Loading...
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
18#include <linux/freezer.h>
19#include <linux/mman.h>
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
31unsigned long transparent_hugepage_flags __read_mostly =
32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
92} khugepaged_scan = {
93 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
94};
95
96
97static int set_recommended_min_free_kbytes(void)
98{
99 struct zone *zone;
100 int nr_zones = 0;
101 unsigned long recommended_min;
102 extern int min_free_kbytes;
103
104 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
105 &transparent_hugepage_flags) &&
106 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
107 &transparent_hugepage_flags))
108 return 0;
109
110 for_each_populated_zone(zone)
111 nr_zones++;
112
113 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116 /*
117 * Make sure that on average at least two pageblocks are almost free
118 * of another type, one for a migratetype to fall back to and a
119 * second to avoid subsequent fallbacks of other types There are 3
120 * MIGRATE_TYPES we care about.
121 */
122 recommended_min += pageblock_nr_pages * nr_zones *
123 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125 /* don't ever allow to reserve more than 5% of the lowmem */
126 recommended_min = min(recommended_min,
127 (unsigned long) nr_free_buffer_pages() / 20);
128 recommended_min <<= (PAGE_SHIFT-10);
129
130 if (recommended_min > min_free_kbytes)
131 min_free_kbytes = recommended_min;
132 setup_per_zone_wmarks();
133 return 0;
134}
135late_initcall(set_recommended_min_free_kbytes);
136
137static int start_khugepaged(void)
138{
139 int err = 0;
140 if (khugepaged_enabled()) {
141 int wakeup;
142 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
143 err = -ENOMEM;
144 goto out;
145 }
146 mutex_lock(&khugepaged_mutex);
147 if (!khugepaged_thread)
148 khugepaged_thread = kthread_run(khugepaged, NULL,
149 "khugepaged");
150 if (unlikely(IS_ERR(khugepaged_thread))) {
151 printk(KERN_ERR
152 "khugepaged: kthread_run(khugepaged) failed\n");
153 err = PTR_ERR(khugepaged_thread);
154 khugepaged_thread = NULL;
155 }
156 wakeup = !list_empty(&khugepaged_scan.mm_head);
157 mutex_unlock(&khugepaged_mutex);
158 if (wakeup)
159 wake_up_interruptible(&khugepaged_wait);
160
161 set_recommended_min_free_kbytes();
162 } else
163 /* wakeup to exit */
164 wake_up_interruptible(&khugepaged_wait);
165out:
166 return err;
167}
168
169#ifdef CONFIG_SYSFS
170
171static ssize_t double_flag_show(struct kobject *kobj,
172 struct kobj_attribute *attr, char *buf,
173 enum transparent_hugepage_flag enabled,
174 enum transparent_hugepage_flag req_madv)
175{
176 if (test_bit(enabled, &transparent_hugepage_flags)) {
177 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
178 return sprintf(buf, "[always] madvise never\n");
179 } else if (test_bit(req_madv, &transparent_hugepage_flags))
180 return sprintf(buf, "always [madvise] never\n");
181 else
182 return sprintf(buf, "always madvise [never]\n");
183}
184static ssize_t double_flag_store(struct kobject *kobj,
185 struct kobj_attribute *attr,
186 const char *buf, size_t count,
187 enum transparent_hugepage_flag enabled,
188 enum transparent_hugepage_flag req_madv)
189{
190 if (!memcmp("always", buf,
191 min(sizeof("always")-1, count))) {
192 set_bit(enabled, &transparent_hugepage_flags);
193 clear_bit(req_madv, &transparent_hugepage_flags);
194 } else if (!memcmp("madvise", buf,
195 min(sizeof("madvise")-1, count))) {
196 clear_bit(enabled, &transparent_hugepage_flags);
197 set_bit(req_madv, &transparent_hugepage_flags);
198 } else if (!memcmp("never", buf,
199 min(sizeof("never")-1, count))) {
200 clear_bit(enabled, &transparent_hugepage_flags);
201 clear_bit(req_madv, &transparent_hugepage_flags);
202 } else
203 return -EINVAL;
204
205 return count;
206}
207
208static ssize_t enabled_show(struct kobject *kobj,
209 struct kobj_attribute *attr, char *buf)
210{
211 return double_flag_show(kobj, attr, buf,
212 TRANSPARENT_HUGEPAGE_FLAG,
213 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
214}
215static ssize_t enabled_store(struct kobject *kobj,
216 struct kobj_attribute *attr,
217 const char *buf, size_t count)
218{
219 ssize_t ret;
220
221 ret = double_flag_store(kobj, attr, buf, count,
222 TRANSPARENT_HUGEPAGE_FLAG,
223 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
224
225 if (ret > 0) {
226 int err = start_khugepaged();
227 if (err)
228 ret = err;
229 }
230
231 if (ret > 0 &&
232 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
233 &transparent_hugepage_flags) ||
234 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
235 &transparent_hugepage_flags)))
236 set_recommended_min_free_kbytes();
237
238 return ret;
239}
240static struct kobj_attribute enabled_attr =
241 __ATTR(enabled, 0644, enabled_show, enabled_store);
242
243static ssize_t single_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag flag)
246{
247 return sprintf(buf, "%d\n",
248 !!test_bit(flag, &transparent_hugepage_flags));
249}
250
251static ssize_t single_flag_store(struct kobject *kobj,
252 struct kobj_attribute *attr,
253 const char *buf, size_t count,
254 enum transparent_hugepage_flag flag)
255{
256 unsigned long value;
257 int ret;
258
259 ret = kstrtoul(buf, 10, &value);
260 if (ret < 0)
261 return ret;
262 if (value > 1)
263 return -EINVAL;
264
265 if (value)
266 set_bit(flag, &transparent_hugepage_flags);
267 else
268 clear_bit(flag, &transparent_hugepage_flags);
269
270 return count;
271}
272
273/*
274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
276 * memory just to allocate one more hugepage.
277 */
278static ssize_t defrag_show(struct kobject *kobj,
279 struct kobj_attribute *attr, char *buf)
280{
281 return double_flag_show(kobj, attr, buf,
282 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
283 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
284}
285static ssize_t defrag_store(struct kobject *kobj,
286 struct kobj_attribute *attr,
287 const char *buf, size_t count)
288{
289 return double_flag_store(kobj, attr, buf, count,
290 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
291 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
292}
293static struct kobj_attribute defrag_attr =
294 __ATTR(defrag, 0644, defrag_show, defrag_store);
295
296#ifdef CONFIG_DEBUG_VM
297static ssize_t debug_cow_show(struct kobject *kobj,
298 struct kobj_attribute *attr, char *buf)
299{
300 return single_flag_show(kobj, attr, buf,
301 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302}
303static ssize_t debug_cow_store(struct kobject *kobj,
304 struct kobj_attribute *attr,
305 const char *buf, size_t count)
306{
307 return single_flag_store(kobj, attr, buf, count,
308 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
309}
310static struct kobj_attribute debug_cow_attr =
311 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
312#endif /* CONFIG_DEBUG_VM */
313
314static struct attribute *hugepage_attr[] = {
315 &enabled_attr.attr,
316 &defrag_attr.attr,
317#ifdef CONFIG_DEBUG_VM
318 &debug_cow_attr.attr,
319#endif
320 NULL,
321};
322
323static struct attribute_group hugepage_attr_group = {
324 .attrs = hugepage_attr,
325};
326
327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
328 struct kobj_attribute *attr,
329 char *buf)
330{
331 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
332}
333
334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
335 struct kobj_attribute *attr,
336 const char *buf, size_t count)
337{
338 unsigned long msecs;
339 int err;
340
341 err = strict_strtoul(buf, 10, &msecs);
342 if (err || msecs > UINT_MAX)
343 return -EINVAL;
344
345 khugepaged_scan_sleep_millisecs = msecs;
346 wake_up_interruptible(&khugepaged_wait);
347
348 return count;
349}
350static struct kobj_attribute scan_sleep_millisecs_attr =
351 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
352 scan_sleep_millisecs_store);
353
354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 char *buf)
357{
358 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
359}
360
361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
362 struct kobj_attribute *attr,
363 const char *buf, size_t count)
364{
365 unsigned long msecs;
366 int err;
367
368 err = strict_strtoul(buf, 10, &msecs);
369 if (err || msecs > UINT_MAX)
370 return -EINVAL;
371
372 khugepaged_alloc_sleep_millisecs = msecs;
373 wake_up_interruptible(&khugepaged_wait);
374
375 return count;
376}
377static struct kobj_attribute alloc_sleep_millisecs_attr =
378 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
379 alloc_sleep_millisecs_store);
380
381static ssize_t pages_to_scan_show(struct kobject *kobj,
382 struct kobj_attribute *attr,
383 char *buf)
384{
385 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
386}
387static ssize_t pages_to_scan_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
390{
391 int err;
392 unsigned long pages;
393
394 err = strict_strtoul(buf, 10, &pages);
395 if (err || !pages || pages > UINT_MAX)
396 return -EINVAL;
397
398 khugepaged_pages_to_scan = pages;
399
400 return count;
401}
402static struct kobj_attribute pages_to_scan_attr =
403 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
404 pages_to_scan_store);
405
406static ssize_t pages_collapsed_show(struct kobject *kobj,
407 struct kobj_attribute *attr,
408 char *buf)
409{
410 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
411}
412static struct kobj_attribute pages_collapsed_attr =
413 __ATTR_RO(pages_collapsed);
414
415static ssize_t full_scans_show(struct kobject *kobj,
416 struct kobj_attribute *attr,
417 char *buf)
418{
419 return sprintf(buf, "%u\n", khugepaged_full_scans);
420}
421static struct kobj_attribute full_scans_attr =
422 __ATTR_RO(full_scans);
423
424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
425 struct kobj_attribute *attr, char *buf)
426{
427 return single_flag_show(kobj, attr, buf,
428 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
429}
430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
431 struct kobj_attribute *attr,
432 const char *buf, size_t count)
433{
434 return single_flag_store(kobj, attr, buf, count,
435 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
436}
437static struct kobj_attribute khugepaged_defrag_attr =
438 __ATTR(defrag, 0644, khugepaged_defrag_show,
439 khugepaged_defrag_store);
440
441/*
442 * max_ptes_none controls if khugepaged should collapse hugepages over
443 * any unmapped ptes in turn potentially increasing the memory
444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
445 * reduce the available free memory in the system as it
446 * runs. Increasing max_ptes_none will instead potentially reduce the
447 * free memory in the system during the khugepaged scan.
448 */
449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
450 struct kobj_attribute *attr,
451 char *buf)
452{
453 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
454}
455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
456 struct kobj_attribute *attr,
457 const char *buf, size_t count)
458{
459 int err;
460 unsigned long max_ptes_none;
461
462 err = strict_strtoul(buf, 10, &max_ptes_none);
463 if (err || max_ptes_none > HPAGE_PMD_NR-1)
464 return -EINVAL;
465
466 khugepaged_max_ptes_none = max_ptes_none;
467
468 return count;
469}
470static struct kobj_attribute khugepaged_max_ptes_none_attr =
471 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
472 khugepaged_max_ptes_none_store);
473
474static struct attribute *khugepaged_attr[] = {
475 &khugepaged_defrag_attr.attr,
476 &khugepaged_max_ptes_none_attr.attr,
477 &pages_to_scan_attr.attr,
478 &pages_collapsed_attr.attr,
479 &full_scans_attr.attr,
480 &scan_sleep_millisecs_attr.attr,
481 &alloc_sleep_millisecs_attr.attr,
482 NULL,
483};
484
485static struct attribute_group khugepaged_attr_group = {
486 .attrs = khugepaged_attr,
487 .name = "khugepaged",
488};
489#endif /* CONFIG_SYSFS */
490
491static int __init hugepage_init(void)
492{
493 int err;
494#ifdef CONFIG_SYSFS
495 static struct kobject *hugepage_kobj;
496#endif
497
498 err = -EINVAL;
499 if (!has_transparent_hugepage()) {
500 transparent_hugepage_flags = 0;
501 goto out;
502 }
503
504#ifdef CONFIG_SYSFS
505 err = -ENOMEM;
506 hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
507 if (unlikely(!hugepage_kobj)) {
508 printk(KERN_ERR "hugepage: failed kobject create\n");
509 goto out;
510 }
511
512 err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
513 if (err) {
514 printk(KERN_ERR "hugepage: failed register hugeage group\n");
515 goto out;
516 }
517
518 err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
519 if (err) {
520 printk(KERN_ERR "hugepage: failed register hugeage group\n");
521 goto out;
522 }
523#endif
524
525 err = khugepaged_slab_init();
526 if (err)
527 goto out;
528
529 err = mm_slots_hash_init();
530 if (err) {
531 khugepaged_slab_free();
532 goto out;
533 }
534
535 /*
536 * By default disable transparent hugepages on smaller systems,
537 * where the extra memory used could hurt more than TLB overhead
538 * is likely to save. The admin can still enable it through /sys.
539 */
540 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
541 transparent_hugepage_flags = 0;
542
543 start_khugepaged();
544
545 set_recommended_min_free_kbytes();
546
547out:
548 return err;
549}
550module_init(hugepage_init)
551
552static int __init setup_transparent_hugepage(char *str)
553{
554 int ret = 0;
555 if (!str)
556 goto out;
557 if (!strcmp(str, "always")) {
558 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
559 &transparent_hugepage_flags);
560 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
561 &transparent_hugepage_flags);
562 ret = 1;
563 } else if (!strcmp(str, "madvise")) {
564 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
565 &transparent_hugepage_flags);
566 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
567 &transparent_hugepage_flags);
568 ret = 1;
569 } else if (!strcmp(str, "never")) {
570 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
571 &transparent_hugepage_flags);
572 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
573 &transparent_hugepage_flags);
574 ret = 1;
575 }
576out:
577 if (!ret)
578 printk(KERN_WARNING
579 "transparent_hugepage= cannot parse, ignored\n");
580 return ret;
581}
582__setup("transparent_hugepage=", setup_transparent_hugepage);
583
584static void prepare_pmd_huge_pte(pgtable_t pgtable,
585 struct mm_struct *mm)
586{
587 assert_spin_locked(&mm->page_table_lock);
588
589 /* FIFO */
590 if (!mm->pmd_huge_pte)
591 INIT_LIST_HEAD(&pgtable->lru);
592 else
593 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
594 mm->pmd_huge_pte = pgtable;
595}
596
597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
598{
599 if (likely(vma->vm_flags & VM_WRITE))
600 pmd = pmd_mkwrite(pmd);
601 return pmd;
602}
603
604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
605 struct vm_area_struct *vma,
606 unsigned long haddr, pmd_t *pmd,
607 struct page *page)
608{
609 int ret = 0;
610 pgtable_t pgtable;
611
612 VM_BUG_ON(!PageCompound(page));
613 pgtable = pte_alloc_one(mm, haddr);
614 if (unlikely(!pgtable)) {
615 mem_cgroup_uncharge_page(page);
616 put_page(page);
617 return VM_FAULT_OOM;
618 }
619
620 clear_huge_page(page, haddr, HPAGE_PMD_NR);
621 __SetPageUptodate(page);
622
623 spin_lock(&mm->page_table_lock);
624 if (unlikely(!pmd_none(*pmd))) {
625 spin_unlock(&mm->page_table_lock);
626 mem_cgroup_uncharge_page(page);
627 put_page(page);
628 pte_free(mm, pgtable);
629 } else {
630 pmd_t entry;
631 entry = mk_pmd(page, vma->vm_page_prot);
632 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
633 entry = pmd_mkhuge(entry);
634 /*
635 * The spinlocking to take the lru_lock inside
636 * page_add_new_anon_rmap() acts as a full memory
637 * barrier to be sure clear_huge_page writes become
638 * visible after the set_pmd_at() write.
639 */
640 page_add_new_anon_rmap(page, vma, haddr);
641 set_pmd_at(mm, haddr, pmd, entry);
642 prepare_pmd_huge_pte(pgtable, mm);
643 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
644 spin_unlock(&mm->page_table_lock);
645 }
646
647 return ret;
648}
649
650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
651{
652 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
653}
654
655static inline struct page *alloc_hugepage_vma(int defrag,
656 struct vm_area_struct *vma,
657 unsigned long haddr, int nd,
658 gfp_t extra_gfp)
659{
660 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
661 HPAGE_PMD_ORDER, vma, haddr, nd);
662}
663
664#ifndef CONFIG_NUMA
665static inline struct page *alloc_hugepage(int defrag)
666{
667 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
668 HPAGE_PMD_ORDER);
669}
670#endif
671
672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
673 unsigned long address, pmd_t *pmd,
674 unsigned int flags)
675{
676 struct page *page;
677 unsigned long haddr = address & HPAGE_PMD_MASK;
678 pte_t *pte;
679
680 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
681 if (unlikely(anon_vma_prepare(vma)))
682 return VM_FAULT_OOM;
683 if (unlikely(khugepaged_enter(vma)))
684 return VM_FAULT_OOM;
685 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
686 vma, haddr, numa_node_id(), 0);
687 if (unlikely(!page)) {
688 count_vm_event(THP_FAULT_FALLBACK);
689 goto out;
690 }
691 count_vm_event(THP_FAULT_ALLOC);
692 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
693 put_page(page);
694 goto out;
695 }
696
697 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
698 }
699out:
700 /*
701 * Use __pte_alloc instead of pte_alloc_map, because we can't
702 * run pte_offset_map on the pmd, if an huge pmd could
703 * materialize from under us from a different thread.
704 */
705 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
706 return VM_FAULT_OOM;
707 /* if an huge pmd materialized from under us just retry later */
708 if (unlikely(pmd_trans_huge(*pmd)))
709 return 0;
710 /*
711 * A regular pmd is established and it can't morph into a huge pmd
712 * from under us anymore at this point because we hold the mmap_sem
713 * read mode and khugepaged takes it in write mode. So now it's
714 * safe to run pte_offset_map().
715 */
716 pte = pte_offset_map(pmd, address);
717 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
718}
719
720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
721 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
722 struct vm_area_struct *vma)
723{
724 struct page *src_page;
725 pmd_t pmd;
726 pgtable_t pgtable;
727 int ret;
728
729 ret = -ENOMEM;
730 pgtable = pte_alloc_one(dst_mm, addr);
731 if (unlikely(!pgtable))
732 goto out;
733
734 spin_lock(&dst_mm->page_table_lock);
735 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
736
737 ret = -EAGAIN;
738 pmd = *src_pmd;
739 if (unlikely(!pmd_trans_huge(pmd))) {
740 pte_free(dst_mm, pgtable);
741 goto out_unlock;
742 }
743 if (unlikely(pmd_trans_splitting(pmd))) {
744 /* split huge page running from under us */
745 spin_unlock(&src_mm->page_table_lock);
746 spin_unlock(&dst_mm->page_table_lock);
747 pte_free(dst_mm, pgtable);
748
749 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
750 goto out;
751 }
752 src_page = pmd_page(pmd);
753 VM_BUG_ON(!PageHead(src_page));
754 get_page(src_page);
755 page_dup_rmap(src_page);
756 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
757
758 pmdp_set_wrprotect(src_mm, addr, src_pmd);
759 pmd = pmd_mkold(pmd_wrprotect(pmd));
760 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
761 prepare_pmd_huge_pte(pgtable, dst_mm);
762
763 ret = 0;
764out_unlock:
765 spin_unlock(&src_mm->page_table_lock);
766 spin_unlock(&dst_mm->page_table_lock);
767out:
768 return ret;
769}
770
771/* no "address" argument so destroys page coloring of some arch */
772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
773{
774 pgtable_t pgtable;
775
776 assert_spin_locked(&mm->page_table_lock);
777
778 /* FIFO */
779 pgtable = mm->pmd_huge_pte;
780 if (list_empty(&pgtable->lru))
781 mm->pmd_huge_pte = NULL;
782 else {
783 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
784 struct page, lru);
785 list_del(&pgtable->lru);
786 }
787 return pgtable;
788}
789
790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
791 struct vm_area_struct *vma,
792 unsigned long address,
793 pmd_t *pmd, pmd_t orig_pmd,
794 struct page *page,
795 unsigned long haddr)
796{
797 pgtable_t pgtable;
798 pmd_t _pmd;
799 int ret = 0, i;
800 struct page **pages;
801
802 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
803 GFP_KERNEL);
804 if (unlikely(!pages)) {
805 ret |= VM_FAULT_OOM;
806 goto out;
807 }
808
809 for (i = 0; i < HPAGE_PMD_NR; i++) {
810 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
811 __GFP_OTHER_NODE,
812 vma, address, page_to_nid(page));
813 if (unlikely(!pages[i] ||
814 mem_cgroup_newpage_charge(pages[i], mm,
815 GFP_KERNEL))) {
816 if (pages[i])
817 put_page(pages[i]);
818 mem_cgroup_uncharge_start();
819 while (--i >= 0) {
820 mem_cgroup_uncharge_page(pages[i]);
821 put_page(pages[i]);
822 }
823 mem_cgroup_uncharge_end();
824 kfree(pages);
825 ret |= VM_FAULT_OOM;
826 goto out;
827 }
828 }
829
830 for (i = 0; i < HPAGE_PMD_NR; i++) {
831 copy_user_highpage(pages[i], page + i,
832 haddr + PAGE_SHIFT*i, vma);
833 __SetPageUptodate(pages[i]);
834 cond_resched();
835 }
836
837 spin_lock(&mm->page_table_lock);
838 if (unlikely(!pmd_same(*pmd, orig_pmd)))
839 goto out_free_pages;
840 VM_BUG_ON(!PageHead(page));
841
842 pmdp_clear_flush_notify(vma, haddr, pmd);
843 /* leave pmd empty until pte is filled */
844
845 pgtable = get_pmd_huge_pte(mm);
846 pmd_populate(mm, &_pmd, pgtable);
847
848 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
849 pte_t *pte, entry;
850 entry = mk_pte(pages[i], vma->vm_page_prot);
851 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
852 page_add_new_anon_rmap(pages[i], vma, haddr);
853 pte = pte_offset_map(&_pmd, haddr);
854 VM_BUG_ON(!pte_none(*pte));
855 set_pte_at(mm, haddr, pte, entry);
856 pte_unmap(pte);
857 }
858 kfree(pages);
859
860 mm->nr_ptes++;
861 smp_wmb(); /* make pte visible before pmd */
862 pmd_populate(mm, pmd, pgtable);
863 page_remove_rmap(page);
864 spin_unlock(&mm->page_table_lock);
865
866 ret |= VM_FAULT_WRITE;
867 put_page(page);
868
869out:
870 return ret;
871
872out_free_pages:
873 spin_unlock(&mm->page_table_lock);
874 mem_cgroup_uncharge_start();
875 for (i = 0; i < HPAGE_PMD_NR; i++) {
876 mem_cgroup_uncharge_page(pages[i]);
877 put_page(pages[i]);
878 }
879 mem_cgroup_uncharge_end();
880 kfree(pages);
881 goto out;
882}
883
884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
885 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
886{
887 int ret = 0;
888 struct page *page, *new_page;
889 unsigned long haddr;
890
891 VM_BUG_ON(!vma->anon_vma);
892 spin_lock(&mm->page_table_lock);
893 if (unlikely(!pmd_same(*pmd, orig_pmd)))
894 goto out_unlock;
895
896 page = pmd_page(orig_pmd);
897 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
898 haddr = address & HPAGE_PMD_MASK;
899 if (page_mapcount(page) == 1) {
900 pmd_t entry;
901 entry = pmd_mkyoung(orig_pmd);
902 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
903 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
904 update_mmu_cache(vma, address, entry);
905 ret |= VM_FAULT_WRITE;
906 goto out_unlock;
907 }
908 get_page(page);
909 spin_unlock(&mm->page_table_lock);
910
911 if (transparent_hugepage_enabled(vma) &&
912 !transparent_hugepage_debug_cow())
913 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
914 vma, haddr, numa_node_id(), 0);
915 else
916 new_page = NULL;
917
918 if (unlikely(!new_page)) {
919 count_vm_event(THP_FAULT_FALLBACK);
920 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
921 pmd, orig_pmd, page, haddr);
922 put_page(page);
923 goto out;
924 }
925 count_vm_event(THP_FAULT_ALLOC);
926
927 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
928 put_page(new_page);
929 put_page(page);
930 ret |= VM_FAULT_OOM;
931 goto out;
932 }
933
934 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
935 __SetPageUptodate(new_page);
936
937 spin_lock(&mm->page_table_lock);
938 put_page(page);
939 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
940 mem_cgroup_uncharge_page(new_page);
941 put_page(new_page);
942 } else {
943 pmd_t entry;
944 VM_BUG_ON(!PageHead(page));
945 entry = mk_pmd(new_page, vma->vm_page_prot);
946 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
947 entry = pmd_mkhuge(entry);
948 pmdp_clear_flush_notify(vma, haddr, pmd);
949 page_add_new_anon_rmap(new_page, vma, haddr);
950 set_pmd_at(mm, haddr, pmd, entry);
951 update_mmu_cache(vma, address, entry);
952 page_remove_rmap(page);
953 put_page(page);
954 ret |= VM_FAULT_WRITE;
955 }
956out_unlock:
957 spin_unlock(&mm->page_table_lock);
958out:
959 return ret;
960}
961
962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
963 unsigned long addr,
964 pmd_t *pmd,
965 unsigned int flags)
966{
967 struct page *page = NULL;
968
969 assert_spin_locked(&mm->page_table_lock);
970
971 if (flags & FOLL_WRITE && !pmd_write(*pmd))
972 goto out;
973
974 page = pmd_page(*pmd);
975 VM_BUG_ON(!PageHead(page));
976 if (flags & FOLL_TOUCH) {
977 pmd_t _pmd;
978 /*
979 * We should set the dirty bit only for FOLL_WRITE but
980 * for now the dirty bit in the pmd is meaningless.
