Loading...
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
18#include <linux/freezer.h>
19#include <linux/mman.h>
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
31unsigned long transparent_hugepage_flags __read_mostly =
32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
92} khugepaged_scan = {
93 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
94};
95
96
97static int set_recommended_min_free_kbytes(void)
98{
99 struct zone *zone;
100 int nr_zones = 0;
101 unsigned long recommended_min;
102 extern int min_free_kbytes;
103
104 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
105 &transparent_hugepage_flags) &&
106 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
107 &transparent_hugepage_flags))
108 return 0;
109
110 for_each_populated_zone(zone)
111 nr_zones++;
112
113 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116 /*
117 * Make sure that on average at least two pageblocks are almost free
118 * of another type, one for a migratetype to fall back to and a
119 * second to avoid subsequent fallbacks of other types There are 3
120 * MIGRATE_TYPES we care about.
121 */
122 recommended_min += pageblock_nr_pages * nr_zones *
123 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125 /* don't ever allow to reserve more than 5% of the lowmem */
126 recommended_min = min(recommended_min,
127 (unsigned long) nr_free_buffer_pages() / 20);
128 recommended_min <<= (PAGE_SHIFT-10);
129
130 if (recommended_min > min_free_kbytes)
131 min_free_kbytes = recommended_min;
132 setup_per_zone_wmarks();
133 return 0;
134}
135late_initcall(set_recommended_min_free_kbytes);
136
137static int start_khugepaged(void)
138{
139 int err = 0;
140 if (khugepaged_enabled()) {
141 int wakeup;
142 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
143 err = -ENOMEM;
144 goto out;
145 }
146 mutex_lock(&khugepaged_mutex);
147 if (!khugepaged_thread)
148 khugepaged_thread = kthread_run(khugepaged, NULL,
149 "khugepaged");
150 if (unlikely(IS_ERR(khugepaged_thread))) {
151 printk(KERN_ERR
152 "khugepaged: kthread_run(khugepaged) failed\n");
153 err = PTR_ERR(khugepaged_thread);
154 khugepaged_thread = NULL;
155 }
156 wakeup = !list_empty(&khugepaged_scan.mm_head);
157 mutex_unlock(&khugepaged_mutex);
158 if (wakeup)
159 wake_up_interruptible(&khugepaged_wait);
160
161 set_recommended_min_free_kbytes();
162 } else
163 /* wakeup to exit */
164 wake_up_interruptible(&khugepaged_wait);
165out:
166 return err;
167}
168
169#ifdef CONFIG_SYSFS
170
171static ssize_t double_flag_show(struct kobject *kobj,
172 struct kobj_attribute *attr, char *buf,
173 enum transparent_hugepage_flag enabled,
174 enum transparent_hugepage_flag req_madv)
175{
176 if (test_bit(enabled, &transparent_hugepage_flags)) {
177 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
178 return sprintf(buf, "[always] madvise never\n");
179 } else if (test_bit(req_madv, &transparent_hugepage_flags))
180 return sprintf(buf, "always [madvise] never\n");
181 else
182 return sprintf(buf, "always madvise [never]\n");
183}
184static ssize_t double_flag_store(struct kobject *kobj,
185 struct kobj_attribute *attr,
186 const char *buf, size_t count,
187 enum transparent_hugepage_flag enabled,
188 enum transparent_hugepage_flag req_madv)
189{
190 if (!memcmp("always", buf,
191 min(sizeof("always")-1, count))) {
192 set_bit(enabled, &transparent_hugepage_flags);
193 clear_bit(req_madv, &transparent_hugepage_flags);
194 } else if (!memcmp("madvise", buf,
195 min(sizeof("madvise")-1, count))) {
196 clear_bit(enabled, &transparent_hugepage_flags);
197 set_bit(req_madv, &transparent_hugepage_flags);
198 } else if (!memcmp("never", buf,
199 min(sizeof("never")-1, count))) {
200 clear_bit(enabled, &transparent_hugepage_flags);
201 clear_bit(req_madv, &transparent_hugepage_flags);
202 } else
203 return -EINVAL;
204
205 return count;
206}
207
208static ssize_t enabled_show(struct kobject *kobj,
209 struct kobj_attribute *attr, char *buf)
210{
211 return double_flag_show(kobj, attr, buf,
212 TRANSPARENT_HUGEPAGE_FLAG,
213 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
214}
215static ssize_t enabled_store(struct kobject *kobj,
216 struct kobj_attribute *attr,
217 const char *buf, size_t count)
218{
219 ssize_t ret;
220
221 ret = double_flag_store(kobj, attr, buf, count,
222 TRANSPARENT_HUGEPAGE_FLAG,
223 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
224
225 if (ret > 0) {
226 int err = start_khugepaged();
227 if (err)
228 ret = err;
229 }
230
231 if (ret > 0 &&
232 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
233 &transparent_hugepage_flags) ||
234 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
235 &transparent_hugepage_flags)))
236 set_recommended_min_free_kbytes();
237
238 return ret;
239}
240static struct kobj_attribute enabled_attr =
241 __ATTR(enabled, 0644, enabled_show, enabled_store);
242
243static ssize_t single_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag flag)
246{
247 return sprintf(buf, "%d\n",
248 !!test_bit(flag, &transparent_hugepage_flags));
249}
250
251static ssize_t single_flag_store(struct kobject *kobj,
252 struct kobj_attribute *attr,
253 const char *buf, size_t count,
254 enum transparent_hugepage_flag flag)
255{
256 unsigned long value;
257 int ret;
258
259 ret = kstrtoul(buf, 10, &value);
260 if (ret < 0)
261 return ret;
262 if (value > 1)
263 return -EINVAL;
264
265 if (value)
266 set_bit(flag, &transparent_hugepage_flags);
267 else
268 clear_bit(flag, &transparent_hugepage_flags);
269
270 return count;
271}
272
273/*
274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
276 * memory just to allocate one more hugepage.
277 */
278static ssize_t defrag_show(struct kobject *kobj,
279 struct kobj_attribute *attr, char *buf)
280{
281 return double_flag_show(kobj, attr, buf,
282 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
283 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
284}
285static ssize_t defrag_store(struct kobject *kobj,
286 struct kobj_attribute *attr,
287 const char *buf, size_t count)
288{
289 return double_flag_store(kobj, attr, buf, count,
290 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
291 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
292}
293static struct kobj_attribute defrag_attr =
294 __ATTR(defrag, 0644, defrag_show, defrag_store);
295
296#ifdef CONFIG_DEBUG_VM
297static ssize_t debug_cow_show(struct kobject *kobj,
298 struct kobj_attribute *attr, char *buf)
299{
300 return single_flag_show(kobj, attr, buf,
301 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302}
303static ssize_t debug_cow_store(struct kobject *kobj,
304 struct kobj_attribute *attr,
305 const char *buf, size_t count)
306{
307 return single_flag_store(kobj, attr, buf, count,
308 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
309}
310static struct kobj_attribute debug_cow_attr =
311 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
312#endif /* CONFIG_DEBUG_VM */
313
314static struct attribute *hugepage_attr[] = {
315 &enabled_attr.attr,
316 &defrag_attr.attr,
317#ifdef CONFIG_DEBUG_VM
318 &debug_cow_attr.attr,
319#endif
320 NULL,
321};
322
323static struct attribute_group hugepage_attr_group = {
324 .attrs = hugepage_attr,
325};
326
327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
328 struct kobj_attribute *attr,
329 char *buf)
330{
331 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
332}
333
334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
335 struct kobj_attribute *attr,
336 const char *buf, size_t count)
337{
338 unsigned long msecs;
339 int err;
340
341 err = strict_strtoul(buf, 10, &msecs);
342 if (err || msecs > UINT_MAX)
343 return -EINVAL;
344
345 khugepaged_scan_sleep_millisecs = msecs;
346 wake_up_interruptible(&khugepaged_wait);
347
348 return count;
349}
350static struct kobj_attribute scan_sleep_millisecs_attr =
351 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
352 scan_sleep_millisecs_store);
353
354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 char *buf)
357{
358 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
359}
360
361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
362 struct kobj_attribute *attr,
363 const char *buf, size_t count)
364{
365 unsigned long msecs;
366 int err;
367
368 err = strict_strtoul(buf, 10, &msecs);
369 if (err || msecs > UINT_MAX)
370 return -EINVAL;
371
372 khugepaged_alloc_sleep_millisecs = msecs;
373 wake_up_interruptible(&khugepaged_wait);
374
375 return count;
376}
377static struct kobj_attribute alloc_sleep_millisecs_attr =
378 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
379 alloc_sleep_millisecs_store);
380
381static ssize_t pages_to_scan_show(struct kobject *kobj,
382 struct kobj_attribute *attr,
383 char *buf)
384{
385 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
386}
387static ssize_t pages_to_scan_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
390{
391 int err;
392 unsigned long pages;
393
394 err = strict_strtoul(buf, 10, &pages);
395 if (err || !pages || pages > UINT_MAX)
396 return -EINVAL;
397
398 khugepaged_pages_to_scan = pages;
399
400 return count;
401}
402static struct kobj_attribute pages_to_scan_attr =
403 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
404 pages_to_scan_store);
405
406static ssize_t pages_collapsed_show(struct kobject *kobj,
407 struct kobj_attribute *attr,
408 char *buf)
409{
410 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
411}
412static struct kobj_attribute pages_collapsed_attr =
413 __ATTR_RO(pages_collapsed);
414
415static ssize_t full_scans_show(struct kobject *kobj,
416 struct kobj_attribute *attr,
417 char *buf)
418{
419 return sprintf(buf, "%u\n", khugepaged_full_scans);
420}
421static struct kobj_attribute full_scans_attr =
422 __ATTR_RO(full_scans);
423
424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
425 struct kobj_attribute *attr, char *buf)
426{
427 return single_flag_show(kobj, attr, buf,
428 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
429}
430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
431 struct kobj_attribute *attr,
432 const char *buf, size_t count)
433{
434 return single_flag_store(kobj, attr, buf, count,
435 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
436}
437static struct kobj_attribute khugepaged_defrag_attr =
438 __ATTR(defrag, 0644, khugepaged_defrag_show,
439 khugepaged_defrag_store);
440
441/*
442 * max_ptes_none controls if khugepaged should collapse hugepages over
443 * any unmapped ptes in turn potentially increasing the memory
444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
445 * reduce the available free memory in the system as it
446 * runs. Increasing max_ptes_none will instead potentially reduce the
447 * free memory in the system during the khugepaged scan.
448 */
449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
450 struct kobj_attribute *attr,
451 char *buf)
452{
453 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
454}
455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
456 struct kobj_attribute *attr,
457 const char *buf, size_t count)
458{
459 int err;
460 unsigned long max_ptes_none;
461
462 err = strict_strtoul(buf, 10, &max_ptes_none);
463 if (err || max_ptes_none > HPAGE_PMD_NR-1)
464 return -EINVAL;
465
466 khugepaged_max_ptes_none = max_ptes_none;
467
468 return count;
469}
470static struct kobj_attribute khugepaged_max_ptes_none_attr =
471 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
472 khugepaged_max_ptes_none_store);
473
474static struct attribute *khugepaged_attr[] = {
475 &khugepaged_defrag_attr.attr,
476 &khugepaged_max_ptes_none_attr.attr,
477 &pages_to_scan_attr.attr,
478 &pages_collapsed_attr.attr,
479 &full_scans_attr.attr,
480 &scan_sleep_millisecs_attr.attr,
481 &alloc_sleep_millisecs_attr.attr,
482 NULL,
483};
484
485static struct attribute_group khugepaged_attr_group = {
486 .attrs = khugepaged_attr,
487 .name = "khugepaged",
488};
489#endif /* CONFIG_SYSFS */
490
491static int __init hugepage_init(void)
492{
493 int err;
494#ifdef CONFIG_SYSFS
495 static struct kobject *hugepage_kobj;
496#endif
497
498 err = -EINVAL;
499 if (!has_transparent_hugepage()) {
500 transparent_hugepage_flags = 0;
501 goto out;
502 }
503
504#ifdef CONFIG_SYSFS
505 err = -ENOMEM;
506 hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
507 if (unlikely(!hugepage_kobj)) {
508 printk(KERN_ERR "hugepage: failed kobject create\n");
509 goto out;
510 }
511
512 err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
513 if (err) {
514 printk(KERN_ERR "hugepage: failed register hugeage group\n");
515 goto out;
516 }
517
518 err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
519 if (err) {
520 printk(KERN_ERR "hugepage: failed register hugeage group\n");
521 goto out;
522 }
523#endif
524
525 err = khugepaged_slab_init();
526 if (err)
527 goto out;
528
529 err = mm_slots_hash_init();
530 if (err) {
531 khugepaged_slab_free();
532 goto out;
533 }
534
535 /*
536 * By default disable transparent hugepages on smaller systems,
537 * where the extra memory used could hurt more than TLB overhead
538 * is likely to save. The admin can still enable it through /sys.
539 */
540 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
541 transparent_hugepage_flags = 0;
542
543 start_khugepaged();
544
545 set_recommended_min_free_kbytes();
546
547out:
548 return err;
549}
550module_init(hugepage_init)
551
552static int __init setup_transparent_hugepage(char *str)
553{
554 int ret = 0;
555 if (!str)
556 goto out;
557 if (!strcmp(str, "always")) {
558 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
559 &transparent_hugepage_flags);
560 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
561 &transparent_hugepage_flags);
562 ret = 1;
563 } else if (!strcmp(str, "madvise")) {
564 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
565 &transparent_hugepage_flags);
566 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
567 &transparent_hugepage_flags);
568 ret = 1;
569 } else if (!strcmp(str, "never")) {
570 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
571 &transparent_hugepage_flags);
572 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
573 &transparent_hugepage_flags);
574 ret = 1;
575 }
576out:
577 if (!ret)
578 printk(KERN_WARNING
579 "transparent_hugepage= cannot parse, ignored\n");
580 return ret;
581}
582__setup("transparent_hugepage=", setup_transparent_hugepage);
583
584static void prepare_pmd_huge_pte(pgtable_t pgtable,
585 struct mm_struct *mm)
586{
587 assert_spin_locked(&mm->page_table_lock);
588
589 /* FIFO */
590 if (!mm->pmd_huge_pte)
591 INIT_LIST_HEAD(&pgtable->lru);
592 else
593 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
594 mm->pmd_huge_pte = pgtable;
595}
596
597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
598{
599 if (likely(vma->vm_flags & VM_WRITE))
600 pmd = pmd_mkwrite(pmd);
601 return pmd;
602}
603
604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
605 struct vm_area_struct *vma,
606 unsigned long haddr, pmd_t *pmd,
607 struct page *page)
608{
609 int ret = 0;
610 pgtable_t pgtable;
611
612 VM_BUG_ON(!PageCompound(page));
613 pgtable = pte_alloc_one(mm, haddr);
614 if (unlikely(!pgtable)) {
615 mem_cgroup_uncharge_page(page);
616 put_page(page);
617 return VM_FAULT_OOM;
618 }
619
620 clear_huge_page(page, haddr, HPAGE_PMD_NR);
621 __SetPageUptodate(page);
622
623 spin_lock(&mm->page_table_lock);
624 if (unlikely(!pmd_none(*pmd))) {
625 spin_unlock(&mm->page_table_lock);
626 mem_cgroup_uncharge_page(page);
627 put_page(page);
628 pte_free(mm, pgtable);
629 } else {
630 pmd_t entry;
631 entry = mk_pmd(page, vma->vm_page_prot);
632 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
633 entry = pmd_mkhuge(entry);
634 /*
635 * The spinlocking to take the lru_lock inside
636 * page_add_new_anon_rmap() acts as a full memory
637 * barrier to be sure clear_huge_page writes become
638 * visible after the set_pmd_at() write.
639 */
640 page_add_new_anon_rmap(page, vma, haddr);
641 set_pmd_at(mm, haddr, pmd, entry);
642 prepare_pmd_huge_pte(pgtable, mm);
643 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
644 spin_unlock(&mm->page_table_lock);
645 }
646
647 return ret;
648}
649
650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
651{
652 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
653}
654
655static inline struct page *alloc_hugepage_vma(int defrag,
656 struct vm_area_struct *vma,
657 unsigned long haddr, int nd,
658 gfp_t extra_gfp)
659{
660 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
661 HPAGE_PMD_ORDER, vma, haddr, nd);
662}
663
664#ifndef CONFIG_NUMA
665static inline struct page *alloc_hugepage(int defrag)
666{
667 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
668 HPAGE_PMD_ORDER);
669}
670#endif
671
672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
673 unsigned long address, pmd_t *pmd,
674 unsigned int flags)
675{
676 struct page *page;
677 unsigned long haddr = address & HPAGE_PMD_MASK;
678 pte_t *pte;
679
680 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
681 if (unlikely(anon_vma_prepare(vma)))
682 return VM_FAULT_OOM;
683 if (unlikely(khugepaged_enter(vma)))
684 return VM_FAULT_OOM;
685 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
686 vma, haddr, numa_node_id(), 0);
687 if (unlikely(!page)) {
688 count_vm_event(THP_FAULT_FALLBACK);
689 goto out;
690 }
691 count_vm_event(THP_FAULT_ALLOC);
692 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
693 put_page(page);
694 goto out;
695 }
696
697 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
698 }
699out:
700 /*
701 * Use __pte_alloc instead of pte_alloc_map, because we can't
702 * run pte_offset_map on the pmd, if an huge pmd could
703 * materialize from under us from a different thread.
704 */
705 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
706 return VM_FAULT_OOM;
707 /* if an huge pmd materialized from under us just retry later */
708 if (unlikely(pmd_trans_huge(*pmd)))
709 return 0;
710 /*
711 * A regular pmd is established and it can't morph into a huge pmd
712 * from under us anymore at this point because we hold the mmap_sem
713 * read mode and khugepaged takes it in write mode. So now it's
714 * safe to run pte_offset_map().
