Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
  15#include <linux/mm_inline.h>
  16#include <linux/kthread.h>
  17#include <linux/khugepaged.h>
  18#include <linux/freezer.h>
  19#include <linux/mman.h>
  20#include <asm/tlb.h>
  21#include <asm/pgalloc.h>
  22#include "internal.h"
  23
  24/*
  25 * By default transparent hugepage support is enabled for all mappings
  26 * and khugepaged scans all mappings. Defrag is only invoked by
  27 * khugepaged hugepage allocations and by page faults inside
  28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29 * allocations.
  30 */
  31unsigned long transparent_hugepage_flags __read_mostly =
  32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34#endif
  35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37#endif
  38	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  40
  41/* default scan 8*512 pte (or vmas) every 30 second */
  42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  43static unsigned int khugepaged_pages_collapsed;
  44static unsigned int khugepaged_full_scans;
  45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  46/* during fragmentation poll the hugepage allocator once every minute */
  47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  48static struct task_struct *khugepaged_thread __read_mostly;
  49static DEFINE_MUTEX(khugepaged_mutex);
  50static DEFINE_SPINLOCK(khugepaged_mm_lock);
  51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  52/*
  53 * default collapse hugepages if there is at least one pte mapped like
  54 * it would have happened if the vma was large enough during page
  55 * fault.
  56 */
  57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  58
  59static int khugepaged(void *none);
  60static int mm_slots_hash_init(void);
  61static int khugepaged_slab_init(void);
  62static void khugepaged_slab_free(void);
  63
  64#define MM_SLOTS_HASH_HEADS 1024
  65static struct hlist_head *mm_slots_hash __read_mostly;
  66static struct kmem_cache *mm_slot_cache __read_mostly;
  67
  68/**
  69 * struct mm_slot - hash lookup from mm to mm_slot
  70 * @hash: hash collision list
  71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72 * @mm: the mm that this information is valid for
  73 */
  74struct mm_slot {
  75	struct hlist_node hash;
  76	struct list_head mm_node;
  77	struct mm_struct *mm;
  78};
  79
  80/**
  81 * struct khugepaged_scan - cursor for scanning
  82 * @mm_head: the head of the mm list to scan
  83 * @mm_slot: the current mm_slot we are scanning
  84 * @address: the next address inside that to be scanned
  85 *
  86 * There is only the one khugepaged_scan instance of this cursor structure.
  87 */
  88struct khugepaged_scan {
  89	struct list_head mm_head;
  90	struct mm_slot *mm_slot;
  91	unsigned long address;
  92} khugepaged_scan = {
 
  93	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94};
  95
  96
  97static int set_recommended_min_free_kbytes(void)
  98{
  99	struct zone *zone;
 100	int nr_zones = 0;
 101	unsigned long recommended_min;
 102	extern int min_free_kbytes;
 103
 104	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 105		      &transparent_hugepage_flags) &&
 106	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 107		      &transparent_hugepage_flags))
 108		return 0;
 109
 110	for_each_populated_zone(zone)
 111		nr_zones++;
 112
 113	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 114	recommended_min = pageblock_nr_pages * nr_zones * 2;
 115
 116	/*
 117	 * Make sure that on average at least two pageblocks are almost free
 118	 * of another type, one for a migratetype to fall back to and a
 119	 * second to avoid subsequent fallbacks of other types There are 3
 120	 * MIGRATE_TYPES we care about.
 121	 */
 122	recommended_min += pageblock_nr_pages * nr_zones *
 123			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 124
 125	/* don't ever allow to reserve more than 5% of the lowmem */
 126	recommended_min = min(recommended_min,
 127			      (unsigned long) nr_free_buffer_pages() / 20);
 128	recommended_min <<= (PAGE_SHIFT-10);
 129
 130	if (recommended_min > min_free_kbytes)
 131		min_free_kbytes = recommended_min;
 132	setup_per_zone_wmarks();
 133	return 0;
 134}
 135late_initcall(set_recommended_min_free_kbytes);
 136
 137static int start_khugepaged(void)
 138{
 139	int err = 0;
 140	if (khugepaged_enabled()) {
 141		int wakeup;
 142		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
 143			err = -ENOMEM;
 144			goto out;
 145		}
 146		mutex_lock(&khugepaged_mutex);
 147		if (!khugepaged_thread)
 148			khugepaged_thread = kthread_run(khugepaged, NULL,
 149							"khugepaged");
 150		if (unlikely(IS_ERR(khugepaged_thread))) {
 151			printk(KERN_ERR
 152			       "khugepaged: kthread_run(khugepaged) failed\n");
 153			err = PTR_ERR(khugepaged_thread);
 154			khugepaged_thread = NULL;
 155		}
 156		wakeup = !list_empty(&khugepaged_scan.mm_head);
 157		mutex_unlock(&khugepaged_mutex);
 158		if (wakeup)
 159			wake_up_interruptible(&khugepaged_wait);
 160
 161		set_recommended_min_free_kbytes();
 162	} else
 163		/* wakeup to exit */
 164		wake_up_interruptible(&khugepaged_wait);
 165out:
 166	return err;
 167}
 168
 169#ifdef CONFIG_SYSFS
 170
 171static ssize_t double_flag_show(struct kobject *kobj,
 172				struct kobj_attribute *attr, char *buf,
 173				enum transparent_hugepage_flag enabled,
 174				enum transparent_hugepage_flag req_madv)
 175{
 176	if (test_bit(enabled, &transparent_hugepage_flags)) {
 177		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 178		return sprintf(buf, "[always] madvise never\n");
 179	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 180		return sprintf(buf, "always [madvise] never\n");
 181	else
 182		return sprintf(buf, "always madvise [never]\n");
 183}
 184static ssize_t double_flag_store(struct kobject *kobj,
 185				 struct kobj_attribute *attr,
 186				 const char *buf, size_t count,
 187				 enum transparent_hugepage_flag enabled,
 188				 enum transparent_hugepage_flag req_madv)
 189{
 190	if (!memcmp("always", buf,
 191		    min(sizeof("always")-1, count))) {
 192		set_bit(enabled, &transparent_hugepage_flags);
 193		clear_bit(req_madv, &transparent_hugepage_flags);
 194	} else if (!memcmp("madvise", buf,
 195			   min(sizeof("madvise")-1, count))) {
 196		clear_bit(enabled, &transparent_hugepage_flags);
 197		set_bit(req_madv, &transparent_hugepage_flags);
 198	} else if (!memcmp("never", buf,
 199			   min(sizeof("never")-1, count))) {
 200		clear_bit(enabled, &transparent_hugepage_flags);
 201		clear_bit(req_madv, &transparent_hugepage_flags);
 202	} else
 203		return -EINVAL;
 204
 205	return count;
 206}
 207
 208static ssize_t enabled_show(struct kobject *kobj,
 209			    struct kobj_attribute *attr, char *buf)
 210{
 211	return double_flag_show(kobj, attr, buf,
 212				TRANSPARENT_HUGEPAGE_FLAG,
 213				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 214}
 215static ssize_t enabled_store(struct kobject *kobj,
 216			     struct kobj_attribute *attr,
 217			     const char *buf, size_t count)
 218{
 219	ssize_t ret;
 220
 221	ret = double_flag_store(kobj, attr, buf, count,
 222				TRANSPARENT_HUGEPAGE_FLAG,
 223				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 224
 225	if (ret > 0) {
 226		int err = start_khugepaged();
 227		if (err)
 228			ret = err;
 229	}
 230
 231	if (ret > 0 &&
 232	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 233		      &transparent_hugepage_flags) ||
 234	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 235		      &transparent_hugepage_flags)))
 236		set_recommended_min_free_kbytes();
 237
 238	return ret;
 239}
 240static struct kobj_attribute enabled_attr =
 241	__ATTR(enabled, 0644, enabled_show, enabled_store);
 242
 243static ssize_t single_flag_show(struct kobject *kobj,
 244				struct kobj_attribute *attr, char *buf,
 245				enum transparent_hugepage_flag flag)
 246{
 247	return sprintf(buf, "%d\n",
 248		       !!test_bit(flag, &transparent_hugepage_flags));
 249}
 250
 251static ssize_t single_flag_store(struct kobject *kobj,
 252				 struct kobj_attribute *attr,
 253				 const char *buf, size_t count,
 254				 enum transparent_hugepage_flag flag)
 255{
 256	unsigned long value;
 257	int ret;
 258
 259	ret = kstrtoul(buf, 10, &value);
 260	if (ret < 0)
 261		return ret;
 262	if (value > 1)
 263		return -EINVAL;
 264
 265	if (value)
 266		set_bit(flag, &transparent_hugepage_flags);
 267	else
 268		clear_bit(flag, &transparent_hugepage_flags);
 269
 270	return count;
 271}
 272
 273/*
 274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 276 * memory just to allocate one more hugepage.
 277 */
 278static ssize_t defrag_show(struct kobject *kobj,
 279			   struct kobj_attribute *attr, char *buf)
 280{
 281	return double_flag_show(kobj, attr, buf,
 282				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 283				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 284}
 285static ssize_t defrag_store(struct kobject *kobj,
 286			    struct kobj_attribute *attr,
 287			    const char *buf, size_t count)
 288{
 289	return double_flag_store(kobj, attr, buf, count,
 290				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 291				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 292}
 293static struct kobj_attribute defrag_attr =
 294	__ATTR(defrag, 0644, defrag_show, defrag_store);
 295
 296#ifdef CONFIG_DEBUG_VM
 297static ssize_t debug_cow_show(struct kobject *kobj,
 298				struct kobj_attribute *attr, char *buf)
 299{
 300	return single_flag_show(kobj, attr, buf,
 301				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 302}
 303static ssize_t debug_cow_store(struct kobject *kobj,
 304			       struct kobj_attribute *attr,
 305			       const char *buf, size_t count)
 306{
 307	return single_flag_store(kobj, attr, buf, count,
 308				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 309}
 310static struct kobj_attribute debug_cow_attr =
 311	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 312#endif /* CONFIG_DEBUG_VM */
 313
 314static struct attribute *hugepage_attr[] = {
 315	&enabled_attr.attr,
 316	&defrag_attr.attr,
 317#ifdef CONFIG_DEBUG_VM
 318	&debug_cow_attr.attr,
 319#endif
 320	NULL,
 321};
 322
 323static struct attribute_group hugepage_attr_group = {
 324	.attrs = hugepage_attr,
 325};
 326
 327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 328					 struct kobj_attribute *attr,
 329					 char *buf)
 330{
 331	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 332}
 333
 334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 335					  struct kobj_attribute *attr,
 336					  const char *buf, size_t count)
 337{
 338	unsigned long msecs;
 339	int err;
 340
 341	err = strict_strtoul(buf, 10, &msecs);
 342	if (err || msecs > UINT_MAX)
 343		return -EINVAL;
 344
 345	khugepaged_scan_sleep_millisecs = msecs;
 346	wake_up_interruptible(&khugepaged_wait);
 347
 348	return count;
 349}
 350static struct kobj_attribute scan_sleep_millisecs_attr =
 351	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 352	       scan_sleep_millisecs_store);
 353
 354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 355					  struct kobj_attribute *attr,
 356					  char *buf)
 357{
 358	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 359}
 360
 361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 362					   struct kobj_attribute *attr,
 363					   const char *buf, size_t count)
 364{
 365	unsigned long msecs;
 366	int err;
 367
 368	err = strict_strtoul(buf, 10, &msecs);
 369	if (err || msecs > UINT_MAX)
 370		return -EINVAL;
 371
 372	khugepaged_alloc_sleep_millisecs = msecs;
 373	wake_up_interruptible(&khugepaged_wait);
 374
 375	return count;
 376}
 377static struct kobj_attribute alloc_sleep_millisecs_attr =
 378	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 379	       alloc_sleep_millisecs_store);
 380
 381static ssize_t pages_to_scan_show(struct kobject *kobj,
 382				  struct kobj_attribute *attr,
 383				  char *buf)
 384{
 385	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 386}
 387static ssize_t pages_to_scan_store(struct kobject *kobj,
 388				   struct kobj_attribute *attr,
 389				   const char *buf, size_t count)
 390{
 391	int err;
 392	unsigned long pages;
 393
 394	err = strict_strtoul(buf, 10, &pages);
 395	if (err || !pages || pages > UINT_MAX)
 396		return -EINVAL;
 397
 398	khugepaged_pages_to_scan = pages;
 399
 400	return count;
 401}
 402static struct kobj_attribute pages_to_scan_attr =
 403	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 404	       pages_to_scan_store);
 405
 406static ssize_t pages_collapsed_show(struct kobject *kobj,
 407				    struct kobj_attribute *attr,
 408				    char *buf)
 409{
 410	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 411}
 412static struct kobj_attribute pages_collapsed_attr =
 413	__ATTR_RO(pages_collapsed);
 414
 415static ssize_t full_scans_show(struct kobject *kobj,
 416			       struct kobj_attribute *attr,
 417			       char *buf)
 418{
 419	return sprintf(buf, "%u\n", khugepaged_full_scans);
 420}
 421static struct kobj_attribute full_scans_attr =
 422	__ATTR_RO(full_scans);
 423
 424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 425				      struct kobj_attribute *attr, char *buf)
 426{
 427	return single_flag_show(kobj, attr, buf,
 428				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 429}
 430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 431				       struct kobj_attribute *attr,
 432				       const char *buf, size_t count)
 433{
 434	return single_flag_store(kobj, attr, buf, count,
 435				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 436}
 437static struct kobj_attribute khugepaged_defrag_attr =
 438	__ATTR(defrag, 0644, khugepaged_defrag_show,
 439	       khugepaged_defrag_store);
 440
 441/*
 442 * max_ptes_none controls if khugepaged should collapse hugepages over
 443 * any unmapped ptes in turn potentially increasing the memory
 444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 445 * reduce the available free memory in the system as it
 446 * runs. Increasing max_ptes_none will instead potentially reduce the
 447 * free memory in the system during the khugepaged scan.
 448 */
 449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 450					     struct kobj_attribute *attr,
 451					     char *buf)
 452{
 453	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 454}
 455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 456					      struct kobj_attribute *attr,
 457					      const char *buf, size_t count)
 458{
 459	int err;
 460	unsigned long max_ptes_none;
 461
 462	err = strict_strtoul(buf, 10, &max_ptes_none);
 463	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 464		return -EINVAL;
 465
 466	khugepaged_max_ptes_none = max_ptes_none;
 467
 468	return count;
 469}
 470static struct kobj_attribute khugepaged_max_ptes_none_attr =
 471	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 472	       khugepaged_max_ptes_none_store);
 473
 474static struct attribute *khugepaged_attr[] = {
 475	&khugepaged_defrag_attr.attr,
 476	&khugepaged_max_ptes_none_attr.attr,
 477	&pages_to_scan_attr.attr,
 478	&pages_collapsed_attr.attr,
 479	&full_scans_attr.attr,
 480	&scan_sleep_millisecs_attr.attr,
 481	&alloc_sleep_millisecs_attr.attr,
 482	NULL,
 483};
 484
 485static struct attribute_group khugepaged_attr_group = {
 486	.attrs = khugepaged_attr,
 487	.name = "khugepaged",
 488};
 489#endif /* CONFIG_SYSFS */
 490
 491static int __init hugepage_init(void)
 492{
 493	int err;
 494#ifdef CONFIG_SYSFS
 495	static struct kobject *hugepage_kobj;
 496#endif
 497
 498	err = -EINVAL;
 499	if (!has_transparent_hugepage()) {
 500		transparent_hugepage_flags = 0;
 501		goto out;
 502	}
 503
 504#ifdef CONFIG_SYSFS
 505	err = -ENOMEM;
 506	hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 507	if (unlikely(!hugepage_kobj)) {
 508		printk(KERN_ERR "hugepage: failed kobject create\n");
 509		goto out;
 510	}
 511
 512	err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
 513	if (err) {
 514		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 515		goto out;
 516	}
 517
 518	err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
 519	if (err) {
 520		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 521		goto out;
 522	}
 523#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524
 525	err = khugepaged_slab_init();
 526	if (err)
 527		goto out;
 528
 529	err = mm_slots_hash_init();
 530	if (err) {
 531		khugepaged_slab_free();
 532		goto out;
 533	}
 534
 535	/*
 536	 * By default disable transparent hugepages on smaller systems,
 537	 * where the extra memory used could hurt more than TLB overhead
 538	 * is likely to save.  The admin can still enable it through /sys.
 539	 */
 540	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 541		transparent_hugepage_flags = 0;
 542
 543	start_khugepaged();
 544
 545	set_recommended_min_free_kbytes();
 546
 
 547out:
 
 548	return err;
 549}
 550module_init(hugepage_init)
 551
 552static int __init setup_transparent_hugepage(char *str)
 553{
 554	int ret = 0;
 555	if (!str)
 556		goto out;
 557	if (!strcmp(str, "always")) {
 558		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 559			&transparent_hugepage_flags);
 560		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 561			  &transparent_hugepage_flags);
 562		ret = 1;
 563	} else if (!strcmp(str, "madvise")) {
 564		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 565			  &transparent_hugepage_flags);
 566		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 567			&transparent_hugepage_flags);
 568		ret = 1;
 569	} else if (!strcmp(str, "never")) {
 570		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 571			  &transparent_hugepage_flags);
 572		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 573			  &transparent_hugepage_flags);
 574		ret = 1;
 575	}
 576out:
 577	if (!ret)
 578		printk(KERN_WARNING
 579		       "transparent_hugepage= cannot parse, ignored\n");
 580	return ret;
 581}
 582__setup("transparent_hugepage=", setup_transparent_hugepage);
 583
 584static void prepare_pmd_huge_pte(pgtable_t pgtable,
 585				 struct mm_struct *mm)
 586{
 587	assert_spin_locked(&mm->page_table_lock);
 588
 589	/* FIFO */
 590	if (!mm->pmd_huge_pte)
 591		INIT_LIST_HEAD(&pgtable->lru);
 592	else
 593		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
 594	mm->pmd_huge_pte = pgtable;
 595}
 596
 597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 598{
 599	if (likely(vma->vm_flags & VM_WRITE))
 600		pmd = pmd_mkwrite(pmd);
 601	return pmd;
 602}
 603
 604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 605					struct vm_area_struct *vma,
 606					unsigned long haddr, pmd_t *pmd,
 607					struct page *page)
 608{
 609	int ret = 0;
 610	pgtable_t pgtable;
 611
 612	VM_BUG_ON(!PageCompound(page));
 613	pgtable = pte_alloc_one(mm, haddr);
 614	if (unlikely(!pgtable)) {
 615		mem_cgroup_uncharge_page(page);
 616		put_page(page);
 617		return VM_FAULT_OOM;
 618	}
 619
 620	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 621	__SetPageUptodate(page);
 622
 623	spin_lock(&mm->page_table_lock);
 624	if (unlikely(!pmd_none(*pmd))) {
 625		spin_unlock(&mm->page_table_lock);
 626		mem_cgroup_uncharge_page(page);
 627		put_page(page);
 628		pte_free(mm, pgtable);
 629	} else {
 630		pmd_t entry;
 631		entry = mk_pmd(page, vma->vm_page_prot);
 632		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 633		entry = pmd_mkhuge(entry);
 634		/*
 635		 * The spinlocking to take the lru_lock inside
 636		 * page_add_new_anon_rmap() acts as a full memory
 637		 * barrier to be sure clear_huge_page writes become
 638		 * visible after the set_pmd_at() write.
 639		 */
 640		page_add_new_anon_rmap(page, vma, haddr);
 641		set_pmd_at(mm, haddr, pmd, entry);
 642		prepare_pmd_huge_pte(pgtable, mm);
 643		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 
 644		spin_unlock(&mm->page_table_lock);
 645	}
 646
 647	return ret;
 648}
 649
 650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 651{
 652	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 653}
 654
 655static inline struct page *alloc_hugepage_vma(int defrag,
 656					      struct vm_area_struct *vma,
 657					      unsigned long haddr, int nd,
 658					      gfp_t extra_gfp)
 659{
 660	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 661			       HPAGE_PMD_ORDER, vma, haddr, nd);
 662}
 663
 664#ifndef CONFIG_NUMA
 665static inline struct page *alloc_hugepage(int defrag)
 666{
 667	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
 668			   HPAGE_PMD_ORDER);
 669}
 670#endif
 671
 672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 673			       unsigned long address, pmd_t *pmd,
 674			       unsigned int flags)
 675{
 676	struct page *page;
 677	unsigned long haddr = address & HPAGE_PMD_MASK;
 678	pte_t *pte;
 679
 680	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
 681		if (unlikely(anon_vma_prepare(vma)))
 682			return VM_FAULT_OOM;
 683		if (unlikely(khugepaged_enter(vma)))
 684			return VM_FAULT_OOM;
 685		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 686					  vma, haddr, numa_node_id(), 0);
 687		if (unlikely(!page)) {
 688			count_vm_event(THP_FAULT_FALLBACK);
 689			goto out;
 690		}
 691		count_vm_event(THP_FAULT_ALLOC);
 692		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
 693			put_page(page);
 694			goto out;
 695		}
 
