Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
 
 
   8#include <linux/mm.h>
   9#include <linux/sched.h>
 
 
 
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
 
  15#include <linux/mm_inline.h>
  16#include <linux/kthread.h>
 
 
  17#include <linux/khugepaged.h>
  18#include <linux/freezer.h>
 
  19#include <linux/mman.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20#include <asm/tlb.h>
  21#include <asm/pgalloc.h>
  22#include "internal.h"
 
 
 
 
  23
  24/*
  25 * By default transparent hugepage support is enabled for all mappings
  26 * and khugepaged scans all mappings. Defrag is only invoked by
  27 * khugepaged hugepage allocations and by page faults inside
  28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29 * allocations.
 
  30 */
  31unsigned long transparent_hugepage_flags __read_mostly =
  32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34#endif
  35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37#endif
  38	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 
  40
  41/* default scan 8*512 pte (or vmas) every 30 second */
  42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  43static unsigned int khugepaged_pages_collapsed;
  44static unsigned int khugepaged_full_scans;
  45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  46/* during fragmentation poll the hugepage allocator once every minute */
  47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  48static struct task_struct *khugepaged_thread __read_mostly;
  49static DEFINE_MUTEX(khugepaged_mutex);
  50static DEFINE_SPINLOCK(khugepaged_mm_lock);
  51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  52/*
  53 * default collapse hugepages if there is at least one pte mapped like
  54 * it would have happened if the vma was large enough during page
  55 * fault.
  56 */
  57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  58
  59static int khugepaged(void *none);
  60static int mm_slots_hash_init(void);
  61static int khugepaged_slab_init(void);
  62static void khugepaged_slab_free(void);
  63
  64#define MM_SLOTS_HASH_HEADS 1024
  65static struct hlist_head *mm_slots_hash __read_mostly;
  66static struct kmem_cache *mm_slot_cache __read_mostly;
  67
  68/**
  69 * struct mm_slot - hash lookup from mm to mm_slot
  70 * @hash: hash collision list
  71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72 * @mm: the mm that this information is valid for
  73 */
  74struct mm_slot {
  75	struct hlist_node hash;
  76	struct list_head mm_node;
  77	struct mm_struct *mm;
  78};
  79
  80/**
  81 * struct khugepaged_scan - cursor for scanning
  82 * @mm_head: the head of the mm list to scan
  83 * @mm_slot: the current mm_slot we are scanning
  84 * @address: the next address inside that to be scanned
  85 *
  86 * There is only the one khugepaged_scan instance of this cursor structure.
  87 */
  88struct khugepaged_scan {
  89	struct list_head mm_head;
  90	struct mm_slot *mm_slot;
  91	unsigned long address;
  92} khugepaged_scan = {
  93	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94};
  95
 
 
 
  96
  97static int set_recommended_min_free_kbytes(void)
  98{
  99	struct zone *zone;
 100	int nr_zones = 0;
 101	unsigned long recommended_min;
 102	extern int min_free_kbytes;
 103
 104	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 105		      &transparent_hugepage_flags) &&
 106	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 107		      &transparent_hugepage_flags))
 108		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109
 110	for_each_populated_zone(zone)
 111		nr_zones++;
 
 112
 113	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 114	recommended_min = pageblock_nr_pages * nr_zones * 2;
 
 
 
 115
 116	/*
 117	 * Make sure that on average at least two pageblocks are almost free
 118	 * of another type, one for a migratetype to fall back to and a
 119	 * second to avoid subsequent fallbacks of other types There are 3
 120	 * MIGRATE_TYPES we care about.
 
 121	 */
 122	recommended_min += pageblock_nr_pages * nr_zones *
 123			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 124
 125	/* don't ever allow to reserve more than 5% of the lowmem */
 126	recommended_min = min(recommended_min,
 127			      (unsigned long) nr_free_buffer_pages() / 20);
 128	recommended_min <<= (PAGE_SHIFT-10);
 129
 130	if (recommended_min > min_free_kbytes)
 131		min_free_kbytes = recommended_min;
 132	setup_per_zone_wmarks();
 133	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134}
 135late_initcall(set_recommended_min_free_kbytes);
 136
 137static int start_khugepaged(void)
 138{
 139	int err = 0;
 140	if (khugepaged_enabled()) {
 141		int wakeup;
 142		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
 143			err = -ENOMEM;
 144			goto out;
 145		}
 146		mutex_lock(&khugepaged_mutex);
 147		if (!khugepaged_thread)
 148			khugepaged_thread = kthread_run(khugepaged, NULL,
 149							"khugepaged");
 150		if (unlikely(IS_ERR(khugepaged_thread))) {
 151			printk(KERN_ERR
 152			       "khugepaged: kthread_run(khugepaged) failed\n");
 153			err = PTR_ERR(khugepaged_thread);
 154			khugepaged_thread = NULL;
 155		}
 156		wakeup = !list_empty(&khugepaged_scan.mm_head);
 157		mutex_unlock(&khugepaged_mutex);
 158		if (wakeup)
 159			wake_up_interruptible(&khugepaged_wait);
 160
 161		set_recommended_min_free_kbytes();
 162	} else
 163		/* wakeup to exit */
 164		wake_up_interruptible(&khugepaged_wait);
 165out:
 166	return err;
 
 
 
 
 
 
 167}
 168
 169#ifdef CONFIG_SYSFS
 
 
 
 
 170
 171static ssize_t double_flag_show(struct kobject *kobj,
 172				struct kobj_attribute *attr, char *buf,
 173				enum transparent_hugepage_flag enabled,
 174				enum transparent_hugepage_flag req_madv)
 175{
 176	if (test_bit(enabled, &transparent_hugepage_flags)) {
 177		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 178		return sprintf(buf, "[always] madvise never\n");
 179	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 180		return sprintf(buf, "always [madvise] never\n");
 181	else
 182		return sprintf(buf, "always madvise [never]\n");
 183}
 184static ssize_t double_flag_store(struct kobject *kobj,
 185				 struct kobj_attribute *attr,
 186				 const char *buf, size_t count,
 187				 enum transparent_hugepage_flag enabled,
 188				 enum transparent_hugepage_flag req_madv)
 189{
 190	if (!memcmp("always", buf,
 191		    min(sizeof("always")-1, count))) {
 192		set_bit(enabled, &transparent_hugepage_flags);
 193		clear_bit(req_madv, &transparent_hugepage_flags);
 194	} else if (!memcmp("madvise", buf,
 195			   min(sizeof("madvise")-1, count))) {
 196		clear_bit(enabled, &transparent_hugepage_flags);
 197		set_bit(req_madv, &transparent_hugepage_flags);
 198	} else if (!memcmp("never", buf,
 199			   min(sizeof("never")-1, count))) {
 200		clear_bit(enabled, &transparent_hugepage_flags);
 201		clear_bit(req_madv, &transparent_hugepage_flags);
 202	} else
 203		return -EINVAL;
 204
 205	return count;
 206}
 207
 
 
 
 
 
 
 
 208static ssize_t enabled_show(struct kobject *kobj,
 209			    struct kobj_attribute *attr, char *buf)
 210{
 211	return double_flag_show(kobj, attr, buf,
 212				TRANSPARENT_HUGEPAGE_FLAG,
 213				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 214}
 
 215static ssize_t enabled_store(struct kobject *kobj,
 216			     struct kobj_attribute *attr,
 217			     const char *buf, size_t count)
 218{
 219	ssize_t ret;
 220
 221	ret = double_flag_store(kobj, attr, buf, count,
 222				TRANSPARENT_HUGEPAGE_FLAG,
 223				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 
 
 
 
 
 
 
 
 224
 225	if (ret > 0) {
 226		int err = start_khugepaged();
 227		if (err)
 228			ret = err;
 229	}
 230
 231	if (ret > 0 &&
 232	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 233		      &transparent_hugepage_flags) ||
 234	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 235		      &transparent_hugepage_flags)))
 236		set_recommended_min_free_kbytes();
 237
 238	return ret;
 239}
 240static struct kobj_attribute enabled_attr =
 241	__ATTR(enabled, 0644, enabled_show, enabled_store);
 242
 243static ssize_t single_flag_show(struct kobject *kobj,
 244				struct kobj_attribute *attr, char *buf,
 245				enum transparent_hugepage_flag flag)
 
 
 246{
 247	return sprintf(buf, "%d\n",
 248		       !!test_bit(flag, &transparent_hugepage_flags));
 249}
 250
 251static ssize_t single_flag_store(struct kobject *kobj,
 252				 struct kobj_attribute *attr,
 253				 const char *buf, size_t count,
 254				 enum transparent_hugepage_flag flag)
 255{
 256	unsigned long value;
 257	int ret;
 258
 259	ret = kstrtoul(buf, 10, &value);
 260	if (ret < 0)
 261		return ret;
 262	if (value > 1)
 263		return -EINVAL;
 264
 265	if (value)
 266		set_bit(flag, &transparent_hugepage_flags);
 267	else
 268		clear_bit(flag, &transparent_hugepage_flags);
 269
 270	return count;
 271}
 272
 273/*
 274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 276 * memory just to allocate one more hugepage.
 277 */
 278static ssize_t defrag_show(struct kobject *kobj,
 279			   struct kobj_attribute *attr, char *buf)
 280{
 281	return double_flag_show(kobj, attr, buf,
 282				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 283				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 284}
 285static ssize_t defrag_store(struct kobject *kobj,
 286			    struct kobj_attribute *attr,
 287			    const char *buf, size_t count)
 288{
 289	return double_flag_store(kobj, attr, buf, count,
 290				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 291				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 292}
 293static struct kobj_attribute defrag_attr =
 294	__ATTR(defrag, 0644, defrag_show, defrag_store);
 295
 296#ifdef CONFIG_DEBUG_VM
 297static ssize_t debug_cow_show(struct kobject *kobj,
 298				struct kobj_attribute *attr, char *buf)
 299{
 300	return single_flag_show(kobj, attr, buf,
 301				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 302}
 303static ssize_t debug_cow_store(struct kobject *kobj,
 304			       struct kobj_attribute *attr,
 305			       const char *buf, size_t count)
 306{
 307	return single_flag_store(kobj, attr, buf, count,
 308				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 309}
 310static struct kobj_attribute debug_cow_attr =
 311	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 312#endif /* CONFIG_DEBUG_VM */
 313
 314static struct attribute *hugepage_attr[] = {
 315	&enabled_attr.attr,
 316	&defrag_attr.attr,
 317#ifdef CONFIG_DEBUG_VM
 318	&debug_cow_attr.attr,
 319#endif
 320	NULL,
 321};
 322
 323static struct attribute_group hugepage_attr_group = {
 324	.attrs = hugepage_attr,
 325};
 
 
 326
 327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 328					 struct kobj_attribute *attr,
 329					 char *buf)
 330{
 331	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 332}
 333
 334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 335					  struct kobj_attribute *attr,
 336					  const char *buf, size_t count)
 337{
 338	unsigned long msecs;
 339	int err;
 340
 341	err = strict_strtoul(buf, 10, &msecs);
 342	if (err || msecs > UINT_MAX)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343		return -EINVAL;
 344
 345	khugepaged_scan_sleep_millisecs = msecs;
 346	wake_up_interruptible(&khugepaged_wait);
 347
 348	return count;
 349}
 350static struct kobj_attribute scan_sleep_millisecs_attr =
 351	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 352	       scan_sleep_millisecs_store);
 353
 354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 355					  struct kobj_attribute *attr,
 356					  char *buf)
 357{
 358	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 
 359}
 
 
 
 
 
 
 
 360
 361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 362					   struct kobj_attribute *attr,
 363					   const char *buf, size_t count)
 364{
 365	unsigned long msecs;
 366	int err;
 
 
 367
 368	err = strict_strtoul(buf, 10, &msecs);
 369	if (err || msecs > UINT_MAX)
 370		return -EINVAL;
 
 
 
 
 
 
 
 371
 372	khugepaged_alloc_sleep_millisecs = msecs;
 373	wake_up_interruptible(&khugepaged_wait);
 
 374
 375	return count;
 376}
 377static struct kobj_attribute alloc_sleep_millisecs_attr =
 378	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 379	       alloc_sleep_millisecs_store);
 380
 381static ssize_t pages_to_scan_show(struct kobject *kobj,
 382				  struct kobj_attribute *attr,
 383				  char *buf)
 384{
 385	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 386}
 387static ssize_t pages_to_scan_store(struct kobject *kobj,
 388				   struct kobj_attribute *attr,
 389				   const char *buf, size_t count)
 390{
 391	int err;
 392	unsigned long pages;
 393
 394	err = strict_strtoul(buf, 10, &pages);
 395	if (err || !pages || pages > UINT_MAX)
 396		return -EINVAL;
 
 
 397
 398	khugepaged_pages_to_scan = pages;
 
 
 
 
 399
 400	return count;
 401}
 402static struct kobj_attribute pages_to_scan_attr =
 403	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 404	       pages_to_scan_store);
 405
 406static ssize_t pages_collapsed_show(struct kobject *kobj,
 407				    struct kobj_attribute *attr,
 408				    char *buf)
 409{
 410	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 411}
 412static struct kobj_attribute pages_collapsed_attr =
 413	__ATTR_RO(pages_collapsed);
 414
 415static ssize_t full_scans_show(struct kobject *kobj,
 416			       struct kobj_attribute *attr,
 417			       char *buf)
 418{
 419	return sprintf(buf, "%u\n", khugepaged_full_scans);
 420}
 421static struct kobj_attribute full_scans_attr =
 422	__ATTR_RO(full_scans);
 423
 424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 425				      struct kobj_attribute *attr, char *buf)
 426{
 427	return single_flag_show(kobj, attr, buf,
 428				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 
 429}
 430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 431				       struct kobj_attribute *attr,
 432				       const char *buf, size_t count)
 433{
 434	return single_flag_store(kobj, attr, buf, count,
 435				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 436}
 437static struct kobj_attribute khugepaged_defrag_attr =
 438	__ATTR(defrag, 0644, khugepaged_defrag_show,
 439	       khugepaged_defrag_store);
 440
 441/*
 442 * max_ptes_none controls if khugepaged should collapse hugepages over
 443 * any unmapped ptes in turn potentially increasing the memory
 444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 445 * reduce the available free memory in the system as it
 446 * runs. Increasing max_ptes_none will instead potentially reduce the
 447 * free memory in the system during the khugepaged scan.
 448 */
 449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 450					     struct kobj_attribute *attr,
 451					     char *buf)
 452{
 453	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 454}
 455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 456					      struct kobj_attribute *attr,
 457					      const char *buf, size_t count)
 458{
 459	int err;
 460	unsigned long max_ptes_none;
 461
 462	err = strict_strtoul(buf, 10, &max_ptes_none);
 463	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 464		return -EINVAL;
 465
 466	khugepaged_max_ptes_none = max_ptes_none;
 467
 468	return count;
 469}
 470static struct kobj_attribute khugepaged_max_ptes_none_attr =
 471	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 472	       khugepaged_max_ptes_none_store);
 473
 474static struct attribute *khugepaged_attr[] = {
 475	&khugepaged_defrag_attr.attr,
 476	&khugepaged_max_ptes_none_attr.attr,
 477	&pages_to_scan_attr.attr,
 478	&pages_collapsed_attr.attr,
 479	&full_scans_attr.attr,
 480	&scan_sleep_millisecs_attr.attr,
 481	&alloc_sleep_millisecs_attr.attr,
 482	NULL,
 483};
 484
 485static struct attribute_group khugepaged_attr_group = {
 486	.attrs = khugepaged_attr,
 487	.name = "khugepaged",
 488};
 489#endif /* CONFIG_SYSFS */
 490
 491static int __init hugepage_init(void)
 492{
 493	int err;
 494#ifdef CONFIG_SYSFS
 495	static struct kobject *hugepage_kobj;
 496#endif
 497
 498	err = -EINVAL;
 499	if (!has_transparent_hugepage()) {
 500		transparent_hugepage_flags = 0;
 501		goto out;
 502	}
 503
 504#ifdef CONFIG_SYSFS
 505	err = -ENOMEM;
 506	hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 507	if (unlikely(!hugepage_kobj)) {
 508		printk(KERN_ERR "hugepage: failed kobject create\n");
 509		goto out;
 510	}
 511
 512	err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
 513	if (err) {
 514		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 515		goto out;
 516	}
 
 
 
 
 517
 518	err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
 519	if (err) {
 520		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 521		goto out;
 522	}
 523#endif
 524
 525	err = khugepaged_slab_init();
 526	if (err)
 527		goto out;
 528
 529	err = mm_slots_hash_init();
 530	if (err) {
 531		khugepaged_slab_free();
 532		goto out;
 533	}
 
 534
 535	/*
 536	 * By default disable transparent hugepages on smaller systems,
 537	 * where the extra memory used could hurt more than TLB overhead
 538	 * is likely to save.  The admin can still enable it through /sys.
 539	 */
 540	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 541		transparent_hugepage_flags = 0;
 
 
 542
 543	start_khugepaged();
 544
 545	set_recommended_min_free_kbytes();
 546
 547out:
 
 
 
 
 
 
 
 
 
 548	return err;
 549}
 550module_init(hugepage_init)
 551
 552static int __init setup_transparent_hugepage(char *str)
 553{
 554	int ret = 0;
 555	if (!str)
 556		goto out;
 557	if (!strcmp(str, "always")) {
 558		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 559			&transparent_hugepage_flags);
 560		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 561			  &transparent_hugepage_flags);
 562		ret = 1;
 563	} else if (!strcmp(str, "madvise")) {
 564		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 565			  &transparent_hugepage_flags);
 566		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 567			&transparent_hugepage_flags);
 568		ret = 1;
 569	} else if (!strcmp(str, "never")) {
 570		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 571			  &transparent_hugepage_flags);
 572		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 573			  &transparent_hugepage_flags);
 574		ret = 1;
 575	}
 576out:
 577	if (!ret)
 578		printk(KERN_WARNING
 579		       "transparent_hugepage= cannot parse, ignored\n");
 580	return ret;
 581}
 582__setup("transparent_hugepage=", setup_transparent_hugepage);
 583
 584static void prepare_pmd_huge_pte(pgtable_t pgtable,
 585				 struct mm_struct *mm)
 
 
 
 
 
 
 
 586{
 587	assert_spin_locked(&mm->page_table_lock);
 
 588
 589	/* FIFO */
 590	if (!mm->pmd_huge_pte)
 591		INIT_LIST_HEAD(&pgtable->lru);
 592	else
 593		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
 594	mm->pmd_huge_pte = pgtable;
 595}
 
 
 
 
 
 
 
 
 596
 597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 598{
 599	if (likely(vma->vm_flags & VM_WRITE))
 600		pmd = pmd_mkwrite(pmd);
 601	return pmd;
 
 
 
 
 602}
 603
 604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 605					struct vm_area_struct *vma,
 606					unsigned long haddr, pmd_t *pmd,
 607					struct page *page)
 608{
 609	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610	pgtable_t pgtable;
 
 
 611
 612	VM_BUG_ON(!PageCompound(page));
 613	pgtable = pte_alloc_one(mm, haddr);
 614	if (unlikely(!pgtable)) {
 615		mem_cgroup_uncharge_page(page);
 616		put_page(page);
 617		return VM_FAULT_OOM;
 
 
 
 
 
 
 
 
 
 618	}
 619
 620	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 
 
 
 
 
 621	__SetPageUptodate(page);
 622
 623	spin_lock(&mm->page_table_lock);
 624	if (unlikely(!pmd_none(*pmd))) {
 625		spin_unlock(&mm->page_table_lock);
 626		mem_cgroup_uncharge_page(page);
 627		put_page(page);
 628		pte_free(mm, pgtable);
 629	} else {
 630		pmd_t entry;
 631		entry = mk_pmd(page, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 633		entry = pmd_mkhuge(entry);
 634		/*
 635		 * The spinlocking to take the lru_lock inside
 636		 * page_add_new_anon_rmap() acts as a full memory
 637		 * barrier to be sure clear_huge_page writes become
 638		 * visible after the set_pmd_at() write.
 639		 */
 640		page_add_new_anon_rmap(page, vma, haddr);
 641		set_pmd_at(mm, haddr, pmd, entry);
 642		prepare_pmd_huge_pte(pgtable, mm);
 643		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 644		spin_unlock(&mm->page_table_lock);
 
 
 
 
 
 645	}
 646
 
 
 
 
 
 
 
 647	return ret;
 
 648}
 649
 650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 
 
 
 
