Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v3.1
 
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
 
 
   8#include <linux/mm.h>
   9#include <linux/sched.h>
 
 
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
 
  15#include <linux/mm_inline.h>
  16#include <linux/kthread.h>
 
 
 
  17#include <linux/khugepaged.h>
  18#include <linux/freezer.h>
 
  19#include <linux/mman.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20#include <asm/tlb.h>
  21#include <asm/pgalloc.h>
  22#include "internal.h"
 
 
 
 
  23
  24/*
  25 * By default transparent hugepage support is enabled for all mappings
  26 * and khugepaged scans all mappings. Defrag is only invoked by
  27 * khugepaged hugepage allocations and by page faults inside
  28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29 * allocations.
 
  30 */
  31unsigned long transparent_hugepage_flags __read_mostly =
  32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34#endif
  35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37#endif
  38	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40
  41/* default scan 8*512 pte (or vmas) every 30 second */
  42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  43static unsigned int khugepaged_pages_collapsed;
  44static unsigned int khugepaged_full_scans;
  45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  46/* during fragmentation poll the hugepage allocator once every minute */
  47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  48static struct task_struct *khugepaged_thread __read_mostly;
  49static DEFINE_MUTEX(khugepaged_mutex);
  50static DEFINE_SPINLOCK(khugepaged_mm_lock);
  51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  52/*
  53 * default collapse hugepages if there is at least one pte mapped like
  54 * it would have happened if the vma was large enough during page
  55 * fault.
  56 */
  57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  58
  59static int khugepaged(void *none);
  60static int mm_slots_hash_init(void);
  61static int khugepaged_slab_init(void);
  62static void khugepaged_slab_free(void);
  63
  64#define MM_SLOTS_HASH_HEADS 1024
  65static struct hlist_head *mm_slots_hash __read_mostly;
  66static struct kmem_cache *mm_slot_cache __read_mostly;
  67
  68/**
  69 * struct mm_slot - hash lookup from mm to mm_slot
  70 * @hash: hash collision list
  71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72 * @mm: the mm that this information is valid for
  73 */
  74struct mm_slot {
  75	struct hlist_node hash;
  76	struct list_head mm_node;
  77	struct mm_struct *mm;
  78};
  79
  80/**
  81 * struct khugepaged_scan - cursor for scanning
  82 * @mm_head: the head of the mm list to scan
  83 * @mm_slot: the current mm_slot we are scanning
  84 * @address: the next address inside that to be scanned
  85 *
  86 * There is only the one khugepaged_scan instance of this cursor structure.
  87 */
  88struct khugepaged_scan {
  89	struct list_head mm_head;
  90	struct mm_slot *mm_slot;
  91	unsigned long address;
  92} khugepaged_scan = {
  93	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94};
  95
 
 
 
 
 
 
 
  96
  97static int set_recommended_min_free_kbytes(void)
  98{
  99	struct zone *zone;
 100	int nr_zones = 0;
 101	unsigned long recommended_min;
 102	extern int min_free_kbytes;
 
 
 
 
 
 
 
 
 
 
 
 103
 104	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 105		      &transparent_hugepage_flags) &&
 106	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 107		      &transparent_hugepage_flags))
 108		return 0;
 
 
 
 
 
 
 
 
 109
 110	for_each_populated_zone(zone)
 111		nr_zones++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 112
 113	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 114	recommended_min = pageblock_nr_pages * nr_zones * 2;
 115
 116	/*
 117	 * Make sure that on average at least two pageblocks are almost free
 118	 * of another type, one for a migratetype to fall back to and a
 119	 * second to avoid subsequent fallbacks of other types There are 3
 120	 * MIGRATE_TYPES we care about.
 
 121	 */
 122	recommended_min += pageblock_nr_pages * nr_zones *
 123			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 124
 125	/* don't ever allow to reserve more than 5% of the lowmem */
 126	recommended_min = min(recommended_min,
 127			      (unsigned long) nr_free_buffer_pages() / 20);
 128	recommended_min <<= (PAGE_SHIFT-10);
 129
 130	if (recommended_min > min_free_kbytes)
 131		min_free_kbytes = recommended_min;
 132	setup_per_zone_wmarks();
 133	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134}
 135late_initcall(set_recommended_min_free_kbytes);
 136
 137static int start_khugepaged(void)
 138{
 139	int err = 0;
 140	if (khugepaged_enabled()) {
 141		int wakeup;
 142		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
 143			err = -ENOMEM;
 144			goto out;
 145		}
 146		mutex_lock(&khugepaged_mutex);
 147		if (!khugepaged_thread)
 148			khugepaged_thread = kthread_run(khugepaged, NULL,
 149							"khugepaged");
 150		if (unlikely(IS_ERR(khugepaged_thread))) {
 151			printk(KERN_ERR
 152			       "khugepaged: kthread_run(khugepaged) failed\n");
 153			err = PTR_ERR(khugepaged_thread);
 154			khugepaged_thread = NULL;
 155		}
 156		wakeup = !list_empty(&khugepaged_scan.mm_head);
 157		mutex_unlock(&khugepaged_mutex);
 158		if (wakeup)
 159			wake_up_interruptible(&khugepaged_wait);
 160
 161		set_recommended_min_free_kbytes();
 162	} else
 163		/* wakeup to exit */
 164		wake_up_interruptible(&khugepaged_wait);
 165out:
 166	return err;
 
 
 
 
 
 
 167}
 168
 169#ifdef CONFIG_SYSFS
 
 
 
 
 170
 171static ssize_t double_flag_show(struct kobject *kobj,
 172				struct kobj_attribute *attr, char *buf,
 173				enum transparent_hugepage_flag enabled,
 174				enum transparent_hugepage_flag req_madv)
 175{
 176	if (test_bit(enabled, &transparent_hugepage_flags)) {
 177		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 178		return sprintf(buf, "[always] madvise never\n");
 179	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 180		return sprintf(buf, "always [madvise] never\n");
 181	else
 182		return sprintf(buf, "always madvise [never]\n");
 183}
 184static ssize_t double_flag_store(struct kobject *kobj,
 185				 struct kobj_attribute *attr,
 186				 const char *buf, size_t count,
 187				 enum transparent_hugepage_flag enabled,
 188				 enum transparent_hugepage_flag req_madv)
 189{
 190	if (!memcmp("always", buf,
 191		    min(sizeof("always")-1, count))) {
 192		set_bit(enabled, &transparent_hugepage_flags);
 193		clear_bit(req_madv, &transparent_hugepage_flags);
 194	} else if (!memcmp("madvise", buf,
 195			   min(sizeof("madvise")-1, count))) {
 196		clear_bit(enabled, &transparent_hugepage_flags);
 197		set_bit(req_madv, &transparent_hugepage_flags);
 198	} else if (!memcmp("never", buf,
 199			   min(sizeof("never")-1, count))) {
 200		clear_bit(enabled, &transparent_hugepage_flags);
 201		clear_bit(req_madv, &transparent_hugepage_flags);
 202	} else
 203		return -EINVAL;
 204
 205	return count;
 206}
 207
 
 
 
 208static ssize_t enabled_show(struct kobject *kobj,
 209			    struct kobj_attribute *attr, char *buf)
 210{
 211	return double_flag_show(kobj, attr, buf,
 212				TRANSPARENT_HUGEPAGE_FLAG,
 213				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 214}
 
 215static ssize_t enabled_store(struct kobject *kobj,
 216			     struct kobj_attribute *attr,
 217			     const char *buf, size_t count)
 218{
 219	ssize_t ret;
 220
 221	ret = double_flag_store(kobj, attr, buf, count,
 222				TRANSPARENT_HUGEPAGE_FLAG,
 223				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 224
 225	if (ret > 0) {
 226		int err = start_khugepaged();
 227		if (err)
 228			ret = err;
 229	}
 230
 231	if (ret > 0 &&
 232	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 233		      &transparent_hugepage_flags) ||
 234	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 235		      &transparent_hugepage_flags)))
 236		set_recommended_min_free_kbytes();
 237
 238	return ret;
 239}
 240static struct kobj_attribute enabled_attr =
 241	__ATTR(enabled, 0644, enabled_show, enabled_store);
 242
 243static ssize_t single_flag_show(struct kobject *kobj,
 244				struct kobj_attribute *attr, char *buf,
 245				enum transparent_hugepage_flag flag)
 
 
 246{
 247	return sprintf(buf, "%d\n",
 248		       !!test_bit(flag, &transparent_hugepage_flags));
 249}
 250
 251static ssize_t single_flag_store(struct kobject *kobj,
 252				 struct kobj_attribute *attr,
 253				 const char *buf, size_t count,
 254				 enum transparent_hugepage_flag flag)
 255{
 256	unsigned long value;
 257	int ret;
 258
 259	ret = kstrtoul(buf, 10, &value);
 260	if (ret < 0)
 261		return ret;
 262	if (value > 1)
 263		return -EINVAL;
 264
 265	if (value)
 266		set_bit(flag, &transparent_hugepage_flags);
 267	else
 268		clear_bit(flag, &transparent_hugepage_flags);
 269
 270	return count;
 271}
 272
 273/*
 274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 276 * memory just to allocate one more hugepage.
 277 */
 278static ssize_t defrag_show(struct kobject *kobj,
 279			   struct kobj_attribute *attr, char *buf)
 280{
 281	return double_flag_show(kobj, attr, buf,
 282				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 283				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284}
 
 285static ssize_t defrag_store(struct kobject *kobj,
 286			    struct kobj_attribute *attr,
 287			    const char *buf, size_t count)
 288{
 289	return double_flag_store(kobj, attr, buf, count,
 290				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 291				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 292}
 293static struct kobj_attribute defrag_attr =
 294	__ATTR(defrag, 0644, defrag_show, defrag_store);
 295
 296#ifdef CONFIG_DEBUG_VM
 297static ssize_t debug_cow_show(struct kobject *kobj,
 298				struct kobj_attribute *attr, char *buf)
 299{
 300	return single_flag_show(kobj, attr, buf,
 301				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 302}
 303static ssize_t debug_cow_store(struct kobject *kobj,
 304			       struct kobj_attribute *attr,
 305			       const char *buf, size_t count)
 306{
 307	return single_flag_store(kobj, attr, buf, count,
 308				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 309}
 310static struct kobj_attribute debug_cow_attr =
 311	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 312#endif /* CONFIG_DEBUG_VM */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313
 314static struct attribute *hugepage_attr[] = {
 315	&enabled_attr.attr,
 316	&defrag_attr.attr,
 317#ifdef CONFIG_DEBUG_VM
 318	&debug_cow_attr.attr,
 
 
 319#endif
 
 320	NULL,
 321};
 322
 323static struct attribute_group hugepage_attr_group = {
 324	.attrs = hugepage_attr,
 325};
 326
 327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 328					 struct kobj_attribute *attr,
 329					 char *buf)
 330{
 331	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332}
 333
 334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 335					  struct kobj_attribute *attr,
 336					  const char *buf, size_t count)
 337{
 338	unsigned long msecs;
 339	int err;
 340
 341	err = strict_strtoul(buf, 10, &msecs);
 342	if (err || msecs > UINT_MAX)
 343		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344
 345	khugepaged_scan_sleep_millisecs = msecs;
 346	wake_up_interruptible(&khugepaged_wait);
 347
 348	return count;
 
 
 
 
 349}
 350static struct kobj_attribute scan_sleep_millisecs_attr =
 351	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 352	       scan_sleep_millisecs_store);
 353
 354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 355					  struct kobj_attribute *attr,
 356					  char *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357{
 358	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359}
 360
 361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 362					   struct kobj_attribute *attr,
 363					   const char *buf, size_t count)
 364{
 365	unsigned long msecs;
 366	int err;
 
 367
 368	err = strict_strtoul(buf, 10, &msecs);
 369	if (err || msecs > UINT_MAX)
 370		return -EINVAL;
 371
 372	khugepaged_alloc_sleep_millisecs = msecs;
 373	wake_up_interruptible(&khugepaged_wait);
 374
 375	return count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376}
 377static struct kobj_attribute alloc_sleep_millisecs_attr =
 378	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 379	       alloc_sleep_millisecs_store);
 380
 381static ssize_t pages_to_scan_show(struct kobject *kobj,
 382				  struct kobj_attribute *attr,
 383				  char *buf)
 384{
 385	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 386}
 387static ssize_t pages_to_scan_store(struct kobject *kobj,
 388				   struct kobj_attribute *attr,
 389				   const char *buf, size_t count)
 390{
 391	int err;
 392	unsigned long pages;
 
 
 393
 394	err = strict_strtoul(buf, 10, &pages);
 395	if (err || !pages || pages > UINT_MAX)
 396		return -EINVAL;
 
 
 
 
 397
 398	khugepaged_pages_to_scan = pages;
 
 
 
 
 399
 400	return count;
 401}
 402static struct kobj_attribute pages_to_scan_attr =
 403	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 404	       pages_to_scan_store);
 405
 406static ssize_t pages_collapsed_show(struct kobject *kobj,
 407				    struct kobj_attribute *attr,
 408				    char *buf)
 409{
 410	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411}
 412static struct kobj_attribute pages_collapsed_attr =
 413	__ATTR_RO(pages_collapsed);
 414
 415static ssize_t full_scans_show(struct kobject *kobj,
 416			       struct kobj_attribute *attr,
 417			       char *buf)
 418{
 419	return sprintf(buf, "%u\n", khugepaged_full_scans);
 420}
 421static struct kobj_attribute full_scans_attr =
 422	__ATTR_RO(full_scans);
 
 
 423
 424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 425				      struct kobj_attribute *attr, char *buf)
 
 
 
 
 426{
 427	return single_flag_show(kobj, attr, buf,
 428				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 429}
 430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 431				       struct kobj_attribute *attr,
 432				       const char *buf, size_t count)
 433{
 434	return single_flag_store(kobj, attr, buf, count,
 435				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 436}
 437static struct kobj_attribute khugepaged_defrag_attr =
 438	__ATTR(defrag, 0644, khugepaged_defrag_show,
 439	       khugepaged_defrag_store);
 440
 441/*
 442 * max_ptes_none controls if khugepaged should collapse hugepages over
 443 * any unmapped ptes in turn potentially increasing the memory
 444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 445 * reduce the available free memory in the system as it
 446 * runs. Increasing max_ptes_none will instead potentially reduce the
 447 * free memory in the system during the khugepaged scan.
 448 */
 449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 450					     struct kobj_attribute *attr,
 451					     char *buf)
 452{
 453	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 454}
 455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 456					      struct kobj_attribute *attr,
 457					      const char *buf, size_t count)
 458{
 459	int err;
 460	unsigned long max_ptes_none;
 
 461
 462	err = strict_strtoul(buf, 10, &max_ptes_none);
 463	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 464		return -EINVAL;
 
 
 
 
 
 465
 466	khugepaged_max_ptes_none = max_ptes_none;
 
 
 
 
 
 
 467
 468	return count;
 469}
 470static struct kobj_attribute khugepaged_max_ptes_none_attr =
 471	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 472	       khugepaged_max_ptes_none_store);
 473
 474static struct attribute *khugepaged_attr[] = {
 475	&khugepaged_defrag_attr.attr,
 476	&khugepaged_max_ptes_none_attr.attr,
 477	&pages_to_scan_attr.attr,
 478	&pages_collapsed_attr.attr,
 479	&full_scans_attr.attr,
 480	&scan_sleep_millisecs_attr.attr,
 481	&alloc_sleep_millisecs_attr.attr,
 482	NULL,
 483};
 484
 485static struct attribute_group khugepaged_attr_group = {
 486	.attrs = khugepaged_attr,
 487	.name = "khugepaged",
 488};
 489#endif /* CONFIG_SYSFS */
 490
 491static int __init hugepage_init(void)
 492{
 493	int err;
 494#ifdef CONFIG_SYSFS
 495	static struct kobject *hugepage_kobj;
 496#endif
 497
 498	err = -EINVAL;
 499	if (!has_transparent_hugepage()) {
 500		transparent_hugepage_flags = 0;
 501		goto out;
 502	}
 503
 504#ifdef CONFIG_SYSFS
 505	err = -ENOMEM;
 506	hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 507	if (unlikely(!hugepage_kobj)) {
 508		printk(KERN_ERR "hugepage: failed kobject create\n");
 509		goto out;
 510	}
 511
 512	err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
 513	if (err) {
 514		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 515		goto out;
 516	}
 517
 518	err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
 519	if (err) {
 520		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 521		goto out;
 522	}
 523#endif
 524
 525	err = khugepaged_slab_init();
 526	if (err)
 527		goto out;
 528
 529	err = mm_slots_hash_init();
 530	if (err) {
 531		khugepaged_slab_free();
 532		goto out;
 533	}
 534
 535	/*
 536	 * By default disable transparent hugepages on smaller systems,
 537	 * where the extra memory used could hurt more than TLB overhead
 538	 * is likely to save.  The admin can still enable it through /sys.
 539	 */
 540	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 541		transparent_hugepage_flags = 0;
 
 
 542
 543	start_khugepaged();
 544
 545	set_recommended_min_free_kbytes();
 546
 547out:
 
 
 
 
 
 
 
 548	return err;
 549}
 550module_init(hugepage_init)
 551
 552static int __init setup_transparent_hugepage(char *str)
 553{
 554	int ret = 0;
 555	if (!str)
 556		goto out;
 557	if (!strcmp(str, "always")) {
 558		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 559			&transparent_hugepage_flags);
 560		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 561			  &transparent_hugepage_flags);
 562		ret = 1;
 563	} else if (!strcmp(str, "madvise")) {
 564		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 565			  &transparent_hugepage_flags);
 566		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 567			&transparent_hugepage_flags);
 568		ret = 1;
 569	} else if (!strcmp(str, "never")) {
 570		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 571			  &transparent_hugepage_flags);
 572		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 573			  &transparent_hugepage_flags);
 574		ret = 1;
 575	}
 576out:
 577	if (!ret)
 578		printk(KERN_WARNING
 579		       "transparent_hugepage= cannot parse, ignored\n");
 580	return ret;
 581}
 582__setup("transparent_hugepage=", setup_transparent_hugepage);
 583
 584static void prepare_pmd_huge_pte(pgtable_t pgtable,
 585				 struct mm_struct *mm)
 586{
 587	assert_spin_locked(&mm->page_table_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588
 589	/* FIFO */
 590	if (!mm->pmd_huge_pte)
 591		INIT_LIST_HEAD(&pgtable->lru);
 592	else
 593		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
 594	mm->pmd_huge_pte = pgtable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595}
 
 596
 597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 598{
 599	if (likely(vma->vm_flags & VM_WRITE))
 600		pmd = pmd_mkwrite(pmd);
 601	return pmd;
 602}
 603
 604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 605					struct vm_area_struct *vma,
 606					unsigned long haddr, pmd_t *pmd,
 607					struct page *page)
 608{
 609	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610	pgtable_t pgtable;
 
 611
 612	VM_BUG_ON(!PageCompound(page));
 613	pgtable = pte_alloc_one(mm, haddr);
 
 
 
 614	if (unlikely(!pgtable)) {
 615		mem_cgroup_uncharge_page(page);
 616		put_page(page);
 617		return VM_FAULT_OOM;
 618	}
 619
 620	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 621	__SetPageUptodate(page);
 622
 623	spin_lock(&mm->page_table_lock);
 624	if (unlikely(!pmd_none(*pmd))) {
 625		spin_unlock(&mm->page_table_lock);
 626		mem_cgroup_uncharge_page(page);
 627		put_page(page);
 628		pte_free(mm, pgtable);
 629	} else {
 630		pmd_t entry;
 631		entry = mk_pmd(page, vma->vm_page_prot);
 632		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 633		entry = pmd_mkhuge(entry);
 634		/*
 635		 * The spinlocking to take the lru_lock inside
 636		 * page_add_new_anon_rmap() acts as a full memory
 637		 * barrier to be sure clear_huge_page writes become
 638		 * visible after the set_pmd_at() write.
 639		 */
 640		page_add_new_anon_rmap(page, vma, haddr);
 641		set_pmd_at(mm, haddr, pmd, entry);
 642		prepare_pmd_huge_pte(pgtable, mm);
 643		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 644		spin_unlock(&mm->page_table_lock);
 
 
 
 645	}
 646
 
 
 
 
 
 
 
 647	return ret;
 
 648}
 649
 650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 
 
 
 
 
 
 
 
 
 651{
 652	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653}
 654
 655static inline struct page *alloc_hugepage_vma(int defrag,
 656					      struct vm_area_struct *vma,
 657					      unsigned long haddr, int nd,
 658					      gfp_t extra_gfp)
 659{
 660	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 661			       HPAGE_PMD_ORDER, vma, haddr, nd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662}
 663
 664#ifndef CONFIG_NUMA
 665static inline struct page *alloc_hugepage(int defrag)
 
 666{
 667	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
 668			   HPAGE_PMD_ORDER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669}
 670#endif
 671
 672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 673			       unsigned long address, pmd_t *pmd,
 674			       unsigned int flags)
 
 
 
 
 
 
 
 
 675{
 676	struct page *page;
 677	unsigned long haddr = address & HPAGE_PMD_MASK;
 678	pte_t *pte;
 
 679
 680	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
 681		if (unlikely(anon_vma_prepare(vma)))
 682			return VM_FAULT_OOM;
 683		if (unlikely(khugepaged_enter(vma)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 684			return VM_FAULT_OOM;
 685		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 686					  vma, haddr, numa_node_id(), 0);
 687		if (unlikely(!page)) {
 688			count_vm_event(THP_FAULT_FALLBACK);
 689			goto out;
 690		}
 691		count_vm_event(THP_FAULT_ALLOC);
 692		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
 693			put_page(page);
 694			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695		}
 
 
 696
 697		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
 
 
 
 
 
 
 
 698	}
 699out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700	/*
 701	 * Use __pte_alloc instead of pte_alloc_map, because we can't
 702	 * run pte_offset_map on the pmd, if an huge pmd could
 703	 * materialize from under us from a different thread.
 704	 */
 705	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
 706		return VM_FAULT_OOM;
 707	/* if an huge pmd materialized from under us just retry later */
 708	if (unlikely(pmd_trans_huge(*pmd)))
 709		return 0;
 710	/*
 711	 * A regular pmd is established and it can't morph into a huge pmd
 712	 * from under us anymore at this point because we hold the mmap_sem
 713	 * read mode and khugepaged takes it in write mode. So now it's
 714	 * safe to run pte_offset_map().
 715	 */
 716	pte = pte_offset_map(pmd, address);
 717	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 
 
 
 
 
 
 
 
 
 
 
 718}
 719
 720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 721		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 722		  struct vm_area_struct *vma)
 723{
 
 724	struct page *src_page;
 
 725	pmd_t pmd;
 726	pgtable_t pgtable;
 727	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728
 729	ret = -ENOMEM;
 730	pgtable = pte_alloc_one(dst_mm, addr);
 731	if (unlikely(!pgtable))
 732		goto out;
 733
 734	spin_lock(&dst_mm->page_table_lock);
 735	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
 
 736
 737	ret = -EAGAIN;
 738	pmd = *src_pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739	if (unlikely(!pmd_trans_huge(pmd))) {
 740		pte_free(dst_mm, pgtable);
 741		goto out_unlock;
 742	}
 743	if (unlikely(pmd_trans_splitting(pmd))) {
 744		/* split huge page running from under us */
 745		spin_unlock(&src_mm->page_table_lock);
 746		spin_unlock(&dst_mm->page_table_lock);
 747		pte_free(dst_mm, pgtable);
 748
 749		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 750		goto out;
 
 
 
 
 
 751	}
 
 752	src_page = pmd_page(pmd);
 753	VM_BUG_ON(!PageHead(src_page));
 754	get_page(src_page);
 755	page_dup_rmap(src_page);
 756	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 759	pmd = pmd_mkold(pmd_wrprotect(pmd));
 
 
 
 
 760	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 761	prepare_pmd_huge_pte(pgtable, dst_mm);
 762
 763	ret = 0;
 764out_unlock:
 765	spin_unlock(&src_mm->page_table_lock);
 766	spin_unlock(&dst_mm->page_table_lock);
 767out:
 768	return ret;
 769}
 770
 771/* no "address" argument so destroys page coloring of some arch */
 772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773{
 774	pgtable_t pgtable;
 
 
 775
 776	assert_spin_locked(&mm->page_table_lock);
 
 
 777
 778	/* FIFO */
 779	pgtable = mm->pmd_huge_pte;
 780	if (list_empty(&pgtable->lru))
 781		mm->pmd_huge_pte = NULL;
 782	else {
 783		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
 784					      struct page, lru);
 785		list_del(&pgtable->lru);
 786	}
 787	return pgtable;
 
 
 
 
 
 
 
 
 
 
 
 788}
 789
 790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 791					struct vm_area_struct *vma,
 792					unsigned long address,
 793					pmd_t *pmd, pmd_t orig_pmd,
 794					struct page *page,
 795					unsigned long haddr)
 796{
 797	pgtable_t pgtable;
 798	pmd_t _pmd;
 799	int ret = 0, i;
 800	struct page **pages;
 801
 802	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 803			GFP_KERNEL);
 804	if (unlikely(!pages)) {
 805		ret |= VM_FAULT_OOM;
 806		goto out;
 807	}
 808
 809	for (i = 0; i < HPAGE_PMD_NR; i++) {
 810		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 811					       __GFP_OTHER_NODE,
 812					       vma, address, page_to_nid(page));
 813		if (unlikely(!pages[i] ||
 814			     mem_cgroup_newpage_charge(pages[i], mm,
 815						       GFP_KERNEL))) {
 816			if (pages[i])
 817				put_page(pages[i]);
 818			mem_cgroup_uncharge_start();
 819			while (--i >= 0) {
 820				mem_cgroup_uncharge_page(pages[i]);
 821				put_page(pages[i]);
 822			}
 823			mem_cgroup_uncharge_end();
 824			kfree(pages);
 825			ret |= VM_FAULT_OOM;
 826			goto out;
 827		}
 828	}
 829
 830	for (i = 0; i < HPAGE_PMD_NR; i++) {
 831		copy_user_highpage(pages[i], page + i,
 832				   haddr + PAGE_SHIFT*i, vma);
 833		__SetPageUptodate(pages[i]);
 834		cond_resched();
 835	}
 836
 837	spin_lock(&mm->page_table_lock);
 838	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 839		goto out_free_pages;
 840	VM_BUG_ON(!PageHead(page));
 841
 842	pmdp_clear_flush_notify(vma, haddr, pmd);
 843	/* leave pmd empty until pte is filled */
 
