Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
 
 
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
 
  15#include <linux/mm_inline.h>
  16#include <linux/kthread.h>
 
  17#include <linux/khugepaged.h>
  18#include <linux/freezer.h>
 
  19#include <linux/mman.h>
 
 
 
 
 
 
 
 
 
  20#include <asm/tlb.h>
  21#include <asm/pgalloc.h>
  22#include "internal.h"
  23
  24/*
  25 * By default transparent hugepage support is enabled for all mappings
  26 * and khugepaged scans all mappings. Defrag is only invoked by
  27 * khugepaged hugepage allocations and by page faults inside
  28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29 * allocations.
 
  30 */
  31unsigned long transparent_hugepage_flags __read_mostly =
  32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34#endif
  35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37#endif
  38	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  40
  41/* default scan 8*512 pte (or vmas) every 30 second */
  42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  43static unsigned int khugepaged_pages_collapsed;
  44static unsigned int khugepaged_full_scans;
  45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  46/* during fragmentation poll the hugepage allocator once every minute */
  47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  48static struct task_struct *khugepaged_thread __read_mostly;
  49static DEFINE_MUTEX(khugepaged_mutex);
  50static DEFINE_SPINLOCK(khugepaged_mm_lock);
  51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  52/*
  53 * default collapse hugepages if there is at least one pte mapped like
  54 * it would have happened if the vma was large enough during page
  55 * fault.
  56 */
  57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  58
  59static int khugepaged(void *none);
  60static int mm_slots_hash_init(void);
  61static int khugepaged_slab_init(void);
  62static void khugepaged_slab_free(void);
  63
  64#define MM_SLOTS_HASH_HEADS 1024
  65static struct hlist_head *mm_slots_hash __read_mostly;
  66static struct kmem_cache *mm_slot_cache __read_mostly;
  67
  68/**
  69 * struct mm_slot - hash lookup from mm to mm_slot
  70 * @hash: hash collision list
  71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72 * @mm: the mm that this information is valid for
  73 */
  74struct mm_slot {
  75	struct hlist_node hash;
  76	struct list_head mm_node;
  77	struct mm_struct *mm;
  78};
  79
  80/**
  81 * struct khugepaged_scan - cursor for scanning
  82 * @mm_head: the head of the mm list to scan
  83 * @mm_slot: the current mm_slot we are scanning
  84 * @address: the next address inside that to be scanned
  85 *
  86 * There is only the one khugepaged_scan instance of this cursor structure.
  87 */
  88struct khugepaged_scan {
  89	struct list_head mm_head;
  90	struct mm_slot *mm_slot;
  91	unsigned long address;
  92} khugepaged_scan = {
  93	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94};
  95
 
 
 
 
 
 
 
 
  96
  97static int set_recommended_min_free_kbytes(void)
  98{
  99	struct zone *zone;
 100	int nr_zones = 0;
 101	unsigned long recommended_min;
 102	extern int min_free_kbytes;
 103
 104	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 105		      &transparent_hugepage_flags) &&
 106	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 107		      &transparent_hugepage_flags))
 108		return 0;
 109
 110	for_each_populated_zone(zone)
 111		nr_zones++;
 112
 113	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 114	recommended_min = pageblock_nr_pages * nr_zones * 2;
 115
 116	/*
 117	 * Make sure that on average at least two pageblocks are almost free
 118	 * of another type, one for a migratetype to fall back to and a
 119	 * second to avoid subsequent fallbacks of other types There are 3
 120	 * MIGRATE_TYPES we care about.
 121	 */
 122	recommended_min += pageblock_nr_pages * nr_zones *
 123			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 124
 125	/* don't ever allow to reserve more than 5% of the lowmem */
 126	recommended_min = min(recommended_min,
 127			      (unsigned long) nr_free_buffer_pages() / 20);
 128	recommended_min <<= (PAGE_SHIFT-10);
 
 129
 130	if (recommended_min > min_free_kbytes)
 131		min_free_kbytes = recommended_min;
 132	setup_per_zone_wmarks();
 133	return 0;
 
 134}
 135late_initcall(set_recommended_min_free_kbytes);
 136
 137static int start_khugepaged(void)
 
 138{
 139	int err = 0;
 140	if (khugepaged_enabled()) {
 141		int wakeup;
 142		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
 143			err = -ENOMEM;
 144			goto out;
 145		}
 146		mutex_lock(&khugepaged_mutex);
 147		if (!khugepaged_thread)
 148			khugepaged_thread = kthread_run(khugepaged, NULL,
 149							"khugepaged");
 150		if (unlikely(IS_ERR(khugepaged_thread))) {
 151			printk(KERN_ERR
 152			       "khugepaged: kthread_run(khugepaged) failed\n");
 153			err = PTR_ERR(khugepaged_thread);
 154			khugepaged_thread = NULL;
 155		}
 156		wakeup = !list_empty(&khugepaged_scan.mm_head);
 157		mutex_unlock(&khugepaged_mutex);
 158		if (wakeup)
 159			wake_up_interruptible(&khugepaged_wait);
 160
 161		set_recommended_min_free_kbytes();
 162	} else
 163		/* wakeup to exit */
 164		wake_up_interruptible(&khugepaged_wait);
 165out:
 166	return err;
 167}
 168
 
 
 
 
 
 
 169#ifdef CONFIG_SYSFS
 170
 171static ssize_t double_flag_show(struct kobject *kobj,
 172				struct kobj_attribute *attr, char *buf,
 173				enum transparent_hugepage_flag enabled,
 174				enum transparent_hugepage_flag req_madv)
 175{
 176	if (test_bit(enabled, &transparent_hugepage_flags)) {
 177		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 178		return sprintf(buf, "[always] madvise never\n");
 179	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 180		return sprintf(buf, "always [madvise] never\n");
 181	else
 182		return sprintf(buf, "always madvise [never]\n");
 183}
 184static ssize_t double_flag_store(struct kobject *kobj,
 185				 struct kobj_attribute *attr,
 186				 const char *buf, size_t count,
 187				 enum transparent_hugepage_flag enabled,
 
 188				 enum transparent_hugepage_flag req_madv)
 189{
 190	if (!memcmp("always", buf,
 
 
 
 
 
 
 
 191		    min(sizeof("always")-1, count))) {
 192		set_bit(enabled, &transparent_hugepage_flags);
 193		clear_bit(req_madv, &transparent_hugepage_flags);
 
 194	} else if (!memcmp("madvise", buf,
 195			   min(sizeof("madvise")-1, count))) {
 196		clear_bit(enabled, &transparent_hugepage_flags);
 
 197		set_bit(req_madv, &transparent_hugepage_flags);
 198	} else if (!memcmp("never", buf,
 199			   min(sizeof("never")-1, count))) {
 200		clear_bit(enabled, &transparent_hugepage_flags);
 201		clear_bit(req_madv, &transparent_hugepage_flags);
 
 202	} else
 203		return -EINVAL;
 204
 205	return count;
 206}
 207
 208static ssize_t enabled_show(struct kobject *kobj,
 209			    struct kobj_attribute *attr, char *buf)
 210{
 211	return double_flag_show(kobj, attr, buf,
 212				TRANSPARENT_HUGEPAGE_FLAG,
 213				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 
 
 
 214}
 
 215static ssize_t enabled_store(struct kobject *kobj,
 216			     struct kobj_attribute *attr,
 217			     const char *buf, size_t count)
 218{
 219	ssize_t ret;
 220
 221	ret = double_flag_store(kobj, attr, buf, count,
 
 222				TRANSPARENT_HUGEPAGE_FLAG,
 223				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 224
 225	if (ret > 0) {
 226		int err = start_khugepaged();
 227		if (err)
 228			ret = err;
 229	}
 230
 231	if (ret > 0 &&
 232	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 233		      &transparent_hugepage_flags) ||
 234	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 235		      &transparent_hugepage_flags)))
 236		set_recommended_min_free_kbytes();
 237
 238	return ret;
 239}
 240static struct kobj_attribute enabled_attr =
 241	__ATTR(enabled, 0644, enabled_show, enabled_store);
 242
 243static ssize_t single_flag_show(struct kobject *kobj,
 244				struct kobj_attribute *attr, char *buf,
 245				enum transparent_hugepage_flag flag)
 246{
 247	return sprintf(buf, "%d\n",
 248		       !!test_bit(flag, &transparent_hugepage_flags));
 249}
 250
 251static ssize_t single_flag_store(struct kobject *kobj,
 252				 struct kobj_attribute *attr,
 253				 const char *buf, size_t count,
 254				 enum transparent_hugepage_flag flag)
 255{
 256	unsigned long value;
 257	int ret;
 258
 259	ret = kstrtoul(buf, 10, &value);
 260	if (ret < 0)
 261		return ret;
 262	if (value > 1)
 263		return -EINVAL;
 264
 265	if (value)
 266		set_bit(flag, &transparent_hugepage_flags);
 267	else
 268		clear_bit(flag, &transparent_hugepage_flags);
 269
 270	return count;
 271}
 272
 273/*
 274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 276 * memory just to allocate one more hugepage.
 277 */
 278static ssize_t defrag_show(struct kobject *kobj,
 279			   struct kobj_attribute *attr, char *buf)
 280{
 281	return double_flag_show(kobj, attr, buf,
 282				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 283				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 284}
 285static ssize_t defrag_store(struct kobject *kobj,
 286			    struct kobj_attribute *attr,
 287			    const char *buf, size_t count)
 288{
 289	return double_flag_store(kobj, attr, buf, count,
 290				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 
 291				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 292}
 293static struct kobj_attribute defrag_attr =
 294	__ATTR(defrag, 0644, defrag_show, defrag_store);
 295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296#ifdef CONFIG_DEBUG_VM
 297static ssize_t debug_cow_show(struct kobject *kobj,
 298				struct kobj_attribute *attr, char *buf)
 299{
 300	return single_flag_show(kobj, attr, buf,
 301				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 302}
 303static ssize_t debug_cow_store(struct kobject *kobj,
 304			       struct kobj_attribute *attr,
 305			       const char *buf, size_t count)
 306{
 307	return single_flag_store(kobj, attr, buf, count,
 308				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 309}
 310static struct kobj_attribute debug_cow_attr =
 311	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 312#endif /* CONFIG_DEBUG_VM */
 313
 314static struct attribute *hugepage_attr[] = {
 315	&enabled_attr.attr,
 316	&defrag_attr.attr,
 
 
 
 
 
 317#ifdef CONFIG_DEBUG_VM
 318	&debug_cow_attr.attr,
 319#endif
 320	NULL,
 321};
 322
 323static struct attribute_group hugepage_attr_group = {
 324	.attrs = hugepage_attr,
 325};
 326
 327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 328					 struct kobj_attribute *attr,
 329					 char *buf)
 330{
 331	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 332}
 333
 334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 335					  struct kobj_attribute *attr,
 336					  const char *buf, size_t count)
 337{
 338	unsigned long msecs;
 339	int err;
 340
 341	err = strict_strtoul(buf, 10, &msecs);
 342	if (err || msecs > UINT_MAX)
 343		return -EINVAL;
 344
 345	khugepaged_scan_sleep_millisecs = msecs;
 346	wake_up_interruptible(&khugepaged_wait);
 347
 348	return count;
 349}
 350static struct kobj_attribute scan_sleep_millisecs_attr =
 351	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 352	       scan_sleep_millisecs_store);
 353
 354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 355					  struct kobj_attribute *attr,
 356					  char *buf)
 357{
 358	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 359}
 360
 361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 362					   struct kobj_attribute *attr,
 363					   const char *buf, size_t count)
 364{
 365	unsigned long msecs;
 366	int err;
 367
 368	err = strict_strtoul(buf, 10, &msecs);
 369	if (err || msecs > UINT_MAX)
 370		return -EINVAL;
 371
 372	khugepaged_alloc_sleep_millisecs = msecs;
 373	wake_up_interruptible(&khugepaged_wait);
 374
 375	return count;
 376}
 377static struct kobj_attribute alloc_sleep_millisecs_attr =
 378	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 379	       alloc_sleep_millisecs_store);
 380
 381static ssize_t pages_to_scan_show(struct kobject *kobj,
 382				  struct kobj_attribute *attr,
 383				  char *buf)
 384{
 385	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 386}
 387static ssize_t pages_to_scan_store(struct kobject *kobj,
 388				   struct kobj_attribute *attr,
 389				   const char *buf, size_t count)
 390{
 391	int err;
 392	unsigned long pages;
 393
 394	err = strict_strtoul(buf, 10, &pages);
 395	if (err || !pages || pages > UINT_MAX)
 396		return -EINVAL;
 
 
 397
 398	khugepaged_pages_to_scan = pages;
 399
 400	return count;
 
 
 
 
 401}
 402static struct kobj_attribute pages_to_scan_attr =
 403	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 404	       pages_to_scan_store);
 405
 406static ssize_t pages_collapsed_show(struct kobject *kobj,
 407				    struct kobj_attribute *attr,
 408				    char *buf)
 409{
 410	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 
 
 411}
 412static struct kobj_attribute pages_collapsed_attr =
 413	__ATTR_RO(pages_collapsed);
 414
 415static ssize_t full_scans_show(struct kobject *kobj,
 416			       struct kobj_attribute *attr,
 417			       char *buf)
 418{
 419	return sprintf(buf, "%u\n", khugepaged_full_scans);
 420}
 421static struct kobj_attribute full_scans_attr =
 422	__ATTR_RO(full_scans);
 423
 424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 425				      struct kobj_attribute *attr, char *buf)
 426{
 427	return single_flag_show(kobj, attr, buf,
 428				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 429}
 430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 431				       struct kobj_attribute *attr,
 432				       const char *buf, size_t count)
 433{
 434	return single_flag_store(kobj, attr, buf, count,
 435				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 436}
 437static struct kobj_attribute khugepaged_defrag_attr =
 438	__ATTR(defrag, 0644, khugepaged_defrag_show,
 439	       khugepaged_defrag_store);
 440
 441/*
 442 * max_ptes_none controls if khugepaged should collapse hugepages over
 443 * any unmapped ptes in turn potentially increasing the memory
 444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 445 * reduce the available free memory in the system as it
 446 * runs. Increasing max_ptes_none will instead potentially reduce the
 447 * free memory in the system during the khugepaged scan.
 448 */
 449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 450					     struct kobj_attribute *attr,
 451					     char *buf)
 452{
 453	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 454}
 455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 456					      struct kobj_attribute *attr,
 457					      const char *buf, size_t count)
 458{
 459	int err;
 460	unsigned long max_ptes_none;
 461
 462	err = strict_strtoul(buf, 10, &max_ptes_none);
 463	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 464		return -EINVAL;
 465
 466	khugepaged_max_ptes_none = max_ptes_none;
 467
 468	return count;
 469}
 470static struct kobj_attribute khugepaged_max_ptes_none_attr =
 471	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 472	       khugepaged_max_ptes_none_store);
 473
 474static struct attribute *khugepaged_attr[] = {
 475	&khugepaged_defrag_attr.attr,
 476	&khugepaged_max_ptes_none_attr.attr,
 477	&pages_to_scan_attr.attr,
 478	&pages_collapsed_attr.attr,
 479	&full_scans_attr.attr,
 480	&scan_sleep_millisecs_attr.attr,
 481	&alloc_sleep_millisecs_attr.attr,
 482	NULL,
 483};
 484
 485static struct attribute_group khugepaged_attr_group = {
 486	.attrs = khugepaged_attr,
 487	.name = "khugepaged",
 488};
 489#endif /* CONFIG_SYSFS */
 490
 491static int __init hugepage_init(void)
 492{
 493	int err;
 494#ifdef CONFIG_SYSFS
 495	static struct kobject *hugepage_kobj;
 496#endif
 497
 498	err = -EINVAL;
 499	if (!has_transparent_hugepage()) {
 500		transparent_hugepage_flags = 0;
 501		goto out;
 502	}
 503
 504#ifdef CONFIG_SYSFS
 505	err = -ENOMEM;
 506	hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 507	if (unlikely(!hugepage_kobj)) {
 508		printk(KERN_ERR "hugepage: failed kobject create\n");
 509		goto out;
 510	}
 511
 512	err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
 513	if (err) {
 514		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 515		goto out;
 516	}
 
 
 
 
 517
 518	err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
 519	if (err) {
 520		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 521		goto out;
 522	}
 523#endif
 524
 525	err = khugepaged_slab_init();
 526	if (err)
 527		goto out;
 528
 529	err = mm_slots_hash_init();
 530	if (err) {
 531		khugepaged_slab_free();
 532		goto out;
 533	}
 
 534
 535	/*
 536	 * By default disable transparent hugepages on smaller systems,
 537	 * where the extra memory used could hurt more than TLB overhead
 538	 * is likely to save.  The admin can still enable it through /sys.
 539	 */
 540	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 541		transparent_hugepage_flags = 0;
 
 
 542
 543	start_khugepaged();
 544
 545	set_recommended_min_free_kbytes();
 546
 547out:
 
 
 
 
 
 
 
 
 
 548	return err;
 549}
 550module_init(hugepage_init)
 551
 552static int __init setup_transparent_hugepage(char *str)
 553{
 554	int ret = 0;
 555	if (!str)
 556		goto out;
 557	if (!strcmp(str, "always")) {
 558		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 559			&transparent_hugepage_flags);
 560		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 561			  &transparent_hugepage_flags);
 562		ret = 1;
 563	} else if (!strcmp(str, "madvise")) {
 564		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 565			  &transparent_hugepage_flags);
 566		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 567			&transparent_hugepage_flags);
 568		ret = 1;
 569	} else if (!strcmp(str, "never")) {
 570		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 571			  &transparent_hugepage_flags);
 572		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 573			  &transparent_hugepage_flags);
 574		ret = 1;
 575	}
 576out:
 577	if (!ret)
 578		printk(KERN_WARNING
 579		       "transparent_hugepage= cannot parse, ignored\n");
 580	return ret;
 581}
 582__setup("transparent_hugepage=", setup_transparent_hugepage);
 583
 584static void prepare_pmd_huge_pte(pgtable_t pgtable,
 585				 struct mm_struct *mm)
 586{
 587	assert_spin_locked(&mm->page_table_lock);
 
 
 
 588
 589	/* FIFO */
 590	if (!mm->pmd_huge_pte)
 591		INIT_LIST_HEAD(&pgtable->lru);
 592	else
 593		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
 594	mm->pmd_huge_pte = pgtable;
 
 595}
 596
 597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 598{
 599	if (likely(vma->vm_flags & VM_WRITE))
 600		pmd = pmd_mkwrite(pmd);
 601	return pmd;
 
 
 
 
 602}
 603
 604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 605					struct vm_area_struct *vma,
 606					unsigned long haddr, pmd_t *pmd,
 607					struct page *page)
 608{
 609	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610	pgtable_t pgtable;
 
 
 
 611
 612	VM_BUG_ON(!PageCompound(page));
 613	pgtable = pte_alloc_one(mm, haddr);
 
 
 
 
 