 
 
 
 
 
 651{
 652	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653}
 654
 655static inline struct page *alloc_hugepage_vma(int defrag,
 656					      struct vm_area_struct *vma,
 657					      unsigned long haddr, int nd,
 658					      gfp_t extra_gfp)
 659{
 660	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 661			       HPAGE_PMD_ORDER, vma, haddr, nd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662}
 663
 664#ifndef CONFIG_NUMA
 665static inline struct page *alloc_hugepage(int defrag)
 
 666{
 667	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
 668			   HPAGE_PMD_ORDER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669}
 670#endif
 671
 672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 673			       unsigned long address, pmd_t *pmd,
 674			       unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 675{
 676	struct page *page;
 677	unsigned long haddr = address & HPAGE_PMD_MASK;
 678	pte_t *pte;
 679
 680	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
 681		if (unlikely(anon_vma_prepare(vma)))
 682			return VM_FAULT_OOM;
 683		if (unlikely(khugepaged_enter(vma)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 684			return VM_FAULT_OOM;
 685		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 686					  vma, haddr, numa_node_id(), 0);
 687		if (unlikely(!page)) {
 688			count_vm_event(THP_FAULT_FALLBACK);
 689			goto out;
 690		}
 691		count_vm_event(THP_FAULT_ALLOC);
 692		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
 693			put_page(page);
 694			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695		}
 
 
 696
 697		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
 
 
 
 
 
 698	}
 699out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700	/*
 701	 * Use __pte_alloc instead of pte_alloc_map, because we can't
 702	 * run pte_offset_map on the pmd, if an huge pmd could
 703	 * materialize from under us from a different thread.
 704	 */
 705	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
 706		return VM_FAULT_OOM;
 707	/* if an huge pmd materialized from under us just retry later */
 708	if (unlikely(pmd_trans_huge(*pmd)))
 709		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710	/*
 711	 * A regular pmd is established and it can't morph into a huge pmd
 712	 * from under us anymore at this point because we hold the mmap_sem
 713	 * read mode and khugepaged takes it in write mode. So now it's
 714	 * safe to run pte_offset_map().
 715	 */
 716	pte = pte_offset_map(pmd, address);
 717	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 
 
 
 
 
 
 
 
 
 
 
 718}
 719
 720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 721		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 722		  struct vm_area_struct *vma)
 723{
 
 724	struct page *src_page;
 725	pmd_t pmd;
 726	pgtable_t pgtable;
 727	int ret;
 
 
 
 
 728
 729	ret = -ENOMEM;
 730	pgtable = pte_alloc_one(dst_mm, addr);
 731	if (unlikely(!pgtable))
 732		goto out;
 733
 734	spin_lock(&dst_mm->page_table_lock);
 735	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
 
 736
 737	ret = -EAGAIN;
 738	pmd = *src_pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739	if (unlikely(!pmd_trans_huge(pmd))) {
 740		pte_free(dst_mm, pgtable);
 741		goto out_unlock;
 742	}
 743	if (unlikely(pmd_trans_splitting(pmd))) {
 744		/* split huge page running from under us */
 745		spin_unlock(&src_mm->page_table_lock);
 746		spin_unlock(&dst_mm->page_table_lock);
 747		pte_free(dst_mm, pgtable);
 748
 749		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 750		goto out;
 
 
 
 
 
 751	}
 
 752	src_page = pmd_page(pmd);
 753	VM_BUG_ON(!PageHead(src_page));
 
 754	get_page(src_page);
 755	page_dup_rmap(src_page);
 
 
 
 
 
 
 
 
 756	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 757
 
 
 758	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 
 
 759	pmd = pmd_mkold(pmd_wrprotect(pmd));
 760	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 761	prepare_pmd_huge_pte(pgtable, dst_mm);
 762
 763	ret = 0;
 764out_unlock:
 765	spin_unlock(&src_mm->page_table_lock);
 766	spin_unlock(&dst_mm->page_table_lock);
 767out:
 768	return ret;
 769}
 770
 771/* no "address" argument so destroys page coloring of some arch */
 772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
 
 773{
 774	pgtable_t pgtable;
 775
 776	assert_spin_locked(&mm->page_table_lock);
 
 
 
 
 
 
 777
 778	/* FIFO */
 779	pgtable = mm->pmd_huge_pte;
 780	if (list_empty(&pgtable->lru))
 781		mm->pmd_huge_pte = NULL;
 782	else {
 783		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
 784					      struct page, lru);
 785		list_del(&pgtable->lru);
 786	}
 787	return pgtable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788}
 789
 790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 791					struct vm_area_struct *vma,
 792					unsigned long address,
 793					pmd_t *pmd, pmd_t orig_pmd,
 794					struct page *page,
 795					unsigned long haddr)
 796{
 797	pgtable_t pgtable;
 798	pmd_t _pmd;
 799	int ret = 0, i;
 800	struct page **pages;
 801
 802	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 803			GFP_KERNEL);
 804	if (unlikely(!pages)) {
 805		ret |= VM_FAULT_OOM;
 806		goto out;
 807	}
 808
 809	for (i = 0; i < HPAGE_PMD_NR; i++) {
 810		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 811					       __GFP_OTHER_NODE,
 812					       vma, address, page_to_nid(page));
 813		if (unlikely(!pages[i] ||
 814			     mem_cgroup_newpage_charge(pages[i], mm,
 815						       GFP_KERNEL))) {
 816			if (pages[i])
 817				put_page(pages[i]);
 818			mem_cgroup_uncharge_start();
 819			while (--i >= 0) {
 820				mem_cgroup_uncharge_page(pages[i]);
 821				put_page(pages[i]);
 822			}
 823			mem_cgroup_uncharge_end();
 824			kfree(pages);
 825			ret |= VM_FAULT_OOM;
 826			goto out;
 827		}
 828	}
 829
 830	for (i = 0; i < HPAGE_PMD_NR; i++) {
 831		copy_user_highpage(pages[i], page + i,
 832				   haddr + PAGE_SHIFT*i, vma);
 833		__SetPageUptodate(pages[i]);
 834		cond_resched();
 
 
 835	}
 836
 837	spin_lock(&mm->page_table_lock);
 838	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 839		goto out_free_pages;
 840	VM_BUG_ON(!PageHead(page));
 
 
 
 841
 842	pmdp_clear_flush_notify(vma, haddr, pmd);
 843	/* leave pmd empty until pte is filled */
 
 
 
 
 844
 845	pgtable = get_pmd_huge_pte(mm);
 846	pmd_populate(mm, &_pmd, pgtable);
 
 847
 848	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 849		pte_t *pte, entry;
 850		entry = mk_pte(pages[i], vma->vm_page_prot);
 851		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 852		page_add_new_anon_rmap(pages[i], vma, haddr);
 853		pte = pte_offset_map(&_pmd, haddr);
 854		VM_BUG_ON(!pte_none(*pte));
 855		set_pte_at(mm, haddr, pte, entry);
 856		pte_unmap(pte);
 857	}
 858	kfree(pages);
 859
 860	mm->nr_ptes++;
 861	smp_wmb(); /* make pte visible before pmd */
 862	pmd_populate(mm, pmd, pgtable);
 863	page_remove_rmap(page);
 864	spin_unlock(&mm->page_table_lock);
 865
 866	ret |= VM_FAULT_WRITE;
 867	put_page(page);
 
 868
 869out:
 870	return ret;
 
 871
 872out_free_pages:
 873	spin_unlock(&mm->page_table_lock);
 874	mem_cgroup_uncharge_start();
 875	for (i = 0; i < HPAGE_PMD_NR; i++) {
 876		mem_cgroup_uncharge_page(pages[i]);
 877		put_page(pages[i]);
 878	}
 879	mem_cgroup_uncharge_end();
 880	kfree(pages);
 881	goto out;
 882}
 883
 884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 885			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
 886{
 887	int ret = 0;
 888	struct page *page, *new_page;
 889	unsigned long haddr;
 
 
 
 890
 891	VM_BUG_ON(!vma->anon_vma);
 892	spin_lock(&mm->page_table_lock);
 893	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 894		goto out_unlock;
 
 
 
 
 
 
 
 
 895
 896	page = pmd_page(orig_pmd);
 897	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
 898	haddr = address & HPAGE_PMD_MASK;
 899	if (page_mapcount(page) == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900		pmd_t entry;
 
 
 
 
 
 
 
 
 901		entry = pmd_mkyoung(orig_pmd);
 902		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 903		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
 904			update_mmu_cache(vma, address, entry);
 905		ret |= VM_FAULT_WRITE;
 906		goto out_unlock;
 907	}
 908	get_page(page);
 909	spin_unlock(&mm->page_table_lock);
 910
 911	if (transparent_hugepage_enabled(vma) &&
 912	    !transparent_hugepage_debug_cow())
 913		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 914					      vma, haddr, numa_node_id(), 0);
 915	else
 916		new_page = NULL;
 
 917
 918	if (unlikely(!new_page)) {
 919		count_vm_event(THP_FAULT_FALLBACK);
 920		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
 921						   pmd, orig_pmd, page, haddr);
 922		put_page(page);
 923		goto out;
 924	}
 925	count_vm_event(THP_FAULT_ALLOC);
 926
 927	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
 928		put_page(new_page);
 929		put_page(page);
 930		ret |= VM_FAULT_OOM;
 931		goto out;
 932	}
 933
 934	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 935	__SetPageUptodate(new_page);
 
 936
 937	spin_lock(&mm->page_table_lock);
 938	put_page(page);
 939	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
 940		mem_cgroup_uncharge_page(new_page);
 941		put_page(new_page);
 942	} else {
 943		pmd_t entry;
 944		VM_BUG_ON(!PageHead(page));
 945		entry = mk_pmd(new_page, vma->vm_page_prot);
 946		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 947		entry = pmd_mkhuge(entry);
 948		pmdp_clear_flush_notify(vma, haddr, pmd);
 949		page_add_new_anon_rmap(new_page, vma, haddr);
 950		set_pmd_at(mm, haddr, pmd, entry);
 951		update_mmu_cache(vma, address, entry);
 952		page_remove_rmap(page);
 953		put_page(page);
 954		ret |= VM_FAULT_WRITE;
 955	}
 956out_unlock:
 957	spin_unlock(&mm->page_table_lock);
 958out:
 959	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960}
 961
 962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
 963				   unsigned long addr,
 964				   pmd_t *pmd,
 965				   unsigned int flags)
 966{
 967	struct page *page = NULL;
 
 
 968
 969	assert_spin_locked(&mm->page_table_lock);
 970
 971	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 972		goto out;
 973
 974	page = pmd_page(*pmd);
 975	VM_BUG_ON(!PageHead(page));
 976	if (flags & FOLL_TOUCH) {
 977		pmd_t _pmd;
 978		/*
 979		 * We should set the dirty bit only for FOLL_WRITE but
 980		 * for now the dirty bit in the pmd is meaningless.
 981		 * And if the dirty bit will become meaningful and
 982		 * we'll only set it with FOLL_WRITE, an atomic
 983		 * set_bit will be required on the pmd to set the
 984		 * young bit, instead of the current set_pmd_at.
 985		 */
 986		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 987		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
 988	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 989	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 990	VM_BUG_ON(!PageCompound(page));
 991	if (flags & FOLL_GET)
 992		get_page(page);
 993
 994out:
 995	return page;
 996}
 997
 998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 999		 pmd_t *pmd)
1000{
1001	int ret = 0;
 
 
 
 
 
 
 
 
1002
1003	spin_lock(&tlb->mm->page_table_lock);
1004	if (likely(pmd_trans_huge(*pmd))) {
1005		if (unlikely(pmd_trans_splitting(*pmd))) {
1006			spin_unlock(&tlb->mm->page_table_lock);
1007			wait_split_huge_page(vma->anon_vma,
1008					     pmd);
1009		} else {
1010			struct page *page;
1011			pgtable_t pgtable;
1012			pgtable = get_pmd_huge_pte(tlb->mm);
1013			page = pmd_page(*pmd);
1014			pmd_clear(pmd);
1015			page_remove_rmap(page);
1016			VM_BUG_ON(page_mapcount(page) < 0);
1017			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018			VM_BUG_ON(!PageHead(page));
1019			spin_unlock(&tlb->mm->page_table_lock);
1020			tlb_remove_page(tlb, page);
1021			pte_free(tlb->mm, pgtable);
1022			ret = 1;
1023		}
1024	} else
1025		spin_unlock(&tlb->mm->page_table_lock);
1026
1027	return ret;
1028}
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031		unsigned long addr, unsigned long end,
1032		unsigned char *vec)
1033{
1034	int ret = 0;
 
 
 
1035
1036	spin_lock(&vma->vm_mm->page_table_lock);
1037	if (likely(pmd_trans_huge(*pmd))) {
1038		ret = !pmd_trans_splitting(*pmd);
1039		spin_unlock(&vma->vm_mm->page_table_lock);
1040		if (unlikely(!ret))
1041			wait_split_huge_page(vma->anon_vma, pmd);
1042		else {
1043			/*
1044			 * All logical pages in the range are present
1045			 * if backed by a huge page.
1046			 */
1047			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048		}
1049	} else
1050		spin_unlock(&vma->vm_mm->page_table_lock);
1051
1052	return ret;
1053}
 
1054
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056		unsigned long addr, pgprot_t newprot)
1057{
1058	struct mm_struct *mm = vma->vm_mm;
1059	int ret = 0;
 
 
 
 
1060
1061	spin_lock(&mm->page_table_lock);
1062	if (likely(pmd_trans_huge(*pmd))) {
1063		if (unlikely(pmd_trans_splitting(*pmd))) {
1064			spin_unlock(&mm->page_table_lock);
1065			wait_split_huge_page(vma->anon_vma, pmd);
1066		} else {
1067			pmd_t entry;
1068
1069			entry = pmdp_get_and_clear(mm, addr, pmd);
1070			entry = pmd_modify(entry, newprot);
1071			set_pmd_at(mm, addr, pmd, entry);
1072			spin_unlock(&vma->vm_mm->page_table_lock);
1073			flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074			ret = 1;
 
 
 
 
1075		}
1076	} else
1077		spin_unlock(&vma->vm_mm->page_table_lock);
1078
1079	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080}
1081
1082pmd_t *page_check_address_pmd(struct page *page,
1083			      struct mm_struct *mm,
1084			      unsigned long address,
1085			      enum page_check_address_pmd_flag flag)
1086{
1087	pgd_t *pgd;
1088	pud_t *pud;
1089	pmd_t *pmd, *ret = NULL;
 
 
 
 
 
 
1090
1091	if (address & ~HPAGE_PMD_MASK)
1092		goto out;
 
1093
1094	pgd = pgd_offset(mm, address);
1095	if (!pgd_present(*pgd))
1096		goto out;
1097
1098	pud = pud_offset(pgd, address);
1099	if (!pud_present(*pud))
 
1100		goto out;
 
1101
1102	pmd = pmd_offset(pud, address);
1103	if (pmd_none(*pmd))
 
 
 
 
1104		goto out;
1105	if (pmd_page(*pmd) != page)
 
1106		goto out;
 
1107	/*
1108	 * split_vma() may create temporary aliased mappings. There is
1109	 * no risk as long as all huge pmd are found and have their
1110	 * splitting bit set before __split_huge_page_refcount
1111	 * runs. Finding the same huge pmd more than once during the
1112	 * same rmap walk is not a problem.
1113	 */
1114	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115	    pmd_trans_splitting(*pmd))
1116		goto out;
1117	if (pmd_trans_huge(*pmd)) {
1118		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119			  !pmd_trans_splitting(*pmd));
1120		ret = pmd;
1121	}
1122out:
1123	return ret;
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127				       struct vm_area_struct *vma,
1128				       unsigned long address)
1129{
1130	struct mm_struct *mm = vma->vm_mm;
1131	pmd_t *pmd;
1132	int ret = 0;
1133
1134	spin_lock(&mm->page_table_lock);
1135	pmd = page_check_address_pmd(page, mm, address,
1136				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137	if (pmd) {
1138		/*
1139		 * We can't temporarily set the pmd to null in order
1140		 * to split it, the pmd must remain marked huge at all
1141		 * times or the VM won't take the pmd_trans_huge paths
1142		 * and it won't wait on the anon_vma->root->mutex to
1143		 * serialize against split_huge_page*.
1144		 */
1145		pmdp_splitting_flush_notify(vma, address, pmd);
1146		ret = 1;
1147	}
1148	spin_unlock(&mm->page_table_lock);
1149
 
 
 
 
 
1150	return ret;
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
1154{
1155	int i;
1156	unsigned long head_index = page->index;
1157	struct zone *zone = page_zone(page);
1158	int zonestat;
1159
1160	/* prevent PageLRU to go away from under us, and freeze lru stats */
1161	spin_lock_irq(&zone->lru_lock);
1162	compound_lock(page);
1163
1164	for (i = 1; i < HPAGE_PMD_NR; i++) {
1165		struct page *page_tail = page + i;
1166
1167		/* tail_page->_count cannot change */
1168		atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169		BUG_ON(page_count(page) <= 0);
1170		atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171		BUG_ON(atomic_read(&page_tail->_count) <= 0);
1172
1173		/* after clearing PageTail the gup refcount can be released */
1174		smp_mb();
1175
1176		/*
1177		 * retain hwpoison flag of the poisoned tail page:
1178		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1179		 *   by the memory-failure.
1180		 */
1181		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182		page_tail->flags |= (page->flags &
1183				     ((1L << PG_referenced) |
1184				      (1L << PG_swapbacked) |
1185				      (1L << PG_mlocked) |
1186				      (1L << PG_uptodate)));
1187		page_tail->flags |= (1L << PG_dirty);
1188
1189		/*
1190		 * 1) clear PageTail before overwriting first_page
1191		 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192		 */
1193		smp_wmb();
1194
1195		/*
1196		 * __split_huge_page_splitting() already set the
1197		 * splitting bit in all pmd that could map this
1198		 * hugepage, that will ensure no CPU can alter the
1199		 * mapcount on the head page. The mapcount is only
1200		 * accounted in the head page and it has to be
1201		 * transferred to all tail pages in the below code. So
1202		 * for this code to be safe, the split the mapcount
1203		 * can't change. But that doesn't mean userland can't
1204		 * keep changing and reading the page contents while
1205		 * we transfer the mapcount, so the pmd splitting
1206		 * status is achieved setting a reserved bit in the
1207		 * pmd, not by clearing the present bit.
1208		*/
1209		BUG_ON(page_mapcount(page_tail));
1210		page_tail->_mapcount = page->_mapcount;
1211
1212		BUG_ON(page_tail->mapping);
1213		page_tail->mapping = page->mapping;
1214
1215		page_tail->index = ++head_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216
1217		BUG_ON(!PageAnon(page_tail));
1218		BUG_ON(!PageUptodate(page_tail));
1219		BUG_ON(!PageDirty(page_tail));
1220		BUG_ON(!PageSwapBacked(page_tail));
 
 
 
 
 
 
 
 
 
 
1221
1222		mem_cgroup_split_huge_fixup(page, page_tail);
 
 
 
 
 
 
 
1223
1224		lru_add_page_tail(zone, page, page_tail);
 
 
1225	}
 
 
1226
1227	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1229
 
 
1230	/*
1231	 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232	 * so adjust those appropriately if this page is on the LRU.
 
