Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
 
 
   8#include <linux/mm.h>
   9#include <linux/sched.h>
 
 
 
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
 
  15#include <linux/mm_inline.h>
  16#include <linux/kthread.h>
 
 
  17#include <linux/khugepaged.h>
  18#include <linux/freezer.h>
 
  19#include <linux/mman.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20#include <asm/tlb.h>
  21#include <asm/pgalloc.h>
  22#include "internal.h"
 
 
 
 
  23
  24/*
  25 * By default transparent hugepage support is enabled for all mappings
  26 * and khugepaged scans all mappings. Defrag is only invoked by
  27 * khugepaged hugepage allocations and by page faults inside
  28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29 * allocations.
 
  30 */
  31unsigned long transparent_hugepage_flags __read_mostly =
  32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34#endif
  35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37#endif
  38	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40
  41/* default scan 8*512 pte (or vmas) every 30 second */
  42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  43static unsigned int khugepaged_pages_collapsed;
  44static unsigned int khugepaged_full_scans;
  45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  46/* during fragmentation poll the hugepage allocator once every minute */
  47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  48static struct task_struct *khugepaged_thread __read_mostly;
  49static DEFINE_MUTEX(khugepaged_mutex);
  50static DEFINE_SPINLOCK(khugepaged_mm_lock);
  51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  52/*
  53 * default collapse hugepages if there is at least one pte mapped like
  54 * it would have happened if the vma was large enough during page
  55 * fault.
  56 */
  57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  58
  59static int khugepaged(void *none);
  60static int mm_slots_hash_init(void);
  61static int khugepaged_slab_init(void);
  62static void khugepaged_slab_free(void);
  63
  64#define MM_SLOTS_HASH_HEADS 1024
  65static struct hlist_head *mm_slots_hash __read_mostly;
  66static struct kmem_cache *mm_slot_cache __read_mostly;
 
 
 
 
 
  67
  68/**
  69 * struct mm_slot - hash lookup from mm to mm_slot
  70 * @hash: hash collision list
  71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72 * @mm: the mm that this information is valid for
  73 */
  74struct mm_slot {
  75	struct hlist_node hash;
  76	struct list_head mm_node;
  77	struct mm_struct *mm;
  78};
  79
  80/**
  81 * struct khugepaged_scan - cursor for scanning
  82 * @mm_head: the head of the mm list to scan
  83 * @mm_slot: the current mm_slot we are scanning
  84 * @address: the next address inside that to be scanned
  85 *
  86 * There is only the one khugepaged_scan instance of this cursor structure.
  87 */
  88struct khugepaged_scan {
  89	struct list_head mm_head;
  90	struct mm_slot *mm_slot;
  91	unsigned long address;
  92} khugepaged_scan = {
  93	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94};
  95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96
  97static int set_recommended_min_free_kbytes(void)
  98{
  99	struct zone *zone;
 100	int nr_zones = 0;
 101	unsigned long recommended_min;
 102	extern int min_free_kbytes;
 103
 104	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 105		      &transparent_hugepage_flags) &&
 106	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 107		      &transparent_hugepage_flags))
 108		return 0;
 109
 110	for_each_populated_zone(zone)
 111		nr_zones++;
 
 
 
 
 
 
 
 112
 113	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 114	recommended_min = pageblock_nr_pages * nr_zones * 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115
 116	/*
 117	 * Make sure that on average at least two pageblocks are almost free
 118	 * of another type, one for a migratetype to fall back to and a
 119	 * second to avoid subsequent fallbacks of other types There are 3
 120	 * MIGRATE_TYPES we care about.
 
 121	 */
 122	recommended_min += pageblock_nr_pages * nr_zones *
 123			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 124
 125	/* don't ever allow to reserve more than 5% of the lowmem */
 126	recommended_min = min(recommended_min,
 127			      (unsigned long) nr_free_buffer_pages() / 20);
 128	recommended_min <<= (PAGE_SHIFT-10);
 129
 130	if (recommended_min > min_free_kbytes)
 131		min_free_kbytes = recommended_min;
 132	setup_per_zone_wmarks();
 133	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134}
 135late_initcall(set_recommended_min_free_kbytes);
 136
 137static int start_khugepaged(void)
 138{
 139	int err = 0;
 140	if (khugepaged_enabled()) {
 141		int wakeup;
 142		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
 143			err = -ENOMEM;
 144			goto out;
 145		}
 146		mutex_lock(&khugepaged_mutex);
 147		if (!khugepaged_thread)
 148			khugepaged_thread = kthread_run(khugepaged, NULL,
 149							"khugepaged");
 150		if (unlikely(IS_ERR(khugepaged_thread))) {
 151			printk(KERN_ERR
 152			       "khugepaged: kthread_run(khugepaged) failed\n");
 153			err = PTR_ERR(khugepaged_thread);
 154			khugepaged_thread = NULL;
 155		}
 156		wakeup = !list_empty(&khugepaged_scan.mm_head);
 157		mutex_unlock(&khugepaged_mutex);
 158		if (wakeup)
 159			wake_up_interruptible(&khugepaged_wait);
 160
 161		set_recommended_min_free_kbytes();
 162	} else
 163		/* wakeup to exit */
 164		wake_up_interruptible(&khugepaged_wait);
 165out:
 166	return err;
 
 
 
 
 
 
 167}
 168
 169#ifdef CONFIG_SYSFS
 
 
 
 
 170
 171static ssize_t double_flag_show(struct kobject *kobj,
 172				struct kobj_attribute *attr, char *buf,
 173				enum transparent_hugepage_flag enabled,
 174				enum transparent_hugepage_flag req_madv)
 175{
 176	if (test_bit(enabled, &transparent_hugepage_flags)) {
 177		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 178		return sprintf(buf, "[always] madvise never\n");
 179	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 180		return sprintf(buf, "always [madvise] never\n");
 181	else
 182		return sprintf(buf, "always madvise [never]\n");
 183}
 184static ssize_t double_flag_store(struct kobject *kobj,
 185				 struct kobj_attribute *attr,
 186				 const char *buf, size_t count,
 187				 enum transparent_hugepage_flag enabled,
 188				 enum transparent_hugepage_flag req_madv)
 189{
 190	if (!memcmp("always", buf,
 191		    min(sizeof("always")-1, count))) {
 192		set_bit(enabled, &transparent_hugepage_flags);
 193		clear_bit(req_madv, &transparent_hugepage_flags);
 194	} else if (!memcmp("madvise", buf,
 195			   min(sizeof("madvise")-1, count))) {
 196		clear_bit(enabled, &transparent_hugepage_flags);
 197		set_bit(req_madv, &transparent_hugepage_flags);
 198	} else if (!memcmp("never", buf,
 199			   min(sizeof("never")-1, count))) {
 200		clear_bit(enabled, &transparent_hugepage_flags);
 201		clear_bit(req_madv, &transparent_hugepage_flags);
 202	} else
 203		return -EINVAL;
 204
 205	return count;
 206}
 207
 
 
 
 208static ssize_t enabled_show(struct kobject *kobj,
 209			    struct kobj_attribute *attr, char *buf)
 210{
 211	return double_flag_show(kobj, attr, buf,
 212				TRANSPARENT_HUGEPAGE_FLAG,
 213				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 214}
 
 215static ssize_t enabled_store(struct kobject *kobj,
 216			     struct kobj_attribute *attr,
 217			     const char *buf, size_t count)
 218{
 219	ssize_t ret;
 220
 221	ret = double_flag_store(kobj, attr, buf, count,
 222				TRANSPARENT_HUGEPAGE_FLAG,
 223				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 224
 225	if (ret > 0) {
 226		int err = start_khugepaged();
 227		if (err)
 228			ret = err;
 229	}
 230
 231	if (ret > 0 &&
 232	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 233		      &transparent_hugepage_flags) ||
 234	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 235		      &transparent_hugepage_flags)))
 236		set_recommended_min_free_kbytes();
 237
 238	return ret;
 239}
 240static struct kobj_attribute enabled_attr =
 241	__ATTR(enabled, 0644, enabled_show, enabled_store);
 242
 243static ssize_t single_flag_show(struct kobject *kobj,
 244				struct kobj_attribute *attr, char *buf,
 245				enum transparent_hugepage_flag flag)
 
 
 246{
 247	return sprintf(buf, "%d\n",
 248		       !!test_bit(flag, &transparent_hugepage_flags));
 249}
 250
 251static ssize_t single_flag_store(struct kobject *kobj,
 252				 struct kobj_attribute *attr,
 253				 const char *buf, size_t count,
 254				 enum transparent_hugepage_flag flag)
 255{
 256	unsigned long value;
 257	int ret;
 258
 259	ret = kstrtoul(buf, 10, &value);
 260	if (ret < 0)
 261		return ret;
 262	if (value > 1)
 263		return -EINVAL;
 264
 265	if (value)
 266		set_bit(flag, &transparent_hugepage_flags);
 267	else
 268		clear_bit(flag, &transparent_hugepage_flags);
 269
 270	return count;
 271}
 272
 273/*
 274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 276 * memory just to allocate one more hugepage.
 277 */
 278static ssize_t defrag_show(struct kobject *kobj,
 279			   struct kobj_attribute *attr, char *buf)
 280{
 281	return double_flag_show(kobj, attr, buf,
 282				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 283				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284}
 
 285static ssize_t defrag_store(struct kobject *kobj,
 286			    struct kobj_attribute *attr,
 287			    const char *buf, size_t count)
 288{
 289	return double_flag_store(kobj, attr, buf, count,
 290				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 291				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 292}
 293static struct kobj_attribute defrag_attr =
 294	__ATTR(defrag, 0644, defrag_show, defrag_store);
 295
 296#ifdef CONFIG_DEBUG_VM
 297static ssize_t debug_cow_show(struct kobject *kobj,
 298				struct kobj_attribute *attr, char *buf)
 299{
 300	return single_flag_show(kobj, attr, buf,
 301				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 302}
 303static ssize_t debug_cow_store(struct kobject *kobj,
 304			       struct kobj_attribute *attr,
 305			       const char *buf, size_t count)
 306{
 307	return single_flag_store(kobj, attr, buf, count,
 308				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 309}
 310static struct kobj_attribute debug_cow_attr =
 311	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 312#endif /* CONFIG_DEBUG_VM */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313
 314static struct attribute *hugepage_attr[] = {
 315	&enabled_attr.attr,
 316	&defrag_attr.attr,
 317#ifdef CONFIG_DEBUG_VM
 318	&debug_cow_attr.attr,
 
 
 319#endif
 320	NULL,
 321};
 322
 323static struct attribute_group hugepage_attr_group = {
 324	.attrs = hugepage_attr,
 325};
 326
 327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 328					 struct kobj_attribute *attr,
 329					 char *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 330{
 331	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332}
 333
 334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 335					  struct kobj_attribute *attr,
 336					  const char *buf, size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 337{
 338	unsigned long msecs;
 339	int err;
 
 340
 341	err = strict_strtoul(buf, 10, &msecs);
 342	if (err || msecs > UINT_MAX)
 343		return -EINVAL;
 344
 345	khugepaged_scan_sleep_millisecs = msecs;
 346	wake_up_interruptible(&khugepaged_wait);
 
 
 
 
 347
 348	return count;
 
 
 
 
 
 
 
 349}
 350static struct kobj_attribute scan_sleep_millisecs_attr =
 351	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 352	       scan_sleep_millisecs_store);
 353
 354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 355					  struct kobj_attribute *attr,
 356					  char *buf)
 357{
 358	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 359}
 360
 361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 362					   struct kobj_attribute *attr,
 363					   const char *buf, size_t count)
 364{
 365	unsigned long msecs;
 366	int err;
 
 
 
 367
 368	err = strict_strtoul(buf, 10, &msecs);
 369	if (err || msecs > UINT_MAX)
 370		return -EINVAL;
 
 
 
 371
 372	khugepaged_alloc_sleep_millisecs = msecs;
 373	wake_up_interruptible(&khugepaged_wait);
 
 
 
 374
 375	return count;
 376}
 377static struct kobj_attribute alloc_sleep_millisecs_attr =
 378	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 379	       alloc_sleep_millisecs_store);
 380
 381static ssize_t pages_to_scan_show(struct kobject *kobj,
 382				  struct kobj_attribute *attr,
 383				  char *buf)
 384{
 385	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 386}
 387static ssize_t pages_to_scan_store(struct kobject *kobj,
 388				   struct kobj_attribute *attr,
 389				   const char *buf, size_t count)
 390{
 391	int err;
 392	unsigned long pages;
 393
 394	err = strict_strtoul(buf, 10, &pages);
 395	if (err || !pages || pages > UINT_MAX)
 396		return -EINVAL;
 
 
 397
 398	khugepaged_pages_to_scan = pages;
 
 
 
 
 
 
 
 
 
 
 
 399
 400	return count;
 401}
 402static struct kobj_attribute pages_to_scan_attr =
 403	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 404	       pages_to_scan_store);
 405
 406static ssize_t pages_collapsed_show(struct kobject *kobj,
 407				    struct kobj_attribute *attr,
 408				    char *buf)
 409{
 410	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 
 
 
 411}
 412static struct kobj_attribute pages_collapsed_attr =
 413	__ATTR_RO(pages_collapsed);
 414
 415static ssize_t full_scans_show(struct kobject *kobj,
 416			       struct kobj_attribute *attr,
 417			       char *buf)
 418{
 419	return sprintf(buf, "%u\n", khugepaged_full_scans);
 420}
 421static struct kobj_attribute full_scans_attr =
 422	__ATTR_RO(full_scans);
 
 
 423
 424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 425				      struct kobj_attribute *attr, char *buf)
 
 
 
 
 426{
 427	return single_flag_show(kobj, attr, buf,
 428				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 429}
 430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 431				       struct kobj_attribute *attr,
 432				       const char *buf, size_t count)
 433{
 434	return single_flag_store(kobj, attr, buf, count,
 435				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 436}
 437static struct kobj_attribute khugepaged_defrag_attr =
 438	__ATTR(defrag, 0644, khugepaged_defrag_show,
 439	       khugepaged_defrag_store);
 440
 441/*
 442 * max_ptes_none controls if khugepaged should collapse hugepages over
 443 * any unmapped ptes in turn potentially increasing the memory
 444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 445 * reduce the available free memory in the system as it
 446 * runs. Increasing max_ptes_none will instead potentially reduce the
 447 * free memory in the system during the khugepaged scan.
 448 */
 449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 450					     struct kobj_attribute *attr,
 451					     char *buf)
 452{
 453	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 454}
 455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 456					      struct kobj_attribute *attr,
 457					      const char *buf, size_t count)
 458{
 459	int err;
 460	unsigned long max_ptes_none;
 
 461
 462	err = strict_strtoul(buf, 10, &max_ptes_none);
 463	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 464		return -EINVAL;
 
 
 
 
 
 465
 466	khugepaged_max_ptes_none = max_ptes_none;
 
 
 
 
 
 
 467
 468	return count;
 469}
 470static struct kobj_attribute khugepaged_max_ptes_none_attr =
 471	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 472	       khugepaged_max_ptes_none_store);
 473
 474static struct attribute *khugepaged_attr[] = {
 475	&khugepaged_defrag_attr.attr,
 476	&khugepaged_max_ptes_none_attr.attr,
 477	&pages_to_scan_attr.attr,
 478	&pages_collapsed_attr.attr,
 479	&full_scans_attr.attr,
 480	&scan_sleep_millisecs_attr.attr,
 481	&alloc_sleep_millisecs_attr.attr,
 482	NULL,
 483};
 484
 485static struct attribute_group khugepaged_attr_group = {
 486	.attrs = khugepaged_attr,
 487	.name = "khugepaged",
 488};
 489#endif /* CONFIG_SYSFS */
 490
 491static int __init hugepage_init(void)
 492{
 493	int err;
 494#ifdef CONFIG_SYSFS
 495	static struct kobject *hugepage_kobj;
 496#endif
 497
 498	err = -EINVAL;
 499	if (!has_transparent_hugepage()) {
 500		transparent_hugepage_flags = 0;
 501		goto out;
 502	}
 503
 504#ifdef CONFIG_SYSFS
 505	err = -ENOMEM;
 506	hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 507	if (unlikely(!hugepage_kobj)) {
 508		printk(KERN_ERR "hugepage: failed kobject create\n");
 509		goto out;
 510	}
 511
 512	err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
 513	if (err) {
 514		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 515		goto out;
 516	}
 
 
 
 
 517
 518	err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
 519	if (err) {
 520		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 521		goto out;
 522	}
 523#endif
 524
 525	err = khugepaged_slab_init();
 526	if (err)
 527		goto out;
 528
 529	err = mm_slots_hash_init();
 530	if (err) {
 531		khugepaged_slab_free();
 532		goto out;
 533	}
 534
 535	/*
 536	 * By default disable transparent hugepages on smaller systems,
 537	 * where the extra memory used could hurt more than TLB overhead
 538	 * is likely to save.  The admin can still enable it through /sys.
 539	 */
 540	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 541		transparent_hugepage_flags = 0;
 
 
 542
 543	start_khugepaged();
 544
 545	set_recommended_min_free_kbytes();
 546
 547out:
 
 
 
 
 
 
 
 548	return err;
 549}
 550module_init(hugepage_init)
 551
 552static int __init setup_transparent_hugepage(char *str)
 553{
 554	int ret = 0;
 555	if (!str)
 556		goto out;
 557	if (!strcmp(str, "always")) {
 558		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 559			&transparent_hugepage_flags);
 560		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 561			  &transparent_hugepage_flags);
 562		ret = 1;
 563	} else if (!strcmp(str, "madvise")) {
 564		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 565			  &transparent_hugepage_flags);
 566		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 567			&transparent_hugepage_flags);
 568		ret = 1;
 569	} else if (!strcmp(str, "never")) {
 570		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 571			  &transparent_hugepage_flags);
 572		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 573			  &transparent_hugepage_flags);
 574		ret = 1;
 575	}
 576out:
 577	if (!ret)
 578		printk(KERN_WARNING
 579		       "transparent_hugepage= cannot parse, ignored\n");
 580	return ret;
 581}
 582__setup("transparent_hugepage=", setup_transparent_hugepage);
 583
 584static void prepare_pmd_huge_pte(pgtable_t pgtable,
 585				 struct mm_struct *mm)
 
 
 
 
 
 
 
 
 586{
 587	assert_spin_locked(&mm->page_table_lock);
 
 588
 589	/* FIFO */
 590	if (!mm->pmd_huge_pte)
 591		INIT_LIST_HEAD(&pgtable->lru);
 592	else
 593		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
 594	mm->pmd_huge_pte = pgtable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595}
 596
 597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 598{
 599	if (likely(vma->vm_flags & VM_WRITE))
 600		pmd = pmd_mkwrite(pmd);
 601	return pmd;
 
 
 602}
 603
 604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 605					struct vm_area_struct *vma,
 606					unsigned long haddr, pmd_t *pmd,
 607					struct page *page)
 608{
 609	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610	pgtable_t pgtable;
 
 
 
 
 
 
 
 
 
 
 
 
 611
 612	VM_BUG_ON(!PageCompound(page));
 613	pgtable = pte_alloc_one(mm, haddr);
 614	if (unlikely(!pgtable)) {
 615		mem_cgroup_uncharge_page(page);
 616		put_page(page);
 617		return VM_FAULT_OOM;
 618	}
 619
 620	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 621	__SetPageUptodate(page);
 
 
 
 
 
 622
 623	spin_lock(&mm->page_table_lock);
 624	if (unlikely(!pmd_none(*pmd))) {
 625		spin_unlock(&mm->page_table_lock);
 626		mem_cgroup_uncharge_page(page);
 627		put_page(page);
 628		pte_free(mm, pgtable);
 629	} else {
 630		pmd_t entry;
 631		entry = mk_pmd(page, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 633		entry = pmd_mkhuge(entry);
 634		/*
 635		 * The spinlocking to take the lru_lock inside
 636		 * page_add_new_anon_rmap() acts as a full memory
 637		 * barrier to be sure clear_huge_page writes become
 638		 * visible after the set_pmd_at() write.
 639		 */
 640		page_add_new_anon_rmap(page, vma, haddr);
 641		set_pmd_at(mm, haddr, pmd, entry);
 642		prepare_pmd_huge_pte(pgtable, mm);
 643		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 644		spin_unlock(&mm->page_table_lock);
 645	}
 646
 
 
 
 
 
 
 
 647	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648}
 649
 650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 
 
 
 651{
 652	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653}
 654
 655static inline struct page *alloc_hugepage_vma(int defrag,
 656					      struct vm_area_struct *vma,
 657					      unsigned long haddr, int nd,
 658					      gfp_t extra_gfp)
 659{
 660	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 661			       HPAGE_PMD_ORDER, vma, haddr, nd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662}
 663
 664#ifndef CONFIG_NUMA
 665static inline struct page *alloc_hugepage(int defrag)
 
 
 
 
 
 
 
 
 
 666{
 667	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
 668			   HPAGE_PMD_ORDER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669}
 670#endif
 671
 672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 673			       unsigned long address, pmd_t *pmd,
 674			       unsigned int flags)
 675{
 676	struct page *page;
 677	unsigned long haddr = address & HPAGE_PMD_MASK;
 678	pte_t *pte;
 
 679
 680	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
 681		if (unlikely(anon_vma_prepare(vma)))
 682			return VM_FAULT_OOM;
 683		if (unlikely(khugepaged_enter(vma)))
 684			return VM_FAULT_OOM;
 685		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 686					  vma, haddr, numa_node_id(), 0);
 687		if (unlikely(!page)) {
 688			count_vm_event(THP_FAULT_FALLBACK);
 689			goto out;
 690		}
 691		count_vm_event(THP_FAULT_ALLOC);
 692		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
 693			put_page(page);
 694			goto out;
 
 
 
 
 695		}
 
 
 696
 697		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
 
 
 
 
 
 698	}
 699out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700	/*
 701	 * Use __pte_alloc instead of pte_alloc_map, because we can't
 702	 * run pte_offset_map on the pmd, if an huge pmd could
 703	 * materialize from under us from a different thread.
 704	 */
 705	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
 706		return VM_FAULT_OOM;
 707	/* if an huge pmd materialized from under us just retry later */
 708	if (unlikely(pmd_trans_huge(*pmd)))
 709		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710	/*
 711	 * A regular pmd is established and it can't morph into a huge pmd
 712	 * from under us anymore at this point because we hold the mmap_sem
 713	 * read mode and khugepaged takes it in write mode. So now it's
 714	 * safe to run pte_offset_map().
 715	 */
 716	pte = pte_offset_map(pmd, address);
 717	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 
 
 
 
 
 
 
 
 
 
 
 718}
 719
 720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 721		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 722		  struct vm_area_struct *vma)
 723{
 
 724	struct page *src_page;
 
 725	pmd_t pmd;
 726	pgtable_t pgtable;
 727	int ret;
 728
 729	ret = -ENOMEM;
 730	pgtable = pte_alloc_one(dst_mm, addr);
 
 
 
 731	if (unlikely(!pgtable))
 732		goto out;
 733
 734	spin_lock(&dst_mm->page_table_lock);
 735	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
 
 736
 737	ret = -EAGAIN;
 738	pmd = *src_pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739	if (unlikely(!pmd_trans_huge(pmd))) {
 740		pte_free(dst_mm, pgtable);
 741		goto out_unlock;
 742	}
 743	if (unlikely(pmd_trans_splitting(pmd))) {
 744		/* split huge page running from under us */
 745		spin_unlock(&src_mm->page_table_lock);
 746		spin_unlock(&dst_mm->page_table_lock);
 747		pte_free(dst_mm, pgtable);
 748
 749		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 750		goto out;
 