715 */
716 pte = pte_offset_map(pmd, address);
717 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
718}
719
720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
721 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
722 struct vm_area_struct *vma)
723{
724 struct page *src_page;
725 pmd_t pmd;
726 pgtable_t pgtable;
727 int ret;
728
729 ret = -ENOMEM;
730 pgtable = pte_alloc_one(dst_mm, addr);
731 if (unlikely(!pgtable))
732 goto out;
733
734 spin_lock(&dst_mm->page_table_lock);
735 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
736
737 ret = -EAGAIN;
738 pmd = *src_pmd;
739 if (unlikely(!pmd_trans_huge(pmd))) {
740 pte_free(dst_mm, pgtable);
741 goto out_unlock;
742 }
743 if (unlikely(pmd_trans_splitting(pmd))) {
744 /* split huge page running from under us */
745 spin_unlock(&src_mm->page_table_lock);
746 spin_unlock(&dst_mm->page_table_lock);
747 pte_free(dst_mm, pgtable);
748
749 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
750 goto out;
751 }
752 src_page = pmd_page(pmd);
753 VM_BUG_ON(!PageHead(src_page));
754 get_page(src_page);
755 page_dup_rmap(src_page);
756 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
757
758 pmdp_set_wrprotect(src_mm, addr, src_pmd);
759 pmd = pmd_mkold(pmd_wrprotect(pmd));
760 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
761 prepare_pmd_huge_pte(pgtable, dst_mm);
762
763 ret = 0;
764out_unlock:
765 spin_unlock(&src_mm->page_table_lock);
766 spin_unlock(&dst_mm->page_table_lock);
767out:
768 return ret;
769}
770
771/* no "address" argument so destroys page coloring of some arch */
772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
773{
774 pgtable_t pgtable;
775
776 assert_spin_locked(&mm->page_table_lock);
777
778 /* FIFO */
779 pgtable = mm->pmd_huge_pte;
780 if (list_empty(&pgtable->lru))
781 mm->pmd_huge_pte = NULL;
782 else {
783 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
784 struct page, lru);
785 list_del(&pgtable->lru);
786 }
787 return pgtable;
788}
789
790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
791 struct vm_area_struct *vma,
792 unsigned long address,
793 pmd_t *pmd, pmd_t orig_pmd,
794 struct page *page,
795 unsigned long haddr)
796{
797 pgtable_t pgtable;
798 pmd_t _pmd;
799 int ret = 0, i;
800 struct page **pages;
801
802 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
803 GFP_KERNEL);
804 if (unlikely(!pages)) {
805 ret |= VM_FAULT_OOM;
806 goto out;
807 }
808
809 for (i = 0; i < HPAGE_PMD_NR; i++) {
810 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
811 __GFP_OTHER_NODE,
812 vma, address, page_to_nid(page));
813 if (unlikely(!pages[i] ||
814 mem_cgroup_newpage_charge(pages[i], mm,
815 GFP_KERNEL))) {
816 if (pages[i])
817 put_page(pages[i]);
818 mem_cgroup_uncharge_start();
819 while (--i >= 0) {
820 mem_cgroup_uncharge_page(pages[i]);
821 put_page(pages[i]);
822 }
823 mem_cgroup_uncharge_end();
824 kfree(pages);
825 ret |= VM_FAULT_OOM;
826 goto out;
827 }
828 }
829
830 for (i = 0; i < HPAGE_PMD_NR; i++) {
831 copy_user_highpage(pages[i], page + i,
832 haddr + PAGE_SHIFT*i, vma);
833 __SetPageUptodate(pages[i]);
834 cond_resched();
835 }
836
837 spin_lock(&mm->page_table_lock);
838 if (unlikely(!pmd_same(*pmd, orig_pmd)))
839 goto out_free_pages;
840 VM_BUG_ON(!PageHead(page));
841
842 pmdp_clear_flush_notify(vma, haddr, pmd);
843 /* leave pmd empty until pte is filled */
844
845 pgtable = get_pmd_huge_pte(mm);
846 pmd_populate(mm, &_pmd, pgtable);
847
848 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
849 pte_t *pte, entry;
850 entry = mk_pte(pages[i], vma->vm_page_prot);
851 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
852 page_add_new_anon_rmap(pages[i], vma, haddr);
853 pte = pte_offset_map(&_pmd, haddr);
854 VM_BUG_ON(!pte_none(*pte));
855 set_pte_at(mm, haddr, pte, entry);
856 pte_unmap(pte);
857 }
858 kfree(pages);
859
860 mm->nr_ptes++;
861 smp_wmb(); /* make pte visible before pmd */
862 pmd_populate(mm, pmd, pgtable);
863 page_remove_rmap(page);
864 spin_unlock(&mm->page_table_lock);
865
866 ret |= VM_FAULT_WRITE;
867 put_page(page);
868
869out:
870 return ret;
871
872out_free_pages:
873 spin_unlock(&mm->page_table_lock);
874 mem_cgroup_uncharge_start();
875 for (i = 0; i < HPAGE_PMD_NR; i++) {
876 mem_cgroup_uncharge_page(pages[i]);
877 put_page(pages[i]);
878 }
879 mem_cgroup_uncharge_end();
880 kfree(pages);
881 goto out;
882}
883
884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
885 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
886{
887 int ret = 0;
888 struct page *page, *new_page;
889 unsigned long haddr;
890
891 VM_BUG_ON(!vma->anon_vma);
892 spin_lock(&mm->page_table_lock);
893 if (unlikely(!pmd_same(*pmd, orig_pmd)))
894 goto out_unlock;
895
896 page = pmd_page(orig_pmd);
897 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
898 haddr = address & HPAGE_PMD_MASK;
899 if (page_mapcount(page) == 1) {
900 pmd_t entry;
901 entry = pmd_mkyoung(orig_pmd);
902 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
903 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
904 update_mmu_cache(vma, address, entry);
905 ret |= VM_FAULT_WRITE;
906 goto out_unlock;
907 }
908 get_page(page);
909 spin_unlock(&mm->page_table_lock);
910
911 if (transparent_hugepage_enabled(vma) &&
912 !transparent_hugepage_debug_cow())
913 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
914 vma, haddr, numa_node_id(), 0);
915 else
916 new_page = NULL;
917
918 if (unlikely(!new_page)) {
919 count_vm_event(THP_FAULT_FALLBACK);
920 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
921 pmd, orig_pmd, page, haddr);
922 put_page(page);
923 goto out;
924 }
925 count_vm_event(THP_FAULT_ALLOC);
926
927 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
928 put_page(new_page);
929 put_page(page);
930 ret |= VM_FAULT_OOM;
931 goto out;
932 }
933
934 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
935 __SetPageUptodate(new_page);
936
937 spin_lock(&mm->page_table_lock);
938 put_page(page);
939 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
940 mem_cgroup_uncharge_page(new_page);
941 put_page(new_page);
942 } else {
943 pmd_t entry;
944 VM_BUG_ON(!PageHead(page));
945 entry = mk_pmd(new_page, vma->vm_page_prot);
946 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
947 entry = pmd_mkhuge(entry);
948 pmdp_clear_flush_notify(vma, haddr, pmd);
949 page_add_new_anon_rmap(new_page, vma, haddr);
950 set_pmd_at(mm, haddr, pmd, entry);
951 update_mmu_cache(vma, address, entry);
952 page_remove_rmap(page);
953 put_page(page);
954 ret |= VM_FAULT_WRITE;
955 }
956out_unlock:
957 spin_unlock(&mm->page_table_lock);
958out:
959 return ret;
960}
961
962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
963 unsigned long addr,
964 pmd_t *pmd,
965 unsigned int flags)
966{
967 struct page *page = NULL;
968
969 assert_spin_locked(&mm->page_table_lock);
970
971 if (flags & FOLL_WRITE && !pmd_write(*pmd))
972 goto out;
973
974 page = pmd_page(*pmd);
975 VM_BUG_ON(!PageHead(page));
976 if (flags & FOLL_TOUCH) {
977 pmd_t _pmd;
978 /*
979 * We should set the dirty bit only for FOLL_WRITE but
980 * for now the dirty bit in the pmd is meaningless.
981 * And if the dirty bit will become meaningful and
982 * we'll only set it with FOLL_WRITE, an atomic
983 * set_bit will be required on the pmd to set the
984 * young bit, instead of the current set_pmd_at.
985 */
986 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
987 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
988 }
989 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
990 VM_BUG_ON(!PageCompound(page));
991 if (flags & FOLL_GET)
992 get_page(page);
993
994out:
995 return page;
996}
997
998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
999 pmd_t *pmd)
1000{
1001 int ret = 0;
1002
1003 spin_lock(&tlb->mm->page_table_lock);
1004 if (likely(pmd_trans_huge(*pmd))) {
1005 if (unlikely(pmd_trans_splitting(*pmd))) {
1006 spin_unlock(&tlb->mm->page_table_lock);
1007 wait_split_huge_page(vma->anon_vma,
1008 pmd);
1009 } else {
1010 struct page *page;
1011 pgtable_t pgtable;
1012 pgtable = get_pmd_huge_pte(tlb->mm);
1013 page = pmd_page(*pmd);
1014 pmd_clear(pmd);
1015 page_remove_rmap(page);
1016 VM_BUG_ON(page_mapcount(page) < 0);
1017 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018 VM_BUG_ON(!PageHead(page));
1019 spin_unlock(&tlb->mm->page_table_lock);
1020 tlb_remove_page(tlb, page);
1021 pte_free(tlb->mm, pgtable);
1022 ret = 1;
1023 }
1024 } else
1025 spin_unlock(&tlb->mm->page_table_lock);
1026
1027 return ret;
1028}
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031 unsigned long addr, unsigned long end,
1032 unsigned char *vec)
1033{
1034 int ret = 0;
1035
1036 spin_lock(&vma->vm_mm->page_table_lock);
1037 if (likely(pmd_trans_huge(*pmd))) {
1038 ret = !pmd_trans_splitting(*pmd);
1039 spin_unlock(&vma->vm_mm->page_table_lock);
1040 if (unlikely(!ret))
1041 wait_split_huge_page(vma->anon_vma, pmd);
1042 else {
1043 /*
1044 * All logical pages in the range are present
1045 * if backed by a huge page.
1046 */
1047 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048 }
1049 } else
1050 spin_unlock(&vma->vm_mm->page_table_lock);
1051
1052 return ret;
1053}
1054
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056 unsigned long addr, pgprot_t newprot)
1057{
1058 struct mm_struct *mm = vma->vm_mm;
1059 int ret = 0;
1060
1061 spin_lock(&mm->page_table_lock);
1062 if (likely(pmd_trans_huge(*pmd))) {
1063 if (unlikely(pmd_trans_splitting(*pmd))) {
1064 spin_unlock(&mm->page_table_lock);
1065 wait_split_huge_page(vma->anon_vma, pmd);
1066 } else {
1067 pmd_t entry;
1068
1069 entry = pmdp_get_and_clear(mm, addr, pmd);
1070 entry = pmd_modify(entry, newprot);
1071 set_pmd_at(mm, addr, pmd, entry);
1072 spin_unlock(&vma->vm_mm->page_table_lock);
1073 flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074 ret = 1;
1075 }
1076 } else
1077 spin_unlock(&vma->vm_mm->page_table_lock);
1078
1079 return ret;
1080}
1081
1082pmd_t *page_check_address_pmd(struct page *page,
1083 struct mm_struct *mm,
1084 unsigned long address,
1085 enum page_check_address_pmd_flag flag)
1086{
1087 pgd_t *pgd;
1088 pud_t *pud;
1089 pmd_t *pmd, *ret = NULL;
1090
1091 if (address & ~HPAGE_PMD_MASK)
1092 goto out;
1093
1094 pgd = pgd_offset(mm, address);
1095 if (!pgd_present(*pgd))
1096 goto out;
1097
1098 pud = pud_offset(pgd, address);
1099 if (!pud_present(*pud))
1100 goto out;
1101
1102 pmd = pmd_offset(pud, address);
1103 if (pmd_none(*pmd))
1104 goto out;
1105 if (pmd_page(*pmd) != page)
1106 goto out;
1107 /*
1108 * split_vma() may create temporary aliased mappings. There is
1109 * no risk as long as all huge pmd are found and have their
1110 * splitting bit set before __split_huge_page_refcount
1111 * runs. Finding the same huge pmd more than once during the
1112 * same rmap walk is not a problem.
1113 */
1114 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115 pmd_trans_splitting(*pmd))
1116 goto out;
1117 if (pmd_trans_huge(*pmd)) {
1118 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119 !pmd_trans_splitting(*pmd));
1120 ret = pmd;
1121 }
1122out:
1123 return ret;
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127 struct vm_area_struct *vma,
1128 unsigned long address)
1129{
1130 struct mm_struct *mm = vma->vm_mm;
1131 pmd_t *pmd;
1132 int ret = 0;
1133
1134 spin_lock(&mm->page_table_lock);
1135 pmd = page_check_address_pmd(page, mm, address,
1136 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137 if (pmd) {
1138 /*
1139 * We can't temporarily set the pmd to null in order
1140 * to split it, the pmd must remain marked huge at all
1141 * times or the VM won't take the pmd_trans_huge paths
1142 * and it won't wait on the anon_vma->root->mutex to
1143 * serialize against split_huge_page*.
1144 */
1145 pmdp_splitting_flush_notify(vma, address, pmd);
1146 ret = 1;
1147 }
1148 spin_unlock(&mm->page_table_lock);
1149
1150 return ret;
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
1154{
1155 int i;
1156 unsigned long head_index = page->index;
1157 struct zone *zone = page_zone(page);
1158 int zonestat;
1159
1160 /* prevent PageLRU to go away from under us, and freeze lru stats */
1161 spin_lock_irq(&zone->lru_lock);
1162 compound_lock(page);
1163
1164 for (i = 1; i < HPAGE_PMD_NR; i++) {
1165 struct page *page_tail = page + i;
1166
1167 /* tail_page->_count cannot change */
1168 atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169 BUG_ON(page_count(page) <= 0);
1170 atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171 BUG_ON(atomic_read(&page_tail->_count) <= 0);
1172
1173 /* after clearing PageTail the gup refcount can be released */
1174 smp_mb();
1175
1176 /*
1177 * retain hwpoison flag of the poisoned tail page:
1178 * fix for the unsuitable process killed on Guest Machine(KVM)
1179 * by the memory-failure.
1180 */
1181 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182 page_tail->flags |= (page->flags &
1183 ((1L << PG_referenced) |
1184 (1L << PG_swapbacked) |
1185 (1L << PG_mlocked) |
1186 (1L << PG_uptodate)));
1187 page_tail->flags |= (1L << PG_dirty);
1188
1189 /*
1190 * 1) clear PageTail before overwriting first_page
1191 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192 */
1193 smp_wmb();
1194
1195 /*
1196 * __split_huge_page_splitting() already set the
1197 * splitting bit in all pmd that could map this
1198 * hugepage, that will ensure no CPU can alter the
1199 * mapcount on the head page. The mapcount is only
1200 * accounted in the head page and it has to be
1201 * transferred to all tail pages in the below code. So
1202 * for this code to be safe, the split the mapcount
1203 * can't change. But that doesn't mean userland can't
1204 * keep changing and reading the page contents while
1205 * we transfer the mapcount, so the pmd splitting
1206 * status is achieved setting a reserved bit in the
1207 * pmd, not by clearing the present bit.
1208 */
1209 BUG_ON(page_mapcount(page_tail));
1210 page_tail->_mapcount = page->_mapcount;
1211
1212 BUG_ON(page_tail->mapping);
1213 page_tail->mapping = page->mapping;
1214
1215 page_tail->index = ++head_index;
1216
1217 BUG_ON(!PageAnon(page_tail));
1218 BUG_ON(!PageUptodate(page_tail));
1219 BUG_ON(!PageDirty(page_tail));
1220 BUG_ON(!PageSwapBacked(page_tail));
1221
1222 mem_cgroup_split_huge_fixup(page, page_tail);
1223
1224 lru_add_page_tail(zone, page, page_tail);
1225 }
1226
1227 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1229
1230 /*
1231 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232 * so adjust those appropriately if this page is on the LRU.
1233 */
1234 if (PageLRU(page)) {
1235 zonestat = NR_LRU_BASE + page_lru(page);
1236 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237 }
1238
1239 ClearPageCompound(page);
1240 compound_unlock(page);
1241 spin_unlock_irq(&zone->lru_lock);
1242
1243 for (i = 1; i < HPAGE_PMD_NR; i++) {
1244 struct page *page_tail = page + i;
1245 BUG_ON(page_count(page_tail) <= 0);
1246 /*
1247 * Tail pages may be freed if there wasn't any mapping
1248 * like if add_to_swap() is running on a lru page that
1249 * had its mapping zapped. And freeing these pages
1250 * requires taking the lru_lock so we do the put_page
1251 * of the tail pages after the split is complete.
1252 */
1253 put_page(page_tail);
1254 }
1255
1256 /*
1257 * Only the head page (now become a regular page) is required
1258 * to be pinned by the caller.
1259 */
1260 BUG_ON(page_count(page) <= 0);
1261}
1262
1263static int __split_huge_page_map(struct page *page,
1264 struct vm_area_struct *vma,
1265 unsigned long address)
1266{
1267 struct mm_struct *mm = vma->vm_mm;
1268 pmd_t *pmd, _pmd;
1269 int ret = 0, i;
1270 pgtable_t pgtable;
1271 unsigned long haddr;
1272
1273 spin_lock(&mm->page_table_lock);
1274 pmd = page_check_address_pmd(page, mm, address,
1275 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276 if (pmd) {
1277 pgtable = get_pmd_huge_pte(mm);
1278 pmd_populate(mm, &_pmd, pgtable);
1279
1280 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281 i++, haddr += PAGE_SIZE) {
1282 pte_t *pte, entry;
1283 BUG_ON(PageCompound(page+i));
1284 entry = mk_pte(page + i, vma->vm_page_prot);
1285 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286 if (!pmd_write(*pmd))
1287 entry = pte_wrprotect(entry);
1288 else
1289 BUG_ON(page_mapcount(page) != 1);
1290 if (!pmd_young(*pmd))
1291 entry = pte_mkold(entry);
1292 pte = pte_offset_map(&_pmd, haddr);
1293 BUG_ON(!pte_none(*pte));
1294 set_pte_at(mm, haddr, pte, entry);
1295 pte_unmap(pte);
1296 }
1297
1298 mm->nr_ptes++;
1299 smp_wmb(); /* make pte visible before pmd */
1300 /*
1301 * Up to this point the pmd is present and huge and
1302 * userland has the whole access to the hugepage
1303 * during the split (which happens in place). If we
1304 * overwrite the pmd with the not-huge version
1305 * pointing to the pte here (which of course we could
1306 * if all CPUs were bug free), userland could trigger
1307 * a small page size TLB miss on the small sized TLB
1308 * while the hugepage TLB entry is still established
1309 * in the huge TLB. Some CPU doesn't like that. See
1310 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311 * Erratum 383 on page 93. Intel should be safe but is
1312 * also warns that it's only safe if the permission
1313 * and cache attributes of the two entries loaded in
1314 * the two TLB is identical (which should be the case
1315 * here). But it is generally safer to never allow
1316 * small and huge TLB entries for the same virtual
1317 * address to be loaded simultaneously. So instead of
1318 * doing "pmd_populate(); flush_tlb_range();" we first
1319 * mark the current pmd notpresent (atomically because
1320 * here the pmd_trans_huge and pmd_trans_splitting
1321 * must remain set at all times on the pmd until the
1322 * split is complete for this pmd), then we flush the
1323 * SMP TLB and finally we write the non-huge version
1324 * of the pmd entry with pmd_populate.
1325 */
1326 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328 pmd_populate(mm, pmd, pgtable);
1329 ret = 1;
1330 }
1331 spin_unlock(&mm->page_table_lock);
1332
1333 return ret;
1334}
1335
1336/* must be called with anon_vma->root->mutex hold */
1337static void __split_huge_page(struct page *page,
1338 struct anon_vma *anon_vma)
1339{
1340 int mapcount, mapcount2;
1341 struct anon_vma_chain *avc;
1342
1343 BUG_ON(!PageHead(page));
1344 BUG_ON(PageTail(page));
1345
1346 mapcount = 0;
1347 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348 struct vm_area_struct *vma = avc->vma;
1349 unsigned long addr = vma_address(page, vma);
1350 BUG_ON(is_vma_temporary_stack(vma));
1351 if (addr == -EFAULT)
1352 continue;
1353 mapcount += __split_huge_page_splitting(page, vma, addr);
1354 }
1355 /*
1356 * It is critical that new vmas are added to the tail of the
1357 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358 * and establishes a child pmd before
1359 * __split_huge_page_splitting() freezes the parent pmd (so if
1360 * we fail to prevent copy_huge_pmd() from running until the
1361 * whole __split_huge_page() is complete), we will still see
1362 * the newly established pmd of the child later during the
1363 * walk, to be able to set it as pmd_trans_splitting too.
1364 */
1365 if (mapcount != page_mapcount(page))
1366 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367 mapcount, page_mapcount(page));
1368 BUG_ON(mapcount != page_mapcount(page));
1369
1370 __split_huge_page_refcount(page);
1371
1372 mapcount2 = 0;
1373 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374 struct vm_area_struct *vma = avc->vma;
1375 unsigned long addr = vma_address(page, vma);
1376 BUG_ON(is_vma_temporary_stack(vma));
1377 if (addr == -EFAULT)
1378 continue;
1379 mapcount2 += __split_huge_page_map(page, vma, addr);
1380 }
1381 if (mapcount != mapcount2)
1382 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383 mapcount, mapcount2, page_mapcount(page));
1384 BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
1388{
1389 struct anon_vma *anon_vma;
1390 int ret = 1;
1391
1392 BUG_ON(!PageAnon(page));
1393 anon_vma = page_lock_anon_vma(page);
1394 if (!anon_vma)
1395 goto out;
1396 ret = 0;
1397 if (!PageCompound(page))
1398 goto out_unlock;
1399
1400 BUG_ON(!PageSwapBacked(page));
1401 __split_huge_page(page, anon_vma);
1402 count_vm_event(THP_SPLIT);
1403
1404 BUG_ON(PageCompound(page));
1405out_unlock:
1406 page_unlock_anon_vma(anon_vma);
1407out:
1408 return ret;
1409}
1410
1411#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1412 VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1413
1414int hugepage_madvise(struct vm_area_struct *vma,
1415 unsigned long *vm_flags, int advice)
1416{
1417 switch (advice) {
1418 case MADV_HUGEPAGE:
1419 /*
1420 * Be somewhat over-protective like KSM for now!
1421 */
1422 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1423 return -EINVAL;
1424 *vm_flags &= ~VM_NOHUGEPAGE;
1425 *vm_flags |= VM_HUGEPAGE;
1426 /*
1427 * If the vma become good for khugepaged to scan,
1428 * register it here without waiting a page fault that
1429 * may not happen any time soon.
1430 */
1431 if (unlikely(khugepaged_enter_vma_merge(vma)))
1432 return -ENOMEM;
1433 break;
1434 case MADV_NOHUGEPAGE:
1435 /*
1436 * Be somewhat over-protective like KSM for now!
1437 */
1438 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1439 return -EINVAL;
1440 *vm_flags &= ~VM_HUGEPAGE;
1441 *vm_flags |= VM_NOHUGEPAGE;
1442 /*
1443 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1444 * this vma even if we leave the mm registered in khugepaged if
1445 * it got registered before VM_NOHUGEPAGE was set.