 
1233	 */
1234	if (PageLRU(page)) {
1235		zonestat = NR_LRU_BASE + page_lru(page);
1236		__mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237	}
1238
1239	ClearPageCompound(page);
1240	compound_unlock(page);
1241	spin_unlock_irq(&zone->lru_lock);
 
 
 
 
 
 
 
1242
1243	for (i = 1; i < HPAGE_PMD_NR; i++) {
1244		struct page *page_tail = page + i;
1245		BUG_ON(page_count(page_tail) <= 0);
1246		/*
1247		 * Tail pages may be freed if there wasn't any mapping
1248		 * like if add_to_swap() is running on a lru page that
1249		 * had its mapping zapped. And freeing these pages
1250		 * requires taking the lru_lock so we do the put_page
1251		 * of the tail pages after the split is complete.
1252		 */
1253		put_page(page_tail);
 
 
 
 
1254	}
1255
1256	/*
1257	 * Only the head page (now become a regular page) is required
1258	 * to be pinned by the caller.
1259	 */
1260	BUG_ON(page_count(page) <= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261}
1262
1263static int __split_huge_page_map(struct page *page,
1264				 struct vm_area_struct *vma,
1265				 unsigned long address)
 
 
 
 
 
 
 
1266{
1267	struct mm_struct *mm = vma->vm_mm;
1268	pmd_t *pmd, _pmd;
1269	int ret = 0, i;
1270	pgtable_t pgtable;
1271	unsigned long haddr;
 
 
1272
1273	spin_lock(&mm->page_table_lock);
1274	pmd = page_check_address_pmd(page, mm, address,
1275				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276	if (pmd) {
1277		pgtable = get_pmd_huge_pte(mm);
1278		pmd_populate(mm, &_pmd, pgtable);
1279
1280		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281		     i++, haddr += PAGE_SIZE) {
1282			pte_t *pte, entry;
1283			BUG_ON(PageCompound(page+i));
1284			entry = mk_pte(page + i, vma->vm_page_prot);
1285			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286			if (!pmd_write(*pmd))
1287				entry = pte_wrprotect(entry);
 
 
 
 
 
 
 
 
1288			else
1289				BUG_ON(page_mapcount(page) != 1);
1290			if (!pmd_young(*pmd))
1291				entry = pte_mkold(entry);
1292			pte = pte_offset_map(&_pmd, haddr);
1293			BUG_ON(!pte_none(*pte));
1294			set_pte_at(mm, haddr, pte, entry);
1295			pte_unmap(pte);
1296		}
 
 
 
1297
1298		mm->nr_ptes++;
1299		smp_wmb(); /* make pte visible before pmd */
 
1300		/*
1301		 * Up to this point the pmd is present and huge and
1302		 * userland has the whole access to the hugepage
1303		 * during the split (which happens in place). If we
1304		 * overwrite the pmd with the not-huge version
1305		 * pointing to the pte here (which of course we could
1306		 * if all CPUs were bug free), userland could trigger
1307		 * a small page size TLB miss on the small sized TLB
1308		 * while the hugepage TLB entry is still established
1309		 * in the huge TLB. Some CPU doesn't like that. See
1310		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311		 * Erratum 383 on page 93. Intel should be safe but is
1312		 * also warns that it's only safe if the permission
1313		 * and cache attributes of the two entries loaded in
1314		 * the two TLB is identical (which should be the case
1315		 * here). But it is generally safer to never allow
1316		 * small and huge TLB entries for the same virtual
1317		 * address to be loaded simultaneously. So instead of
1318		 * doing "pmd_populate(); flush_tlb_range();" we first
1319		 * mark the current pmd notpresent (atomically because
1320		 * here the pmd_trans_huge and pmd_trans_splitting
1321		 * must remain set at all times on the pmd until the
1322		 * split is complete for this pmd), then we flush the
1323		 * SMP TLB and finally we write the non-huge version
1324		 * of the pmd entry with pmd_populate.
1325		 */
1326		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328		pmd_populate(mm, pmd, pgtable);
1329		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330	}
1331	spin_unlock(&mm->page_table_lock);
1332
 
 
 
 
 
 
 
 
 
 
 
 
1333	return ret;
1334}
1335
1336/* must be called with anon_vma->root->mutex hold */
1337static void __split_huge_page(struct page *page,
1338			      struct anon_vma *anon_vma)
1339{
1340	int mapcount, mapcount2;
1341	struct anon_vma_chain *avc;
1342
1343	BUG_ON(!PageHead(page));
1344	BUG_ON(PageTail(page));
1345
1346	mapcount = 0;
1347	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348		struct vm_area_struct *vma = avc->vma;
1349		unsigned long addr = vma_address(page, vma);
1350		BUG_ON(is_vma_temporary_stack(vma));
1351		if (addr == -EFAULT)
1352			continue;
1353		mapcount += __split_huge_page_splitting(page, vma, addr);
1354	}
1355	/*
1356	 * It is critical that new vmas are added to the tail of the
1357	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358	 * and establishes a child pmd before
1359	 * __split_huge_page_splitting() freezes the parent pmd (so if
1360	 * we fail to prevent copy_huge_pmd() from running until the
1361	 * whole __split_huge_page() is complete), we will still see
1362	 * the newly established pmd of the child later during the
1363	 * walk, to be able to set it as pmd_trans_splitting too.
1364	 */
1365	if (mapcount != page_mapcount(page))
1366		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367		       mapcount, page_mapcount(page));
1368	BUG_ON(mapcount != page_mapcount(page));
1369
1370	__split_huge_page_refcount(page);
1371
1372	mapcount2 = 0;
1373	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374		struct vm_area_struct *vma = avc->vma;
1375		unsigned long addr = vma_address(page, vma);
1376		BUG_ON(is_vma_temporary_stack(vma));
1377		if (addr == -EFAULT)
1378			continue;
1379		mapcount2 += __split_huge_page_map(page, vma, addr);
 
 
 
 
 
 
 
 
1380	}
1381	if (mapcount != mapcount2)
1382		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383		       mapcount, mapcount2, page_mapcount(page));
1384	BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
 
1388{
1389	struct anon_vma *anon_vma;
1390	int ret = 1;
 
 
1391
1392	BUG_ON(!PageAnon(page));
1393	anon_vma = page_lock_anon_vma(page);
1394	if (!anon_vma)
1395		goto out;
1396	ret = 0;
1397	if (!PageCompound(page))
1398		goto out_unlock;
1399
1400	BUG_ON(!PageSwapBacked(page));
1401	__split_huge_page(page, anon_vma);
1402	count_vm_event(THP_SPLIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403
1404	BUG_ON(PageCompound(page));
1405out_unlock:
1406	page_unlock_anon_vma(anon_vma);
1407out:
1408	return ret;
 
 
 
 
 
1409}
 
1410
1411#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1412		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413
1414int hugepage_madvise(struct vm_area_struct *vma,
1415		     unsigned long *vm_flags, int advice)
1416{
1417	switch (advice) {
1418	case MADV_HUGEPAGE:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419		/*
1420		 * Be somewhat over-protective like KSM for now!
 
1421		 */
1422		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1423			return -EINVAL;
1424		*vm_flags &= ~VM_NOHUGEPAGE;
1425		*vm_flags |= VM_HUGEPAGE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426		/*
1427		 * If the vma become good for khugepaged to scan,
1428		 * register it here without waiting a page fault that
1429		 * may not happen any time soon.
 
 
 
 
1430		 */
1431		if (unlikely(khugepaged_enter_vma_merge(vma)))
1432			return -ENOMEM;
1433		break;
1434	case MADV_NOHUGEPAGE:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435		/*
1436		 * Be somewhat over-protective like KSM for now!
 
 
 
 
 
 
 
 
 
 
 
 
1437		 */
1438		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1439			return -EINVAL;
1440		*vm_flags &= ~VM_HUGEPAGE;
1441		*vm_flags |= VM_NOHUGEPAGE;
 
 
 
 
 
 
 
 
 
 
 
 
1442		/*
1443		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1444		 * this vma even if we leave the mm registered in khugepaged if
1445		 * it got registered before VM_NOHUGEPAGE was set.
1446		 */
1447		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448	}
1449
1450	return 0;
 
 
 
 
 
 
1451}
1452
1453static int __init khugepaged_slab_init(void)
 
1454{
1455	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1456					  sizeof(struct mm_slot),
1457					  __alignof__(struct mm_slot), 0, NULL);
1458	if (!mm_slot_cache)
1459		return -ENOMEM;
1460
1461	return 0;
1462}
 
 
 
1463
1464static void __init khugepaged_slab_free(void)
1465{
1466	kmem_cache_destroy(mm_slot_cache);
1467	mm_slot_cache = NULL;
1468}
 
1469
1470static inline struct mm_slot *alloc_mm_slot(void)
1471{
1472	if (!mm_slot_cache)	/* initialization failed */
1473		return NULL;
1474	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1475}
 
 
 
 
1476
1477static inline void free_mm_slot(struct mm_slot *mm_slot)
1478{
1479	kmem_cache_free(mm_slot_cache, mm_slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
1480}
1481
1482static int __init mm_slots_hash_init(void)
 
1483{
1484	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1485				GFP_KERNEL);
1486	if (!mm_slots_hash)
1487		return -ENOMEM;
1488	return 0;
 
1489}
1490
1491#if 0
1492static void __init mm_slots_hash_free(void)
1493{
1494	kfree(mm_slots_hash);
1495	mm_slots_hash = NULL;
 
 
 
 
 
 
1496}
1497#endif
1498
1499static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 
 
 
1500{
1501	struct mm_slot *mm_slot;
1502	struct hlist_head *bucket;
1503	struct hlist_node *node;
1504
1505	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1506				% MM_SLOTS_HASH_HEADS];
1507	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1508		if (mm == mm_slot->mm)
1509			return mm_slot;
 
 
 
 
 
 
1510	}
1511	return NULL;
1512}
1513
1514static void insert_to_mm_slots_hash(struct mm_struct *mm,
1515				    struct mm_slot *mm_slot)
1516{
1517	struct hlist_head *bucket;
 
 
 
1518
1519	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1520				% MM_SLOTS_HASH_HEADS];
1521	mm_slot->mm = mm;
1522	hlist_add_head(&mm_slot->hash, bucket);
 
 
 
 
 
1523}
1524
1525static inline int khugepaged_test_exit(struct mm_struct *mm)
1526{
1527	return atomic_read(&mm->mm_users) == 0;
 
 
 
 
 
 
 
 
 
 
 
1528}
1529
1530int __khugepaged_enter(struct mm_struct *mm)
 
1531{
1532	struct mm_slot *mm_slot;
1533	int wakeup;
 
 
1534
1535	mm_slot = alloc_mm_slot();
1536	if (!mm_slot)
1537		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
1538
1539	/* __khugepaged_exit() must not run from under us */
1540	VM_BUG_ON(khugepaged_test_exit(mm));
1541	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1542		free_mm_slot(mm_slot);
1543		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544	}
1545
1546	spin_lock(&khugepaged_mm_lock);
1547	insert_to_mm_slots_hash(mm, mm_slot);
 
1548	/*
1549	 * Insert just behind the scanning cursor, to let the area settle
1550	 * down a little.
 
 
1551	 */
1552	wakeup = list_empty(&khugepaged_scan.mm_head);
1553	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1554	spin_unlock(&khugepaged_mm_lock);
1555
1556	atomic_inc(&mm->mm_count);
1557	if (wakeup)
1558		wake_up_interruptible(&khugepaged_wait);
1559
1560	return 0;
1561}
 
 
 
 
 
 
 
 
1562
1563int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1564{
1565	unsigned long hstart, hend;
1566	if (!vma->anon_vma)
1567		/*
1568		 * Not yet faulted in so we will register later in the
1569		 * page fault if needed.
1570		 */
1571		return 0;
1572	if (vma->vm_ops)
1573		/* khugepaged not yet working on file or special mappings */
1574		return 0;
1575	/*
1576	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1577	 * true too, verify it here.
 
1578	 */
1579	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1580	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1581	hend = vma->vm_end & HPAGE_PMD_MASK;
1582	if (hstart < hend)
1583		return khugepaged_enter(vma);
1584	return 0;
1585}
1586
1587void __khugepaged_exit(struct mm_struct *mm)
 
1588{
1589	struct mm_slot *mm_slot;
1590	int free = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1591
1592	spin_lock(&khugepaged_mm_lock);
1593	mm_slot = get_mm_slot(mm);
1594	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1595		hlist_del(&mm_slot->hash);
1596		list_del(&mm_slot->mm_node);
1597		free = 1;
1598	}
1599	spin_unlock(&khugepaged_mm_lock);
1600
1601	if (free) {
1602		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1603		free_mm_slot(mm_slot);
1604		mmdrop(mm);
1605	} else if (mm_slot) {
1606		/*
1607		 * This is required to serialize against
1608		 * khugepaged_test_exit() (which is guaranteed to run
1609		 * under mmap sem read mode). Stop here (after we
1610		 * return all pagetables will be destroyed) until
1611		 * khugepaged has finished working on the pagetables
1612		 * under the mmap_sem.
1613		 */
1614		down_write(&mm->mmap_sem);
1615		up_write(&mm->mmap_sem);
1616	}
1617}
1618
1619static void release_pte_page(struct page *page)
 
1620{
1621	/* 0 stands for page_is_file_cache(page) == false */
1622	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1623	unlock_page(page);
1624	putback_lru_page(page);
1625}
1626
1627static void release_pte_pages(pte_t *pte, pte_t *_pte)
1628{
1629	while (--_pte >= pte) {
1630		pte_t pteval = *_pte;
1631		if (!pte_none(pteval))
1632			release_pte_page(pte_page(pteval));
1633	}
 
 
1634}
1635
1636static void release_all_pte_pages(pte_t *pte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1637{
1638	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1639}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640
1641static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1642					unsigned long address,
1643					pte_t *pte)
1644{
1645	struct page *page;
1646	pte_t *_pte;
1647	int referenced = 0, isolated = 0, none = 0;
1648	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1649	     _pte++, address += PAGE_SIZE) {
1650		pte_t pteval = *_pte;
1651		if (pte_none(pteval)) {
1652			if (++none <= khugepaged_max_ptes_none)
1653				continue;
1654			else {
1655				release_pte_pages(pte, _pte);
1656				goto out;
1657			}
1658		}
1659		if (!pte_present(pteval) || !pte_write(pteval)) {
1660			release_pte_pages(pte, _pte);
1661			goto out;
1662		}
1663		page = vm_normal_page(vma, address, pteval);
1664		if (unlikely(!page)) {
1665			release_pte_pages(pte, _pte);
 
 
 
 
 
 
 
 
1666			goto out;
1667		}
1668		VM_BUG_ON(PageCompound(page));
1669		BUG_ON(!PageAnon(page));
1670		VM_BUG_ON(!PageSwapBacked(page));
1671
1672		/* cannot use mapcount: can't collapse if there's a gup pin */
1673		if (page_count(page) != 1) {
1674			release_pte_pages(pte, _pte);
1675			goto out;
1676		}
1677		/*
1678		 * We can do it before isolate_lru_page because the
1679		 * page can't be freed from under us. NOTE: PG_lock
1680		 * is needed to serialize against split_huge_page
1681		 * when invoked from the VM.
1682		 */
1683		if (!trylock_page(page)) {
1684			release_pte_pages(pte, _pte);
1685			goto out;
1686		}
 
 
 
 
1687		/*
1688		 * Isolate the page to avoid collapsing an hugepage
1689		 * currently in use by the VM.
 
 
 
1690		 */
1691		if (isolate_lru_page(page)) {
1692			unlock_page(page);
1693			release_pte_pages(pte, _pte);
1694			goto out;
1695		}
1696		/* 0 stands for page_is_file_cache(page) == false */
1697		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698		VM_BUG_ON(!PageLocked(page));
1699		VM_BUG_ON(PageLRU(page));
1700
1701		/* If there is no mapped pte young don't collapse the page */
1702		if (pte_young(pteval) || PageReferenced(page) ||
1703		    mmu_notifier_test_young(vma->vm_mm, address))
1704			referenced = 1;
1705	}
1706	if (unlikely(!referenced))
1707		release_all_pte_pages(pte);
1708	else
1709		isolated = 1;
1710out:
1711	return isolated;
1712}
1713
1714static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1715				      struct vm_area_struct *vma,
1716				      unsigned long address,
1717				      spinlock_t *ptl)
1718{
1719	pte_t *_pte;
1720	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1721		pte_t pteval = *_pte;
1722		struct page *src_page;
1723
1724		if (pte_none(pteval)) {
1725			clear_user_highpage(page, address);
1726			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1727		} else {
1728			src_page = pte_page(pteval);
1729			copy_user_highpage(page, src_page, address, vma);
1730			VM_BUG_ON(page_mapcount(src_page) != 1);
1731			VM_BUG_ON(page_count(src_page) != 2);
1732			release_pte_page(src_page);
1733			/*
1734			 * ptl mostly unnecessary, but preempt has to
1735			 * be disabled to update the per-cpu stats
1736			 * inside page_remove_rmap().
1737			 */
1738			spin_lock(ptl);
1739			/*
1740			 * paravirt calls inside pte_clear here are
1741			 * superfluous.
1742			 */
1743			pte_clear(vma->vm_mm, address, _pte);
1744			page_remove_rmap(src_page);
1745			spin_unlock(ptl);
1746			free_page_and_swap_cache(src_page);
 
 
 
 
 
 
 
 
 
 
 
1747		}
1748
1749		address += PAGE_SIZE;
1750		page++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751	}
 
 
 
 
 
 
1752}
1753
1754static void collapse_huge_page(struct mm_struct *mm,
1755			       unsigned long address,
1756			       struct page **hpage,
1757			       struct vm_area_struct *vma,
1758			       int node)
1759{
1760	pgd_t *pgd;
1761	pud_t *pud;
1762	pmd_t *pmd, _pmd;
1763	pte_t *pte;
1764	pgtable_t pgtable;
1765	struct page *new_page;
1766	spinlock_t *ptl;
1767	int isolated;
1768	unsigned long hstart, hend;
1769
1770	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1771#ifndef CONFIG_NUMA
1772	up_read(&mm->mmap_sem);
1773	VM_BUG_ON(!*hpage);
1774	new_page = *hpage;
1775#else
1776	VM_BUG_ON(*hpage);
1777	/*
1778	 * Allocate the page while the vma is still valid and under
1779	 * the mmap_sem read mode so there is no memory allocation
1780	 * later when we take the mmap_sem in write mode. This is more
1781	 * friendly behavior (OTOH it may actually hide bugs) to
1782	 * filesystems in userland with daemons allocating memory in
1783	 * the userland I/O paths.  Allocating memory with the
1784	 * mmap_sem in read mode is good idea also to allow greater
1785	 * scalability.
1786	 */
1787	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1788				      node, __GFP_OTHER_NODE);
1789
1790	/*
1791	 * After allocating the hugepage, release the mmap_sem read lock in
1792	 * preparation for taking it in write mode.
1793	 */
1794	up_read(&mm->mmap_sem);
1795	if (unlikely(!new_page)) {
1796		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1797		*hpage = ERR_PTR(-ENOMEM);
1798		return;
1799	}
1800#endif
 
 
1801
1802	count_vm_event(THP_COLLAPSE_ALLOC);
1803	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1804#ifdef CONFIG_NUMA
1805		put_page(new_page);
 
1806#endif
1807		return;
1808	}
1809
1810	/*
1811	 * Prevent all access to pagetables with the exception of
1812	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1813	 * handled by the anon_vma lock + PG_lock.
1814	 */
1815	down_write(&mm->mmap_sem);
1816	if (unlikely(khugepaged_test_exit(mm)))
1817		goto out;
1818
1819	vma = find_vma(mm, address);
1820	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1821	hend = vma->vm_end & HPAGE_PMD_MASK;
1822	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1823		goto out;
1824
1825	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1826	    (vma->vm_flags & VM_NOHUGEPAGE))
1827		goto out;
1828
1829	if (!vma->anon_vma || vma->vm_ops)
1830		goto out;
1831	if (is_vma_temporary_stack(vma))
1832		goto out;
1833	/*
1834	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1835	 * true too, verify it here.
 