 
 
 
 
 
 696
 697		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
 698	}
 699out:
 700	/*
 701	 * Use __pte_alloc instead of pte_alloc_map, because we can't
 702	 * run pte_offset_map on the pmd, if an huge pmd could
 703	 * materialize from under us from a different thread.
 704	 */
 705	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
 706		return VM_FAULT_OOM;
 707	/* if an huge pmd materialized from under us just retry later */
 708	if (unlikely(pmd_trans_huge(*pmd)))
 709		return 0;
 710	/*
 711	 * A regular pmd is established and it can't morph into a huge pmd
 712	 * from under us anymore at this point because we hold the mmap_sem
 713	 * read mode and khugepaged takes it in write mode. So now it's
 714	 * safe to run pte_offset_map().
 715	 */
 716	pte = pte_offset_map(pmd, address);
 717	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 718}
 719
 720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 721		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 722		  struct vm_area_struct *vma)
 723{
 724	struct page *src_page;
 725	pmd_t pmd;
 726	pgtable_t pgtable;
 727	int ret;
 728
 729	ret = -ENOMEM;
 730	pgtable = pte_alloc_one(dst_mm, addr);
 731	if (unlikely(!pgtable))
 732		goto out;
 733
 734	spin_lock(&dst_mm->page_table_lock);
 735	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
 736
 737	ret = -EAGAIN;
 738	pmd = *src_pmd;
 739	if (unlikely(!pmd_trans_huge(pmd))) {
 740		pte_free(dst_mm, pgtable);
 741		goto out_unlock;
 742	}
 743	if (unlikely(pmd_trans_splitting(pmd))) {
 744		/* split huge page running from under us */
 745		spin_unlock(&src_mm->page_table_lock);
 746		spin_unlock(&dst_mm->page_table_lock);
 747		pte_free(dst_mm, pgtable);
 748
 749		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 750		goto out;
 751	}
 752	src_page = pmd_page(pmd);
 753	VM_BUG_ON(!PageHead(src_page));
 754	get_page(src_page);
 755	page_dup_rmap(src_page);
 756	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 757
 758	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 759	pmd = pmd_mkold(pmd_wrprotect(pmd));
 760	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 761	prepare_pmd_huge_pte(pgtable, dst_mm);
 
 762
 763	ret = 0;
 764out_unlock:
 765	spin_unlock(&src_mm->page_table_lock);
 766	spin_unlock(&dst_mm->page_table_lock);
 767out:
 768	return ret;
 769}
 770
 771/* no "address" argument so destroys page coloring of some arch */
 772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
 773{
 774	pgtable_t pgtable;
 775
 776	assert_spin_locked(&mm->page_table_lock);
 777
 778	/* FIFO */
 779	pgtable = mm->pmd_huge_pte;
 780	if (list_empty(&pgtable->lru))
 781		mm->pmd_huge_pte = NULL;
 782	else {
 783		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
 784					      struct page, lru);
 785		list_del(&pgtable->lru);
 786	}
 787	return pgtable;
 788}
 789
 790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 791					struct vm_area_struct *vma,
 792					unsigned long address,
 793					pmd_t *pmd, pmd_t orig_pmd,
 794					struct page *page,
 795					unsigned long haddr)
 796{
 797	pgtable_t pgtable;
 798	pmd_t _pmd;
 799	int ret = 0, i;
 800	struct page **pages;
 801
 802	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 803			GFP_KERNEL);
 804	if (unlikely(!pages)) {
 805		ret |= VM_FAULT_OOM;
 806		goto out;
 807	}
 808
 809	for (i = 0; i < HPAGE_PMD_NR; i++) {
 810		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 811					       __GFP_OTHER_NODE,
 812					       vma, address, page_to_nid(page));
 813		if (unlikely(!pages[i] ||
 814			     mem_cgroup_newpage_charge(pages[i], mm,
 815						       GFP_KERNEL))) {
 816			if (pages[i])
 817				put_page(pages[i]);
 818			mem_cgroup_uncharge_start();
 819			while (--i >= 0) {
 820				mem_cgroup_uncharge_page(pages[i]);
 821				put_page(pages[i]);
 822			}
 823			mem_cgroup_uncharge_end();
 824			kfree(pages);
 825			ret |= VM_FAULT_OOM;
 826			goto out;
 827		}
 828	}
 829
 830	for (i = 0; i < HPAGE_PMD_NR; i++) {
 831		copy_user_highpage(pages[i], page + i,
 832				   haddr + PAGE_SHIFT*i, vma);
 833		__SetPageUptodate(pages[i]);
 834		cond_resched();
 835	}
 836
 837	spin_lock(&mm->page_table_lock);
 838	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 839		goto out_free_pages;
 840	VM_BUG_ON(!PageHead(page));
 841
 842	pmdp_clear_flush_notify(vma, haddr, pmd);
 843	/* leave pmd empty until pte is filled */
 844
 845	pgtable = get_pmd_huge_pte(mm);
 846	pmd_populate(mm, &_pmd, pgtable);
 847
 848	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 849		pte_t *pte, entry;
 850		entry = mk_pte(pages[i], vma->vm_page_prot);
 851		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 852		page_add_new_anon_rmap(pages[i], vma, haddr);
 853		pte = pte_offset_map(&_pmd, haddr);
 854		VM_BUG_ON(!pte_none(*pte));
 855		set_pte_at(mm, haddr, pte, entry);
 856		pte_unmap(pte);
 857	}
 858	kfree(pages);
 859
 860	mm->nr_ptes++;
 861	smp_wmb(); /* make pte visible before pmd */
 862	pmd_populate(mm, pmd, pgtable);
 863	page_remove_rmap(page);
 864	spin_unlock(&mm->page_table_lock);
 865
 866	ret |= VM_FAULT_WRITE;
 867	put_page(page);
 868
 869out:
 870	return ret;
 871
 872out_free_pages:
 873	spin_unlock(&mm->page_table_lock);
 874	mem_cgroup_uncharge_start();
 875	for (i = 0; i < HPAGE_PMD_NR; i++) {
 876		mem_cgroup_uncharge_page(pages[i]);
 877		put_page(pages[i]);
 878	}
 879	mem_cgroup_uncharge_end();
 880	kfree(pages);
 881	goto out;
 882}
 883
 884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 885			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
 886{
 887	int ret = 0;
 888	struct page *page, *new_page;
 889	unsigned long haddr;
 890
 891	VM_BUG_ON(!vma->anon_vma);
 892	spin_lock(&mm->page_table_lock);
 893	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 894		goto out_unlock;
 895
 896	page = pmd_page(orig_pmd);
 897	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
 898	haddr = address & HPAGE_PMD_MASK;
 899	if (page_mapcount(page) == 1) {
 900		pmd_t entry;
 901		entry = pmd_mkyoung(orig_pmd);
 902		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 903		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
 904			update_mmu_cache(vma, address, entry);
 905		ret |= VM_FAULT_WRITE;
 906		goto out_unlock;
 907	}
 908	get_page(page);
 909	spin_unlock(&mm->page_table_lock);
 910
 911	if (transparent_hugepage_enabled(vma) &&
 912	    !transparent_hugepage_debug_cow())
 913		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 914					      vma, haddr, numa_node_id(), 0);
 915	else
 916		new_page = NULL;
 917
 918	if (unlikely(!new_page)) {
 919		count_vm_event(THP_FAULT_FALLBACK);
 920		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
 921						   pmd, orig_pmd, page, haddr);
 
 
 922		put_page(page);
 923		goto out;
 924	}
 925	count_vm_event(THP_FAULT_ALLOC);
 926
 927	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
 928		put_page(new_page);
 
 929		put_page(page);
 930		ret |= VM_FAULT_OOM;
 931		goto out;
 932	}
 933
 934	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 935	__SetPageUptodate(new_page);
 936
 937	spin_lock(&mm->page_table_lock);
 938	put_page(page);
 939	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
 
 940		mem_cgroup_uncharge_page(new_page);
 941		put_page(new_page);
 
 942	} else {
 943		pmd_t entry;
 944		VM_BUG_ON(!PageHead(page));
 945		entry = mk_pmd(new_page, vma->vm_page_prot);
 946		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 947		entry = pmd_mkhuge(entry);
 948		pmdp_clear_flush_notify(vma, haddr, pmd);
 949		page_add_new_anon_rmap(new_page, vma, haddr);
 950		set_pmd_at(mm, haddr, pmd, entry);
 951		update_mmu_cache(vma, address, entry);
 952		page_remove_rmap(page);
 953		put_page(page);
 954		ret |= VM_FAULT_WRITE;
 955	}
 956out_unlock:
 957	spin_unlock(&mm->page_table_lock);
 958out:
 959	return ret;
 960}
 961
 962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
 963				   unsigned long addr,
 964				   pmd_t *pmd,
 965				   unsigned int flags)
 966{
 967	struct page *page = NULL;
 968
 969	assert_spin_locked(&mm->page_table_lock);
 970
 971	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 972		goto out;
 973
 974	page = pmd_page(*pmd);
 975	VM_BUG_ON(!PageHead(page));
 976	if (flags & FOLL_TOUCH) {
 977		pmd_t _pmd;
 978		/*
 979		 * We should set the dirty bit only for FOLL_WRITE but
 980		 * for now the dirty bit in the pmd is meaningless.
 981		 * And if the dirty bit will become meaningful and
 982		 * we'll only set it with FOLL_WRITE, an atomic
 983		 * set_bit will be required on the pmd to set the
 984		 * young bit, instead of the current set_pmd_at.
 985		 */
 986		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 987		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
 988	}
 989	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 990	VM_BUG_ON(!PageCompound(page));
 991	if (flags & FOLL_GET)
 992		get_page(page);
 993
 994out:
 995	return page;
 996}
 997
 998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 999		 pmd_t *pmd)
1000{
1001	int ret = 0;
1002
1003	spin_lock(&tlb->mm->page_table_lock);
1004	if (likely(pmd_trans_huge(*pmd))) {
1005		if (unlikely(pmd_trans_splitting(*pmd))) {
1006			spin_unlock(&tlb->mm->page_table_lock);
1007			wait_split_huge_page(vma->anon_vma,
1008					     pmd);
1009		} else {
1010			struct page *page;
1011			pgtable_t pgtable;
1012			pgtable = get_pmd_huge_pte(tlb->mm);
1013			page = pmd_page(*pmd);
1014			pmd_clear(pmd);
1015			page_remove_rmap(page);
1016			VM_BUG_ON(page_mapcount(page) < 0);
1017			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018			VM_BUG_ON(!PageHead(page));
1019			spin_unlock(&tlb->mm->page_table_lock);
1020			tlb_remove_page(tlb, page);
1021			pte_free(tlb->mm, pgtable);
1022			ret = 1;
1023		}
1024	} else
1025		spin_unlock(&tlb->mm->page_table_lock);
1026
 
 
 
1027	return ret;
1028}
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031		unsigned long addr, unsigned long end,
1032		unsigned char *vec)
1033{
1034	int ret = 0;
1035
1036	spin_lock(&vma->vm_mm->page_table_lock);
1037	if (likely(pmd_trans_huge(*pmd))) {
1038		ret = !pmd_trans_splitting(*pmd);
1039		spin_unlock(&vma->vm_mm->page_table_lock);
1040		if (unlikely(!ret))
1041			wait_split_huge_page(vma->anon_vma, pmd);
1042		else {
1043			/*
1044			 * All logical pages in the range are present
1045			 * if backed by a huge page.
1046			 */
1047			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048		}
1049	} else
1050		spin_unlock(&vma->vm_mm->page_table_lock);
 
 
 
1051
1052	return ret;
1053}
1054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056		unsigned long addr, pgprot_t newprot)
1057{
1058	struct mm_struct *mm = vma->vm_mm;
1059	int ret = 0;
1060
1061	spin_lock(&mm->page_table_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062	if (likely(pmd_trans_huge(*pmd))) {
1063		if (unlikely(pmd_trans_splitting(*pmd))) {
1064			spin_unlock(&mm->page_table_lock);
1065			wait_split_huge_page(vma->anon_vma, pmd);
 
1066		} else {
1067			pmd_t entry;
1068
1069			entry = pmdp_get_and_clear(mm, addr, pmd);
1070			entry = pmd_modify(entry, newprot);
1071			set_pmd_at(mm, addr, pmd, entry);
1072			spin_unlock(&vma->vm_mm->page_table_lock);
1073			flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074			ret = 1;
1075		}
1076	} else
1077		spin_unlock(&vma->vm_mm->page_table_lock);
1078
1079	return ret;
1080}
1081
1082pmd_t *page_check_address_pmd(struct page *page,
1083			      struct mm_struct *mm,
1084			      unsigned long address,
1085			      enum page_check_address_pmd_flag flag)
1086{
1087	pgd_t *pgd;
1088	pud_t *pud;
1089	pmd_t *pmd, *ret = NULL;
1090
1091	if (address & ~HPAGE_PMD_MASK)
1092		goto out;
1093
1094	pgd = pgd_offset(mm, address);
1095	if (!pgd_present(*pgd))
1096		goto out;
1097
1098	pud = pud_offset(pgd, address);
1099	if (!pud_present(*pud))
1100		goto out;
1101
1102	pmd = pmd_offset(pud, address);
1103	if (pmd_none(*pmd))
1104		goto out;
1105	if (pmd_page(*pmd) != page)
1106		goto out;
1107	/*
1108	 * split_vma() may create temporary aliased mappings. There is
1109	 * no risk as long as all huge pmd are found and have their
1110	 * splitting bit set before __split_huge_page_refcount
1111	 * runs. Finding the same huge pmd more than once during the
1112	 * same rmap walk is not a problem.
1113	 */
1114	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115	    pmd_trans_splitting(*pmd))
1116		goto out;
1117	if (pmd_trans_huge(*pmd)) {
1118		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119			  !pmd_trans_splitting(*pmd));
1120		ret = pmd;
1121	}
1122out:
1123	return ret;
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127				       struct vm_area_struct *vma,
1128				       unsigned long address)
1129{
1130	struct mm_struct *mm = vma->vm_mm;
1131	pmd_t *pmd;
1132	int ret = 0;
1133
1134	spin_lock(&mm->page_table_lock);
1135	pmd = page_check_address_pmd(page, mm, address,
1136				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137	if (pmd) {
1138		/*
1139		 * We can't temporarily set the pmd to null in order
1140		 * to split it, the pmd must remain marked huge at all
1141		 * times or the VM won't take the pmd_trans_huge paths
1142		 * and it won't wait on the anon_vma->root->mutex to
1143		 * serialize against split_huge_page*.
1144		 */
1145		pmdp_splitting_flush_notify(vma, address, pmd);
1146		ret = 1;
1147	}
1148	spin_unlock(&mm->page_table_lock);
1149
1150	return ret;
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
1154{
1155	int i;
1156	unsigned long head_index = page->index;
1157	struct zone *zone = page_zone(page);
1158	int zonestat;
 
1159
1160	/* prevent PageLRU to go away from under us, and freeze lru stats */
1161	spin_lock_irq(&zone->lru_lock);
 
 
1162	compound_lock(page);
 
 
1163
1164	for (i = 1; i < HPAGE_PMD_NR; i++) {
1165		struct page *page_tail = page + i;
1166
1167		/* tail_page->_count cannot change */
1168		atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169		BUG_ON(page_count(page) <= 0);
1170		atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171		BUG_ON(atomic_read(&page_tail->_count) <= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172
1173		/* after clearing PageTail the gup refcount can be released */
1174		smp_mb();
1175
1176		/*
1177		 * retain hwpoison flag of the poisoned tail page:
1178		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1179		 *   by the memory-failure.
1180		 */
1181		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182		page_tail->flags |= (page->flags &
1183				     ((1L << PG_referenced) |
1184				      (1L << PG_swapbacked) |
1185				      (1L << PG_mlocked) |
1186				      (1L << PG_uptodate)));
1187		page_tail->flags |= (1L << PG_dirty);
1188
1189		/*
1190		 * 1) clear PageTail before overwriting first_page
1191		 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192		 */
1193		smp_wmb();
1194
1195		/*
1196		 * __split_huge_page_splitting() already set the
1197		 * splitting bit in all pmd that could map this
1198		 * hugepage, that will ensure no CPU can alter the
1199		 * mapcount on the head page. The mapcount is only
1200		 * accounted in the head page and it has to be
1201		 * transferred to all tail pages in the below code. So
1202		 * for this code to be safe, the split the mapcount
1203		 * can't change. But that doesn't mean userland can't
1204		 * keep changing and reading the page contents while
1205		 * we transfer the mapcount, so the pmd splitting
1206		 * status is achieved setting a reserved bit in the
1207		 * pmd, not by clearing the present bit.
1208		*/
1209		BUG_ON(page_mapcount(page_tail));
1210		page_tail->_mapcount = page->_mapcount;
1211
1212		BUG_ON(page_tail->mapping);
1213		page_tail->mapping = page->mapping;
1214
1215		page_tail->index = ++head_index;
1216
1217		BUG_ON(!PageAnon(page_tail));
1218		BUG_ON(!PageUptodate(page_tail));
1219		BUG_ON(!PageDirty(page_tail));
1220		BUG_ON(!PageSwapBacked(page_tail));
1221
1222		mem_cgroup_split_huge_fixup(page, page_tail);
1223
1224		lru_add_page_tail(zone, page, page_tail);
1225	}
 