 614	if (unlikely(!pgtable)) {
 615		mem_cgroup_uncharge_page(page);
 616		put_page(page);
 617		return VM_FAULT_OOM;
 618	}
 619
 620	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 
 
 
 
 
 621	__SetPageUptodate(page);
 622
 623	spin_lock(&mm->page_table_lock);
 624	if (unlikely(!pmd_none(*pmd))) {
 625		spin_unlock(&mm->page_table_lock);
 626		mem_cgroup_uncharge_page(page);
 627		put_page(page);
 628		pte_free(mm, pgtable);
 629	} else {
 630		pmd_t entry;
 631		entry = mk_pmd(page, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 633		entry = pmd_mkhuge(entry);
 634		/*
 635		 * The spinlocking to take the lru_lock inside
 636		 * page_add_new_anon_rmap() acts as a full memory
 637		 * barrier to be sure clear_huge_page writes become
 638		 * visible after the set_pmd_at() write.
 639		 */
 640		page_add_new_anon_rmap(page, vma, haddr);
 641		set_pmd_at(mm, haddr, pmd, entry);
 642		prepare_pmd_huge_pte(pgtable, mm);
 643		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 644		spin_unlock(&mm->page_table_lock);
 645	}
 646
 647	return ret;
 648}
 649
 650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 
 
 
 
 
 
 651{
 652	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653}
 654
 655static inline struct page *alloc_hugepage_vma(int defrag,
 656					      struct vm_area_struct *vma,
 657					      unsigned long haddr, int nd,
 658					      gfp_t extra_gfp)
 659{
 660	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 661			       HPAGE_PMD_ORDER, vma, haddr, nd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662}
 663
 664#ifndef CONFIG_NUMA
 665static inline struct page *alloc_hugepage(int defrag)
 666{
 667	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
 668			   HPAGE_PMD_ORDER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 669}
 670#endif
 671
 672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 673			       unsigned long address, pmd_t *pmd,
 674			       unsigned int flags)
 675{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676	struct page *page;
 677	unsigned long haddr = address & HPAGE_PMD_MASK;
 678	pte_t *pte;
 679
 680	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
 681		if (unlikely(anon_vma_prepare(vma)))
 682			return VM_FAULT_OOM;
 683		if (unlikely(khugepaged_enter(vma)))
 684			return VM_FAULT_OOM;
 685		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 686					  vma, haddr, numa_node_id(), 0);
 687		if (unlikely(!page)) {
 688			count_vm_event(THP_FAULT_FALLBACK);
 689			goto out;
 690		}
 691		count_vm_event(THP_FAULT_ALLOC);
 692		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
 693			put_page(page);
 694			goto out;
 695		}
 696
 697		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
 698	}
 699out:
 700	/*
 701	 * Use __pte_alloc instead of pte_alloc_map, because we can't
 702	 * run pte_offset_map on the pmd, if an huge pmd could
 703	 * materialize from under us from a different thread.
 704	 */
 705	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
 706		return VM_FAULT_OOM;
 707	/* if an huge pmd materialized from under us just retry later */
 708	if (unlikely(pmd_trans_huge(*pmd)))
 709		return 0;
 
 
 
 
 
 
 
 
 710	/*
 711	 * A regular pmd is established and it can't morph into a huge pmd
 712	 * from under us anymore at this point because we hold the mmap_sem
 713	 * read mode and khugepaged takes it in write mode. So now it's
 714	 * safe to run pte_offset_map().
 715	 */
 716	pte = pte_offset_map(pmd, address);
 717	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 
 
 
 
 
 
 
 
 
 
 718}
 719
 720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 721		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 722		  struct vm_area_struct *vma)
 723{
 
 724	struct page *src_page;
 725	pmd_t pmd;
 726	pgtable_t pgtable;
 727	int ret;
 
 
 
 
 728
 729	ret = -ENOMEM;
 730	pgtable = pte_alloc_one(dst_mm, addr);
 731	if (unlikely(!pgtable))
 732		goto out;
 733
 734	spin_lock(&dst_mm->page_table_lock);
 735	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
 
 736
 737	ret = -EAGAIN;
 738	pmd = *src_pmd;
 739	if (unlikely(!pmd_trans_huge(pmd))) {
 740		pte_free(dst_mm, pgtable);
 741		goto out_unlock;
 742	}
 743	if (unlikely(pmd_trans_splitting(pmd))) {
 744		/* split huge page running from under us */
 745		spin_unlock(&src_mm->page_table_lock);
 746		spin_unlock(&dst_mm->page_table_lock);
 747		pte_free(dst_mm, pgtable);
 748
 749		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 750		goto out;
 
 
 
 
 
 
 
 
 
 751	}
 
 752	src_page = pmd_page(pmd);
 753	VM_BUG_ON(!PageHead(src_page));
 754	get_page(src_page);
 755	page_dup_rmap(src_page);
 756	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 
 
 757
 758	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 759	pmd = pmd_mkold(pmd_wrprotect(pmd));
 760	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 761	prepare_pmd_huge_pte(pgtable, dst_mm);
 762
 763	ret = 0;
 764out_unlock:
 765	spin_unlock(&src_mm->page_table_lock);
 766	spin_unlock(&dst_mm->page_table_lock);
 767out:
 768	return ret;
 769}
 770
 771/* no "address" argument so destroys page coloring of some arch */
 772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
 773{
 774	pgtable_t pgtable;
 
 
 775
 776	assert_spin_locked(&mm->page_table_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 777
 778	/* FIFO */
 779	pgtable = mm->pmd_huge_pte;
 780	if (list_empty(&pgtable->lru))
 781		mm->pmd_huge_pte = NULL;
 782	else {
 783		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
 784					      struct page, lru);
 785		list_del(&pgtable->lru);
 786	}
 787	return pgtable;
 788}
 789
 790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 791					struct vm_area_struct *vma,
 792					unsigned long address,
 793					pmd_t *pmd, pmd_t orig_pmd,
 794					struct page *page,
 795					unsigned long haddr)
 796{
 
 
 
 797	pgtable_t pgtable;
 798	pmd_t _pmd;
 799	int ret = 0, i;
 800	struct page **pages;
 
 
 801
 802	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 803			GFP_KERNEL);
 804	if (unlikely(!pages)) {
 805		ret |= VM_FAULT_OOM;
 806		goto out;
 807	}
 808
 809	for (i = 0; i < HPAGE_PMD_NR; i++) {
 810		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 811					       __GFP_OTHER_NODE,
 812					       vma, address, page_to_nid(page));
 813		if (unlikely(!pages[i] ||
 814			     mem_cgroup_newpage_charge(pages[i], mm,
 815						       GFP_KERNEL))) {
 816			if (pages[i])
 817				put_page(pages[i]);
 818			mem_cgroup_uncharge_start();
 819			while (--i >= 0) {
 820				mem_cgroup_uncharge_page(pages[i]);
 
 
 
 821				put_page(pages[i]);
 822			}
 823			mem_cgroup_uncharge_end();
 824			kfree(pages);
 825			ret |= VM_FAULT_OOM;
 826			goto out;
 827		}
 
 828	}
 829
 830	for (i = 0; i < HPAGE_PMD_NR; i++) {
 831		copy_user_highpage(pages[i], page + i,
 832				   haddr + PAGE_SHIFT*i, vma);
 833		__SetPageUptodate(pages[i]);
 834		cond_resched();
 835	}
 836
 837	spin_lock(&mm->page_table_lock);
 838	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 
 
 
 
 839		goto out_free_pages;
 840	VM_BUG_ON(!PageHead(page));
 841
 842	pmdp_clear_flush_notify(vma, haddr, pmd);
 843	/* leave pmd empty until pte is filled */
 844
 845	pgtable = get_pmd_huge_pte(mm);
 846	pmd_populate(mm, &_pmd, pgtable);
 847
 848	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 849		pte_t *pte, entry;
 850		entry = mk_pte(pages[i], vma->vm_page_prot);
 851		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 852		page_add_new_anon_rmap(pages[i], vma, haddr);
 853		pte = pte_offset_map(&_pmd, haddr);
 854		VM_BUG_ON(!pte_none(*pte));
 855		set_pte_at(mm, haddr, pte, entry);
 856		pte_unmap(pte);
 
 
 
 
 857	}
 858	kfree(pages);
 859
 860	mm->nr_ptes++;
 861	smp_wmb(); /* make pte visible before pmd */
 862	pmd_populate(mm, pmd, pgtable);
 863	page_remove_rmap(page);
 864	spin_unlock(&mm->page_table_lock);
 
 
 865
 866	ret |= VM_FAULT_WRITE;
 867	put_page(page);
 868
 869out:
 870	return ret;
 871
 872out_free_pages:
 873	spin_unlock(&mm->page_table_lock);
 874	mem_cgroup_uncharge_start();
 875	for (i = 0; i < HPAGE_PMD_NR; i++) {
 876		mem_cgroup_uncharge_page(pages[i]);
 
 
 877		put_page(pages[i]);
 878	}
 879	mem_cgroup_uncharge_end();
 880	kfree(pages);
 881	goto out;
 882}
 883
 884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 885			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
 886{
 
 
 
 
 
 
 
 887	int ret = 0;
 888	struct page *page, *new_page;
 889	unsigned long haddr;
 890
 891	VM_BUG_ON(!vma->anon_vma);
 892	spin_lock(&mm->page_table_lock);
 893	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 
 
 
 894		goto out_unlock;
 895
 896	page = pmd_page(orig_pmd);
 897	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
 898	haddr = address & HPAGE_PMD_MASK;
 899	if (page_mapcount(page) == 1) {
 
 
 
 900		pmd_t entry;
 901		entry = pmd_mkyoung(orig_pmd);
 902		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 903		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
 904			update_mmu_cache(vma, address, entry);
 905		ret |= VM_FAULT_WRITE;
 906		goto out_unlock;
 907	}
 908	get_page(page);
 909	spin_unlock(&mm->page_table_lock);
 910
 911	if (transparent_hugepage_enabled(vma) &&
 912	    !transparent_hugepage_debug_cow())
 913		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 914					      vma, haddr, numa_node_id(), 0);
 915	else
 916		new_page = NULL;
 917
 918	if (unlikely(!new_page)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 919		count_vm_event(THP_FAULT_FALLBACK);
 920		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
 921						   pmd, orig_pmd, page, haddr);
 922		put_page(page);
 923		goto out;
 924	}
 925	count_vm_event(THP_FAULT_ALLOC);
 926
 927	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
 
 928		put_page(new_page);
 929		put_page(page);
 930		ret |= VM_FAULT_OOM;
 
 
 
 931		goto out;
 932	}
 933
 934	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 
 
 
 
 
 935	__SetPageUptodate(new_page);
 936
 937	spin_lock(&mm->page_table_lock);
 938	put_page(page);
 939	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
 940		mem_cgroup_uncharge_page(new_page);
 
 
 
 
 
 
 941		put_page(new_page);
 
 942	} else {
 943		pmd_t entry;
 944		VM_BUG_ON(!PageHead(page));
 945		entry = mk_pmd(new_page, vma->vm_page_prot);
 946		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 947		entry = pmd_mkhuge(entry);
 948		pmdp_clear_flush_notify(vma, haddr, pmd);
 949		page_add_new_anon_rmap(new_page, vma, haddr);
 950		set_pmd_at(mm, haddr, pmd, entry);
 951		update_mmu_cache(vma, address, entry);
 952		page_remove_rmap(page);
 953		put_page(page);
 
 
 
 
 
 
 954		ret |= VM_FAULT_WRITE;
 955	}
 956out_unlock:
 957	spin_unlock(&mm->page_table_lock);
 
 958out:
 959	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 960}
 961
 962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
 963				   unsigned long addr,
 964				   pmd_t *pmd,
 965				   unsigned int flags)
 966{
 
 967	struct page *page = NULL;
 968
 969	assert_spin_locked(&mm->page_table_lock);
 970
 971	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 
 
 
 
 
 
 
 
 972		goto out;
 973
 974	page = pmd_page(*pmd);
 975	VM_BUG_ON(!PageHead(page));
 976	if (flags & FOLL_TOUCH) {
 977		pmd_t _pmd;
 
 978		/*
 979		 * We should set the dirty bit only for FOLL_WRITE but
 980		 * for now the dirty bit in the pmd is meaningless.
 981		 * And if the dirty bit will become meaningful and
 982		 * we'll only set it with FOLL_WRITE, an atomic
 983		 * set_bit will be required on the pmd to set the
 984		 * young bit, instead of the current set_pmd_at.
 
 
 
 
 
 
 
 
 
 
 
 
 985		 */
 986		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 987		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
 
 
 
 
 
 
 
 
 
 988	}
 
 989	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 990	VM_BUG_ON(!PageCompound(page));
 991	if (flags & FOLL_GET)
 992		get_page(page);
 993
 994out:
 995	return page;
 996}
 997
 998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 999		 pmd_t *pmd)
1000{
1001	int ret = 0;
 
 
 
 
 
 
 
 
 
1002
1003	spin_lock(&tlb->mm->page_table_lock);
1004	if (likely(pmd_trans_huge(*pmd))) {
1005		if (unlikely(pmd_trans_splitting(*pmd))) {
1006			spin_unlock(&tlb->mm->page_table_lock);
1007			wait_split_huge_page(vma->anon_vma,
1008					     pmd);
1009		} else {
1010			struct page *page;
1011			pgtable_t pgtable;
1012			pgtable = get_pmd_huge_pte(tlb->mm);
1013			page = pmd_page(*pmd);
1014			pmd_clear(pmd);
1015			page_remove_rmap(page);
1016			VM_BUG_ON(page_mapcount(page) < 0);
1017			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018			VM_BUG_ON(!PageHead(page));
1019			spin_unlock(&tlb->mm->page_table_lock);
1020			tlb_remove_page(tlb, page);
1021			pte_free(tlb->mm, pgtable);
1022			ret = 1;
1023		}
1024	} else
1025		spin_unlock(&tlb->mm->page_table_lock);
1026
1027	return ret;
1028}
 
 
 
 
 
 
 
 
 
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031		unsigned long addr, unsigned long end,
1032		unsigned char *vec)
1033{
1034	int ret = 0;
 
 
 
 
1035
1036	spin_lock(&vma->vm_mm->page_table_lock);
1037	if (likely(pmd_trans_huge(*pmd))) {
1038		ret = !pmd_trans_splitting(*pmd);
1039		spin_unlock(&vma->vm_mm->page_table_lock);
1040		if (unlikely(!ret))
1041			wait_split_huge_page(vma->anon_vma, pmd);
1042		else {
1043			/*
1044			 * All logical pages in the range are present
1045			 * if backed by a huge page.
1046			 */
1047			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048		}
1049	} else
1050		spin_unlock(&vma->vm_mm->page_table_lock);
1051
1052	return ret;
1053}
 
 
 
 
 
 
 
 
 
1054
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056		unsigned long addr, pgprot_t newprot)
1057{
1058	struct mm_struct *mm = vma->vm_mm;
1059	int ret = 0;
 
 
1060
1061	spin_lock(&mm->page_table_lock);
1062	if (likely(pmd_trans_huge(*pmd))) {
1063		if (unlikely(pmd_trans_splitting(*pmd))) {
1064			spin_unlock(&mm->page_table_lock);
1065			wait_split_huge_page(vma->anon_vma, pmd);
1066		} else {
1067			pmd_t entry;
1068
1069			entry = pmdp_get_and_clear(mm, addr, pmd);
1070			entry = pmd_modify(entry, newprot);
1071			set_pmd_at(mm, addr, pmd, entry);
1072			spin_unlock(&vma->vm_mm->page_table_lock);
1073			flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074			ret = 1;
1075		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076	} else
1077		spin_unlock(&vma->vm_mm->page_table_lock);
1078
1079	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080}
1081
1082pmd_t *page_check_address_pmd(struct page *page,
1083			      struct mm_struct *mm,
1084			      unsigned long address,
1085			      enum page_check_address_pmd_flag flag)
 
 
1086{
1087	pgd_t *pgd;
1088	pud_t *pud;
1089	pmd_t *pmd, *ret = NULL;
 
 
1090
1091	if (address & ~HPAGE_PMD_MASK)
1092		goto out;
1093
1094	pgd = pgd_offset(mm, address);
1095	if (!pgd_present(*pgd))
1096		goto out;
1097
1098	pud = pud_offset(pgd, address);
1099	if (!pud_present(*pud))
1100		goto out;
1101
1102	pmd = pmd_offset(pud, address);
1103	if (pmd_none(*pmd))
 
 
 
 
1104		goto out;
1105	if (pmd_page(*pmd) != page)
 
1106		goto out;
 
1107	/*
1108	 * split_vma() may create temporary aliased mappings. There is
1109	 * no risk as long as all huge pmd are found and have their
1110	 * splitting bit set before __split_huge_page_refcount
1111	 * runs. Finding the same huge pmd more than once during the
1112	 * same rmap walk is not a problem.
1113	 */
1114	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115	    pmd_trans_splitting(*pmd))
1116		goto out;
1117	if (pmd_trans_huge(*pmd)) {
1118		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119			  !pmd_trans_splitting(*pmd));
1120		ret = pmd;
1121	}
1122out:
1123	return ret;
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127				       struct vm_area_struct *vma,
1128				       unsigned long address)
1129{
1130	struct mm_struct *mm = vma->vm_mm;
1131	pmd_t *pmd;
1132	int ret = 0;
1133
1134	spin_lock(&mm->page_table_lock);
1135	pmd = page_check_address_pmd(page, mm, address,
1136				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137	if (pmd) {
1138		/*
1139		 * We can't temporarily set the pmd to null in order
1140		 * to split it, the pmd must remain marked huge at all
1141		 * times or the VM won't take the pmd_trans_huge paths
1142		 * and it won't wait on the anon_vma->root->mutex to
1143		 * serialize against split_huge_page*.
1144		 */
1145		pmdp_splitting_flush_notify(vma, address, pmd);
1146		ret = 1;
1147	}
1148	spin_unlock(&mm->page_table_lock);
1149
 
 
 
 
 
 
 
 
 
 
 
 
 
1150	return ret;
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
1154{
1155	int i;
1156	unsigned long head_index = page->index;
1157	struct zone *zone = page_zone(page);
1158	int zonestat;
1159
1160	/* prevent PageLRU to go away from under us, and freeze lru stats */
1161	spin_lock_irq(&zone->lru_lock);
1162	compound_lock(page);
1163
1164	for (i = 1; i < HPAGE_PMD_NR; i++) {
1165		struct page *page_tail = page + i;
1166
1167		/* tail_page->_count cannot change */
1168		atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169		BUG_ON(page_count(page) <= 0);
1170		atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171		BUG_ON(atomic_read(&page_tail->_count) <= 0);
1172
1173		/* after clearing PageTail the gup refcount can be released */
1174		smp_mb();
1175
1176		/*
1177		 * retain hwpoison flag of the poisoned tail page:
1178		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1179		 *   by the memory-failure.
1180		 */
1181		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182		page_tail->flags |= (page->flags &
1183				     ((1L << PG_referenced) |
1184				      (1L << PG_swapbacked) |
1185				      (1L << PG_mlocked) |
1186				      (1L << PG_uptodate)));
1187		page_tail->flags |= (1L << PG_dirty);
1188
1189		/*
1190		 * 1) clear PageTail before overwriting first_page
1191		 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192		 */
1193		smp_wmb();
1194
1195		/*
1196		 * __split_huge_page_splitting() already set the
1197		 * splitting bit in all pmd that could map this
1198		 * hugepage, that will ensure no CPU can alter the
1199		 * mapcount on the head page. The mapcount is only
1200		 * accounted in the head page and it has to be
1201		 * transferred to all tail pages in the below code. So
1202		 * for this code to be safe, the split the mapcount
1203		 * can't change. But that doesn't mean userland can't
1204		 * keep changing and reading the page contents while
1205		 * we transfer the mapcount, so the pmd splitting
1206		 * status is achieved setting a reserved bit in the
1207		 * pmd, not by clearing the present bit.
1208		*/
1209		BUG_ON(page_mapcount(page_tail));
1210		page_tail->_mapcount = page->_mapcount;
1211
1212		BUG_ON(page_tail->mapping);
1213		page_tail->mapping = page->mapping;
1214
1215		page_tail->index = ++head_index;
1216
1217		BUG_ON(!PageAnon(page_tail));
1218		BUG_ON(!PageUptodate(page_tail));
1219		BUG_ON(!PageDirty(page_tail));
1220		BUG_ON(!PageSwapBacked(page_tail));
1221
1222		mem_cgroup_split_huge_fixup(page, page_tail);
 
 
 
1223
1224		lru_add_page_tail(zone, page, page_tail);
1225	}
 
 
 
1226
1227	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1229
 
 
 
1230	/*
1231	 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232	 * so adjust those appropriately if this page is on the LRU.
1233	 */
1234	if (PageLRU(page)) {
1235		zonestat = NR_LRU_BASE + page_lru(page);
1236		__mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237	}
1238
1239	ClearPageCompound(page);
1240	compound_unlock(page);
1241	spin_unlock_irq(&zone->lru_lock);
1242
1243	for (i = 1; i < HPAGE_PMD_NR; i++) {
1244		struct page *page_tail = page + i;
1245		BUG_ON(page_count(page_tail) <= 0);
1246		/*
1247		 * Tail pages may be freed if there wasn't any mapping
1248		 * like if add_to_swap() is running on a lru page that
1249		 * had its mapping zapped. And freeing these pages
1250		 * requires taking the lru_lock so we do the put_page
1251		 * of the tail pages after the split is complete.
1252		 */
1253		put_page(page_tail);
 
 
 
 
 
 
 
 
 
 
 
 
1254	}
 
 
1255
 
 
 
 
 
1256	/*
1257	 * Only the head page (now become a regular page) is required
1258	 * to be pinned by the caller.
 