1446 */
1447 break;
1448 }
1449
1450 return 0;
1451}
1452
1453static int __init khugepaged_slab_init(void)
1454{
1455 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1456 sizeof(struct mm_slot),
1457 __alignof__(struct mm_slot), 0, NULL);
1458 if (!mm_slot_cache)
1459 return -ENOMEM;
1460
1461 return 0;
1462}
1463
1464static void __init khugepaged_slab_free(void)
1465{
1466 kmem_cache_destroy(mm_slot_cache);
1467 mm_slot_cache = NULL;
1468}
1469
1470static inline struct mm_slot *alloc_mm_slot(void)
1471{
1472 if (!mm_slot_cache) /* initialization failed */
1473 return NULL;
1474 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1475}
1476
1477static inline void free_mm_slot(struct mm_slot *mm_slot)
1478{
1479 kmem_cache_free(mm_slot_cache, mm_slot);
1480}
1481
1482static int __init mm_slots_hash_init(void)
1483{
1484 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1485 GFP_KERNEL);
1486 if (!mm_slots_hash)
1487 return -ENOMEM;
1488 return 0;
1489}
1490
1491#if 0
1492static void __init mm_slots_hash_free(void)
1493{
1494 kfree(mm_slots_hash);
1495 mm_slots_hash = NULL;
1496}
1497#endif
1498
1499static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1500{
1501 struct mm_slot *mm_slot;
1502 struct hlist_head *bucket;
1503 struct hlist_node *node;
1504
1505 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1506 % MM_SLOTS_HASH_HEADS];
1507 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1508 if (mm == mm_slot->mm)
1509 return mm_slot;
1510 }
1511 return NULL;
1512}
1513
1514static void insert_to_mm_slots_hash(struct mm_struct *mm,
1515 struct mm_slot *mm_slot)
1516{
1517 struct hlist_head *bucket;
1518
1519 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1520 % MM_SLOTS_HASH_HEADS];
1521 mm_slot->mm = mm;
1522 hlist_add_head(&mm_slot->hash, bucket);
1523}
1524
1525static inline int khugepaged_test_exit(struct mm_struct *mm)
1526{
1527 return atomic_read(&mm->mm_users) == 0;
1528}
1529
1530int __khugepaged_enter(struct mm_struct *mm)
1531{
1532 struct mm_slot *mm_slot;
1533 int wakeup;
1534
1535 mm_slot = alloc_mm_slot();
1536 if (!mm_slot)
1537 return -ENOMEM;
1538
1539 /* __khugepaged_exit() must not run from under us */
1540 VM_BUG_ON(khugepaged_test_exit(mm));
1541 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1542 free_mm_slot(mm_slot);
1543 return 0;
1544 }
1545
1546 spin_lock(&khugepaged_mm_lock);
1547 insert_to_mm_slots_hash(mm, mm_slot);
1548 /*
1549 * Insert just behind the scanning cursor, to let the area settle
1550 * down a little.
1551 */
1552 wakeup = list_empty(&khugepaged_scan.mm_head);
1553 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1554 spin_unlock(&khugepaged_mm_lock);
1555
1556 atomic_inc(&mm->mm_count);
1557 if (wakeup)
1558 wake_up_interruptible(&khugepaged_wait);
1559
1560 return 0;
1561}
1562
1563int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1564{
1565 unsigned long hstart, hend;
1566 if (!vma->anon_vma)
1567 /*
1568 * Not yet faulted in so we will register later in the
1569 * page fault if needed.
1570 */
1571 return 0;
1572 if (vma->vm_ops)
1573 /* khugepaged not yet working on file or special mappings */
1574 return 0;
1575 /*
1576 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1577 * true too, verify it here.
1578 */
1579 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1580 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1581 hend = vma->vm_end & HPAGE_PMD_MASK;
1582 if (hstart < hend)
1583 return khugepaged_enter(vma);
1584 return 0;
1585}
1586
1587void __khugepaged_exit(struct mm_struct *mm)
1588{
1589 struct mm_slot *mm_slot;
1590 int free = 0;
1591
1592 spin_lock(&khugepaged_mm_lock);
1593 mm_slot = get_mm_slot(mm);
1594 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1595 hlist_del(&mm_slot->hash);
1596 list_del(&mm_slot->mm_node);
1597 free = 1;
1598 }
1599 spin_unlock(&khugepaged_mm_lock);
1600
1601 if (free) {
1602 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1603 free_mm_slot(mm_slot);
1604 mmdrop(mm);
1605 } else if (mm_slot) {
1606 /*
1607 * This is required to serialize against
1608 * khugepaged_test_exit() (which is guaranteed to run
1609 * under mmap sem read mode). Stop here (after we
1610 * return all pagetables will be destroyed) until
1611 * khugepaged has finished working on the pagetables
1612 * under the mmap_sem.
1613 */
1614 down_write(&mm->mmap_sem);
1615 up_write(&mm->mmap_sem);
1616 }
1617}
1618
1619static void release_pte_page(struct page *page)
1620{
1621 /* 0 stands for page_is_file_cache(page) == false */
1622 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1623 unlock_page(page);
1624 putback_lru_page(page);
1625}
1626
1627static void release_pte_pages(pte_t *pte, pte_t *_pte)
1628{
1629 while (--_pte >= pte) {
1630 pte_t pteval = *_pte;
1631 if (!pte_none(pteval))
1632 release_pte_page(pte_page(pteval));
1633 }
1634}
1635
1636static void release_all_pte_pages(pte_t *pte)
1637{
1638 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1639}
1640
1641static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1642 unsigned long address,
1643 pte_t *pte)
1644{
1645 struct page *page;
1646 pte_t *_pte;
1647 int referenced = 0, isolated = 0, none = 0;
1648 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1649 _pte++, address += PAGE_SIZE) {
1650 pte_t pteval = *_pte;
1651 if (pte_none(pteval)) {
1652 if (++none <= khugepaged_max_ptes_none)
1653 continue;
1654 else {
1655 release_pte_pages(pte, _pte);
1656 goto out;
1657 }
1658 }
1659 if (!pte_present(pteval) || !pte_write(pteval)) {
1660 release_pte_pages(pte, _pte);
1661 goto out;
1662 }
1663 page = vm_normal_page(vma, address, pteval);
1664 if (unlikely(!page)) {
1665 release_pte_pages(pte, _pte);
1666 goto out;
1667 }
1668 VM_BUG_ON(PageCompound(page));
1669 BUG_ON(!PageAnon(page));
1670 VM_BUG_ON(!PageSwapBacked(page));
1671
1672 /* cannot use mapcount: can't collapse if there's a gup pin */
1673 if (page_count(page) != 1) {
1674 release_pte_pages(pte, _pte);
1675 goto out;
1676 }
1677 /*
1678 * We can do it before isolate_lru_page because the
1679 * page can't be freed from under us. NOTE: PG_lock
1680 * is needed to serialize against split_huge_page
1681 * when invoked from the VM.
1682 */
1683 if (!trylock_page(page)) {
1684 release_pte_pages(pte, _pte);
1685 goto out;
1686 }
1687 /*
1688 * Isolate the page to avoid collapsing an hugepage
1689 * currently in use by the VM.
1690 */
1691 if (isolate_lru_page(page)) {
1692 unlock_page(page);
1693 release_pte_pages(pte, _pte);
1694 goto out;
1695 }
1696 /* 0 stands for page_is_file_cache(page) == false */
1697 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698 VM_BUG_ON(!PageLocked(page));
1699 VM_BUG_ON(PageLRU(page));
1700
1701 /* If there is no mapped pte young don't collapse the page */
1702 if (pte_young(pteval) || PageReferenced(page) ||
1703 mmu_notifier_test_young(vma->vm_mm, address))
1704 referenced = 1;
1705 }
1706 if (unlikely(!referenced))
1707 release_all_pte_pages(pte);
1708 else
1709 isolated = 1;
1710out:
1711 return isolated;
1712}
1713
1714static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1715 struct vm_area_struct *vma,
1716 unsigned long address,
1717 spinlock_t *ptl)
1718{
1719 pte_t *_pte;
1720 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1721 pte_t pteval = *_pte;
1722 struct page *src_page;
1723
1724 if (pte_none(pteval)) {
1725 clear_user_highpage(page, address);
1726 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1727 } else {
1728 src_page = pte_page(pteval);
1729 copy_user_highpage(page, src_page, address, vma);
1730 VM_BUG_ON(page_mapcount(src_page) != 1);
1731 VM_BUG_ON(page_count(src_page) != 2);
1732 release_pte_page(src_page);
1733 /*
1734 * ptl mostly unnecessary, but preempt has to
1735 * be disabled to update the per-cpu stats
1736 * inside page_remove_rmap().
1737 */
1738 spin_lock(ptl);
1739 /*
1740 * paravirt calls inside pte_clear here are
1741 * superfluous.
1742 */
1743 pte_clear(vma->vm_mm, address, _pte);
1744 page_remove_rmap(src_page);
1745 spin_unlock(ptl);
1746 free_page_and_swap_cache(src_page);
1747 }
1748
1749 address += PAGE_SIZE;
1750 page++;
1751 }
1752}
1753
1754static void collapse_huge_page(struct mm_struct *mm,
1755 unsigned long address,
1756 struct page **hpage,
1757 struct vm_area_struct *vma,
1758 int node)
1759{
1760 pgd_t *pgd;
1761 pud_t *pud;
1762 pmd_t *pmd, _pmd;
1763 pte_t *pte;
1764 pgtable_t pgtable;
1765 struct page *new_page;
1766 spinlock_t *ptl;
1767 int isolated;
1768 unsigned long hstart, hend;
1769
1770 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1771#ifndef CONFIG_NUMA
1772 up_read(&mm->mmap_sem);
1773 VM_BUG_ON(!*hpage);
1774 new_page = *hpage;
1775#else
1776 VM_BUG_ON(*hpage);
1777 /*
1778 * Allocate the page while the vma is still valid and under
1779 * the mmap_sem read mode so there is no memory allocation
1780 * later when we take the mmap_sem in write mode. This is more
1781 * friendly behavior (OTOH it may actually hide bugs) to
1782 * filesystems in userland with daemons allocating memory in
1783 * the userland I/O paths. Allocating memory with the
1784 * mmap_sem in read mode is good idea also to allow greater
1785 * scalability.
1786 */
1787 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1788 node, __GFP_OTHER_NODE);
1789
1790 /*
1791 * After allocating the hugepage, release the mmap_sem read lock in
1792 * preparation for taking it in write mode.
1793 */
1794 up_read(&mm->mmap_sem);
1795 if (unlikely(!new_page)) {
1796 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1797 *hpage = ERR_PTR(-ENOMEM);
1798 return;
1799 }
1800#endif
1801
1802 count_vm_event(THP_COLLAPSE_ALLOC);
1803 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1804#ifdef CONFIG_NUMA
1805 put_page(new_page);
1806#endif
1807 return;
1808 }
1809
1810 /*
1811 * Prevent all access to pagetables with the exception of
1812 * gup_fast later hanlded by the ptep_clear_flush and the VM
1813 * handled by the anon_vma lock + PG_lock.
1814 */
1815 down_write(&mm->mmap_sem);
1816 if (unlikely(khugepaged_test_exit(mm)))
1817 goto out;
1818
1819 vma = find_vma(mm, address);
1820 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1821 hend = vma->vm_end & HPAGE_PMD_MASK;
1822 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1823 goto out;
1824
1825 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1826 (vma->vm_flags & VM_NOHUGEPAGE))
1827 goto out;
1828
1829 if (!vma->anon_vma || vma->vm_ops)
1830 goto out;
1831 if (is_vma_temporary_stack(vma))
1832 goto out;
1833 /*
1834 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1835 * true too, verify it here.
1836 */
1837 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1838
1839 pgd = pgd_offset(mm, address);
1840 if (!pgd_present(*pgd))
1841 goto out;
1842
1843 pud = pud_offset(pgd, address);
1844 if (!pud_present(*pud))
1845 goto out;
1846
1847 pmd = pmd_offset(pud, address);
1848 /* pmd can't go away or become huge under us */
1849 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1850 goto out;
1851
1852 anon_vma_lock(vma->anon_vma);
1853
1854 pte = pte_offset_map(pmd, address);
1855 ptl = pte_lockptr(mm, pmd);
1856
1857 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1858 /*
1859 * After this gup_fast can't run anymore. This also removes
1860 * any huge TLB entry from the CPU so we won't allow
1861 * huge and small TLB entries for the same virtual address
1862 * to avoid the risk of CPU bugs in that area.
1863 */
1864 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1865 spin_unlock(&mm->page_table_lock);
1866
1867 spin_lock(ptl);
1868 isolated = __collapse_huge_page_isolate(vma, address, pte);
1869 spin_unlock(ptl);
1870
1871 if (unlikely(!isolated)) {
1872 pte_unmap(pte);
1873 spin_lock(&mm->page_table_lock);
1874 BUG_ON(!pmd_none(*pmd));
1875 set_pmd_at(mm, address, pmd, _pmd);
1876 spin_unlock(&mm->page_table_lock);
1877 anon_vma_unlock(vma->anon_vma);
1878 goto out;
1879 }
1880
1881 /*
1882 * All pages are isolated and locked so anon_vma rmap
1883 * can't run anymore.
1884 */
1885 anon_vma_unlock(vma->anon_vma);
1886
1887 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1888 pte_unmap(pte);
1889 __SetPageUptodate(new_page);
1890 pgtable = pmd_pgtable(_pmd);
1891 VM_BUG_ON(page_count(pgtable) != 1);
1892 VM_BUG_ON(page_mapcount(pgtable) != 0);
1893
1894 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1895 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1896 _pmd = pmd_mkhuge(_pmd);
1897
1898 /*
1899 * spin_lock() below is not the equivalent of smp_wmb(), so
1900 * this is needed to avoid the copy_huge_page writes to become
1901 * visible after the set_pmd_at() write.
1902 */
1903 smp_wmb();
1904
1905 spin_lock(&mm->page_table_lock);
1906 BUG_ON(!pmd_none(*pmd));
1907 page_add_new_anon_rmap(new_page, vma, address);
1908 set_pmd_at(mm, address, pmd, _pmd);
1909 update_mmu_cache(vma, address, entry);
1910 prepare_pmd_huge_pte(pgtable, mm);
1911 mm->nr_ptes--;
1912 spin_unlock(&mm->page_table_lock);
1913
1914#ifndef CONFIG_NUMA
1915 *hpage = NULL;
1916#endif
1917 khugepaged_pages_collapsed++;
1918out_up_write:
1919 up_write(&mm->mmap_sem);
1920 return;
1921
1922out:
1923 mem_cgroup_uncharge_page(new_page);
1924#ifdef CONFIG_NUMA
1925 put_page(new_page);
1926#endif
1927 goto out_up_write;
1928}
1929
1930static int khugepaged_scan_pmd(struct mm_struct *mm,
1931 struct vm_area_struct *vma,
1932 unsigned long address,
1933 struct page **hpage)
1934{
1935 pgd_t *pgd;
1936 pud_t *pud;
1937 pmd_t *pmd;
1938 pte_t *pte, *_pte;
1939 int ret = 0, referenced = 0, none = 0;
1940 struct page *page;
1941 unsigned long _address;
1942 spinlock_t *ptl;
1943 int node = -1;
1944
1945 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1946
1947 pgd = pgd_offset(mm, address);
1948 if (!pgd_present(*pgd))
1949 goto out;
1950
1951 pud = pud_offset(pgd, address);
1952 if (!pud_present(*pud))
1953 goto out;
1954
1955 pmd = pmd_offset(pud, address);
1956 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1957 goto out;
1958
1959 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1960 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1961 _pte++, _address += PAGE_SIZE) {
1962 pte_t pteval = *_pte;
1963 if (pte_none(pteval)) {
1964 if (++none <= khugepaged_max_ptes_none)
1965 continue;
1966 else
1967 goto out_unmap;
1968 }
1969 if (!pte_present(pteval) || !pte_write(pteval))
1970 goto out_unmap;
1971 page = vm_normal_page(vma, _address, pteval);
1972 if (unlikely(!page))
1973 goto out_unmap;
1974 /*
1975 * Chose the node of the first page. This could
1976 * be more sophisticated and look at more pages,
1977 * but isn't for now.
1978 */
1979 if (node == -1)
1980 node = page_to_nid(page);
1981 VM_BUG_ON(PageCompound(page));
1982 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1983 goto out_unmap;
1984 /* cannot use mapcount: can't collapse if there's a gup pin */
1985 if (page_count(page) != 1)
1986 goto out_unmap;
1987 if (pte_young(pteval) || PageReferenced(page) ||
1988 mmu_notifier_test_young(vma->vm_mm, address))
1989 referenced = 1;
1990 }
1991 if (referenced)
1992 ret = 1;
1993out_unmap:
1994 pte_unmap_unlock(pte, ptl);
1995 if (ret)
1996 /* collapse_huge_page will return with the mmap_sem released */
1997 collapse_huge_page(mm, address, hpage, vma, node);
1998out:
1999 return ret;
2000}
2001
2002static void collect_mm_slot(struct mm_slot *mm_slot)
2003{
2004 struct mm_struct *mm = mm_slot->mm;
2005
2006 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2007
2008 if (khugepaged_test_exit(mm)) {
2009 /* free mm_slot */
2010 hlist_del(&mm_slot->hash);
2011 list_del(&mm_slot->mm_node);
2012
2013 /*
2014 * Not strictly needed because the mm exited already.
2015 *
2016 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2017 */
2018
2019 /* khugepaged_mm_lock actually not necessary for the below */
2020 free_mm_slot(mm_slot);
2021 mmdrop(mm);
2022 }
2023}
2024
2025static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2026 struct page **hpage)
2027{
2028 struct mm_slot *mm_slot;
2029 struct mm_struct *mm;
2030 struct vm_area_struct *vma;
2031 int progress = 0;
2032
2033 VM_BUG_ON(!pages);
2034 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2035
2036 if (khugepaged_scan.mm_slot)
2037 mm_slot = khugepaged_scan.mm_slot;
2038 else {
2039 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2040 struct mm_slot, mm_node);
2041 khugepaged_scan.address = 0;
2042 khugepaged_scan.mm_slot = mm_slot;
2043 }
2044 spin_unlock(&khugepaged_mm_lock);
2045
2046 mm = mm_slot->mm;
2047 down_read(&mm->mmap_sem);
2048 if (unlikely(khugepaged_test_exit(mm)))
2049 vma = NULL;
2050 else
2051 vma = find_vma(mm, khugepaged_scan.address);
2052
2053 progress++;
2054 for (; vma; vma = vma->vm_next) {
2055 unsigned long hstart, hend;
2056
2057 cond_resched();
2058 if (unlikely(khugepaged_test_exit(mm))) {
2059 progress++;
2060 break;
2061 }
2062
2063 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2064 !khugepaged_always()) ||
2065 (vma->vm_flags & VM_NOHUGEPAGE)) {
2066 skip:
2067 progress++;
2068 continue;
2069 }
2070 if (!vma->anon_vma || vma->vm_ops)
2071 goto skip;
2072 if (is_vma_temporary_stack(vma))
2073 goto skip;
2074 /*
2075 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2076 * must be true too, verify it here.
2077 */
2078 VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2079 vma->vm_flags & VM_NO_THP);
2080
2081 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2082 hend = vma->vm_end & HPAGE_PMD_MASK;
2083 if (hstart >= hend)
2084 goto skip;
2085 if (khugepaged_scan.address > hend)
2086 goto skip;
2087 if (khugepaged_scan.address < hstart)
2088 khugepaged_scan.address = hstart;
2089 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2090
2091 while (khugepaged_scan.address < hend) {
2092 int ret;
2093 cond_resched();
2094 if (unlikely(khugepaged_test_exit(mm)))
2095 goto breakouterloop;
2096
2097 VM_BUG_ON(khugepaged_scan.address < hstart ||
2098 khugepaged_scan.address + HPAGE_PMD_SIZE >
2099 hend);
2100 ret = khugepaged_scan_pmd(mm, vma,
2101 khugepaged_scan.address,
2102 hpage);
2103 /* move to next address */
2104 khugepaged_scan.address += HPAGE_PMD_SIZE;
2105 progress += HPAGE_PMD_NR;
2106 if (ret)
2107 /* we released mmap_sem so break loop */
2108 goto breakouterloop_mmap_sem;
2109 if (progress >= pages)
2110 goto breakouterloop;
2111 }
2112 }
2113breakouterloop:
2114 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2115breakouterloop_mmap_sem:
2116
2117 spin_lock(&khugepaged_mm_lock);
2118 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2119 /*
2120 * Release the current mm_slot if this mm is about to die, or
2121 * if we scanned all vmas of this mm.