 844
 845	pgtable = get_pmd_huge_pte(mm);
 846	pmd_populate(mm, &_pmd, pgtable);
 847
 848	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 849		pte_t *pte, entry;
 850		entry = mk_pte(pages[i], vma->vm_page_prot);
 851		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 852		page_add_new_anon_rmap(pages[i], vma, haddr);
 853		pte = pte_offset_map(&_pmd, haddr);
 854		VM_BUG_ON(!pte_none(*pte));
 855		set_pte_at(mm, haddr, pte, entry);
 856		pte_unmap(pte);
 857	}
 858	kfree(pages);
 859
 860	mm->nr_ptes++;
 861	smp_wmb(); /* make pte visible before pmd */
 862	pmd_populate(mm, pmd, pgtable);
 863	page_remove_rmap(page);
 864	spin_unlock(&mm->page_table_lock);
 
 
 865
 866	ret |= VM_FAULT_WRITE;
 867	put_page(page);
 
 868
 869out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 870	return ret;
 871
 872out_free_pages:
 873	spin_unlock(&mm->page_table_lock);
 874	mem_cgroup_uncharge_start();
 875	for (i = 0; i < HPAGE_PMD_NR; i++) {
 876		mem_cgroup_uncharge_page(pages[i]);
 877		put_page(pages[i]);
 878	}
 879	mem_cgroup_uncharge_end();
 880	kfree(pages);
 881	goto out;
 882}
 883
 884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 885			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
 886{
 887	int ret = 0;
 888	struct page *page, *new_page;
 889	unsigned long haddr;
 
 
 
 890
 891	VM_BUG_ON(!vma->anon_vma);
 892	spin_lock(&mm->page_table_lock);
 893	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 894		goto out_unlock;
 895
 896	page = pmd_page(orig_pmd);
 897	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
 898	haddr = address & HPAGE_PMD_MASK;
 899	if (page_mapcount(page) == 1) {
 900		pmd_t entry;
 901		entry = pmd_mkyoung(orig_pmd);
 902		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 903		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
 904			update_mmu_cache(vma, address, entry);
 905		ret |= VM_FAULT_WRITE;
 906		goto out_unlock;
 907	}
 908	get_page(page);
 909	spin_unlock(&mm->page_table_lock);
 910
 911	if (transparent_hugepage_enabled(vma) &&
 912	    !transparent_hugepage_debug_cow())
 913		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 914					      vma, haddr, numa_node_id(), 0);
 915	else
 916		new_page = NULL;
 917
 918	if (unlikely(!new_page)) {
 919		count_vm_event(THP_FAULT_FALLBACK);
 920		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
 921						   pmd, orig_pmd, page, haddr);
 922		put_page(page);
 923		goto out;
 924	}
 925	count_vm_event(THP_FAULT_ALLOC);
 926
 927	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
 928		put_page(new_page);
 929		put_page(page);
 930		ret |= VM_FAULT_OOM;
 931		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932	}
 933
 934	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 935	__SetPageUptodate(new_page);
 
 
 
 936
 937	spin_lock(&mm->page_table_lock);
 938	put_page(page);
 939	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
 940		mem_cgroup_uncharge_page(new_page);
 941		put_page(new_page);
 942	} else {
 
 
 
 
 
 943		pmd_t entry;
 944		VM_BUG_ON(!PageHead(page));
 945		entry = mk_pmd(new_page, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 946		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 947		entry = pmd_mkhuge(entry);
 948		pmdp_clear_flush_notify(vma, haddr, pmd);
 949		page_add_new_anon_rmap(new_page, vma, haddr);
 950		set_pmd_at(mm, haddr, pmd, entry);
 951		update_mmu_cache(vma, address, entry);
 952		page_remove_rmap(page);
 953		put_page(page);
 954		ret |= VM_FAULT_WRITE;
 955	}
 956out_unlock:
 957	spin_unlock(&mm->page_table_lock);
 958out:
 959	return ret;
 
 
 
 960}
 961
 962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
 963				   unsigned long addr,
 964				   pmd_t *pmd,
 965				   unsigned int flags)
 966{
 967	struct page *page = NULL;
 968
 969	assert_spin_locked(&mm->page_table_lock);
 
 970
 971	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 972		goto out;
 
 973
 974	page = pmd_page(*pmd);
 975	VM_BUG_ON(!PageHead(page));
 976	if (flags & FOLL_TOUCH) {
 977		pmd_t _pmd;
 978		/*
 979		 * We should set the dirty bit only for FOLL_WRITE but
 980		 * for now the dirty bit in the pmd is meaningless.
 981		 * And if the dirty bit will become meaningful and
 982		 * we'll only set it with FOLL_WRITE, an atomic
 983		 * set_bit will be required on the pmd to set the
 984		 * young bit, instead of the current set_pmd_at.
 985		 */
 986		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 987		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
 988	}
 989	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 990	VM_BUG_ON(!PageCompound(page));
 991	if (flags & FOLL_GET)
 992		get_page(page);
 993
 994out:
 995	return page;
 996}
 997
 998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 999		 pmd_t *pmd)
1000{
1001	int ret = 0;
1002
1003	spin_lock(&tlb->mm->page_table_lock);
1004	if (likely(pmd_trans_huge(*pmd))) {
1005		if (unlikely(pmd_trans_splitting(*pmd))) {
1006			spin_unlock(&tlb->mm->page_table_lock);
1007			wait_split_huge_page(vma->anon_vma,
1008					     pmd);
1009		} else {
1010			struct page *page;
1011			pgtable_t pgtable;
1012			pgtable = get_pmd_huge_pte(tlb->mm);
1013			page = pmd_page(*pmd);
1014			pmd_clear(pmd);
1015			page_remove_rmap(page);
1016			VM_BUG_ON(page_mapcount(page) < 0);
1017			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018			VM_BUG_ON(!PageHead(page));
1019			spin_unlock(&tlb->mm->page_table_lock);
1020			tlb_remove_page(tlb, page);
1021			pte_free(tlb->mm, pgtable);
1022			ret = 1;
1023		}
1024	} else
1025		spin_unlock(&tlb->mm->page_table_lock);
1026
1027	return ret;
 
1028}
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031		unsigned long addr, unsigned long end,
1032		unsigned char *vec)
1033{
1034	int ret = 0;
 
 
 
 
 
 
 
1035
1036	spin_lock(&vma->vm_mm->page_table_lock);
1037	if (likely(pmd_trans_huge(*pmd))) {
1038		ret = !pmd_trans_splitting(*pmd);
1039		spin_unlock(&vma->vm_mm->page_table_lock);
1040		if (unlikely(!ret))
1041			wait_split_huge_page(vma->anon_vma, pmd);
1042		else {
1043			/*
1044			 * All logical pages in the range are present
1045			 * if backed by a huge page.
1046			 */
1047			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048		}
1049	} else
1050		spin_unlock(&vma->vm_mm->page_table_lock);
1051
1052	return ret;
1053}
 
 
1054
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056		unsigned long addr, pgprot_t newprot)
1057{
1058	struct mm_struct *mm = vma->vm_mm;
1059	int ret = 0;
1060
1061	spin_lock(&mm->page_table_lock);
1062	if (likely(pmd_trans_huge(*pmd))) {
1063		if (unlikely(pmd_trans_splitting(*pmd))) {
1064			spin_unlock(&mm->page_table_lock);
1065			wait_split_huge_page(vma->anon_vma, pmd);
1066		} else {
1067			pmd_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068
1069			entry = pmdp_get_and_clear(mm, addr, pmd);
1070			entry = pmd_modify(entry, newprot);
1071			set_pmd_at(mm, addr, pmd, entry);
1072			spin_unlock(&vma->vm_mm->page_table_lock);
1073			flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074			ret = 1;
1075		}
1076	} else
1077		spin_unlock(&vma->vm_mm->page_table_lock);
 
 
 
 
 
 
1078
1079	return ret;
 
 
1080}
1081
1082pmd_t *page_check_address_pmd(struct page *page,
1083			      struct mm_struct *mm,
1084			      unsigned long address,
1085			      enum page_check_address_pmd_flag flag)
1086{
1087	pgd_t *pgd;
1088	pud_t *pud;
1089	pmd_t *pmd, *ret = NULL;
 
 
 
 
 
 
 
 
 
 
1090
1091	if (address & ~HPAGE_PMD_MASK)
 
1092		goto out;
1093
1094	pgd = pgd_offset(mm, address);
1095	if (!pgd_present(*pgd))
 
1096		goto out;
 
1097
1098	pud = pud_offset(pgd, address);
1099	if (!pud_present(*pud))
 
 
 
 
1100		goto out;
1101
1102	pmd = pmd_offset(pud, address);
1103	if (pmd_none(*pmd))
1104		goto out;
1105	if (pmd_page(*pmd) != page)
1106		goto out;
 
1107	/*
1108	 * split_vma() may create temporary aliased mappings. There is
1109	 * no risk as long as all huge pmd are found and have their
1110	 * splitting bit set before __split_huge_page_refcount
1111	 * runs. Finding the same huge pmd more than once during the
1112	 * same rmap walk is not a problem.
1113	 */
1114	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115	    pmd_trans_splitting(*pmd))
1116		goto out;
1117	if (pmd_trans_huge(*pmd)) {
1118		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119			  !pmd_trans_splitting(*pmd));
1120		ret = pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
1121	}
 
 
 
1122out:
 
 
1123	return ret;
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127				       struct vm_area_struct *vma,
1128				       unsigned long address)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130	struct mm_struct *mm = vma->vm_mm;
1131	pmd_t *pmd;
1132	int ret = 0;
1133
1134	spin_lock(&mm->page_table_lock);
1135	pmd = page_check_address_pmd(page, mm, address,
1136				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137	if (pmd) {
1138		/*
1139		 * We can't temporarily set the pmd to null in order
1140		 * to split it, the pmd must remain marked huge at all
1141		 * times or the VM won't take the pmd_trans_huge paths
1142		 * and it won't wait on the anon_vma->root->mutex to
1143		 * serialize against split_huge_page*.
1144		 */
1145		pmdp_splitting_flush_notify(vma, address, pmd);
1146		ret = 1;
1147	}
1148	spin_unlock(&mm->page_table_lock);
1149
1150	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
 
 
 
 
 
 
 
 
 
1154{
1155	int i;
1156	unsigned long head_index = page->index;
1157	struct zone *zone = page_zone(page);
1158	int zonestat;
1159
1160	/* prevent PageLRU to go away from under us, and freeze lru stats */
1161	spin_lock_irq(&zone->lru_lock);
1162	compound_lock(page);
1163
1164	for (i = 1; i < HPAGE_PMD_NR; i++) {
1165		struct page *page_tail = page + i;
1166
1167		/* tail_page->_count cannot change */
1168		atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169		BUG_ON(page_count(page) <= 0);
1170		atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171		BUG_ON(atomic_read(&page_tail->_count) <= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172
1173		/* after clearing PageTail the gup refcount can be released */
1174		smp_mb();
 
 
 
 
 
 
 
1175
 
 
 
1176		/*
1177		 * retain hwpoison flag of the poisoned tail page:
1178		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1179		 *   by the memory-failure.
1180		 */
1181		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182		page_tail->flags |= (page->flags &
1183				     ((1L << PG_referenced) |
1184				      (1L << PG_swapbacked) |
1185				      (1L << PG_mlocked) |
1186				      (1L << PG_uptodate)));
1187		page_tail->flags |= (1L << PG_dirty);
1188
 
 
 
 
 
1189		/*
1190		 * 1) clear PageTail before overwriting first_page
1191		 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192		 */
1193		smp_wmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194
 
 
 
 
1195		/*
1196		 * __split_huge_page_splitting() already set the
1197		 * splitting bit in all pmd that could map this
1198		 * hugepage, that will ensure no CPU can alter the
1199		 * mapcount on the head page. The mapcount is only
1200		 * accounted in the head page and it has to be
1201		 * transferred to all tail pages in the below code. So
1202		 * for this code to be safe, the split the mapcount
1203		 * can't change. But that doesn't mean userland can't
1204		 * keep changing and reading the page contents while
1205		 * we transfer the mapcount, so the pmd splitting
1206		 * status is achieved setting a reserved bit in the
1207		 * pmd, not by clearing the present bit.
1208		*/
1209		BUG_ON(page_mapcount(page_tail));
1210		page_tail->_mapcount = page->_mapcount;
1211
1212		BUG_ON(page_tail->mapping);
1213		page_tail->mapping = page->mapping;
1214
1215		page_tail->index = ++head_index;
1216
1217		BUG_ON(!PageAnon(page_tail));
1218		BUG_ON(!PageUptodate(page_tail));
1219		BUG_ON(!PageDirty(page_tail));
1220		BUG_ON(!PageSwapBacked(page_tail));
 
 
 
 
 
 
 
 
 
 
1221
1222		mem_cgroup_split_huge_fixup(page, page_tail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223
1224		lru_add_page_tail(zone, page, page_tail);
1225	}
1226
1227	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
 
1229
1230	/*
1231	 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232	 * so adjust those appropriately if this page is on the LRU.
1233	 */
1234	if (PageLRU(page)) {
1235		zonestat = NR_LRU_BASE + page_lru(page);
1236		__mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237	}
1238
1239	ClearPageCompound(page);
1240	compound_unlock(page);
1241	spin_unlock_irq(&zone->lru_lock);
1242
1243	for (i = 1; i < HPAGE_PMD_NR; i++) {
1244		struct page *page_tail = page + i;
1245		BUG_ON(page_count(page_tail) <= 0);
1246		/*
1247		 * Tail pages may be freed if there wasn't any mapping
1248		 * like if add_to_swap() is running on a lru page that
1249		 * had its mapping zapped. And freeing these pages
1250		 * requires taking the lru_lock so we do the put_page
1251		 * of the tail pages after the split is complete.
1252		 */
1253		put_page(page_tail);
1254	}
1255
1256	/*
1257	 * Only the head page (now become a regular page) is required
1258	 * to be pinned by the caller.
1259	 */
1260	BUG_ON(page_count(page) <= 0);
 
 
 
 
 
 
1261}
 
1262
1263static int __split_huge_page_map(struct page *page,
1264				 struct vm_area_struct *vma,
1265				 unsigned long address)
 
 
 
 
 
 
 
 
1266{
1267	struct mm_struct *mm = vma->vm_mm;
1268	pmd_t *pmd, _pmd;
1269	int ret = 0, i;
1270	pgtable_t pgtable;
1271	unsigned long haddr;
 
 
 
1272
1273	spin_lock(&mm->page_table_lock);
1274	pmd = page_check_address_pmd(page, mm, address,
1275				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276	if (pmd) {
1277		pgtable = get_pmd_huge_pte(mm);
1278		pmd_populate(mm, &_pmd, pgtable);
1279
1280		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281		     i++, haddr += PAGE_SIZE) {
1282			pte_t *pte, entry;
1283			BUG_ON(PageCompound(page+i));
1284			entry = mk_pte(page + i, vma->vm_page_prot);
1285			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286			if (!pmd_write(*pmd))
1287				entry = pte_wrprotect(entry);
1288			else
1289				BUG_ON(page_mapcount(page) != 1);
1290			if (!pmd_young(*pmd))
1291				entry = pte_mkold(entry);
1292			pte = pte_offset_map(&_pmd, haddr);
1293			BUG_ON(!pte_none(*pte));
1294			set_pte_at(mm, haddr, pte, entry);
1295			pte_unmap(pte);
1296		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297
1298		mm->nr_ptes++;
1299		smp_wmb(); /* make pte visible before pmd */
1300		/*
1301		 * Up to this point the pmd is present and huge and
1302		 * userland has the whole access to the hugepage
1303		 * during the split (which happens in place). If we
1304		 * overwrite the pmd with the not-huge version
1305		 * pointing to the pte here (which of course we could
1306		 * if all CPUs were bug free), userland could trigger
1307		 * a small page size TLB miss on the small sized TLB
1308		 * while the hugepage TLB entry is still established
1309		 * in the huge TLB. Some CPU doesn't like that. See
1310		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311		 * Erratum 383 on page 93. Intel should be safe but is
1312		 * also warns that it's only safe if the permission
1313		 * and cache attributes of the two entries loaded in
1314		 * the two TLB is identical (which should be the case
1315		 * here). But it is generally safer to never allow
1316		 * small and huge TLB entries for the same virtual
1317		 * address to be loaded simultaneously. So instead of
1318		 * doing "pmd_populate(); flush_tlb_range();" we first
1319		 * mark the current pmd notpresent (atomically because
1320		 * here the pmd_trans_huge and pmd_trans_splitting
1321		 * must remain set at all times on the pmd until the
1322		 * split is complete for this pmd), then we flush the
1323		 * SMP TLB and finally we write the non-huge version
1324		 * of the pmd entry with pmd_populate.
1325		 */
1326		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328		pmd_populate(mm, pmd, pgtable);
1329		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330	}
1331	spin_unlock(&mm->page_table_lock);
1332
1333	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334}
 
1335
1336/* must be called with anon_vma->root->mutex hold */
1337static void __split_huge_page(struct page *page,
1338			      struct anon_vma *anon_vma)
1339{
1340	int mapcount, mapcount2;
1341	struct anon_vma_chain *avc;
1342
1343	BUG_ON(!PageHead(page));
1344	BUG_ON(PageTail(page));
1345
1346	mapcount = 0;
1347	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348		struct vm_area_struct *vma = avc->vma;
1349		unsigned long addr = vma_address(page, vma);
1350		BUG_ON(is_vma_temporary_stack(vma));
1351		if (addr == -EFAULT)
1352			continue;
1353		mapcount += __split_huge_page_splitting(page, vma, addr);
1354	}
1355	/*
1356	 * It is critical that new vmas are added to the tail of the
1357	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358	 * and establishes a child pmd before
1359	 * __split_huge_page_splitting() freezes the parent pmd (so if
1360	 * we fail to prevent copy_huge_pmd() from running until the
1361	 * whole __split_huge_page() is complete), we will still see
1362	 * the newly established pmd of the child later during the
1363	 * walk, to be able to set it as pmd_trans_splitting too.
1364	 */
1365	if (mapcount != page_mapcount(page))
1366		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367		       mapcount, page_mapcount(page));
1368	BUG_ON(mapcount != page_mapcount(page));
1369
1370	__split_huge_page_refcount(page);
1371
1372	mapcount2 = 0;
1373	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374		struct vm_area_struct *vma = avc->vma;
1375		unsigned long addr = vma_address(page, vma);
1376		BUG_ON(is_vma_temporary_stack(vma));
1377		if (addr == -EFAULT)
1378			continue;
1379		mapcount2 += __split_huge_page_map(page, vma, addr);
 
 
 
 
 
 
 
 
 
 
1380	}
1381	if (mapcount != mapcount2)
1382		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383		       mapcount, mapcount2, page_mapcount(page));
1384	BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
 
1388{
1389	struct anon_vma *anon_vma;
1390	int ret = 1;
 
 
1391
1392	BUG_ON(!PageAnon(page));
1393	anon_vma = page_lock_anon_vma(page);
1394	if (!anon_vma)
1395		goto out;
1396	ret = 0;
1397	if (!PageCompound(page))
1398		goto out_unlock;
1399
1400	BUG_ON(!PageSwapBacked(page));
1401	__split_huge_page(page, anon_vma);
1402	count_vm_event(THP_SPLIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403
1404	BUG_ON(PageCompound(page));
1405out_unlock:
1406	page_unlock_anon_vma(anon_vma);
1407out:
1408	return ret;
 
 
 
 
 
 
1409}
 
 
 
 
 
 
 
 
 
 
 
1410
1411#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1412		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
 
 
 
 
 
 
 
1413
1414int hugepage_madvise(struct vm_area_struct *vma,
1415		     unsigned long *vm_flags, int advice)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1416{
1417	switch (advice) {
1418	case MADV_HUGEPAGE:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419		/*
1420		 * Be somewhat over-protective like KSM for now!
 
1421		 */
1422		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1423			return -EINVAL;
1424		*vm_flags &= ~VM_NOHUGEPAGE;
1425		*vm_flags |= VM_HUGEPAGE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426		/*
1427		 * If the vma become good for khugepaged to scan,
1428		 * register it here without waiting a page fault that
1429		 * may not happen any time soon.
 
 
 
 
1430		 */
1431		if (unlikely(khugepaged_enter_vma_merge(vma)))
1432			return -ENOMEM;
1433		break;
1434	case MADV_NOHUGEPAGE:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435		/*
1436		 * Be somewhat over-protective like KSM for now!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437		 */
1438		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1439			return -EINVAL;
1440		*vm_flags &= ~VM_HUGEPAGE;
1441		*vm_flags |= VM_NOHUGEPAGE;
 
 
 
 
 
 
 
 
 
 
 
1442		/*
1443		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1444		 * this vma even if we leave the mm registered in khugepaged if
1445		 * it got registered before VM_NOHUGEPAGE was set.
 
 
 
 
 
 
 
 
 
 
1446		 */
1447		break;
 
 
 
 
 
 
 
 
 
 
 
 
1448	}
1449
1450	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451}
1452
1453static int __init khugepaged_slab_init(void)
 
1454{
1455	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1456					  sizeof(struct mm_slot),
1457					  __alignof__(struct mm_slot), 0, NULL);
1458	if (!mm_slot_cache)
1459		return -ENOMEM;
1460
1461	return 0;
 
 
 
 
 
 
 
 
 
 
1462}
1463
1464static void __init khugepaged_slab_free(void)
 
1465{
1466	kmem_cache_destroy(mm_slot_cache);
1467	mm_slot_cache = NULL;
 
 
 
 
 
 
 
 
 
1468}
1469
1470static inline struct mm_slot *alloc_mm_slot(void)
 
1471{
1472	if (!mm_slot_cache)	/* initialization failed */
1473		return NULL;
1474	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 
 
 
1475}
1476
1477static inline void free_mm_slot(struct mm_slot *mm_slot)
1478{
1479	kmem_cache_free(mm_slot_cache, mm_slot);
 
 
 
 
 
 
 
1480}
1481
1482static int __init mm_slots_hash_init(void)
 
 
 
1483{
1484	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1485				GFP_KERNEL);
1486	if (!mm_slots_hash)
1487		return -ENOMEM;
1488	return 0;
 
 
 
 
 
 
 
 
 
 
 
1489}
1490
1491#if 0
1492static void __init mm_slots_hash_free(void)
1493{
1494	kfree(mm_slots_hash);
1495	mm_slots_hash = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496}
1497#endif
1498
1499static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 
 
1500{
1501	struct mm_slot *mm_slot;
1502	struct hlist_head *bucket;
1503	struct hlist_node *node;
 
 
 
1504
1505	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1506				% MM_SLOTS_HASH_HEADS];
1507	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1508		if (mm == mm_slot->mm)
1509			return mm_slot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510	}
1511	return NULL;
 
 
 
 
 
 
 
 
1512}
1513
1514static void insert_to_mm_slots_hash(struct mm_struct *mm,
1515				    struct mm_slot *mm_slot)
1516{
1517	struct hlist_head *bucket;
 
 
1518
1519	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1520				% MM_SLOTS_HASH_HEADS];
1521	mm_slot->mm = mm;
1522	hlist_add_head(&mm_slot->hash, bucket);
1523}
1524
1525static inline int khugepaged_test_exit(struct mm_struct *mm)
1526{
1527	return atomic_read(&mm->mm_users) == 0;
 
 
 
 
 
 
 
 
 
 
 
1528}
1529
1530int __khugepaged_enter(struct mm_struct *mm)
 
1531{
1532	struct mm_slot *mm_slot;
1533	int wakeup;
 
1534
1535	mm_slot = alloc_mm_slot();
1536	if (!mm_slot)
1537		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
1538
1539	/* __khugepaged_exit() must not run from under us */
1540	VM_BUG_ON(khugepaged_test_exit(mm));
1541	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1542		free_mm_slot(mm_slot);
1543		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544	}
 
 
 
 
 
1545
1546	spin_lock(&khugepaged_mm_lock);
1547	insert_to_mm_slots_hash(mm, mm_slot);
1548	/*
1549	 * Insert just behind the scanning cursor, to let the area settle
1550	 * down a little.
 
 
1551	 */
1552	wakeup = list_empty(&khugepaged_scan.mm_head);
1553	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1554	spin_unlock(&khugepaged_mm_lock);
 
 
 
 
 
 
 
 
 
 
 
 
1555
1556	atomic_inc(&mm->mm_count);
1557	if (wakeup)
1558		wake_up_interruptible(&khugepaged_wait);
1559
1560	return 0;
 
 
 
 
 
1561}
1562
1563int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
 
1564{
1565	unsigned long hstart, hend;
1566	if (!vma->anon_vma)
1567		/*
1568		 * Not yet faulted in so we will register later in the
1569		 * page fault if needed.
1570		 */
1571		return 0;
1572	if (vma->vm_ops)
1573		/* khugepaged not yet working on file or special mappings */
1574		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1575	/*
1576	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1577	 * true too, verify it here.
 