 
1259	 */
1260	BUG_ON(page_count(page) <= 0);
1261}
 
1262
1263static int __split_huge_page_map(struct page *page,
1264				 struct vm_area_struct *vma,
1265				 unsigned long address)
1266{
 
 
1267	struct mm_struct *mm = vma->vm_mm;
1268	pmd_t *pmd, _pmd;
1269	int ret = 0, i;
1270	pgtable_t pgtable;
1271	unsigned long haddr;
1272
1273	spin_lock(&mm->page_table_lock);
1274	pmd = page_check_address_pmd(page, mm, address,
1275				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276	if (pmd) {
1277		pgtable = get_pmd_huge_pte(mm);
1278		pmd_populate(mm, &_pmd, pgtable);
1279
1280		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281		     i++, haddr += PAGE_SIZE) {
1282			pte_t *pte, entry;
1283			BUG_ON(PageCompound(page+i));
1284			entry = mk_pte(page + i, vma->vm_page_prot);
1285			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286			if (!pmd_write(*pmd))
1287				entry = pte_wrprotect(entry);
1288			else
1289				BUG_ON(page_mapcount(page) != 1);
1290			if (!pmd_young(*pmd))
1291				entry = pte_mkold(entry);
1292			pte = pte_offset_map(&_pmd, haddr);
1293			BUG_ON(!pte_none(*pte));
1294			set_pte_at(mm, haddr, pte, entry);
1295			pte_unmap(pte);
1296		}
1297
1298		mm->nr_ptes++;
1299		smp_wmb(); /* make pte visible before pmd */
1300		/*
1301		 * Up to this point the pmd is present and huge and
1302		 * userland has the whole access to the hugepage
1303		 * during the split (which happens in place). If we
1304		 * overwrite the pmd with the not-huge version
1305		 * pointing to the pte here (which of course we could
1306		 * if all CPUs were bug free), userland could trigger
1307		 * a small page size TLB miss on the small sized TLB
1308		 * while the hugepage TLB entry is still established
1309		 * in the huge TLB. Some CPU doesn't like that. See
1310		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311		 * Erratum 383 on page 93. Intel should be safe but is
1312		 * also warns that it's only safe if the permission
1313		 * and cache attributes of the two entries loaded in
1314		 * the two TLB is identical (which should be the case
1315		 * here). But it is generally safer to never allow
1316		 * small and huge TLB entries for the same virtual
1317		 * address to be loaded simultaneously. So instead of
1318		 * doing "pmd_populate(); flush_tlb_range();" we first
1319		 * mark the current pmd notpresent (atomically because
1320		 * here the pmd_trans_huge and pmd_trans_splitting
1321		 * must remain set at all times on the pmd until the
1322		 * split is complete for this pmd), then we flush the
1323		 * SMP TLB and finally we write the non-huge version
1324		 * of the pmd entry with pmd_populate.
1325		 */
1326		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328		pmd_populate(mm, pmd, pgtable);
1329		ret = 1;
1330	}
1331	spin_unlock(&mm->page_table_lock);
1332
1333	return ret;
1334}
1335
1336/* must be called with anon_vma->root->mutex hold */
1337static void __split_huge_page(struct page *page,
1338			      struct anon_vma *anon_vma)
1339{
1340	int mapcount, mapcount2;
1341	struct anon_vma_chain *avc;
1342
1343	BUG_ON(!PageHead(page));
1344	BUG_ON(PageTail(page));
1345
1346	mapcount = 0;
1347	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348		struct vm_area_struct *vma = avc->vma;
1349		unsigned long addr = vma_address(page, vma);
1350		BUG_ON(is_vma_temporary_stack(vma));
1351		if (addr == -EFAULT)
1352			continue;
1353		mapcount += __split_huge_page_splitting(page, vma, addr);
1354	}
1355	/*
1356	 * It is critical that new vmas are added to the tail of the
1357	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358	 * and establishes a child pmd before
1359	 * __split_huge_page_splitting() freezes the parent pmd (so if
1360	 * we fail to prevent copy_huge_pmd() from running until the
1361	 * whole __split_huge_page() is complete), we will still see
1362	 * the newly established pmd of the child later during the
1363	 * walk, to be able to set it as pmd_trans_splitting too.
1364	 */
1365	if (mapcount != page_mapcount(page))
1366		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367		       mapcount, page_mapcount(page));
1368	BUG_ON(mapcount != page_mapcount(page));
1369
1370	__split_huge_page_refcount(page);
1371
1372	mapcount2 = 0;
1373	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374		struct vm_area_struct *vma = avc->vma;
1375		unsigned long addr = vma_address(page, vma);
1376		BUG_ON(is_vma_temporary_stack(vma));
1377		if (addr == -EFAULT)
1378			continue;
1379		mapcount2 += __split_huge_page_map(page, vma, addr);
 
 
 
1380	}
1381	if (mapcount != mapcount2)
1382		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383		       mapcount, mapcount2, page_mapcount(page));
1384	BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
 
 
 
 
 
 
 
1388{
1389	struct anon_vma *anon_vma;
1390	int ret = 1;
1391
1392	BUG_ON(!PageAnon(page));
1393	anon_vma = page_lock_anon_vma(page);
1394	if (!anon_vma)
1395		goto out;
1396	ret = 0;
1397	if (!PageCompound(page))
1398		goto out_unlock;
1399
1400	BUG_ON(!PageSwapBacked(page));
1401	__split_huge_page(page, anon_vma);
1402	count_vm_event(THP_SPLIT);
1403
1404	BUG_ON(PageCompound(page));
1405out_unlock:
1406	page_unlock_anon_vma(anon_vma);
1407out:
1408	return ret;
1409}
1410
1411#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1412		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
 
 
 
1413
1414int hugepage_madvise(struct vm_area_struct *vma,
1415		     unsigned long *vm_flags, int advice)
1416{
1417	switch (advice) {
1418	case MADV_HUGEPAGE:
1419		/*
1420		 * Be somewhat over-protective like KSM for now!
1421		 */
1422		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1423			return -EINVAL;
1424		*vm_flags &= ~VM_NOHUGEPAGE;
1425		*vm_flags |= VM_HUGEPAGE;
1426		/*
1427		 * If the vma become good for khugepaged to scan,
1428		 * register it here without waiting a page fault that
1429		 * may not happen any time soon.
1430		 */
1431		if (unlikely(khugepaged_enter_vma_merge(vma)))
1432			return -ENOMEM;
1433		break;
1434	case MADV_NOHUGEPAGE:
1435		/*
1436		 * Be somewhat over-protective like KSM for now!
1437		 */
1438		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1439			return -EINVAL;
1440		*vm_flags &= ~VM_HUGEPAGE;
1441		*vm_flags |= VM_NOHUGEPAGE;
1442		/*
1443		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1444		 * this vma even if we leave the mm registered in khugepaged if
1445		 * it got registered before VM_NOHUGEPAGE was set.
1446		 */
1447		break;
1448	}
1449
1450	return 0;
1451}
1452
1453static int __init khugepaged_slab_init(void)
1454{
1455	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1456					  sizeof(struct mm_slot),
1457					  __alignof__(struct mm_slot), 0, NULL);
1458	if (!mm_slot_cache)
1459		return -ENOMEM;
1460
1461	return 0;
1462}
 
 
 
 
 
 
 
 
 
 
1463
1464static void __init khugepaged_slab_free(void)
1465{
1466	kmem_cache_destroy(mm_slot_cache);
1467	mm_slot_cache = NULL;
1468}
1469
1470static inline struct mm_slot *alloc_mm_slot(void)
 
 
 
 
 
 
1471{
1472	if (!mm_slot_cache)	/* initialization failed */
1473		return NULL;
1474	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 
 
 
1475}
1476
1477static inline void free_mm_slot(struct mm_slot *mm_slot)
 
1478{
1479	kmem_cache_free(mm_slot_cache, mm_slot);
1480}
 
 
1481
1482static int __init mm_slots_hash_init(void)
1483{
1484	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1485				GFP_KERNEL);
1486	if (!mm_slots_hash)
1487		return -ENOMEM;
1488	return 0;
1489}
1490
1491#if 0
1492static void __init mm_slots_hash_free(void)
1493{
1494	kfree(mm_slots_hash);
1495	mm_slots_hash = NULL;
1496}
1497#endif
1498
1499static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1500{
1501	struct mm_slot *mm_slot;
1502	struct hlist_head *bucket;
1503	struct hlist_node *node;
1504
1505	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1506				% MM_SLOTS_HASH_HEADS];
1507	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1508		if (mm == mm_slot->mm)
1509			return mm_slot;
1510	}
1511	return NULL;
1512}
1513
1514static void insert_to_mm_slots_hash(struct mm_struct *mm,
1515				    struct mm_slot *mm_slot)
1516{
1517	struct hlist_head *bucket;
1518
1519	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1520				% MM_SLOTS_HASH_HEADS];
1521	mm_slot->mm = mm;
1522	hlist_add_head(&mm_slot->hash, bucket);
1523}
1524
1525static inline int khugepaged_test_exit(struct mm_struct *mm)
 
1526{
1527	return atomic_read(&mm->mm_users) == 0;
1528}
 
 
 
 
 
1529
1530int __khugepaged_enter(struct mm_struct *mm)
1531{
1532	struct mm_slot *mm_slot;
1533	int wakeup;
1534
1535	mm_slot = alloc_mm_slot();
1536	if (!mm_slot)
1537		return -ENOMEM;
1538
1539	/* __khugepaged_exit() must not run from under us */
1540	VM_BUG_ON(khugepaged_test_exit(mm));
1541	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1542		free_mm_slot(mm_slot);
1543		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544	}
1545
1546	spin_lock(&khugepaged_mm_lock);
1547	insert_to_mm_slots_hash(mm, mm_slot);
1548	/*
1549	 * Insert just behind the scanning cursor, to let the area settle
1550	 * down a little.
1551	 */
1552	wakeup = list_empty(&khugepaged_scan.mm_head);
1553	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1554	spin_unlock(&khugepaged_mm_lock);
1555
1556	atomic_inc(&mm->mm_count);
1557	if (wakeup)
1558		wake_up_interruptible(&khugepaged_wait);
1559
1560	return 0;
1561}
 
1562
1563int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1564{
1565	unsigned long hstart, hend;
1566	if (!vma->anon_vma)
1567		/*
1568		 * Not yet faulted in so we will register later in the
1569		 * page fault if needed.
 
1570		 */
1571		return 0;
1572	if (vma->vm_ops)
1573		/* khugepaged not yet working on file or special mappings */
1574		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1575	/*
1576	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1577	 * true too, verify it here.
1578	 */
1579	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1580	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1581	hend = vma->vm_end & HPAGE_PMD_MASK;
1582	if (hstart < hend)
1583		return khugepaged_enter(vma);
1584	return 0;
1585}
1586
1587void __khugepaged_exit(struct mm_struct *mm)
1588{
1589	struct mm_slot *mm_slot;
1590	int free = 0;
1591
1592	spin_lock(&khugepaged_mm_lock);
1593	mm_slot = get_mm_slot(mm);
1594	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1595		hlist_del(&mm_slot->hash);
1596		list_del(&mm_slot->mm_node);
1597		free = 1;
1598	}
1599	spin_unlock(&khugepaged_mm_lock);
1600
1601	if (free) {
1602		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1603		free_mm_slot(mm_slot);
1604		mmdrop(mm);
1605	} else if (mm_slot) {
1606		/*
1607		 * This is required to serialize against
1608		 * khugepaged_test_exit() (which is guaranteed to run
1609		 * under mmap sem read mode). Stop here (after we
1610		 * return all pagetables will be destroyed) until
1611		 * khugepaged has finished working on the pagetables
1612		 * under the mmap_sem.
1613		 */
1614		down_write(&mm->mmap_sem);
1615		up_write(&mm->mmap_sem);
1616	}
1617}
1618
1619static void release_pte_page(struct page *page)
1620{
1621	/* 0 stands for page_is_file_cache(page) == false */
1622	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1623	unlock_page(page);
1624	putback_lru_page(page);
1625}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1626
1627static void release_pte_pages(pte_t *pte, pte_t *_pte)
1628{
1629	while (--_pte >= pte) {
1630		pte_t pteval = *_pte;
1631		if (!pte_none(pteval))
1632			release_pte_page(pte_page(pteval));
1633	}
1634}
1635
1636static void release_all_pte_pages(pte_t *pte)
 
1637{
1638	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1639}
 
1640
1641static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1642					unsigned long address,
1643					pte_t *pte)
1644{
1645	struct page *page;
1646	pte_t *_pte;
1647	int referenced = 0, isolated = 0, none = 0;
1648	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1649	     _pte++, address += PAGE_SIZE) {
1650		pte_t pteval = *_pte;
1651		if (pte_none(pteval)) {
1652			if (++none <= khugepaged_max_ptes_none)
1653				continue;
1654			else {
1655				release_pte_pages(pte, _pte);
1656				goto out;
1657			}
1658		}
1659		if (!pte_present(pteval) || !pte_write(pteval)) {
1660			release_pte_pages(pte, _pte);
1661			goto out;
1662		}
1663		page = vm_normal_page(vma, address, pteval);
1664		if (unlikely(!page)) {
1665			release_pte_pages(pte, _pte);
1666			goto out;
1667		}
1668		VM_BUG_ON(PageCompound(page));
1669		BUG_ON(!PageAnon(page));
1670		VM_BUG_ON(!PageSwapBacked(page));
1671
1672		/* cannot use mapcount: can't collapse if there's a gup pin */
1673		if (page_count(page) != 1) {
1674			release_pte_pages(pte, _pte);
1675			goto out;
1676		}
1677		/*
1678		 * We can do it before isolate_lru_page because the
1679		 * page can't be freed from under us. NOTE: PG_lock
1680		 * is needed to serialize against split_huge_page
1681		 * when invoked from the VM.
1682		 */
1683		if (!trylock_page(page)) {
1684			release_pte_pages(pte, _pte);
1685			goto out;
1686		}
1687		/*
1688		 * Isolate the page to avoid collapsing an hugepage
1689		 * currently in use by the VM.
1690		 */
1691		if (isolate_lru_page(page)) {
1692			unlock_page(page);
1693			release_pte_pages(pte, _pte);
1694			goto out;
1695		}
1696		/* 0 stands for page_is_file_cache(page) == false */
1697		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698		VM_BUG_ON(!PageLocked(page));
1699		VM_BUG_ON(PageLRU(page));
1700
1701		/* If there is no mapped pte young don't collapse the page */
1702		if (pte_young(pteval) || PageReferenced(page) ||
1703		    mmu_notifier_test_young(vma->vm_mm, address))
1704			referenced = 1;
1705	}
1706	if (unlikely(!referenced))
1707		release_all_pte_pages(pte);
1708	else
1709		isolated = 1;
1710out:
1711	return isolated;
1712}
1713
1714static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1715				      struct vm_area_struct *vma,
1716				      unsigned long address,
1717				      spinlock_t *ptl)
1718{
1719	pte_t *_pte;
1720	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1721		pte_t pteval = *_pte;
1722		struct page *src_page;
1723
1724		if (pte_none(pteval)) {
1725			clear_user_highpage(page, address);
1726			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1727		} else {
1728			src_page = pte_page(pteval);
1729			copy_user_highpage(page, src_page, address, vma);
1730			VM_BUG_ON(page_mapcount(src_page) != 1);
1731			VM_BUG_ON(page_count(src_page) != 2);
1732			release_pte_page(src_page);
1733			/*
1734			 * ptl mostly unnecessary, but preempt has to
1735			 * be disabled to update the per-cpu stats
1736			 * inside page_remove_rmap().
1737			 */
1738			spin_lock(ptl);
1739			/*
1740			 * paravirt calls inside pte_clear here are
1741			 * superfluous.
1742			 */
1743			pte_clear(vma->vm_mm, address, _pte);
1744			page_remove_rmap(src_page);
1745			spin_unlock(ptl);
1746			free_page_and_swap_cache(src_page);
1747		}
1748
1749		address += PAGE_SIZE;
1750		page++;
1751	}
 
 
 
 
 
 
 
1752}
1753
1754static void collapse_huge_page(struct mm_struct *mm,
1755			       unsigned long address,
1756			       struct page **hpage,
1757			       struct vm_area_struct *vma,
1758			       int node)
1759{
1760	pgd_t *pgd;
1761	pud_t *pud;
1762	pmd_t *pmd, _pmd;
1763	pte_t *pte;
1764	pgtable_t pgtable;
1765	struct page *new_page;
1766	spinlock_t *ptl;
1767	int isolated;
1768	unsigned long hstart, hend;
1769
1770	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1771#ifndef CONFIG_NUMA
1772	up_read(&mm->mmap_sem);
1773	VM_BUG_ON(!*hpage);
1774	new_page = *hpage;
1775#else
1776	VM_BUG_ON(*hpage);
1777	/*
1778	 * Allocate the page while the vma is still valid and under
1779	 * the mmap_sem read mode so there is no memory allocation
1780	 * later when we take the mmap_sem in write mode. This is more
1781	 * friendly behavior (OTOH it may actually hide bugs) to
1782	 * filesystems in userland with daemons allocating memory in
1783	 * the userland I/O paths.  Allocating memory with the
1784	 * mmap_sem in read mode is good idea also to allow greater
1785	 * scalability.
1786	 */
1787	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1788				      node, __GFP_OTHER_NODE);
1789
1790	/*
1791	 * After allocating the hugepage, release the mmap_sem read lock in
1792	 * preparation for taking it in write mode.
1793	 */
1794	up_read(&mm->mmap_sem);
1795	if (unlikely(!new_page)) {
1796		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1797		*hpage = ERR_PTR(-ENOMEM);
1798		return;
1799	}
1800#endif
1801
1802	count_vm_event(THP_COLLAPSE_ALLOC);
1803	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1804#ifdef CONFIG_NUMA
1805		put_page(new_page);
1806#endif
1807		return;
1808	}
1809
 
 
 
 
 
 
 
 
 
 
1810	/*
1811	 * Prevent all access to pagetables with the exception of
1812	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1813	 * handled by the anon_vma lock + PG_lock.
1814	 */
1815	down_write(&mm->mmap_sem);
1816	if (unlikely(khugepaged_test_exit(mm)))
1817		goto out;
1818
1819	vma = find_vma(mm, address);
1820	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1821	hend = vma->vm_end & HPAGE_PMD_MASK;
1822	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1823		goto out;
1824
1825	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1826	    (vma->vm_flags & VM_NOHUGEPAGE))
1827		goto out;
 
 
 
 
 
 
1828
1829	if (!vma->anon_vma || vma->vm_ops)
1830		goto out;
1831	if (is_vma_temporary_stack(vma))
1832		goto out;
1833	/*
1834	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1835	 * true too, verify it here.
 
