (force_flush)
2261 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2262 if (new_ptl != old_ptl)
2263 spin_unlock(new_ptl);
2264 spin_unlock(old_ptl);
2265 return true;
2266 }
2267 return false;
2268}
2269
2270/*
2271 * Returns
2272 * - 0 if PMD could not be locked
2273 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2274 * or if prot_numa but THP migration is not supported
2275 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
2276 */
2277int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2278 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2279 unsigned long cp_flags)
2280{
2281 struct mm_struct *mm = vma->vm_mm;
2282 spinlock_t *ptl;
2283 pmd_t oldpmd, entry;
2284 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2285 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2286 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2287 int ret = 1;
2288
2289 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2290
2291 if (prot_numa && !thp_migration_supported())
2292 return 1;
2293
2294 ptl = __pmd_trans_huge_lock(pmd, vma);
2295 if (!ptl)
2296 return 0;
2297
2298#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2299 if (is_swap_pmd(*pmd)) {
2300 swp_entry_t entry = pmd_to_swp_entry(*pmd);
2301 struct folio *folio = pfn_swap_entry_folio(entry);
2302 pmd_t newpmd;
2303
2304 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2305 if (is_writable_migration_entry(entry)) {
2306 /*
2307 * A protection check is difficult so
2308 * just be safe and disable write
2309 */
2310 if (folio_test_anon(folio))
2311 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2312 else
2313 entry = make_readable_migration_entry(swp_offset(entry));
2314 newpmd = swp_entry_to_pmd(entry);
2315 if (pmd_swp_soft_dirty(*pmd))
2316 newpmd = pmd_swp_mksoft_dirty(newpmd);
2317 } else {
2318 newpmd = *pmd;
2319 }
2320
2321 if (uffd_wp)
2322 newpmd = pmd_swp_mkuffd_wp(newpmd);
2323 else if (uffd_wp_resolve)
2324 newpmd = pmd_swp_clear_uffd_wp(newpmd);
2325 if (!pmd_same(*pmd, newpmd))
2326 set_pmd_at(mm, addr, pmd, newpmd);
2327 goto unlock;
2328 }
2329#endif
2330
2331 if (prot_numa) {
2332 struct folio *folio;
2333 bool toptier;
2334 /*
2335 * Avoid trapping faults against the zero page. The read-only
2336 * data is likely to be read-cached on the local CPU and
2337 * local/remote hits to the zero page are not interesting.
2338 */
2339 if (is_huge_zero_pmd(*pmd))
2340 goto unlock;
2341
2342 if (pmd_protnone(*pmd))
2343 goto unlock;
2344
2345 folio = pmd_folio(*pmd);
2346 toptier = node_is_toptier(folio_nid(folio));
2347 /*
2348 * Skip scanning top tier node if normal numa
2349 * balancing is disabled
2350 */
2351 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2352 toptier)
2353 goto unlock;
2354
2355 if (folio_use_access_time(folio))
2356 folio_xchg_access_time(folio,
2357 jiffies_to_msecs(jiffies));
2358 }
2359 /*
2360 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2361 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2362 * which is also under mmap_read_lock(mm):
2363 *
2364 * CPU0: CPU1:
2365 * change_huge_pmd(prot_numa=1)
2366 * pmdp_huge_get_and_clear_notify()
2367 * madvise_dontneed()
2368 * zap_pmd_range()
2369 * pmd_trans_huge(*pmd) == 0 (without ptl)
2370 * // skip the pmd
2371 * set_pmd_at();
2372 * // pmd is re-established
2373 *
2374 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2375 * which may break userspace.
2376 *
2377 * pmdp_invalidate_ad() is required to make sure we don't miss
2378 * dirty/young flags set by hardware.
2379 */
2380 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2381
2382 entry = pmd_modify(oldpmd, newprot);
2383 if (uffd_wp)
2384 entry = pmd_mkuffd_wp(entry);
2385 else if (uffd_wp_resolve)
2386 /*
2387 * Leave the write bit to be handled by PF interrupt
2388 * handler, then things like COW could be properly
2389 * handled.
2390 */
2391 entry = pmd_clear_uffd_wp(entry);
2392
2393 /* See change_pte_range(). */
2394 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2395 can_change_pmd_writable(vma, addr, entry))
2396 entry = pmd_mkwrite(entry, vma);
2397
2398 ret = HPAGE_PMD_NR;
2399 set_pmd_at(mm, addr, pmd, entry);
2400
2401 if (huge_pmd_needs_flush(oldpmd, entry))
2402 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2403unlock:
2404 spin_unlock(ptl);
2405 return ret;
2406}
2407
2408/*
2409 * Returns:
2410 *
2411 * - 0: if pud leaf changed from under us
2412 * - 1: if pud can be skipped
2413 * - HPAGE_PUD_NR: if pud was successfully processed
2414 */
2415#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2416int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2417 pud_t *pudp, unsigned long addr, pgprot_t newprot,
2418 unsigned long cp_flags)
2419{
2420 struct mm_struct *mm = vma->vm_mm;
2421 pud_t oldpud, entry;
2422 spinlock_t *ptl;
2423
2424 tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2425
2426 /* NUMA balancing doesn't apply to dax */
2427 if (cp_flags & MM_CP_PROT_NUMA)
2428 return 1;
2429
2430 /*
2431 * Huge entries on userfault-wp only works with anonymous, while we
2432 * don't have anonymous PUDs yet.
2433 */
2434 if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2435 return 1;
2436
2437 ptl = __pud_trans_huge_lock(pudp, vma);
2438 if (!ptl)
2439 return 0;
2440
2441 /*
2442 * Can't clear PUD or it can race with concurrent zapping. See
2443 * change_huge_pmd().
2444 */
2445 oldpud = pudp_invalidate(vma, addr, pudp);
2446 entry = pud_modify(oldpud, newprot);
2447 set_pud_at(mm, addr, pudp, entry);
2448 tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2449
2450 spin_unlock(ptl);
2451 return HPAGE_PUD_NR;
2452}
2453#endif
2454
2455#ifdef CONFIG_USERFAULTFD
2456/*
2457 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2458 * the caller, but it must return after releasing the page_table_lock.
2459 * Just move the page from src_pmd to dst_pmd if possible.
2460 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2461 * repeated by the caller, or other errors in case of failure.
2462 */
2463int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2464 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2465 unsigned long dst_addr, unsigned long src_addr)
2466{
2467 pmd_t _dst_pmd, src_pmdval;
2468 struct page *src_page;
2469 struct folio *src_folio;
2470 struct anon_vma *src_anon_vma;
2471 spinlock_t *src_ptl, *dst_ptl;
2472 pgtable_t src_pgtable;
2473 struct mmu_notifier_range range;
2474 int err = 0;
2475
2476 src_pmdval = *src_pmd;
2477 src_ptl = pmd_lockptr(mm, src_pmd);
2478
2479 lockdep_assert_held(src_ptl);
2480 vma_assert_locked(src_vma);
2481 vma_assert_locked(dst_vma);
2482
2483 /* Sanity checks before the operation */
2484 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2485 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2486 spin_unlock(src_ptl);
2487 return -EINVAL;
2488 }
2489
2490 if (!pmd_trans_huge(src_pmdval)) {
2491 spin_unlock(src_ptl);
2492 if (is_pmd_migration_entry(src_pmdval)) {
2493 pmd_migration_entry_wait(mm, &src_pmdval);
2494 return -EAGAIN;
2495 }
2496 return -ENOENT;
2497 }
2498
2499 src_page = pmd_page(src_pmdval);
2500
2501 if (!is_huge_zero_pmd(src_pmdval)) {
2502 if (unlikely(!PageAnonExclusive(src_page))) {
2503 spin_unlock(src_ptl);
2504 return -EBUSY;
2505 }
2506
2507 src_folio = page_folio(src_page);
2508 folio_get(src_folio);
2509 } else
2510 src_folio = NULL;
2511
2512 spin_unlock(src_ptl);
2513
2514 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2515 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2516 src_addr + HPAGE_PMD_SIZE);
2517 mmu_notifier_invalidate_range_start(&range);
2518
2519 if (src_folio) {
2520 folio_lock(src_folio);
2521
2522 /*
2523 * split_huge_page walks the anon_vma chain without the page
2524 * lock. Serialize against it with the anon_vma lock, the page
2525 * lock is not enough.