 
 
 
 
 751	}
 
 752	src_page = pmd_page(pmd);
 753	VM_BUG_ON(!PageHead(src_page));
 754	get_page(src_page);
 755	page_dup_rmap(src_page);
 756	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 
 
 759	pmd = pmd_mkold(pmd_wrprotect(pmd));
 760	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 761	prepare_pmd_huge_pte(pgtable, dst_mm);
 762
 763	ret = 0;
 764out_unlock:
 765	spin_unlock(&src_mm->page_table_lock);
 766	spin_unlock(&dst_mm->page_table_lock);
 767out:
 768	return ret;
 769}
 770
 771/* no "address" argument so destroys page coloring of some arch */
 772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
 
 773{
 774	pgtable_t pgtable;
 775
 776	assert_spin_locked(&mm->page_table_lock);
 
 
 
 
 
 
 777
 778	/* FIFO */
 779	pgtable = mm->pmd_huge_pte;
 780	if (list_empty(&pgtable->lru))
 781		mm->pmd_huge_pte = NULL;
 782	else {
 783		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
 784					      struct page, lru);
 785		list_del(&pgtable->lru);
 786	}
 787	return pgtable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788}
 789
 790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 791					struct vm_area_struct *vma,
 792					unsigned long address,
 793					pmd_t *pmd, pmd_t orig_pmd,
 794					struct page *page,
 795					unsigned long haddr)
 796{
 797	pgtable_t pgtable;
 798	pmd_t _pmd;
 799	int ret = 0, i;
 800	struct page **pages;
 801
 802	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 803			GFP_KERNEL);
 804	if (unlikely(!pages)) {
 805		ret |= VM_FAULT_OOM;
 806		goto out;
 807	}
 808
 809	for (i = 0; i < HPAGE_PMD_NR; i++) {
 810		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 811					       __GFP_OTHER_NODE,
 812					       vma, address, page_to_nid(page));
 813		if (unlikely(!pages[i] ||
 814			     mem_cgroup_newpage_charge(pages[i], mm,
 815						       GFP_KERNEL))) {
 816			if (pages[i])
 817				put_page(pages[i]);
 818			mem_cgroup_uncharge_start();
 819			while (--i >= 0) {
 820				mem_cgroup_uncharge_page(pages[i]);
 821				put_page(pages[i]);
 822			}
 823			mem_cgroup_uncharge_end();
 824			kfree(pages);
 825			ret |= VM_FAULT_OOM;
 826			goto out;
 827		}
 828	}
 829
 830	for (i = 0; i < HPAGE_PMD_NR; i++) {
 831		copy_user_highpage(pages[i], page + i,
 832				   haddr + PAGE_SHIFT*i, vma);
 833		__SetPageUptodate(pages[i]);
 834		cond_resched();
 
 
 835	}
 836
 837	spin_lock(&mm->page_table_lock);
 838	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 839		goto out_free_pages;
 840	VM_BUG_ON(!PageHead(page));
 
 
 
 841
 842	pmdp_clear_flush_notify(vma, haddr, pmd);
 843	/* leave pmd empty until pte is filled */
 
 
 
 
 844
 845	pgtable = get_pmd_huge_pte(mm);
 846	pmd_populate(mm, &_pmd, pgtable);
 
 847
 848	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 849		pte_t *pte, entry;
 850		entry = mk_pte(pages[i], vma->vm_page_prot);
 851		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 852		page_add_new_anon_rmap(pages[i], vma, haddr);
 853		pte = pte_offset_map(&_pmd, haddr);
 854		VM_BUG_ON(!pte_none(*pte));
 855		set_pte_at(mm, haddr, pte, entry);
 856		pte_unmap(pte);
 857	}
 858	kfree(pages);
 859
 860	mm->nr_ptes++;
 861	smp_wmb(); /* make pte visible before pmd */
 862	pmd_populate(mm, pmd, pgtable);
 863	page_remove_rmap(page);
 864	spin_unlock(&mm->page_table_lock);
 865
 866	ret |= VM_FAULT_WRITE;
 867	put_page(page);
 
 868
 869out:
 870	return ret;
 
 871
 872out_free_pages:
 873	spin_unlock(&mm->page_table_lock);
 874	mem_cgroup_uncharge_start();
 875	for (i = 0; i < HPAGE_PMD_NR; i++) {
 876		mem_cgroup_uncharge_page(pages[i]);
 877		put_page(pages[i]);
 878	}
 879	mem_cgroup_uncharge_end();
 880	kfree(pages);
 881	goto out;
 882}
 883
 884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 885			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
 886{
 887	int ret = 0;
 888	struct page *page, *new_page;
 889	unsigned long haddr;
 
 
 
 890
 891	VM_BUG_ON(!vma->anon_vma);
 892	spin_lock(&mm->page_table_lock);
 893	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 894		goto out_unlock;
 
 
 
 
 
 
 
 
 895
 896	page = pmd_page(orig_pmd);
 897	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
 898	haddr = address & HPAGE_PMD_MASK;
 899	if (page_mapcount(page) == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900		pmd_t entry;
 
 
 
 
 
 
 
 
 
 901		entry = pmd_mkyoung(orig_pmd);
 902		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 903		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
 904			update_mmu_cache(vma, address, entry);
 905		ret |= VM_FAULT_WRITE;
 906		goto out_unlock;
 907	}
 908	get_page(page);
 909	spin_unlock(&mm->page_table_lock);
 910
 911	if (transparent_hugepage_enabled(vma) &&
 912	    !transparent_hugepage_debug_cow())
 913		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 914					      vma, haddr, numa_node_id(), 0);
 915	else
 916		new_page = NULL;
 
 917
 918	if (unlikely(!new_page)) {
 919		count_vm_event(THP_FAULT_FALLBACK);
 920		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
 921						   pmd, orig_pmd, page, haddr);
 922		put_page(page);
 923		goto out;
 924	}
 925	count_vm_event(THP_FAULT_ALLOC);
 926
 927	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
 928		put_page(new_page);
 929		put_page(page);
 930		ret |= VM_FAULT_OOM;
 931		goto out;
 932	}
 933
 934	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 935	__SetPageUptodate(new_page);
 
 936
 937	spin_lock(&mm->page_table_lock);
 938	put_page(page);
 939	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
 940		mem_cgroup_uncharge_page(new_page);
 941		put_page(new_page);
 942	} else {
 943		pmd_t entry;
 944		VM_BUG_ON(!PageHead(page));
 945		entry = mk_pmd(new_page, vma->vm_page_prot);
 946		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 947		entry = pmd_mkhuge(entry);
 948		pmdp_clear_flush_notify(vma, haddr, pmd);
 949		page_add_new_anon_rmap(new_page, vma, haddr);
 950		set_pmd_at(mm, haddr, pmd, entry);
 951		update_mmu_cache(vma, address, entry);
 952		page_remove_rmap(page);
 953		put_page(page);
 954		ret |= VM_FAULT_WRITE;
 955	}
 956out_unlock:
 957	spin_unlock(&mm->page_table_lock);
 958out:
 959	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960}
 961
 962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
 963				   unsigned long addr,
 964				   pmd_t *pmd,
 965				   unsigned int flags)
 966{
 967	struct page *page = NULL;
 968
 969	assert_spin_locked(&mm->page_table_lock);
 970
 971	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 972		goto out;
 973
 974	page = pmd_page(*pmd);
 975	VM_BUG_ON(!PageHead(page));
 976	if (flags & FOLL_TOUCH) {
 977		pmd_t _pmd;
 978		/*
 979		 * We should set the dirty bit only for FOLL_WRITE but
 980		 * for now the dirty bit in the pmd is meaningless.
 981		 * And if the dirty bit will become meaningful and
 982		 * we'll only set it with FOLL_WRITE, an atomic
 983		 * set_bit will be required on the pmd to set the
 984		 * young bit, instead of the current set_pmd_at.
 985		 */
 986		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 987		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
 988	}
 
 
 
 
 
 
 
 
 
 
 
 
 989	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 990	VM_BUG_ON(!PageCompound(page));
 991	if (flags & FOLL_GET)
 992		get_page(page);
 993
 994out:
 995	return page;
 996}
 997
 998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 999		 pmd_t *pmd)
1000{
1001	int ret = 0;
 
 
 
 
 
 
 
 
1002
1003	spin_lock(&tlb->mm->page_table_lock);
1004	if (likely(pmd_trans_huge(*pmd))) {
1005		if (unlikely(pmd_trans_splitting(*pmd))) {
1006			spin_unlock(&tlb->mm->page_table_lock);
1007			wait_split_huge_page(vma->anon_vma,
1008					     pmd);
1009		} else {
1010			struct page *page;
1011			pgtable_t pgtable;
1012			pgtable = get_pmd_huge_pte(tlb->mm);
1013			page = pmd_page(*pmd);
1014			pmd_clear(pmd);
1015			page_remove_rmap(page);
1016			VM_BUG_ON(page_mapcount(page) < 0);
1017			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018			VM_BUG_ON(!PageHead(page));
1019			spin_unlock(&tlb->mm->page_table_lock);
1020			tlb_remove_page(tlb, page);
1021			pte_free(tlb->mm, pgtable);
1022			ret = 1;
1023		}
1024	} else
1025		spin_unlock(&tlb->mm->page_table_lock);
1026
1027	return ret;
1028}
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031		unsigned long addr, unsigned long end,
1032		unsigned char *vec)
1033{
1034	int ret = 0;
 
 
 
1035
1036	spin_lock(&vma->vm_mm->page_table_lock);
1037	if (likely(pmd_trans_huge(*pmd))) {
1038		ret = !pmd_trans_splitting(*pmd);
1039		spin_unlock(&vma->vm_mm->page_table_lock);
1040		if (unlikely(!ret))
1041			wait_split_huge_page(vma->anon_vma, pmd);
1042		else {
1043			/*
1044			 * All logical pages in the range are present
1045			 * if backed by a huge page.
1046			 */
1047			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048		}
1049	} else
1050		spin_unlock(&vma->vm_mm->page_table_lock);
1051
1052	return ret;
1053}
 
1054
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056		unsigned long addr, pgprot_t newprot)
1057{
1058	struct mm_struct *mm = vma->vm_mm;
1059	int ret = 0;
 
 
 
 
 
 
 
1060
1061	spin_lock(&mm->page_table_lock);
1062	if (likely(pmd_trans_huge(*pmd))) {
1063		if (unlikely(pmd_trans_splitting(*pmd))) {
1064			spin_unlock(&mm->page_table_lock);
1065			wait_split_huge_page(vma->anon_vma, pmd);
1066		} else {
1067			pmd_t entry;
1068
1069			entry = pmdp_get_and_clear(mm, addr, pmd);
1070			entry = pmd_modify(entry, newprot);
1071			set_pmd_at(mm, addr, pmd, entry);
1072			spin_unlock(&vma->vm_mm->page_table_lock);
1073			flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074			ret = 1;
 
 
 
 
1075		}
1076	} else
1077		spin_unlock(&vma->vm_mm->page_table_lock);
1078
1079	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080}
1081
1082pmd_t *page_check_address_pmd(struct page *page,
1083			      struct mm_struct *mm,
1084			      unsigned long address,
1085			      enum page_check_address_pmd_flag flag)
1086{
1087	pgd_t *pgd;
1088	pud_t *pud;
1089	pmd_t *pmd, *ret = NULL;
 
 
 
 
 
 
1090
1091	if (address & ~HPAGE_PMD_MASK)
1092		goto out;
 
1093
1094	pgd = pgd_offset(mm, address);
1095	if (!pgd_present(*pgd))
1096		goto out;
1097
1098	pud = pud_offset(pgd, address);
1099	if (!pud_present(*pud))
 
1100		goto out;
 
1101
1102	pmd = pmd_offset(pud, address);
1103	if (pmd_none(*pmd))
 
 
 
 
1104		goto out;
1105	if (pmd_page(*pmd) != page)
 
1106		goto out;
 
1107	/*
1108	 * split_vma() may create temporary aliased mappings. There is
1109	 * no risk as long as all huge pmd are found and have their
1110	 * splitting bit set before __split_huge_page_refcount
1111	 * runs. Finding the same huge pmd more than once during the
1112	 * same rmap walk is not a problem.
1113	 */
1114	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115	    pmd_trans_splitting(*pmd))
1116		goto out;
1117	if (pmd_trans_huge(*pmd)) {
1118		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119			  !pmd_trans_splitting(*pmd));
1120		ret = pmd;
1121	}
1122out:
1123	return ret;
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127				       struct vm_area_struct *vma,
1128				       unsigned long address)
1129{
1130	struct mm_struct *mm = vma->vm_mm;
1131	pmd_t *pmd;
1132	int ret = 0;
1133
1134	spin_lock(&mm->page_table_lock);
1135	pmd = page_check_address_pmd(page, mm, address,
1136				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137	if (pmd) {
1138		/*
1139		 * We can't temporarily set the pmd to null in order
1140		 * to split it, the pmd must remain marked huge at all
1141		 * times or the VM won't take the pmd_trans_huge paths
1142		 * and it won't wait on the anon_vma->root->mutex to
1143		 * serialize against split_huge_page*.
1144		 */
1145		pmdp_splitting_flush_notify(vma, address, pmd);
1146		ret = 1;
1147	}
1148	spin_unlock(&mm->page_table_lock);
1149
 
 
 
 
 
1150	return ret;
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
1154{
1155	int i;
1156	unsigned long head_index = page->index;
1157	struct zone *zone = page_zone(page);
1158	int zonestat;
1159
1160	/* prevent PageLRU to go away from under us, and freeze lru stats */
1161	spin_lock_irq(&zone->lru_lock);
1162	compound_lock(page);
1163
1164	for (i = 1; i < HPAGE_PMD_NR; i++) {
1165		struct page *page_tail = page + i;
1166
1167		/* tail_page->_count cannot change */
1168		atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169		BUG_ON(page_count(page) <= 0);
1170		atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171		BUG_ON(atomic_read(&page_tail->_count) <= 0);
1172
1173		/* after clearing PageTail the gup refcount can be released */
1174		smp_mb();
1175
1176		/*
1177		 * retain hwpoison flag of the poisoned tail page:
1178		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1179		 *   by the memory-failure.
1180		 */
1181		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182		page_tail->flags |= (page->flags &
1183				     ((1L << PG_referenced) |
1184				      (1L << PG_swapbacked) |
1185				      (1L << PG_mlocked) |
1186				      (1L << PG_uptodate)));
1187		page_tail->flags |= (1L << PG_dirty);
1188
1189		/*
1190		 * 1) clear PageTail before overwriting first_page
1191		 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192		 */
1193		smp_wmb();
1194
1195		/*
1196		 * __split_huge_page_splitting() already set the
1197		 * splitting bit in all pmd that could map this
1198		 * hugepage, that will ensure no CPU can alter the
1199		 * mapcount on the head page. The mapcount is only
1200		 * accounted in the head page and it has to be
1201		 * transferred to all tail pages in the below code. So
1202		 * for this code to be safe, the split the mapcount
1203		 * can't change. But that doesn't mean userland can't
1204		 * keep changing and reading the page contents while
1205		 * we transfer the mapcount, so the pmd splitting
1206		 * status is achieved setting a reserved bit in the
1207		 * pmd, not by clearing the present bit.
1208		*/
1209		BUG_ON(page_mapcount(page_tail));
1210		page_tail->_mapcount = page->_mapcount;
1211
1212		BUG_ON(page_tail->mapping);
1213		page_tail->mapping = page->mapping;
1214
1215		page_tail->index = ++head_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216
1217		BUG_ON(!PageAnon(page_tail));
1218		BUG_ON(!PageUptodate(page_tail));
1219		BUG_ON(!PageDirty(page_tail));
1220		BUG_ON(!PageSwapBacked(page_tail));
 
 
 
 
 
 
 
 
 
 
1221
1222		mem_cgroup_split_huge_fixup(page, page_tail);
 
 
 
 
 
 
 
1223
1224		lru_add_page_tail(zone, page, page_tail);
 
 
1225	}
 
 
1226
1227	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1229
 
 
1230	/*
1231	 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232	 * so adjust those appropriately if this page is on the LRU.
 
 
1233	 */
1234	if (PageLRU(page)) {
1235		zonestat = NR_LRU_BASE + page_lru(page);
1236		__mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237	}
1238
1239	ClearPageCompound(page);
1240	compound_unlock(page);
1241	spin_unlock_irq(&zone->lru_lock);
1242
1243	for (i = 1; i < HPAGE_PMD_NR; i++) {
1244		struct page *page_tail = page + i;
1245		BUG_ON(page_count(page_tail) <= 0);
1246		/*
1247		 * Tail pages may be freed if there wasn't any mapping
1248		 * like if add_to_swap() is running on a lru page that
1249		 * had its mapping zapped. And freeing these pages
1250		 * requires taking the lru_lock so we do the put_page
1251		 * of the tail pages after the split is complete.
1252		 */
1253		put_page(page_tail);
1254	}
1255
1256	/*
1257	 * Only the head page (now become a regular page) is required
1258	 * to be pinned by the caller.
1259	 */
1260	BUG_ON(page_count(page) <= 0);
 
 
 
 
1261}
1262
1263static int __split_huge_page_map(struct page *page,
1264				 struct vm_area_struct *vma,
1265				 unsigned long address)
1266{
 
 
1267	struct mm_struct *mm = vma->vm_mm;
1268	pmd_t *pmd, _pmd;
1269	int ret = 0, i;
1270	pgtable_t pgtable;
1271	unsigned long haddr;
1272
1273	spin_lock(&mm->page_table_lock);
1274	pmd = page_check_address_pmd(page, mm, address,
1275				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276	if (pmd) {
1277		pgtable = get_pmd_huge_pte(mm);
1278		pmd_populate(mm, &_pmd, pgtable);
1279
1280		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281		     i++, haddr += PAGE_SIZE) {
1282			pte_t *pte, entry;
1283			BUG_ON(PageCompound(page+i));
1284			entry = mk_pte(page + i, vma->vm_page_prot);
1285			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286			if (!pmd_write(*pmd))
1287				entry = pte_wrprotect(entry);
1288			else
1289				BUG_ON(page_mapcount(page) != 1);
1290			if (!pmd_young(*pmd))
1291				entry = pte_mkold(entry);
1292			pte = pte_offset_map(&_pmd, haddr);
1293			BUG_ON(!pte_none(*pte));
1294			set_pte_at(mm, haddr, pte, entry);
1295			pte_unmap(pte);
1296		}
1297
1298		mm->nr_ptes++;
1299		smp_wmb(); /* make pte visible before pmd */
1300		/*
1301		 * Up to this point the pmd is present and huge and
1302		 * userland has the whole access to the hugepage
1303		 * during the split (which happens in place). If we
1304		 * overwrite the pmd with the not-huge version
1305		 * pointing to the pte here (which of course we could
1306		 * if all CPUs were bug free), userland could trigger
1307		 * a small page size TLB miss on the small sized TLB
1308		 * while the hugepage TLB entry is still established
1309		 * in the huge TLB. Some CPU doesn't like that. See
1310		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311		 * Erratum 383 on page 93. Intel should be safe but is
1312		 * also warns that it's only safe if the permission
1313		 * and cache attributes of the two entries loaded in
1314		 * the two TLB is identical (which should be the case
1315		 * here). But it is generally safer to never allow
1316		 * small and huge TLB entries for the same virtual
1317		 * address to be loaded simultaneously. So instead of
1318		 * doing "pmd_populate(); flush_tlb_range();" we first
1319		 * mark the current pmd notpresent (atomically because
1320		 * here the pmd_trans_huge and pmd_trans_splitting
1321		 * must remain set at all times on the pmd until the
1322		 * split is complete for this pmd), then we flush the
1323		 * SMP TLB and finally we write the non-huge version
1324		 * of the pmd entry with pmd_populate.
1325		 */
1326		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328		pmd_populate(mm, pmd, pgtable);
1329		ret = 1;
1330	}
1331	spin_unlock(&mm->page_table_lock);
1332
1333	return ret;
1334}
1335
1336/* must be called with anon_vma->root->mutex hold */
1337static void __split_huge_page(struct page *page,
1338			      struct anon_vma *anon_vma)
1339{
1340	int mapcount, mapcount2;
1341	struct anon_vma_chain *avc;
1342
1343	BUG_ON(!PageHead(page));
1344	BUG_ON(PageTail(page));
1345
1346	mapcount = 0;
1347	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348		struct vm_area_struct *vma = avc->vma;
1349		unsigned long addr = vma_address(page, vma);
1350		BUG_ON(is_vma_temporary_stack(vma));
1351		if (addr == -EFAULT)
1352			continue;
1353		mapcount += __split_huge_page_splitting(page, vma, addr);
1354	}
1355	/*
1356	 * It is critical that new vmas are added to the tail of the
1357	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358	 * and establishes a child pmd before
1359	 * __split_huge_page_splitting() freezes the parent pmd (so if
1360	 * we fail to prevent copy_huge_pmd() from running until the
1361	 * whole __split_huge_page() is complete), we will still see
1362	 * the newly established pmd of the child later during the
1363	 * walk, to be able to set it as pmd_trans_splitting too.
1364	 */
1365	if (mapcount != page_mapcount(page))
1366		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367		       mapcount, page_mapcount(page));
1368	BUG_ON(mapcount != page_mapcount(page));
1369
1370	__split_huge_page_refcount(page);
1371
1372	mapcount2 = 0;
1373	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374		struct vm_area_struct *vma = avc->vma;
1375		unsigned long addr = vma_address(page, vma);
1376		BUG_ON(is_vma_temporary_stack(vma));
1377		if (addr == -EFAULT)
1378			continue;
1379		mapcount2 += __split_huge_page_map(page, vma, addr);
 
 
1380	}
1381	if (mapcount != mapcount2)
1382		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383		       mapcount, mapcount2, page_mapcount(page));
1384	BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
 
 
 
 
 
 
 
 
 
1388{
1389	struct anon_vma *anon_vma;
 
 
 
 
 
1390	int ret = 1;
1391
1392	BUG_ON(!PageAnon(page));
1393	anon_vma = page_lock_anon_vma(page);
1394	if (!anon_vma)
1395		goto out;
1396	ret = 0;
1397	if (!PageCompound(page))
1398		goto out_unlock;
1399
1400	BUG_ON(!PageSwapBacked(page));
1401	__split_huge_page(page, anon_vma);
1402	count_vm_event(THP_SPLIT);
1403
1404	BUG_ON(PageCompound(page));
1405out_unlock:
1406	page_unlock_anon_vma(anon_vma);
1407out:
1408	return ret;
1409}
1410
1411#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1412		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
 
 
 
1413
1414int hugepage_madvise(struct vm_area_struct *vma,
1415		     unsigned long *vm_flags, int advice)
1416{
1417	switch (advice) {
1418	case MADV_HUGEPAGE:
1419		/*
1420		 * Be somewhat over-protective like KSM for now!
1421		 */
1422		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1423			return -EINVAL;
1424		*vm_flags &= ~VM_NOHUGEPAGE;
1425		*vm_flags |= VM_HUGEPAGE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426		/*
1427		 * If the vma become good for khugepaged to scan,
1428		 * register it here without waiting a page fault that
1429		 * may not happen any time soon.
1430		 */
1431		if (unlikely(khugepaged_enter_vma_merge(vma)))
1432			return -ENOMEM;
1433		break;
1434	case MADV_NOHUGEPAGE:
 
 
 
 
1435		/*
1436		 * Be somewhat over-protective like KSM for now!
 