1836	 */
1837	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
 
 
 
 
 
 
 
 
 
1838
1839	pgd = pgd_offset(mm, address);
1840	if (!pgd_present(*pgd))
1841		goto out;
 
 
1842
1843	pud = pud_offset(pgd, address);
1844	if (!pud_present(*pud))
1845		goto out;
1846
1847	pmd = pmd_offset(pud, address);
1848	/* pmd can't go away or become huge under us */
1849	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1850		goto out;
1851
1852	anon_vma_lock(vma->anon_vma);
 
 
 
 
 
1853
1854	pte = pte_offset_map(pmd, address);
1855	ptl = pte_lockptr(mm, pmd);
 
 
1856
1857	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1858	/*
1859	 * After this gup_fast can't run anymore. This also removes
1860	 * any huge TLB entry from the CPU so we won't allow
1861	 * huge and small TLB entries for the same virtual address
1862	 * to avoid the risk of CPU bugs in that area.
1863	 */
1864	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1865	spin_unlock(&mm->page_table_lock);
1866
1867	spin_lock(ptl);
1868	isolated = __collapse_huge_page_isolate(vma, address, pte);
1869	spin_unlock(ptl);
1870
1871	if (unlikely(!isolated)) {
1872		pte_unmap(pte);
1873		spin_lock(&mm->page_table_lock);
1874		BUG_ON(!pmd_none(*pmd));
1875		set_pmd_at(mm, address, pmd, _pmd);
1876		spin_unlock(&mm->page_table_lock);
1877		anon_vma_unlock(vma->anon_vma);
1878		goto out;
1879	}
1880
1881	/*
1882	 * All pages are isolated and locked so anon_vma rmap
1883	 * can't run anymore.
 
 
 
 
 
 
 
1884	 */
1885	anon_vma_unlock(vma->anon_vma);
 
 
 
 
 
1886
1887	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1888	pte_unmap(pte);
1889	__SetPageUptodate(new_page);
1890	pgtable = pmd_pgtable(_pmd);
1891	VM_BUG_ON(page_count(pgtable) != 1);
1892	VM_BUG_ON(page_mapcount(pgtable) != 0);
1893
1894	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1895	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1896	_pmd = pmd_mkhuge(_pmd);
1897
1898	/*
1899	 * spin_lock() below is not the equivalent of smp_wmb(), so
1900	 * this is needed to avoid the copy_huge_page writes to become
1901	 * visible after the set_pmd_at() write.
1902	 */
1903	smp_wmb();
1904
1905	spin_lock(&mm->page_table_lock);
1906	BUG_ON(!pmd_none(*pmd));
1907	page_add_new_anon_rmap(new_page, vma, address);
1908	set_pmd_at(mm, address, pmd, _pmd);
1909	update_mmu_cache(vma, address, entry);
1910	prepare_pmd_huge_pte(pgtable, mm);
1911	mm->nr_ptes--;
1912	spin_unlock(&mm->page_table_lock);
1913
1914#ifndef CONFIG_NUMA
1915	*hpage = NULL;
1916#endif
1917	khugepaged_pages_collapsed++;
1918out_up_write:
1919	up_write(&mm->mmap_sem);
1920	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1921
1922out:
1923	mem_cgroup_uncharge_page(new_page);
1924#ifdef CONFIG_NUMA
1925	put_page(new_page);
1926#endif
1927	goto out_up_write;
1928}
1929
1930static int khugepaged_scan_pmd(struct mm_struct *mm,
1931			       struct vm_area_struct *vma,
1932			       unsigned long address,
1933			       struct page **hpage)
1934{
1935	pgd_t *pgd;
1936	pud_t *pud;
1937	pmd_t *pmd;
1938	pte_t *pte, *_pte;
1939	int ret = 0, referenced = 0, none = 0;
1940	struct page *page;
1941	unsigned long _address;
1942	spinlock_t *ptl;
1943	int node = -1;
1944
1945	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 
1946
1947	pgd = pgd_offset(mm, address);
1948	if (!pgd_present(*pgd))
1949		goto out;
 
 
 
 
 
 
 
 
1950
1951	pud = pud_offset(pgd, address);
1952	if (!pud_present(*pud))
1953		goto out;
 
 
 
 
 
 
1954
1955	pmd = pmd_offset(pud, address);
1956	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1957		goto out;
 
 
 
 
 
 
1958
1959	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1960	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1961	     _pte++, _address += PAGE_SIZE) {
1962		pte_t pteval = *_pte;
1963		if (pte_none(pteval)) {
1964			if (++none <= khugepaged_max_ptes_none)
1965				continue;
1966			else
1967				goto out_unmap;
1968		}
1969		if (!pte_present(pteval) || !pte_write(pteval))
1970			goto out_unmap;
1971		page = vm_normal_page(vma, _address, pteval);
1972		if (unlikely(!page))
1973			goto out_unmap;
1974		/*
1975		 * Chose the node of the first page. This could
1976		 * be more sophisticated and look at more pages,
1977		 * but isn't for now.
 
 
1978		 */
1979		if (node == -1)
1980			node = page_to_nid(page);
1981		VM_BUG_ON(PageCompound(page));
1982		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1983			goto out_unmap;
1984		/* cannot use mapcount: can't collapse if there's a gup pin */
1985		if (page_count(page) != 1)
1986			goto out_unmap;
1987		if (pte_young(pteval) || PageReferenced(page) ||
1988		    mmu_notifier_test_young(vma->vm_mm, address))
1989			referenced = 1;
1990	}
1991	if (referenced)
1992		ret = 1;
1993out_unmap:
1994	pte_unmap_unlock(pte, ptl);
1995	if (ret)
1996		/* collapse_huge_page will return with the mmap_sem released */
1997		collapse_huge_page(mm, address, hpage, vma, node);
1998out:
1999	return ret;
2000}
2001
2002static void collect_mm_slot(struct mm_slot *mm_slot)
2003{
2004	struct mm_struct *mm = mm_slot->mm;
2005
2006	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2007
2008	if (khugepaged_test_exit(mm)) {
2009		/* free mm_slot */
2010		hlist_del(&mm_slot->hash);
2011		list_del(&mm_slot->mm_node);
2012
2013		/*
2014		 * Not strictly needed because the mm exited already.
2015		 *
2016		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2017		 */
2018
2019		/* khugepaged_mm_lock actually not necessary for the below */
2020		free_mm_slot(mm_slot);
2021		mmdrop(mm);
2022	}
 
 
2023}
2024
2025static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2026					    struct page **hpage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2027{
2028	struct mm_slot *mm_slot;
2029	struct mm_struct *mm;
2030	struct vm_area_struct *vma;
2031	int progress = 0;
2032
2033	VM_BUG_ON(!pages);
2034	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2035
2036	if (khugepaged_scan.mm_slot)
2037		mm_slot = khugepaged_scan.mm_slot;
2038	else {
2039		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2040				     struct mm_slot, mm_node);
2041		khugepaged_scan.address = 0;
2042		khugepaged_scan.mm_slot = mm_slot;
2043	}
2044	spin_unlock(&khugepaged_mm_lock);
2045
2046	mm = mm_slot->mm;
2047	down_read(&mm->mmap_sem);
2048	if (unlikely(khugepaged_test_exit(mm)))
2049		vma = NULL;
2050	else
2051		vma = find_vma(mm, khugepaged_scan.address);
2052
2053	progress++;
2054	for (; vma; vma = vma->vm_next) {
2055		unsigned long hstart, hend;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056
2057		cond_resched();
2058		if (unlikely(khugepaged_test_exit(mm))) {
2059			progress++;
2060			break;
2061		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062
2063		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2064		     !khugepaged_always()) ||
2065		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2066		skip:
2067			progress++;
2068			continue;
2069		}
2070		if (!vma->anon_vma || vma->vm_ops)
2071			goto skip;
2072		if (is_vma_temporary_stack(vma))
2073			goto skip;
2074		/*
2075		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2076		 * must be true too, verify it here.
 
 
 
 
2077		 */
2078		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2079			  vma->vm_flags & VM_NO_THP);
2080
2081		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2082		hend = vma->vm_end & HPAGE_PMD_MASK;
2083		if (hstart >= hend)
2084			goto skip;
2085		if (khugepaged_scan.address > hend)
2086			goto skip;
2087		if (khugepaged_scan.address < hstart)
2088			khugepaged_scan.address = hstart;
2089		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2090
2091		while (khugepaged_scan.address < hend) {
2092			int ret;
2093			cond_resched();
2094			if (unlikely(khugepaged_test_exit(mm)))
2095				goto breakouterloop;
2096
2097			VM_BUG_ON(khugepaged_scan.address < hstart ||
2098				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2099				  hend);
2100			ret = khugepaged_scan_pmd(mm, vma,
2101						  khugepaged_scan.address,
2102						  hpage);
2103			/* move to next address */
2104			khugepaged_scan.address += HPAGE_PMD_SIZE;
2105			progress += HPAGE_PMD_NR;
2106			if (ret)
2107				/* we released mmap_sem so break loop */
2108				goto breakouterloop_mmap_sem;
2109			if (progress >= pages)
2110				goto breakouterloop;
2111		}
 
 
 
 
 
2112	}
2113breakouterloop:
2114	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2115breakouterloop_mmap_sem:
2116
2117	spin_lock(&khugepaged_mm_lock);
2118	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2119	/*
2120	 * Release the current mm_slot if this mm is about to die, or
2121	 * if we scanned all vmas of this mm.
2122	 */
2123	if (khugepaged_test_exit(mm) || !vma) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124		/*
2125		 * Make sure that if mm_users is reaching zero while
2126		 * khugepaged runs here, khugepaged_exit will find
2127		 * mm_slot not pointing to the exiting mm.
2128		 */
2129		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2130			khugepaged_scan.mm_slot = list_entry(
2131				mm_slot->mm_node.next,
2132				struct mm_slot, mm_node);
2133			khugepaged_scan.address = 0;
2134		} else {
2135			khugepaged_scan.mm_slot = NULL;
2136			khugepaged_full_scans++;
2137		}
2138
2139		collect_mm_slot(mm_slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2140	}
2141
2142	return progress;
 
 
 
 
 
 
 
 
 
2143}
2144
2145static int khugepaged_has_work(void)
2146{
2147	return !list_empty(&khugepaged_scan.mm_head) &&
2148		khugepaged_enabled();
2149}
2150
2151static int khugepaged_wait_event(void)
2152{
2153	return !list_empty(&khugepaged_scan.mm_head) ||
2154		!khugepaged_enabled();
 
 
 
2155}
2156
2157static void khugepaged_do_scan(struct page **hpage)
2158{
2159	unsigned int progress = 0, pass_through_head = 0;
2160	unsigned int pages = khugepaged_pages_to_scan;
2161
2162	barrier(); /* write khugepaged_pages_to_scan to local stack */
2163
2164	while (progress < pages) {
2165		cond_resched();
2166
2167#ifndef CONFIG_NUMA
2168		if (!*hpage) {
2169			*hpage = alloc_hugepage(khugepaged_defrag());
2170			if (unlikely(!*hpage)) {
2171				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2172				break;
2173			}
2174			count_vm_event(THP_COLLAPSE_ALLOC);
2175		}
2176#else
2177		if (IS_ERR(*hpage))
2178			break;
2179#endif
2180
2181		if (unlikely(kthread_should_stop() || freezing(current)))
2182			break;
2183
2184		spin_lock(&khugepaged_mm_lock);
2185		if (!khugepaged_scan.mm_slot)
2186			pass_through_head++;
2187		if (khugepaged_has_work() &&
2188		    pass_through_head < 2)
2189			progress += khugepaged_scan_mm_slot(pages - progress,
2190							    hpage);
2191		else
2192			progress = pages;
2193		spin_unlock(&khugepaged_mm_lock);
2194	}
 
2195}
2196
2197static void khugepaged_alloc_sleep(void)
 
2198{
2199	DEFINE_WAIT(wait);
2200	add_wait_queue(&khugepaged_wait, &wait);
2201	schedule_timeout_interruptible(
2202		msecs_to_jiffies(
2203			khugepaged_alloc_sleep_millisecs));
2204	remove_wait_queue(&khugepaged_wait, &wait);
2205}
2206
2207#ifndef CONFIG_NUMA
2208static struct page *khugepaged_alloc_hugepage(void)
2209{
2210	struct page *hpage;
2211
2212	do {
2213		hpage = alloc_hugepage(khugepaged_defrag());
2214		if (!hpage) {
2215			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2216			khugepaged_alloc_sleep();
2217		} else
2218			count_vm_event(THP_COLLAPSE_ALLOC);
2219	} while (unlikely(!hpage) &&
2220		 likely(khugepaged_enabled()));
2221	return hpage;
2222}
2223#endif
2224
2225static void khugepaged_loop(void)
2226{
2227	struct page *hpage;
2228
2229#ifdef CONFIG_NUMA
2230	hpage = NULL;
2231#endif
2232	while (likely(khugepaged_enabled())) {
2233#ifndef CONFIG_NUMA
2234		hpage = khugepaged_alloc_hugepage();
2235		if (unlikely(!hpage))
2236			break;
2237#else
2238		if (IS_ERR(hpage)) {
2239			khugepaged_alloc_sleep();
2240			hpage = NULL;
2241		}
2242#endif
2243
2244		khugepaged_do_scan(&hpage);
2245#ifndef CONFIG_NUMA
2246		if (hpage)
2247			put_page(hpage);
2248#endif
2249		try_to_freeze();
2250		if (unlikely(kthread_should_stop()))
2251			break;
2252		if (khugepaged_has_work()) {
2253			DEFINE_WAIT(wait);
2254			if (!khugepaged_scan_sleep_millisecs)
2255				continue;
2256			add_wait_queue(&khugepaged_wait, &wait);
2257			schedule_timeout_interruptible(
2258				msecs_to_jiffies(
2259					khugepaged_scan_sleep_millisecs));
2260			remove_wait_queue(&khugepaged_wait, &wait);
2261		} else if (khugepaged_enabled())
2262			wait_event_freezable(khugepaged_wait,
2263					     khugepaged_wait_event());
2264	}
2265}
2266
2267static int khugepaged(void *none)
2268{
2269	struct mm_slot *mm_slot;
2270
2271	set_freezable();
2272	set_user_nice(current, 19);
2273
2274	/* serialize with start_khugepaged() */
2275	mutex_lock(&khugepaged_mutex);
2276
2277	for (;;) {
2278		mutex_unlock(&khugepaged_mutex);
2279		VM_BUG_ON(khugepaged_thread != current);
2280		khugepaged_loop();
2281		VM_BUG_ON(khugepaged_thread != current);
2282
2283		mutex_lock(&khugepaged_mutex);
2284		if (!khugepaged_enabled())
2285			break;
2286		if (unlikely(kthread_should_stop()))
2287			break;
2288	}
2289
2290	spin_lock(&khugepaged_mm_lock);
2291	mm_slot = khugepaged_scan.mm_slot;
2292	khugepaged_scan.mm_slot = NULL;
2293	if (mm_slot)
2294		collect_mm_slot(mm_slot);
2295	spin_unlock(&khugepaged_mm_lock);
2296
2297	khugepaged_thread = NULL;
2298	mutex_unlock(&khugepaged_mutex);
2299
2300	return 0;
 
 
 
2301}
2302
2303void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
 
 
 
 
 
 
 
 
2304{
 
2305	struct page *page;
 
 
2306
2307	spin_lock(&mm->page_table_lock);
2308	if (unlikely(!pmd_trans_huge(*pmd))) {
2309		spin_unlock(&mm->page_table_lock);
2310		return;
2311	}
2312	page = pmd_page(*pmd);
2313	VM_BUG_ON(!page_count(page));
2314	get_page(page);
2315	spin_unlock(&mm->page_table_lock);
2316
2317	split_huge_page(page);
 
 
 
 
2318
2319	put_page(page);
2320	BUG_ON(pmd_trans_huge(*pmd));
2321}
2322
2323static void split_huge_page_address(struct mm_struct *mm,
2324				    unsigned long address)
2325{
2326	pgd_t *pgd;
2327	pud_t *pud;
2328	pmd_t *pmd;
2329
2330	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
 
2331
2332	pgd = pgd_offset(mm, address);
2333	if (!pgd_present(*pgd))
2334		return;
 
 
 
 
 
 
2335
2336	pud = pud_offset(pgd, address);
2337	if (!pud_present(*pud))
2338		return;
2339
2340	pmd = pmd_offset(pud, address);
2341	if (!pmd_present(*pmd))
2342		return;
2343	/*
2344	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2345	 * materialize from under us.
2346	 */
2347	split_huge_page_pmd(mm, pmd);
2348}
 