2526 */
2527 src_anon_vma = folio_get_anon_vma(src_folio);
2528 if (!src_anon_vma) {
2529 err = -EAGAIN;
2530 goto unlock_folio;
2531 }
2532 anon_vma_lock_write(src_anon_vma);
2533 } else
2534 src_anon_vma = NULL;
2535
2536 dst_ptl = pmd_lockptr(mm, dst_pmd);
2537 double_pt_lock(src_ptl, dst_ptl);
2538 if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2539 !pmd_same(*dst_pmd, dst_pmdval))) {
2540 err = -EAGAIN;
2541 goto unlock_ptls;
2542 }
2543 if (src_folio) {
2544 if (folio_maybe_dma_pinned(src_folio) ||
2545 !PageAnonExclusive(&src_folio->page)) {
2546 err = -EBUSY;
2547 goto unlock_ptls;
2548 }
2549
2550 if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2551 WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2552 err = -EBUSY;
2553 goto unlock_ptls;
2554 }
2555
2556 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2557 /* Folio got pinned from under us. Put it back and fail the move. */
2558 if (folio_maybe_dma_pinned(src_folio)) {
2559 set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2560 err = -EBUSY;
2561 goto unlock_ptls;
2562 }
2563
2564 folio_move_anon_rmap(src_folio, dst_vma);
2565 src_folio->index = linear_page_index(dst_vma, dst_addr);
2566
2567 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2568 /* Follow mremap() behavior and treat the entry dirty after the move */
2569 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2570 } else {
2571 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2572 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
2573 }
2574 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2575
2576 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2577 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2578unlock_ptls:
2579 double_pt_unlock(src_ptl, dst_ptl);
2580 if (src_anon_vma) {
2581 anon_vma_unlock_write(src_anon_vma);
2582 put_anon_vma(src_anon_vma);
2583 }
2584unlock_folio:
2585 /* unblock rmap walks */
2586 if (src_folio)
2587 folio_unlock(src_folio);
2588 mmu_notifier_invalidate_range_end(&range);
2589 if (src_folio)
2590 folio_put(src_folio);
2591 return err;
2592}
2593#endif /* CONFIG_USERFAULTFD */
2594
2595/*
2596 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2597 *
2598 * Note that if it returns page table lock pointer, this routine returns without
2599 * unlocking page table lock. So callers must unlock it.
2600 */
2601spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2602{
2603 spinlock_t *ptl;
2604 ptl = pmd_lock(vma->vm_mm, pmd);
2605 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2606 pmd_devmap(*pmd)))
2607 return ptl;
2608 spin_unlock(ptl);
2609 return NULL;
2610}
2611
2612/*
2613 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2614 *
2615 * Note that if it returns page table lock pointer, this routine returns without
2616 * unlocking page table lock. So callers must unlock it.
2617 */
2618spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2619{
2620 spinlock_t *ptl;
2621
2622 ptl = pud_lock(vma->vm_mm, pud);
2623 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2624 return ptl;
2625 spin_unlock(ptl);
2626 return NULL;
2627}
2628
2629#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2630int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2631 pud_t *pud, unsigned long addr)
2632{
2633 spinlock_t *ptl;
2634 pud_t orig_pud;
2635
2636 ptl = __pud_trans_huge_lock(pud, vma);
2637 if (!ptl)
2638 return 0;
2639
2640 orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2641 arch_check_zapped_pud(vma, orig_pud);
2642 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2643 if (vma_is_special_huge(vma)) {
2644 spin_unlock(ptl);
2645 /* No zero page support yet */
2646 } else {
2647 /* No support for anonymous PUD pages yet */
2648 BUG();
2649 }
2650 return 1;
2651}
2652
2653static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2654 unsigned long haddr)
2655{
2656 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2657 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2658 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2659 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2660
2661 count_vm_event(THP_SPLIT_PUD);
2662
2663 pudp_huge_clear_flush(vma, haddr, pud);
2664}
2665
2666void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2667 unsigned long address)
2668{
2669 spinlock_t *ptl;
2670 struct mmu_notifier_range range;
2671
2672 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2673 address & HPAGE_PUD_MASK,
2674 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2675 mmu_notifier_invalidate_range_start(&range);
2676 ptl = pud_lock(vma->vm_mm, pud);
2677 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2678 goto out;
2679 __split_huge_pud_locked(vma, pud, range.start);
2680
2681out:
2682 spin_unlock(ptl);
2683 mmu_notifier_invalidate_range_end(&range);
2684}
2685#else
2686void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2687 unsigned long address)
2688{
2689}
2690#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2691
2692static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2693 unsigned long haddr, pmd_t *pmd)
2694{
2695 struct mm_struct *mm = vma->vm_mm;
2696 pgtable_t pgtable;
2697 pmd_t _pmd, old_pmd;
2698 unsigned long addr;
2699 pte_t *pte;
2700 int i;
2701
2702 /*
2703 * Leave pmd empty until pte is filled note that it is fine to delay
2704 * notification until mmu_notifier_invalidate_range_end() as we are
2705 * replacing a zero pmd write protected page with a zero pte write
2706 * protected page.
2707 *
2708 * See Documentation/mm/mmu_notifier.rst
2709 */
2710 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2711
2712 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2713 pmd_populate(mm, &_pmd, pgtable);
2714
2715 pte = pte_offset_map(&_pmd, haddr);
2716 VM_BUG_ON(!pte);
2717 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2718 pte_t entry;
2719
2720 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2721 entry = pte_mkspecial(entry);
2722 if (pmd_uffd_wp(old_pmd))
2723 entry = pte_mkuffd_wp(entry);
2724 VM_BUG_ON(!pte_none(ptep_get(pte)));
2725 set_pte_at(mm, addr, pte, entry);
2726 pte++;
2727 }
2728 pte_unmap(pte - 1);
2729 smp_wmb(); /* make pte visible before pmd */
2730 pmd_populate(mm, pmd, pgtable);
2731}
2732
2733static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2734 unsigned long haddr, bool freeze)
2735{
2736 struct mm_struct *mm = vma->vm_mm;
2737 struct folio *folio;
2738 struct page *page;
2739 pgtable_t pgtable;
2740 pmd_t old_pmd, _pmd;
2741 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2742 bool anon_exclusive = false, dirty = false;
2743 unsigned long addr;
2744 pte_t *pte;
2745 int i;
2746
2747 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2748 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2749 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2750 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2751 && !pmd_devmap(*pmd));
2752
2753 count_vm_event(THP_SPLIT_PMD);
2754
2755 if (!vma_is_anonymous(vma)) {
2756 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2757 /*
2758 * We are going to unmap this huge page. So
2759 * just go ahead and zap it
2760 */
2761 if (arch_needs_pgtable_deposit())
2762 zap_deposited_table(mm, pmd);
2763 if (vma_is_special_huge(vma))
2764 return;
2765 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2766 swp_entry_t entry;
2767
2768 entry = pmd_to_swp_entry(old_pmd);
2769 folio = pfn_swap_entry_folio(entry);
2770 } else {
2771 page = pmd_page(old_pmd);
2772 folio = page_folio(page);
2773 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2774 folio_mark_dirty(folio);
2775 if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2776 folio_set_referenced(folio);
2777 folio_remove_rmap_pmd(folio, page, vma);
2778 folio_put(folio);
2779 }
2780 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2781 return;
2782 }
2783
2784 if (is_huge_zero_pmd(*pmd)) {
2785 /*
2786 * FIXME: Do we want to invalidate secondary mmu by calling
2787 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2788 * inside __split_huge_pmd() ?
2789 *
2790 * We are going from a zero huge page write protected to zero
2791 * small page also write protected so it does not seems useful
2792 * to invalidate secondary mmu at this time.