1578	 */
1579	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1580	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1581	hend = vma->vm_end & HPAGE_PMD_MASK;
1582	if (hstart < hend)
1583		return khugepaged_enter(vma);
1584	return 0;
1585}
1586
1587void __khugepaged_exit(struct mm_struct *mm)
1588{
1589	struct mm_slot *mm_slot;
1590	int free = 0;
 
 
1591
1592	spin_lock(&khugepaged_mm_lock);
1593	mm_slot = get_mm_slot(mm);
1594	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1595		hlist_del(&mm_slot->hash);
1596		list_del(&mm_slot->mm_node);
1597		free = 1;
1598	}
1599	spin_unlock(&khugepaged_mm_lock);
1600
1601	if (free) {
1602		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1603		free_mm_slot(mm_slot);
1604		mmdrop(mm);
1605	} else if (mm_slot) {
1606		/*
1607		 * This is required to serialize against
1608		 * khugepaged_test_exit() (which is guaranteed to run
1609		 * under mmap sem read mode). Stop here (after we
1610		 * return all pagetables will be destroyed) until
1611		 * khugepaged has finished working on the pagetables
1612		 * under the mmap_sem.
1613		 */
1614		down_write(&mm->mmap_sem);
1615		up_write(&mm->mmap_sem);
1616	}
1617}
1618
1619static void release_pte_page(struct page *page)
 
1620{
1621	/* 0 stands for page_is_file_cache(page) == false */
1622	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1623	unlock_page(page);
1624	putback_lru_page(page);
 
 
 
 
 
 
 
 
1625}
1626
1627static void release_pte_pages(pte_t *pte, pte_t *_pte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628{
1629	while (--_pte >= pte) {
1630		pte_t pteval = *_pte;
1631		if (!pte_none(pteval))
1632			release_pte_page(pte_page(pteval));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1633	}
1634}
1635
1636static void release_all_pte_pages(pte_t *pte)
1637{
1638	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1639}
1640
1641static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1642					unsigned long address,
1643					pte_t *pte)
1644{
1645	struct page *page;
1646	pte_t *_pte;
1647	int referenced = 0, isolated = 0, none = 0;
1648	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1649	     _pte++, address += PAGE_SIZE) {
1650		pte_t pteval = *_pte;
1651		if (pte_none(pteval)) {
1652			if (++none <= khugepaged_max_ptes_none)
1653				continue;
1654			else {
1655				release_pte_pages(pte, _pte);
1656				goto out;
1657			}
 
 
 
 
 
1658		}
1659		if (!pte_present(pteval) || !pte_write(pteval)) {
1660			release_pte_pages(pte, _pte);
 
 
 
 
 
 
 
 
 
 
1661			goto out;
1662		}
1663		page = vm_normal_page(vma, address, pteval);
1664		if (unlikely(!page)) {
1665			release_pte_pages(pte, _pte);
 
 
 
1666			goto out;
1667		}
1668		VM_BUG_ON(PageCompound(page));
1669		BUG_ON(!PageAnon(page));
1670		VM_BUG_ON(!PageSwapBacked(page));
1671
1672		/* cannot use mapcount: can't collapse if there's a gup pin */
1673		if (page_count(page) != 1) {
1674			release_pte_pages(pte, _pte);
1675			goto out;
1676		}
1677		/*
1678		 * We can do it before isolate_lru_page because the
1679		 * page can't be freed from under us. NOTE: PG_lock
1680		 * is needed to serialize against split_huge_page
1681		 * when invoked from the VM.
1682		 */
1683		if (!trylock_page(page)) {
1684			release_pte_pages(pte, _pte);
1685			goto out;
1686		}
 
 
 
 
1687		/*
1688		 * Isolate the page to avoid collapsing an hugepage
1689		 * currently in use by the VM.
 
 
 
1690		 */
1691		if (isolate_lru_page(page)) {
1692			unlock_page(page);
1693			release_pte_pages(pte, _pte);
1694			goto out;
1695		}
1696		/* 0 stands for page_is_file_cache(page) == false */
1697		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698		VM_BUG_ON(!PageLocked(page));
1699		VM_BUG_ON(PageLRU(page));
1700
1701		/* If there is no mapped pte young don't collapse the page */
1702		if (pte_young(pteval) || PageReferenced(page) ||
1703		    mmu_notifier_test_young(vma->vm_mm, address))
1704			referenced = 1;
1705	}
1706	if (unlikely(!referenced))
1707		release_all_pte_pages(pte);
1708	else
1709		isolated = 1;
1710out:
1711	return isolated;
1712}
1713
1714static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1715				      struct vm_area_struct *vma,
1716				      unsigned long address,
1717				      spinlock_t *ptl)
1718{
1719	pte_t *_pte;
1720	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1721		pte_t pteval = *_pte;
1722		struct page *src_page;
1723
1724		if (pte_none(pteval)) {
1725			clear_user_highpage(page, address);
1726			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1727		} else {
1728			src_page = pte_page(pteval);
1729			copy_user_highpage(page, src_page, address, vma);
1730			VM_BUG_ON(page_mapcount(src_page) != 1);
1731			VM_BUG_ON(page_count(src_page) != 2);
1732			release_pte_page(src_page);
1733			/*
1734			 * ptl mostly unnecessary, but preempt has to
1735			 * be disabled to update the per-cpu stats
1736			 * inside page_remove_rmap().
1737			 */
1738			spin_lock(ptl);
 
 
 
 
 
 
 
 
 
 
1739			/*
1740			 * paravirt calls inside pte_clear here are
1741			 * superfluous.
 
 
1742			 */
1743			pte_clear(vma->vm_mm, address, _pte);
1744			page_remove_rmap(src_page);
1745			spin_unlock(ptl);
1746			free_page_and_swap_cache(src_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747		}
 
 
 
 
 
 
 
 
 
 
 
1748
1749		address += PAGE_SIZE;
1750		page++;
 
 
1751	}
 
 
 
 
 
 
 
 
1752}
1753
1754static void collapse_huge_page(struct mm_struct *mm,
1755			       unsigned long address,
1756			       struct page **hpage,
1757			       struct vm_area_struct *vma,
1758			       int node)
1759{
1760	pgd_t *pgd;
1761	pud_t *pud;
1762	pmd_t *pmd, _pmd;
1763	pte_t *pte;
1764	pgtable_t pgtable;
1765	struct page *new_page;
1766	spinlock_t *ptl;
1767	int isolated;
1768	unsigned long hstart, hend;
1769
1770	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1771#ifndef CONFIG_NUMA
1772	up_read(&mm->mmap_sem);
1773	VM_BUG_ON(!*hpage);
1774	new_page = *hpage;
1775#else
1776	VM_BUG_ON(*hpage);
1777	/*
1778	 * Allocate the page while the vma is still valid and under
1779	 * the mmap_sem read mode so there is no memory allocation
1780	 * later when we take the mmap_sem in write mode. This is more
1781	 * friendly behavior (OTOH it may actually hide bugs) to
1782	 * filesystems in userland with daemons allocating memory in
1783	 * the userland I/O paths.  Allocating memory with the
1784	 * mmap_sem in read mode is good idea also to allow greater
1785	 * scalability.
1786	 */
1787	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1788				      node, __GFP_OTHER_NODE);
1789
1790	/*
1791	 * After allocating the hugepage, release the mmap_sem read lock in
1792	 * preparation for taking it in write mode.
1793	 */
1794	up_read(&mm->mmap_sem);
1795	if (unlikely(!new_page)) {
1796		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1797		*hpage = ERR_PTR(-ENOMEM);
1798		return;
1799	}
1800#endif
1801
1802	count_vm_event(THP_COLLAPSE_ALLOC);
1803	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1804#ifdef CONFIG_NUMA
1805		put_page(new_page);
1806#endif
1807		return;
1808	}
1809
1810	/*
1811	 * Prevent all access to pagetables with the exception of
1812	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1813	 * handled by the anon_vma lock + PG_lock.
1814	 */
1815	down_write(&mm->mmap_sem);
1816	if (unlikely(khugepaged_test_exit(mm)))
1817		goto out;
1818
1819	vma = find_vma(mm, address);
1820	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1821	hend = vma->vm_end & HPAGE_PMD_MASK;
1822	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1823		goto out;
1824
1825	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1826	    (vma->vm_flags & VM_NOHUGEPAGE))
1827		goto out;
1828
1829	if (!vma->anon_vma || vma->vm_ops)
1830		goto out;
1831	if (is_vma_temporary_stack(vma))
1832		goto out;
1833	/*
1834	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1835	 * true too, verify it here.
1836	 */
1837	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1838
1839	pgd = pgd_offset(mm, address);
1840	if (!pgd_present(*pgd))
1841		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1842
1843	pud = pud_offset(pgd, address);
1844	if (!pud_present(*pud))
1845		goto out;
1846
1847	pmd = pmd_offset(pud, address);
1848	/* pmd can't go away or become huge under us */
1849	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1850		goto out;
 
 
 
 
1851
1852	anon_vma_lock(vma->anon_vma);
 
 
 
 
 
1853
1854	pte = pte_offset_map(pmd, address);
1855	ptl = pte_lockptr(mm, pmd);
1856
1857	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1858	/*
1859	 * After this gup_fast can't run anymore. This also removes
1860	 * any huge TLB entry from the CPU so we won't allow
1861	 * huge and small TLB entries for the same virtual address
1862	 * to avoid the risk of CPU bugs in that area.
 
1863	 */
1864	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1865	spin_unlock(&mm->page_table_lock);
1866
1867	spin_lock(ptl);
1868	isolated = __collapse_huge_page_isolate(vma, address, pte);
1869	spin_unlock(ptl);
 
 
 
 
 
1870
1871	if (unlikely(!isolated)) {
1872		pte_unmap(pte);
1873		spin_lock(&mm->page_table_lock);
1874		BUG_ON(!pmd_none(*pmd));
1875		set_pmd_at(mm, address, pmd, _pmd);
1876		spin_unlock(&mm->page_table_lock);
1877		anon_vma_unlock(vma->anon_vma);
1878		goto out;
1879	}
 
 
 
 
 
 
 
 
 
 
 
1880
1881	/*
1882	 * All pages are isolated and locked so anon_vma rmap
1883	 * can't run anymore.
1884	 */
1885	anon_vma_unlock(vma->anon_vma);
1886
1887	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1888	pte_unmap(pte);
1889	__SetPageUptodate(new_page);
1890	pgtable = pmd_pgtable(_pmd);
1891	VM_BUG_ON(page_count(pgtable) != 1);
1892	VM_BUG_ON(page_mapcount(pgtable) != 0);
1893
1894	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1895	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1896	_pmd = pmd_mkhuge(_pmd);
1897
1898	/*
1899	 * spin_lock() below is not the equivalent of smp_wmb(), so
1900	 * this is needed to avoid the copy_huge_page writes to become
1901	 * visible after the set_pmd_at() write.
1902	 */
1903	smp_wmb();
1904
1905	spin_lock(&mm->page_table_lock);
1906	BUG_ON(!pmd_none(*pmd));
1907	page_add_new_anon_rmap(new_page, vma, address);
1908	set_pmd_at(mm, address, pmd, _pmd);
1909	update_mmu_cache(vma, address, entry);
1910	prepare_pmd_huge_pte(pgtable, mm);
1911	mm->nr_ptes--;
1912	spin_unlock(&mm->page_table_lock);
1913
1914#ifndef CONFIG_NUMA
1915	*hpage = NULL;
1916#endif
1917	khugepaged_pages_collapsed++;
1918out_up_write:
1919	up_write(&mm->mmap_sem);
1920	return;
1921
1922out:
1923	mem_cgroup_uncharge_page(new_page);
1924#ifdef CONFIG_NUMA
1925	put_page(new_page);
1926#endif
1927	goto out_up_write;
1928}
1929
1930static int khugepaged_scan_pmd(struct mm_struct *mm,
1931			       struct vm_area_struct *vma,
1932			       unsigned long address,
1933			       struct page **hpage)
1934{
1935	pgd_t *pgd;
1936	pud_t *pud;
1937	pmd_t *pmd;
1938	pte_t *pte, *_pte;
1939	int ret = 0, referenced = 0, none = 0;
1940	struct page *page;
1941	unsigned long _address;
1942	spinlock_t *ptl;
1943	int node = -1;
1944
1945	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1946
1947	pgd = pgd_offset(mm, address);
1948	if (!pgd_present(*pgd))
1949		goto out;
 
 
 
 
 
 
1950
1951	pud = pud_offset(pgd, address);
1952	if (!pud_present(*pud))
1953		goto out;
 
1954
1955	pmd = pmd_offset(pud, address);
1956	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1957		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1958
1959	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1960	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1961	     _pte++, _address += PAGE_SIZE) {
1962		pte_t pteval = *_pte;
1963		if (pte_none(pteval)) {
1964			if (++none <= khugepaged_max_ptes_none)
1965				continue;
1966			else
1967				goto out_unmap;
1968		}
1969		if (!pte_present(pteval) || !pte_write(pteval))
1970			goto out_unmap;
1971		page = vm_normal_page(vma, _address, pteval);
1972		if (unlikely(!page))
1973			goto out_unmap;
 
 
 
 
 
1974		/*
1975		 * Chose the node of the first page. This could
1976		 * be more sophisticated and look at more pages,
1977		 * but isn't for now.
 
 
1978		 */
1979		if (node == -1)
1980			node = page_to_nid(page);
1981		VM_BUG_ON(PageCompound(page));
1982		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1983			goto out_unmap;
1984		/* cannot use mapcount: can't collapse if there's a gup pin */
1985		if (page_count(page) != 1)
1986			goto out_unmap;
1987		if (pte_young(pteval) || PageReferenced(page) ||
1988		    mmu_notifier_test_young(vma->vm_mm, address))
1989			referenced = 1;
 
 
 
 
 
1990	}
1991	if (referenced)
1992		ret = 1;
1993out_unmap:
1994	pte_unmap_unlock(pte, ptl);
1995	if (ret)
1996		/* collapse_huge_page will return with the mmap_sem released */
1997		collapse_huge_page(mm, address, hpage, vma, node);
1998out:
1999	return ret;
 
 
 
 
 
 
 
2000}
2001
2002static void collect_mm_slot(struct mm_slot *mm_slot)
 
2003{
2004	struct mm_struct *mm = mm_slot->mm;
 
 
 
 
 
 
 
 
 
 
 
 
2005
2006	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
 
 
 
 
 
2007
2008	if (khugepaged_test_exit(mm)) {
2009		/* free mm_slot */
2010		hlist_del(&mm_slot->hash);
2011		list_del(&mm_slot->mm_node);
2012
2013		/*
2014		 * Not strictly needed because the mm exited already.
2015		 *
2016		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2017		 */
2018
2019		/* khugepaged_mm_lock actually not necessary for the below */
2020		free_mm_slot(mm_slot);
2021		mmdrop(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
2022	}
 
 
 
 
 
 
 
 
2023}
2024
2025static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2026					    struct page **hpage)
2027{
2028	struct mm_slot *mm_slot;
 
2029	struct mm_struct *mm;
2030	struct vm_area_struct *vma;
2031	int progress = 0;
2032
2033	VM_BUG_ON(!pages);
2034	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2035
2036	if (khugepaged_scan.mm_slot)
2037		mm_slot = khugepaged_scan.mm_slot;
2038	else {
2039		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2040				     struct mm_slot, mm_node);
2041		khugepaged_scan.address = 0;
2042		khugepaged_scan.mm_slot = mm_slot;
2043	}
2044	spin_unlock(&khugepaged_mm_lock);
2045
2046	mm = mm_slot->mm;
2047	down_read(&mm->mmap_sem);
2048	if (unlikely(khugepaged_test_exit(mm)))
2049		vma = NULL;
2050	else
2051		vma = find_vma(mm, khugepaged_scan.address);
2052
2053	progress++;
2054	for (; vma; vma = vma->vm_next) {
2055		unsigned long hstart, hend;
2056
2057		cond_resched();
2058		if (unlikely(khugepaged_test_exit(mm))) {
2059			progress++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2060			break;
 
 
 
 
 
2061		}
2062
2063		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2064		     !khugepaged_always()) ||
2065		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2066		skip:
2067			progress++;
2068			continue;
 
 
 
 
 
 
 
 
2069		}
2070		if (!vma->anon_vma || vma->vm_ops)
2071			goto skip;
2072		if (is_vma_temporary_stack(vma))
2073			goto skip;
 
2074		/*
2075		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2076		 * must be true too, verify it here.
 
2077		 */
2078		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2079			  vma->vm_flags & VM_NO_THP);
 
2080
2081		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2082		hend = vma->vm_end & HPAGE_PMD_MASK;
2083		if (hstart >= hend)
2084			goto skip;
2085		if (khugepaged_scan.address > hend)
2086			goto skip;
2087		if (khugepaged_scan.address < hstart)
2088			khugepaged_scan.address = hstart;
2089		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2090
2091		while (khugepaged_scan.address < hend) {
2092			int ret;
2093			cond_resched();
2094			if (unlikely(khugepaged_test_exit(mm)))
2095				goto breakouterloop;
2096
2097			VM_BUG_ON(khugepaged_scan.address < hstart ||
2098				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2099				  hend);
2100			ret = khugepaged_scan_pmd(mm, vma,
2101						  khugepaged_scan.address,
2102						  hpage);
2103			/* move to next address */
2104			khugepaged_scan.address += HPAGE_PMD_SIZE;
2105			progress += HPAGE_PMD_NR;
2106			if (ret)
2107				/* we released mmap_sem so break loop */
2108				goto breakouterloop_mmap_sem;
2109			if (progress >= pages)
2110				goto breakouterloop;
2111		}
2112	}
2113breakouterloop:
2114	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2115breakouterloop_mmap_sem:
2116
2117	spin_lock(&khugepaged_mm_lock);
2118	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2119	/*
2120	 * Release the current mm_slot if this mm is about to die, or
2121	 * if we scanned all vmas of this mm.
2122	 */
2123	if (khugepaged_test_exit(mm) || !vma) {
2124		/*
2125		 * Make sure that if mm_users is reaching zero while
2126		 * khugepaged runs here, khugepaged_exit will find
2127		 * mm_slot not pointing to the exiting mm.
2128		 */
2129		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2130			khugepaged_scan.mm_slot = list_entry(
2131				mm_slot->mm_node.next,
2132				struct mm_slot, mm_node);
2133			khugepaged_scan.address = 0;
2134		} else {
2135			khugepaged_scan.mm_slot = NULL;
2136			khugepaged_full_scans++;
2137		}
2138
2139		collect_mm_slot(mm_slot);
 
 
 
 
2140	}
 
 
2141
2142	return progress;
2143}
2144
2145static int khugepaged_has_work(void)
2146{
2147	return !list_empty(&khugepaged_scan.mm_head) &&
2148		khugepaged_enabled();
2149}
2150
2151static int khugepaged_wait_event(void)
 
2152{
2153	return !list_empty(&khugepaged_scan.mm_head) ||
2154		!khugepaged_enabled();
2155}
 
 
 
 
 
 
2156
2157static void khugepaged_do_scan(struct page **hpage)
2158{
2159	unsigned int progress = 0, pass_through_head = 0;
2160	unsigned int pages = khugepaged_pages_to_scan;
2161
2162	barrier(); /* write khugepaged_pages_to_scan to local stack */
 
 
2163
2164	while (progress < pages) {
2165		cond_resched();
2166
2167#ifndef CONFIG_NUMA
2168		if (!*hpage) {
2169			*hpage = alloc_hugepage(khugepaged_defrag());
2170			if (unlikely(!*hpage)) {
2171				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2172				break;
2173			}
2174			count_vm_event(THP_COLLAPSE_ALLOC);
2175		}
2176#else
2177		if (IS_ERR(*hpage))
2178			break;
2179#endif
2180
2181		if (unlikely(kthread_should_stop() || freezing(current)))
2182			break;
2183
2184		spin_lock(&khugepaged_mm_lock);
2185		if (!khugepaged_scan.mm_slot)
2186			pass_through_head++;
2187		if (khugepaged_has_work() &&
2188		    pass_through_head < 2)
2189			progress += khugepaged_scan_mm_slot(pages - progress,
2190							    hpage);
2191		else
2192			progress = pages;
2193		spin_unlock(&khugepaged_mm_lock);
2194	}
2195}
2196
2197static void khugepaged_alloc_sleep(void)
2198{
2199	DEFINE_WAIT(wait);
2200	add_wait_queue(&khugepaged_wait, &wait);
2201	schedule_timeout_interruptible(
2202		msecs_to_jiffies(
2203			khugepaged_alloc_sleep_millisecs));
2204	remove_wait_queue(&khugepaged_wait, &wait);
2205}
2206
2207#ifndef CONFIG_NUMA
2208static struct page *khugepaged_alloc_hugepage(void)
2209{
2210	struct page *hpage;
2211
2212	do {
2213		hpage = alloc_hugepage(khugepaged_defrag());
2214		if (!hpage) {
2215			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2216			khugepaged_alloc_sleep();
2217		} else
2218			count_vm_event(THP_COLLAPSE_ALLOC);
2219	} while (unlikely(!hpage) &&
2220		 likely(khugepaged_enabled()));
2221	return hpage;
2222}
2223#endif
2224
2225static void khugepaged_loop(void)
2226{
2227	struct page *hpage;
2228
2229#ifdef CONFIG_NUMA
2230	hpage = NULL;
2231#endif
2232	while (likely(khugepaged_enabled())) {
2233#ifndef CONFIG_NUMA
2234		hpage = khugepaged_alloc_hugepage();
2235		if (unlikely(!hpage))
2236			break;
2237#else
2238		if (IS_ERR(hpage)) {
2239			khugepaged_alloc_sleep();
2240			hpage = NULL;
2241		}
2242#endif
2243
2244		khugepaged_do_scan(&hpage);
2245#ifndef CONFIG_NUMA
2246		if (hpage)
2247			put_page(hpage);
2248#endif
2249		try_to_freeze();
2250		if (unlikely(kthread_should_stop()))
2251			break;
2252		if (khugepaged_has_work()) {
2253			DEFINE_WAIT(wait);
2254			if (!khugepaged_scan_sleep_millisecs)
2255				continue;
2256			add_wait_queue(&khugepaged_wait, &wait);
2257			schedule_timeout_interruptible(
2258				msecs_to_jiffies(
2259					khugepaged_scan_sleep_millisecs));
2260			remove_wait_queue(&khugepaged_wait, &wait);
2261		} else if (khugepaged_enabled())
2262			wait_event_freezable(khugepaged_wait,
2263					     khugepaged_wait_event());
2264	}
 
 
 
 
 
 
 
 
2265}
2266
2267static int khugepaged(void *none)
 
 
 
2268{
2269	struct mm_slot *mm_slot;
 
 
 
 
 
 
 
 
 
2270
2271	set_freezable();
2272	set_user_nice(current, 19);
 
2273
2274	/* serialize with start_khugepaged() */
2275	mutex_lock(&khugepaged_mutex);
2276
2277	for (;;) {
2278		mutex_unlock(&khugepaged_mutex);
2279		VM_BUG_ON(khugepaged_thread != current);
2280		khugepaged_loop();
2281		VM_BUG_ON(khugepaged_thread != current);
2282
2283		mutex_lock(&khugepaged_mutex);
2284		if (!khugepaged_enabled())
2285			break;
2286		if (unlikely(kthread_should_stop()))
2287			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288	}
2289
2290	spin_lock(&khugepaged_mm_lock);
2291	mm_slot = khugepaged_scan.mm_slot;
2292	khugepaged_scan.mm_slot = NULL;
2293	if (mm_slot)
2294		collect_mm_slot(mm_slot);
2295	spin_unlock(&khugepaged_mm_lock);
 
 
 
2296
2297	khugepaged_thread = NULL;
2298	mutex_unlock(&khugepaged_mutex);
 
 
 
 
 
 
 
 
 
 
 
2299
 
 
 
 
2300	return 0;
2301}
 
 
2302
2303void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
 
 
2304{
2305	struct page *page;
 
 
 
 
 
 
 
2306
2307	spin_lock(&mm->page_table_lock);
2308	if (unlikely(!pmd_trans_huge(*pmd))) {
2309		spin_unlock(&mm->page_table_lock);
2310		return;
2311	}
2312	page = pmd_page(*pmd);
2313	VM_BUG_ON(!page_count(page));
2314	get_page(page);
2315	spin_unlock(&mm->page_table_lock);
2316
2317	split_huge_page(page);
 
2318
2319	put_page(page);
2320	BUG_ON(pmd_trans_huge(*pmd));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2321}
2322
2323static void split_huge_page_address(struct mm_struct *mm,
2324				    unsigned long address)
2325{
2326	pgd_t *pgd;
2327	pud_t *pud;
2328	pmd_t *pmd;
2329
2330	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2331
2332	pgd = pgd_offset(mm, address);
2333	if (!pgd_present(*pgd))
2334		return;
2335
2336	pud = pud_offset(pgd, address);
2337	if (!pud_present(*pud))
2338		return;
2339
2340	pmd = pmd_offset(pud, address);
2341	if (!pmd_present(*pmd))
2342		return;
2343	/*
2344	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2345	 * materialize from under us.
2346	 */
2347	split_huge_page_pmd(mm, pmd);
2348}
 
 
 
 
 
2349
2350void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2351			     unsigned long start,
2352			     unsigned long end,
2353			     long adjust_next)
2354{
2355	/*
2356	 * If the new start address isn't hpage aligned and it could
2357	 * previously contain an hugepage: check if we need to split
2358	 * an huge pmd.
2359	 */
2360	if (start & ~HPAGE_PMD_MASK &&
2361	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2362	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2363		split_huge_page_address(vma->vm_mm, start);
2364
2365	/*
2366	 * If the new end address isn't hpage aligned and it could
2367	 * previously contain an hugepage: check if we need to split
2368	 * an huge pmd.
2369	 */
2370	if (end & ~HPAGE_PMD_MASK &&
2371	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2372	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2373		split_huge_page_address(vma->vm_mm, end);
2374
2375	/*
2376	 * If we're also updating the vma->vm_next->vm_start, if the new
2377	 * vm_next->vm_start isn't page aligned and it could previously
2378	 * contain an hugepage: check if we need to split an huge pmd.
2379	 */
2380	if (adjust_next > 0) {
2381		struct vm_area_struct *next = vma->vm_next;
2382		unsigned long nstart = next->vm_start;
2383		nstart += adjust_next << PAGE_SHIFT;
2384		if (nstart & ~HPAGE_PMD_MASK &&
2385		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2386		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2387			split_huge_page_address(next->vm_mm, nstart);
2388	}
 
 
 
 
 