981 * And if the dirty bit will become meaningful and
982 * we'll only set it with FOLL_WRITE, an atomic
983 * set_bit will be required on the pmd to set the
984 * young bit, instead of the current set_pmd_at.
985 */
986 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
987 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
988 }
989 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
990 VM_BUG_ON(!PageCompound(page));
991 if (flags & FOLL_GET)
992 get_page(page);
993
994out:
995 return page;
996}
997
998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
999 pmd_t *pmd)
1000{
1001 int ret = 0;
1002
1003 spin_lock(&tlb->mm->page_table_lock);
1004 if (likely(pmd_trans_huge(*pmd))) {
1005 if (unlikely(pmd_trans_splitting(*pmd))) {
1006 spin_unlock(&tlb->mm->page_table_lock);
1007 wait_split_huge_page(vma->anon_vma,
1008 pmd);
1009 } else {
1010 struct page *page;
1011 pgtable_t pgtable;
1012 pgtable = get_pmd_huge_pte(tlb->mm);
1013 page = pmd_page(*pmd);
1014 pmd_clear(pmd);
1015 page_remove_rmap(page);
1016 VM_BUG_ON(page_mapcount(page) < 0);
1017 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018 VM_BUG_ON(!PageHead(page));
1019 spin_unlock(&tlb->mm->page_table_lock);
1020 tlb_remove_page(tlb, page);
1021 pte_free(tlb->mm, pgtable);
1022 ret = 1;
1023 }
1024 } else
1025 spin_unlock(&tlb->mm->page_table_lock);
1026
1027 return ret;
1028}
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031 unsigned long addr, unsigned long end,
1032 unsigned char *vec)
1033{
1034 int ret = 0;
1035
1036 spin_lock(&vma->vm_mm->page_table_lock);
1037 if (likely(pmd_trans_huge(*pmd))) {
1038 ret = !pmd_trans_splitting(*pmd);
1039 spin_unlock(&vma->vm_mm->page_table_lock);
1040 if (unlikely(!ret))
1041 wait_split_huge_page(vma->anon_vma, pmd);
1042 else {
1043 /*
1044 * All logical pages in the range are present
1045 * if backed by a huge page.
1046 */
1047 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048 }
1049 } else
1050 spin_unlock(&vma->vm_mm->page_table_lock);
1051
1052 return ret;
1053}
1054
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056 unsigned long addr, pgprot_t newprot)
1057{
1058 struct mm_struct *mm = vma->vm_mm;
1059 int ret = 0;
1060
1061 spin_lock(&mm->page_table_lock);
1062 if (likely(pmd_trans_huge(*pmd))) {
1063 if (unlikely(pmd_trans_splitting(*pmd))) {
1064 spin_unlock(&mm->page_table_lock);
1065 wait_split_huge_page(vma->anon_vma, pmd);
1066 } else {
1067 pmd_t entry;
1068
1069 entry = pmdp_get_and_clear(mm, addr, pmd);
1070 entry = pmd_modify(entry, newprot);
1071 set_pmd_at(mm, addr, pmd, entry);
1072 spin_unlock(&vma->vm_mm->page_table_lock);
1073 flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074 ret = 1;
1075 }
1076 } else
1077 spin_unlock(&vma->vm_mm->page_table_lock);
1078
1079 return ret;
1080}
1081
1082pmd_t *page_check_address_pmd(struct page *page,
1083 struct mm_struct *mm,
1084 unsigned long address,
1085 enum page_check_address_pmd_flag flag)
1086{
1087 pgd_t *pgd;
1088 pud_t *pud;
1089 pmd_t *pmd, *ret = NULL;
1090
1091 if (address & ~HPAGE_PMD_MASK)
1092 goto out;
1093
1094 pgd = pgd_offset(mm, address);
1095 if (!pgd_present(*pgd))
1096 goto out;
1097
1098 pud = pud_offset(pgd, address);
1099 if (!pud_present(*pud))
1100 goto out;
1101
1102 pmd = pmd_offset(pud, address);
1103 if (pmd_none(*pmd))
1104 goto out;
1105 if (pmd_page(*pmd) != page)
1106 goto out;
1107 /*
1108 * split_vma() may create temporary aliased mappings. There is
1109 * no risk as long as all huge pmd are found and have their
1110 * splitting bit set before __split_huge_page_refcount
1111 * runs. Finding the same huge pmd more than once during the
1112 * same rmap walk is not a problem.
1113 */
1114 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115 pmd_trans_splitting(*pmd))
1116 goto out;
1117 if (pmd_trans_huge(*pmd)) {
1118 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119 !pmd_trans_splitting(*pmd));
1120 ret = pmd;
1121 }
1122out:
1123 return ret;
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127 struct vm_area_struct *vma,
1128 unsigned long address)
1129{
1130 struct mm_struct *mm = vma->vm_mm;
1131 pmd_t *pmd;
1132 int ret = 0;
1133
1134 spin_lock(&mm->page_table_lock);
1135 pmd = page_check_address_pmd(page, mm, address,
1136 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137 if (pmd) {
1138 /*
1139 * We can't temporarily set the pmd to null in order
1140 * to split it, the pmd must remain marked huge at all
1141 * times or the VM won't take the pmd_trans_huge paths
1142 * and it won't wait on the anon_vma->root->mutex to
1143 * serialize against split_huge_page*.
1144 */
1145 pmdp_splitting_flush_notify(vma, address, pmd);
1146 ret = 1;
1147 }
1148 spin_unlock(&mm->page_table_lock);
1149
1150 return ret;
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
1154{
1155 int i;
1156 unsigned long head_index = page->index;
1157 struct zone *zone = page_zone(page);
1158 int zonestat;
1159
1160 /* prevent PageLRU to go away from under us, and freeze lru stats */
1161 spin_lock_irq(&zone->lru_lock);
1162 compound_lock(page);
1163
1164 for (i = 1; i < HPAGE_PMD_NR; i++) {
1165 struct page *page_tail = page + i;
1166
1167 /* tail_page->_count cannot change */
1168 atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169 BUG_ON(page_count(page) <= 0);
1170 atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171 BUG_ON(atomic_read(&page_tail->_count) <= 0);
1172
1173 /* after clearing PageTail the gup refcount can be released */
1174 smp_mb();
1175
1176 /*
1177 * retain hwpoison flag of the poisoned tail page:
1178 * fix for the unsuitable process killed on Guest Machine(KVM)
1179 * by the memory-failure.
1180 */
1181 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182 page_tail->flags |= (page->flags &
1183 ((1L << PG_referenced) |
1184 (1L << PG_swapbacked) |
1185 (1L << PG_mlocked) |
1186 (1L << PG_uptodate)));
1187 page_tail->flags |= (1L << PG_dirty);
1188
1189 /*
1190 * 1) clear PageTail before overwriting first_page
1191 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192 */
1193 smp_wmb();
1194
1195 /*
1196 * __split_huge_page_splitting() already set the
1197 * splitting bit in all pmd that could map this
1198 * hugepage, that will ensure no CPU can alter the
1199 * mapcount on the head page. The mapcount is only
1200 * accounted in the head page and it has to be
1201 * transferred to all tail pages in the below code. So
1202 * for this code to be safe, the split the mapcount
1203 * can't change. But that doesn't mean userland can't
1204 * keep changing and reading the page contents while
1205 * we transfer the mapcount, so the pmd splitting
1206 * status is achieved setting a reserved bit in the
1207 * pmd, not by clearing the present bit.
1208 */
1209 BUG_ON(page_mapcount(page_tail));
1210 page_tail->_mapcount = page->_mapcount;
1211
1212 BUG_ON(page_tail->mapping);
1213 page_tail->mapping = page->mapping;
1214
1215 page_tail->index = ++head_index;
1216
1217 BUG_ON(!PageAnon(page_tail));
1218 BUG_ON(!PageUptodate(page_tail));
1219 BUG_ON(!PageDirty(page_tail));
1220 BUG_ON(!PageSwapBacked(page_tail));
1221
1222 mem_cgroup_split_huge_fixup(page, page_tail);
1223
1224 lru_add_page_tail(zone, page, page_tail);
1225 }
1226
1227 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1229
1230 /*
1231 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232 * so adjust those appropriately if this page is on the LRU.
1233 */
1234 if (PageLRU(page)) {
1235 zonestat = NR_LRU_BASE + page_lru(page);
1236 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237 }
1238
1239 ClearPageCompound(page);
1240 compound_unlock(page);
1241 spin_unlock_irq(&zone->lru_lock);
1242
1243 for (i = 1; i < HPAGE_PMD_NR; i++) {
1244 struct page *page_tail = page + i;
1245 BUG_ON(page_count(page_tail) <= 0);
1246 /*
1247 * Tail pages may be freed if there wasn't any mapping
1248 * like if add_to_swap() is running on a lru page that
1249 * had its mapping zapped. And freeing these pages
1250 * requires taking the lru_lock so we do the put_page
1251 * of the tail pages after the split is complete.
1252 */
1253 put_page(page_tail);
1254 }
1255
1256 /*
1257 * Only the head page (now become a regular page) is required
1258 * to be pinned by the caller.
1259 */
1260 BUG_ON(page_count(page) <= 0);
1261}
1262
1263static int __split_huge_page_map(struct page *page,
1264 struct vm_area_struct *vma,
1265 unsigned long address)
1266{
1267 struct mm_struct *mm = vma->vm_mm;
1268 pmd_t *pmd, _pmd;
1269 int ret = 0, i;
1270 pgtable_t pgtable;
1271 unsigned long haddr;
1272
1273 spin_lock(&mm->page_table_lock);
1274 pmd = page_check_address_pmd(page, mm, address,
1275 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276 if (pmd) {
1277 pgtable = get_pmd_huge_pte(mm);
1278 pmd_populate(mm, &_pmd, pgtable);
1279
1280 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281 i++, haddr += PAGE_SIZE) {
1282 pte_t *pte, entry;
1283 BUG_ON(PageCompound(page+i));
1284 entry = mk_pte(page + i, vma->vm_page_prot);
1285 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286 if (!pmd_write(*pmd))
1287 entry = pte_wrprotect(entry);
1288 else
1289 BUG_ON(page_mapcount(page) != 1);
1290 if (!pmd_young(*pmd))
1291 entry = pte_mkold(entry);
1292 pte = pte_offset_map(&_pmd, haddr);
1293 BUG_ON(!pte_none(*pte));
1294 set_pte_at(mm, haddr, pte, entry);
1295 pte_unmap(pte);
1296 }
1297
1298 mm->nr_ptes++;
1299 smp_wmb(); /* make pte visible before pmd */
1300 /*
1301 * Up to this point the pmd is present and huge and
1302 * userland has the whole access to the hugepage
1303 * during the split (which happens in place). If we
1304 * overwrite the pmd with the not-huge version
1305 * pointing to the pte here (which of course we could
1306 * if all CPUs were bug free), userland could trigger
1307 * a small page size TLB miss on the small sized TLB
1308 * while the hugepage TLB entry is still established
1309 * in the huge TLB. Some CPU doesn't like that. See
1310 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311 * Erratum 383 on page 93. Intel should be safe but is
1312 * also warns that it's only safe if the permission
1313 * and cache attributes of the two entries loaded in
1314 * the two TLB is identical (which should be the case
1315 * here). But it is generally safer to never allow
1316 * small and huge TLB entries for the same virtual
1317 * address to be loaded simultaneously. So instead of
1318 * doing "pmd_populate(); flush_tlb_range();" we first
1319 * mark the current pmd notpresent (atomically because
1320 * here the pmd_trans_huge and pmd_trans_splitting
1321 * must remain set at all times on the pmd until the
1322 * split is complete for this pmd), then we flush the
1323 * SMP TLB and finally we write the non-huge version
1324 * of the pmd entry with pmd_populate.
1325 */
1326 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328 pmd_populate(mm, pmd, pgtable);
1329 ret = 1;
1330 }
1331 spin_unlock(&mm->page_table_lock);
1332
1333 return ret;
1334}
1335
1336/* must be called with anon_vma->root->mutex hold */
1337static void __split_huge_page(struct page *page,
1338 struct anon_vma *anon_vma)
1339{
1340 int mapcount, mapcount2;
1341 struct anon_vma_chain *avc;
1342
1343 BUG_ON(!PageHead(page));
1344 BUG_ON(PageTail(page));
1345
1346 mapcount = 0;
1347 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348 struct vm_area_struct *vma = avc->vma;
1349 unsigned long addr = vma_address(page, vma);
1350 BUG_ON(is_vma_temporary_stack(vma));
1351 if (addr == -EFAULT)
1352 continue;
1353 mapcount += __split_huge_page_splitting(page, vma, addr);
1354 }
1355 /*
1356 * It is critical that new vmas are added to the tail of the
1357 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358 * and establishes a child pmd before
1359 * __split_huge_page_splitting() freezes the parent pmd (so if
1360 * we fail to prevent copy_huge_pmd() from running until the
1361 * whole __split_huge_page() is complete), we will still see
1362 * the newly established pmd of the child later during the
1363 * walk, to be able to set it as pmd_trans_splitting too.
1364 */
1365 if (mapcount != page_mapcount(page))
1366 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367 mapcount, page_mapcount(page));
1368 BUG_ON(mapcount != page_mapcount(page));
1369
1370 __split_huge_page_refcount(page);
1371
1372 mapcount2 = 0;
1373 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374 struct vm_area_struct *vma = avc->vma;
1375 unsigned long addr = vma_address(page, vma);
1376 BUG_ON(is_vma_temporary_stack(vma));
1377 if (addr == -EFAULT)
1378 continue;
1379 mapcount2 += __split_huge_page_map(page, vma, addr);
1380 }
1381 if (mapcount != mapcount2)
1382 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383 mapcount, mapcount2, page_mapcount(page));
1384 BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
1388{
1389 struct anon_vma *anon_vma;
1390 int ret = 1;
1391
1392 BUG_ON(!PageAnon(page));
1393 anon_vma = page_lock_anon_vma(page);
1394 if (!anon_vma)
1395 goto out;
1396 ret = 0;
1397 if (!PageCompound(page))
1398 goto out_unlock;
1399
1400 BUG_ON(!PageSwapBacked(page));
1401 __split_huge_page(page, anon_vma);
1402 count_vm_event(THP_SPLIT);
1403
1404 BUG_ON(PageCompound(page));
1405out_unlock:
1406 page_unlock_anon_vma(anon_vma);
1407out:
1408 return ret;
1409}
1410
1411#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1412 VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1413
1414int hugepage_madvise(struct vm_area_struct *vma,
1415 unsigned long *vm_flags, int advice)
1416{
1417 switch (advice) {
1418 case MADV_HUGEPAGE:
1419 /*
1420 * Be somewhat over-protective like KSM for now!
1421 */
1422 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1423 return -EINVAL;
1424 *vm_flags &= ~VM_NOHUGEPAGE;
1425 *vm_flags |= VM_HUGEPAGE;
1426 /*
1427 * If the vma become good for khugepaged to scan,
1428 * register it here without waiting a page fault that
1429 * may not happen any time soon.
1430 */
1431 if (unlikely(khugepaged_enter_vma_merge(vma)))
1432 return -ENOMEM;
1433 break;
1434 case MADV_NOHUGEPAGE:
1435 /*
1436 * Be somewhat over-protective like KSM for now!
1437 */
1438 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1439 return -EINVAL;
1440 *vm_flags &= ~VM_HUGEPAGE;
1441 *vm_flags |= VM_NOHUGEPAGE;
1442 /*
1443 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1444 * this vma even if we leave the mm registered in khugepaged if
1445 * it got registered before VM_NOHUGEPAGE was set.
1446 */
1447 break;
1448 }
1449
1450 return 0;
1451}
1452
1453static int __init khugepaged_slab_init(void)
1454{
1455 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1456 sizeof(struct mm_slot),
1457 __alignof__(struct mm_slot), 0, NULL);
1458 if (!mm_slot_cache)
1459 return -ENOMEM;
1460
1461 return 0;
1462}
1463
1464static void __init khugepaged_slab_free(void)
1465{
1466 kmem_cache_destroy(mm_slot_cache);
1467 mm_slot_cache = NULL;
1468}
1469
1470static inline struct mm_slot *alloc_mm_slot(void)
1471{
1472 if (!mm_slot_cache) /* initialization failed */
1473 return NULL;
1474 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1475}
1476
1477static inline void free_mm_slot(struct mm_slot *mm_slot)
1478{
1479 kmem_cache_free(mm_slot_cache, mm_slot);
1480}
1481
1482static int __init mm_slots_hash_init(void)
1483{
1484 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1485 GFP_KERNEL);
1486 if (!mm_slots_hash)
1487 return -ENOMEM;
1488 return 0;
1489}
1490
1491#if 0
1492static void __init mm_slots_hash_free(void)
1493{
1494 kfree(mm_slots_hash);
1495 mm_slots_hash = NULL;
1496}
1497#endif
1498
1499static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1500{
1501 struct mm_slot *mm_slot;
1502 struct hlist_head *bucket;
1503 struct hlist_node *node;
1504
1505 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1506 % MM_SLOTS_HASH_HEADS];
1507 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1508 if (mm == mm_slot->mm)
1509 return mm_slot;
1510 }
1511 return NULL;
1512}
1513
1514static void insert_to_mm_slots_hash(struct mm_struct *mm,
1515 struct mm_slot *mm_slot)
1516{
1517 struct hlist_head *bucket;
1518
1519 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1520 % MM_SLOTS_HASH_HEADS];
1521 mm_slot->mm = mm;
1522 hlist_add_head(&mm_slot->hash, bucket);
1523}
1524
1525static inline int khugepaged_test_exit(struct mm_struct *mm)
1526{
1527 return atomic_read(&mm->mm_users) == 0;
1528}
1529
1530int __khugepaged_enter(struct mm_struct *mm)
1531{
1532 struct mm_slot *mm_slot;
1533 int wakeup;
1534
1535 mm_slot = alloc_mm_slot();
1536 if (!mm_slot)
1537 return -ENOMEM;
1538
1539 /* __khugepaged_exit() must not run from under us */
1540 VM_BUG_ON(khugepaged_test_exit(mm));
1541 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1542 free_mm_slot(mm_slot);
1543 return 0;
1544 }
1545
1546 spin_lock(&khugepaged_mm_lock);
1547 insert_to_mm_slots_hash(mm, mm_slot);
1548 /*
1549 * Insert just behind the scanning cursor, to let the area settle
1550 * down a little.
