Loading...
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
18#include <linux/freezer.h>
19#include <linux/mman.h>
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
31unsigned long transparent_hugepage_flags __read_mostly =
32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
92} khugepaged_scan = {
93 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
94};
95
96
97static int set_recommended_min_free_kbytes(void)
98{
99 struct zone *zone;
100 int nr_zones = 0;
101 unsigned long recommended_min;
102 extern int min_free_kbytes;
103
104 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
105 &transparent_hugepage_flags) &&
106 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
107 &transparent_hugepage_flags))
108 return 0;
109
110 for_each_populated_zone(zone)
111 nr_zones++;
112
113 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116 /*
117 * Make sure that on average at least two pageblocks are almost free
118 * of another type, one for a migratetype to fall back to and a
119 * second to avoid subsequent fallbacks of other types There are 3
120 * MIGRATE_TYPES we care about.
121 */
122 recommended_min += pageblock_nr_pages * nr_zones *
123 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125 /* don't ever allow to reserve more than 5% of the lowmem */
126 recommended_min = min(recommended_min,
127 (unsigned long) nr_free_buffer_pages() / 20);
128 recommended_min <<= (PAGE_SHIFT-10);
129
130 if (recommended_min > min_free_kbytes)
131 min_free_kbytes = recommended_min;
132 setup_per_zone_wmarks();
133 return 0;
134}
135late_initcall(set_recommended_min_free_kbytes);
136
137static int start_khugepaged(void)
138{
139 int err = 0;
140 if (khugepaged_enabled()) {
141 int wakeup;
142 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
143 err = -ENOMEM;
144 goto out;
145 }
146 mutex_lock(&khugepaged_mutex);
147 if (!khugepaged_thread)
148 khugepaged_thread = kthread_run(khugepaged, NULL,
149 "khugepaged");
150 if (unlikely(IS_ERR(khugepaged_thread))) {
151 printk(KERN_ERR
152 "khugepaged: kthread_run(khugepaged) failed\n");
153 err = PTR_ERR(khugepaged_thread);
154 khugepaged_thread = NULL;
155 }
156 wakeup = !list_empty(&khugepaged_scan.mm_head);
157 mutex_unlock(&khugepaged_mutex);
158 if (wakeup)
159 wake_up_interruptible(&khugepaged_wait);
160
161 set_recommended_min_free_kbytes();
162 } else
163 /* wakeup to exit */
164 wake_up_interruptible(&khugepaged_wait);
165out:
166 return err;
167}
168
169#ifdef CONFIG_SYSFS
170
171static ssize_t double_flag_show(struct kobject *kobj,
172 struct kobj_attribute *attr, char *buf,
173 enum transparent_hugepage_flag enabled,
174 enum transparent_hugepage_flag req_madv)
175{
176 if (test_bit(enabled, &transparent_hugepage_flags)) {
177 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
178 return sprintf(buf, "[always] madvise never\n");
179 } else if (test_bit(req_madv, &transparent_hugepage_flags))
180 return sprintf(buf, "always [madvise] never\n");
181 else
182 return sprintf(buf, "always madvise [never]\n");
183}
184static ssize_t double_flag_store(struct kobject *kobj,
185 struct kobj_attribute *attr,
186 const char *buf, size_t count,
187 enum transparent_hugepage_flag enabled,
188 enum transparent_hugepage_flag req_madv)
189{
190 if (!memcmp("always", buf,
191 min(sizeof("always")-1, count))) {
192 set_bit(enabled, &transparent_hugepage_flags);
193 clear_bit(req_madv, &transparent_hugepage_flags);
194 } else if (!memcmp("madvise", buf,
195 min(sizeof("madvise")-1, count))) {
196 clear_bit(enabled, &transparent_hugepage_flags);
197 set_bit(req_madv, &transparent_hugepage_flags);
198 } else if (!memcmp("never", buf,
199 min(sizeof("never")-1, count))) {
200 clear_bit(enabled, &transparent_hugepage_flags);
201 clear_bit(req_madv, &transparent_hugepage_flags);
202 } else
203 return -EINVAL;
204
205 return count;
206}
207
208static ssize_t enabled_show(struct kobject *kobj,
209 struct kobj_attribute *attr, char *buf)
210{
211 return double_flag_show(kobj, attr, buf,
212 TRANSPARENT_HUGEPAGE_FLAG,
213 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
214}
215static ssize_t enabled_store(struct kobject *kobj,
216 struct kobj_attribute *attr,
217 const char *buf, size_t count)
218{
219 ssize_t ret;
220
221 ret = double_flag_store(kobj, attr, buf, count,
222 TRANSPARENT_HUGEPAGE_FLAG,
223 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
224
225 if (ret > 0) {
226 int err = start_khugepaged();
227 if (err)
228 ret = err;
229 }
230
231 if (ret > 0 &&
232 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
233 &transparent_hugepage_flags) ||
234 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
235 &transparent_hugepage_flags)))
236 set_recommended_min_free_kbytes();
237
238 return ret;
239}
240static struct kobj_attribute enabled_attr =
241 __ATTR(enabled, 0644, enabled_show, enabled_store);
242
243static ssize_t single_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag flag)
246{
247 return sprintf(buf, "%d\n",
248 !!test_bit(flag, &transparent_hugepage_flags));
249}
250
251static ssize_t single_flag_store(struct kobject *kobj,
252 struct kobj_attribute *attr,
253 const char *buf, size_t count,
254 enum transparent_hugepage_flag flag)
255{
256 unsigned long value;
257 int ret;
258
259 ret = kstrtoul(buf, 10, &value);
260 if (ret < 0)
261 return ret;
262 if (value > 1)
263 return -EINVAL;
264
265 if (value)
266 set_bit(flag, &transparent_hugepage_flags);
267 else
268 clear_bit(flag, &transparent_hugepage_flags);
269
270 return count;
271}
272
273/*
274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
276 * memory just to allocate one more hugepage.
277 */
278static ssize_t defrag_show(struct kobject *kobj,
279 struct kobj_attribute *attr, char *buf)
280{
281 return double_flag_show(kobj, attr, buf,
282 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
283 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
284}
285static ssize_t defrag_store(struct kobject *kobj,
286 struct kobj_attribute *attr,
287 const char *buf, size_t count)
288{
289 return double_flag_store(kobj, attr, buf, count,
290 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
291 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
292}
293static struct kobj_attribute defrag_attr =
294 __ATTR(defrag, 0644, defrag_show, defrag_store);
295
296#ifdef CONFIG_DEBUG_VM
297static ssize_t debug_cow_show(struct kobject *kobj,
298 struct kobj_attribute *attr, char *buf)
299{
300 return single_flag_show(kobj, attr, buf,
301 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302}
303static ssize_t debug_cow_store(struct kobject *kobj,
304 struct kobj_attribute *attr,
305 const char *buf, size_t count)
306{
307 return single_flag_store(kobj, attr, buf, count,
308 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
309}
310static struct kobj_attribute debug_cow_attr =
311 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
312#endif /* CONFIG_DEBUG_VM */
313
314static struct attribute *hugepage_attr[] = {
315 &enabled_attr.attr,
316 &defrag_attr.attr,
317#ifdef CONFIG_DEBUG_VM
318 &debug_cow_attr.attr,
319#endif
320 NULL,
321};
322
323static struct attribute_group hugepage_attr_group = {
324 .attrs = hugepage_attr,
325};
326
327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
328 struct kobj_attribute *attr,
329 char *buf)
330{
331 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
332}
333
334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
335 struct kobj_attribute *attr,
336 const char *buf, size_t count)
337{
338 unsigned long msecs;
339 int err;
340
341 err = strict_strtoul(buf, 10, &msecs);
342 if (err || msecs > UINT_MAX)
343 return -EINVAL;
344
345 khugepaged_scan_sleep_millisecs = msecs;
346 wake_up_interruptible(&khugepaged_wait);
347
348 return count;
349}
350static struct kobj_attribute scan_sleep_millisecs_attr =
351 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
352 scan_sleep_millisecs_store);
353
354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 char *buf)
357{
358 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
359}
360
361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
362 struct kobj_attribute *attr,
363 const char *buf, size_t count)
364{
365 unsigned long msecs;
366 int err;
367
368 err = strict_strtoul(buf, 10, &msecs);
369 if (err || msecs > UINT_MAX)
370 return -EINVAL;
371
372 khugepaged_alloc_sleep_millisecs = msecs;
373 wake_up_interruptible(&khugepaged_wait);
374
375 return count;
376}
377static struct kobj_attribute alloc_sleep_millisecs_attr =
378 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
379 alloc_sleep_millisecs_store);
380
381static ssize_t pages_to_scan_show(struct kobject *kobj,
382 struct kobj_attribute *attr,
383 char *buf)
384{
385 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
386}
387static ssize_t pages_to_scan_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
390{
391 int err;
392 unsigned long pages;
393
394 err = strict_strtoul(buf, 10, &pages);
395 if (err || !pages || pages > UINT_MAX)
396 return -EINVAL;
397
398 khugepaged_pages_to_scan = pages;
399
400 return count;
401}
402static struct kobj_attribute pages_to_scan_attr =
403 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
404 pages_to_scan_store);
405
406static ssize_t pages_collapsed_show(struct kobject *kobj,
407 struct kobj_attribute *attr,
408 char *buf)
409{
410 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
411}
412static struct kobj_attribute pages_collapsed_attr =
413 __ATTR_RO(pages_collapsed);
414
415static ssize_t full_scans_show(struct kobject *kobj,
416 struct kobj_attribute *attr,
417 char *buf)
418{
419 return sprintf(buf, "%u\n", khugepaged_full_scans);
420}
421static struct kobj_attribute full_scans_attr =
422 __ATTR_RO(full_scans);
423
424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
425 struct kobj_attribute *attr, char *buf)
426{
427 return single_flag_show(kobj, attr, buf,
428 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
429}
430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
431 struct kobj_attribute *attr,
432 const char *buf, size_t count)
433{
434 return single_flag_store(kobj, attr, buf, count,
435 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
436}
437static struct kobj_attribute khugepaged_defrag_attr =
438 __ATTR(defrag, 0644, khugepaged_defrag_show,
439 khugepaged_defrag_store);
440
441/*
442 * max_ptes_none controls if khugepaged should collapse hugepages over
443 * any unmapped ptes in turn potentially increasing the memory
444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
445 * reduce the available free memory in the system as it
446 * runs. Increasing max_ptes_none will instead potentially reduce the
447 * free memory in the system during the khugepaged scan.
448 */
449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
450 struct kobj_attribute *attr,
451 char *buf)
452{
453 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
454}
455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
456 struct kobj_attribute *attr,
457 const char *buf, size_t count)
458{
459 int err;
460 unsigned long max_ptes_none;
461
462 err = strict_strtoul(buf, 10, &max_ptes_none);
463 if (err || max_ptes_none > HPAGE_PMD_NR-1)
464 return -EINVAL;
465
466 khugepaged_max_ptes_none = max_ptes_none;
467
468 return count;
469}
470static struct kobj_attribute khugepaged_max_ptes_none_attr =
471 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
472 khugepaged_max_ptes_none_store);
473
474static struct attribute *khugepaged_attr[] = {
475 &khugepaged_defrag_attr.attr,
476 &khugepaged_max_ptes_none_attr.attr,
477 &pages_to_scan_attr.attr,
478 &pages_collapsed_attr.attr,
479 &full_scans_attr.attr,
480 &scan_sleep_millisecs_attr.attr,
481 &alloc_sleep_millisecs_attr.attr,
482 NULL,
483};
484
485static struct attribute_group khugepaged_attr_group = {
486 .attrs = khugepaged_attr,
487 .name = "khugepaged",
488};
489#endif /* CONFIG_SYSFS */
490
491static int __init hugepage_init(void)
492{
493 int err;
494#ifdef CONFIG_SYSFS
495 static struct kobject *hugepage_kobj;
496#endif
497
498 err = -EINVAL;
499 if (!has_transparent_hugepage()) {
500 transparent_hugepage_flags = 0;
501 goto out;
502 }
503
504#ifdef CONFIG_SYSFS
505 err = -ENOMEM;
506 hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
507 if (unlikely(!hugepage_kobj)) {
508 printk(KERN_ERR "hugepage: failed kobject create\n");
509 goto out;
510 }
511
512 err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
513 if (err) {
514 printk(KERN_ERR "hugepage: failed register hugeage group\n");
515 goto out;
516 }
517
518 err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
519 if (err) {
520 printk(KERN_ERR "hugepage: failed register hugeage group\n");
521 goto out;
522 }
523#endif
524
525 err = khugepaged_slab_init();
526 if (err)
527 goto out;
528
529 err = mm_slots_hash_init();
530 if (err) {
531 khugepaged_slab_free();
532 goto out;
533 }
534
535 /*
536 * By default disable transparent hugepages on smaller systems,
537 * where the extra memory used could hurt more than TLB overhead
538 * is likely to save. The admin can still enable it through /sys.
539 */
540 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
541 transparent_hugepage_flags = 0;
542
543 start_khugepaged();
544
545 set_recommended_min_free_kbytes();
546
547out:
548 return err;
549}
550module_init(hugepage_init)
551
552static int __init setup_transparent_hugepage(char *str)
553{
554 int ret = 0;
555 if (!str)
556 goto out;
557 if (!strcmp(str, "always")) {
558 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
559 &transparent_hugepage_flags);
560 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
561 &transparent_hugepage_flags);
562 ret = 1;
563 } else if (!strcmp(str, "madvise")) {
564 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
565 &transparent_hugepage_flags);
566 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
567 &transparent_hugepage_flags);
568 ret = 1;
569 } else if (!strcmp(str, "never")) {
570 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
571 &transparent_hugepage_flags);
572 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
573 &transparent_hugepage_flags);
574 ret = 1;
575 }
576out:
577 if (!ret)
578 printk(KERN_WARNING
579 "transparent_hugepage= cannot parse, ignored\n");
580 return ret;
581}
582__setup("transparent_hugepage=", setup_transparent_hugepage);
583
584static void prepare_pmd_huge_pte(pgtable_t pgtable,
585 struct mm_struct *mm)
586{
587 assert_spin_locked(&mm->page_table_lock);
588
589 /* FIFO */
590 if (!mm->pmd_huge_pte)
591 INIT_LIST_HEAD(&pgtable->lru);
592 else
593 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
594 mm->pmd_huge_pte = pgtable;
595}
596
597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
598{
599 if (likely(vma->vm_flags & VM_WRITE))
600 pmd = pmd_mkwrite(pmd);
601 return pmd;
602}
603
604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
605 struct vm_area_struct *vma,
606 unsigned long haddr, pmd_t *pmd,
607 struct page *page)
608{
609 int ret = 0;
610 pgtable_t pgtable;
611
612 VM_BUG_ON(!PageCompound(page));
613 pgtable = pte_alloc_one(mm, haddr);
614 if (unlikely(!pgtable)) {
615 mem_cgroup_uncharge_page(page);
616 put_page(page);
617 return VM_FAULT_OOM;
618 }
619
620 clear_huge_page(page, haddr, HPAGE_PMD_NR);
621 __SetPageUptodate(page);
622
623 spin_lock(&mm->page_table_lock);
624 if (unlikely(!pmd_none(*pmd))) {
625 spin_unlock(&mm->page_table_lock);
626 mem_cgroup_uncharge_page(page);
627 put_page(page);
628 pte_free(mm, pgtable);
629 } else {
630 pmd_t entry;
631 entry = mk_pmd(page, vma->vm_page_prot);
632 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
633 entry = pmd_mkhuge(entry);
634 /*
635 * The spinlocking to take the lru_lock inside
636 * page_add_new_anon_rmap() acts as a full memory
637 * barrier to be sure clear_huge_page writes become
638 * visible after the set_pmd_at() write.
639 */
640 page_add_new_anon_rmap(page, vma, haddr);
641 set_pmd_at(mm, haddr, pmd, entry);
642 prepare_pmd_huge_pte(pgtable, mm);
643 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
644 spin_unlock(&mm->page_table_lock);
645 }
646
647 return ret;
648}
649
650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
651{
652 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
653}
654
655static inline struct page *alloc_hugepage_vma(int defrag,
656 struct vm_area_struct *vma,
657 unsigned long haddr, int nd,
658 gfp_t extra_gfp)
659{
660 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
661 HPAGE_PMD_ORDER, vma, haddr, nd);
662}
663
664#ifndef CONFIG_NUMA
665static inline struct page *alloc_hugepage(int defrag)
666{
667 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
668 HPAGE_PMD_ORDER);
669}
670#endif
671
672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
673 unsigned long address, pmd_t *pmd,
674 unsigned int flags)
675{
676 struct page *page;
677 unsigned long haddr = address & HPAGE_PMD_MASK;
678 pte_t *pte;
679
680 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
681 if (unlikely(anon_vma_prepare(vma)))
682 return VM_FAULT_OOM;
683 if (unlikely(khugepaged_enter(vma)))
684 return VM_FAULT_OOM;
685 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
686 vma, haddr, numa_node_id(), 0);
687 if (unlikely(!page)) {
688 count_vm_event(THP_FAULT_FALLBACK);
689 goto out;
690 }
691 count_vm_event(THP_FAULT_ALLOC);
692 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
693 put_page(page);
694 goto out;
695 }
696
697 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
698 }
699out:
700 /*
701 * Use __pte_alloc instead of pte_alloc_map, because we can't
702 * run pte_offset_map on the pmd, if an huge pmd could
703 * materialize from under us from a different thread.