2793 */
2794 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2795 }
2796
2797 pmd_migration = is_pmd_migration_entry(*pmd);
2798 if (unlikely(pmd_migration)) {
2799 swp_entry_t entry;
2800
2801 old_pmd = *pmd;
2802 entry = pmd_to_swp_entry(old_pmd);
2803 page = pfn_swap_entry_to_page(entry);
2804 write = is_writable_migration_entry(entry);
2805 if (PageAnon(page))
2806 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2807 young = is_migration_entry_young(entry);
2808 dirty = is_migration_entry_dirty(entry);
2809 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2810 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2811 } else {
2812 /*
2813 * Up to this point the pmd is present and huge and userland has
2814 * the whole access to the hugepage during the split (which
2815 * happens in place). If we overwrite the pmd with the not-huge
2816 * version pointing to the pte here (which of course we could if
2817 * all CPUs were bug free), userland could trigger a small page
2818 * size TLB miss on the small sized TLB while the hugepage TLB
2819 * entry is still established in the huge TLB. Some CPU doesn't
2820 * like that. See
2821 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2822 * 383 on page 105. Intel should be safe but is also warns that
2823 * it's only safe if the permission and cache attributes of the
2824 * two entries loaded in the two TLB is identical (which should
2825 * be the case here). But it is generally safer to never allow
2826 * small and huge TLB entries for the same virtual address to be
2827 * loaded simultaneously. So instead of doing "pmd_populate();
2828 * flush_pmd_tlb_range();" we first mark the current pmd
2829 * notpresent (atomically because here the pmd_trans_huge must
2830 * remain set at all times on the pmd until the split is
2831 * complete for this pmd), then we flush the SMP TLB and finally
2832 * we write the non-huge version of the pmd entry with
2833 * pmd_populate.
2834 */
2835 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2836 page = pmd_page(old_pmd);
2837 folio = page_folio(page);
2838 if (pmd_dirty(old_pmd)) {
2839 dirty = true;
2840 folio_set_dirty(folio);
2841 }
2842 write = pmd_write(old_pmd);
2843 young = pmd_young(old_pmd);
2844 soft_dirty = pmd_soft_dirty(old_pmd);
2845 uffd_wp = pmd_uffd_wp(old_pmd);
2846
2847 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2848 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2849
2850 /*
2851 * Without "freeze", we'll simply split the PMD, propagating the
2852 * PageAnonExclusive() flag for each PTE by setting it for
2853 * each subpage -- no need to (temporarily) clear.
2854 *
2855 * With "freeze" we want to replace mapped pages by
2856 * migration entries right away. This is only possible if we
2857 * managed to clear PageAnonExclusive() -- see
2858 * set_pmd_migration_entry().
2859 *
2860 * In case we cannot clear PageAnonExclusive(), split the PMD
2861 * only and let try_to_migrate_one() fail later.
2862 *
2863 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2864 */
2865 anon_exclusive = PageAnonExclusive(page);
2866 if (freeze && anon_exclusive &&
2867 folio_try_share_anon_rmap_pmd(folio, page))
2868 freeze = false;
2869 if (!freeze) {
2870 rmap_t rmap_flags = RMAP_NONE;
2871
2872 folio_ref_add(folio, HPAGE_PMD_NR - 1);
2873 if (anon_exclusive)
2874 rmap_flags |= RMAP_EXCLUSIVE;
2875 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2876 vma, haddr, rmap_flags);
2877 }
2878 }
2879
2880 /*
2881 * Withdraw the table only after we mark the pmd entry invalid.
2882 * This's critical for some architectures (Power).
2883 */
2884 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2885 pmd_populate(mm, &_pmd, pgtable);
2886
2887 pte = pte_offset_map(&_pmd, haddr);
2888 VM_BUG_ON(!pte);
2889
2890 /*
2891 * Note that NUMA hinting access restrictions are not transferred to
2892 * avoid any possibility of altering permissions across VMAs.
2893 */
2894 if (freeze || pmd_migration) {
2895 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2896 pte_t entry;
2897 swp_entry_t swp_entry;
2898
2899 if (write)
2900 swp_entry = make_writable_migration_entry(
2901 page_to_pfn(page + i));
2902 else if (anon_exclusive)
2903 swp_entry = make_readable_exclusive_migration_entry(
2904 page_to_pfn(page + i));
2905 else
2906 swp_entry = make_readable_migration_entry(
2907 page_to_pfn(page + i));
2908 if (young)
2909 swp_entry = make_migration_entry_young(swp_entry);
2910 if (dirty)
2911 swp_entry = make_migration_entry_dirty(swp_entry);
2912 entry = swp_entry_to_pte(swp_entry);
2913 if (soft_dirty)
2914 entry = pte_swp_mksoft_dirty(entry);
2915 if (uffd_wp)
2916 entry = pte_swp_mkuffd_wp(entry);
2917
2918 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2919 set_pte_at(mm, addr, pte + i, entry);
2920 }
2921 } else {
2922 pte_t entry;
2923
2924 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
2925 if (write)
2926 entry = pte_mkwrite(entry, vma);
2927 if (!young)
2928 entry = pte_mkold(entry);
2929 /* NOTE: this may set soft-dirty too on some archs */
2930 if (dirty)
2931 entry = pte_mkdirty(entry);
2932 if (soft_dirty)
2933 entry = pte_mksoft_dirty(entry);
2934 if (uffd_wp)
2935 entry = pte_mkuffd_wp(entry);
2936
2937 for (i = 0; i < HPAGE_PMD_NR; i++)
2938 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2939
2940 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
2941 }
2942 pte_unmap(pte);
2943
2944 if (!pmd_migration)
2945 folio_remove_rmap_pmd(folio, page, vma);
2946 if (freeze)
2947 put_page(page);
2948
2949 smp_wmb(); /* make pte visible before pmd */
2950 pmd_populate(mm, pmd, pgtable);
2951}
2952
2953void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
2954 pmd_t *pmd, bool freeze, struct folio *folio)
2955{
2956 VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio));
2957 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
2958 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2959 VM_BUG_ON(freeze && !folio);
2960
2961 /*
2962 * When the caller requests to set up a migration entry, we
2963 * require a folio to check the PMD against. Otherwise, there
2964 * is a risk of replacing the wrong folio.
2965 */
2966 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2967 is_pmd_migration_entry(*pmd)) {
2968 if (folio && folio != pmd_folio(*pmd))
2969 return;
2970 __split_huge_pmd_locked(vma, pmd, address, freeze);
2971 }
2972}
2973
2974void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2975 unsigned long address, bool freeze, struct folio *folio)
2976{
2977 spinlock_t *ptl;
2978 struct mmu_notifier_range range;
2979
2980 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2981 address & HPAGE_PMD_MASK,
2982 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2983 mmu_notifier_invalidate_range_start(&range);
2984 ptl = pmd_lock(vma->vm_mm, pmd);
2985 split_huge_pmd_locked(vma, range.start, pmd, freeze, folio);
2986 spin_unlock(ptl);
2987 mmu_notifier_invalidate_range_end(&range);
2988}
2989
2990void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2991 bool freeze, struct folio *folio)
2992{
2993 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2994
2995 if (!pmd)
2996 return;
2997
2998 __split_huge_pmd(vma, pmd, address, freeze, folio);
2999}
3000
3001static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
3002{
3003 /*
3004 * If the new address isn't hpage aligned and it could previously
3005 * contain an hugepage: check if we need to split an huge pmd.
3006 */
3007 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
3008 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
3009 ALIGN(address, HPAGE_PMD_SIZE)))
3010 split_huge_pmd_address(vma, address, false, NULL);
3011}
3012
3013void vma_adjust_trans_huge(struct vm_area_struct *vma,
3014 unsigned long start,
3015 unsigned long end,
3016 long adjust_next)
3017{
3018 /* Check if we need to split start first. */
3019 split_huge_pmd_if_needed(vma, start);
3020
3021 /* Check if we need to split end next. */
3022 split_huge_pmd_if_needed(vma, end);
3023
3024 /*
3025 * If we're also updating the next vma vm_start,
3026 * check if we need to split it.