1551 */
1552 wakeup = list_empty(&khugepaged_scan.mm_head);
1553 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1554 spin_unlock(&khugepaged_mm_lock);
1555
1556 atomic_inc(&mm->mm_count);
1557 if (wakeup)
1558 wake_up_interruptible(&khugepaged_wait);
1559
1560 return 0;
1561}
1562
1563int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1564{
1565 unsigned long hstart, hend;
1566 if (!vma->anon_vma)
1567 /*
1568 * Not yet faulted in so we will register later in the
1569 * page fault if needed.
1570 */
1571 return 0;
1572 if (vma->vm_ops)
1573 /* khugepaged not yet working on file or special mappings */
1574 return 0;
1575 /*
1576 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1577 * true too, verify it here.
1578 */
1579 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1580 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1581 hend = vma->vm_end & HPAGE_PMD_MASK;
1582 if (hstart < hend)
1583 return khugepaged_enter(vma);
1584 return 0;
1585}
1586
1587void __khugepaged_exit(struct mm_struct *mm)
1588{
1589 struct mm_slot *mm_slot;
1590 int free = 0;
1591
1592 spin_lock(&khugepaged_mm_lock);
1593 mm_slot = get_mm_slot(mm);
1594 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1595 hlist_del(&mm_slot->hash);
1596 list_del(&mm_slot->mm_node);
1597 free = 1;
1598 }
1599 spin_unlock(&khugepaged_mm_lock);
1600
1601 if (free) {
1602 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1603 free_mm_slot(mm_slot);
1604 mmdrop(mm);
1605 } else if (mm_slot) {
1606 /*
1607 * This is required to serialize against
1608 * khugepaged_test_exit() (which is guaranteed to run
1609 * under mmap sem read mode). Stop here (after we
1610 * return all pagetables will be destroyed) until
1611 * khugepaged has finished working on the pagetables
1612 * under the mmap_sem.
1613 */
1614 down_write(&mm->mmap_sem);
1615 up_write(&mm->mmap_sem);
1616 }
1617}
1618
1619static void release_pte_page(struct page *page)
1620{
1621 /* 0 stands for page_is_file_cache(page) == false */
1622 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1623 unlock_page(page);
1624 putback_lru_page(page);
1625}
1626
1627static void release_pte_pages(pte_t *pte, pte_t *_pte)
1628{
1629 while (--_pte >= pte) {
1630 pte_t pteval = *_pte;
1631 if (!pte_none(pteval))
1632 release_pte_page(pte_page(pteval));
1633 }
1634}
1635
1636static void release_all_pte_pages(pte_t *pte)
1637{
1638 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1639}
1640
1641static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1642 unsigned long address,
1643 pte_t *pte)
1644{
1645 struct page *page;
1646 pte_t *_pte;
1647 int referenced = 0, isolated = 0, none = 0;
1648 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1649 _pte++, address += PAGE_SIZE) {
1650 pte_t pteval = *_pte;
1651 if (pte_none(pteval)) {
1652 if (++none <= khugepaged_max_ptes_none)
1653 continue;
1654 else {
1655 release_pte_pages(pte, _pte);
1656 goto out;
1657 }
1658 }
1659 if (!pte_present(pteval) || !pte_write(pteval)) {
1660 release_pte_pages(pte, _pte);
1661 goto out;
1662 }
1663 page = vm_normal_page(vma, address, pteval);
1664 if (unlikely(!page)) {
1665 release_pte_pages(pte, _pte);
1666 goto out;
1667 }
1668 VM_BUG_ON(PageCompound(page));
1669 BUG_ON(!PageAnon(page));
1670 VM_BUG_ON(!PageSwapBacked(page));
1671
1672 /* cannot use mapcount: can't collapse if there's a gup pin */
1673 if (page_count(page) != 1) {
1674 release_pte_pages(pte, _pte);
1675 goto out;
1676 }
1677 /*
1678 * We can do it before isolate_lru_page because the
1679 * page can't be freed from under us. NOTE: PG_lock
1680 * is needed to serialize against split_huge_page
1681 * when invoked from the VM.
1682 */
1683 if (!trylock_page(page)) {
1684 release_pte_pages(pte, _pte);
1685 goto out;
1686 }
1687 /*
1688 * Isolate the page to avoid collapsing an hugepage
1689 * currently in use by the VM.
1690 */
1691 if (isolate_lru_page(page)) {
1692 unlock_page(page);
1693 release_pte_pages(pte, _pte);
1694 goto out;
1695 }
1696 /* 0 stands for page_is_file_cache(page) == false */
1697 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698 VM_BUG_ON(!PageLocked(page));
1699 VM_BUG_ON(PageLRU(page));
1700
1701 /* If there is no mapped pte young don't collapse the page */
1702 if (pte_young(pteval) || PageReferenced(page) ||
1703 mmu_notifier_test_young(vma->vm_mm, address))
1704 referenced = 1;
1705 }
1706 if (unlikely(!referenced))
1707 release_all_pte_pages(pte);
1708 else
1709 isolated = 1;
1710out:
1711 return isolated;
1712}
1713
1714static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1715 struct vm_area_struct *vma,
1716 unsigned long address,
1717 spinlock_t *ptl)
1718{
1719 pte_t *_pte;
1720 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1721 pte_t pteval = *_pte;
1722 struct page *src_page;
1723
1724 if (pte_none(pteval)) {
1725 clear_user_highpage(page, address);
1726 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1727 } else {
1728 src_page = pte_page(pteval);
1729 copy_user_highpage(page, src_page, address, vma);
1730 VM_BUG_ON(page_mapcount(src_page) != 1);
1731 VM_BUG_ON(page_count(src_page) != 2);
1732 release_pte_page(src_page);
1733 /*
1734 * ptl mostly unnecessary, but preempt has to
1735 * be disabled to update the per-cpu stats
1736 * inside page_remove_rmap().
1737 */
1738 spin_lock(ptl);
1739 /*
1740 * paravirt calls inside pte_clear here are
1741 * superfluous.
1742 */
1743 pte_clear(vma->vm_mm, address, _pte);
1744 page_remove_rmap(src_page);
1745 spin_unlock(ptl);
1746 free_page_and_swap_cache(src_page);
1747 }
1748
1749 address += PAGE_SIZE;
1750 page++;
1751 }
1752}
1753
1754static void collapse_huge_page(struct mm_struct *mm,
1755 unsigned long address,
1756 struct page **hpage,
1757 struct vm_area_struct *vma,
1758 int node)
1759{
1760 pgd_t *pgd;
1761 pud_t *pud;
1762 pmd_t *pmd, _pmd;
1763 pte_t *pte;
1764 pgtable_t pgtable;
1765 struct page *new_page;
1766 spinlock_t *ptl;
1767 int isolated;
1768 unsigned long hstart, hend;
1769
1770 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1771#ifndef CONFIG_NUMA
1772 up_read(&mm->mmap_sem);
1773 VM_BUG_ON(!*hpage);
1774 new_page = *hpage;
1775#else
1776 VM_BUG_ON(*hpage);
1777 /*
1778 * Allocate the page while the vma is still valid and under
1779 * the mmap_sem read mode so there is no memory allocation
1780 * later when we take the mmap_sem in write mode. This is more
1781 * friendly behavior (OTOH it may actually hide bugs) to
1782 * filesystems in userland with daemons allocating memory in
1783 * the userland I/O paths. Allocating memory with the
1784 * mmap_sem in read mode is good idea also to allow greater
1785 * scalability.
1786 */
1787 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1788 node, __GFP_OTHER_NODE);
1789
1790 /*
1791 * After allocating the hugepage, release the mmap_sem read lock in
1792 * preparation for taking it in write mode.
1793 */
1794 up_read(&mm->mmap_sem);
1795 if (unlikely(!new_page)) {
1796 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1797 *hpage = ERR_PTR(-ENOMEM);
1798 return;
1799 }
1800#endif
1801
1802 count_vm_event(THP_COLLAPSE_ALLOC);
1803 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1804#ifdef CONFIG_NUMA
1805 put_page(new_page);
1806#endif
1807 return;
1808 }
1809
1810 /*
1811 * Prevent all access to pagetables with the exception of
1812 * gup_fast later hanlded by the ptep_clear_flush and the VM
1813 * handled by the anon_vma lock + PG_lock.
1814 */
1815 down_write(&mm->mmap_sem);
1816 if (unlikely(khugepaged_test_exit(mm)))
1817 goto out;
1818
1819 vma = find_vma(mm, address);
1820 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1821 hend = vma->vm_end & HPAGE_PMD_MASK;
1822 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1823 goto out;
1824
1825 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1826 (vma->vm_flags & VM_NOHUGEPAGE))
1827 goto out;
1828
1829 if (!vma->anon_vma || vma->vm_ops)
1830 goto out;
1831 if (is_vma_temporary_stack(vma))
1832 goto out;
1833 /*
1834 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1835 * true too, verify it here.
1836 */
1837 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1838
1839 pgd = pgd_offset(mm, address);
1840 if (!pgd_present(*pgd))
1841 goto out;
1842
1843 pud = pud_offset(pgd, address);
1844 if (!pud_present(*pud))
1845 goto out;
1846
1847 pmd = pmd_offset(pud, address);
1848 /* pmd can't go away or become huge under us */
1849 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1850 goto out;
1851
1852 anon_vma_lock(vma->anon_vma);
1853
1854 pte = pte_offset_map(pmd, address);
1855 ptl = pte_lockptr(mm, pmd);
1856
1857 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1858 /*
1859 * After this gup_fast can't run anymore. This also removes
1860 * any huge TLB entry from the CPU so we won't allow
1861 * huge and small TLB entries for the same virtual address
1862 * to avoid the risk of CPU bugs in that area.
1863 */
1864 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1865 spin_unlock(&mm->page_table_lock);
1866
1867 spin_lock(ptl);
1868 isolated = __collapse_huge_page_isolate(vma, address, pte);
1869 spin_unlock(ptl);
1870
1871 if (unlikely(!isolated)) {
1872 pte_unmap(pte);
1873 spin_lock(&mm->page_table_lock);
1874 BUG_ON(!pmd_none(*pmd));
1875 set_pmd_at(mm, address, pmd, _pmd);
1876 spin_unlock(&mm->page_table_lock);
1877 anon_vma_unlock(vma->anon_vma);
1878 goto out;
1879 }
1880
1881 /*
1882 * All pages are isolated and locked so anon_vma rmap
1883 * can't run anymore.
1884 */
1885 anon_vma_unlock(vma->anon_vma);
1886
1887 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1888 pte_unmap(pte);
1889 __SetPageUptodate(new_page);
1890 pgtable = pmd_pgtable(_pmd);
1891 VM_BUG_ON(page_count(pgtable) != 1);
1892 VM_BUG_ON(page_mapcount(pgtable) != 0);
1893
1894 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1895 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1896 _pmd = pmd_mkhuge(_pmd);
1897
1898 /*
1899 * spin_lock() below is not the equivalent of smp_wmb(), so
1900 * this is needed to avoid the copy_huge_page writes to become
1901 * visible after the set_pmd_at() write.
1902 */
1903 smp_wmb();
1904
1905 spin_lock(&mm->page_table_lock);
1906 BUG_ON(!pmd_none(*pmd));
1907 page_add_new_anon_rmap(new_page, vma, address);
1908 set_pmd_at(mm, address, pmd, _pmd);
1909 update_mmu_cache(vma, address, entry);
1910 prepare_pmd_huge_pte(pgtable, mm);
1911 mm->nr_ptes--;
1912 spin_unlock(&mm->page_table_lock);
1913
1914#ifndef CONFIG_NUMA
1915 *hpage = NULL;
1916#endif
1917 khugepaged_pages_collapsed++;
1918out_up_write:
1919 up_write(&mm->mmap_sem);
1920 return;
1921
1922out:
1923 mem_cgroup_uncharge_page(new_page);
1924#ifdef CONFIG_NUMA
1925 put_page(new_page);
1926#endif
1927 goto out_up_write;
1928}
1929
1930static int khugepaged_scan_pmd(struct mm_struct *mm,
1931 struct vm_area_struct *vma,
1932 unsigned long address,
1933 struct page **hpage)
1934{
1935 pgd_t *pgd;
1936 pud_t *pud;
1937 pmd_t *pmd;
1938 pte_t *pte, *_pte;
1939 int ret = 0, referenced = 0, none = 0;
1940 struct page *page;
1941 unsigned long _address;
1942 spinlock_t *ptl;
1943 int node = -1;
1944
1945 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1946
1947 pgd = pgd_offset(mm, address);
1948 if (!pgd_present(*pgd))
1949 goto out;
1950
1951 pud = pud_offset(pgd, address);
1952 if (!pud_present(*pud))
1953 goto out;
1954
1955 pmd = pmd_offset(pud, address);
1956 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1957 goto out;
1958
1959 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1960 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1961 _pte++, _address += PAGE_SIZE) {
1962 pte_t pteval = *_pte;
1963 if (pte_none(pteval)) {
1964 if (++none <= khugepaged_max_ptes_none)
1965 continue;
1966 else
1967 goto out_unmap;
1968 }
1969 if (!pte_present(pteval) || !pte_write(pteval))
1970 goto out_unmap;
1971 page = vm_normal_page(vma, _address, pteval);
1972 if (unlikely(!page))
1973 goto out_unmap;
1974 /*
1975 * Chose the node of the first page. This could
1976 * be more sophisticated and look at more pages,
1977 * but isn't for now.
1978 */
1979 if (node == -1)
1980 node = page_to_nid(page);
1981 VM_BUG_ON(PageCompound(page));
1982 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1983 goto out_unmap;
1984 /* cannot use mapcount: can't collapse if there's a gup pin */
1985 if (page_count(page) != 1)
1986 goto out_unmap;
1987 if (pte_young(pteval) || PageReferenced(page) ||
1988 mmu_notifier_test_young(vma->vm_mm, address))
1989 referenced = 1;
1990 }
1991 if (referenced)
1992 ret = 1;
1993out_unmap:
1994 pte_unmap_unlock(pte, ptl);
1995 if (ret)
1996 /* collapse_huge_page will return with the mmap_sem released */
1997 collapse_huge_page(mm, address, hpage, vma, node);
1998out:
1999 return ret;
2000}
2001
2002static void collect_mm_slot(struct mm_slot *mm_slot)
2003{
2004 struct mm_struct *mm = mm_slot->mm;
2005
2006 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2007
2008 if (khugepaged_test_exit(mm)) {
2009 /* free mm_slot */
2010 hlist_del(&mm_slot->hash);
2011 list_del(&mm_slot->mm_node);
2012
2013 /*
2014 * Not strictly needed because the mm exited already.
2015 *
2016 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2017 */
2018
2019 /* khugepaged_mm_lock actually not necessary for the below */
2020 free_mm_slot(mm_slot);
2021 mmdrop(mm);
2022 }
2023}
2024
2025static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2026 struct page **hpage)
2027{
2028 struct mm_slot *mm_slot;
2029 struct mm_struct *mm;
2030 struct vm_area_struct *vma;
2031 int progress = 0;
2032
2033 VM_BUG_ON(!pages);
2034 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2035
2036 if (khugepaged_scan.mm_slot)
2037 mm_slot = khugepaged_scan.mm_slot;
2038 else {
2039 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2040 struct mm_slot, mm_node);
2041 khugepaged_scan.address = 0;
2042 khugepaged_scan.mm_slot = mm_slot;
2043 }
2044 spin_unlock(&khugepaged_mm_lock);
2045
2046 mm = mm_slot->mm;
2047 down_read(&mm->mmap_sem);
2048 if (unlikely(khugepaged_test_exit(mm)))
2049 vma = NULL;
2050 else
2051 vma = find_vma(mm, khugepaged_scan.address);
2052
2053 progress++;
2054 for (; vma; vma = vma->vm_next) {
2055 unsigned long hstart, hend;
2056
2057 cond_resched();
2058 if (unlikely(khugepaged_test_exit(mm))) {
2059 progress++;
2060 break;
2061 }
2062
2063 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2064 !khugepaged_always()) ||
2065 (vma->vm_flags & VM_NOHUGEPAGE)) {
2066 skip:
2067 progress++;
2068 continue;
2069 }
2070 if (!vma->anon_vma || vma->vm_ops)
2071 goto skip;
2072 if (is_vma_temporary_stack(vma))
2073 goto skip;
2074 /*
2075 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2076 * must be true too, verify it here.
2077 */
2078 VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2079 vma->vm_flags & VM_NO_THP);
2080
2081 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2082 hend = vma->vm_end & HPAGE_PMD_MASK;
2083 if (hstart >= hend)
2084 goto skip;
2085 if (khugepaged_scan.address > hend)
2086 goto skip;
2087 if (khugepaged_scan.address < hstart)
2088 khugepaged_scan.address = hstart;
2089 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2090
2091 while (khugepaged_scan.address < hend) {
2092 int ret;
2093 cond_resched();
2094 if (unlikely(khugepaged_test_exit(mm)))
2095 goto breakouterloop;
2096
2097 VM_BUG_ON(khugepaged_scan.address < hstart ||
2098 khugepaged_scan.address + HPAGE_PMD_SIZE >
2099 hend);
2100 ret = khugepaged_scan_pmd(mm, vma,
2101 khugepaged_scan.address,
2102 hpage);
2103 /* move to next address */
2104 khugepaged_scan.address += HPAGE_PMD_SIZE;
2105 progress += HPAGE_PMD_NR;
2106 if (ret)
2107 /* we released mmap_sem so break loop */
2108 goto breakouterloop_mmap_sem;
2109 if (progress >= pages)
2110 goto breakouterloop;
2111 }
2112 }
2113breakouterloop:
2114 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2115breakouterloop_mmap_sem:
2116
2117 spin_lock(&khugepaged_mm_lock);
2118 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2119 /*
2120 * Release the current mm_slot if this mm is about to die, or
2121 * if we scanned all vmas of this mm.
2122 */
2123 if (khugepaged_test_exit(mm) || !vma) {
2124 /*
2125 * Make sure that if mm_users is reaching zero while
2126 * khugepaged runs here, khugepaged_exit will find
2127 * mm_slot not pointing to the exiting mm.
2128 */
2129 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2130 khugepaged_scan.mm_slot = list_entry(
2131 mm_slot->mm_node.next,
2132 struct mm_slot, mm_node);
2133 khugepaged_scan.address = 0;
2134 } else {
2135 khugepaged_scan.mm_slot = NULL;
2136 khugepaged_full_scans++;
2137 }
2138
2139 collect_mm_slot(mm_slot);
2140 }
2141
2142 return progress;
2143}
2144
2145static int khugepaged_has_work(void)
2146{
2147 return !list_empty(&khugepaged_scan.mm_head) &&
2148 khugepaged_enabled();
2149}
2150
2151static int khugepaged_wait_event(void)
2152{
2153 return !list_empty(&khugepaged_scan.mm_head) ||
2154 !khugepaged_enabled();
2155}
2156
2157static void khugepaged_do_scan(struct page **hpage)
2158{
2159 unsigned int progress = 0, pass_through_head = 0;
2160 unsigned int pages = khugepaged_pages_to_scan;
2161
2162 barrier(); /* write khugepaged_pages_to_scan to local stack */
2163
2164 while (progress < pages) {
2165 cond_resched();
2166
2167#ifndef CONFIG_NUMA
2168 if (!*hpage) {
2169 *hpage = alloc_hugepage(khugepaged_defrag());
2170 if (unlikely(!*hpage)) {
2171 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2172 break;
2173 }
2174 count_vm_event(THP_COLLAPSE_ALLOC);
2175 }
2176#else
2177 if (IS_ERR(*hpage))
2178 break;
2179#endif
2180
2181 if (unlikely(kthread_should_stop() || freezing(current)))
2182 break;
2183
2184 spin_lock(&khugepaged_mm_lock);
2185 if (!khugepaged_scan.mm_slot)
2186 pass_through_head++;
2187 if (khugepaged_has_work() &&
2188 pass_through_head < 2)
2189 progress += khugepaged_scan_mm_slot(pages - progress,
2190 hpage);
2191 else
2192 progress = pages;
2193 spin_unlock(&khugepaged_mm_lock);
2194 }
2195}
2196
2197static void khugepaged_alloc_sleep(void)
2198{
2199 DEFINE_WAIT(wait);
2200 add_wait_queue(&khugepaged_wait, &wait);
2201 schedule_timeout_interruptible(
2202 msecs_to_jiffies(
2203 khugepaged_alloc_sleep_millisecs));
2204 remove_wait_queue(&khugepaged_wait, &wait);
2205}
2206
2207#ifndef CONFIG_NUMA
2208static struct page *khugepaged_alloc_hugepage(void)
2209{
2210 struct page *hpage;
2211
2212 do {
2213 hpage = alloc_hugepage(khugepaged_defrag());
2214 if (!hpage) {
2215 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2216 khugepaged_alloc_sleep();
2217 } else
2218 count_vm_event(THP_COLLAPSE_ALLOC);
2219 } while (unlikely(!hpage) &&
2220 likely(khugepaged_enabled()));
2221 return hpage;
2222}
2223#endif
2224
2225static void khugepaged_loop(void)
2226{
2227 struct page *hpage;
2228
2229#ifdef CONFIG_NUMA
2230 hpage = NULL;
2231#endif
2232 while (likely(khugepaged_enabled())) {
2233#ifndef CONFIG_NUMA
2234 hpage = khugepaged_alloc_hugepage();
2235 if (unlikely(!hpage))
2236 break;
2237#else
2238 if (IS_ERR(hpage)) {
2239 khugepaged_alloc_sleep();
2240 hpage = NULL;
2241 }
2242#endif
2243
2244 khugepaged_do_scan(&hpage);
2245#ifndef CONFIG_NUMA
2246 if (hpage)
2247 put_page(hpage);
2248#endif
2249 try_to_freeze();
2250 if (unlikely(kthread_should_stop()))
2251 break;
2252 if (khugepaged_has_work()) {
2253 DEFINE_WAIT(wait);
2254 if (!khugepaged_scan_sleep_millisecs)
2255 continue;
2256 add_wait_queue(&khugepaged_wait, &wait);
2257 schedule_timeout_interruptible(
2258 msecs_to_jiffies(
2259 khugepaged_scan_sleep_millisecs));
2260 remove_wait_queue(&khugepaged_wait, &wait);
2261 } else if (khugepaged_enabled())
2262 wait_event_freezable(khugepaged_wait,
2263 khugepaged_wait_event());
2264 }
2265}
2266
2267static int khugepaged(void *none)
2268{
2269 struct mm_slot *mm_slot;
2270
2271 set_freezable();
2272 set_user_nice(current, 19);
2273
2274 /* serialize with start_khugepaged() */
2275 mutex_lock(&khugepaged_mutex);
2276
2277 for (;;) {
2278 mutex_unlock(&khugepaged_mutex);
2279 VM_BUG_ON(khugepaged_thread != current);
2280 khugepaged_loop();
2281 VM_BUG_ON(khugepaged_thread != current);
2282
2283 mutex_lock(&khugepaged_mutex);
2284 if (!khugepaged_enabled())
2285 break;
2286 if (unlikely(kthread_should_stop()))
2287 break;
2288 }
2289
2290 spin_lock(&khugepaged_mm_lock);
2291 mm_slot = khugepaged_scan.mm_slot;
2292 khugepaged_scan.mm_slot = NULL;
2293 if (mm_slot)
2294 collect_mm_slot(mm_slot);
2295 spin_unlock(&khugepaged_mm_lock);
2296
2297 khugepaged_thread = NULL;
2298 mutex_unlock(&khugepaged_mutex);
2299
2300 return 0;
2301}
2302
2303void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2304{
2305 struct page *page;
2306
2307 spin_lock(&mm->page_table_lock);
2308 if (unlikely(!pmd_trans_huge(*pmd))) {
2309 spin_unlock(&mm->page_table_lock);
2310 return;
2311 }
2312 page = pmd_page(*pmd);
2313 VM_BUG_ON(!page_count(page));
2314 get_page(page);
2315 spin_unlock(&mm->page_table_lock);
2316
2317 split_huge_page(page);
2318
2319 put_page(page);
2320 BUG_ON(pmd_trans_huge(*pmd));
2321}
2322
2323static void split_huge_page_address(struct mm_struct *mm,
2324 unsigned long address)
2325{
2326 pgd_t *pgd;
2327 pud_t *pud;
2328 pmd_t *pmd;
2329
2330 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2331
2332 pgd = pgd_offset(mm, address);
2333 if (!pgd_present(*pgd))
2334 return;
2335
2336 pud = pud_offset(pgd, address);
2337 if (!pud_present(*pud))
2338 return;
2339
2340 pmd = pmd_offset(pud, address);
2341 if (!pmd_present(*pmd))
2342 return;
2343 /*
2344 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2345 * materialize from under us.