704 */
705 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
706 return VM_FAULT_OOM;
707 /* if an huge pmd materialized from under us just retry later */
708 if (unlikely(pmd_trans_huge(*pmd)))
709 return 0;
710 /*
711 * A regular pmd is established and it can't morph into a huge pmd
712 * from under us anymore at this point because we hold the mmap_sem
713 * read mode and khugepaged takes it in write mode. So now it's
714 * safe to run pte_offset_map().
715 */
716 pte = pte_offset_map(pmd, address);
717 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
718}
719
720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
721 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
722 struct vm_area_struct *vma)
723{
724 struct page *src_page;
725 pmd_t pmd;
726 pgtable_t pgtable;
727 int ret;
728
729 ret = -ENOMEM;
730 pgtable = pte_alloc_one(dst_mm, addr);
731 if (unlikely(!pgtable))
732 goto out;
733
734 spin_lock(&dst_mm->page_table_lock);
735 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
736
737 ret = -EAGAIN;
738 pmd = *src_pmd;
739 if (unlikely(!pmd_trans_huge(pmd))) {
740 pte_free(dst_mm, pgtable);
741 goto out_unlock;
742 }
743 if (unlikely(pmd_trans_splitting(pmd))) {
744 /* split huge page running from under us */
745 spin_unlock(&src_mm->page_table_lock);
746 spin_unlock(&dst_mm->page_table_lock);
747 pte_free(dst_mm, pgtable);
748
749 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
750 goto out;
751 }
752 src_page = pmd_page(pmd);
753 VM_BUG_ON(!PageHead(src_page));
754 get_page(src_page);
755 page_dup_rmap(src_page);
756 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
757
758 pmdp_set_wrprotect(src_mm, addr, src_pmd);
759 pmd = pmd_mkold(pmd_wrprotect(pmd));
760 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
761 prepare_pmd_huge_pte(pgtable, dst_mm);
762
763 ret = 0;
764out_unlock:
765 spin_unlock(&src_mm->page_table_lock);
766 spin_unlock(&dst_mm->page_table_lock);
767out:
768 return ret;
769}
770
771/* no "address" argument so destroys page coloring of some arch */
772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
773{
774 pgtable_t pgtable;
775
776 assert_spin_locked(&mm->page_table_lock);
777
778 /* FIFO */
779 pgtable = mm->pmd_huge_pte;
780 if (list_empty(&pgtable->lru))
781 mm->pmd_huge_pte = NULL;
782 else {
783 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
784 struct page, lru);
785 list_del(&pgtable->lru);
786 }
787 return pgtable;
788}
789
790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
791 struct vm_area_struct *vma,
792 unsigned long address,
793 pmd_t *pmd, pmd_t orig_pmd,
794 struct page *page,
795 unsigned long haddr)
796{
797 pgtable_t pgtable;
798 pmd_t _pmd;
799 int ret = 0, i;
800 struct page **pages;
801
802 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
803 GFP_KERNEL);
804 if (unlikely(!pages)) {
805 ret |= VM_FAULT_OOM;
806 goto out;
807 }
808
809 for (i = 0; i < HPAGE_PMD_NR; i++) {
810 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
811 __GFP_OTHER_NODE,
812 vma, address, page_to_nid(page));
813 if (unlikely(!pages[i] ||
814 mem_cgroup_newpage_charge(pages[i], mm,
815 GFP_KERNEL))) {
816 if (pages[i])
817 put_page(pages[i]);
818 mem_cgroup_uncharge_start();
819 while (--i >= 0) {
820 mem_cgroup_uncharge_page(pages[i]);
821 put_page(pages[i]);
822 }
823 mem_cgroup_uncharge_end();
824 kfree(pages);
825 ret |= VM_FAULT_OOM;
826 goto out;
827 }
828 }
829
830 for (i = 0; i < HPAGE_PMD_NR; i++) {
831 copy_user_highpage(pages[i], page + i,
832 haddr + PAGE_SHIFT*i, vma);
833 __SetPageUptodate(pages[i]);
834 cond_resched();
835 }
836
837 spin_lock(&mm->page_table_lock);
838 if (unlikely(!pmd_same(*pmd, orig_pmd)))
839 goto out_free_pages;
840 VM_BUG_ON(!PageHead(page));
841
842 pmdp_clear_flush_notify(vma, haddr, pmd);
843 /* leave pmd empty until pte is filled */
844
845 pgtable = get_pmd_huge_pte(mm);
846 pmd_populate(mm, &_pmd, pgtable);
847
848 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
849 pte_t *pte, entry;
850 entry = mk_pte(pages[i], vma->vm_page_prot);
851 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
852 page_add_new_anon_rmap(pages[i], vma, haddr);
853 pte = pte_offset_map(&_pmd, haddr);
854 VM_BUG_ON(!pte_none(*pte));
855 set_pte_at(mm, haddr, pte, entry);
856 pte_unmap(pte);
857 }
858 kfree(pages);
859
860 mm->nr_ptes++;
861 smp_wmb(); /* make pte visible before pmd */
862 pmd_populate(mm, pmd, pgtable);
863 page_remove_rmap(page);
864 spin_unlock(&mm->page_table_lock);
865
866 ret |= VM_FAULT_WRITE;
867 put_page(page);
868
869out:
870 return ret;
871
872out_free_pages:
873 spin_unlock(&mm->page_table_lock);
874 mem_cgroup_uncharge_start();
875 for (i = 0; i < HPAGE_PMD_NR; i++) {
876 mem_cgroup_uncharge_page(pages[i]);
877 put_page(pages[i]);
878 }
879 mem_cgroup_uncharge_end();
880 kfree(pages);
881 goto out;
882}
883
884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
885 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
886{
887 int ret = 0;
888 struct page *page, *new_page;
889 unsigned long haddr;
890
891 VM_BUG_ON(!vma->anon_vma);
892 spin_lock(&mm->page_table_lock);
893 if (unlikely(!pmd_same(*pmd, orig_pmd)))
894 goto out_unlock;
895
896 page = pmd_page(orig_pmd);
897 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
898 haddr = address & HPAGE_PMD_MASK;
899 if (page_mapcount(page) == 1) {
900 pmd_t entry;
901 entry = pmd_mkyoung(orig_pmd);
902 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
903 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
904 update_mmu_cache(vma, address, entry);
905 ret |= VM_FAULT_WRITE;
906 goto out_unlock;
907 }
908 get_page(page);
909 spin_unlock(&mm->page_table_lock);
910
911 if (transparent_hugepage_enabled(vma) &&
912 !transparent_hugepage_debug_cow())
913 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
914 vma, haddr, numa_node_id(), 0);
915 else
916 new_page = NULL;
917
918 if (unlikely(!new_page)) {
919 count_vm_event(THP_FAULT_FALLBACK);
920 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
921 pmd, orig_pmd, page, haddr);
922 put_page(page);
923 goto out;
924 }
925 count_vm_event(THP_FAULT_ALLOC);
926
927 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
928 put_page(new_page);
929 put_page(page);
930 ret |= VM_FAULT_OOM;
931 goto out;
932 }
933
934 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
935 __SetPageUptodate(new_page);
936
937 spin_lock(&mm->page_table_lock);
938 put_page(page);
939 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
940 mem_cgroup_uncharge_page(new_page);
941 put_page(new_page);
942 } else {
943 pmd_t entry;
944 VM_BUG_ON(!PageHead(page));
945 entry = mk_pmd(new_page, vma->vm_page_prot);
946 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
947 entry = pmd_mkhuge(entry);
948 pmdp_clear_flush_notify(vma, haddr, pmd);
949 page_add_new_anon_rmap(new_page, vma, haddr);
950 set_pmd_at(mm, haddr, pmd, entry);
951 update_mmu_cache(vma, address, entry);
952 page_remove_rmap(page);
953 put_page(page);
954 ret |= VM_FAULT_WRITE;
955 }
956out_unlock:
957 spin_unlock(&mm->page_table_lock);
958out:
959 return ret;
960}
961
962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
963 unsigned long addr,
964 pmd_t *pmd,
965 unsigned int flags)
966{
967 struct page *page = NULL;
968
969 assert_spin_locked(&mm->page_table_lock);
970
971 if (flags & FOLL_WRITE && !pmd_write(*pmd))
972 goto out;
973
974 page = pmd_page(*pmd);
975 VM_BUG_ON(!PageHead(page));
976 if (flags & FOLL_TOUCH) {
977 pmd_t _pmd;
978 /*
979 * We should set the dirty bit only for FOLL_WRITE but
980 * for now the dirty bit in the pmd is meaningless.
981 * And if the dirty bit will become meaningful and
982 * we'll only set it with FOLL_WRITE, an atomic
983 * set_bit will be required on the pmd to set the
984 * young bit, instead of the current set_pmd_at.
985 */
986 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
987 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
988 }
989 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
990 VM_BUG_ON(!PageCompound(page));
991 if (flags & FOLL_GET)
992 get_page(page);
993
994out:
995 return page;
996}
997
998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
999 pmd_t *pmd)
1000{
1001 int ret = 0;
1002
1003 spin_lock(&tlb->mm->page_table_lock);
1004 if (likely(pmd_trans_huge(*pmd))) {
1005 if (unlikely(pmd_trans_splitting(*pmd))) {
1006 spin_unlock(&tlb->mm->page_table_lock);
1007 wait_split_huge_page(vma->anon_vma,
1008 pmd);
1009 } else {
1010 struct page *page;
1011 pgtable_t pgtable;
1012 pgtable = get_pmd_huge_pte(tlb->mm);
1013 page = pmd_page(*pmd);
1014 pmd_clear(pmd);
1015 page_remove_rmap(page);
1016 VM_BUG_ON(page_mapcount(page) < 0);
1017 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018 VM_BUG_ON(!PageHead(page));
1019 spin_unlock(&tlb->mm->page_table_lock);
1020 tlb_remove_page(tlb, page);
1021 pte_free(tlb->mm, pgtable);
1022 ret = 1;
1023 }
1024 } else
1025 spin_unlock(&tlb->mm->page_table_lock);
1026
1027 return ret;
1028}
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031 unsigned long addr, unsigned long end,
1032 unsigned char *vec)
1033{
1034 int ret = 0;
1035
1036 spin_lock(&vma->vm_mm->page_table_lock);
1037 if (likely(pmd_trans_huge(*pmd))) {
1038 ret = !pmd_trans_splitting(*pmd);
1039 spin_unlock(&vma->vm_mm->page_table_lock);
1040 if (unlikely(!ret))
1041 wait_split_huge_page(vma->anon_vma, pmd);
1042 else {
1043 /*
1044 * All logical pages in the range are present
1045 * if backed by a huge page.
1046 */
1047 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048 }
1049 } else
1050 spin_unlock(&vma->vm_mm->page_table_lock);
1051
1052 return ret;
1053}
1054
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056 unsigned long addr, pgprot_t newprot)
1057{
1058 struct mm_struct *mm = vma->vm_mm;
1059 int ret = 0;
1060
1061 spin_lock(&mm->page_table_lock);
1062 if (likely(pmd_trans_huge(*pmd))) {
1063 if (unlikely(pmd_trans_splitting(*pmd))) {
1064 spin_unlock(&mm->page_table_lock);
1065 wait_split_huge_page(vma->anon_vma, pmd);
1066 } else {
1067 pmd_t entry;
1068
1069 entry = pmdp_get_and_clear(mm, addr, pmd);
1070 entry = pmd_modify(entry, newprot);
1071 set_pmd_at(mm, addr, pmd, entry);
1072 spin_unlock(&vma->vm_mm->page_table_lock);
1073 flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074 ret = 1;
1075 }
1076 } else
1077 spin_unlock(&vma->vm_mm->page_table_lock);
1078
1079 return ret;
1080}
1081
1082pmd_t *page_check_address_pmd(struct page *page,
1083 struct mm_struct *mm,
1084 unsigned long address,
1085 enum page_check_address_pmd_flag flag)
1086{
1087 pgd_t *pgd;
1088 pud_t *pud;
1089 pmd_t *pmd, *ret = NULL;
1090
1091 if (address & ~HPAGE_PMD_MASK)
1092 goto out;
1093
1094 pgd = pgd_offset(mm, address);
1095 if (!pgd_present(*pgd))
1096 goto out;
1097
1098 pud = pud_offset(pgd, address);
1099 if (!pud_present(*pud))
1100 goto out;
1101
1102 pmd = pmd_offset(pud, address);
1103 if (pmd_none(*pmd))
1104 goto out;
1105 if (pmd_page(*pmd) != page)
1106 goto out;
1107 /*
1108 * split_vma() may create temporary aliased mappings. There is
1109 * no risk as long as all huge pmd are found and have their
1110 * splitting bit set before __split_huge_page_refcount
1111 * runs. Finding the same huge pmd more than once during the
1112 * same rmap walk is not a problem.
1113 */
1114 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115 pmd_trans_splitting(*pmd))
1116 goto out;
1117 if (pmd_trans_huge(*pmd)) {
1118 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119 !pmd_trans_splitting(*pmd));
1120 ret = pmd;
1121 }
1122out:
1123 return ret;
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127 struct vm_area_struct *vma,
1128 unsigned long address)
1129{
1130 struct mm_struct *mm = vma->vm_mm;
1131 pmd_t *pmd;
1132 int ret = 0;
1133
1134 spin_lock(&mm->page_table_lock);
1135 pmd = page_check_address_pmd(page, mm, address,
1136 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137 if (pmd) {
1138 /*
1139 * We can't temporarily set the pmd to null in order
1140 * to split it, the pmd must remain marked huge at all
1141 * times or the VM won't take the pmd_trans_huge paths
1142 * and it won't wait on the anon_vma->root->mutex to
1143 * serialize against split_huge_page*.
1144 */
1145 pmdp_splitting_flush_notify(vma, address, pmd);
1146 ret = 1;
1147 }
1148 spin_unlock(&mm->page_table_lock);
1149
1150 return ret;
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
1154{
1155 int i;
1156 unsigned long head_index = page->index;
1157 struct zone *zone = page_zone(page);
1158 int zonestat;
1159
1160 /* prevent PageLRU to go away from under us, and freeze lru stats */
1161 spin_lock_irq(&zone->lru_lock);
1162 compound_lock(page);
1163
1164 for (i = 1; i < HPAGE_PMD_NR; i++) {
1165 struct page *page_tail = page + i;
1166
1167 /* tail_page->_count cannot change */
1168 atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169 BUG_ON(page_count(page) <= 0);
1170 atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171 BUG_ON(atomic_read(&page_tail->_count) <= 0);
1172
1173 /* after clearing PageTail the gup refcount can be released */
1174 smp_mb();
1175
1176 /*
1177 * retain hwpoison flag of the poisoned tail page:
1178 * fix for the unsuitable process killed on Guest Machine(KVM)
1179 * by the memory-failure.
1180 */
1181 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182 page_tail->flags |= (page->flags &
1183 ((1L << PG_referenced) |
1184 (1L << PG_swapbacked) |
1185 (1L << PG_mlocked) |
1186 (1L << PG_uptodate)));
1187 page_tail->flags |= (1L << PG_dirty);
1188
1189 /*
1190 * 1) clear PageTail before overwriting first_page
1191 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192 */
1193 smp_wmb();
1194
1195 /*
1196 * __split_huge_page_splitting() already set the
1197 * splitting bit in all pmd that could map this
1198 * hugepage, that will ensure no CPU can alter the
1199 * mapcount on the head page. The mapcount is only
1200 * accounted in the head page and it has to be
1201 * transferred to all tail pages in the below code. So
1202 * for this code to be safe, the split the mapcount
1203 * can't change. But that doesn't mean userland can't
1204 * keep changing and reading the page contents while
1205 * we transfer the mapcount, so the pmd splitting
1206 * status is achieved setting a reserved bit in the
1207 * pmd, not by clearing the present bit.
1208 */
1209 BUG_ON(page_mapcount(page_tail));
1210 page_tail->_mapcount = page->_mapcount;
1211
1212 BUG_ON(page_tail->mapping);
1213 page_tail->mapping = page->mapping;
1214
1215 page_tail->index = ++head_index;
1216
1217 BUG_ON(!PageAnon(page_tail));
1218 BUG_ON(!PageUptodate(page_tail));
1219 BUG_ON(!PageDirty(page_tail));
1220 BUG_ON(!PageSwapBacked(page_tail));
1221
1222 mem_cgroup_split_huge_fixup(page, page_tail);
1223
1224 lru_add_page_tail(zone, page, page_tail);
1225 }
1226
1227 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1229
1230 /*
1231 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232 * so adjust those appropriately if this page is on the LRU.
1233 */
1234 if (PageLRU(page)) {
1235 zonestat = NR_LRU_BASE + page_lru(page);
1236 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237 }
1238
1239 ClearPageCompound(page);
1240 compound_unlock(page);
1241 spin_unlock_irq(&zone->lru_lock);
1242
1243 for (i = 1; i < HPAGE_PMD_NR; i++) {
1244 struct page *page_tail = page + i;
1245 BUG_ON(page_count(page_tail) <= 0);
1246 /*
1247 * Tail pages may be freed if there wasn't any mapping
1248 * like if add_to_swap() is running on a lru page that
1249 * had its mapping zapped. And freeing these pages
1250 * requires taking the lru_lock so we do the put_page
1251 * of the tail pages after the split is complete.