 
1226
1227	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1229
1230	/*
1231	 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232	 * so adjust those appropriately if this page is on the LRU.
1233	 */
1234	if (PageLRU(page)) {
1235		zonestat = NR_LRU_BASE + page_lru(page);
1236		__mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237	}
1238
1239	ClearPageCompound(page);
1240	compound_unlock(page);
1241	spin_unlock_irq(&zone->lru_lock);
1242
1243	for (i = 1; i < HPAGE_PMD_NR; i++) {
1244		struct page *page_tail = page + i;
1245		BUG_ON(page_count(page_tail) <= 0);
1246		/*
1247		 * Tail pages may be freed if there wasn't any mapping
1248		 * like if add_to_swap() is running on a lru page that
1249		 * had its mapping zapped. And freeing these pages
1250		 * requires taking the lru_lock so we do the put_page
1251		 * of the tail pages after the split is complete.
1252		 */
1253		put_page(page_tail);
1254	}
1255
1256	/*
1257	 * Only the head page (now become a regular page) is required
1258	 * to be pinned by the caller.
1259	 */
1260	BUG_ON(page_count(page) <= 0);
1261}
1262
1263static int __split_huge_page_map(struct page *page,
1264				 struct vm_area_struct *vma,
1265				 unsigned long address)
1266{
1267	struct mm_struct *mm = vma->vm_mm;
1268	pmd_t *pmd, _pmd;
1269	int ret = 0, i;
1270	pgtable_t pgtable;
1271	unsigned long haddr;
1272
1273	spin_lock(&mm->page_table_lock);
1274	pmd = page_check_address_pmd(page, mm, address,
1275				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276	if (pmd) {
1277		pgtable = get_pmd_huge_pte(mm);
1278		pmd_populate(mm, &_pmd, pgtable);
1279
1280		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281		     i++, haddr += PAGE_SIZE) {
1282			pte_t *pte, entry;
1283			BUG_ON(PageCompound(page+i));
1284			entry = mk_pte(page + i, vma->vm_page_prot);
1285			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286			if (!pmd_write(*pmd))
1287				entry = pte_wrprotect(entry);
1288			else
1289				BUG_ON(page_mapcount(page) != 1);
1290			if (!pmd_young(*pmd))
1291				entry = pte_mkold(entry);
1292			pte = pte_offset_map(&_pmd, haddr);
1293			BUG_ON(!pte_none(*pte));
1294			set_pte_at(mm, haddr, pte, entry);
1295			pte_unmap(pte);
1296		}
1297
1298		mm->nr_ptes++;
1299		smp_wmb(); /* make pte visible before pmd */
1300		/*
1301		 * Up to this point the pmd is present and huge and
1302		 * userland has the whole access to the hugepage
1303		 * during the split (which happens in place). If we
1304		 * overwrite the pmd with the not-huge version
1305		 * pointing to the pte here (which of course we could
1306		 * if all CPUs were bug free), userland could trigger
1307		 * a small page size TLB miss on the small sized TLB
1308		 * while the hugepage TLB entry is still established
1309		 * in the huge TLB. Some CPU doesn't like that. See
1310		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311		 * Erratum 383 on page 93. Intel should be safe but is
1312		 * also warns that it's only safe if the permission
1313		 * and cache attributes of the two entries loaded in
1314		 * the two TLB is identical (which should be the case
1315		 * here). But it is generally safer to never allow
1316		 * small and huge TLB entries for the same virtual
1317		 * address to be loaded simultaneously. So instead of
1318		 * doing "pmd_populate(); flush_tlb_range();" we first
1319		 * mark the current pmd notpresent (atomically because
1320		 * here the pmd_trans_huge and pmd_trans_splitting
1321		 * must remain set at all times on the pmd until the
1322		 * split is complete for this pmd), then we flush the
1323		 * SMP TLB and finally we write the non-huge version
1324		 * of the pmd entry with pmd_populate.
1325		 */
1326		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328		pmd_populate(mm, pmd, pgtable);
1329		ret = 1;
1330	}
1331	spin_unlock(&mm->page_table_lock);
1332
1333	return ret;
1334}
1335
1336/* must be called with anon_vma->root->mutex hold */
1337static void __split_huge_page(struct page *page,
1338			      struct anon_vma *anon_vma)
1339{
1340	int mapcount, mapcount2;
1341	struct anon_vma_chain *avc;
1342
1343	BUG_ON(!PageHead(page));
1344	BUG_ON(PageTail(page));
1345
1346	mapcount = 0;
1347	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348		struct vm_area_struct *vma = avc->vma;
1349		unsigned long addr = vma_address(page, vma);
1350		BUG_ON(is_vma_temporary_stack(vma));
1351		if (addr == -EFAULT)
1352			continue;
1353		mapcount += __split_huge_page_splitting(page, vma, addr);
1354	}
1355	/*
1356	 * It is critical that new vmas are added to the tail of the
1357	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358	 * and establishes a child pmd before
1359	 * __split_huge_page_splitting() freezes the parent pmd (so if
1360	 * we fail to prevent copy_huge_pmd() from running until the
1361	 * whole __split_huge_page() is complete), we will still see
1362	 * the newly established pmd of the child later during the
1363	 * walk, to be able to set it as pmd_trans_splitting too.
1364	 */
1365	if (mapcount != page_mapcount(page))
1366		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367		       mapcount, page_mapcount(page));
1368	BUG_ON(mapcount != page_mapcount(page));
1369
1370	__split_huge_page_refcount(page);
1371
1372	mapcount2 = 0;
1373	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374		struct vm_area_struct *vma = avc->vma;
1375		unsigned long addr = vma_address(page, vma);
1376		BUG_ON(is_vma_temporary_stack(vma));
1377		if (addr == -EFAULT)
1378			continue;
1379		mapcount2 += __split_huge_page_map(page, vma, addr);
1380	}
1381	if (mapcount != mapcount2)
1382		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383		       mapcount, mapcount2, page_mapcount(page));
1384	BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
1388{
1389	struct anon_vma *anon_vma;
1390	int ret = 1;
1391
1392	BUG_ON(!PageAnon(page));
1393	anon_vma = page_lock_anon_vma(page);
1394	if (!anon_vma)
1395		goto out;
1396	ret = 0;
1397	if (!PageCompound(page))
1398		goto out_unlock;
1399
1400	BUG_ON(!PageSwapBacked(page));
1401	__split_huge_page(page, anon_vma);
1402	count_vm_event(THP_SPLIT);
1403
1404	BUG_ON(PageCompound(page));
1405out_unlock:
1406	page_unlock_anon_vma(anon_vma);
1407out:
1408	return ret;
1409}
1410
1411#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1412		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1413
1414int hugepage_madvise(struct vm_area_struct *vma,
1415		     unsigned long *vm_flags, int advice)
1416{
1417	switch (advice) {
1418	case MADV_HUGEPAGE:
1419		/*
1420		 * Be somewhat over-protective like KSM for now!
1421		 */
1422		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1423			return -EINVAL;
1424		*vm_flags &= ~VM_NOHUGEPAGE;
1425		*vm_flags |= VM_HUGEPAGE;
1426		/*
1427		 * If the vma become good for khugepaged to scan,
1428		 * register it here without waiting a page fault that
1429		 * may not happen any time soon.
1430		 */
1431		if (unlikely(khugepaged_enter_vma_merge(vma)))
1432			return -ENOMEM;
1433		break;
1434	case MADV_NOHUGEPAGE:
1435		/*
1436		 * Be somewhat over-protective like KSM for now!
1437		 */
1438		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1439			return -EINVAL;
1440		*vm_flags &= ~VM_HUGEPAGE;
1441		*vm_flags |= VM_NOHUGEPAGE;
1442		/*
1443		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1444		 * this vma even if we leave the mm registered in khugepaged if
1445		 * it got registered before VM_NOHUGEPAGE was set.
1446		 */
1447		break;
1448	}
1449
1450	return 0;
1451}
1452
1453static int __init khugepaged_slab_init(void)
1454{
1455	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1456					  sizeof(struct mm_slot),
1457					  __alignof__(struct mm_slot), 0, NULL);
1458	if (!mm_slot_cache)
1459		return -ENOMEM;
1460
1461	return 0;
1462}
1463
1464static void __init khugepaged_slab_free(void)
1465{
1466	kmem_cache_destroy(mm_slot_cache);
1467	mm_slot_cache = NULL;
1468}
1469
1470static inline struct mm_slot *alloc_mm_slot(void)
1471{
1472	if (!mm_slot_cache)	/* initialization failed */
1473		return NULL;
1474	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1475}
1476
1477static inline void free_mm_slot(struct mm_slot *mm_slot)
1478{
1479	kmem_cache_free(mm_slot_cache, mm_slot);
1480}
1481
1482static int __init mm_slots_hash_init(void)
1483{
1484	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1485				GFP_KERNEL);
1486	if (!mm_slots_hash)
1487		return -ENOMEM;
1488	return 0;
1489}
1490
1491#if 0
1492static void __init mm_slots_hash_free(void)
1493{
1494	kfree(mm_slots_hash);
1495	mm_slots_hash = NULL;
1496}
1497#endif
1498
1499static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1500{
1501	struct mm_slot *mm_slot;
1502	struct hlist_head *bucket;
1503	struct hlist_node *node;
1504
1505	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1506				% MM_SLOTS_HASH_HEADS];
1507	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1508		if (mm == mm_slot->mm)
1509			return mm_slot;
1510	}
1511	return NULL;
1512}
1513
1514static void insert_to_mm_slots_hash(struct mm_struct *mm,
1515				    struct mm_slot *mm_slot)
1516{
1517	struct hlist_head *bucket;
1518
1519	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1520				% MM_SLOTS_HASH_HEADS];
1521	mm_slot->mm = mm;
1522	hlist_add_head(&mm_slot->hash, bucket);
1523}
1524
1525static inline int khugepaged_test_exit(struct mm_struct *mm)
1526{
1527	return atomic_read(&mm->mm_users) == 0;
1528}
1529
1530int __khugepaged_enter(struct mm_struct *mm)
1531{
1532	struct mm_slot *mm_slot;
1533	int wakeup;
1534
1535	mm_slot = alloc_mm_slot();
1536	if (!mm_slot)
1537		return -ENOMEM;
1538
1539	/* __khugepaged_exit() must not run from under us */
1540	VM_BUG_ON(khugepaged_test_exit(mm));
1541	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1542		free_mm_slot(mm_slot);
1543		return 0;
1544	}
1545
1546	spin_lock(&khugepaged_mm_lock);
1547	insert_to_mm_slots_hash(mm, mm_slot);
1548	/*
1549	 * Insert just behind the scanning cursor, to let the area settle
1550	 * down a little.
1551	 */
1552	wakeup = list_empty(&khugepaged_scan.mm_head);
1553	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1554	spin_unlock(&khugepaged_mm_lock);
1555
1556	atomic_inc(&mm->mm_count);
1557	if (wakeup)
1558		wake_up_interruptible(&khugepaged_wait);
1559
1560	return 0;
1561}
1562
1563int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1564{
1565	unsigned long hstart, hend;
1566	if (!vma->anon_vma)
1567		/*
1568		 * Not yet faulted in so we will register later in the
1569		 * page fault if needed.
1570		 */
1571		return 0;
1572	if (vma->vm_ops)
1573		/* khugepaged not yet working on file or special mappings */
1574		return 0;
1575	/*
1576	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1577	 * true too, verify it here.
1578	 */
1579	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1580	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1581	hend = vma->vm_end & HPAGE_PMD_MASK;
1582	if (hstart < hend)
1583		return khugepaged_enter(vma);
1584	return 0;
1585}
1586
1587void __khugepaged_exit(struct mm_struct *mm)
1588{
1589	struct mm_slot *mm_slot;
1590	int free = 0;
1591
1592	spin_lock(&khugepaged_mm_lock);
1593	mm_slot = get_mm_slot(mm);
1594	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1595		hlist_del(&mm_slot->hash);
1596		list_del(&mm_slot->mm_node);
1597		free = 1;
1598	}
1599	spin_unlock(&khugepaged_mm_lock);
1600
1601	if (free) {
1602		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1603		free_mm_slot(mm_slot);
1604		mmdrop(mm);
1605	} else if (mm_slot) {
1606		/*
1607		 * This is required to serialize against
1608		 * khugepaged_test_exit() (which is guaranteed to run
1609		 * under mmap sem read mode). Stop here (after we
1610		 * return all pagetables will be destroyed) until
1611		 * khugepaged has finished working on the pagetables
1612		 * under the mmap_sem.
1613		 */
1614		down_write(&mm->mmap_sem);
1615		up_write(&mm->mmap_sem);
1616	}
1617}
1618
1619static void release_pte_page(struct page *page)
1620{
1621	/* 0 stands for page_is_file_cache(page) == false */
1622	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1623	unlock_page(page);
1624	putback_lru_page(page);
1625}
1626
1627static void release_pte_pages(pte_t *pte, pte_t *_pte)
1628{
1629	while (--_pte >= pte) {
1630		pte_t pteval = *_pte;
1631		if (!pte_none(pteval))
1632			release_pte_page(pte_page(pteval));
1633	}
1634}
1635
1636static void release_all_pte_pages(pte_t *pte)
1637{
1638	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1639}
1640
1641static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1642					unsigned long address,
1643					pte_t *pte)
1644{
1645	struct page *page;
1646	pte_t *_pte;
1647	int referenced = 0, isolated = 0, none = 0;
1648	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1649	     _pte++, address += PAGE_SIZE) {
1650		pte_t pteval = *_pte;
1651		if (pte_none(pteval)) {
1652			if (++none <= khugepaged_max_ptes_none)
1653				continue;
1654			else {
1655				release_pte_pages(pte, _pte);
1656				goto out;
1657			}
1658		}
1659		if (!pte_present(pteval) || !pte_write(pteval)) {
1660			release_pte_pages(pte, _pte);
1661			goto out;
1662		}
1663		page = vm_normal_page(vma, address, pteval);
1664		if (unlikely(!page)) {
1665			release_pte_pages(pte, _pte);
1666			goto out;
1667		}
1668		VM_BUG_ON(PageCompound(page));
1669		BUG_ON(!PageAnon(page));
1670		VM_BUG_ON(!PageSwapBacked(page));
1671
1672		/* cannot use mapcount: can't collapse if there's a gup pin */
1673		if (page_count(page) != 1) {
1674			release_pte_pages(pte, _pte);
1675			goto out;
1676		}
1677		/*
1678		 * We can do it before isolate_lru_page because the
1679		 * page can't be freed from under us. NOTE: PG_lock
1680		 * is needed to serialize against split_huge_page
1681		 * when invoked from the VM.
1682		 */
1683		if (!trylock_page(page)) {
1684			release_pte_pages(pte, _pte);
1685			goto out;
1686		}
1687		/*
1688		 * Isolate the page to avoid collapsing an hugepage
1689		 * currently in use by the VM.
1690		 */
1691		if (isolate_lru_page(page)) {
1692			unlock_page(page);
1693			release_pte_pages(pte, _pte);
1694			goto out;
1695		}
1696		/* 0 stands for page_is_file_cache(page) == false */
1697		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698		VM_BUG_ON(!PageLocked(page));
1699		VM_BUG_ON(PageLRU(page));
1700
1701		/* If there is no mapped pte young don't collapse the page */
1702		if (pte_young(pteval) || PageReferenced(page) ||
1703		    mmu_notifier_test_young(vma->vm_mm, address))
1704			referenced = 1;
1705	}
1706	if (unlikely(!referenced))
1707		release_all_pte_pages(pte);
1708	else
1709		isolated = 1;
1710out:
1711	return isolated;
1712}
1713
1714static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1715				      struct vm_area_struct *vma,
1716				      unsigned long address,
1717				      spinlock_t *ptl)
1718{
1719	pte_t *_pte;
1720	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1721		pte_t pteval = *_pte;
1722		struct page *src_page;
1723
1724		if (pte_none(pteval)) {
1725			clear_user_highpage(page, address);
1726			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1727		} else {
1728			src_page = pte_page(pteval);
1729			copy_user_highpage(page, src_page, address, vma);
1730			VM_BUG_ON(page_mapcount(src_page) != 1);
1731			VM_BUG_ON(page_count(src_page) != 2);
1732			release_pte_page(src_page);
1733			/*
1734			 * ptl mostly unnecessary, but preempt has to
1735			 * be disabled to update the per-cpu stats
1736			 * inside page_remove_rmap().
1737			 */
1738			spin_lock(ptl);
1739			/*
1740			 * paravirt calls inside pte_clear here are
1741			 * superfluous.
1742			 */
1743			pte_clear(vma->vm_mm, address, _pte);
1744			page_remove_rmap(src_page);
1745			spin_unlock(ptl);
1746			free_page_and_swap_cache(src_page);
1747		}
1748
1749		address += PAGE_SIZE;
1750		page++;
1751	}
1752}
1753
1754static void collapse_huge_page(struct mm_struct *mm,
1755			       unsigned long address,
1756			       struct page **hpage,
1757			       struct vm_area_struct *vma,
1758			       int node)
1759{
1760	pgd_t *pgd;
1761	pud_t *pud;
1762	pmd_t *pmd, _pmd;
1763	pte_t *pte;
1764	pgtable_t pgtable;
1765	struct page *new_page;
1766	spinlock_t *ptl;
1767	int isolated;
1768	unsigned long hstart, hend;
1769
1770	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1771#ifndef CONFIG_NUMA
1772	up_read(&mm->mmap_sem);
1773	VM_BUG_ON(!*hpage);
1774	new_page = *hpage;
1775#else
1776	VM_BUG_ON(*hpage);
1777	/*
1778	 * Allocate the page while the vma is still valid and under
1779	 * the mmap_sem read mode so there is no memory allocation
1780	 * later when we take the mmap_sem in write mode. This is more
1781	 * friendly behavior (OTOH it may actually hide bugs) to
1782	 * filesystems in userland with daemons allocating memory in
1783	 * the userland I/O paths.  Allocating memory with the
1784	 * mmap_sem in read mode is good idea also to allow greater
1785	 * scalability.
1786	 */
1787	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1788				      node, __GFP_OTHER_NODE);
1789
1790	/*
1791	 * After allocating the hugepage, release the mmap_sem read lock in
1792	 * preparation for taking it in write mode.
1793	 */
1794	up_read(&mm->mmap_sem);
1795	if (unlikely(!new_page)) {
1796		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1797		*hpage = ERR_PTR(-ENOMEM);
1798		return;
1799	}
1800#endif
1801
1802	count_vm_event(THP_COLLAPSE_ALLOC);
1803	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1804#ifdef CONFIG_NUMA
1805		put_page(new_page);
1806#endif
1807		return;
1808	}
1809
1810	/*
1811	 * Prevent all access to pagetables with the exception of
1812	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1813	 * handled by the anon_vma lock + PG_lock.
1814	 */
1815	down_write(&mm->mmap_sem);
1816	if (unlikely(khugepaged_test_exit(mm)))
1817		goto out;
1818
1819	vma = find_vma(mm, address);
1820	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1821	hend = vma->vm_end & HPAGE_PMD_MASK;
1822	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1823		goto out;
1824
1825	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1826	    (vma->vm_flags & VM_NOHUGEPAGE))
1827		goto out;
1828
1829	if (!vma->anon_vma || vma->vm_ops)
1830		goto out;
1831	if (is_vma_temporary_stack(vma))
1832		goto out;
1833	/*
1834	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1835	 * true too, verify it here.
1836	 */
1837	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1838
1839	pgd = pgd_offset(mm, address);
1840	if (!pgd_present(*pgd))
1841		goto out;
1842
1843	pud = pud_offset(pgd, address);
1844	if (!pud_present(*pud))
1845		goto out;
1846
1847	pmd = pmd_offset(pud, address);
1848	/* pmd can't go away or become huge under us */
1849	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1850		goto out;
1851
1852	anon_vma_lock(vma->anon_vma);
1853
1854	pte = pte_offset_map(pmd, address);
1855	ptl = pte_lockptr(mm, pmd);
1856
1857	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1858	/*
1859	 * After this gup_fast can't run anymore. This also removes
1860	 * any huge TLB entry from the CPU so we won't allow
1861	 * huge and small TLB entries for the same virtual address
1862	 * to avoid the risk of CPU bugs in that area.
1863	 */
1864	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1865	spin_unlock(&mm->page_table_lock);
1866
1867	spin_lock(ptl);
1868	isolated = __collapse_huge_page_isolate(vma, address, pte);
1869	spin_unlock(ptl);
1870
1871	if (unlikely(!isolated)) {
1872		pte_unmap(pte);
1873		spin_lock(&mm->page_table_lock);
1874		BUG_ON(!pmd_none(*pmd));
1875		set_pmd_at(mm, address, pmd, _pmd);
1876		spin_unlock(&mm->page_table_lock);
1877		anon_vma_unlock(vma->anon_vma);
1878		goto out;
1879	}
1880
1881	/*
1882	 * All pages are isolated and locked so anon_vma rmap
1883	 * can't run anymore.
1884	 */
1885	anon_vma_unlock(vma->anon_vma);
1886
1887	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1888	pte_unmap(pte);
1889	__SetPageUptodate(new_page);
1890	pgtable = pmd_pgtable(_pmd);
1891	VM_BUG_ON(page_count(pgtable) != 1);
1892	VM_BUG_ON(page_mapcount(pgtable) != 0);
1893
1894	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1895	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1896	_pmd = pmd_mkhuge(_pmd);
1897
1898	/*
1899	 * spin_lock() below is not the equivalent of smp_wmb(), so
1900	 * this is needed to avoid the copy_huge_page writes to become
1901	 * visible after the set_pmd_at() write.
1902	 */
1903	smp_wmb();
1904
1905	spin_lock(&mm->page_table_lock);
1906	BUG_ON(!pmd_none(*pmd));
1907	page_add_new_anon_rmap(new_page, vma, address);
1908	set_pmd_at(mm, address, pmd, _pmd);
1909	update_mmu_cache(vma, address, entry);
1910	prepare_pmd_huge_pte(pgtable, mm);
1911	mm->nr_ptes--;
1912	spin_unlock(&mm->page_table_lock);
1913
1914#ifndef CONFIG_NUMA
1915	*hpage = NULL;
1916#endif
1917	khugepaged_pages_collapsed++;
1918out_up_write:
1919	up_write(&mm->mmap_sem);
1920	return;
1921
1922out:
1923	mem_cgroup_uncharge_page(new_page);
1924#ifdef CONFIG_NUMA
1925	put_page(new_page);
1926#endif
1927	goto out_up_write;
1928}
1929
1930static int khugepaged_scan_pmd(struct mm_struct *mm,
1931			       struct vm_area_struct *vma,
1932			       unsigned long address,
1933			       struct page **hpage)
1934{
1935	pgd_t *pgd;
1936	pud_t *pud;
1937	pmd_t *pmd;
1938	pte_t *pte, *_pte;
1939	int ret = 0, referenced = 0, none = 0;
1940	struct page *page;
1941	unsigned long _address;
1942	spinlock_t *ptl;
1943	int node = -1;
1944
1945	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1946
1947	pgd = pgd_offset(mm, address);
1948	if (!pgd_present(*pgd))
1949		goto out;
1950
1951	pud = pud_offset(pgd, address);
1952	if (!pud_present(*pud))
1953		goto out;
1954
1955	pmd = pmd_offset(pud, address);
1956	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1957		goto out;
1958
1959	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1960	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1961	     _pte++, _address += PAGE_SIZE) {
1962		pte_t pteval = *_pte;
1963		if (pte_none(pteval)) {
1964			if (++none <= khugepaged_max_ptes_none)
1965				continue;
1966			else
1967				goto out_unmap;
1968		}
1969		if (!pte_present(pteval) || !pte_write(pteval))
1970			goto out_unmap;
1971		page = vm_normal_page(vma, _address, pteval);
1972		if (unlikely(!page))
1973			goto out_unmap;
1974		/*
1975		 * Chose the node of the first page. This could
1976		 * be more sophisticated and look at more pages,
1977		 * but isn't for now.
1978		 */
1979		if (node == -1)
1980			node = page_to_nid(page);
1981		VM_BUG_ON(PageCompound(page));
1982		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1983			goto out_unmap;
1984		/* cannot use mapcount: can't collapse if there's a gup pin */
1985		if (page_count(page) != 1)
1986			goto out_unmap;
1987		if (pte_young(pteval) || PageReferenced(page) ||
1988		    mmu_notifier_test_young(vma->vm_mm, address))
1989			referenced = 1;
1990	}
1991	if (referenced)
1992		ret = 1;
1993out_unmap:
1994	pte_unmap_unlock(pte, ptl);
1995	if (ret)
1996		/* collapse_huge_page will return with the mmap_sem released */
1997		collapse_huge_page(mm, address, hpage, vma, node);
1998out:
1999	return ret;
2000}
2001
2002static void collect_mm_slot(struct mm_slot *mm_slot)
2003{
2004	struct mm_struct *mm = mm_slot->mm;
2005
2006	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2007
2008	if (khugepaged_test_exit(mm)) {
2009		/* free mm_slot */
2010		hlist_del(&mm_slot->hash);
2011		list_del(&mm_slot->mm_node);
2012
2013		/*
2014		 * Not strictly needed because the mm exited already.
2015		 *
2016		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2017		 */
2018
2019		/* khugepaged_mm_lock actually not necessary for the below */
2020		free_mm_slot(mm_slot);
2021		mmdrop(mm);
2022	}
2023}
2024
2025static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2026					    struct page **hpage)
 