2346 */
2347 split_huge_page_pmd(mm, pmd);
2348}
2349
2350void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2351 unsigned long start,
2352 unsigned long end,
2353 long adjust_next)
2354{
2355 /*
2356 * If the new start address isn't hpage aligned and it could
2357 * previously contain an hugepage: check if we need to split
2358 * an huge pmd.
2359 */
2360 if (start & ~HPAGE_PMD_MASK &&
2361 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2362 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2363 split_huge_page_address(vma->vm_mm, start);
2364
2365 /*
2366 * If the new end address isn't hpage aligned and it could
2367 * previously contain an hugepage: check if we need to split
2368 * an huge pmd.
2369 */
2370 if (end & ~HPAGE_PMD_MASK &&
2371 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2372 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2373 split_huge_page_address(vma->vm_mm, end);
2374
2375 /*
2376 * If we're also updating the vma->vm_next->vm_start, if the new
2377 * vm_next->vm_start isn't page aligned and it could previously
2378 * contain an hugepage: check if we need to split an huge pmd.
2379 */
2380 if (adjust_next > 0) {
2381 struct vm_area_struct *next = vma->vm_next;
2382 unsigned long nstart = next->vm_start;
2383 nstart += adjust_next << PAGE_SHIFT;
2384 if (nstart & ~HPAGE_PMD_MASK &&
2385 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2386 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2387 split_huge_page_address(next->vm_mm, nstart);
2388 }
2389}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/sched/mm.h>
11#include <linux/sched/coredump.h>
12#include <linux/sched/numa_balancing.h>
13#include <linux/highmem.h>
14#include <linux/hugetlb.h>
15#include <linux/mmu_notifier.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
18#include <linux/shrinker.h>
19#include <linux/mm_inline.h>
20#include <linux/swapops.h>
21#include <linux/backing-dev.h>
22#include <linux/dax.h>
23#include <linux/khugepaged.h>
24#include <linux/freezer.h>
25#include <linux/pfn_t.h>
26#include <linux/mman.h>
27#include <linux/memremap.h>
28#include <linux/pagemap.h>
29#include <linux/debugfs.h>
30#include <linux/migrate.h>
31#include <linux/hashtable.h>
32#include <linux/userfaultfd_k.h>
33#include <linux/page_idle.h>
34#include <linux/shmem_fs.h>
35#include <linux/oom.h>
36#include <linux/numa.h>
37#include <linux/page_owner.h>
38#include <linux/sched/sysctl.h>
39#include <linux/memory-tiers.h>
40#include <linux/compat.h>
41
42#include <asm/tlb.h>
43#include <asm/pgalloc.h>
44#include "internal.h"
45#include "swap.h"
46
47#define CREATE_TRACE_POINTS
48#include <trace/events/thp.h>
49
50/*
51 * By default, transparent hugepage support is disabled in order to avoid
52 * risking an increased memory footprint for applications that are not
53 * guaranteed to benefit from it. When transparent hugepage support is
54 * enabled, it is for all mappings, and khugepaged scans all mappings.
55 * Defrag is invoked by khugepaged hugepage allocations and by page faults
56 * for all hugepage allocations.
57 */
58unsigned long transparent_hugepage_flags __read_mostly =
59#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
60 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
61#endif
62#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
63 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
64#endif
65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
67 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
68
69static struct shrinker *deferred_split_shrinker;
70static unsigned long deferred_split_count(struct shrinker *shrink,
71 struct shrink_control *sc);
72static unsigned long deferred_split_scan(struct shrinker *shrink,
73 struct shrink_control *sc);
74
75static atomic_t huge_zero_refcount;
76struct page *huge_zero_page __read_mostly;
77unsigned long huge_zero_pfn __read_mostly = ~0UL;
78unsigned long huge_anon_orders_always __read_mostly;
79unsigned long huge_anon_orders_madvise __read_mostly;
80unsigned long huge_anon_orders_inherit __read_mostly;
81
82unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
83 unsigned long vm_flags, bool smaps,
84 bool in_pf, bool enforce_sysfs,
85 unsigned long orders)
86{
87 /* Check the intersection of requested and supported orders. */
88 orders &= vma_is_anonymous(vma) ?
89 THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE;
90 if (!orders)
91 return 0;
92
93 if (!vma->vm_mm) /* vdso */
94 return 0;
95
96 /*
97 * Explicitly disabled through madvise or prctl, or some
98 * architectures may disable THP for some mappings, for
99 * example, s390 kvm.
100 * */
101 if ((vm_flags & VM_NOHUGEPAGE) ||
102 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
103 return 0;
104 /*
105 * If the hardware/firmware marked hugepage support disabled.
106 */
107 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
108 return 0;
109
110 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
111 if (vma_is_dax(vma))
112 return in_pf ? orders : 0;
113
114 /*
115 * khugepaged special VMA and hugetlb VMA.
116 * Must be checked after dax since some dax mappings may have
117 * VM_MIXEDMAP set.
118 */
119 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
120 return 0;
121
122 /*
123 * Check alignment for file vma and size for both file and anon vma by
124 * filtering out the unsuitable orders.
125 *
126 * Skip the check for page fault. Huge fault does the check in fault
127 * handlers.
128 */
129 if (!in_pf) {
130 int order = highest_order(orders);
131 unsigned long addr;
132
133 while (orders) {
134 addr = vma->vm_end - (PAGE_SIZE << order);
135 if (thp_vma_suitable_order(vma, addr, order))
136 break;
137 order = next_order(&orders, order);
138 }
139
140 if (!orders)
141 return 0;
142 }
143
144 /*
145 * Enabled via shmem mount options or sysfs settings.
146 * Must be done before hugepage flags check since shmem has its
147 * own flags.
148 */
149 if (!in_pf && shmem_file(vma->vm_file))
150 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
151 !enforce_sysfs, vma->vm_mm, vm_flags)
152 ? orders : 0;
153
154 if (!vma_is_anonymous(vma)) {
155 /*
156 * Enforce sysfs THP requirements as necessary. Anonymous vmas
157 * were already handled in thp_vma_allowable_orders().
158 */
159 if (enforce_sysfs &&
160 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
161 !hugepage_global_always())))
162 return 0;
163
164 /*
165 * Trust that ->huge_fault() handlers know what they are doing
166 * in fault path.
167 */
168 if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
169 return orders;
170 /* Only regular file is valid in collapse path */
171 if (((!in_pf || smaps)) && file_thp_enabled(vma))
172 return orders;
173 return 0;
174 }
175
176 if (vma_is_temporary_stack(vma))
177 return 0;
178
179 /*
180 * THPeligible bit of smaps should show 1 for proper VMAs even
181 * though anon_vma is not initialized yet.
182 *
183 * Allow page fault since anon_vma may be not initialized until
184 * the first page fault.
185 */
186 if (!vma->anon_vma)
187 return (smaps || in_pf) ? orders : 0;
188
189 return orders;
190}
191
192static bool get_huge_zero_page(void)
193{
194 struct page *zero_page;
195retry:
196 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
197 return true;
198
199 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
200 HPAGE_PMD_ORDER);
201 if (!zero_page) {
202 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
203 return false;
204 }
205 preempt_disable();
206 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
207 preempt_enable();
208 __free_pages(zero_page, compound_order(zero_page));
209 goto retry;
210 }
211 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
212
213 /* We take additional reference here. It will be put back by shrinker */
214 atomic_set(&huge_zero_refcount, 2);
215 preempt_enable();
216 count_vm_event(THP_ZERO_PAGE_ALLOC);
217 return true;
218}
219
220static void put_huge_zero_page(void)
221{
222 /*
223 * Counter should never go to zero here. Only shrinker can put
224 * last reference.
225 */
226 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
227}
228
229struct page *mm_get_huge_zero_page(struct mm_struct *mm)
230{
231 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
232 return READ_ONCE(huge_zero_page);
233
234 if (!get_huge_zero_page())
235 return NULL;
236
237 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
238 put_huge_zero_page();
239
240 return READ_ONCE(huge_zero_page);
241}
242
243void mm_put_huge_zero_page(struct mm_struct *mm)
244{
245 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
246 put_huge_zero_page();
247}
248
249static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
250 struct shrink_control *sc)
251{
252 /* we can free zero page only if last reference remains */
253 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
254}
255
256static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
257 struct shrink_control *sc)
258{
259 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
260 struct page *zero_page = xchg(&huge_zero_page, NULL);
261 BUG_ON(zero_page == NULL);
262 WRITE_ONCE(huge_zero_pfn, ~0UL);
263 __free_pages(zero_page, compound_order(zero_page));
264 return HPAGE_PMD_NR;
265 }
266
267 return 0;
268}
269
270static struct shrinker *huge_zero_page_shrinker;
271
272#ifdef CONFIG_SYSFS
273static ssize_t enabled_show(struct kobject *kobj,
274 struct kobj_attribute *attr, char *buf)
275{
276 const char *output;
277
278 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
279 output = "[always] madvise never";
280 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
281 &transparent_hugepage_flags))
282 output = "always [madvise] never";
283 else
284 output = "always madvise [never]";
285
286 return sysfs_emit(buf, "%s\n", output);
287}
288
289static ssize_t enabled_store(struct kobject *kobj,
290 struct kobj_attribute *attr,
291 const char *buf, size_t count)
292{
293 ssize_t ret = count;
294
295 if (sysfs_streq(buf, "always")) {
296 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
297 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
298 } else if (sysfs_streq(buf, "madvise")) {
299 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
300 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
301 } else if (sysfs_streq(buf, "never")) {
302 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
303 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
304 } else
305 ret = -EINVAL;
306
307 if (ret > 0) {
308 int err = start_stop_khugepaged();
309 if (err)
310 ret = err;
311 }
312 return ret;
313}
314
315static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
316
317ssize_t single_hugepage_flag_show(struct kobject *kobj,
318 struct kobj_attribute *attr, char *buf,
319 enum transparent_hugepage_flag flag)
320{
321 return sysfs_emit(buf, "%d\n",
322 !!test_bit(flag, &transparent_hugepage_flags));
323}
324
325ssize_t single_hugepage_flag_store(struct kobject *kobj,
326 struct kobj_attribute *attr,
327 const char *buf, size_t count,
328 enum transparent_hugepage_flag flag)
329{
330 unsigned long value;
331 int ret;
332
333 ret = kstrtoul(buf, 10, &value);
334 if (ret < 0)
335 return ret;
336 if (value > 1)
337 return -EINVAL;
338
339 if (value)
340 set_bit(flag, &transparent_hugepage_flags);
341 else
342 clear_bit(flag, &transparent_hugepage_flags);
343
344 return count;
345}
346
347static ssize_t defrag_show(struct kobject *kobj,
348 struct kobj_attribute *attr, char *buf)
349{
350 const char *output;
351
352 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
353 &transparent_hugepage_flags))
354 output = "[always] defer defer+madvise madvise never";
355 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
356 &transparent_hugepage_flags))
357 output = "always [defer] defer+madvise madvise never";
358 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
359 &transparent_hugepage_flags))
360 output = "always defer [defer+madvise] madvise never";
361 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
362 &transparent_hugepage_flags))
363 output = "always defer defer+madvise [madvise] never";
364 else
365 output = "always defer defer+madvise madvise [never]";
366
367 return sysfs_emit(buf, "%s\n", output);
368}
369
370static ssize_t defrag_store(struct kobject *kobj,
371 struct kobj_attribute *attr,
372 const char *buf, size_t count)
373{
374 if (sysfs_streq(buf, "always")) {
375 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
376 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
377 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
378 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
379 } else if (sysfs_streq(buf, "defer+madvise")) {
380 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
381 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
382 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
383 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
384 } else if (sysfs_streq(buf, "defer")) {
385 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
386 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
387 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
388 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
389 } else if (sysfs_streq(buf, "madvise")) {
390 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
391 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
392 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
393 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
394 } else if (sysfs_streq(buf, "never")) {
395 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
399 } else
400 return -EINVAL;
401
402 return count;
403}
404static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
405
406static ssize_t use_zero_page_show(struct kobject *kobj,
407 struct kobj_attribute *attr, char *buf)
408{
409 return single_hugepage_flag_show(kobj, attr, buf,
410 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
411}
412static ssize_t use_zero_page_store(struct kobject *kobj,
413 struct kobj_attribute *attr, const char *buf, size_t count)
414{
415 return single_hugepage_flag_store(kobj, attr, buf, count,
416 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
417}
418static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
419
420static ssize_t hpage_pmd_size_show(struct kobject *kobj,
421 struct kobj_attribute *attr, char *buf)
422{
423 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
424}
425static struct kobj_attribute hpage_pmd_size_attr =
426 __ATTR_RO(hpage_pmd_size);
427
428static struct attribute *hugepage_attr[] = {
429 &enabled_attr.attr,
430 &defrag_attr.attr,
431 &use_zero_page_attr.attr,
432 &hpage_pmd_size_attr.attr,
433#ifdef CONFIG_SHMEM
434 &shmem_enabled_attr.attr,
435#endif
436 NULL,
437};
438
439static const struct attribute_group hugepage_attr_group = {
440 .attrs = hugepage_attr,
441};
442
443static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
444static void thpsize_release(struct kobject *kobj);
445static DEFINE_SPINLOCK(huge_anon_orders_lock);
446static LIST_HEAD(thpsize_list);
447
448struct thpsize {
449 struct kobject kobj;
450 struct list_head node;
451 int order;
452};
453
454#define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
455
456static ssize_t thpsize_enabled_show(struct kobject *kobj,
457 struct kobj_attribute *attr, char *buf)
458{
459 int order = to_thpsize(kobj)->order;
460 const char *output;
461
462 if (test_bit(order, &huge_anon_orders_always))
463 output = "[always] inherit madvise never";
464 else if (test_bit(order, &huge_anon_orders_inherit))
465 output = "always [inherit] madvise never";
466 else if (test_bit(order, &huge_anon_orders_madvise))
467 output = "always inherit [madvise] never";
468 else
469 output = "always inherit madvise [never]";
470
471 return sysfs_emit(buf, "%s\n", output);
472}
473
474static ssize_t thpsize_enabled_store(struct kobject *kobj,
475 struct kobj_attribute *attr,
476 const char *buf, size_t count)
477{
478 int order = to_thpsize(kobj)->order;
479 ssize_t ret = count;
480
481 if (sysfs_streq(buf, "always")) {
482 spin_lock(&huge_anon_orders_lock);
483 clear_bit(order, &huge_anon_orders_inherit);
484 clear_bit(order, &huge_anon_orders_madvise);
485 set_bit(order, &huge_anon_orders_always);
486 spin_unlock(&huge_anon_orders_lock);
487 } else if (sysfs_streq(buf, "inherit")) {
488 spin_lock(&huge_anon_orders_lock);
489 clear_bit(order, &huge_anon_orders_always);
490 clear_bit(order, &huge_anon_orders_madvise);
491 set_bit(order, &huge_anon_orders_inherit);
492 spin_unlock(&huge_anon_orders_lock);
493 } else if (sysfs_streq(buf, "madvise")) {
494 spin_lock(&huge_anon_orders_lock);
495 clear_bit(order, &huge_anon_orders_always);
496 clear_bit(order, &huge_anon_orders_inherit);
497 set_bit(order, &huge_anon_orders_madvise);
498 spin_unlock(&huge_anon_orders_lock);
499 } else if (sysfs_streq(buf, "never")) {
500 spin_lock(&huge_anon_orders_lock);
501 clear_bit(order, &huge_anon_orders_always);
502 clear_bit(order, &huge_anon_orders_inherit);
503 clear_bit(order, &huge_anon_orders_madvise);
504 spin_unlock(&huge_anon_orders_lock);
505 } else
506 ret = -EINVAL;
507
508 return ret;
509}
510
511static struct kobj_attribute thpsize_enabled_attr =
512 __ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store);
513
514static struct attribute *thpsize_attrs[] = {
515 &thpsize_enabled_attr.attr,
516 NULL,
517};
518
519static const struct attribute_group thpsize_attr_group = {
520 .attrs = thpsize_attrs,
521};
522
523static const struct kobj_type thpsize_ktype = {
524 .release = &thpsize_release,
525 .sysfs_ops = &kobj_sysfs_ops,
526};
527
528static struct thpsize *thpsize_create(int order, struct kobject *parent)
529{
530 unsigned long size = (PAGE_SIZE << order) / SZ_1K;
531 struct thpsize *thpsize;
532 int ret;
533
534 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
535 if (!thpsize)
536 return ERR_PTR(-ENOMEM);
537
538 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
539 "hugepages-%lukB", size);
540 if (ret) {
541 kfree(thpsize);
542 return ERR_PTR(ret);
543 }
544
545 ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group);
546 if (ret) {
547 kobject_put(&thpsize->kobj);
548 return ERR_PTR(ret);
549 }
550
551 thpsize->order = order;
552 return thpsize;
553}
554
555static void thpsize_release(struct kobject *kobj)
556{
557 kfree(to_thpsize(kobj));
558}
559
560static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
561{
562 int err;
563 struct thpsize *thpsize;
564 unsigned long orders;
565 int order;
566
567 /*
568 * Default to setting PMD-sized THP to inherit the global setting and
569 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
570 * constant so we have to do this here.
571 */
572 huge_anon_orders_inherit = BIT(PMD_ORDER);
573
574 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
575 if (unlikely(!*hugepage_kobj)) {
576 pr_err("failed to create transparent hugepage kobject\n");
577 return -ENOMEM;
578 }
579
580 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
581 if (err) {
582 pr_err("failed to register transparent hugepage group\n");
583 goto delete_obj;
584 }
585
586 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
587 if (err) {
588 pr_err("failed to register transparent hugepage group\n");
589 goto remove_hp_group;
590 }
591
592 orders = THP_ORDERS_ALL_ANON;
593 order = highest_order(orders);
594 while (orders) {
595 thpsize = thpsize_create(order, *hugepage_kobj);
596 if (IS_ERR(thpsize)) {
597 pr_err("failed to create thpsize for order %d\n", order);
598 err = PTR_ERR(thpsize);
599 goto remove_all;
600 }
601 list_add(&thpsize->node, &thpsize_list);
602 order = next_order(&orders, order);
603 }
604
605 return 0;
606
607remove_all:
608 hugepage_exit_sysfs(*hugepage_kobj);
609 return err;
610remove_hp_group:
611 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
612delete_obj:
613 kobject_put(*hugepage_kobj);
614 return err;
615}
616
617static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
618{
619 struct thpsize *thpsize, *tmp;
620
621 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
622 list_del(&thpsize->node);
623 kobject_put(&thpsize->kobj);
624 }
625
626 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
627 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
628 kobject_put(hugepage_kobj);
629}
630#else
631static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
632{
633 return 0;
634}
635
636static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
637{
638}
639#endif /* CONFIG_SYSFS */
640
641static int __init thp_shrinker_init(void)
642{
643 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
644 if (!huge_zero_page_shrinker)
645 return -ENOMEM;
646
647 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
648 SHRINKER_MEMCG_AWARE |
649 SHRINKER_NONSLAB,
650 "thp-deferred_split");
651 if (!deferred_split_shrinker) {
652 shrinker_free(huge_zero_page_shrinker);
653 return -ENOMEM;
654 }
655
656 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
657 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
658 shrinker_register(huge_zero_page_shrinker);
659
660 deferred_split_shrinker->count_objects = deferred_split_count;
661 deferred_split_shrinker->scan_objects = deferred_split_scan;
662 shrinker_register(deferred_split_shrinker);
663
664 return 0;
665}
666
667static void __init thp_shrinker_exit(void)
668{
669 shrinker_free(huge_zero_page_shrinker);
670 shrinker_free(deferred_split_shrinker);
671}
672
673static int __init hugepage_init(void)
674{
675 int err;
676 struct kobject *hugepage_kobj;
677
678 if (!has_transparent_hugepage()) {
679 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
680 return -EINVAL;
681 }
682
683 /*
684 * hugepages can't be allocated by the buddy allocator
685 */
686 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
687 /*
688 * we use page->mapping and page->index in second tail page
689 * as list_head: assuming THP order >= 2
690 */
691 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
692
693 err = hugepage_init_sysfs(&hugepage_kobj);
694 if (err)
695 goto err_sysfs;
696
697 err = khugepaged_init();
698 if (err)
699 goto err_slab;
700
701 err = thp_shrinker_init();
702 if (err)
703 goto err_shrinker;
704
705 /*
706 * By default disable transparent hugepages on smaller systems,
707 * where the extra memory used could hurt more than TLB overhead
708 * is likely to save. The admin can still enable it through /sys.