1252 */
1253 put_page(page_tail);
1254 }
1255
1256 /*
1257 * Only the head page (now become a regular page) is required
1258 * to be pinned by the caller.
1259 */
1260 BUG_ON(page_count(page) <= 0);
1261}
1262
1263static int __split_huge_page_map(struct page *page,
1264 struct vm_area_struct *vma,
1265 unsigned long address)
1266{
1267 struct mm_struct *mm = vma->vm_mm;
1268 pmd_t *pmd, _pmd;
1269 int ret = 0, i;
1270 pgtable_t pgtable;
1271 unsigned long haddr;
1272
1273 spin_lock(&mm->page_table_lock);
1274 pmd = page_check_address_pmd(page, mm, address,
1275 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276 if (pmd) {
1277 pgtable = get_pmd_huge_pte(mm);
1278 pmd_populate(mm, &_pmd, pgtable);
1279
1280 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281 i++, haddr += PAGE_SIZE) {
1282 pte_t *pte, entry;
1283 BUG_ON(PageCompound(page+i));
1284 entry = mk_pte(page + i, vma->vm_page_prot);
1285 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286 if (!pmd_write(*pmd))
1287 entry = pte_wrprotect(entry);
1288 else
1289 BUG_ON(page_mapcount(page) != 1);
1290 if (!pmd_young(*pmd))
1291 entry = pte_mkold(entry);
1292 pte = pte_offset_map(&_pmd, haddr);
1293 BUG_ON(!pte_none(*pte));
1294 set_pte_at(mm, haddr, pte, entry);
1295 pte_unmap(pte);
1296 }
1297
1298 mm->nr_ptes++;
1299 smp_wmb(); /* make pte visible before pmd */
1300 /*
1301 * Up to this point the pmd is present and huge and
1302 * userland has the whole access to the hugepage
1303 * during the split (which happens in place). If we
1304 * overwrite the pmd with the not-huge version
1305 * pointing to the pte here (which of course we could
1306 * if all CPUs were bug free), userland could trigger
1307 * a small page size TLB miss on the small sized TLB
1308 * while the hugepage TLB entry is still established
1309 * in the huge TLB. Some CPU doesn't like that. See
1310 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311 * Erratum 383 on page 93. Intel should be safe but is
1312 * also warns that it's only safe if the permission
1313 * and cache attributes of the two entries loaded in
1314 * the two TLB is identical (which should be the case
1315 * here). But it is generally safer to never allow
1316 * small and huge TLB entries for the same virtual
1317 * address to be loaded simultaneously. So instead of
1318 * doing "pmd_populate(); flush_tlb_range();" we first
1319 * mark the current pmd notpresent (atomically because
1320 * here the pmd_trans_huge and pmd_trans_splitting
1321 * must remain set at all times on the pmd until the
1322 * split is complete for this pmd), then we flush the
1323 * SMP TLB and finally we write the non-huge version
1324 * of the pmd entry with pmd_populate.
1325 */
1326 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328 pmd_populate(mm, pmd, pgtable);
1329 ret = 1;
1330 }
1331 spin_unlock(&mm->page_table_lock);
1332
1333 return ret;
1334}
1335
1336/* must be called with anon_vma->root->mutex hold */
1337static void __split_huge_page(struct page *page,
1338 struct anon_vma *anon_vma)
1339{
1340 int mapcount, mapcount2;
1341 struct anon_vma_chain *avc;
1342
1343 BUG_ON(!PageHead(page));
1344 BUG_ON(PageTail(page));
1345
1346 mapcount = 0;
1347 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348 struct vm_area_struct *vma = avc->vma;
1349 unsigned long addr = vma_address(page, vma);
1350 BUG_ON(is_vma_temporary_stack(vma));
1351 if (addr == -EFAULT)
1352 continue;
1353 mapcount += __split_huge_page_splitting(page, vma, addr);
1354 }
1355 /*
1356 * It is critical that new vmas are added to the tail of the
1357 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358 * and establishes a child pmd before
1359 * __split_huge_page_splitting() freezes the parent pmd (so if
1360 * we fail to prevent copy_huge_pmd() from running until the
1361 * whole __split_huge_page() is complete), we will still see
1362 * the newly established pmd of the child later during the
1363 * walk, to be able to set it as pmd_trans_splitting too.
1364 */
1365 if (mapcount != page_mapcount(page))
1366 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367 mapcount, page_mapcount(page));
1368 BUG_ON(mapcount != page_mapcount(page));
1369
1370 __split_huge_page_refcount(page);
1371
1372 mapcount2 = 0;
1373 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374 struct vm_area_struct *vma = avc->vma;
1375 unsigned long addr = vma_address(page, vma);
1376 BUG_ON(is_vma_temporary_stack(vma));
1377 if (addr == -EFAULT)
1378 continue;
1379 mapcount2 += __split_huge_page_map(page, vma, addr);
1380 }
1381 if (mapcount != mapcount2)
1382 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383 mapcount, mapcount2, page_mapcount(page));
1384 BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
1388{
1389 struct anon_vma *anon_vma;
1390 int ret = 1;
1391
1392 BUG_ON(!PageAnon(page));
1393 anon_vma = page_lock_anon_vma(page);
1394 if (!anon_vma)
1395 goto out;
1396 ret = 0;
1397 if (!PageCompound(page))
1398 goto out_unlock;
1399
1400 BUG_ON(!PageSwapBacked(page));
1401 __split_huge_page(page, anon_vma);
1402 count_vm_event(THP_SPLIT);
1403
1404 BUG_ON(PageCompound(page));
1405out_unlock:
1406 page_unlock_anon_vma(anon_vma);
1407out:
1408 return ret;
1409}
1410
1411#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1412 VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1413
1414int hugepage_madvise(struct vm_area_struct *vma,
1415 unsigned long *vm_flags, int advice)
1416{
1417 switch (advice) {
1418 case MADV_HUGEPAGE:
1419 /*
1420 * Be somewhat over-protective like KSM for now!
1421 */
1422 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1423 return -EINVAL;
1424 *vm_flags &= ~VM_NOHUGEPAGE;
1425 *vm_flags |= VM_HUGEPAGE;
1426 /*
1427 * If the vma become good for khugepaged to scan,
1428 * register it here without waiting a page fault that
1429 * may not happen any time soon.
1430 */
1431 if (unlikely(khugepaged_enter_vma_merge(vma)))
1432 return -ENOMEM;
1433 break;
1434 case MADV_NOHUGEPAGE:
1435 /*
1436 * Be somewhat over-protective like KSM for now!
1437 */
1438 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1439 return -EINVAL;
1440 *vm_flags &= ~VM_HUGEPAGE;
1441 *vm_flags |= VM_NOHUGEPAGE;
1442 /*
1443 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1444 * this vma even if we leave the mm registered in khugepaged if
1445 * it got registered before VM_NOHUGEPAGE was set.
1446 */
1447 break;
1448 }
1449
1450 return 0;
1451}
1452
1453static int __init khugepaged_slab_init(void)
1454{
1455 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1456 sizeof(struct mm_slot),
1457 __alignof__(struct mm_slot), 0, NULL);
1458 if (!mm_slot_cache)
1459 return -ENOMEM;
1460
1461 return 0;
1462}
1463
1464static void __init khugepaged_slab_free(void)
1465{
1466 kmem_cache_destroy(mm_slot_cache);
1467 mm_slot_cache = NULL;
1468}
1469
1470static inline struct mm_slot *alloc_mm_slot(void)
1471{
1472 if (!mm_slot_cache) /* initialization failed */
1473 return NULL;
1474 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1475}
1476
1477static inline void free_mm_slot(struct mm_slot *mm_slot)
1478{
1479 kmem_cache_free(mm_slot_cache, mm_slot);
1480}
1481
1482static int __init mm_slots_hash_init(void)
1483{
1484 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1485 GFP_KERNEL);
1486 if (!mm_slots_hash)
1487 return -ENOMEM;
1488 return 0;
1489}
1490
1491#if 0
1492static void __init mm_slots_hash_free(void)
1493{
1494 kfree(mm_slots_hash);
1495 mm_slots_hash = NULL;
1496}
1497#endif
1498
1499static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1500{
1501 struct mm_slot *mm_slot;
1502 struct hlist_head *bucket;
1503 struct hlist_node *node;
1504
1505 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1506 % MM_SLOTS_HASH_HEADS];
1507 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1508 if (mm == mm_slot->mm)
1509 return mm_slot;
1510 }
1511 return NULL;
1512}
1513
1514static void insert_to_mm_slots_hash(struct mm_struct *mm,
1515 struct mm_slot *mm_slot)
1516{
1517 struct hlist_head *bucket;
1518
1519 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1520 % MM_SLOTS_HASH_HEADS];
1521 mm_slot->mm = mm;
1522 hlist_add_head(&mm_slot->hash, bucket);
1523}
1524
1525static inline int khugepaged_test_exit(struct mm_struct *mm)
1526{
1527 return atomic_read(&mm->mm_users) == 0;
1528}
1529
1530int __khugepaged_enter(struct mm_struct *mm)
1531{
1532 struct mm_slot *mm_slot;
1533 int wakeup;
1534
1535 mm_slot = alloc_mm_slot();
1536 if (!mm_slot)
1537 return -ENOMEM;
1538
1539 /* __khugepaged_exit() must not run from under us */
1540 VM_BUG_ON(khugepaged_test_exit(mm));
1541 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1542 free_mm_slot(mm_slot);
1543 return 0;
1544 }
1545
1546 spin_lock(&khugepaged_mm_lock);
1547 insert_to_mm_slots_hash(mm, mm_slot);
1548 /*
1549 * Insert just behind the scanning cursor, to let the area settle
1550 * down a little.
1551 */
1552 wakeup = list_empty(&khugepaged_scan.mm_head);
1553 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1554 spin_unlock(&khugepaged_mm_lock);
1555
1556 atomic_inc(&mm->mm_count);
1557 if (wakeup)
1558 wake_up_interruptible(&khugepaged_wait);
1559
1560 return 0;
1561}
1562
1563int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1564{
1565 unsigned long hstart, hend;
1566 if (!vma->anon_vma)
1567 /*
1568 * Not yet faulted in so we will register later in the
1569 * page fault if needed.
1570 */
1571 return 0;
1572 if (vma->vm_ops)
1573 /* khugepaged not yet working on file or special mappings */
1574 return 0;
1575 /*
1576 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1577 * true too, verify it here.
1578 */
1579 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1580 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1581 hend = vma->vm_end & HPAGE_PMD_MASK;
1582 if (hstart < hend)
1583 return khugepaged_enter(vma);
1584 return 0;
1585}
1586
1587void __khugepaged_exit(struct mm_struct *mm)
1588{
1589 struct mm_slot *mm_slot;
1590 int free = 0;
1591
1592 spin_lock(&khugepaged_mm_lock);
1593 mm_slot = get_mm_slot(mm);
1594 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1595 hlist_del(&mm_slot->hash);
1596 list_del(&mm_slot->mm_node);
1597 free = 1;
1598 }
1599 spin_unlock(&khugepaged_mm_lock);
1600
1601 if (free) {
1602 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1603 free_mm_slot(mm_slot);
1604 mmdrop(mm);
1605 } else if (mm_slot) {
1606 /*
1607 * This is required to serialize against
1608 * khugepaged_test_exit() (which is guaranteed to run
1609 * under mmap sem read mode). Stop here (after we
1610 * return all pagetables will be destroyed) until
1611 * khugepaged has finished working on the pagetables
1612 * under the mmap_sem.
1613 */
1614 down_write(&mm->mmap_sem);
1615 up_write(&mm->mmap_sem);
1616 }
1617}
1618
1619static void release_pte_page(struct page *page)
1620{
1621 /* 0 stands for page_is_file_cache(page) == false */
1622 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1623 unlock_page(page);
1624 putback_lru_page(page);
1625}
1626
1627static void release_pte_pages(pte_t *pte, pte_t *_pte)
1628{
1629 while (--_pte >= pte) {
1630 pte_t pteval = *_pte;
1631 if (!pte_none(pteval))
1632 release_pte_page(pte_page(pteval));
1633 }
1634}
1635
1636static void release_all_pte_pages(pte_t *pte)
1637{
1638 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1639}
1640
1641static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1642 unsigned long address,
1643 pte_t *pte)
1644{
1645 struct page *page;
1646 pte_t *_pte;
1647 int referenced = 0, isolated = 0, none = 0;
1648 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1649 _pte++, address += PAGE_SIZE) {
1650 pte_t pteval = *_pte;
1651 if (pte_none(pteval)) {
1652 if (++none <= khugepaged_max_ptes_none)
1653 continue;
1654 else {
1655 release_pte_pages(pte, _pte);
1656 goto out;
1657 }
1658 }
1659 if (!pte_present(pteval) || !pte_write(pteval)) {
1660 release_pte_pages(pte, _pte);
1661 goto out;
1662 }
1663 page = vm_normal_page(vma, address, pteval);
1664 if (unlikely(!page)) {
1665 release_pte_pages(pte, _pte);
1666 goto out;
1667 }
1668 VM_BUG_ON(PageCompound(page));
1669 BUG_ON(!PageAnon(page));
1670 VM_BUG_ON(!PageSwapBacked(page));
1671
1672 /* cannot use mapcount: can't collapse if there's a gup pin */
1673 if (page_count(page) != 1) {
1674 release_pte_pages(pte, _pte);
1675 goto out;
1676 }
1677 /*
1678 * We can do it before isolate_lru_page because the
1679 * page can't be freed from under us. NOTE: PG_lock
1680 * is needed to serialize against split_huge_page
1681 * when invoked from the VM.
1682 */
1683 if (!trylock_page(page)) {
1684 release_pte_pages(pte, _pte);
1685 goto out;
1686 }
1687 /*
1688 * Isolate the page to avoid collapsing an hugepage
1689 * currently in use by the VM.
1690 */
1691 if (isolate_lru_page(page)) {
1692 unlock_page(page);
1693 release_pte_pages(pte, _pte);
1694 goto out;
1695 }
1696 /* 0 stands for page_is_file_cache(page) == false */
1697 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698 VM_BUG_ON(!PageLocked(page));
1699 VM_BUG_ON(PageLRU(page));
1700
1701 /* If there is no mapped pte young don't collapse the page */
1702 if (pte_young(pteval) || PageReferenced(page) ||
1703 mmu_notifier_test_young(vma->vm_mm, address))
1704 referenced = 1;
1705 }
1706 if (unlikely(!referenced))
1707 release_all_pte_pages(pte);
1708 else
1709 isolated = 1;
1710out:
1711 return isolated;
1712}
1713
1714static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1715 struct vm_area_struct *vma,
1716 unsigned long address,
1717 spinlock_t *ptl)
1718{
1719 pte_t *_pte;
1720 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1721 pte_t pteval = *_pte;
1722 struct page *src_page;
1723
1724 if (pte_none(pteval)) {
1725 clear_user_highpage(page, address);
1726 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1727 } else {
1728 src_page = pte_page(pteval);
1729 copy_user_highpage(page, src_page, address, vma);
1730 VM_BUG_ON(page_mapcount(src_page) != 1);
1731 VM_BUG_ON(page_count(src_page) != 2);
1732 release_pte_page(src_page);
1733 /*
1734 * ptl mostly unnecessary, but preempt has to
1735 * be disabled to update the per-cpu stats
1736 * inside page_remove_rmap().
1737 */
1738 spin_lock(ptl);
1739 /*
1740 * paravirt calls inside pte_clear here are
1741 * superfluous.
1742 */
1743 pte_clear(vma->vm_mm, address, _pte);
1744 page_remove_rmap(src_page);
1745 spin_unlock(ptl);
1746 free_page_and_swap_cache(src_page);
1747 }
1748
1749 address += PAGE_SIZE;
1750 page++;
1751 }
1752}
1753
1754static void collapse_huge_page(struct mm_struct *mm,
1755 unsigned long address,
1756 struct page **hpage,
1757 struct vm_area_struct *vma,
1758 int node)
1759{
1760 pgd_t *pgd;
1761 pud_t *pud;
1762 pmd_t *pmd, _pmd;
1763 pte_t *pte;
1764 pgtable_t pgtable;
1765 struct page *new_page;
1766 spinlock_t *ptl;
1767 int isolated;
1768 unsigned long hstart, hend;
1769
1770 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1771#ifndef CONFIG_NUMA
1772 up_read(&mm->mmap_sem);
1773 VM_BUG_ON(!*hpage);
1774 new_page = *hpage;
1775#else
1776 VM_BUG_ON(*hpage);
1777 /*
1778 * Allocate the page while the vma is still valid and under
1779 * the mmap_sem read mode so there is no memory allocation
1780 * later when we take the mmap_sem in write mode. This is more
1781 * friendly behavior (OTOH it may actually hide bugs) to
1782 * filesystems in userland with daemons allocating memory in
1783 * the userland I/O paths. Allocating memory with the
1784 * mmap_sem in read mode is good idea also to allow greater
1785 * scalability.
1786 */
1787 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1788 node, __GFP_OTHER_NODE);
1789
1790 /*
1791 * After allocating the hugepage, release the mmap_sem read lock in
1792 * preparation for taking it in write mode.