 
2349
2350void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2351			     unsigned long start,
2352			     unsigned long end,
2353			     long adjust_next)
2354{
2355	/*
2356	 * If the new start address isn't hpage aligned and it could
2357	 * previously contain an hugepage: check if we need to split
2358	 * an huge pmd.
2359	 */
2360	if (start & ~HPAGE_PMD_MASK &&
2361	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2362	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2363		split_huge_page_address(vma->vm_mm, start);
2364
2365	/*
2366	 * If the new end address isn't hpage aligned and it could
2367	 * previously contain an hugepage: check if we need to split
2368	 * an huge pmd.
2369	 */
2370	if (end & ~HPAGE_PMD_MASK &&
2371	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2372	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2373		split_huge_page_address(vma->vm_mm, end);
2374
2375	/*
2376	 * If we're also updating the vma->vm_next->vm_start, if the new
2377	 * vm_next->vm_start isn't page aligned and it could previously
2378	 * contain an hugepage: check if we need to split an huge pmd.
2379	 */
2380	if (adjust_next > 0) {
2381		struct vm_area_struct *next = vma->vm_next;
2382		unsigned long nstart = next->vm_start;
2383		nstart += adjust_next << PAGE_SHIFT;
2384		if (nstart & ~HPAGE_PMD_MASK &&
2385		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2386		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2387			split_huge_page_address(next->vm_mm, nstart);
2388	}
2389}
v4.10.11
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/highmem.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mmu_notifier.h>
  15#include <linux/rmap.h>
  16#include <linux/swap.h>
  17#include <linux/shrinker.h>
  18#include <linux/mm_inline.h>
  19#include <linux/swapops.h>
  20#include <linux/dax.h>
  21#include <linux/khugepaged.h>
  22#include <linux/freezer.h>
  23#include <linux/pfn_t.h>
  24#include <linux/mman.h>
  25#include <linux/memremap.h>
  26#include <linux/pagemap.h>
  27#include <linux/debugfs.h>
  28#include <linux/migrate.h>
  29#include <linux/hashtable.h>
  30#include <linux/userfaultfd_k.h>
  31#include <linux/page_idle.h>
  32#include <linux/shmem_fs.h>
  33
  34#include <asm/tlb.h>
  35#include <asm/pgalloc.h>
  36#include "internal.h"
  37
  38/*
  39 * By default transparent hugepage support is disabled in order that avoid
  40 * to risk increase the memory footprint of applications without a guaranteed
  41 * benefit. When transparent hugepage support is enabled, is for all mappings,
  42 * and khugepaged scans all mappings.
  43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  44 * for all hugepage allocations.
  45 */
  46unsigned long transparent_hugepage_flags __read_mostly =
  47#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  48	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  49#endif
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  51	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  52#endif
  53	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  54	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  55	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  56
  57static struct shrinker deferred_split_shrinker;
  58
  59static atomic_t huge_zero_refcount;
  60struct page *huge_zero_page __read_mostly;
  61
  62static struct page *get_huge_zero_page(void)
  63{
  64	struct page *zero_page;
  65retry:
  66	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  67		return READ_ONCE(huge_zero_page);
  68
  69	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  70			HPAGE_PMD_ORDER);
  71	if (!zero_page) {
  72		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  73		return NULL;
  74	}
  75	count_vm_event(THP_ZERO_PAGE_ALLOC);
  76	preempt_disable();
  77	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  78		preempt_enable();
  79		__free_pages(zero_page, compound_order(zero_page));
  80		goto retry;
  81	}
 
 
 
 
 
 
 
 
 
 
 
 
  82
  83	/* We take additional reference here. It will be put back by shrinker */
  84	atomic_set(&huge_zero_refcount, 2);
  85	preempt_enable();
  86	return READ_ONCE(huge_zero_page);
  87}
 
 
 
 
 
 
 
 
 
 
  88
  89static void put_huge_zero_page(void)
  90{
  91	/*
  92	 * Counter should never go to zero here. Only shrinker can put
  93	 * last reference.
  94	 */
  95	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  96}
  97
  98struct page *mm_get_huge_zero_page(struct mm_struct *mm)
  99{
 100	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 101		return READ_ONCE(huge_zero_page);
 
 
 
 
 
 
 
 
 102
 103	if (!get_huge_zero_page())
 104		return NULL;
 105
 106	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 107		put_huge_zero_page();
 108
 109	return READ_ONCE(huge_zero_page);
 110}
 
 
 
 
 
 
 111
 112void mm_put_huge_zero_page(struct mm_struct *mm)
 113{
 114	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 115		put_huge_zero_page();
 116}
 117
 118static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 119					struct shrink_control *sc)
 120{
 121	/* we can free zero page only if last reference remains */
 122	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 123}
 
 124
 125static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 126				       struct shrink_control *sc)
 127{
 128	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 129		struct page *zero_page = xchg(&huge_zero_page, NULL);
 130		BUG_ON(zero_page == NULL);
 131		__free_pages(zero_page, compound_order(zero_page));
 132		return HPAGE_PMD_NR;
 133	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134
 135	return 0;
 
 
 
 
 
 136}
 137
 138static struct shrinker huge_zero_page_shrinker = {
 139	.count_objects = shrink_huge_zero_page_count,
 140	.scan_objects = shrink_huge_zero_page_scan,
 141	.seeks = DEFAULT_SEEKS,
 142};
 143
 144#ifdef CONFIG_SYSFS
 145
 146static ssize_t triple_flag_store(struct kobject *kobj,
 
 
 
 
 
 
 
 
 
 
 
 
 
 147				 struct kobj_attribute *attr,
 148				 const char *buf, size_t count,
 149				 enum transparent_hugepage_flag enabled,
 150				 enum transparent_hugepage_flag deferred,
 151				 enum transparent_hugepage_flag req_madv)
 152{
 153	if (!memcmp("defer", buf,
 154		    min(sizeof("defer")-1, count))) {
 155		if (enabled == deferred)
 156			return -EINVAL;
 157		clear_bit(enabled, &transparent_hugepage_flags);
 158		clear_bit(req_madv, &transparent_hugepage_flags);
 159		set_bit(deferred, &transparent_hugepage_flags);
 160	} else if (!memcmp("always", buf,
 161		    min(sizeof("always")-1, count))) {
 162		clear_bit(deferred, &transparent_hugepage_flags);
 163		clear_bit(req_madv, &transparent_hugepage_flags);
 164		set_bit(enabled, &transparent_hugepage_flags);
 165	} else if (!memcmp("madvise", buf,
 166			   min(sizeof("madvise")-1, count))) {
 167		clear_bit(enabled, &transparent_hugepage_flags);
 168		clear_bit(deferred, &transparent_hugepage_flags);
 169		set_bit(req_madv, &transparent_hugepage_flags);
 170	} else if (!memcmp("never", buf,
 171			   min(sizeof("never")-1, count))) {
 172		clear_bit(enabled, &transparent_hugepage_flags);
 173		clear_bit(req_madv, &transparent_hugepage_flags);
 174		clear_bit(deferred, &transparent_hugepage_flags);
 175	} else
 176		return -EINVAL;
 177
 178	return count;
 179}
 180
 181static ssize_t enabled_show(struct kobject *kobj,
 182			    struct kobj_attribute *attr, char *buf)
 183{
 184	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 185		return sprintf(buf, "[always] madvise never\n");
 186	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 187		return sprintf(buf, "always [madvise] never\n");
 188	else
 189		return sprintf(buf, "always madvise [never]\n");
 190}
 191
 192static ssize_t enabled_store(struct kobject *kobj,
 193			     struct kobj_attribute *attr,
 194			     const char *buf, size_t count)
 195{
 196	ssize_t ret;
 197
 198	ret = triple_flag_store(kobj, attr, buf, count,
 199				TRANSPARENT_HUGEPAGE_FLAG,
 200				TRANSPARENT_HUGEPAGE_FLAG,
 201				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 202
 203	if (ret > 0) {
 204		int err = start_stop_khugepaged();
 205		if (err)
 206			ret = err;
 207	}
 208
 
 
 
 
 
 
 
 209	return ret;
 210}
 211static struct kobj_attribute enabled_attr =
 212	__ATTR(enabled, 0644, enabled_show, enabled_store);
 213
 214ssize_t single_hugepage_flag_show(struct kobject *kobj,
 215				struct kobj_attribute *attr, char *buf,
 216				enum transparent_hugepage_flag flag)
 217{
 218	return sprintf(buf, "%d\n",
 219		       !!test_bit(flag, &transparent_hugepage_flags));
 220}
 221
 222ssize_t single_hugepage_flag_store(struct kobject *kobj,
 223				 struct kobj_attribute *attr,
 224				 const char *buf, size_t count,
 225				 enum transparent_hugepage_flag flag)
 226{
 227	unsigned long value;
 228	int ret;
 229
 230	ret = kstrtoul(buf, 10, &value);
 231	if (ret < 0)
 232		return ret;
 233	if (value > 1)
 234		return -EINVAL;
 235
 236	if (value)
 237		set_bit(flag, &transparent_hugepage_flags);
 238	else
 239		clear_bit(flag, &transparent_hugepage_flags);
 240
 241	return count;
 242}
 243
 244/*
 245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 247 * memory just to allocate one more hugepage.
 248 */
 249static ssize_t defrag_show(struct kobject *kobj,
 250			   struct kobj_attribute *attr, char *buf)
 251{
 252	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 253		return sprintf(buf, "[always] defer madvise never\n");
 254	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 255		return sprintf(buf, "always [defer] madvise never\n");
 256	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 257		return sprintf(buf, "always defer [madvise] never\n");
 258	else
 259		return sprintf(buf, "always defer madvise [never]\n");
 260
 261}
 262static ssize_t defrag_store(struct kobject *kobj,
 263			    struct kobj_attribute *attr,
 264			    const char *buf, size_t count)
 265{
 266	return triple_flag_store(kobj, attr, buf, count,
 267				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 268				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 269				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 270}
 271static struct kobj_attribute defrag_attr =
 272	__ATTR(defrag, 0644, defrag_show, defrag_store);
 273
 274static ssize_t use_zero_page_show(struct kobject *kobj,
 275		struct kobj_attribute *attr, char *buf)
 276{
 277	return single_hugepage_flag_show(kobj, attr, buf,
 278				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 279}
 280static ssize_t use_zero_page_store(struct kobject *kobj,
 281		struct kobj_attribute *attr, const char *buf, size_t count)
 282{
 283	return single_hugepage_flag_store(kobj, attr, buf, count,
 284				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 285}
 286static struct kobj_attribute use_zero_page_attr =
 287	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 288
 289static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 290		struct kobj_attribute *attr, char *buf)
 291{
 292	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 293}
 294static struct kobj_attribute hpage_pmd_size_attr =
 295	__ATTR_RO(hpage_pmd_size);
 296
 297#ifdef CONFIG_DEBUG_VM
 298static ssize_t debug_cow_show(struct kobject *kobj,
 299				struct kobj_attribute *attr, char *buf)
 300{
 301	return single_hugepage_flag_show(kobj, attr, buf,
 302				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 303}
 304static ssize_t debug_cow_store(struct kobject *kobj,
 305			       struct kobj_attribute *attr,
 306			       const char *buf, size_t count)
 307{
 308	return single_hugepage_flag_store(kobj, attr, buf, count,
 309				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 310}
 311static struct kobj_attribute debug_cow_attr =
 312	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 313#endif /* CONFIG_DEBUG_VM */
 314
 315static struct attribute *hugepage_attr[] = {
 316	&enabled_attr.attr,
 317	&defrag_attr.attr,
 318	&use_zero_page_attr.attr,
 319	&hpage_pmd_size_attr.attr,
 320#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 321	&shmem_enabled_attr.attr,
 322#endif
 323#ifdef CONFIG_DEBUG_VM
 324	&debug_cow_attr.attr,
 325#endif
 326	NULL,
 327};
 328
 329static struct attribute_group hugepage_attr_group = {
 330	.attrs = hugepage_attr,
 331};
 332
 333static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 
 
 
 
 
 
 
 
 
 334{
 
 335	int err;
 336
 337	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 338	if (unlikely(!*hugepage_kobj)) {
 339		pr_err("failed to create transparent hugepage kobject\n");
 340		return -ENOMEM;
 341	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342
 343	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 344	if (err) {
 345		pr_err("failed to register transparent hugepage group\n");
 346		goto delete_obj;
 347	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 348
 349	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 350	if (err) {
 351		pr_err("failed to register transparent hugepage group\n");
 352		goto remove_hp_group;
 353	}
 354
 355	return 0;
 356
 357remove_hp_group:
 358	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 359delete_obj:
 360	kobject_put(*hugepage_kobj);
 361	return err;
 362}
 
 
 
 363
 364static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 
 
 365{
 366	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 367	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 368	kobject_put(hugepage_kobj);
 369}
 370#else
 371static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 
 
 
 
 372{
 373	return 0;
 374}
 
 
 375
 376static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 
 
 
 
 
 
 
 
 377{
 
 
 378}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379#endif /* CONFIG_SYSFS */
 380
 381static int __init hugepage_init(void)
 382{
 383	int err;
 384	struct kobject *hugepage_kobj;
 
 
 385
 
 386	if (!has_transparent_hugepage()) {
 387		transparent_hugepage_flags = 0;
 388		return -EINVAL;
 
 
 
 
 
 
 
 
 389	}
 390
 391	/*
 392	 * hugepages can't be allocated by the buddy allocator
 393	 */
 394	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 395	/*
 396	 * we use page->mapping and page->index in second tail page
 397	 * as list_head: assuming THP order >= 2
 398	 */
 399	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 400
 401	err = hugepage_init_sysfs(&hugepage_kobj);
 402	if (err)
 403		goto err_sysfs;
 
 
 
 404
 405	err = khugepaged_init();
 406	if (err)
 407		goto err_slab;
 408
 409	err = register_shrinker(&huge_zero_page_shrinker);
 410	if (err)
 411		goto err_hzp_shrinker;
 412	err = register_shrinker(&deferred_split_shrinker);
 413	if (err)
 414		goto err_split_shrinker;
 415
 416	/*
 417	 * By default disable transparent hugepages on smaller systems,
 418	 * where the extra memory used could hurt more than TLB overhead
 419	 * is likely to save.  The admin can still enable it through /sys.
 420	 */
 421	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 422		transparent_hugepage_flags = 0;
 423		return 0;
 424	}
 425
 426	err = start_stop_khugepaged();
 427	if (err)
 428		goto err_khugepaged;
 429
 430	return 0;
 431err_khugepaged:
 432	unregister_shrinker(&deferred_split_shrinker);
 433err_split_shrinker:
 434	unregister_shrinker(&huge_zero_page_shrinker);
 435err_hzp_shrinker:
 436	khugepaged_destroy();
 437err_slab:
 438	hugepage_exit_sysfs(hugepage_kobj);
 439err_sysfs:
 440	return err;
 441}
 442subsys_initcall(hugepage_init);
 443
 444static int __init setup_transparent_hugepage(char *str)
 445{
 446	int ret = 0;
 447	if (!str)
 448		goto out;
 449	if (!strcmp(str, "always")) {
 450		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 451			&transparent_hugepage_flags);
 452		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 453			  &transparent_hugepage_flags);
 454		ret = 1;
 455	} else if (!strcmp(str, "madvise")) {
 456		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 457			  &transparent_hugepage_flags);
 458		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 459			&transparent_hugepage_flags);
 460		ret = 1;
 461	} else if (!strcmp(str, "never")) {
 462		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 463			  &transparent_hugepage_flags);
 464		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 465			  &transparent_hugepage_flags);
 466		ret = 1;
 467	}
 468out:
 469	if (!ret)
 470		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 
 471	return ret;
 472}
 473__setup("transparent_hugepage=", setup_transparent_hugepage);
 474
 475pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 
 476{
 477	if (likely(vma->vm_flags & VM_WRITE))
 478		pmd = pmd_mkwrite(pmd);
 479	return pmd;
 480}
 481
 482static inline struct list_head *page_deferred_list(struct page *page)
 483{
 484	/*
 485	 * ->lru in the tail pages is occupied by compound_head.
 486	 * Let's use ->mapping + ->index in the second tail page as list_head.
 487	 */
 488	return (struct list_head *)&page[2].mapping;
 489}
 490
 491void prep_transhuge_page(struct page *page)
 492{
 493	/*
 494	 * we use page->mapping and page->indexlru in second tail page
 495	 * as list_head: assuming THP order >= 2
 496	 */
 497
 498	INIT_LIST_HEAD(page_deferred_list(page));
 499	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 500}
 501
 502unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 503		loff_t off, unsigned long flags, unsigned long size)
 
 
 504{
 505	unsigned long addr;
 506	loff_t off_end = off + len;
 507	loff_t off_align = round_up(off, size);
 508	unsigned long len_pad;
 509
 510	if (off_end <= off_align || (off_end - off_align) < size)
 511		return 0;
 512
 513	len_pad = len + size;
 514	if (len_pad < len || (off + len_pad) < off)
 515		return 0;
 516
 517	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 518					      off >> PAGE_SHIFT, flags);
 519	if (IS_ERR_VALUE(addr))
 520		return 0;
 521
 522	addr += (off - addr) & (size - 1);
 523	return addr;
 524}
 525
 526unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 527		unsigned long len, unsigned long pgoff, unsigned long flags)
 528{
 529	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 530
 531	if (addr)
 532		goto out;
 533	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 534		goto out;
 535
 536	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 537	if (addr)
 538		return addr;
 539
 540 out:
 541	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 542}
 543EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 544
 545static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
 546		gfp_t gfp)
 547{
 548	struct vm_area_struct *vma = vmf->vma;
 549	struct mem_cgroup *memcg;
 550	pgtable_t pgtable;
 551	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 552
 553	VM_BUG_ON_PAGE(!PageCompound(page), page);
 554
 555	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 556		put_page(page);
 557		count_vm_event(THP_FAULT_FALLBACK);
 558		return VM_FAULT_FALLBACK;
 559	}
 560
 561	pgtable = pte_alloc_one(vma->vm_mm, haddr);
 562	if (unlikely(!pgtable)) {
 563		mem_cgroup_cancel_charge(page, memcg, true);
 564		put_page(page);
 565		return VM_FAULT_OOM;
 566	}
 567
 568	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 569	/*
 570	 * The memory barrier inside __SetPageUptodate makes sure that
 571	 * clear_huge_page writes become visible before the set_pmd_at()
 572	 * write.
 573	 */
 574	__SetPageUptodate(page);
 575
 576	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 577	if (unlikely(!pmd_none(*vmf->pmd))) {
 578		spin_unlock(vmf->ptl);
 579		mem_cgroup_cancel_charge(page, memcg, true);
 580		put_page(page);
 581		pte_free(vma->vm_mm, pgtable);
 582	} else {
 583		pmd_t entry;
 584
 585		/* Deliver the page fault to userland */
 586		if (userfaultfd_missing(vma)) {
 587			int ret;
 588
 589			spin_unlock(vmf->ptl);
 590			mem_cgroup_cancel_charge(page, memcg, true);
 591			put_page(page);
 592			pte_free(vma->vm_mm, pgtable);
 593			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 594			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 595			return ret;
 596		}
 597
 598		entry = mk_huge_pmd(page, vma->vm_page_prot);
 599		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 600		page_add_new_anon_rmap(page, vma, haddr, true);
 601		mem_cgroup_commit_charge(page, memcg, false, true);
 602		lru_cache_add_active_or_unevictable(page, vma);
 603		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 604		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 605		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 606		atomic_long_inc(&vma->vm_mm->nr_ptes);
 607		spin_unlock(vmf->ptl);
 608		count_vm_event(THP_FAULT_ALLOC);
 