 
2027{
2028	struct mm_slot *mm_slot;
2029	struct mm_struct *mm;
2030	struct vm_area_struct *vma;
2031	int progress = 0;
2032
2033	VM_BUG_ON(!pages);
2034	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2035
2036	if (khugepaged_scan.mm_slot)
2037		mm_slot = khugepaged_scan.mm_slot;
2038	else {
2039		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2040				     struct mm_slot, mm_node);
2041		khugepaged_scan.address = 0;
2042		khugepaged_scan.mm_slot = mm_slot;
2043	}
2044	spin_unlock(&khugepaged_mm_lock);
2045
2046	mm = mm_slot->mm;
2047	down_read(&mm->mmap_sem);
2048	if (unlikely(khugepaged_test_exit(mm)))
2049		vma = NULL;
2050	else
2051		vma = find_vma(mm, khugepaged_scan.address);
2052
2053	progress++;
2054	for (; vma; vma = vma->vm_next) {
2055		unsigned long hstart, hend;
2056
2057		cond_resched();
2058		if (unlikely(khugepaged_test_exit(mm))) {
2059			progress++;
2060			break;
2061		}
2062
2063		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2064		     !khugepaged_always()) ||
2065		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2066		skip:
2067			progress++;
2068			continue;
2069		}
2070		if (!vma->anon_vma || vma->vm_ops)
2071			goto skip;
2072		if (is_vma_temporary_stack(vma))
2073			goto skip;
2074		/*
2075		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2076		 * must be true too, verify it here.
2077		 */
2078		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2079			  vma->vm_flags & VM_NO_THP);
2080
2081		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2082		hend = vma->vm_end & HPAGE_PMD_MASK;
2083		if (hstart >= hend)
2084			goto skip;
2085		if (khugepaged_scan.address > hend)
2086			goto skip;
2087		if (khugepaged_scan.address < hstart)
2088			khugepaged_scan.address = hstart;
2089		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2090
2091		while (khugepaged_scan.address < hend) {
2092			int ret;
2093			cond_resched();
2094			if (unlikely(khugepaged_test_exit(mm)))
2095				goto breakouterloop;
2096
2097			VM_BUG_ON(khugepaged_scan.address < hstart ||
2098				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2099				  hend);
2100			ret = khugepaged_scan_pmd(mm, vma,
2101						  khugepaged_scan.address,
2102						  hpage);
2103			/* move to next address */
2104			khugepaged_scan.address += HPAGE_PMD_SIZE;
2105			progress += HPAGE_PMD_NR;
2106			if (ret)
2107				/* we released mmap_sem so break loop */
2108				goto breakouterloop_mmap_sem;
2109			if (progress >= pages)
2110				goto breakouterloop;
2111		}
2112	}
2113breakouterloop:
2114	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2115breakouterloop_mmap_sem:
2116
2117	spin_lock(&khugepaged_mm_lock);
2118	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2119	/*
2120	 * Release the current mm_slot if this mm is about to die, or
2121	 * if we scanned all vmas of this mm.
2122	 */
2123	if (khugepaged_test_exit(mm) || !vma) {
2124		/*
2125		 * Make sure that if mm_users is reaching zero while
2126		 * khugepaged runs here, khugepaged_exit will find
2127		 * mm_slot not pointing to the exiting mm.
2128		 */
2129		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2130			khugepaged_scan.mm_slot = list_entry(
2131				mm_slot->mm_node.next,
2132				struct mm_slot, mm_node);
2133			khugepaged_scan.address = 0;
2134		} else {
2135			khugepaged_scan.mm_slot = NULL;
2136			khugepaged_full_scans++;
2137		}
2138
2139		collect_mm_slot(mm_slot);
2140	}
2141
2142	return progress;
2143}
2144
2145static int khugepaged_has_work(void)
2146{
2147	return !list_empty(&khugepaged_scan.mm_head) &&
2148		khugepaged_enabled();
2149}
2150
2151static int khugepaged_wait_event(void)
2152{
2153	return !list_empty(&khugepaged_scan.mm_head) ||
2154		!khugepaged_enabled();
2155}
2156
2157static void khugepaged_do_scan(struct page **hpage)
2158{
2159	unsigned int progress = 0, pass_through_head = 0;
2160	unsigned int pages = khugepaged_pages_to_scan;
2161
2162	barrier(); /* write khugepaged_pages_to_scan to local stack */
2163
2164	while (progress < pages) {
2165		cond_resched();
2166
2167#ifndef CONFIG_NUMA
2168		if (!*hpage) {
2169			*hpage = alloc_hugepage(khugepaged_defrag());
2170			if (unlikely(!*hpage)) {
2171				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2172				break;
2173			}
2174			count_vm_event(THP_COLLAPSE_ALLOC);
2175		}
2176#else
2177		if (IS_ERR(*hpage))
2178			break;
2179#endif
2180
2181		if (unlikely(kthread_should_stop() || freezing(current)))
2182			break;
2183
2184		spin_lock(&khugepaged_mm_lock);
2185		if (!khugepaged_scan.mm_slot)
2186			pass_through_head++;
2187		if (khugepaged_has_work() &&
2188		    pass_through_head < 2)
2189			progress += khugepaged_scan_mm_slot(pages - progress,
2190							    hpage);
2191		else
2192			progress = pages;
2193		spin_unlock(&khugepaged_mm_lock);
2194	}
2195}
2196
2197static void khugepaged_alloc_sleep(void)
2198{
2199	DEFINE_WAIT(wait);
2200	add_wait_queue(&khugepaged_wait, &wait);
2201	schedule_timeout_interruptible(
2202		msecs_to_jiffies(
2203			khugepaged_alloc_sleep_millisecs));
2204	remove_wait_queue(&khugepaged_wait, &wait);
2205}
2206
2207#ifndef CONFIG_NUMA
2208static struct page *khugepaged_alloc_hugepage(void)
2209{
2210	struct page *hpage;
2211
2212	do {
2213		hpage = alloc_hugepage(khugepaged_defrag());
2214		if (!hpage) {
2215			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2216			khugepaged_alloc_sleep();
2217		} else
2218			count_vm_event(THP_COLLAPSE_ALLOC);
2219	} while (unlikely(!hpage) &&
2220		 likely(khugepaged_enabled()));
2221	return hpage;
2222}
2223#endif
2224
2225static void khugepaged_loop(void)
2226{
2227	struct page *hpage;
2228
2229#ifdef CONFIG_NUMA
2230	hpage = NULL;
2231#endif
2232	while (likely(khugepaged_enabled())) {
2233#ifndef CONFIG_NUMA
2234		hpage = khugepaged_alloc_hugepage();
2235		if (unlikely(!hpage))
2236			break;
2237#else
2238		if (IS_ERR(hpage)) {
2239			khugepaged_alloc_sleep();
2240			hpage = NULL;
2241		}
2242#endif
2243
2244		khugepaged_do_scan(&hpage);
2245#ifndef CONFIG_NUMA
2246		if (hpage)
2247			put_page(hpage);
2248#endif
2249		try_to_freeze();
2250		if (unlikely(kthread_should_stop()))
2251			break;
2252		if (khugepaged_has_work()) {
2253			DEFINE_WAIT(wait);
2254			if (!khugepaged_scan_sleep_millisecs)
2255				continue;
2256			add_wait_queue(&khugepaged_wait, &wait);
2257			schedule_timeout_interruptible(
2258				msecs_to_jiffies(
2259					khugepaged_scan_sleep_millisecs));
2260			remove_wait_queue(&khugepaged_wait, &wait);
2261		} else if (khugepaged_enabled())
2262			wait_event_freezable(khugepaged_wait,
2263					     khugepaged_wait_event());
2264	}
2265}
2266
2267static int khugepaged(void *none)
2268{
2269	struct mm_slot *mm_slot;
2270
2271	set_freezable();
2272	set_user_nice(current, 19);
2273
2274	/* serialize with start_khugepaged() */
2275	mutex_lock(&khugepaged_mutex);
2276
2277	for (;;) {
2278		mutex_unlock(&khugepaged_mutex);
2279		VM_BUG_ON(khugepaged_thread != current);
2280		khugepaged_loop();
2281		VM_BUG_ON(khugepaged_thread != current);
2282
2283		mutex_lock(&khugepaged_mutex);
2284		if (!khugepaged_enabled())
2285			break;
2286		if (unlikely(kthread_should_stop()))
2287			break;
2288	}
2289
2290	spin_lock(&khugepaged_mm_lock);
2291	mm_slot = khugepaged_scan.mm_slot;
2292	khugepaged_scan.mm_slot = NULL;
2293	if (mm_slot)
2294		collect_mm_slot(mm_slot);
2295	spin_unlock(&khugepaged_mm_lock);
2296
2297	khugepaged_thread = NULL;
2298	mutex_unlock(&khugepaged_mutex);
2299
2300	return 0;
2301}
2302
2303void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2304{
2305	struct page *page;
2306
2307	spin_lock(&mm->page_table_lock);
2308	if (unlikely(!pmd_trans_huge(*pmd))) {
2309		spin_unlock(&mm->page_table_lock);
2310		return;
2311	}
2312	page = pmd_page(*pmd);
2313	VM_BUG_ON(!page_count(page));
2314	get_page(page);
2315	spin_unlock(&mm->page_table_lock);
2316
2317	split_huge_page(page);
2318
2319	put_page(page);
2320	BUG_ON(pmd_trans_huge(*pmd));
2321}
2322
2323static void split_huge_page_address(struct mm_struct *mm,
2324				    unsigned long address)
2325{
2326	pgd_t *pgd;
2327	pud_t *pud;
2328	pmd_t *pmd;
2329
2330	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2331
2332	pgd = pgd_offset(mm, address);
2333	if (!pgd_present(*pgd))
2334		return;
2335
2336	pud = pud_offset(pgd, address);
2337	if (!pud_present(*pud))
2338		return;
2339
2340	pmd = pmd_offset(pud, address);
2341	if (!pmd_present(*pmd))
2342		return;
2343	/*
2344	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2345	 * materialize from under us.
2346	 */
2347	split_huge_page_pmd(mm, pmd);
2348}
2349
2350void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2351			     unsigned long start,
2352			     unsigned long end,
2353			     long adjust_next)
2354{
2355	/*
2356	 * If the new start address isn't hpage aligned and it could
2357	 * previously contain an hugepage: check if we need to split
2358	 * an huge pmd.
2359	 */
2360	if (start & ~HPAGE_PMD_MASK &&
2361	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2362	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2363		split_huge_page_address(vma->vm_mm, start);
2364
2365	/*
2366	 * If the new end address isn't hpage aligned and it could
2367	 * previously contain an hugepage: check if we need to split
2368	 * an huge pmd.
2369	 */
2370	if (end & ~HPAGE_PMD_MASK &&
2371	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2372	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2373		split_huge_page_address(vma->vm_mm, end);
2374
2375	/*
2376	 * If we're also updating the vma->vm_next->vm_start, if the new
2377	 * vm_next->vm_start isn't page aligned and it could previously
2378	 * contain an hugepage: check if we need to split an huge pmd.
2379	 */
2380	if (adjust_next > 0) {
2381		struct vm_area_struct *next = vma->vm_next;
2382		unsigned long nstart = next->vm_start;
2383		nstart += adjust_next << PAGE_SHIFT;
2384		if (nstart & ~HPAGE_PMD_MASK &&
2385		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2386		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2387			split_huge_page_address(next->vm_mm, nstart);
2388	}
2389}
v3.5.6
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
  15#include <linux/mm_inline.h>
  16#include <linux/kthread.h>
  17#include <linux/khugepaged.h>
  18#include <linux/freezer.h>
  19#include <linux/mman.h>
  20#include <asm/tlb.h>
  21#include <asm/pgalloc.h>
  22#include "internal.h"
  23
  24/*
  25 * By default transparent hugepage support is enabled for all mappings
  26 * and khugepaged scans all mappings. Defrag is only invoked by
  27 * khugepaged hugepage allocations and by page faults inside
  28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29 * allocations.
  30 */
  31unsigned long transparent_hugepage_flags __read_mostly =
  32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34#endif
  35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37#endif
  38	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  40
  41/* default scan 8*512 pte (or vmas) every 30 second */
  42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  43static unsigned int khugepaged_pages_collapsed;
  44static unsigned int khugepaged_full_scans;
  45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  46/* during fragmentation poll the hugepage allocator once every minute */
  47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  48static struct task_struct *khugepaged_thread __read_mostly;
  49static DEFINE_MUTEX(khugepaged_mutex);
  50static DEFINE_SPINLOCK(khugepaged_mm_lock);
  51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  52/*
  53 * default collapse hugepages if there is at least one pte mapped like
  54 * it would have happened if the vma was large enough during page
  55 * fault.
  56 */
  57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  58
  59static int khugepaged(void *none);
  60static int mm_slots_hash_init(void);
  61static int khugepaged_slab_init(void);
  62static void khugepaged_slab_free(void);
  63
  64#define MM_SLOTS_HASH_HEADS 1024
  65static struct hlist_head *mm_slots_hash __read_mostly;
  66static struct kmem_cache *mm_slot_cache __read_mostly;
  67
  68/**
  69 * struct mm_slot - hash lookup from mm to mm_slot
  70 * @hash: hash collision list
  71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72 * @mm: the mm that this information is valid for
  73 */
  74struct mm_slot {
  75	struct hlist_node hash;
  76	struct list_head mm_node;
  77	struct mm_struct *mm;
  78};
  79
  80/**
  81 * struct khugepaged_scan - cursor for scanning
  82 * @mm_head: the head of the mm list to scan
  83 * @mm_slot: the current mm_slot we are scanning
  84 * @address: the next address inside that to be scanned
  85 *
  86 * There is only the one khugepaged_scan instance of this cursor structure.
  87 */
  88struct khugepaged_scan {
  89	struct list_head mm_head;
  90	struct mm_slot *mm_slot;
  91	unsigned long address;
  92};
  93static struct khugepaged_scan khugepaged_scan = {
  94	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  95};
  96
  97
  98static int set_recommended_min_free_kbytes(void)
  99{
 100	struct zone *zone;
 101	int nr_zones = 0;
 102	unsigned long recommended_min;
 103	extern int min_free_kbytes;
 104
 105	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 106		      &transparent_hugepage_flags) &&
 107	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 108		      &transparent_hugepage_flags))
 109		return 0;
 110
 111	for_each_populated_zone(zone)
 112		nr_zones++;
 113
 114	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 115	recommended_min = pageblock_nr_pages * nr_zones * 2;
 116
 117	/*
 118	 * Make sure that on average at least two pageblocks are almost free
 119	 * of another type, one for a migratetype to fall back to and a
 120	 * second to avoid subsequent fallbacks of other types There are 3
 121	 * MIGRATE_TYPES we care about.
 122	 */
 123	recommended_min += pageblock_nr_pages * nr_zones *
 124			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 125
 126	/* don't ever allow to reserve more than 5% of the lowmem */
 127	recommended_min = min(recommended_min,
 128			      (unsigned long) nr_free_buffer_pages() / 20);
 129	recommended_min <<= (PAGE_SHIFT-10);
 130
 131	if (recommended_min > min_free_kbytes)
 132		min_free_kbytes = recommended_min;
 133	setup_per_zone_wmarks();
 134	return 0;
 135}
 136late_initcall(set_recommended_min_free_kbytes);
 137
 138static int start_khugepaged(void)
 139{
 140	int err = 0;
 141	if (khugepaged_enabled()) {
 142		int wakeup;
 143		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
 144			err = -ENOMEM;
 145			goto out;
 146		}
 147		mutex_lock(&khugepaged_mutex);
 148		if (!khugepaged_thread)
 149			khugepaged_thread = kthread_run(khugepaged, NULL,
 150							"khugepaged");
 151		if (unlikely(IS_ERR(khugepaged_thread))) {
 152			printk(KERN_ERR
 153			       "khugepaged: kthread_run(khugepaged) failed\n");
 154			err = PTR_ERR(khugepaged_thread);
 155			khugepaged_thread = NULL;
 156		}
 157		wakeup = !list_empty(&khugepaged_scan.mm_head);
 158		mutex_unlock(&khugepaged_mutex);
 159		if (wakeup)
 160			wake_up_interruptible(&khugepaged_wait);
 161
 162		set_recommended_min_free_kbytes();
 163	} else
 164		/* wakeup to exit */
 165		wake_up_interruptible(&khugepaged_wait);
 166out:
 167	return err;
 168}
 169
 170#ifdef CONFIG_SYSFS
 171
 172static ssize_t double_flag_show(struct kobject *kobj,
 173				struct kobj_attribute *attr, char *buf,
 174				enum transparent_hugepage_flag enabled,
 175				enum transparent_hugepage_flag req_madv)
 176{
 177	if (test_bit(enabled, &transparent_hugepage_flags)) {
 178		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 179		return sprintf(buf, "[always] madvise never\n");
 180	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 181		return sprintf(buf, "always [madvise] never\n");
 182	else
 183		return sprintf(buf, "always madvise [never]\n");
 184}
 185static ssize_t double_flag_store(struct kobject *kobj,
 186				 struct kobj_attribute *attr,
 187				 const char *buf, size_t count,
 188				 enum transparent_hugepage_flag enabled,
 189				 enum transparent_hugepage_flag req_madv)
 190{
 191	if (!memcmp("always", buf,
 192		    min(sizeof("always")-1, count))) {
 193		set_bit(enabled, &transparent_hugepage_flags);
 194		clear_bit(req_madv, &transparent_hugepage_flags);
 195	} else if (!memcmp("madvise", buf,
 196			   min(sizeof("madvise")-1, count))) {
 197		clear_bit(enabled, &transparent_hugepage_flags);
 198		set_bit(req_madv, &transparent_hugepage_flags);
 199	} else if (!memcmp("never", buf,
 200			   min(sizeof("never")-1, count))) {
 201		clear_bit(enabled, &transparent_hugepage_flags);
 202		clear_bit(req_madv, &transparent_hugepage_flags);
 203	} else
 204		return -EINVAL;
 205
 206	return count;
 207}
 208
 209static ssize_t enabled_show(struct kobject *kobj,
 210			    struct kobj_attribute *attr, char *buf)
 211{
 212	return double_flag_show(kobj, attr, buf,
 213				TRANSPARENT_HUGEPAGE_FLAG,
 214				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 215}
 216static ssize_t enabled_store(struct kobject *kobj,
 217			     struct kobj_attribute *attr,
 218			     const char *buf, size_t count)
 219{
 220	ssize_t ret;
 221
 222	ret = double_flag_store(kobj, attr, buf, count,
 223				TRANSPARENT_HUGEPAGE_FLAG,
 224				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 225
 226	if (ret > 0) {
 227		int err = start_khugepaged();
 228		if (err)
 229			ret = err;
 230	}
 231
 232	if (ret > 0 &&
 233	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 234		      &transparent_hugepage_flags) ||
 235	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 236		      &transparent_hugepage_flags)))
 237		set_recommended_min_free_kbytes();
 238
 239	return ret;
 240}
 241static struct kobj_attribute enabled_attr =
 242	__ATTR(enabled, 0644, enabled_show, enabled_store);
 243
 244static ssize_t single_flag_show(struct kobject *kobj,
 245				struct kobj_attribute *attr, char *buf,
 246				enum transparent_hugepage_flag flag)
 247{
 248	return sprintf(buf, "%d\n",
 249		       !!test_bit(flag, &transparent_hugepage_flags));
 250}
 251
 252static ssize_t single_flag_store(struct kobject *kobj,
 253				 struct kobj_attribute *attr,
 254				 const char *buf, size_t count,
 255				 enum transparent_hugepage_flag flag)
 256{
 257	unsigned long value;
 258	int ret;
 259
 260	ret = kstrtoul(buf, 10, &value);
 261	if (ret < 0)
 262		return ret;
 263	if (value > 1)
 264		return -EINVAL;
 265
 266	if (value)
 267		set_bit(flag, &transparent_hugepage_flags);
 268	else
 269		clear_bit(flag, &transparent_hugepage_flags);
 270
 271	return count;
 272}
 273
 274/*
 275 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 276 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 277 * memory just to allocate one more hugepage.
 278 */
 279static ssize_t defrag_show(struct kobject *kobj,
 280			   struct kobj_attribute *attr, char *buf)
 281{
 282	return double_flag_show(kobj, attr, buf,
 283				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 284				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 285}
 286static ssize_t defrag_store(struct kobject *kobj,
 287			    struct kobj_attribute *attr,
 288			    const char *buf, size_t count)
 289{
 290	return double_flag_store(kobj, attr, buf, count,
 291				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 292				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 293}
 294static struct kobj_attribute defrag_attr =
 295	__ATTR(defrag, 0644, defrag_show, defrag_store);
 296
 297#ifdef CONFIG_DEBUG_VM
 298static ssize_t debug_cow_show(struct kobject *kobj,
 299				struct kobj_attribute *attr, char *buf)
 300{
 301	return single_flag_show(kobj, attr, buf,
 302				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 303}
 304static ssize_t debug_cow_store(struct kobject *kobj,
 305			       struct kobj_attribute *attr,
 306			       const char *buf, size_t count)
 307{
 308	return single_flag_store(kobj, attr, buf, count,
 309				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 310}
 311static struct kobj_attribute debug_cow_attr =
 312	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 313#endif /* CONFIG_DEBUG_VM */
 314
 315static struct attribute *hugepage_attr[] = {
 316	&enabled_attr.attr,
 317	&defrag_attr.attr,
 318#ifdef CONFIG_DEBUG_VM
 319	&debug_cow_attr.attr,
 320#endif
 321	NULL,
 322};
 323
 324static struct attribute_group hugepage_attr_group = {
 325	.attrs = hugepage_attr,
 326};
 327
 328static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 329					 struct kobj_attribute *attr,
 330					 char *buf)
 331{
 332	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 333}
 334
 335static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 336					  struct kobj_attribute *attr,
 337					  const char *buf, size_t count)
 338{
 339	unsigned long msecs;
 340	int err;
 341
 342	err = strict_strtoul(buf, 10, &msecs);
 343	if (err || msecs > UINT_MAX)
 344		return -EINVAL;
 345
 346	khugepaged_scan_sleep_millisecs = msecs;
 347	wake_up_interruptible(&khugepaged_wait);
 348
 349	return count;
 350}
 351static struct kobj_attribute scan_sleep_millisecs_attr =
 352	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 353	       scan_sleep_millisecs_store);
 354
 355static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 356					  struct kobj_attribute *attr,
 357					  char *buf)
 358{
 359	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 360}
 361
 362static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 363					   struct kobj_attribute *attr,
 364					   const char *buf, size_t count)
 365{
 366	unsigned long msecs;
 367	int err;
 368
 369	err = strict_strtoul(buf, 10, &msecs);
 370	if (err || msecs > UINT_MAX)
 371		return -EINVAL;
 372
 373	khugepaged_alloc_sleep_millisecs = msecs;
 374	wake_up_interruptible(&khugepaged_wait);
 375
 376	return count;
 377}
 378static struct kobj_attribute alloc_sleep_millisecs_attr =
 379	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 380	       alloc_sleep_millisecs_store);
 381
 382static ssize_t pages_to_scan_show(struct kobject *kobj,
 383				  struct kobj_attribute *attr,
 384				  char *buf)
 385{
 386	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 387}
 388static ssize_t pages_to_scan_store(struct kobject *kobj,
 389				   struct kobj_attribute *attr,
 390				   const char *buf, size_t count)
 391{
 392	int err;
 393	unsigned long pages;
 394
 395	err = strict_strtoul(buf, 10, &pages);
 396	if (err || !pages || pages > UINT_MAX)
 397		return -EINVAL;
 398
 399	khugepaged_pages_to_scan = pages;
 400
 401	return count;
 402}
 403static struct kobj_attribute pages_to_scan_attr =
 404	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 405	       pages_to_scan_store);
 406
 407static ssize_t pages_collapsed_show(struct kobject *kobj,
 408				    struct kobj_attribute *attr,
 409				    char *buf)
 410{
 411	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 412}
 413static struct kobj_attribute pages_collapsed_attr =
 414	__ATTR_RO(pages_collapsed);
 415
 416static ssize_t full_scans_show(struct kobject *kobj,
 417			       struct kobj_attribute *attr,
 418			       char *buf)
 419{
 420	return sprintf(buf, "%u\n", khugepaged_full_scans);
 421}
 422static struct kobj_attribute full_scans_attr =
 423	__ATTR_RO(full_scans);
 424
 425static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 426				      struct kobj_attribute *attr, char *buf)
 427{
 428	return single_flag_show(kobj, attr, buf,
 429				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 430}
 431static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 432				       struct kobj_attribute *attr,
 433				       const char *buf, size_t count)
 434{
 435	return single_flag_store(kobj, attr, buf, count,
 436				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 437}
 438static struct kobj_attribute khugepaged_defrag_attr =
 439	__ATTR(defrag, 0644, khugepaged_defrag_show,
 440	       khugepaged_defrag_store);
 441
 442/*
 443 * max_ptes_none controls if khugepaged should collapse hugepages over
 444 * any unmapped ptes in turn potentially increasing the memory
 445 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 446 * reduce the available free memory in the system as it
 447 * runs. Increasing max_ptes_none will instead potentially reduce the
 448 * free memory in the system during the khugepaged scan.
 449 */
 450static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 451					     struct kobj_attribute *attr,
 452					     char *buf)
 453{
 454	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 455}
 456static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 457					      struct kobj_attribute *attr,
 458					      const char *buf, size_t count)
 459{
 460	int err;
 461	unsigned long max_ptes_none;
 462
 463	err = strict_strtoul(buf, 10, &max_ptes_none);
 464	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 465		return -EINVAL;
 466
 467	khugepaged_max_ptes_none = max_ptes_none;
 468
 469	return count;
 470}
 471static struct kobj_attribute khugepaged_max_ptes_none_attr =
 472	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 473	       khugepaged_max_ptes_none_store);
 474
 475static struct attribute *khugepaged_attr[] = {
 476	&khugepaged_defrag_attr.attr,
 477	&khugepaged_max_ptes_none_attr.attr,
 478	&pages_to_scan_attr.attr,
 479	&pages_collapsed_attr.attr,
 480	&full_scans_attr.attr,
 481	&scan_sleep_millisecs_attr.attr,
 482	&alloc_sleep_millisecs_attr.attr,
 483	NULL,
 484};
 485
 486static struct attribute_group khugepaged_attr_group = {
 487	.attrs = khugepaged_attr,
 488	.name = "khugepaged",
 489};
 