1793 */
1794 up_read(&mm->mmap_sem);
1795 if (unlikely(!new_page)) {
1796 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1797 *hpage = ERR_PTR(-ENOMEM);
1798 return;
1799 }
1800#endif
1801
1802 count_vm_event(THP_COLLAPSE_ALLOC);
1803 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1804#ifdef CONFIG_NUMA
1805 put_page(new_page);
1806#endif
1807 return;
1808 }
1809
1810 /*
1811 * Prevent all access to pagetables with the exception of
1812 * gup_fast later hanlded by the ptep_clear_flush and the VM
1813 * handled by the anon_vma lock + PG_lock.
1814 */
1815 down_write(&mm->mmap_sem);
1816 if (unlikely(khugepaged_test_exit(mm)))
1817 goto out;
1818
1819 vma = find_vma(mm, address);
1820 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1821 hend = vma->vm_end & HPAGE_PMD_MASK;
1822 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1823 goto out;
1824
1825 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1826 (vma->vm_flags & VM_NOHUGEPAGE))
1827 goto out;
1828
1829 if (!vma->anon_vma || vma->vm_ops)
1830 goto out;
1831 if (is_vma_temporary_stack(vma))
1832 goto out;
1833 /*
1834 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1835 * true too, verify it here.
1836 */
1837 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1838
1839 pgd = pgd_offset(mm, address);
1840 if (!pgd_present(*pgd))
1841 goto out;
1842
1843 pud = pud_offset(pgd, address);
1844 if (!pud_present(*pud))
1845 goto out;
1846
1847 pmd = pmd_offset(pud, address);
1848 /* pmd can't go away or become huge under us */
1849 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1850 goto out;
1851
1852 anon_vma_lock(vma->anon_vma);
1853
1854 pte = pte_offset_map(pmd, address);
1855 ptl = pte_lockptr(mm, pmd);
1856
1857 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1858 /*
1859 * After this gup_fast can't run anymore. This also removes
1860 * any huge TLB entry from the CPU so we won't allow
1861 * huge and small TLB entries for the same virtual address
1862 * to avoid the risk of CPU bugs in that area.
1863 */
1864 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1865 spin_unlock(&mm->page_table_lock);
1866
1867 spin_lock(ptl);
1868 isolated = __collapse_huge_page_isolate(vma, address, pte);
1869 spin_unlock(ptl);
1870
1871 if (unlikely(!isolated)) {
1872 pte_unmap(pte);
1873 spin_lock(&mm->page_table_lock);
1874 BUG_ON(!pmd_none(*pmd));
1875 set_pmd_at(mm, address, pmd, _pmd);
1876 spin_unlock(&mm->page_table_lock);
1877 anon_vma_unlock(vma->anon_vma);
1878 goto out;
1879 }
1880
1881 /*
1882 * All pages are isolated and locked so anon_vma rmap
1883 * can't run anymore.
1884 */
1885 anon_vma_unlock(vma->anon_vma);
1886
1887 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1888 pte_unmap(pte);
1889 __SetPageUptodate(new_page);
1890 pgtable = pmd_pgtable(_pmd);
1891 VM_BUG_ON(page_count(pgtable) != 1);
1892 VM_BUG_ON(page_mapcount(pgtable) != 0);
1893
1894 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1895 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1896 _pmd = pmd_mkhuge(_pmd);
1897
1898 /*
1899 * spin_lock() below is not the equivalent of smp_wmb(), so
1900 * this is needed to avoid the copy_huge_page writes to become
1901 * visible after the set_pmd_at() write.
1902 */
1903 smp_wmb();
1904
1905 spin_lock(&mm->page_table_lock);
1906 BUG_ON(!pmd_none(*pmd));
1907 page_add_new_anon_rmap(new_page, vma, address);
1908 set_pmd_at(mm, address, pmd, _pmd);
1909 update_mmu_cache(vma, address, entry);
1910 prepare_pmd_huge_pte(pgtable, mm);
1911 mm->nr_ptes--;
1912 spin_unlock(&mm->page_table_lock);
1913
1914#ifndef CONFIG_NUMA
1915 *hpage = NULL;
1916#endif
1917 khugepaged_pages_collapsed++;
1918out_up_write:
1919 up_write(&mm->mmap_sem);
1920 return;
1921
1922out:
1923 mem_cgroup_uncharge_page(new_page);
1924#ifdef CONFIG_NUMA
1925 put_page(new_page);
1926#endif
1927 goto out_up_write;
1928}
1929
1930static int khugepaged_scan_pmd(struct mm_struct *mm,
1931 struct vm_area_struct *vma,
1932 unsigned long address,
1933 struct page **hpage)
1934{
1935 pgd_t *pgd;
1936 pud_t *pud;
1937 pmd_t *pmd;
1938 pte_t *pte, *_pte;
1939 int ret = 0, referenced = 0, none = 0;
1940 struct page *page;
1941 unsigned long _address;
1942 spinlock_t *ptl;
1943 int node = -1;
1944
1945 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1946
1947 pgd = pgd_offset(mm, address);
1948 if (!pgd_present(*pgd))
1949 goto out;
1950
1951 pud = pud_offset(pgd, address);
1952 if (!pud_present(*pud))
1953 goto out;
1954
1955 pmd = pmd_offset(pud, address);
1956 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1957 goto out;
1958
1959 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1960 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1961 _pte++, _address += PAGE_SIZE) {
1962 pte_t pteval = *_pte;
1963 if (pte_none(pteval)) {
1964 if (++none <= khugepaged_max_ptes_none)
1965 continue;
1966 else
1967 goto out_unmap;
1968 }
1969 if (!pte_present(pteval) || !pte_write(pteval))
1970 goto out_unmap;
1971 page = vm_normal_page(vma, _address, pteval);
1972 if (unlikely(!page))
1973 goto out_unmap;
1974 /*
1975 * Chose the node of the first page. This could
1976 * be more sophisticated and look at more pages,
1977 * but isn't for now.
1978 */
1979 if (node == -1)
1980 node = page_to_nid(page);
1981 VM_BUG_ON(PageCompound(page));
1982 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1983 goto out_unmap;
1984 /* cannot use mapcount: can't collapse if there's a gup pin */
1985 if (page_count(page) != 1)
1986 goto out_unmap;
1987 if (pte_young(pteval) || PageReferenced(page) ||
1988 mmu_notifier_test_young(vma->vm_mm, address))
1989 referenced = 1;
1990 }
1991 if (referenced)
1992 ret = 1;
1993out_unmap:
1994 pte_unmap_unlock(pte, ptl);
1995 if (ret)
1996 /* collapse_huge_page will return with the mmap_sem released */
1997 collapse_huge_page(mm, address, hpage, vma, node);
1998out:
1999 return ret;
2000}
2001
2002static void collect_mm_slot(struct mm_slot *mm_slot)
2003{
2004 struct mm_struct *mm = mm_slot->mm;
2005
2006 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2007
2008 if (khugepaged_test_exit(mm)) {
2009 /* free mm_slot */
2010 hlist_del(&mm_slot->hash);
2011 list_del(&mm_slot->mm_node);
2012
2013 /*
2014 * Not strictly needed because the mm exited already.
2015 *
2016 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2017 */
2018
2019 /* khugepaged_mm_lock actually not necessary for the below */
2020 free_mm_slot(mm_slot);
2021 mmdrop(mm);
2022 }
2023}
2024
2025static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2026 struct page **hpage)
2027{
2028 struct mm_slot *mm_slot;
2029 struct mm_struct *mm;
2030 struct vm_area_struct *vma;
2031 int progress = 0;
2032
2033 VM_BUG_ON(!pages);
2034 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2035
2036 if (khugepaged_scan.mm_slot)
2037 mm_slot = khugepaged_scan.mm_slot;
2038 else {
2039 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2040 struct mm_slot, mm_node);
2041 khugepaged_scan.address = 0;
2042 khugepaged_scan.mm_slot = mm_slot;
2043 }
2044 spin_unlock(&khugepaged_mm_lock);
2045
2046 mm = mm_slot->mm;
2047 down_read(&mm->mmap_sem);
2048 if (unlikely(khugepaged_test_exit(mm)))
2049 vma = NULL;
2050 else
2051 vma = find_vma(mm, khugepaged_scan.address);
2052
2053 progress++;
2054 for (; vma; vma = vma->vm_next) {
2055 unsigned long hstart, hend;
2056
2057 cond_resched();
2058 if (unlikely(khugepaged_test_exit(mm))) {
2059 progress++;
2060 break;
2061 }
2062
2063 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2064 !khugepaged_always()) ||
2065 (vma->vm_flags & VM_NOHUGEPAGE)) {
2066 skip:
2067 progress++;
2068 continue;
2069 }
2070 if (!vma->anon_vma || vma->vm_ops)
2071 goto skip;
2072 if (is_vma_temporary_stack(vma))
2073 goto skip;
2074 /*
2075 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2076 * must be true too, verify it here.
2077 */
2078 VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2079 vma->vm_flags & VM_NO_THP);
2080
2081 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2082 hend = vma->vm_end & HPAGE_PMD_MASK;
2083 if (hstart >= hend)
2084 goto skip;
2085 if (khugepaged_scan.address > hend)
2086 goto skip;
2087 if (khugepaged_scan.address < hstart)
2088 khugepaged_scan.address = hstart;
2089 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2090
2091 while (khugepaged_scan.address < hend) {
2092 int ret;
2093 cond_resched();
2094 if (unlikely(khugepaged_test_exit(mm)))
2095 goto breakouterloop;
2096
2097 VM_BUG_ON(khugepaged_scan.address < hstart ||
2098 khugepaged_scan.address + HPAGE_PMD_SIZE >
2099 hend);
2100 ret = khugepaged_scan_pmd(mm, vma,
2101 khugepaged_scan.address,
2102 hpage);
2103 /* move to next address */
2104 khugepaged_scan.address += HPAGE_PMD_SIZE;
2105 progress += HPAGE_PMD_NR;
2106 if (ret)
2107 /* we released mmap_sem so break loop */
2108 goto breakouterloop_mmap_sem;
2109 if (progress >= pages)
2110 goto breakouterloop;
2111 }
2112 }
2113breakouterloop:
2114 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2115breakouterloop_mmap_sem:
2116
2117 spin_lock(&khugepaged_mm_lock);
2118 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2119 /*
2120 * Release the current mm_slot if this mm is about to die, or
2121 * if we scanned all vmas of this mm.
2122 */
2123 if (khugepaged_test_exit(mm) || !vma) {
2124 /*
2125 * Make sure that if mm_users is reaching zero while
2126 * khugepaged runs here, khugepaged_exit will find
2127 * mm_slot not pointing to the exiting mm.
2128 */
2129 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2130 khugepaged_scan.mm_slot = list_entry(
2131 mm_slot->mm_node.next,
2132 struct mm_slot, mm_node);
2133 khugepaged_scan.address = 0;
2134 } else {
2135 khugepaged_scan.mm_slot = NULL;
2136 khugepaged_full_scans++;
2137 }
2138
2139 collect_mm_slot(mm_slot);
2140 }
2141
2142 return progress;
2143}
2144
2145static int khugepaged_has_work(void)
2146{
2147 return !list_empty(&khugepaged_scan.mm_head) &&
2148 khugepaged_enabled();
2149}
2150
2151static int khugepaged_wait_event(void)
2152{
2153 return !list_empty(&khugepaged_scan.mm_head) ||
2154 !khugepaged_enabled();
2155}
2156
2157static void khugepaged_do_scan(struct page **hpage)
2158{
2159 unsigned int progress = 0, pass_through_head = 0;
2160 unsigned int pages = khugepaged_pages_to_scan;
2161
2162 barrier(); /* write khugepaged_pages_to_scan to local stack */
2163
2164 while (progress < pages) {
2165 cond_resched();
2166
2167#ifndef CONFIG_NUMA
2168 if (!*hpage) {
2169 *hpage = alloc_hugepage(khugepaged_defrag());
2170 if (unlikely(!*hpage)) {
2171 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2172 break;
2173 }
2174 count_vm_event(THP_COLLAPSE_ALLOC);
2175 }
2176#else
2177 if (IS_ERR(*hpage))
2178 break;
2179#endif
2180
2181 if (unlikely(kthread_should_stop() || freezing(current)))
2182 break;
2183
2184 spin_lock(&khugepaged_mm_lock);
2185 if (!khugepaged_scan.mm_slot)
2186 pass_through_head++;
2187 if (khugepaged_has_work() &&
2188 pass_through_head < 2)
2189 progress += khugepaged_scan_mm_slot(pages - progress,
2190 hpage);
2191 else
2192 progress = pages;
2193 spin_unlock(&khugepaged_mm_lock);
2194 }
2195}
2196
2197static void khugepaged_alloc_sleep(void)
2198{
2199 DEFINE_WAIT(wait);
2200 add_wait_queue(&khugepaged_wait, &wait);
2201 schedule_timeout_interruptible(
2202 msecs_to_jiffies(
2203 khugepaged_alloc_sleep_millisecs));
2204 remove_wait_queue(&khugepaged_wait, &wait);
2205}
2206
2207#ifndef CONFIG_NUMA
2208static struct page *khugepaged_alloc_hugepage(void)
2209{
2210 struct page *hpage;
2211
2212 do {
2213 hpage = alloc_hugepage(khugepaged_defrag());
2214 if (!hpage) {
2215 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2216 khugepaged_alloc_sleep();
2217 } else
2218 count_vm_event(THP_COLLAPSE_ALLOC);
2219 } while (unlikely(!hpage) &&
2220 likely(khugepaged_enabled()));
2221 return hpage;
2222}
2223#endif
2224
2225static void khugepaged_loop(void)
2226{
2227 struct page *hpage;
2228
2229#ifdef CONFIG_NUMA
2230 hpage = NULL;
2231#endif
2232 while (likely(khugepaged_enabled())) {
2233#ifndef CONFIG_NUMA
2234 hpage = khugepaged_alloc_hugepage();
2235 if (unlikely(!hpage))
2236 break;
2237#else
2238 if (IS_ERR(hpage)) {
2239 khugepaged_alloc_sleep();
2240 hpage = NULL;
2241 }
2242#endif
2243
2244 khugepaged_do_scan(&hpage);
2245#ifndef CONFIG_NUMA
2246 if (hpage)
2247 put_page(hpage);
2248#endif
2249 try_to_freeze();
2250 if (unlikely(kthread_should_stop()))
2251 break;
2252 if (khugepaged_has_work()) {
2253 DEFINE_WAIT(wait);
2254 if (!khugepaged_scan_sleep_millisecs)
2255 continue;
2256 add_wait_queue(&khugepaged_wait, &wait);
2257 schedule_timeout_interruptible(
2258 msecs_to_jiffies(
2259 khugepaged_scan_sleep_millisecs));
2260 remove_wait_queue(&khugepaged_wait, &wait);
2261 } else if (khugepaged_enabled())
2262 wait_event_freezable(khugepaged_wait,
2263 khugepaged_wait_event());
2264 }
2265}
2266
2267static int khugepaged(void *none)
2268{
2269 struct mm_slot *mm_slot;
2270
2271 set_freezable();
2272 set_user_nice(current, 19);
2273
2274 /* serialize with start_khugepaged() */
2275 mutex_lock(&khugepaged_mutex);
2276
2277 for (;;) {
2278 mutex_unlock(&khugepaged_mutex);
2279 VM_BUG_ON(khugepaged_thread != current);
2280 khugepaged_loop();
2281 VM_BUG_ON(khugepaged_thread != current);
2282
2283 mutex_lock(&khugepaged_mutex);
2284 if (!khugepaged_enabled())
2285 break;
2286 if (unlikely(kthread_should_stop()))
2287 break;
2288 }
2289
2290 spin_lock(&khugepaged_mm_lock);
2291 mm_slot = khugepaged_scan.mm_slot;
2292 khugepaged_scan.mm_slot = NULL;
2293 if (mm_slot)
2294 collect_mm_slot(mm_slot);
2295 spin_unlock(&khugepaged_mm_lock);
2296
2297 khugepaged_thread = NULL;
2298 mutex_unlock(&khugepaged_mutex);
2299
2300 return 0;
2301}
2302
2303void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2304{
2305 struct page *page;
2306
2307 spin_lock(&mm->page_table_lock);
2308 if (unlikely(!pmd_trans_huge(*pmd))) {
2309 spin_unlock(&mm->page_table_lock);
2310 return;
2311 }
2312 page = pmd_page(*pmd);
2313 VM_BUG_ON(!page_count(page));
2314 get_page(page);
2315 spin_unlock(&mm->page_table_lock);
2316
2317 split_huge_page(page);
2318
2319 put_page(page);
2320 BUG_ON(pmd_trans_huge(*pmd));
2321}
2322
2323static void split_huge_page_address(struct mm_struct *mm,
2324 unsigned long address)
2325{
2326 pgd_t *pgd;
2327 pud_t *pud;
2328 pmd_t *pmd;
2329
2330 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2331
2332 pgd = pgd_offset(mm, address);
2333 if (!pgd_present(*pgd))
2334 return;
2335
2336 pud = pud_offset(pgd, address);
2337 if (!pud_present(*pud))
2338 return;
2339
2340 pmd = pmd_offset(pud, address);
2341 if (!pmd_present(*pmd))
2342 return;
2343 /*
2344 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2345 * materialize from under us.