2122 */
2123 if (khugepaged_test_exit(mm) || !vma) {
2124 /*
2125 * Make sure that if mm_users is reaching zero while
2126 * khugepaged runs here, khugepaged_exit will find
2127 * mm_slot not pointing to the exiting mm.
2128 */
2129 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2130 khugepaged_scan.mm_slot = list_entry(
2131 mm_slot->mm_node.next,
2132 struct mm_slot, mm_node);
2133 khugepaged_scan.address = 0;
2134 } else {
2135 khugepaged_scan.mm_slot = NULL;
2136 khugepaged_full_scans++;
2137 }
2138
2139 collect_mm_slot(mm_slot);
2140 }
2141
2142 return progress;
2143}
2144
2145static int khugepaged_has_work(void)
2146{
2147 return !list_empty(&khugepaged_scan.mm_head) &&
2148 khugepaged_enabled();
2149}
2150
2151static int khugepaged_wait_event(void)
2152{
2153 return !list_empty(&khugepaged_scan.mm_head) ||
2154 !khugepaged_enabled();
2155}
2156
2157static void khugepaged_do_scan(struct page **hpage)
2158{
2159 unsigned int progress = 0, pass_through_head = 0;
2160 unsigned int pages = khugepaged_pages_to_scan;
2161
2162 barrier(); /* write khugepaged_pages_to_scan to local stack */
2163
2164 while (progress < pages) {
2165 cond_resched();
2166
2167#ifndef CONFIG_NUMA
2168 if (!*hpage) {
2169 *hpage = alloc_hugepage(khugepaged_defrag());
2170 if (unlikely(!*hpage)) {
2171 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2172 break;
2173 }
2174 count_vm_event(THP_COLLAPSE_ALLOC);
2175 }
2176#else
2177 if (IS_ERR(*hpage))
2178 break;
2179#endif
2180
2181 if (unlikely(kthread_should_stop() || freezing(current)))
2182 break;
2183
2184 spin_lock(&khugepaged_mm_lock);
2185 if (!khugepaged_scan.mm_slot)
2186 pass_through_head++;
2187 if (khugepaged_has_work() &&
2188 pass_through_head < 2)
2189 progress += khugepaged_scan_mm_slot(pages - progress,
2190 hpage);
2191 else
2192 progress = pages;
2193 spin_unlock(&khugepaged_mm_lock);
2194 }
2195}
2196
2197static void khugepaged_alloc_sleep(void)
2198{
2199 DEFINE_WAIT(wait);
2200 add_wait_queue(&khugepaged_wait, &wait);
2201 schedule_timeout_interruptible(
2202 msecs_to_jiffies(
2203 khugepaged_alloc_sleep_millisecs));
2204 remove_wait_queue(&khugepaged_wait, &wait);
2205}
2206
2207#ifndef CONFIG_NUMA
2208static struct page *khugepaged_alloc_hugepage(void)
2209{
2210 struct page *hpage;
2211
2212 do {
2213 hpage = alloc_hugepage(khugepaged_defrag());
2214 if (!hpage) {
2215 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2216 khugepaged_alloc_sleep();
2217 } else
2218 count_vm_event(THP_COLLAPSE_ALLOC);
2219 } while (unlikely(!hpage) &&
2220 likely(khugepaged_enabled()));
2221 return hpage;
2222}
2223#endif
2224
2225static void khugepaged_loop(void)
2226{
2227 struct page *hpage;
2228
2229#ifdef CONFIG_NUMA
2230 hpage = NULL;
2231#endif
2232 while (likely(khugepaged_enabled())) {
2233#ifndef CONFIG_NUMA
2234 hpage = khugepaged_alloc_hugepage();
2235 if (unlikely(!hpage))
2236 break;
2237#else
2238 if (IS_ERR(hpage)) {
2239 khugepaged_alloc_sleep();
2240 hpage = NULL;
2241 }
2242#endif
2243
2244 khugepaged_do_scan(&hpage);
2245#ifndef CONFIG_NUMA
2246 if (hpage)
2247 put_page(hpage);
2248#endif
2249 try_to_freeze();
2250 if (unlikely(kthread_should_stop()))
2251 break;
2252 if (khugepaged_has_work()) {
2253 DEFINE_WAIT(wait);
2254 if (!khugepaged_scan_sleep_millisecs)
2255 continue;
2256 add_wait_queue(&khugepaged_wait, &wait);
2257 schedule_timeout_interruptible(
2258 msecs_to_jiffies(
2259 khugepaged_scan_sleep_millisecs));
2260 remove_wait_queue(&khugepaged_wait, &wait);
2261 } else if (khugepaged_enabled())
2262 wait_event_freezable(khugepaged_wait,
2263 khugepaged_wait_event());
2264 }
2265}
2266
2267static int khugepaged(void *none)
2268{
2269 struct mm_slot *mm_slot;
2270
2271 set_freezable();
2272 set_user_nice(current, 19);
2273
2274 /* serialize with start_khugepaged() */
2275 mutex_lock(&khugepaged_mutex);
2276
2277 for (;;) {
2278 mutex_unlock(&khugepaged_mutex);
2279 VM_BUG_ON(khugepaged_thread != current);
2280 khugepaged_loop();
2281 VM_BUG_ON(khugepaged_thread != current);
2282
2283 mutex_lock(&khugepaged_mutex);
2284 if (!khugepaged_enabled())
2285 break;
2286 if (unlikely(kthread_should_stop()))
2287 break;
2288 }
2289
2290 spin_lock(&khugepaged_mm_lock);
2291 mm_slot = khugepaged_scan.mm_slot;
2292 khugepaged_scan.mm_slot = NULL;
2293 if (mm_slot)
2294 collect_mm_slot(mm_slot);
2295 spin_unlock(&khugepaged_mm_lock);
2296
2297 khugepaged_thread = NULL;
2298 mutex_unlock(&khugepaged_mutex);
2299
2300 return 0;
2301}
2302
2303void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2304{
2305 struct page *page;
2306
2307 spin_lock(&mm->page_table_lock);
2308 if (unlikely(!pmd_trans_huge(*pmd))) {
2309 spin_unlock(&mm->page_table_lock);
2310 return;
2311 }
2312 page = pmd_page(*pmd);
2313 VM_BUG_ON(!page_count(page));
2314 get_page(page);
2315 spin_unlock(&mm->page_table_lock);
2316
2317 split_huge_page(page);
2318
2319 put_page(page);
2320 BUG_ON(pmd_trans_huge(*pmd));
2321}
2322
2323static void split_huge_page_address(struct mm_struct *mm,
2324 unsigned long address)
2325{
2326 pgd_t *pgd;
2327 pud_t *pud;
2328 pmd_t *pmd;
2329
2330 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2331
2332 pgd = pgd_offset(mm, address);
2333 if (!pgd_present(*pgd))
2334 return;
2335
2336 pud = pud_offset(pgd, address);
2337 if (!pud_present(*pud))
2338 return;
2339
2340 pmd = pmd_offset(pud, address);
2341 if (!pmd_present(*pmd))
2342 return;
2343 /*
2344 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2345 * materialize from under us.
2346 */
2347 split_huge_page_pmd(mm, pmd);
2348}
2349
2350void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2351 unsigned long start,
2352 unsigned long end,
2353 long adjust_next)
2354{
2355 /*
2356 * If the new start address isn't hpage aligned and it could
2357 * previously contain an hugepage: check if we need to split
2358 * an huge pmd.
2359 */
2360 if (start & ~HPAGE_PMD_MASK &&
2361 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2362 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2363 split_huge_page_address(vma->vm_mm, start);
2364
2365 /*
2366 * If the new end address isn't hpage aligned and it could
2367 * previously contain an hugepage: check if we need to split
2368 * an huge pmd.
2369 */
2370 if (end & ~HPAGE_PMD_MASK &&
2371 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2372 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2373 split_huge_page_address(vma->vm_mm, end);
2374
2375 /*
2376 * If we're also updating the vma->vm_next->vm_start, if the new
2377 * vm_next->vm_start isn't page aligned and it could previously
2378 * contain an hugepage: check if we need to split an huge pmd.
2379 */
2380 if (adjust_next > 0) {
2381 struct vm_area_struct *next = vma->vm_next;
2382 unsigned long nstart = next->vm_start;
2383 nstart += adjust_next << PAGE_SHIFT;
2384 if (nstart & ~HPAGE_PMD_MASK &&
2385 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2386 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2387 split_huge_page_address(next->vm_mm, nstart);
2388 }
2389}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/sched/mm.h>
11#include <linux/sched/coredump.h>
12#include <linux/sched/numa_balancing.h>
13#include <linux/highmem.h>
14#include <linux/hugetlb.h>
15#include <linux/mmu_notifier.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
18#include <linux/shrinker.h>
19#include <linux/mm_inline.h>
20#include <linux/swapops.h>
21#include <linux/backing-dev.h>
22#include <linux/dax.h>
23#include <linux/khugepaged.h>
24#include <linux/freezer.h>
25#include <linux/pfn_t.h>
26#include <linux/mman.h>
27#include <linux/memremap.h>
28#include <linux/pagemap.h>
29#include <linux/debugfs.h>
30#include <linux/migrate.h>
31#include <linux/hashtable.h>
32#include <linux/userfaultfd_k.h>
33#include <linux/page_idle.h>
34#include <linux/shmem_fs.h>
35#include <linux/oom.h>
36#include <linux/numa.h>
37#include <linux/page_owner.h>
38#include <linux/sched/sysctl.h>
39#include <linux/memory-tiers.h>
40
41#include <asm/tlb.h>
42#include <asm/pgalloc.h>
43#include "internal.h"
44#include "swap.h"
45
46#define CREATE_TRACE_POINTS
47#include <trace/events/thp.h>
48
49/*
50 * By default, transparent hugepage support is disabled in order to avoid
51 * risking an increased memory footprint for applications that are not
52 * guaranteed to benefit from it. When transparent hugepage support is
53 * enabled, it is for all mappings, and khugepaged scans all mappings.
54 * Defrag is invoked by khugepaged hugepage allocations and by page faults
55 * for all hugepage allocations.
56 */
57unsigned long transparent_hugepage_flags __read_mostly =
58#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
60#endif
61#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63#endif
64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67
68static struct shrinker deferred_split_shrinker;
69
70static atomic_t huge_zero_refcount;
71struct page *huge_zero_page __read_mostly;
72unsigned long huge_zero_pfn __read_mostly = ~0UL;
73
74bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 bool smaps, bool in_pf, bool enforce_sysfs)
76{
77 if (!vma->vm_mm) /* vdso */
78 return false;
79
80 /*
81 * Explicitly disabled through madvise or prctl, or some
82 * architectures may disable THP for some mappings, for
83 * example, s390 kvm.
84 * */
85 if ((vm_flags & VM_NOHUGEPAGE) ||
86 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 return false;
88 /*
89 * If the hardware/firmware marked hugepage support disabled.
90 */
91 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
92 return false;
93
94 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 if (vma_is_dax(vma))
96 return in_pf;
97
98 /*
99 * Special VMA and hugetlb VMA.
100 * Must be checked after dax since some dax mappings may have
101 * VM_MIXEDMAP set.
102 */
103 if (vm_flags & VM_NO_KHUGEPAGED)
104 return false;
105
106 /*
107 * Check alignment for file vma and size for both file and anon vma.
108 *
109 * Skip the check for page fault. Huge fault does the check in fault
110 * handlers. And this check is not suitable for huge PUD fault.
111 */
112 if (!in_pf &&
113 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 return false;
115
116 /*
117 * Enabled via shmem mount options or sysfs settings.
118 * Must be done before hugepage flags check since shmem has its
119 * own flags.
120 */
121 if (!in_pf && shmem_file(vma->vm_file))
122 return shmem_huge_enabled(vma, !enforce_sysfs);
123
124 /* Enforce sysfs THP requirements as necessary */
125 if (enforce_sysfs &&
126 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
127 !hugepage_flags_always())))
128 return false;
129
130 /* Only regular file is valid */
131 if (!in_pf && file_thp_enabled(vma))
132 return true;
133
134 if (!vma_is_anonymous(vma))
135 return false;
136
137 if (vma_is_temporary_stack(vma))
138 return false;
139
140 /*
141 * THPeligible bit of smaps should show 1 for proper VMAs even
142 * though anon_vma is not initialized yet.
143 *
144 * Allow page fault since anon_vma may be not initialized until
145 * the first page fault.
146 */
147 if (!vma->anon_vma)
148 return (smaps || in_pf);
149
150 return true;
151}
152
153static bool get_huge_zero_page(void)
154{
155 struct page *zero_page;
156retry:
157 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
158 return true;
159
160 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
161 HPAGE_PMD_ORDER);
162 if (!zero_page) {
163 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
164 return false;
165 }
166 preempt_disable();
167 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
168 preempt_enable();
169 __free_pages(zero_page, compound_order(zero_page));
170 goto retry;
171 }
172 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
173
174 /* We take additional reference here. It will be put back by shrinker */
175 atomic_set(&huge_zero_refcount, 2);
176 preempt_enable();
177 count_vm_event(THP_ZERO_PAGE_ALLOC);
178 return true;
179}
180
181static void put_huge_zero_page(void)
182{
183 /*
184 * Counter should never go to zero here. Only shrinker can put
185 * last reference.
186 */
187 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
188}
189
190struct page *mm_get_huge_zero_page(struct mm_struct *mm)
191{
192 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
193 return READ_ONCE(huge_zero_page);
194
195 if (!get_huge_zero_page())
196 return NULL;
197
198 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
199 put_huge_zero_page();
200
201 return READ_ONCE(huge_zero_page);
202}
203
204void mm_put_huge_zero_page(struct mm_struct *mm)
205{
206 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
207 put_huge_zero_page();
208}
209
210static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
211 struct shrink_control *sc)
212{
213 /* we can free zero page only if last reference remains */
214 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
215}
216
217static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
218 struct shrink_control *sc)
219{
220 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
221 struct page *zero_page = xchg(&huge_zero_page, NULL);
222 BUG_ON(zero_page == NULL);
223 WRITE_ONCE(huge_zero_pfn, ~0UL);
224 __free_pages(zero_page, compound_order(zero_page));
225 return HPAGE_PMD_NR;
226 }
227
228 return 0;
229}
230
231static struct shrinker huge_zero_page_shrinker = {
232 .count_objects = shrink_huge_zero_page_count,
233 .scan_objects = shrink_huge_zero_page_scan,
234 .seeks = DEFAULT_SEEKS,
235};
236
237#ifdef CONFIG_SYSFS
238static ssize_t enabled_show(struct kobject *kobj,
239 struct kobj_attribute *attr, char *buf)
240{
241 const char *output;
242
243 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
244 output = "[always] madvise never";
245 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
246 &transparent_hugepage_flags))
247 output = "always [madvise] never";
248 else
249 output = "always madvise [never]";
250
251 return sysfs_emit(buf, "%s\n", output);
252}
253
254static ssize_t enabled_store(struct kobject *kobj,
255 struct kobj_attribute *attr,
256 const char *buf, size_t count)
257{
258 ssize_t ret = count;
259
260 if (sysfs_streq(buf, "always")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
263 } else if (sysfs_streq(buf, "madvise")) {
264 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
265 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 } else if (sysfs_streq(buf, "never")) {
267 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 } else
270 ret = -EINVAL;
271
272 if (ret > 0) {
273 int err = start_stop_khugepaged();
274 if (err)
275 ret = err;
276 }
277 return ret;
278}
279
280static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
281
282ssize_t single_hugepage_flag_show(struct kobject *kobj,
283 struct kobj_attribute *attr, char *buf,
284 enum transparent_hugepage_flag flag)
285{
286 return sysfs_emit(buf, "%d\n",
287 !!test_bit(flag, &transparent_hugepage_flags));
288}
289
290ssize_t single_hugepage_flag_store(struct kobject *kobj,
291 struct kobj_attribute *attr,
292 const char *buf, size_t count,
293 enum transparent_hugepage_flag flag)
294{
295 unsigned long value;
296 int ret;
297
298 ret = kstrtoul(buf, 10, &value);
299 if (ret < 0)
300 return ret;
301 if (value > 1)
302 return -EINVAL;
303
304 if (value)
305 set_bit(flag, &transparent_hugepage_flags);
306 else
307 clear_bit(flag, &transparent_hugepage_flags);
308
309 return count;
310}
311
312static ssize_t defrag_show(struct kobject *kobj,
313 struct kobj_attribute *attr, char *buf)
314{
315 const char *output;
316
317 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
318 &transparent_hugepage_flags))
319 output = "[always] defer defer+madvise madvise never";
320 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
321 &transparent_hugepage_flags))
322 output = "always [defer] defer+madvise madvise never";
323 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
324 &transparent_hugepage_flags))
325 output = "always defer [defer+madvise] madvise never";
326 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
327 &transparent_hugepage_flags))
328 output = "always defer defer+madvise [madvise] never";
329 else
330 output = "always defer defer+madvise madvise [never]";
331
332 return sysfs_emit(buf, "%s\n", output);
333}
334
335static ssize_t defrag_store(struct kobject *kobj,
336 struct kobj_attribute *attr,
337 const char *buf, size_t count)
338{
339 if (sysfs_streq(buf, "always")) {
340 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
343 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
344 } else if (sysfs_streq(buf, "defer+madvise")) {
345 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
348 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
349 } else if (sysfs_streq(buf, "defer")) {
350 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
353 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
354 } else if (sysfs_streq(buf, "madvise")) {
355 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
356 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
358 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
359 } else if (sysfs_streq(buf, "never")) {
360 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
361 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
364 } else
365 return -EINVAL;
366
367 return count;
368}
369static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
370
371static ssize_t use_zero_page_show(struct kobject *kobj,
372 struct kobj_attribute *attr, char *buf)
373{
374 return single_hugepage_flag_show(kobj, attr, buf,
375 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
376}
377static ssize_t use_zero_page_store(struct kobject *kobj,
378 struct kobj_attribute *attr, const char *buf, size_t count)
379{
380 return single_hugepage_flag_store(kobj, attr, buf, count,
381 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
382}
383static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
384
385static ssize_t hpage_pmd_size_show(struct kobject *kobj,
386 struct kobj_attribute *attr, char *buf)
387{
388 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
389}
390static struct kobj_attribute hpage_pmd_size_attr =
391 __ATTR_RO(hpage_pmd_size);
392
393static struct attribute *hugepage_attr[] = {
394 &enabled_attr.attr,
395 &defrag_attr.attr,
396 &use_zero_page_attr.attr,
397 &hpage_pmd_size_attr.attr,
398#ifdef CONFIG_SHMEM
399 &shmem_enabled_attr.attr,
400#endif
401 NULL,
402};
403
404static const struct attribute_group hugepage_attr_group = {
405 .attrs = hugepage_attr,
406};
407
408static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
409{
410 int err;
411
412 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
413 if (unlikely(!*hugepage_kobj)) {
414 pr_err("failed to create transparent hugepage kobject\n");
415 return -ENOMEM;
416 }
417
418 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
419 if (err) {
420 pr_err("failed to register transparent hugepage group\n");
421 goto delete_obj;
422 }
423
424 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
425 if (err) {
426 pr_err("failed to register transparent hugepage group\n");
427 goto remove_hp_group;
428 }
429
430 return 0;
431
432remove_hp_group:
433 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
434delete_obj:
435 kobject_put(*hugepage_kobj);
436 return err;
437}
438
439static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
440{
441 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
442 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
443 kobject_put(hugepage_kobj);
444}
445#else
446static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
447{
448 return 0;
449}
450
451static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
452{
453}
454#endif /* CONFIG_SYSFS */
455
456static int __init hugepage_init(void)
457{
458 int err;
459 struct kobject *hugepage_kobj;
460
461 if (!has_transparent_hugepage()) {
462 /*
463 * Hardware doesn't support hugepages, hence disable
464 * DAX PMD support.
465 */
466 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
467 return -EINVAL;
468 }
469
470 /*
471 * hugepages can't be allocated by the buddy allocator
472 */
473 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
474 /*
475 * we use page->mapping and page->index in second tail page
476 * as list_head: assuming THP order >= 2
477 */
478 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
479
480 err = hugepage_init_sysfs(&hugepage_kobj);
481 if (err)
482 goto err_sysfs;
483
484 err = khugepaged_init();
485 if (err)
486 goto err_slab;
487
488 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
489 if (err)
490 goto err_hzp_shrinker;
491 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
492 if (err)
493 goto err_split_shrinker;
494
495 /*
496 * By default disable transparent hugepages on smaller systems,
497 * where the extra memory used could hurt more than TLB overhead
498 * is likely to save. The admin can still enable it through /sys.