1437		 */
1438		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1439			return -EINVAL;
1440		*vm_flags &= ~VM_HUGEPAGE;
1441		*vm_flags |= VM_NOHUGEPAGE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442		/*
1443		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1444		 * this vma even if we leave the mm registered in khugepaged if
1445		 * it got registered before VM_NOHUGEPAGE was set.
1446		 */
1447		break;
1448	}
1449
1450	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1451}
1452
1453static int __init khugepaged_slab_init(void)
 
 
 
 
 
 
 
 
 
 
1454{
1455	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1456					  sizeof(struct mm_slot),
1457					  __alignof__(struct mm_slot), 0, NULL);
1458	if (!mm_slot_cache)
1459		return -ENOMEM;
 
 
 
1460
1461	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462}
 
1463
1464static void __init khugepaged_slab_free(void)
 
 
 
 
 
 
1465{
1466	kmem_cache_destroy(mm_slot_cache);
1467	mm_slot_cache = NULL;
 
 
 
 
 
1468}
1469
1470static inline struct mm_slot *alloc_mm_slot(void)
 
 
 
 
 
 
1471{
1472	if (!mm_slot_cache)	/* initialization failed */
1473		return NULL;
1474	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 
 
 
 
1475}
1476
1477static inline void free_mm_slot(struct mm_slot *mm_slot)
 
 
1478{
1479	kmem_cache_free(mm_slot_cache, mm_slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480}
1481
1482static int __init mm_slots_hash_init(void)
 
1483{
1484	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1485				GFP_KERNEL);
1486	if (!mm_slots_hash)
1487		return -ENOMEM;
1488	return 0;
 
 
 
1489}
1490
1491#if 0
1492static void __init mm_slots_hash_free(void)
1493{
1494	kfree(mm_slots_hash);
1495	mm_slots_hash = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
1496}
1497#endif
1498
1499static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 
1500{
1501	struct mm_slot *mm_slot;
1502	struct hlist_head *bucket;
1503	struct hlist_node *node;
1504
1505	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1506				% MM_SLOTS_HASH_HEADS];
1507	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1508		if (mm == mm_slot->mm)
1509			return mm_slot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510	}
1511	return NULL;
 
 
1512}
1513
1514static void insert_to_mm_slots_hash(struct mm_struct *mm,
1515				    struct mm_slot *mm_slot)
1516{
1517	struct hlist_head *bucket;
 
 
 
 
 
 
 
 
 
1518
1519	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1520				% MM_SLOTS_HASH_HEADS];
1521	mm_slot->mm = mm;
1522	hlist_add_head(&mm_slot->hash, bucket);
1523}
1524
1525static inline int khugepaged_test_exit(struct mm_struct *mm)
1526{
1527	return atomic_read(&mm->mm_users) == 0;
1528}
1529
1530int __khugepaged_enter(struct mm_struct *mm)
1531{
1532	struct mm_slot *mm_slot;
1533	int wakeup;
 
 
 
 
 
 
 
 
1534
1535	mm_slot = alloc_mm_slot();
1536	if (!mm_slot)
1537		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
1538
1539	/* __khugepaged_exit() must not run from under us */
1540	VM_BUG_ON(khugepaged_test_exit(mm));
1541	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1542		free_mm_slot(mm_slot);
1543		return 0;
 
 
 
 
 
 
1544	}
1545
1546	spin_lock(&khugepaged_mm_lock);
1547	insert_to_mm_slots_hash(mm, mm_slot);
1548	/*
1549	 * Insert just behind the scanning cursor, to let the area settle
1550	 * down a little.
1551	 */
1552	wakeup = list_empty(&khugepaged_scan.mm_head);
1553	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1554	spin_unlock(&khugepaged_mm_lock);
1555
1556	atomic_inc(&mm->mm_count);
1557	if (wakeup)
1558		wake_up_interruptible(&khugepaged_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559
1560	return 0;
1561}
1562
1563int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1564{
1565	unsigned long hstart, hend;
1566	if (!vma->anon_vma)
1567		/*
1568		 * Not yet faulted in so we will register later in the
1569		 * page fault if needed.
 
 
 
 
 
 
 
 
 
 
 
1570		 */
1571		return 0;
1572	if (vma->vm_ops)
1573		/* khugepaged not yet working on file or special mappings */
1574		return 0;
 
 
 
 
 
 
 
 
 
 
 
1575	/*
1576	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1577	 * true too, verify it here.
1578	 */
1579	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1580	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1581	hend = vma->vm_end & HPAGE_PMD_MASK;
1582	if (hstart < hend)
1583		return khugepaged_enter(vma);
1584	return 0;
1585}
1586
1587void __khugepaged_exit(struct mm_struct *mm)
1588{
1589	struct mm_slot *mm_slot;
1590	int free = 0;
1591
1592	spin_lock(&khugepaged_mm_lock);
1593	mm_slot = get_mm_slot(mm);
1594	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1595		hlist_del(&mm_slot->hash);
1596		list_del(&mm_slot->mm_node);
1597		free = 1;
1598	}
1599	spin_unlock(&khugepaged_mm_lock);
1600
1601	if (free) {
1602		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1603		free_mm_slot(mm_slot);
1604		mmdrop(mm);
1605	} else if (mm_slot) {
1606		/*
1607		 * This is required to serialize against
1608		 * khugepaged_test_exit() (which is guaranteed to run
1609		 * under mmap sem read mode). Stop here (after we
1610		 * return all pagetables will be destroyed) until
1611		 * khugepaged has finished working on the pagetables
1612		 * under the mmap_sem.
1613		 */
1614		down_write(&mm->mmap_sem);
1615		up_write(&mm->mmap_sem);
1616	}
1617}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1618
1619static void release_pte_page(struct page *page)
1620{
1621	/* 0 stands for page_is_file_cache(page) == false */
1622	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1623	unlock_page(page);
1624	putback_lru_page(page);
1625}
1626
1627static void release_pte_pages(pte_t *pte, pte_t *_pte)
 
1628{
1629	while (--_pte >= pte) {
1630		pte_t pteval = *_pte;
1631		if (!pte_none(pteval))
1632			release_pte_page(pte_page(pteval));
1633	}
1634}
1635
1636static void release_all_pte_pages(pte_t *pte)
1637{
1638	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1639}
 
1640
1641static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1642					unsigned long address,
1643					pte_t *pte)
1644{
1645	struct page *page;
1646	pte_t *_pte;
1647	int referenced = 0, isolated = 0, none = 0;
1648	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1649	     _pte++, address += PAGE_SIZE) {
1650		pte_t pteval = *_pte;
1651		if (pte_none(pteval)) {
1652			if (++none <= khugepaged_max_ptes_none)
1653				continue;
1654			else {
1655				release_pte_pages(pte, _pte);
1656				goto out;
1657			}
1658		}
1659		if (!pte_present(pteval) || !pte_write(pteval)) {
1660			release_pte_pages(pte, _pte);
1661			goto out;
1662		}
1663		page = vm_normal_page(vma, address, pteval);
1664		if (unlikely(!page)) {
1665			release_pte_pages(pte, _pte);
1666			goto out;
1667		}
1668		VM_BUG_ON(PageCompound(page));
1669		BUG_ON(!PageAnon(page));
1670		VM_BUG_ON(!PageSwapBacked(page));
1671
1672		/* cannot use mapcount: can't collapse if there's a gup pin */
1673		if (page_count(page) != 1) {
1674			release_pte_pages(pte, _pte);
1675			goto out;
1676		}
1677		/*
1678		 * We can do it before isolate_lru_page because the
1679		 * page can't be freed from under us. NOTE: PG_lock
1680		 * is needed to serialize against split_huge_page
1681		 * when invoked from the VM.
1682		 */
1683		if (!trylock_page(page)) {
1684			release_pte_pages(pte, _pte);
1685			goto out;
1686		}
1687		/*
1688		 * Isolate the page to avoid collapsing an hugepage
1689		 * currently in use by the VM.
1690		 */
1691		if (isolate_lru_page(page)) {
1692			unlock_page(page);
1693			release_pte_pages(pte, _pte);
1694			goto out;
1695		}
1696		/* 0 stands for page_is_file_cache(page) == false */
1697		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698		VM_BUG_ON(!PageLocked(page));
1699		VM_BUG_ON(PageLRU(page));
1700
1701		/* If there is no mapped pte young don't collapse the page */
1702		if (pte_young(pteval) || PageReferenced(page) ||
1703		    mmu_notifier_test_young(vma->vm_mm, address))
1704			referenced = 1;
1705	}
1706	if (unlikely(!referenced))
1707		release_all_pte_pages(pte);
1708	else
1709		isolated = 1;
1710out:
1711	return isolated;
 
1712}
1713
1714static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1715				      struct vm_area_struct *vma,
1716				      unsigned long address,
1717				      spinlock_t *ptl)
1718{
1719	pte_t *_pte;
1720	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1721		pte_t pteval = *_pte;
1722		struct page *src_page;
1723
1724		if (pte_none(pteval)) {
1725			clear_user_highpage(page, address);
1726			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1727		} else {
1728			src_page = pte_page(pteval);
1729			copy_user_highpage(page, src_page, address, vma);
1730			VM_BUG_ON(page_mapcount(src_page) != 1);
1731			VM_BUG_ON(page_count(src_page) != 2);
1732			release_pte_page(src_page);
1733			/*
1734			 * ptl mostly unnecessary, but preempt has to
1735			 * be disabled to update the per-cpu stats
1736			 * inside page_remove_rmap().
1737			 */
1738			spin_lock(ptl);
1739			/*
1740			 * paravirt calls inside pte_clear here are
1741			 * superfluous.
1742			 */
1743			pte_clear(vma->vm_mm, address, _pte);
1744			page_remove_rmap(src_page);
1745			spin_unlock(ptl);
1746			free_page_and_swap_cache(src_page);
1747		}
1748
1749		address += PAGE_SIZE;
1750		page++;
1751	}
 
1752}
1753
1754static void collapse_huge_page(struct mm_struct *mm,
1755			       unsigned long address,
1756			       struct page **hpage,
1757			       struct vm_area_struct *vma,
1758			       int node)
1759{
1760	pgd_t *pgd;
1761	pud_t *pud;
1762	pmd_t *pmd, _pmd;
1763	pte_t *pte;
1764	pgtable_t pgtable;
1765	struct page *new_page;
1766	spinlock_t *ptl;
1767	int isolated;
1768	unsigned long hstart, hend;
1769
1770	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1771#ifndef CONFIG_NUMA
1772	up_read(&mm->mmap_sem);
1773	VM_BUG_ON(!*hpage);
1774	new_page = *hpage;
1775#else
1776	VM_BUG_ON(*hpage);
1777	/*
1778	 * Allocate the page while the vma is still valid and under
1779	 * the mmap_sem read mode so there is no memory allocation
1780	 * later when we take the mmap_sem in write mode. This is more
1781	 * friendly behavior (OTOH it may actually hide bugs) to
1782	 * filesystems in userland with daemons allocating memory in
1783	 * the userland I/O paths.  Allocating memory with the
1784	 * mmap_sem in read mode is good idea also to allow greater
1785	 * scalability.
1786	 */
1787	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1788				      node, __GFP_OTHER_NODE);
1789
1790	/*
1791	 * After allocating the hugepage, release the mmap_sem read lock in
1792	 * preparation for taking it in write mode.
1793	 */
1794	up_read(&mm->mmap_sem);
1795	if (unlikely(!new_page)) {
1796		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1797		*hpage = ERR_PTR(-ENOMEM);
1798		return;
1799	}
1800#endif
1801
1802	count_vm_event(THP_COLLAPSE_ALLOC);
1803	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1804#ifdef CONFIG_NUMA
1805		put_page(new_page);
1806#endif
1807		return;
1808	}
 
 
 
1809
1810	/*
1811	 * Prevent all access to pagetables with the exception of
1812	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1813	 * handled by the anon_vma lock + PG_lock.
1814	 */
1815	down_write(&mm->mmap_sem);
1816	if (unlikely(khugepaged_test_exit(mm)))
1817		goto out;
 
 
 
 
1818
1819	vma = find_vma(mm, address);
1820	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1821	hend = vma->vm_end & HPAGE_PMD_MASK;
1822	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1823		goto out;
1824
1825	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1826	    (vma->vm_flags & VM_NOHUGEPAGE))
1827		goto out;
1828
1829	if (!vma->anon_vma || vma->vm_ops)
1830		goto out;
1831	if (is_vma_temporary_stack(vma))
1832		goto out;
1833	/*
1834	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1835	 * true too, verify it here.
 
1836	 */
1837	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
 
 
 
1838
1839	pgd = pgd_offset(mm, address);
1840	if (!pgd_present(*pgd))
1841		goto out;
1842
1843	pud = pud_offset(pgd, address);
1844	if (!pud_present(*pud))
1845		goto out;
1846
1847	pmd = pmd_offset(pud, address);
1848	/* pmd can't go away or become huge under us */
1849	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1850		goto out;
 
 
 
 
 
 
 
1851
1852	anon_vma_lock(vma->anon_vma);
 
 
 
 
 
 
1853
1854	pte = pte_offset_map(pmd, address);
1855	ptl = pte_lockptr(mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
1856
1857	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1858	/*
1859	 * After this gup_fast can't run anymore. This also removes
1860	 * any huge TLB entry from the CPU so we won't allow
1861	 * huge and small TLB entries for the same virtual address
1862	 * to avoid the risk of CPU bugs in that area.
1863	 */
1864	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1865	spin_unlock(&mm->page_table_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866
1867	spin_lock(ptl);
1868	isolated = __collapse_huge_page_isolate(vma, address, pte);
1869	spin_unlock(ptl);
 
 
1870
1871	if (unlikely(!isolated)) {
1872		pte_unmap(pte);
1873		spin_lock(&mm->page_table_lock);
1874		BUG_ON(!pmd_none(*pmd));
1875		set_pmd_at(mm, address, pmd, _pmd);
1876		spin_unlock(&mm->page_table_lock);
1877		anon_vma_unlock(vma->anon_vma);
1878		goto out;
1879	}
 
 
 
 
 
1880
1881	/*
1882	 * All pages are isolated and locked so anon_vma rmap
1883	 * can't run anymore.
 
 
1884	 */
1885	anon_vma_unlock(vma->anon_vma);
1886
1887	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1888	pte_unmap(pte);
1889	__SetPageUptodate(new_page);
1890	pgtable = pmd_pgtable(_pmd);
1891	VM_BUG_ON(page_count(pgtable) != 1);
1892	VM_BUG_ON(page_mapcount(pgtable) != 0);
1893
1894	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1895	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1896	_pmd = pmd_mkhuge(_pmd);
1897
1898	/*
1899	 * spin_lock() below is not the equivalent of smp_wmb(), so
1900	 * this is needed to avoid the copy_huge_page writes to become
1901	 * visible after the set_pmd_at() write.
1902	 */
1903	smp_wmb();
1904
1905	spin_lock(&mm->page_table_lock);
1906	BUG_ON(!pmd_none(*pmd));
1907	page_add_new_anon_rmap(new_page, vma, address);
1908	set_pmd_at(mm, address, pmd, _pmd);
1909	update_mmu_cache(vma, address, entry);
1910	prepare_pmd_huge_pte(pgtable, mm);
1911	mm->nr_ptes--;
1912	spin_unlock(&mm->page_table_lock);
1913
1914#ifndef CONFIG_NUMA
1915	*hpage = NULL;
1916#endif
1917	khugepaged_pages_collapsed++;
1918out_up_write:
1919	up_write(&mm->mmap_sem);
1920	return;
1921
1922out:
1923	mem_cgroup_uncharge_page(new_page);
1924#ifdef CONFIG_NUMA
1925	put_page(new_page);
1926#endif
1927	goto out_up_write;
1928}
1929
1930static int khugepaged_scan_pmd(struct mm_struct *mm,
1931			       struct vm_area_struct *vma,
1932			       unsigned long address,
1933			       struct page **hpage)
1934{
1935	pgd_t *pgd;
1936	pud_t *pud;
1937	pmd_t *pmd;
1938	pte_t *pte, *_pte;
1939	int ret = 0, referenced = 0, none = 0;
1940	struct page *page;
1941	unsigned long _address;
1942	spinlock_t *ptl;
1943	int node = -1;
1944
1945	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 
1946
1947	pgd = pgd_offset(mm, address);
1948	if (!pgd_present(*pgd))
1949		goto out;
 
 
1950
1951	pud = pud_offset(pgd, address);
1952	if (!pud_present(*pud))
1953		goto out;
1954
1955	pmd = pmd_offset(pud, address);
1956	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1957		goto out;
1958
1959	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1960	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1961	     _pte++, _address += PAGE_SIZE) {
1962		pte_t pteval = *_pte;
1963		if (pte_none(pteval)) {
1964			if (++none <= khugepaged_max_ptes_none)
1965				continue;
1966			else
1967				goto out_unmap;
 
 
 
 
 
 
 
 
 
 
1968		}
1969		if (!pte_present(pteval) || !pte_write(pteval))
1970			goto out_unmap;
1971		page = vm_normal_page(vma, _address, pteval);
1972		if (unlikely(!page))
1973			goto out_unmap;
1974		/*
1975		 * Chose the node of the first page. This could
1976		 * be more sophisticated and look at more pages,
1977		 * but isn't for now.
1978		 */
1979		if (node == -1)
1980			node = page_to_nid(page);
1981		VM_BUG_ON(PageCompound(page));
1982		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1983			goto out_unmap;
1984		/* cannot use mapcount: can't collapse if there's a gup pin */
1985		if (page_count(page) != 1)
1986			goto out_unmap;
1987		if (pte_young(pteval) || PageReferenced(page) ||
1988		    mmu_notifier_test_young(vma->vm_mm, address))
1989			referenced = 1;
1990	}
1991	if (referenced)
1992		ret = 1;
1993out_unmap:
1994	pte_unmap_unlock(pte, ptl);
1995	if (ret)
1996		/* collapse_huge_page will return with the mmap_sem released */
1997		collapse_huge_page(mm, address, hpage, vma, node);
1998out:
1999	return ret;
2000}
2001
2002static void collect_mm_slot(struct mm_slot *mm_slot)
2003{
2004	struct mm_struct *mm = mm_slot->mm;
2005
2006	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2007
2008	if (khugepaged_test_exit(mm)) {
2009		/* free mm_slot */
2010		hlist_del(&mm_slot->hash);
2011		list_del(&mm_slot->mm_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2012
2013		/*
2014		 * Not strictly needed because the mm exited already.
2015		 *
2016		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
 
 
2017		 */
2018
2019		/* khugepaged_mm_lock actually not necessary for the below */
2020		free_mm_slot(mm_slot);
2021		mmdrop(mm);
2022	}
2023}
2024
2025static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2026					    struct page **hpage)
2027{
2028	struct mm_slot *mm_slot;
2029	struct mm_struct *mm;
2030	struct vm_area_struct *vma;
2031	int progress = 0;
2032
2033	VM_BUG_ON(!pages);
2034	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2035
2036	if (khugepaged_scan.mm_slot)
2037		mm_slot = khugepaged_scan.mm_slot;
2038	else {
2039		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2040				     struct mm_slot, mm_node);
2041		khugepaged_scan.address = 0;
2042		khugepaged_scan.mm_slot = mm_slot;
2043	}
2044	spin_unlock(&khugepaged_mm_lock);
2045
2046	mm = mm_slot->mm;
2047	down_read(&mm->mmap_sem);
2048	if (unlikely(khugepaged_test_exit(mm)))
2049		vma = NULL;
2050	else
2051		vma = find_vma(mm, khugepaged_scan.address);
 
 
 
 
2052
2053	progress++;
2054	for (; vma; vma = vma->vm_next) {
2055		unsigned long hstart, hend;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056
2057		cond_resched();
2058		if (unlikely(khugepaged_test_exit(mm))) {
2059			progress++;
2060			break;
2061		}
2062
2063		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2064		     !khugepaged_always()) ||
2065		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2066		skip:
2067			progress++;
2068			continue;
2069		}
2070		if (!vma->anon_vma || vma->vm_ops)
2071			goto skip;
2072		if (is_vma_temporary_stack(vma))
2073			goto skip;
2074		/*
2075		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2076		 * must be true too, verify it here.
 