2346 */
2347 split_huge_page_pmd(mm, pmd);
2348}
2349
2350void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2351 unsigned long start,
2352 unsigned long end,
2353 long adjust_next)
2354{
2355 /*
2356 * If the new start address isn't hpage aligned and it could
2357 * previously contain an hugepage: check if we need to split
2358 * an huge pmd.
2359 */
2360 if (start & ~HPAGE_PMD_MASK &&
2361 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2362 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2363 split_huge_page_address(vma->vm_mm, start);
2364
2365 /*
2366 * If the new end address isn't hpage aligned and it could
2367 * previously contain an hugepage: check if we need to split
2368 * an huge pmd.
2369 */
2370 if (end & ~HPAGE_PMD_MASK &&
2371 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2372 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2373 split_huge_page_address(vma->vm_mm, end);
2374
2375 /*
2376 * If we're also updating the vma->vm_next->vm_start, if the new
2377 * vm_next->vm_start isn't page aligned and it could previously
2378 * contain an hugepage: check if we need to split an huge pmd.
2379 */
2380 if (adjust_next > 0) {
2381 struct vm_area_struct *next = vma->vm_next;
2382 unsigned long nstart = next->vm_start;
2383 nstart += adjust_next << PAGE_SHIFT;
2384 if (nstart & ~HPAGE_PMD_MASK &&
2385 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2386 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2387 split_huge_page_address(next->vm_mm, nstart);
2388 }
2389}
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
17#include <linux/shrinker.h>
18#include <linux/mm_inline.h>
19#include <linux/swapops.h>
20#include <linux/dax.h>
21#include <linux/khugepaged.h>
22#include <linux/freezer.h>
23#include <linux/pfn_t.h>
24#include <linux/mman.h>
25#include <linux/memremap.h>
26#include <linux/pagemap.h>
27#include <linux/debugfs.h>
28#include <linux/migrate.h>
29#include <linux/hashtable.h>
30#include <linux/userfaultfd_k.h>
31#include <linux/page_idle.h>
32#include <linux/shmem_fs.h>
33
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
38/*
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
45 */
46unsigned long transparent_hugepage_flags __read_mostly =
47#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
49#endif
50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52#endif
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56
57static struct shrinker deferred_split_shrinker;
58
59static atomic_t huge_zero_refcount;
60struct page *huge_zero_page __read_mostly;
61
62static struct page *get_huge_zero_page(void)
63{
64 struct page *zero_page;
65retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 return READ_ONCE(huge_zero_page);
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 HPAGE_PMD_ORDER);
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 return NULL;
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
76 preempt_disable();
77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 preempt_enable();
79 __free_pages(zero_page, compound_order(zero_page));
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
86 return READ_ONCE(huge_zero_page);
87}
88
89static void put_huge_zero_page(void)
90{
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96}
97
98struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99{
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
102
103 if (!get_huge_zero_page())
104 return NULL;
105
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
108
109 return READ_ONCE(huge_zero_page);
110}
111
112void mm_put_huge_zero_page(struct mm_struct *mm)
113{
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
116}
117
118static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120{
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123}
124
125static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
127{
128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
131 __free_pages(zero_page, compound_order(zero_page));
132 return HPAGE_PMD_NR;
133 }
134
135 return 0;
136}
137
138static struct shrinker huge_zero_page_shrinker = {
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
141 .seeks = DEFAULT_SEEKS,
142};
143
144#ifdef CONFIG_SYSFS
145
146static ssize_t triple_flag_store(struct kobject *kobj,
147 struct kobj_attribute *attr,
148 const char *buf, size_t count,
149 enum transparent_hugepage_flag enabled,
150 enum transparent_hugepage_flag deferred,
151 enum transparent_hugepage_flag req_madv)
152{
153 if (!memcmp("defer", buf,
154 min(sizeof("defer")-1, count))) {
155 if (enabled == deferred)
156 return -EINVAL;
157 clear_bit(enabled, &transparent_hugepage_flags);
158 clear_bit(req_madv, &transparent_hugepage_flags);
159 set_bit(deferred, &transparent_hugepage_flags);
160 } else if (!memcmp("always", buf,
161 min(sizeof("always")-1, count))) {
162 clear_bit(deferred, &transparent_hugepage_flags);
163 clear_bit(req_madv, &transparent_hugepage_flags);
164 set_bit(enabled, &transparent_hugepage_flags);
165 } else if (!memcmp("madvise", buf,
166 min(sizeof("madvise")-1, count))) {
167 clear_bit(enabled, &transparent_hugepage_flags);
168 clear_bit(deferred, &transparent_hugepage_flags);
169 set_bit(req_madv, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(enabled, &transparent_hugepage_flags);
173 clear_bit(req_madv, &transparent_hugepage_flags);
174 clear_bit(deferred, &transparent_hugepage_flags);
175 } else
176 return -EINVAL;
177
178 return count;
179}
180
181static ssize_t enabled_show(struct kobject *kobj,
182 struct kobj_attribute *attr, char *buf)
183{
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 return sprintf(buf, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 return sprintf(buf, "always [madvise] never\n");
188 else
189 return sprintf(buf, "always madvise [never]\n");
190}
191
192static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195{
196 ssize_t ret;
197
198 ret = triple_flag_store(kobj, attr, buf, count,
199 TRANSPARENT_HUGEPAGE_FLAG,
200 TRANSPARENT_HUGEPAGE_FLAG,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
202
203 if (ret > 0) {
204 int err = start_stop_khugepaged();
205 if (err)
206 ret = err;
207 }
208
209 return ret;
210}
211static struct kobj_attribute enabled_attr =
212 __ATTR(enabled, 0644, enabled_show, enabled_store);
213
214ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 struct kobj_attribute *attr, char *buf,
216 enum transparent_hugepage_flag flag)
217{
218 return sprintf(buf, "%d\n",
219 !!test_bit(flag, &transparent_hugepage_flags));
220}
221
222ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 struct kobj_attribute *attr,
224 const char *buf, size_t count,
225 enum transparent_hugepage_flag flag)
226{
227 unsigned long value;
228 int ret;
229
230 ret = kstrtoul(buf, 10, &value);
231 if (ret < 0)
232 return ret;
233 if (value > 1)
234 return -EINVAL;
235
236 if (value)
237 set_bit(flag, &transparent_hugepage_flags);
238 else
239 clear_bit(flag, &transparent_hugepage_flags);
240
241 return count;
242}
243
244/*
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
248 */
249static ssize_t defrag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf)
251{
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 return sprintf(buf, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 return sprintf(buf, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 return sprintf(buf, "always defer [madvise] never\n");
258 else
259 return sprintf(buf, "always defer madvise [never]\n");
260
261}
262static ssize_t defrag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
265{
266 return triple_flag_store(kobj, attr, buf, count,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
270}
271static struct kobj_attribute defrag_attr =
272 __ATTR(defrag, 0644, defrag_show, defrag_store);
273
274static ssize_t use_zero_page_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276{
277 return single_hugepage_flag_show(kobj, attr, buf,
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
279}
280static ssize_t use_zero_page_store(struct kobject *kobj,
281 struct kobj_attribute *attr, const char *buf, size_t count)
282{
283 return single_hugepage_flag_store(kobj, attr, buf, count,
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
285}
286static struct kobj_attribute use_zero_page_attr =
287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288
289static ssize_t hpage_pmd_size_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
291{
292 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
293}
294static struct kobj_attribute hpage_pmd_size_attr =
295 __ATTR_RO(hpage_pmd_size);
296
297#ifdef CONFIG_DEBUG_VM
298static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
301 return single_hugepage_flag_show(kobj, attr, buf,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303}
304static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
307{
308 return single_hugepage_flag_store(kobj, attr, buf, count,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310}
311static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313#endif /* CONFIG_DEBUG_VM */
314
315static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
318 &use_zero_page_attr.attr,
319 &hpage_pmd_size_attr.attr,
320#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
321 &shmem_enabled_attr.attr,
322#endif
323#ifdef CONFIG_DEBUG_VM
324 &debug_cow_attr.attr,
325#endif
326 NULL,
327};
328
329static struct attribute_group hugepage_attr_group = {
330 .attrs = hugepage_attr,
331};
332
333static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
334{
335 int err;
336
337 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
338 if (unlikely(!*hugepage_kobj)) {
339 pr_err("failed to create transparent hugepage kobject\n");
340 return -ENOMEM;
341 }
342
343 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
344 if (err) {
345 pr_err("failed to register transparent hugepage group\n");
346 goto delete_obj;
347 }
348
349 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
350 if (err) {
351 pr_err("failed to register transparent hugepage group\n");
352 goto remove_hp_group;
353 }
354
355 return 0;
356
357remove_hp_group:
358 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
359delete_obj:
360 kobject_put(*hugepage_kobj);
361 return err;
362}
363
364static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365{
366 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
367 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
368 kobject_put(hugepage_kobj);
369}
370#else
371static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
372{
373 return 0;
374}
375
376static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377{
378}
379#endif /* CONFIG_SYSFS */
380
381static int __init hugepage_init(void)
382{
383 int err;
384 struct kobject *hugepage_kobj;
385
386 if (!has_transparent_hugepage()) {
387 transparent_hugepage_flags = 0;
388 return -EINVAL;
389 }
390
391 /*
392 * hugepages can't be allocated by the buddy allocator
393 */
394 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
395 /*
396 * we use page->mapping and page->index in second tail page
397 * as list_head: assuming THP order >= 2
398 */
399 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
400
401 err = hugepage_init_sysfs(&hugepage_kobj);
402 if (err)
403 goto err_sysfs;
404
405 err = khugepaged_init();
406 if (err)
407 goto err_slab;
408
409 err = register_shrinker(&huge_zero_page_shrinker);
410 if (err)
411 goto err_hzp_shrinker;
412 err = register_shrinker(&deferred_split_shrinker);
413 if (err)
414 goto err_split_shrinker;
415
416 /*
417 * By default disable transparent hugepages on smaller systems,
418 * where the extra memory used could hurt more than TLB overhead
419 * is likely to save. The admin can still enable it through /sys.
420 */
421 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
422 transparent_hugepage_flags = 0;
423 return 0;
424 }
425
426 err = start_stop_khugepaged();
427 if (err)
428 goto err_khugepaged;
429
430 return 0;
431err_khugepaged:
432 unregister_shrinker(&deferred_split_shrinker);
433err_split_shrinker:
434 unregister_shrinker(&huge_zero_page_shrinker);
435err_hzp_shrinker:
436 khugepaged_destroy();
437err_slab:
438 hugepage_exit_sysfs(hugepage_kobj);
439err_sysfs:
440 return err;
441}
442subsys_initcall(hugepage_init);
443
444static int __init setup_transparent_hugepage(char *str)
445{
446 int ret = 0;
447 if (!str)
448 goto out;
449 if (!strcmp(str, "always")) {
450 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 &transparent_hugepage_flags);
452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 &transparent_hugepage_flags);
454 ret = 1;
455 } else if (!strcmp(str, "madvise")) {
456 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 &transparent_hugepage_flags);
458 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 &transparent_hugepage_flags);
460 ret = 1;
461 } else if (!strcmp(str, "never")) {
462 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
466 ret = 1;
467 }
468out:
469 if (!ret)
470 pr_warn("transparent_hugepage= cannot parse, ignored\n");
471 return ret;
472}
473__setup("transparent_hugepage=", setup_transparent_hugepage);
474
475pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
476{
477 if (likely(vma->vm_flags & VM_WRITE))
478 pmd = pmd_mkwrite(pmd);
479 return pmd;
480}
481
482static inline struct list_head *page_deferred_list(struct page *page)
483{
484 /*
485 * ->lru in the tail pages is occupied by compound_head.
486 * Let's use ->mapping + ->index in the second tail page as list_head.
487 */
488 return (struct list_head *)&page[2].mapping;
489}
490
491void prep_transhuge_page(struct page *page)
492{
493 /*
494 * we use page->mapping and page->indexlru in second tail page
495 * as list_head: assuming THP order >= 2
496 */
497
498 INIT_LIST_HEAD(page_deferred_list(page));
499 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
500}
501
502unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
503 loff_t off, unsigned long flags, unsigned long size)
504{
505 unsigned long addr;
506 loff_t off_end = off + len;
507 loff_t off_align = round_up(off, size);
508 unsigned long len_pad;
509
510 if (off_end <= off_align || (off_end - off_align) < size)
511 return 0;
512
513 len_pad = len + size;
514 if (len_pad < len || (off + len_pad) < off)
515 return 0;
516
517 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
518 off >> PAGE_SHIFT, flags);
519 if (IS_ERR_VALUE(addr))
520 return 0;
521
522 addr += (off - addr) & (size - 1);
523 return addr;
524}
525
526unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
527 unsigned long len, unsigned long pgoff, unsigned long flags)
528{
529 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
530
531 if (addr)
532 goto out;
533 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
534 goto out;
535
536 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
537 if (addr)
538 return addr;
539
540 out:
541 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
542}
543EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
544
545static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
546 gfp_t gfp)
547{
548 struct vm_area_struct *vma = vmf->vma;
549 struct mem_cgroup *memcg;
550 pgtable_t pgtable;
551 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
552
553 VM_BUG_ON_PAGE(!PageCompound(page), page);
554
555 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
559 }
560
561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
562 if (unlikely(!pgtable)) {
563 mem_cgroup_cancel_charge(page, memcg, true);
564 put_page(page);
565 return VM_FAULT_OOM;
566 }
567
568 clear_huge_page(page, haddr, HPAGE_PMD_NR);
569 /*
570 * The memory barrier inside __SetPageUptodate makes sure that
571 * clear_huge_page writes become visible before the set_pmd_at()
572 * write.
573 */
574 __SetPageUptodate(page);
575
576 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
577 if (unlikely(!pmd_none(*vmf->pmd))) {
578 spin_unlock(vmf->ptl);
579 mem_cgroup_cancel_charge(page, memcg, true);
580 put_page(page);
581 pte_free(vma->vm_mm, pgtable);
582 } else {
583 pmd_t entry;
584
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
587 int ret;
588
589 spin_unlock(vmf->ptl);
590 mem_cgroup_cancel_charge(page, memcg, true);
591 put_page(page);
592 pte_free(vma->vm_mm, pgtable);
593 ret = handle_userfault(vmf, VM_UFFD_MISSING);
594 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
595 return ret;
596 }
597
598 entry = mk_huge_pmd(page, vma->vm_page_prot);
599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600 page_add_new_anon_rmap(page, vma, haddr, true);
601 mem_cgroup_commit_charge(page, memcg, false, true);
602 lru_cache_add_active_or_unevictable(page, vma);
603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 atomic_long_inc(&vma->vm_mm->nr_ptes);
607 spin_unlock(vmf->ptl);
608 count_vm_event(THP_FAULT_ALLOC);
609 }
610
611 return 0;
612}
613
614/*
615 * If THP defrag is set to always then directly reclaim/compact as necessary
616 * If set to defer then do only background reclaim/compact and defer to khugepaged
617 * If set to madvise and the VMA is flagged then directly reclaim/compact
618 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
619 */
620static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
621{
622 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
623
624 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
625 &transparent_hugepage_flags) && vma_madvised)
626 return GFP_TRANSHUGE;
627 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
628 &transparent_hugepage_flags))
629 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
630 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
631 &transparent_hugepage_flags))
632 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
633
634 return GFP_TRANSHUGE_LIGHT;
635}
636
637/* Caller must hold page table lock. */
638static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
639 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
640 struct page *zero_page)
641{
642 pmd_t entry;
643 if (!pmd_none(*pmd))
644 return false;
645 entry = mk_pmd(zero_page, vma->vm_page_prot);
646 entry = pmd_mkhuge(entry);
647 if (pgtable)
648 pgtable_trans_huge_deposit(mm, pmd, pgtable);
649 set_pmd_at(mm, haddr, pmd, entry);
650 atomic_long_inc(&mm->nr_ptes);
651 return true;
652}
653
654int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
655{
656 struct vm_area_struct *vma = vmf->vma;
657 gfp_t gfp;
658 struct page *page;
659 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
660
661 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
662 return VM_FAULT_FALLBACK;
663 if (unlikely(anon_vma_prepare(vma)))
664 return VM_FAULT_OOM;
665 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
666 return VM_FAULT_OOM;
667 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
668 !mm_forbids_zeropage(vma->vm_mm) &&
669 transparent_hugepage_use_zero_page()) {
670 pgtable_t pgtable;
671 struct page *zero_page;
672 bool set;
673 int ret;
674 pgtable = pte_alloc_one(vma->vm_mm, haddr);
675 if (unlikely(!pgtable))
676 return VM_FAULT_OOM;
677 zero_page = mm_get_huge_zero_page(vma->vm_mm);
678 if (unlikely(!zero_page)) {
679 pte_free(vma->vm_mm, pgtable);
680 count_vm_event(THP_FAULT_FALLBACK);
681 return VM_FAULT_FALLBACK;
682 }
683 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
684 ret = 0;
685 set = false;
686 if (pmd_none(*vmf->pmd)) {
687 if (userfaultfd_missing(vma)) {
688 spin_unlock(vmf->ptl);
689 ret = handle_userfault(vmf, VM_UFFD_MISSING);
690 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
691 } else {
692 set_huge_zero_page(pgtable, vma->vm_mm, vma,
693 haddr, vmf->pmd, zero_page);
694 spin_unlock(vmf->ptl);
695 set = true;
696 }
697 } else
698 spin_unlock(vmf->ptl);
699 if (!set)
700 pte_free(vma->vm_mm, pgtable);
701 return ret;
702 }
703 gfp = alloc_hugepage_direct_gfpmask(vma);
704 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
705 if (unlikely(!page)) {
706 count_vm_event(THP_FAULT_FALLBACK);
707 return VM_FAULT_FALLBACK;
708 }
709 prep_transhuge_page(page);
710 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
711}
712
713static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
714 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
715{
716 struct mm_struct *mm = vma->vm_mm;
717 pmd_t entry;
718 spinlock_t *ptl;
719
720 ptl = pmd_lock(mm, pmd);
721 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
722 if (pfn_t_devmap(pfn))
723 entry = pmd_mkdevmap(entry);
724 if (write) {
725 entry = pmd_mkyoung(pmd_mkdirty(entry));
726 entry = maybe_pmd_mkwrite(entry, vma);
727 }
728 set_pmd_at(mm, addr, pmd, entry);
729 update_mmu_cache_pmd(vma, addr, pmd);
730 spin_unlock(ptl);
731}
732
733int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
734 pmd_t *pmd, pfn_t pfn, bool write)
735{
736 pgprot_t pgprot = vma->vm_page_prot;
737 /*
738 * If we had pmd_special, we could avoid all these restrictions,
739 * but we need to be consistent with PTEs and architectures that
740 * can't support a 'special' bit.