 
 
 609	}
 610
 611	return 0;
 612}
 613
 614/*
 615 * If THP defrag is set to always then directly reclaim/compact as necessary
 616 * If set to defer then do only background reclaim/compact and defer to khugepaged
 617 * If set to madvise and the VMA is flagged then directly reclaim/compact
 618 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
 619 */
 620static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 621{
 622	bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 623
 624	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 625				&transparent_hugepage_flags) && vma_madvised)
 626		return GFP_TRANSHUGE;
 627	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 628						&transparent_hugepage_flags))
 629		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 630	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 631						&transparent_hugepage_flags))
 632		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 633
 634	return GFP_TRANSHUGE_LIGHT;
 635}
 636
 637/* Caller must hold page table lock. */
 638static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 639		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 640		struct page *zero_page)
 641{
 642	pmd_t entry;
 643	if (!pmd_none(*pmd))
 644		return false;
 645	entry = mk_pmd(zero_page, vma->vm_page_prot);
 646	entry = pmd_mkhuge(entry);
 647	if (pgtable)
 648		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 649	set_pmd_at(mm, haddr, pmd, entry);
 650	atomic_long_inc(&mm->nr_ptes);
 651	return true;
 652}
 653
 654int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 
 
 
 655{
 656	struct vm_area_struct *vma = vmf->vma;
 657	gfp_t gfp;
 658	struct page *page;
 659	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 660
 661	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 662		return VM_FAULT_FALLBACK;
 663	if (unlikely(anon_vma_prepare(vma)))
 664		return VM_FAULT_OOM;
 665	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 666		return VM_FAULT_OOM;
 667	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 668			!mm_forbids_zeropage(vma->vm_mm) &&
 669			transparent_hugepage_use_zero_page()) {
 670		pgtable_t pgtable;
 671		struct page *zero_page;
 672		bool set;
 673		int ret;
 674		pgtable = pte_alloc_one(vma->vm_mm, haddr);
 675		if (unlikely(!pgtable))
 676			return VM_FAULT_OOM;
 677		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 678		if (unlikely(!zero_page)) {
 679			pte_free(vma->vm_mm, pgtable);
 680			count_vm_event(THP_FAULT_FALLBACK);
 681			return VM_FAULT_FALLBACK;
 682		}
 683		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 684		ret = 0;
 685		set = false;
 686		if (pmd_none(*vmf->pmd)) {
 687			if (userfaultfd_missing(vma)) {
 688				spin_unlock(vmf->ptl);
 689				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 690				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 691			} else {
 692				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 693						   haddr, vmf->pmd, zero_page);
 694				spin_unlock(vmf->ptl);
 695				set = true;
 696			}
 697		} else
 698			spin_unlock(vmf->ptl);
 699		if (!set)
 700			pte_free(vma->vm_mm, pgtable);
 701		return ret;
 702	}
 703	gfp = alloc_hugepage_direct_gfpmask(vma);
 704	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 705	if (unlikely(!page)) {
 706		count_vm_event(THP_FAULT_FALLBACK);
 707		return VM_FAULT_FALLBACK;
 708	}
 709	prep_transhuge_page(page);
 710	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 711}
 712
 713static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 714		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
 715{
 716	struct mm_struct *mm = vma->vm_mm;
 717	pmd_t entry;
 718	spinlock_t *ptl;
 719
 720	ptl = pmd_lock(mm, pmd);
 721	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 722	if (pfn_t_devmap(pfn))
 723		entry = pmd_mkdevmap(entry);
 724	if (write) {
 725		entry = pmd_mkyoung(pmd_mkdirty(entry));
 726		entry = maybe_pmd_mkwrite(entry, vma);
 727	}
 728	set_pmd_at(mm, addr, pmd, entry);
 729	update_mmu_cache_pmd(vma, addr, pmd);
 730	spin_unlock(ptl);
 731}
 
 732
 733int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 734			pmd_t *pmd, pfn_t pfn, bool write)
 
 735{
 736	pgprot_t pgprot = vma->vm_page_prot;
 737	/*
 738	 * If we had pmd_special, we could avoid all these restrictions,
 739	 * but we need to be consistent with PTEs and architectures that
 740	 * can't support a 'special' bit.
 741	 */
 742	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 743	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 744						(VM_PFNMAP|VM_MIXEDMAP));
 745	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 746	BUG_ON(!pfn_t_devmap(pfn));
 747
 748	if (addr < vma->vm_start || addr >= vma->vm_end)
 749		return VM_FAULT_SIGBUS;
 750
 751	track_pfn_insert(vma, &pgprot, pfn);
 752
 753	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
 754	return VM_FAULT_NOPAGE;
 755}
 756EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 757
 758static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 759		pmd_t *pmd)
 760{
 761	pmd_t _pmd;
 762
 763	/*
 764	 * We should set the dirty bit only for FOLL_WRITE but for now
 765	 * the dirty bit in the pmd is meaningless.  And if the dirty
 766	 * bit will become meaningful and we'll only set it with
 767	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
 768	 * set the young bit, instead of the current set_pmd_at.
 769	 */
 770	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 771	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 772				pmd, _pmd,  1))
 773		update_mmu_cache_pmd(vma, addr, pmd);
 774}
 775
 776struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 777		pmd_t *pmd, int flags)
 778{
 779	unsigned long pfn = pmd_pfn(*pmd);
 780	struct mm_struct *mm = vma->vm_mm;
 781	struct dev_pagemap *pgmap;
 782	struct page *page;
 
 
 783
 784	assert_spin_locked(pmd_lockptr(mm, pmd));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785
 
 
 
 786	/*
 787	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 788	 * not be in this function with `flags & FOLL_COW` set.
 
 789	 */
 790	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 791
 792	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 793		return NULL;
 794
 795	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 796		/* pass */;
 797	else
 798		return NULL;
 799
 800	if (flags & FOLL_TOUCH)
 801		touch_pmd(vma, addr, pmd);
 802
 803	/*
 804	 * device mapped pages can only be returned if the
 805	 * caller will manage the page reference count.
 
 
 806	 */
 807	if (!(flags & FOLL_GET))
 808		return ERR_PTR(-EEXIST);
 809
 810	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 811	pgmap = get_dev_pagemap(pfn, NULL);
 812	if (!pgmap)
 813		return ERR_PTR(-EFAULT);
 814	page = pfn_to_page(pfn);
 815	get_page(page);
 816	put_dev_pagemap(pgmap);
 817
 818	return page;
 819}
 820
 821int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 822		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 823		  struct vm_area_struct *vma)
 824{
 825	spinlock_t *dst_ptl, *src_ptl;
 826	struct page *src_page;
 827	pmd_t pmd;
 828	pgtable_t pgtable = NULL;
 829	int ret = -ENOMEM;
 830
 831	/* Skip if can be re-fill on fault */
 832	if (!vma_is_anonymous(vma))
 833		return 0;
 834
 
 835	pgtable = pte_alloc_one(dst_mm, addr);
 836	if (unlikely(!pgtable))
 837		goto out;
 838
 839	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 840	src_ptl = pmd_lockptr(src_mm, src_pmd);
 841	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 842
 843	ret = -EAGAIN;
 844	pmd = *src_pmd;
 845	if (unlikely(!pmd_trans_huge(pmd))) {
 846		pte_free(dst_mm, pgtable);
 847		goto out_unlock;
 848	}
 849	/*
 850	 * When page table lock is held, the huge zero pmd should not be
 851	 * under splitting since we don't split the page itself, only pmd to
 852	 * a page table.
 853	 */
 854	if (is_huge_zero_pmd(pmd)) {
 855		struct page *zero_page;
 856		/*
 857		 * get_huge_zero_page() will never allocate a new page here,
 858		 * since we already have a zero page to copy. It just takes a
 859		 * reference.
 860		 */
 861		zero_page = mm_get_huge_zero_page(dst_mm);
 862		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 863				zero_page);
 864		ret = 0;
 865		goto out_unlock;
 866	}
 867
 868	src_page = pmd_page(pmd);
 869	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 870	get_page(src_page);
 871	page_dup_rmap(src_page, true);
 872	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 873	atomic_long_inc(&dst_mm->nr_ptes);
 874	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 875
 876	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 877	pmd = pmd_mkold(pmd_wrprotect(pmd));
 878	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 
 879
 880	ret = 0;
 881out_unlock:
 882	spin_unlock(src_ptl);
 883	spin_unlock(dst_ptl);
 884out:
 885	return ret;
 886}
 887
 888void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
 
 889{
 890	pmd_t entry;
 891	unsigned long haddr;
 892	bool write = vmf->flags & FAULT_FLAG_WRITE;
 893
 894	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
 895	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
 896		goto unlock;
 897
 898	entry = pmd_mkyoung(orig_pmd);
 899	if (write)
 900		entry = pmd_mkdirty(entry);
 901	haddr = vmf->address & HPAGE_PMD_MASK;
 902	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
 903		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
 904
 905unlock:
 906	spin_unlock(vmf->ptl);
 907}
 908
 909static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
 910		struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911{
 912	struct vm_area_struct *vma = vmf->vma;
 913	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 914	struct mem_cgroup *memcg;
 915	pgtable_t pgtable;
 916	pmd_t _pmd;
 917	int ret = 0, i;
 918	struct page **pages;
 919	unsigned long mmun_start;	/* For mmu_notifiers */
 920	unsigned long mmun_end;		/* For mmu_notifiers */
 921
 922	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 923			GFP_KERNEL);
 924	if (unlikely(!pages)) {
 925		ret |= VM_FAULT_OOM;
 926		goto out;
 927	}
 928
 929	for (i = 0; i < HPAGE_PMD_NR; i++) {
 930		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
 931					       vmf->address, page_to_nid(page));
 
 932		if (unlikely(!pages[i] ||
 933			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
 934				     GFP_KERNEL, &memcg, false))) {
 935			if (pages[i])
 936				put_page(pages[i]);
 
 937			while (--i >= 0) {
 938				memcg = (void *)page_private(pages[i]);
 939				set_page_private(pages[i], 0);
 940				mem_cgroup_cancel_charge(pages[i], memcg,
 941						false);
 942				put_page(pages[i]);
 943			}
 
 944			kfree(pages);
 945			ret |= VM_FAULT_OOM;
 946			goto out;
 947		}
 948		set_page_private(pages[i], (unsigned long)memcg);
 949	}
 950
 951	for (i = 0; i < HPAGE_PMD_NR; i++) {
 952		copy_user_highpage(pages[i], page + i,
 953				   haddr + PAGE_SIZE * i, vma);
 954		__SetPageUptodate(pages[i]);
 955		cond_resched();
 956	}
 957
 958	mmun_start = haddr;
 959	mmun_end   = haddr + HPAGE_PMD_SIZE;
 960	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
 961
 962	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 963	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
 964		goto out_free_pages;
 965	VM_BUG_ON_PAGE(!PageHead(page), page);
 966
 967	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
 968	/* leave pmd empty until pte is filled */
 969
 970	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
 971	pmd_populate(vma->vm_mm, &_pmd, pgtable);
 972
 973	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 974		pte_t entry;
 975		entry = mk_pte(pages[i], vma->vm_page_prot);
 976		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 977		memcg = (void *)page_private(pages[i]);
 978		set_page_private(pages[i], 0);
 979		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
 980		mem_cgroup_commit_charge(pages[i], memcg, false, false);
 981		lru_cache_add_active_or_unevictable(pages[i], vma);
 982		vmf->pte = pte_offset_map(&_pmd, haddr);
 983		VM_BUG_ON(!pte_none(*vmf->pte));
 984		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
 985		pte_unmap(vmf->pte);
 986	}
 987	kfree(pages);
 988
 
 989	smp_wmb(); /* make pte visible before pmd */
 990	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
 991	page_remove_rmap(page, true);
 992	spin_unlock(vmf->ptl);
 993
 994	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
 995
 996	ret |= VM_FAULT_WRITE;
 997	put_page(page);
 998
 999out:
1000	return ret;
1001
1002out_free_pages:
1003	spin_unlock(vmf->ptl);
1004	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1005	for (i = 0; i < HPAGE_PMD_NR; i++) {
1006		memcg = (void *)page_private(pages[i]);
1007		set_page_private(pages[i], 0);
1008		mem_cgroup_cancel_charge(pages[i], memcg, false);
1009		put_page(pages[i]);
1010	}
 
1011	kfree(pages);
1012	goto out;
1013}
1014
1015int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
 
1016{
1017	struct vm_area_struct *vma = vmf->vma;
1018	struct page *page = NULL, *new_page;
1019	struct mem_cgroup *memcg;
1020	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1021	unsigned long mmun_start;	/* For mmu_notifiers */
1022	unsigned long mmun_end;		/* For mmu_notifiers */
1023	gfp_t huge_gfp;			/* for allocation and charge */
1024	int ret = 0;
 
 
1025
1026	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1027	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1028	if (is_huge_zero_pmd(orig_pmd))
1029		goto alloc;
1030	spin_lock(vmf->ptl);
1031	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1032		goto out_unlock;
1033
1034	page = pmd_page(orig_pmd);
1035	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1036	/*
1037	 * We can only reuse the page if nobody else maps the huge page or it's
1038	 * part.
1039	 */
1040	if (page_trans_huge_mapcount(page, NULL) == 1) {
1041		pmd_t entry;
1042		entry = pmd_mkyoung(orig_pmd);
1043		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1044		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1045			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1046		ret |= VM_FAULT_WRITE;
1047		goto out_unlock;
1048	}
1049	get_page(page);
1050	spin_unlock(vmf->ptl);
1051alloc:
1052	if (transparent_hugepage_enabled(vma) &&
1053	    !transparent_hugepage_debug_cow()) {
1054		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1055		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1056	} else
1057		new_page = NULL;
1058
1059	if (likely(new_page)) {
1060		prep_transhuge_page(new_page);
1061	} else {
1062		if (!page) {
1063			split_huge_pmd(vma, vmf->pmd, vmf->address);
1064			ret |= VM_FAULT_FALLBACK;
1065		} else {
1066			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1067			if (ret & VM_FAULT_OOM) {
1068				split_huge_pmd(vma, vmf->pmd, vmf->address);
1069				ret |= VM_FAULT_FALLBACK;
1070			}
1071			put_page(page);
1072		}
1073		count_vm_event(THP_FAULT_FALLBACK);
 
 
 
1074		goto out;
1075	}
 
1076
1077	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1078					huge_gfp, &memcg, true))) {
1079		put_page(new_page);
1080		split_huge_pmd(vma, vmf->pmd, vmf->address);
1081		if (page)
1082			put_page(page);
1083		ret |= VM_FAULT_FALLBACK;
1084		count_vm_event(THP_FAULT_FALLBACK);
1085		goto out;
1086	}
1087
1088	count_vm_event(THP_FAULT_ALLOC);
1089
1090	if (!page)
1091		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1092	else
1093		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1094	__SetPageUptodate(new_page);
1095
1096	mmun_start = haddr;
1097	mmun_end   = haddr + HPAGE_PMD_SIZE;
1098	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1099
1100	spin_lock(vmf->ptl);
1101	if (page)
1102		put_page(page);
1103	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1104		spin_unlock(vmf->ptl);
1105		mem_cgroup_cancel_charge(new_page, memcg, true);
1106		put_page(new_page);
1107		goto out_mn;
1108	} else {
1109		pmd_t entry;
1110		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
 
1111		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1112		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1113		page_add_new_anon_rmap(new_page, vma, haddr, true);
1114		mem_cgroup_commit_charge(new_page, memcg, false, true);
1115		lru_cache_add_active_or_unevictable(new_page, vma);
1116		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1117		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1118		if (!page) {
1119			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1120		} else {
1121			VM_BUG_ON_PAGE(!PageHead(page), page);
1122			page_remove_rmap(page, true);
1123			put_page(page);
1124		}
1125		ret |= VM_FAULT_WRITE;
1126	}
1127	spin_unlock(vmf->ptl);
1128out_mn:
1129	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1130out:
1131	return ret;
1132out_unlock:
1133	spin_unlock(vmf->ptl);
1134	return ret;
1135}
1136
1137/*
1138 * FOLL_FORCE can write to even unwritable pmd's, but only
1139 * after we've gone through a COW cycle and they are dirty.
1140 */
1141static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1142{
1143	return pmd_write(pmd) ||
1144	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1145}
1146
1147struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1148				   unsigned long addr,
1149				   pmd_t *pmd,
1150				   unsigned int flags)
1151{
1152	struct mm_struct *mm = vma->vm_mm;
1153	struct page *page = NULL;
1154
1155	assert_spin_locked(pmd_lockptr(mm, pmd));
1156
1157	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1158		goto out;
1159
1160	/* Avoid dumping huge zero page */
1161	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1162		return ERR_PTR(-EFAULT);
1163
1164	/* Full NUMA hinting faults to serialise migration in fault paths */
1165	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1166		goto out;
1167
1168	page = pmd_page(*pmd);
1169	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1170	if (flags & FOLL_TOUCH)
1171		touch_pmd(vma, addr, pmd);
1172	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1173		/*
1174		 * We don't mlock() pte-mapped THPs. This way we can avoid
1175		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1176		 *
1177		 * For anon THP:
1178		 *
1179		 * In most cases the pmd is the only mapping of the page as we
1180		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1181		 * writable private mappings in populate_vma_page_range().
1182		 *
1183		 * The only scenario when we have the page shared here is if we
1184		 * mlocking read-only mapping shared over fork(). We skip
1185		 * mlocking such pages.
1186		 *
1187		 * For file THP:
1188		 *
1189		 * We can expect PageDoubleMap() to be stable under page lock:
1190		 * for file pages we set it in page_add_file_rmap(), which
1191		 * requires page to be locked.
1192		 */
1193
1194		if (PageAnon(page) && compound_mapcount(page) != 1)
1195			goto skip_mlock;
1196		if (PageDoubleMap(page) || !page->mapping)
1197			goto skip_mlock;
1198		if (!trylock_page(page))
1199			goto skip_mlock;
1200		lru_add_drain();
1201		if (page->mapping && !PageDoubleMap(page))
1202			mlock_vma_page(page);
1203		unlock_page(page);
1204	}
1205skip_mlock:
1206	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1207	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1208	if (flags & FOLL_GET)
1209		get_page(page);
1210
1211out:
1212	return page;
1213}
1214
1215/* NUMA hinting page fault entry point for trans huge pmds */
1216int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1217{
1218	struct vm_area_struct *vma = vmf->vma;
1219	struct anon_vma *anon_vma = NULL;
1220	struct page *page;
1221	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1222	int page_nid = -1, this_nid = numa_node_id();
1223	int target_nid, last_cpupid = -1;
1224	bool page_locked;
1225	bool migrated = false;
1226	bool was_writable;
1227	int flags = 0;
1228
1229	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1230	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1231		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1232
1233	/*
1234	 * If there are potential migrations, wait for completion and retry
1235	 * without disrupting NUMA hinting information. Do not relock and
1236	 * check_same as the page may no longer be mapped.
1237	 */
1238	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1239		page = pmd_page(*vmf->pmd);
1240		spin_unlock(vmf->ptl);
1241		wait_on_page_locked(page);
1242		goto out;
1243	}
1244
1245	page = pmd_page(pmd);
1246	BUG_ON(is_huge_zero_page(page));
1247	page_nid = page_to_nid(page);
1248	last_cpupid = page_cpupid_last(page);
1249	count_vm_numa_event(NUMA_HINT_FAULTS);
1250	if (page_nid == this_nid) {
1251		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1252		flags |= TNF_FAULT_LOCAL;
1253	}
1254
1255	/* See similar comment in do_numa_page for explanation */
1256	if (!pmd_write(pmd))
1257		flags |= TNF_NO_GROUP;
 