499 */
500 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
501 transparent_hugepage_flags = 0;
502 return 0;
503 }
504
505 err = start_stop_khugepaged();
506 if (err)
507 goto err_khugepaged;
508
509 return 0;
510err_khugepaged:
511 unregister_shrinker(&deferred_split_shrinker);
512err_split_shrinker:
513 unregister_shrinker(&huge_zero_page_shrinker);
514err_hzp_shrinker:
515 khugepaged_destroy();
516err_slab:
517 hugepage_exit_sysfs(hugepage_kobj);
518err_sysfs:
519 return err;
520}
521subsys_initcall(hugepage_init);
522
523static int __init setup_transparent_hugepage(char *str)
524{
525 int ret = 0;
526 if (!str)
527 goto out;
528 if (!strcmp(str, "always")) {
529 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
530 &transparent_hugepage_flags);
531 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
532 &transparent_hugepage_flags);
533 ret = 1;
534 } else if (!strcmp(str, "madvise")) {
535 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
536 &transparent_hugepage_flags);
537 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
538 &transparent_hugepage_flags);
539 ret = 1;
540 } else if (!strcmp(str, "never")) {
541 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
542 &transparent_hugepage_flags);
543 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
544 &transparent_hugepage_flags);
545 ret = 1;
546 }
547out:
548 if (!ret)
549 pr_warn("transparent_hugepage= cannot parse, ignored\n");
550 return ret;
551}
552__setup("transparent_hugepage=", setup_transparent_hugepage);
553
554pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
555{
556 if (likely(vma->vm_flags & VM_WRITE))
557 pmd = pmd_mkwrite(pmd);
558 return pmd;
559}
560
561#ifdef CONFIG_MEMCG
562static inline struct deferred_split *get_deferred_split_queue(struct page *page)
563{
564 struct mem_cgroup *memcg = page_memcg(compound_head(page));
565 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
566
567 if (memcg)
568 return &memcg->deferred_split_queue;
569 else
570 return &pgdat->deferred_split_queue;
571}
572#else
573static inline struct deferred_split *get_deferred_split_queue(struct page *page)
574{
575 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
576
577 return &pgdat->deferred_split_queue;
578}
579#endif
580
581void prep_transhuge_page(struct page *page)
582{
583 /*
584 * we use page->mapping and page->index in second tail page
585 * as list_head: assuming THP order >= 2
586 */
587
588 INIT_LIST_HEAD(page_deferred_list(page));
589 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
590}
591
592static inline bool is_transparent_hugepage(struct page *page)
593{
594 if (!PageCompound(page))
595 return false;
596
597 page = compound_head(page);
598 return is_huge_zero_page(page) ||
599 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
600}
601
602static unsigned long __thp_get_unmapped_area(struct file *filp,
603 unsigned long addr, unsigned long len,
604 loff_t off, unsigned long flags, unsigned long size)
605{
606 loff_t off_end = off + len;
607 loff_t off_align = round_up(off, size);
608 unsigned long len_pad, ret;
609
610 if (off_end <= off_align || (off_end - off_align) < size)
611 return 0;
612
613 len_pad = len + size;
614 if (len_pad < len || (off + len_pad) < off)
615 return 0;
616
617 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
618 off >> PAGE_SHIFT, flags);
619
620 /*
621 * The failure might be due to length padding. The caller will retry
622 * without the padding.
623 */
624 if (IS_ERR_VALUE(ret))
625 return 0;
626
627 /*
628 * Do not try to align to THP boundary if allocation at the address
629 * hint succeeds.
630 */
631 if (ret == addr)
632 return addr;
633
634 ret += (off - ret) & (size - 1);
635 return ret;
636}
637
638unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
639 unsigned long len, unsigned long pgoff, unsigned long flags)
640{
641 unsigned long ret;
642 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
643
644 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
645 if (ret)
646 return ret;
647
648 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
649}
650EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
651
652static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
653 struct page *page, gfp_t gfp)
654{
655 struct vm_area_struct *vma = vmf->vma;
656 pgtable_t pgtable;
657 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
658 vm_fault_t ret = 0;
659
660 VM_BUG_ON_PAGE(!PageCompound(page), page);
661
662 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
663 put_page(page);
664 count_vm_event(THP_FAULT_FALLBACK);
665 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
666 return VM_FAULT_FALLBACK;
667 }
668 cgroup_throttle_swaprate(page, gfp);
669
670 pgtable = pte_alloc_one(vma->vm_mm);
671 if (unlikely(!pgtable)) {
672 ret = VM_FAULT_OOM;
673 goto release;
674 }
675
676 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
677 /*
678 * The memory barrier inside __SetPageUptodate makes sure that
679 * clear_huge_page writes become visible before the set_pmd_at()
680 * write.
681 */
682 __SetPageUptodate(page);
683
684 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
685 if (unlikely(!pmd_none(*vmf->pmd))) {
686 goto unlock_release;
687 } else {
688 pmd_t entry;
689
690 ret = check_stable_address_space(vma->vm_mm);
691 if (ret)
692 goto unlock_release;
693
694 /* Deliver the page fault to userland */
695 if (userfaultfd_missing(vma)) {
696 spin_unlock(vmf->ptl);
697 put_page(page);
698 pte_free(vma->vm_mm, pgtable);
699 ret = handle_userfault(vmf, VM_UFFD_MISSING);
700 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
701 return ret;
702 }
703
704 entry = mk_huge_pmd(page, vma->vm_page_prot);
705 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
706 page_add_new_anon_rmap(page, vma, haddr);
707 lru_cache_add_inactive_or_unevictable(page, vma);
708 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
709 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
710 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
711 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
712 mm_inc_nr_ptes(vma->vm_mm);
713 spin_unlock(vmf->ptl);
714 count_vm_event(THP_FAULT_ALLOC);
715 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
716 }
717
718 return 0;
719unlock_release:
720 spin_unlock(vmf->ptl);
721release:
722 if (pgtable)
723 pte_free(vma->vm_mm, pgtable);
724 put_page(page);
725 return ret;
726
727}
728
729/*
730 * always: directly stall for all thp allocations
731 * defer: wake kswapd and fail if not immediately available
732 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
733 * fail if not immediately available
734 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
735 * available
736 * never: never stall for any thp allocation
737 */
738gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
739{
740 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
741
742 /* Always do synchronous compaction */
743 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
744 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
745
746 /* Kick kcompactd and fail quickly */
747 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
748 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
749
750 /* Synchronous compaction if madvised, otherwise kick kcompactd */
751 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
752 return GFP_TRANSHUGE_LIGHT |
753 (vma_madvised ? __GFP_DIRECT_RECLAIM :
754 __GFP_KSWAPD_RECLAIM);
755
756 /* Only do synchronous compaction if madvised */
757 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
758 return GFP_TRANSHUGE_LIGHT |
759 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
760
761 return GFP_TRANSHUGE_LIGHT;
762}
763
764/* Caller must hold page table lock. */
765static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 struct page *zero_page)
768{
769 pmd_t entry;
770 if (!pmd_none(*pmd))
771 return;
772 entry = mk_pmd(zero_page, vma->vm_page_prot);
773 entry = pmd_mkhuge(entry);
774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 set_pmd_at(mm, haddr, pmd, entry);
776 mm_inc_nr_ptes(mm);
777}
778
779vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
780{
781 struct vm_area_struct *vma = vmf->vma;
782 gfp_t gfp;
783 struct folio *folio;
784 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
785
786 if (!transhuge_vma_suitable(vma, haddr))
787 return VM_FAULT_FALLBACK;
788 if (unlikely(anon_vma_prepare(vma)))
789 return VM_FAULT_OOM;
790 khugepaged_enter_vma(vma, vma->vm_flags);
791
792 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
793 !mm_forbids_zeropage(vma->vm_mm) &&
794 transparent_hugepage_use_zero_page()) {
795 pgtable_t pgtable;
796 struct page *zero_page;
797 vm_fault_t ret;
798 pgtable = pte_alloc_one(vma->vm_mm);
799 if (unlikely(!pgtable))
800 return VM_FAULT_OOM;
801 zero_page = mm_get_huge_zero_page(vma->vm_mm);
802 if (unlikely(!zero_page)) {
803 pte_free(vma->vm_mm, pgtable);
804 count_vm_event(THP_FAULT_FALLBACK);
805 return VM_FAULT_FALLBACK;
806 }
807 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
808 ret = 0;
809 if (pmd_none(*vmf->pmd)) {
810 ret = check_stable_address_space(vma->vm_mm);
811 if (ret) {
812 spin_unlock(vmf->ptl);
813 pte_free(vma->vm_mm, pgtable);
814 } else if (userfaultfd_missing(vma)) {
815 spin_unlock(vmf->ptl);
816 pte_free(vma->vm_mm, pgtable);
817 ret = handle_userfault(vmf, VM_UFFD_MISSING);
818 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
819 } else {
820 set_huge_zero_page(pgtable, vma->vm_mm, vma,
821 haddr, vmf->pmd, zero_page);
822 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
823 spin_unlock(vmf->ptl);
824 }
825 } else {
826 spin_unlock(vmf->ptl);
827 pte_free(vma->vm_mm, pgtable);
828 }
829 return ret;
830 }
831 gfp = vma_thp_gfp_mask(vma);
832 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
833 if (unlikely(!folio)) {
834 count_vm_event(THP_FAULT_FALLBACK);
835 return VM_FAULT_FALLBACK;
836 }
837 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
838}
839
840static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
841 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
842 pgtable_t pgtable)
843{
844 struct mm_struct *mm = vma->vm_mm;
845 pmd_t entry;
846 spinlock_t *ptl;
847
848 ptl = pmd_lock(mm, pmd);
849 if (!pmd_none(*pmd)) {
850 if (write) {
851 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
852 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
853 goto out_unlock;
854 }
855 entry = pmd_mkyoung(*pmd);
856 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
857 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
858 update_mmu_cache_pmd(vma, addr, pmd);
859 }
860
861 goto out_unlock;
862 }
863
864 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
865 if (pfn_t_devmap(pfn))
866 entry = pmd_mkdevmap(entry);
867 if (write) {
868 entry = pmd_mkyoung(pmd_mkdirty(entry));
869 entry = maybe_pmd_mkwrite(entry, vma);
870 }
871
872 if (pgtable) {
873 pgtable_trans_huge_deposit(mm, pmd, pgtable);
874 mm_inc_nr_ptes(mm);
875 pgtable = NULL;
876 }
877
878 set_pmd_at(mm, addr, pmd, entry);
879 update_mmu_cache_pmd(vma, addr, pmd);
880
881out_unlock:
882 spin_unlock(ptl);
883 if (pgtable)
884 pte_free(mm, pgtable);
885}
886
887/**
888 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
889 * @vmf: Structure describing the fault
890 * @pfn: pfn to insert
891 * @pgprot: page protection to use
892 * @write: whether it's a write fault
893 *
894 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
895 * also consult the vmf_insert_mixed_prot() documentation when
896 * @pgprot != @vmf->vma->vm_page_prot.
897 *
898 * Return: vm_fault_t value.
899 */
900vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
901 pgprot_t pgprot, bool write)
902{
903 unsigned long addr = vmf->address & PMD_MASK;
904 struct vm_area_struct *vma = vmf->vma;
905 pgtable_t pgtable = NULL;
906
907 /*
908 * If we had pmd_special, we could avoid all these restrictions,
909 * but we need to be consistent with PTEs and architectures that
910 * can't support a 'special' bit.
911 */
912 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
913 !pfn_t_devmap(pfn));
914 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
915 (VM_PFNMAP|VM_MIXEDMAP));
916 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
917
918 if (addr < vma->vm_start || addr >= vma->vm_end)
919 return VM_FAULT_SIGBUS;
920
921 if (arch_needs_pgtable_deposit()) {
922 pgtable = pte_alloc_one(vma->vm_mm);
923 if (!pgtable)
924 return VM_FAULT_OOM;
925 }
926
927 track_pfn_insert(vma, &pgprot, pfn);
928
929 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
930 return VM_FAULT_NOPAGE;
931}
932EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
933
934#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
935static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
936{
937 if (likely(vma->vm_flags & VM_WRITE))
938 pud = pud_mkwrite(pud);
939 return pud;
940}
941
942static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
943 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
944{
945 struct mm_struct *mm = vma->vm_mm;
946 pud_t entry;
947 spinlock_t *ptl;
948
949 ptl = pud_lock(mm, pud);
950 if (!pud_none(*pud)) {
951 if (write) {
952 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
953 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
954 goto out_unlock;
955 }
956 entry = pud_mkyoung(*pud);
957 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
958 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
959 update_mmu_cache_pud(vma, addr, pud);
960 }
961 goto out_unlock;
962 }
963
964 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
965 if (pfn_t_devmap(pfn))
966 entry = pud_mkdevmap(entry);
967 if (write) {
968 entry = pud_mkyoung(pud_mkdirty(entry));
969 entry = maybe_pud_mkwrite(entry, vma);
970 }
971 set_pud_at(mm, addr, pud, entry);
972 update_mmu_cache_pud(vma, addr, pud);
973
974out_unlock:
975 spin_unlock(ptl);
976}
977
978/**
979 * vmf_insert_pfn_pud_prot - insert a pud size pfn
980 * @vmf: Structure describing the fault
981 * @pfn: pfn to insert
982 * @pgprot: page protection to use
983 * @write: whether it's a write fault
984 *
985 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
986 * also consult the vmf_insert_mixed_prot() documentation when
987 * @pgprot != @vmf->vma->vm_page_prot.
988 *
989 * Return: vm_fault_t value.
990 */
991vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
992 pgprot_t pgprot, bool write)
993{
994 unsigned long addr = vmf->address & PUD_MASK;
995 struct vm_area_struct *vma = vmf->vma;
996
997 /*
998 * If we had pud_special, we could avoid all these restrictions,
999 * but we need to be consistent with PTEs and architectures that
1000 * can't support a 'special' bit.
1001 */
1002 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1003 !pfn_t_devmap(pfn));
1004 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005 (VM_PFNMAP|VM_MIXEDMAP));
1006 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007
1008 if (addr < vma->vm_start || addr >= vma->vm_end)
1009 return VM_FAULT_SIGBUS;
1010
1011 track_pfn_insert(vma, &pgprot, pfn);
1012
1013 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1014 return VM_FAULT_NOPAGE;
1015}
1016EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1017#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1018
1019static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1020 pmd_t *pmd, bool write)
1021{
1022 pmd_t _pmd;
1023
1024 _pmd = pmd_mkyoung(*pmd);
1025 if (write)
1026 _pmd = pmd_mkdirty(_pmd);
1027 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1028 pmd, _pmd, write))
1029 update_mmu_cache_pmd(vma, addr, pmd);
1030}
1031
1032struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1033 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1034{
1035 unsigned long pfn = pmd_pfn(*pmd);
1036 struct mm_struct *mm = vma->vm_mm;
1037 struct page *page;
1038 int ret;
1039
1040 assert_spin_locked(pmd_lockptr(mm, pmd));
1041
1042 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1043 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1044 (FOLL_PIN | FOLL_GET)))
1045 return NULL;
1046
1047 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1048 return NULL;
1049
1050 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1051 /* pass */;
1052 else
1053 return NULL;
1054
1055 if (flags & FOLL_TOUCH)
1056 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1057
1058 /*
1059 * device mapped pages can only be returned if the
1060 * caller will manage the page reference count.
1061 */
1062 if (!(flags & (FOLL_GET | FOLL_PIN)))
1063 return ERR_PTR(-EEXIST);
1064
1065 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1066 *pgmap = get_dev_pagemap(pfn, *pgmap);
1067 if (!*pgmap)
1068 return ERR_PTR(-EFAULT);
1069 page = pfn_to_page(pfn);
1070 ret = try_grab_page(page, flags);
1071 if (ret)
1072 page = ERR_PTR(ret);
1073
1074 return page;
1075}
1076
1077int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1078 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1080{
1081 spinlock_t *dst_ptl, *src_ptl;
1082 struct page *src_page;
1083 pmd_t pmd;
1084 pgtable_t pgtable = NULL;
1085 int ret = -ENOMEM;
1086
1087 /* Skip if can be re-fill on fault */
1088 if (!vma_is_anonymous(dst_vma))
1089 return 0;
1090
1091 pgtable = pte_alloc_one(dst_mm);
1092 if (unlikely(!pgtable))
1093 goto out;
1094
1095 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1096 src_ptl = pmd_lockptr(src_mm, src_pmd);
1097 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1098
1099 ret = -EAGAIN;
1100 pmd = *src_pmd;
1101
1102#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1103 if (unlikely(is_swap_pmd(pmd))) {
1104 swp_entry_t entry = pmd_to_swp_entry(pmd);
1105
1106 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1107 if (!is_readable_migration_entry(entry)) {
1108 entry = make_readable_migration_entry(
1109 swp_offset(entry));
1110 pmd = swp_entry_to_pmd(entry);
1111 if (pmd_swp_soft_dirty(*src_pmd))
1112 pmd = pmd_swp_mksoft_dirty(pmd);
1113 if (pmd_swp_uffd_wp(*src_pmd))
1114 pmd = pmd_swp_mkuffd_wp(pmd);
1115 set_pmd_at(src_mm, addr, src_pmd, pmd);
1116 }
1117 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118 mm_inc_nr_ptes(dst_mm);
1119 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1120 if (!userfaultfd_wp(dst_vma))
1121 pmd = pmd_swp_clear_uffd_wp(pmd);
1122 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1123 ret = 0;
1124 goto out_unlock;
1125 }
1126#endif
1127
1128 if (unlikely(!pmd_trans_huge(pmd))) {
1129 pte_free(dst_mm, pgtable);
1130 goto out_unlock;
1131 }
1132 /*
1133 * When page table lock is held, the huge zero pmd should not be
1134 * under splitting since we don't split the page itself, only pmd to
1135 * a page table.
1136 */
1137 if (is_huge_zero_pmd(pmd)) {
1138 /*
1139 * get_huge_zero_page() will never allocate a new page here,
1140 * since we already have a zero page to copy. It just takes a
1141 * reference.
1142 */
1143 mm_get_huge_zero_page(dst_mm);
1144 goto out_zero_page;
1145 }
1146
1147 src_page = pmd_page(pmd);
1148 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1149
1150 get_page(src_page);
1151 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1152 /* Page maybe pinned: split and retry the fault on PTEs. */
1153 put_page(src_page);
1154 pte_free(dst_mm, pgtable);
1155 spin_unlock(src_ptl);
1156 spin_unlock(dst_ptl);
1157 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1158 return -EAGAIN;
1159 }
1160 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1161out_zero_page:
1162 mm_inc_nr_ptes(dst_mm);
1163 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1164 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1165 if (!userfaultfd_wp(dst_vma))
1166 pmd = pmd_clear_uffd_wp(pmd);
1167 pmd = pmd_mkold(pmd_wrprotect(pmd));
1168 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1169
1170 ret = 0;
1171out_unlock:
1172 spin_unlock(src_ptl);
1173 spin_unlock(dst_ptl);
1174out:
1175 return ret;
1176}
1177
1178#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1179static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1180 pud_t *pud, bool write)
1181{
1182 pud_t _pud;
1183
1184 _pud = pud_mkyoung(*pud);
1185 if (write)
1186 _pud = pud_mkdirty(_pud);
1187 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1188 pud, _pud, write))
1189 update_mmu_cache_pud(vma, addr, pud);
1190}
1191
1192struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1193 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1194{
1195 unsigned long pfn = pud_pfn(*pud);
1196 struct mm_struct *mm = vma->vm_mm;
1197 struct page *page;
1198 int ret;
1199
1200 assert_spin_locked(pud_lockptr(mm, pud));
1201
1202 if (flags & FOLL_WRITE && !pud_write(*pud))
1203 return NULL;
1204
1205 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1206 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1207 (FOLL_PIN | FOLL_GET)))
1208 return NULL;
1209
1210 if (pud_present(*pud) && pud_devmap(*pud))
1211 /* pass */;
1212 else
1213 return NULL;
1214
1215 if (flags & FOLL_TOUCH)
1216 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1217
1218 /*
1219 * device mapped pages can only be returned if the
1220 * caller will manage the page reference count.