 
 
 
2077		 */
2078		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2079			  vma->vm_flags & VM_NO_THP);
 
 
 
 
 
 
 
 
2080
2081		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2082		hend = vma->vm_end & HPAGE_PMD_MASK;
2083		if (hstart >= hend)
2084			goto skip;
2085		if (khugepaged_scan.address > hend)
2086			goto skip;
2087		if (khugepaged_scan.address < hstart)
2088			khugepaged_scan.address = hstart;
2089		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2090
2091		while (khugepaged_scan.address < hend) {
2092			int ret;
2093			cond_resched();
2094			if (unlikely(khugepaged_test_exit(mm)))
2095				goto breakouterloop;
2096
2097			VM_BUG_ON(khugepaged_scan.address < hstart ||
2098				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2099				  hend);
2100			ret = khugepaged_scan_pmd(mm, vma,
2101						  khugepaged_scan.address,
2102						  hpage);
2103			/* move to next address */
2104			khugepaged_scan.address += HPAGE_PMD_SIZE;
2105			progress += HPAGE_PMD_NR;
2106			if (ret)
2107				/* we released mmap_sem so break loop */
2108				goto breakouterloop_mmap_sem;
2109			if (progress >= pages)
2110				goto breakouterloop;
2111		}
2112	}
2113breakouterloop:
2114	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2115breakouterloop_mmap_sem:
 
 
 
 
 
 
 
 
 
2116
2117	spin_lock(&khugepaged_mm_lock);
2118	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2119	/*
2120	 * Release the current mm_slot if this mm is about to die, or
2121	 * if we scanned all vmas of this mm.
2122	 */
2123	if (khugepaged_test_exit(mm) || !vma) {
 
 
 
 
 
 
 
 
 
2124		/*
2125		 * Make sure that if mm_users is reaching zero while
2126		 * khugepaged runs here, khugepaged_exit will find
2127		 * mm_slot not pointing to the exiting mm.
2128		 */
2129		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2130			khugepaged_scan.mm_slot = list_entry(
2131				mm_slot->mm_node.next,
2132				struct mm_slot, mm_node);
2133			khugepaged_scan.address = 0;
2134		} else {
2135			khugepaged_scan.mm_slot = NULL;
2136			khugepaged_full_scans++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2137		}
2138
2139		collect_mm_slot(mm_slot);
 
 
 
 
 
 
 
 
 
2140	}
2141
2142	return progress;
 
 
 
 
 
 
 
 
 
 
2143}
2144
2145static int khugepaged_has_work(void)
2146{
2147	return !list_empty(&khugepaged_scan.mm_head) &&
2148		khugepaged_enabled();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2149}
2150
2151static int khugepaged_wait_event(void)
2152{
2153	return !list_empty(&khugepaged_scan.mm_head) ||
2154		!khugepaged_enabled();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155}
2156
2157static void khugepaged_do_scan(struct page **hpage)
 
2158{
2159	unsigned int progress = 0, pass_through_head = 0;
2160	unsigned int pages = khugepaged_pages_to_scan;
2161
2162	barrier(); /* write khugepaged_pages_to_scan to local stack */
2163
2164	while (progress < pages) {
2165		cond_resched();
 
 
2166
2167#ifndef CONFIG_NUMA
2168		if (!*hpage) {
2169			*hpage = alloc_hugepage(khugepaged_defrag());
2170			if (unlikely(!*hpage)) {
2171				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2172				break;
2173			}
2174			count_vm_event(THP_COLLAPSE_ALLOC);
2175		}
2176#else
2177		if (IS_ERR(*hpage))
2178			break;
 
2179#endif
2180
2181		if (unlikely(kthread_should_stop() || freezing(current)))
 
 
 
 
 
 
 
 
 
 
 
2182			break;
 
 
2183
2184		spin_lock(&khugepaged_mm_lock);
2185		if (!khugepaged_scan.mm_slot)
2186			pass_through_head++;
2187		if (khugepaged_has_work() &&
2188		    pass_through_head < 2)
2189			progress += khugepaged_scan_mm_slot(pages - progress,
2190							    hpage);
2191		else
2192			progress = pages;
2193		spin_unlock(&khugepaged_mm_lock);
2194	}
 
 
 
 
 
 
 
 
 
 
 
 
2195}
2196
2197static void khugepaged_alloc_sleep(void)
 
2198{
2199	DEFINE_WAIT(wait);
2200	add_wait_queue(&khugepaged_wait, &wait);
2201	schedule_timeout_interruptible(
2202		msecs_to_jiffies(
2203			khugepaged_alloc_sleep_millisecs));
2204	remove_wait_queue(&khugepaged_wait, &wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2205}
2206
2207#ifndef CONFIG_NUMA
2208static struct page *khugepaged_alloc_hugepage(void)
2209{
2210	struct page *hpage;
2211
2212	do {
2213		hpage = alloc_hugepage(khugepaged_defrag());
2214		if (!hpage) {
2215			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2216			khugepaged_alloc_sleep();
2217		} else
2218			count_vm_event(THP_COLLAPSE_ALLOC);
2219	} while (unlikely(!hpage) &&
2220		 likely(khugepaged_enabled()));
2221	return hpage;
2222}
2223#endif
2224
2225static void khugepaged_loop(void)
 
2226{
2227	struct page *hpage;
 
 
 
 
2228
2229#ifdef CONFIG_NUMA
2230	hpage = NULL;
2231#endif
2232	while (likely(khugepaged_enabled())) {
2233#ifndef CONFIG_NUMA
2234		hpage = khugepaged_alloc_hugepage();
2235		if (unlikely(!hpage))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236			break;
2237#else
2238		if (IS_ERR(hpage)) {
2239			khugepaged_alloc_sleep();
2240			hpage = NULL;
 
2241		}
2242#endif
2243
2244		khugepaged_do_scan(&hpage);
2245#ifndef CONFIG_NUMA
2246		if (hpage)
2247			put_page(hpage);
2248#endif
2249		try_to_freeze();
2250		if (unlikely(kthread_should_stop()))
2251			break;
2252		if (khugepaged_has_work()) {
2253			DEFINE_WAIT(wait);
2254			if (!khugepaged_scan_sleep_millisecs)
2255				continue;
2256			add_wait_queue(&khugepaged_wait, &wait);
2257			schedule_timeout_interruptible(
2258				msecs_to_jiffies(
2259					khugepaged_scan_sleep_millisecs));
2260			remove_wait_queue(&khugepaged_wait, &wait);
2261		} else if (khugepaged_enabled())
2262			wait_event_freezable(khugepaged_wait,
2263					     khugepaged_wait_event());
 
 
 
 
2264	}
 
 
 
 
 
 
 
2265}
2266
2267static int khugepaged(void *none)
 
2268{
2269	struct mm_slot *mm_slot;
 
 
 
 
 
 
2270
2271	set_freezable();
2272	set_user_nice(current, 19);
 
2273
2274	/* serialize with start_khugepaged() */
2275	mutex_lock(&khugepaged_mutex);
 
2276
2277	for (;;) {
2278		mutex_unlock(&khugepaged_mutex);
2279		VM_BUG_ON(khugepaged_thread != current);
2280		khugepaged_loop();
2281		VM_BUG_ON(khugepaged_thread != current);
2282
2283		mutex_lock(&khugepaged_mutex);
2284		if (!khugepaged_enabled())
2285			break;
2286		if (unlikely(kthread_should_stop()))
2287			break;
2288	}
2289
2290	spin_lock(&khugepaged_mm_lock);
2291	mm_slot = khugepaged_scan.mm_slot;
2292	khugepaged_scan.mm_slot = NULL;
2293	if (mm_slot)
2294		collect_mm_slot(mm_slot);
2295	spin_unlock(&khugepaged_mm_lock);
2296
2297	khugepaged_thread = NULL;
2298	mutex_unlock(&khugepaged_mutex);
 
2299
2300	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2301}
2302
2303void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
 
 
 
2304{
2305	struct page *page;
 
 
 
 
 
2306
2307	spin_lock(&mm->page_table_lock);
2308	if (unlikely(!pmd_trans_huge(*pmd))) {
2309		spin_unlock(&mm->page_table_lock);
2310		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2311	}
2312	page = pmd_page(*pmd);
2313	VM_BUG_ON(!page_count(page));
2314	get_page(page);
2315	spin_unlock(&mm->page_table_lock);
2316
2317	split_huge_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2318
2319	put_page(page);
2320	BUG_ON(pmd_trans_huge(*pmd));
 
 
 
2321}
 
 
2322
2323static void split_huge_page_address(struct mm_struct *mm,
2324				    unsigned long address)
 
2325{
2326	pgd_t *pgd;
2327	pud_t *pud;
2328	pmd_t *pmd;
 
 
 
 
 
2329
2330	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
 
2331
2332	pgd = pgd_offset(mm, address);
2333	if (!pgd_present(*pgd))
2334		return;
2335
2336	pud = pud_offset(pgd, address);
2337	if (!pud_present(*pud))
2338		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339
2340	pmd = pmd_offset(pud, address);
2341	if (!pmd_present(*pmd))
2342		return;
2343	/*
2344	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2345	 * materialize from under us.
2346	 */
2347	split_huge_page_pmd(mm, pmd);
2348}
2349
2350void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2351			     unsigned long start,
2352			     unsigned long end,
2353			     long adjust_next)
2354{
2355	/*
2356	 * If the new start address isn't hpage aligned and it could
2357	 * previously contain an hugepage: check if we need to split
2358	 * an huge pmd.
2359	 */
2360	if (start & ~HPAGE_PMD_MASK &&
2361	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2362	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2363		split_huge_page_address(vma->vm_mm, start);
2364
2365	/*
2366	 * If the new end address isn't hpage aligned and it could
2367	 * previously contain an hugepage: check if we need to split
2368	 * an huge pmd.
2369	 */
2370	if (end & ~HPAGE_PMD_MASK &&
2371	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2372	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2373		split_huge_page_address(vma->vm_mm, end);
2374
2375	/*
2376	 * If we're also updating the vma->vm_next->vm_start, if the new
2377	 * vm_next->vm_start isn't page aligned and it could previously
2378	 * contain an hugepage: check if we need to split an huge pmd.
2379	 */
2380	if (adjust_next > 0) {
2381		struct vm_area_struct *next = vma->vm_next;
2382		unsigned long nstart = next->vm_start;
2383		nstart += adjust_next << PAGE_SHIFT;
2384		if (nstart & ~HPAGE_PMD_MASK &&
2385		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2386		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2387			split_huge_page_address(next->vm_mm, nstart);
 
 
 
 
 
 
 
 
 
 
 
2388	}
 
 
 
 
 
 
2389}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2009  Red Hat, Inc.
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/coredump.h>
  12#include <linux/sched/numa_balancing.h>
  13#include <linux/highmem.h>
  14#include <linux/hugetlb.h>
  15#include <linux/mmu_notifier.h>
  16#include <linux/rmap.h>
  17#include <linux/swap.h>
  18#include <linux/shrinker.h>
  19#include <linux/mm_inline.h>
  20#include <linux/swapops.h>
  21#include <linux/backing-dev.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36#include <linux/numa.h>
  37#include <linux/page_owner.h>
  38#include <linux/sched/sysctl.h>
  39#include <linux/memory-tiers.h>
  40#include <linux/compat.h>
  41
  42#include <asm/tlb.h>
  43#include <asm/pgalloc.h>
  44#include "internal.h"
  45#include "swap.h"
  46
  47#define CREATE_TRACE_POINTS
  48#include <trace/events/thp.h>
  49
  50/*
  51 * By default, transparent hugepage support is disabled in order to avoid
  52 * risking an increased memory footprint for applications that are not
  53 * guaranteed to benefit from it. When transparent hugepage support is
  54 * enabled, it is for all mappings, and khugepaged scans all mappings.
  55 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  56 * for all hugepage allocations.
  57 */
  58unsigned long transparent_hugepage_flags __read_mostly =
  59#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  60	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  61#endif
  62#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  63	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  64#endif
  65	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  66	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  67	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  68
  69static struct shrinker *deferred_split_shrinker;
  70static unsigned long deferred_split_count(struct shrinker *shrink,
  71					  struct shrink_control *sc);
  72static unsigned long deferred_split_scan(struct shrinker *shrink,
  73					 struct shrink_control *sc);
  74
  75static atomic_t huge_zero_refcount;
  76struct page *huge_zero_page __read_mostly;
  77unsigned long huge_zero_pfn __read_mostly = ~0UL;
  78unsigned long huge_anon_orders_always __read_mostly;
  79unsigned long huge_anon_orders_madvise __read_mostly;
  80unsigned long huge_anon_orders_inherit __read_mostly;
  81
  82unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
  83					 unsigned long vm_flags, bool smaps,
  84					 bool in_pf, bool enforce_sysfs,
  85					 unsigned long orders)
  86{
  87	/* Check the intersection of requested and supported orders. */
  88	orders &= vma_is_anonymous(vma) ?
  89			THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE;
  90	if (!orders)
  91		return 0;
  92
  93	if (!vma->vm_mm)		/* vdso */
  94		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95
  96	/*
  97	 * Explicitly disabled through madvise or prctl, or some
  98	 * architectures may disable THP for some mappings, for
  99	 * example, s390 kvm.
 100	 * */
 101	if ((vm_flags & VM_NOHUGEPAGE) ||
 102	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
 103		return 0;
 104	/*
 105	 * If the hardware/firmware marked hugepage support disabled.
 106	 */
 107	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
 108		return 0;
 109
 110	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
 111	if (vma_is_dax(vma))
 112		return in_pf ? orders : 0;
 
 
 
 
 
 
 
 
 113
 114	/*
 115	 * khugepaged special VMA and hugetlb VMA.
 116	 * Must be checked after dax since some dax mappings may have
 117	 * VM_MIXEDMAP set.
 118	 */
 119	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
 120		return 0;
 
 
 
 
 
 
 
 
 121
 122	/*
 123	 * Check alignment for file vma and size for both file and anon vma by
 124	 * filtering out the unsuitable orders.
 125	 *
 126	 * Skip the check for page fault. Huge fault does the check in fault
 127	 * handlers.
 128	 */
 129	if (!in_pf) {
 130		int order = highest_order(orders);
 131		unsigned long addr;
 132
 133		while (orders) {
 134			addr = vma->vm_end - (PAGE_SIZE << order);
 135			if (thp_vma_suitable_order(vma, addr, order))
 136				break;
 137			order = next_order(&orders, order);
 138		}
 139
 140		if (!orders)
 141			return 0;
 142	}
 
 
 
 
 
 
 
 
 
 143
 144	/*
 145	 * Enabled via shmem mount options or sysfs settings.
 146	 * Must be done before hugepage flags check since shmem has its
 147	 * own flags.
 148	 */
 149	if (!in_pf && shmem_file(vma->vm_file))
 150		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
 151				     !enforce_sysfs, vma->vm_mm, vm_flags)
 152			? orders : 0;
 153
 154	if (!vma_is_anonymous(vma)) {
 155		/*
 156		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
 157		 * were already handled in thp_vma_allowable_orders().
 158		 */
 159		if (enforce_sysfs &&
 160		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
 161						    !hugepage_global_always())))
 162			return 0;
 163
 164		/*
 165		 * Trust that ->huge_fault() handlers know what they are doing
 166		 * in fault path.
 167		 */
 168		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
 169			return orders;
 170		/* Only regular file is valid in collapse path */
 171		if (((!in_pf || smaps)) && file_thp_enabled(vma))
 172			return orders;
 173		return 0;
 174	}
 175
 176	if (vma_is_temporary_stack(vma))
 177		return 0;
 178
 179	/*
 180	 * THPeligible bit of smaps should show 1 for proper VMAs even
 181	 * though anon_vma is not initialized yet.
 182	 *
 183	 * Allow page fault since anon_vma may be not initialized until
 184	 * the first page fault.
 185	 */
 186	if (!vma->anon_vma)
 187		return (smaps || in_pf) ? orders : 0;
 188
 189	return orders;
 190}
 
 
 191
 192static bool get_huge_zero_page(void)
 193{
 194	struct page *zero_page;
 195retry:
 196	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 197		return true;
 198
 199	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 200			HPAGE_PMD_ORDER);
 201	if (!zero_page) {
 202		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 203		return false;
 204	}
 205	preempt_disable();
 206	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 207		preempt_enable();
 208		__free_pages(zero_page, compound_order(zero_page));
 209		goto retry;
 210	}
 211	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
 212
 213	/* We take additional reference here. It will be put back by shrinker */
 214	atomic_set(&huge_zero_refcount, 2);
 215	preempt_enable();
 216	count_vm_event(THP_ZERO_PAGE_ALLOC);
 217	return true;
 218}
 
 219
 220static void put_huge_zero_page(void)
 221{
 222	/*
 223	 * Counter should never go to zero here. Only shrinker can put
 224	 * last reference.
 225	 */
 226	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 227}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228
 229struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 230{
 231	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 232		return READ_ONCE(huge_zero_page);
 233
 234	if (!get_huge_zero_page())
 235		return NULL;
 236
 237	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 238		put_huge_zero_page();
 239
 240	return READ_ONCE(huge_zero_page);
 241}
 242
 243void mm_put_huge_zero_page(struct mm_struct *mm)
 244{
 245	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 246		put_huge_zero_page();
 247}
 248
 249static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 250					struct shrink_control *sc)
 251{
 252	/* we can free zero page only if last reference remains */
 253	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 
 
 
 
 
 
 
 254}
 255
 256static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 257				       struct shrink_control *sc)
 
 
 258{
 259	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 260		struct page *zero_page = xchg(&huge_zero_page, NULL);
 261		BUG_ON(zero_page == NULL);
 262		WRITE_ONCE(huge_zero_pfn, ~0UL);
 263		__free_pages(zero_page, compound_order(zero_page));
 264		return HPAGE_PMD_NR;
 265	}
 
 
 
 
 
 
 
 266
 267	return 0;
 268}
 269
 270static struct shrinker *huge_zero_page_shrinker;
 271
 272#ifdef CONFIG_SYSFS
 273static ssize_t enabled_show(struct kobject *kobj,
 274			    struct kobj_attribute *attr, char *buf)
 275{
 276	const char *output;
 277
 278	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 279		output = "[always] madvise never";
 280	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 281			  &transparent_hugepage_flags))
 282		output = "always [madvise] never";
 283	else
 284		output = "always madvise [never]";
 285
 286	return sysfs_emit(buf, "%s\n", output);
 287}
 288
 289static ssize_t enabled_store(struct kobject *kobj,
 290			     struct kobj_attribute *attr,
 291			     const char *buf, size_t count)
 292{
 293	ssize_t ret = count;
 294
 295	if (sysfs_streq(buf, "always")) {
 296		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 297		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 298	} else if (sysfs_streq(buf, "madvise")) {
 299		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 300		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 301	} else if (sysfs_streq(buf, "never")) {
 302		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 303		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 304	} else
 305		ret = -EINVAL;
 306
 307	if (ret > 0) {
 308		int err = start_stop_khugepaged();
 309		if (err)
 310			ret = err;
 311	}
 
 
 
 
 
 
 
 
 312	return ret;
 313}
 
 
 314
 315static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
 316
 317ssize_t single_hugepage_flag_show(struct kobject *kobj,
 318				  struct kobj_attribute *attr, char *buf,
 319				  enum transparent_hugepage_flag flag)
 320{
 321	return sysfs_emit(buf, "%d\n",
 322			  !!test_bit(flag, &transparent_hugepage_flags));
 323}
 324
 325ssize_t single_hugepage_flag_store(struct kobject *kobj,
 326				 struct kobj_attribute *attr,
 327				 const char *buf, size_t count,
 328				 enum transparent_hugepage_flag flag)
 329{
 330	unsigned long value;
 331	int ret;
 332
 333	ret = kstrtoul(buf, 10, &value);
 334	if (ret < 0)
 335		return ret;
 336	if (value > 1)
 337		return -EINVAL;
 338
 339	if (value)
 340		set_bit(flag, &transparent_hugepage_flags);
 341	else
 342		clear_bit(flag, &transparent_hugepage_flags);
 343
 344	return count;
 345}
 346
 
 
 
 
 
 347static ssize_t defrag_show(struct kobject *kobj,
 348			   struct kobj_attribute *attr, char *buf)
 349{
 350	const char *output;
 351
 352	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 353		     &transparent_hugepage_flags))
 354		output = "[always] defer defer+madvise madvise never";
 355	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 356			  &transparent_hugepage_flags))
 357		output = "always [defer] defer+madvise madvise never";
 358	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
 359			  &transparent_hugepage_flags))
 360		output = "always defer [defer+madvise] madvise never";
 361	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 362			  &transparent_hugepage_flags))
 363		output = "always defer defer+madvise [madvise] never";
 364	else
 365		output = "always defer defer+madvise madvise [never]";
 366
 367	return sysfs_emit(buf, "%s\n", output);
 368}
 369
 370static ssize_t defrag_store(struct kobject *kobj,
 371			    struct kobj_attribute *attr,
 372			    const char *buf, size_t count)
 373{
 374	if (sysfs_streq(buf, "always")) {
 375		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 376		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 377		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 378		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 379	} else if (sysfs_streq(buf, "defer+madvise")) {
 380		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 381		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 382		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 383		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 384	} else if (sysfs_streq(buf, "defer")) {
 385		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 386		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 387		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 388		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 389	} else if (sysfs_streq(buf, "madvise")) {
 390		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 391		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 392		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 393		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 394	} else if (sysfs_streq(buf, "never")) {
 395		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 396		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 397		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 398		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 399	} else
 400		return -EINVAL;
 401
 402	return count;
 403}
 404static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
 405
 406static ssize_t use_zero_page_show(struct kobject *kobj,
 407				  struct kobj_attribute *attr, char *buf)
 408{
 409	return single_hugepage_flag_show(kobj, attr, buf,
 410					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 411}
 412static ssize_t use_zero_page_store(struct kobject *kobj,
 413		struct kobj_attribute *attr, const char *buf, size_t count)
 414{
 415	return single_hugepage_flag_store(kobj, attr, buf, count,
 416				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 417}
 418static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
 419
 420static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 421				   struct kobj_attribute *attr, char *buf)
 422{
 423	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
 424}
 425static struct kobj_attribute hpage_pmd_size_attr =
 426	__ATTR_RO(hpage_pmd_size);
 427
 428static struct attribute *hugepage_attr[] = {
 429	&enabled_attr.attr,
 430	&defrag_attr.attr,
 431	&use_zero_page_attr.attr,
 432	&hpage_pmd_size_attr.attr,
 433#ifdef CONFIG_SHMEM
 434	&shmem_enabled_attr.attr,
 435#endif
 436	NULL,
 437};
 438
 439static const struct attribute_group hugepage_attr_group = {
 440	.attrs = hugepage_attr,
 441};
 442
 443static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
 444static void thpsize_release(struct kobject *kobj);
 445static DEFINE_SPINLOCK(huge_anon_orders_lock);
 446static LIST_HEAD(thpsize_list);
 447
 448struct thpsize {
 449	struct kobject kobj;
 450	struct list_head node;
 451	int order;
 452};
 453
 454#define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
 455
 456static ssize_t thpsize_enabled_show(struct kobject *kobj,
 457				    struct kobj_attribute *attr, char *buf)
 458{
 459	int order = to_thpsize(kobj)->order;
 460	const char *output;
 461
 462	if (test_bit(order, &huge_anon_orders_always))
 463		output = "[always] inherit madvise never";
 464	else if (test_bit(order, &huge_anon_orders_inherit))
 465		output = "always [inherit] madvise never";
 466	else if (test_bit(order, &huge_anon_orders_madvise))
 467		output = "always inherit [madvise] never";
 468	else
 469		output = "always inherit madvise [never]";
 470
 471	return sysfs_emit(buf, "%s\n", output);
 472}
 473
 474static ssize_t thpsize_enabled_store(struct kobject *kobj,
 475				     struct kobj_attribute *attr,
 476				     const char *buf, size_t count)
 477{
 478	int order = to_thpsize(kobj)->order;
 479	ssize_t ret = count;
 480
 481	if (sysfs_streq(buf, "always")) {
 482		spin_lock(&huge_anon_orders_lock);
 483		clear_bit(order, &huge_anon_orders_inherit);
 484		clear_bit(order, &huge_anon_orders_madvise);
 485		set_bit(order, &huge_anon_orders_always);
 486		spin_unlock(&huge_anon_orders_lock);
 487	} else if (sysfs_streq(buf, "inherit")) {
 488		spin_lock(&huge_anon_orders_lock);
 489		clear_bit(order, &huge_anon_orders_always);
 490		clear_bit(order, &huge_anon_orders_madvise);
 491		set_bit(order, &huge_anon_orders_inherit);
 492		spin_unlock(&huge_anon_orders_lock);
 493	} else if (sysfs_streq(buf, "madvise")) {
 494		spin_lock(&huge_anon_orders_lock);
 495		clear_bit(order, &huge_anon_orders_always);
 496		clear_bit(order, &huge_anon_orders_inherit);
 497		set_bit(order, &huge_anon_orders_madvise);
 498		spin_unlock(&huge_anon_orders_lock);
 499	} else if (sysfs_streq(buf, "never")) {
 500		spin_lock(&huge_anon_orders_lock);
 501		clear_bit(order, &huge_anon_orders_always);
 502		clear_bit(order, &huge_anon_orders_inherit);
 503		clear_bit(order, &huge_anon_orders_madvise);
 504		spin_unlock(&huge_anon_orders_lock);
 505	} else
 506		ret = -EINVAL;
 507
 508	return ret;
 509}
 510
 511static struct kobj_attribute thpsize_enabled_attr =
 512	__ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store);
 513
 514static struct attribute *thpsize_attrs[] = {
 515	&thpsize_enabled_attr.attr,
 516	NULL,
 517};
 518
 519static const struct attribute_group thpsize_attr_group = {
 520	.attrs = thpsize_attrs,
 521};
 522
 523static const struct kobj_type thpsize_ktype = {
 524	.release = &thpsize_release,
 525	.sysfs_ops = &kobj_sysfs_ops,
 526};
 527
 528static struct thpsize *thpsize_create(int order, struct kobject *parent)
 529{
 530	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
 531	struct thpsize *thpsize;
 532	int ret;
 533
 534	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
 535	if (!thpsize)
 536		return ERR_PTR(-ENOMEM);
 537
 538	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
 539				   "hugepages-%lukB", size);
 540	if (ret) {
 541		kfree(thpsize);
 542		return ERR_PTR(ret);
 543	}
 544
 545	ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group);
 546	if (ret) {
 547		kobject_put(&thpsize->kobj);
 548		return ERR_PTR(ret);
 549	}
 550
 551	thpsize->order = order;
 552	return thpsize;
 553}
 