709 */
710 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
711 transparent_hugepage_flags = 0;
712 return 0;
713 }
714
715 err = start_stop_khugepaged();
716 if (err)
717 goto err_khugepaged;
718
719 return 0;
720err_khugepaged:
721 thp_shrinker_exit();
722err_shrinker:
723 khugepaged_destroy();
724err_slab:
725 hugepage_exit_sysfs(hugepage_kobj);
726err_sysfs:
727 return err;
728}
729subsys_initcall(hugepage_init);
730
731static int __init setup_transparent_hugepage(char *str)
732{
733 int ret = 0;
734 if (!str)
735 goto out;
736 if (!strcmp(str, "always")) {
737 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
738 &transparent_hugepage_flags);
739 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
740 &transparent_hugepage_flags);
741 ret = 1;
742 } else if (!strcmp(str, "madvise")) {
743 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
744 &transparent_hugepage_flags);
745 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
746 &transparent_hugepage_flags);
747 ret = 1;
748 } else if (!strcmp(str, "never")) {
749 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
750 &transparent_hugepage_flags);
751 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
752 &transparent_hugepage_flags);
753 ret = 1;
754 }
755out:
756 if (!ret)
757 pr_warn("transparent_hugepage= cannot parse, ignored\n");
758 return ret;
759}
760__setup("transparent_hugepage=", setup_transparent_hugepage);
761
762pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
763{
764 if (likely(vma->vm_flags & VM_WRITE))
765 pmd = pmd_mkwrite(pmd, vma);
766 return pmd;
767}
768
769#ifdef CONFIG_MEMCG
770static inline
771struct deferred_split *get_deferred_split_queue(struct folio *folio)
772{
773 struct mem_cgroup *memcg = folio_memcg(folio);
774 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
775
776 if (memcg)
777 return &memcg->deferred_split_queue;
778 else
779 return &pgdat->deferred_split_queue;
780}
781#else
782static inline
783struct deferred_split *get_deferred_split_queue(struct folio *folio)
784{
785 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
786
787 return &pgdat->deferred_split_queue;
788}
789#endif
790
791void folio_prep_large_rmappable(struct folio *folio)
792{
793 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
794 INIT_LIST_HEAD(&folio->_deferred_list);
795 folio_set_large_rmappable(folio);
796}
797
798static inline bool is_transparent_hugepage(struct folio *folio)
799{
800 if (!folio_test_large(folio))
801 return false;
802
803 return is_huge_zero_page(&folio->page) ||
804 folio_test_large_rmappable(folio);
805}
806
807static unsigned long __thp_get_unmapped_area(struct file *filp,
808 unsigned long addr, unsigned long len,
809 loff_t off, unsigned long flags, unsigned long size)
810{
811 loff_t off_end = off + len;
812 loff_t off_align = round_up(off, size);
813 unsigned long len_pad, ret, off_sub;
814
815 if (IS_ENABLED(CONFIG_32BIT) || in_compat_syscall())
816 return 0;
817
818 if (off_end <= off_align || (off_end - off_align) < size)
819 return 0;
820
821 len_pad = len + size;
822 if (len_pad < len || (off + len_pad) < off)
823 return 0;
824
825 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
826 off >> PAGE_SHIFT, flags);
827
828 /*
829 * The failure might be due to length padding. The caller will retry
830 * without the padding.
831 */
832 if (IS_ERR_VALUE(ret))
833 return 0;
834
835 /*
836 * Do not try to align to THP boundary if allocation at the address
837 * hint succeeds.
838 */
839 if (ret == addr)
840 return addr;
841
842 off_sub = (off - ret) & (size - 1);
843
844 if (current->mm->get_unmapped_area == arch_get_unmapped_area_topdown &&
845 !off_sub)
846 return ret + size;
847
848 ret += off_sub;
849 return ret;
850}
851
852unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
853 unsigned long len, unsigned long pgoff, unsigned long flags)
854{
855 unsigned long ret;
856 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
857
858 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
859 if (ret)
860 return ret;
861
862 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
863}
864EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
865
866static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
867 struct page *page, gfp_t gfp)
868{
869 struct vm_area_struct *vma = vmf->vma;
870 struct folio *folio = page_folio(page);
871 pgtable_t pgtable;
872 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
873 vm_fault_t ret = 0;
874
875 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
876
877 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
878 folio_put(folio);
879 count_vm_event(THP_FAULT_FALLBACK);
880 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
881 return VM_FAULT_FALLBACK;
882 }
883 folio_throttle_swaprate(folio, gfp);
884
885 pgtable = pte_alloc_one(vma->vm_mm);
886 if (unlikely(!pgtable)) {
887 ret = VM_FAULT_OOM;
888 goto release;
889 }
890
891 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
892 /*
893 * The memory barrier inside __folio_mark_uptodate makes sure that
894 * clear_huge_page writes become visible before the set_pmd_at()
895 * write.
896 */
897 __folio_mark_uptodate(folio);
898
899 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
900 if (unlikely(!pmd_none(*vmf->pmd))) {
901 goto unlock_release;
902 } else {
903 pmd_t entry;
904
905 ret = check_stable_address_space(vma->vm_mm);
906 if (ret)
907 goto unlock_release;
908
909 /* Deliver the page fault to userland */
910 if (userfaultfd_missing(vma)) {
911 spin_unlock(vmf->ptl);
912 folio_put(folio);
913 pte_free(vma->vm_mm, pgtable);
914 ret = handle_userfault(vmf, VM_UFFD_MISSING);
915 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
916 return ret;
917 }
918
919 entry = mk_huge_pmd(page, vma->vm_page_prot);
920 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
921 folio_add_new_anon_rmap(folio, vma, haddr);
922 folio_add_lru_vma(folio, vma);
923 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
924 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
925 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
926 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
927 mm_inc_nr_ptes(vma->vm_mm);
928 spin_unlock(vmf->ptl);
929 count_vm_event(THP_FAULT_ALLOC);
930 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
931 }
932
933 return 0;
934unlock_release:
935 spin_unlock(vmf->ptl);
936release:
937 if (pgtable)
938 pte_free(vma->vm_mm, pgtable);
939 folio_put(folio);
940 return ret;
941
942}
943
944/*
945 * always: directly stall for all thp allocations
946 * defer: wake kswapd and fail if not immediately available
947 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
948 * fail if not immediately available
949 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
950 * available
951 * never: never stall for any thp allocation
952 */
953gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
954{
955 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
956
957 /* Always do synchronous compaction */
958 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
959 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
960
961 /* Kick kcompactd and fail quickly */
962 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
963 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
964
965 /* Synchronous compaction if madvised, otherwise kick kcompactd */
966 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
967 return GFP_TRANSHUGE_LIGHT |
968 (vma_madvised ? __GFP_DIRECT_RECLAIM :
969 __GFP_KSWAPD_RECLAIM);
970
971 /* Only do synchronous compaction if madvised */
972 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
973 return GFP_TRANSHUGE_LIGHT |
974 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
975
976 return GFP_TRANSHUGE_LIGHT;
977}
978
979/* Caller must hold page table lock. */
980static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
981 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
982 struct page *zero_page)
983{
984 pmd_t entry;
985 if (!pmd_none(*pmd))
986 return;
987 entry = mk_pmd(zero_page, vma->vm_page_prot);
988 entry = pmd_mkhuge(entry);
989 pgtable_trans_huge_deposit(mm, pmd, pgtable);
990 set_pmd_at(mm, haddr, pmd, entry);
991 mm_inc_nr_ptes(mm);
992}
993
994vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
995{
996 struct vm_area_struct *vma = vmf->vma;
997 gfp_t gfp;
998 struct folio *folio;
999 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1000
1001 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1002 return VM_FAULT_FALLBACK;
1003 if (unlikely(anon_vma_prepare(vma)))
1004 return VM_FAULT_OOM;
1005 khugepaged_enter_vma(vma, vma->vm_flags);
1006
1007 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1008 !mm_forbids_zeropage(vma->vm_mm) &&
1009 transparent_hugepage_use_zero_page()) {
1010 pgtable_t pgtable;
1011 struct page *zero_page;
1012 vm_fault_t ret;
1013 pgtable = pte_alloc_one(vma->vm_mm);
1014 if (unlikely(!pgtable))
1015 return VM_FAULT_OOM;
1016 zero_page = mm_get_huge_zero_page(vma->vm_mm);
1017 if (unlikely(!zero_page)) {
1018 pte_free(vma->vm_mm, pgtable);
1019 count_vm_event(THP_FAULT_FALLBACK);
1020 return VM_FAULT_FALLBACK;
1021 }
1022 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1023 ret = 0;
1024 if (pmd_none(*vmf->pmd)) {
1025 ret = check_stable_address_space(vma->vm_mm);
1026 if (ret) {
1027 spin_unlock(vmf->ptl);
1028 pte_free(vma->vm_mm, pgtable);
1029 } else if (userfaultfd_missing(vma)) {
1030 spin_unlock(vmf->ptl);
1031 pte_free(vma->vm_mm, pgtable);
1032 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1033 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1034 } else {
1035 set_huge_zero_page(pgtable, vma->vm_mm, vma,
1036 haddr, vmf->pmd, zero_page);
1037 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1038 spin_unlock(vmf->ptl);
1039 }
1040 } else {
1041 spin_unlock(vmf->ptl);
1042 pte_free(vma->vm_mm, pgtable);
1043 }
1044 return ret;
1045 }
1046 gfp = vma_thp_gfp_mask(vma);
1047 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1048 if (unlikely(!folio)) {
1049 count_vm_event(THP_FAULT_FALLBACK);
1050 return VM_FAULT_FALLBACK;
1051 }
1052 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1053}
1054
1055static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1056 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1057 pgtable_t pgtable)
1058{
1059 struct mm_struct *mm = vma->vm_mm;
1060 pmd_t entry;
1061 spinlock_t *ptl;
1062
1063 ptl = pmd_lock(mm, pmd);
1064 if (!pmd_none(*pmd)) {
1065 if (write) {
1066 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1067 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1068 goto out_unlock;
1069 }
1070 entry = pmd_mkyoung(*pmd);
1071 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1073 update_mmu_cache_pmd(vma, addr, pmd);
1074 }
1075
1076 goto out_unlock;
1077 }
1078
1079 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1080 if (pfn_t_devmap(pfn))
1081 entry = pmd_mkdevmap(entry);
1082 if (write) {
1083 entry = pmd_mkyoung(pmd_mkdirty(entry));
1084 entry = maybe_pmd_mkwrite(entry, vma);
1085 }
1086
1087 if (pgtable) {
1088 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1089 mm_inc_nr_ptes(mm);
1090 pgtable = NULL;
1091 }
1092
1093 set_pmd_at(mm, addr, pmd, entry);
1094 update_mmu_cache_pmd(vma, addr, pmd);
1095
1096out_unlock:
1097 spin_unlock(ptl);
1098 if (pgtable)
1099 pte_free(mm, pgtable);
1100}
1101
1102/**
1103 * vmf_insert_pfn_pmd - insert a pmd size pfn
1104 * @vmf: Structure describing the fault
1105 * @pfn: pfn to insert
1106 * @write: whether it's a write fault
1107 *
1108 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1109 *
1110 * Return: vm_fault_t value.
1111 */
1112vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1113{
1114 unsigned long addr = vmf->address & PMD_MASK;
1115 struct vm_area_struct *vma = vmf->vma;
1116 pgprot_t pgprot = vma->vm_page_prot;
1117 pgtable_t pgtable = NULL;
1118
1119 /*
1120 * If we had pmd_special, we could avoid all these restrictions,
1121 * but we need to be consistent with PTEs and architectures that
1122 * can't support a 'special' bit.
1123 */
1124 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1125 !pfn_t_devmap(pfn));
1126 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1127 (VM_PFNMAP|VM_MIXEDMAP));
1128 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1129
1130 if (addr < vma->vm_start || addr >= vma->vm_end)
1131 return VM_FAULT_SIGBUS;
1132
1133 if (arch_needs_pgtable_deposit()) {
1134 pgtable = pte_alloc_one(vma->vm_mm);
1135 if (!pgtable)
1136 return VM_FAULT_OOM;
1137 }
1138
1139 track_pfn_insert(vma, &pgprot, pfn);
1140
1141 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1142 return VM_FAULT_NOPAGE;
1143}
1144EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1145
1146#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1147static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1148{
1149 if (likely(vma->vm_flags & VM_WRITE))
1150 pud = pud_mkwrite(pud);
1151 return pud;
1152}
1153
1154static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1155 pud_t *pud, pfn_t pfn, bool write)
1156{
1157 struct mm_struct *mm = vma->vm_mm;
1158 pgprot_t prot = vma->vm_page_prot;
1159 pud_t entry;
1160 spinlock_t *ptl;
1161
1162 ptl = pud_lock(mm, pud);
1163 if (!pud_none(*pud)) {
1164 if (write) {
1165 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
1166 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
1167 goto out_unlock;
1168 }
1169 entry = pud_mkyoung(*pud);
1170 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1171 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1172 update_mmu_cache_pud(vma, addr, pud);
1173 }
1174 goto out_unlock;
1175 }
1176
1177 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1178 if (pfn_t_devmap(pfn))
1179 entry = pud_mkdevmap(entry);
1180 if (write) {
1181 entry = pud_mkyoung(pud_mkdirty(entry));
1182 entry = maybe_pud_mkwrite(entry, vma);
1183 }
1184 set_pud_at(mm, addr, pud, entry);
1185 update_mmu_cache_pud(vma, addr, pud);
1186
1187out_unlock:
1188 spin_unlock(ptl);
1189}
1190
1191/**
1192 * vmf_insert_pfn_pud - insert a pud size pfn
1193 * @vmf: Structure describing the fault
1194 * @pfn: pfn to insert
1195 * @write: whether it's a write fault
1196 *
1197 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1198 *
1199 * Return: vm_fault_t value.
1200 */
1201vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1202{
1203 unsigned long addr = vmf->address & PUD_MASK;
1204 struct vm_area_struct *vma = vmf->vma;
1205 pgprot_t pgprot = vma->vm_page_prot;
1206
1207 /*
1208 * If we had pud_special, we could avoid all these restrictions,
1209 * but we need to be consistent with PTEs and architectures that
1210 * can't support a 'special' bit.
1211 */
1212 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1213 !pfn_t_devmap(pfn));
1214 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1215 (VM_PFNMAP|VM_MIXEDMAP));
1216 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1217
1218 if (addr < vma->vm_start || addr >= vma->vm_end)
1219 return VM_FAULT_SIGBUS;
1220
1221 track_pfn_insert(vma, &pgprot, pfn);
1222
1223 insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1224 return VM_FAULT_NOPAGE;
1225}
1226EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1227#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1228
1229static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1230 pmd_t *pmd, bool write)
1231{
1232 pmd_t _pmd;
1233
1234 _pmd = pmd_mkyoung(*pmd);
1235 if (write)
1236 _pmd = pmd_mkdirty(_pmd);
1237 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1238 pmd, _pmd, write))
1239 update_mmu_cache_pmd(vma, addr, pmd);
1240}
1241
1242struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1243 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1244{
1245 unsigned long pfn = pmd_pfn(*pmd);
1246 struct mm_struct *mm = vma->vm_mm;
1247 struct page *page;
1248 int ret;
1249
1250 assert_spin_locked(pmd_lockptr(mm, pmd));
1251
1252 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1253 return NULL;
1254
1255 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1256 /* pass */;
1257 else
1258 return NULL;
1259
1260 if (flags & FOLL_TOUCH)
1261 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1262
1263 /*
1264 * device mapped pages can only be returned if the
1265 * caller will manage the page reference count.
1266 */
1267 if (!(flags & (FOLL_GET | FOLL_PIN)))
1268 return ERR_PTR(-EEXIST);
1269
1270 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1271 *pgmap = get_dev_pagemap(pfn, *pgmap);
1272 if (!*pgmap)
1273 return ERR_PTR(-EFAULT);
1274 page = pfn_to_page(pfn);
1275 ret = try_grab_page(page, flags);
1276 if (ret)
1277 page = ERR_PTR(ret);
1278
1279 return page;
1280}
1281
1282int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1283 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1284 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1285{
1286 spinlock_t *dst_ptl, *src_ptl;
1287 struct page *src_page;
1288 struct folio *src_folio;
1289 pmd_t pmd;
1290 pgtable_t pgtable = NULL;
1291 int ret = -ENOMEM;
1292
1293 /* Skip if can be re-fill on fault */
1294 if (!vma_is_anonymous(dst_vma))
1295 return 0;
1296
1297 pgtable = pte_alloc_one(dst_mm);
1298 if (unlikely(!pgtable))
1299 goto out;
1300
1301 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1302 src_ptl = pmd_lockptr(src_mm, src_pmd);
1303 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1304
1305 ret = -EAGAIN;
1306 pmd = *src_pmd;
1307
1308#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1309 if (unlikely(is_swap_pmd(pmd))) {
1310 swp_entry_t entry = pmd_to_swp_entry(pmd);
1311
1312 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1313 if (!is_readable_migration_entry(entry)) {
1314 entry = make_readable_migration_entry(
1315 swp_offset(entry));
1316 pmd = swp_entry_to_pmd(entry);
1317 if (pmd_swp_soft_dirty(*src_pmd))
1318 pmd = pmd_swp_mksoft_dirty(pmd);
1319 if (pmd_swp_uffd_wp(*src_pmd))
1320 pmd = pmd_swp_mkuffd_wp(pmd);
1321 set_pmd_at(src_mm, addr, src_pmd, pmd);
1322 }
1323 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1324 mm_inc_nr_ptes(dst_mm);
1325 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1326 if (!userfaultfd_wp(dst_vma))
1327 pmd = pmd_swp_clear_uffd_wp(pmd);
1328 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1329 ret = 0;
1330 goto out_unlock;
1331 }
1332#endif
1333
1334 if (unlikely(!pmd_trans_huge(pmd))) {
1335 pte_free(dst_mm, pgtable);
1336 goto out_unlock;
1337 }
1338 /*
1339 * When page table lock is held, the huge zero pmd should not be
1340 * under splitting since we don't split the page itself, only pmd to
1341 * a page table.
1342 */
1343 if (is_huge_zero_pmd(pmd)) {
1344 /*
1345 * get_huge_zero_page() will never allocate a new page here,
1346 * since we already have a zero page to copy. It just takes a
1347 * reference.
1348 */
1349 mm_get_huge_zero_page(dst_mm);
1350 goto out_zero_page;
1351 }
1352
1353 src_page = pmd_page(pmd);
1354 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1355 src_folio = page_folio(src_page);
1356
1357 folio_get(src_folio);
1358 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1359 /* Page maybe pinned: split and retry the fault on PTEs. */
1360 folio_put(src_folio);
1361 pte_free(dst_mm, pgtable);
1362 spin_unlock(src_ptl);
1363 spin_unlock(dst_ptl);
1364 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1365 return -EAGAIN;
1366 }
1367 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1368out_zero_page:
1369 mm_inc_nr_ptes(dst_mm);
1370 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1371 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1372 if (!userfaultfd_wp(dst_vma))
1373 pmd = pmd_clear_uffd_wp(pmd);
1374 pmd = pmd_mkold(pmd_wrprotect(pmd));
1375 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1376
1377 ret = 0;
1378out_unlock:
1379 spin_unlock(src_ptl);
1380 spin_unlock(dst_ptl);
1381out:
1382 return ret;
1383}
1384
1385#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1386static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1387 pud_t *pud, bool write)
1388{
1389 pud_t _pud;
1390
1391 _pud = pud_mkyoung(*pud);
1392 if (write)
1393 _pud = pud_mkdirty(_pud);
1394 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1395 pud, _pud, write))
1396 update_mmu_cache_pud(vma, addr, pud);
1397}
1398
1399struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1400 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1401{
1402 unsigned long pfn = pud_pfn(*pud);
1403 struct mm_struct *mm = vma->vm_mm;
1404 struct page *page;
1405 int ret;
1406
1407 assert_spin_locked(pud_lockptr(mm, pud));
1408
1409 if (flags & FOLL_WRITE && !pud_write(*pud))
1410 return NULL;
1411
1412 if (pud_present(*pud) && pud_devmap(*pud))
1413 /* pass */;
1414 else
1415 return NULL;
1416
1417 if (flags & FOLL_TOUCH)
1418 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1419
1420 /*
1421 * device mapped pages can only be returned if the
1422 * caller will manage the page reference count.