 
 
 
 
 
1836	 */
1837	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1838
1839	pgd = pgd_offset(mm, address);
1840	if (!pgd_present(*pgd))
1841		goto out;
1842
1843	pud = pud_offset(pgd, address);
1844	if (!pud_present(*pud))
1845		goto out;
 
 
 
 
 
 
 
 
 
 
1846
1847	pmd = pmd_offset(pud, address);
1848	/* pmd can't go away or become huge under us */
1849	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1850		goto out;
 
1851
1852	anon_vma_lock(vma->anon_vma);
 
 
 
 
 
1853
1854	pte = pte_offset_map(pmd, address);
1855	ptl = pte_lockptr(mm, pmd);
 
 
 
 
 
 
 
1856
1857	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1858	/*
1859	 * After this gup_fast can't run anymore. This also removes
1860	 * any huge TLB entry from the CPU so we won't allow
1861	 * huge and small TLB entries for the same virtual address
1862	 * to avoid the risk of CPU bugs in that area.
1863	 */
1864	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1865	spin_unlock(&mm->page_table_lock);
1866
1867	spin_lock(ptl);
1868	isolated = __collapse_huge_page_isolate(vma, address, pte);
1869	spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
1870
1871	if (unlikely(!isolated)) {
1872		pte_unmap(pte);
1873		spin_lock(&mm->page_table_lock);
1874		BUG_ON(!pmd_none(*pmd));
1875		set_pmd_at(mm, address, pmd, _pmd);
1876		spin_unlock(&mm->page_table_lock);
1877		anon_vma_unlock(vma->anon_vma);
1878		goto out;
 
 
1879	}
1880
1881	/*
1882	 * All pages are isolated and locked so anon_vma rmap
1883	 * can't run anymore.
1884	 */
1885	anon_vma_unlock(vma->anon_vma);
1886
1887	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1888	pte_unmap(pte);
1889	__SetPageUptodate(new_page);
1890	pgtable = pmd_pgtable(_pmd);
1891	VM_BUG_ON(page_count(pgtable) != 1);
1892	VM_BUG_ON(page_mapcount(pgtable) != 0);
1893
1894	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1895	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1896	_pmd = pmd_mkhuge(_pmd);
1897
1898	/*
1899	 * spin_lock() below is not the equivalent of smp_wmb(), so
1900	 * this is needed to avoid the copy_huge_page writes to become
1901	 * visible after the set_pmd_at() write.
1902	 */
1903	smp_wmb();
1904
1905	spin_lock(&mm->page_table_lock);
1906	BUG_ON(!pmd_none(*pmd));
1907	page_add_new_anon_rmap(new_page, vma, address);
1908	set_pmd_at(mm, address, pmd, _pmd);
1909	update_mmu_cache(vma, address, entry);
1910	prepare_pmd_huge_pte(pgtable, mm);
1911	mm->nr_ptes--;
1912	spin_unlock(&mm->page_table_lock);
1913
1914#ifndef CONFIG_NUMA
1915	*hpage = NULL;
1916#endif
1917	khugepaged_pages_collapsed++;
1918out_up_write:
1919	up_write(&mm->mmap_sem);
1920	return;
1921
1922out:
1923	mem_cgroup_uncharge_page(new_page);
1924#ifdef CONFIG_NUMA
1925	put_page(new_page);
1926#endif
1927	goto out_up_write;
1928}
1929
1930static int khugepaged_scan_pmd(struct mm_struct *mm,
1931			       struct vm_area_struct *vma,
1932			       unsigned long address,
1933			       struct page **hpage)
1934{
1935	pgd_t *pgd;
1936	pud_t *pud;
1937	pmd_t *pmd;
1938	pte_t *pte, *_pte;
1939	int ret = 0, referenced = 0, none = 0;
 
 
1940	struct page *page;
1941	unsigned long _address;
1942	spinlock_t *ptl;
1943	int node = -1;
1944
1945	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 
 
 
 
 
 
1946
1947	pgd = pgd_offset(mm, address);
1948	if (!pgd_present(*pgd))
1949		goto out;
1950
1951	pud = pud_offset(pgd, address);
1952	if (!pud_present(*pud))
1953		goto out;
1954
1955	pmd = pmd_offset(pud, address);
1956	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1957		goto out;
1958
1959	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1960	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1961	     _pte++, _address += PAGE_SIZE) {
1962		pte_t pteval = *_pte;
1963		if (pte_none(pteval)) {
1964			if (++none <= khugepaged_max_ptes_none)
1965				continue;
1966			else
1967				goto out_unmap;
 
1968		}
1969		if (!pte_present(pteval) || !pte_write(pteval))
1970			goto out_unmap;
1971		page = vm_normal_page(vma, _address, pteval);
1972		if (unlikely(!page))
1973			goto out_unmap;
1974		/*
1975		 * Chose the node of the first page. This could
1976		 * be more sophisticated and look at more pages,
1977		 * but isn't for now.
1978		 */
1979		if (node == -1)
1980			node = page_to_nid(page);
1981		VM_BUG_ON(PageCompound(page));
1982		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1983			goto out_unmap;
1984		/* cannot use mapcount: can't collapse if there's a gup pin */
1985		if (page_count(page) != 1)
1986			goto out_unmap;
1987		if (pte_young(pteval) || PageReferenced(page) ||
1988		    mmu_notifier_test_young(vma->vm_mm, address))
1989			referenced = 1;
1990	}
1991	if (referenced)
1992		ret = 1;
1993out_unmap:
1994	pte_unmap_unlock(pte, ptl);
1995	if (ret)
1996		/* collapse_huge_page will return with the mmap_sem released */
1997		collapse_huge_page(mm, address, hpage, vma, node);
1998out:
1999	return ret;
2000}
2001
2002static void collect_mm_slot(struct mm_slot *mm_slot)
2003{
2004	struct mm_struct *mm = mm_slot->mm;
2005
2006	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2007
2008	if (khugepaged_test_exit(mm)) {
2009		/* free mm_slot */
2010		hlist_del(&mm_slot->hash);
2011		list_del(&mm_slot->mm_node);
 
 
 
 
2012
2013		/*
2014		 * Not strictly needed because the mm exited already.
2015		 *
2016		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2017		 */
2018
2019		/* khugepaged_mm_lock actually not necessary for the below */
2020		free_mm_slot(mm_slot);
2021		mmdrop(mm);
 
 
 
 
2022	}
2023}
 
2024
2025static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2026					    struct page **hpage)
2027{
2028	struct mm_slot *mm_slot;
2029	struct mm_struct *mm;
2030	struct vm_area_struct *vma;
2031	int progress = 0;
2032
2033	VM_BUG_ON(!pages);
2034	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
 
 
2035
2036	if (khugepaged_scan.mm_slot)
2037		mm_slot = khugepaged_scan.mm_slot;
2038	else {
2039		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2040				     struct mm_slot, mm_node);
2041		khugepaged_scan.address = 0;
2042		khugepaged_scan.mm_slot = mm_slot;
2043	}
2044	spin_unlock(&khugepaged_mm_lock);
2045
2046	mm = mm_slot->mm;
2047	down_read(&mm->mmap_sem);
2048	if (unlikely(khugepaged_test_exit(mm)))
2049		vma = NULL;
2050	else
2051		vma = find_vma(mm, khugepaged_scan.address);
2052
2053	progress++;
2054	for (; vma; vma = vma->vm_next) {
2055		unsigned long hstart, hend;
 
 
 
 
 
2056
2057		cond_resched();
2058		if (unlikely(khugepaged_test_exit(mm))) {
2059			progress++;
2060			break;
2061		}
2062
2063		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2064		     !khugepaged_always()) ||
2065		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2066		skip:
2067			progress++;
2068			continue;
2069		}
2070		if (!vma->anon_vma || vma->vm_ops)
2071			goto skip;
2072		if (is_vma_temporary_stack(vma))
2073			goto skip;
2074		/*
2075		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2076		 * must be true too, verify it here.
2077		 */
2078		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2079			  vma->vm_flags & VM_NO_THP);
2080
2081		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2082		hend = vma->vm_end & HPAGE_PMD_MASK;
2083		if (hstart >= hend)
2084			goto skip;
2085		if (khugepaged_scan.address > hend)
2086			goto skip;
2087		if (khugepaged_scan.address < hstart)
2088			khugepaged_scan.address = hstart;
2089		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2090
2091		while (khugepaged_scan.address < hend) {
2092			int ret;
2093			cond_resched();
2094			if (unlikely(khugepaged_test_exit(mm)))
2095				goto breakouterloop;
2096
2097			VM_BUG_ON(khugepaged_scan.address < hstart ||
2098				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2099				  hend);
2100			ret = khugepaged_scan_pmd(mm, vma,
2101						  khugepaged_scan.address,
2102						  hpage);
2103			/* move to next address */
2104			khugepaged_scan.address += HPAGE_PMD_SIZE;
2105			progress += HPAGE_PMD_NR;
2106			if (ret)
2107				/* we released mmap_sem so break loop */
2108				goto breakouterloop_mmap_sem;
2109			if (progress >= pages)
2110				goto breakouterloop;
2111		}
2112	}
2113breakouterloop:
2114	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2115breakouterloop_mmap_sem:
2116
2117	spin_lock(&khugepaged_mm_lock);
2118	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2119	/*
2120	 * Release the current mm_slot if this mm is about to die, or
2121	 * if we scanned all vmas of this mm.
2122	 */
2123	if (khugepaged_test_exit(mm) || !vma) {
2124		/*
2125		 * Make sure that if mm_users is reaching zero while
2126		 * khugepaged runs here, khugepaged_exit will find
2127		 * mm_slot not pointing to the exiting mm.
2128		 */
2129		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2130			khugepaged_scan.mm_slot = list_entry(
2131				mm_slot->mm_node.next,
2132				struct mm_slot, mm_node);
2133			khugepaged_scan.address = 0;
2134		} else {
2135			khugepaged_scan.mm_slot = NULL;
2136			khugepaged_full_scans++;
2137		}
2138
2139		collect_mm_slot(mm_slot);
 
 
 
 
 
 
2140	}
 
 
2141
2142	return progress;
2143}
2144
2145static int khugepaged_has_work(void)
2146{
2147	return !list_empty(&khugepaged_scan.mm_head) &&
2148		khugepaged_enabled();
2149}
2150
2151static int khugepaged_wait_event(void)
 
2152{
2153	return !list_empty(&khugepaged_scan.mm_head) ||
2154		!khugepaged_enabled();
2155}
 
 
 
 
2156
2157static void khugepaged_do_scan(struct page **hpage)
2158{
2159	unsigned int progress = 0, pass_through_head = 0;
2160	unsigned int pages = khugepaged_pages_to_scan;
2161
2162	barrier(); /* write khugepaged_pages_to_scan to local stack */
 
 
2163
2164	while (progress < pages) {
2165		cond_resched();
2166
2167#ifndef CONFIG_NUMA
2168		if (!*hpage) {
2169			*hpage = alloc_hugepage(khugepaged_defrag());
2170			if (unlikely(!*hpage)) {
2171				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2172				break;
2173			}
2174			count_vm_event(THP_COLLAPSE_ALLOC);
2175		}
2176#else
2177		if (IS_ERR(*hpage))
2178			break;
2179#endif
2180
2181		if (unlikely(kthread_should_stop() || freezing(current)))
2182			break;
 
2183
2184		spin_lock(&khugepaged_mm_lock);
2185		if (!khugepaged_scan.mm_slot)
2186			pass_through_head++;
2187		if (khugepaged_has_work() &&
2188		    pass_through_head < 2)
2189			progress += khugepaged_scan_mm_slot(pages - progress,
2190							    hpage);
2191		else
2192			progress = pages;
2193		spin_unlock(&khugepaged_mm_lock);
 
 
 
 
 
 
 
 
 
 
2194	}
2195}
2196
2197static void khugepaged_alloc_sleep(void)
2198{
2199	DEFINE_WAIT(wait);
2200	add_wait_queue(&khugepaged_wait, &wait);
2201	schedule_timeout_interruptible(
2202		msecs_to_jiffies(
2203			khugepaged_alloc_sleep_millisecs));
2204	remove_wait_queue(&khugepaged_wait, &wait);
2205}
2206
2207#ifndef CONFIG_NUMA
2208static struct page *khugepaged_alloc_hugepage(void)
 
 
2209{
2210	struct page *hpage;
 
 
 
 
 
2211
2212	do {
2213		hpage = alloc_hugepage(khugepaged_defrag());
2214		if (!hpage) {
2215			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2216			khugepaged_alloc_sleep();
2217		} else
2218			count_vm_event(THP_COLLAPSE_ALLOC);
2219	} while (unlikely(!hpage) &&
2220		 likely(khugepaged_enabled()));
2221	return hpage;
2222}
2223#endif
2224
2225static void khugepaged_loop(void)
2226{
2227	struct page *hpage;
2228
2229#ifdef CONFIG_NUMA
2230	hpage = NULL;
2231#endif
2232	while (likely(khugepaged_enabled())) {
2233#ifndef CONFIG_NUMA
2234		hpage = khugepaged_alloc_hugepage();
2235		if (unlikely(!hpage))
2236			break;
2237#else
2238		if (IS_ERR(hpage)) {
2239			khugepaged_alloc_sleep();
2240			hpage = NULL;
2241		}
2242#endif
2243
2244		khugepaged_do_scan(&hpage);
2245#ifndef CONFIG_NUMA
2246		if (hpage)
2247			put_page(hpage);
2248#endif
2249		try_to_freeze();
2250		if (unlikely(kthread_should_stop()))
2251			break;
2252		if (khugepaged_has_work()) {
2253			DEFINE_WAIT(wait);
2254			if (!khugepaged_scan_sleep_millisecs)
2255				continue;
2256			add_wait_queue(&khugepaged_wait, &wait);
2257			schedule_timeout_interruptible(
2258				msecs_to_jiffies(
2259					khugepaged_scan_sleep_millisecs));
2260			remove_wait_queue(&khugepaged_wait, &wait);
2261		} else if (khugepaged_enabled())
2262			wait_event_freezable(khugepaged_wait,
2263					     khugepaged_wait_event());
2264	}
2265}
2266
2267static int khugepaged(void *none)
2268{
2269	struct mm_slot *mm_slot;
 
 
 
2270
2271	set_freezable();
2272	set_user_nice(current, 19);
 
 
 
 
 
2273
2274	/* serialize with start_khugepaged() */
2275	mutex_lock(&khugepaged_mutex);
 
 
 
 
 
 
2276
2277	for (;;) {
2278		mutex_unlock(&khugepaged_mutex);
2279		VM_BUG_ON(khugepaged_thread != current);
2280		khugepaged_loop();
2281		VM_BUG_ON(khugepaged_thread != current);
2282
2283		mutex_lock(&khugepaged_mutex);
2284		if (!khugepaged_enabled())
2285			break;
2286		if (unlikely(kthread_should_stop()))
2287			break;
 
 
 
2288	}
2289
2290	spin_lock(&khugepaged_mm_lock);
2291	mm_slot = khugepaged_scan.mm_slot;
2292	khugepaged_scan.mm_slot = NULL;
2293	if (mm_slot)
2294		collect_mm_slot(mm_slot);
2295	spin_unlock(&khugepaged_mm_lock);
 
 
2296
2297	khugepaged_thread = NULL;
2298	mutex_unlock(&khugepaged_mutex);
 
 
 
2299
 
 
 
 
2300	return 0;
2301}
 
 
2302
2303void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
 
 
2304{
2305	struct page *page;
 
 
 
 
 
 
2306
2307	spin_lock(&mm->page_table_lock);
2308	if (unlikely(!pmd_trans_huge(*pmd))) {
2309		spin_unlock(&mm->page_table_lock);
2310		return;
2311	}
2312	page = pmd_page(*pmd);
2313	VM_BUG_ON(!page_count(page));
2314	get_page(page);
2315	spin_unlock(&mm->page_table_lock);
2316
2317	split_huge_page(page);
 
2318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2319	put_page(page);
2320	BUG_ON(pmd_trans_huge(*pmd));
 
 
2321}
2322
2323static void split_huge_page_address(struct mm_struct *mm,
2324				    unsigned long address)
2325{
2326	pgd_t *pgd;
2327	pud_t *pud;
2328	pmd_t *pmd;
2329
2330	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2331
2332	pgd = pgd_offset(mm, address);
2333	if (!pgd_present(*pgd))
2334		return;
2335
2336	pud = pud_offset(pgd, address);
2337	if (!pud_present(*pud))
2338		return;
2339
2340	pmd = pmd_offset(pud, address);
2341	if (!pmd_present(*pmd))
2342		return;
2343	/*
2344	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2345	 * materialize from under us.
2346	 */
2347	split_huge_page_pmd(mm, pmd);
2348}
 
 
 
 
 
 
 
2349
2350void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2351			     unsigned long start,
2352			     unsigned long end,
2353			     long adjust_next)
2354{
2355	/*
2356	 * If the new start address isn't hpage aligned and it could
2357	 * previously contain an hugepage: check if we need to split
2358	 * an huge pmd.
2359	 */
2360	if (start & ~HPAGE_PMD_MASK &&
2361	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2362	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2363		split_huge_page_address(vma->vm_mm, start);
2364
2365	/*
2366	 * If the new end address isn't hpage aligned and it could
2367	 * previously contain an hugepage: check if we need to split
2368	 * an huge pmd.
2369	 */
2370	if (end & ~HPAGE_PMD_MASK &&
2371	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2372	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2373		split_huge_page_address(vma->vm_mm, end);
2374
2375	/*
2376	 * If we're also updating the vma->vm_next->vm_start, if the new
2377	 * vm_next->vm_start isn't page aligned and it could previously
2378	 * contain an hugepage: check if we need to split an huge pmd.
2379	 */
2380	if (adjust_next > 0) {
2381		struct vm_area_struct *next = vma->vm_next;
2382		unsigned long nstart = next->vm_start;
2383		nstart += adjust_next << PAGE_SHIFT;
2384		if (nstart & ~HPAGE_PMD_MASK &&
2385		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2386		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2387			split_huge_page_address(next->vm_mm, nstart);
2388	}
 
 
 
 
 
 
2389}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2009  Red Hat, Inc.
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/coredump.h>
  12#include <linux/sched/numa_balancing.h>
  13#include <linux/highmem.h>
  14#include <linux/hugetlb.h>
  15#include <linux/mmu_notifier.h>
  16#include <linux/rmap.h>
  17#include <linux/swap.h>
  18#include <linux/shrinker.h>
  19#include <linux/mm_inline.h>
  20#include <linux/swapops.h>
  21#include <linux/backing-dev.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36#include <linux/numa.h>
  37#include <linux/page_owner.h>
  38#include <linux/sched/sysctl.h>
  39#include <linux/memory-tiers.h>
  40
  41#include <asm/tlb.h>
  42#include <asm/pgalloc.h>
  43#include "internal.h"
  44#include "swap.h"
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/thp.h>
  48
  49/*
  50 * By default, transparent hugepage support is disabled in order to avoid
  51 * risking an increased memory footprint for applications that are not
  52 * guaranteed to benefit from it. When transparent hugepage support is
  53 * enabled, it is for all mappings, and khugepaged scans all mappings.
  54 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  55 * for all hugepage allocations.
  56 */
  57unsigned long transparent_hugepage_flags __read_mostly =
  58#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  59	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  60#endif
  61#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  62	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  63#endif
  64	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  65	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  66	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  67
  68static struct shrinker deferred_split_shrinker;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69
  70static atomic_t huge_zero_refcount;
  71struct page *huge_zero_page __read_mostly;
  72unsigned long huge_zero_pfn __read_mostly = ~0UL;
 
 
 
 
 
  73
  74bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
  75			bool smaps, bool in_pf, bool enforce_sysfs)
  76{
  77	if (!vma->vm_mm)		/* vdso */
  78		return false;
 
 
 
 
 
 
  79
  80	/*
  81	 * Explicitly disabled through madvise or prctl, or some
  82	 * architectures may disable THP for some mappings, for
  83	 * example, s390 kvm.
  84	 * */
  85	if ((vm_flags & VM_NOHUGEPAGE) ||
  86	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
  87		return false;
  88	/*
  89	 * If the hardware/firmware marked hugepage support disabled.
  90	 */
  91	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
  92		return false;
 
 
  93
  94	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
  95	if (vma_is_dax(vma))
  96		return in_pf;
  97
  98	/*
  99	 * Special VMA and hugetlb VMA.
 100	 * Must be checked after dax since some dax mappings may have
 101	 * VM_MIXEDMAP set.
 102	 */
 103	if (vm_flags & VM_NO_KHUGEPAGED)
 104		return false;
 105
 106	/*
 107	 * Check alignment for file vma and size for both file and anon vma.
 108	 *
 109	 * Skip the check for page fault. Huge fault does the check in fault
 110	 * handlers. And this check is not suitable for huge PUD fault.
 111	 */
 112	if (!in_pf &&
 113	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
 114		return false;
 115
 116	/*
 117	 * Enabled via shmem mount options or sysfs settings.
 118	 * Must be done before hugepage flags check since shmem has its
 119	 * own flags.
 120	 */
 121	if (!in_pf && shmem_file(vma->vm_file))
 122		return shmem_huge_enabled(vma, !enforce_sysfs);
 123
 124	/* Enforce sysfs THP requirements as necessary */
 125	if (enforce_sysfs &&
 126	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
 127					   !hugepage_flags_always())))
 128		return false;
 129
 130	/* Only regular file is valid */
 131	if (!in_pf && file_thp_enabled(vma))
 132		return true;
 133
 134	if (!vma_is_anonymous(vma))
 135		return false;
 136
 137	if (vma_is_temporary_stack(vma))
 138		return false;
 139
 140	/*
 141	 * THPeligible bit of smaps should show 1 for proper VMAs even
 142	 * though anon_vma is not initialized yet.
 143	 *
 144	 * Allow page fault since anon_vma may be not initialized until
 145	 * the first page fault.
 146	 */
 147	if (!vma->anon_vma)
 148		return (smaps || in_pf);
 149
 150	return true;
 151}
 