 
 
 554
 555static void thpsize_release(struct kobject *kobj)
 
 
 556{
 557	kfree(to_thpsize(kobj));
 558}
 559
 560static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 
 
 561{
 
 562	int err;
 563	struct thpsize *thpsize;
 564	unsigned long orders;
 565	int order;
 566
 567	/*
 568	 * Default to setting PMD-sized THP to inherit the global setting and
 569	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
 570	 * constant so we have to do this here.
 571	 */
 572	huge_anon_orders_inherit = BIT(PMD_ORDER);
 573
 574	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 575	if (unlikely(!*hugepage_kobj)) {
 576		pr_err("failed to create transparent hugepage kobject\n");
 577		return -ENOMEM;
 578	}
 579
 580	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 581	if (err) {
 582		pr_err("failed to register transparent hugepage group\n");
 583		goto delete_obj;
 584	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 585
 586	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 587	if (err) {
 588		pr_err("failed to register transparent hugepage group\n");
 589		goto remove_hp_group;
 590	}
 591
 592	orders = THP_ORDERS_ALL_ANON;
 593	order = highest_order(orders);
 594	while (orders) {
 595		thpsize = thpsize_create(order, *hugepage_kobj);
 596		if (IS_ERR(thpsize)) {
 597			pr_err("failed to create thpsize for order %d\n", order);
 598			err = PTR_ERR(thpsize);
 599			goto remove_all;
 600		}
 601		list_add(&thpsize->node, &thpsize_list);
 602		order = next_order(&orders, order);
 603	}
 604
 605	return 0;
 
 
 
 
 606
 607remove_all:
 608	hugepage_exit_sysfs(*hugepage_kobj);
 609	return err;
 610remove_hp_group:
 611	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 612delete_obj:
 613	kobject_put(*hugepage_kobj);
 614	return err;
 615}
 
 
 616
 617static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 
 
 618{
 619	struct thpsize *thpsize, *tmp;
 620
 621	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
 622		list_del(&thpsize->node);
 623		kobject_put(&thpsize->kobj);
 624	}
 625
 626	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 627	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 628	kobject_put(hugepage_kobj);
 629}
 630#else
 631static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 632{
 633	return 0;
 
 634}
 635
 636static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 
 637{
 
 
 638}
 639#endif /* CONFIG_SYSFS */
 
 
 640
 641static int __init thp_shrinker_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642{
 643	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
 644	if (!huge_zero_page_shrinker)
 645		return -ENOMEM;
 646
 647	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
 648						 SHRINKER_MEMCG_AWARE |
 649						 SHRINKER_NONSLAB,
 650						 "thp-deferred_split");
 651	if (!deferred_split_shrinker) {
 652		shrinker_free(huge_zero_page_shrinker);
 653		return -ENOMEM;
 654	}
 655
 656	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
 657	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
 658	shrinker_register(huge_zero_page_shrinker);
 659
 660	deferred_split_shrinker->count_objects = deferred_split_count;
 661	deferred_split_shrinker->scan_objects = deferred_split_scan;
 662	shrinker_register(deferred_split_shrinker);
 663
 664	return 0;
 665}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666
 667static void __init thp_shrinker_exit(void)
 668{
 669	shrinker_free(huge_zero_page_shrinker);
 670	shrinker_free(deferred_split_shrinker);
 671}
 672
 673static int __init hugepage_init(void)
 674{
 675	int err;
 676	struct kobject *hugepage_kobj;
 
 
 677
 
 678	if (!has_transparent_hugepage()) {
 679		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
 680		return -EINVAL;
 
 
 
 
 
 
 
 
 681	}
 682
 683	/*
 684	 * hugepages can't be allocated by the buddy allocator
 685	 */
 686	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
 687	/*
 688	 * we use page->mapping and page->index in second tail page
 689	 * as list_head: assuming THP order >= 2
 690	 */
 691	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 692
 693	err = hugepage_init_sysfs(&hugepage_kobj);
 694	if (err)
 695		goto err_sysfs;
 
 
 
 696
 697	err = khugepaged_init();
 698	if (err)
 699		goto err_slab;
 700
 701	err = thp_shrinker_init();
 702	if (err)
 703		goto err_shrinker;
 
 
 704
 705	/*
 706	 * By default disable transparent hugepages on smaller systems,
 707	 * where the extra memory used could hurt more than TLB overhead
 708	 * is likely to save.  The admin can still enable it through /sys.
 709	 */
 710	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
 711		transparent_hugepage_flags = 0;
 712		return 0;
 713	}
 714
 715	err = start_stop_khugepaged();
 716	if (err)
 717		goto err_khugepaged;
 718
 719	return 0;
 720err_khugepaged:
 721	thp_shrinker_exit();
 722err_shrinker:
 723	khugepaged_destroy();
 724err_slab:
 725	hugepage_exit_sysfs(hugepage_kobj);
 726err_sysfs:
 727	return err;
 728}
 729subsys_initcall(hugepage_init);
 730
 731static int __init setup_transparent_hugepage(char *str)
 732{
 733	int ret = 0;
 734	if (!str)
 735		goto out;
 736	if (!strcmp(str, "always")) {
 737		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 738			&transparent_hugepage_flags);
 739		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 740			  &transparent_hugepage_flags);
 741		ret = 1;
 742	} else if (!strcmp(str, "madvise")) {
 743		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 744			  &transparent_hugepage_flags);
 745		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 746			&transparent_hugepage_flags);
 747		ret = 1;
 748	} else if (!strcmp(str, "never")) {
 749		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 750			  &transparent_hugepage_flags);
 751		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 752			  &transparent_hugepage_flags);
 753		ret = 1;
 754	}
 755out:
 756	if (!ret)
 757		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 
 758	return ret;
 759}
 760__setup("transparent_hugepage=", setup_transparent_hugepage);
 761
 762pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 763{
 764	if (likely(vma->vm_flags & VM_WRITE))
 765		pmd = pmd_mkwrite(pmd, vma);
 766	return pmd;
 767}
 768
 769#ifdef CONFIG_MEMCG
 770static inline
 771struct deferred_split *get_deferred_split_queue(struct folio *folio)
 772{
 773	struct mem_cgroup *memcg = folio_memcg(folio);
 774	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
 775
 776	if (memcg)
 777		return &memcg->deferred_split_queue;
 
 778	else
 779		return &pgdat->deferred_split_queue;
 780}
 781#else
 782static inline
 783struct deferred_split *get_deferred_split_queue(struct folio *folio)
 784{
 785	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
 786
 787	return &pgdat->deferred_split_queue;
 788}
 789#endif
 790
 791void folio_prep_large_rmappable(struct folio *folio)
 792{
 793	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
 794	INIT_LIST_HEAD(&folio->_deferred_list);
 795	folio_set_large_rmappable(folio);
 796}
 797
 798static inline bool is_transparent_hugepage(struct folio *folio)
 799{
 800	if (!folio_test_large(folio))
 801		return false;
 802
 803	return is_huge_zero_page(&folio->page) ||
 804		folio_test_large_rmappable(folio);
 805}
 806
 807static unsigned long __thp_get_unmapped_area(struct file *filp,
 808		unsigned long addr, unsigned long len,
 809		loff_t off, unsigned long flags, unsigned long size)
 
 810{
 811	loff_t off_end = off + len;
 812	loff_t off_align = round_up(off, size);
 813	unsigned long len_pad, ret, off_sub;
 814
 815	if (IS_ENABLED(CONFIG_32BIT) || in_compat_syscall())
 816		return 0;
 817
 818	if (off_end <= off_align || (off_end - off_align) < size)
 819		return 0;
 820
 821	len_pad = len + size;
 822	if (len_pad < len || (off + len_pad) < off)
 823		return 0;
 824
 825	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
 826					      off >> PAGE_SHIFT, flags);
 827
 828	/*
 829	 * The failure might be due to length padding. The caller will retry
 830	 * without the padding.
 831	 */
 832	if (IS_ERR_VALUE(ret))
 833		return 0;
 834
 835	/*
 836	 * Do not try to align to THP boundary if allocation at the address
 837	 * hint succeeds.
 838	 */
 839	if (ret == addr)
 840		return addr;
 841
 842	off_sub = (off - ret) & (size - 1);
 843
 844	if (current->mm->get_unmapped_area == arch_get_unmapped_area_topdown &&
 845	    !off_sub)
 846		return ret + size;
 847
 848	ret += off_sub;
 849	return ret;
 850}
 851
 852unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 853		unsigned long len, unsigned long pgoff, unsigned long flags)
 854{
 855	unsigned long ret;
 856	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 857
 858	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
 859	if (ret)
 860		return ret;
 861
 862	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 863}
 864EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 865
 866static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
 867			struct page *page, gfp_t gfp)
 868{
 869	struct vm_area_struct *vma = vmf->vma;
 870	struct folio *folio = page_folio(page);
 871	pgtable_t pgtable;
 872	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 873	vm_fault_t ret = 0;
 874
 875	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
 876
 877	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
 878		folio_put(folio);
 879		count_vm_event(THP_FAULT_FALLBACK);
 880		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
 881		return VM_FAULT_FALLBACK;
 882	}
 883	folio_throttle_swaprate(folio, gfp);
 884
 885	pgtable = pte_alloc_one(vma->vm_mm);
 
 886	if (unlikely(!pgtable)) {
 887		ret = VM_FAULT_OOM;
 888		goto release;
 
 889	}
 890
 891	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 892	/*
 893	 * The memory barrier inside __folio_mark_uptodate makes sure that
 894	 * clear_huge_page writes become visible before the set_pmd_at()
 895	 * write.
 896	 */
 897	__folio_mark_uptodate(folio);
 898
 899	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 900	if (unlikely(!pmd_none(*vmf->pmd))) {
 901		goto unlock_release;
 
 
 
 902	} else {
 903		pmd_t entry;
 904
 905		ret = check_stable_address_space(vma->vm_mm);
 906		if (ret)
 907			goto unlock_release;
 908
 909		/* Deliver the page fault to userland */
 910		if (userfaultfd_missing(vma)) {
 911			spin_unlock(vmf->ptl);
 912			folio_put(folio);
 913			pte_free(vma->vm_mm, pgtable);
 914			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 915			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 916			return ret;
 917		}
 918
 919		entry = mk_huge_pmd(page, vma->vm_page_prot);
 920		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 921		folio_add_new_anon_rmap(folio, vma, haddr);
 922		folio_add_lru_vma(folio, vma);
 923		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 924		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 925		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 926		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 927		mm_inc_nr_ptes(vma->vm_mm);
 928		spin_unlock(vmf->ptl);
 929		count_vm_event(THP_FAULT_ALLOC);
 930		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
 
 
 931	}
 932
 933	return 0;
 934unlock_release:
 935	spin_unlock(vmf->ptl);
 936release:
 937	if (pgtable)
 938		pte_free(vma->vm_mm, pgtable);
 939	folio_put(folio);
 940	return ret;
 941
 942}
 943
 944/*
 945 * always: directly stall for all thp allocations
 946 * defer: wake kswapd and fail if not immediately available
 947 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 948 *		  fail if not immediately available
 949 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 950 *	    available
 951 * never: never stall for any thp allocation
 952 */
 953gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
 954{
 955	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
 956
 957	/* Always do synchronous compaction */
 958	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 959		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 960
 961	/* Kick kcompactd and fail quickly */
 962	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 963		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 964
 965	/* Synchronous compaction if madvised, otherwise kick kcompactd */
 966	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 967		return GFP_TRANSHUGE_LIGHT |
 968			(vma_madvised ? __GFP_DIRECT_RECLAIM :
 969					__GFP_KSWAPD_RECLAIM);
 970
 971	/* Only do synchronous compaction if madvised */
 972	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 973		return GFP_TRANSHUGE_LIGHT |
 974		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
 975
 976	return GFP_TRANSHUGE_LIGHT;
 977}
 978
 979/* Caller must hold page table lock. */
 980static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 981		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 982		struct page *zero_page)
 983{
 984	pmd_t entry;
 985	if (!pmd_none(*pmd))
 986		return;
 987	entry = mk_pmd(zero_page, vma->vm_page_prot);
 988	entry = pmd_mkhuge(entry);
 989	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 990	set_pmd_at(mm, haddr, pmd, entry);
 991	mm_inc_nr_ptes(mm);
 992}
 993
 994vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 995{
 996	struct vm_area_struct *vma = vmf->vma;
 997	gfp_t gfp;
 998	struct folio *folio;
 999	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1000
1001	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1002		return VM_FAULT_FALLBACK;
1003	if (unlikely(anon_vma_prepare(vma)))
1004		return VM_FAULT_OOM;
1005	khugepaged_enter_vma(vma, vma->vm_flags);
1006
1007	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1008			!mm_forbids_zeropage(vma->vm_mm) &&
1009			transparent_hugepage_use_zero_page()) {
1010		pgtable_t pgtable;
1011		struct page *zero_page;
1012		vm_fault_t ret;
1013		pgtable = pte_alloc_one(vma->vm_mm);
1014		if (unlikely(!pgtable))
1015			return VM_FAULT_OOM;
1016		zero_page = mm_get_huge_zero_page(vma->vm_mm);
1017		if (unlikely(!zero_page)) {
1018			pte_free(vma->vm_mm, pgtable);
1019			count_vm_event(THP_FAULT_FALLBACK);
1020			return VM_FAULT_FALLBACK;
1021		}
1022		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1023		ret = 0;
1024		if (pmd_none(*vmf->pmd)) {
1025			ret = check_stable_address_space(vma->vm_mm);
1026			if (ret) {
1027				spin_unlock(vmf->ptl);
1028				pte_free(vma->vm_mm, pgtable);
1029			} else if (userfaultfd_missing(vma)) {
1030				spin_unlock(vmf->ptl);
1031				pte_free(vma->vm_mm, pgtable);
1032				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1033				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1034			} else {
1035				set_huge_zero_page(pgtable, vma->vm_mm, vma,
1036						   haddr, vmf->pmd, zero_page);
1037				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1038				spin_unlock(vmf->ptl);
1039			}
1040		} else {
1041			spin_unlock(vmf->ptl);
1042			pte_free(vma->vm_mm, pgtable);
1043		}
1044		return ret;
1045	}
1046	gfp = vma_thp_gfp_mask(vma);
1047	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1048	if (unlikely(!folio)) {
1049		count_vm_event(THP_FAULT_FALLBACK);
1050		return VM_FAULT_FALLBACK;
1051	}
1052	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1053}
1054
1055static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1056		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1057		pgtable_t pgtable)
 
1058{
1059	struct mm_struct *mm = vma->vm_mm;
1060	pmd_t entry;
1061	spinlock_t *ptl;
1062
1063	ptl = pmd_lock(mm, pmd);
1064	if (!pmd_none(*pmd)) {
1065		if (write) {
1066			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1067				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1068				goto out_unlock;
1069			}
1070			entry = pmd_mkyoung(*pmd);
1071			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1073				update_mmu_cache_pmd(vma, addr, pmd);
1074		}
1075
1076		goto out_unlock;
1077	}
1078
1079	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1080	if (pfn_t_devmap(pfn))
1081		entry = pmd_mkdevmap(entry);
1082	if (write) {
1083		entry = pmd_mkyoung(pmd_mkdirty(entry));
1084		entry = maybe_pmd_mkwrite(entry, vma);
1085	}
1086
1087	if (pgtable) {
1088		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1089		mm_inc_nr_ptes(mm);
1090		pgtable = NULL;
1091	}
1092
1093	set_pmd_at(mm, addr, pmd, entry);
1094	update_mmu_cache_pmd(vma, addr, pmd);
1095
1096out_unlock:
1097	spin_unlock(ptl);
1098	if (pgtable)
1099		pte_free(mm, pgtable);
1100}
1101
1102/**
1103 * vmf_insert_pfn_pmd - insert a pmd size pfn
1104 * @vmf: Structure describing the fault
1105 * @pfn: pfn to insert
1106 * @write: whether it's a write fault
1107 *
1108 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1109 *
1110 * Return: vm_fault_t value.
1111 */
1112vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1113{
1114	unsigned long addr = vmf->address & PMD_MASK;
1115	struct vm_area_struct *vma = vmf->vma;
1116	pgprot_t pgprot = vma->vm_page_prot;
1117	pgtable_t pgtable = NULL;
1118
1119	/*
1120	 * If we had pmd_special, we could avoid all these restrictions,
1121	 * but we need to be consistent with PTEs and architectures that
1122	 * can't support a 'special' bit.
1123	 */
1124	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1125			!pfn_t_devmap(pfn));
1126	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1127						(VM_PFNMAP|VM_MIXEDMAP));
1128	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1129
1130	if (addr < vma->vm_start || addr >= vma->vm_end)
1131		return VM_FAULT_SIGBUS;
1132
1133	if (arch_needs_pgtable_deposit()) {
1134		pgtable = pte_alloc_one(vma->vm_mm);
1135		if (!pgtable)
1136			return VM_FAULT_OOM;
1137	}
1138
1139	track_pfn_insert(vma, &pgprot, pfn);
1140
1141	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1142	return VM_FAULT_NOPAGE;
1143}
1144EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1145
1146#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1147static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 
1148{
1149	if (likely(vma->vm_flags & VM_WRITE))
1150		pud = pud_mkwrite(pud);
1151	return pud;
1152}
1153
1154static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1155		pud_t *pud, pfn_t pfn, bool write)
1156{
1157	struct mm_struct *mm = vma->vm_mm;
1158	pgprot_t prot = vma->vm_page_prot;
1159	pud_t entry;
1160	spinlock_t *ptl;
1161
1162	ptl = pud_lock(mm, pud);
1163	if (!pud_none(*pud)) {
1164		if (write) {
1165			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
1166				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
1167				goto out_unlock;
1168			}
1169			entry = pud_mkyoung(*pud);
1170			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1171			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1172				update_mmu_cache_pud(vma, addr, pud);
1173		}
1174		goto out_unlock;
1175	}
1176
1177	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1178	if (pfn_t_devmap(pfn))
1179		entry = pud_mkdevmap(entry);
1180	if (write) {
1181		entry = pud_mkyoung(pud_mkdirty(entry));
1182		entry = maybe_pud_mkwrite(entry, vma);
1183	}
1184	set_pud_at(mm, addr, pud, entry);
1185	update_mmu_cache_pud(vma, addr, pud);
1186
1187out_unlock:
1188	spin_unlock(ptl);
1189}
1190
1191/**
1192 * vmf_insert_pfn_pud - insert a pud size pfn
1193 * @vmf: Structure describing the fault
1194 * @pfn: pfn to insert
1195 * @write: whether it's a write fault
1196 *
1197 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1198 *
1199 * Return: vm_fault_t value.
1200 */
1201vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1202{
1203	unsigned long addr = vmf->address & PUD_MASK;
1204	struct vm_area_struct *vma = vmf->vma;
1205	pgprot_t pgprot = vma->vm_page_prot;
1206
1207	/*
1208	 * If we had pud_special, we could avoid all these restrictions,
1209	 * but we need to be consistent with PTEs and architectures that
1210	 * can't support a 'special' bit.
1211	 */
1212	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1213			!pfn_t_devmap(pfn));
1214	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1215						(VM_PFNMAP|VM_MIXEDMAP));
1216	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1217
1218	if (addr < vma->vm_start || addr >= vma->vm_end)
1219		return VM_FAULT_SIGBUS;
1220
1221	track_pfn_insert(vma, &pgprot, pfn);
1222
1223	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1224	return VM_FAULT_NOPAGE;
1225}
1226EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1227#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1228
1229static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1230		      pmd_t *pmd, bool write)
1231{
1232	pmd_t _pmd;
1233
1234	_pmd = pmd_mkyoung(*pmd);
1235	if (write)
1236		_pmd = pmd_mkdirty(_pmd);
1237	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1238				  pmd, _pmd, write))
1239		update_mmu_cache_pmd(vma, addr, pmd);
1240}
1241
1242struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1243		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1244{
1245	unsigned long pfn = pmd_pfn(*pmd);
1246	struct mm_struct *mm = vma->vm_mm;
1247	struct page *page;
1248	int ret;
1249
1250	assert_spin_locked(pmd_lockptr(mm, pmd));
1251
1252	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1253		return NULL;
1254
1255	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1256		/* pass */;
1257	else
1258		return NULL;
1259
1260	if (flags & FOLL_TOUCH)
1261		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1262
1263	/*
1264	 * device mapped pages can only be returned if the
1265	 * caller will manage the page reference count.
 