1423 *
1424 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1425 */
1426 if (!(flags & (FOLL_GET | FOLL_PIN)))
1427 return ERR_PTR(-EEXIST);
1428
1429 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1430 *pgmap = get_dev_pagemap(pfn, *pgmap);
1431 if (!*pgmap)
1432 return ERR_PTR(-EFAULT);
1433 page = pfn_to_page(pfn);
1434
1435 ret = try_grab_page(page, flags);
1436 if (ret)
1437 page = ERR_PTR(ret);
1438
1439 return page;
1440}
1441
1442int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1443 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1444 struct vm_area_struct *vma)
1445{
1446 spinlock_t *dst_ptl, *src_ptl;
1447 pud_t pud;
1448 int ret;
1449
1450 dst_ptl = pud_lock(dst_mm, dst_pud);
1451 src_ptl = pud_lockptr(src_mm, src_pud);
1452 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1453
1454 ret = -EAGAIN;
1455 pud = *src_pud;
1456 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1457 goto out_unlock;
1458
1459 /*
1460 * When page table lock is held, the huge zero pud should not be
1461 * under splitting since we don't split the page itself, only pud to
1462 * a page table.
1463 */
1464 if (is_huge_zero_pud(pud)) {
1465 /* No huge zero pud yet */
1466 }
1467
1468 /*
1469 * TODO: once we support anonymous pages, use
1470 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1471 */
1472 pudp_set_wrprotect(src_mm, addr, src_pud);
1473 pud = pud_mkold(pud_wrprotect(pud));
1474 set_pud_at(dst_mm, addr, dst_pud, pud);
1475
1476 ret = 0;
1477out_unlock:
1478 spin_unlock(src_ptl);
1479 spin_unlock(dst_ptl);
1480 return ret;
1481}
1482
1483void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1484{
1485 bool write = vmf->flags & FAULT_FLAG_WRITE;
1486
1487 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1488 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1489 goto unlock;
1490
1491 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1492unlock:
1493 spin_unlock(vmf->ptl);
1494}
1495#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1496
1497void huge_pmd_set_accessed(struct vm_fault *vmf)
1498{
1499 bool write = vmf->flags & FAULT_FLAG_WRITE;
1500
1501 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1502 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1503 goto unlock;
1504
1505 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1506
1507unlock:
1508 spin_unlock(vmf->ptl);
1509}
1510
1511vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1512{
1513 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1514 struct vm_area_struct *vma = vmf->vma;
1515 struct folio *folio;
1516 struct page *page;
1517 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1518 pmd_t orig_pmd = vmf->orig_pmd;
1519
1520 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1521 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1522
1523 if (is_huge_zero_pmd(orig_pmd))
1524 goto fallback;
1525
1526 spin_lock(vmf->ptl);
1527
1528 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1529 spin_unlock(vmf->ptl);
1530 return 0;
1531 }
1532
1533 page = pmd_page(orig_pmd);
1534 folio = page_folio(page);
1535 VM_BUG_ON_PAGE(!PageHead(page), page);
1536
1537 /* Early check when only holding the PT lock. */
1538 if (PageAnonExclusive(page))
1539 goto reuse;
1540
1541 if (!folio_trylock(folio)) {
1542 folio_get(folio);
1543 spin_unlock(vmf->ptl);
1544 folio_lock(folio);
1545 spin_lock(vmf->ptl);
1546 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1547 spin_unlock(vmf->ptl);
1548 folio_unlock(folio);
1549 folio_put(folio);
1550 return 0;
1551 }
1552 folio_put(folio);
1553 }
1554
1555 /* Recheck after temporarily dropping the PT lock. */
1556 if (PageAnonExclusive(page)) {
1557 folio_unlock(folio);
1558 goto reuse;
1559 }
1560
1561 /*
1562 * See do_wp_page(): we can only reuse the folio exclusively if
1563 * there are no additional references. Note that we always drain
1564 * the LRU cache immediately after adding a THP.
1565 */
1566 if (folio_ref_count(folio) >
1567 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1568 goto unlock_fallback;
1569 if (folio_test_swapcache(folio))
1570 folio_free_swap(folio);
1571 if (folio_ref_count(folio) == 1) {
1572 pmd_t entry;
1573
1574 folio_move_anon_rmap(folio, vma);
1575 SetPageAnonExclusive(page);
1576 folio_unlock(folio);
1577reuse:
1578 if (unlikely(unshare)) {
1579 spin_unlock(vmf->ptl);
1580 return 0;
1581 }
1582 entry = pmd_mkyoung(orig_pmd);
1583 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1584 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1585 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1586 spin_unlock(vmf->ptl);
1587 return 0;
1588 }
1589
1590unlock_fallback:
1591 folio_unlock(folio);
1592 spin_unlock(vmf->ptl);
1593fallback:
1594 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1595 return VM_FAULT_FALLBACK;
1596}
1597
1598static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1599 unsigned long addr, pmd_t pmd)
1600{
1601 struct page *page;
1602
1603 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1604 return false;
1605
1606 /* Don't touch entries that are not even readable (NUMA hinting). */
1607 if (pmd_protnone(pmd))
1608 return false;
1609
1610 /* Do we need write faults for softdirty tracking? */
1611 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1612 return false;
1613
1614 /* Do we need write faults for uffd-wp tracking? */
1615 if (userfaultfd_huge_pmd_wp(vma, pmd))
1616 return false;
1617
1618 if (!(vma->vm_flags & VM_SHARED)) {
1619 /* See can_change_pte_writable(). */
1620 page = vm_normal_page_pmd(vma, addr, pmd);
1621 return page && PageAnon(page) && PageAnonExclusive(page);
1622 }
1623
1624 /* See can_change_pte_writable(). */
1625 return pmd_dirty(pmd);
1626}
1627
1628/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1629static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1630 struct vm_area_struct *vma,
1631 unsigned int flags)
1632{
1633 /* If the pmd is writable, we can write to the page. */
1634 if (pmd_write(pmd))
1635 return true;
1636
1637 /* Maybe FOLL_FORCE is set to override it? */
1638 if (!(flags & FOLL_FORCE))
1639 return false;
1640
1641 /* But FOLL_FORCE has no effect on shared mappings */
1642 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1643 return false;
1644
1645 /* ... or read-only private ones */
1646 if (!(vma->vm_flags & VM_MAYWRITE))
1647 return false;
1648
1649 /* ... or already writable ones that just need to take a write fault */
1650 if (vma->vm_flags & VM_WRITE)
1651 return false;
1652
1653 /*
1654 * See can_change_pte_writable(): we broke COW and could map the page
1655 * writable if we have an exclusive anonymous page ...
1656 */
1657 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1658 return false;
1659
1660 /* ... and a write-fault isn't required for other reasons. */
1661 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1662 return false;
1663 return !userfaultfd_huge_pmd_wp(vma, pmd);
1664}
1665
1666struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1667 unsigned long addr,
1668 pmd_t *pmd,
1669 unsigned int flags)
1670{
1671 struct mm_struct *mm = vma->vm_mm;
1672 struct page *page;
1673 int ret;
1674
1675 assert_spin_locked(pmd_lockptr(mm, pmd));
1676
1677 page = pmd_page(*pmd);
1678 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1679
1680 if ((flags & FOLL_WRITE) &&
1681 !can_follow_write_pmd(*pmd, page, vma, flags))
1682 return NULL;
1683
1684 /* Avoid dumping huge zero page */
1685 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1686 return ERR_PTR(-EFAULT);
1687
1688 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1689 return NULL;
1690
1691 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1692 return ERR_PTR(-EMLINK);
1693
1694 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1695 !PageAnonExclusive(page), page);
1696
1697 ret = try_grab_page(page, flags);
1698 if (ret)
1699 return ERR_PTR(ret);
1700
1701 if (flags & FOLL_TOUCH)
1702 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1703
1704 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1705 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1706
1707 return page;
1708}
1709
1710/* NUMA hinting page fault entry point for trans huge pmds */
1711vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1712{
1713 struct vm_area_struct *vma = vmf->vma;
1714 pmd_t oldpmd = vmf->orig_pmd;
1715 pmd_t pmd;
1716 struct folio *folio;
1717 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1718 int nid = NUMA_NO_NODE;
1719 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1720 bool migrated = false, writable = false;
1721 int flags = 0;
1722
1723 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1724 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1725 spin_unlock(vmf->ptl);
1726 goto out;
1727 }
1728
1729 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1730
1731 /*
1732 * Detect now whether the PMD could be writable; this information
1733 * is only valid while holding the PT lock.
1734 */
1735 writable = pmd_write(pmd);
1736 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1737 can_change_pmd_writable(vma, vmf->address, pmd))
1738 writable = true;
1739
1740 folio = vm_normal_folio_pmd(vma, haddr, pmd);
1741 if (!folio)
1742 goto out_map;
1743
1744 /* See similar comment in do_numa_page for explanation */
1745 if (!writable)
1746 flags |= TNF_NO_GROUP;
1747
1748 nid = folio_nid(folio);
1749 /*
1750 * For memory tiering mode, cpupid of slow memory page is used
1751 * to record page access time. So use default value.
1752 */
1753 if (node_is_toptier(nid))
1754 last_cpupid = folio_last_cpupid(folio);
1755 target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags);
1756 if (target_nid == NUMA_NO_NODE) {
1757 folio_put(folio);
1758 goto out_map;
1759 }
1760
1761 spin_unlock(vmf->ptl);
1762 writable = false;
1763
1764 migrated = migrate_misplaced_folio(folio, vma, target_nid);
1765 if (migrated) {
1766 flags |= TNF_MIGRATED;
1767 nid = target_nid;
1768 } else {
1769 flags |= TNF_MIGRATE_FAIL;
1770 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1771 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1772 spin_unlock(vmf->ptl);
1773 goto out;
1774 }
1775 goto out_map;
1776 }
1777
1778out:
1779 if (nid != NUMA_NO_NODE)
1780 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1781
1782 return 0;
1783
1784out_map:
1785 /* Restore the PMD */
1786 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1787 pmd = pmd_mkyoung(pmd);
1788 if (writable)
1789 pmd = pmd_mkwrite(pmd, vma);
1790 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1791 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1792 spin_unlock(vmf->ptl);
1793 goto out;
1794}
1795
1796/*
1797 * Return true if we do MADV_FREE successfully on entire pmd page.
1798 * Otherwise, return false.
1799 */
1800bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1801 pmd_t *pmd, unsigned long addr, unsigned long next)
1802{
1803 spinlock_t *ptl;
1804 pmd_t orig_pmd;
1805 struct folio *folio;
1806 struct mm_struct *mm = tlb->mm;
1807 bool ret = false;
1808
1809 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1810
1811 ptl = pmd_trans_huge_lock(pmd, vma);
1812 if (!ptl)
1813 goto out_unlocked;
1814
1815 orig_pmd = *pmd;
1816 if (is_huge_zero_pmd(orig_pmd))
1817 goto out;
1818
1819 if (unlikely(!pmd_present(orig_pmd))) {
1820 VM_BUG_ON(thp_migration_supported() &&
1821 !is_pmd_migration_entry(orig_pmd));
1822 goto out;
1823 }
1824
1825 folio = pfn_folio(pmd_pfn(orig_pmd));
1826 /*
1827 * If other processes are mapping this folio, we couldn't discard
1828 * the folio unless they all do MADV_FREE so let's skip the folio.
1829 */
1830 if (folio_estimated_sharers(folio) != 1)
1831 goto out;
1832
1833 if (!folio_trylock(folio))
1834 goto out;
1835
1836 /*
1837 * If user want to discard part-pages of THP, split it so MADV_FREE
1838 * will deactivate only them.
1839 */
1840 if (next - addr != HPAGE_PMD_SIZE) {
1841 folio_get(folio);
1842 spin_unlock(ptl);
1843 split_folio(folio);
1844 folio_unlock(folio);
1845 folio_put(folio);
1846 goto out_unlocked;
1847 }
1848
1849 if (folio_test_dirty(folio))
1850 folio_clear_dirty(folio);
1851 folio_unlock(folio);
1852
1853 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1854 pmdp_invalidate(vma, addr, pmd);
1855 orig_pmd = pmd_mkold(orig_pmd);
1856 orig_pmd = pmd_mkclean(orig_pmd);
1857
1858 set_pmd_at(mm, addr, pmd, orig_pmd);
1859 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1860 }
1861
1862 folio_mark_lazyfree(folio);
1863 ret = true;
1864out:
1865 spin_unlock(ptl);
1866out_unlocked:
1867 return ret;
1868}
1869
1870static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1871{
1872 pgtable_t pgtable;
1873
1874 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1875 pte_free(mm, pgtable);
1876 mm_dec_nr_ptes(mm);
1877}
1878
1879int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1880 pmd_t *pmd, unsigned long addr)
1881{
1882 pmd_t orig_pmd;
1883 spinlock_t *ptl;
1884
1885 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1886
1887 ptl = __pmd_trans_huge_lock(pmd, vma);
1888 if (!ptl)
1889 return 0;
1890 /*
1891 * For architectures like ppc64 we look at deposited pgtable
1892 * when calling pmdp_huge_get_and_clear. So do the
1893 * pgtable_trans_huge_withdraw after finishing pmdp related
1894 * operations.
1895 */
1896 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1897 tlb->fullmm);
1898 arch_check_zapped_pmd(vma, orig_pmd);
1899 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1900 if (vma_is_special_huge(vma)) {
1901 if (arch_needs_pgtable_deposit())
1902 zap_deposited_table(tlb->mm, pmd);
1903 spin_unlock(ptl);
1904 } else if (is_huge_zero_pmd(orig_pmd)) {
1905 zap_deposited_table(tlb->mm, pmd);
1906 spin_unlock(ptl);
1907 } else {
1908 struct page *page = NULL;
1909 int flush_needed = 1;
1910
1911 if (pmd_present(orig_pmd)) {
1912 page = pmd_page(orig_pmd);
1913 folio_remove_rmap_pmd(page_folio(page), page, vma);
1914 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1915 VM_BUG_ON_PAGE(!PageHead(page), page);
1916 } else if (thp_migration_supported()) {
1917 swp_entry_t entry;
1918
1919 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1920 entry = pmd_to_swp_entry(orig_pmd);
1921 page = pfn_swap_entry_to_page(entry);
1922 flush_needed = 0;
1923 } else
1924 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1925
1926 if (PageAnon(page)) {
1927 zap_deposited_table(tlb->mm, pmd);
1928 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1929 } else {
1930 if (arch_needs_pgtable_deposit())
1931 zap_deposited_table(tlb->mm, pmd);
1932 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1933 }
1934
1935 spin_unlock(ptl);
1936 if (flush_needed)
1937 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1938 }
1939 return 1;
1940}
1941
1942#ifndef pmd_move_must_withdraw
1943static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1944 spinlock_t *old_pmd_ptl,
1945 struct vm_area_struct *vma)
1946{
1947 /*
1948 * With split pmd lock we also need to move preallocated
1949 * PTE page table if new_pmd is on different PMD page table.
1950 *
1951 * We also don't deposit and withdraw tables for file pages.
1952 */
1953 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1954}
1955#endif
1956
1957static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1958{
1959#ifdef CONFIG_MEM_SOFT_DIRTY
1960 if (unlikely(is_pmd_migration_entry(pmd)))
1961 pmd = pmd_swp_mksoft_dirty(pmd);
1962 else if (pmd_present(pmd))
1963 pmd = pmd_mksoft_dirty(pmd);
1964#endif
1965 return pmd;
1966}
1967
1968bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1969 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1970{
1971 spinlock_t *old_ptl, *new_ptl;
1972 pmd_t pmd;
1973 struct mm_struct *mm = vma->vm_mm;
1974 bool force_flush = false;
1975
1976 /*
1977 * The destination pmd shouldn't be established, free_pgtables()
1978 * should have released it; but move_page_tables() might have already
1979 * inserted a page table, if racing against shmem/file collapse.
1980 */
1981 if (!pmd_none(*new_pmd)) {
1982 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1983 return false;
1984 }
1985
1986 /*
1987 * We don't have to worry about the ordering of src and dst
1988 * ptlocks because exclusive mmap_lock prevents deadlock.
1989 */
1990 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1991 if (old_ptl) {
1992 new_ptl = pmd_lockptr(mm, new_pmd);
1993 if (new_ptl != old_ptl)
1994 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1995 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1996 if (pmd_present(pmd))
1997 force_flush = true;
1998 VM_BUG_ON(!pmd_none(*new_pmd));
1999
2000 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2001 pgtable_t pgtable;
2002 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2003 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2004 }
2005 pmd = move_soft_dirty_pmd(pmd);
2006 set_pmd_at(mm, new_addr, new_pmd, pmd);
2007 if (force_flush)
2008 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2009 if (new_ptl != old_ptl)
2010 spin_unlock(new_ptl);
2011 spin_unlock(old_ptl);
2012 return true;
2013 }
2014 return false;
2015}
2016
2017/*
2018 * Returns
2019 * - 0 if PMD could not be locked
2020 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2021 * or if prot_numa but THP migration is not supported
2022 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
2023 */
2024int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2025 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2026 unsigned long cp_flags)
2027{
2028 struct mm_struct *mm = vma->vm_mm;
2029 spinlock_t *ptl;
2030 pmd_t oldpmd, entry;
2031 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2032 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2033 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2034 int ret = 1;
2035
2036 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2037
2038 if (prot_numa && !thp_migration_supported())
2039 return 1;
2040
2041 ptl = __pmd_trans_huge_lock(pmd, vma);
2042 if (!ptl)
2043 return 0;
2044
2045#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2046 if (is_swap_pmd(*pmd)) {
2047 swp_entry_t entry = pmd_to_swp_entry(*pmd);
2048 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
2049 pmd_t newpmd;
2050
2051 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2052 if (is_writable_migration_entry(entry)) {
2053 /*
2054 * A protection check is difficult so
2055 * just be safe and disable write
2056 */
2057 if (folio_test_anon(folio))
2058 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2059 else
2060 entry = make_readable_migration_entry(swp_offset(entry));
2061 newpmd = swp_entry_to_pmd(entry);
2062 if (pmd_swp_soft_dirty(*pmd))
2063 newpmd = pmd_swp_mksoft_dirty(newpmd);
2064 } else {
2065 newpmd = *pmd;
2066 }
2067
2068 if (uffd_wp)
2069 newpmd = pmd_swp_mkuffd_wp(newpmd);
2070 else if (uffd_wp_resolve)
2071 newpmd = pmd_swp_clear_uffd_wp(newpmd);
2072 if (!pmd_same(*pmd, newpmd))
2073 set_pmd_at(mm, addr, pmd, newpmd);
2074 goto unlock;
2075 }
2076#endif
2077
2078 if (prot_numa) {
2079 struct folio *folio;
2080 bool toptier;
2081 /*
2082 * Avoid trapping faults against the zero page. The read-only
2083 * data is likely to be read-cached on the local CPU and
2084 * local/remote hits to the zero page are not interesting.
2085 */
2086 if (is_huge_zero_pmd(*pmd))
2087 goto unlock;
2088
2089 if (pmd_protnone(*pmd))
2090 goto unlock;
2091
2092 folio = page_folio(pmd_page(*pmd));
2093 toptier = node_is_toptier(folio_nid(folio));
2094 /*
2095 * Skip scanning top tier node if normal numa
2096 * balancing is disabled
2097 */
2098 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2099 toptier)
2100 goto unlock;
2101
2102 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
2103 !toptier)
2104 folio_xchg_access_time(folio,
2105 jiffies_to_msecs(jiffies));
2106 }
2107 /*
2108 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2109 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2110 * which is also under mmap_read_lock(mm):
2111 *
2112 * CPU0: CPU1:
2113 * change_huge_pmd(prot_numa=1)
2114 * pmdp_huge_get_and_clear_notify()
2115 * madvise_dontneed()
2116 * zap_pmd_range()
2117 * pmd_trans_huge(*pmd) == 0 (without ptl)
2118 * // skip the pmd
2119 * set_pmd_at();
2120 * // pmd is re-established
2121 *
2122 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2123 * which may break userspace.
2124 *
2125 * pmdp_invalidate_ad() is required to make sure we don't miss
2126 * dirty/young flags set by hardware.
2127 */
2128 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2129
2130 entry = pmd_modify(oldpmd, newprot);
2131 if (uffd_wp)
2132 entry = pmd_mkuffd_wp(entry);
2133 else if (uffd_wp_resolve)
2134 /*
2135 * Leave the write bit to be handled by PF interrupt
2136 * handler, then things like COW could be properly
2137 * handled.
2138 */
2139 entry = pmd_clear_uffd_wp(entry);
2140
2141 /* See change_pte_range(). */
2142 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2143 can_change_pmd_writable(vma, addr, entry))
2144 entry = pmd_mkwrite(entry, vma);
2145
2146 ret = HPAGE_PMD_NR;
2147 set_pmd_at(mm, addr, pmd, entry);
2148
2149 if (huge_pmd_needs_flush(oldpmd, entry))
2150 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2151unlock:
2152 spin_unlock(ptl);
2153 return ret;
2154}
2155
2156#ifdef CONFIG_USERFAULTFD
2157/*
2158 * The PT lock for src_pmd and the mmap_lock for reading are held by
2159 * the caller, but it must return after releasing the page_table_lock.
2160 * Just move the page from src_pmd to dst_pmd if possible.
2161 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2162 * repeated by the caller, or other errors in case of failure.
2163 */
2164int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2165 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2166 unsigned long dst_addr, unsigned long src_addr)
2167{
2168 pmd_t _dst_pmd, src_pmdval;
2169 struct page *src_page;
2170 struct folio *src_folio;
2171 struct anon_vma *src_anon_vma;
2172 spinlock_t *src_ptl, *dst_ptl;
2173 pgtable_t src_pgtable;
2174 struct mmu_notifier_range range;
2175 int err = 0;
2176
2177 src_pmdval = *src_pmd;
2178 src_ptl = pmd_lockptr(mm, src_pmd);
2179
2180 lockdep_assert_held(src_ptl);
2181 mmap_assert_locked(mm);
2182
2183 /* Sanity checks before the operation */
2184 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2185 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2186 spin_unlock(src_ptl);
2187 return -EINVAL;
2188 }
2189
2190 if (!pmd_trans_huge(src_pmdval)) {
2191 spin_unlock(src_ptl);
2192 if (is_pmd_migration_entry(src_pmdval)) {
2193 pmd_migration_entry_wait(mm, &src_pmdval);
2194 return -EAGAIN;
2195 }
2196 return -ENOENT;
2197 }
2198
2199 src_page = pmd_page(src_pmdval);
2200 if (unlikely(!PageAnonExclusive(src_page))) {
2201 spin_unlock(src_ptl);
2202 return -EBUSY;
2203 }
2204
2205 src_folio = page_folio(src_page);
2206 folio_get(src_folio);
2207 spin_unlock(src_ptl);
2208
2209 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2210 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2211 src_addr + HPAGE_PMD_SIZE);
2212 mmu_notifier_invalidate_range_start(&range);
2213
2214 folio_lock(src_folio);
2215
2216 /*
2217 * split_huge_page walks the anon_vma chain without the page
2218 * lock. Serialize against it with the anon_vma lock, the page
2219 * lock is not enough.