 490
 491static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 492{
 493	int err;
 
 
 
 494
 495	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 496	if (unlikely(!*hugepage_kobj)) {
 
 
 
 
 
 
 
 
 497		printk(KERN_ERR "hugepage: failed kobject create\n");
 498		return -ENOMEM;
 499	}
 500
 501	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 502	if (err) {
 503		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 504		goto delete_obj;
 505	}
 506
 507	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 508	if (err) {
 509		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 510		goto remove_hp_group;
 511	}
 512
 513	return 0;
 514
 515remove_hp_group:
 516	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 517delete_obj:
 518	kobject_put(*hugepage_kobj);
 519	return err;
 520}
 521
 522static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 523{
 524	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 525	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 526	kobject_put(hugepage_kobj);
 527}
 528#else
 529static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 530{
 531	return 0;
 532}
 533
 534static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 535{
 536}
 537#endif /* CONFIG_SYSFS */
 538
 539static int __init hugepage_init(void)
 540{
 541	int err;
 542	struct kobject *hugepage_kobj;
 543
 544	if (!has_transparent_hugepage()) {
 545		transparent_hugepage_flags = 0;
 546		return -EINVAL;
 547	}
 548
 549	err = hugepage_init_sysfs(&hugepage_kobj);
 550	if (err)
 551		return err;
 552
 553	err = khugepaged_slab_init();
 554	if (err)
 555		goto out;
 556
 557	err = mm_slots_hash_init();
 558	if (err) {
 559		khugepaged_slab_free();
 560		goto out;
 561	}
 562
 563	/*
 564	 * By default disable transparent hugepages on smaller systems,
 565	 * where the extra memory used could hurt more than TLB overhead
 566	 * is likely to save.  The admin can still enable it through /sys.
 567	 */
 568	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 569		transparent_hugepage_flags = 0;
 570
 571	start_khugepaged();
 572
 573	set_recommended_min_free_kbytes();
 574
 575	return 0;
 576out:
 577	hugepage_exit_sysfs(hugepage_kobj);
 578	return err;
 579}
 580module_init(hugepage_init)
 581
 582static int __init setup_transparent_hugepage(char *str)
 583{
 584	int ret = 0;
 585	if (!str)
 586		goto out;
 587	if (!strcmp(str, "always")) {
 588		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 589			&transparent_hugepage_flags);
 590		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 591			  &transparent_hugepage_flags);
 592		ret = 1;
 593	} else if (!strcmp(str, "madvise")) {
 594		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 595			  &transparent_hugepage_flags);
 596		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 597			&transparent_hugepage_flags);
 598		ret = 1;
 599	} else if (!strcmp(str, "never")) {
 600		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 601			  &transparent_hugepage_flags);
 602		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 603			  &transparent_hugepage_flags);
 604		ret = 1;
 605	}
 606out:
 607	if (!ret)
 608		printk(KERN_WARNING
 609		       "transparent_hugepage= cannot parse, ignored\n");
 610	return ret;
 611}
 612__setup("transparent_hugepage=", setup_transparent_hugepage);
 613
 614static void prepare_pmd_huge_pte(pgtable_t pgtable,
 615				 struct mm_struct *mm)
 616{
 617	assert_spin_locked(&mm->page_table_lock);
 618
 619	/* FIFO */
 620	if (!mm->pmd_huge_pte)
 621		INIT_LIST_HEAD(&pgtable->lru);
 622	else
 623		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
 624	mm->pmd_huge_pte = pgtable;
 625}
 626
 627static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 628{
 629	if (likely(vma->vm_flags & VM_WRITE))
 630		pmd = pmd_mkwrite(pmd);
 631	return pmd;
 632}
 633
 634static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 635					struct vm_area_struct *vma,
 636					unsigned long haddr, pmd_t *pmd,
 637					struct page *page)
 638{
 
 639	pgtable_t pgtable;
 640
 641	VM_BUG_ON(!PageCompound(page));
 642	pgtable = pte_alloc_one(mm, haddr);
 643	if (unlikely(!pgtable))
 
 
 644		return VM_FAULT_OOM;
 