741 */
742 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
743 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
744 (VM_PFNMAP|VM_MIXEDMAP));
745 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
746 BUG_ON(!pfn_t_devmap(pfn));
747
748 if (addr < vma->vm_start || addr >= vma->vm_end)
749 return VM_FAULT_SIGBUS;
750
751 track_pfn_insert(vma, &pgprot, pfn);
752
753 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
754 return VM_FAULT_NOPAGE;
755}
756EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
757
758static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
759 pmd_t *pmd)
760{
761 pmd_t _pmd;
762
763 /*
764 * We should set the dirty bit only for FOLL_WRITE but for now
765 * the dirty bit in the pmd is meaningless. And if the dirty
766 * bit will become meaningful and we'll only set it with
767 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
768 * set the young bit, instead of the current set_pmd_at.
769 */
770 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
771 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
772 pmd, _pmd, 1))
773 update_mmu_cache_pmd(vma, addr, pmd);
774}
775
776struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
777 pmd_t *pmd, int flags)
778{
779 unsigned long pfn = pmd_pfn(*pmd);
780 struct mm_struct *mm = vma->vm_mm;
781 struct dev_pagemap *pgmap;
782 struct page *page;
783
784 assert_spin_locked(pmd_lockptr(mm, pmd));
785
786 /*
787 * When we COW a devmap PMD entry, we split it into PTEs, so we should
788 * not be in this function with `flags & FOLL_COW` set.
789 */
790 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
791
792 if (flags & FOLL_WRITE && !pmd_write(*pmd))
793 return NULL;
794
795 if (pmd_present(*pmd) && pmd_devmap(*pmd))
796 /* pass */;
797 else
798 return NULL;
799
800 if (flags & FOLL_TOUCH)
801 touch_pmd(vma, addr, pmd);
802
803 /*
804 * device mapped pages can only be returned if the
805 * caller will manage the page reference count.
806 */
807 if (!(flags & FOLL_GET))
808 return ERR_PTR(-EEXIST);
809
810 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
811 pgmap = get_dev_pagemap(pfn, NULL);
812 if (!pgmap)
813 return ERR_PTR(-EFAULT);
814 page = pfn_to_page(pfn);
815 get_page(page);
816 put_dev_pagemap(pgmap);
817
818 return page;
819}
820
821int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
822 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
823 struct vm_area_struct *vma)
824{
825 spinlock_t *dst_ptl, *src_ptl;
826 struct page *src_page;
827 pmd_t pmd;
828 pgtable_t pgtable = NULL;
829 int ret = -ENOMEM;
830
831 /* Skip if can be re-fill on fault */
832 if (!vma_is_anonymous(vma))
833 return 0;
834
835 pgtable = pte_alloc_one(dst_mm, addr);
836 if (unlikely(!pgtable))
837 goto out;
838
839 dst_ptl = pmd_lock(dst_mm, dst_pmd);
840 src_ptl = pmd_lockptr(src_mm, src_pmd);
841 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
842
843 ret = -EAGAIN;
844 pmd = *src_pmd;
845 if (unlikely(!pmd_trans_huge(pmd))) {
846 pte_free(dst_mm, pgtable);
847 goto out_unlock;
848 }
849 /*
850 * When page table lock is held, the huge zero pmd should not be
851 * under splitting since we don't split the page itself, only pmd to
852 * a page table.
853 */
854 if (is_huge_zero_pmd(pmd)) {
855 struct page *zero_page;
856 /*
857 * get_huge_zero_page() will never allocate a new page here,
858 * since we already have a zero page to copy. It just takes a
859 * reference.
860 */
861 zero_page = mm_get_huge_zero_page(dst_mm);
862 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
863 zero_page);
864 ret = 0;
865 goto out_unlock;
866 }
867
868 src_page = pmd_page(pmd);
869 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
870 get_page(src_page);
871 page_dup_rmap(src_page, true);
872 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
873 atomic_long_inc(&dst_mm->nr_ptes);
874 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
875
876 pmdp_set_wrprotect(src_mm, addr, src_pmd);
877 pmd = pmd_mkold(pmd_wrprotect(pmd));
878 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
879
880 ret = 0;
881out_unlock:
882 spin_unlock(src_ptl);
883 spin_unlock(dst_ptl);
884out:
885 return ret;
886}
887
888void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
889{
890 pmd_t entry;
891 unsigned long haddr;
892 bool write = vmf->flags & FAULT_FLAG_WRITE;
893
894 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
895 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
896 goto unlock;
897
898 entry = pmd_mkyoung(orig_pmd);
899 if (write)
900 entry = pmd_mkdirty(entry);
901 haddr = vmf->address & HPAGE_PMD_MASK;
902 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
903 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
904
905unlock:
906 spin_unlock(vmf->ptl);
907}
908
909static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
910 struct page *page)
911{
912 struct vm_area_struct *vma = vmf->vma;
913 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
914 struct mem_cgroup *memcg;
915 pgtable_t pgtable;
916 pmd_t _pmd;
917 int ret = 0, i;
918 struct page **pages;
919 unsigned long mmun_start; /* For mmu_notifiers */
920 unsigned long mmun_end; /* For mmu_notifiers */
921
922 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
923 GFP_KERNEL);
924 if (unlikely(!pages)) {
925 ret |= VM_FAULT_OOM;
926 goto out;
927 }
928
929 for (i = 0; i < HPAGE_PMD_NR; i++) {
930 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
931 vmf->address, page_to_nid(page));
932 if (unlikely(!pages[i] ||
933 mem_cgroup_try_charge(pages[i], vma->vm_mm,
934 GFP_KERNEL, &memcg, false))) {
935 if (pages[i])
936 put_page(pages[i]);
937 while (--i >= 0) {
938 memcg = (void *)page_private(pages[i]);
939 set_page_private(pages[i], 0);
940 mem_cgroup_cancel_charge(pages[i], memcg,
941 false);
942 put_page(pages[i]);
943 }
944 kfree(pages);
945 ret |= VM_FAULT_OOM;
946 goto out;
947 }
948 set_page_private(pages[i], (unsigned long)memcg);
949 }
950
951 for (i = 0; i < HPAGE_PMD_NR; i++) {
952 copy_user_highpage(pages[i], page + i,
953 haddr + PAGE_SIZE * i, vma);
954 __SetPageUptodate(pages[i]);
955 cond_resched();
956 }
957
958 mmun_start = haddr;
959 mmun_end = haddr + HPAGE_PMD_SIZE;
960 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
961
962 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
963 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
964 goto out_free_pages;
965 VM_BUG_ON_PAGE(!PageHead(page), page);
966
967 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
968 /* leave pmd empty until pte is filled */
969
970 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
971 pmd_populate(vma->vm_mm, &_pmd, pgtable);
972
973 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
974 pte_t entry;
975 entry = mk_pte(pages[i], vma->vm_page_prot);
976 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
977 memcg = (void *)page_private(pages[i]);
978 set_page_private(pages[i], 0);
979 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
980 mem_cgroup_commit_charge(pages[i], memcg, false, false);
981 lru_cache_add_active_or_unevictable(pages[i], vma);
982 vmf->pte = pte_offset_map(&_pmd, haddr);
983 VM_BUG_ON(!pte_none(*vmf->pte));
984 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
985 pte_unmap(vmf->pte);
986 }
987 kfree(pages);
988
989 smp_wmb(); /* make pte visible before pmd */
990 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
991 page_remove_rmap(page, true);
992 spin_unlock(vmf->ptl);
993
994 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
995
996 ret |= VM_FAULT_WRITE;
997 put_page(page);
998
999out:
1000 return ret;
1001
1002out_free_pages:
1003 spin_unlock(vmf->ptl);
1004 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1005 for (i = 0; i < HPAGE_PMD_NR; i++) {
1006 memcg = (void *)page_private(pages[i]);
1007 set_page_private(pages[i], 0);
1008 mem_cgroup_cancel_charge(pages[i], memcg, false);
1009 put_page(pages[i]);
1010 }
1011 kfree(pages);
1012 goto out;
1013}
1014
1015int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1016{
1017 struct vm_area_struct *vma = vmf->vma;
1018 struct page *page = NULL, *new_page;
1019 struct mem_cgroup *memcg;
1020 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1021 unsigned long mmun_start; /* For mmu_notifiers */
1022 unsigned long mmun_end; /* For mmu_notifiers */
1023 gfp_t huge_gfp; /* for allocation and charge */
1024 int ret = 0;
1025
1026 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1027 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1028 if (is_huge_zero_pmd(orig_pmd))
1029 goto alloc;
1030 spin_lock(vmf->ptl);
1031 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1032 goto out_unlock;
1033
1034 page = pmd_page(orig_pmd);
1035 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1036 /*
1037 * We can only reuse the page if nobody else maps the huge page or it's
1038 * part.
1039 */
1040 if (page_trans_huge_mapcount(page, NULL) == 1) {
1041 pmd_t entry;
1042 entry = pmd_mkyoung(orig_pmd);
1043 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1044 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1045 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1046 ret |= VM_FAULT_WRITE;
1047 goto out_unlock;
1048 }
1049 get_page(page);
1050 spin_unlock(vmf->ptl);
1051alloc:
1052 if (transparent_hugepage_enabled(vma) &&
1053 !transparent_hugepage_debug_cow()) {
1054 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1055 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1056 } else
1057 new_page = NULL;
1058
1059 if (likely(new_page)) {
1060 prep_transhuge_page(new_page);
1061 } else {
1062 if (!page) {
1063 split_huge_pmd(vma, vmf->pmd, vmf->address);
1064 ret |= VM_FAULT_FALLBACK;
1065 } else {
1066 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1067 if (ret & VM_FAULT_OOM) {
1068 split_huge_pmd(vma, vmf->pmd, vmf->address);
1069 ret |= VM_FAULT_FALLBACK;
1070 }
1071 put_page(page);
1072 }
1073 count_vm_event(THP_FAULT_FALLBACK);
1074 goto out;
1075 }
1076
1077 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1078 huge_gfp, &memcg, true))) {
1079 put_page(new_page);
1080 split_huge_pmd(vma, vmf->pmd, vmf->address);
1081 if (page)
1082 put_page(page);
1083 ret |= VM_FAULT_FALLBACK;
1084 count_vm_event(THP_FAULT_FALLBACK);
1085 goto out;
1086 }
1087
1088 count_vm_event(THP_FAULT_ALLOC);
1089
1090 if (!page)
1091 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1092 else
1093 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1094 __SetPageUptodate(new_page);
1095
1096 mmun_start = haddr;
1097 mmun_end = haddr + HPAGE_PMD_SIZE;
1098 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1099
1100 spin_lock(vmf->ptl);
1101 if (page)
1102 put_page(page);
1103 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1104 spin_unlock(vmf->ptl);
1105 mem_cgroup_cancel_charge(new_page, memcg, true);
1106 put_page(new_page);
1107 goto out_mn;
1108 } else {
1109 pmd_t entry;
1110 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1111 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1112 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1113 page_add_new_anon_rmap(new_page, vma, haddr, true);
1114 mem_cgroup_commit_charge(new_page, memcg, false, true);
1115 lru_cache_add_active_or_unevictable(new_page, vma);
1116 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1117 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1118 if (!page) {
1119 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1120 } else {
1121 VM_BUG_ON_PAGE(!PageHead(page), page);
1122 page_remove_rmap(page, true);
1123 put_page(page);
1124 }
1125 ret |= VM_FAULT_WRITE;
1126 }
1127 spin_unlock(vmf->ptl);
1128out_mn:
1129 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1130out:
1131 return ret;
1132out_unlock:
1133 spin_unlock(vmf->ptl);
1134 return ret;
1135}
1136
1137/*
1138 * FOLL_FORCE can write to even unwritable pmd's, but only
1139 * after we've gone through a COW cycle and they are dirty.
1140 */
1141static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1142{
1143 return pmd_write(pmd) ||
1144 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1145}
1146
1147struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1148 unsigned long addr,
1149 pmd_t *pmd,
1150 unsigned int flags)
1151{
1152 struct mm_struct *mm = vma->vm_mm;
1153 struct page *page = NULL;
1154
1155 assert_spin_locked(pmd_lockptr(mm, pmd));
1156
1157 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1158 goto out;
1159
1160 /* Avoid dumping huge zero page */
1161 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1162 return ERR_PTR(-EFAULT);
1163
1164 /* Full NUMA hinting faults to serialise migration in fault paths */
1165 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1166 goto out;
1167
1168 page = pmd_page(*pmd);
1169 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1170 if (flags & FOLL_TOUCH)
1171 touch_pmd(vma, addr, pmd);
1172 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1173 /*
1174 * We don't mlock() pte-mapped THPs. This way we can avoid
1175 * leaking mlocked pages into non-VM_LOCKED VMAs.
1176 *
1177 * For anon THP:
1178 *
1179 * In most cases the pmd is the only mapping of the page as we
1180 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1181 * writable private mappings in populate_vma_page_range().
1182 *
1183 * The only scenario when we have the page shared here is if we
1184 * mlocking read-only mapping shared over fork(). We skip
1185 * mlocking such pages.
1186 *
1187 * For file THP:
1188 *
1189 * We can expect PageDoubleMap() to be stable under page lock:
1190 * for file pages we set it in page_add_file_rmap(), which
1191 * requires page to be locked.
1192 */
1193
1194 if (PageAnon(page) && compound_mapcount(page) != 1)
1195 goto skip_mlock;
1196 if (PageDoubleMap(page) || !page->mapping)
1197 goto skip_mlock;
1198 if (!trylock_page(page))
1199 goto skip_mlock;
1200 lru_add_drain();
1201 if (page->mapping && !PageDoubleMap(page))
1202 mlock_vma_page(page);
1203 unlock_page(page);
1204 }
1205skip_mlock:
1206 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1207 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1208 if (flags & FOLL_GET)
1209 get_page(page);
1210
1211out:
1212 return page;
1213}
1214
1215/* NUMA hinting page fault entry point for trans huge pmds */
1216int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1217{
1218 struct vm_area_struct *vma = vmf->vma;
1219 struct anon_vma *anon_vma = NULL;
1220 struct page *page;
1221 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1222 int page_nid = -1, this_nid = numa_node_id();
1223 int target_nid, last_cpupid = -1;
1224 bool page_locked;
1225 bool migrated = false;
1226 bool was_writable;
1227 int flags = 0;
1228
1229 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1230 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1231 goto out_unlock;
1232
1233 /*
1234 * If there are potential migrations, wait for completion and retry
1235 * without disrupting NUMA hinting information. Do not relock and
1236 * check_same as the page may no longer be mapped.
1237 */
1238 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1239 page = pmd_page(*vmf->pmd);
1240 spin_unlock(vmf->ptl);
1241 wait_on_page_locked(page);
1242 goto out;
1243 }
1244
1245 page = pmd_page(pmd);
1246 BUG_ON(is_huge_zero_page(page));
1247 page_nid = page_to_nid(page);
1248 last_cpupid = page_cpupid_last(page);
1249 count_vm_numa_event(NUMA_HINT_FAULTS);
1250 if (page_nid == this_nid) {
1251 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1252 flags |= TNF_FAULT_LOCAL;
1253 }
1254
1255 /* See similar comment in do_numa_page for explanation */
1256 if (!pmd_write(pmd))
1257 flags |= TNF_NO_GROUP;
1258
1259 /*
1260 * Acquire the page lock to serialise THP migrations but avoid dropping
1261 * page_table_lock if at all possible
1262 */
1263 page_locked = trylock_page(page);
1264 target_nid = mpol_misplaced(page, vma, haddr);
1265 if (target_nid == -1) {
1266 /* If the page was locked, there are no parallel migrations */
1267 if (page_locked)
1268 goto clear_pmdnuma;
1269 }
1270
1271 /* Migration could have started since the pmd_trans_migrating check */
1272 if (!page_locked) {
1273 spin_unlock(vmf->ptl);
1274 wait_on_page_locked(page);
1275 page_nid = -1;
1276 goto out;
1277 }
1278
1279 /*
1280 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1281 * to serialises splits
1282 */
1283 get_page(page);
1284 spin_unlock(vmf->ptl);
1285 anon_vma = page_lock_anon_vma_read(page);
1286
1287 /* Confirm the PMD did not change while page_table_lock was released */
1288 spin_lock(vmf->ptl);
1289 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1290 unlock_page(page);
1291 put_page(page);
1292 page_nid = -1;
1293 goto out_unlock;
1294 }
1295
1296 /* Bail if we fail to protect against THP splits for any reason */
1297 if (unlikely(!anon_vma)) {
1298 put_page(page);
1299 page_nid = -1;
1300 goto clear_pmdnuma;
1301 }
1302
1303 /*
1304 * Migrate the THP to the requested node, returns with page unlocked
1305 * and access rights restored.