 
 
 
 
 
 
 
 
 
 
 
1258
1259	/*
1260	 * Acquire the page lock to serialise THP migrations but avoid dropping
1261	 * page_table_lock if at all possible
1262	 */
1263	page_locked = trylock_page(page);
1264	target_nid = mpol_misplaced(page, vma, haddr);
1265	if (target_nid == -1) {
1266		/* If the page was locked, there are no parallel migrations */
1267		if (page_locked)
1268			goto clear_pmdnuma;
1269	}
1270
1271	/* Migration could have started since the pmd_trans_migrating check */
1272	if (!page_locked) {
1273		spin_unlock(vmf->ptl);
1274		wait_on_page_locked(page);
1275		page_nid = -1;
1276		goto out;
1277	}
1278
1279	/*
1280	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1281	 * to serialises splits
1282	 */
1283	get_page(page);
1284	spin_unlock(vmf->ptl);
1285	anon_vma = page_lock_anon_vma_read(page);
1286
1287	/* Confirm the PMD did not change while page_table_lock was released */
1288	spin_lock(vmf->ptl);
1289	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1290		unlock_page(page);
1291		put_page(page);
1292		page_nid = -1;
1293		goto out_unlock;
1294	}
1295
1296	/* Bail if we fail to protect against THP splits for any reason */
1297	if (unlikely(!anon_vma)) {
1298		put_page(page);
1299		page_nid = -1;
1300		goto clear_pmdnuma;
1301	}
1302
1303	/*
1304	 * Migrate the THP to the requested node, returns with page unlocked
1305	 * and access rights restored.
1306	 */
1307	spin_unlock(vmf->ptl);
1308	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1309				vmf->pmd, pmd, vmf->address, page, target_nid);
1310	if (migrated) {
1311		flags |= TNF_MIGRATED;
1312		page_nid = target_nid;
1313	} else
1314		flags |= TNF_MIGRATE_FAIL;
1315
1316	goto out;
1317clear_pmdnuma:
1318	BUG_ON(!PageLocked(page));
1319	was_writable = pmd_write(pmd);
1320	pmd = pmd_modify(pmd, vma->vm_page_prot);
1321	pmd = pmd_mkyoung(pmd);
1322	if (was_writable)
1323		pmd = pmd_mkwrite(pmd);
1324	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1325	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1326	unlock_page(page);
1327out_unlock:
1328	spin_unlock(vmf->ptl);
1329
1330out:
1331	if (anon_vma)
1332		page_unlock_anon_vma_read(anon_vma);
1333
1334	if (page_nid != -1)
1335		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1336				vmf->flags);
1337
1338	return 0;
1339}
1340
1341/*
1342 * Return true if we do MADV_FREE successfully on entire pmd page.
1343 * Otherwise, return false.
1344 */
1345bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1346		pmd_t *pmd, unsigned long addr, unsigned long next)
1347{
1348	spinlock_t *ptl;
1349	pmd_t orig_pmd;
1350	struct page *page;
1351	struct mm_struct *mm = tlb->mm;
1352	bool ret = false;
1353
1354	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
 
1355
1356	ptl = pmd_trans_huge_lock(pmd, vma);
1357	if (!ptl)
1358		goto out_unlocked;
1359
1360	orig_pmd = *pmd;
1361	if (is_huge_zero_pmd(orig_pmd))
1362		goto out;
1363
1364	page = pmd_page(orig_pmd);
1365	/*
1366	 * If other processes are mapping this page, we couldn't discard
1367	 * the page unless they all do MADV_FREE so let's skip the page.
1368	 */
1369	if (page_mapcount(page) != 1)
1370		goto out;
1371
1372	if (!trylock_page(page))
1373		goto out;
1374
1375	/*
1376	 * If user want to discard part-pages of THP, split it so MADV_FREE
1377	 * will deactivate only them.
 
 
 
1378	 */
1379	if (next - addr != HPAGE_PMD_SIZE) {
1380		get_page(page);
1381		spin_unlock(ptl);
1382		split_huge_page(page);
1383		put_page(page);
1384		unlock_page(page);
1385		goto out_unlocked;
1386	}
 
 
 
1387
1388	if (PageDirty(page))
1389		ClearPageDirty(page);
1390	unlock_page(page);
 
 
 
 
1391
1392	if (PageActive(page))
1393		deactivate_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
1394
1395	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1396		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1397			tlb->fullmm);
1398		orig_pmd = pmd_mkold(orig_pmd);
1399		orig_pmd = pmd_mkclean(orig_pmd);
1400
1401		set_pmd_at(mm, addr, pmd, orig_pmd);
1402		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1403	}
1404	ret = true;
1405out:
1406	spin_unlock(ptl);
1407out_unlocked:
1408	return ret;
1409}
1410
1411static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1412{
1413	pgtable_t pgtable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1414
1415	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1416	pte_free(mm, pgtable);
1417	atomic_long_dec(&mm->nr_ptes);
1418}
1419
1420int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1421		 pmd_t *pmd, unsigned long addr)
1422{
1423	pmd_t orig_pmd;
1424	spinlock_t *ptl;
1425
1426	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
 
1427
1428	ptl = __pmd_trans_huge_lock(pmd, vma);
1429	if (!ptl)
1430		return 0;
1431	/*
1432	 * For architectures like ppc64 we look at deposited pgtable
1433	 * when calling pmdp_huge_get_and_clear. So do the
1434	 * pgtable_trans_huge_withdraw after finishing pmdp related
1435	 * operations.
1436	 */
1437	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1438			tlb->fullmm);
1439	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1440	if (vma_is_dax(vma)) {
1441		spin_unlock(ptl);
1442		if (is_huge_zero_pmd(orig_pmd))
1443			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1444	} else if (is_huge_zero_pmd(orig_pmd)) {
1445		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1446		atomic_long_dec(&tlb->mm->nr_ptes);
1447		spin_unlock(ptl);
1448		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1449	} else {
1450		struct page *page = pmd_page(orig_pmd);
1451		page_remove_rmap(page, true);
1452		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1453		VM_BUG_ON_PAGE(!PageHead(page), page);
1454		if (PageAnon(page)) {
1455			pgtable_t pgtable;
1456			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1457			pte_free(tlb->mm, pgtable);
1458			atomic_long_dec(&tlb->mm->nr_ptes);
1459			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1460		} else {
1461			if (arch_needs_pgtable_deposit())
1462				zap_deposited_table(tlb->mm, pmd);
1463			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1464		}
1465		spin_unlock(ptl);
1466		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1467	}
1468	return 1;
1469}
1470
1471#ifndef pmd_move_must_withdraw
1472static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1473					 spinlock_t *old_pmd_ptl,
1474					 struct vm_area_struct *vma)
1475{
1476	/*
1477	 * With split pmd lock we also need to move preallocated
1478	 * PTE page table if new_pmd is on different PMD page table.
1479	 *
1480	 * We also don't deposit and withdraw tables for file pages.
1481	 */
1482	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1483}
1484#endif
1485
1486bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1487		  unsigned long new_addr, unsigned long old_end,
1488		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1489{
1490	spinlock_t *old_ptl, *new_ptl;
1491	pmd_t pmd;
1492	struct mm_struct *mm = vma->vm_mm;
1493	bool force_flush = false;
 
 
 
1494
1495	if ((old_addr & ~HPAGE_PMD_MASK) ||
1496	    (new_addr & ~HPAGE_PMD_MASK) ||
1497	    old_end - old_addr < HPAGE_PMD_SIZE)
1498		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499
1500	/*
1501	 * The destination pmd shouldn't be established, free_pgtables()
1502	 * should have release it.
1503	 */
1504	if (WARN_ON(!pmd_none(*new_pmd))) {
1505		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1506		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507	}
 
1508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509	/*
1510	 * We don't have to worry about the ordering of src and dst
1511	 * ptlocks because exclusive mmap_sem prevents deadlock.
1512	 */
1513	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1514	if (old_ptl) {
1515		new_ptl = pmd_lockptr(mm, new_pmd);
1516		if (new_ptl != old_ptl)
1517			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1518		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1519		if (pmd_present(pmd) && pmd_dirty(pmd))
1520			force_flush = true;
1521		VM_BUG_ON(!pmd_none(*new_pmd));
1522
1523		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1524			pgtable_t pgtable;
1525			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1526			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1527		}
1528		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1529		if (new_ptl != old_ptl)
1530			spin_unlock(new_ptl);
1531		if (force_flush)
1532			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1533		else
1534			*need_flush = true;
1535		spin_unlock(old_ptl);
1536		return true;
1537	}
1538	return false;
 
 
 
1539}
1540
1541/*
1542 * Returns
1543 *  - 0 if PMD could not be locked
1544 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1545 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1546 */
1547int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1548		unsigned long addr, pgprot_t newprot, int prot_numa)
1549{
1550	struct mm_struct *mm = vma->vm_mm;
1551	spinlock_t *ptl;
1552	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1553
1554	ptl = __pmd_trans_huge_lock(pmd, vma);
1555	if (ptl) {
1556		pmd_t entry;
1557		bool preserve_write = prot_numa && pmd_write(*pmd);
1558		ret = 1;
1559
 
 
 
 
 
 
 
 
 
 
 
 
1560		/*
1561		 * Avoid trapping faults against the zero page. The read-only
1562		 * data is likely to be read-cached on the local CPU and
1563		 * local/remote hits to the zero page are not interesting.
1564		 */
1565		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1566			spin_unlock(ptl);
1567			return ret;
1568		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569
1570		if (!prot_numa || !pmd_protnone(*pmd)) {
1571			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1572			entry = pmd_modify(entry, newprot);
1573			if (preserve_write)
1574				entry = pmd_mkwrite(entry);
1575			ret = HPAGE_PMD_NR;
1576			set_pmd_at(mm, addr, pmd, entry);
1577			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1578					pmd_write(entry));
1579		}
1580		spin_unlock(ptl);
1581	}
1582
1583	return ret;
 
 
 
1584}
1585
1586/*
1587 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1588 *
1589 * Note that if it returns page table lock pointer, this routine returns without
1590 * unlocking page table lock. So callers must unlock it.
1591 */
1592spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1593{
1594	spinlock_t *ptl;
1595	ptl = pmd_lock(vma->vm_mm, pmd);
1596	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1597		return ptl;
1598	spin_unlock(ptl);
1599	return NULL;
1600}
1601
1602static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1603		unsigned long haddr, pmd_t *pmd)
1604{
1605	struct mm_struct *mm = vma->vm_mm;
1606	pgtable_t pgtable;
1607	pmd_t _pmd;
1608	int i;
1609
1610	/* leave pmd empty until pte is filled */
1611	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
 
 
 
 
 
 
1612
1613	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1614	pmd_populate(mm, &_pmd, pgtable);
 
 
 
 
 
1615
1616	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1617		pte_t *pte, entry;
1618		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1619		entry = pte_mkspecial(entry);
1620		pte = pte_offset_map(&_pmd, haddr);
1621		VM_BUG_ON(!pte_none(*pte));
1622		set_pte_at(mm, haddr, pte, entry);
1623		pte_unmap(pte);
 
 
 
1624	}
1625	smp_wmb(); /* make pte visible before pmd */
1626	pmd_populate(mm, pmd, pgtable);
 
 
 
 
 
 
 
 
 
 
1627}
1628
1629static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1630		unsigned long haddr, bool freeze)
1631{
1632	struct mm_struct *mm = vma->vm_mm;
1633	struct page *page;
1634	pgtable_t pgtable;
1635	pmd_t _pmd;
1636	bool young, write, dirty, soft_dirty;
1637	unsigned long addr;
1638	int i;
1639
1640	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1641	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1642	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1643	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1644
1645	count_vm_event(THP_SPLIT_PMD);
 
 
1646
1647	if (!vma_is_anonymous(vma)) {
1648		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1649		/*
1650		 * We are going to unmap this huge page. So
1651		 * just go ahead and zap it
1652		 */
1653		if (arch_needs_pgtable_deposit())
1654			zap_deposited_table(mm, pmd);
1655		if (vma_is_dax(vma))
1656			return;
1657		page = pmd_page(_pmd);
1658		if (!PageReferenced(page) && pmd_young(_pmd))
1659			SetPageReferenced(page);
1660		page_remove_rmap(page, true);
1661		put_page(page);
1662		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1663		return;
1664	} else if (is_huge_zero_pmd(*pmd)) {
1665		return __split_huge_zero_page_pmd(vma, haddr, pmd);
1666	}
1667
1668	page = pmd_page(*pmd);
1669	VM_BUG_ON_PAGE(!page_count(page), page);
1670	page_ref_add(page, HPAGE_PMD_NR - 1);
1671	write = pmd_write(*pmd);
1672	young = pmd_young(*pmd);
1673	dirty = pmd_dirty(*pmd);
1674	soft_dirty = pmd_soft_dirty(*pmd);
 
 
 
 
 
 
1675
1676	pmdp_huge_split_prepare(vma, haddr, pmd);
1677	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1678	pmd_populate(mm, &_pmd, pgtable);
1679
1680	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1681		pte_t entry, *pte;
 
 
1682		/*
1683		 * Note that NUMA hinting access restrictions are not
1684		 * transferred to avoid any possibility of altering
1685		 * permissions across VMAs.
1686		 */
1687		if (freeze) {
1688			swp_entry_t swp_entry;
1689			swp_entry = make_migration_entry(page + i, write);
1690			entry = swp_entry_to_pte(swp_entry);
1691			if (soft_dirty)
1692				entry = pte_swp_mksoft_dirty(entry);
1693		} else {
1694			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1695			entry = maybe_mkwrite(entry, vma);
1696			if (!write)
1697				entry = pte_wrprotect(entry);
1698			if (!young)
1699				entry = pte_mkold(entry);
1700			if (soft_dirty)
1701				entry = pte_mksoft_dirty(entry);
1702		}
1703		if (dirty)
1704			SetPageDirty(page + i);
1705		pte = pte_offset_map(&_pmd, addr);
1706		BUG_ON(!pte_none(*pte));
1707		set_pte_at(mm, addr, pte, entry);
1708		atomic_inc(&page[i]._mapcount);
1709		pte_unmap(pte);
1710	}
1711
1712	/*
1713	 * Set PG_double_map before dropping compound_mapcount to avoid
1714	 * false-negative page_mapped().
1715	 */
1716	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1717		for (i = 0; i < HPAGE_PMD_NR; i++)
1718			atomic_inc(&page[i]._mapcount);
1719	}
 
 
 
 
 
 
 
 
1720
1721	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1722		/* Last compound_mapcount is gone. */
1723		__dec_node_page_state(page, NR_ANON_THPS);
1724		if (TestClearPageDoubleMap(page)) {
1725			/* No need in mapcount reference anymore */
1726			for (i = 0; i < HPAGE_PMD_NR; i++)
1727				atomic_dec(&page[i]._mapcount);
1728		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729	}
 
1730
1731	smp_wmb(); /* make pte visible before pmd */
1732	/*
1733	 * Up to this point the pmd is present and huge and userland has the
1734	 * whole access to the hugepage during the split (which happens in
1735	 * place). If we overwrite the pmd with the not-huge version pointing
1736	 * to the pte here (which of course we could if all CPUs were bug
1737	 * free), userland could trigger a small page size TLB miss on the
1738	 * small sized TLB while the hugepage TLB entry is still established in
1739	 * the huge TLB. Some CPU doesn't like that.
1740	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1741	 * 383 on page 93. Intel should be safe but is also warns that it's
1742	 * only safe if the permission and cache attributes of the two entries
1743	 * loaded in the two TLB is identical (which should be the case here).
1744	 * But it is generally safer to never allow small and huge TLB entries
1745	 * for the same virtual address to be loaded simultaneously. So instead
1746	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1747	 * current pmd notpresent (atomically because here the pmd_trans_huge
1748	 * and pmd_trans_splitting must remain set at all times on the pmd
1749	 * until the split is complete for this pmd), then we flush the SMP TLB
1750	 * and finally we write the non-huge version of the pmd entry with
1751	 * pmd_populate.
1752	 */
1753	pmdp_invalidate(vma, haddr, pmd);
1754	pmd_populate(mm, pmd, pgtable);
1755
1756	if (freeze) {
1757		for (i = 0; i < HPAGE_PMD_NR; i++) {
1758			page_remove_rmap(page + i, false);
1759			put_page(page + i);
1760		}
 
1761	}
1762}
1763
1764void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1765		unsigned long address, bool freeze, struct page *page)
1766{
1767	spinlock_t *ptl;
1768	struct mm_struct *mm = vma->vm_mm;
1769	unsigned long haddr = address & HPAGE_PMD_MASK;
1770
1771	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1772	ptl = pmd_lock(mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1773
1774	/*
1775	 * If caller asks to setup a migration entries, we need a page to check
1776	 * pmd against. Otherwise we can end up replacing wrong page.
1777	 */
1778	VM_BUG_ON(freeze && !page);
1779	if (page && page != pmd_page(*pmd))
1780	        goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781
1782	if (pmd_trans_huge(*pmd)) {
1783		page = pmd_page(*pmd);
1784		if (PageMlocked(page))
1785			clear_page_mlock(page);
1786	} else if (!pmd_devmap(*pmd))
1787		goto out;
1788	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
1789out:
1790	spin_unlock(ptl);
1791	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1792}
1793
1794void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1795		bool freeze, struct page *page)
 
 
 
1796{
1797	pgd_t *pgd;
1798	pud_t *pud;
1799	pmd_t *pmd;
 
 
 
 
 
 
1800
1801	pgd = pgd_offset(vma->vm_mm, address);
1802	if (!pgd_present(*pgd))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803		return;
 