1221 *
1222 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1223 */
1224 if (!(flags & (FOLL_GET | FOLL_PIN)))
1225 return ERR_PTR(-EEXIST);
1226
1227 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1228 *pgmap = get_dev_pagemap(pfn, *pgmap);
1229 if (!*pgmap)
1230 return ERR_PTR(-EFAULT);
1231 page = pfn_to_page(pfn);
1232
1233 ret = try_grab_page(page, flags);
1234 if (ret)
1235 page = ERR_PTR(ret);
1236
1237 return page;
1238}
1239
1240int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1241 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1242 struct vm_area_struct *vma)
1243{
1244 spinlock_t *dst_ptl, *src_ptl;
1245 pud_t pud;
1246 int ret;
1247
1248 dst_ptl = pud_lock(dst_mm, dst_pud);
1249 src_ptl = pud_lockptr(src_mm, src_pud);
1250 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1251
1252 ret = -EAGAIN;
1253 pud = *src_pud;
1254 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1255 goto out_unlock;
1256
1257 /*
1258 * When page table lock is held, the huge zero pud should not be
1259 * under splitting since we don't split the page itself, only pud to
1260 * a page table.
1261 */
1262 if (is_huge_zero_pud(pud)) {
1263 /* No huge zero pud yet */
1264 }
1265
1266 /*
1267 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1268 * and split if duplicating fails.
1269 */
1270 pudp_set_wrprotect(src_mm, addr, src_pud);
1271 pud = pud_mkold(pud_wrprotect(pud));
1272 set_pud_at(dst_mm, addr, dst_pud, pud);
1273
1274 ret = 0;
1275out_unlock:
1276 spin_unlock(src_ptl);
1277 spin_unlock(dst_ptl);
1278 return ret;
1279}
1280
1281void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1282{
1283 bool write = vmf->flags & FAULT_FLAG_WRITE;
1284
1285 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1286 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1287 goto unlock;
1288
1289 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1290unlock:
1291 spin_unlock(vmf->ptl);
1292}
1293#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1294
1295void huge_pmd_set_accessed(struct vm_fault *vmf)
1296{
1297 bool write = vmf->flags & FAULT_FLAG_WRITE;
1298
1299 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1300 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1301 goto unlock;
1302
1303 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1304
1305unlock:
1306 spin_unlock(vmf->ptl);
1307}
1308
1309vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1310{
1311 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1312 struct vm_area_struct *vma = vmf->vma;
1313 struct folio *folio;
1314 struct page *page;
1315 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1316 pmd_t orig_pmd = vmf->orig_pmd;
1317
1318 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1319 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1320
1321 if (is_huge_zero_pmd(orig_pmd))
1322 goto fallback;
1323
1324 spin_lock(vmf->ptl);
1325
1326 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1327 spin_unlock(vmf->ptl);
1328 return 0;
1329 }
1330
1331 page = pmd_page(orig_pmd);
1332 folio = page_folio(page);
1333 VM_BUG_ON_PAGE(!PageHead(page), page);
1334
1335 /* Early check when only holding the PT lock. */
1336 if (PageAnonExclusive(page))
1337 goto reuse;
1338
1339 if (!folio_trylock(folio)) {
1340 folio_get(folio);
1341 spin_unlock(vmf->ptl);
1342 folio_lock(folio);
1343 spin_lock(vmf->ptl);
1344 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345 spin_unlock(vmf->ptl);
1346 folio_unlock(folio);
1347 folio_put(folio);
1348 return 0;
1349 }
1350 folio_put(folio);
1351 }
1352
1353 /* Recheck after temporarily dropping the PT lock. */
1354 if (PageAnonExclusive(page)) {
1355 folio_unlock(folio);
1356 goto reuse;
1357 }
1358
1359 /*
1360 * See do_wp_page(): we can only reuse the folio exclusively if
1361 * there are no additional references. Note that we always drain
1362 * the LRU pagevecs immediately after adding a THP.
1363 */
1364 if (folio_ref_count(folio) >
1365 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1366 goto unlock_fallback;
1367 if (folio_test_swapcache(folio))
1368 folio_free_swap(folio);
1369 if (folio_ref_count(folio) == 1) {
1370 pmd_t entry;
1371
1372 page_move_anon_rmap(page, vma);
1373 folio_unlock(folio);
1374reuse:
1375 if (unlikely(unshare)) {
1376 spin_unlock(vmf->ptl);
1377 return 0;
1378 }
1379 entry = pmd_mkyoung(orig_pmd);
1380 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1381 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1382 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1383 spin_unlock(vmf->ptl);
1384 return 0;
1385 }
1386
1387unlock_fallback:
1388 folio_unlock(folio);
1389 spin_unlock(vmf->ptl);
1390fallback:
1391 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1392 return VM_FAULT_FALLBACK;
1393}
1394
1395static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1396 unsigned long addr, pmd_t pmd)
1397{
1398 struct page *page;
1399
1400 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1401 return false;
1402
1403 /* Don't touch entries that are not even readable (NUMA hinting). */
1404 if (pmd_protnone(pmd))
1405 return false;
1406
1407 /* Do we need write faults for softdirty tracking? */
1408 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1409 return false;
1410
1411 /* Do we need write faults for uffd-wp tracking? */
1412 if (userfaultfd_huge_pmd_wp(vma, pmd))
1413 return false;
1414
1415 if (!(vma->vm_flags & VM_SHARED)) {
1416 /* See can_change_pte_writable(). */
1417 page = vm_normal_page_pmd(vma, addr, pmd);
1418 return page && PageAnon(page) && PageAnonExclusive(page);
1419 }
1420
1421 /* See can_change_pte_writable(). */
1422 return pmd_dirty(pmd);
1423}
1424
1425/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1426static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1427 struct vm_area_struct *vma,
1428 unsigned int flags)
1429{
1430 /* If the pmd is writable, we can write to the page. */
1431 if (pmd_write(pmd))
1432 return true;
1433
1434 /* Maybe FOLL_FORCE is set to override it? */
1435 if (!(flags & FOLL_FORCE))
1436 return false;
1437
1438 /* But FOLL_FORCE has no effect on shared mappings */
1439 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1440 return false;
1441
1442 /* ... or read-only private ones */
1443 if (!(vma->vm_flags & VM_MAYWRITE))
1444 return false;
1445
1446 /* ... or already writable ones that just need to take a write fault */
1447 if (vma->vm_flags & VM_WRITE)
1448 return false;
1449
1450 /*
1451 * See can_change_pte_writable(): we broke COW and could map the page
1452 * writable if we have an exclusive anonymous page ...
1453 */
1454 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1455 return false;
1456
1457 /* ... and a write-fault isn't required for other reasons. */
1458 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1459 return false;
1460 return !userfaultfd_huge_pmd_wp(vma, pmd);
1461}
1462
1463struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1464 unsigned long addr,
1465 pmd_t *pmd,
1466 unsigned int flags)
1467{
1468 struct mm_struct *mm = vma->vm_mm;
1469 struct page *page;
1470 int ret;
1471
1472 assert_spin_locked(pmd_lockptr(mm, pmd));
1473
1474 page = pmd_page(*pmd);
1475 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1476
1477 if ((flags & FOLL_WRITE) &&
1478 !can_follow_write_pmd(*pmd, page, vma, flags))
1479 return NULL;
1480
1481 /* Avoid dumping huge zero page */
1482 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1483 return ERR_PTR(-EFAULT);
1484
1485 /* Full NUMA hinting faults to serialise migration in fault paths */
1486 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1487 return NULL;
1488
1489 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1490 return ERR_PTR(-EMLINK);
1491
1492 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1493 !PageAnonExclusive(page), page);
1494
1495 ret = try_grab_page(page, flags);
1496 if (ret)
1497 return ERR_PTR(ret);
1498
1499 if (flags & FOLL_TOUCH)
1500 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1501
1502 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1503 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1504
1505 return page;
1506}
1507
1508/* NUMA hinting page fault entry point for trans huge pmds */
1509vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1510{
1511 struct vm_area_struct *vma = vmf->vma;
1512 pmd_t oldpmd = vmf->orig_pmd;
1513 pmd_t pmd;
1514 struct page *page;
1515 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1516 int page_nid = NUMA_NO_NODE;
1517 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1518 bool migrated = false, writable = false;
1519 int flags = 0;
1520
1521 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1522 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1523 spin_unlock(vmf->ptl);
1524 goto out;
1525 }
1526
1527 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1528
1529 /*
1530 * Detect now whether the PMD could be writable; this information
1531 * is only valid while holding the PT lock.
1532 */
1533 writable = pmd_write(pmd);
1534 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1535 can_change_pmd_writable(vma, vmf->address, pmd))
1536 writable = true;
1537
1538 page = vm_normal_page_pmd(vma, haddr, pmd);
1539 if (!page)
1540 goto out_map;
1541
1542 /* See similar comment in do_numa_page for explanation */
1543 if (!writable)
1544 flags |= TNF_NO_GROUP;
1545
1546 page_nid = page_to_nid(page);
1547 /*
1548 * For memory tiering mode, cpupid of slow memory page is used
1549 * to record page access time. So use default value.
1550 */
1551 if (node_is_toptier(page_nid))
1552 last_cpupid = page_cpupid_last(page);
1553 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1554 &flags);
1555
1556 if (target_nid == NUMA_NO_NODE) {
1557 put_page(page);
1558 goto out_map;
1559 }
1560
1561 spin_unlock(vmf->ptl);
1562 writable = false;
1563
1564 migrated = migrate_misplaced_page(page, vma, target_nid);
1565 if (migrated) {
1566 flags |= TNF_MIGRATED;
1567 page_nid = target_nid;
1568 } else {
1569 flags |= TNF_MIGRATE_FAIL;
1570 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1571 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1572 spin_unlock(vmf->ptl);
1573 goto out;
1574 }
1575 goto out_map;
1576 }
1577
1578out:
1579 if (page_nid != NUMA_NO_NODE)
1580 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1581 flags);
1582
1583 return 0;
1584
1585out_map:
1586 /* Restore the PMD */
1587 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1588 pmd = pmd_mkyoung(pmd);
1589 if (writable)
1590 pmd = pmd_mkwrite(pmd);
1591 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593 spin_unlock(vmf->ptl);
1594 goto out;
1595}
1596
1597/*
1598 * Return true if we do MADV_FREE successfully on entire pmd page.
1599 * Otherwise, return false.
1600 */
1601bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1602 pmd_t *pmd, unsigned long addr, unsigned long next)
1603{
1604 spinlock_t *ptl;
1605 pmd_t orig_pmd;
1606 struct page *page;
1607 struct mm_struct *mm = tlb->mm;
1608 bool ret = false;
1609
1610 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1611
1612 ptl = pmd_trans_huge_lock(pmd, vma);
1613 if (!ptl)
1614 goto out_unlocked;
1615
1616 orig_pmd = *pmd;
1617 if (is_huge_zero_pmd(orig_pmd))
1618 goto out;
1619
1620 if (unlikely(!pmd_present(orig_pmd))) {
1621 VM_BUG_ON(thp_migration_supported() &&
1622 !is_pmd_migration_entry(orig_pmd));
1623 goto out;
1624 }
1625
1626 page = pmd_page(orig_pmd);
1627 /*
1628 * If other processes are mapping this page, we couldn't discard
1629 * the page unless they all do MADV_FREE so let's skip the page.
1630 */
1631 if (total_mapcount(page) != 1)
1632 goto out;
1633
1634 if (!trylock_page(page))
1635 goto out;
1636
1637 /*
1638 * If user want to discard part-pages of THP, split it so MADV_FREE
1639 * will deactivate only them.
1640 */
1641 if (next - addr != HPAGE_PMD_SIZE) {
1642 get_page(page);
1643 spin_unlock(ptl);
1644 split_huge_page(page);
1645 unlock_page(page);
1646 put_page(page);
1647 goto out_unlocked;
1648 }
1649
1650 if (PageDirty(page))
1651 ClearPageDirty(page);
1652 unlock_page(page);
1653
1654 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1655 pmdp_invalidate(vma, addr, pmd);
1656 orig_pmd = pmd_mkold(orig_pmd);
1657 orig_pmd = pmd_mkclean(orig_pmd);
1658
1659 set_pmd_at(mm, addr, pmd, orig_pmd);
1660 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1661 }
1662
1663 mark_page_lazyfree(page);
1664 ret = true;
1665out:
1666 spin_unlock(ptl);
1667out_unlocked:
1668 return ret;
1669}
1670
1671static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1672{
1673 pgtable_t pgtable;
1674
1675 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1676 pte_free(mm, pgtable);
1677 mm_dec_nr_ptes(mm);
1678}
1679
1680int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1681 pmd_t *pmd, unsigned long addr)
1682{
1683 pmd_t orig_pmd;
1684 spinlock_t *ptl;
1685
1686 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1687
1688 ptl = __pmd_trans_huge_lock(pmd, vma);
1689 if (!ptl)
1690 return 0;
1691 /*
1692 * For architectures like ppc64 we look at deposited pgtable
1693 * when calling pmdp_huge_get_and_clear. So do the
1694 * pgtable_trans_huge_withdraw after finishing pmdp related
1695 * operations.
1696 */
1697 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1698 tlb->fullmm);
1699 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1700 if (vma_is_special_huge(vma)) {
1701 if (arch_needs_pgtable_deposit())
1702 zap_deposited_table(tlb->mm, pmd);
1703 spin_unlock(ptl);
1704 } else if (is_huge_zero_pmd(orig_pmd)) {
1705 zap_deposited_table(tlb->mm, pmd);
1706 spin_unlock(ptl);
1707 } else {
1708 struct page *page = NULL;
1709 int flush_needed = 1;
1710
1711 if (pmd_present(orig_pmd)) {
1712 page = pmd_page(orig_pmd);
1713 page_remove_rmap(page, vma, true);
1714 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1715 VM_BUG_ON_PAGE(!PageHead(page), page);
1716 } else if (thp_migration_supported()) {
1717 swp_entry_t entry;
1718
1719 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1720 entry = pmd_to_swp_entry(orig_pmd);
1721 page = pfn_swap_entry_to_page(entry);
1722 flush_needed = 0;
1723 } else
1724 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1725
1726 if (PageAnon(page)) {
1727 zap_deposited_table(tlb->mm, pmd);
1728 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1729 } else {
1730 if (arch_needs_pgtable_deposit())
1731 zap_deposited_table(tlb->mm, pmd);
1732 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1733 }
1734
1735 spin_unlock(ptl);
1736 if (flush_needed)
1737 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1738 }
1739 return 1;
1740}
1741
1742#ifndef pmd_move_must_withdraw
1743static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1744 spinlock_t *old_pmd_ptl,
1745 struct vm_area_struct *vma)
1746{
1747 /*
1748 * With split pmd lock we also need to move preallocated
1749 * PTE page table if new_pmd is on different PMD page table.
1750 *
1751 * We also don't deposit and withdraw tables for file pages.
1752 */
1753 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1754}
1755#endif
1756
1757static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1758{
1759#ifdef CONFIG_MEM_SOFT_DIRTY
1760 if (unlikely(is_pmd_migration_entry(pmd)))
1761 pmd = pmd_swp_mksoft_dirty(pmd);
1762 else if (pmd_present(pmd))
1763 pmd = pmd_mksoft_dirty(pmd);
1764#endif
1765 return pmd;
1766}
1767
1768bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1769 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1770{
1771 spinlock_t *old_ptl, *new_ptl;
1772 pmd_t pmd;
1773 struct mm_struct *mm = vma->vm_mm;
1774 bool force_flush = false;
1775
1776 /*
1777 * The destination pmd shouldn't be established, free_pgtables()
1778 * should have release it.
1779 */
1780 if (WARN_ON(!pmd_none(*new_pmd))) {
1781 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1782 return false;
1783 }
1784
1785 /*
1786 * We don't have to worry about the ordering of src and dst
1787 * ptlocks because exclusive mmap_lock prevents deadlock.
1788 */
1789 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1790 if (old_ptl) {
1791 new_ptl = pmd_lockptr(mm, new_pmd);
1792 if (new_ptl != old_ptl)
1793 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1794 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1795 if (pmd_present(pmd))
1796 force_flush = true;
1797 VM_BUG_ON(!pmd_none(*new_pmd));
1798
1799 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1800 pgtable_t pgtable;
1801 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1802 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1803 }
1804 pmd = move_soft_dirty_pmd(pmd);
1805 set_pmd_at(mm, new_addr, new_pmd, pmd);
1806 if (force_flush)
1807 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1808 if (new_ptl != old_ptl)
1809 spin_unlock(new_ptl);
1810 spin_unlock(old_ptl);
1811 return true;
1812 }
1813 return false;
1814}
1815
1816/*
1817 * Returns
1818 * - 0 if PMD could not be locked
1819 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1820 * or if prot_numa but THP migration is not supported
1821 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1822 */
1823int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1824 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1825 unsigned long cp_flags)
1826{
1827 struct mm_struct *mm = vma->vm_mm;
1828 spinlock_t *ptl;
1829 pmd_t oldpmd, entry;
1830 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1831 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1832 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1833 int ret = 1;
1834
1835 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1836
1837 if (prot_numa && !thp_migration_supported())
1838 return 1;
1839
1840 ptl = __pmd_trans_huge_lock(pmd, vma);
1841 if (!ptl)
1842 return 0;
1843
1844#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1845 if (is_swap_pmd(*pmd)) {
1846 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1847 struct page *page = pfn_swap_entry_to_page(entry);
1848
1849 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1850 if (is_writable_migration_entry(entry)) {
1851 pmd_t newpmd;
1852 /*
1853 * A protection check is difficult so
1854 * just be safe and disable write
1855 */
1856 if (PageAnon(page))
1857 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1858 else
1859 entry = make_readable_migration_entry(swp_offset(entry));
1860 newpmd = swp_entry_to_pmd(entry);
1861 if (pmd_swp_soft_dirty(*pmd))
1862 newpmd = pmd_swp_mksoft_dirty(newpmd);
1863 if (pmd_swp_uffd_wp(*pmd))
1864 newpmd = pmd_swp_mkuffd_wp(newpmd);
1865 set_pmd_at(mm, addr, pmd, newpmd);
1866 }
1867 goto unlock;
1868 }
1869#endif
1870
1871 if (prot_numa) {
1872 struct page *page;
1873 bool toptier;
1874 /*
1875 * Avoid trapping faults against the zero page. The read-only
1876 * data is likely to be read-cached on the local CPU and
1877 * local/remote hits to the zero page are not interesting.
1878 */
1879 if (is_huge_zero_pmd(*pmd))
1880 goto unlock;
1881
1882 if (pmd_protnone(*pmd))
1883 goto unlock;
1884
1885 page = pmd_page(*pmd);
1886 toptier = node_is_toptier(page_to_nid(page));
1887 /*
1888 * Skip scanning top tier node if normal numa
1889 * balancing is disabled
1890 */
1891 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1892 toptier)
1893 goto unlock;
1894
1895 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1896 !toptier)
1897 xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1898 }
1899 /*
1900 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1901 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1902 * which is also under mmap_read_lock(mm):
1903 *
1904 * CPU0: CPU1:
1905 * change_huge_pmd(prot_numa=1)
1906 * pmdp_huge_get_and_clear_notify()
1907 * madvise_dontneed()
1908 * zap_pmd_range()
1909 * pmd_trans_huge(*pmd) == 0 (without ptl)
1910 * // skip the pmd
1911 * set_pmd_at();
1912 * // pmd is re-established
1913 *
1914 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1915 * which may break userspace.
1916 *
1917 * pmdp_invalidate_ad() is required to make sure we don't miss
1918 * dirty/young flags set by hardware.
1919 */
1920 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1921
1922 entry = pmd_modify(oldpmd, newprot);
1923 if (uffd_wp) {
1924 entry = pmd_wrprotect(entry);
1925 entry = pmd_mkuffd_wp(entry);
1926 } else if (uffd_wp_resolve) {
1927 /*
1928 * Leave the write bit to be handled by PF interrupt
1929 * handler, then things like COW could be properly
1930 * handled.
1931 */
1932 entry = pmd_clear_uffd_wp(entry);
1933 }
1934
1935 /* See change_pte_range(). */
1936 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1937 can_change_pmd_writable(vma, addr, entry))
1938 entry = pmd_mkwrite(entry);
1939
1940 ret = HPAGE_PMD_NR;
1941 set_pmd_at(mm, addr, pmd, entry);
1942
1943 if (huge_pmd_needs_flush(oldpmd, entry))
1944 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1945unlock:
1946 spin_unlock(ptl);
1947 return ret;
1948}
1949
1950/*
1951 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1952 *
1953 * Note that if it returns page table lock pointer, this routine returns without
1954 * unlocking page table lock. So callers must unlock it.
1955 */
1956spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1957{
1958 spinlock_t *ptl;
1959 ptl = pmd_lock(vma->vm_mm, pmd);
1960 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1961 pmd_devmap(*pmd)))
1962 return ptl;
1963 spin_unlock(ptl);
1964 return NULL;
1965}
1966
1967/*
1968 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1969 *
1970 * Note that if it returns page table lock pointer, this routine returns without
1971 * unlocking page table lock. So callers must unlock it.