 
 152
 153static bool get_huge_zero_page(void)
 154{
 155	struct page *zero_page;
 156retry:
 157	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 158		return true;
 159
 160	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 161			HPAGE_PMD_ORDER);
 162	if (!zero_page) {
 163		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 164		return false;
 165	}
 166	preempt_disable();
 167	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 168		preempt_enable();
 169		__free_pages(zero_page, compound_order(zero_page));
 170		goto retry;
 171	}
 172	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
 173
 174	/* We take additional reference here. It will be put back by shrinker */
 175	atomic_set(&huge_zero_refcount, 2);
 176	preempt_enable();
 177	count_vm_event(THP_ZERO_PAGE_ALLOC);
 178	return true;
 179}
 
 180
 181static void put_huge_zero_page(void)
 182{
 183	/*
 184	 * Counter should never go to zero here. Only shrinker can put
 185	 * last reference.
 186	 */
 187	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 188}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 189
 190struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 191{
 192	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 193		return READ_ONCE(huge_zero_page);
 194
 195	if (!get_huge_zero_page())
 196		return NULL;
 197
 198	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 199		put_huge_zero_page();
 200
 201	return READ_ONCE(huge_zero_page);
 202}
 203
 204void mm_put_huge_zero_page(struct mm_struct *mm)
 205{
 206	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 207		put_huge_zero_page();
 208}
 209
 210static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 211					struct shrink_control *sc)
 212{
 213	/* we can free zero page only if last reference remains */
 214	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 
 
 
 
 
 
 
 215}
 216
 217static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 218				       struct shrink_control *sc)
 
 
 219{
 220	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 221		struct page *zero_page = xchg(&huge_zero_page, NULL);
 222		BUG_ON(zero_page == NULL);
 223		WRITE_ONCE(huge_zero_pfn, ~0UL);
 224		__free_pages(zero_page, compound_order(zero_page));
 225		return HPAGE_PMD_NR;
 226	}
 
 
 
 
 
 
 
 227
 228	return 0;
 229}
 230
 231static struct shrinker huge_zero_page_shrinker = {
 232	.count_objects = shrink_huge_zero_page_count,
 233	.scan_objects = shrink_huge_zero_page_scan,
 234	.seeks = DEFAULT_SEEKS,
 235};
 236
 237#ifdef CONFIG_SYSFS
 238static ssize_t enabled_show(struct kobject *kobj,
 239			    struct kobj_attribute *attr, char *buf)
 240{
 241	const char *output;
 242
 243	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 244		output = "[always] madvise never";
 245	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 246			  &transparent_hugepage_flags))
 247		output = "always [madvise] never";
 248	else
 249		output = "always madvise [never]";
 250
 251	return sysfs_emit(buf, "%s\n", output);
 252}
 253
 254static ssize_t enabled_store(struct kobject *kobj,
 255			     struct kobj_attribute *attr,
 256			     const char *buf, size_t count)
 257{
 258	ssize_t ret = count;
 259
 260	if (sysfs_streq(buf, "always")) {
 261		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 263	} else if (sysfs_streq(buf, "madvise")) {
 264		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 265		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 266	} else if (sysfs_streq(buf, "never")) {
 267		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 268		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 269	} else
 270		ret = -EINVAL;
 271
 272	if (ret > 0) {
 273		int err = start_stop_khugepaged();
 274		if (err)
 275			ret = err;
 276	}
 
 
 
 
 
 
 
 
 277	return ret;
 278}
 
 
 279
 280static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
 281
 282ssize_t single_hugepage_flag_show(struct kobject *kobj,
 283				  struct kobj_attribute *attr, char *buf,
 284				  enum transparent_hugepage_flag flag)
 285{
 286	return sysfs_emit(buf, "%d\n",
 287			  !!test_bit(flag, &transparent_hugepage_flags));
 288}
 289
 290ssize_t single_hugepage_flag_store(struct kobject *kobj,
 291				 struct kobj_attribute *attr,
 292				 const char *buf, size_t count,
 293				 enum transparent_hugepage_flag flag)
 294{
 295	unsigned long value;
 296	int ret;
 297
 298	ret = kstrtoul(buf, 10, &value);
 299	if (ret < 0)
 300		return ret;
 301	if (value > 1)
 302		return -EINVAL;
 303
 304	if (value)
 305		set_bit(flag, &transparent_hugepage_flags);
 306	else
 307		clear_bit(flag, &transparent_hugepage_flags);
 308
 309	return count;
 310}
 311
 
 
 
 
 
 312static ssize_t defrag_show(struct kobject *kobj,
 313			   struct kobj_attribute *attr, char *buf)
 314{
 315	const char *output;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316
 317	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 318		     &transparent_hugepage_flags))
 319		output = "[always] defer defer+madvise madvise never";
 320	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 321			  &transparent_hugepage_flags))
 322		output = "always [defer] defer+madvise madvise never";
 323	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
 324			  &transparent_hugepage_flags))
 325		output = "always defer [defer+madvise] madvise never";
 326	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 327			  &transparent_hugepage_flags))
 328		output = "always defer defer+madvise [madvise] never";
 329	else
 330		output = "always defer defer+madvise madvise [never]";
 331
 332	return sysfs_emit(buf, "%s\n", output);
 
 
 
 
 333}
 334
 335static ssize_t defrag_store(struct kobject *kobj,
 336			    struct kobj_attribute *attr,
 337			    const char *buf, size_t count)
 338{
 339	if (sysfs_streq(buf, "always")) {
 340		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 341		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 342		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 343		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 344	} else if (sysfs_streq(buf, "defer+madvise")) {
 345		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 346		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 347		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 348		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 349	} else if (sysfs_streq(buf, "defer")) {
 350		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 351		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 352		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 353		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 354	} else if (sysfs_streq(buf, "madvise")) {
 355		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 356		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 357		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 358		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 359	} else if (sysfs_streq(buf, "never")) {
 360		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 361		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 362		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 363		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 364	} else
 365		return -EINVAL;
 366
 
 
 
 367	return count;
 368}
 369static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
 
 
 370
 371static ssize_t use_zero_page_show(struct kobject *kobj,
 372				  struct kobj_attribute *attr, char *buf)
 
 373{
 374	return single_hugepage_flag_show(kobj, attr, buf,
 375					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 376}
 377static ssize_t use_zero_page_store(struct kobject *kobj,
 378		struct kobj_attribute *attr, const char *buf, size_t count)
 379{
 380	return single_hugepage_flag_store(kobj, attr, buf, count,
 381				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 382}
 383static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
 384
 385static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 386				   struct kobj_attribute *attr, char *buf)
 
 387{
 388	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
 389}
 390static struct kobj_attribute hpage_pmd_size_attr =
 391	__ATTR_RO(hpage_pmd_size);
 392
 393static struct attribute *hugepage_attr[] = {
 394	&enabled_attr.attr,
 395	&defrag_attr.attr,
 396	&use_zero_page_attr.attr,
 397	&hpage_pmd_size_attr.attr,
 398#ifdef CONFIG_SHMEM
 399	&shmem_enabled_attr.attr,
 400#endif
 401	NULL,
 402};
 403
 404static const struct attribute_group hugepage_attr_group = {
 405	.attrs = hugepage_attr,
 406};
 407
 408static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 409{
 410	int err;
 
 411
 412	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 413	if (unlikely(!*hugepage_kobj)) {
 414		pr_err("failed to create transparent hugepage kobject\n");
 415		return -ENOMEM;
 416	}
 417
 418	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 419	if (err) {
 420		pr_err("failed to register transparent hugepage group\n");
 421		goto delete_obj;
 422	}
 423
 424	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 425	if (err) {
 426		pr_err("failed to register transparent hugepage group\n");
 427		goto remove_hp_group;
 428	}
 429
 430	return 0;
 
 
 
 
 
 
 
 431
 432remove_hp_group:
 433	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 434delete_obj:
 435	kobject_put(*hugepage_kobj);
 436	return err;
 437}
 
 
 438
 439static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 
 440{
 441	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 442	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 443	kobject_put(hugepage_kobj);
 444}
 445#else
 446static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 
 447{
 448	return 0;
 
 449}
 
 
 
 450
 451static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452{
 
 
 
 
 
 
 
 
 
 
 453}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454#endif /* CONFIG_SYSFS */
 455
 456static int __init hugepage_init(void)
 457{
 458	int err;
 459	struct kobject *hugepage_kobj;
 
 
 460
 
 461	if (!has_transparent_hugepage()) {
 462		/*
 463		 * Hardware doesn't support hugepages, hence disable
 464		 * DAX PMD support.
 465		 */
 466		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
 467		return -EINVAL;
 
 
 
 
 468	}
 469
 470	/*
 471	 * hugepages can't be allocated by the buddy allocator
 472	 */
 473	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 474	/*
 475	 * we use page->mapping and page->index in second tail page
 476	 * as list_head: assuming THP order >= 2
 477	 */
 478	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 479
 480	err = hugepage_init_sysfs(&hugepage_kobj);
 481	if (err)
 482		goto err_sysfs;
 
 
 
 483
 484	err = khugepaged_init();
 485	if (err)
 486		goto err_slab;
 487
 488	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
 489	if (err)
 490		goto err_hzp_shrinker;
 491	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
 492	if (err)
 493		goto err_split_shrinker;
 494
 495	/*
 496	 * By default disable transparent hugepages on smaller systems,
 497	 * where the extra memory used could hurt more than TLB overhead
 498	 * is likely to save.  The admin can still enable it through /sys.
 499	 */
 500	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
 501		transparent_hugepage_flags = 0;
 502		return 0;
 503	}
 504
 505	err = start_stop_khugepaged();
 506	if (err)
 507		goto err_khugepaged;
 508
 509	return 0;
 510err_khugepaged:
 511	unregister_shrinker(&deferred_split_shrinker);
 512err_split_shrinker:
 513	unregister_shrinker(&huge_zero_page_shrinker);
 514err_hzp_shrinker:
 515	khugepaged_destroy();
 516err_slab:
 517	hugepage_exit_sysfs(hugepage_kobj);
 518err_sysfs:
 519	return err;
 520}
 521subsys_initcall(hugepage_init);
 522
 523static int __init setup_transparent_hugepage(char *str)
 524{
 525	int ret = 0;
 526	if (!str)
 527		goto out;
 528	if (!strcmp(str, "always")) {
 529		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 530			&transparent_hugepage_flags);
 531		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 532			  &transparent_hugepage_flags);
 533		ret = 1;
 534	} else if (!strcmp(str, "madvise")) {
 535		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 536			  &transparent_hugepage_flags);
 537		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 538			&transparent_hugepage_flags);
 539		ret = 1;
 540	} else if (!strcmp(str, "never")) {
 541		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 542			  &transparent_hugepage_flags);
 543		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 544			  &transparent_hugepage_flags);
 545		ret = 1;
 546	}
 547out:
 548	if (!ret)
 549		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 
 550	return ret;
 551}
 552__setup("transparent_hugepage=", setup_transparent_hugepage);
 553
 554pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 555{
 556	if (likely(vma->vm_flags & VM_WRITE))
 557		pmd = pmd_mkwrite(pmd);
 558	return pmd;
 559}
 560
 561#ifdef CONFIG_MEMCG
 562static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 563{
 564	struct mem_cgroup *memcg = page_memcg(compound_head(page));
 565	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 566
 567	if (memcg)
 568		return &memcg->deferred_split_queue;
 
 569	else
 570		return &pgdat->deferred_split_queue;
 
 571}
 572#else
 573static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 574{
 575	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 576
 577	return &pgdat->deferred_split_queue;
 578}
 579#endif
 580
 581void prep_transhuge_page(struct page *page)
 582{
 583	/*
 584	 * we use page->mapping and page->index in second tail page
 585	 * as list_head: assuming THP order >= 2
 586	 */
 587
 588	INIT_LIST_HEAD(page_deferred_list(page));
 589	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 590}
 591
 592static inline bool is_transparent_hugepage(struct page *page)
 
 
 
 593{
 594	if (!PageCompound(page))
 595		return false;
 596
 597	page = compound_head(page);
 598	return is_huge_zero_page(page) ||
 599	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
 600}
 601
 602static unsigned long __thp_get_unmapped_area(struct file *filp,
 603		unsigned long addr, unsigned long len,
 604		loff_t off, unsigned long flags, unsigned long size)
 605{
 606	loff_t off_end = off + len;
 607	loff_t off_align = round_up(off, size);
 608	unsigned long len_pad, ret;
 609
 610	if (off_end <= off_align || (off_end - off_align) < size)
 611		return 0;
 612
 613	len_pad = len + size;
 614	if (len_pad < len || (off + len_pad) < off)
 615		return 0;
 616
 617	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
 618					      off >> PAGE_SHIFT, flags);
 619
 620	/*
 621	 * The failure might be due to length padding. The caller will retry
 622	 * without the padding.
 623	 */
 624	if (IS_ERR_VALUE(ret))
 625		return 0;
 626
 627	/*
 628	 * Do not try to align to THP boundary if allocation at the address
 629	 * hint succeeds.
 630	 */
 631	if (ret == addr)
 632		return addr;
 633
 634	ret += (off - ret) & (size - 1);
 635	return ret;
 636}
 637
 638unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 639		unsigned long len, unsigned long pgoff, unsigned long flags)
 640{
 641	unsigned long ret;
 642	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 643
 644	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
 645	if (ret)
 646		return ret;
 647
 648	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 649}
 650EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 651
 652static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
 653			struct page *page, gfp_t gfp)
 654{
 655	struct vm_area_struct *vma = vmf->vma;
 656	pgtable_t pgtable;
 657	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 658	vm_fault_t ret = 0;
 659
 660	VM_BUG_ON_PAGE(!PageCompound(page), page);
 661
 662	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
 
 663		put_page(page);
 664		count_vm_event(THP_FAULT_FALLBACK);
 665		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
 666		return VM_FAULT_FALLBACK;
 667	}
 668	cgroup_throttle_swaprate(page, gfp);
 669
 670	pgtable = pte_alloc_one(vma->vm_mm);
 671	if (unlikely(!pgtable)) {
 672		ret = VM_FAULT_OOM;
 673		goto release;
 674	}
 675
 676	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 677	/*
 678	 * The memory barrier inside __SetPageUptodate makes sure that
 679	 * clear_huge_page writes become visible before the set_pmd_at()
 680	 * write.
 681	 */
 682	__SetPageUptodate(page);
 683
 684	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 685	if (unlikely(!pmd_none(*vmf->pmd))) {
 686		goto unlock_release;
 
 
 
 687	} else {
 688		pmd_t entry;
 689
 690		ret = check_stable_address_space(vma->vm_mm);
 691		if (ret)
 692			goto unlock_release;
 693
 694		/* Deliver the page fault to userland */
 695		if (userfaultfd_missing(vma)) {
 696			spin_unlock(vmf->ptl);
 697			put_page(page);
 698			pte_free(vma->vm_mm, pgtable);
 699			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 700			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 701			return ret;
 702		}
 703
 704		entry = mk_huge_pmd(page, vma->vm_page_prot);
 705		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 
 
 
 
 
 
 
 706		page_add_new_anon_rmap(page, vma, haddr);
 707		lru_cache_add_inactive_or_unevictable(page, vma);
 708		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 709		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 710		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 711		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 712		mm_inc_nr_ptes(vma->vm_mm);
 713		spin_unlock(vmf->ptl);
 714		count_vm_event(THP_FAULT_ALLOC);
 715		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
 716	}
 717
 718	return 0;
 719unlock_release:
 720	spin_unlock(vmf->ptl);
 721release:
 722	if (pgtable)
 723		pte_free(vma->vm_mm, pgtable);
 724	put_page(page);
 725	return ret;
 726
 727}
 728
 729/*
 730 * always: directly stall for all thp allocations
 731 * defer: wake kswapd and fail if not immediately available
 732 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 733 *		  fail if not immediately available
 734 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 735 *	    available
 736 * never: never stall for any thp allocation
 737 */
 738gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
 739{
 740	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
 741
 742	/* Always do synchronous compaction */
 743	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 744		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 745
 746	/* Kick kcompactd and fail quickly */
 747	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 748		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 749
 750	/* Synchronous compaction if madvised, otherwise kick kcompactd */
 751	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 752		return GFP_TRANSHUGE_LIGHT |
 753			(vma_madvised ? __GFP_DIRECT_RECLAIM :
 754					__GFP_KSWAPD_RECLAIM);
 755
 756	/* Only do synchronous compaction if madvised */
 757	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 758		return GFP_TRANSHUGE_LIGHT |
 759		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
 760
 761	return GFP_TRANSHUGE_LIGHT;
 762}
 763
 764/* Caller must hold page table lock. */
 765static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 766		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 767		struct page *zero_page)
 768{
 769	pmd_t entry;
 770	if (!pmd_none(*pmd))
 771		return;
 772	entry = mk_pmd(zero_page, vma->vm_page_prot);
 773	entry = pmd_mkhuge(entry);
 774	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 775	set_pmd_at(mm, haddr, pmd, entry);
 776	mm_inc_nr_ptes(mm);
 777}
 778
 779vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 780{
 781	struct vm_area_struct *vma = vmf->vma;
 782	gfp_t gfp;
 783	struct folio *folio;
 784	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 785
 786	if (!transhuge_vma_suitable(vma, haddr))
 787		return VM_FAULT_FALLBACK;
 788	if (unlikely(anon_vma_prepare(vma)))
 789		return VM_FAULT_OOM;
 790	khugepaged_enter_vma(vma, vma->vm_flags);
 791
 792	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 793			!mm_forbids_zeropage(vma->vm_mm) &&
 794			transparent_hugepage_use_zero_page()) {
 795		pgtable_t pgtable;
 796		struct page *zero_page;
 797		vm_fault_t ret;
 798		pgtable = pte_alloc_one(vma->vm_mm);
 799		if (unlikely(!pgtable))
 800			return VM_FAULT_OOM;
 801		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 802		if (unlikely(!zero_page)) {
 803			pte_free(vma->vm_mm, pgtable);
 804			count_vm_event(THP_FAULT_FALLBACK);
 805			return VM_FAULT_FALLBACK;
 806		}
 807		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 808		ret = 0;
 809		if (pmd_none(*vmf->pmd)) {
 810			ret = check_stable_address_space(vma->vm_mm);
 811			if (ret) {
 812				spin_unlock(vmf->ptl);
 813				pte_free(vma->vm_mm, pgtable);
 814			} else if (userfaultfd_missing(vma)) {
 815				spin_unlock(vmf->ptl);
 816				pte_free(vma->vm_mm, pgtable);
 817				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 818				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 819			} else {
 820				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 821						   haddr, vmf->pmd, zero_page);
 822				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 823				spin_unlock(vmf->ptl);
 824			}
 825		} else {
 826			spin_unlock(vmf->ptl);
 827			pte_free(vma->vm_mm, pgtable);
 828		}
 829		return ret;
 830	}
 831	gfp = vma_thp_gfp_mask(vma);
 832	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
 833	if (unlikely(!folio)) {
 834		count_vm_event(THP_FAULT_FALLBACK);
 835		return VM_FAULT_FALLBACK;
 836	}
 837	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
 838}
 839
 840static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 841		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 842		pgtable_t pgtable)
 843{
 844	struct mm_struct *mm = vma->vm_mm;
 845	pmd_t entry;
 846	spinlock_t *ptl;
 847
 848	ptl = pmd_lock(mm, pmd);
 849	if (!pmd_none(*pmd)) {
 850		if (write) {
 851			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
 852				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
 853				goto out_unlock;
 854			}
 855			entry = pmd_mkyoung(*pmd);
 856			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 857			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
 858				update_mmu_cache_pmd(vma, addr, pmd);
 859		}
 860
 861		goto out_unlock;
 862	}
 863
 864	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 865	if (pfn_t_devmap(pfn))
 866		entry = pmd_mkdevmap(entry);
 867	if (write) {
 868		entry = pmd_mkyoung(pmd_mkdirty(entry));
 869		entry = maybe_pmd_mkwrite(entry, vma);
 870	}
 871
 872	if (pgtable) {
 873		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 874		mm_inc_nr_ptes(mm);
 875		pgtable = NULL;
 876	}
 877
 878	set_pmd_at(mm, addr, pmd, entry);
 879	update_mmu_cache_pmd(vma, addr, pmd);
 880
 881out_unlock:
 882	spin_unlock(ptl);
 883	if (pgtable)
 884		pte_free(mm, pgtable);
 885}
 