1306 */
1307 spin_unlock(vmf->ptl);
1308 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1309 vmf->pmd, pmd, vmf->address, page, target_nid);
1310 if (migrated) {
1311 flags |= TNF_MIGRATED;
1312 page_nid = target_nid;
1313 } else
1314 flags |= TNF_MIGRATE_FAIL;
1315
1316 goto out;
1317clear_pmdnuma:
1318 BUG_ON(!PageLocked(page));
1319 was_writable = pmd_write(pmd);
1320 pmd = pmd_modify(pmd, vma->vm_page_prot);
1321 pmd = pmd_mkyoung(pmd);
1322 if (was_writable)
1323 pmd = pmd_mkwrite(pmd);
1324 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1325 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1326 unlock_page(page);
1327out_unlock:
1328 spin_unlock(vmf->ptl);
1329
1330out:
1331 if (anon_vma)
1332 page_unlock_anon_vma_read(anon_vma);
1333
1334 if (page_nid != -1)
1335 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1336 vmf->flags);
1337
1338 return 0;
1339}
1340
1341/*
1342 * Return true if we do MADV_FREE successfully on entire pmd page.
1343 * Otherwise, return false.
1344 */
1345bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1346 pmd_t *pmd, unsigned long addr, unsigned long next)
1347{
1348 spinlock_t *ptl;
1349 pmd_t orig_pmd;
1350 struct page *page;
1351 struct mm_struct *mm = tlb->mm;
1352 bool ret = false;
1353
1354 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1355
1356 ptl = pmd_trans_huge_lock(pmd, vma);
1357 if (!ptl)
1358 goto out_unlocked;
1359
1360 orig_pmd = *pmd;
1361 if (is_huge_zero_pmd(orig_pmd))
1362 goto out;
1363
1364 page = pmd_page(orig_pmd);
1365 /*
1366 * If other processes are mapping this page, we couldn't discard
1367 * the page unless they all do MADV_FREE so let's skip the page.
1368 */
1369 if (page_mapcount(page) != 1)
1370 goto out;
1371
1372 if (!trylock_page(page))
1373 goto out;
1374
1375 /*
1376 * If user want to discard part-pages of THP, split it so MADV_FREE
1377 * will deactivate only them.
1378 */
1379 if (next - addr != HPAGE_PMD_SIZE) {
1380 get_page(page);
1381 spin_unlock(ptl);
1382 split_huge_page(page);
1383 put_page(page);
1384 unlock_page(page);
1385 goto out_unlocked;
1386 }
1387
1388 if (PageDirty(page))
1389 ClearPageDirty(page);
1390 unlock_page(page);
1391
1392 if (PageActive(page))
1393 deactivate_page(page);
1394
1395 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1396 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1397 tlb->fullmm);
1398 orig_pmd = pmd_mkold(orig_pmd);
1399 orig_pmd = pmd_mkclean(orig_pmd);
1400
1401 set_pmd_at(mm, addr, pmd, orig_pmd);
1402 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1403 }
1404 ret = true;
1405out:
1406 spin_unlock(ptl);
1407out_unlocked:
1408 return ret;
1409}
1410
1411static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1412{
1413 pgtable_t pgtable;
1414
1415 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1416 pte_free(mm, pgtable);
1417 atomic_long_dec(&mm->nr_ptes);
1418}
1419
1420int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1421 pmd_t *pmd, unsigned long addr)
1422{
1423 pmd_t orig_pmd;
1424 spinlock_t *ptl;
1425
1426 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1427
1428 ptl = __pmd_trans_huge_lock(pmd, vma);
1429 if (!ptl)
1430 return 0;
1431 /*
1432 * For architectures like ppc64 we look at deposited pgtable
1433 * when calling pmdp_huge_get_and_clear. So do the
1434 * pgtable_trans_huge_withdraw after finishing pmdp related
1435 * operations.
1436 */
1437 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1438 tlb->fullmm);
1439 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1440 if (vma_is_dax(vma)) {
1441 spin_unlock(ptl);
1442 if (is_huge_zero_pmd(orig_pmd))
1443 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1444 } else if (is_huge_zero_pmd(orig_pmd)) {
1445 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1446 atomic_long_dec(&tlb->mm->nr_ptes);
1447 spin_unlock(ptl);
1448 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1449 } else {
1450 struct page *page = pmd_page(orig_pmd);
1451 page_remove_rmap(page, true);
1452 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1453 VM_BUG_ON_PAGE(!PageHead(page), page);
1454 if (PageAnon(page)) {
1455 pgtable_t pgtable;
1456 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1457 pte_free(tlb->mm, pgtable);
1458 atomic_long_dec(&tlb->mm->nr_ptes);
1459 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1460 } else {
1461 if (arch_needs_pgtable_deposit())
1462 zap_deposited_table(tlb->mm, pmd);
1463 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1464 }
1465 spin_unlock(ptl);
1466 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1467 }
1468 return 1;
1469}
1470
1471#ifndef pmd_move_must_withdraw
1472static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1473 spinlock_t *old_pmd_ptl,
1474 struct vm_area_struct *vma)
1475{
1476 /*
1477 * With split pmd lock we also need to move preallocated
1478 * PTE page table if new_pmd is on different PMD page table.
1479 *
1480 * We also don't deposit and withdraw tables for file pages.
1481 */
1482 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1483}
1484#endif
1485
1486bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1487 unsigned long new_addr, unsigned long old_end,
1488 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1489{
1490 spinlock_t *old_ptl, *new_ptl;
1491 pmd_t pmd;
1492 struct mm_struct *mm = vma->vm_mm;
1493 bool force_flush = false;
1494
1495 if ((old_addr & ~HPAGE_PMD_MASK) ||
1496 (new_addr & ~HPAGE_PMD_MASK) ||
1497 old_end - old_addr < HPAGE_PMD_SIZE)
1498 return false;
1499
1500 /*
1501 * The destination pmd shouldn't be established, free_pgtables()
1502 * should have release it.
1503 */
1504 if (WARN_ON(!pmd_none(*new_pmd))) {
1505 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1506 return false;
1507 }
1508
1509 /*
1510 * We don't have to worry about the ordering of src and dst
1511 * ptlocks because exclusive mmap_sem prevents deadlock.
1512 */
1513 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1514 if (old_ptl) {
1515 new_ptl = pmd_lockptr(mm, new_pmd);
1516 if (new_ptl != old_ptl)
1517 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1518 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1519 if (pmd_present(pmd) && pmd_dirty(pmd))
1520 force_flush = true;
1521 VM_BUG_ON(!pmd_none(*new_pmd));
1522
1523 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1524 pgtable_t pgtable;
1525 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1526 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1527 }
1528 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1529 if (new_ptl != old_ptl)
1530 spin_unlock(new_ptl);
1531 if (force_flush)
1532 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1533 else
1534 *need_flush = true;
1535 spin_unlock(old_ptl);
1536 return true;
1537 }
1538 return false;
1539}
1540
1541/*
1542 * Returns
1543 * - 0 if PMD could not be locked
1544 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1545 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1546 */
1547int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1548 unsigned long addr, pgprot_t newprot, int prot_numa)
1549{
1550 struct mm_struct *mm = vma->vm_mm;
1551 spinlock_t *ptl;
1552 int ret = 0;
1553
1554 ptl = __pmd_trans_huge_lock(pmd, vma);
1555 if (ptl) {
1556 pmd_t entry;
1557 bool preserve_write = prot_numa && pmd_write(*pmd);
1558 ret = 1;
1559
1560 /*
1561 * Avoid trapping faults against the zero page. The read-only
1562 * data is likely to be read-cached on the local CPU and
1563 * local/remote hits to the zero page are not interesting.
1564 */
1565 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1566 spin_unlock(ptl);
1567 return ret;
1568 }
1569
1570 if (!prot_numa || !pmd_protnone(*pmd)) {
1571 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1572 entry = pmd_modify(entry, newprot);
1573 if (preserve_write)
1574 entry = pmd_mkwrite(entry);
1575 ret = HPAGE_PMD_NR;
1576 set_pmd_at(mm, addr, pmd, entry);
1577 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1578 pmd_write(entry));
1579 }
1580 spin_unlock(ptl);
1581 }
1582
1583 return ret;
1584}
1585
1586/*
1587 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1588 *
1589 * Note that if it returns page table lock pointer, this routine returns without
1590 * unlocking page table lock. So callers must unlock it.
1591 */
1592spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1593{
1594 spinlock_t *ptl;
1595 ptl = pmd_lock(vma->vm_mm, pmd);
1596 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1597 return ptl;
1598 spin_unlock(ptl);
1599 return NULL;
1600}
1601
1602static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1603 unsigned long haddr, pmd_t *pmd)
1604{
1605 struct mm_struct *mm = vma->vm_mm;
1606 pgtable_t pgtable;
1607 pmd_t _pmd;
1608 int i;
1609
1610 /* leave pmd empty until pte is filled */
1611 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1612
1613 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1614 pmd_populate(mm, &_pmd, pgtable);
1615
1616 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1617 pte_t *pte, entry;
1618 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1619 entry = pte_mkspecial(entry);
1620 pte = pte_offset_map(&_pmd, haddr);
1621 VM_BUG_ON(!pte_none(*pte));
1622 set_pte_at(mm, haddr, pte, entry);
1623 pte_unmap(pte);
1624 }
1625 smp_wmb(); /* make pte visible before pmd */
1626 pmd_populate(mm, pmd, pgtable);
1627}
1628
1629static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1630 unsigned long haddr, bool freeze)
1631{
1632 struct mm_struct *mm = vma->vm_mm;
1633 struct page *page;
1634 pgtable_t pgtable;
1635 pmd_t _pmd;
1636 bool young, write, dirty, soft_dirty;
1637 unsigned long addr;
1638 int i;
1639
1640 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1641 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1642 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1643 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1644
1645 count_vm_event(THP_SPLIT_PMD);
1646
1647 if (!vma_is_anonymous(vma)) {
1648 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1649 /*
1650 * We are going to unmap this huge page. So
1651 * just go ahead and zap it
1652 */
1653 if (arch_needs_pgtable_deposit())
1654 zap_deposited_table(mm, pmd);
1655 if (vma_is_dax(vma))
1656 return;
1657 page = pmd_page(_pmd);
1658 if (!PageReferenced(page) && pmd_young(_pmd))
1659 SetPageReferenced(page);
1660 page_remove_rmap(page, true);
1661 put_page(page);
1662 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1663 return;
1664 } else if (is_huge_zero_pmd(*pmd)) {
1665 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1666 }
1667
1668 page = pmd_page(*pmd);
1669 VM_BUG_ON_PAGE(!page_count(page), page);
1670 page_ref_add(page, HPAGE_PMD_NR - 1);
1671 write = pmd_write(*pmd);
1672 young = pmd_young(*pmd);
1673 dirty = pmd_dirty(*pmd);
1674 soft_dirty = pmd_soft_dirty(*pmd);
1675
1676 pmdp_huge_split_prepare(vma, haddr, pmd);
1677 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1678 pmd_populate(mm, &_pmd, pgtable);
1679
1680 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1681 pte_t entry, *pte;
1682 /*
1683 * Note that NUMA hinting access restrictions are not
1684 * transferred to avoid any possibility of altering
1685 * permissions across VMAs.
1686 */
1687 if (freeze) {
1688 swp_entry_t swp_entry;
1689 swp_entry = make_migration_entry(page + i, write);
1690 entry = swp_entry_to_pte(swp_entry);
1691 if (soft_dirty)
1692 entry = pte_swp_mksoft_dirty(entry);
1693 } else {
1694 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1695 entry = maybe_mkwrite(entry, vma);
1696 if (!write)
1697 entry = pte_wrprotect(entry);
1698 if (!young)
1699 entry = pte_mkold(entry);
1700 if (soft_dirty)
1701 entry = pte_mksoft_dirty(entry);
1702 }
1703 if (dirty)
1704 SetPageDirty(page + i);
1705 pte = pte_offset_map(&_pmd, addr);
1706 BUG_ON(!pte_none(*pte));
1707 set_pte_at(mm, addr, pte, entry);
1708 atomic_inc(&page[i]._mapcount);
1709 pte_unmap(pte);
1710 }
1711
1712 /*
1713 * Set PG_double_map before dropping compound_mapcount to avoid
1714 * false-negative page_mapped().
1715 */
1716 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1717 for (i = 0; i < HPAGE_PMD_NR; i++)
1718 atomic_inc(&page[i]._mapcount);
1719 }
1720
1721 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1722 /* Last compound_mapcount is gone. */
1723 __dec_node_page_state(page, NR_ANON_THPS);
1724 if (TestClearPageDoubleMap(page)) {
1725 /* No need in mapcount reference anymore */
1726 for (i = 0; i < HPAGE_PMD_NR; i++)
1727 atomic_dec(&page[i]._mapcount);
1728 }
1729 }
1730
1731 smp_wmb(); /* make pte visible before pmd */
1732 /*
1733 * Up to this point the pmd is present and huge and userland has the
1734 * whole access to the hugepage during the split (which happens in
1735 * place). If we overwrite the pmd with the not-huge version pointing
1736 * to the pte here (which of course we could if all CPUs were bug
1737 * free), userland could trigger a small page size TLB miss on the
1738 * small sized TLB while the hugepage TLB entry is still established in
1739 * the huge TLB. Some CPU doesn't like that.
1740 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1741 * 383 on page 93. Intel should be safe but is also warns that it's
1742 * only safe if the permission and cache attributes of the two entries
1743 * loaded in the two TLB is identical (which should be the case here).
1744 * But it is generally safer to never allow small and huge TLB entries
1745 * for the same virtual address to be loaded simultaneously. So instead
1746 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1747 * current pmd notpresent (atomically because here the pmd_trans_huge
1748 * and pmd_trans_splitting must remain set at all times on the pmd
1749 * until the split is complete for this pmd), then we flush the SMP TLB
1750 * and finally we write the non-huge version of the pmd entry with
1751 * pmd_populate.
1752 */
1753 pmdp_invalidate(vma, haddr, pmd);
1754 pmd_populate(mm, pmd, pgtable);
1755
1756 if (freeze) {
1757 for (i = 0; i < HPAGE_PMD_NR; i++) {
1758 page_remove_rmap(page + i, false);
1759 put_page(page + i);
1760 }
1761 }
1762}
1763
1764void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1765 unsigned long address, bool freeze, struct page *page)
1766{
1767 spinlock_t *ptl;
1768 struct mm_struct *mm = vma->vm_mm;
1769 unsigned long haddr = address & HPAGE_PMD_MASK;
1770
1771 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1772 ptl = pmd_lock(mm, pmd);
1773
1774 /*
1775 * If caller asks to setup a migration entries, we need a page to check
1776 * pmd against. Otherwise we can end up replacing wrong page.
1777 */
1778 VM_BUG_ON(freeze && !page);
1779 if (page && page != pmd_page(*pmd))
1780 goto out;
1781
1782 if (pmd_trans_huge(*pmd)) {
1783 page = pmd_page(*pmd);
1784 if (PageMlocked(page))
1785 clear_page_mlock(page);
1786 } else if (!pmd_devmap(*pmd))
1787 goto out;
1788 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1789out:
1790 spin_unlock(ptl);
1791 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1792}
1793
1794void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1795 bool freeze, struct page *page)
1796{
1797 pgd_t *pgd;
1798 pud_t *pud;
1799 pmd_t *pmd;
1800
1801 pgd = pgd_offset(vma->vm_mm, address);
1802 if (!pgd_present(*pgd))
1803 return;
1804
1805 pud = pud_offset(pgd, address);
1806 if (!pud_present(*pud))
1807 return;
1808
1809 pmd = pmd_offset(pud, address);
1810
1811 __split_huge_pmd(vma, pmd, address, freeze, page);
1812}
1813
1814void vma_adjust_trans_huge(struct vm_area_struct *vma,
1815 unsigned long start,
1816 unsigned long end,
1817 long adjust_next)
1818{
1819 /*
1820 * If the new start address isn't hpage aligned and it could
1821 * previously contain an hugepage: check if we need to split
1822 * an huge pmd.
1823 */
1824 if (start & ~HPAGE_PMD_MASK &&
1825 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1826 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1827 split_huge_pmd_address(vma, start, false, NULL);
1828
1829 /*
1830 * If the new end address isn't hpage aligned and it could
1831 * previously contain an hugepage: check if we need to split
1832 * an huge pmd.