2220 */
2221 src_anon_vma = folio_get_anon_vma(src_folio);
2222 if (!src_anon_vma) {
2223 err = -EAGAIN;
2224 goto unlock_folio;
2225 }
2226 anon_vma_lock_write(src_anon_vma);
2227
2228 dst_ptl = pmd_lockptr(mm, dst_pmd);
2229 double_pt_lock(src_ptl, dst_ptl);
2230 if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2231 !pmd_same(*dst_pmd, dst_pmdval))) {
2232 err = -EAGAIN;
2233 goto unlock_ptls;
2234 }
2235 if (folio_maybe_dma_pinned(src_folio) ||
2236 !PageAnonExclusive(&src_folio->page)) {
2237 err = -EBUSY;
2238 goto unlock_ptls;
2239 }
2240
2241 if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2242 WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2243 err = -EBUSY;
2244 goto unlock_ptls;
2245 }
2246
2247 folio_move_anon_rmap(src_folio, dst_vma);
2248 WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr));
2249
2250 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2251 /* Folio got pinned from under us. Put it back and fail the move. */
2252 if (folio_maybe_dma_pinned(src_folio)) {
2253 set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2254 err = -EBUSY;
2255 goto unlock_ptls;
2256 }
2257
2258 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2259 /* Follow mremap() behavior and treat the entry dirty after the move */
2260 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2261 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2262
2263 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2264 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2265unlock_ptls:
2266 double_pt_unlock(src_ptl, dst_ptl);
2267 anon_vma_unlock_write(src_anon_vma);
2268 put_anon_vma(src_anon_vma);
2269unlock_folio:
2270 /* unblock rmap walks */
2271 folio_unlock(src_folio);
2272 mmu_notifier_invalidate_range_end(&range);
2273 folio_put(src_folio);
2274 return err;
2275}
2276#endif /* CONFIG_USERFAULTFD */
2277
2278/*
2279 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2280 *
2281 * Note that if it returns page table lock pointer, this routine returns without
2282 * unlocking page table lock. So callers must unlock it.
2283 */
2284spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2285{
2286 spinlock_t *ptl;
2287 ptl = pmd_lock(vma->vm_mm, pmd);
2288 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2289 pmd_devmap(*pmd)))
2290 return ptl;
2291 spin_unlock(ptl);
2292 return NULL;
2293}
2294
2295/*
2296 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2297 *
2298 * Note that if it returns page table lock pointer, this routine returns without
2299 * unlocking page table lock. So callers must unlock it.
2300 */
2301spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2302{
2303 spinlock_t *ptl;
2304
2305 ptl = pud_lock(vma->vm_mm, pud);
2306 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2307 return ptl;
2308 spin_unlock(ptl);
2309 return NULL;
2310}
2311
2312#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2313int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2314 pud_t *pud, unsigned long addr)
2315{
2316 spinlock_t *ptl;
2317
2318 ptl = __pud_trans_huge_lock(pud, vma);
2319 if (!ptl)
2320 return 0;
2321
2322 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2323 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2324 if (vma_is_special_huge(vma)) {
2325 spin_unlock(ptl);
2326 /* No zero page support yet */
2327 } else {
2328 /* No support for anonymous PUD pages yet */
2329 BUG();
2330 }
2331 return 1;
2332}
2333
2334static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2335 unsigned long haddr)
2336{
2337 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2338 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2339 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2340 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2341
2342 count_vm_event(THP_SPLIT_PUD);
2343
2344 pudp_huge_clear_flush(vma, haddr, pud);
2345}
2346
2347void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2348 unsigned long address)
2349{
2350 spinlock_t *ptl;
2351 struct mmu_notifier_range range;
2352
2353 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2354 address & HPAGE_PUD_MASK,
2355 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2356 mmu_notifier_invalidate_range_start(&range);
2357 ptl = pud_lock(vma->vm_mm, pud);
2358 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2359 goto out;
2360 __split_huge_pud_locked(vma, pud, range.start);
2361
2362out:
2363 spin_unlock(ptl);
2364 mmu_notifier_invalidate_range_end(&range);
2365}
2366#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2367
2368static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2369 unsigned long haddr, pmd_t *pmd)
2370{
2371 struct mm_struct *mm = vma->vm_mm;
2372 pgtable_t pgtable;
2373 pmd_t _pmd, old_pmd;
2374 unsigned long addr;
2375 pte_t *pte;
2376 int i;
2377
2378 /*
2379 * Leave pmd empty until pte is filled note that it is fine to delay
2380 * notification until mmu_notifier_invalidate_range_end() as we are
2381 * replacing a zero pmd write protected page with a zero pte write
2382 * protected page.
2383 *
2384 * See Documentation/mm/mmu_notifier.rst
2385 */
2386 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2387
2388 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2389 pmd_populate(mm, &_pmd, pgtable);
2390
2391 pte = pte_offset_map(&_pmd, haddr);
2392 VM_BUG_ON(!pte);
2393 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2394 pte_t entry;
2395
2396 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2397 entry = pte_mkspecial(entry);
2398 if (pmd_uffd_wp(old_pmd))
2399 entry = pte_mkuffd_wp(entry);
2400 VM_BUG_ON(!pte_none(ptep_get(pte)));
2401 set_pte_at(mm, addr, pte, entry);
2402 pte++;
2403 }
2404 pte_unmap(pte - 1);
2405 smp_wmb(); /* make pte visible before pmd */
2406 pmd_populate(mm, pmd, pgtable);
2407}
2408
2409static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2410 unsigned long haddr, bool freeze)
2411{
2412 struct mm_struct *mm = vma->vm_mm;
2413 struct folio *folio;
2414 struct page *page;
2415 pgtable_t pgtable;
2416 pmd_t old_pmd, _pmd;
2417 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2418 bool anon_exclusive = false, dirty = false;
2419 unsigned long addr;
2420 pte_t *pte;
2421 int i;
2422
2423 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2424 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2425 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2426 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2427 && !pmd_devmap(*pmd));
2428
2429 count_vm_event(THP_SPLIT_PMD);
2430
2431 if (!vma_is_anonymous(vma)) {
2432 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2433 /*
2434 * We are going to unmap this huge page. So
2435 * just go ahead and zap it
2436 */
2437 if (arch_needs_pgtable_deposit())
2438 zap_deposited_table(mm, pmd);
2439 if (vma_is_special_huge(vma))
2440 return;
2441 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2442 swp_entry_t entry;
2443
2444 entry = pmd_to_swp_entry(old_pmd);
2445 page = pfn_swap_entry_to_page(entry);
2446 } else {
2447 page = pmd_page(old_pmd);
2448 folio = page_folio(page);
2449 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2450 folio_mark_dirty(folio);
2451 if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2452 folio_set_referenced(folio);
2453 folio_remove_rmap_pmd(folio, page, vma);
2454 folio_put(folio);
2455 }
2456 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2457 return;
2458 }
2459
2460 if (is_huge_zero_pmd(*pmd)) {
2461 /*
2462 * FIXME: Do we want to invalidate secondary mmu by calling
2463 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2464 * inside __split_huge_pmd() ?
2465 *
2466 * We are going from a zero huge page write protected to zero
2467 * small page also write protected so it does not seems useful
2468 * to invalidate secondary mmu at this time.
2469 */
2470 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2471 }
2472
2473 /*
2474 * Up to this point the pmd is present and huge and userland has the
2475 * whole access to the hugepage during the split (which happens in
2476 * place). If we overwrite the pmd with the not-huge version pointing
2477 * to the pte here (which of course we could if all CPUs were bug
2478 * free), userland could trigger a small page size TLB miss on the
2479 * small sized TLB while the hugepage TLB entry is still established in
2480 * the huge TLB. Some CPU doesn't like that.
2481 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2482 * 383 on page 105. Intel should be safe but is also warns that it's
2483 * only safe if the permission and cache attributes of the two entries
2484 * loaded in the two TLB is identical (which should be the case here).
2485 * But it is generally safer to never allow small and huge TLB entries
2486 * for the same virtual address to be loaded simultaneously. So instead
2487 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2488 * current pmd notpresent (atomically because here the pmd_trans_huge
2489 * must remain set at all times on the pmd until the split is complete
2490 * for this pmd), then we flush the SMP TLB and finally we write the
2491 * non-huge version of the pmd entry with pmd_populate.
2492 */
2493 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2494
2495 pmd_migration = is_pmd_migration_entry(old_pmd);
2496 if (unlikely(pmd_migration)) {
2497 swp_entry_t entry;
2498
2499 entry = pmd_to_swp_entry(old_pmd);
2500 page = pfn_swap_entry_to_page(entry);
2501 write = is_writable_migration_entry(entry);
2502 if (PageAnon(page))
2503 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2504 young = is_migration_entry_young(entry);
2505 dirty = is_migration_entry_dirty(entry);
2506 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2507 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2508 } else {
2509 page = pmd_page(old_pmd);
2510 folio = page_folio(page);
2511 if (pmd_dirty(old_pmd)) {
2512 dirty = true;
2513 folio_set_dirty(folio);
2514 }
2515 write = pmd_write(old_pmd);
2516 young = pmd_young(old_pmd);
2517 soft_dirty = pmd_soft_dirty(old_pmd);
2518 uffd_wp = pmd_uffd_wp(old_pmd);
2519
2520 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2521 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2522
2523 /*
2524 * Without "freeze", we'll simply split the PMD, propagating the
2525 * PageAnonExclusive() flag for each PTE by setting it for
2526 * each subpage -- no need to (temporarily) clear.
2527 *
2528 * With "freeze" we want to replace mapped pages by
2529 * migration entries right away. This is only possible if we
2530 * managed to clear PageAnonExclusive() -- see
2531 * set_pmd_migration_entry().
2532 *
2533 * In case we cannot clear PageAnonExclusive(), split the PMD
2534 * only and let try_to_migrate_one() fail later.
2535 *
2536 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2537 */
2538 anon_exclusive = PageAnonExclusive(page);
2539 if (freeze && anon_exclusive &&
2540 folio_try_share_anon_rmap_pmd(folio, page))
2541 freeze = false;
2542 if (!freeze) {
2543 rmap_t rmap_flags = RMAP_NONE;
2544
2545 folio_ref_add(folio, HPAGE_PMD_NR - 1);
2546 if (anon_exclusive)
2547 rmap_flags |= RMAP_EXCLUSIVE;
2548 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2549 vma, haddr, rmap_flags);
2550 }
2551 }
2552
2553 /*
2554 * Withdraw the table only after we mark the pmd entry invalid.
2555 * This's critical for some architectures (Power).
2556 */
2557 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2558 pmd_populate(mm, &_pmd, pgtable);
2559
2560 pte = pte_offset_map(&_pmd, haddr);
2561 VM_BUG_ON(!pte);
2562 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2563 pte_t entry;
2564 /*
2565 * Note that NUMA hinting access restrictions are not
2566 * transferred to avoid any possibility of altering
2567 * permissions across VMAs.
2568 */
2569 if (freeze || pmd_migration) {
2570 swp_entry_t swp_entry;
2571 if (write)
2572 swp_entry = make_writable_migration_entry(
2573 page_to_pfn(page + i));
2574 else if (anon_exclusive)
2575 swp_entry = make_readable_exclusive_migration_entry(
2576 page_to_pfn(page + i));
2577 else
2578 swp_entry = make_readable_migration_entry(
2579 page_to_pfn(page + i));
2580 if (young)
2581 swp_entry = make_migration_entry_young(swp_entry);
2582 if (dirty)
2583 swp_entry = make_migration_entry_dirty(swp_entry);
2584 entry = swp_entry_to_pte(swp_entry);
2585 if (soft_dirty)
2586 entry = pte_swp_mksoft_dirty(entry);
2587 if (uffd_wp)
2588 entry = pte_swp_mkuffd_wp(entry);
2589 } else {
2590 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2591 if (write)
2592 entry = pte_mkwrite(entry, vma);
2593 if (!young)
2594 entry = pte_mkold(entry);
2595 /* NOTE: this may set soft-dirty too on some archs */
2596 if (dirty)
2597 entry = pte_mkdirty(entry);
2598 if (soft_dirty)
2599 entry = pte_mksoft_dirty(entry);
2600 if (uffd_wp)
2601 entry = pte_mkuffd_wp(entry);
2602 }
2603 VM_BUG_ON(!pte_none(ptep_get(pte)));
2604 set_pte_at(mm, addr, pte, entry);
2605 pte++;
2606 }
2607 pte_unmap(pte - 1);
2608
2609 if (!pmd_migration)
2610 folio_remove_rmap_pmd(folio, page, vma);
2611 if (freeze)
2612 put_page(page);
2613
2614 smp_wmb(); /* make pte visible before pmd */
2615 pmd_populate(mm, pmd, pgtable);
2616}
2617
2618void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2619 unsigned long address, bool freeze, struct folio *folio)
2620{
2621 spinlock_t *ptl;
2622 struct mmu_notifier_range range;
2623
2624 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2625 address & HPAGE_PMD_MASK,
2626 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2627 mmu_notifier_invalidate_range_start(&range);
2628 ptl = pmd_lock(vma->vm_mm, pmd);
2629
2630 /*
2631 * If caller asks to setup a migration entry, we need a folio to check
2632 * pmd against. Otherwise we can end up replacing wrong folio.
2633 */
2634 VM_BUG_ON(freeze && !folio);
2635 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2636
2637 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2638 is_pmd_migration_entry(*pmd)) {
2639 /*
2640 * It's safe to call pmd_page when folio is set because it's
2641 * guaranteed that pmd is present.
2642 */
2643 if (folio && folio != page_folio(pmd_page(*pmd)))
2644 goto out;
2645 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2646 }
2647
2648out:
2649 spin_unlock(ptl);
2650 mmu_notifier_invalidate_range_end(&range);
2651}
2652
2653void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2654 bool freeze, struct folio *folio)
2655{
2656 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2657
2658 if (!pmd)
2659 return;
2660
2661 __split_huge_pmd(vma, pmd, address, freeze, folio);
2662}
2663
2664static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2665{
2666 /*
2667 * If the new address isn't hpage aligned and it could previously
2668 * contain an hugepage: check if we need to split an huge pmd.
2669 */
2670 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2671 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2672 ALIGN(address, HPAGE_PMD_SIZE)))
2673 split_huge_pmd_address(vma, address, false, NULL);
2674}
2675
2676void vma_adjust_trans_huge(struct vm_area_struct *vma,
2677 unsigned long start,
2678 unsigned long end,
2679 long adjust_next)
2680{
2681 /* Check if we need to split start first. */
2682 split_huge_pmd_if_needed(vma, start);
2683
2684 /* Check if we need to split end next. */
2685 split_huge_pmd_if_needed(vma, end);
2686
2687 /*
2688 * If we're also updating the next vma vm_start,
2689 * check if we need to split it.
2690 */
2691 if (adjust_next > 0) {
2692 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2693 unsigned long nstart = next->vm_start;
2694 nstart += adjust_next;
2695 split_huge_pmd_if_needed(next, nstart);
2696 }
2697}
2698
2699static void unmap_folio(struct folio *folio)
2700{
2701 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2702 TTU_SYNC | TTU_BATCH_FLUSH;
2703
2704 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2705
2706 /*
2707 * Anon pages need migration entries to preserve them, but file
2708 * pages can simply be left unmapped, then faulted back on demand.
2709 * If that is ever changed (perhaps for mlock), update remap_page().
2710 */
2711 if (folio_test_anon(folio))
2712 try_to_migrate(folio, ttu_flags);
2713 else
2714 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2715
2716 try_to_unmap_flush();
2717}
2718
2719static void remap_page(struct folio *folio, unsigned long nr)
2720{
2721 int i = 0;
2722
2723 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2724 if (!folio_test_anon(folio))
2725 return;
2726 for (;;) {
2727 remove_migration_ptes(folio, folio, true);
2728 i += folio_nr_pages(folio);
2729 if (i >= nr)
2730 break;
2731 folio = folio_next(folio);
2732 }
2733}
2734
2735static void lru_add_page_tail(struct page *head, struct page *tail,
2736 struct lruvec *lruvec, struct list_head *list)
2737{
2738 VM_BUG_ON_PAGE(!PageHead(head), head);
2739 VM_BUG_ON_PAGE(PageCompound(tail), head);
2740 VM_BUG_ON_PAGE(PageLRU(tail), head);
2741 lockdep_assert_held(&lruvec->lru_lock);
2742
2743 if (list) {
2744 /* page reclaim is reclaiming a huge page */
2745 VM_WARN_ON(PageLRU(head));
2746 get_page(tail);
2747 list_add_tail(&tail->lru, list);
2748 } else {
2749 /* head is still on lru (and we have it frozen) */
2750 VM_WARN_ON(!PageLRU(head));
2751 if (PageUnevictable(tail))
2752 tail->mlock_count = 0;
2753 else
2754 list_add_tail(&tail->lru, &head->lru);
2755 SetPageLRU(tail);
2756 }
2757}
2758
2759static void __split_huge_page_tail(struct folio *folio, int tail,
2760 struct lruvec *lruvec, struct list_head *list)
2761{
2762 struct page *head = &folio->page;
2763 struct page *page_tail = head + tail;
2764 /*
2765 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2766 * Don't pass it around before clear_compound_head().
2767 */
2768 struct folio *new_folio = (struct folio *)page_tail;
2769
2770 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2771
2772 /*
2773 * Clone page flags before unfreezing refcount.
2774 *
2775 * After successful get_page_unless_zero() might follow flags change,
2776 * for example lock_page() which set PG_waiters.
2777 *
2778 * Note that for mapped sub-pages of an anonymous THP,
2779 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2780 * the migration entry instead from where remap_page() will restore it.
2781 * We can still have PG_anon_exclusive set on effectively unmapped and
2782 * unreferenced sub-pages of an anonymous THP: we can simply drop
2783 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2784 */
2785 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2786 page_tail->flags |= (head->flags &
2787 ((1L << PG_referenced) |
2788 (1L << PG_swapbacked) |
2789 (1L << PG_swapcache) |
2790 (1L << PG_mlocked) |
2791 (1L << PG_uptodate) |
2792 (1L << PG_active) |
2793 (1L << PG_workingset) |
2794 (1L << PG_locked) |
2795 (1L << PG_unevictable) |
2796#ifdef CONFIG_ARCH_USES_PG_ARCH_X
2797 (1L << PG_arch_2) |
2798 (1L << PG_arch_3) |
2799#endif
2800 (1L << PG_dirty) |
2801 LRU_GEN_MASK | LRU_REFS_MASK));
2802
2803 /* ->mapping in first and second tail page is replaced by other uses */
2804 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2805 page_tail);
2806 page_tail->mapping = head->mapping;
2807 page_tail->index = head->index + tail;
2808
2809 /*
2810 * page->private should not be set in tail pages. Fix up and warn once
2811 * if private is unexpectedly set.
2812 */
2813 if (unlikely(page_tail->private)) {
2814 VM_WARN_ON_ONCE_PAGE(true, page_tail);
2815 page_tail->private = 0;
2816 }
2817 if (folio_test_swapcache(folio))
2818 new_folio->swap.val = folio->swap.val + tail;
2819
2820 /* Page flags must be visible before we make the page non-compound. */
2821 smp_wmb();
2822
2823 /*
2824 * Clear PageTail before unfreezing page refcount.
2825 *
2826 * After successful get_page_unless_zero() might follow put_page()
2827 * which needs correct compound_head().
2828 */
2829 clear_compound_head(page_tail);
2830
2831 /* Finally unfreeze refcount. Additional reference from page cache. */
2832 page_ref_unfreeze(page_tail, 1 + (!folio_test_anon(folio) ||
2833 folio_test_swapcache(folio)));
2834
2835 if (folio_test_young(folio))
2836 folio_set_young(new_folio);
2837 if (folio_test_idle(folio))
2838 folio_set_idle(new_folio);
2839
2840 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
2841
2842 /*
2843 * always add to the tail because some iterators expect new
2844 * pages to show after the currently processed elements - e.g.