 886
 887/**
 888 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 889 * @vmf: Structure describing the fault
 890 * @pfn: pfn to insert
 891 * @pgprot: page protection to use
 892 * @write: whether it's a write fault
 893 *
 894 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 895 * also consult the vmf_insert_mixed_prot() documentation when
 896 * @pgprot != @vmf->vma->vm_page_prot.
 897 *
 898 * Return: vm_fault_t value.
 899 */
 900vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
 901				   pgprot_t pgprot, bool write)
 902{
 903	unsigned long addr = vmf->address & PMD_MASK;
 904	struct vm_area_struct *vma = vmf->vma;
 905	pgtable_t pgtable = NULL;
 906
 907	/*
 908	 * If we had pmd_special, we could avoid all these restrictions,
 909	 * but we need to be consistent with PTEs and architectures that
 910	 * can't support a 'special' bit.
 911	 */
 912	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 913			!pfn_t_devmap(pfn));
 914	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 915						(VM_PFNMAP|VM_MIXEDMAP));
 916	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 917
 918	if (addr < vma->vm_start || addr >= vma->vm_end)
 919		return VM_FAULT_SIGBUS;
 920
 921	if (arch_needs_pgtable_deposit()) {
 922		pgtable = pte_alloc_one(vma->vm_mm);
 923		if (!pgtable)
 924			return VM_FAULT_OOM;
 925	}
 926
 927	track_pfn_insert(vma, &pgprot, pfn);
 928
 929	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
 930	return VM_FAULT_NOPAGE;
 931}
 932EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
 933
 934#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 935static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 936{
 937	if (likely(vma->vm_flags & VM_WRITE))
 938		pud = pud_mkwrite(pud);
 939	return pud;
 940}
 941
 942static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 943		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 944{
 945	struct mm_struct *mm = vma->vm_mm;
 946	pud_t entry;
 947	spinlock_t *ptl;
 948
 949	ptl = pud_lock(mm, pud);
 950	if (!pud_none(*pud)) {
 951		if (write) {
 952			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
 953				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
 954				goto out_unlock;
 955			}
 956			entry = pud_mkyoung(*pud);
 957			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
 958			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
 959				update_mmu_cache_pud(vma, addr, pud);
 960		}
 961		goto out_unlock;
 962	}
 963
 964	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 965	if (pfn_t_devmap(pfn))
 966		entry = pud_mkdevmap(entry);
 967	if (write) {
 968		entry = pud_mkyoung(pud_mkdirty(entry));
 969		entry = maybe_pud_mkwrite(entry, vma);
 970	}
 971	set_pud_at(mm, addr, pud, entry);
 972	update_mmu_cache_pud(vma, addr, pud);
 973
 974out_unlock:
 975	spin_unlock(ptl);
 976}
 977
 978/**
 979 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 980 * @vmf: Structure describing the fault
 981 * @pfn: pfn to insert
 982 * @pgprot: page protection to use
 983 * @write: whether it's a write fault
 984 *
 985 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 986 * also consult the vmf_insert_mixed_prot() documentation when
 987 * @pgprot != @vmf->vma->vm_page_prot.
 988 *
 989 * Return: vm_fault_t value.
 990 */
 991vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
 992				   pgprot_t pgprot, bool write)
 993{
 994	unsigned long addr = vmf->address & PUD_MASK;
 995	struct vm_area_struct *vma = vmf->vma;
 996
 997	/*
 998	 * If we had pud_special, we could avoid all these restrictions,
 999	 * but we need to be consistent with PTEs and architectures that
1000	 * can't support a 'special' bit.
1001	 */
1002	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1003			!pfn_t_devmap(pfn));
1004	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005						(VM_PFNMAP|VM_MIXEDMAP));
1006	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007
1008	if (addr < vma->vm_start || addr >= vma->vm_end)
1009		return VM_FAULT_SIGBUS;
1010
1011	track_pfn_insert(vma, &pgprot, pfn);
1012
1013	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1014	return VM_FAULT_NOPAGE;
1015}
1016EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1017#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1018
1019static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1020		      pmd_t *pmd, bool write)
1021{
1022	pmd_t _pmd;
1023
1024	_pmd = pmd_mkyoung(*pmd);
1025	if (write)
1026		_pmd = pmd_mkdirty(_pmd);
1027	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1028				  pmd, _pmd, write))
1029		update_mmu_cache_pmd(vma, addr, pmd);
1030}
1031
1032struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1033		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1034{
1035	unsigned long pfn = pmd_pfn(*pmd);
1036	struct mm_struct *mm = vma->vm_mm;
1037	struct page *page;
1038	int ret;
1039
1040	assert_spin_locked(pmd_lockptr(mm, pmd));
1041
1042	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1043	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1044			 (FOLL_PIN | FOLL_GET)))
1045		return NULL;
1046
1047	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1048		return NULL;
1049
1050	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1051		/* pass */;
1052	else
1053		return NULL;
1054
1055	if (flags & FOLL_TOUCH)
1056		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1057
1058	/*
1059	 * device mapped pages can only be returned if the
1060	 * caller will manage the page reference count.
 
 
1061	 */
1062	if (!(flags & (FOLL_GET | FOLL_PIN)))
1063		return ERR_PTR(-EEXIST);
1064
1065	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1066	*pgmap = get_dev_pagemap(pfn, *pgmap);
1067	if (!*pgmap)
1068		return ERR_PTR(-EFAULT);
1069	page = pfn_to_page(pfn);
1070	ret = try_grab_page(page, flags);
1071	if (ret)
1072		page = ERR_PTR(ret);
1073
1074	return page;
1075}
1076
1077int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1078		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1080{
1081	spinlock_t *dst_ptl, *src_ptl;
1082	struct page *src_page;
1083	pmd_t pmd;
1084	pgtable_t pgtable = NULL;
1085	int ret = -ENOMEM;
1086
1087	/* Skip if can be re-fill on fault */
1088	if (!vma_is_anonymous(dst_vma))
1089		return 0;
1090
1091	pgtable = pte_alloc_one(dst_mm);
 
1092	if (unlikely(!pgtable))
1093		goto out;
1094
1095	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1096	src_ptl = pmd_lockptr(src_mm, src_pmd);
1097	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1098
1099	ret = -EAGAIN;
1100	pmd = *src_pmd;
1101
1102#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1103	if (unlikely(is_swap_pmd(pmd))) {
1104		swp_entry_t entry = pmd_to_swp_entry(pmd);
1105
1106		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1107		if (!is_readable_migration_entry(entry)) {
1108			entry = make_readable_migration_entry(
1109							swp_offset(entry));
1110			pmd = swp_entry_to_pmd(entry);
1111			if (pmd_swp_soft_dirty(*src_pmd))
1112				pmd = pmd_swp_mksoft_dirty(pmd);
1113			if (pmd_swp_uffd_wp(*src_pmd))
1114				pmd = pmd_swp_mkuffd_wp(pmd);
1115			set_pmd_at(src_mm, addr, src_pmd, pmd);
1116		}
1117		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118		mm_inc_nr_ptes(dst_mm);
1119		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1120		if (!userfaultfd_wp(dst_vma))
1121			pmd = pmd_swp_clear_uffd_wp(pmd);
1122		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1123		ret = 0;
1124		goto out_unlock;
1125	}
1126#endif
1127
1128	if (unlikely(!pmd_trans_huge(pmd))) {
1129		pte_free(dst_mm, pgtable);
1130		goto out_unlock;
1131	}
1132	/*
1133	 * When page table lock is held, the huge zero pmd should not be
1134	 * under splitting since we don't split the page itself, only pmd to
1135	 * a page table.
1136	 */
1137	if (is_huge_zero_pmd(pmd)) {
1138		/*
1139		 * get_huge_zero_page() will never allocate a new page here,
1140		 * since we already have a zero page to copy. It just takes a
1141		 * reference.
1142		 */
1143		mm_get_huge_zero_page(dst_mm);
1144		goto out_zero_page;
1145	}
1146
1147	src_page = pmd_page(pmd);
1148	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1149
1150	get_page(src_page);
1151	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1152		/* Page maybe pinned: split and retry the fault on PTEs. */
1153		put_page(src_page);
1154		pte_free(dst_mm, pgtable);
1155		spin_unlock(src_ptl);
1156		spin_unlock(dst_ptl);
1157		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1158		return -EAGAIN;
1159	}
1160	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1161out_zero_page:
1162	mm_inc_nr_ptes(dst_mm);
1163	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1164	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1165	if (!userfaultfd_wp(dst_vma))
1166		pmd = pmd_clear_uffd_wp(pmd);
1167	pmd = pmd_mkold(pmd_wrprotect(pmd));
1168	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 
1169
1170	ret = 0;
1171out_unlock:
1172	spin_unlock(src_ptl);
1173	spin_unlock(dst_ptl);
1174out:
1175	return ret;
1176}
1177
1178#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1179static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1180		      pud_t *pud, bool write)
1181{
1182	pud_t _pud;
1183
1184	_pud = pud_mkyoung(*pud);
1185	if (write)
1186		_pud = pud_mkdirty(_pud);
1187	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1188				  pud, _pud, write))
1189		update_mmu_cache_pud(vma, addr, pud);
1190}
1191
1192struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1193		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1194{
1195	unsigned long pfn = pud_pfn(*pud);
1196	struct mm_struct *mm = vma->vm_mm;
1197	struct page *page;
1198	int ret;
1199
1200	assert_spin_locked(pud_lockptr(mm, pud));
1201
1202	if (flags & FOLL_WRITE && !pud_write(*pud))
1203		return NULL;
1204
1205	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1206	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1207			 (FOLL_PIN | FOLL_GET)))
1208		return NULL;
1209
1210	if (pud_present(*pud) && pud_devmap(*pud))
1211		/* pass */;
1212	else
1213		return NULL;
1214
1215	if (flags & FOLL_TOUCH)
1216		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1217
1218	/*
1219	 * device mapped pages can only be returned if the
1220	 * caller will manage the page reference count.
1221	 *
1222	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1223	 */
1224	if (!(flags & (FOLL_GET | FOLL_PIN)))
1225		return ERR_PTR(-EEXIST);
1226
1227	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1228	*pgmap = get_dev_pagemap(pfn, *pgmap);
1229	if (!*pgmap)
1230		return ERR_PTR(-EFAULT);
1231	page = pfn_to_page(pfn);
1232
1233	ret = try_grab_page(page, flags);
1234	if (ret)
1235		page = ERR_PTR(ret);
1236
1237	return page;
1238}
1239
1240int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1241		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1242		  struct vm_area_struct *vma)
 
 
 
1243{
1244	spinlock_t *dst_ptl, *src_ptl;
1245	pud_t pud;
1246	int ret;
 
1247
1248	dst_ptl = pud_lock(dst_mm, dst_pud);
1249	src_ptl = pud_lockptr(src_mm, src_pud);
1250	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 
 
 
1251
1252	ret = -EAGAIN;
1253	pud = *src_pud;
1254	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1255		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256
1257	/*
1258	 * When page table lock is held, the huge zero pud should not be
1259	 * under splitting since we don't split the page itself, only pud to
1260	 * a page table.
1261	 */
1262	if (is_huge_zero_pud(pud)) {
1263		/* No huge zero pud yet */
1264	}
1265
1266	/*
1267	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1268	 * and split if duplicating fails.
1269	 */
1270	pudp_set_wrprotect(src_mm, addr, src_pud);
1271	pud = pud_mkold(pud_wrprotect(pud));
1272	set_pud_at(dst_mm, addr, dst_pud, pud);
1273
1274	ret = 0;
1275out_unlock:
1276	spin_unlock(src_ptl);
1277	spin_unlock(dst_ptl);
1278	return ret;
1279}
1280
1281void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1282{
1283	bool write = vmf->flags & FAULT_FLAG_WRITE;
1284
1285	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1286	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1287		goto unlock;
 
 
 
 
 
 
 
 
1288
1289	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1290unlock:
1291	spin_unlock(vmf->ptl);
1292}
1293#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1294
1295void huge_pmd_set_accessed(struct vm_fault *vmf)
1296{
1297	bool write = vmf->flags & FAULT_FLAG_WRITE;
1298
1299	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1300	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1301		goto unlock;
1302
1303	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1304
1305unlock:
1306	spin_unlock(vmf->ptl);
 
 
 
 
 
 
1307}
1308
1309vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
 
1310{
1311	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1312	struct vm_area_struct *vma = vmf->vma;
1313	struct folio *folio;
1314	struct page *page;
1315	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1316	pmd_t orig_pmd = vmf->orig_pmd;
1317
1318	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1319	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1320
1321	if (is_huge_zero_pmd(orig_pmd))
1322		goto fallback;
1323
1324	spin_lock(vmf->ptl);
1325
1326	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1327		spin_unlock(vmf->ptl);
1328		return 0;
1329	}
1330
1331	page = pmd_page(orig_pmd);
1332	folio = page_folio(page);
1333	VM_BUG_ON_PAGE(!PageHead(page), page);
1334
1335	/* Early check when only holding the PT lock. */
1336	if (PageAnonExclusive(page))
1337		goto reuse;
1338
1339	if (!folio_trylock(folio)) {
1340		folio_get(folio);
1341		spin_unlock(vmf->ptl);
1342		folio_lock(folio);
1343		spin_lock(vmf->ptl);
1344		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345			spin_unlock(vmf->ptl);
1346			folio_unlock(folio);
1347			folio_put(folio);
1348			return 0;
1349		}
1350		folio_put(folio);
1351	}
1352
1353	/* Recheck after temporarily dropping the PT lock. */
1354	if (PageAnonExclusive(page)) {
1355		folio_unlock(folio);
1356		goto reuse;
1357	}
1358
1359	/*
1360	 * See do_wp_page(): we can only reuse the folio exclusively if
1361	 * there are no additional references. Note that we always drain
1362	 * the LRU pagevecs immediately after adding a THP.
1363	 */
1364	if (folio_ref_count(folio) >
1365			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1366		goto unlock_fallback;
1367	if (folio_test_swapcache(folio))
1368		folio_free_swap(folio);
1369	if (folio_ref_count(folio) == 1) {
1370		pmd_t entry;
1371
1372		page_move_anon_rmap(page, vma);
1373		folio_unlock(folio);
1374reuse:
1375		if (unlikely(unshare)) {
1376			spin_unlock(vmf->ptl);
1377			return 0;
1378		}
1379		entry = pmd_mkyoung(orig_pmd);
1380		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1381		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1382			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1383		spin_unlock(vmf->ptl);
1384		return 0;
1385	}
 
 
1386
1387unlock_fallback:
1388	folio_unlock(folio);
1389	spin_unlock(vmf->ptl);
1390fallback:
1391	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1392	return VM_FAULT_FALLBACK;
1393}
1394
1395static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1396					   unsigned long addr, pmd_t pmd)
1397{
1398	struct page *page;
 
 
 
 
1399
1400	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1401		return false;
 
 
 
 
1402
1403	/* Don't touch entries that are not even readable (NUMA hinting). */
1404	if (pmd_protnone(pmd))
1405		return false;
1406
1407	/* Do we need write faults for softdirty tracking? */
1408	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1409		return false;
1410
1411	/* Do we need write faults for uffd-wp tracking? */
1412	if (userfaultfd_huge_pmd_wp(vma, pmd))
1413		return false;
1414
1415	if (!(vma->vm_flags & VM_SHARED)) {
1416		/* See can_change_pte_writable(). */
1417		page = vm_normal_page_pmd(vma, addr, pmd);
1418		return page && PageAnon(page) && PageAnonExclusive(page);
 
 
 
 
 
 
1419	}
1420
1421	/* See can_change_pte_writable(). */
1422	return pmd_dirty(pmd);
1423}
1424
1425/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1426static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1427					struct vm_area_struct *vma,
1428					unsigned int flags)
1429{
1430	/* If the pmd is writable, we can write to the page. */
1431	if (pmd_write(pmd))
1432		return true;
1433
1434	/* Maybe FOLL_FORCE is set to override it? */
1435	if (!(flags & FOLL_FORCE))
1436		return false;
1437
1438	/* But FOLL_FORCE has no effect on shared mappings */
1439	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1440		return false;
1441
1442	/* ... or read-only private ones */
1443	if (!(vma->vm_flags & VM_MAYWRITE))
1444		return false;
1445
1446	/* ... or already writable ones that just need to take a write fault */
1447	if (vma->vm_flags & VM_WRITE)
1448		return false;
1449
1450	/*
1451	 * See can_change_pte_writable(): we broke COW and could map the page
1452	 * writable if we have an exclusive anonymous page ...
1453	 */
1454	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1455		return false;
1456
1457	/* ... and a write-fault isn't required for other reasons. */
1458	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1459		return false;
1460	return !userfaultfd_huge_pmd_wp(vma, pmd);
1461}
1462
1463struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1464				   unsigned long addr,
1465				   pmd_t *pmd,
1466				   unsigned int flags)
1467{
1468	struct mm_struct *mm = vma->vm_mm;
1469	struct page *page;
1470	int ret;
1471
1472	assert_spin_locked(pmd_lockptr(mm, pmd));
 
 
 
1473
1474	page = pmd_page(*pmd);
1475	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1476
1477	if ((flags & FOLL_WRITE) &&
1478	    !can_follow_write_pmd(*pmd, page, vma, flags))
1479		return NULL;
1480
1481	/* Avoid dumping huge zero page */
1482	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1483		return ERR_PTR(-EFAULT);
1484
1485	/* Full NUMA hinting faults to serialise migration in fault paths */
1486	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1487		return NULL;
1488
1489	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1490		return ERR_PTR(-EMLINK);
1491
1492	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1493			!PageAnonExclusive(page), page);
1494
1495	ret = try_grab_page(page, flags);
1496	if (ret)
1497		return ERR_PTR(ret);
1498
1499	if (flags & FOLL_TOUCH)
1500		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1501
1502	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1503	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
 
 
1504
 
1505	return page;
1506}
1507
1508/* NUMA hinting page fault entry point for trans huge pmds */
1509vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1510{
1511	struct vm_area_struct *vma = vmf->vma;
1512	pmd_t oldpmd = vmf->orig_pmd;
1513	pmd_t pmd;
1514	struct page *page;
1515	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1516	int page_nid = NUMA_NO_NODE;
1517	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1518	bool migrated = false, writable = false;
1519	int flags = 0;
1520
1521	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1522	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1523		spin_unlock(vmf->ptl);
1524		goto out;
1525	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526
1527	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
 
1528
1529	/*
1530	 * Detect now whether the PMD could be writable; this information
1531	 * is only valid while holding the PT lock.
1532	 */
1533	writable = pmd_write(pmd);
1534	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1535	    can_change_pmd_writable(vma, vmf->address, pmd))
1536		writable = true;
1537
1538	page = vm_normal_page_pmd(vma, haddr, pmd);
1539	if (!page)
1540		goto out_map;
 
 
 
 
 
 
 
 
 
 
 
 
1541
1542	/* See similar comment in do_numa_page for explanation */
1543	if (!writable)
1544		flags |= TNF_NO_GROUP;
1545
1546	page_nid = page_to_nid(page);
1547	/*
1548	 * For memory tiering mode, cpupid of slow memory page is used
1549	 * to record page access time.  So use default value.
1550	 */
1551	if (node_is_toptier(page_nid))
1552		last_cpupid = page_cpupid_last(page);
1553	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1554				       &flags);
1555
1556	if (target_nid == NUMA_NO_NODE) {
1557		put_page(page);
1558		goto out_map;
1559	}
1560
1561	spin_unlock(vmf->ptl);
1562	writable = false;
1563
1564	migrated = migrate_misplaced_page(page, vma, target_nid);
1565	if (migrated) {
1566		flags |= TNF_MIGRATED;
1567		page_nid = target_nid;
1568	} else {
1569		flags |= TNF_MIGRATE_FAIL;
1570		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1571		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1572			spin_unlock(vmf->ptl);
1573			goto out;
1574		}
1575		goto out_map;
1576	}
1577
1578out:
1579	if (page_nid != NUMA_NO_NODE)
1580		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1581				flags);
1582
1583	return 0;
1584
1585out_map:
1586	/* Restore the PMD */
1587	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1588	pmd = pmd_mkyoung(pmd);
1589	if (writable)
1590		pmd = pmd_mkwrite(pmd);
1591	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593	spin_unlock(vmf->ptl);
1594	goto out;
1595}
1596
1597/*
1598 * Return true if we do MADV_FREE successfully on entire pmd page.
1599 * Otherwise, return false.
1600 */
1601bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1602		pmd_t *pmd, unsigned long addr, unsigned long next)
1603{
1604	spinlock_t *ptl;
1605	pmd_t orig_pmd;
1606	struct page *page;
1607	struct mm_struct *mm = tlb->mm;
1608	bool ret = false;
1609
1610	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1611
1612	ptl = pmd_trans_huge_lock(pmd, vma);
1613	if (!ptl)
1614		goto out_unlocked;
1615
1616	orig_pmd = *pmd;
1617	if (is_huge_zero_pmd(orig_pmd))
1618		goto out;
1619
1620	if (unlikely(!pmd_present(orig_pmd))) {
1621		VM_BUG_ON(thp_migration_supported() &&
1622				  !is_pmd_migration_entry(orig_pmd));
1623		goto out;
1624	}
1625
1626	page = pmd_page(orig_pmd);
1627	/*
1628	 * If other processes are mapping this page, we couldn't discard
1629	 * the page unless they all do MADV_FREE so let's skip the page.
1630	 */
1631	if (total_mapcount(page) != 1)
1632		goto out;
1633
1634	if (!trylock_page(page))
1635		goto out;
1636
1637	/*
1638	 * If user want to discard part-pages of THP, split it so MADV_FREE
1639	 * will deactivate only them.
 