3027 */
3028 if (adjust_next > 0) {
3029 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
3030 unsigned long nstart = next->vm_start;
3031 nstart += adjust_next;
3032 split_huge_pmd_if_needed(next, nstart);
3033 }
3034}
3035
3036static void unmap_folio(struct folio *folio)
3037{
3038 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
3039 TTU_BATCH_FLUSH;
3040
3041 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3042
3043 if (folio_test_pmd_mappable(folio))
3044 ttu_flags |= TTU_SPLIT_HUGE_PMD;
3045
3046 /*
3047 * Anon pages need migration entries to preserve them, but file
3048 * pages can simply be left unmapped, then faulted back on demand.
3049 * If that is ever changed (perhaps for mlock), update remap_page().
3050 */
3051 if (folio_test_anon(folio))
3052 try_to_migrate(folio, ttu_flags);
3053 else
3054 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
3055
3056 try_to_unmap_flush();
3057}
3058
3059static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3060 unsigned long addr, pmd_t *pmdp,
3061 struct folio *folio)
3062{
3063 struct mm_struct *mm = vma->vm_mm;
3064 int ref_count, map_count;
3065 pmd_t orig_pmd = *pmdp;
3066
3067 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd))
3068 return false;
3069
3070 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3071
3072 /*
3073 * Syncing against concurrent GUP-fast:
3074 * - clear PMD; barrier; read refcount
3075 * - inc refcount; barrier; read PMD
3076 */
3077 smp_mb();
3078
3079 ref_count = folio_ref_count(folio);
3080 map_count = folio_mapcount(folio);
3081
3082 /*
3083 * Order reads for folio refcount and dirty flag
3084 * (see comments in __remove_mapping()).
3085 */
3086 smp_rmb();
3087
3088 /*
3089 * If the folio or its PMD is redirtied at this point, or if there
3090 * are unexpected references, we will give up to discard this folio
3091 * and remap it.
3092 *
3093 * The only folio refs must be one from isolation plus the rmap(s).
3094 */
3095 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) ||
3096 ref_count != map_count + 1) {
3097 set_pmd_at(mm, addr, pmdp, orig_pmd);
3098 return false;
3099 }
3100
3101 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3102 zap_deposited_table(mm, pmdp);
3103 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3104 if (vma->vm_flags & VM_LOCKED)
3105 mlock_drain_local();
3106 folio_put(folio);
3107
3108 return true;
3109}
3110
3111bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3112 pmd_t *pmdp, struct folio *folio)
3113{
3114 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3115 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3116 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3117
3118 if (folio_test_anon(folio) && !folio_test_swapbacked(folio))
3119 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3120
3121 return false;
3122}
3123
3124static void remap_page(struct folio *folio, unsigned long nr, int flags)
3125{
3126 int i = 0;
3127
3128 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
3129 if (!folio_test_anon(folio))
3130 return;
3131 for (;;) {
3132 remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3133 i += folio_nr_pages(folio);
3134 if (i >= nr)
3135 break;
3136 folio = folio_next(folio);
3137 }
3138}
3139
3140static void lru_add_page_tail(struct folio *folio, struct page *tail,
3141 struct lruvec *lruvec, struct list_head *list)
3142{
3143 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3144 VM_BUG_ON_FOLIO(PageLRU(tail), folio);
3145 lockdep_assert_held(&lruvec->lru_lock);
3146
3147 if (list) {
3148 /* page reclaim is reclaiming a huge page */
3149 VM_WARN_ON(folio_test_lru(folio));
3150 get_page(tail);
3151 list_add_tail(&tail->lru, list);
3152 } else {
3153 /* head is still on lru (and we have it frozen) */
3154 VM_WARN_ON(!folio_test_lru(folio));
3155 if (folio_test_unevictable(folio))
3156 tail->mlock_count = 0;
3157 else
3158 list_add_tail(&tail->lru, &folio->lru);
3159 SetPageLRU(tail);
3160 }
3161}
3162
3163static void __split_huge_page_tail(struct folio *folio, int tail,
3164 struct lruvec *lruvec, struct list_head *list,
3165 unsigned int new_order)
3166{
3167 struct page *head = &folio->page;
3168 struct page *page_tail = head + tail;
3169 /*
3170 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3171 * Don't pass it around before clear_compound_head().
3172 */
3173 struct folio *new_folio = (struct folio *)page_tail;
3174
3175 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3176
3177 /*
3178 * Clone page flags before unfreezing refcount.
3179 *
3180 * After successful get_page_unless_zero() might follow flags change,
3181 * for example lock_page() which set PG_waiters.
3182 *
3183 * Note that for mapped sub-pages of an anonymous THP,
3184 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3185 * the migration entry instead from where remap_page() will restore it.
3186 * We can still have PG_anon_exclusive set on effectively unmapped and
3187 * unreferenced sub-pages of an anonymous THP: we can simply drop
3188 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3189 */
3190 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3191 page_tail->flags |= (head->flags &
3192 ((1L << PG_referenced) |
3193 (1L << PG_swapbacked) |
3194 (1L << PG_swapcache) |
3195 (1L << PG_mlocked) |
3196 (1L << PG_uptodate) |
3197 (1L << PG_active) |
3198 (1L << PG_workingset) |
3199 (1L << PG_locked) |
3200 (1L << PG_unevictable) |
3201#ifdef CONFIG_ARCH_USES_PG_ARCH_2
3202 (1L << PG_arch_2) |
3203#endif
3204#ifdef CONFIG_ARCH_USES_PG_ARCH_3
3205 (1L << PG_arch_3) |
3206#endif
3207 (1L << PG_dirty) |
3208 LRU_GEN_MASK | LRU_REFS_MASK));
3209
3210 /* ->mapping in first and second tail page is replaced by other uses */
3211 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3212 page_tail);
3213 new_folio->mapping = folio->mapping;
3214 new_folio->index = folio->index + tail;
3215
3216 /*
3217 * page->private should not be set in tail pages. Fix up and warn once
3218 * if private is unexpectedly set.
3219 */
3220 if (unlikely(page_tail->private)) {
3221 VM_WARN_ON_ONCE_PAGE(true, page_tail);
3222 page_tail->private = 0;
3223 }
3224 if (folio_test_swapcache(folio))
3225 new_folio->swap.val = folio->swap.val + tail;
3226
3227 /* Page flags must be visible before we make the page non-compound. */
3228 smp_wmb();
3229
3230 /*
3231 * Clear PageTail before unfreezing page refcount.
3232 *
3233 * After successful get_page_unless_zero() might follow put_page()
3234 * which needs correct compound_head().
3235 */
3236 clear_compound_head(page_tail);
3237 if (new_order) {
3238 prep_compound_page(page_tail, new_order);
3239 folio_set_large_rmappable(new_folio);
3240 }
3241
3242 /* Finally unfreeze refcount. Additional reference from page cache. */
3243 page_ref_unfreeze(page_tail,
3244 1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ?
3245 folio_nr_pages(new_folio) : 0));
3246
3247 if (folio_test_young(folio))
3248 folio_set_young(new_folio);
3249 if (folio_test_idle(folio))
3250 folio_set_idle(new_folio);
3251
3252 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3253
3254 /*
3255 * always add to the tail because some iterators expect new
3256 * pages to show after the currently processed elements - e.g.