 
2389}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2009  Red Hat, Inc.
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/numa_balancing.h>
  12#include <linux/highmem.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mmu_notifier.h>
  15#include <linux/rmap.h>
  16#include <linux/swap.h>
  17#include <linux/shrinker.h>
  18#include <linux/mm_inline.h>
  19#include <linux/swapops.h>
  20#include <linux/backing-dev.h>
  21#include <linux/dax.h>
  22#include <linux/mm_types.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36#include <linux/numa.h>
  37#include <linux/page_owner.h>
  38#include <linux/sched/sysctl.h>
  39#include <linux/memory-tiers.h>
  40#include <linux/compat.h>
  41#include <linux/pgalloc_tag.h>
  42#include <linux/pagewalk.h>
  43
  44#include <asm/tlb.h>
  45#include <asm/pgalloc.h>
  46#include "internal.h"
  47#include "swap.h"
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/thp.h>
  51
  52/*
  53 * By default, transparent hugepage support is disabled in order to avoid
  54 * risking an increased memory footprint for applications that are not
  55 * guaranteed to benefit from it. When transparent hugepage support is
  56 * enabled, it is for all mappings, and khugepaged scans all mappings.
  57 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  58 * for all hugepage allocations.
  59 */
  60unsigned long transparent_hugepage_flags __read_mostly =
  61#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  62	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  63#endif
  64#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  65	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  66#endif
  67	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  68	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  69	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  70
  71static struct shrinker *deferred_split_shrinker;
  72static unsigned long deferred_split_count(struct shrinker *shrink,
  73					  struct shrink_control *sc);
  74static unsigned long deferred_split_scan(struct shrinker *shrink,
  75					 struct shrink_control *sc);
  76static bool split_underused_thp = true;
  77
  78static atomic_t huge_zero_refcount;
  79struct folio *huge_zero_folio __read_mostly;
  80unsigned long huge_zero_pfn __read_mostly = ~0UL;
  81unsigned long huge_anon_orders_always __read_mostly;
  82unsigned long huge_anon_orders_madvise __read_mostly;
  83unsigned long huge_anon_orders_inherit __read_mostly;
  84static bool anon_orders_configured __initdata;
  85
  86static inline bool file_thp_enabled(struct vm_area_struct *vma)
  87{
  88	struct inode *inode;
  89
  90	if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
  91		return false;
  92
  93	if (!vma->vm_file)
  94		return false;
  95
  96	inode = file_inode(vma->vm_file);
  97
  98	return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
  99}
 100
 101unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
 102					 unsigned long vm_flags,
 103					 unsigned long tva_flags,
 104					 unsigned long orders)
 105{
 106	bool smaps = tva_flags & TVA_SMAPS;
 107	bool in_pf = tva_flags & TVA_IN_PF;
 108	bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
 109	unsigned long supported_orders;
 110
 111	/* Check the intersection of requested and supported orders. */
 112	if (vma_is_anonymous(vma))
 113		supported_orders = THP_ORDERS_ALL_ANON;
 114	else if (vma_is_special_huge(vma))
 115		supported_orders = THP_ORDERS_ALL_SPECIAL;
 116	else
 117		supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
 118
 119	orders &= supported_orders;
 120	if (!orders)
 121		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122
 123	if (!vma->vm_mm)		/* vdso */
 124		return 0;
 
 
 
 
 
 
 125
 126	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags))
 127		return 0;
 
 
 
 
 
 
 
 
 
 128
 129	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
 130	if (vma_is_dax(vma))
 131		return in_pf ? orders : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133	/*
 134	 * khugepaged special VMA and hugetlb VMA.
 135	 * Must be checked after dax since some dax mappings may have
 136	 * VM_MIXEDMAP set.
 137	 */
 138	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
 139		return 0;
 140
 141	/*
 142	 * Check alignment for file vma and size for both file and anon vma by
 143	 * filtering out the unsuitable orders.
 144	 *
 145	 * Skip the check for page fault. Huge fault does the check in fault
 146	 * handlers.
 147	 */
 148	if (!in_pf) {
 149		int order = highest_order(orders);
 150		unsigned long addr;
 151
 152		while (orders) {
 153			addr = vma->vm_end - (PAGE_SIZE << order);
 154			if (thp_vma_suitable_order(vma, addr, order))
 155				break;
 156			order = next_order(&orders, order);
 157		}
 158
 159		if (!orders)
 160			return 0;
 161	}
 162
 163	/*
 164	 * Enabled via shmem mount options or sysfs settings.
 165	 * Must be done before hugepage flags check since shmem has its
 166	 * own flags.
 167	 */
 168	if (!in_pf && shmem_file(vma->vm_file))
 169		return shmem_allowable_huge_orders(file_inode(vma->vm_file),
 170						   vma, vma->vm_pgoff, 0,
 171						   !enforce_sysfs);
 172
 173	if (!vma_is_anonymous(vma)) {
 174		/*
 175		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
 176		 * were already handled in thp_vma_allowable_orders().
 177		 */
 178		if (enforce_sysfs &&
 179		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
 180						    !hugepage_global_always())))
 181			return 0;
 182
 183		/*
 184		 * Trust that ->huge_fault() handlers know what they are doing
 185		 * in fault path.
 186		 */
 187		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
 188			return orders;
 189		/* Only regular file is valid in collapse path */
 190		if (((!in_pf || smaps)) && file_thp_enabled(vma))
 191			return orders;
 192		return 0;
 193	}
 194
 195	if (vma_is_temporary_stack(vma))
 196		return 0;
 197
 198	/*
 199	 * THPeligible bit of smaps should show 1 for proper VMAs even
 200	 * though anon_vma is not initialized yet.
 201	 *
 202	 * Allow page fault since anon_vma may be not initialized until
 203	 * the first page fault.
 204	 */
 205	if (!vma->anon_vma)
 206		return (smaps || in_pf) ? orders : 0;
 207
 208	return orders;
 209}
 
 
 210
 211static bool get_huge_zero_page(void)
 212{
 213	struct folio *zero_folio;
 214retry:
 215	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 216		return true;
 217
 218	zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 219			HPAGE_PMD_ORDER);
 220	if (!zero_folio) {
 221		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 222		return false;
 223	}
 224	/* Ensure zero folio won't have large_rmappable flag set. */
 225	folio_clear_large_rmappable(zero_folio);
 226	preempt_disable();
 227	if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
 228		preempt_enable();
 229		folio_put(zero_folio);
 230		goto retry;
 231	}
 232	WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
 233
 234	/* We take additional reference here. It will be put back by shrinker */
 235	atomic_set(&huge_zero_refcount, 2);
 236	preempt_enable();
 237	count_vm_event(THP_ZERO_PAGE_ALLOC);
 238	return true;
 239}
 
 240
 241static void put_huge_zero_page(void)
 242{
 243	/*
 244	 * Counter should never go to zero here. Only shrinker can put
 245	 * last reference.
 246	 */
 247	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 248}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249
 250struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
 251{
 252	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 253		return READ_ONCE(huge_zero_folio);
 254
 255	if (!get_huge_zero_page())
 256		return NULL;
 257
 258	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 259		put_huge_zero_page();
 260
 261	return READ_ONCE(huge_zero_folio);
 262}
 263
 264void mm_put_huge_zero_folio(struct mm_struct *mm)
 265{
 266	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 267		put_huge_zero_page();
 268}
 269
 270static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 271					struct shrink_control *sc)
 272{
 273	/* we can free zero page only if last reference remains */
 274	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 
 
 
 
 
 
 
 275}
 276
 277static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 278				       struct shrink_control *sc)
 
 
 279{
 280	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 281		struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
 282		BUG_ON(zero_folio == NULL);
 283		WRITE_ONCE(huge_zero_pfn, ~0UL);
 284		folio_put(zero_folio);
 285		return HPAGE_PMD_NR;
 286	}
 
 
 
 
 
 
 
 287
 288	return 0;
 289}
 290
 291static struct shrinker *huge_zero_page_shrinker;
 292
 293#ifdef CONFIG_SYSFS
 294static ssize_t enabled_show(struct kobject *kobj,
 295			    struct kobj_attribute *attr, char *buf)
 296{
 297	const char *output;
 298
 299	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 300		output = "[always] madvise never";
 301	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 302			  &transparent_hugepage_flags))
 303		output = "always [madvise] never";
 304	else
 305		output = "always madvise [never]";
 306
 307	return sysfs_emit(buf, "%s\n", output);
 308}
 309
 310static ssize_t enabled_store(struct kobject *kobj,
 311			     struct kobj_attribute *attr,
 312			     const char *buf, size_t count)
 313{
 314	ssize_t ret = count;
 315
 316	if (sysfs_streq(buf, "always")) {
 317		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 318		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 319	} else if (sysfs_streq(buf, "madvise")) {
 320		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 321		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 322	} else if (sysfs_streq(buf, "never")) {
 323		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 324		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 325	} else
 326		ret = -EINVAL;
 327
 328	if (ret > 0) {
 329		int err = start_stop_khugepaged();
 330		if (err)
 331			ret = err;
 332	}
 
 
 
 
 
 
 
 
 333	return ret;
 334}
 
 
 335
 336static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
 337
 338ssize_t single_hugepage_flag_show(struct kobject *kobj,
 339				  struct kobj_attribute *attr, char *buf,
 340				  enum transparent_hugepage_flag flag)
 341{
 342	return sysfs_emit(buf, "%d\n",
 343			  !!test_bit(flag, &transparent_hugepage_flags));
 344}
 345
 346ssize_t single_hugepage_flag_store(struct kobject *kobj,
 347				 struct kobj_attribute *attr,
 348				 const char *buf, size_t count,
 349				 enum transparent_hugepage_flag flag)
 350{
 351	unsigned long value;
 352	int ret;
 353
 354	ret = kstrtoul(buf, 10, &value);
 355	if (ret < 0)
 356		return ret;
 357	if (value > 1)
 358		return -EINVAL;
 359
 360	if (value)
 361		set_bit(flag, &transparent_hugepage_flags);
 362	else
 363		clear_bit(flag, &transparent_hugepage_flags);
 364
 365	return count;
 366}
 367
 
 
 
 
 
 368static ssize_t defrag_show(struct kobject *kobj,
 369			   struct kobj_attribute *attr, char *buf)
 370{
 371	const char *output;
 372
 373	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 374		     &transparent_hugepage_flags))
 375		output = "[always] defer defer+madvise madvise never";
 376	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 377			  &transparent_hugepage_flags))
 378		output = "always [defer] defer+madvise madvise never";
 379	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
 380			  &transparent_hugepage_flags))
 381		output = "always defer [defer+madvise] madvise never";
 382	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 383			  &transparent_hugepage_flags))
 384		output = "always defer defer+madvise [madvise] never";
 385	else
 386		output = "always defer defer+madvise madvise [never]";
 387
 388	return sysfs_emit(buf, "%s\n", output);
 389}
 390
 391static ssize_t defrag_store(struct kobject *kobj,
 392			    struct kobj_attribute *attr,
 393			    const char *buf, size_t count)
 394{
 395	if (sysfs_streq(buf, "always")) {
 396		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 397		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 398		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 399		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 400	} else if (sysfs_streq(buf, "defer+madvise")) {
 401		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 402		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 403		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 404		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 405	} else if (sysfs_streq(buf, "defer")) {
 406		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 407		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 408		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 409		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 410	} else if (sysfs_streq(buf, "madvise")) {
 411		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 412		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 413		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 414		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 415	} else if (sysfs_streq(buf, "never")) {
 416		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 417		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 418		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 419		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 420	} else
 421		return -EINVAL;
 422
 423	return count;
 424}
 425static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
 426
 427static ssize_t use_zero_page_show(struct kobject *kobj,
 428				  struct kobj_attribute *attr, char *buf)
 429{
 430	return single_hugepage_flag_show(kobj, attr, buf,
 431					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 432}
 433static ssize_t use_zero_page_store(struct kobject *kobj,
 434		struct kobj_attribute *attr, const char *buf, size_t count)
 435{
 436	return single_hugepage_flag_store(kobj, attr, buf, count,
 437				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 438}
 439static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
 440
 441static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 442				   struct kobj_attribute *attr, char *buf)
 443{
 444	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
 445}
 446static struct kobj_attribute hpage_pmd_size_attr =
 447	__ATTR_RO(hpage_pmd_size);
 448
 449static ssize_t split_underused_thp_show(struct kobject *kobj,
 450			    struct kobj_attribute *attr, char *buf)
 451{
 452	return sysfs_emit(buf, "%d\n", split_underused_thp);
 453}
 454
 455static ssize_t split_underused_thp_store(struct kobject *kobj,
 456			     struct kobj_attribute *attr,
 457			     const char *buf, size_t count)
 458{
 459	int err = kstrtobool(buf, &split_underused_thp);
 460
 461	if (err < 0)
 462		return err;
 463
 464	return count;
 465}
 466
 467static struct kobj_attribute split_underused_thp_attr = __ATTR(
 468	shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
 469
 470static struct attribute *hugepage_attr[] = {
 471	&enabled_attr.attr,
 472	&defrag_attr.attr,
 473	&use_zero_page_attr.attr,
 474	&hpage_pmd_size_attr.attr,
 475#ifdef CONFIG_SHMEM
 476	&shmem_enabled_attr.attr,
 477#endif
 478	&split_underused_thp_attr.attr,
 479	NULL,
 480};
 481
 482static const struct attribute_group hugepage_attr_group = {
 483	.attrs = hugepage_attr,
 484};
 485
 486static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
 487static void thpsize_release(struct kobject *kobj);
 488static DEFINE_SPINLOCK(huge_anon_orders_lock);
 489static LIST_HEAD(thpsize_list);
 490
 491static ssize_t anon_enabled_show(struct kobject *kobj,
 492				 struct kobj_attribute *attr, char *buf)
 493{
 494	int order = to_thpsize(kobj)->order;
 495	const char *output;
 496
 497	if (test_bit(order, &huge_anon_orders_always))
 498		output = "[always] inherit madvise never";
 499	else if (test_bit(order, &huge_anon_orders_inherit))
 500		output = "always [inherit] madvise never";
 501	else if (test_bit(order, &huge_anon_orders_madvise))
 502		output = "always inherit [madvise] never";
 503	else
 504		output = "always inherit madvise [never]";
 505
 506	return sysfs_emit(buf, "%s\n", output);
 507}
 508
 509static ssize_t anon_enabled_store(struct kobject *kobj,
 510				  struct kobj_attribute *attr,
 511				  const char *buf, size_t count)
 512{
 513	int order = to_thpsize(kobj)->order;
 514	ssize_t ret = count;
 515
 516	if (sysfs_streq(buf, "always")) {
 517		spin_lock(&huge_anon_orders_lock);
 518		clear_bit(order, &huge_anon_orders_inherit);
 519		clear_bit(order, &huge_anon_orders_madvise);
 520		set_bit(order, &huge_anon_orders_always);
 521		spin_unlock(&huge_anon_orders_lock);
 522	} else if (sysfs_streq(buf, "inherit")) {
 523		spin_lock(&huge_anon_orders_lock);
 524		clear_bit(order, &huge_anon_orders_always);
 525		clear_bit(order, &huge_anon_orders_madvise);
 526		set_bit(order, &huge_anon_orders_inherit);
 527		spin_unlock(&huge_anon_orders_lock);
 528	} else if (sysfs_streq(buf, "madvise")) {
 529		spin_lock(&huge_anon_orders_lock);
 530		clear_bit(order, &huge_anon_orders_always);
 531		clear_bit(order, &huge_anon_orders_inherit);
 532		set_bit(order, &huge_anon_orders_madvise);
 533		spin_unlock(&huge_anon_orders_lock);
 534	} else if (sysfs_streq(buf, "never")) {
 535		spin_lock(&huge_anon_orders_lock);
 536		clear_bit(order, &huge_anon_orders_always);
 537		clear_bit(order, &huge_anon_orders_inherit);
 538		clear_bit(order, &huge_anon_orders_madvise);
 539		spin_unlock(&huge_anon_orders_lock);
 540	} else
 541		ret = -EINVAL;
 542
 543	if (ret > 0) {
 544		int err;
 545
 546		err = start_stop_khugepaged();
 547		if (err)
 548			ret = err;
 549	}
 550	return ret;
 551}
 
 
 
 552
 553static struct kobj_attribute anon_enabled_attr =
 554	__ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
 555
 556static struct attribute *anon_ctrl_attrs[] = {
 557	&anon_enabled_attr.attr,
 558	NULL,
 559};
 560
 561static const struct attribute_group anon_ctrl_attr_grp = {
 562	.attrs = anon_ctrl_attrs,
 563};
 564
 565static struct attribute *file_ctrl_attrs[] = {
 566#ifdef CONFIG_SHMEM
 567	&thpsize_shmem_enabled_attr.attr,
 568#endif
 569	NULL,
 570};
 571
 572static const struct attribute_group file_ctrl_attr_grp = {
 573	.attrs = file_ctrl_attrs,
 574};
 575
 576static struct attribute *any_ctrl_attrs[] = {
 577	NULL,
 578};
 579
 580static const struct attribute_group any_ctrl_attr_grp = {
 581	.attrs = any_ctrl_attrs,
 582};
 583
 584static const struct kobj_type thpsize_ktype = {
 585	.release = &thpsize_release,
 586	.sysfs_ops = &kobj_sysfs_ops,
 587};
 588
 589DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
 590
 591static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
 592{
 593	unsigned long sum = 0;
 594	int cpu;
 595
 596	for_each_possible_cpu(cpu) {
 597		struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
 598
 599		sum += this->stats[order][item];
 600	}
 601
 602	return sum;
 603}
 604
 605#define DEFINE_MTHP_STAT_ATTR(_name, _index)				\
 606static ssize_t _name##_show(struct kobject *kobj,			\
 607			struct kobj_attribute *attr, char *buf)		\
 608{									\
 609	int order = to_thpsize(kobj)->order;				\
 610									\
 611	return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index));	\
 612}									\
 613static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
 614
 615DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
 616DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
 617DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
 618DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT);
 619DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN);
 620DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
 621DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
 622#ifdef CONFIG_SHMEM
 623DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
 624DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
 625DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
 626#endif
 627DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
 628DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
 629DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
 630DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
 631DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
 632
 633static struct attribute *anon_stats_attrs[] = {
 634	&anon_fault_alloc_attr.attr,
 635	&anon_fault_fallback_attr.attr,
 636	&anon_fault_fallback_charge_attr.attr,
 637#ifndef CONFIG_SHMEM
 638	&zswpout_attr.attr,
 639	&swpin_attr.attr,
 640	&swpout_attr.attr,
 641	&swpout_fallback_attr.attr,
 642#endif
 643	&split_deferred_attr.attr,
 644	&nr_anon_attr.attr,
 645	&nr_anon_partially_mapped_attr.attr,
 646	NULL,
 647};
 648
 649static struct attribute_group anon_stats_attr_grp = {
 650	.name = "stats",
 651	.attrs = anon_stats_attrs,
 652};
 653
 654static struct attribute *file_stats_attrs[] = {
 655#ifdef CONFIG_SHMEM
 656	&shmem_alloc_attr.attr,
 657	&shmem_fallback_attr.attr,
 658	&shmem_fallback_charge_attr.attr,
 659#endif
 660	NULL,
 661};
 662
 663static struct attribute_group file_stats_attr_grp = {
 664	.name = "stats",
 665	.attrs = file_stats_attrs,
 666};
 667
 668static struct attribute *any_stats_attrs[] = {
 669#ifdef CONFIG_SHMEM
 670	&zswpout_attr.attr,
 671	&swpin_attr.attr,
 672	&swpout_attr.attr,
 673	&swpout_fallback_attr.attr,
 674#endif
 675	&split_attr.attr,
 676	&split_failed_attr.attr,
 677	NULL,
 678};
 679
 680static struct attribute_group any_stats_attr_grp = {
 681	.name = "stats",
 682	.attrs = any_stats_attrs,
 683};
 684
 685static int sysfs_add_group(struct kobject *kobj,
 686			   const struct attribute_group *grp)
 687{
 688	int ret = -ENOENT;
 689
 690	/*
 691	 * If the group is named, try to merge first, assuming the subdirectory
 692	 * was already created. This avoids the warning emitted by
 693	 * sysfs_create_group() if the directory already exists.
 694	 */
 695	if (grp->name)
 696		ret = sysfs_merge_group(kobj, grp);
 697	if (ret)
 698		ret = sysfs_create_group(kobj, grp);
 699
 700	return ret;
 701}
 702
 703static struct thpsize *thpsize_create(int order, struct kobject *parent)
 
 
 704{
 705	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
 706	struct thpsize *thpsize;
 707	int ret = -ENOMEM;
 708
 709	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
 710	if (!thpsize)
 711		goto err;
 712
 713	thpsize->order = order;
 
 714
 715	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
 716				   "hugepages-%lukB", size);
 717	if (ret) {
 718		kfree(thpsize);
 719		goto err;
 720	}
 721
 722
 723	ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
 724	if (ret)
 725		goto err_put;
 726
 727	ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
 728	if (ret)
 729		goto err_put;
 730
 731	if (BIT(order) & THP_ORDERS_ALL_ANON) {
 732		ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
 733		if (ret)
 734			goto err_put;
 735
 736		ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
 737		if (ret)
 738			goto err_put;
 739	}
 740
 741	if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
 742		ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
 743		if (ret)
 744			goto err_put;
 745
 746		ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
 747		if (ret)
 748			goto err_put;
 749	}
 750
 751	return thpsize;
 752err_put:
 753	kobject_put(&thpsize->kobj);
 754err:
 755	return ERR_PTR(ret);
 756}
 
 
 
 757
 758static void thpsize_release(struct kobject *kobj)
 
 
 759{
 760	kfree(to_thpsize(kobj));
 761}
 762
 763static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 
 764{
 765	int err;
 766	struct thpsize *thpsize;
 767	unsigned long orders;
 768	int order;
 769
 770	/*
 771	 * Default to setting PMD-sized THP to inherit the global setting and
 772	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
 773	 * constant so we have to do this here.
 774	 */
 775	if (!anon_orders_configured)
 776		huge_anon_orders_inherit = BIT(PMD_ORDER);
 777
 778	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 779	if (unlikely(!*hugepage_kobj)) {
 780		pr_err("failed to create transparent hugepage kobject\n");
 781		return -ENOMEM;
 782	}
 783
 784	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 785	if (err) {
 786		pr_err("failed to register transparent hugepage group\n");
 787		goto delete_obj;
 788	}
 789
 790	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 791	if (err) {
 792		pr_err("failed to register transparent hugepage group\n");
 793		goto remove_hp_group;
 794	}
 795
 796	orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
 797	order = highest_order(orders);
 798	while (orders) {
 799		thpsize = thpsize_create(order, *hugepage_kobj);
 800		if (IS_ERR(thpsize)) {
 801			pr_err("failed to create thpsize for order %d\n", order);
 802			err = PTR_ERR(thpsize);
 803			goto remove_all;
 804		}
 805		list_add(&thpsize->node, &thpsize_list);
 806		order = next_order(&orders, order);
 807	}
 808
 809	return 0;
 810
 811remove_all:
 812	hugepage_exit_sysfs(*hugepage_kobj);
 813	return err;
 814remove_hp_group:
 815	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 816delete_obj:
 817	kobject_put(*hugepage_kobj);
 818	return err;
 819}
 
 
 820
 821static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 
 
 822{
 823	struct thpsize *thpsize, *tmp;
 824
 825	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
 826		list_del(&thpsize->node);
 827		kobject_put(&thpsize->kobj);
 828	}
 829
 830	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 831	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 832	kobject_put(hugepage_kobj);
 833}
 834#else
 835static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 836{
 837	return 0;
 
 838}
 839
 840static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 
 841{
 
 
 842}
 843#endif /* CONFIG_SYSFS */
 
 
 844
 845static int __init thp_shrinker_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846{
 847	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
 848	if (!huge_zero_page_shrinker)
 849		return -ENOMEM;
 850
 851	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
 852						 SHRINKER_MEMCG_AWARE |
 853						 SHRINKER_NONSLAB,
 854						 "thp-deferred_split");
 855	if (!deferred_split_shrinker) {
 856		shrinker_free(huge_zero_page_shrinker);
 857		return -ENOMEM;
 858	}
 859
 860	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
 861	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
 862	shrinker_register(huge_zero_page_shrinker);
 863
 864	deferred_split_shrinker->count_objects = deferred_split_count;
 865	deferred_split_shrinker->scan_objects = deferred_split_scan;
 866	shrinker_register(deferred_split_shrinker);
 867
 868	return 0;
 869}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 870
 871static void __init thp_shrinker_exit(void)
 872{
 873	shrinker_free(huge_zero_page_shrinker);
 874	shrinker_free(deferred_split_shrinker);
 875}
 876
 877static int __init hugepage_init(void)
 878{
 879	int err;
 880	struct kobject *hugepage_kobj;
 
 
 881
 
 882	if (!has_transparent_hugepage()) {
 883		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
 884		return -EINVAL;
 
 
 
 
 
 
 
 
 885	}
 886
 887	/*
 888	 * hugepages can't be allocated by the buddy allocator
 889	 */
 890	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
 
 891
 892	err = hugepage_init_sysfs(&hugepage_kobj);
 893	if (err)
 894		goto err_sysfs;
 
 
 
 895
 896	err = khugepaged_init();
 897	if (err)
 898		goto err_slab;
 899
 900	err = thp_shrinker_init();
 901	if (err)
 902		goto err_shrinker;
 