1833 */
1834 if (end & ~HPAGE_PMD_MASK &&
1835 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1836 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1837 split_huge_pmd_address(vma, end, false, NULL);
1838
1839 /*
1840 * If we're also updating the vma->vm_next->vm_start, if the new
1841 * vm_next->vm_start isn't page aligned and it could previously
1842 * contain an hugepage: check if we need to split an huge pmd.
1843 */
1844 if (adjust_next > 0) {
1845 struct vm_area_struct *next = vma->vm_next;
1846 unsigned long nstart = next->vm_start;
1847 nstart += adjust_next << PAGE_SHIFT;
1848 if (nstart & ~HPAGE_PMD_MASK &&
1849 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1850 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1851 split_huge_pmd_address(next, nstart, false, NULL);
1852 }
1853}
1854
1855static void freeze_page(struct page *page)
1856{
1857 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1858 TTU_RMAP_LOCKED;
1859 int i, ret;
1860
1861 VM_BUG_ON_PAGE(!PageHead(page), page);
1862
1863 if (PageAnon(page))
1864 ttu_flags |= TTU_MIGRATION;
1865
1866 /* We only need TTU_SPLIT_HUGE_PMD once */
1867 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1868 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1869 /* Cut short if the page is unmapped */
1870 if (page_count(page) == 1)
1871 return;
1872
1873 ret = try_to_unmap(page + i, ttu_flags);
1874 }
1875 VM_BUG_ON_PAGE(ret, page + i - 1);
1876}
1877
1878static void unfreeze_page(struct page *page)
1879{
1880 int i;
1881
1882 for (i = 0; i < HPAGE_PMD_NR; i++)
1883 remove_migration_ptes(page + i, page + i, true);
1884}
1885
1886static void __split_huge_page_tail(struct page *head, int tail,
1887 struct lruvec *lruvec, struct list_head *list)
1888{
1889 struct page *page_tail = head + tail;
1890
1891 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1892 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1893
1894 /*
1895 * tail_page->_refcount is zero and not changing from under us. But
1896 * get_page_unless_zero() may be running from under us on the
1897 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1898 * atomic_add(), we would then run atomic_set() concurrently with
1899 * get_page_unless_zero(), and atomic_set() is implemented in C not
1900 * using locked ops. spin_unlock on x86 sometime uses locked ops
1901 * because of PPro errata 66, 92, so unless somebody can guarantee
1902 * atomic_set() here would be safe on all archs (and not only on x86),
1903 * it's safer to use atomic_inc()/atomic_add().
1904 */
1905 if (PageAnon(head)) {
1906 page_ref_inc(page_tail);
1907 } else {
1908 /* Additional pin to radix tree */
1909 page_ref_add(page_tail, 2);
1910 }
1911
1912 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1913 page_tail->flags |= (head->flags &
1914 ((1L << PG_referenced) |
1915 (1L << PG_swapbacked) |
1916 (1L << PG_mlocked) |
1917 (1L << PG_uptodate) |
1918 (1L << PG_active) |
1919 (1L << PG_locked) |
1920 (1L << PG_unevictable) |
1921 (1L << PG_dirty)));
1922
1923 /*
1924 * After clearing PageTail the gup refcount can be released.
1925 * Page flags also must be visible before we make the page non-compound.
1926 */
1927 smp_wmb();
1928
1929 clear_compound_head(page_tail);
1930
1931 if (page_is_young(head))
1932 set_page_young(page_tail);
1933 if (page_is_idle(head))
1934 set_page_idle(page_tail);
1935
1936 /* ->mapping in first tail page is compound_mapcount */
1937 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1938 page_tail);
1939 page_tail->mapping = head->mapping;
1940
1941 page_tail->index = head->index + tail;
1942 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1943 lru_add_page_tail(head, page_tail, lruvec, list);
1944}
1945
1946static void __split_huge_page(struct page *page, struct list_head *list,
1947 unsigned long flags)
1948{
1949 struct page *head = compound_head(page);
1950 struct zone *zone = page_zone(head);
1951 struct lruvec *lruvec;
1952 pgoff_t end = -1;
1953 int i;
1954
1955 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1956
1957 /* complete memcg works before add pages to LRU */
1958 mem_cgroup_split_huge_fixup(head);
1959
1960 if (!PageAnon(page))
1961 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1962
1963 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1964 __split_huge_page_tail(head, i, lruvec, list);
1965 /* Some pages can be beyond i_size: drop them from page cache */
1966 if (head[i].index >= end) {
1967 __ClearPageDirty(head + i);
1968 __delete_from_page_cache(head + i, NULL);
1969 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1970 shmem_uncharge(head->mapping->host, 1);
1971 put_page(head + i);
1972 }
1973 }
1974
1975 ClearPageCompound(head);
1976 /* See comment in __split_huge_page_tail() */
1977 if (PageAnon(head)) {
1978 page_ref_inc(head);
1979 } else {
1980 /* Additional pin to radix tree */
1981 page_ref_add(head, 2);
1982 spin_unlock(&head->mapping->tree_lock);
1983 }
1984
1985 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1986
1987 unfreeze_page(head);
1988
1989 for (i = 0; i < HPAGE_PMD_NR; i++) {
1990 struct page *subpage = head + i;
1991 if (subpage == page)
1992 continue;
1993 unlock_page(subpage);
1994
1995 /*
1996 * Subpages may be freed if there wasn't any mapping
1997 * like if add_to_swap() is running on a lru page that
1998 * had its mapping zapped. And freeing these pages
1999 * requires taking the lru_lock so we do the put_page
2000 * of the tail pages after the split is complete.
2001 */
2002 put_page(subpage);
2003 }
2004}
2005
2006int total_mapcount(struct page *page)
2007{
2008 int i, compound, ret;
2009
2010 VM_BUG_ON_PAGE(PageTail(page), page);
2011
2012 if (likely(!PageCompound(page)))
2013 return atomic_read(&page->_mapcount) + 1;
2014
2015 compound = compound_mapcount(page);
2016 if (PageHuge(page))
2017 return compound;
2018 ret = compound;
2019 for (i = 0; i < HPAGE_PMD_NR; i++)
2020 ret += atomic_read(&page[i]._mapcount) + 1;
2021 /* File pages has compound_mapcount included in _mapcount */
2022 if (!PageAnon(page))
2023 return ret - compound * HPAGE_PMD_NR;
2024 if (PageDoubleMap(page))
2025 ret -= HPAGE_PMD_NR;
2026 return ret;
2027}
2028
2029/*
2030 * This calculates accurately how many mappings a transparent hugepage
2031 * has (unlike page_mapcount() which isn't fully accurate). This full
2032 * accuracy is primarily needed to know if copy-on-write faults can
2033 * reuse the page and change the mapping to read-write instead of
2034 * copying them. At the same time this returns the total_mapcount too.
2035 *
2036 * The function returns the highest mapcount any one of the subpages
2037 * has. If the return value is one, even if different processes are
2038 * mapping different subpages of the transparent hugepage, they can
2039 * all reuse it, because each process is reusing a different subpage.
2040 *
2041 * The total_mapcount is instead counting all virtual mappings of the
2042 * subpages. If the total_mapcount is equal to "one", it tells the
2043 * caller all mappings belong to the same "mm" and in turn the
2044 * anon_vma of the transparent hugepage can become the vma->anon_vma
2045 * local one as no other process may be mapping any of the subpages.
2046 *
2047 * It would be more accurate to replace page_mapcount() with
2048 * page_trans_huge_mapcount(), however we only use
2049 * page_trans_huge_mapcount() in the copy-on-write faults where we
2050 * need full accuracy to avoid breaking page pinning, because
2051 * page_trans_huge_mapcount() is slower than page_mapcount().
2052 */
2053int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2054{
2055 int i, ret, _total_mapcount, mapcount;
2056
2057 /* hugetlbfs shouldn't call it */
2058 VM_BUG_ON_PAGE(PageHuge(page), page);
2059
2060 if (likely(!PageTransCompound(page))) {
2061 mapcount = atomic_read(&page->_mapcount) + 1;
2062 if (total_mapcount)
2063 *total_mapcount = mapcount;
2064 return mapcount;
2065 }
2066
2067 page = compound_head(page);
2068
2069 _total_mapcount = ret = 0;
2070 for (i = 0; i < HPAGE_PMD_NR; i++) {
2071 mapcount = atomic_read(&page[i]._mapcount) + 1;
2072 ret = max(ret, mapcount);
2073 _total_mapcount += mapcount;
2074 }
2075 if (PageDoubleMap(page)) {
2076 ret -= 1;
2077 _total_mapcount -= HPAGE_PMD_NR;
2078 }
2079 mapcount = compound_mapcount(page);
2080 ret += mapcount;
2081 _total_mapcount += mapcount;
2082 if (total_mapcount)
2083 *total_mapcount = _total_mapcount;
2084 return ret;
2085}
2086
2087/*
2088 * This function splits huge page into normal pages. @page can point to any
2089 * subpage of huge page to split. Split doesn't change the position of @page.
2090 *
2091 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2092 * The huge page must be locked.
2093 *
2094 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2095 *
2096 * Both head page and tail pages will inherit mapping, flags, and so on from
2097 * the hugepage.
2098 *
2099 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2100 * they are not mapped.
2101 *
2102 * Returns 0 if the hugepage is split successfully.
2103 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2104 * us.
2105 */
2106int split_huge_page_to_list(struct page *page, struct list_head *list)
2107{
2108 struct page *head = compound_head(page);
2109 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2110 struct anon_vma *anon_vma = NULL;
2111 struct address_space *mapping = NULL;
2112 int count, mapcount, extra_pins, ret;
2113 bool mlocked;
2114 unsigned long flags;
2115
2116 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2117 VM_BUG_ON_PAGE(!PageLocked(page), page);
2118 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2119 VM_BUG_ON_PAGE(!PageCompound(page), page);
2120
2121 if (PageAnon(head)) {
2122 /*
2123 * The caller does not necessarily hold an mmap_sem that would
2124 * prevent the anon_vma disappearing so we first we take a
2125 * reference to it and then lock the anon_vma for write. This
2126 * is similar to page_lock_anon_vma_read except the write lock
2127 * is taken to serialise against parallel split or collapse
2128 * operations.
2129 */
2130 anon_vma = page_get_anon_vma(head);
2131 if (!anon_vma) {
2132 ret = -EBUSY;
2133 goto out;
2134 }
2135 extra_pins = 0;
2136 mapping = NULL;
2137 anon_vma_lock_write(anon_vma);
2138 } else {
2139 mapping = head->mapping;
2140
2141 /* Truncated ? */
2142 if (!mapping) {
2143 ret = -EBUSY;
2144 goto out;
2145 }
2146
2147 /* Addidional pins from radix tree */
2148 extra_pins = HPAGE_PMD_NR;
2149 anon_vma = NULL;
2150 i_mmap_lock_read(mapping);
2151 }
2152
2153 /*
2154 * Racy check if we can split the page, before freeze_page() will
2155 * split PMDs
2156 */
2157 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2158 ret = -EBUSY;
2159 goto out_unlock;
2160 }
2161
2162 mlocked = PageMlocked(page);
2163 freeze_page(head);
2164 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2165
2166 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2167 if (mlocked)
2168 lru_add_drain();
2169
2170 /* prevent PageLRU to go away from under us, and freeze lru stats */
2171 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2172
2173 if (mapping) {
2174 void **pslot;
2175
2176 spin_lock(&mapping->tree_lock);
2177 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2178 page_index(head));
2179 /*
2180 * Check if the head page is present in radix tree.
2181 * We assume all tail are present too, if head is there.
2182 */
2183 if (radix_tree_deref_slot_protected(pslot,
2184 &mapping->tree_lock) != head)
2185 goto fail;
2186 }
2187
2188 /* Prevent deferred_split_scan() touching ->_refcount */
2189 spin_lock(&pgdata->split_queue_lock);
2190 count = page_count(head);
2191 mapcount = total_mapcount(head);
2192 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2193 if (!list_empty(page_deferred_list(head))) {
2194 pgdata->split_queue_len--;
2195 list_del(page_deferred_list(head));
2196 }
2197 if (mapping)
2198 __dec_node_page_state(page, NR_SHMEM_THPS);
2199 spin_unlock(&pgdata->split_queue_lock);
2200 __split_huge_page(page, list, flags);
2201 ret = 0;
2202 } else {
2203 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2204 pr_alert("total_mapcount: %u, page_count(): %u\n",
2205 mapcount, count);
2206 if (PageTail(page))
2207 dump_page(head, NULL);
2208 dump_page(page, "total_mapcount(head) > 0");
2209 BUG();
2210 }
2211 spin_unlock(&pgdata->split_queue_lock);
2212fail: if (mapping)
2213 spin_unlock(&mapping->tree_lock);
2214 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2215 unfreeze_page(head);
2216 ret = -EBUSY;
2217 }
2218
2219out_unlock:
2220 if (anon_vma) {
2221 anon_vma_unlock_write(anon_vma);
2222 put_anon_vma(anon_vma);
2223 }
2224 if (mapping)
2225 i_mmap_unlock_read(mapping);
2226out:
2227 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2228 return ret;
2229}
2230
2231void free_transhuge_page(struct page *page)
2232{
2233 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2234 unsigned long flags;
2235
2236 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2237 if (!list_empty(page_deferred_list(page))) {
2238 pgdata->split_queue_len--;
2239 list_del(page_deferred_list(page));
2240 }
2241 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2242 free_compound_page(page);
2243}
2244
2245void deferred_split_huge_page(struct page *page)
2246{
2247 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2248 unsigned long flags;
2249
2250 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2251
2252 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2253 if (list_empty(page_deferred_list(page))) {
2254 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2255 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2256 pgdata->split_queue_len++;
2257 }
2258 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2259}
2260
2261static unsigned long deferred_split_count(struct shrinker *shrink,
2262 struct shrink_control *sc)
2263{
2264 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2265 return ACCESS_ONCE(pgdata->split_queue_len);
2266}
2267
2268static unsigned long deferred_split_scan(struct shrinker *shrink,
2269 struct shrink_control *sc)
2270{
2271 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2272 unsigned long flags;
2273 LIST_HEAD(list), *pos, *next;
2274 struct page *page;
2275 int split = 0;
2276
2277 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2278 /* Take pin on all head pages to avoid freeing them under us */
2279 list_for_each_safe(pos, next, &pgdata->split_queue) {
2280 page = list_entry((void *)pos, struct page, mapping);
2281 page = compound_head(page);
2282 if (get_page_unless_zero(page)) {
2283 list_move(page_deferred_list(page), &list);
2284 } else {
2285 /* We lost race with put_compound_page() */
2286 list_del_init(page_deferred_list(page));
2287 pgdata->split_queue_len--;
2288 }
2289 if (!--sc->nr_to_scan)
2290 break;
2291 }
2292 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2293
2294 list_for_each_safe(pos, next, &list) {
2295 page = list_entry((void *)pos, struct page, mapping);
2296 lock_page(page);
2297 /* split_huge_page() removes page from list on success */
2298 if (!split_huge_page(page))
2299 split++;
2300 unlock_page(page);
2301 put_page(page);
2302 }
2303
2304 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2305 list_splice_tail(&list, &pgdata->split_queue);
2306 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2307
2308 /*
2309 * Stop shrinker if we didn't split any page, but the queue is empty.
2310 * This can happen if pages were freed under us.
2311 */
2312 if (!split && list_empty(&pgdata->split_queue))
2313 return SHRINK_STOP;
2314 return split;
2315}
2316
2317static struct shrinker deferred_split_shrinker = {
2318 .count_objects = deferred_split_count,
2319 .scan_objects = deferred_split_scan,
2320 .seeks = DEFAULT_SEEKS,
2321 .flags = SHRINKER_NUMA_AWARE,
2322};
2323
2324#ifdef CONFIG_DEBUG_FS
2325static int split_huge_pages_set(void *data, u64 val)
2326{
2327 struct zone *zone;
2328 struct page *page;
2329 unsigned long pfn, max_zone_pfn;
2330 unsigned long total = 0, split = 0;
2331
2332 if (val != 1)
2333 return -EINVAL;
2334
2335 for_each_populated_zone(zone) {
2336 max_zone_pfn = zone_end_pfn(zone);
2337 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2338 if (!pfn_valid(pfn))
2339 continue;
2340
2341 page = pfn_to_page(pfn);
2342 if (!get_page_unless_zero(page))
2343 continue;
2344
2345 if (zone != page_zone(page))
2346 goto next;
2347
2348 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2349 goto next;
2350
2351 total++;
2352 lock_page(page);
2353 if (!split_huge_page(page))
2354 split++;
2355 unlock_page(page);
2356next:
2357 put_page(page);
2358 }
2359 }
2360
2361 pr_info("%lu of %lu THP split\n", split, total);
2362
2363 return 0;
2364}
2365DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2366 "%llu\n");
2367
2368static int __init split_huge_pages_debugfs(void)
2369{
2370 void *ret;
2371
2372 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2373 &split_huge_pages_fops);
2374 if (!ret)
2375 pr_warn("Failed to create split_huge_pages in debugfs");
2376 return 0;
2377}
2378late_initcall(split_huge_pages_debugfs);
2379#endif