 
 
1640	 */
1641	if (next - addr != HPAGE_PMD_SIZE) {
1642		get_page(page);
1643		spin_unlock(ptl);
1644		split_huge_page(page);
1645		unlock_page(page);
1646		put_page(page);
1647		goto out_unlocked;
1648	}
 
 
 
1649
1650	if (PageDirty(page))
1651		ClearPageDirty(page);
1652	unlock_page(page);
 
 
 
 
1653
1654	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1655		pmdp_invalidate(vma, addr, pmd);
1656		orig_pmd = pmd_mkold(orig_pmd);
1657		orig_pmd = pmd_mkclean(orig_pmd);
1658
1659		set_pmd_at(mm, addr, pmd, orig_pmd);
1660		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 
 
 
 
 
 
1661	}
 
1662
1663	mark_page_lazyfree(page);
1664	ret = true;
1665out:
1666	spin_unlock(ptl);
1667out_unlocked:
1668	return ret;
1669}
1670
1671static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1672{
1673	pgtable_t pgtable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674
1675	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1676	pte_free(mm, pgtable);
1677	mm_dec_nr_ptes(mm);
1678}
 
1679
1680int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1681		 pmd_t *pmd, unsigned long addr)
1682{
1683	pmd_t orig_pmd;
1684	spinlock_t *ptl;
 
 
 
 
 
 
 
 
 
 
 
1685
1686	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
 
1687
1688	ptl = __pmd_trans_huge_lock(pmd, vma);
1689	if (!ptl)
1690		return 0;
1691	/*
1692	 * For architectures like ppc64 we look at deposited pgtable
1693	 * when calling pmdp_huge_get_and_clear. So do the
1694	 * pgtable_trans_huge_withdraw after finishing pmdp related
1695	 * operations.
1696	 */
1697	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1698						tlb->fullmm);
1699	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1700	if (vma_is_special_huge(vma)) {
1701		if (arch_needs_pgtable_deposit())
1702			zap_deposited_table(tlb->mm, pmd);
1703		spin_unlock(ptl);
1704	} else if (is_huge_zero_pmd(orig_pmd)) {
1705		zap_deposited_table(tlb->mm, pmd);
1706		spin_unlock(ptl);
1707	} else {
1708		struct page *page = NULL;
1709		int flush_needed = 1;
1710
1711		if (pmd_present(orig_pmd)) {
1712			page = pmd_page(orig_pmd);
1713			page_remove_rmap(page, vma, true);
1714			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1715			VM_BUG_ON_PAGE(!PageHead(page), page);
1716		} else if (thp_migration_supported()) {
1717			swp_entry_t entry;
1718
1719			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1720			entry = pmd_to_swp_entry(orig_pmd);
1721			page = pfn_swap_entry_to_page(entry);
1722			flush_needed = 0;
1723		} else
1724			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1725
1726		if (PageAnon(page)) {
1727			zap_deposited_table(tlb->mm, pmd);
1728			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1729		} else {
1730			if (arch_needs_pgtable_deposit())
1731				zap_deposited_table(tlb->mm, pmd);
1732			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1733		}
1734
1735		spin_unlock(ptl);
1736		if (flush_needed)
1737			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1738	}
1739	return 1;
1740}
1741
1742#ifndef pmd_move_must_withdraw
1743static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1744					 spinlock_t *old_pmd_ptl,
1745					 struct vm_area_struct *vma)
1746{
1747	/*
1748	 * With split pmd lock we also need to move preallocated
1749	 * PTE page table if new_pmd is on different PMD page table.
1750	 *
1751	 * We also don't deposit and withdraw tables for file pages.
1752	 */
1753	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1754}
1755#endif
 
1756
1757static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1758{
1759#ifdef CONFIG_MEM_SOFT_DIRTY
1760	if (unlikely(is_pmd_migration_entry(pmd)))
1761		pmd = pmd_swp_mksoft_dirty(pmd);
1762	else if (pmd_present(pmd))
1763		pmd = pmd_mksoft_dirty(pmd);
1764#endif
1765	return pmd;
1766}
1767
1768bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1769		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1770{
1771	spinlock_t *old_ptl, *new_ptl;
1772	pmd_t pmd;
1773	struct mm_struct *mm = vma->vm_mm;
1774	bool force_flush = false;
1775
1776	/*
1777	 * The destination pmd shouldn't be established, free_pgtables()
1778	 * should have release it.
1779	 */
1780	if (WARN_ON(!pmd_none(*new_pmd))) {
1781		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1782		return false;
1783	}
1784
1785	/*
1786	 * We don't have to worry about the ordering of src and dst
1787	 * ptlocks because exclusive mmap_lock prevents deadlock.
1788	 */
1789	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1790	if (old_ptl) {
1791		new_ptl = pmd_lockptr(mm, new_pmd);
1792		if (new_ptl != old_ptl)
1793			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1794		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1795		if (pmd_present(pmd))
1796			force_flush = true;
1797		VM_BUG_ON(!pmd_none(*new_pmd));
1798
1799		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1800			pgtable_t pgtable;
1801			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1802			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1803		}
1804		pmd = move_soft_dirty_pmd(pmd);
1805		set_pmd_at(mm, new_addr, new_pmd, pmd);
1806		if (force_flush)
1807			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1808		if (new_ptl != old_ptl)
1809			spin_unlock(new_ptl);
1810		spin_unlock(old_ptl);
1811		return true;
1812	}
1813	return false;
1814}
1815
1816/*
1817 * Returns
1818 *  - 0 if PMD could not be locked
1819 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1820 *      or if prot_numa but THP migration is not supported
1821 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1822 */
1823int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1824		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1825		    unsigned long cp_flags)
1826{
1827	struct mm_struct *mm = vma->vm_mm;
1828	spinlock_t *ptl;
1829	pmd_t oldpmd, entry;
1830	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1831	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1832	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1833	int ret = 1;
1834
1835	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1836
1837	if (prot_numa && !thp_migration_supported())
1838		return 1;
1839
1840	ptl = __pmd_trans_huge_lock(pmd, vma);
1841	if (!ptl)
1842		return 0;
1843
1844#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1845	if (is_swap_pmd(*pmd)) {
1846		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1847		struct page *page = pfn_swap_entry_to_page(entry);
1848
1849		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1850		if (is_writable_migration_entry(entry)) {
1851			pmd_t newpmd;
1852			/*
1853			 * A protection check is difficult so
1854			 * just be safe and disable write
1855			 */
1856			if (PageAnon(page))
1857				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1858			else
1859				entry = make_readable_migration_entry(swp_offset(entry));
1860			newpmd = swp_entry_to_pmd(entry);
1861			if (pmd_swp_soft_dirty(*pmd))
1862				newpmd = pmd_swp_mksoft_dirty(newpmd);
1863			if (pmd_swp_uffd_wp(*pmd))
1864				newpmd = pmd_swp_mkuffd_wp(newpmd);
1865			set_pmd_at(mm, addr, pmd, newpmd);
1866		}
1867		goto unlock;
1868	}
1869#endif
1870
1871	if (prot_numa) {
1872		struct page *page;
1873		bool toptier;
1874		/*
1875		 * Avoid trapping faults against the zero page. The read-only
1876		 * data is likely to be read-cached on the local CPU and
1877		 * local/remote hits to the zero page are not interesting.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878		 */
1879		if (is_huge_zero_pmd(*pmd))
1880			goto unlock;
1881
1882		if (pmd_protnone(*pmd))
1883			goto unlock;
1884
1885		page = pmd_page(*pmd);
1886		toptier = node_is_toptier(page_to_nid(page));
1887		/*
1888		 * Skip scanning top tier node if normal numa
1889		 * balancing is disabled
1890		 */
1891		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1892		    toptier)
1893			goto unlock;
1894
1895		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1896		    !toptier)
1897			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1898	}
1899	/*
1900	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1901	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1902	 * which is also under mmap_read_lock(mm):
1903	 *
1904	 *	CPU0:				CPU1:
1905	 *				change_huge_pmd(prot_numa=1)
1906	 *				 pmdp_huge_get_and_clear_notify()
1907	 * madvise_dontneed()
1908	 *  zap_pmd_range()
1909	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1910	 *   // skip the pmd
1911	 *				 set_pmd_at();
1912	 *				 // pmd is re-established
1913	 *
1914	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1915	 * which may break userspace.
1916	 *
1917	 * pmdp_invalidate_ad() is required to make sure we don't miss
1918	 * dirty/young flags set by hardware.
1919	 */
1920	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1921
1922	entry = pmd_modify(oldpmd, newprot);
1923	if (uffd_wp) {
1924		entry = pmd_wrprotect(entry);
1925		entry = pmd_mkuffd_wp(entry);
1926	} else if (uffd_wp_resolve) {
1927		/*
1928		 * Leave the write bit to be handled by PF interrupt
1929		 * handler, then things like COW could be properly
1930		 * handled.
1931		 */
1932		entry = pmd_clear_uffd_wp(entry);
1933	}
 
1934
1935	/* See change_pte_range(). */
1936	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1937	    can_change_pmd_writable(vma, addr, entry))
1938		entry = pmd_mkwrite(entry);
1939
1940	ret = HPAGE_PMD_NR;
1941	set_pmd_at(mm, addr, pmd, entry);
1942
1943	if (huge_pmd_needs_flush(oldpmd, entry))
1944		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1945unlock:
1946	spin_unlock(ptl);
1947	return ret;
1948}
1949
1950/*
1951 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1952 *
1953 * Note that if it returns page table lock pointer, this routine returns without
1954 * unlocking page table lock. So callers must unlock it.
1955 */
1956spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1957{
1958	spinlock_t *ptl;
1959	ptl = pmd_lock(vma->vm_mm, pmd);
1960	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1961			pmd_devmap(*pmd)))
1962		return ptl;
1963	spin_unlock(ptl);
1964	return NULL;
1965}
1966
1967/*
1968 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1969 *
1970 * Note that if it returns page table lock pointer, this routine returns without
1971 * unlocking page table lock. So callers must unlock it.
1972 */
1973spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1974{
1975	spinlock_t *ptl;
1976
1977	ptl = pud_lock(vma->vm_mm, pud);
1978	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1979		return ptl;
1980	spin_unlock(ptl);
1981	return NULL;
1982}
1983
1984#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1985int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1986		 pud_t *pud, unsigned long addr)
1987{
1988	spinlock_t *ptl;
1989
1990	ptl = __pud_trans_huge_lock(pud, vma);
1991	if (!ptl)
1992		return 0;
1993
1994	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1995	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1996	if (vma_is_special_huge(vma)) {
1997		spin_unlock(ptl);
1998		/* No zero page support yet */
1999	} else {
2000		/* No support for anonymous PUD pages yet */
2001		BUG();
2002	}
2003	return 1;
 
 
 
2004}
2005
2006static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2007		unsigned long haddr)
2008{
2009	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2010	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2011	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2012	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2013
2014	count_vm_event(THP_SPLIT_PUD);
 
 
 
 
 
 
2015
2016	pudp_huge_clear_flush_notify(vma, haddr, pud);
2017}
2018
2019void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2020		unsigned long address)
2021{
2022	spinlock_t *ptl;
2023	struct mmu_notifier_range range;
2024
2025	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2026				address & HPAGE_PUD_MASK,
2027				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2028	mmu_notifier_invalidate_range_start(&range);
2029	ptl = pud_lock(vma->vm_mm, pud);
2030	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2031		goto out;
2032	__split_huge_pud_locked(vma, pud, range.start);
2033
 
 
 
2034out:
2035	spin_unlock(ptl);
2036	/*
2037	 * No need to double call mmu_notifier->invalidate_range() callback as
2038	 * the above pudp_huge_clear_flush_notify() did already call it.
2039	 */
2040	mmu_notifier_invalidate_range_only_end(&range);
2041}
2042#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2043
2044static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2045		unsigned long haddr, pmd_t *pmd)
2046{
2047	struct mm_struct *mm = vma->vm_mm;
2048	pgtable_t pgtable;
2049	pmd_t _pmd;
2050	int i;
2051
2052	/*
2053	 * Leave pmd empty until pte is filled note that it is fine to delay
2054	 * notification until mmu_notifier_invalidate_range_end() as we are
2055	 * replacing a zero pmd write protected page with a zero pte write
2056	 * protected page.
2057	 *
2058	 * See Documentation/mm/mmu_notifier.rst
2059	 */
2060	pmdp_huge_clear_flush(vma, haddr, pmd);
2061
2062	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2063	pmd_populate(mm, &_pmd, pgtable);
2064
2065	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2066		pte_t *pte, entry;
2067		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2068		entry = pte_mkspecial(entry);
2069		pte = pte_offset_map(&_pmd, haddr);
2070		VM_BUG_ON(!pte_none(*pte));
2071		set_pte_at(mm, haddr, pte, entry);
2072		pte_unmap(pte);
2073	}
2074	smp_wmb(); /* make pte visible before pmd */
2075	pmd_populate(mm, pmd, pgtable);
2076}
2077
2078static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2079		unsigned long haddr, bool freeze)
2080{
2081	struct mm_struct *mm = vma->vm_mm;
2082	struct page *page;
2083	pgtable_t pgtable;
2084	pmd_t old_pmd, _pmd;
2085	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2086	bool anon_exclusive = false, dirty = false;
2087	unsigned long addr;
2088	int i;
2089
2090	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2091	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2092	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2093	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2094				&& !pmd_devmap(*pmd));
2095
2096	count_vm_event(THP_SPLIT_PMD);
2097
2098	if (!vma_is_anonymous(vma)) {
2099		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2100		/*
2101		 * We are going to unmap this huge page. So
2102		 * just go ahead and zap it
2103		 */
2104		if (arch_needs_pgtable_deposit())
2105			zap_deposited_table(mm, pmd);
2106		if (vma_is_special_huge(vma))
2107			return;
2108		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2109			swp_entry_t entry;
2110
2111			entry = pmd_to_swp_entry(old_pmd);
2112			page = pfn_swap_entry_to_page(entry);
2113		} else {
2114			page = pmd_page(old_pmd);
2115			if (!PageDirty(page) && pmd_dirty(old_pmd))
2116				set_page_dirty(page);
2117			if (!PageReferenced(page) && pmd_young(old_pmd))
2118				SetPageReferenced(page);
2119			page_remove_rmap(page, vma, true);
2120			put_page(page);
2121		}
2122		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2123		return;
2124	}
2125
2126	if (is_huge_zero_pmd(*pmd)) {
2127		/*
2128		 * FIXME: Do we want to invalidate secondary mmu by calling
2129		 * mmu_notifier_invalidate_range() see comments below inside
2130		 * __split_huge_pmd() ?
2131		 *
2132		 * We are going from a zero huge page write protected to zero
2133		 * small page also write protected so it does not seems useful
2134		 * to invalidate secondary mmu at this time.
2135		 */
2136		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2137	}
2138
2139	/*
2140	 * Up to this point the pmd is present and huge and userland has the
2141	 * whole access to the hugepage during the split (which happens in
2142	 * place). If we overwrite the pmd with the not-huge version pointing
2143	 * to the pte here (which of course we could if all CPUs were bug
2144	 * free), userland could trigger a small page size TLB miss on the
2145	 * small sized TLB while the hugepage TLB entry is still established in
2146	 * the huge TLB. Some CPU doesn't like that.
2147	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2148	 * 383 on page 105. Intel should be safe but is also warns that it's
2149	 * only safe if the permission and cache attributes of the two entries
2150	 * loaded in the two TLB is identical (which should be the case here).
2151	 * But it is generally safer to never allow small and huge TLB entries
2152	 * for the same virtual address to be loaded simultaneously. So instead
2153	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2154	 * current pmd notpresent (atomically because here the pmd_trans_huge
2155	 * must remain set at all times on the pmd until the split is complete
2156	 * for this pmd), then we flush the SMP TLB and finally we write the
2157	 * non-huge version of the pmd entry with pmd_populate.
2158	 */
2159	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2160
2161	pmd_migration = is_pmd_migration_entry(old_pmd);
2162	if (unlikely(pmd_migration)) {
2163		swp_entry_t entry;
2164
2165		entry = pmd_to_swp_entry(old_pmd);
2166		page = pfn_swap_entry_to_page(entry);
2167		write = is_writable_migration_entry(entry);
2168		if (PageAnon(page))
2169			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2170		young = is_migration_entry_young(entry);
2171		dirty = is_migration_entry_dirty(entry);
2172		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2173		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2174	} else {
2175		page = pmd_page(old_pmd);
2176		if (pmd_dirty(old_pmd)) {
2177			dirty = true;
2178			SetPageDirty(page);
2179		}
2180		write = pmd_write(old_pmd);
2181		young = pmd_young(old_pmd);
2182		soft_dirty = pmd_soft_dirty(old_pmd);
2183		uffd_wp = pmd_uffd_wp(old_pmd);
2184
2185		VM_BUG_ON_PAGE(!page_count(page), page);
2186
2187		/*
2188		 * Without "freeze", we'll simply split the PMD, propagating the
2189		 * PageAnonExclusive() flag for each PTE by setting it for
2190		 * each subpage -- no need to (temporarily) clear.
2191		 *
2192		 * With "freeze" we want to replace mapped pages by
2193		 * migration entries right away. This is only possible if we
2194		 * managed to clear PageAnonExclusive() -- see
2195		 * set_pmd_migration_entry().
2196		 *
2197		 * In case we cannot clear PageAnonExclusive(), split the PMD
2198		 * only and let try_to_migrate_one() fail later.
2199		 *
2200		 * See page_try_share_anon_rmap(): invalidate PMD first.
2201		 */
2202		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2203		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2204			freeze = false;
2205		if (!freeze)
2206			page_ref_add(page, HPAGE_PMD_NR - 1);
2207	}
2208
2209	/*
2210	 * Withdraw the table only after we mark the pmd entry invalid.
2211	 * This's critical for some architectures (Power).
2212	 */
2213	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2214	pmd_populate(mm, &_pmd, pgtable);
2215
2216	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2217		pte_t entry, *pte;
2218		/*
2219		 * Note that NUMA hinting access restrictions are not
2220		 * transferred to avoid any possibility of altering
2221		 * permissions across VMAs.
2222		 */
2223		if (freeze || pmd_migration) {
2224			swp_entry_t swp_entry;
2225			if (write)
2226				swp_entry = make_writable_migration_entry(
2227							page_to_pfn(page + i));
2228			else if (anon_exclusive)
2229				swp_entry = make_readable_exclusive_migration_entry(
2230							page_to_pfn(page + i));
2231			else
2232				swp_entry = make_readable_migration_entry(
2233							page_to_pfn(page + i));
2234			if (young)
2235				swp_entry = make_migration_entry_young(swp_entry);
2236			if (dirty)
2237				swp_entry = make_migration_entry_dirty(swp_entry);
2238			entry = swp_entry_to_pte(swp_entry);
2239			if (soft_dirty)
2240				entry = pte_swp_mksoft_dirty(entry);
2241			if (uffd_wp)
2242				entry = pte_swp_mkuffd_wp(entry);
2243		} else {
2244			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2245			entry = maybe_mkwrite(entry, vma);
2246			if (anon_exclusive)
2247				SetPageAnonExclusive(page + i);
2248			if (!young)
2249				entry = pte_mkold(entry);
2250			/* NOTE: this may set soft-dirty too on some archs */
2251			if (dirty)
2252				entry = pte_mkdirty(entry);
2253			/*
2254			 * NOTE: this needs to happen after pte_mkdirty,
2255			 * because some archs (sparc64, loongarch) could
2256			 * set hw write bit when mkdirty.
2257			 */
2258			if (!write)
2259				entry = pte_wrprotect(entry);
2260			if (soft_dirty)
2261				entry = pte_mksoft_dirty(entry);
2262			if (uffd_wp)
2263				entry = pte_mkuffd_wp(entry);
2264			page_add_anon_rmap(page + i, vma, addr, false);
2265		}
2266		pte = pte_offset_map(&_pmd, addr);
2267		BUG_ON(!pte_none(*pte));
2268		set_pte_at(mm, addr, pte, entry);
2269		pte_unmap(pte);
2270	}
2271
2272	if (!pmd_migration)
2273		page_remove_rmap(page, vma, true);
2274	if (freeze)
2275		put_page(page);
2276
2277	smp_wmb(); /* make pte visible before pmd */
2278	pmd_populate(mm, pmd, pgtable);
2279}
2280
2281void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2282		unsigned long address, bool freeze, struct folio *folio)
2283{
2284	spinlock_t *ptl;
2285	struct mmu_notifier_range range;
 