 
 903
 904	/*
 905	 * By default disable transparent hugepages on smaller systems,
 906	 * where the extra memory used could hurt more than TLB overhead
 907	 * is likely to save.  The admin can still enable it through /sys.
 908	 */
 909	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
 910		transparent_hugepage_flags = 0;
 911		return 0;
 912	}
 913
 914	err = start_stop_khugepaged();
 915	if (err)
 916		goto err_khugepaged;
 917
 918	return 0;
 919err_khugepaged:
 920	thp_shrinker_exit();
 921err_shrinker:
 922	khugepaged_destroy();
 923err_slab:
 924	hugepage_exit_sysfs(hugepage_kobj);
 925err_sysfs:
 926	return err;
 927}
 928subsys_initcall(hugepage_init);
 929
 930static int __init setup_transparent_hugepage(char *str)
 931{
 932	int ret = 0;
 933	if (!str)
 934		goto out;
 935	if (!strcmp(str, "always")) {
 936		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 937			&transparent_hugepage_flags);
 938		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 939			  &transparent_hugepage_flags);
 940		ret = 1;
 941	} else if (!strcmp(str, "madvise")) {
 942		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 943			  &transparent_hugepage_flags);
 944		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 945			&transparent_hugepage_flags);
 946		ret = 1;
 947	} else if (!strcmp(str, "never")) {
 948		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 949			  &transparent_hugepage_flags);
 950		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 951			  &transparent_hugepage_flags);
 952		ret = 1;
 953	}
 954out:
 955	if (!ret)
 956		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 
 957	return ret;
 958}
 959__setup("transparent_hugepage=", setup_transparent_hugepage);
 960
 961static char str_dup[PAGE_SIZE] __initdata;
 962static int __init setup_thp_anon(char *str)
 963{
 964	char *token, *range, *policy, *subtoken;
 965	unsigned long always, inherit, madvise;
 966	char *start_size, *end_size;
 967	int start, end, nr;
 968	char *p;
 969
 970	if (!str || strlen(str) + 1 > PAGE_SIZE)
 971		goto err;
 972	strscpy(str_dup, str);
 973
 974	always = huge_anon_orders_always;
 975	madvise = huge_anon_orders_madvise;
 976	inherit = huge_anon_orders_inherit;
 977	p = str_dup;
 978	while ((token = strsep(&p, ";")) != NULL) {
 979		range = strsep(&token, ":");
 980		policy = token;
 981
 982		if (!policy)
 983			goto err;
 984
 985		while ((subtoken = strsep(&range, ",")) != NULL) {
 986			if (strchr(subtoken, '-')) {
 987				start_size = strsep(&subtoken, "-");
 988				end_size = subtoken;
 989
 990				start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON);
 991				end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON);
 992			} else {
 993				start_size = end_size = subtoken;
 994				start = end = get_order_from_str(subtoken,
 995								 THP_ORDERS_ALL_ANON);
 996			}
 997
 998			if (start == -EINVAL) {
 999				pr_err("invalid size %s in thp_anon boot parameter\n", start_size);
1000				goto err;
1001			}
1002
1003			if (end == -EINVAL) {
1004				pr_err("invalid size %s in thp_anon boot parameter\n", end_size);
1005				goto err;
1006			}
1007
1008			if (start < 0 || end < 0 || start > end)
1009				goto err;
1010
1011			nr = end - start + 1;
1012			if (!strcmp(policy, "always")) {
1013				bitmap_set(&always, start, nr);
1014				bitmap_clear(&inherit, start, nr);
1015				bitmap_clear(&madvise, start, nr);
1016			} else if (!strcmp(policy, "madvise")) {
1017				bitmap_set(&madvise, start, nr);
1018				bitmap_clear(&inherit, start, nr);
1019				bitmap_clear(&always, start, nr);
1020			} else if (!strcmp(policy, "inherit")) {
1021				bitmap_set(&inherit, start, nr);
1022				bitmap_clear(&madvise, start, nr);
1023				bitmap_clear(&always, start, nr);
1024			} else if (!strcmp(policy, "never")) {
1025				bitmap_clear(&inherit, start, nr);
1026				bitmap_clear(&madvise, start, nr);
1027				bitmap_clear(&always, start, nr);
1028			} else {
1029				pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1030				goto err;
1031			}
1032		}
1033	}
1034
1035	huge_anon_orders_always = always;
1036	huge_anon_orders_madvise = madvise;
1037	huge_anon_orders_inherit = inherit;
1038	anon_orders_configured = true;
1039	return 1;
1040
1041err:
1042	pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1043	return 0;
1044}
1045__setup("thp_anon=", setup_thp_anon);
1046
1047pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1048{
1049	if (likely(vma->vm_flags & VM_WRITE))
1050		pmd = pmd_mkwrite(pmd, vma);
1051	return pmd;
1052}
1053
1054#ifdef CONFIG_MEMCG
1055static inline
1056struct deferred_split *get_deferred_split_queue(struct folio *folio)
 
1057{
1058	struct mem_cgroup *memcg = folio_memcg(folio);
1059	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1060
1061	if (memcg)
1062		return &memcg->deferred_split_queue;
1063	else
1064		return &pgdat->deferred_split_queue;
1065}
1066#else
1067static inline
1068struct deferred_split *get_deferred_split_queue(struct folio *folio)
1069{
1070	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1071
1072	return &pgdat->deferred_split_queue;
1073}
1074#endif
1075
1076static inline bool is_transparent_hugepage(const struct folio *folio)
1077{
1078	if (!folio_test_large(folio))
1079		return false;
1080
1081	return is_huge_zero_folio(folio) ||
1082		folio_test_large_rmappable(folio);
1083}
1084
1085static unsigned long __thp_get_unmapped_area(struct file *filp,
1086		unsigned long addr, unsigned long len,
1087		loff_t off, unsigned long flags, unsigned long size,
1088		vm_flags_t vm_flags)
1089{
1090	loff_t off_end = off + len;
1091	loff_t off_align = round_up(off, size);
1092	unsigned long len_pad, ret, off_sub;
1093
1094	if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1095		return 0;
1096
1097	if (off_end <= off_align || (off_end - off_align) < size)
1098		return 0;
1099
1100	len_pad = len + size;
1101	if (len_pad < len || (off + len_pad) < off)
1102		return 0;
1103
1104	ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1105					   off >> PAGE_SHIFT, flags, vm_flags);
1106
1107	/*
1108	 * The failure might be due to length padding. The caller will retry
1109	 * without the padding.
1110	 */
1111	if (IS_ERR_VALUE(ret))
1112		return 0;
1113
1114	/*
1115	 * Do not try to align to THP boundary if allocation at the address
1116	 * hint succeeds.
1117	 */
1118	if (ret == addr)
1119		return addr;
1120
1121	off_sub = (off - ret) & (size - 1);
1122
1123	if (test_bit(MMF_TOPDOWN, &current->mm->flags) && !off_sub)
1124		return ret + size;
1125
1126	ret += off_sub;
1127	return ret;
1128}
1129
1130unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1131		unsigned long len, unsigned long pgoff, unsigned long flags,
1132		vm_flags_t vm_flags)
1133{
1134	unsigned long ret;
1135	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1136
1137	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1138	if (ret)
1139		return ret;
1140
1141	return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1142					    vm_flags);
1143}
1144
1145unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1146		unsigned long len, unsigned long pgoff, unsigned long flags)
1147{
1148	return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1149}
1150EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1151
1152static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma,
1153		unsigned long addr)
1154{
1155	gfp_t gfp = vma_thp_gfp_mask(vma);
1156	const int order = HPAGE_PMD_ORDER;
1157	struct folio *folio;
1158
1159	folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK);
1160
1161	if (unlikely(!folio)) {
1162		count_vm_event(THP_FAULT_FALLBACK);
1163		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1164		return NULL;
1165	}
1166
1167	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1168	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1169		folio_put(folio);
1170		count_vm_event(THP_FAULT_FALLBACK);
1171		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1172		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1173		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1174		return NULL;
1175	}
1176	folio_throttle_swaprate(folio, gfp);
1177
1178       /*
1179	* When a folio is not zeroed during allocation (__GFP_ZERO not used)
1180	* or user folios require special handling, folio_zero_user() is used to
1181	* make sure that the page corresponding to the faulting address will be
1182	* hot in the cache after zeroing.
1183	*/
1184	if (user_alloc_needs_zeroing())
1185		folio_zero_user(folio, addr);
1186	/*
1187	 * The memory barrier inside __folio_mark_uptodate makes sure that
1188	 * folio_zero_user writes become visible before the set_pmd_at()
1189	 * write.
1190	 */
1191	__folio_mark_uptodate(folio);
1192	return folio;
1193}
1194
1195static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd,
1196		struct vm_area_struct *vma, unsigned long haddr)
1197{
1198	pmd_t entry;
1199
1200	entry = mk_huge_pmd(&folio->page, vma->vm_page_prot);
1201	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1202	folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1203	folio_add_lru_vma(folio, vma);
1204	set_pmd_at(vma->vm_mm, haddr, pmd, entry);
1205	update_mmu_cache_pmd(vma, haddr, pmd);
1206	add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1207	count_vm_event(THP_FAULT_ALLOC);
1208	count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1209	count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1210}
1211
1212static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1213{
1214	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1215	struct vm_area_struct *vma = vmf->vma;
1216	struct folio *folio;
1217	pgtable_t pgtable;
1218	vm_fault_t ret = 0;
1219
1220	folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1221	if (unlikely(!folio))
1222		return VM_FAULT_FALLBACK;
1223
1224	pgtable = pte_alloc_one(vma->vm_mm);
1225	if (unlikely(!pgtable)) {
1226		ret = VM_FAULT_OOM;
1227		goto release;
 
1228	}
1229
1230	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1231	if (unlikely(!pmd_none(*vmf->pmd))) {
1232		goto unlock_release;
 
 
 
 
 
 
1233	} else {
1234		ret = check_stable_address_space(vma->vm_mm);
1235		if (ret)
1236			goto unlock_release;
1237
1238		/* Deliver the page fault to userland */
1239		if (userfaultfd_missing(vma)) {
1240			spin_unlock(vmf->ptl);
1241			folio_put(folio);
1242			pte_free(vma->vm_mm, pgtable);
1243			ret = handle_userfault(vmf, VM_UFFD_MISSING);
1244			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1245			return ret;
1246		}
1247		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1248		map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1249		mm_inc_nr_ptes(vma->vm_mm);
1250		deferred_split_folio(folio, false);
1251		spin_unlock(vmf->ptl);
1252	}
1253
1254	return 0;
1255unlock_release:
1256	spin_unlock(vmf->ptl);
1257release:
1258	if (pgtable)
1259		pte_free(vma->vm_mm, pgtable);
1260	folio_put(folio);
1261	return ret;
1262
1263}
1264
1265/*
1266 * always: directly stall for all thp allocations
1267 * defer: wake kswapd and fail if not immediately available
1268 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1269 *		  fail if not immediately available
1270 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1271 *	    available
1272 * never: never stall for any thp allocation
1273 */
1274gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1275{
1276	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1277
1278	/* Always do synchronous compaction */
1279	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1280		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1281
1282	/* Kick kcompactd and fail quickly */
1283	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1284		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1285
1286	/* Synchronous compaction if madvised, otherwise kick kcompactd */
1287	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1288		return GFP_TRANSHUGE_LIGHT |
1289			(vma_madvised ? __GFP_DIRECT_RECLAIM :
1290					__GFP_KSWAPD_RECLAIM);
1291
1292	/* Only do synchronous compaction if madvised */
1293	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1294		return GFP_TRANSHUGE_LIGHT |
1295		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1296
1297	return GFP_TRANSHUGE_LIGHT;
1298}
1299
1300/* Caller must hold page table lock. */
1301static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1302		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1303		struct folio *zero_folio)
1304{
1305	pmd_t entry;
1306	if (!pmd_none(*pmd))
1307		return;
1308	entry = mk_pmd(&zero_folio->page, vma->vm_page_prot);
1309	entry = pmd_mkhuge(entry);
1310	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1311	set_pmd_at(mm, haddr, pmd, entry);
1312	mm_inc_nr_ptes(mm);
1313}
1314
1315vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1316{
1317	struct vm_area_struct *vma = vmf->vma;
1318	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1319	vm_fault_t ret;
1320
1321	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1322		return VM_FAULT_FALLBACK;
1323	ret = vmf_anon_prepare(vmf);
1324	if (ret)
1325		return ret;
1326	khugepaged_enter_vma(vma, vma->vm_flags);
1327
1328	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1329			!mm_forbids_zeropage(vma->vm_mm) &&
1330			transparent_hugepage_use_zero_page()) {
1331		pgtable_t pgtable;
1332		struct folio *zero_folio;
1333		vm_fault_t ret;
1334
1335		pgtable = pte_alloc_one(vma->vm_mm);
1336		if (unlikely(!pgtable))
1337			return VM_FAULT_OOM;
1338		zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1339		if (unlikely(!zero_folio)) {
1340			pte_free(vma->vm_mm, pgtable);
1341			count_vm_event(THP_FAULT_FALLBACK);
1342			return VM_FAULT_FALLBACK;
1343		}
1344		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1345		ret = 0;
1346		if (pmd_none(*vmf->pmd)) {
1347			ret = check_stable_address_space(vma->vm_mm);
1348			if (ret) {
1349				spin_unlock(vmf->ptl);
1350				pte_free(vma->vm_mm, pgtable);
1351			} else if (userfaultfd_missing(vma)) {
1352				spin_unlock(vmf->ptl);
1353				pte_free(vma->vm_mm, pgtable);
1354				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1355				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1356			} else {
1357				set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1358						   haddr, vmf->pmd, zero_folio);
1359				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1360				spin_unlock(vmf->ptl);
1361			}
1362		} else {
1363			spin_unlock(vmf->ptl);
1364			pte_free(vma->vm_mm, pgtable);
1365		}
1366		return ret;
1367	}
1368
1369	return __do_huge_pmd_anonymous_page(vmf);
1370}
1371
1372static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1373		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1374		pgtable_t pgtable)
1375{
1376	struct mm_struct *mm = vma->vm_mm;
1377	pmd_t entry;
1378	spinlock_t *ptl;
1379
1380	ptl = pmd_lock(mm, pmd);
1381	if (!pmd_none(*pmd)) {
1382		if (write) {
1383			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1384				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1385				goto out_unlock;
1386			}
1387			entry = pmd_mkyoung(*pmd);
1388			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1389			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1390				update_mmu_cache_pmd(vma, addr, pmd);
1391		}
1392
1393		goto out_unlock;
1394	}
1395
1396	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1397	if (pfn_t_devmap(pfn))
1398		entry = pmd_mkdevmap(entry);
1399	else
1400		entry = pmd_mkspecial(entry);
1401	if (write) {
1402		entry = pmd_mkyoung(pmd_mkdirty(entry));
1403		entry = maybe_pmd_mkwrite(entry, vma);
1404	}
1405
1406	if (pgtable) {
1407		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1408		mm_inc_nr_ptes(mm);
1409		pgtable = NULL;
1410	}
1411
1412	set_pmd_at(mm, addr, pmd, entry);
1413	update_mmu_cache_pmd(vma, addr, pmd);
1414
1415out_unlock:
1416	spin_unlock(ptl);
1417	if (pgtable)
1418		pte_free(mm, pgtable);
1419}
 
1420
1421/**
1422 * vmf_insert_pfn_pmd - insert a pmd size pfn
1423 * @vmf: Structure describing the fault
1424 * @pfn: pfn to insert
1425 * @write: whether it's a write fault
1426 *
1427 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1428 *
1429 * Return: vm_fault_t value.
1430 */
1431vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1432{
1433	unsigned long addr = vmf->address & PMD_MASK;
1434	struct vm_area_struct *vma = vmf->vma;
1435	pgprot_t pgprot = vma->vm_page_prot;
1436	pgtable_t pgtable = NULL;
1437
1438	/*
1439	 * If we had pmd_special, we could avoid all these restrictions,
1440	 * but we need to be consistent with PTEs and architectures that
1441	 * can't support a 'special' bit.
1442	 */
1443	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1444			!pfn_t_devmap(pfn));
1445	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1446						(VM_PFNMAP|VM_MIXEDMAP));
1447	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1448
1449	if (addr < vma->vm_start || addr >= vma->vm_end)
1450		return VM_FAULT_SIGBUS;
1451
1452	if (arch_needs_pgtable_deposit()) {
1453		pgtable = pte_alloc_one(vma->vm_mm);
1454		if (!pgtable)
1455			return VM_FAULT_OOM;
1456	}
1457
1458	track_pfn_insert(vma, &pgprot, pfn);
1459
1460	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1461	return VM_FAULT_NOPAGE;
1462}
1463EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1464
1465#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1466static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1467{
1468	if (likely(vma->vm_flags & VM_WRITE))
1469		pud = pud_mkwrite(pud);
1470	return pud;
1471}
1472
1473static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1474		pud_t *pud, pfn_t pfn, bool write)
1475{
1476	struct mm_struct *mm = vma->vm_mm;
1477	pgprot_t prot = vma->vm_page_prot;
1478	pud_t entry;
1479	spinlock_t *ptl;
1480
1481	ptl = pud_lock(mm, pud);
1482	if (!pud_none(*pud)) {
1483		if (write) {
1484			if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn)))
1485				goto out_unlock;
1486			entry = pud_mkyoung(*pud);
1487			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1488			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1489				update_mmu_cache_pud(vma, addr, pud);
1490		}
1491		goto out_unlock;
1492	}
1493
1494	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1495	if (pfn_t_devmap(pfn))
1496		entry = pud_mkdevmap(entry);
1497	else
1498		entry = pud_mkspecial(entry);
1499	if (write) {
1500		entry = pud_mkyoung(pud_mkdirty(entry));
1501		entry = maybe_pud_mkwrite(entry, vma);
1502	}
1503	set_pud_at(mm, addr, pud, entry);
1504	update_mmu_cache_pud(vma, addr, pud);
1505
1506out_unlock:
1507	spin_unlock(ptl);
1508}
1509
1510/**
1511 * vmf_insert_pfn_pud - insert a pud size pfn
1512 * @vmf: Structure describing the fault
1513 * @pfn: pfn to insert
1514 * @write: whether it's a write fault
1515 *
1516 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1517 *
1518 * Return: vm_fault_t value.
1519 */
1520vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1521{
1522	unsigned long addr = vmf->address & PUD_MASK;
1523	struct vm_area_struct *vma = vmf->vma;
1524	pgprot_t pgprot = vma->vm_page_prot;
1525
1526	/*
1527	 * If we had pud_special, we could avoid all these restrictions,
1528	 * but we need to be consistent with PTEs and architectures that
1529	 * can't support a 'special' bit.
1530	 */
1531	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1532			!pfn_t_devmap(pfn));
1533	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1534						(VM_PFNMAP|VM_MIXEDMAP));
1535	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1536
1537	if (addr < vma->vm_start || addr >= vma->vm_end)
1538		return VM_FAULT_SIGBUS;
1539
1540	track_pfn_insert(vma, &pgprot, pfn);
1541
1542	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1543	return VM_FAULT_NOPAGE;
1544}
1545EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1546#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1547
1548void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1549	       pmd_t *pmd, bool write)
1550{
1551	pmd_t _pmd;
1552
1553	_pmd = pmd_mkyoung(*pmd);
1554	if (write)
1555		_pmd = pmd_mkdirty(_pmd);
1556	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1557				  pmd, _pmd, write))
1558		update_mmu_cache_pmd(vma, addr, pmd);
1559}
1560
1561struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1562		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1563{
1564	unsigned long pfn = pmd_pfn(*pmd);
1565	struct mm_struct *mm = vma->vm_mm;
1566	struct page *page;
1567	int ret;
1568
1569	assert_spin_locked(pmd_lockptr(mm, pmd));
1570
1571	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1572		return NULL;
1573
1574	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1575		/* pass */;
1576	else
1577		return NULL;
1578
1579	if (flags & FOLL_TOUCH)
1580		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1581
1582	/*
1583	 * device mapped pages can only be returned if the
1584	 * caller will manage the page reference count.
 
 
 
 
 
 
 
 
 
 
 
 
1585	 */
1586	if (!(flags & (FOLL_GET | FOLL_PIN)))
1587		return ERR_PTR(-EEXIST);
1588
1589	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1590	*pgmap = get_dev_pagemap(pfn, *pgmap);
1591	if (!*pgmap)
1592		return ERR_PTR(-EFAULT);
1593	page = pfn_to_page(pfn);
1594	ret = try_grab_folio(page_folio(page), 1, flags);
1595	if (ret)
1596		page = ERR_PTR(ret);
1597
1598	return page;
1599}
1600
1601int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1602		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1603		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1604{
1605	spinlock_t *dst_ptl, *src_ptl;
1606	struct page *src_page;
1607	struct folio *src_folio;
1608	pmd_t pmd;
1609	pgtable_t pgtable = NULL;
1610	int ret = -ENOMEM;
1611
1612	pmd = pmdp_get_lockless(src_pmd);
1613	if (unlikely(pmd_present(pmd) && pmd_special(pmd))) {
1614		dst_ptl = pmd_lock(dst_mm, dst_pmd);
1615		src_ptl = pmd_lockptr(src_mm, src_pmd);
1616		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1617		/*
1618		 * No need to recheck the pmd, it can't change with write
1619		 * mmap lock held here.
1620		 *
1621		 * Meanwhile, making sure it's not a CoW VMA with writable
1622		 * mapping, otherwise it means either the anon page wrongly
1623		 * applied special bit, or we made the PRIVATE mapping be
1624		 * able to wrongly write to the backend MMIO.
1625		 */
1626		VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1627		goto set_pmd;
1628	}
1629
1630	/* Skip if can be re-fill on fault */
1631	if (!vma_is_anonymous(dst_vma))
1632		return 0;
1633
1634	pgtable = pte_alloc_one(dst_mm);
 
1635	if (unlikely(!pgtable))
1636		goto out;
1637
1638	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1639	src_ptl = pmd_lockptr(src_mm, src_pmd);
1640	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1641
1642	ret = -EAGAIN;
1643	pmd = *src_pmd;
1644
1645#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1646	if (unlikely(is_swap_pmd(pmd))) {
1647		swp_entry_t entry = pmd_to_swp_entry(pmd);
1648
1649		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1650		if (!is_readable_migration_entry(entry)) {
1651			entry = make_readable_migration_entry(
1652							swp_offset(entry));
1653			pmd = swp_entry_to_pmd(entry);
1654			if (pmd_swp_soft_dirty(*src_pmd))
1655				pmd = pmd_swp_mksoft_dirty(pmd);
1656			if (pmd_swp_uffd_wp(*src_pmd))
1657				pmd = pmd_swp_mkuffd_wp(pmd);
1658			set_pmd_at(src_mm, addr, src_pmd, pmd);
1659		}
1660		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1661		mm_inc_nr_ptes(dst_mm);
1662		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1663		if (!userfaultfd_wp(dst_vma))
1664			pmd = pmd_swp_clear_uffd_wp(pmd);
1665		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1666		ret = 0;
1667		goto out_unlock;
1668	}
1669#endif
1670
1671	if (unlikely(!pmd_trans_huge(pmd))) {
1672		pte_free(dst_mm, pgtable);
1673		goto out_unlock;
1674	}
1675	/*
1676	 * When page table lock is held, the huge zero pmd should not be
1677	 * under splitting since we don't split the page itself, only pmd to
1678	 * a page table.
1679	 */
1680	if (is_huge_zero_pmd(pmd)) {
1681		/*
1682		 * mm_get_huge_zero_folio() will never allocate a new
1683		 * folio here, since we already have a zero page to
1684		 * copy. It just takes a reference.
1685		 */
1686		mm_get_huge_zero_folio(dst_mm);
1687		goto out_zero_page;
1688	}
1689
1690	src_page = pmd_page(pmd);
1691	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1692	src_folio = page_folio(src_page);
 
 
1693
1694	folio_get(src_folio);
1695	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1696		/* Page maybe pinned: split and retry the fault on PTEs. */
1697		folio_put(src_folio);
1698		pte_free(dst_mm, pgtable);
1699		spin_unlock(src_ptl);
1700		spin_unlock(dst_ptl);
1701		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1702		return -EAGAIN;
1703	}
1704	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1705out_zero_page:
1706	mm_inc_nr_ptes(dst_mm);
1707	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1708	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1709	if (!userfaultfd_wp(dst_vma))
1710		pmd = pmd_clear_uffd_wp(pmd);
1711	pmd = pmd_wrprotect(pmd);
1712set_pmd:
1713	pmd = pmd_mkold(pmd);
1714	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 
1715
1716	ret = 0;
1717out_unlock:
1718	spin_unlock(src_ptl);
1719	spin_unlock(dst_ptl);
1720out:
1721	return ret;
1722}
1723
1724#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1725void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1726	       pud_t *pud, bool write)
1727{
1728	pud_t _pud;
1729
1730	_pud = pud_mkyoung(*pud);
1731	if (write)
1732		_pud = pud_mkdirty(_pud);
1733	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1734				  pud, _pud, write))
1735		update_mmu_cache_pud(vma, addr, pud);
1736}
1737
1738int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1739		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1740		  struct vm_area_struct *vma)
1741{
1742	spinlock_t *dst_ptl, *src_ptl;
1743	pud_t pud;
1744	int ret;
1745
1746	dst_ptl = pud_lock(dst_mm, dst_pud);
1747	src_ptl = pud_lockptr(src_mm, src_pud);
1748	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1749
1750	ret = -EAGAIN;
1751	pud = *src_pud;
1752	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1753		goto out_unlock;
1754
1755	/*
1756	 * TODO: once we support anonymous pages, use
1757	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1758	 */
1759	if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1760		pudp_set_wrprotect(src_mm, addr, src_pud);
1761		pud = pud_wrprotect(pud);
1762	}
1763	pud = pud_mkold(pud);
1764	set_pud_at(dst_mm, addr, dst_pud, pud);
1765
1766	ret = 0;
1767out_unlock:
1768	spin_unlock(src_ptl);
1769	spin_unlock(dst_ptl);
1770	return ret;
1771}
1772
1773void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
 
 
 
 
 
1774{
1775	bool write = vmf->flags & FAULT_FLAG_WRITE;
 
 
 
1776
1777	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1778	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1779		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1780
1781	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1782unlock:
1783	spin_unlock(vmf->ptl);
1784}
1785#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 
1786
1787void huge_pmd_set_accessed(struct vm_fault *vmf)
1788{
1789	bool write = vmf->flags & FAULT_FLAG_WRITE;
 
1790
1791	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1792	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1793		goto unlock;
1794
1795	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
 
1796
1797unlock:
1798	spin_unlock(vmf->ptl);
1799}
 
 
 
 
 
 
 
 
1800
1801static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf)
1802{
1803	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1804	struct vm_area_struct *vma = vmf->vma;
1805	struct mmu_notifier_range range;
1806	struct folio *folio;
1807	vm_fault_t ret = 0;
1808
1809	folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1810	if (unlikely(!folio))
1811		return VM_FAULT_FALLBACK;
1812
1813	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr,
1814				haddr + HPAGE_PMD_SIZE);
1815	mmu_notifier_invalidate_range_start(&range);
1816	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1817	if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd)))
1818		goto release;
1819	ret = check_stable_address_space(vma->vm_mm);
1820	if (ret)
1821		goto release;
1822	(void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd);
1823	map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1824	goto unlock;
1825release:
1826	folio_put(folio);
1827unlock:
1828	spin_unlock(vmf->ptl);
1829	mmu_notifier_invalidate_range_end(&range);
1830	return ret;
 
 
 
 
 
 
 
 
 
 
 
1831}
1832
1833vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
 
1834{
1835	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1836	struct vm_area_struct *vma = vmf->vma;
1837	struct folio *folio;
1838	struct page *page;
1839	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1840	pmd_t orig_pmd = vmf->orig_pmd;
1841
1842	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1843	VM_BUG_ON_VMA(!vma->anon_vma, vma);
 