 
1266	 */
1267	if (!(flags & (FOLL_GET | FOLL_PIN)))
1268		return ERR_PTR(-EEXIST);
1269
1270	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1271	*pgmap = get_dev_pagemap(pfn, *pgmap);
1272	if (!*pgmap)
1273		return ERR_PTR(-EFAULT);
1274	page = pfn_to_page(pfn);
1275	ret = try_grab_page(page, flags);
1276	if (ret)
1277		page = ERR_PTR(ret);
1278
1279	return page;
1280}
1281
1282int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1283		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1284		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1285{
1286	spinlock_t *dst_ptl, *src_ptl;
1287	struct page *src_page;
1288	struct folio *src_folio;
1289	pmd_t pmd;
1290	pgtable_t pgtable = NULL;
1291	int ret = -ENOMEM;
1292
1293	/* Skip if can be re-fill on fault */
1294	if (!vma_is_anonymous(dst_vma))
1295		return 0;
1296
1297	pgtable = pte_alloc_one(dst_mm);
1298	if (unlikely(!pgtable))
1299		goto out;
1300
1301	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1302	src_ptl = pmd_lockptr(src_mm, src_pmd);
1303	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1304
1305	ret = -EAGAIN;
1306	pmd = *src_pmd;
1307
1308#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1309	if (unlikely(is_swap_pmd(pmd))) {
1310		swp_entry_t entry = pmd_to_swp_entry(pmd);
1311
1312		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1313		if (!is_readable_migration_entry(entry)) {
1314			entry = make_readable_migration_entry(
1315							swp_offset(entry));
1316			pmd = swp_entry_to_pmd(entry);
1317			if (pmd_swp_soft_dirty(*src_pmd))
1318				pmd = pmd_swp_mksoft_dirty(pmd);
1319			if (pmd_swp_uffd_wp(*src_pmd))
1320				pmd = pmd_swp_mkuffd_wp(pmd);
1321			set_pmd_at(src_mm, addr, src_pmd, pmd);
1322		}
1323		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1324		mm_inc_nr_ptes(dst_mm);
1325		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1326		if (!userfaultfd_wp(dst_vma))
1327			pmd = pmd_swp_clear_uffd_wp(pmd);
1328		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1329		ret = 0;
1330		goto out_unlock;
1331	}
1332#endif
1333
1334	if (unlikely(!pmd_trans_huge(pmd))) {
1335		pte_free(dst_mm, pgtable);
1336		goto out_unlock;
1337	}
1338	/*
1339	 * When page table lock is held, the huge zero pmd should not be
1340	 * under splitting since we don't split the page itself, only pmd to
1341	 * a page table.
1342	 */
1343	if (is_huge_zero_pmd(pmd)) {
1344		/*
1345		 * get_huge_zero_page() will never allocate a new page here,
1346		 * since we already have a zero page to copy. It just takes a
1347		 * reference.
1348		 */
1349		mm_get_huge_zero_page(dst_mm);
1350		goto out_zero_page;
1351	}
1352
1353	src_page = pmd_page(pmd);
1354	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1355	src_folio = page_folio(src_page);
 
 
1356
1357	folio_get(src_folio);
1358	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1359		/* Page maybe pinned: split and retry the fault on PTEs. */
1360		folio_put(src_folio);
1361		pte_free(dst_mm, pgtable);
1362		spin_unlock(src_ptl);
1363		spin_unlock(dst_ptl);
1364		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1365		return -EAGAIN;
1366	}
1367	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1368out_zero_page:
1369	mm_inc_nr_ptes(dst_mm);
1370	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1371	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1372	if (!userfaultfd_wp(dst_vma))
1373		pmd = pmd_clear_uffd_wp(pmd);
1374	pmd = pmd_mkold(pmd_wrprotect(pmd));
1375	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 
1376
1377	ret = 0;
1378out_unlock:
1379	spin_unlock(src_ptl);
1380	spin_unlock(dst_ptl);
1381out:
1382	return ret;
1383}
1384
1385#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1386static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1387		      pud_t *pud, bool write)
1388{
1389	pud_t _pud;
1390
1391	_pud = pud_mkyoung(*pud);
1392	if (write)
1393		_pud = pud_mkdirty(_pud);
1394	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1395				  pud, _pud, write))
1396		update_mmu_cache_pud(vma, addr, pud);
1397}
1398
1399struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1400		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1401{
1402	unsigned long pfn = pud_pfn(*pud);
1403	struct mm_struct *mm = vma->vm_mm;
1404	struct page *page;
1405	int ret;
1406
1407	assert_spin_locked(pud_lockptr(mm, pud));
1408
1409	if (flags & FOLL_WRITE && !pud_write(*pud))
1410		return NULL;
1411
1412	if (pud_present(*pud) && pud_devmap(*pud))
1413		/* pass */;
1414	else
1415		return NULL;
1416
1417	if (flags & FOLL_TOUCH)
1418		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1419
1420	/*
1421	 * device mapped pages can only be returned if the
1422	 * caller will manage the page reference count.
1423	 *
1424	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1425	 */
1426	if (!(flags & (FOLL_GET | FOLL_PIN)))
1427		return ERR_PTR(-EEXIST);
1428
1429	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1430	*pgmap = get_dev_pagemap(pfn, *pgmap);
1431	if (!*pgmap)
1432		return ERR_PTR(-EFAULT);
1433	page = pfn_to_page(pfn);
1434
1435	ret = try_grab_page(page, flags);
1436	if (ret)
1437		page = ERR_PTR(ret);
1438
1439	return page;
1440}
1441
1442int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1443		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1444		  struct vm_area_struct *vma)
 
 
 
1445{
1446	spinlock_t *dst_ptl, *src_ptl;
1447	pud_t pud;
1448	int ret;
 
1449
1450	dst_ptl = pud_lock(dst_mm, dst_pud);
1451	src_ptl = pud_lockptr(src_mm, src_pud);
1452	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 
 
 
1453
1454	ret = -EAGAIN;
1455	pud = *src_pud;
1456	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1457		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458
1459	/*
1460	 * When page table lock is held, the huge zero pud should not be
1461	 * under splitting since we don't split the page itself, only pud to
1462	 * a page table.
1463	 */
1464	if (is_huge_zero_pud(pud)) {
1465		/* No huge zero pud yet */
1466	}
1467
1468	/*
1469	 * TODO: once we support anonymous pages, use
1470	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1471	 */
1472	pudp_set_wrprotect(src_mm, addr, src_pud);
1473	pud = pud_mkold(pud_wrprotect(pud));
1474	set_pud_at(dst_mm, addr, dst_pud, pud);
1475
1476	ret = 0;
1477out_unlock:
1478	spin_unlock(src_ptl);
1479	spin_unlock(dst_ptl);
1480	return ret;
1481}
1482
1483void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1484{
1485	bool write = vmf->flags & FAULT_FLAG_WRITE;
1486
1487	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1488	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1489		goto unlock;
 
 
 
 
 
 
 
 
1490
1491	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1492unlock:
1493	spin_unlock(vmf->ptl);
1494}
1495#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1496
1497void huge_pmd_set_accessed(struct vm_fault *vmf)
1498{
1499	bool write = vmf->flags & FAULT_FLAG_WRITE;
1500
1501	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1502	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1503		goto unlock;
1504
1505	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1506
1507unlock:
1508	spin_unlock(vmf->ptl);
 
 
 
 
 
 
1509}
1510
1511vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
 
1512{
1513	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1514	struct vm_area_struct *vma = vmf->vma;
1515	struct folio *folio;
1516	struct page *page;
1517	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1518	pmd_t orig_pmd = vmf->orig_pmd;
1519
1520	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1521	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1522
1523	if (is_huge_zero_pmd(orig_pmd))
1524		goto fallback;
1525
1526	spin_lock(vmf->ptl);
1527
1528	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1529		spin_unlock(vmf->ptl);
1530		return 0;
1531	}
1532
1533	page = pmd_page(orig_pmd);
1534	folio = page_folio(page);
1535	VM_BUG_ON_PAGE(!PageHead(page), page);
1536
1537	/* Early check when only holding the PT lock. */
1538	if (PageAnonExclusive(page))
1539		goto reuse;
1540
1541	if (!folio_trylock(folio)) {
1542		folio_get(folio);
1543		spin_unlock(vmf->ptl);
1544		folio_lock(folio);
1545		spin_lock(vmf->ptl);
1546		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1547			spin_unlock(vmf->ptl);
1548			folio_unlock(folio);
1549			folio_put(folio);
1550			return 0;
1551		}
1552		folio_put(folio);
1553	}
1554
1555	/* Recheck after temporarily dropping the PT lock. */
1556	if (PageAnonExclusive(page)) {
1557		folio_unlock(folio);
1558		goto reuse;
1559	}
1560
1561	/*
1562	 * See do_wp_page(): we can only reuse the folio exclusively if
1563	 * there are no additional references. Note that we always drain
1564	 * the LRU cache immediately after adding a THP.
1565	 */
1566	if (folio_ref_count(folio) >
1567			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1568		goto unlock_fallback;
1569	if (folio_test_swapcache(folio))
1570		folio_free_swap(folio);
1571	if (folio_ref_count(folio) == 1) {
1572		pmd_t entry;
1573
1574		folio_move_anon_rmap(folio, vma);
1575		SetPageAnonExclusive(page);
1576		folio_unlock(folio);
1577reuse:
1578		if (unlikely(unshare)) {
1579			spin_unlock(vmf->ptl);
1580			return 0;
1581		}
1582		entry = pmd_mkyoung(orig_pmd);
1583		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1584		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1585			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1586		spin_unlock(vmf->ptl);
1587		return 0;
1588	}
 
 
1589
1590unlock_fallback:
1591	folio_unlock(folio);
1592	spin_unlock(vmf->ptl);
1593fallback:
1594	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1595	return VM_FAULT_FALLBACK;
1596}
1597
1598static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1599					   unsigned long addr, pmd_t pmd)
1600{
1601	struct page *page;
 
 
 
 
1602
1603	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1604		return false;
 
 
 
 
1605
1606	/* Don't touch entries that are not even readable (NUMA hinting). */
1607	if (pmd_protnone(pmd))
1608		return false;
1609
1610	/* Do we need write faults for softdirty tracking? */
1611	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1612		return false;
1613
1614	/* Do we need write faults for uffd-wp tracking? */
1615	if (userfaultfd_huge_pmd_wp(vma, pmd))
1616		return false;
1617
1618	if (!(vma->vm_flags & VM_SHARED)) {
1619		/* See can_change_pte_writable(). */
1620		page = vm_normal_page_pmd(vma, addr, pmd);
1621		return page && PageAnon(page) && PageAnonExclusive(page);
 
 
 
 
 
 
1622	}
1623
1624	/* See can_change_pte_writable(). */
1625	return pmd_dirty(pmd);
1626}
1627
1628/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1629static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1630					struct vm_area_struct *vma,
1631					unsigned int flags)
1632{
1633	/* If the pmd is writable, we can write to the page. */
1634	if (pmd_write(pmd))
1635		return true;
1636
1637	/* Maybe FOLL_FORCE is set to override it? */
1638	if (!(flags & FOLL_FORCE))
1639		return false;
1640
1641	/* But FOLL_FORCE has no effect on shared mappings */
1642	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1643		return false;
1644
1645	/* ... or read-only private ones */
1646	if (!(vma->vm_flags & VM_MAYWRITE))
1647		return false;
1648
1649	/* ... or already writable ones that just need to take a write fault */
1650	if (vma->vm_flags & VM_WRITE)
1651		return false;
1652
1653	/*
1654	 * See can_change_pte_writable(): we broke COW and could map the page
1655	 * writable if we have an exclusive anonymous page ...
1656	 */
1657	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1658		return false;
1659
1660	/* ... and a write-fault isn't required for other reasons. */
1661	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1662		return false;
1663	return !userfaultfd_huge_pmd_wp(vma, pmd);
1664}
1665
1666struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1667				   unsigned long addr,
1668				   pmd_t *pmd,
1669				   unsigned int flags)
1670{
1671	struct mm_struct *mm = vma->vm_mm;
1672	struct page *page;
1673	int ret;
1674
1675	assert_spin_locked(pmd_lockptr(mm, pmd));
 
1676
1677	page = pmd_page(*pmd);
1678	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1679
1680	if ((flags & FOLL_WRITE) &&
1681	    !can_follow_write_pmd(*pmd, page, vma, flags))
1682		return NULL;
1683
1684	/* Avoid dumping huge zero page */
1685	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1686		return ERR_PTR(-EFAULT);
1687
1688	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1689		return NULL;
1690
1691	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1692		return ERR_PTR(-EMLINK);
1693
1694	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1695			!PageAnonExclusive(page), page);
1696
1697	ret = try_grab_page(page, flags);
1698	if (ret)
1699		return ERR_PTR(ret);
1700
1701	if (flags & FOLL_TOUCH)
1702		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1703
1704	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1705	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
 
 
1706
 
1707	return page;
1708}
1709
1710/* NUMA hinting page fault entry point for trans huge pmds */
1711vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1712{
1713	struct vm_area_struct *vma = vmf->vma;
1714	pmd_t oldpmd = vmf->orig_pmd;
1715	pmd_t pmd;
1716	struct folio *folio;
1717	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1718	int nid = NUMA_NO_NODE;
1719	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1720	bool migrated = false, writable = false;
1721	int flags = 0;
1722
1723	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1724	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1725		spin_unlock(vmf->ptl);
1726		goto out;
1727	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1728
1729	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
 
1730
1731	/*
1732	 * Detect now whether the PMD could be writable; this information
1733	 * is only valid while holding the PT lock.
1734	 */
1735	writable = pmd_write(pmd);
1736	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1737	    can_change_pmd_writable(vma, vmf->address, pmd))
1738		writable = true;
1739
1740	folio = vm_normal_folio_pmd(vma, haddr, pmd);
1741	if (!folio)
1742		goto out_map;
 
 
 
 
 
 
 
 
 
 
 
 
1743
1744	/* See similar comment in do_numa_page for explanation */
1745	if (!writable)
1746		flags |= TNF_NO_GROUP;
1747
1748	nid = folio_nid(folio);
1749	/*
1750	 * For memory tiering mode, cpupid of slow memory page is used
1751	 * to record page access time.  So use default value.
1752	 */
1753	if (node_is_toptier(nid))
1754		last_cpupid = folio_last_cpupid(folio);
1755	target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags);
1756	if (target_nid == NUMA_NO_NODE) {
1757		folio_put(folio);
1758		goto out_map;
1759	}
1760
1761	spin_unlock(vmf->ptl);
1762	writable = false;
 
 
 
 
 
1763
1764	migrated = migrate_misplaced_folio(folio, vma, target_nid);
1765	if (migrated) {
1766		flags |= TNF_MIGRATED;
1767		nid = target_nid;
1768	} else {
1769		flags |= TNF_MIGRATE_FAIL;
1770		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1771		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1772			spin_unlock(vmf->ptl);
1773			goto out;
1774		}
1775		goto out_map;
1776	}
1777
1778out:
1779	if (nid != NUMA_NO_NODE)
1780		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1781
1782	return 0;
1783
1784out_map:
1785	/* Restore the PMD */
1786	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1787	pmd = pmd_mkyoung(pmd);
1788	if (writable)
1789		pmd = pmd_mkwrite(pmd, vma);
1790	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1791	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1792	spin_unlock(vmf->ptl);
1793	goto out;
1794}
1795
1796/*
1797 * Return true if we do MADV_FREE successfully on entire pmd page.
1798 * Otherwise, return false.
1799 */
1800bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1801		pmd_t *pmd, unsigned long addr, unsigned long next)
1802{
1803	spinlock_t *ptl;
1804	pmd_t orig_pmd;
1805	struct folio *folio;
1806	struct mm_struct *mm = tlb->mm;
1807	bool ret = false;
1808
1809	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1810
1811	ptl = pmd_trans_huge_lock(pmd, vma);
1812	if (!ptl)
1813		goto out_unlocked;
1814
1815	orig_pmd = *pmd;
1816	if (is_huge_zero_pmd(orig_pmd))
1817		goto out;
1818
1819	if (unlikely(!pmd_present(orig_pmd))) {
1820		VM_BUG_ON(thp_migration_supported() &&
1821				  !is_pmd_migration_entry(orig_pmd));
1822		goto out;
1823	}
1824
1825	folio = pfn_folio(pmd_pfn(orig_pmd));
1826	/*
1827	 * If other processes are mapping this folio, we couldn't discard
1828	 * the folio unless they all do MADV_FREE so let's skip the folio.
1829	 */
1830	if (folio_estimated_sharers(folio) != 1)
1831		goto out;
1832
1833	if (!folio_trylock(folio))
1834		goto out;
1835
1836	/*
1837	 * If user want to discard part-pages of THP, split it so MADV_FREE
1838	 * will deactivate only them.
 
 
 
1839	 */
1840	if (next - addr != HPAGE_PMD_SIZE) {
1841		folio_get(folio);
1842		spin_unlock(ptl);
1843		split_folio(folio);
1844		folio_unlock(folio);
1845		folio_put(folio);
1846		goto out_unlocked;
1847	}
 
 
 
1848
1849	if (folio_test_dirty(folio))
1850		folio_clear_dirty(folio);
1851	folio_unlock(folio);
 
 
 
 
1852
1853	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1854		pmdp_invalidate(vma, addr, pmd);
1855		orig_pmd = pmd_mkold(orig_pmd);
1856		orig_pmd = pmd_mkclean(orig_pmd);
1857
1858		set_pmd_at(mm, addr, pmd, orig_pmd);
1859		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 
 
 
 
 
 
1860	}
 
1861
1862	folio_mark_lazyfree(folio);
1863	ret = true;
1864out:
1865	spin_unlock(ptl);
1866out_unlocked:
1867	return ret;
1868}
1869
1870static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1871{
1872	pgtable_t pgtable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873
1874	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1875	pte_free(mm, pgtable);
1876	mm_dec_nr_ptes(mm);
1877}
 
1878
1879int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1880		 pmd_t *pmd, unsigned long addr)
1881{
1882	pmd_t orig_pmd;
1883	spinlock_t *ptl;
 
 
 
 
 
 
 
 
 
 
 
1884
1885	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
 
1886
1887	ptl = __pmd_trans_huge_lock(pmd, vma);
1888	if (!ptl)
1889		return 0;
1890	/*
1891	 * For architectures like ppc64 we look at deposited pgtable
1892	 * when calling pmdp_huge_get_and_clear. So do the
1893	 * pgtable_trans_huge_withdraw after finishing pmdp related
1894	 * operations.
1895	 */
1896	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1897						tlb->fullmm);
1898	arch_check_zapped_pmd(vma, orig_pmd);
1899	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1900	if (vma_is_special_huge(vma)) {
1901		if (arch_needs_pgtable_deposit())
1902			zap_deposited_table(tlb->mm, pmd);
1903		spin_unlock(ptl);
1904	} else if (is_huge_zero_pmd(orig_pmd)) {
1905		zap_deposited_table(tlb->mm, pmd);
1906		spin_unlock(ptl);
1907	} else {
1908		struct page *page = NULL;
1909		int flush_needed = 1;
1910
1911		if (pmd_present(orig_pmd)) {
1912			page = pmd_page(orig_pmd);
1913			folio_remove_rmap_pmd(page_folio(page), page, vma);
1914			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1915			VM_BUG_ON_PAGE(!PageHead(page), page);
1916		} else if (thp_migration_supported()) {
1917			swp_entry_t entry;
1918
1919			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1920			entry = pmd_to_swp_entry(orig_pmd);
1921			page = pfn_swap_entry_to_page(entry);
1922			flush_needed = 0;
1923		} else
1924			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1925
1926		if (PageAnon(page)) {
1927			zap_deposited_table(tlb->mm, pmd);
1928			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1929		} else {
1930			if (arch_needs_pgtable_deposit())
1931				zap_deposited_table(tlb->mm, pmd);
1932			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1933		}
1934
1935		spin_unlock(ptl);
1936		if (flush_needed)
1937			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1938	}
1939	return 1;
1940}
1941
1942#ifndef pmd_move_must_withdraw
1943static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1944					 spinlock_t *old_pmd_ptl,
1945					 struct vm_area_struct *vma)
1946{
1947	/*
1948	 * With split pmd lock we also need to move preallocated
1949	 * PTE page table if new_pmd is on different PMD page table.
1950	 *
1951	 * We also don't deposit and withdraw tables for file pages.
1952	 */
1953	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1954}
1955#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1956
1957static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1958{
1959#ifdef CONFIG_MEM_SOFT_DIRTY
1960	if (unlikely(is_pmd_migration_entry(pmd)))
1961		pmd = pmd_swp_mksoft_dirty(pmd);
1962	else if (pmd_present(pmd))
1963		pmd = pmd_mksoft_dirty(pmd);
1964#endif
1965	return pmd;
1966}
1967
1968bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1969		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
 
1970{
1971	spinlock_t *old_ptl, *new_ptl;
1972	pmd_t pmd;
1973	struct mm_struct *mm = vma->vm_mm;
1974	bool force_flush = false;
 
 
 
1975
1976	/*
1977	 * The destination pmd shouldn't be established, free_pgtables()
1978	 * should have released it; but move_page_tables() might have already
1979	 * inserted a page table, if racing against shmem/file collapse.
1980	 */
1981	if (!pmd_none(*new_pmd)) {
1982		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1983		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1984	}
 
1985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1986	/*
1987	 * We don't have to worry about the ordering of src and dst
1988	 * ptlocks because exclusive mmap_lock prevents deadlock.
1989	 */
1990	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1991	if (old_ptl) {
1992		new_ptl = pmd_lockptr(mm, new_pmd);
1993		if (new_ptl != old_ptl)
1994			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1995		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1996		if (pmd_present(pmd))
1997			force_flush = true;
1998		VM_BUG_ON(!pmd_none(*new_pmd));
1999
2000		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2001			pgtable_t pgtable;
2002			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2003			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2004		}
2005		pmd = move_soft_dirty_pmd(pmd);
2006		set_pmd_at(mm, new_addr, new_pmd, pmd);
2007		if (force_flush)
2008			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2009		if (new_ptl != old_ptl)
2010			spin_unlock(new_ptl);
2011		spin_unlock(old_ptl);
2012		return true;
2013	}
2014	return false;
 
 
 
2015}
2016
2017/*
2018 * Returns
2019 *  - 0 if PMD could not be locked
2020 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2021 *      or if prot_numa but THP migration is not supported
2022 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2023 */
2024int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2025		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2026		    unsigned long cp_flags)
2027{
2028	struct mm_struct *mm = vma->vm_mm;
2029	spinlock_t *ptl;
2030	pmd_t oldpmd, entry;
2031	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2032	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2033	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2034	int ret = 1;
2035
2036	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
 
 
 
 
 
 
2037
2038	if (prot_numa && !thp_migration_supported())
2039		return 1;
 
2040
2041	ptl = __pmd_trans_huge_lock(pmd, vma);
2042	if (!ptl)
2043		return 0;
 
 
 
2044
2045#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2046	if (is_swap_pmd(*pmd)) {
2047		swp_entry_t entry = pmd_to_swp_entry(*pmd);
2048		struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
2049		pmd_t newpmd;
2050
2051		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2052		if (is_writable_migration_entry(entry)) {
2053			/*
2054			 * A protection check is difficult so
2055			 * just be safe and disable write
2056			 */
2057			if (folio_test_anon(folio))
2058				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2059			else
2060				entry = make_readable_migration_entry(swp_offset(entry));
2061			newpmd = swp_entry_to_pmd(entry);
2062			if (pmd_swp_soft_dirty(*pmd))
2063				newpmd = pmd_swp_mksoft_dirty(newpmd);
2064		} else {
2065			newpmd = *pmd;
2066		}
2067
2068		if (uffd_wp)
2069			newpmd = pmd_swp_mkuffd_wp(newpmd);
2070		else if (uffd_wp_resolve)
2071			newpmd = pmd_swp_clear_uffd_wp(newpmd);
2072		if (!pmd_same(*pmd, newpmd))
2073			set_pmd_at(mm, addr, pmd, newpmd);
2074		goto unlock;
2075	}
2076#endif
2077
2078	if (prot_numa) {
2079		struct folio *folio;
2080		bool toptier;
2081		/*
2082		 * Avoid trapping faults against the zero page. The read-only
2083		 * data is likely to be read-cached on the local CPU and
2084		 * local/remote hits to the zero page are not interesting.
2085		 */
2086		if (is_huge_zero_pmd(*pmd))
2087			goto unlock;
2088
2089		if (pmd_protnone(*pmd))
2090			goto unlock;
2091
2092		folio = page_folio(pmd_page(*pmd));
2093		toptier = node_is_toptier(folio_nid(folio));
2094		/*
2095		 * Skip scanning top tier node if normal numa
2096		 * balancing is disabled
2097		 */
2098		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2099		    toptier)
2100			goto unlock;
2101
2102		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
2103		    !toptier)
2104			folio_xchg_access_time(folio,
2105					       jiffies_to_msecs(jiffies));
2106	}
2107	/*
2108	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2109	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2110	 * which is also under mmap_read_lock(mm):
2111	 *
2112	 *	CPU0:				CPU1:
2113	 *				change_huge_pmd(prot_numa=1)
2114	 *				 pmdp_huge_get_and_clear_notify()
2115	 * madvise_dontneed()
2116	 *  zap_pmd_range()
2117	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2118	 *   // skip the pmd
2119	 *				 set_pmd_at();
2120	 *				 // pmd is re-established
2121	 *
2122	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2123	 * which may break userspace.
2124	 *
2125	 * pmdp_invalidate_ad() is required to make sure we don't miss
2126	 * dirty/young flags set by hardware.
2127	 */
2128	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2129
2130	entry = pmd_modify(oldpmd, newprot);
2131	if (uffd_wp)
2132		entry = pmd_mkuffd_wp(entry);
2133	else if (uffd_wp_resolve)
2134		/*
2135		 * Leave the write bit to be handled by PF interrupt
2136		 * handler, then things like COW could be properly
2137		 * handled.
2138		 */
2139		entry = pmd_clear_uffd_wp(entry);
 