3257 * migrate_pages
3258 */
3259 lru_add_page_tail(folio, page_tail, lruvec, list);
3260}
3261
3262static void __split_huge_page(struct page *page, struct list_head *list,
3263 pgoff_t end, unsigned int new_order)
3264{
3265 struct folio *folio = page_folio(page);
3266 struct page *head = &folio->page;
3267 struct lruvec *lruvec;
3268 struct address_space *swap_cache = NULL;
3269 unsigned long offset = 0;
3270 int i, nr_dropped = 0;
3271 unsigned int new_nr = 1 << new_order;
3272 int order = folio_order(folio);
3273 unsigned int nr = 1 << order;
3274
3275 /* complete memcg works before add pages to LRU */
3276 split_page_memcg(head, order, new_order);
3277
3278 if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
3279 offset = swap_cache_index(folio->swap);
3280 swap_cache = swap_address_space(folio->swap);
3281 xa_lock(&swap_cache->i_pages);
3282 }
3283
3284 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3285 lruvec = folio_lruvec_lock(folio);
3286
3287 ClearPageHasHWPoisoned(head);
3288
3289 for (i = nr - new_nr; i >= new_nr; i -= new_nr) {
3290 struct folio *tail;
3291 __split_huge_page_tail(folio, i, lruvec, list, new_order);
3292 tail = page_folio(head + i);
3293 /* Some pages can be beyond EOF: drop them from page cache */
3294 if (tail->index >= end) {
3295 if (shmem_mapping(folio->mapping))
3296 nr_dropped++;
3297 else if (folio_test_clear_dirty(tail))
3298 folio_account_cleaned(tail,
3299 inode_to_wb(folio->mapping->host));
3300 __filemap_remove_folio(tail, NULL);
3301 folio_put(tail);
3302 } else if (!folio_test_anon(folio)) {
3303 __xa_store(&folio->mapping->i_pages, tail->index,
3304 tail, 0);
3305 } else if (swap_cache) {
3306 __xa_store(&swap_cache->i_pages, offset + i,
3307 tail, 0);
3308 }
3309 }
3310
3311 if (!new_order)
3312 ClearPageCompound(head);
3313 else {
3314 struct folio *new_folio = (struct folio *)head;
3315
3316 folio_set_order(new_folio, new_order);
3317 }
3318 unlock_page_lruvec(lruvec);
3319 /* Caller disabled irqs, so they are still disabled here */
3320
3321 split_page_owner(head, order, new_order);
3322 pgalloc_tag_split(folio, order, new_order);
3323
3324 /* See comment in __split_huge_page_tail() */
3325 if (folio_test_anon(folio)) {
3326 /* Additional pin to swap cache */
3327 if (folio_test_swapcache(folio)) {
3328 folio_ref_add(folio, 1 + new_nr);
3329 xa_unlock(&swap_cache->i_pages);
3330 } else {
3331 folio_ref_inc(folio);
3332 }
3333 } else {
3334 /* Additional pin to page cache */
3335 folio_ref_add(folio, 1 + new_nr);
3336 xa_unlock(&folio->mapping->i_pages);
3337 }
3338 local_irq_enable();
3339
3340 if (nr_dropped)
3341 shmem_uncharge(folio->mapping->host, nr_dropped);
3342 remap_page(folio, nr, PageAnon(head) ? RMP_USE_SHARED_ZEROPAGE : 0);
3343
3344 /*
3345 * set page to its compound_head when split to non order-0 pages, so
3346 * we can skip unlocking it below, since PG_locked is transferred to
3347 * the compound_head of the page and the caller will unlock it.
3348 */
3349 if (new_order)
3350 page = compound_head(page);
3351
3352 for (i = 0; i < nr; i += new_nr) {
3353 struct page *subpage = head + i;
3354 struct folio *new_folio = page_folio(subpage);
3355 if (subpage == page)
3356 continue;
3357 folio_unlock(new_folio);
3358
3359 /*
3360 * Subpages may be freed if there wasn't any mapping
3361 * like if add_to_swap() is running on a lru page that
3362 * had its mapping zapped. And freeing these pages
3363 * requires taking the lru_lock so we do the put_page
3364 * of the tail pages after the split is complete.
3365 */
3366 free_page_and_swap_cache(subpage);
3367 }
3368}
3369
3370/* Racy check whether the huge page can be split */
3371bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3372{
3373 int extra_pins;
3374
3375 /* Additional pins from page cache */
3376 if (folio_test_anon(folio))
3377 extra_pins = folio_test_swapcache(folio) ?
3378 folio_nr_pages(folio) : 0;
3379 else
3380 extra_pins = folio_nr_pages(folio);
3381 if (pextra_pins)
3382 *pextra_pins = extra_pins;
3383 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3384 caller_pins;
3385}
3386
3387/*
3388 * This function splits a large folio into smaller folios of order @new_order.
3389 * @page can point to any page of the large folio to split. The split operation
3390 * does not change the position of @page.
3391 *
3392 * Prerequisites:
3393 *
3394 * 1) The caller must hold a reference on the @page's owning folio, also known
3395 * as the large folio.
3396 *
3397 * 2) The large folio must be locked.
3398 *
3399 * 3) The folio must not be pinned. Any unexpected folio references, including
3400 * GUP pins, will result in the folio not getting split; instead, the caller
3401 * will receive an -EAGAIN.
3402 *
3403 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3404 * supported for non-file-backed folios, because folio->_deferred_list, which
3405 * is used by partially mapped folios, is stored in subpage 2, but an order-1
3406 * folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3407 * since they do not use _deferred_list.
3408 *
3409 * After splitting, the caller's folio reference will be transferred to @page,
3410 * resulting in a raised refcount of @page after this call. The other pages may
3411 * be freed if they are not mapped.
3412 *
3413 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3414 *
3415 * Pages in @new_order will inherit the mapping, flags, and so on from the
3416 * huge page.
3417 *
3418 * Returns 0 if the huge page was split successfully.
3419 *
3420 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3421 * the folio was concurrently removed from the page cache.
3422 *
3423 * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3424 * under writeback, if fs-specific folio metadata cannot currently be
3425 * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3426 * truncation).
3427 *
3428 * Callers should ensure that the order respects the address space mapping
3429 * min-order if one is set for non-anonymous folios.
3430 *
3431 * Returns -EINVAL when trying to split to an order that is incompatible
3432 * with the folio. Splitting to order 0 is compatible with all folios.
3433 */
3434int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3435 unsigned int new_order)
3436{
3437 struct folio *folio = page_folio(page);
3438 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3439 /* reset xarray order to new order after split */
3440 XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order);
3441 bool is_anon = folio_test_anon(folio);
3442 struct address_space *mapping = NULL;
3443 struct anon_vma *anon_vma = NULL;
3444 int order = folio_order(folio);
3445 int extra_pins, ret;
3446 pgoff_t end;
3447 bool is_hzp;
3448
3449 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3450 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3451
3452 if (new_order >= folio_order(folio))
3453 return -EINVAL;
3454
3455 if (is_anon) {
3456 /* order-1 is not supported for anonymous THP. */
3457 if (new_order == 1) {
3458 VM_WARN_ONCE(1, "Cannot split to order-1 folio");
3459 return -EINVAL;
3460 }
3461 } else if (new_order) {
3462 /* Split shmem folio to non-zero order not supported */
3463 if (shmem_mapping(folio->mapping)) {
3464 VM_WARN_ONCE(1,
3465 "Cannot split shmem folio to non-0 order");
3466 return -EINVAL;
3467 }
3468 /*
3469 * No split if the file system does not support large folio.
3470 * Note that we might still have THPs in such mappings due to
3471 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3472 * does not actually support large folios properly.
3473 */
3474 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3475 !mapping_large_folio_support(folio->mapping)) {
3476 VM_WARN_ONCE(1,
3477 "Cannot split file folio to non-0 order");
3478 return -EINVAL;
3479 }
3480 }
3481
3482 /* Only swapping a whole PMD-mapped folio is supported */
3483 if (folio_test_swapcache(folio) && new_order)
3484 return -EINVAL;
3485
3486 is_hzp = is_huge_zero_folio(folio);
3487 if (is_hzp) {
3488 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3489 return -EBUSY;
3490 }
3491
3492 if (folio_test_writeback(folio))
3493 return -EBUSY;
3494
3495 if (is_anon) {
3496 /*
3497 * The caller does not necessarily hold an mmap_lock that would
3498 * prevent the anon_vma disappearing so we first we take a
3499 * reference to it and then lock the anon_vma for write. This
3500 * is similar to folio_lock_anon_vma_read except the write lock
3501 * is taken to serialise against parallel split or collapse
3502 * operations.