2845 * migrate_pages
2846 */
2847 lru_add_page_tail(head, page_tail, lruvec, list);
2848}
2849
2850static void __split_huge_page(struct page *page, struct list_head *list,
2851 pgoff_t end)
2852{
2853 struct folio *folio = page_folio(page);
2854 struct page *head = &folio->page;
2855 struct lruvec *lruvec;
2856 struct address_space *swap_cache = NULL;
2857 unsigned long offset = 0;
2858 unsigned int nr = thp_nr_pages(head);
2859 int i, nr_dropped = 0;
2860
2861 /* complete memcg works before add pages to LRU */
2862 split_page_memcg(head, nr);
2863
2864 if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2865 offset = swp_offset(folio->swap);
2866 swap_cache = swap_address_space(folio->swap);
2867 xa_lock(&swap_cache->i_pages);
2868 }
2869
2870 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2871 lruvec = folio_lruvec_lock(folio);
2872
2873 ClearPageHasHWPoisoned(head);
2874
2875 for (i = nr - 1; i >= 1; i--) {
2876 __split_huge_page_tail(folio, i, lruvec, list);
2877 /* Some pages can be beyond EOF: drop them from page cache */
2878 if (head[i].index >= end) {
2879 struct folio *tail = page_folio(head + i);
2880
2881 if (shmem_mapping(head->mapping))
2882 nr_dropped++;
2883 else if (folio_test_clear_dirty(tail))
2884 folio_account_cleaned(tail,
2885 inode_to_wb(folio->mapping->host));
2886 __filemap_remove_folio(tail, NULL);
2887 folio_put(tail);
2888 } else if (!PageAnon(page)) {
2889 __xa_store(&head->mapping->i_pages, head[i].index,
2890 head + i, 0);
2891 } else if (swap_cache) {
2892 __xa_store(&swap_cache->i_pages, offset + i,
2893 head + i, 0);
2894 }
2895 }
2896
2897 ClearPageCompound(head);
2898 unlock_page_lruvec(lruvec);
2899 /* Caller disabled irqs, so they are still disabled here */
2900
2901 split_page_owner(head, nr);
2902
2903 /* See comment in __split_huge_page_tail() */
2904 if (PageAnon(head)) {
2905 /* Additional pin to swap cache */
2906 if (PageSwapCache(head)) {
2907 page_ref_add(head, 2);
2908 xa_unlock(&swap_cache->i_pages);
2909 } else {
2910 page_ref_inc(head);
2911 }
2912 } else {
2913 /* Additional pin to page cache */
2914 page_ref_add(head, 2);
2915 xa_unlock(&head->mapping->i_pages);
2916 }
2917 local_irq_enable();
2918
2919 if (nr_dropped)
2920 shmem_uncharge(head->mapping->host, nr_dropped);
2921 remap_page(folio, nr);
2922
2923 if (folio_test_swapcache(folio))
2924 split_swap_cluster(folio->swap);
2925
2926 for (i = 0; i < nr; i++) {
2927 struct page *subpage = head + i;
2928 if (subpage == page)
2929 continue;
2930 unlock_page(subpage);
2931
2932 /*
2933 * Subpages may be freed if there wasn't any mapping
2934 * like if add_to_swap() is running on a lru page that
2935 * had its mapping zapped. And freeing these pages
2936 * requires taking the lru_lock so we do the put_page
2937 * of the tail pages after the split is complete.
2938 */
2939 free_page_and_swap_cache(subpage);
2940 }
2941}
2942
2943/* Racy check whether the huge page can be split */
2944bool can_split_folio(struct folio *folio, int *pextra_pins)
2945{
2946 int extra_pins;
2947
2948 /* Additional pins from page cache */
2949 if (folio_test_anon(folio))
2950 extra_pins = folio_test_swapcache(folio) ?
2951 folio_nr_pages(folio) : 0;
2952 else
2953 extra_pins = folio_nr_pages(folio);
2954 if (pextra_pins)
2955 *pextra_pins = extra_pins;
2956 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2957}
2958
2959/*
2960 * This function splits huge page into normal pages. @page can point to any
2961 * subpage of huge page to split. Split doesn't change the position of @page.
2962 *
2963 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2964 * The huge page must be locked.
2965 *
2966 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2967 *
2968 * Both head page and tail pages will inherit mapping, flags, and so on from
2969 * the hugepage.
2970 *
2971 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2972 * they are not mapped.
2973 *
2974 * Returns 0 if the hugepage is split successfully.
2975 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2976 * us.
2977 */
2978int split_huge_page_to_list(struct page *page, struct list_head *list)
2979{
2980 struct folio *folio = page_folio(page);
2981 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2982 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2983 struct anon_vma *anon_vma = NULL;
2984 struct address_space *mapping = NULL;
2985 int extra_pins, ret;
2986 pgoff_t end;
2987 bool is_hzp;
2988
2989 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2990 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2991
2992 is_hzp = is_huge_zero_page(&folio->page);
2993 if (is_hzp) {
2994 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2995 return -EBUSY;
2996 }
2997
2998 if (folio_test_writeback(folio))
2999 return -EBUSY;
3000
3001 if (folio_test_anon(folio)) {
3002 /*
3003 * The caller does not necessarily hold an mmap_lock that would
3004 * prevent the anon_vma disappearing so we first we take a
3005 * reference to it and then lock the anon_vma for write. This
3006 * is similar to folio_lock_anon_vma_read except the write lock
3007 * is taken to serialise against parallel split or collapse
3008 * operations.
3009 */
3010 anon_vma = folio_get_anon_vma(folio);
3011 if (!anon_vma) {
3012 ret = -EBUSY;
3013 goto out;
3014 }
3015 end = -1;
3016 mapping = NULL;
3017 anon_vma_lock_write(anon_vma);
3018 } else {
3019 gfp_t gfp;
3020
3021 mapping = folio->mapping;
3022
3023 /* Truncated ? */
3024 if (!mapping) {
3025 ret = -EBUSY;
3026 goto out;
3027 }
3028
3029 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3030 GFP_RECLAIM_MASK);
3031
3032 if (!filemap_release_folio(folio, gfp)) {
3033 ret = -EBUSY;
3034 goto out;
3035 }
3036
3037 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3038 if (xas_error(&xas)) {
3039 ret = xas_error(&xas);
3040 goto out;
3041 }
3042
3043 anon_vma = NULL;
3044 i_mmap_lock_read(mapping);
3045
3046 /*
3047 *__split_huge_page() may need to trim off pages beyond EOF:
3048 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3049 * which cannot be nested inside the page tree lock. So note
3050 * end now: i_size itself may be changed at any moment, but
3051 * folio lock is good enough to serialize the trimming.
3052 */
3053 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3054 if (shmem_mapping(mapping))
3055 end = shmem_fallocend(mapping->host, end);
3056 }
3057
3058 /*
3059 * Racy check if we can split the page, before unmap_folio() will
3060 * split PMDs
3061 */
3062 if (!can_split_folio(folio, &extra_pins)) {
3063 ret = -EAGAIN;
3064 goto out_unlock;
3065 }
3066
3067 unmap_folio(folio);
3068
3069 /* block interrupt reentry in xa_lock and spinlock */
3070 local_irq_disable();
3071 if (mapping) {
3072 /*
3073 * Check if the folio is present in page cache.
3074 * We assume all tail are present too, if folio is there.
3075 */
3076 xas_lock(&xas);
3077 xas_reset(&xas);
3078 if (xas_load(&xas) != folio)
3079 goto fail;
3080 }
3081
3082 /* Prevent deferred_split_scan() touching ->_refcount */
3083 spin_lock(&ds_queue->split_queue_lock);
3084 if (folio_ref_freeze(folio, 1 + extra_pins)) {
3085 if (!list_empty(&folio->_deferred_list)) {
3086 ds_queue->split_queue_len--;
3087 list_del(&folio->_deferred_list);
3088 }
3089 spin_unlock(&ds_queue->split_queue_lock);
3090 if (mapping) {
3091 int nr = folio_nr_pages(folio);
3092
3093 xas_split(&xas, folio, folio_order(folio));
3094 if (folio_test_pmd_mappable(folio)) {
3095 if (folio_test_swapbacked(folio)) {
3096 __lruvec_stat_mod_folio(folio,
3097 NR_SHMEM_THPS, -nr);
3098 } else {
3099 __lruvec_stat_mod_folio(folio,
3100 NR_FILE_THPS, -nr);
3101 filemap_nr_thps_dec(mapping);
3102 }
3103 }
3104 }
3105
3106 __split_huge_page(page, list, end);
3107 ret = 0;
3108 } else {
3109 spin_unlock(&ds_queue->split_queue_lock);
3110fail:
3111 if (mapping)
3112 xas_unlock(&xas);
3113 local_irq_enable();
3114 remap_page(folio, folio_nr_pages(folio));
3115 ret = -EAGAIN;
3116 }
3117
3118out_unlock:
3119 if (anon_vma) {
3120 anon_vma_unlock_write(anon_vma);
3121 put_anon_vma(anon_vma);
3122 }
3123 if (mapping)
3124 i_mmap_unlock_read(mapping);
3125out:
3126 xas_destroy(&xas);
3127 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3128 return ret;
3129}
3130
3131void folio_undo_large_rmappable(struct folio *folio)
3132{
3133 struct deferred_split *ds_queue;
3134 unsigned long flags;
3135
3136 /*
3137 * At this point, there is no one trying to add the folio to
3138 * deferred_list. If folio is not in deferred_list, it's safe
3139 * to check without acquiring the split_queue_lock.
3140 */
3141 if (data_race(list_empty(&folio->_deferred_list)))
3142 return;
3143
3144 ds_queue = get_deferred_split_queue(folio);
3145 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3146 if (!list_empty(&folio->_deferred_list)) {
3147 ds_queue->split_queue_len--;
3148 list_del_init(&folio->_deferred_list);
3149 }
3150 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3151}
3152
3153void deferred_split_folio(struct folio *folio)
3154{
3155 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3156#ifdef CONFIG_MEMCG
3157 struct mem_cgroup *memcg = folio_memcg(folio);
3158#endif
3159 unsigned long flags;
3160
3161 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
3162
3163 /*
3164 * The try_to_unmap() in page reclaim path might reach here too,
3165 * this may cause a race condition to corrupt deferred split queue.
3166 * And, if page reclaim is already handling the same folio, it is
3167 * unnecessary to handle it again in shrinker.
3168 *
3169 * Check the swapcache flag to determine if the folio is being
3170 * handled by page reclaim since THP swap would add the folio into
3171 * swap cache before calling try_to_unmap().
3172 */
3173 if (folio_test_swapcache(folio))
3174 return;
3175
3176 if (!list_empty(&folio->_deferred_list))
3177 return;
3178
3179 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3180 if (list_empty(&folio->_deferred_list)) {
3181 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3182 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3183 ds_queue->split_queue_len++;
3184#ifdef CONFIG_MEMCG
3185 if (memcg)
3186 set_shrinker_bit(memcg, folio_nid(folio),
3187 deferred_split_shrinker->id);
3188#endif
3189 }
3190 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3191}
3192
3193static unsigned long deferred_split_count(struct shrinker *shrink,
3194 struct shrink_control *sc)
3195{
3196 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3197 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3198
3199#ifdef CONFIG_MEMCG
3200 if (sc->memcg)
3201 ds_queue = &sc->memcg->deferred_split_queue;
3202#endif
3203 return READ_ONCE(ds_queue->split_queue_len);
3204}
3205
3206static unsigned long deferred_split_scan(struct shrinker *shrink,
3207 struct shrink_control *sc)
3208{
3209 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3210 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3211 unsigned long flags;
3212 LIST_HEAD(list);
3213 struct folio *folio, *next;
3214 int split = 0;
3215
3216#ifdef CONFIG_MEMCG
3217 if (sc->memcg)
3218 ds_queue = &sc->memcg->deferred_split_queue;
3219#endif
3220
3221 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3222 /* Take pin on all head pages to avoid freeing them under us */
3223 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3224 _deferred_list) {
3225 if (folio_try_get(folio)) {
3226 list_move(&folio->_deferred_list, &list);
3227 } else {
3228 /* We lost race with folio_put() */
3229 list_del_init(&folio->_deferred_list);
3230 ds_queue->split_queue_len--;
3231 }
3232 if (!--sc->nr_to_scan)
3233 break;
3234 }
3235 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3236
3237 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3238 if (!folio_trylock(folio))
3239 goto next;
3240 /* split_huge_page() removes page from list on success */
3241 if (!split_folio(folio))
3242 split++;
3243 folio_unlock(folio);
3244next:
3245 folio_put(folio);
3246 }
3247
3248 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3249 list_splice_tail(&list, &ds_queue->split_queue);
3250 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3251
3252 /*
3253 * Stop shrinker if we didn't split any page, but the queue is empty.
3254 * This can happen if pages were freed under us.
3255 */
3256 if (!split && list_empty(&ds_queue->split_queue))
3257 return SHRINK_STOP;
3258 return split;
3259}
3260
3261#ifdef CONFIG_DEBUG_FS
3262static void split_huge_pages_all(void)
3263{
3264 struct zone *zone;
3265 struct page *page;
3266 struct folio *folio;
3267 unsigned long pfn, max_zone_pfn;
3268 unsigned long total = 0, split = 0;
3269
3270 pr_debug("Split all THPs\n");
3271 for_each_zone(zone) {
3272 if (!managed_zone(zone))
3273 continue;
3274 max_zone_pfn = zone_end_pfn(zone);
3275 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3276 int nr_pages;
3277
3278 page = pfn_to_online_page(pfn);
3279 if (!page || PageTail(page))
3280 continue;
3281 folio = page_folio(page);
3282 if (!folio_try_get(folio))
3283 continue;
3284
3285 if (unlikely(page_folio(page) != folio))
3286 goto next;
3287
3288 if (zone != folio_zone(folio))
3289 goto next;
3290
3291 if (!folio_test_large(folio)
3292 || folio_test_hugetlb(folio)
3293 || !folio_test_lru(folio))
3294 goto next;
3295
3296 total++;
3297 folio_lock(folio);
3298 nr_pages = folio_nr_pages(folio);
3299 if (!split_folio(folio))
3300 split++;
3301 pfn += nr_pages - 1;
3302 folio_unlock(folio);
3303next:
3304 folio_put(folio);
3305 cond_resched();
3306 }
3307 }
3308
3309 pr_debug("%lu of %lu THP split\n", split, total);
3310}
3311
3312static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3313{
3314 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3315 is_vm_hugetlb_page(vma);
3316}
3317
3318static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3319 unsigned long vaddr_end)
3320{
3321 int ret = 0;
3322 struct task_struct *task;
3323 struct mm_struct *mm;
3324 unsigned long total = 0, split = 0;
3325 unsigned long addr;
3326
3327 vaddr_start &= PAGE_MASK;
3328 vaddr_end &= PAGE_MASK;
3329
3330 /* Find the task_struct from pid */
3331 rcu_read_lock();
3332 task = find_task_by_vpid(pid);
3333 if (!task) {
3334 rcu_read_unlock();
3335 ret = -ESRCH;
3336 goto out;
3337 }
3338 get_task_struct(task);
3339 rcu_read_unlock();
3340
3341 /* Find the mm_struct */
3342 mm = get_task_mm(task);
3343 put_task_struct(task);
3344
3345 if (!mm) {
3346 ret = -EINVAL;
3347 goto out;
3348 }
3349
3350 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3351 pid, vaddr_start, vaddr_end);
3352
3353 mmap_read_lock(mm);
3354 /*
3355 * always increase addr by PAGE_SIZE, since we could have a PTE page
3356 * table filled with PTE-mapped THPs, each of which is distinct.
3357 */
3358 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3359 struct vm_area_struct *vma = vma_lookup(mm, addr);
3360 struct page *page;
3361 struct folio *folio;
3362
3363 if (!vma)
3364 break;
3365
3366 /* skip special VMA and hugetlb VMA */
3367 if (vma_not_suitable_for_thp_split(vma)) {
3368 addr = vma->vm_end;
3369 continue;
3370 }
3371
3372 /* FOLL_DUMP to ignore special (like zero) pages */
3373 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3374
3375 if (IS_ERR_OR_NULL(page))
3376 continue;
3377
3378 folio = page_folio(page);
3379 if (!is_transparent_hugepage(folio))
3380 goto next;
3381
3382 total++;
3383 if (!can_split_folio(folio, NULL))
3384 goto next;
3385
3386 if (!folio_trylock(folio))
3387 goto next;
3388
3389 if (!split_folio(folio))
3390 split++;
3391
3392 folio_unlock(folio);
3393next:
3394 folio_put(folio);
3395 cond_resched();
3396 }
3397 mmap_read_unlock(mm);
3398 mmput(mm);
3399
3400 pr_debug("%lu of %lu THP split\n", split, total);
3401
3402out:
3403 return ret;
3404}
3405
3406static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3407 pgoff_t off_end)
3408{
3409 struct filename *file;
3410 struct file *candidate;
3411 struct address_space *mapping;
3412 int ret = -EINVAL;
3413 pgoff_t index;
3414 int nr_pages = 1;
3415 unsigned long total = 0, split = 0;
3416
3417 file = getname_kernel(file_path);
3418 if (IS_ERR(file))
3419 return ret;
3420
3421 candidate = file_open_name(file, O_RDONLY, 0);
3422 if (IS_ERR(candidate))
3423 goto out;
3424
3425 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3426 file_path, off_start, off_end);
3427
3428 mapping = candidate->f_mapping;
3429
3430 for (index = off_start; index < off_end; index += nr_pages) {
3431 struct folio *folio = filemap_get_folio(mapping, index);
3432
3433 nr_pages = 1;
3434 if (IS_ERR(folio))
3435 continue;
3436
3437 if (!folio_test_large(folio))
3438 goto next;
3439
3440 total++;
3441 nr_pages = folio_nr_pages(folio);
3442
3443 if (!folio_trylock(folio))
3444 goto next;
3445
3446 if (!split_folio(folio))
3447 split++;
3448
3449 folio_unlock(folio);
3450next:
3451 folio_put(folio);
3452 cond_resched();
3453 }
3454
3455 filp_close(candidate, NULL);
3456 ret = 0;
3457
3458 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3459out:
3460 putname(file);
3461 return ret;
3462}
3463
3464#define MAX_INPUT_BUF_SZ 255
3465
3466static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3467 size_t count, loff_t *ppops)
3468{
3469 static DEFINE_MUTEX(split_debug_mutex);
3470 ssize_t ret;
3471 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3472 char input_buf[MAX_INPUT_BUF_SZ];
3473 int pid;
3474 unsigned long vaddr_start, vaddr_end;
3475
3476 ret = mutex_lock_interruptible(&split_debug_mutex);
3477 if (ret)
3478 return ret;
3479
3480 ret = -EFAULT;
3481
3482 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3483 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3484 goto out;
3485
3486 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3487
3488 if (input_buf[0] == '/') {
3489 char *tok;
3490 char *buf = input_buf;
3491 char file_path[MAX_INPUT_BUF_SZ];
3492 pgoff_t off_start = 0, off_end = 0;
3493 size_t input_len = strlen(input_buf);
3494
3495 tok = strsep(&buf, ",");
3496 if (tok) {
3497 strcpy(file_path, tok);
3498 } else {
3499 ret = -EINVAL;
3500 goto out;
3501 }
3502
3503 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3504 if (ret != 2) {
3505 ret = -EINVAL;
3506 goto out;
3507 }
3508 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3509 if (!ret)
3510 ret = input_len;
3511
3512 goto out;
3513 }
3514
3515 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3516 if (ret == 1 && pid == 1) {
3517 split_huge_pages_all();
3518 ret = strlen(input_buf);
3519 goto out;
3520 } else if (ret != 3) {
3521 ret = -EINVAL;
3522 goto out;
3523 }
3524
3525 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3526 if (!ret)
3527 ret = strlen(input_buf);
3528out:
3529 mutex_unlock(&split_debug_mutex);
3530 return ret;
3531
3532}
3533
3534static const struct file_operations split_huge_pages_fops = {
3535 .owner = THIS_MODULE,
3536 .write = split_huge_pages_write,
3537 .llseek = no_llseek,
3538};
3539
3540static int __init split_huge_pages_debugfs(void)
3541{
3542 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3543 &split_huge_pages_fops);
3544 return 0;
3545}
3546late_initcall(split_huge_pages_debugfs);
3547#endif
3548
3549#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3550int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3551 struct page *page)
3552{
3553 struct folio *folio = page_folio(page);
3554 struct vm_area_struct *vma = pvmw->vma;
3555 struct mm_struct *mm = vma->vm_mm;
3556 unsigned long address = pvmw->address;
3557 bool anon_exclusive;
3558 pmd_t pmdval;
3559 swp_entry_t entry;
3560 pmd_t pmdswp;
3561
3562 if (!(pvmw->pmd && !pvmw->pte))
3563 return 0;
3564
3565 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3566 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3567
3568 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
3569 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
3570 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
3571 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3572 return -EBUSY;
3573 }
3574
3575 if (pmd_dirty(pmdval))
3576 folio_mark_dirty(folio);
3577 if (pmd_write(pmdval))
3578 entry = make_writable_migration_entry(page_to_pfn(page));
3579 else if (anon_exclusive)
3580 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3581 else
3582 entry = make_readable_migration_entry(page_to_pfn(page));
3583 if (pmd_young(pmdval))
3584 entry = make_migration_entry_young(entry);
3585 if (pmd_dirty(pmdval))
3586 entry = make_migration_entry_dirty(entry);
3587 pmdswp = swp_entry_to_pmd(entry);
3588 if (pmd_soft_dirty(pmdval))
3589 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3590 if (pmd_uffd_wp(pmdval))
3591 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3592 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3593 folio_remove_rmap_pmd(folio, page, vma);
3594 folio_put(folio);
3595 trace_set_migration_pmd(address, pmd_val(pmdswp));
3596
3597 return 0;
3598}
3599
3600void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3601{
3602 struct folio *folio = page_folio(new);
3603 struct vm_area_struct *vma = pvmw->vma;
3604 struct mm_struct *mm = vma->vm_mm;
3605 unsigned long address = pvmw->address;
3606 unsigned long haddr = address & HPAGE_PMD_MASK;
3607 pmd_t pmde;
3608 swp_entry_t entry;
3609
3610 if (!(pvmw->pmd && !pvmw->pte))
3611 return;
3612
3613 entry = pmd_to_swp_entry(*pvmw->pmd);
3614 folio_get(folio);
3615 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3616 if (pmd_swp_soft_dirty(*pvmw->pmd))
3617 pmde = pmd_mksoft_dirty(pmde);
3618 if (is_writable_migration_entry(entry))
3619 pmde = pmd_mkwrite(pmde, vma);
3620 if (pmd_swp_uffd_wp(*pvmw->pmd))
3621 pmde = pmd_mkuffd_wp(pmde);
3622 if (!is_migration_entry_young(entry))
3623 pmde = pmd_mkold(pmde);
3624 /* NOTE: this may contain setting soft-dirty on some archs */
3625 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
3626 pmde = pmd_mkdirty(pmde);
3627
3628 if (folio_test_anon(folio)) {
3629 rmap_t rmap_flags = RMAP_NONE;
3630
3631 if (!is_readable_migration_entry(entry))
3632 rmap_flags |= RMAP_EXCLUSIVE;
3633
3634 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
3635 } else {
3636 folio_add_file_rmap_pmd(folio, new, vma);
3637 }
3638 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
3639 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3640
3641 /* No need to invalidate - it was non-present before */
3642 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3643 trace_remove_migration_pmd(address, pmd_val(pmde));
3644}
3645#endif