1972 */
1973spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1974{
1975 spinlock_t *ptl;
1976
1977 ptl = pud_lock(vma->vm_mm, pud);
1978 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1979 return ptl;
1980 spin_unlock(ptl);
1981 return NULL;
1982}
1983
1984#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1985int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1986 pud_t *pud, unsigned long addr)
1987{
1988 spinlock_t *ptl;
1989
1990 ptl = __pud_trans_huge_lock(pud, vma);
1991 if (!ptl)
1992 return 0;
1993
1994 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1995 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1996 if (vma_is_special_huge(vma)) {
1997 spin_unlock(ptl);
1998 /* No zero page support yet */
1999 } else {
2000 /* No support for anonymous PUD pages yet */
2001 BUG();
2002 }
2003 return 1;
2004}
2005
2006static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2007 unsigned long haddr)
2008{
2009 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2010 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2011 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2012 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2013
2014 count_vm_event(THP_SPLIT_PUD);
2015
2016 pudp_huge_clear_flush_notify(vma, haddr, pud);
2017}
2018
2019void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2020 unsigned long address)
2021{
2022 spinlock_t *ptl;
2023 struct mmu_notifier_range range;
2024
2025 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2026 address & HPAGE_PUD_MASK,
2027 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2028 mmu_notifier_invalidate_range_start(&range);
2029 ptl = pud_lock(vma->vm_mm, pud);
2030 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2031 goto out;
2032 __split_huge_pud_locked(vma, pud, range.start);
2033
2034out:
2035 spin_unlock(ptl);
2036 /*
2037 * No need to double call mmu_notifier->invalidate_range() callback as
2038 * the above pudp_huge_clear_flush_notify() did already call it.
2039 */
2040 mmu_notifier_invalidate_range_only_end(&range);
2041}
2042#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2043
2044static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2045 unsigned long haddr, pmd_t *pmd)
2046{
2047 struct mm_struct *mm = vma->vm_mm;
2048 pgtable_t pgtable;
2049 pmd_t _pmd;
2050 int i;
2051
2052 /*
2053 * Leave pmd empty until pte is filled note that it is fine to delay
2054 * notification until mmu_notifier_invalidate_range_end() as we are
2055 * replacing a zero pmd write protected page with a zero pte write
2056 * protected page.
2057 *
2058 * See Documentation/mm/mmu_notifier.rst
2059 */
2060 pmdp_huge_clear_flush(vma, haddr, pmd);
2061
2062 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2063 pmd_populate(mm, &_pmd, pgtable);
2064
2065 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2066 pte_t *pte, entry;
2067 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2068 entry = pte_mkspecial(entry);
2069 pte = pte_offset_map(&_pmd, haddr);
2070 VM_BUG_ON(!pte_none(*pte));
2071 set_pte_at(mm, haddr, pte, entry);
2072 pte_unmap(pte);
2073 }
2074 smp_wmb(); /* make pte visible before pmd */
2075 pmd_populate(mm, pmd, pgtable);
2076}
2077
2078static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2079 unsigned long haddr, bool freeze)
2080{
2081 struct mm_struct *mm = vma->vm_mm;
2082 struct page *page;
2083 pgtable_t pgtable;
2084 pmd_t old_pmd, _pmd;
2085 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2086 bool anon_exclusive = false, dirty = false;
2087 unsigned long addr;
2088 int i;
2089
2090 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2091 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2092 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2093 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2094 && !pmd_devmap(*pmd));
2095
2096 count_vm_event(THP_SPLIT_PMD);
2097
2098 if (!vma_is_anonymous(vma)) {
2099 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2100 /*
2101 * We are going to unmap this huge page. So
2102 * just go ahead and zap it
2103 */
2104 if (arch_needs_pgtable_deposit())
2105 zap_deposited_table(mm, pmd);
2106 if (vma_is_special_huge(vma))
2107 return;
2108 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2109 swp_entry_t entry;
2110
2111 entry = pmd_to_swp_entry(old_pmd);
2112 page = pfn_swap_entry_to_page(entry);
2113 } else {
2114 page = pmd_page(old_pmd);
2115 if (!PageDirty(page) && pmd_dirty(old_pmd))
2116 set_page_dirty(page);
2117 if (!PageReferenced(page) && pmd_young(old_pmd))
2118 SetPageReferenced(page);
2119 page_remove_rmap(page, vma, true);
2120 put_page(page);
2121 }
2122 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2123 return;
2124 }
2125
2126 if (is_huge_zero_pmd(*pmd)) {
2127 /*
2128 * FIXME: Do we want to invalidate secondary mmu by calling
2129 * mmu_notifier_invalidate_range() see comments below inside
2130 * __split_huge_pmd() ?
2131 *
2132 * We are going from a zero huge page write protected to zero
2133 * small page also write protected so it does not seems useful
2134 * to invalidate secondary mmu at this time.
2135 */
2136 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2137 }
2138
2139 /*
2140 * Up to this point the pmd is present and huge and userland has the
2141 * whole access to the hugepage during the split (which happens in
2142 * place). If we overwrite the pmd with the not-huge version pointing
2143 * to the pte here (which of course we could if all CPUs were bug
2144 * free), userland could trigger a small page size TLB miss on the
2145 * small sized TLB while the hugepage TLB entry is still established in
2146 * the huge TLB. Some CPU doesn't like that.
2147 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2148 * 383 on page 105. Intel should be safe but is also warns that it's
2149 * only safe if the permission and cache attributes of the two entries
2150 * loaded in the two TLB is identical (which should be the case here).
2151 * But it is generally safer to never allow small and huge TLB entries
2152 * for the same virtual address to be loaded simultaneously. So instead
2153 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2154 * current pmd notpresent (atomically because here the pmd_trans_huge
2155 * must remain set at all times on the pmd until the split is complete
2156 * for this pmd), then we flush the SMP TLB and finally we write the
2157 * non-huge version of the pmd entry with pmd_populate.
2158 */
2159 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2160
2161 pmd_migration = is_pmd_migration_entry(old_pmd);
2162 if (unlikely(pmd_migration)) {
2163 swp_entry_t entry;
2164
2165 entry = pmd_to_swp_entry(old_pmd);
2166 page = pfn_swap_entry_to_page(entry);
2167 write = is_writable_migration_entry(entry);
2168 if (PageAnon(page))
2169 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2170 young = is_migration_entry_young(entry);
2171 dirty = is_migration_entry_dirty(entry);
2172 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2173 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2174 } else {
2175 page = pmd_page(old_pmd);
2176 if (pmd_dirty(old_pmd)) {
2177 dirty = true;
2178 SetPageDirty(page);
2179 }
2180 write = pmd_write(old_pmd);
2181 young = pmd_young(old_pmd);
2182 soft_dirty = pmd_soft_dirty(old_pmd);
2183 uffd_wp = pmd_uffd_wp(old_pmd);
2184
2185 VM_BUG_ON_PAGE(!page_count(page), page);
2186
2187 /*
2188 * Without "freeze", we'll simply split the PMD, propagating the
2189 * PageAnonExclusive() flag for each PTE by setting it for
2190 * each subpage -- no need to (temporarily) clear.
2191 *
2192 * With "freeze" we want to replace mapped pages by
2193 * migration entries right away. This is only possible if we
2194 * managed to clear PageAnonExclusive() -- see
2195 * set_pmd_migration_entry().
2196 *
2197 * In case we cannot clear PageAnonExclusive(), split the PMD
2198 * only and let try_to_migrate_one() fail later.
2199 *
2200 * See page_try_share_anon_rmap(): invalidate PMD first.
2201 */
2202 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2203 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2204 freeze = false;
2205 if (!freeze)
2206 page_ref_add(page, HPAGE_PMD_NR - 1);
2207 }
2208
2209 /*
2210 * Withdraw the table only after we mark the pmd entry invalid.
2211 * This's critical for some architectures (Power).
2212 */
2213 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2214 pmd_populate(mm, &_pmd, pgtable);
2215
2216 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2217 pte_t entry, *pte;
2218 /*
2219 * Note that NUMA hinting access restrictions are not
2220 * transferred to avoid any possibility of altering
2221 * permissions across VMAs.
2222 */
2223 if (freeze || pmd_migration) {
2224 swp_entry_t swp_entry;
2225 if (write)
2226 swp_entry = make_writable_migration_entry(
2227 page_to_pfn(page + i));
2228 else if (anon_exclusive)
2229 swp_entry = make_readable_exclusive_migration_entry(
2230 page_to_pfn(page + i));
2231 else
2232 swp_entry = make_readable_migration_entry(
2233 page_to_pfn(page + i));
2234 if (young)
2235 swp_entry = make_migration_entry_young(swp_entry);
2236 if (dirty)
2237 swp_entry = make_migration_entry_dirty(swp_entry);
2238 entry = swp_entry_to_pte(swp_entry);
2239 if (soft_dirty)
2240 entry = pte_swp_mksoft_dirty(entry);
2241 if (uffd_wp)
2242 entry = pte_swp_mkuffd_wp(entry);
2243 } else {
2244 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2245 entry = maybe_mkwrite(entry, vma);
2246 if (anon_exclusive)
2247 SetPageAnonExclusive(page + i);
2248 if (!young)
2249 entry = pte_mkold(entry);
2250 /* NOTE: this may set soft-dirty too on some archs */
2251 if (dirty)
2252 entry = pte_mkdirty(entry);
2253 /*
2254 * NOTE: this needs to happen after pte_mkdirty,
2255 * because some archs (sparc64, loongarch) could
2256 * set hw write bit when mkdirty.
2257 */
2258 if (!write)
2259 entry = pte_wrprotect(entry);
2260 if (soft_dirty)
2261 entry = pte_mksoft_dirty(entry);
2262 if (uffd_wp)
2263 entry = pte_mkuffd_wp(entry);
2264 page_add_anon_rmap(page + i, vma, addr, false);
2265 }
2266 pte = pte_offset_map(&_pmd, addr);
2267 BUG_ON(!pte_none(*pte));
2268 set_pte_at(mm, addr, pte, entry);
2269 pte_unmap(pte);
2270 }
2271
2272 if (!pmd_migration)
2273 page_remove_rmap(page, vma, true);
2274 if (freeze)
2275 put_page(page);
2276
2277 smp_wmb(); /* make pte visible before pmd */
2278 pmd_populate(mm, pmd, pgtable);
2279}
2280
2281void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2282 unsigned long address, bool freeze, struct folio *folio)
2283{
2284 spinlock_t *ptl;
2285 struct mmu_notifier_range range;
2286
2287 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2288 address & HPAGE_PMD_MASK,
2289 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2290 mmu_notifier_invalidate_range_start(&range);
2291 ptl = pmd_lock(vma->vm_mm, pmd);
2292
2293 /*
2294 * If caller asks to setup a migration entry, we need a folio to check
2295 * pmd against. Otherwise we can end up replacing wrong folio.
2296 */
2297 VM_BUG_ON(freeze && !folio);
2298 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2299
2300 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2301 is_pmd_migration_entry(*pmd)) {
2302 /*
2303 * It's safe to call pmd_page when folio is set because it's
2304 * guaranteed that pmd is present.
2305 */
2306 if (folio && folio != page_folio(pmd_page(*pmd)))
2307 goto out;
2308 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2309 }
2310
2311out:
2312 spin_unlock(ptl);
2313 /*
2314 * No need to double call mmu_notifier->invalidate_range() callback.
2315 * They are 3 cases to consider inside __split_huge_pmd_locked():
2316 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2317 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2318 * fault will trigger a flush_notify before pointing to a new page
2319 * (it is fine if the secondary mmu keeps pointing to the old zero
2320 * page in the meantime)
2321 * 3) Split a huge pmd into pte pointing to the same page. No need
2322 * to invalidate secondary tlb entry they are all still valid.
2323 * any further changes to individual pte will notify. So no need
2324 * to call mmu_notifier->invalidate_range()
2325 */
2326 mmu_notifier_invalidate_range_only_end(&range);
2327}
2328
2329void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2330 bool freeze, struct folio *folio)
2331{
2332 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2333
2334 if (!pmd)
2335 return;
2336
2337 __split_huge_pmd(vma, pmd, address, freeze, folio);
2338}
2339
2340static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2341{
2342 /*
2343 * If the new address isn't hpage aligned and it could previously
2344 * contain an hugepage: check if we need to split an huge pmd.
2345 */
2346 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2347 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2348 ALIGN(address, HPAGE_PMD_SIZE)))
2349 split_huge_pmd_address(vma, address, false, NULL);
2350}
2351
2352void vma_adjust_trans_huge(struct vm_area_struct *vma,
2353 unsigned long start,
2354 unsigned long end,
2355 long adjust_next)
2356{
2357 /* Check if we need to split start first. */
2358 split_huge_pmd_if_needed(vma, start);
2359
2360 /* Check if we need to split end next. */
2361 split_huge_pmd_if_needed(vma, end);
2362
2363 /*
2364 * If we're also updating the next vma vm_start,
2365 * check if we need to split it.
2366 */
2367 if (adjust_next > 0) {
2368 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2369 unsigned long nstart = next->vm_start;
2370 nstart += adjust_next;
2371 split_huge_pmd_if_needed(next, nstart);
2372 }
2373}
2374
2375static void unmap_folio(struct folio *folio)
2376{
2377 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2378 TTU_SYNC;
2379
2380 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2381
2382 /*
2383 * Anon pages need migration entries to preserve them, but file
2384 * pages can simply be left unmapped, then faulted back on demand.
2385 * If that is ever changed (perhaps for mlock), update remap_page().
2386 */
2387 if (folio_test_anon(folio))
2388 try_to_migrate(folio, ttu_flags);
2389 else
2390 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2391}
2392
2393static void remap_page(struct folio *folio, unsigned long nr)
2394{
2395 int i = 0;
2396
2397 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2398 if (!folio_test_anon(folio))
2399 return;
2400 for (;;) {
2401 remove_migration_ptes(folio, folio, true);
2402 i += folio_nr_pages(folio);
2403 if (i >= nr)
2404 break;
2405 folio = folio_next(folio);
2406 }
2407}
2408
2409static void lru_add_page_tail(struct page *head, struct page *tail,
2410 struct lruvec *lruvec, struct list_head *list)
2411{
2412 VM_BUG_ON_PAGE(!PageHead(head), head);
2413 VM_BUG_ON_PAGE(PageCompound(tail), head);
2414 VM_BUG_ON_PAGE(PageLRU(tail), head);
2415 lockdep_assert_held(&lruvec->lru_lock);
2416
2417 if (list) {
2418 /* page reclaim is reclaiming a huge page */
2419 VM_WARN_ON(PageLRU(head));
2420 get_page(tail);
2421 list_add_tail(&tail->lru, list);
2422 } else {
2423 /* head is still on lru (and we have it frozen) */
2424 VM_WARN_ON(!PageLRU(head));
2425 if (PageUnevictable(tail))
2426 tail->mlock_count = 0;
2427 else
2428 list_add_tail(&tail->lru, &head->lru);
2429 SetPageLRU(tail);
2430 }
2431}
2432
2433static void __split_huge_page_tail(struct page *head, int tail,
2434 struct lruvec *lruvec, struct list_head *list)
2435{
2436 struct page *page_tail = head + tail;
2437
2438 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2439
2440 /*
2441 * Clone page flags before unfreezing refcount.
2442 *
2443 * After successful get_page_unless_zero() might follow flags change,
2444 * for example lock_page() which set PG_waiters.
2445 *
2446 * Note that for mapped sub-pages of an anonymous THP,
2447 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2448 * the migration entry instead from where remap_page() will restore it.
2449 * We can still have PG_anon_exclusive set on effectively unmapped and
2450 * unreferenced sub-pages of an anonymous THP: we can simply drop
2451 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2452 */
2453 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2454 page_tail->flags |= (head->flags &
2455 ((1L << PG_referenced) |
2456 (1L << PG_swapbacked) |
2457 (1L << PG_swapcache) |
2458 (1L << PG_mlocked) |
2459 (1L << PG_uptodate) |
2460 (1L << PG_active) |
2461 (1L << PG_workingset) |
2462 (1L << PG_locked) |
2463 (1L << PG_unevictable) |
2464#ifdef CONFIG_ARCH_USES_PG_ARCH_X
2465 (1L << PG_arch_2) |
2466 (1L << PG_arch_3) |
2467#endif
2468 (1L << PG_dirty) |
2469 LRU_GEN_MASK | LRU_REFS_MASK));
2470
2471 /* ->mapping in first and second tail page is replaced by other uses */
2472 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2473 page_tail);
2474 page_tail->mapping = head->mapping;
2475 page_tail->index = head->index + tail;
2476
2477 /*
2478 * page->private should not be set in tail pages with the exception
2479 * of swap cache pages that store the swp_entry_t in tail pages.
2480 * Fix up and warn once if private is unexpectedly set.
2481 *
2482 * What of 32-bit systems, on which head[1].compound_pincount overlays
2483 * head[1].private? No problem: THP_SWAP is not enabled on 32-bit, and
2484 * compound_pincount must be 0 for folio_ref_freeze() to have succeeded.
2485 */
2486 if (!folio_test_swapcache(page_folio(head))) {
2487 VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2488 page_tail->private = 0;
2489 }
2490
2491 /* Page flags must be visible before we make the page non-compound. */
2492 smp_wmb();
2493
2494 /*
2495 * Clear PageTail before unfreezing page refcount.
2496 *
2497 * After successful get_page_unless_zero() might follow put_page()
2498 * which needs correct compound_head().
2499 */
2500 clear_compound_head(page_tail);
2501
2502 /* Finally unfreeze refcount. Additional reference from page cache. */
2503 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2504 PageSwapCache(head)));
2505
2506 if (page_is_young(head))
2507 set_page_young(page_tail);
2508 if (page_is_idle(head))
2509 set_page_idle(page_tail);
2510
2511 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2512
2513 /*
2514 * always add to the tail because some iterators expect new
2515 * pages to show after the currently processed elements - e.g.
2516 * migrate_pages
2517 */
2518 lru_add_page_tail(head, page_tail, lruvec, list);
2519}
2520
2521static void __split_huge_page(struct page *page, struct list_head *list,
2522 pgoff_t end)
2523{
2524 struct folio *folio = page_folio(page);
2525 struct page *head = &folio->page;
2526 struct lruvec *lruvec;
2527 struct address_space *swap_cache = NULL;
2528 unsigned long offset = 0;
2529 unsigned int nr = thp_nr_pages(head);
2530 int i;
2531
2532 /* complete memcg works before add pages to LRU */
2533 split_page_memcg(head, nr);
2534
2535 if (PageAnon(head) && PageSwapCache(head)) {
2536 swp_entry_t entry = { .val = page_private(head) };
2537
2538 offset = swp_offset(entry);
2539 swap_cache = swap_address_space(entry);
2540 xa_lock(&swap_cache->i_pages);
2541 }
2542
2543 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2544 lruvec = folio_lruvec_lock(folio);
2545
2546 ClearPageHasHWPoisoned(head);
2547
2548 for (i = nr - 1; i >= 1; i--) {
2549 __split_huge_page_tail(head, i, lruvec, list);
2550 /* Some pages can be beyond EOF: drop them from page cache */
2551 if (head[i].index >= end) {
2552 struct folio *tail = page_folio(head + i);
2553
2554 if (shmem_mapping(head->mapping))
2555 shmem_uncharge(head->mapping->host, 1);
2556 else if (folio_test_clear_dirty(tail))
2557 folio_account_cleaned(tail,
2558 inode_to_wb(folio->mapping->host));
2559 __filemap_remove_folio(tail, NULL);
2560 folio_put(tail);
2561 } else if (!PageAnon(page)) {
2562 __xa_store(&head->mapping->i_pages, head[i].index,
2563 head + i, 0);
2564 } else if (swap_cache) {
2565 __xa_store(&swap_cache->i_pages, offset + i,
2566 head + i, 0);
2567 }
2568 }
2569
2570 ClearPageCompound(head);
2571 unlock_page_lruvec(lruvec);
2572 /* Caller disabled irqs, so they are still disabled here */
2573
2574 split_page_owner(head, nr);
2575
2576 /* See comment in __split_huge_page_tail() */
2577 if (PageAnon(head)) {
2578 /* Additional pin to swap cache */
2579 if (PageSwapCache(head)) {
2580 page_ref_add(head, 2);
2581 xa_unlock(&swap_cache->i_pages);
2582 } else {
2583 page_ref_inc(head);
2584 }
2585 } else {
2586 /* Additional pin to page cache */
2587 page_ref_add(head, 2);
2588 xa_unlock(&head->mapping->i_pages);
2589 }
2590 local_irq_enable();
2591
2592 remap_page(folio, nr);
2593
2594 if (PageSwapCache(head)) {
2595 swp_entry_t entry = { .val = page_private(head) };
2596
2597 split_swap_cluster(entry);
2598 }
2599
2600 for (i = 0; i < nr; i++) {
2601 struct page *subpage = head + i;
2602 if (subpage == page)
2603 continue;
2604 unlock_page(subpage);
2605
2606 /*
2607 * Subpages may be freed if there wasn't any mapping
2608 * like if add_to_swap() is running on a lru page that
2609 * had its mapping zapped. And freeing these pages
2610 * requires taking the lru_lock so we do the put_page
2611 * of the tail pages after the split is complete.