3503 */
3504 anon_vma = folio_get_anon_vma(folio);
3505 if (!anon_vma) {
3506 ret = -EBUSY;
3507 goto out;
3508 }
3509 end = -1;
3510 mapping = NULL;
3511 anon_vma_lock_write(anon_vma);
3512 } else {
3513 unsigned int min_order;
3514 gfp_t gfp;
3515
3516 mapping = folio->mapping;
3517
3518 /* Truncated ? */
3519 if (!mapping) {
3520 ret = -EBUSY;
3521 goto out;
3522 }
3523
3524 min_order = mapping_min_folio_order(folio->mapping);
3525 if (new_order < min_order) {
3526 VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u",
3527 min_order);
3528 ret = -EINVAL;
3529 goto out;
3530 }
3531
3532 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3533 GFP_RECLAIM_MASK);
3534
3535 if (!filemap_release_folio(folio, gfp)) {
3536 ret = -EBUSY;
3537 goto out;
3538 }
3539
3540 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3541 if (xas_error(&xas)) {
3542 ret = xas_error(&xas);
3543 goto out;
3544 }
3545
3546 anon_vma = NULL;
3547 i_mmap_lock_read(mapping);
3548
3549 /*
3550 *__split_huge_page() may need to trim off pages beyond EOF:
3551 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3552 * which cannot be nested inside the page tree lock. So note
3553 * end now: i_size itself may be changed at any moment, but
3554 * folio lock is good enough to serialize the trimming.
3555 */
3556 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3557 if (shmem_mapping(mapping))
3558 end = shmem_fallocend(mapping->host, end);
3559 }
3560
3561 /*
3562 * Racy check if we can split the page, before unmap_folio() will
3563 * split PMDs
3564 */
3565 if (!can_split_folio(folio, 1, &extra_pins)) {
3566 ret = -EAGAIN;
3567 goto out_unlock;
3568 }
3569
3570 unmap_folio(folio);
3571
3572 /* block interrupt reentry in xa_lock and spinlock */
3573 local_irq_disable();
3574 if (mapping) {
3575 /*
3576 * Check if the folio is present in page cache.
3577 * We assume all tail are present too, if folio is there.
3578 */
3579 xas_lock(&xas);
3580 xas_reset(&xas);
3581 if (xas_load(&xas) != folio)
3582 goto fail;
3583 }
3584
3585 /* Prevent deferred_split_scan() touching ->_refcount */
3586 spin_lock(&ds_queue->split_queue_lock);
3587 if (folio_ref_freeze(folio, 1 + extra_pins)) {
3588 if (folio_order(folio) > 1 &&
3589 !list_empty(&folio->_deferred_list)) {
3590 ds_queue->split_queue_len--;
3591 if (folio_test_partially_mapped(folio)) {
3592 folio_clear_partially_mapped(folio);
3593 mod_mthp_stat(folio_order(folio),
3594 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3595 }
3596 /*
3597 * Reinitialize page_deferred_list after removing the
3598 * page from the split_queue, otherwise a subsequent
3599 * split will see list corruption when checking the
3600 * page_deferred_list.
3601 */
3602 list_del_init(&folio->_deferred_list);
3603 }
3604 spin_unlock(&ds_queue->split_queue_lock);
3605 if (mapping) {
3606 int nr = folio_nr_pages(folio);
3607
3608 xas_split(&xas, folio, folio_order(folio));
3609 if (folio_test_pmd_mappable(folio) &&
3610 new_order < HPAGE_PMD_ORDER) {
3611 if (folio_test_swapbacked(folio)) {
3612 __lruvec_stat_mod_folio(folio,
3613 NR_SHMEM_THPS, -nr);
3614 } else {
3615 __lruvec_stat_mod_folio(folio,
3616 NR_FILE_THPS, -nr);
3617 filemap_nr_thps_dec(mapping);
3618 }
3619 }
3620 }
3621
3622 if (is_anon) {
3623 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3624 mod_mthp_stat(new_order, MTHP_STAT_NR_ANON, 1 << (order - new_order));
3625 }
3626 __split_huge_page(page, list, end, new_order);
3627 ret = 0;
3628 } else {
3629 spin_unlock(&ds_queue->split_queue_lock);
3630fail:
3631 if (mapping)
3632 xas_unlock(&xas);
3633 local_irq_enable();
3634 remap_page(folio, folio_nr_pages(folio), 0);
3635 ret = -EAGAIN;
3636 }
3637
3638out_unlock:
3639 if (anon_vma) {
3640 anon_vma_unlock_write(anon_vma);
3641 put_anon_vma(anon_vma);
3642 }
3643 if (mapping)
3644 i_mmap_unlock_read(mapping);
3645out:
3646 xas_destroy(&xas);
3647 if (order == HPAGE_PMD_ORDER)
3648 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3649 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3650 return ret;
3651}
3652
3653int min_order_for_split(struct folio *folio)
3654{
3655 if (folio_test_anon(folio))
3656 return 0;
3657
3658 if (!folio->mapping) {
3659 if (folio_test_pmd_mappable(folio))
3660 count_vm_event(THP_SPLIT_PAGE_FAILED);
3661 return -EBUSY;
3662 }
3663
3664 return mapping_min_folio_order(folio->mapping);
3665}
3666
3667int split_folio_to_list(struct folio *folio, struct list_head *list)
3668{
3669 int ret = min_order_for_split(folio);
3670
3671 if (ret < 0)
3672 return ret;
3673
3674 return split_huge_page_to_list_to_order(&folio->page, list, ret);
3675}
3676
3677/*
3678 * __folio_unqueue_deferred_split() is not to be called directly:
3679 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
3680 * limits its calls to those folios which may have a _deferred_list for
3681 * queueing THP splits, and that list is (racily observed to be) non-empty.
3682 *
3683 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
3684 * zero: because even when split_queue_lock is held, a non-empty _deferred_list
3685 * might be in use on deferred_split_scan()'s unlocked on-stack list.
3686 *
3687 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
3688 * therefore important to unqueue deferred split before changing folio memcg.
3689 */
3690bool __folio_unqueue_deferred_split(struct folio *folio)
3691{
3692 struct deferred_split *ds_queue;
3693 unsigned long flags;
3694 bool unqueued = false;
3695
3696 WARN_ON_ONCE(folio_ref_count(folio));
3697 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
3698
3699 ds_queue = get_deferred_split_queue(folio);
3700 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3701 if (!list_empty(&folio->_deferred_list)) {
3702 ds_queue->split_queue_len--;
3703 if (folio_test_partially_mapped(folio)) {
3704 folio_clear_partially_mapped(folio);
3705 mod_mthp_stat(folio_order(folio),
3706 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3707 }
3708 list_del_init(&folio->_deferred_list);
3709 unqueued = true;
3710 }
3711 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3712
3713 return unqueued; /* useful for debug warnings */
3714}
3715
3716/* partially_mapped=false won't clear PG_partially_mapped folio flag */
3717void deferred_split_folio(struct folio *folio, bool partially_mapped)
3718{
3719 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3720#ifdef CONFIG_MEMCG
3721 struct mem_cgroup *memcg = folio_memcg(folio);
3722#endif
3723 unsigned long flags;
3724
3725 /*
3726 * Order 1 folios have no space for a deferred list, but we also
3727 * won't waste much memory by not adding them to the deferred list.
3728 */
3729 if (folio_order(folio) <= 1)
3730 return;
3731
3732 if (!partially_mapped && !split_underused_thp)
3733 return;
3734
3735 /*
3736 * Exclude swapcache: originally to avoid a corrupt deferred split
3737 * queue. Nowadays that is fully prevented by mem_cgroup_swapout();
3738 * but if page reclaim is already handling the same folio, it is
3739 * unnecessary to handle it again in the shrinker, so excluding
3740 * swapcache here may still be a useful optimization.
3741 */
3742 if (folio_test_swapcache(folio))
3743 return;
3744
3745 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3746 if (partially_mapped) {
3747 if (!folio_test_partially_mapped(folio)) {
3748 folio_set_partially_mapped(folio);
3749 if (folio_test_pmd_mappable(folio))
3750 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3751 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
3752 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
3753
3754 }
3755 } else {
3756 /* partially mapped folios cannot become non-partially mapped */
3757 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
3758 }
3759 if (list_empty(&folio->_deferred_list)) {
3760 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3761 ds_queue->split_queue_len++;
3762#ifdef CONFIG_MEMCG
3763 if (memcg)
3764 set_shrinker_bit(memcg, folio_nid(folio),
3765 deferred_split_shrinker->id);
3766#endif
3767 }
3768 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3769}
3770
3771static unsigned long deferred_split_count(struct shrinker *shrink,
3772 struct shrink_control *sc)
3773{
3774 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3775 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3776
3777#ifdef CONFIG_MEMCG
3778 if (sc->memcg)
3779 ds_queue = &sc->memcg->deferred_split_queue;
3780#endif
3781 return READ_ONCE(ds_queue->split_queue_len);
3782}
3783
3784static bool thp_underused(struct folio *folio)
3785{
3786 int num_zero_pages = 0, num_filled_pages = 0;
3787 void *kaddr;
3788 int i;
3789
3790 if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
3791 return false;
3792
3793 for (i = 0; i < folio_nr_pages(folio); i++) {
3794 kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
3795 if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
3796 num_zero_pages++;
3797 if (num_zero_pages > khugepaged_max_ptes_none) {
3798 kunmap_local(kaddr);
3799 return true;
3800 }
3801 } else {
3802 /*
3803 * Another path for early exit once the number
3804 * of non-zero filled pages exceeds threshold.