 645
 646	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 647	__SetPageUptodate(page);
 648
 649	spin_lock(&mm->page_table_lock);
 650	if (unlikely(!pmd_none(*pmd))) {
 651		spin_unlock(&mm->page_table_lock);
 652		mem_cgroup_uncharge_page(page);
 653		put_page(page);
 654		pte_free(mm, pgtable);
 655	} else {
 656		pmd_t entry;
 657		entry = mk_pmd(page, vma->vm_page_prot);
 658		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 659		entry = pmd_mkhuge(entry);
 660		/*
 661		 * The spinlocking to take the lru_lock inside
 662		 * page_add_new_anon_rmap() acts as a full memory
 663		 * barrier to be sure clear_huge_page writes become
 664		 * visible after the set_pmd_at() write.
 665		 */
 666		page_add_new_anon_rmap(page, vma, haddr);
 667		set_pmd_at(mm, haddr, pmd, entry);
 668		prepare_pmd_huge_pte(pgtable, mm);
 669		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 670		mm->nr_ptes++;
 671		spin_unlock(&mm->page_table_lock);
 672	}
 673
 674	return 0;
 675}
 676
 677static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 678{
 679	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 680}
 681
 682static inline struct page *alloc_hugepage_vma(int defrag,
 683					      struct vm_area_struct *vma,
 684					      unsigned long haddr, int nd,
 685					      gfp_t extra_gfp)
 686{
 687	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 688			       HPAGE_PMD_ORDER, vma, haddr, nd);
 689}
 690
 691#ifndef CONFIG_NUMA
 692static inline struct page *alloc_hugepage(int defrag)
 693{
 694	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
 695			   HPAGE_PMD_ORDER);
 696}
 697#endif
 698
 699int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 700			       unsigned long address, pmd_t *pmd,
 701			       unsigned int flags)
 702{
 703	struct page *page;
 704	unsigned long haddr = address & HPAGE_PMD_MASK;
 705	pte_t *pte;
 706
 707	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
 708		if (unlikely(anon_vma_prepare(vma)))
 709			return VM_FAULT_OOM;
 710		if (unlikely(khugepaged_enter(vma)))
 711			return VM_FAULT_OOM;
 712		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 713					  vma, haddr, numa_node_id(), 0);
 714		if (unlikely(!page)) {
 715			count_vm_event(THP_FAULT_FALLBACK);
 716			goto out;
 717		}
 718		count_vm_event(THP_FAULT_ALLOC);
 719		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
 720			put_page(page);
 721			goto out;
 722		}
 723		if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
 724							  page))) {
 725			mem_cgroup_uncharge_page(page);
 726			put_page(page);
 727			goto out;
 728		}
 729
 730		return 0;
 731	}
 732out:
 733	/*
 734	 * Use __pte_alloc instead of pte_alloc_map, because we can't
 735	 * run pte_offset_map on the pmd, if an huge pmd could
 736	 * materialize from under us from a different thread.
 737	 */
 738	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
 739		return VM_FAULT_OOM;
 740	/* if an huge pmd materialized from under us just retry later */
 741	if (unlikely(pmd_trans_huge(*pmd)))
 742		return 0;
 743	/*
 744	 * A regular pmd is established and it can't morph into a huge pmd
 745	 * from under us anymore at this point because we hold the mmap_sem
 746	 * read mode and khugepaged takes it in write mode. So now it's
 747	 * safe to run pte_offset_map().
 748	 */
 749	pte = pte_offset_map(pmd, address);
 750	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 751}
 752
 753int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 754		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 755		  struct vm_area_struct *vma)
 756{
 757	struct page *src_page;
 758	pmd_t pmd;
 759	pgtable_t pgtable;
 760	int ret;
 761
 762	ret = -ENOMEM;
 763	pgtable = pte_alloc_one(dst_mm, addr);
 764	if (unlikely(!pgtable))
 765		goto out;
 766
 767	spin_lock(&dst_mm->page_table_lock);
 768	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
 769
 770	ret = -EAGAIN;
 771	pmd = *src_pmd;
 772	if (unlikely(!pmd_trans_huge(pmd))) {
 773		pte_free(dst_mm, pgtable);
 774		goto out_unlock;
 775	}
 776	if (unlikely(pmd_trans_splitting(pmd))) {
 777		/* split huge page running from under us */
 778		spin_unlock(&src_mm->page_table_lock);
 779		spin_unlock(&dst_mm->page_table_lock);
 780		pte_free(dst_mm, pgtable);
 781
 782		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 783		goto out;
 784	}
 785	src_page = pmd_page(pmd);
 786	VM_BUG_ON(!PageHead(src_page));
 787	get_page(src_page);
 788	page_dup_rmap(src_page);
 789	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 790
 791	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 792	pmd = pmd_mkold(pmd_wrprotect(pmd));
 793	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 794	prepare_pmd_huge_pte(pgtable, dst_mm);
 795	dst_mm->nr_ptes++;
 796
 797	ret = 0;
 798out_unlock:
 799	spin_unlock(&src_mm->page_table_lock);
 800	spin_unlock(&dst_mm->page_table_lock);
 801out:
 802	return ret;
 803}
 804
 805/* no "address" argument so destroys page coloring of some arch */
 806pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
 807{
 808	pgtable_t pgtable;
 809
 810	assert_spin_locked(&mm->page_table_lock);
 811
 812	/* FIFO */
 813	pgtable = mm->pmd_huge_pte;
 814	if (list_empty(&pgtable->lru))
 815		mm->pmd_huge_pte = NULL;
 816	else {
 817		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
 818					      struct page, lru);
 819		list_del(&pgtable->lru);
 820	}
 821	return pgtable;
 822}
 823
 824static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 825					struct vm_area_struct *vma,
 826					unsigned long address,
 827					pmd_t *pmd, pmd_t orig_pmd,
 828					struct page *page,
 829					unsigned long haddr)
 830{
 831	pgtable_t pgtable;
 832	pmd_t _pmd;
 833	int ret = 0, i;
 834	struct page **pages;
 835
 836	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 837			GFP_KERNEL);
 838	if (unlikely(!pages)) {
 839		ret |= VM_FAULT_OOM;
 840		goto out;
 841	}
 842
 843	for (i = 0; i < HPAGE_PMD_NR; i++) {
 844		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 845					       __GFP_OTHER_NODE,
 846					       vma, address, page_to_nid(page));
 847		if (unlikely(!pages[i] ||
 848			     mem_cgroup_newpage_charge(pages[i], mm,
 849						       GFP_KERNEL))) {
 850			if (pages[i])
 851				put_page(pages[i]);
 852			mem_cgroup_uncharge_start();
 853			while (--i >= 0) {
 854				mem_cgroup_uncharge_page(pages[i]);
 855				put_page(pages[i]);
 856			}
 857			mem_cgroup_uncharge_end();
 858			kfree(pages);
 859			ret |= VM_FAULT_OOM;
 860			goto out;
 861		}
 862	}
 863
 864	for (i = 0; i < HPAGE_PMD_NR; i++) {
 865		copy_user_highpage(pages[i], page + i,
 866				   haddr + PAGE_SIZE * i, vma);
 867		__SetPageUptodate(pages[i]);
 868		cond_resched();
 869	}
 870
 871	spin_lock(&mm->page_table_lock);
 872	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 873		goto out_free_pages;
 874	VM_BUG_ON(!PageHead(page));
 875
 876	pmdp_clear_flush_notify(vma, haddr, pmd);
 877	/* leave pmd empty until pte is filled */
 878
 879	pgtable = get_pmd_huge_pte(mm);
 880	pmd_populate(mm, &_pmd, pgtable);
 881
 882	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 883		pte_t *pte, entry;
 884		entry = mk_pte(pages[i], vma->vm_page_prot);
 885		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 886		page_add_new_anon_rmap(pages[i], vma, haddr);
 887		pte = pte_offset_map(&_pmd, haddr);
 888		VM_BUG_ON(!pte_none(*pte));
 889		set_pte_at(mm, haddr, pte, entry);
 890		pte_unmap(pte);
 891	}
 892	kfree(pages);
 893
 
 894	smp_wmb(); /* make pte visible before pmd */
 895	pmd_populate(mm, pmd, pgtable);
 896	page_remove_rmap(page);
 897	spin_unlock(&mm->page_table_lock);
 898
 899	ret |= VM_FAULT_WRITE;
 900	put_page(page);
 901
 902out:
 903	return ret;
 904
 905out_free_pages:
 906	spin_unlock(&mm->page_table_lock);
 907	mem_cgroup_uncharge_start();
 908	for (i = 0; i < HPAGE_PMD_NR; i++) {
 909		mem_cgroup_uncharge_page(pages[i]);
 910		put_page(pages[i]);
 911	}
 912	mem_cgroup_uncharge_end();
 913	kfree(pages);
 914	goto out;
 915}
 916
 917int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 918			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
 919{
 920	int ret = 0;
 921	struct page *page, *new_page;
 922	unsigned long haddr;
 923
 924	VM_BUG_ON(!vma->anon_vma);
 925	spin_lock(&mm->page_table_lock);
 926	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 927		goto out_unlock;
 928
 929	page = pmd_page(orig_pmd);
 930	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
 931	haddr = address & HPAGE_PMD_MASK;
 932	if (page_mapcount(page) == 1) {
 933		pmd_t entry;
 934		entry = pmd_mkyoung(orig_pmd);
 935		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 936		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
 937			update_mmu_cache(vma, address, entry);
 938		ret |= VM_FAULT_WRITE;
 939		goto out_unlock;
 940	}
 941	get_page(page);
 942	spin_unlock(&mm->page_table_lock);
 943
 944	if (transparent_hugepage_enabled(vma) &&
 945	    !transparent_hugepage_debug_cow())
 946		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 947					      vma, haddr, numa_node_id(), 0);
 948	else
 949		new_page = NULL;
 950
 951	if (unlikely(!new_page)) {
 952		count_vm_event(THP_FAULT_FALLBACK);
 953		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
 954						   pmd, orig_pmd, page, haddr);
 955		if (ret & VM_FAULT_OOM)
 956			split_huge_page(page);
 957		put_page(page);
 958		goto out;
 959	}
 960	count_vm_event(THP_FAULT_ALLOC);
 961
 962	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
 963		put_page(new_page);
 964		split_huge_page(page);
 965		put_page(page);
 966		ret |= VM_FAULT_OOM;
 967		goto out;
 968	}
 969
 970	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 971	__SetPageUptodate(new_page);
 972
 973	spin_lock(&mm->page_table_lock);
 974	put_page(page);
 975	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
 976		spin_unlock(&mm->page_table_lock);
 977		mem_cgroup_uncharge_page(new_page);
 978		put_page(new_page);
 979		goto out;
 980	} else {
 981		pmd_t entry;
 982		VM_BUG_ON(!PageHead(page));
 983		entry = mk_pmd(new_page, vma->vm_page_prot);
 984		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 985		entry = pmd_mkhuge(entry);
 986		pmdp_clear_flush_notify(vma, haddr, pmd);
 987		page_add_new_anon_rmap(new_page, vma, haddr);
 988		set_pmd_at(mm, haddr, pmd, entry);
 989		update_mmu_cache(vma, address, entry);
 990		page_remove_rmap(page);
 991		put_page(page);
 992		ret |= VM_FAULT_WRITE;
 993	}
 994out_unlock:
 995	spin_unlock(&mm->page_table_lock);
 996out:
 997	return ret;
 998}
 999
1000struct page *follow_trans_huge_pmd(struct mm_struct *mm,
1001				   unsigned long addr,
1002				   pmd_t *pmd,
1003				   unsigned int flags)
1004{
1005	struct page *page = NULL;
1006
1007	assert_spin_locked(&mm->page_table_lock);
1008
1009	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1010		goto out;
1011
1012	page = pmd_page(*pmd);
1013	VM_BUG_ON(!PageHead(page));
1014	if (flags & FOLL_TOUCH) {
1015		pmd_t _pmd;
1016		/*
1017		 * We should set the dirty bit only for FOLL_WRITE but
1018		 * for now the dirty bit in the pmd is meaningless.
1019		 * And if the dirty bit will become meaningful and
1020		 * we'll only set it with FOLL_WRITE, an atomic
1021		 * set_bit will be required on the pmd to set the
1022		 * young bit, instead of the current set_pmd_at.
1023		 */
1024		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1025		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1026	}
1027	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1028	VM_BUG_ON(!PageCompound(page));
1029	if (flags & FOLL_GET)
1030		get_page_foll(page);
1031
1032out:
1033	return page;
1034}
1035
1036int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1037		 pmd_t *pmd, unsigned long addr)
1038{
1039	int ret = 0;
1040
1041	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1042		struct page *page;
1043		pgtable_t pgtable;
1044		pgtable = get_pmd_huge_pte(tlb->mm);
1045		page = pmd_page(*pmd);
1046		pmd_clear(pmd);
1047		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1048		page_remove_rmap(page);
1049		VM_BUG_ON(page_mapcount(page) < 0);
1050		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1051		VM_BUG_ON(!PageHead(page));
1052		tlb->mm->nr_ptes--;
 
 
 
 
 
 
 
 
 
 
1053		spin_unlock(&tlb->mm->page_table_lock);
1054		tlb_remove_page(tlb, page);
1055		pte_free(tlb->mm, pgtable);
1056		ret = 1;
1057	}
1058	return ret;
1059}
1060
1061int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1062		unsigned long addr, unsigned long end,
1063		unsigned char *vec)
1064{
1065	int ret = 0;
1066
1067	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1068		/*
1069		 * All logical pages in the range are present
1070		 * if backed by a huge page.
1071		 */
 
 
 
 
 
 
 
 
 
1072		spin_unlock(&vma->vm_mm->page_table_lock);
1073		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1074		ret = 1;
1075	}
1076
1077	return ret;
1078}
1079
1080int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1081		  unsigned long old_addr,
1082		  unsigned long new_addr, unsigned long old_end,
1083		  pmd_t *old_pmd, pmd_t *new_pmd)
1084{
1085	int ret = 0;
1086	pmd_t pmd;
1087
1088	struct mm_struct *mm = vma->vm_mm;
1089
1090	if ((old_addr & ~HPAGE_PMD_MASK) ||
1091	    (new_addr & ~HPAGE_PMD_MASK) ||
1092	    old_end - old_addr < HPAGE_PMD_SIZE ||
1093	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1094		goto out;
1095
1096	/*
1097	 * The destination pmd shouldn't be established, free_pgtables()
1098	 * should have release it.
1099	 */
1100	if (WARN_ON(!pmd_none(*new_pmd))) {
1101		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1102		goto out;
1103	}
1104
1105	ret = __pmd_trans_huge_lock(old_pmd, vma);
1106	if (ret == 1) {
1107		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1108		VM_BUG_ON(!pmd_none(*new_pmd));
1109		set_pmd_at(mm, new_addr, new_pmd, pmd);
1110		spin_unlock(&mm->page_table_lock);
1111	}
1112out:
1113	return ret;
1114}
1115
1116int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1117		unsigned long addr, pgprot_t newprot)
1118{
1119	struct mm_struct *mm = vma->vm_mm;
1120	int ret = 0;
1121
1122	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1123		pmd_t entry;
1124		entry = pmdp_get_and_clear(mm, addr, pmd);
1125		entry = pmd_modify(entry, newprot);
1126		set_pmd_at(mm, addr, pmd, entry);
1127		spin_unlock(&vma->vm_mm->page_table_lock);
1128		ret = 1;
1129	}
1130
1131	return ret;
1132}
1133
1134/*
1135 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1136 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1137 *
1138 * Note that if it returns 1, this routine returns without unlocking page
1139 * table locks. So callers must unlock them.
1140 */
1141int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1142{
1143	spin_lock(&vma->vm_mm->page_table_lock);
1144	if (likely(pmd_trans_huge(*pmd))) {
1145		if (unlikely(pmd_trans_splitting(*pmd))) {
1146			spin_unlock(&vma->vm_mm->page_table_lock);
1147			wait_split_huge_page(vma->anon_vma, pmd);
1148			return -1;
1149		} else {
1150			/* Thp mapped by 'pmd' is stable, so we can
1151			 * handle it as it is. */
1152			return 1;
 
 
 
 
 
1153		}
1154	}
1155	spin_unlock(&vma->vm_mm->page_table_lock);
1156	return 0;
 
1157}
1158
1159pmd_t *page_check_address_pmd(struct page *page,
1160			      struct mm_struct *mm,
1161			      unsigned long address,
1162			      enum page_check_address_pmd_flag flag)
1163{
1164	pgd_t *pgd;
1165	pud_t *pud;
1166	pmd_t *pmd, *ret = NULL;
1167
1168	if (address & ~HPAGE_PMD_MASK)
1169		goto out;
1170
1171	pgd = pgd_offset(mm, address);
1172	if (!pgd_present(*pgd))
1173		goto out;
1174
1175	pud = pud_offset(pgd, address);
1176	if (!pud_present(*pud))
1177		goto out;
1178
1179	pmd = pmd_offset(pud, address);
1180	if (pmd_none(*pmd))
1181		goto out;
1182	if (pmd_page(*pmd) != page)
1183		goto out;
1184	/*
1185	 * split_vma() may create temporary aliased mappings. There is
1186	 * no risk as long as all huge pmd are found and have their
1187	 * splitting bit set before __split_huge_page_refcount
1188	 * runs. Finding the same huge pmd more than once during the
1189	 * same rmap walk is not a problem.
1190	 */
1191	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1192	    pmd_trans_splitting(*pmd))
1193		goto out;
1194	if (pmd_trans_huge(*pmd)) {
1195		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1196			  !pmd_trans_splitting(*pmd));
1197		ret = pmd;
1198	}
1199out:
1200	return ret;
1201}
1202
1203static int __split_huge_page_splitting(struct page *page,
1204				       struct vm_area_struct *vma,
1205				       unsigned long address)
1206{
1207	struct mm_struct *mm = vma->vm_mm;
1208	pmd_t *pmd;
1209	int ret = 0;
1210
1211	spin_lock(&mm->page_table_lock);
1212	pmd = page_check_address_pmd(page, mm, address,
1213				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1214	if (pmd) {
1215		/*
1216		 * We can't temporarily set the pmd to null in order
1217		 * to split it, the pmd must remain marked huge at all
1218		 * times or the VM won't take the pmd_trans_huge paths
1219		 * and it won't wait on the anon_vma->root->mutex to
1220		 * serialize against split_huge_page*.
1221		 */
1222		pmdp_splitting_flush_notify(vma, address, pmd);
1223		ret = 1;
1224	}
1225	spin_unlock(&mm->page_table_lock);
1226
1227	return ret;
1228}
1229
1230static void __split_huge_page_refcount(struct page *page)
1231{
1232	int i;
 
1233	struct zone *zone = page_zone(page);
1234	struct lruvec *lruvec;
1235	int tail_count = 0;
1236
1237	/* prevent PageLRU to go away from under us, and freeze lru stats */
1238	spin_lock_irq(&zone->lru_lock);
1239	lruvec = mem_cgroup_page_lruvec(page, zone);
1240
1241	compound_lock(page);
1242	/* complete memcg works before add pages to LRU */
1243	mem_cgroup_split_huge_fixup(page);
1244
1245	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1246		struct page *page_tail = page + i;
1247
1248		/* tail_page->_mapcount cannot change */
1249		BUG_ON(page_mapcount(page_tail) < 0);
1250		tail_count += page_mapcount(page_tail);
1251		/* check for overflow */
1252		BUG_ON(tail_count < 0);
1253		BUG_ON(atomic_read(&page_tail->_count) != 0);
1254		/*
1255		 * tail_page->_count is zero and not changing from
1256		 * under us. But get_page_unless_zero() may be running
1257		 * from under us on the tail_page. If we used
1258		 * atomic_set() below instead of atomic_add(), we
1259		 * would then run atomic_set() concurrently with
1260		 * get_page_unless_zero(), and atomic_set() is
1261		 * implemented in C not using locked ops. spin_unlock
1262		 * on x86 sometime uses locked ops because of PPro
1263		 * errata 66, 92, so unless somebody can guarantee
1264		 * atomic_set() here would be safe on all archs (and
1265		 * not only on x86), it's safer to use atomic_add().
1266		 */
1267		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1268			   &page_tail->_count);
1269
1270		/* after clearing PageTail the gup refcount can be released */
1271		smp_mb();
1272
1273		/*
1274		 * retain hwpoison flag of the poisoned tail page:
1275		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1276		 *   by the memory-failure.
1277		 */
1278		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1279		page_tail->flags |= (page->flags &
1280				     ((1L << PG_referenced) |
1281				      (1L << PG_swapbacked) |
1282				      (1L << PG_mlocked) |
1283				      (1L << PG_uptodate)));
1284		page_tail->flags |= (1L << PG_dirty);
1285
1286		/* clear PageTail before overwriting first_page */
 