 
1844
1845	if (is_huge_zero_pmd(orig_pmd)) {
1846		vm_fault_t ret = do_huge_zero_wp_pmd(vmf);
1847
1848		if (!(ret & VM_FAULT_FALLBACK))
1849			return ret;
1850
1851		/* Fallback to splitting PMD if THP cannot be allocated */
1852		goto fallback;
 
 
 
1853	}
 
 
1854
1855	spin_lock(vmf->ptl);
 
 
 
 
 
1856
1857	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1858		spin_unlock(vmf->ptl);
1859		return 0;
 
 
 
1860	}
 
1861
1862	page = pmd_page(orig_pmd);
1863	folio = page_folio(page);
1864	VM_BUG_ON_PAGE(!PageHead(page), page);
1865
1866	/* Early check when only holding the PT lock. */
1867	if (PageAnonExclusive(page))
1868		goto reuse;
1869
1870	if (!folio_trylock(folio)) {
1871		folio_get(folio);
1872		spin_unlock(vmf->ptl);
1873		folio_lock(folio);
1874		spin_lock(vmf->ptl);
1875		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1876			spin_unlock(vmf->ptl);
1877			folio_unlock(folio);
1878			folio_put(folio);
1879			return 0;
1880		}
1881		folio_put(folio);
1882	}
1883
1884	/* Recheck after temporarily dropping the PT lock. */
1885	if (PageAnonExclusive(page)) {
1886		folio_unlock(folio);
1887		goto reuse;
1888	}
1889
1890	/*
1891	 * See do_wp_page(): we can only reuse the folio exclusively if
1892	 * there are no additional references. Note that we always drain
1893	 * the LRU cache immediately after adding a THP.
1894	 */
1895	if (folio_ref_count(folio) >
1896			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1897		goto unlock_fallback;
1898	if (folio_test_swapcache(folio))
1899		folio_free_swap(folio);
1900	if (folio_ref_count(folio) == 1) {
1901		pmd_t entry;
1902
1903		folio_move_anon_rmap(folio, vma);
1904		SetPageAnonExclusive(page);
1905		folio_unlock(folio);
1906reuse:
1907		if (unlikely(unshare)) {
1908			spin_unlock(vmf->ptl);
1909			return 0;
1910		}
1911		entry = pmd_mkyoung(orig_pmd);
1912		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1913		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1914			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1915		spin_unlock(vmf->ptl);
1916		return 0;
 
 
 
 
1917	}
1918
1919unlock_fallback:
1920	folio_unlock(folio);
1921	spin_unlock(vmf->ptl);
1922fallback:
1923	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1924	return VM_FAULT_FALLBACK;
1925}
1926
1927static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1928					   unsigned long addr, pmd_t pmd)
 
 
1929{
1930	struct page *page;
1931
1932	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1933		return false;
1934
1935	/* Don't touch entries that are not even readable (NUMA hinting). */
1936	if (pmd_protnone(pmd))
1937		return false;
1938
1939	/* Do we need write faults for softdirty tracking? */
1940	if (pmd_needs_soft_dirty_wp(vma, pmd))
1941		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1942
1943	/* Do we need write faults for uffd-wp tracking? */
1944	if (userfaultfd_huge_pmd_wp(vma, pmd))
1945		return false;
 
 
 
 
 
1946
1947	if (!(vma->vm_flags & VM_SHARED)) {
1948		/* See can_change_pte_writable(). */
1949		page = vm_normal_page_pmd(vma, addr, pmd);
1950		return page && PageAnon(page) && PageAnonExclusive(page);
1951	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952
1953	/* See can_change_pte_writable(). */
1954	return pmd_dirty(pmd);
1955}
1956
1957/* NUMA hinting page fault entry point for trans huge pmds */
1958vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
 
1959{
1960	struct vm_area_struct *vma = vmf->vma;
1961	struct folio *folio;
1962	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1963	int nid = NUMA_NO_NODE;
1964	int target_nid, last_cpupid;
1965	pmd_t pmd, old_pmd;
1966	bool writable = false;
1967	int flags = 0;
1968
1969	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1970	old_pmd = pmdp_get(vmf->pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
1971
1972	if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
1973		spin_unlock(vmf->ptl);
1974		return 0;
1975	}
1976
1977	pmd = pmd_modify(old_pmd, vma->vm_page_prot);
 
 
 
 
1978
1979	/*
1980	 * Detect now whether the PMD could be writable; this information
1981	 * is only valid while holding the PT lock.
1982	 */
1983	writable = pmd_write(pmd);
1984	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1985	    can_change_pmd_writable(vma, vmf->address, pmd))
1986		writable = true;
1987
1988	folio = vm_normal_folio_pmd(vma, haddr, pmd);
1989	if (!folio)
1990		goto out_map;
1991
1992	nid = folio_nid(folio);
1993
1994	target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
1995					&last_cpupid);
1996	if (target_nid == NUMA_NO_NODE)
1997		goto out_map;
1998	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
1999		flags |= TNF_MIGRATE_FAIL;
2000		goto out_map;
2001	}
2002	/* The folio is isolated and isolation code holds a folio reference. */
2003	spin_unlock(vmf->ptl);
2004	writable = false;
2005
2006	if (!migrate_misplaced_folio(folio, vma, target_nid)) {
2007		flags |= TNF_MIGRATED;
2008		nid = target_nid;
2009		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2010		return 0;
2011	}
2012
2013	flags |= TNF_MIGRATE_FAIL;
2014	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2015	if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
2016		spin_unlock(vmf->ptl);
2017		return 0;
2018	}
2019out_map:
2020	/* Restore the PMD */
2021	pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
2022	pmd = pmd_mkyoung(pmd);
2023	if (writable)
2024		pmd = pmd_mkwrite(pmd, vma);
2025	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
2026	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2027	spin_unlock(vmf->ptl);
2028
2029	if (nid != NUMA_NO_NODE)
2030		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2031	return 0;
2032}
2033
2034/*
2035 * Return true if we do MADV_FREE successfully on entire pmd page.
2036 * Otherwise, return false.
2037 */
2038bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2039		pmd_t *pmd, unsigned long addr, unsigned long next)
2040{
2041	spinlock_t *ptl;
2042	pmd_t orig_pmd;
2043	struct folio *folio;
2044	struct mm_struct *mm = tlb->mm;
2045	bool ret = false;
2046
2047	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2048
2049	ptl = pmd_trans_huge_lock(pmd, vma);
2050	if (!ptl)
2051		goto out_unlocked;
2052
2053	orig_pmd = *pmd;
2054	if (is_huge_zero_pmd(orig_pmd))
2055		goto out;
2056
2057	if (unlikely(!pmd_present(orig_pmd))) {
2058		VM_BUG_ON(thp_migration_supported() &&
2059				  !is_pmd_migration_entry(orig_pmd));
2060		goto out;
2061	}
2062
2063	folio = pmd_folio(orig_pmd);
2064	/*
2065	 * If other processes are mapping this folio, we couldn't discard
2066	 * the folio unless they all do MADV_FREE so let's skip the folio.
2067	 */
2068	if (folio_likely_mapped_shared(folio))
2069		goto out;
2070
2071	if (!folio_trylock(folio))
 
 
 
2072		goto out;
2073
2074	/*
2075	 * If user want to discard part-pages of THP, split it so MADV_FREE
2076	 * will deactivate only them.
 
 
 
2077	 */
2078	if (next - addr != HPAGE_PMD_SIZE) {
2079		folio_get(folio);
2080		spin_unlock(ptl);
2081		split_folio(folio);
2082		folio_unlock(folio);
2083		folio_put(folio);
2084		goto out_unlocked;
2085	}
2086
2087	if (folio_test_dirty(folio))
2088		folio_clear_dirty(folio);
2089	folio_unlock(folio);
2090
2091	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2092		pmdp_invalidate(vma, addr, pmd);
2093		orig_pmd = pmd_mkold(orig_pmd);
2094		orig_pmd = pmd_mkclean(orig_pmd);
2095
2096		set_pmd_at(mm, addr, pmd, orig_pmd);
2097		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2098	}
2099
2100	folio_mark_lazyfree(folio);
2101	ret = true;
2102out:
2103	spin_unlock(ptl);
2104out_unlocked:
2105	return ret;
2106}
2107
2108static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2109{
2110	pgtable_t pgtable;
2111
2112	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2113	pte_free(mm, pgtable);
2114	mm_dec_nr_ptes(mm);
2115}
2116
2117int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2118		 pmd_t *pmd, unsigned long addr)
2119{
2120	pmd_t orig_pmd;
2121	spinlock_t *ptl;
2122
2123	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2124
2125	ptl = __pmd_trans_huge_lock(pmd, vma);
2126	if (!ptl)
2127		return 0;
2128	/*
2129	 * For architectures like ppc64 we look at deposited pgtable
2130	 * when calling pmdp_huge_get_and_clear. So do the
2131	 * pgtable_trans_huge_withdraw after finishing pmdp related
2132	 * operations.
2133	 */
2134	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2135						tlb->fullmm);
2136	arch_check_zapped_pmd(vma, orig_pmd);
2137	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2138	if (vma_is_special_huge(vma)) {
2139		if (arch_needs_pgtable_deposit())
2140			zap_deposited_table(tlb->mm, pmd);
2141		spin_unlock(ptl);
2142	} else if (is_huge_zero_pmd(orig_pmd)) {
2143		zap_deposited_table(tlb->mm, pmd);
2144		spin_unlock(ptl);
2145	} else {
2146		struct folio *folio = NULL;
2147		int flush_needed = 1;
2148
2149		if (pmd_present(orig_pmd)) {
2150			struct page *page = pmd_page(orig_pmd);
2151
2152			folio = page_folio(page);
2153			folio_remove_rmap_pmd(folio, page, vma);
2154			WARN_ON_ONCE(folio_mapcount(folio) < 0);
2155			VM_BUG_ON_PAGE(!PageHead(page), page);
2156		} else if (thp_migration_supported()) {
2157			swp_entry_t entry;
2158
2159			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2160			entry = pmd_to_swp_entry(orig_pmd);
2161			folio = pfn_swap_entry_folio(entry);
2162			flush_needed = 0;
2163		} else
2164			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2165
2166		if (folio_test_anon(folio)) {
2167			zap_deposited_table(tlb->mm, pmd);
2168			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2169		} else {
2170			if (arch_needs_pgtable_deposit())
2171				zap_deposited_table(tlb->mm, pmd);
2172			add_mm_counter(tlb->mm, mm_counter_file(folio),
2173				       -HPAGE_PMD_NR);
2174		}
2175
2176		spin_unlock(ptl);
2177		if (flush_needed)
2178			tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2179	}
2180	return 1;
2181}
2182
2183#ifndef pmd_move_must_withdraw
2184static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2185					 spinlock_t *old_pmd_ptl,
2186					 struct vm_area_struct *vma)
2187{
2188	/*
2189	 * With split pmd lock we also need to move preallocated
2190	 * PTE page table if new_pmd is on different PMD page table.
2191	 *
2192	 * We also don't deposit and withdraw tables for file pages.
2193	 */
2194	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2195}
2196#endif
2197
2198static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2199{
2200#ifdef CONFIG_MEM_SOFT_DIRTY
2201	if (unlikely(is_pmd_migration_entry(pmd)))
2202		pmd = pmd_swp_mksoft_dirty(pmd);
2203	else if (pmd_present(pmd))
2204		pmd = pmd_mksoft_dirty(pmd);
2205#endif
2206	return pmd;
2207}
2208
2209static pmd_t clear_uffd_wp_pmd(pmd_t pmd)
2210{
2211	if (pmd_present(pmd))
2212		pmd = pmd_clear_uffd_wp(pmd);
2213	else if (is_swap_pmd(pmd))
2214		pmd = pmd_swp_clear_uffd_wp(pmd);
2215
2216	return pmd;
2217}
2218
2219bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2220		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2221{
2222	spinlock_t *old_ptl, *new_ptl;
2223	pmd_t pmd;
2224	struct mm_struct *mm = vma->vm_mm;
2225	bool force_flush = false;
 
2226
2227	/*
2228	 * The destination pmd shouldn't be established, free_pgtables()
2229	 * should have released it; but move_page_tables() might have already
2230	 * inserted a page table, if racing against shmem/file collapse.
2231	 */
2232	if (!pmd_none(*new_pmd)) {
2233		VM_BUG_ON(pmd_trans_huge(*new_pmd));
2234		return false;
 
 
 
 
 
2235	}
 
2236
2237	/*
2238	 * We don't have to worry about the ordering of src and dst
2239	 * ptlocks because exclusive mmap_lock prevents deadlock.
2240	 */
2241	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2242	if (old_ptl) {
2243		new_ptl = pmd_lockptr(mm, new_pmd);
2244		if (new_ptl != old_ptl)
2245			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2246		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2247		if (pmd_present(pmd))
2248			force_flush = true;
2249		VM_BUG_ON(!pmd_none(*new_pmd));
2250
2251		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2252			pgtable_t pgtable;
2253			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2254			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2255		}
2256		pmd = move_soft_dirty_pmd(pmd);
2257		if (vma_has_uffd_without_event_remap(vma))
2258			pmd = clear_uffd_wp_pmd(pmd);
2259		set_pmd_at(mm, new_addr, new_pmd, pmd);
2260		if (force_flush)
2261			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2262		if (new_ptl != old_ptl)
2263			spin_unlock(new_ptl);
2264		spin_unlock(old_ptl);
2265		return true;
2266	}
2267	return false;
2268}
2269
2270/*
2271 * Returns
2272 *  - 0 if PMD could not be locked
2273 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2274 *      or if prot_numa but THP migration is not supported
2275 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2276 */
2277int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2278		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2279		    unsigned long cp_flags)
2280{
2281	struct mm_struct *mm = vma->vm_mm;
2282	spinlock_t *ptl;
2283	pmd_t oldpmd, entry;
2284	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2285	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2286	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2287	int ret = 1;
2288
2289	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2290
2291	if (prot_numa && !thp_migration_supported())
2292		return 1;
2293
2294	ptl = __pmd_trans_huge_lock(pmd, vma);
2295	if (!ptl)
2296		return 0;
2297
2298#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2299	if (is_swap_pmd(*pmd)) {
2300		swp_entry_t entry = pmd_to_swp_entry(*pmd);
2301		struct folio *folio = pfn_swap_entry_folio(entry);
2302		pmd_t newpmd;
2303
2304		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2305		if (is_writable_migration_entry(entry)) {
2306			/*
2307			 * A protection check is difficult so
2308			 * just be safe and disable write
2309			 */
2310			if (folio_test_anon(folio))
2311				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2312			else
2313				entry = make_readable_migration_entry(swp_offset(entry));
2314			newpmd = swp_entry_to_pmd(entry);
2315			if (pmd_swp_soft_dirty(*pmd))
2316				newpmd = pmd_swp_mksoft_dirty(newpmd);
2317		} else {
2318			newpmd = *pmd;
2319		}
2320
2321		if (uffd_wp)
2322			newpmd = pmd_swp_mkuffd_wp(newpmd);
2323		else if (uffd_wp_resolve)
2324			newpmd = pmd_swp_clear_uffd_wp(newpmd);
2325		if (!pmd_same(*pmd, newpmd))
2326			set_pmd_at(mm, addr, pmd, newpmd);
2327		goto unlock;
2328	}
2329#endif
2330
2331	if (prot_numa) {
2332		struct folio *folio;
2333		bool toptier;
2334		/*
2335		 * Avoid trapping faults against the zero page. The read-only
2336		 * data is likely to be read-cached on the local CPU and
2337		 * local/remote hits to the zero page are not interesting.
2338		 */
2339		if (is_huge_zero_pmd(*pmd))
2340			goto unlock;
 
 
 
 
 
2341
2342		if (pmd_protnone(*pmd))
2343			goto unlock;
2344
2345		folio = pmd_folio(*pmd);
2346		toptier = node_is_toptier(folio_nid(folio));
2347		/*
2348		 * Skip scanning top tier node if normal numa
2349		 * balancing is disabled
2350		 */
2351		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2352		    toptier)
2353			goto unlock;
2354
2355		if (folio_use_access_time(folio))
2356			folio_xchg_access_time(folio,
2357					       jiffies_to_msecs(jiffies));
2358	}
2359	/*
2360	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2361	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2362	 * which is also under mmap_read_lock(mm):
2363	 *
2364	 *	CPU0:				CPU1:
2365	 *				change_huge_pmd(prot_numa=1)
2366	 *				 pmdp_huge_get_and_clear_notify()
2367	 * madvise_dontneed()
2368	 *  zap_pmd_range()
2369	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2370	 *   // skip the pmd
2371	 *				 set_pmd_at();
2372	 *				 // pmd is re-established
2373	 *
2374	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2375	 * which may break userspace.
2376	 *
2377	 * pmdp_invalidate_ad() is required to make sure we don't miss
2378	 * dirty/young flags set by hardware.
2379	 */
2380	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2381
2382	entry = pmd_modify(oldpmd, newprot);
2383	if (uffd_wp)
2384		entry = pmd_mkuffd_wp(entry);
2385	else if (uffd_wp_resolve)
2386		/*
2387		 * Leave the write bit to be handled by PF interrupt
2388		 * handler, then things like COW could be properly
2389		 * handled.
2390		 */
2391		entry = pmd_clear_uffd_wp(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2392
2393	/* See change_pte_range(). */
2394	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2395	    can_change_pmd_writable(vma, addr, entry))
2396		entry = pmd_mkwrite(entry, vma);
2397
2398	ret = HPAGE_PMD_NR;
2399	set_pmd_at(mm, addr, pmd, entry);
2400
2401	if (huge_pmd_needs_flush(oldpmd, entry))
2402		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2403unlock:
2404	spin_unlock(ptl);
2405	return ret;
2406}
2407
2408/*
2409 * Returns:
2410 *
2411 * - 0: if pud leaf changed from under us
2412 * - 1: if pud can be skipped
2413 * - HPAGE_PUD_NR: if pud was successfully processed
2414 */
2415#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2416int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2417		    pud_t *pudp, unsigned long addr, pgprot_t newprot,
2418		    unsigned long cp_flags)
2419{
2420	struct mm_struct *mm = vma->vm_mm;
2421	pud_t oldpud, entry;
2422	spinlock_t *ptl;
2423
2424	tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
 
2425
2426	/* NUMA balancing doesn't apply to dax */
2427	if (cp_flags & MM_CP_PROT_NUMA)
2428		return 1;
2429
2430	/*
2431	 * Huge entries on userfault-wp only works with anonymous, while we
2432	 * don't have anonymous PUDs yet.
2433	 */
2434	if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2435		return 1;
 
 
2436
2437	ptl = __pud_trans_huge_lock(pudp, vma);
2438	if (!ptl)
2439		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2440
2441	/*
2442	 * Can't clear PUD or it can race with concurrent zapping.  See
2443	 * change_huge_pmd().
2444	 */
2445	oldpud = pudp_invalidate(vma, addr, pudp);
2446	entry = pud_modify(oldpud, newprot);
2447	set_pud_at(mm, addr, pudp, entry);
2448	tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2449
2450	spin_unlock(ptl);
2451	return HPAGE_PUD_NR;
2452}
2453#endif
2454
2455#ifdef CONFIG_USERFAULTFD
2456/*
2457 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2458 * the caller, but it must return after releasing the page_table_lock.
2459 * Just move the page from src_pmd to dst_pmd if possible.
2460 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2461 * repeated by the caller, or other errors in case of failure.
2462 */
2463int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2464			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2465			unsigned long dst_addr, unsigned long src_addr)
2466{
2467	pmd_t _dst_pmd, src_pmdval;
2468	struct page *src_page;
2469	struct folio *src_folio;
2470	struct anon_vma *src_anon_vma;
2471	spinlock_t *src_ptl, *dst_ptl;
2472	pgtable_t src_pgtable;
2473	struct mmu_notifier_range range;
2474	int err = 0;
2475
2476	src_pmdval = *src_pmd;
2477	src_ptl = pmd_lockptr(mm, src_pmd);
2478
2479	lockdep_assert_held(src_ptl);
2480	vma_assert_locked(src_vma);
2481	vma_assert_locked(dst_vma);
2482
2483	/* Sanity checks before the operation */
2484	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2485	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2486		spin_unlock(src_ptl);
2487		return -EINVAL;
2488	}
2489
2490	if (!pmd_trans_huge(src_pmdval)) {
2491		spin_unlock(src_ptl);
2492		if (is_pmd_migration_entry(src_pmdval)) {
2493			pmd_migration_entry_wait(mm, &src_pmdval);
2494			return -EAGAIN;
 
 
 
 
2495		}
2496		return -ENOENT;
2497	}
2498
2499	src_page = pmd_page(src_pmdval);
2500
2501	if (!is_huge_zero_pmd(src_pmdval)) {
2502		if (unlikely(!PageAnonExclusive(src_page))) {
2503			spin_unlock(src_ptl);
2504			return -EBUSY;
2505		}
2506
2507		src_folio = page_folio(src_page);
2508		folio_get(src_folio);
2509	} else
2510		src_folio = NULL;
2511
2512	spin_unlock(src_ptl);
2513
2514	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2515	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2516				src_addr + HPAGE_PMD_SIZE);
2517	mmu_notifier_invalidate_range_start(&range);
2518
2519	if (src_folio) {
2520		folio_lock(src_folio);
2521
 
 
2522		/*
2523		 * split_huge_page walks the anon_vma chain without the page
2524		 * lock. Serialize against it with the anon_vma lock, the page
2525		 * lock is not enough.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2526		 */
2527		src_anon_vma = folio_get_anon_vma(src_folio);
2528		if (!src_anon_vma) {
2529			err = -EAGAIN;
2530			goto unlock_folio;
2531		}
2532		anon_vma_lock_write(src_anon_vma);
2533	} else
2534		src_anon_vma = NULL;
2535
2536	dst_ptl = pmd_lockptr(mm, dst_pmd);
2537	double_pt_lock(src_ptl, dst_ptl);
2538	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2539		     !pmd_same(*dst_pmd, dst_pmdval))) {
2540		err = -EAGAIN;
2541		goto unlock_ptls;
2542	}
2543	if (src_folio) {
2544		if (folio_maybe_dma_pinned(src_folio) ||
2545		    !PageAnonExclusive(&src_folio->page)) {
2546			err = -EBUSY;
2547			goto unlock_ptls;
2548		}
2549
2550		if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2551		    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2552			err = -EBUSY;
2553			goto unlock_ptls;
2554		}
2555
2556		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2557		/* Folio got pinned from under us. Put it back and fail the move. */
2558		if (folio_maybe_dma_pinned(src_folio)) {
2559			set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2560			err = -EBUSY;
2561			goto unlock_ptls;
2562		}
2563
2564		folio_move_anon_rmap(src_folio, dst_vma);
2565		src_folio->index = linear_page_index(dst_vma, dst_addr);
2566
2567		_dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2568		/* Follow mremap() behavior and treat the entry dirty after the move */
2569		_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2570	} else {
2571		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2572		_dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
2573	}
2574	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2575
2576	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2577	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2578unlock_ptls:
2579	double_pt_unlock(src_ptl, dst_ptl);
2580	if (src_anon_vma) {
2581		anon_vma_unlock_write(src_anon_vma);
2582		put_anon_vma(src_anon_vma);
2583	}
2584unlock_folio:
2585	/* unblock rmap walks */
2586	if (src_folio)
2587		folio_unlock(src_folio);
2588	mmu_notifier_invalidate_range_end(&range);
2589	if (src_folio)
2590		folio_put(src_folio);
2591	return err;
2592}
2593#endif /* CONFIG_USERFAULTFD */
2594
2595/*
2596 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2597 *
2598 * Note that if it returns page table lock pointer, this routine returns without
2599 * unlocking page table lock. So callers must unlock it.
2600 */
2601spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2602{
2603	spinlock_t *ptl;
2604	ptl = pmd_lock(vma->vm_mm, pmd);
2605	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2606			pmd_devmap(*pmd)))
2607		return ptl;
2608	spin_unlock(ptl);
2609	return NULL;
2610}
2611
2612/*
2613 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2614 *
2615 * Note that if it returns page table lock pointer, this routine returns without
2616 * unlocking page table lock. So callers must unlock it.
2617 */
2618spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2619{
2620	spinlock_t *ptl;
2621
2622	ptl = pud_lock(vma->vm_mm, pud);
2623	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2624		return ptl;
2625	spin_unlock(ptl);
2626	return NULL;
2627}
2628
2629#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2630int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2631		 pud_t *pud, unsigned long addr)
2632{
2633	spinlock_t *ptl;
2634	pud_t orig_pud;
2635
2636	ptl = __pud_trans_huge_lock(pud, vma);
2637	if (!ptl)
2638		return 0;
2639
2640	orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2641	arch_check_zapped_pud(vma, orig_pud);
2642	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2643	if (vma_is_special_huge(vma)) {
2644		spin_unlock(ptl);
2645		/* No zero page support yet */
2646	} else {
2647		/* No support for anonymous PUD pages yet */
2648		BUG();
2649	}
2650	return 1;
 
 
 
2651}
2652
2653static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2654		unsigned long haddr)
2655{
2656	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2657	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2658	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2659	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2660
2661	count_vm_event(THP_SPLIT_PUD);
 
 
 
 
 
 
2662
2663	pudp_huge_clear_flush(vma, haddr, pud);
2664}
2665
2666void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2667		unsigned long address)
2668{
2669	spinlock_t *ptl;
2670	struct mmu_notifier_range range;
2671
2672	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2673				address & HPAGE_PUD_MASK,
2674				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2675	mmu_notifier_invalidate_range_start(&range);
2676	ptl = pud_lock(vma->vm_mm, pud);
2677	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2678		goto out;
2679	__split_huge_pud_locked(vma, pud, range.start);
2680
 
 
 