2140
2141	/* See change_pte_range(). */
2142	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2143	    can_change_pmd_writable(vma, addr, entry))
2144		entry = pmd_mkwrite(entry, vma);
2145
2146	ret = HPAGE_PMD_NR;
2147	set_pmd_at(mm, addr, pmd, entry);
2148
2149	if (huge_pmd_needs_flush(oldpmd, entry))
2150		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2151unlock:
2152	spin_unlock(ptl);
2153	return ret;
2154}
2155
2156#ifdef CONFIG_USERFAULTFD
2157/*
2158 * The PT lock for src_pmd and the mmap_lock for reading are held by
2159 * the caller, but it must return after releasing the page_table_lock.
2160 * Just move the page from src_pmd to dst_pmd if possible.
2161 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2162 * repeated by the caller, or other errors in case of failure.
2163 */
2164int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2165			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2166			unsigned long dst_addr, unsigned long src_addr)
2167{
2168	pmd_t _dst_pmd, src_pmdval;
2169	struct page *src_page;
2170	struct folio *src_folio;
2171	struct anon_vma *src_anon_vma;
2172	spinlock_t *src_ptl, *dst_ptl;
2173	pgtable_t src_pgtable;
2174	struct mmu_notifier_range range;
2175	int err = 0;
2176
2177	src_pmdval = *src_pmd;
2178	src_ptl = pmd_lockptr(mm, src_pmd);
2179
2180	lockdep_assert_held(src_ptl);
2181	mmap_assert_locked(mm);
2182
2183	/* Sanity checks before the operation */
2184	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2185	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2186		spin_unlock(src_ptl);
2187		return -EINVAL;
2188	}
2189
2190	if (!pmd_trans_huge(src_pmdval)) {
2191		spin_unlock(src_ptl);
2192		if (is_pmd_migration_entry(src_pmdval)) {
2193			pmd_migration_entry_wait(mm, &src_pmdval);
2194			return -EAGAIN;
2195		}
2196		return -ENOENT;
2197	}
2198
2199	src_page = pmd_page(src_pmdval);
2200	if (unlikely(!PageAnonExclusive(src_page))) {
2201		spin_unlock(src_ptl);
2202		return -EBUSY;
2203	}
2204
2205	src_folio = page_folio(src_page);
2206	folio_get(src_folio);
2207	spin_unlock(src_ptl);
2208
2209	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2210	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2211				src_addr + HPAGE_PMD_SIZE);
2212	mmu_notifier_invalidate_range_start(&range);
2213
2214	folio_lock(src_folio);
2215
2216	/*
2217	 * split_huge_page walks the anon_vma chain without the page
2218	 * lock. Serialize against it with the anon_vma lock, the page
2219	 * lock is not enough.
2220	 */
2221	src_anon_vma = folio_get_anon_vma(src_folio);
2222	if (!src_anon_vma) {
2223		err = -EAGAIN;
2224		goto unlock_folio;
2225	}
2226	anon_vma_lock_write(src_anon_vma);
2227
2228	dst_ptl = pmd_lockptr(mm, dst_pmd);
2229	double_pt_lock(src_ptl, dst_ptl);
2230	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2231		     !pmd_same(*dst_pmd, dst_pmdval))) {
2232		err = -EAGAIN;
2233		goto unlock_ptls;
2234	}
2235	if (folio_maybe_dma_pinned(src_folio) ||
2236	    !PageAnonExclusive(&src_folio->page)) {
2237		err = -EBUSY;
2238		goto unlock_ptls;
2239	}
2240
2241	if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2242	    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2243		err = -EBUSY;
2244		goto unlock_ptls;
2245	}
2246
2247	folio_move_anon_rmap(src_folio, dst_vma);
2248	WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr));
2249
2250	src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2251	/* Folio got pinned from under us. Put it back and fail the move. */
2252	if (folio_maybe_dma_pinned(src_folio)) {
2253		set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2254		err = -EBUSY;
2255		goto unlock_ptls;
2256	}
2257
2258	_dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2259	/* Follow mremap() behavior and treat the entry dirty after the move */
2260	_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2261	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2262
2263	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2264	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2265unlock_ptls:
2266	double_pt_unlock(src_ptl, dst_ptl);
2267	anon_vma_unlock_write(src_anon_vma);
2268	put_anon_vma(src_anon_vma);
2269unlock_folio:
2270	/* unblock rmap walks */
2271	folio_unlock(src_folio);
2272	mmu_notifier_invalidate_range_end(&range);
2273	folio_put(src_folio);
2274	return err;
2275}
2276#endif /* CONFIG_USERFAULTFD */
2277
2278/*
2279 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2280 *
2281 * Note that if it returns page table lock pointer, this routine returns without
2282 * unlocking page table lock. So callers must unlock it.
2283 */
2284spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2285{
2286	spinlock_t *ptl;
2287	ptl = pmd_lock(vma->vm_mm, pmd);
2288	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2289			pmd_devmap(*pmd)))
2290		return ptl;
2291	spin_unlock(ptl);
2292	return NULL;
2293}
2294
2295/*
2296 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2297 *
2298 * Note that if it returns page table lock pointer, this routine returns without
2299 * unlocking page table lock. So callers must unlock it.
2300 */
2301spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2302{
2303	spinlock_t *ptl;
2304
2305	ptl = pud_lock(vma->vm_mm, pud);
2306	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2307		return ptl;
2308	spin_unlock(ptl);
2309	return NULL;
2310}
2311
2312#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2313int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2314		 pud_t *pud, unsigned long addr)
2315{
2316	spinlock_t *ptl;
2317
2318	ptl = __pud_trans_huge_lock(pud, vma);
2319	if (!ptl)
2320		return 0;
2321
2322	pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2323	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2324	if (vma_is_special_huge(vma)) {
2325		spin_unlock(ptl);
2326		/* No zero page support yet */
2327	} else {
2328		/* No support for anonymous PUD pages yet */
2329		BUG();
2330	}
2331	return 1;
2332}
2333
2334static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2335		unsigned long haddr)
2336{
2337	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2338	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2339	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2340	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2341
2342	count_vm_event(THP_SPLIT_PUD);
2343
2344	pudp_huge_clear_flush(vma, haddr, pud);
2345}
2346
2347void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2348		unsigned long address)
2349{
2350	spinlock_t *ptl;
2351	struct mmu_notifier_range range;
2352
2353	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2354				address & HPAGE_PUD_MASK,
2355				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2356	mmu_notifier_invalidate_range_start(&range);
2357	ptl = pud_lock(vma->vm_mm, pud);
2358	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2359		goto out;
2360	__split_huge_pud_locked(vma, pud, range.start);
2361
2362out:
2363	spin_unlock(ptl);
2364	mmu_notifier_invalidate_range_end(&range);
2365}
2366#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2367
2368static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2369		unsigned long haddr, pmd_t *pmd)
2370{
2371	struct mm_struct *mm = vma->vm_mm;
2372	pgtable_t pgtable;
2373	pmd_t _pmd, old_pmd;
2374	unsigned long addr;
2375	pte_t *pte;
2376	int i;
2377
2378	/*
2379	 * Leave pmd empty until pte is filled note that it is fine to delay
2380	 * notification until mmu_notifier_invalidate_range_end() as we are
2381	 * replacing a zero pmd write protected page with a zero pte write
2382	 * protected page.
2383	 *
2384	 * See Documentation/mm/mmu_notifier.rst
2385	 */
2386	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2387
2388	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2389	pmd_populate(mm, &_pmd, pgtable);
2390
2391	pte = pte_offset_map(&_pmd, haddr);
2392	VM_BUG_ON(!pte);
2393	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2394		pte_t entry;
2395
2396		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2397		entry = pte_mkspecial(entry);
2398		if (pmd_uffd_wp(old_pmd))
2399			entry = pte_mkuffd_wp(entry);
2400		VM_BUG_ON(!pte_none(ptep_get(pte)));
2401		set_pte_at(mm, addr, pte, entry);
2402		pte++;
2403	}
2404	pte_unmap(pte - 1);
2405	smp_wmb(); /* make pte visible before pmd */
2406	pmd_populate(mm, pmd, pgtable);
2407}
2408
2409static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2410		unsigned long haddr, bool freeze)
2411{
2412	struct mm_struct *mm = vma->vm_mm;
2413	struct folio *folio;
2414	struct page *page;
2415	pgtable_t pgtable;
2416	pmd_t old_pmd, _pmd;
2417	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2418	bool anon_exclusive = false, dirty = false;
2419	unsigned long addr;
2420	pte_t *pte;
2421	int i;
2422
2423	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2424	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2425	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2426	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2427				&& !pmd_devmap(*pmd));
2428
2429	count_vm_event(THP_SPLIT_PMD);
 
 
 
2430
2431	if (!vma_is_anonymous(vma)) {
2432		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2433		/*
2434		 * We are going to unmap this huge page. So
2435		 * just go ahead and zap it
2436		 */
2437		if (arch_needs_pgtable_deposit())
2438			zap_deposited_table(mm, pmd);
2439		if (vma_is_special_huge(vma))
2440			return;
2441		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2442			swp_entry_t entry;
2443
2444			entry = pmd_to_swp_entry(old_pmd);
2445			page = pfn_swap_entry_to_page(entry);
2446		} else {
2447			page = pmd_page(old_pmd);
2448			folio = page_folio(page);
2449			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2450				folio_mark_dirty(folio);
2451			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2452				folio_set_referenced(folio);
2453			folio_remove_rmap_pmd(folio, page, vma);
2454			folio_put(folio);
2455		}
2456		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2457		return;
2458	}
2459
2460	if (is_huge_zero_pmd(*pmd)) {
2461		/*
2462		 * FIXME: Do we want to invalidate secondary mmu by calling
2463		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2464		 * inside __split_huge_pmd() ?
2465		 *
2466		 * We are going from a zero huge page write protected to zero
2467		 * small page also write protected so it does not seems useful
2468		 * to invalidate secondary mmu at this time.
2469		 */
2470		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2471	}
2472
 
 
2473	/*
2474	 * Up to this point the pmd is present and huge and userland has the
2475	 * whole access to the hugepage during the split (which happens in
2476	 * place). If we overwrite the pmd with the not-huge version pointing
2477	 * to the pte here (which of course we could if all CPUs were bug
2478	 * free), userland could trigger a small page size TLB miss on the
2479	 * small sized TLB while the hugepage TLB entry is still established in
2480	 * the huge TLB. Some CPU doesn't like that.
2481	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2482	 * 383 on page 105. Intel should be safe but is also warns that it's
2483	 * only safe if the permission and cache attributes of the two entries
2484	 * loaded in the two TLB is identical (which should be the case here).
2485	 * But it is generally safer to never allow small and huge TLB entries
2486	 * for the same virtual address to be loaded simultaneously. So instead
2487	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2488	 * current pmd notpresent (atomically because here the pmd_trans_huge
2489	 * must remain set at all times on the pmd until the split is complete
2490	 * for this pmd), then we flush the SMP TLB and finally we write the
2491	 * non-huge version of the pmd entry with pmd_populate.
2492	 */
2493	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2494
2495	pmd_migration = is_pmd_migration_entry(old_pmd);
2496	if (unlikely(pmd_migration)) {
2497		swp_entry_t entry;
2498
2499		entry = pmd_to_swp_entry(old_pmd);
2500		page = pfn_swap_entry_to_page(entry);
2501		write = is_writable_migration_entry(entry);
2502		if (PageAnon(page))
2503			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2504		young = is_migration_entry_young(entry);
2505		dirty = is_migration_entry_dirty(entry);
2506		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2507		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2508	} else {
2509		page = pmd_page(old_pmd);
2510		folio = page_folio(page);
2511		if (pmd_dirty(old_pmd)) {
2512			dirty = true;
2513			folio_set_dirty(folio);
2514		}
2515		write = pmd_write(old_pmd);
2516		young = pmd_young(old_pmd);
2517		soft_dirty = pmd_soft_dirty(old_pmd);
2518		uffd_wp = pmd_uffd_wp(old_pmd);
2519
2520		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2521		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2522
 
 
 
 
2523		/*
2524		 * Without "freeze", we'll simply split the PMD, propagating the
2525		 * PageAnonExclusive() flag for each PTE by setting it for
2526		 * each subpage -- no need to (temporarily) clear.
2527		 *
2528		 * With "freeze" we want to replace mapped pages by
2529		 * migration entries right away. This is only possible if we
2530		 * managed to clear PageAnonExclusive() -- see
2531		 * set_pmd_migration_entry().
2532		 *
2533		 * In case we cannot clear PageAnonExclusive(), split the PMD
2534		 * only and let try_to_migrate_one() fail later.
2535		 *
2536		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2537		 */
2538		anon_exclusive = PageAnonExclusive(page);
2539		if (freeze && anon_exclusive &&
2540		    folio_try_share_anon_rmap_pmd(folio, page))
2541			freeze = false;
2542		if (!freeze) {
2543			rmap_t rmap_flags = RMAP_NONE;
2544
2545			folio_ref_add(folio, HPAGE_PMD_NR - 1);
2546			if (anon_exclusive)
2547				rmap_flags |= RMAP_EXCLUSIVE;
2548			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2549						 vma, haddr, rmap_flags);
2550		}
2551	}
2552
2553	/*
2554	 * Withdraw the table only after we mark the pmd entry invalid.
2555	 * This's critical for some architectures (Power).
2556	 */
2557	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2558	pmd_populate(mm, &_pmd, pgtable);
 
 
 
 
 
 
 
 
 
 
2559
2560	pte = pte_offset_map(&_pmd, haddr);
2561	VM_BUG_ON(!pte);
2562	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2563		pte_t entry;
 
 
 
 
 
 
 
 
 
 
2564		/*
2565		 * Note that NUMA hinting access restrictions are not
2566		 * transferred to avoid any possibility of altering
2567		 * permissions across VMAs.
 
 
 
2568		 */
2569		if (freeze || pmd_migration) {
2570			swp_entry_t swp_entry;
2571			if (write)
2572				swp_entry = make_writable_migration_entry(
2573							page_to_pfn(page + i));
2574			else if (anon_exclusive)
2575				swp_entry = make_readable_exclusive_migration_entry(
2576							page_to_pfn(page + i));
2577			else
2578				swp_entry = make_readable_migration_entry(
2579							page_to_pfn(page + i));
2580			if (young)
2581				swp_entry = make_migration_entry_young(swp_entry);
2582			if (dirty)
2583				swp_entry = make_migration_entry_dirty(swp_entry);
2584			entry = swp_entry_to_pte(swp_entry);
2585			if (soft_dirty)
2586				entry = pte_swp_mksoft_dirty(entry);
2587			if (uffd_wp)
2588				entry = pte_swp_mkuffd_wp(entry);
2589		} else {
2590			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2591			if (write)
2592				entry = pte_mkwrite(entry, vma);
2593			if (!young)
2594				entry = pte_mkold(entry);
2595			/* NOTE: this may set soft-dirty too on some archs */
2596			if (dirty)
2597				entry = pte_mkdirty(entry);
2598			if (soft_dirty)
2599				entry = pte_mksoft_dirty(entry);
2600			if (uffd_wp)
2601				entry = pte_mkuffd_wp(entry);
2602		}
2603		VM_BUG_ON(!pte_none(ptep_get(pte)));
2604		set_pte_at(mm, addr, pte, entry);
2605		pte++;
2606	}
2607	pte_unmap(pte - 1);
2608
2609	if (!pmd_migration)
2610		folio_remove_rmap_pmd(folio, page, vma);
2611	if (freeze)
2612		put_page(page);
2613
2614	smp_wmb(); /* make pte visible before pmd */
2615	pmd_populate(mm, pmd, pgtable);
 
 
 
 
2616}
2617
2618void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2619		unsigned long address, bool freeze, struct folio *folio)
2620{
2621	spinlock_t *ptl;
2622	struct mmu_notifier_range range;
 
 
 
 
2623
2624	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2625				address & HPAGE_PMD_MASK,
2626				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2627	mmu_notifier_invalidate_range_start(&range);
2628	ptl = pmd_lock(vma->vm_mm, pmd);
2629
2630	/*
2631	 * If caller asks to setup a migration entry, we need a folio to check
2632	 * pmd against. Otherwise we can end up replacing wrong folio.
2633	 */
2634	VM_BUG_ON(freeze && !folio);
2635	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2636
2637	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2638	    is_pmd_migration_entry(*pmd)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2639		/*
2640		 * It's safe to call pmd_page when folio is set because it's
2641		 * guaranteed that pmd is present.
2642		 */
2643		if (folio && folio != page_folio(pmd_page(*pmd)))
 
 
2644			goto out;
2645		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
 
 
 
 
 
 
 
 
 
2646	}
2647
 
 
 
2648out:
2649	spin_unlock(ptl);
2650	mmu_notifier_invalidate_range_end(&range);
2651}
2652
2653void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2654		bool freeze, struct folio *folio)
2655{
2656	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2657
2658	if (!pmd)
2659		return;
2660
2661	__split_huge_pmd(vma, pmd, address, freeze, folio);
2662}
2663
2664static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
 
 
 
 
2665{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2666	/*
2667	 * If the new address isn't hpage aligned and it could previously
2668	 * contain an hugepage: check if we need to split an huge pmd.
2669	 */
2670	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2671	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2672			 ALIGN(address, HPAGE_PMD_SIZE)))
2673		split_huge_pmd_address(vma, address, false, NULL);
2674}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2675
2676void vma_adjust_trans_huge(struct vm_area_struct *vma,
2677			     unsigned long start,
2678			     unsigned long end,
2679			     long adjust_next)
2680{
2681	/* Check if we need to split start first. */
2682	split_huge_pmd_if_needed(vma, start);
2683
2684	/* Check if we need to split end next. */
2685	split_huge_pmd_if_needed(vma, end);
2686
2687	/*
2688	 * If we're also updating the next vma vm_start,
2689	 * check if we need to split it.
 
2690	 */
2691	if (adjust_next > 0) {
2692		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2693		unsigned long nstart = next->vm_start;
2694		nstart += adjust_next;
2695		split_huge_pmd_if_needed(next, nstart);
2696	}
2697}
2698
2699static void unmap_folio(struct folio *folio)
2700{
2701	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2702		TTU_SYNC | TTU_BATCH_FLUSH;
 
2703
2704	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
 
 
2705
 
 
 
 
2706	/*
2707	 * Anon pages need migration entries to preserve them, but file
2708	 * pages can simply be left unmapped, then faulted back on demand.
2709	 * If that is ever changed (perhaps for mlock), update remap_page().
2710	 */
2711	if (folio_test_anon(folio))
2712		try_to_migrate(folio, ttu_flags);
2713	else
2714		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2715
2716	try_to_unmap_flush();
2717}
 
2718
2719static void remap_page(struct folio *folio, unsigned long nr)
2720{
2721	int i = 0;
2722
2723	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2724	if (!folio_test_anon(folio))
2725		return;
2726	for (;;) {
2727		remove_migration_ptes(folio, folio, true);
2728		i += folio_nr_pages(folio);
2729		if (i >= nr)
2730			break;
2731		folio = folio_next(folio);
2732	}
2733}
2734
2735static void lru_add_page_tail(struct page *head, struct page *tail,
2736		struct lruvec *lruvec, struct list_head *list)
2737{
2738	VM_BUG_ON_PAGE(!PageHead(head), head);
2739	VM_BUG_ON_PAGE(PageCompound(tail), head);
2740	VM_BUG_ON_PAGE(PageLRU(tail), head);
2741	lockdep_assert_held(&lruvec->lru_lock);
2742
2743	if (list) {
2744		/* page reclaim is reclaiming a huge page */
2745		VM_WARN_ON(PageLRU(head));
2746		get_page(tail);
2747		list_add_tail(&tail->lru, list);
2748	} else {
2749		/* head is still on lru (and we have it frozen) */
2750		VM_WARN_ON(!PageLRU(head));
2751		if (PageUnevictable(tail))
2752			tail->mlock_count = 0;
2753		else
2754			list_add_tail(&tail->lru, &head->lru);
2755		SetPageLRU(tail);
2756	}
2757}
2758
2759static void __split_huge_page_tail(struct folio *folio, int tail,
2760		struct lruvec *lruvec, struct list_head *list)
2761{
2762	struct page *head = &folio->page;
2763	struct page *page_tail = head + tail;
2764	/*
2765	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2766	 * Don't pass it around before clear_compound_head().
2767	 */
2768	struct folio *new_folio = (struct folio *)page_tail;
2769
2770	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2771
2772	/*
2773	 * Clone page flags before unfreezing refcount.
2774	 *
2775	 * After successful get_page_unless_zero() might follow flags change,
2776	 * for example lock_page() which set PG_waiters.
2777	 *
2778	 * Note that for mapped sub-pages of an anonymous THP,
2779	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2780	 * the migration entry instead from where remap_page() will restore it.
2781	 * We can still have PG_anon_exclusive set on effectively unmapped and
2782	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2783	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2784	 */
2785	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2786	page_tail->flags |= (head->flags &
2787			((1L << PG_referenced) |
2788			 (1L << PG_swapbacked) |
2789			 (1L << PG_swapcache) |
2790			 (1L << PG_mlocked) |
2791			 (1L << PG_uptodate) |
2792			 (1L << PG_active) |
2793			 (1L << PG_workingset) |
2794			 (1L << PG_locked) |
2795			 (1L << PG_unevictable) |
2796#ifdef CONFIG_ARCH_USES_PG_ARCH_X
2797			 (1L << PG_arch_2) |
2798			 (1L << PG_arch_3) |
2799#endif
2800			 (1L << PG_dirty) |
2801			 LRU_GEN_MASK | LRU_REFS_MASK));
2802
2803	/* ->mapping in first and second tail page is replaced by other uses */
2804	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2805			page_tail);
2806	page_tail->mapping = head->mapping;
2807	page_tail->index = head->index + tail;
2808
2809	/*
2810	 * page->private should not be set in tail pages. Fix up and warn once
2811	 * if private is unexpectedly set.
2812	 */
2813	if (unlikely(page_tail->private)) {
2814		VM_WARN_ON_ONCE_PAGE(true, page_tail);
2815		page_tail->private = 0;
 
2816	}
2817	if (folio_test_swapcache(folio))
2818		new_folio->swap.val = folio->swap.val + tail;
2819
2820	/* Page flags must be visible before we make the page non-compound. */
2821	smp_wmb();
2822
2823	/*
2824	 * Clear PageTail before unfreezing page refcount.
2825	 *
2826	 * After successful get_page_unless_zero() might follow put_page()
2827	 * which needs correct compound_head().
2828	 */
2829	clear_compound_head(page_tail);
2830
2831	/* Finally unfreeze refcount. Additional reference from page cache. */
2832	page_ref_unfreeze(page_tail, 1 + (!folio_test_anon(folio) ||
2833					  folio_test_swapcache(folio)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2834
2835	if (folio_test_young(folio))
2836		folio_set_young(new_folio);
2837	if (folio_test_idle(folio))
2838		folio_set_idle(new_folio);
 
 
 
 
2839
2840	folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
 
 
 
 
 
 
2841
2842	/*
2843	 * always add to the tail because some iterators expect new
2844	 * pages to show after the currently processed elements - e.g.
2845	 * migrate_pages
2846	 */
2847	lru_add_page_tail(head, page_tail, lruvec, list);
2848}
2849
2850static void __split_huge_page(struct page *page, struct list_head *list,
2851		pgoff_t end)
2852{
2853	struct folio *folio = page_folio(page);
2854	struct page *head = &folio->page;
2855	struct lruvec *lruvec;
2856	struct address_space *swap_cache = NULL;
2857	unsigned long offset = 0;
2858	unsigned int nr = thp_nr_pages(head);
2859	int i, nr_dropped = 0;
 
 
 