 
 
1287		smp_wmb();
1288
1289		/*
1290		 * __split_huge_page_splitting() already set the
1291		 * splitting bit in all pmd that could map this
1292		 * hugepage, that will ensure no CPU can alter the
1293		 * mapcount on the head page. The mapcount is only
1294		 * accounted in the head page and it has to be
1295		 * transferred to all tail pages in the below code. So
1296		 * for this code to be safe, the split the mapcount
1297		 * can't change. But that doesn't mean userland can't
1298		 * keep changing and reading the page contents while
1299		 * we transfer the mapcount, so the pmd splitting
1300		 * status is achieved setting a reserved bit in the
1301		 * pmd, not by clearing the present bit.
1302		*/
 
1303		page_tail->_mapcount = page->_mapcount;
1304
1305		BUG_ON(page_tail->mapping);
1306		page_tail->mapping = page->mapping;
1307
1308		page_tail->index = page->index + i;
1309
1310		BUG_ON(!PageAnon(page_tail));
1311		BUG_ON(!PageUptodate(page_tail));
1312		BUG_ON(!PageDirty(page_tail));
1313		BUG_ON(!PageSwapBacked(page_tail));
1314
1315		lru_add_page_tail(page, page_tail, lruvec);
 
 
1316	}
1317	atomic_sub(tail_count, &page->_count);
1318	BUG_ON(atomic_read(&page->_count) <= 0);
1319
1320	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1321	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1322
 
 
 
 
 
 
 
 
 
1323	ClearPageCompound(page);
1324	compound_unlock(page);
1325	spin_unlock_irq(&zone->lru_lock);
1326
1327	for (i = 1; i < HPAGE_PMD_NR; i++) {
1328		struct page *page_tail = page + i;
1329		BUG_ON(page_count(page_tail) <= 0);
1330		/*
1331		 * Tail pages may be freed if there wasn't any mapping
1332		 * like if add_to_swap() is running on a lru page that
1333		 * had its mapping zapped. And freeing these pages
1334		 * requires taking the lru_lock so we do the put_page
1335		 * of the tail pages after the split is complete.
1336		 */
1337		put_page(page_tail);
1338	}
1339
1340	/*
1341	 * Only the head page (now become a regular page) is required
1342	 * to be pinned by the caller.
1343	 */
1344	BUG_ON(page_count(page) <= 0);
1345}
1346
1347static int __split_huge_page_map(struct page *page,
1348				 struct vm_area_struct *vma,
1349				 unsigned long address)
1350{
1351	struct mm_struct *mm = vma->vm_mm;
1352	pmd_t *pmd, _pmd;
1353	int ret = 0, i;
1354	pgtable_t pgtable;
1355	unsigned long haddr;
1356
1357	spin_lock(&mm->page_table_lock);
1358	pmd = page_check_address_pmd(page, mm, address,
1359				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1360	if (pmd) {
1361		pgtable = get_pmd_huge_pte(mm);
1362		pmd_populate(mm, &_pmd, pgtable);
1363
1364		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1365		     i++, haddr += PAGE_SIZE) {
1366			pte_t *pte, entry;
1367			BUG_ON(PageCompound(page+i));
1368			entry = mk_pte(page + i, vma->vm_page_prot);
1369			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1370			if (!pmd_write(*pmd))
1371				entry = pte_wrprotect(entry);
1372			else
1373				BUG_ON(page_mapcount(page) != 1);
1374			if (!pmd_young(*pmd))
1375				entry = pte_mkold(entry);
1376			pte = pte_offset_map(&_pmd, haddr);
1377			BUG_ON(!pte_none(*pte));
1378			set_pte_at(mm, haddr, pte, entry);
1379			pte_unmap(pte);
1380		}
1381
 
1382		smp_wmb(); /* make pte visible before pmd */
1383		/*
1384		 * Up to this point the pmd is present and huge and
1385		 * userland has the whole access to the hugepage
1386		 * during the split (which happens in place). If we
1387		 * overwrite the pmd with the not-huge version
1388		 * pointing to the pte here (which of course we could
1389		 * if all CPUs were bug free), userland could trigger
1390		 * a small page size TLB miss on the small sized TLB
1391		 * while the hugepage TLB entry is still established
1392		 * in the huge TLB. Some CPU doesn't like that. See
1393		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1394		 * Erratum 383 on page 93. Intel should be safe but is
1395		 * also warns that it's only safe if the permission
1396		 * and cache attributes of the two entries loaded in
1397		 * the two TLB is identical (which should be the case
1398		 * here). But it is generally safer to never allow
1399		 * small and huge TLB entries for the same virtual
1400		 * address to be loaded simultaneously. So instead of
1401		 * doing "pmd_populate(); flush_tlb_range();" we first
1402		 * mark the current pmd notpresent (atomically because
1403		 * here the pmd_trans_huge and pmd_trans_splitting
1404		 * must remain set at all times on the pmd until the
1405		 * split is complete for this pmd), then we flush the
1406		 * SMP TLB and finally we write the non-huge version
1407		 * of the pmd entry with pmd_populate.
1408		 */
1409		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1410		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1411		pmd_populate(mm, pmd, pgtable);
1412		ret = 1;
1413	}
1414	spin_unlock(&mm->page_table_lock);
1415
1416	return ret;
1417}
1418
1419/* must be called with anon_vma->root->mutex hold */
1420static void __split_huge_page(struct page *page,
1421			      struct anon_vma *anon_vma)
1422{
1423	int mapcount, mapcount2;
1424	struct anon_vma_chain *avc;
1425
1426	BUG_ON(!PageHead(page));
1427	BUG_ON(PageTail(page));
1428
1429	mapcount = 0;
1430	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1431		struct vm_area_struct *vma = avc->vma;
1432		unsigned long addr = vma_address(page, vma);
1433		BUG_ON(is_vma_temporary_stack(vma));
1434		if (addr == -EFAULT)
1435			continue;
1436		mapcount += __split_huge_page_splitting(page, vma, addr);
1437	}
1438	/*
1439	 * It is critical that new vmas are added to the tail of the
1440	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1441	 * and establishes a child pmd before
1442	 * __split_huge_page_splitting() freezes the parent pmd (so if
1443	 * we fail to prevent copy_huge_pmd() from running until the
1444	 * whole __split_huge_page() is complete), we will still see
1445	 * the newly established pmd of the child later during the
1446	 * walk, to be able to set it as pmd_trans_splitting too.
1447	 */
1448	if (mapcount != page_mapcount(page))
1449		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1450		       mapcount, page_mapcount(page));
1451	BUG_ON(mapcount != page_mapcount(page));
1452
1453	__split_huge_page_refcount(page);
1454
1455	mapcount2 = 0;
1456	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1457		struct vm_area_struct *vma = avc->vma;
1458		unsigned long addr = vma_address(page, vma);
1459		BUG_ON(is_vma_temporary_stack(vma));
1460		if (addr == -EFAULT)
1461			continue;
1462		mapcount2 += __split_huge_page_map(page, vma, addr);
1463	}
1464	if (mapcount != mapcount2)
1465		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1466		       mapcount, mapcount2, page_mapcount(page));
1467	BUG_ON(mapcount != mapcount2);
1468}
1469
1470int split_huge_page(struct page *page)
1471{
1472	struct anon_vma *anon_vma;
1473	int ret = 1;
1474
1475	BUG_ON(!PageAnon(page));
1476	anon_vma = page_lock_anon_vma(page);
1477	if (!anon_vma)
1478		goto out;
1479	ret = 0;
1480	if (!PageCompound(page))
1481		goto out_unlock;
1482
1483	BUG_ON(!PageSwapBacked(page));
1484	__split_huge_page(page, anon_vma);
1485	count_vm_event(THP_SPLIT);
1486
1487	BUG_ON(PageCompound(page));
1488out_unlock:
1489	page_unlock_anon_vma(anon_vma);
1490out:
1491	return ret;
1492}
1493
1494#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1495		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1496
1497int hugepage_madvise(struct vm_area_struct *vma,
1498		     unsigned long *vm_flags, int advice)
1499{
1500	switch (advice) {
1501	case MADV_HUGEPAGE:
1502		/*
1503		 * Be somewhat over-protective like KSM for now!
1504		 */
1505		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1506			return -EINVAL;
1507		*vm_flags &= ~VM_NOHUGEPAGE;
1508		*vm_flags |= VM_HUGEPAGE;
1509		/*
1510		 * If the vma become good for khugepaged to scan,
1511		 * register it here without waiting a page fault that
1512		 * may not happen any time soon.
1513		 */
1514		if (unlikely(khugepaged_enter_vma_merge(vma)))
1515			return -ENOMEM;
1516		break;
1517	case MADV_NOHUGEPAGE:
1518		/*
1519		 * Be somewhat over-protective like KSM for now!
1520		 */
1521		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1522			return -EINVAL;
1523		*vm_flags &= ~VM_HUGEPAGE;
1524		*vm_flags |= VM_NOHUGEPAGE;
1525		/*
1526		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1527		 * this vma even if we leave the mm registered in khugepaged if
1528		 * it got registered before VM_NOHUGEPAGE was set.
1529		 */
1530		break;
1531	}
1532
1533	return 0;
1534}
1535
1536static int __init khugepaged_slab_init(void)
1537{
1538	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1539					  sizeof(struct mm_slot),
1540					  __alignof__(struct mm_slot), 0, NULL);
1541	if (!mm_slot_cache)
1542		return -ENOMEM;
1543
1544	return 0;
1545}
1546
1547static void __init khugepaged_slab_free(void)
1548{
1549	kmem_cache_destroy(mm_slot_cache);
1550	mm_slot_cache = NULL;
1551}
1552
1553static inline struct mm_slot *alloc_mm_slot(void)
1554{
1555	if (!mm_slot_cache)	/* initialization failed */
1556		return NULL;
1557	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1558}
1559
1560static inline void free_mm_slot(struct mm_slot *mm_slot)
1561{
1562	kmem_cache_free(mm_slot_cache, mm_slot);
1563}
1564
1565static int __init mm_slots_hash_init(void)
1566{
1567	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1568				GFP_KERNEL);
1569	if (!mm_slots_hash)
1570		return -ENOMEM;
1571	return 0;
1572}
1573
1574#if 0
1575static void __init mm_slots_hash_free(void)
1576{
1577	kfree(mm_slots_hash);
1578	mm_slots_hash = NULL;
1579}
1580#endif
1581
1582static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1583{
1584	struct mm_slot *mm_slot;
1585	struct hlist_head *bucket;
1586	struct hlist_node *node;
1587
1588	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1589				% MM_SLOTS_HASH_HEADS];
1590	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1591		if (mm == mm_slot->mm)
1592			return mm_slot;
1593	}
1594	return NULL;
1595}
1596
1597static void insert_to_mm_slots_hash(struct mm_struct *mm,
1598				    struct mm_slot *mm_slot)
1599{
1600	struct hlist_head *bucket;
1601
1602	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1603				% MM_SLOTS_HASH_HEADS];
1604	mm_slot->mm = mm;
1605	hlist_add_head(&mm_slot->hash, bucket);
1606}
1607
1608static inline int khugepaged_test_exit(struct mm_struct *mm)
1609{
1610	return atomic_read(&mm->mm_users) == 0;
1611}
1612
1613int __khugepaged_enter(struct mm_struct *mm)
1614{
1615	struct mm_slot *mm_slot;
1616	int wakeup;
1617
1618	mm_slot = alloc_mm_slot();
1619	if (!mm_slot)
1620		return -ENOMEM;
1621
1622	/* __khugepaged_exit() must not run from under us */
1623	VM_BUG_ON(khugepaged_test_exit(mm));
1624	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1625		free_mm_slot(mm_slot);
1626		return 0;
1627	}
1628
1629	spin_lock(&khugepaged_mm_lock);
1630	insert_to_mm_slots_hash(mm, mm_slot);
1631	/*
1632	 * Insert just behind the scanning cursor, to let the area settle
1633	 * down a little.
1634	 */
1635	wakeup = list_empty(&khugepaged_scan.mm_head);
1636	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1637	spin_unlock(&khugepaged_mm_lock);
1638
1639	atomic_inc(&mm->mm_count);
1640	if (wakeup)
1641		wake_up_interruptible(&khugepaged_wait);
1642
1643	return 0;
1644}
1645
1646int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1647{
1648	unsigned long hstart, hend;
1649	if (!vma->anon_vma)
1650		/*
1651		 * Not yet faulted in so we will register later in the
1652		 * page fault if needed.
1653		 */
1654		return 0;
1655	if (vma->vm_ops)
1656		/* khugepaged not yet working on file or special mappings */
1657		return 0;
1658	/*
1659	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1660	 * true too, verify it here.
1661	 */
1662	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1663	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1664	hend = vma->vm_end & HPAGE_PMD_MASK;
1665	if (hstart < hend)
1666		return khugepaged_enter(vma);
1667	return 0;
1668}
1669
1670void __khugepaged_exit(struct mm_struct *mm)
1671{
1672	struct mm_slot *mm_slot;
1673	int free = 0;
1674
1675	spin_lock(&khugepaged_mm_lock);
1676	mm_slot = get_mm_slot(mm);
1677	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1678		hlist_del(&mm_slot->hash);
1679		list_del(&mm_slot->mm_node);
1680		free = 1;
1681	}
1682	spin_unlock(&khugepaged_mm_lock);
1683
1684	if (free) {
1685		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1686		free_mm_slot(mm_slot);
1687		mmdrop(mm);
1688	} else if (mm_slot) {
1689		/*
1690		 * This is required to serialize against
1691		 * khugepaged_test_exit() (which is guaranteed to run
1692		 * under mmap sem read mode). Stop here (after we
1693		 * return all pagetables will be destroyed) until
1694		 * khugepaged has finished working on the pagetables
1695		 * under the mmap_sem.
1696		 */
1697		down_write(&mm->mmap_sem);
1698		up_write(&mm->mmap_sem);
1699	}
1700}
1701
1702static void release_pte_page(struct page *page)
1703{
1704	/* 0 stands for page_is_file_cache(page) == false */
1705	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1706	unlock_page(page);
1707	putback_lru_page(page);
1708}
1709
1710static void release_pte_pages(pte_t *pte, pte_t *_pte)
1711{
1712	while (--_pte >= pte) {
1713		pte_t pteval = *_pte;
1714		if (!pte_none(pteval))
1715			release_pte_page(pte_page(pteval));
1716	}
1717}
1718
1719static void release_all_pte_pages(pte_t *pte)
1720{
1721	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1722}
1723
1724static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1725					unsigned long address,
1726					pte_t *pte)
1727{
1728	struct page *page;
1729	pte_t *_pte;
1730	int referenced = 0, isolated = 0, none = 0;
1731	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1732	     _pte++, address += PAGE_SIZE) {
1733		pte_t pteval = *_pte;
1734		if (pte_none(pteval)) {
1735			if (++none <= khugepaged_max_ptes_none)
1736				continue;
1737			else {
1738				release_pte_pages(pte, _pte);
1739				goto out;
1740			}
1741		}
1742		if (!pte_present(pteval) || !pte_write(pteval)) {
1743			release_pte_pages(pte, _pte);
1744			goto out;
1745		}
1746		page = vm_normal_page(vma, address, pteval);
1747		if (unlikely(!page)) {
1748			release_pte_pages(pte, _pte);
1749			goto out;
1750		}
1751		VM_BUG_ON(PageCompound(page));
1752		BUG_ON(!PageAnon(page));
1753		VM_BUG_ON(!PageSwapBacked(page));
1754
1755		/* cannot use mapcount: can't collapse if there's a gup pin */
1756		if (page_count(page) != 1) {
1757			release_pte_pages(pte, _pte);
1758			goto out;
1759		}
1760		/*
1761		 * We can do it before isolate_lru_page because the
1762		 * page can't be freed from under us. NOTE: PG_lock
1763		 * is needed to serialize against split_huge_page
1764		 * when invoked from the VM.
1765		 */
1766		if (!trylock_page(page)) {
1767			release_pte_pages(pte, _pte);
1768			goto out;
1769		}
1770		/*
1771		 * Isolate the page to avoid collapsing an hugepage
1772		 * currently in use by the VM.
1773		 */
1774		if (isolate_lru_page(page)) {
1775			unlock_page(page);
1776			release_pte_pages(pte, _pte);
1777			goto out;
1778		}
1779		/* 0 stands for page_is_file_cache(page) == false */
1780		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1781		VM_BUG_ON(!PageLocked(page));
1782		VM_BUG_ON(PageLRU(page));
1783
1784		/* If there is no mapped pte young don't collapse the page */
1785		if (pte_young(pteval) || PageReferenced(page) ||
1786		    mmu_notifier_test_young(vma->vm_mm, address))
1787			referenced = 1;
1788	}
1789	if (unlikely(!referenced))
1790		release_all_pte_pages(pte);
1791	else
1792		isolated = 1;
1793out:
1794	return isolated;
1795}
1796
1797static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1798				      struct vm_area_struct *vma,
1799				      unsigned long address,
1800				      spinlock_t *ptl)
1801{
1802	pte_t *_pte;
1803	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1804		pte_t pteval = *_pte;
1805		struct page *src_page;
1806
1807		if (pte_none(pteval)) {
1808			clear_user_highpage(page, address);
1809			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1810		} else {
1811			src_page = pte_page(pteval);
1812			copy_user_highpage(page, src_page, address, vma);
1813			VM_BUG_ON(page_mapcount(src_page) != 1);
1814			VM_BUG_ON(page_count(src_page) != 2);
1815			release_pte_page(src_page);
1816			/*
1817			 * ptl mostly unnecessary, but preempt has to
1818			 * be disabled to update the per-cpu stats
1819			 * inside page_remove_rmap().
1820			 */
1821			spin_lock(ptl);
1822			/*
1823			 * paravirt calls inside pte_clear here are
1824			 * superfluous.
1825			 */
1826			pte_clear(vma->vm_mm, address, _pte);
1827			page_remove_rmap(src_page);
1828			spin_unlock(ptl);
1829			free_page_and_swap_cache(src_page);
1830		}
1831
1832		address += PAGE_SIZE;
1833		page++;
1834	}
1835}
1836
1837static void collapse_huge_page(struct mm_struct *mm,
1838			       unsigned long address,
1839			       struct page **hpage,
1840			       struct vm_area_struct *vma,
1841			       int node)
1842{
1843	pgd_t *pgd;
1844	pud_t *pud;
1845	pmd_t *pmd, _pmd;
1846	pte_t *pte;
1847	pgtable_t pgtable;
1848	struct page *new_page;
1849	spinlock_t *ptl;
1850	int isolated;
1851	unsigned long hstart, hend;
1852
1853	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1854#ifndef CONFIG_NUMA
1855	up_read(&mm->mmap_sem);
1856	VM_BUG_ON(!*hpage);
1857	new_page = *hpage;
1858#else
1859	VM_BUG_ON(*hpage);
1860	/*
1861	 * Allocate the page while the vma is still valid and under
1862	 * the mmap_sem read mode so there is no memory allocation
1863	 * later when we take the mmap_sem in write mode. This is more
1864	 * friendly behavior (OTOH it may actually hide bugs) to
1865	 * filesystems in userland with daemons allocating memory in
1866	 * the userland I/O paths.  Allocating memory with the
1867	 * mmap_sem in read mode is good idea also to allow greater
1868	 * scalability.
1869	 */
1870	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1871				      node, __GFP_OTHER_NODE);
1872
1873	/*
1874	 * After allocating the hugepage, release the mmap_sem read lock in
1875	 * preparation for taking it in write mode.
1876	 */
1877	up_read(&mm->mmap_sem);
1878	if (unlikely(!new_page)) {
1879		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1880		*hpage = ERR_PTR(-ENOMEM);
1881		return;
1882	}
1883#endif
1884
1885	count_vm_event(THP_COLLAPSE_ALLOC);
1886	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1887#ifdef CONFIG_NUMA
1888		put_page(new_page);
1889#endif
1890		return;
1891	}
1892
1893	/*
1894	 * Prevent all access to pagetables with the exception of
1895	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1896	 * handled by the anon_vma lock + PG_lock.
1897	 */
1898	down_write(&mm->mmap_sem);
1899	if (unlikely(khugepaged_test_exit(mm)))
1900		goto out;
1901
1902	vma = find_vma(mm, address);
1903	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1904	hend = vma->vm_end & HPAGE_PMD_MASK;
1905	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1906		goto out;
1907
1908	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1909	    (vma->vm_flags & VM_NOHUGEPAGE))
1910		goto out;
1911
1912	if (!vma->anon_vma || vma->vm_ops)
1913		goto out;
1914	if (is_vma_temporary_stack(vma))
1915		goto out;
1916	/*
1917	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1918	 * true too, verify it here.
1919	 */
1920	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1921
1922	pgd = pgd_offset(mm, address);
1923	if (!pgd_present(*pgd))
1924		goto out;
1925
1926	pud = pud_offset(pgd, address);
1927	if (!pud_present(*pud))
1928		goto out;
1929
1930	pmd = pmd_offset(pud, address);
1931	/* pmd can't go away or become huge under us */
1932	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1933		goto out;
1934
1935	anon_vma_lock(vma->anon_vma);
1936
1937	pte = pte_offset_map(pmd, address);
1938	ptl = pte_lockptr(mm, pmd);
1939
1940	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1941	/*
1942	 * After this gup_fast can't run anymore. This also removes
1943	 * any huge TLB entry from the CPU so we won't allow
1944	 * huge and small TLB entries for the same virtual address
1945	 * to avoid the risk of CPU bugs in that area.
1946	 */
1947	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1948	spin_unlock(&mm->page_table_lock);
1949
1950	spin_lock(ptl);
1951	isolated = __collapse_huge_page_isolate(vma, address, pte);
1952	spin_unlock(ptl);
1953
1954	if (unlikely(!isolated)) {
1955		pte_unmap(pte);
1956		spin_lock(&mm->page_table_lock);
1957		BUG_ON(!pmd_none(*pmd));
1958		set_pmd_at(mm, address, pmd, _pmd);
1959		spin_unlock(&mm->page_table_lock);
1960		anon_vma_unlock(vma->anon_vma);
1961		goto out;
1962	}
1963
1964	/*
1965	 * All pages are isolated and locked so anon_vma rmap
1966	 * can't run anymore.
1967	 */
1968	anon_vma_unlock(vma->anon_vma);
1969
1970	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1971	pte_unmap(pte);
1972	__SetPageUptodate(new_page);
1973	pgtable = pmd_pgtable(_pmd);
1974	VM_BUG_ON(page_count(pgtable) != 1);
1975	VM_BUG_ON(page_mapcount(pgtable) != 0);
1976
1977	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1978	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1979	_pmd = pmd_mkhuge(_pmd);
1980
1981	/*
1982	 * spin_lock() below is not the equivalent of smp_wmb(), so
1983	 * this is needed to avoid the copy_huge_page writes to become
1984	 * visible after the set_pmd_at() write.
1985	 */
1986	smp_wmb();
1987
1988	spin_lock(&mm->page_table_lock);
1989	BUG_ON(!pmd_none(*pmd));
1990	page_add_new_anon_rmap(new_page, vma, address);
1991	set_pmd_at(mm, address, pmd, _pmd);
1992	update_mmu_cache(vma, address, _pmd);
1993	prepare_pmd_huge_pte(pgtable, mm);
 