2681out:
2682	spin_unlock(ptl);
2683	mmu_notifier_invalidate_range_end(&range);
2684}
2685#else
2686void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2687		unsigned long address)
2688{
2689}
2690#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2691
2692static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2693		unsigned long haddr, pmd_t *pmd)
2694{
2695	struct mm_struct *mm = vma->vm_mm;
2696	pgtable_t pgtable;
2697	pmd_t _pmd, old_pmd;
2698	unsigned long addr;
2699	pte_t *pte;
2700	int i;
2701
2702	/*
2703	 * Leave pmd empty until pte is filled note that it is fine to delay
2704	 * notification until mmu_notifier_invalidate_range_end() as we are
2705	 * replacing a zero pmd write protected page with a zero pte write
2706	 * protected page.
2707	 *
2708	 * See Documentation/mm/mmu_notifier.rst
2709	 */
2710	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2711
2712	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2713	pmd_populate(mm, &_pmd, pgtable);
2714
2715	pte = pte_offset_map(&_pmd, haddr);
2716	VM_BUG_ON(!pte);
2717	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2718		pte_t entry;
2719
2720		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2721		entry = pte_mkspecial(entry);
2722		if (pmd_uffd_wp(old_pmd))
2723			entry = pte_mkuffd_wp(entry);
2724		VM_BUG_ON(!pte_none(ptep_get(pte)));
2725		set_pte_at(mm, addr, pte, entry);
2726		pte++;
2727	}
2728	pte_unmap(pte - 1);
2729	smp_wmb(); /* make pte visible before pmd */
2730	pmd_populate(mm, pmd, pgtable);
2731}
2732
2733static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2734		unsigned long haddr, bool freeze)
2735{
2736	struct mm_struct *mm = vma->vm_mm;
2737	struct folio *folio;
2738	struct page *page;
2739	pgtable_t pgtable;
2740	pmd_t old_pmd, _pmd;
2741	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2742	bool anon_exclusive = false, dirty = false;
2743	unsigned long addr;
2744	pte_t *pte;
2745	int i;
2746
2747	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2748	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2749	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2750	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2751				&& !pmd_devmap(*pmd));
2752
2753	count_vm_event(THP_SPLIT_PMD);
2754
2755	if (!vma_is_anonymous(vma)) {
2756		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2757		/*
2758		 * We are going to unmap this huge page. So
2759		 * just go ahead and zap it
2760		 */
2761		if (arch_needs_pgtable_deposit())
2762			zap_deposited_table(mm, pmd);
2763		if (vma_is_special_huge(vma))
2764			return;
2765		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2766			swp_entry_t entry;
2767
2768			entry = pmd_to_swp_entry(old_pmd);
2769			folio = pfn_swap_entry_folio(entry);
2770		} else {
2771			page = pmd_page(old_pmd);
2772			folio = page_folio(page);
2773			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2774				folio_mark_dirty(folio);
2775			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2776				folio_set_referenced(folio);
2777			folio_remove_rmap_pmd(folio, page, vma);
2778			folio_put(folio);
2779		}
2780		add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2781		return;
2782	}
2783
2784	if (is_huge_zero_pmd(*pmd)) {
2785		/*
2786		 * FIXME: Do we want to invalidate secondary mmu by calling
2787		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2788		 * inside __split_huge_pmd() ?
2789		 *
2790		 * We are going from a zero huge page write protected to zero
2791		 * small page also write protected so it does not seems useful
2792		 * to invalidate secondary mmu at this time.
2793		 */
2794		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2795	}
2796
2797	pmd_migration = is_pmd_migration_entry(*pmd);
2798	if (unlikely(pmd_migration)) {
2799		swp_entry_t entry;
2800
2801		old_pmd = *pmd;
2802		entry = pmd_to_swp_entry(old_pmd);
2803		page = pfn_swap_entry_to_page(entry);
2804		write = is_writable_migration_entry(entry);
2805		if (PageAnon(page))
2806			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2807		young = is_migration_entry_young(entry);
2808		dirty = is_migration_entry_dirty(entry);
2809		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2810		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2811	} else {
2812		/*
2813		 * Up to this point the pmd is present and huge and userland has
2814		 * the whole access to the hugepage during the split (which
2815		 * happens in place). If we overwrite the pmd with the not-huge
2816		 * version pointing to the pte here (which of course we could if
2817		 * all CPUs were bug free), userland could trigger a small page
2818		 * size TLB miss on the small sized TLB while the hugepage TLB
2819		 * entry is still established in the huge TLB. Some CPU doesn't
2820		 * like that. See
2821		 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2822		 * 383 on page 105. Intel should be safe but is also warns that
2823		 * it's only safe if the permission and cache attributes of the
2824		 * two entries loaded in the two TLB is identical (which should
2825		 * be the case here). But it is generally safer to never allow
2826		 * small and huge TLB entries for the same virtual address to be
2827		 * loaded simultaneously. So instead of doing "pmd_populate();
2828		 * flush_pmd_tlb_range();" we first mark the current pmd
2829		 * notpresent (atomically because here the pmd_trans_huge must
2830		 * remain set at all times on the pmd until the split is
2831		 * complete for this pmd), then we flush the SMP TLB and finally
2832		 * we write the non-huge version of the pmd entry with
2833		 * pmd_populate.
2834		 */
2835		old_pmd = pmdp_invalidate(vma, haddr, pmd);
2836		page = pmd_page(old_pmd);
2837		folio = page_folio(page);
2838		if (pmd_dirty(old_pmd)) {
2839			dirty = true;
2840			folio_set_dirty(folio);
2841		}
2842		write = pmd_write(old_pmd);
2843		young = pmd_young(old_pmd);
2844		soft_dirty = pmd_soft_dirty(old_pmd);
2845		uffd_wp = pmd_uffd_wp(old_pmd);
2846
2847		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2848		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2849
2850		/*
2851		 * Without "freeze", we'll simply split the PMD, propagating the
2852		 * PageAnonExclusive() flag for each PTE by setting it for
2853		 * each subpage -- no need to (temporarily) clear.
2854		 *
2855		 * With "freeze" we want to replace mapped pages by
2856		 * migration entries right away. This is only possible if we
2857		 * managed to clear PageAnonExclusive() -- see
2858		 * set_pmd_migration_entry().
2859		 *
2860		 * In case we cannot clear PageAnonExclusive(), split the PMD
2861		 * only and let try_to_migrate_one() fail later.
2862		 *
2863		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2864		 */
2865		anon_exclusive = PageAnonExclusive(page);
2866		if (freeze && anon_exclusive &&
2867		    folio_try_share_anon_rmap_pmd(folio, page))
2868			freeze = false;
2869		if (!freeze) {
2870			rmap_t rmap_flags = RMAP_NONE;
2871
2872			folio_ref_add(folio, HPAGE_PMD_NR - 1);
2873			if (anon_exclusive)
2874				rmap_flags |= RMAP_EXCLUSIVE;
2875			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2876						 vma, haddr, rmap_flags);
2877		}
2878	}
2879
2880	/*
2881	 * Withdraw the table only after we mark the pmd entry invalid.
2882	 * This's critical for some architectures (Power).
2883	 */
2884	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2885	pmd_populate(mm, &_pmd, pgtable);
2886
2887	pte = pte_offset_map(&_pmd, haddr);
2888	VM_BUG_ON(!pte);
2889
2890	/*
2891	 * Note that NUMA hinting access restrictions are not transferred to
2892	 * avoid any possibility of altering permissions across VMAs.
2893	 */
2894	if (freeze || pmd_migration) {
2895		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2896			pte_t entry;
2897			swp_entry_t swp_entry;
2898
2899			if (write)
2900				swp_entry = make_writable_migration_entry(
2901							page_to_pfn(page + i));
2902			else if (anon_exclusive)
2903				swp_entry = make_readable_exclusive_migration_entry(
2904							page_to_pfn(page + i));
2905			else
2906				swp_entry = make_readable_migration_entry(
2907							page_to_pfn(page + i));
2908			if (young)
2909				swp_entry = make_migration_entry_young(swp_entry);
2910			if (dirty)
2911				swp_entry = make_migration_entry_dirty(swp_entry);
2912			entry = swp_entry_to_pte(swp_entry);
2913			if (soft_dirty)
2914				entry = pte_swp_mksoft_dirty(entry);
2915			if (uffd_wp)
2916				entry = pte_swp_mkuffd_wp(entry);
2917
2918			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2919			set_pte_at(mm, addr, pte + i, entry);
2920		}
2921	} else {
2922		pte_t entry;
2923
2924		entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
2925		if (write)
2926			entry = pte_mkwrite(entry, vma);
2927		if (!young)
2928			entry = pte_mkold(entry);
2929		/* NOTE: this may set soft-dirty too on some archs */
2930		if (dirty)
2931			entry = pte_mkdirty(entry);
2932		if (soft_dirty)
2933			entry = pte_mksoft_dirty(entry);
2934		if (uffd_wp)
2935			entry = pte_mkuffd_wp(entry);
2936
2937		for (i = 0; i < HPAGE_PMD_NR; i++)
2938			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2939
2940		set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
2941	}
2942	pte_unmap(pte);
2943
2944	if (!pmd_migration)
2945		folio_remove_rmap_pmd(folio, page, vma);
2946	if (freeze)
2947		put_page(page);
2948
2949	smp_wmb(); /* make pte visible before pmd */
2950	pmd_populate(mm, pmd, pgtable);
2951}
2952
2953void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
2954			   pmd_t *pmd, bool freeze, struct folio *folio)
2955{
2956	VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio));
2957	VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
2958	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2959	VM_BUG_ON(freeze && !folio);
 
2960
2961	/*
2962	 * When the caller requests to set up a migration entry, we
2963	 * require a folio to check the PMD against. Otherwise, there
2964	 * is a risk of replacing the wrong folio.
2965	 */
2966	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2967	    is_pmd_migration_entry(*pmd)) {
2968		if (folio && folio != pmd_folio(*pmd))
2969			return;
2970		__split_huge_pmd_locked(vma, pmd, address, freeze);
2971	}
2972}
2973
2974void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2975		unsigned long address, bool freeze, struct folio *folio)
2976{
2977	spinlock_t *ptl;
2978	struct mmu_notifier_range range;
2979
2980	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2981				address & HPAGE_PMD_MASK,
2982				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2983	mmu_notifier_invalidate_range_start(&range);
2984	ptl = pmd_lock(vma->vm_mm, pmd);
2985	split_huge_pmd_locked(vma, range.start, pmd, freeze, folio);
2986	spin_unlock(ptl);
2987	mmu_notifier_invalidate_range_end(&range);
2988}
2989
2990void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2991		bool freeze, struct folio *folio)
2992{
2993	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2994
2995	if (!pmd)
2996		return;
2997
2998	__split_huge_pmd(vma, pmd, address, freeze, folio);
2999}
3000
3001static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
3002{
3003	/*
3004	 * If the new address isn't hpage aligned and it could previously
3005	 * contain an hugepage: check if we need to split an huge pmd.
3006	 */
3007	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
3008	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
3009			 ALIGN(address, HPAGE_PMD_SIZE)))
3010		split_huge_pmd_address(vma, address, false, NULL);
3011}
3012
3013void vma_adjust_trans_huge(struct vm_area_struct *vma,
3014			     unsigned long start,
3015			     unsigned long end,
3016			     long adjust_next)
3017{
3018	/* Check if we need to split start first. */
3019	split_huge_pmd_if_needed(vma, start);
3020
3021	/* Check if we need to split end next. */
3022	split_huge_pmd_if_needed(vma, end);
3023
3024	/*
3025	 * If we're also updating the next vma vm_start,
3026	 * check if we need to split it.
3027	 */
3028	if (adjust_next > 0) {
3029		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
3030		unsigned long nstart = next->vm_start;
3031		nstart += adjust_next;
3032		split_huge_pmd_if_needed(next, nstart);
3033	}
3034}
3035
3036static void unmap_folio(struct folio *folio)
 
3037{
3038	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
3039		TTU_BATCH_FLUSH;
3040
3041	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3042
3043	if (folio_test_pmd_mappable(folio))
3044		ttu_flags |= TTU_SPLIT_HUGE_PMD;
3045
3046	/*
3047	 * Anon pages need migration entries to preserve them, but file
3048	 * pages can simply be left unmapped, then faulted back on demand.
3049	 * If that is ever changed (perhaps for mlock), update remap_page().
3050	 */
3051	if (folio_test_anon(folio))
3052		try_to_migrate(folio, ttu_flags);
3053	else
3054		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
3055
3056	try_to_unmap_flush();
3057}
 
3058
3059static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3060					    unsigned long addr, pmd_t *pmdp,
3061					    struct folio *folio)
3062{
3063	struct mm_struct *mm = vma->vm_mm;
3064	int ref_count, map_count;
3065	pmd_t orig_pmd = *pmdp;
3066
3067	if (folio_test_dirty(folio) || pmd_dirty(orig_pmd))
3068		return false;
3069
3070	orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3071
3072	/*
3073	 * Syncing against concurrent GUP-fast:
3074	 * - clear PMD; barrier; read refcount
3075	 * - inc refcount; barrier; read PMD
3076	 */
3077	smp_mb();
3078
3079	ref_count = folio_ref_count(folio);
3080	map_count = folio_mapcount(folio);
3081
3082	/*
3083	 * Order reads for folio refcount and dirty flag
3084	 * (see comments in __remove_mapping()).
3085	 */
3086	smp_rmb();
3087
3088	/*
3089	 * If the folio or its PMD is redirtied at this point, or if there
3090	 * are unexpected references, we will give up to discard this folio
3091	 * and remap it.
3092	 *
3093	 * The only folio refs must be one from isolation plus the rmap(s).
3094	 */
3095	if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) ||
3096	    ref_count != map_count + 1) {
3097		set_pmd_at(mm, addr, pmdp, orig_pmd);
3098		return false;
3099	}
3100
3101	folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3102	zap_deposited_table(mm, pmdp);
3103	add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3104	if (vma->vm_flags & VM_LOCKED)
3105		mlock_drain_local();
3106	folio_put(folio);
3107
3108	return true;
3109}
3110
3111bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3112			   pmd_t *pmdp, struct folio *folio)
3113{
3114	VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3115	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3116	VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3117
3118	if (folio_test_anon(folio) && !folio_test_swapbacked(folio))
3119		return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3120
3121	return false;
3122}
3123
3124static void remap_page(struct folio *folio, unsigned long nr, int flags)
3125{
3126	int i = 0;
3127
3128	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
3129	if (!folio_test_anon(folio))
3130		return;
3131	for (;;) {
3132		remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3133		i += folio_nr_pages(folio);
3134		if (i >= nr)
3135			break;
3136		folio = folio_next(folio);
3137	}
3138}
3139
3140static void lru_add_page_tail(struct folio *folio, struct page *tail,
3141		struct lruvec *lruvec, struct list_head *list)
3142{
3143	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3144	VM_BUG_ON_FOLIO(PageLRU(tail), folio);
3145	lockdep_assert_held(&lruvec->lru_lock);
3146
3147	if (list) {
3148		/* page reclaim is reclaiming a huge page */
3149		VM_WARN_ON(folio_test_lru(folio));
3150		get_page(tail);
3151		list_add_tail(&tail->lru, list);
3152	} else {
3153		/* head is still on lru (and we have it frozen) */
3154		VM_WARN_ON(!folio_test_lru(folio));
3155		if (folio_test_unevictable(folio))
3156			tail->mlock_count = 0;
3157		else
3158			list_add_tail(&tail->lru, &folio->lru);
3159		SetPageLRU(tail);
3160	}
3161}
3162
3163static void __split_huge_page_tail(struct folio *folio, int tail,
3164		struct lruvec *lruvec, struct list_head *list,
3165		unsigned int new_order)
3166{
3167	struct page *head = &folio->page;
3168	struct page *page_tail = head + tail;
3169	/*
3170	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3171	 * Don't pass it around before clear_compound_head().
3172	 */
3173	struct folio *new_folio = (struct folio *)page_tail;
3174
3175	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3176
3177	/*
3178	 * Clone page flags before unfreezing refcount.
3179	 *
3180	 * After successful get_page_unless_zero() might follow flags change,
3181	 * for example lock_page() which set PG_waiters.
3182	 *
3183	 * Note that for mapped sub-pages of an anonymous THP,
3184	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3185	 * the migration entry instead from where remap_page() will restore it.
3186	 * We can still have PG_anon_exclusive set on effectively unmapped and
3187	 * unreferenced sub-pages of an anonymous THP: we can simply drop
3188	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3189	 */
3190	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3191	page_tail->flags |= (head->flags &
3192			((1L << PG_referenced) |
3193			 (1L << PG_swapbacked) |
3194			 (1L << PG_swapcache) |
3195			 (1L << PG_mlocked) |
3196			 (1L << PG_uptodate) |
3197			 (1L << PG_active) |
3198			 (1L << PG_workingset) |
3199			 (1L << PG_locked) |
3200			 (1L << PG_unevictable) |
3201#ifdef CONFIG_ARCH_USES_PG_ARCH_2
3202			 (1L << PG_arch_2) |
3203#endif
3204#ifdef CONFIG_ARCH_USES_PG_ARCH_3
3205			 (1L << PG_arch_3) |
3206#endif
3207			 (1L << PG_dirty) |
3208			 LRU_GEN_MASK | LRU_REFS_MASK));
3209
3210	/* ->mapping in first and second tail page is replaced by other uses */
3211	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3212			page_tail);
3213	new_folio->mapping = folio->mapping;
3214	new_folio->index = folio->index + tail;
3215
3216	/*
3217	 * page->private should not be set in tail pages. Fix up and warn once
3218	 * if private is unexpectedly set.
3219	 */
3220	if (unlikely(page_tail->private)) {
3221		VM_WARN_ON_ONCE_PAGE(true, page_tail);
3222		page_tail->private = 0;
3223	}
3224	if (folio_test_swapcache(folio))
3225		new_folio->swap.val = folio->swap.val + tail;
3226
3227	/* Page flags must be visible before we make the page non-compound. */
3228	smp_wmb();
3229
 
 
3230	/*
3231	 * Clear PageTail before unfreezing page refcount.
3232	 *
3233	 * After successful get_page_unless_zero() might follow put_page()
3234	 * which needs correct compound_head().
3235	 */
3236	clear_compound_head(page_tail);
3237	if (new_order) {
3238		prep_compound_page(page_tail, new_order);
3239		folio_set_large_rmappable(new_folio);
3240	}
3241
3242	/* Finally unfreeze refcount. Additional reference from page cache. */
3243	page_ref_unfreeze(page_tail,
3244		1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ?
3245			     folio_nr_pages(new_folio) : 0));
3246
3247	if (folio_test_young(folio))
3248		folio_set_young(new_folio);
3249	if (folio_test_idle(folio))
3250		folio_set_idle(new_folio);
3251
3252	folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
 
 
3253
3254	/*
3255	 * always add to the tail because some iterators expect new
3256	 * pages to show after the currently processed elements - e.g.
3257	 * migrate_pages
3258	 */
3259	lru_add_page_tail(folio, page_tail, lruvec, list);
3260}
3261
3262static void __split_huge_page(struct page *page, struct list_head *list,
3263		pgoff_t end, unsigned int new_order)
3264{
3265	struct folio *folio = page_folio(page);
3266	struct page *head = &folio->page;
3267	struct lruvec *lruvec;
3268	struct address_space *swap_cache = NULL;
3269	unsigned long offset = 0;
3270	int i, nr_dropped = 0;
3271	unsigned int new_nr = 1 << new_order;
3272	int order = folio_order(folio);
3273	unsigned int nr = 1 << order;
3274
3275	/* complete memcg works before add pages to LRU */
3276	split_page_memcg(head, order, new_order);
3277
3278	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
3279		offset = swap_cache_index(folio->swap);
3280		swap_cache = swap_address_space(folio->swap);
3281		xa_lock(&swap_cache->i_pages);
3282	}
3283
3284	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3285	lruvec = folio_lruvec_lock(folio);
3286
3287	ClearPageHasHWPoisoned(head);
3288
3289	for (i = nr - new_nr; i >= new_nr; i -= new_nr) {
3290		struct folio *tail;
3291		__split_huge_page_tail(folio, i, lruvec, list, new_order);
3292		tail = page_folio(head + i);
3293		/* Some pages can be beyond EOF: drop them from page cache */
3294		if (tail->index >= end) {
3295			if (shmem_mapping(folio->mapping))
3296				nr_dropped++;
3297			else if (folio_test_clear_dirty(tail))
3298				folio_account_cleaned(tail,
3299					inode_to_wb(folio->mapping->host));
3300			__filemap_remove_folio(tail, NULL);
3301			folio_put(tail);
3302		} else if (!folio_test_anon(folio)) {
3303			__xa_store(&folio->mapping->i_pages, tail->index,
3304					tail, 0);
3305		} else if (swap_cache) {
3306			__xa_store(&swap_cache->i_pages, offset + i,
3307					tail, 0);
3308		}
3309	}
3310
3311	if (!new_order)
3312		ClearPageCompound(head);
3313	else {
3314		struct folio *new_folio = (struct folio *)head;
3315
3316		folio_set_order(new_folio, new_order);
3317	}
3318	unlock_page_lruvec(lruvec);
3319	/* Caller disabled irqs, so they are still disabled here */
3320
3321	split_page_owner(head, order, new_order);
3322	pgalloc_tag_split(folio, order, new_order);
3323
3324	/* See comment in __split_huge_page_tail() */
3325	if (folio_test_anon(folio)) {
3326		/* Additional pin to swap cache */
3327		if (folio_test_swapcache(folio)) {
3328			folio_ref_add(folio, 1 + new_nr);
3329			xa_unlock(&swap_cache->i_pages);
3330		} else {
3331			folio_ref_inc(folio);
3332		}
3333	} else {
3334		/* Additional pin to page cache */
3335		folio_ref_add(folio, 1 + new_nr);
3336		xa_unlock(&folio->mapping->i_pages);
3337	}
3338	local_irq_enable();
3339
3340	if (nr_dropped)
3341		shmem_uncharge(folio->mapping->host, nr_dropped);
3342	remap_page(folio, nr, PageAnon(head) ? RMP_USE_SHARED_ZEROPAGE : 0);
3343
3344	/*
3345	 * set page to its compound_head when split to non order-0 pages, so
3346	 * we can skip unlocking it below, since PG_locked is transferred to
3347	 * the compound_head of the page and the caller will unlock it.
3348	 */
3349	if (new_order)
3350		page = compound_head(page);
 
 
 
 
 
3351
3352	for (i = 0; i < nr; i += new_nr) {
3353		struct page *subpage = head + i;
3354		struct folio *new_folio = page_folio(subpage);
3355		if (subpage == page)
3356			continue;
3357		folio_unlock(new_folio);
3358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3359		/*
3360		 * Subpages may be freed if there wasn't any mapping
3361		 * like if add_to_swap() is running on a lru page that
3362		 * had its mapping zapped. And freeing these pages
3363		 * requires taking the lru_lock so we do the put_page
3364		 * of the tail pages after the split is complete.
 