 
2860
2861	/* complete memcg works before add pages to LRU */
2862	split_page_memcg(head, nr);
2863
2864	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2865		offset = swp_offset(folio->swap);
2866		swap_cache = swap_address_space(folio->swap);
2867		xa_lock(&swap_cache->i_pages);
2868	}
2869
2870	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2871	lruvec = folio_lruvec_lock(folio);
 
2872
2873	ClearPageHasHWPoisoned(head);
 
 
2874
2875	for (i = nr - 1; i >= 1; i--) {
2876		__split_huge_page_tail(folio, i, lruvec, list);
2877		/* Some pages can be beyond EOF: drop them from page cache */
2878		if (head[i].index >= end) {
2879			struct folio *tail = page_folio(head + i);
2880
2881			if (shmem_mapping(head->mapping))
2882				nr_dropped++;
2883			else if (folio_test_clear_dirty(tail))
2884				folio_account_cleaned(tail,
2885					inode_to_wb(folio->mapping->host));
2886			__filemap_remove_folio(tail, NULL);
2887			folio_put(tail);
2888		} else if (!PageAnon(page)) {
2889			__xa_store(&head->mapping->i_pages, head[i].index,
2890					head + i, 0);
2891		} else if (swap_cache) {
2892			__xa_store(&swap_cache->i_pages, offset + i,
2893					head + i, 0);
2894		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2895	}
 
 
 
 
 
 
 
 
 
 
2896
2897	ClearPageCompound(head);
2898	unlock_page_lruvec(lruvec);
2899	/* Caller disabled irqs, so they are still disabled here */
2900
2901	split_page_owner(head, nr);
2902
2903	/* See comment in __split_huge_page_tail() */
2904	if (PageAnon(head)) {
2905		/* Additional pin to swap cache */
2906		if (PageSwapCache(head)) {
2907			page_ref_add(head, 2);
2908			xa_unlock(&swap_cache->i_pages);
2909		} else {
2910			page_ref_inc(head);
2911		}
2912	} else {
2913		/* Additional pin to page cache */
2914		page_ref_add(head, 2);
2915		xa_unlock(&head->mapping->i_pages);
2916	}
2917	local_irq_enable();
2918
2919	if (nr_dropped)
2920		shmem_uncharge(head->mapping->host, nr_dropped);
2921	remap_page(folio, nr);
2922
2923	if (folio_test_swapcache(folio))
2924		split_swap_cluster(folio->swap);
2925
2926	for (i = 0; i < nr; i++) {
2927		struct page *subpage = head + i;
2928		if (subpage == page)
2929			continue;
2930		unlock_page(subpage);
2931
2932		/*
2933		 * Subpages may be freed if there wasn't any mapping
2934		 * like if add_to_swap() is running on a lru page that
2935		 * had its mapping zapped. And freeing these pages
2936		 * requires taking the lru_lock so we do the put_page
2937		 * of the tail pages after the split is complete.
2938		 */
2939		free_page_and_swap_cache(subpage);
 
 
 
2940	}
2941}
2942
2943/* Racy check whether the huge page can be split */
2944bool can_split_folio(struct folio *folio, int *pextra_pins)
2945{
2946	int extra_pins;
 
 
 
 
 
 
2947
2948	/* Additional pins from page cache */
2949	if (folio_test_anon(folio))
2950		extra_pins = folio_test_swapcache(folio) ?
2951				folio_nr_pages(folio) : 0;
 
 
 
 
 
 
 
 
 
 
2952	else
2953		extra_pins = folio_nr_pages(folio);
2954	if (pextra_pins)
2955		*pextra_pins = extra_pins;
2956	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2957}
2958
2959/*
2960 * This function splits huge page into normal pages. @page can point to any
2961 * subpage of huge page to split. Split doesn't change the position of @page.
2962 *
2963 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2964 * The huge page must be locked.
2965 *
2966 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2967 *
2968 * Both head page and tail pages will inherit mapping, flags, and so on from
2969 * the hugepage.
2970 *
2971 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2972 * they are not mapped.
2973 *
2974 * Returns 0 if the hugepage is split successfully.
2975 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2976 * us.
2977 */
2978int split_huge_page_to_list(struct page *page, struct list_head *list)
2979{
2980	struct folio *folio = page_folio(page);
2981	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2982	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2983	struct anon_vma *anon_vma = NULL;
2984	struct address_space *mapping = NULL;
2985	int extra_pins, ret;
2986	pgoff_t end;
2987	bool is_hzp;
2988
2989	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2990	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2991
2992	is_hzp = is_huge_zero_page(&folio->page);
2993	if (is_hzp) {
2994		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2995		return -EBUSY;
2996	}
2997
2998	if (folio_test_writeback(folio))
2999		return -EBUSY;
 
 
 
3000
3001	if (folio_test_anon(folio)) {
 
 
 
 
 
 
 
 
 
 
3002		/*
3003		 * The caller does not necessarily hold an mmap_lock that would
3004		 * prevent the anon_vma disappearing so we first we take a
3005		 * reference to it and then lock the anon_vma for write. This
3006		 * is similar to folio_lock_anon_vma_read except the write lock
3007		 * is taken to serialise against parallel split or collapse
3008		 * operations.
3009		 */
3010		anon_vma = folio_get_anon_vma(folio);
3011		if (!anon_vma) {
3012			ret = -EBUSY;
3013			goto out;
3014		}
3015		end = -1;
3016		mapping = NULL;
3017		anon_vma_lock_write(anon_vma);
3018	} else {
3019		gfp_t gfp;
3020
3021		mapping = folio->mapping;
 
 
 
 
 
 
 
 
3022
3023		/* Truncated ? */
3024		if (!mapping) {
3025			ret = -EBUSY;
3026			goto out;
3027		}
3028
3029		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3030							GFP_RECLAIM_MASK);
3031
3032		if (!filemap_release_folio(folio, gfp)) {
3033			ret = -EBUSY;
3034			goto out;
3035		}
3036
3037		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3038		if (xas_error(&xas)) {
3039			ret = xas_error(&xas);
3040			goto out;
3041		}
3042
3043		anon_vma = NULL;
3044		i_mmap_lock_read(mapping);
3045
3046		/*
3047		 *__split_huge_page() may need to trim off pages beyond EOF:
3048		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3049		 * which cannot be nested inside the page tree lock. So note
3050		 * end now: i_size itself may be changed at any moment, but
3051		 * folio lock is good enough to serialize the trimming.
3052		 */
3053		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3054		if (shmem_mapping(mapping))
3055			end = shmem_fallocend(mapping->host, end);
3056	}
3057
 
 
3058	/*
3059	 * Racy check if we can split the page, before unmap_folio() will
3060	 * split PMDs
3061	 */
3062	if (!can_split_folio(folio, &extra_pins)) {
3063		ret = -EAGAIN;
3064		goto out_unlock;
3065	}
3066
3067	unmap_folio(folio);
3068
3069	/* block interrupt reentry in xa_lock and spinlock */
3070	local_irq_disable();
3071	if (mapping) {
3072		/*
3073		 * Check if the folio is present in page cache.
3074		 * We assume all tail are present too, if folio is there.
 
3075		 */
3076		xas_lock(&xas);
3077		xas_reset(&xas);
3078		if (xas_load(&xas) != folio)
3079			goto fail;
3080	}
3081
3082	/* Prevent deferred_split_scan() touching ->_refcount */
3083	spin_lock(&ds_queue->split_queue_lock);
3084	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3085		if (!list_empty(&folio->_deferred_list)) {
3086			ds_queue->split_queue_len--;
3087			list_del(&folio->_deferred_list);
3088		}
3089		spin_unlock(&ds_queue->split_queue_lock);
3090		if (mapping) {
3091			int nr = folio_nr_pages(folio);
3092
3093			xas_split(&xas, folio, folio_order(folio));
3094			if (folio_test_pmd_mappable(folio)) {
3095				if (folio_test_swapbacked(folio)) {
3096					__lruvec_stat_mod_folio(folio,
3097							NR_SHMEM_THPS, -nr);
3098				} else {
3099					__lruvec_stat_mod_folio(folio,
3100							NR_FILE_THPS, -nr);
3101					filemap_nr_thps_dec(mapping);
3102				}
3103			}
3104		}
3105
3106		__split_huge_page(page, list, end);
3107		ret = 0;
3108	} else {
3109		spin_unlock(&ds_queue->split_queue_lock);
3110fail:
3111		if (mapping)
3112			xas_unlock(&xas);
3113		local_irq_enable();
3114		remap_page(folio, folio_nr_pages(folio));
3115		ret = -EAGAIN;
3116	}
3117
3118out_unlock:
3119	if (anon_vma) {
3120		anon_vma_unlock_write(anon_vma);
3121		put_anon_vma(anon_vma);
3122	}
3123	if (mapping)
3124		i_mmap_unlock_read(mapping);
3125out:
3126	xas_destroy(&xas);
3127	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3128	return ret;
3129}
3130
3131void folio_undo_large_rmappable(struct folio *folio)
3132{
3133	struct deferred_split *ds_queue;
3134	unsigned long flags;
3135
3136	/*
3137	 * At this point, there is no one trying to add the folio to
3138	 * deferred_list. If folio is not in deferred_list, it's safe
3139	 * to check without acquiring the split_queue_lock.
3140	 */
3141	if (data_race(list_empty(&folio->_deferred_list)))
3142		return;
3143
3144	ds_queue = get_deferred_split_queue(folio);
3145	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3146	if (!list_empty(&folio->_deferred_list)) {
3147		ds_queue->split_queue_len--;
3148		list_del_init(&folio->_deferred_list);
3149	}
3150	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3151}
3152
3153void deferred_split_folio(struct folio *folio)
3154{
3155	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3156#ifdef CONFIG_MEMCG
3157	struct mem_cgroup *memcg = folio_memcg(folio);
3158#endif
3159	unsigned long flags;
3160
3161	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
3162
3163	/*
3164	 * The try_to_unmap() in page reclaim path might reach here too,
3165	 * this may cause a race condition to corrupt deferred split queue.
3166	 * And, if page reclaim is already handling the same folio, it is
3167	 * unnecessary to handle it again in shrinker.
3168	 *
3169	 * Check the swapcache flag to determine if the folio is being
3170	 * handled by page reclaim since THP swap would add the folio into
3171	 * swap cache before calling try_to_unmap().
3172	 */
3173	if (folio_test_swapcache(folio))
3174		return;
3175
3176	if (!list_empty(&folio->_deferred_list))
3177		return;
3178
3179	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3180	if (list_empty(&folio->_deferred_list)) {
3181		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3182		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3183		ds_queue->split_queue_len++;
3184#ifdef CONFIG_MEMCG
3185		if (memcg)
3186			set_shrinker_bit(memcg, folio_nid(folio),
3187					 deferred_split_shrinker->id);
3188#endif
3189	}
3190	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3191}
3192
3193static unsigned long deferred_split_count(struct shrinker *shrink,
3194		struct shrink_control *sc)
3195{
3196	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3197	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3198
3199#ifdef CONFIG_MEMCG
3200	if (sc->memcg)
3201		ds_queue = &sc->memcg->deferred_split_queue;
3202#endif
3203	return READ_ONCE(ds_queue->split_queue_len);
3204}
3205
3206static unsigned long deferred_split_scan(struct shrinker *shrink,
3207		struct shrink_control *sc)
3208{
3209	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3210	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3211	unsigned long flags;
3212	LIST_HEAD(list);
3213	struct folio *folio, *next;
3214	int split = 0;
3215
3216#ifdef CONFIG_MEMCG
3217	if (sc->memcg)
3218		ds_queue = &sc->memcg->deferred_split_queue;
3219#endif
3220
3221	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3222	/* Take pin on all head pages to avoid freeing them under us */
3223	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3224							_deferred_list) {
3225		if (folio_try_get(folio)) {
3226			list_move(&folio->_deferred_list, &list);
3227		} else {
3228			/* We lost race with folio_put() */
3229			list_del_init(&folio->_deferred_list);
3230			ds_queue->split_queue_len--;
3231		}
3232		if (!--sc->nr_to_scan)
3233			break;
3234	}
3235	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3236
3237	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3238		if (!folio_trylock(folio))
3239			goto next;
3240		/* split_huge_page() removes page from list on success */
3241		if (!split_folio(folio))
3242			split++;
3243		folio_unlock(folio);
3244next:
3245		folio_put(folio);
 
3246	}
3247
3248	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3249	list_splice_tail(&list, &ds_queue->split_queue);
3250	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3251
3252	/*
3253	 * Stop shrinker if we didn't split any page, but the queue is empty.
3254	 * This can happen if pages were freed under us.
3255	 */
3256	if (!split && list_empty(&ds_queue->split_queue))
3257		return SHRINK_STOP;
3258	return split;
3259}
3260
3261#ifdef CONFIG_DEBUG_FS
3262static void split_huge_pages_all(void)
3263{
3264	struct zone *zone;
3265	struct page *page;
3266	struct folio *folio;
3267	unsigned long pfn, max_zone_pfn;
3268	unsigned long total = 0, split = 0;
3269
3270	pr_debug("Split all THPs\n");
3271	for_each_zone(zone) {
3272		if (!managed_zone(zone))
3273			continue;
3274		max_zone_pfn = zone_end_pfn(zone);
3275		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3276			int nr_pages;
3277
3278			page = pfn_to_online_page(pfn);
3279			if (!page || PageTail(page))
3280				continue;
3281			folio = page_folio(page);
3282			if (!folio_try_get(folio))
3283				continue;
3284
3285			if (unlikely(page_folio(page) != folio))
3286				goto next;
3287
3288			if (zone != folio_zone(folio))
3289				goto next;
3290
3291			if (!folio_test_large(folio)
3292				|| folio_test_hugetlb(folio)
3293				|| !folio_test_lru(folio))
3294				goto next;
3295
3296			total++;
3297			folio_lock(folio);
3298			nr_pages = folio_nr_pages(folio);
3299			if (!split_folio(folio))
3300				split++;
3301			pfn += nr_pages - 1;
3302			folio_unlock(folio);
3303next:
3304			folio_put(folio);
3305			cond_resched();
3306		}
3307	}
3308
3309	pr_debug("%lu of %lu THP split\n", split, total);
3310}
3311
3312static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
 
3313{
3314	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3315		    is_vm_hugetlb_page(vma);
 
 
 
 
 
 
 
 
 
 
3316}
 
3317
3318static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3319				unsigned long vaddr_end)
3320{
3321	int ret = 0;
3322	struct task_struct *task;
3323	struct mm_struct *mm;
3324	unsigned long total = 0, split = 0;
3325	unsigned long addr;
3326
3327	vaddr_start &= PAGE_MASK;
3328	vaddr_end &= PAGE_MASK;
3329
3330	/* Find the task_struct from pid */
3331	rcu_read_lock();
3332	task = find_task_by_vpid(pid);
3333	if (!task) {
3334		rcu_read_unlock();
3335		ret = -ESRCH;
3336		goto out;
3337	}
3338	get_task_struct(task);
3339	rcu_read_unlock();
3340
3341	/* Find the mm_struct */
3342	mm = get_task_mm(task);
3343	put_task_struct(task);
3344
3345	if (!mm) {
3346		ret = -EINVAL;
3347		goto out;
3348	}
3349
3350	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3351		 pid, vaddr_start, vaddr_end);
3352
3353	mmap_read_lock(mm);
3354	/*
3355	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3356	 * table filled with PTE-mapped THPs, each of which is distinct.
3357	 */
3358	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3359		struct vm_area_struct *vma = vma_lookup(mm, addr);
3360		struct page *page;
3361		struct folio *folio;
3362
3363		if (!vma)
3364			break;
3365
3366		/* skip special VMA and hugetlb VMA */
3367		if (vma_not_suitable_for_thp_split(vma)) {
3368			addr = vma->vm_end;
3369			continue;
3370		}
 
3371
3372		/* FOLL_DUMP to ignore special (like zero) pages */
3373		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3374
3375		if (IS_ERR_OR_NULL(page))
3376			continue;
3377
3378		folio = page_folio(page);
3379		if (!is_transparent_hugepage(folio))
3380			goto next;
3381
3382		total++;
3383		if (!can_split_folio(folio, NULL))
3384			goto next;
3385
3386		if (!folio_trylock(folio))
3387			goto next;
3388
3389		if (!split_folio(folio))
3390			split++;
3391
3392		folio_unlock(folio);
3393next:
3394		folio_put(folio);
3395		cond_resched();
3396	}
3397	mmap_read_unlock(mm);
3398	mmput(mm);
3399
3400	pr_debug("%lu of %lu THP split\n", split, total);
3401
3402out:
3403	return ret;
3404}
3405
3406static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3407				pgoff_t off_end)
3408{
3409	struct filename *file;
3410	struct file *candidate;
3411	struct address_space *mapping;
3412	int ret = -EINVAL;
3413	pgoff_t index;
3414	int nr_pages = 1;
3415	unsigned long total = 0, split = 0;
3416
3417	file = getname_kernel(file_path);
3418	if (IS_ERR(file))
3419		return ret;
3420
3421	candidate = file_open_name(file, O_RDONLY, 0);
3422	if (IS_ERR(candidate))
3423		goto out;
3424
3425	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3426		 file_path, off_start, off_end);
 
 
 
3427
3428	mapping = candidate->f_mapping;
 
 
 
 
 
3429
3430	for (index = off_start; index < off_end; index += nr_pages) {
3431		struct folio *folio = filemap_get_folio(mapping, index);
 
 
 
 
3432
3433		nr_pages = 1;
3434		if (IS_ERR(folio))
3435			continue;
3436
3437		if (!folio_test_large(folio))
3438			goto next;
3439
3440		total++;
3441		nr_pages = folio_nr_pages(folio);
3442
3443		if (!folio_trylock(folio))
3444			goto next;
3445
3446		if (!split_folio(folio))
3447			split++;
3448
3449		folio_unlock(folio);
3450next:
3451		folio_put(folio);
3452		cond_resched();
3453	}
3454
3455	filp_close(candidate, NULL);
3456	ret = 0;
3457
3458	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3459out:
3460	putname(file);
3461	return ret;
3462}
3463
3464#define MAX_INPUT_BUF_SZ 255
3465
3466static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3467				size_t count, loff_t *ppops)
3468{
3469	static DEFINE_MUTEX(split_debug_mutex);
3470	ssize_t ret;
3471	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3472	char input_buf[MAX_INPUT_BUF_SZ];
3473	int pid;
3474	unsigned long vaddr_start, vaddr_end;
3475
3476	ret = mutex_lock_interruptible(&split_debug_mutex);
3477	if (ret)
3478		return ret;
3479
3480	ret = -EFAULT;
3481
3482	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3483	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3484		goto out;
3485
3486	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3487
3488	if (input_buf[0] == '/') {
3489		char *tok;
3490		char *buf = input_buf;
3491		char file_path[MAX_INPUT_BUF_SZ];
3492		pgoff_t off_start = 0, off_end = 0;
3493		size_t input_len = strlen(input_buf);
3494
3495		tok = strsep(&buf, ",");
3496		if (tok) {
3497			strcpy(file_path, tok);
3498		} else {
3499			ret = -EINVAL;
3500			goto out;
3501		}
3502
3503		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3504		if (ret != 2) {
3505			ret = -EINVAL;
3506			goto out;
3507		}
3508		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3509		if (!ret)
3510			ret = input_len;
3511
3512		goto out;
3513	}
 
 
 
 
3514
3515	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3516	if (ret == 1 && pid == 1) {
3517		split_huge_pages_all();
3518		ret = strlen(input_buf);
3519		goto out;
3520	} else if (ret != 3) {
3521		ret = -EINVAL;
3522		goto out;
3523	}
3524
3525	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3526	if (!ret)
3527		ret = strlen(input_buf);
3528out:
3529	mutex_unlock(&split_debug_mutex);
3530	return ret;
3531
3532}
3533
3534static const struct file_operations split_huge_pages_fops = {
3535	.owner	 = THIS_MODULE,
3536	.write	 = split_huge_pages_write,
3537	.llseek  = no_llseek,
3538};
3539
3540static int __init split_huge_pages_debugfs(void)
3541{
3542	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3543			    &split_huge_pages_fops);
3544	return 0;
3545}
3546late_initcall(split_huge_pages_debugfs);
3547#endif
3548
3549#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3550int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3551		struct page *page)
3552{
3553	struct folio *folio = page_folio(page);
3554	struct vm_area_struct *vma = pvmw->vma;
3555	struct mm_struct *mm = vma->vm_mm;
3556	unsigned long address = pvmw->address;
3557	bool anon_exclusive;
3558	pmd_t pmdval;
3559	swp_entry_t entry;
3560	pmd_t pmdswp;
3561
3562	if (!(pvmw->pmd && !pvmw->pte))
3563		return 0;
3564
3565	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3566	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
 
3567
3568	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
3569	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
3570	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
3571		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3572		return -EBUSY;
3573	}
3574
3575	if (pmd_dirty(pmdval))
3576		folio_mark_dirty(folio);
3577	if (pmd_write(pmdval))
3578		entry = make_writable_migration_entry(page_to_pfn(page));
3579	else if (anon_exclusive)
3580		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3581	else
3582		entry = make_readable_migration_entry(page_to_pfn(page));
3583	if (pmd_young(pmdval))
3584		entry = make_migration_entry_young(entry);
3585	if (pmd_dirty(pmdval))
3586		entry = make_migration_entry_dirty(entry);
3587	pmdswp = swp_entry_to_pmd(entry);
3588	if (pmd_soft_dirty(pmdval))
3589		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3590	if (pmd_uffd_wp(pmdval))
3591		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3592	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3593	folio_remove_rmap_pmd(folio, page, vma);
3594	folio_put(folio);
3595	trace_set_migration_pmd(address, pmd_val(pmdswp));
3596
3597	return 0;
 
 
 
 
 
 
 
3598}
3599
3600void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
 
 
 
3601{
3602	struct folio *folio = page_folio(new);
3603	struct vm_area_struct *vma = pvmw->vma;
3604	struct mm_struct *mm = vma->vm_mm;
3605	unsigned long address = pvmw->address;
3606	unsigned long haddr = address & HPAGE_PMD_MASK;
3607	pmd_t pmde;
3608	swp_entry_t entry;
 
 
3609
3610	if (!(pvmw->pmd && !pvmw->pte))
3611		return;
 
 
 
 
 
 
 
3612
3613	entry = pmd_to_swp_entry(*pvmw->pmd);
3614	folio_get(folio);
3615	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3616	if (pmd_swp_soft_dirty(*pvmw->pmd))
3617		pmde = pmd_mksoft_dirty(pmde);
3618	if (is_writable_migration_entry(entry))
3619		pmde = pmd_mkwrite(pmde, vma);
3620	if (pmd_swp_uffd_wp(*pvmw->pmd))
3621		pmde = pmd_mkuffd_wp(pmde);
3622	if (!is_migration_entry_young(entry))
3623		pmde = pmd_mkold(pmde);
3624	/* NOTE: this may contain setting soft-dirty on some archs */
3625	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
3626		pmde = pmd_mkdirty(pmde);
3627
3628	if (folio_test_anon(folio)) {
3629		rmap_t rmap_flags = RMAP_NONE;
3630
3631		if (!is_readable_migration_entry(entry))
3632			rmap_flags |= RMAP_EXCLUSIVE;
3633
3634		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
3635	} else {
3636		folio_add_file_rmap_pmd(folio, new, vma);
3637	}
3638	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
3639	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3640
3641	/* No need to invalidate - it was non-present before */
3642	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3643	trace_remove_migration_pmd(address, pmd_val(pmde));
3644}
3645#endif