3805 */
3806 num_filled_pages++;
3807 if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
3808 kunmap_local(kaddr);
3809 return false;
3810 }
3811 }
3812 kunmap_local(kaddr);
3813 }
3814 return false;
3815}
3816
3817static unsigned long deferred_split_scan(struct shrinker *shrink,
3818 struct shrink_control *sc)
3819{
3820 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3821 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3822 unsigned long flags;
3823 LIST_HEAD(list);
3824 struct folio *folio, *next, *prev = NULL;
3825 int split = 0, removed = 0;
3826
3827#ifdef CONFIG_MEMCG
3828 if (sc->memcg)
3829 ds_queue = &sc->memcg->deferred_split_queue;
3830#endif
3831
3832 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3833 /* Take pin on all head pages to avoid freeing them under us */
3834 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3835 _deferred_list) {
3836 if (folio_try_get(folio)) {
3837 list_move(&folio->_deferred_list, &list);
3838 } else {
3839 /* We lost race with folio_put() */
3840 if (folio_test_partially_mapped(folio)) {
3841 folio_clear_partially_mapped(folio);
3842 mod_mthp_stat(folio_order(folio),
3843 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3844 }
3845 list_del_init(&folio->_deferred_list);
3846 ds_queue->split_queue_len--;
3847 }
3848 if (!--sc->nr_to_scan)
3849 break;
3850 }
3851 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3852
3853 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3854 bool did_split = false;
3855 bool underused = false;
3856
3857 if (!folio_test_partially_mapped(folio)) {
3858 underused = thp_underused(folio);
3859 if (!underused)
3860 goto next;
3861 }
3862 if (!folio_trylock(folio))
3863 goto next;
3864 if (!split_folio(folio)) {
3865 did_split = true;
3866 if (underused)
3867 count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
3868 split++;
3869 }
3870 folio_unlock(folio);
3871next:
3872 /*
3873 * split_folio() removes folio from list on success.
3874 * Only add back to the queue if folio is partially mapped.
3875 * If thp_underused returns false, or if split_folio fails
3876 * in the case it was underused, then consider it used and
3877 * don't add it back to split_queue.
3878 */
3879 if (did_split) {
3880 ; /* folio already removed from list */
3881 } else if (!folio_test_partially_mapped(folio)) {
3882 list_del_init(&folio->_deferred_list);
3883 removed++;
3884 } else {
3885 /*
3886 * That unlocked list_del_init() above would be unsafe,
3887 * unless its folio is separated from any earlier folios
3888 * left on the list (which may be concurrently unqueued)
3889 * by one safe folio with refcount still raised.
3890 */
3891 swap(folio, prev);
3892 }
3893 if (folio)
3894 folio_put(folio);
3895 }
3896
3897 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3898 list_splice_tail(&list, &ds_queue->split_queue);
3899 ds_queue->split_queue_len -= removed;
3900 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3901
3902 if (prev)
3903 folio_put(prev);
3904
3905 /*
3906 * Stop shrinker if we didn't split any page, but the queue is empty.
3907 * This can happen if pages were freed under us.
3908 */
3909 if (!split && list_empty(&ds_queue->split_queue))
3910 return SHRINK_STOP;
3911 return split;
3912}
3913
3914#ifdef CONFIG_DEBUG_FS
3915static void split_huge_pages_all(void)
3916{
3917 struct zone *zone;
3918 struct page *page;
3919 struct folio *folio;
3920 unsigned long pfn, max_zone_pfn;
3921 unsigned long total = 0, split = 0;
3922
3923 pr_debug("Split all THPs\n");
3924 for_each_zone(zone) {
3925 if (!managed_zone(zone))
3926 continue;
3927 max_zone_pfn = zone_end_pfn(zone);
3928 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3929 int nr_pages;
3930
3931 page = pfn_to_online_page(pfn);
3932 if (!page || PageTail(page))
3933 continue;
3934 folio = page_folio(page);
3935 if (!folio_try_get(folio))
3936 continue;
3937
3938 if (unlikely(page_folio(page) != folio))
3939 goto next;
3940
3941 if (zone != folio_zone(folio))
3942 goto next;
3943
3944 if (!folio_test_large(folio)
3945 || folio_test_hugetlb(folio)
3946 || !folio_test_lru(folio))
3947 goto next;
3948
3949 total++;
3950 folio_lock(folio);
3951 nr_pages = folio_nr_pages(folio);
3952 if (!split_folio(folio))
3953 split++;
3954 pfn += nr_pages - 1;
3955 folio_unlock(folio);
3956next:
3957 folio_put(folio);
3958 cond_resched();
3959 }
3960 }
3961
3962 pr_debug("%lu of %lu THP split\n", split, total);
3963}
3964
3965static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3966{
3967 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3968 is_vm_hugetlb_page(vma);
3969}
3970
3971static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3972 unsigned long vaddr_end, unsigned int new_order)
3973{
3974 int ret = 0;
3975 struct task_struct *task;
3976 struct mm_struct *mm;
3977 unsigned long total = 0, split = 0;
3978 unsigned long addr;
3979
3980 vaddr_start &= PAGE_MASK;
3981 vaddr_end &= PAGE_MASK;
3982
3983 task = find_get_task_by_vpid(pid);
3984 if (!task) {
3985 ret = -ESRCH;
3986 goto out;
3987 }
3988
3989 /* Find the mm_struct */
3990 mm = get_task_mm(task);
3991 put_task_struct(task);
3992
3993 if (!mm) {
3994 ret = -EINVAL;
3995 goto out;
3996 }
3997
3998 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3999 pid, vaddr_start, vaddr_end);
4000
4001 mmap_read_lock(mm);
4002 /*
4003 * always increase addr by PAGE_SIZE, since we could have a PTE page
4004 * table filled with PTE-mapped THPs, each of which is distinct.
4005 */
4006 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
4007 struct vm_area_struct *vma = vma_lookup(mm, addr);
4008 struct folio_walk fw;
4009 struct folio *folio;
4010 struct address_space *mapping;
4011 unsigned int target_order = new_order;
4012
4013 if (!vma)
4014 break;
4015
4016 /* skip special VMA and hugetlb VMA */
4017 if (vma_not_suitable_for_thp_split(vma)) {
4018 addr = vma->vm_end;
4019 continue;
4020 }
4021
4022 folio = folio_walk_start(&fw, vma, addr, 0);
4023 if (!folio)
4024 continue;
4025
4026 if (!is_transparent_hugepage(folio))
4027 goto next;
4028
4029 if (!folio_test_anon(folio)) {
4030 mapping = folio->mapping;
4031 target_order = max(new_order,
4032 mapping_min_folio_order(mapping));
4033 }
4034
4035 if (target_order >= folio_order(folio))
4036 goto next;
4037
4038 total++;
4039 /*
4040 * For folios with private, split_huge_page_to_list_to_order()
4041 * will try to drop it before split and then check if the folio
4042 * can be split or not. So skip the check here.