1994	spin_unlock(&mm->page_table_lock);
1995
1996#ifndef CONFIG_NUMA
1997	*hpage = NULL;
1998#endif
1999	khugepaged_pages_collapsed++;
2000out_up_write:
2001	up_write(&mm->mmap_sem);
2002	return;
2003
2004out:
2005	mem_cgroup_uncharge_page(new_page);
2006#ifdef CONFIG_NUMA
2007	put_page(new_page);
2008#endif
2009	goto out_up_write;
2010}
2011
2012static int khugepaged_scan_pmd(struct mm_struct *mm,
2013			       struct vm_area_struct *vma,
2014			       unsigned long address,
2015			       struct page **hpage)
2016{
2017	pgd_t *pgd;
2018	pud_t *pud;
2019	pmd_t *pmd;
2020	pte_t *pte, *_pte;
2021	int ret = 0, referenced = 0, none = 0;
2022	struct page *page;
2023	unsigned long _address;
2024	spinlock_t *ptl;
2025	int node = -1;
2026
2027	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2028
2029	pgd = pgd_offset(mm, address);
2030	if (!pgd_present(*pgd))
2031		goto out;
2032
2033	pud = pud_offset(pgd, address);
2034	if (!pud_present(*pud))
2035		goto out;
2036
2037	pmd = pmd_offset(pud, address);
2038	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2039		goto out;
2040
2041	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2042	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2043	     _pte++, _address += PAGE_SIZE) {
2044		pte_t pteval = *_pte;
2045		if (pte_none(pteval)) {
2046			if (++none <= khugepaged_max_ptes_none)
2047				continue;
2048			else
2049				goto out_unmap;
2050		}
2051		if (!pte_present(pteval) || !pte_write(pteval))
2052			goto out_unmap;
2053		page = vm_normal_page(vma, _address, pteval);
2054		if (unlikely(!page))
2055			goto out_unmap;
2056		/*
2057		 * Chose the node of the first page. This could
2058		 * be more sophisticated and look at more pages,
2059		 * but isn't for now.
2060		 */
2061		if (node == -1)
2062			node = page_to_nid(page);
2063		VM_BUG_ON(PageCompound(page));
2064		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2065			goto out_unmap;
2066		/* cannot use mapcount: can't collapse if there's a gup pin */
2067		if (page_count(page) != 1)
2068			goto out_unmap;
2069		if (pte_young(pteval) || PageReferenced(page) ||
2070		    mmu_notifier_test_young(vma->vm_mm, address))
2071			referenced = 1;
2072	}
2073	if (referenced)
2074		ret = 1;
2075out_unmap:
2076	pte_unmap_unlock(pte, ptl);
2077	if (ret)
2078		/* collapse_huge_page will return with the mmap_sem released */
2079		collapse_huge_page(mm, address, hpage, vma, node);
2080out:
2081	return ret;
2082}
2083
2084static void collect_mm_slot(struct mm_slot *mm_slot)
2085{
2086	struct mm_struct *mm = mm_slot->mm;
2087
2088	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2089
2090	if (khugepaged_test_exit(mm)) {
2091		/* free mm_slot */
2092		hlist_del(&mm_slot->hash);
2093		list_del(&mm_slot->mm_node);
2094
2095		/*
2096		 * Not strictly needed because the mm exited already.
2097		 *
2098		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2099		 */
2100
2101		/* khugepaged_mm_lock actually not necessary for the below */
2102		free_mm_slot(mm_slot);
2103		mmdrop(mm);
2104	}
2105}
2106
2107static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2108					    struct page **hpage)
2109	__releases(&khugepaged_mm_lock)
2110	__acquires(&khugepaged_mm_lock)
2111{
2112	struct mm_slot *mm_slot;
2113	struct mm_struct *mm;
2114	struct vm_area_struct *vma;
2115	int progress = 0;
2116
2117	VM_BUG_ON(!pages);
2118	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2119
2120	if (khugepaged_scan.mm_slot)
2121		mm_slot = khugepaged_scan.mm_slot;
2122	else {
2123		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2124				     struct mm_slot, mm_node);
2125		khugepaged_scan.address = 0;
2126		khugepaged_scan.mm_slot = mm_slot;
2127	}
2128	spin_unlock(&khugepaged_mm_lock);
2129
2130	mm = mm_slot->mm;
2131	down_read(&mm->mmap_sem);
2132	if (unlikely(khugepaged_test_exit(mm)))
2133		vma = NULL;
2134	else
2135		vma = find_vma(mm, khugepaged_scan.address);
2136
2137	progress++;
2138	for (; vma; vma = vma->vm_next) {
2139		unsigned long hstart, hend;
2140
2141		cond_resched();
2142		if (unlikely(khugepaged_test_exit(mm))) {
2143			progress++;
2144			break;
2145		}
2146
2147		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2148		     !khugepaged_always()) ||
2149		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2150		skip:
2151			progress++;
2152			continue;
2153		}
2154		if (!vma->anon_vma || vma->vm_ops)
2155			goto skip;
2156		if (is_vma_temporary_stack(vma))
2157			goto skip;
2158		/*
2159		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2160		 * must be true too, verify it here.
2161		 */
2162		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2163			  vma->vm_flags & VM_NO_THP);
2164
2165		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2166		hend = vma->vm_end & HPAGE_PMD_MASK;
2167		if (hstart >= hend)
2168			goto skip;
2169		if (khugepaged_scan.address > hend)
2170			goto skip;
2171		if (khugepaged_scan.address < hstart)
2172			khugepaged_scan.address = hstart;
2173		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2174
2175		while (khugepaged_scan.address < hend) {
2176			int ret;
2177			cond_resched();
2178			if (unlikely(khugepaged_test_exit(mm)))
2179				goto breakouterloop;
2180
2181			VM_BUG_ON(khugepaged_scan.address < hstart ||
2182				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2183				  hend);
2184			ret = khugepaged_scan_pmd(mm, vma,
2185						  khugepaged_scan.address,
2186						  hpage);
2187			/* move to next address */
2188			khugepaged_scan.address += HPAGE_PMD_SIZE;
2189			progress += HPAGE_PMD_NR;
2190			if (ret)
2191				/* we released mmap_sem so break loop */
2192				goto breakouterloop_mmap_sem;
2193			if (progress >= pages)
2194				goto breakouterloop;
2195		}
2196	}
2197breakouterloop:
2198	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2199breakouterloop_mmap_sem:
2200
2201	spin_lock(&khugepaged_mm_lock);
2202	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2203	/*
2204	 * Release the current mm_slot if this mm is about to die, or
2205	 * if we scanned all vmas of this mm.
2206	 */
2207	if (khugepaged_test_exit(mm) || !vma) {
2208		/*
2209		 * Make sure that if mm_users is reaching zero while
2210		 * khugepaged runs here, khugepaged_exit will find
2211		 * mm_slot not pointing to the exiting mm.
2212		 */
2213		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2214			khugepaged_scan.mm_slot = list_entry(
2215				mm_slot->mm_node.next,
2216				struct mm_slot, mm_node);
2217			khugepaged_scan.address = 0;
2218		} else {
2219			khugepaged_scan.mm_slot = NULL;
2220			khugepaged_full_scans++;
2221		}
2222
2223		collect_mm_slot(mm_slot);
2224	}
2225
2226	return progress;
2227}
2228
2229static int khugepaged_has_work(void)
2230{
2231	return !list_empty(&khugepaged_scan.mm_head) &&
2232		khugepaged_enabled();
2233}
2234
2235static int khugepaged_wait_event(void)
2236{
2237	return !list_empty(&khugepaged_scan.mm_head) ||
2238		!khugepaged_enabled();
2239}
2240
2241static void khugepaged_do_scan(struct page **hpage)
2242{
2243	unsigned int progress = 0, pass_through_head = 0;
2244	unsigned int pages = khugepaged_pages_to_scan;
2245
2246	barrier(); /* write khugepaged_pages_to_scan to local stack */
2247
2248	while (progress < pages) {
2249		cond_resched();
2250
2251#ifndef CONFIG_NUMA
2252		if (!*hpage) {
2253			*hpage = alloc_hugepage(khugepaged_defrag());
2254			if (unlikely(!*hpage)) {
2255				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2256				break;
2257			}
2258			count_vm_event(THP_COLLAPSE_ALLOC);
2259		}
2260#else
2261		if (IS_ERR(*hpage))
2262			break;
2263#endif
2264
2265		if (unlikely(kthread_should_stop() || freezing(current)))
2266			break;
2267
2268		spin_lock(&khugepaged_mm_lock);
2269		if (!khugepaged_scan.mm_slot)
2270			pass_through_head++;
2271		if (khugepaged_has_work() &&
2272		    pass_through_head < 2)
2273			progress += khugepaged_scan_mm_slot(pages - progress,
2274							    hpage);
2275		else
2276			progress = pages;
2277		spin_unlock(&khugepaged_mm_lock);
2278	}
2279}
2280
2281static void khugepaged_alloc_sleep(void)
2282{
2283	wait_event_freezable_timeout(khugepaged_wait, false,
2284			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
 
 
 
 
2285}
2286
2287#ifndef CONFIG_NUMA
2288static struct page *khugepaged_alloc_hugepage(void)
2289{
2290	struct page *hpage;
2291
2292	do {
2293		hpage = alloc_hugepage(khugepaged_defrag());
2294		if (!hpage) {
2295			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2296			khugepaged_alloc_sleep();
2297		} else
2298			count_vm_event(THP_COLLAPSE_ALLOC);
2299	} while (unlikely(!hpage) &&
2300		 likely(khugepaged_enabled()));
2301	return hpage;
2302}
2303#endif
2304
2305static void khugepaged_loop(void)
2306{
2307	struct page *hpage;
2308
2309#ifdef CONFIG_NUMA
2310	hpage = NULL;
2311#endif
2312	while (likely(khugepaged_enabled())) {
2313#ifndef CONFIG_NUMA
2314		hpage = khugepaged_alloc_hugepage();
2315		if (unlikely(!hpage))
2316			break;
2317#else
2318		if (IS_ERR(hpage)) {
2319			khugepaged_alloc_sleep();
2320			hpage = NULL;
2321		}
2322#endif
2323
2324		khugepaged_do_scan(&hpage);
2325#ifndef CONFIG_NUMA
2326		if (hpage)
2327			put_page(hpage);
2328#endif
2329		try_to_freeze();
2330		if (unlikely(kthread_should_stop()))
2331			break;
2332		if (khugepaged_has_work()) {
 
2333			if (!khugepaged_scan_sleep_millisecs)
2334				continue;
2335			wait_event_freezable_timeout(khugepaged_wait, false,
2336			    msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
 
 
 
2337		} else if (khugepaged_enabled())
2338			wait_event_freezable(khugepaged_wait,
2339					     khugepaged_wait_event());
2340	}
2341}
2342
2343static int khugepaged(void *none)
2344{
2345	struct mm_slot *mm_slot;
2346
2347	set_freezable();
2348	set_user_nice(current, 19);
2349
2350	/* serialize with start_khugepaged() */
2351	mutex_lock(&khugepaged_mutex);
2352
2353	for (;;) {
2354		mutex_unlock(&khugepaged_mutex);
2355		VM_BUG_ON(khugepaged_thread != current);
2356		khugepaged_loop();
2357		VM_BUG_ON(khugepaged_thread != current);
2358
2359		mutex_lock(&khugepaged_mutex);
2360		if (!khugepaged_enabled())
2361			break;
2362		if (unlikely(kthread_should_stop()))
2363			break;
2364	}
2365
2366	spin_lock(&khugepaged_mm_lock);
2367	mm_slot = khugepaged_scan.mm_slot;
2368	khugepaged_scan.mm_slot = NULL;
2369	if (mm_slot)
2370		collect_mm_slot(mm_slot);
2371	spin_unlock(&khugepaged_mm_lock);
2372
2373	khugepaged_thread = NULL;
2374	mutex_unlock(&khugepaged_mutex);
2375
2376	return 0;
2377}
2378
2379void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2380{
2381	struct page *page;
2382
2383	spin_lock(&mm->page_table_lock);
2384	if (unlikely(!pmd_trans_huge(*pmd))) {
2385		spin_unlock(&mm->page_table_lock);
2386		return;
2387	}
2388	page = pmd_page(*pmd);
2389	VM_BUG_ON(!page_count(page));
2390	get_page(page);
2391	spin_unlock(&mm->page_table_lock);
2392
2393	split_huge_page(page);
2394
2395	put_page(page);
2396	BUG_ON(pmd_trans_huge(*pmd));
2397}
2398
2399static void split_huge_page_address(struct mm_struct *mm,
2400				    unsigned long address)
2401{
2402	pgd_t *pgd;
2403	pud_t *pud;
2404	pmd_t *pmd;
2405
2406	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2407
2408	pgd = pgd_offset(mm, address);
2409	if (!pgd_present(*pgd))
2410		return;
2411
2412	pud = pud_offset(pgd, address);
2413	if (!pud_present(*pud))
2414		return;
2415
2416	pmd = pmd_offset(pud, address);
2417	if (!pmd_present(*pmd))
2418		return;
2419	/*
2420	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2421	 * materialize from under us.
2422	 */
2423	split_huge_page_pmd(mm, pmd);
2424}
2425
2426void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2427			     unsigned long start,
2428			     unsigned long end,
2429			     long adjust_next)
2430{
2431	/*
2432	 * If the new start address isn't hpage aligned and it could
2433	 * previously contain an hugepage: check if we need to split
2434	 * an huge pmd.
2435	 */
2436	if (start & ~HPAGE_PMD_MASK &&
2437	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2438	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2439		split_huge_page_address(vma->vm_mm, start);
2440
2441	/*
2442	 * If the new end address isn't hpage aligned and it could
2443	 * previously contain an hugepage: check if we need to split
2444	 * an huge pmd.
2445	 */
2446	if (end & ~HPAGE_PMD_MASK &&
2447	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2448	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2449		split_huge_page_address(vma->vm_mm, end);
2450
2451	/*
2452	 * If we're also updating the vma->vm_next->vm_start, if the new
2453	 * vm_next->vm_start isn't page aligned and it could previously
2454	 * contain an hugepage: check if we need to split an huge pmd.
2455	 */
2456	if (adjust_next > 0) {
2457		struct vm_area_struct *next = vma->vm_next;
2458		unsigned long nstart = next->vm_start;
2459		nstart += adjust_next << PAGE_SHIFT;
2460		if (nstart & ~HPAGE_PMD_MASK &&
2461		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2462		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2463			split_huge_page_address(next->vm_mm, nstart);
2464	}
2465}