2612 */
2613 free_page_and_swap_cache(subpage);
2614 }
2615}
2616
2617/* Racy check whether the huge page can be split */
2618bool can_split_folio(struct folio *folio, int *pextra_pins)
2619{
2620 int extra_pins;
2621
2622 /* Additional pins from page cache */
2623 if (folio_test_anon(folio))
2624 extra_pins = folio_test_swapcache(folio) ?
2625 folio_nr_pages(folio) : 0;
2626 else
2627 extra_pins = folio_nr_pages(folio);
2628 if (pextra_pins)
2629 *pextra_pins = extra_pins;
2630 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2631}
2632
2633/*
2634 * This function splits huge page into normal pages. @page can point to any
2635 * subpage of huge page to split. Split doesn't change the position of @page.
2636 *
2637 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2638 * The huge page must be locked.
2639 *
2640 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2641 *
2642 * Both head page and tail pages will inherit mapping, flags, and so on from
2643 * the hugepage.
2644 *
2645 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2646 * they are not mapped.
2647 *
2648 * Returns 0 if the hugepage is split successfully.
2649 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2650 * us.
2651 */
2652int split_huge_page_to_list(struct page *page, struct list_head *list)
2653{
2654 struct folio *folio = page_folio(page);
2655 struct deferred_split *ds_queue = get_deferred_split_queue(&folio->page);
2656 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2657 struct anon_vma *anon_vma = NULL;
2658 struct address_space *mapping = NULL;
2659 int extra_pins, ret;
2660 pgoff_t end;
2661 bool is_hzp;
2662
2663 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2664 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2665
2666 is_hzp = is_huge_zero_page(&folio->page);
2667 VM_WARN_ON_ONCE_FOLIO(is_hzp, folio);
2668 if (is_hzp)
2669 return -EBUSY;
2670
2671 if (folio_test_writeback(folio))
2672 return -EBUSY;
2673
2674 if (folio_test_anon(folio)) {
2675 /*
2676 * The caller does not necessarily hold an mmap_lock that would
2677 * prevent the anon_vma disappearing so we first we take a
2678 * reference to it and then lock the anon_vma for write. This
2679 * is similar to folio_lock_anon_vma_read except the write lock
2680 * is taken to serialise against parallel split or collapse
2681 * operations.
2682 */
2683 anon_vma = folio_get_anon_vma(folio);
2684 if (!anon_vma) {
2685 ret = -EBUSY;
2686 goto out;
2687 }
2688 end = -1;
2689 mapping = NULL;
2690 anon_vma_lock_write(anon_vma);
2691 } else {
2692 gfp_t gfp;
2693
2694 mapping = folio->mapping;
2695
2696 /* Truncated ? */
2697 if (!mapping) {
2698 ret = -EBUSY;
2699 goto out;
2700 }
2701
2702 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2703 GFP_RECLAIM_MASK);
2704
2705 if (folio_test_private(folio) &&
2706 !filemap_release_folio(folio, gfp)) {
2707 ret = -EBUSY;
2708 goto out;
2709 }
2710
2711 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2712 if (xas_error(&xas)) {
2713 ret = xas_error(&xas);
2714 goto out;
2715 }
2716
2717 anon_vma = NULL;
2718 i_mmap_lock_read(mapping);
2719
2720 /*
2721 *__split_huge_page() may need to trim off pages beyond EOF:
2722 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2723 * which cannot be nested inside the page tree lock. So note
2724 * end now: i_size itself may be changed at any moment, but
2725 * folio lock is good enough to serialize the trimming.
2726 */
2727 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2728 if (shmem_mapping(mapping))
2729 end = shmem_fallocend(mapping->host, end);
2730 }
2731
2732 /*
2733 * Racy check if we can split the page, before unmap_folio() will
2734 * split PMDs
2735 */
2736 if (!can_split_folio(folio, &extra_pins)) {
2737 ret = -EAGAIN;
2738 goto out_unlock;
2739 }
2740
2741 unmap_folio(folio);
2742
2743 /* block interrupt reentry in xa_lock and spinlock */
2744 local_irq_disable();
2745 if (mapping) {
2746 /*
2747 * Check if the folio is present in page cache.
2748 * We assume all tail are present too, if folio is there.
2749 */
2750 xas_lock(&xas);
2751 xas_reset(&xas);
2752 if (xas_load(&xas) != folio)
2753 goto fail;
2754 }
2755
2756 /* Prevent deferred_split_scan() touching ->_refcount */
2757 spin_lock(&ds_queue->split_queue_lock);
2758 if (folio_ref_freeze(folio, 1 + extra_pins)) {
2759 if (!list_empty(page_deferred_list(&folio->page))) {
2760 ds_queue->split_queue_len--;
2761 list_del(page_deferred_list(&folio->page));
2762 }
2763 spin_unlock(&ds_queue->split_queue_lock);
2764 if (mapping) {
2765 int nr = folio_nr_pages(folio);
2766
2767 xas_split(&xas, folio, folio_order(folio));
2768 if (folio_test_swapbacked(folio)) {
2769 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2770 -nr);
2771 } else {
2772 __lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2773 -nr);
2774 filemap_nr_thps_dec(mapping);
2775 }
2776 }
2777
2778 __split_huge_page(page, list, end);
2779 ret = 0;
2780 } else {
2781 spin_unlock(&ds_queue->split_queue_lock);
2782fail:
2783 if (mapping)
2784 xas_unlock(&xas);
2785 local_irq_enable();
2786 remap_page(folio, folio_nr_pages(folio));
2787 ret = -EAGAIN;
2788 }
2789
2790out_unlock:
2791 if (anon_vma) {
2792 anon_vma_unlock_write(anon_vma);
2793 put_anon_vma(anon_vma);
2794 }
2795 if (mapping)
2796 i_mmap_unlock_read(mapping);
2797out:
2798 xas_destroy(&xas);
2799 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2800 return ret;
2801}
2802
2803void free_transhuge_page(struct page *page)
2804{
2805 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2806 unsigned long flags;
2807
2808 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2809 if (!list_empty(page_deferred_list(page))) {
2810 ds_queue->split_queue_len--;
2811 list_del(page_deferred_list(page));
2812 }
2813 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2814 free_compound_page(page);
2815}
2816
2817void deferred_split_huge_page(struct page *page)
2818{
2819 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2820#ifdef CONFIG_MEMCG
2821 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2822#endif
2823 unsigned long flags;
2824
2825 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2826
2827 /*
2828 * The try_to_unmap() in page reclaim path might reach here too,
2829 * this may cause a race condition to corrupt deferred split queue.
2830 * And, if page reclaim is already handling the same page, it is
2831 * unnecessary to handle it again in shrinker.
2832 *
2833 * Check PageSwapCache to determine if the page is being
2834 * handled by page reclaim since THP swap would add the page into
2835 * swap cache before calling try_to_unmap().
2836 */
2837 if (PageSwapCache(page))
2838 return;
2839
2840 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2841 if (list_empty(page_deferred_list(page))) {
2842 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2843 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2844 ds_queue->split_queue_len++;
2845#ifdef CONFIG_MEMCG
2846 if (memcg)
2847 set_shrinker_bit(memcg, page_to_nid(page),
2848 deferred_split_shrinker.id);
2849#endif
2850 }
2851 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2852}
2853
2854static unsigned long deferred_split_count(struct shrinker *shrink,
2855 struct shrink_control *sc)
2856{
2857 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2858 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2859
2860#ifdef CONFIG_MEMCG
2861 if (sc->memcg)
2862 ds_queue = &sc->memcg->deferred_split_queue;
2863#endif
2864 return READ_ONCE(ds_queue->split_queue_len);
2865}
2866
2867static unsigned long deferred_split_scan(struct shrinker *shrink,
2868 struct shrink_control *sc)
2869{
2870 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2871 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2872 unsigned long flags;
2873 LIST_HEAD(list), *pos, *next;
2874 struct page *page;
2875 int split = 0;
2876
2877#ifdef CONFIG_MEMCG
2878 if (sc->memcg)
2879 ds_queue = &sc->memcg->deferred_split_queue;
2880#endif
2881
2882 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2883 /* Take pin on all head pages to avoid freeing them under us */
2884 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2885 page = list_entry((void *)pos, struct page, deferred_list);
2886 page = compound_head(page);
2887 if (get_page_unless_zero(page)) {
2888 list_move(page_deferred_list(page), &list);
2889 } else {
2890 /* We lost race with put_compound_page() */
2891 list_del_init(page_deferred_list(page));
2892 ds_queue->split_queue_len--;
2893 }
2894 if (!--sc->nr_to_scan)
2895 break;
2896 }
2897 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2898
2899 list_for_each_safe(pos, next, &list) {
2900 page = list_entry((void *)pos, struct page, deferred_list);
2901 if (!trylock_page(page))
2902 goto next;
2903 /* split_huge_page() removes page from list on success */
2904 if (!split_huge_page(page))
2905 split++;
2906 unlock_page(page);
2907next:
2908 put_page(page);
2909 }
2910
2911 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2912 list_splice_tail(&list, &ds_queue->split_queue);
2913 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2914
2915 /*
2916 * Stop shrinker if we didn't split any page, but the queue is empty.
2917 * This can happen if pages were freed under us.
2918 */
2919 if (!split && list_empty(&ds_queue->split_queue))
2920 return SHRINK_STOP;
2921 return split;
2922}
2923
2924static struct shrinker deferred_split_shrinker = {
2925 .count_objects = deferred_split_count,
2926 .scan_objects = deferred_split_scan,
2927 .seeks = DEFAULT_SEEKS,
2928 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2929 SHRINKER_NONSLAB,
2930};
2931
2932#ifdef CONFIG_DEBUG_FS
2933static void split_huge_pages_all(void)
2934{
2935 struct zone *zone;
2936 struct page *page;
2937 unsigned long pfn, max_zone_pfn;
2938 unsigned long total = 0, split = 0;
2939
2940 pr_debug("Split all THPs\n");
2941 for_each_zone(zone) {
2942 if (!managed_zone(zone))
2943 continue;
2944 max_zone_pfn = zone_end_pfn(zone);
2945 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2946 int nr_pages;
2947
2948 page = pfn_to_online_page(pfn);
2949 if (!page || !get_page_unless_zero(page))
2950 continue;
2951
2952 if (zone != page_zone(page))
2953 goto next;
2954
2955 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2956 goto next;
2957
2958 total++;
2959 lock_page(page);
2960 nr_pages = thp_nr_pages(page);
2961 if (!split_huge_page(page))
2962 split++;
2963 pfn += nr_pages - 1;
2964 unlock_page(page);
2965next:
2966 put_page(page);
2967 cond_resched();
2968 }
2969 }
2970
2971 pr_debug("%lu of %lu THP split\n", split, total);
2972}
2973
2974static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2975{
2976 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2977 is_vm_hugetlb_page(vma);
2978}
2979
2980static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2981 unsigned long vaddr_end)
2982{
2983 int ret = 0;
2984 struct task_struct *task;
2985 struct mm_struct *mm;
2986 unsigned long total = 0, split = 0;
2987 unsigned long addr;
2988
2989 vaddr_start &= PAGE_MASK;
2990 vaddr_end &= PAGE_MASK;
2991
2992 /* Find the task_struct from pid */
2993 rcu_read_lock();
2994 task = find_task_by_vpid(pid);
2995 if (!task) {
2996 rcu_read_unlock();
2997 ret = -ESRCH;
2998 goto out;
2999 }
3000 get_task_struct(task);
3001 rcu_read_unlock();
3002
3003 /* Find the mm_struct */
3004 mm = get_task_mm(task);
3005 put_task_struct(task);
3006
3007 if (!mm) {
3008 ret = -EINVAL;
3009 goto out;
3010 }
3011
3012 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3013 pid, vaddr_start, vaddr_end);
3014
3015 mmap_read_lock(mm);
3016 /*
3017 * always increase addr by PAGE_SIZE, since we could have a PTE page
3018 * table filled with PTE-mapped THPs, each of which is distinct.
3019 */
3020 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3021 struct vm_area_struct *vma = vma_lookup(mm, addr);
3022 struct page *page;
3023
3024 if (!vma)
3025 break;
3026
3027 /* skip special VMA and hugetlb VMA */
3028 if (vma_not_suitable_for_thp_split(vma)) {
3029 addr = vma->vm_end;
3030 continue;
3031 }
3032
3033 /* FOLL_DUMP to ignore special (like zero) pages */
3034 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3035
3036 if (IS_ERR_OR_NULL(page))
3037 continue;
3038
3039 if (!is_transparent_hugepage(page))
3040 goto next;
3041
3042 total++;
3043 if (!can_split_folio(page_folio(page), NULL))
3044 goto next;
3045
3046 if (!trylock_page(page))
3047 goto next;
3048
3049 if (!split_huge_page(page))
3050 split++;
3051
3052 unlock_page(page);
3053next:
3054 put_page(page);
3055 cond_resched();
3056 }
3057 mmap_read_unlock(mm);
3058 mmput(mm);
3059
3060 pr_debug("%lu of %lu THP split\n", split, total);
3061
3062out:
3063 return ret;
3064}
3065
3066static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3067 pgoff_t off_end)
3068{
3069 struct filename *file;
3070 struct file *candidate;
3071 struct address_space *mapping;
3072 int ret = -EINVAL;
3073 pgoff_t index;
3074 int nr_pages = 1;
3075 unsigned long total = 0, split = 0;
3076
3077 file = getname_kernel(file_path);
3078 if (IS_ERR(file))
3079 return ret;
3080
3081 candidate = file_open_name(file, O_RDONLY, 0);
3082 if (IS_ERR(candidate))
3083 goto out;
3084
3085 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3086 file_path, off_start, off_end);
3087
3088 mapping = candidate->f_mapping;
3089
3090 for (index = off_start; index < off_end; index += nr_pages) {
3091 struct folio *folio = __filemap_get_folio(mapping, index,
3092 FGP_ENTRY, 0);
3093
3094 nr_pages = 1;
3095 if (xa_is_value(folio) || !folio)
3096 continue;
3097
3098 if (!folio_test_large(folio))
3099 goto next;
3100
3101 total++;
3102 nr_pages = folio_nr_pages(folio);
3103
3104 if (!folio_trylock(folio))
3105 goto next;
3106
3107 if (!split_folio(folio))
3108 split++;
3109
3110 folio_unlock(folio);
3111next:
3112 folio_put(folio);
3113 cond_resched();
3114 }
3115
3116 filp_close(candidate, NULL);
3117 ret = 0;
3118
3119 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3120out:
3121 putname(file);
3122 return ret;
3123}
3124
3125#define MAX_INPUT_BUF_SZ 255
3126
3127static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3128 size_t count, loff_t *ppops)
3129{
3130 static DEFINE_MUTEX(split_debug_mutex);
3131 ssize_t ret;
3132 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3133 char input_buf[MAX_INPUT_BUF_SZ];
3134 int pid;
3135 unsigned long vaddr_start, vaddr_end;
3136
3137 ret = mutex_lock_interruptible(&split_debug_mutex);
3138 if (ret)
3139 return ret;
3140
3141 ret = -EFAULT;
3142
3143 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3144 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3145 goto out;
3146
3147 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3148
3149 if (input_buf[0] == '/') {
3150 char *tok;
3151 char *buf = input_buf;
3152 char file_path[MAX_INPUT_BUF_SZ];
3153 pgoff_t off_start = 0, off_end = 0;
3154 size_t input_len = strlen(input_buf);
3155
3156 tok = strsep(&buf, ",");
3157 if (tok) {
3158 strcpy(file_path, tok);
3159 } else {
3160 ret = -EINVAL;
3161 goto out;
3162 }
3163
3164 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3165 if (ret != 2) {
3166 ret = -EINVAL;
3167 goto out;
3168 }
3169 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3170 if (!ret)
3171 ret = input_len;
3172
3173 goto out;
3174 }
3175
3176 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3177 if (ret == 1 && pid == 1) {
3178 split_huge_pages_all();
3179 ret = strlen(input_buf);
3180 goto out;
3181 } else if (ret != 3) {
3182 ret = -EINVAL;
3183 goto out;
3184 }
3185
3186 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3187 if (!ret)
3188 ret = strlen(input_buf);
3189out:
3190 mutex_unlock(&split_debug_mutex);
3191 return ret;
3192
3193}
3194
3195static const struct file_operations split_huge_pages_fops = {
3196 .owner = THIS_MODULE,
3197 .write = split_huge_pages_write,
3198 .llseek = no_llseek,
3199};
3200
3201static int __init split_huge_pages_debugfs(void)
3202{
3203 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3204 &split_huge_pages_fops);
3205 return 0;
3206}
3207late_initcall(split_huge_pages_debugfs);
3208#endif
3209
3210#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3211int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3212 struct page *page)
3213{
3214 struct vm_area_struct *vma = pvmw->vma;
3215 struct mm_struct *mm = vma->vm_mm;
3216 unsigned long address = pvmw->address;
3217 bool anon_exclusive;
3218 pmd_t pmdval;
3219 swp_entry_t entry;
3220 pmd_t pmdswp;
3221
3222 if (!(pvmw->pmd && !pvmw->pte))
3223 return 0;
3224
3225 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3226 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3227
3228 /* See page_try_share_anon_rmap(): invalidate PMD first. */
3229 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3230 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3231 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3232 return -EBUSY;
3233 }
3234
3235 if (pmd_dirty(pmdval))
3236 set_page_dirty(page);
3237 if (pmd_write(pmdval))
3238 entry = make_writable_migration_entry(page_to_pfn(page));
3239 else if (anon_exclusive)
3240 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3241 else
3242 entry = make_readable_migration_entry(page_to_pfn(page));
3243 if (pmd_young(pmdval))
3244 entry = make_migration_entry_young(entry);
3245 if (pmd_dirty(pmdval))
3246 entry = make_migration_entry_dirty(entry);
3247 pmdswp = swp_entry_to_pmd(entry);
3248 if (pmd_soft_dirty(pmdval))
3249 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3250 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3251 page_remove_rmap(page, vma, true);
3252 put_page(page);
3253 trace_set_migration_pmd(address, pmd_val(pmdswp));
3254
3255 return 0;
3256}
3257
3258void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3259{
3260 struct vm_area_struct *vma = pvmw->vma;
3261 struct mm_struct *mm = vma->vm_mm;
3262 unsigned long address = pvmw->address;
3263 unsigned long haddr = address & HPAGE_PMD_MASK;
3264 pmd_t pmde;
3265 swp_entry_t entry;
3266
3267 if (!(pvmw->pmd && !pvmw->pte))
3268 return;
3269
3270 entry = pmd_to_swp_entry(*pvmw->pmd);
3271 get_page(new);
3272 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3273 if (pmd_swp_soft_dirty(*pvmw->pmd))
3274 pmde = pmd_mksoft_dirty(pmde);
3275 if (pmd_swp_uffd_wp(*pvmw->pmd))
3276 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3277 if (!is_migration_entry_young(entry))
3278 pmde = pmd_mkold(pmde);
3279 /* NOTE: this may contain setting soft-dirty on some archs */
3280 if (PageDirty(new) && is_migration_entry_dirty(entry))
3281 pmde = pmd_mkdirty(pmde);
3282 if (is_writable_migration_entry(entry))
3283 pmde = maybe_pmd_mkwrite(pmde, vma);
3284 else
3285 pmde = pmd_wrprotect(pmde);
3286
3287 if (PageAnon(new)) {
3288 rmap_t rmap_flags = RMAP_COMPOUND;
3289
3290 if (!is_readable_migration_entry(entry))
3291 rmap_flags |= RMAP_EXCLUSIVE;
3292
3293 page_add_anon_rmap(new, vma, haddr, rmap_flags);
3294 } else {
3295 page_add_file_rmap(new, vma, true);
3296 }
3297 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3298 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3299
3300 /* No need to invalidate - it was non-present before */
3301 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3302 trace_remove_migration_pmd(address, pmd_val(pmde));
3303}
3304#endif