4043 */
4044 if (!folio_test_private(folio) &&
4045 !can_split_folio(folio, 0, NULL))
4046 goto next;
4047
4048 if (!folio_trylock(folio))
4049 goto next;
4050 folio_get(folio);
4051 folio_walk_end(&fw, vma);
4052
4053 if (!folio_test_anon(folio) && folio->mapping != mapping)
4054 goto unlock;
4055
4056 if (!split_folio_to_order(folio, target_order))
4057 split++;
4058
4059unlock:
4060
4061 folio_unlock(folio);
4062 folio_put(folio);
4063
4064 cond_resched();
4065 continue;
4066next:
4067 folio_walk_end(&fw, vma);
4068 cond_resched();
4069 }
4070 mmap_read_unlock(mm);
4071 mmput(mm);
4072
4073 pr_debug("%lu of %lu THP split\n", split, total);
4074
4075out:
4076 return ret;
4077}
4078
4079static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4080 pgoff_t off_end, unsigned int new_order)
4081{
4082 struct filename *file;
4083 struct file *candidate;
4084 struct address_space *mapping;
4085 int ret = -EINVAL;
4086 pgoff_t index;
4087 int nr_pages = 1;
4088 unsigned long total = 0, split = 0;
4089 unsigned int min_order;
4090 unsigned int target_order;
4091
4092 file = getname_kernel(file_path);
4093 if (IS_ERR(file))
4094 return ret;
4095
4096 candidate = file_open_name(file, O_RDONLY, 0);
4097 if (IS_ERR(candidate))
4098 goto out;
4099
4100 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
4101 file_path, off_start, off_end);
4102
4103 mapping = candidate->f_mapping;
4104 min_order = mapping_min_folio_order(mapping);
4105 target_order = max(new_order, min_order);
4106
4107 for (index = off_start; index < off_end; index += nr_pages) {
4108 struct folio *folio = filemap_get_folio(mapping, index);
4109
4110 nr_pages = 1;
4111 if (IS_ERR(folio))
4112 continue;
4113
4114 if (!folio_test_large(folio))
4115 goto next;
4116
4117 total++;
4118 nr_pages = folio_nr_pages(folio);
4119
4120 if (target_order >= folio_order(folio))
4121 goto next;
4122
4123 if (!folio_trylock(folio))
4124 goto next;
4125
4126 if (folio->mapping != mapping)
4127 goto unlock;
4128
4129 if (!split_folio_to_order(folio, target_order))
4130 split++;
4131
4132unlock:
4133 folio_unlock(folio);
4134next:
4135 folio_put(folio);
4136 cond_resched();
4137 }
4138
4139 filp_close(candidate, NULL);
4140 ret = 0;
4141
4142 pr_debug("%lu of %lu file-backed THP split\n", split, total);
4143out:
4144 putname(file);
4145 return ret;
4146}
4147
4148#define MAX_INPUT_BUF_SZ 255
4149
4150static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4151 size_t count, loff_t *ppops)
4152{
4153 static DEFINE_MUTEX(split_debug_mutex);
4154 ssize_t ret;
4155 /*
4156 * hold pid, start_vaddr, end_vaddr, new_order or
4157 * file_path, off_start, off_end, new_order
4158 */
4159 char input_buf[MAX_INPUT_BUF_SZ];
4160 int pid;
4161 unsigned long vaddr_start, vaddr_end;
4162 unsigned int new_order = 0;
4163
4164 ret = mutex_lock_interruptible(&split_debug_mutex);
4165 if (ret)
4166 return ret;
4167
4168 ret = -EFAULT;
4169
4170 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4171 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4172 goto out;
4173
4174 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4175
4176 if (input_buf[0] == '/') {
4177 char *tok;
4178 char *buf = input_buf;
4179 char file_path[MAX_INPUT_BUF_SZ];
4180 pgoff_t off_start = 0, off_end = 0;
4181 size_t input_len = strlen(input_buf);
4182
4183 tok = strsep(&buf, ",");
4184 if (tok && buf) {
4185 strscpy(file_path, tok);
4186 } else {
4187 ret = -EINVAL;
4188 goto out;
4189 }
4190
4191 ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order);
4192 if (ret != 2 && ret != 3) {
4193 ret = -EINVAL;
4194 goto out;
4195 }
4196 ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order);
4197 if (!ret)
4198 ret = input_len;
4199
4200 goto out;
4201 }
4202
4203 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order);
4204 if (ret == 1 && pid == 1) {
4205 split_huge_pages_all();
4206 ret = strlen(input_buf);
4207 goto out;
4208 } else if (ret != 3 && ret != 4) {
4209 ret = -EINVAL;
4210 goto out;
4211 }
4212
4213 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order);
4214 if (!ret)
4215 ret = strlen(input_buf);
4216out:
4217 mutex_unlock(&split_debug_mutex);
4218 return ret;
4219
4220}
4221
4222static const struct file_operations split_huge_pages_fops = {
4223 .owner = THIS_MODULE,
4224 .write = split_huge_pages_write,
4225};
4226
4227static int __init split_huge_pages_debugfs(void)
4228{
4229 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4230 &split_huge_pages_fops);
4231 return 0;
4232}
4233late_initcall(split_huge_pages_debugfs);
4234#endif
4235
4236#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
4237int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4238 struct page *page)
4239{
4240 struct folio *folio = page_folio(page);
4241 struct vm_area_struct *vma = pvmw->vma;
4242 struct mm_struct *mm = vma->vm_mm;
4243 unsigned long address = pvmw->address;
4244 bool anon_exclusive;
4245 pmd_t pmdval;
4246 swp_entry_t entry;
4247 pmd_t pmdswp;
4248
4249 if (!(pvmw->pmd && !pvmw->pte))
4250 return 0;
4251
4252 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4253 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4254
4255 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4256 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4257 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4258 set_pmd_at(mm, address, pvmw->pmd, pmdval);
4259 return -EBUSY;
4260 }
4261
4262 if (pmd_dirty(pmdval))
4263 folio_mark_dirty(folio);
4264 if (pmd_write(pmdval))
4265 entry = make_writable_migration_entry(page_to_pfn(page));
4266 else if (anon_exclusive)
4267 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4268 else
4269 entry = make_readable_migration_entry(page_to_pfn(page));
4270 if (pmd_young(pmdval))
4271 entry = make_migration_entry_young(entry);
4272 if (pmd_dirty(pmdval))
4273 entry = make_migration_entry_dirty(entry);
4274 pmdswp = swp_entry_to_pmd(entry);
4275 if (pmd_soft_dirty(pmdval))
4276 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4277 if (pmd_uffd_wp(pmdval))
4278 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4279 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4280 folio_remove_rmap_pmd(folio, page, vma);
4281 folio_put(folio);
4282 trace_set_migration_pmd(address, pmd_val(pmdswp));
4283
4284 return 0;
4285}
4286
4287void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4288{
4289 struct folio *folio = page_folio(new);
4290 struct vm_area_struct *vma = pvmw->vma;
4291 struct mm_struct *mm = vma->vm_mm;
4292 unsigned long address = pvmw->address;
4293 unsigned long haddr = address & HPAGE_PMD_MASK;
4294 pmd_t pmde;
4295 swp_entry_t entry;
4296
4297 if (!(pvmw->pmd && !pvmw->pte))
4298 return;
4299
4300 entry = pmd_to_swp_entry(*pvmw->pmd);
4301 folio_get(folio);
4302 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
4303 if (pmd_swp_soft_dirty(*pvmw->pmd))
4304 pmde = pmd_mksoft_dirty(pmde);
4305 if (is_writable_migration_entry(entry))
4306 pmde = pmd_mkwrite(pmde, vma);
4307 if (pmd_swp_uffd_wp(*pvmw->pmd))
4308 pmde = pmd_mkuffd_wp(pmde);
4309 if (!is_migration_entry_young(entry))
4310 pmde = pmd_mkold(pmde);
4311 /* NOTE: this may contain setting soft-dirty on some archs */
4312 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4313 pmde = pmd_mkdirty(pmde);
4314
4315 if (folio_test_anon(folio)) {
4316 rmap_t rmap_flags = RMAP_NONE;
4317
4318 if (!is_readable_migration_entry(entry))
4319 rmap_flags |= RMAP_EXCLUSIVE;
4320
4321 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4322 } else {
4323 folio_add_file_rmap_pmd(folio, new, vma);
4324 }
4325 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4326 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4327
4328 /* No need to invalidate - it was non-present before */
4329 update_mmu_cache_pmd(vma, address, pvmw->pmd);
4330 trace_remove_migration_pmd(address, pmd_val(pmde));
4331}
4332#endif