3365		 */
3366		free_page_and_swap_cache(subpage);
 
3367	}
3368}
3369
3370/* Racy check whether the huge page can be split */
3371bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3372{
3373	int extra_pins;
3374
3375	/* Additional pins from page cache */
3376	if (folio_test_anon(folio))
3377		extra_pins = folio_test_swapcache(folio) ?
3378				folio_nr_pages(folio) : 0;
3379	else
3380		extra_pins = folio_nr_pages(folio);
3381	if (pextra_pins)
3382		*pextra_pins = extra_pins;
3383	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3384					caller_pins;
3385}
3386
3387/*
3388 * This function splits a large folio into smaller folios of order @new_order.
3389 * @page can point to any page of the large folio to split. The split operation
3390 * does not change the position of @page.
3391 *
3392 * Prerequisites:
3393 *
3394 * 1) The caller must hold a reference on the @page's owning folio, also known
3395 *    as the large folio.
3396 *
3397 * 2) The large folio must be locked.
3398 *
3399 * 3) The folio must not be pinned. Any unexpected folio references, including
3400 *    GUP pins, will result in the folio not getting split; instead, the caller
3401 *    will receive an -EAGAIN.
3402 *
3403 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3404 *    supported for non-file-backed folios, because folio->_deferred_list, which
3405 *    is used by partially mapped folios, is stored in subpage 2, but an order-1
3406 *    folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3407 *    since they do not use _deferred_list.
3408 *
3409 * After splitting, the caller's folio reference will be transferred to @page,
3410 * resulting in a raised refcount of @page after this call. The other pages may
3411 * be freed if they are not mapped.
3412 *
3413 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3414 *
3415 * Pages in @new_order will inherit the mapping, flags, and so on from the
3416 * huge page.
3417 *
3418 * Returns 0 if the huge page was split successfully.
3419 *
3420 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3421 * the folio was concurrently removed from the page cache.
3422 *
3423 * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3424 * under writeback, if fs-specific folio metadata cannot currently be
3425 * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3426 * truncation).
3427 *
3428 * Callers should ensure that the order respects the address space mapping
3429 * min-order if one is set for non-anonymous folios.
3430 *
3431 * Returns -EINVAL when trying to split to an order that is incompatible
3432 * with the folio. Splitting to order 0 is compatible with all folios.
3433 */
3434int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3435				     unsigned int new_order)
3436{
3437	struct folio *folio = page_folio(page);
3438	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3439	/* reset xarray order to new order after split */
3440	XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order);
3441	bool is_anon = folio_test_anon(folio);
3442	struct address_space *mapping = NULL;
3443	struct anon_vma *anon_vma = NULL;
3444	int order = folio_order(folio);
3445	int extra_pins, ret;
3446	pgoff_t end;
3447	bool is_hzp;
3448
3449	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3450	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3451
3452	if (new_order >= folio_order(folio))
3453		return -EINVAL;
3454
3455	if (is_anon) {
3456		/* order-1 is not supported for anonymous THP. */
3457		if (new_order == 1) {
3458			VM_WARN_ONCE(1, "Cannot split to order-1 folio");
3459			return -EINVAL;
3460		}
3461	} else if (new_order) {
3462		/* Split shmem folio to non-zero order not supported */
3463		if (shmem_mapping(folio->mapping)) {
3464			VM_WARN_ONCE(1,
3465				"Cannot split shmem folio to non-0 order");
3466			return -EINVAL;
3467		}
3468		/*
3469		 * No split if the file system does not support large folio.
3470		 * Note that we might still have THPs in such mappings due to
3471		 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3472		 * does not actually support large folios properly.
3473		 */
3474		if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3475		    !mapping_large_folio_support(folio->mapping)) {
3476			VM_WARN_ONCE(1,
3477				"Cannot split file folio to non-0 order");
3478			return -EINVAL;
3479		}
3480	}
 
3481
3482	/* Only swapping a whole PMD-mapped folio is supported */
3483	if (folio_test_swapcache(folio) && new_order)
3484		return -EINVAL;
 
3485
3486	is_hzp = is_huge_zero_folio(folio);
3487	if (is_hzp) {
3488		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3489		return -EBUSY;
3490	}
3491
3492	if (folio_test_writeback(folio))
3493		return -EBUSY;
3494
3495	if (is_anon) {
3496		/*
3497		 * The caller does not necessarily hold an mmap_lock that would
3498		 * prevent the anon_vma disappearing so we first we take a
3499		 * reference to it and then lock the anon_vma for write. This
3500		 * is similar to folio_lock_anon_vma_read except the write lock
3501		 * is taken to serialise against parallel split or collapse
3502		 * operations.
3503		 */
3504		anon_vma = folio_get_anon_vma(folio);
3505		if (!anon_vma) {
3506			ret = -EBUSY;
3507			goto out;
3508		}
3509		end = -1;
3510		mapping = NULL;
3511		anon_vma_lock_write(anon_vma);
3512	} else {
3513		unsigned int min_order;
3514		gfp_t gfp;
3515
3516		mapping = folio->mapping;
3517
3518		/* Truncated ? */
3519		if (!mapping) {
3520			ret = -EBUSY;
3521			goto out;
3522		}
3523
3524		min_order = mapping_min_folio_order(folio->mapping);
3525		if (new_order < min_order) {
3526			VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u",
3527				     min_order);
3528			ret = -EINVAL;
3529			goto out;
3530		}
3531
3532		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3533							GFP_RECLAIM_MASK);
3534
3535		if (!filemap_release_folio(folio, gfp)) {
3536			ret = -EBUSY;
 
3537			goto out;
3538		}
3539
3540		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3541		if (xas_error(&xas)) {
3542			ret = xas_error(&xas);
 
 
 
 
3543			goto out;
3544		}
3545
3546		anon_vma = NULL;
3547		i_mmap_lock_read(mapping);
3548
3549		/*
3550		 *__split_huge_page() may need to trim off pages beyond EOF:
3551		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3552		 * which cannot be nested inside the page tree lock. So note
3553		 * end now: i_size itself may be changed at any moment, but
3554		 * folio lock is good enough to serialize the trimming.
3555		 */
3556		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3557		if (shmem_mapping(mapping))
3558			end = shmem_fallocend(mapping->host, end);
 
 
 
 
 
 
 
 
 
 
 
3559	}
 
 
 
 
 
 
 
3560
3561	/*
3562	 * Racy check if we can split the page, before unmap_folio() will
3563	 * split PMDs
3564	 */
3565	if (!can_split_folio(folio, 1, &extra_pins)) {
3566		ret = -EAGAIN;
3567		goto out_unlock;
3568	}
3569
3570	unmap_folio(folio);
3571
3572	/* block interrupt reentry in xa_lock and spinlock */
3573	local_irq_disable();
3574	if (mapping) {
3575		/*
3576		 * Check if the folio is present in page cache.
3577		 * We assume all tail are present too, if folio is there.
3578		 */
3579		xas_lock(&xas);
3580		xas_reset(&xas);
3581		if (xas_load(&xas) != folio)
3582			goto fail;
3583	}
3584
3585	/* Prevent deferred_split_scan() touching ->_refcount */
3586	spin_lock(&ds_queue->split_queue_lock);
3587	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3588		if (folio_order(folio) > 1 &&
3589		    !list_empty(&folio->_deferred_list)) {
3590			ds_queue->split_queue_len--;
3591			if (folio_test_partially_mapped(folio)) {
3592				folio_clear_partially_mapped(folio);
3593				mod_mthp_stat(folio_order(folio),
3594					      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3595			}
3596			/*
3597			 * Reinitialize page_deferred_list after removing the
3598			 * page from the split_queue, otherwise a subsequent
3599			 * split will see list corruption when checking the
3600			 * page_deferred_list.
3601			 */
3602			list_del_init(&folio->_deferred_list);
3603		}
3604		spin_unlock(&ds_queue->split_queue_lock);
3605		if (mapping) {
3606			int nr = folio_nr_pages(folio);
3607
3608			xas_split(&xas, folio, folio_order(folio));
3609			if (folio_test_pmd_mappable(folio) &&
3610			    new_order < HPAGE_PMD_ORDER) {
3611				if (folio_test_swapbacked(folio)) {
3612					__lruvec_stat_mod_folio(folio,
3613							NR_SHMEM_THPS, -nr);
3614				} else {
3615					__lruvec_stat_mod_folio(folio,
3616							NR_FILE_THPS, -nr);
3617					filemap_nr_thps_dec(mapping);
3618				}
3619			}
3620		}
3621
3622		if (is_anon) {
3623			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3624			mod_mthp_stat(new_order, MTHP_STAT_NR_ANON, 1 << (order - new_order));
3625		}
3626		__split_huge_page(page, list, end, new_order);
3627		ret = 0;
3628	} else {
3629		spin_unlock(&ds_queue->split_queue_lock);
3630fail:
3631		if (mapping)
3632			xas_unlock(&xas);
3633		local_irq_enable();
3634		remap_page(folio, folio_nr_pages(folio), 0);
3635		ret = -EAGAIN;
3636	}
3637
3638out_unlock:
3639	if (anon_vma) {
3640		anon_vma_unlock_write(anon_vma);
3641		put_anon_vma(anon_vma);
3642	}
3643	if (mapping)
3644		i_mmap_unlock_read(mapping);
3645out:
3646	xas_destroy(&xas);
3647	if (order == HPAGE_PMD_ORDER)
3648		count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3649	count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3650	return ret;
3651}
3652
3653int min_order_for_split(struct folio *folio)
 
 
 
 
3654{
3655	if (folio_test_anon(folio))
3656		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3657
3658	if (!folio->mapping) {
3659		if (folio_test_pmd_mappable(folio))
3660			count_vm_event(THP_SPLIT_PAGE_FAILED);
3661		return -EBUSY;
 
 
3662	}
3663
3664	return mapping_min_folio_order(folio->mapping);
3665}
 
 
 
 
 
 
3666
3667int split_folio_to_list(struct folio *folio, struct list_head *list)
3668{
3669	int ret = min_order_for_split(folio);
 
 
3670
3671	if (ret < 0)
3672		return ret;
 
3673
3674	return split_huge_page_to_list_to_order(&folio->page, list, ret);
3675}
 
 
 
 
 
 
 
3676
3677/*
3678 * __folio_unqueue_deferred_split() is not to be called directly:
3679 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
3680 * limits its calls to those folios which may have a _deferred_list for
3681 * queueing THP splits, and that list is (racily observed to be) non-empty.
3682 *
3683 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
3684 * zero: because even when split_queue_lock is held, a non-empty _deferred_list
3685 * might be in use on deferred_split_scan()'s unlocked on-stack list.
3686 *
3687 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
3688 * therefore important to unqueue deferred split before changing folio memcg.
3689 */
3690bool __folio_unqueue_deferred_split(struct folio *folio)
3691{
3692	struct deferred_split *ds_queue;
3693	unsigned long flags;
3694	bool unqueued = false;
3695
3696	WARN_ON_ONCE(folio_ref_count(folio));
3697	WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
3698
3699	ds_queue = get_deferred_split_queue(folio);
3700	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3701	if (!list_empty(&folio->_deferred_list)) {
3702		ds_queue->split_queue_len--;
3703		if (folio_test_partially_mapped(folio)) {
3704			folio_clear_partially_mapped(folio);
3705			mod_mthp_stat(folio_order(folio),
3706				      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3707		}
3708		list_del_init(&folio->_deferred_list);
3709		unqueued = true;
3710	}
3711	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3712
3713	return unqueued;	/* useful for debug warnings */
3714}
 
3715
3716/* partially_mapped=false won't clear PG_partially_mapped folio flag */
3717void deferred_split_folio(struct folio *folio, bool partially_mapped)
3718{
3719	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3720#ifdef CONFIG_MEMCG
3721	struct mem_cgroup *memcg = folio_memcg(folio);
3722#endif
3723	unsigned long flags;
3724
3725	/*
3726	 * Order 1 folios have no space for a deferred list, but we also
3727	 * won't waste much memory by not adding them to the deferred list.
3728	 */
3729	if (folio_order(folio) <= 1)
3730		return;
3731
3732	if (!partially_mapped && !split_underused_thp)
3733		return;
3734
 
3735	/*
3736	 * Exclude swapcache: originally to avoid a corrupt deferred split
3737	 * queue. Nowadays that is fully prevented by mem_cgroup_swapout();
3738	 * but if page reclaim is already handling the same folio, it is
3739	 * unnecessary to handle it again in the shrinker, so excluding
3740	 * swapcache here may still be a useful optimization.
3741	 */
3742	if (folio_test_swapcache(folio))
3743		return;
3744
3745	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3746	if (partially_mapped) {
3747		if (!folio_test_partially_mapped(folio)) {
3748			folio_set_partially_mapped(folio);
3749			if (folio_test_pmd_mappable(folio))
3750				count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3751			count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
3752			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
3753
3754		}
3755	} else {
3756		/* partially mapped folios cannot become non-partially mapped */
3757		VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
 
 
 
 
3758	}
3759	if (list_empty(&folio->_deferred_list)) {
3760		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3761		ds_queue->split_queue_len++;
3762#ifdef CONFIG_MEMCG
3763		if (memcg)
3764			set_shrinker_bit(memcg, folio_nid(folio),
3765					 deferred_split_shrinker->id);
3766#endif
3767	}
3768	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3769}
3770
3771static unsigned long deferred_split_count(struct shrinker *shrink,
3772		struct shrink_control *sc)
3773{
3774	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3775	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
 
 
 
 
 
 
 
 
 
 
 
3776
3777#ifdef CONFIG_MEMCG
3778	if (sc->memcg)
3779		ds_queue = &sc->memcg->deferred_split_queue;
3780#endif
3781	return READ_ONCE(ds_queue->split_queue_len);
3782}
3783
3784static bool thp_underused(struct folio *folio)
3785{
3786	int num_zero_pages = 0, num_filled_pages = 0;
3787	void *kaddr;
3788	int i;
 
 
 
 
 
 
 
 
 
 
 
3789
3790	if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
3791		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3792
3793	for (i = 0; i < folio_nr_pages(folio); i++) {
3794		kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
3795		if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
3796			num_zero_pages++;
3797			if (num_zero_pages > khugepaged_max_ptes_none) {
3798				kunmap_local(kaddr);
3799				return true;
3800			}
3801		} else {
3802			/*
3803			 * Another path for early exit once the number
3804			 * of non-zero filled pages exceeds threshold.
3805			 */
3806			num_filled_pages++;
3807			if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
3808				kunmap_local(kaddr);
3809				return false;
3810			}
3811		}
3812		kunmap_local(kaddr);
3813	}
3814	return false;
3815}
3816
3817static unsigned long deferred_split_scan(struct shrinker *shrink,
3818		struct shrink_control *sc)
3819{
3820	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3821	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3822	unsigned long flags;
3823	LIST_HEAD(list);
3824	struct folio *folio, *next, *prev = NULL;
3825	int split = 0, removed = 0;
3826
3827#ifdef CONFIG_MEMCG
3828	if (sc->memcg)
3829		ds_queue = &sc->memcg->deferred_split_queue;
3830#endif
3831
3832	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3833	/* Take pin on all head pages to avoid freeing them under us */
3834	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3835							_deferred_list) {
3836		if (folio_try_get(folio)) {
3837			list_move(&folio->_deferred_list, &list);
3838		} else {
3839			/* We lost race with folio_put() */
3840			if (folio_test_partially_mapped(folio)) {
3841				folio_clear_partially_mapped(folio);
3842				mod_mthp_stat(folio_order(folio),
3843					      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3844			}
3845			list_del_init(&folio->_deferred_list);
3846			ds_queue->split_queue_len--;
3847		}
3848		if (!--sc->nr_to_scan)
3849			break;
3850	}
3851	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3852
3853	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3854		bool did_split = false;
3855		bool underused = false;
3856
3857		if (!folio_test_partially_mapped(folio)) {
3858			underused = thp_underused(folio);
3859			if (!underused)
3860				goto next;
 
3861		}
3862		if (!folio_trylock(folio))
3863			goto next;
3864		if (!split_folio(folio)) {
3865			did_split = true;
3866			if (underused)
3867				count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
3868			split++;
3869		}
3870		folio_unlock(folio);
3871next:
3872		/*
3873		 * split_folio() removes folio from list on success.
3874		 * Only add back to the queue if folio is partially mapped.
3875		 * If thp_underused returns false, or if split_folio fails
3876		 * in the case it was underused, then consider it used and
3877		 * don't add it back to split_queue.
3878		 */
3879		if (did_split) {
3880			; /* folio already removed from list */
3881		} else if (!folio_test_partially_mapped(folio)) {
3882			list_del_init(&folio->_deferred_list);
3883			removed++;
3884		} else {
3885			/*
3886			 * That unlocked list_del_init() above would be unsafe,
3887			 * unless its folio is separated from any earlier folios
3888			 * left on the list (which may be concurrently unqueued)
3889			 * by one safe folio with refcount still raised.
3890			 */
3891			swap(folio, prev);
3892		}
3893		if (folio)
3894			folio_put(folio);
3895	}
3896
3897	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3898	list_splice_tail(&list, &ds_queue->split_queue);
3899	ds_queue->split_queue_len -= removed;
3900	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3901
3902	if (prev)
3903		folio_put(prev);
3904
3905	/*
3906	 * Stop shrinker if we didn't split any page, but the queue is empty.
3907	 * This can happen if pages were freed under us.
3908	 */
3909	if (!split && list_empty(&ds_queue->split_queue))
3910		return SHRINK_STOP;
3911	return split;
3912}
3913
3914#ifdef CONFIG_DEBUG_FS
3915static void split_huge_pages_all(void)
3916{
3917	struct zone *zone;
3918	struct page *page;
3919	struct folio *folio;
3920	unsigned long pfn, max_zone_pfn;
3921	unsigned long total = 0, split = 0;
3922
3923	pr_debug("Split all THPs\n");
3924	for_each_zone(zone) {
3925		if (!managed_zone(zone))
3926			continue;
3927		max_zone_pfn = zone_end_pfn(zone);
3928		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3929			int nr_pages;
3930
3931			page = pfn_to_online_page(pfn);
3932			if (!page || PageTail(page))
3933				continue;
3934			folio = page_folio(page);
3935			if (!folio_try_get(folio))
3936				continue;
3937
3938			if (unlikely(page_folio(page) != folio))
3939				goto next;
 
 
3940
3941			if (zone != folio_zone(folio))
3942				goto next;
 
 
 
3943
3944			if (!folio_test_large(folio)
3945				|| folio_test_hugetlb(folio)
3946				|| !folio_test_lru(folio))
3947				goto next;
3948
3949			total++;
3950			folio_lock(folio);
3951			nr_pages = folio_nr_pages(folio);
3952			if (!split_folio(folio))
3953				split++;
3954			pfn += nr_pages - 1;
3955			folio_unlock(folio);
3956next:
3957			folio_put(folio);
3958			cond_resched();
3959		}
3960	}
3961
3962	pr_debug("%lu of %lu THP split\n", split, total);
3963}
3964
3965static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3966{
3967	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3968		    is_vm_hugetlb_page(vma);
3969}
3970
3971static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3972				unsigned long vaddr_end, unsigned int new_order)
3973{
3974	int ret = 0;
3975	struct task_struct *task;
3976	struct mm_struct *mm;
3977	unsigned long total = 0, split = 0;
3978	unsigned long addr;
3979
3980	vaddr_start &= PAGE_MASK;
3981	vaddr_end &= PAGE_MASK;
3982
3983	task = find_get_task_by_vpid(pid);
3984	if (!task) {
3985		ret = -ESRCH;
3986		goto out;
3987	}
 
 
 
 
 
 
 
 
 
 
 
3988
3989	/* Find the mm_struct */
3990	mm = get_task_mm(task);
3991	put_task_struct(task);
3992
3993	if (!mm) {
3994		ret = -EINVAL;
3995		goto out;
3996	}
3997
3998	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3999		 pid, vaddr_start, vaddr_end);
4000
4001	mmap_read_lock(mm);
4002	/*
4003	 * always increase addr by PAGE_SIZE, since we could have a PTE page
4004	 * table filled with PTE-mapped THPs, each of which is distinct.
4005	 */
4006	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
4007		struct vm_area_struct *vma = vma_lookup(mm, addr);
4008		struct folio_walk fw;
4009		struct folio *folio;
4010		struct address_space *mapping;
4011		unsigned int target_order = new_order;
4012
4013		if (!vma)
4014			break;
4015
4016		/* skip special VMA and hugetlb VMA */
4017		if (vma_not_suitable_for_thp_split(vma)) {
4018			addr = vma->vm_end;
4019			continue;
4020		}
4021
4022		folio = folio_walk_start(&fw, vma, addr, 0);
4023		if (!folio)
 
 
 
4024			continue;
4025
4026		if (!is_transparent_hugepage(folio))
4027			goto next;
4028
4029		if (!folio_test_anon(folio)) {
4030			mapping = folio->mapping;
4031			target_order = max(new_order,
4032					   mapping_min_folio_order(mapping));
4033		}
4034
4035		if (target_order >= folio_order(folio))
4036			goto next;
4037
4038		total++;
4039		/*
4040		 * For folios with private, split_huge_page_to_list_to_order()
4041		 * will try to drop it before split and then check if the folio
4042		 * can be split or not. So skip the check here.
4043		 */
4044		if (!folio_test_private(folio) &&
4045		    !can_split_folio(folio, 0, NULL))
4046			goto next;
4047
4048		if (!folio_trylock(folio))
4049			goto next;
4050		folio_get(folio);
4051		folio_walk_end(&fw, vma);
 
 
 
 
 
4052
4053		if (!folio_test_anon(folio) && folio->mapping != mapping)
4054			goto unlock;
 
 
 
4055
4056		if (!split_folio_to_order(folio, target_order))
4057			split++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4058
4059unlock:
4060
4061		folio_unlock(folio);
4062		folio_put(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4063
4064		cond_resched();
4065		continue;
4066next:
4067		folio_walk_end(&fw, vma);
4068		cond_resched();
4069	}
4070	mmap_read_unlock(mm);
4071	mmput(mm);
4072
4073	pr_debug("%lu of %lu THP split\n", split, total);
 
4074
4075out:
4076	return ret;
 
 
4077}
4078
4079static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4080				pgoff_t off_end, unsigned int new_order)
4081{
4082	struct filename *file;
4083	struct file *candidate;
4084	struct address_space *mapping;
4085	int ret = -EINVAL;
4086	pgoff_t index;
4087	int nr_pages = 1;
4088	unsigned long total = 0, split = 0;
4089	unsigned int min_order;
4090	unsigned int target_order;
4091
4092	file = getname_kernel(file_path);
4093	if (IS_ERR(file))
4094		return ret;
 
4095
4096	candidate = file_open_name(file, O_RDONLY, 0);
4097	if (IS_ERR(candidate))
4098		goto out;
4099
4100	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
4101		 file_path, off_start, off_end);
4102
4103	mapping = candidate->f_mapping;
4104	min_order = mapping_min_folio_order(mapping);
4105	target_order = max(new_order, min_order);
 
 
 
 
 
 
 
 
 
 
4106
4107	for (index = off_start; index < off_end; index += nr_pages) {
4108		struct folio *folio = filemap_get_folio(mapping, index);
4109
4110		nr_pages = 1;
4111		if (IS_ERR(folio))
4112			continue;
 
 
 
 
 
 
 
 
 
4113
4114		if (!folio_test_large(folio))
4115			goto next;
 
 
 
 
 
 
 
4116
4117		total++;
4118		nr_pages = folio_nr_pages(folio);
 
 
4119
4120		if (target_order >= folio_order(folio))
4121			goto next;
 
 
 
 
 
 
 
 
 
 
4122
4123		if (!folio_trylock(folio))
4124			goto next;
 
4125
4126		if (folio->mapping != mapping)
4127			goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
4128
4129		if (!split_folio_to_order(folio, target_order))
4130			split++;
4131
4132unlock:
4133		folio_unlock(folio);
4134next:
4135		folio_put(folio);
4136		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
4137	}
4138
4139	filp_close(candidate, NULL);
4140	ret = 0;
4141
4142	pr_debug("%lu of %lu file-backed THP split\n", split, total);
4143out:
4144	putname(file);
4145	return ret;
4146}
4147
4148#define MAX_INPUT_BUF_SZ 255
4149
4150static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4151				size_t count, loff_t *ppops)
4152{
4153	static DEFINE_MUTEX(split_debug_mutex);
4154	ssize_t ret;
4155	/*
4156	 * hold pid, start_vaddr, end_vaddr, new_order or
4157	 * file_path, off_start, off_end, new_order
4158	 */
4159	char input_buf[MAX_INPUT_BUF_SZ];
4160	int pid;
4161	unsigned long vaddr_start, vaddr_end;
4162	unsigned int new_order = 0;
4163
4164	ret = mutex_lock_interruptible(&split_debug_mutex);
4165	if (ret)
4166		return ret;
4167
4168	ret = -EFAULT;
 
4169
4170	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4171	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4172		goto out;
 
 
4173
4174	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4175
4176	if (input_buf[0] == '/') {
4177		char *tok;
4178		char *buf = input_buf;
4179		char file_path[MAX_INPUT_BUF_SZ];
4180		pgoff_t off_start = 0, off_end = 0;
4181		size_t input_len = strlen(input_buf);
4182
4183		tok = strsep(&buf, ",");
4184		if (tok && buf) {
4185			strscpy(file_path, tok);
4186		} else {
4187			ret = -EINVAL;
4188			goto out;
4189		}
4190
4191		ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order);
4192		if (ret != 2 && ret != 3) {
4193			ret = -EINVAL;
4194			goto out;
4195		}
4196		ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order);
4197		if (!ret)
4198			ret = input_len;
4199
4200		goto out;
4201	}
4202
4203	ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order);
4204	if (ret == 1 && pid == 1) {
4205		split_huge_pages_all();
4206		ret = strlen(input_buf);
4207		goto out;
4208	} else if (ret != 3 && ret != 4) {
4209		ret = -EINVAL;
4210		goto out;
4211	}
4212
4213	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order);
4214	if (!ret)
4215		ret = strlen(input_buf);
4216out:
4217	mutex_unlock(&split_debug_mutex);
4218	return ret;
4219
4220}
4221
4222static const struct file_operations split_huge_pages_fops = {
4223	.owner	 = THIS_MODULE,
4224	.write	 = split_huge_pages_write,
4225};
4226
4227static int __init split_huge_pages_debugfs(void)
4228{
4229	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4230			    &split_huge_pages_fops);
4231	return 0;
4232}
4233late_initcall(split_huge_pages_debugfs);
4234#endif
4235
4236#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
4237int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4238		struct page *page)
4239{
4240	struct folio *folio = page_folio(page);
4241	struct vm_area_struct *vma = pvmw->vma;
4242	struct mm_struct *mm = vma->vm_mm;
4243	unsigned long address = pvmw->address;
4244	bool anon_exclusive;
4245	pmd_t pmdval;
4246	swp_entry_t entry;
4247	pmd_t pmdswp;
4248
4249	if (!(pvmw->pmd && !pvmw->pte))
4250		return 0;
 
 
 
 
 
 
 
4251
4252	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4253	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4254
4255	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4256	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4257	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4258		set_pmd_at(mm, address, pvmw->pmd, pmdval);
4259		return -EBUSY;
4260	}
4261
4262	if (pmd_dirty(pmdval))
4263		folio_mark_dirty(folio);
4264	if (pmd_write(pmdval))
4265		entry = make_writable_migration_entry(page_to_pfn(page));
4266	else if (anon_exclusive)
4267		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4268	else
4269		entry = make_readable_migration_entry(page_to_pfn(page));
4270	if (pmd_young(pmdval))
4271		entry = make_migration_entry_young(entry);
4272	if (pmd_dirty(pmdval))
4273		entry = make_migration_entry_dirty(entry);
4274	pmdswp = swp_entry_to_pmd(entry);
4275	if (pmd_soft_dirty(pmdval))
4276		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4277	if (pmd_uffd_wp(pmdval))
4278		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4279	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4280	folio_remove_rmap_pmd(folio, page, vma);
4281	folio_put(folio);
4282	trace_set_migration_pmd(address, pmd_val(pmdswp));
4283
4284	return 0;
4285}
4286
4287void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
 
4288{
4289	struct folio *folio = page_folio(new);
4290	struct vm_area_struct *vma = pvmw->vma;
4291	struct mm_struct *mm = vma->vm_mm;
4292	unsigned long address = pvmw->address;
4293	unsigned long haddr = address & HPAGE_PMD_MASK;
4294	pmd_t pmde;
4295	swp_entry_t entry;
 
 
4296
4297	if (!(pvmw->pmd && !pvmw->pte))
 
4298		return;
4299
4300	entry = pmd_to_swp_entry(*pvmw->pmd);
4301	folio_get(folio);
4302	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
4303	if (pmd_swp_soft_dirty(*pvmw->pmd))
4304		pmde = pmd_mksoft_dirty(pmde);
4305	if (is_writable_migration_entry(entry))
4306		pmde = pmd_mkwrite(pmde, vma);
4307	if (pmd_swp_uffd_wp(*pvmw->pmd))
4308		pmde = pmd_mkuffd_wp(pmde);
4309	if (!is_migration_entry_young(entry))
4310		pmde = pmd_mkold(pmde);
4311	/* NOTE: this may contain setting soft-dirty on some archs */
4312	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4313		pmde = pmd_mkdirty(pmde);
4314
4315	if (folio_test_anon(folio)) {
4316		rmap_t rmap_flags = RMAP_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
4317
4318		if (!is_readable_migration_entry(entry))
4319			rmap_flags |= RMAP_EXCLUSIVE;
 
 
 
 
 
 
 
4320
4321		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4322	} else {
4323		folio_add_file_rmap_pmd(folio, new, vma);
 
 
 
 
 
 
 
 
 
 
4324	}
4325	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4326	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4327
4328	/* No need to invalidate - it was non-present before */
4329	update_mmu_cache_pmd(vma, address, pvmw->pmd);
4330	trace_remove_migration_pmd(address, pmd_val(pmde));
4331}
4332#endif