 
1804
1805	pud = pud_offset(pgd, address);
1806	if (!pud_present(*pud))
 
 
 
1807		return;
 
1808
1809	pmd = pmd_offset(pud, address);
1810
1811	__split_huge_pmd(vma, pmd, address, freeze, page);
1812}
1813
1814void vma_adjust_trans_huge(struct vm_area_struct *vma,
1815			     unsigned long start,
1816			     unsigned long end,
1817			     long adjust_next)
1818{
1819	/*
1820	 * If the new start address isn't hpage aligned and it could
1821	 * previously contain an hugepage: check if we need to split
1822	 * an huge pmd.
1823	 */
1824	if (start & ~HPAGE_PMD_MASK &&
1825	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1826	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1827		split_huge_pmd_address(vma, start, false, NULL);
 
 
 
 
 
1828
1829	/*
1830	 * If the new end address isn't hpage aligned and it could
1831	 * previously contain an hugepage: check if we need to split
1832	 * an huge pmd.
1833	 */
1834	if (end & ~HPAGE_PMD_MASK &&
1835	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1836	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1837		split_huge_pmd_address(vma, end, false, NULL);
1838
 
 
 
 
1839	/*
1840	 * If we're also updating the vma->vm_next->vm_start, if the new
1841	 * vm_next->vm_start isn't page aligned and it could previously
1842	 * contain an hugepage: check if we need to split an huge pmd.
1843	 */
1844	if (adjust_next > 0) {
1845		struct vm_area_struct *next = vma->vm_next;
1846		unsigned long nstart = next->vm_start;
1847		nstart += adjust_next << PAGE_SHIFT;
1848		if (nstart & ~HPAGE_PMD_MASK &&
1849		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1850		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1851			split_huge_pmd_address(next, nstart, false, NULL);
1852	}
1853}
1854
1855static void freeze_page(struct page *page)
1856{
1857	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1858		TTU_RMAP_LOCKED;
1859	int i, ret;
1860
1861	VM_BUG_ON_PAGE(!PageHead(page), page);
 
 
1862
1863	if (PageAnon(page))
1864		ttu_flags |= TTU_MIGRATION;
 
 
1865
1866	/* We only need TTU_SPLIT_HUGE_PMD once */
1867	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1868	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1869		/* Cut short if the page is unmapped */
1870		if (page_count(page) == 1)
1871			return;
1872
1873		ret = try_to_unmap(page + i, ttu_flags);
1874	}
1875	VM_BUG_ON_PAGE(ret, page + i - 1);
1876}
1877
1878static void unfreeze_page(struct page *page)
1879{
1880	int i;
 
 
 
 
 
 
1881
1882	for (i = 0; i < HPAGE_PMD_NR; i++)
1883		remove_migration_ptes(page + i, page + i, true);
1884}
1885
1886static void __split_huge_page_tail(struct page *head, int tail,
1887		struct lruvec *lruvec, struct list_head *list)
1888{
1889	struct page *page_tail = head + tail;
1890
1891	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1892	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
 
 
1893
1894	/*
1895	 * tail_page->_refcount is zero and not changing from under us. But
1896	 * get_page_unless_zero() may be running from under us on the
1897	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1898	 * atomic_add(), we would then run atomic_set() concurrently with
1899	 * get_page_unless_zero(), and atomic_set() is implemented in C not
1900	 * using locked ops. spin_unlock on x86 sometime uses locked ops
1901	 * because of PPro errata 66, 92, so unless somebody can guarantee
1902	 * atomic_set() here would be safe on all archs (and not only on x86),
1903	 * it's safer to use atomic_inc()/atomic_add().
1904	 */
1905	if (PageAnon(head)) {
1906		page_ref_inc(page_tail);
1907	} else {
1908		/* Additional pin to radix tree */
1909		page_ref_add(page_tail, 2);
1910	}
1911
1912	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1913	page_tail->flags |= (head->flags &
1914			((1L << PG_referenced) |
1915			 (1L << PG_swapbacked) |
1916			 (1L << PG_mlocked) |
1917			 (1L << PG_uptodate) |
1918			 (1L << PG_active) |
1919			 (1L << PG_locked) |
1920			 (1L << PG_unevictable) |
1921			 (1L << PG_dirty)));
1922
1923	/*
1924	 * After clearing PageTail the gup refcount can be released.
1925	 * Page flags also must be visible before we make the page non-compound.
 
1926	 */
1927	smp_wmb();
1928
1929	clear_compound_head(page_tail);
 
 
 
 
 
 
 
1930
1931	if (page_is_young(head))
1932		set_page_young(page_tail);
1933	if (page_is_idle(head))
1934		set_page_idle(page_tail);
1935
1936	/* ->mapping in first tail page is compound_mapcount */
1937	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1938			page_tail);
1939	page_tail->mapping = head->mapping;
1940
1941	page_tail->index = head->index + tail;
1942	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1943	lru_add_page_tail(head, page_tail, lruvec, list);
1944}
1945
1946static void __split_huge_page(struct page *page, struct list_head *list,
1947		unsigned long flags)
1948{
1949	struct page *head = compound_head(page);
1950	struct zone *zone = page_zone(head);
1951	struct lruvec *lruvec;
1952	pgoff_t end = -1;
1953	int i;
1954
1955	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
 
 
 
 
 
 
1956
1957	/* complete memcg works before add pages to LRU */
1958	mem_cgroup_split_huge_fixup(head);
 
 
 
 
 
 
 
 
 
 
 
 
1959
1960	if (!PageAnon(page))
1961		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1962
1963	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1964		__split_huge_page_tail(head, i, lruvec, list);
1965		/* Some pages can be beyond i_size: drop them from page cache */
1966		if (head[i].index >= end) {
1967			__ClearPageDirty(head + i);
1968			__delete_from_page_cache(head + i, NULL);
1969			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1970				shmem_uncharge(head->mapping->host, 1);
1971			put_page(head + i);
1972		}
1973	}
1974
1975	ClearPageCompound(head);
1976	/* See comment in __split_huge_page_tail() */
1977	if (PageAnon(head)) {
1978		page_ref_inc(head);
1979	} else {
1980		/* Additional pin to radix tree */
1981		page_ref_add(head, 2);
1982		spin_unlock(&head->mapping->tree_lock);
1983	}
1984
1985	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1986
1987	unfreeze_page(head);
1988
1989	for (i = 0; i < HPAGE_PMD_NR; i++) {
1990		struct page *subpage = head + i;
1991		if (subpage == page)
1992			continue;
1993		unlock_page(subpage);
1994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1995		/*
1996		 * Subpages may be freed if there wasn't any mapping
1997		 * like if add_to_swap() is running on a lru page that
1998		 * had its mapping zapped. And freeing these pages
1999		 * requires taking the lru_lock so we do the put_page
2000		 * of the tail pages after the split is complete.
2001		 */
2002		put_page(subpage);
 
 
 
 
 
 
 
 
 
 
2003	}
 
 
 
 
 
 
 
 
 
2004}
2005
2006int total_mapcount(struct page *page)
2007{
2008	int i, compound, ret;
2009
2010	VM_BUG_ON_PAGE(PageTail(page), page);
2011
2012	if (likely(!PageCompound(page)))
2013		return atomic_read(&page->_mapcount) + 1;
 
 
2014
2015	compound = compound_mapcount(page);
2016	if (PageHuge(page))
2017		return compound;
2018	ret = compound;
2019	for (i = 0; i < HPAGE_PMD_NR; i++)
2020		ret += atomic_read(&page[i]._mapcount) + 1;
2021	/* File pages has compound_mapcount included in _mapcount */
2022	if (!PageAnon(page))
2023		return ret - compound * HPAGE_PMD_NR;
2024	if (PageDoubleMap(page))
2025		ret -= HPAGE_PMD_NR;
2026	return ret;
2027}
2028
2029/*
2030 * This calculates accurately how many mappings a transparent hugepage
2031 * has (unlike page_mapcount() which isn't fully accurate). This full
2032 * accuracy is primarily needed to know if copy-on-write faults can
2033 * reuse the page and change the mapping to read-write instead of
2034 * copying them. At the same time this returns the total_mapcount too.
2035 *
2036 * The function returns the highest mapcount any one of the subpages
2037 * has. If the return value is one, even if different processes are
2038 * mapping different subpages of the transparent hugepage, they can
2039 * all reuse it, because each process is reusing a different subpage.
2040 *
2041 * The total_mapcount is instead counting all virtual mappings of the
2042 * subpages. If the total_mapcount is equal to "one", it tells the
2043 * caller all mappings belong to the same "mm" and in turn the
2044 * anon_vma of the transparent hugepage can become the vma->anon_vma
2045 * local one as no other process may be mapping any of the subpages.
2046 *
2047 * It would be more accurate to replace page_mapcount() with
2048 * page_trans_huge_mapcount(), however we only use
2049 * page_trans_huge_mapcount() in the copy-on-write faults where we
2050 * need full accuracy to avoid breaking page pinning, because
2051 * page_trans_huge_mapcount() is slower than page_mapcount().
2052 */
2053int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2054{
2055	int i, ret, _total_mapcount, mapcount;
 
 
 
2056
2057	/* hugetlbfs shouldn't call it */
2058	VM_BUG_ON_PAGE(PageHuge(page), page);
2059
2060	if (likely(!PageTransCompound(page))) {
2061		mapcount = atomic_read(&page->_mapcount) + 1;
2062		if (total_mapcount)
2063			*total_mapcount = mapcount;
2064		return mapcount;
 
 
2065	}
 
2066
2067	page = compound_head(page);
 
 
 
 
 
2068
2069	_total_mapcount = ret = 0;
2070	for (i = 0; i < HPAGE_PMD_NR; i++) {
2071		mapcount = atomic_read(&page[i]._mapcount) + 1;
2072		ret = max(ret, mapcount);
2073		_total_mapcount += mapcount;
2074	}
2075	if (PageDoubleMap(page)) {
2076		ret -= 1;
2077		_total_mapcount -= HPAGE_PMD_NR;
2078	}
2079	mapcount = compound_mapcount(page);
2080	ret += mapcount;
2081	_total_mapcount += mapcount;
2082	if (total_mapcount)
2083		*total_mapcount = _total_mapcount;
2084	return ret;
2085}
2086
2087/*
2088 * This function splits huge page into normal pages. @page can point to any
2089 * subpage of huge page to split. Split doesn't change the position of @page.
2090 *
2091 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2092 * The huge page must be locked.
2093 *
2094 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2095 *
2096 * Both head page and tail pages will inherit mapping, flags, and so on from
2097 * the hugepage.
2098 *
2099 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2100 * they are not mapped.
2101 *
2102 * Returns 0 if the hugepage is split successfully.
2103 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2104 * us.
2105 */
2106int split_huge_page_to_list(struct page *page, struct list_head *list)
2107{
2108	struct page *head = compound_head(page);
2109	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2110	struct anon_vma *anon_vma = NULL;
2111	struct address_space *mapping = NULL;
2112	int count, mapcount, extra_pins, ret;
2113	bool mlocked;
2114	unsigned long flags;
2115
2116	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2117	VM_BUG_ON_PAGE(!PageLocked(page), page);
2118	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2119	VM_BUG_ON_PAGE(!PageCompound(page), page);
2120
2121	if (PageAnon(head)) {
 
 
 
 
 
 
 
 
 
 
2122		/*
2123		 * The caller does not necessarily hold an mmap_sem that would
2124		 * prevent the anon_vma disappearing so we first we take a
2125		 * reference to it and then lock the anon_vma for write. This
2126		 * is similar to page_lock_anon_vma_read except the write lock
2127		 * is taken to serialise against parallel split or collapse
2128		 * operations.
2129		 */
2130		anon_vma = page_get_anon_vma(head);
2131		if (!anon_vma) {
2132			ret = -EBUSY;
2133			goto out;
2134		}
2135		extra_pins = 0;
2136		mapping = NULL;
2137		anon_vma_lock_write(anon_vma);
2138	} else {
2139		mapping = head->mapping;
 
 
2140
2141		/* Truncated ? */
2142		if (!mapping) {
2143			ret = -EBUSY;
2144			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145		}
2146
2147		/* Addidional pins from radix tree */
2148		extra_pins = HPAGE_PMD_NR;
2149		anon_vma = NULL;
2150		i_mmap_lock_read(mapping);
2151	}
 
 
 
2152
 
 
2153	/*
2154	 * Racy check if we can split the page, before freeze_page() will
2155	 * split PMDs
2156	 */
2157	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2158		ret = -EBUSY;
2159		goto out_unlock;
2160	}
2161
2162	mlocked = PageMlocked(page);
2163	freeze_page(head);
2164	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2165
2166	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2167	if (mlocked)
2168		lru_add_drain();
2169
2170	/* prevent PageLRU to go away from under us, and freeze lru stats */
2171	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2172
2173	if (mapping) {
2174		void **pslot;
2175
2176		spin_lock(&mapping->tree_lock);
2177		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2178				page_index(head));
2179		/*
2180		 * Check if the head page is present in radix tree.
2181		 * We assume all tail are present too, if head is there.
 
2182		 */
2183		if (radix_tree_deref_slot_protected(pslot,
2184					&mapping->tree_lock) != head)
2185			goto fail;
2186	}
2187
2188	/* Prevent deferred_split_scan() touching ->_refcount */
2189	spin_lock(&pgdata->split_queue_lock);
2190	count = page_count(head);
2191	mapcount = total_mapcount(head);
2192	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2193		if (!list_empty(page_deferred_list(head))) {
2194			pgdata->split_queue_len--;
2195			list_del(page_deferred_list(head));
2196		}
2197		if (mapping)
2198			__dec_node_page_state(page, NR_SHMEM_THPS);
2199		spin_unlock(&pgdata->split_queue_lock);
2200		__split_huge_page(page, list, flags);
2201		ret = 0;
2202	} else {
2203		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2204			pr_alert("total_mapcount: %u, page_count(): %u\n",
2205					mapcount, count);
2206			if (PageTail(page))
2207				dump_page(head, NULL);
2208			dump_page(page, "total_mapcount(head) > 0");
2209			BUG();
2210		}
2211		spin_unlock(&pgdata->split_queue_lock);
2212fail:		if (mapping)
2213			spin_unlock(&mapping->tree_lock);
2214		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2215		unfreeze_page(head);
2216		ret = -EBUSY;
2217	}
2218
2219out_unlock:
2220	if (anon_vma) {
2221		anon_vma_unlock_write(anon_vma);
2222		put_anon_vma(anon_vma);
2223	}
2224	if (mapping)
2225		i_mmap_unlock_read(mapping);
2226out:
2227	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2228	return ret;
2229}
2230
2231void free_transhuge_page(struct page *page)
2232{
2233	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2234	unsigned long flags;
 
2235
2236	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2237	if (!list_empty(page_deferred_list(page))) {
2238		pgdata->split_queue_len--;
2239		list_del(page_deferred_list(page));
2240	}
2241	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2242	free_compound_page(page);
2243}
2244
2245void deferred_split_huge_page(struct page *page)
2246{
2247	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2248	unsigned long flags;
 
 
 
 
 
2249
2250	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2251
2252	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2253	if (list_empty(page_deferred_list(page))) {
2254		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2255		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2256		pgdata->split_queue_len++;
 
 
 
 
 
2257	}
2258	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2259}
2260
2261static unsigned long deferred_split_count(struct shrinker *shrink,
2262		struct shrink_control *sc)
2263{
2264	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2265	return ACCESS_ONCE(pgdata->split_queue_len);
 
 
 
 
2266}
2267
2268static unsigned long deferred_split_scan(struct shrinker *shrink,
2269		struct shrink_control *sc)
2270{
2271	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2272	unsigned long flags;
2273	LIST_HEAD(list), *pos, *next;
2274	struct page *page;
2275	int split = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2276
2277	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2278	/* Take pin on all head pages to avoid freeing them under us */
2279	list_for_each_safe(pos, next, &pgdata->split_queue) {
2280		page = list_entry((void *)pos, struct page, mapping);
2281		page = compound_head(page);
2282		if (get_page_unless_zero(page)) {
2283			list_move(page_deferred_list(page), &list);
2284		} else {
2285			/* We lost race with put_compound_page() */
2286			list_del_init(page_deferred_list(page));
2287			pgdata->split_queue_len--;
 
2288		}
2289		if (!--sc->nr_to_scan)
 
 
 
 
 
 
 
 
2290			break;
 
 
 
 
 
 
 
 
 
 
 
 
2291	}
2292	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 
 
 
 
 
 
 
2293
2294	list_for_each_safe(pos, next, &list) {
2295		page = list_entry((void *)pos, struct page, mapping);
2296		lock_page(page);
2297		/* split_huge_page() removes page from list on success */
2298		if (!split_huge_page(page))
2299			split++;
2300		unlock_page(page);
2301		put_page(page);
 
 
 
 
 
 
2302	}
2303
2304	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2305	list_splice_tail(&list, &pgdata->split_queue);
2306	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 
 
 
2307
2308	/*
2309	 * Stop shrinker if we didn't split any page, but the queue is empty.
2310	 * This can happen if pages were freed under us.
2311	 */
2312	if (!split && list_empty(&pgdata->split_queue))
2313		return SHRINK_STOP;
2314	return split;
2315}
2316
2317static struct shrinker deferred_split_shrinker = {
2318	.count_objects = deferred_split_count,
2319	.scan_objects = deferred_split_scan,
2320	.seeks = DEFAULT_SEEKS,
2321	.flags = SHRINKER_NUMA_AWARE,
2322};
2323
2324#ifdef CONFIG_DEBUG_FS
2325static int split_huge_pages_set(void *data, u64 val)
2326{
2327	struct zone *zone;
2328	struct page *page;
2329	unsigned long pfn, max_zone_pfn;
2330	unsigned long total = 0, split = 0;
2331
2332	if (val != 1)
2333		return -EINVAL;
 
 
 
 
 
 
 
2334
2335	for_each_populated_zone(zone) {
2336		max_zone_pfn = zone_end_pfn(zone);
2337		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2338			if (!pfn_valid(pfn))
2339				continue;
2340
2341			page = pfn_to_page(pfn);
2342			if (!get_page_unless_zero(page))
2343				continue;
2344
2345			if (zone != page_zone(page))
2346				goto next;
 
 
 
 
2347
2348			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2349				goto next;
2350
2351			total++;
2352			lock_page(page);
2353			if (!split_huge_page(page))
2354				split++;
2355			unlock_page(page);
2356next:
2357			put_page(page);
2358		}
2359	}
2360
2361	pr_info("%lu of %lu THP split\n", split, total);
 
 
2362
2363	return 0;
 
 
 
 
 
 
 
2364}
2365DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2366		"%llu\n");
2367
2368static int __init split_huge_pages_debugfs(void)
 
 
 
2369{
2370	void *ret;
 
 
 
 
 
 
 
 
2371
2372	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2373			&split_huge_pages_fops);
2374	if (!ret)
2375		pr_warn("Failed to create split_huge_pages in debugfs");
2376	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2377}
2378late_initcall(split_huge_pages_debugfs);
2379#endif