 
 
2286
2287	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2288				address & HPAGE_PMD_MASK,
2289				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2290	mmu_notifier_invalidate_range_start(&range);
2291	ptl = pmd_lock(vma->vm_mm, pmd);
2292
2293	/*
2294	 * If caller asks to setup a migration entry, we need a folio to check
2295	 * pmd against. Otherwise we can end up replacing wrong folio.
2296	 */
2297	VM_BUG_ON(freeze && !folio);
2298	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2299
2300	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2301	    is_pmd_migration_entry(*pmd)) {
2302		/*
2303		 * It's safe to call pmd_page when folio is set because it's
2304		 * guaranteed that pmd is present.
2305		 */
2306		if (folio && folio != page_folio(pmd_page(*pmd)))
2307			goto out;
2308		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2309	}
2310
2311out:
2312	spin_unlock(ptl);
2313	/*
2314	 * No need to double call mmu_notifier->invalidate_range() callback.
2315	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2316	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2317	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2318	 *    fault will trigger a flush_notify before pointing to a new page
2319	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2320	 *    page in the meantime)
2321	 *  3) Split a huge pmd into pte pointing to the same page. No need
2322	 *     to invalidate secondary tlb entry they are all still valid.
2323	 *     any further changes to individual pte will notify. So no need
2324	 *     to call mmu_notifier->invalidate_range()
2325	 */
2326	mmu_notifier_invalidate_range_only_end(&range);
2327}
2328
2329void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2330		bool freeze, struct folio *folio)
2331{
2332	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2333
2334	if (!pmd)
2335		return;
2336
2337	__split_huge_pmd(vma, pmd, address, freeze, folio);
2338}
2339
2340static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
 
2341{
2342	/*
2343	 * If the new address isn't hpage aligned and it could previously
2344	 * contain an hugepage: check if we need to split an huge pmd.
2345	 */
2346	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2347	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2348			 ALIGN(address, HPAGE_PMD_SIZE)))
2349		split_huge_pmd_address(vma, address, false, NULL);
2350}
 
2351
2352void vma_adjust_trans_huge(struct vm_area_struct *vma,
2353			     unsigned long start,
2354			     unsigned long end,
2355			     long adjust_next)
2356{
2357	/* Check if we need to split start first. */
2358	split_huge_pmd_if_needed(vma, start);
2359
2360	/* Check if we need to split end next. */
2361	split_huge_pmd_if_needed(vma, end);
2362
2363	/*
2364	 * If we're also updating the next vma vm_start,
2365	 * check if we need to split it.
2366	 */
2367	if (adjust_next > 0) {
2368		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2369		unsigned long nstart = next->vm_start;
2370		nstart += adjust_next;
2371		split_huge_pmd_if_needed(next, nstart);
2372	}
 
2373}
2374
2375static void unmap_folio(struct folio *folio)
 
2376{
2377	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2378		TTU_SYNC;
2379
2380	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2381
2382	/*
2383	 * Anon pages need migration entries to preserve them, but file
2384	 * pages can simply be left unmapped, then faulted back on demand.
2385	 * If that is ever changed (perhaps for mlock), update remap_page().
2386	 */
2387	if (folio_test_anon(folio))
2388		try_to_migrate(folio, ttu_flags);
2389	else
2390		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2391}
2392
2393static void remap_page(struct folio *folio, unsigned long nr)
2394{
2395	int i = 0;
2396
2397	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2398	if (!folio_test_anon(folio))
2399		return;
2400	for (;;) {
2401		remove_migration_ptes(folio, folio, true);
2402		i += folio_nr_pages(folio);
2403		if (i >= nr)
2404			break;
2405		folio = folio_next(folio);
2406	}
2407}
2408
2409static void lru_add_page_tail(struct page *head, struct page *tail,
2410		struct lruvec *lruvec, struct list_head *list)
2411{
2412	VM_BUG_ON_PAGE(!PageHead(head), head);
2413	VM_BUG_ON_PAGE(PageCompound(tail), head);
2414	VM_BUG_ON_PAGE(PageLRU(tail), head);
2415	lockdep_assert_held(&lruvec->lru_lock);
2416
2417	if (list) {
2418		/* page reclaim is reclaiming a huge page */
2419		VM_WARN_ON(PageLRU(head));
2420		get_page(tail);
2421		list_add_tail(&tail->lru, list);
2422	} else {
2423		/* head is still on lru (and we have it frozen) */
2424		VM_WARN_ON(!PageLRU(head));
2425		if (PageUnevictable(tail))
2426			tail->mlock_count = 0;
2427		else
2428			list_add_tail(&tail->lru, &head->lru);
2429		SetPageLRU(tail);
2430	}
2431}
2432
2433static void __split_huge_page_tail(struct page *head, int tail,
2434		struct lruvec *lruvec, struct list_head *list)
2435{
2436	struct page *page_tail = head + tail;
2437
2438	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2439
2440	/*
2441	 * Clone page flags before unfreezing refcount.
2442	 *
2443	 * After successful get_page_unless_zero() might follow flags change,
2444	 * for example lock_page() which set PG_waiters.
2445	 *
2446	 * Note that for mapped sub-pages of an anonymous THP,
2447	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2448	 * the migration entry instead from where remap_page() will restore it.
2449	 * We can still have PG_anon_exclusive set on effectively unmapped and
2450	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2451	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2452	 */
2453	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2454	page_tail->flags |= (head->flags &
2455			((1L << PG_referenced) |
2456			 (1L << PG_swapbacked) |
2457			 (1L << PG_swapcache) |
2458			 (1L << PG_mlocked) |
2459			 (1L << PG_uptodate) |
2460			 (1L << PG_active) |
2461			 (1L << PG_workingset) |
2462			 (1L << PG_locked) |
2463			 (1L << PG_unevictable) |
2464#ifdef CONFIG_ARCH_USES_PG_ARCH_X
2465			 (1L << PG_arch_2) |
2466			 (1L << PG_arch_3) |
2467#endif
2468			 (1L << PG_dirty) |
2469			 LRU_GEN_MASK | LRU_REFS_MASK));
2470
2471	/* ->mapping in first and second tail page is replaced by other uses */
2472	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2473			page_tail);
2474	page_tail->mapping = head->mapping;
2475	page_tail->index = head->index + tail;
2476
2477	/*
2478	 * page->private should not be set in tail pages with the exception
2479	 * of swap cache pages that store the swp_entry_t in tail pages.
2480	 * Fix up and warn once if private is unexpectedly set.
2481	 *
2482	 * What of 32-bit systems, on which head[1].compound_pincount overlays
2483	 * head[1].private?  No problem: THP_SWAP is not enabled on 32-bit, and
2484	 * compound_pincount must be 0 for folio_ref_freeze() to have succeeded.
2485	 */
2486	if (!folio_test_swapcache(page_folio(head))) {
2487		VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2488		page_tail->private = 0;
2489	}
2490
2491	/* Page flags must be visible before we make the page non-compound. */
2492	smp_wmb();
2493
2494	/*
2495	 * Clear PageTail before unfreezing page refcount.
2496	 *
2497	 * After successful get_page_unless_zero() might follow put_page()
2498	 * which needs correct compound_head().
2499	 */
2500	clear_compound_head(page_tail);
 
 
 
 
 
 
2501
2502	/* Finally unfreeze refcount. Additional reference from page cache. */
2503	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2504					  PageSwapCache(head)));
2505
2506	if (page_is_young(head))
2507		set_page_young(page_tail);
2508	if (page_is_idle(head))
2509		set_page_idle(page_tail);
2510
2511	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2512
 
 
 
 
 
 
 
 
 
 
 
 
2513	/*
2514	 * always add to the tail because some iterators expect new
2515	 * pages to show after the currently processed elements - e.g.
2516	 * migrate_pages
2517	 */
2518	lru_add_page_tail(head, page_tail, lruvec, list);
 
 
 
 
 
2519}
2520
2521static void __split_huge_page(struct page *page, struct list_head *list,
2522		pgoff_t end)
2523{
2524	struct folio *folio = page_folio(page);
2525	struct page *head = &folio->page;
2526	struct lruvec *lruvec;
2527	struct address_space *swap_cache = NULL;
2528	unsigned long offset = 0;
2529	unsigned int nr = thp_nr_pages(head);
2530	int i;
2531
2532	/* complete memcg works before add pages to LRU */
2533	split_page_memcg(head, nr);
2534
2535	if (PageAnon(head) && PageSwapCache(head)) {
2536		swp_entry_t entry = { .val = page_private(head) };
2537
2538		offset = swp_offset(entry);
2539		swap_cache = swap_address_space(entry);
2540		xa_lock(&swap_cache->i_pages);
2541	}
2542
2543	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2544	lruvec = folio_lruvec_lock(folio);
2545
2546	ClearPageHasHWPoisoned(head);
2547
2548	for (i = nr - 1; i >= 1; i--) {
2549		__split_huge_page_tail(head, i, lruvec, list);
2550		/* Some pages can be beyond EOF: drop them from page cache */
2551		if (head[i].index >= end) {
2552			struct folio *tail = page_folio(head + i);
2553
2554			if (shmem_mapping(head->mapping))
2555				shmem_uncharge(head->mapping->host, 1);
2556			else if (folio_test_clear_dirty(tail))
2557				folio_account_cleaned(tail,
2558					inode_to_wb(folio->mapping->host));
2559			__filemap_remove_folio(tail, NULL);
2560			folio_put(tail);
2561		} else if (!PageAnon(page)) {
2562			__xa_store(&head->mapping->i_pages, head[i].index,
2563					head + i, 0);
2564		} else if (swap_cache) {
2565			__xa_store(&swap_cache->i_pages, offset + i,
2566					head + i, 0);
2567		}
2568	}
2569
2570	ClearPageCompound(head);
2571	unlock_page_lruvec(lruvec);
2572	/* Caller disabled irqs, so they are still disabled here */
2573
2574	split_page_owner(head, nr);
2575
2576	/* See comment in __split_huge_page_tail() */
2577	if (PageAnon(head)) {
2578		/* Additional pin to swap cache */
2579		if (PageSwapCache(head)) {
2580			page_ref_add(head, 2);
2581			xa_unlock(&swap_cache->i_pages);
2582		} else {
2583			page_ref_inc(head);
2584		}
2585	} else {
2586		/* Additional pin to page cache */
2587		page_ref_add(head, 2);
2588		xa_unlock(&head->mapping->i_pages);
2589	}
2590	local_irq_enable();
2591
2592	remap_page(folio, nr);
2593
2594	if (PageSwapCache(head)) {
2595		swp_entry_t entry = { .val = page_private(head) };
2596
2597		split_swap_cluster(entry);
2598	}
2599
2600	for (i = 0; i < nr; i++) {
2601		struct page *subpage = head + i;
2602		if (subpage == page)
2603			continue;
2604		unlock_page(subpage);
2605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2606		/*
2607		 * Subpages may be freed if there wasn't any mapping
2608		 * like if add_to_swap() is running on a lru page that
2609		 * had its mapping zapped. And freeing these pages
2610		 * requires taking the lru_lock so we do the put_page
2611		 * of the tail pages after the split is complete.
 
2612		 */
2613		free_page_and_swap_cache(subpage);
 
2614	}
2615}
2616
2617/* Racy check whether the huge page can be split */
2618bool can_split_folio(struct folio *folio, int *pextra_pins)
2619{
2620	int extra_pins;
 
 
 
 
2621
2622	/* Additional pins from page cache */
2623	if (folio_test_anon(folio))
2624		extra_pins = folio_test_swapcache(folio) ?
2625				folio_nr_pages(folio) : 0;
2626	else
2627		extra_pins = folio_nr_pages(folio);
2628	if (pextra_pins)
2629		*pextra_pins = extra_pins;
2630	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2631}
2632
2633/*
2634 * This function splits huge page into normal pages. @page can point to any
2635 * subpage of huge page to split. Split doesn't change the position of @page.
2636 *
2637 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2638 * The huge page must be locked.
2639 *
2640 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2641 *
2642 * Both head page and tail pages will inherit mapping, flags, and so on from
2643 * the hugepage.
2644 *
2645 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2646 * they are not mapped.
2647 *
2648 * Returns 0 if the hugepage is split successfully.
2649 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2650 * us.
2651 */
2652int split_huge_page_to_list(struct page *page, struct list_head *list)
2653{
2654	struct folio *folio = page_folio(page);
2655	struct deferred_split *ds_queue = get_deferred_split_queue(&folio->page);
2656	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2657	struct anon_vma *anon_vma = NULL;
2658	struct address_space *mapping = NULL;
2659	int extra_pins, ret;
2660	pgoff_t end;
2661	bool is_hzp;
2662
2663	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2664	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2665
2666	is_hzp = is_huge_zero_page(&folio->page);
2667	VM_WARN_ON_ONCE_FOLIO(is_hzp, folio);
2668	if (is_hzp)
2669		return -EBUSY;
2670
2671	if (folio_test_writeback(folio))
2672		return -EBUSY;
2673
2674	if (folio_test_anon(folio)) {
2675		/*
2676		 * The caller does not necessarily hold an mmap_lock that would
2677		 * prevent the anon_vma disappearing so we first we take a
2678		 * reference to it and then lock the anon_vma for write. This
2679		 * is similar to folio_lock_anon_vma_read except the write lock
2680		 * is taken to serialise against parallel split or collapse
2681		 * operations.
2682		 */
2683		anon_vma = folio_get_anon_vma(folio);
2684		if (!anon_vma) {
2685			ret = -EBUSY;
 
 
 
 
 
2686			goto out;
2687		}
2688		end = -1;
2689		mapping = NULL;
2690		anon_vma_lock_write(anon_vma);
2691	} else {
2692		gfp_t gfp;
2693
2694		mapping = folio->mapping;
2695
2696		/* Truncated ? */
2697		if (!mapping) {
2698			ret = -EBUSY;
2699			goto out;
2700		}
2701
2702		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2703							GFP_RECLAIM_MASK);
2704
2705		if (folio_test_private(folio) &&
2706				!filemap_release_folio(folio, gfp)) {
2707			ret = -EBUSY;
2708			goto out;
2709		}
2710
2711		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2712		if (xas_error(&xas)) {
2713			ret = xas_error(&xas);
 
 
 
 
2714			goto out;
2715		}
2716
2717		anon_vma = NULL;
2718		i_mmap_lock_read(mapping);
2719
2720		/*
2721		 *__split_huge_page() may need to trim off pages beyond EOF:
2722		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2723		 * which cannot be nested inside the page tree lock. So note
2724		 * end now: i_size itself may be changed at any moment, but
2725		 * folio lock is good enough to serialize the trimming.
2726		 */
2727		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2728		if (shmem_mapping(mapping))
2729			end = shmem_fallocend(mapping->host, end);
 
 
 
 
 
 
 
 
 
 
 
2730	}
 
 
 
 
 
 
 
2731
2732	/*
2733	 * Racy check if we can split the page, before unmap_folio() will
2734	 * split PMDs
2735	 */
2736	if (!can_split_folio(folio, &extra_pins)) {
2737		ret = -EAGAIN;
2738		goto out_unlock;
2739	}
2740
2741	unmap_folio(folio);
2742
2743	/* block interrupt reentry in xa_lock and spinlock */
2744	local_irq_disable();
2745	if (mapping) {
2746		/*
2747		 * Check if the folio is present in page cache.
2748		 * We assume all tail are present too, if folio is there.
2749		 */
2750		xas_lock(&xas);
2751		xas_reset(&xas);
2752		if (xas_load(&xas) != folio)
2753			goto fail;
2754	}
2755
2756	/* Prevent deferred_split_scan() touching ->_refcount */
2757	spin_lock(&ds_queue->split_queue_lock);
2758	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2759		if (!list_empty(page_deferred_list(&folio->page))) {
2760			ds_queue->split_queue_len--;
2761			list_del(page_deferred_list(&folio->page));
2762		}
2763		spin_unlock(&ds_queue->split_queue_lock);
2764		if (mapping) {
2765			int nr = folio_nr_pages(folio);
2766
2767			xas_split(&xas, folio, folio_order(folio));
2768			if (folio_test_swapbacked(folio)) {
2769				__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2770							-nr);
2771			} else {
2772				__lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2773							-nr);
2774				filemap_nr_thps_dec(mapping);
2775			}
2776		}
2777
2778		__split_huge_page(page, list, end);
2779		ret = 0;
2780	} else {
2781		spin_unlock(&ds_queue->split_queue_lock);
2782fail:
2783		if (mapping)
2784			xas_unlock(&xas);
2785		local_irq_enable();
2786		remap_page(folio, folio_nr_pages(folio));
2787		ret = -EAGAIN;
2788	}
2789
2790out_unlock:
2791	if (anon_vma) {
2792		anon_vma_unlock_write(anon_vma);
2793		put_anon_vma(anon_vma);
2794	}
2795	if (mapping)
2796		i_mmap_unlock_read(mapping);
2797out:
2798	xas_destroy(&xas);
2799	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2800	return ret;
2801}
2802
2803void free_transhuge_page(struct page *page)
 
 
 
 
2804{
2805	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2806	unsigned long flags;
 
 
 
 
 
 
 
2807
2808	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2809	if (!list_empty(page_deferred_list(page))) {
2810		ds_queue->split_queue_len--;
2811		list_del(page_deferred_list(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2812	}
2813	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2814	free_compound_page(page);
2815}
2816
2817void deferred_split_huge_page(struct page *page)
2818{
2819	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2820#ifdef CONFIG_MEMCG
2821	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2822#endif
2823	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
2824
2825	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 
 
 
 
2826
 
 
 
 
 
 
 
 
2827	/*
2828	 * The try_to_unmap() in page reclaim path might reach here too,
2829	 * this may cause a race condition to corrupt deferred split queue.
2830	 * And, if page reclaim is already handling the same page, it is
2831	 * unnecessary to handle it again in shrinker.
2832	 *
2833	 * Check PageSwapCache to determine if the page is being
2834	 * handled by page reclaim since THP swap would add the page into
2835	 * swap cache before calling try_to_unmap().
2836	 */
2837	if (PageSwapCache(page))
2838		return;
 
 
 
2839
2840	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2841	if (list_empty(page_deferred_list(page))) {
2842		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2843		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2844		ds_queue->split_queue_len++;
2845#ifdef CONFIG_MEMCG
2846		if (memcg)
2847			set_shrinker_bit(memcg, page_to_nid(page),
2848					 deferred_split_shrinker.id);
2849#endif
2850	}
2851	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2852}
2853
2854static unsigned long deferred_split_count(struct shrinker *shrink,
2855		struct shrink_control *sc)
2856{
2857	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2858	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2859
2860#ifdef CONFIG_MEMCG
2861	if (sc->memcg)
2862		ds_queue = &sc->memcg->deferred_split_queue;
2863#endif
2864	return READ_ONCE(ds_queue->split_queue_len);
2865}
2866
2867static unsigned long deferred_split_scan(struct shrinker *shrink,
2868		struct shrink_control *sc)
2869{
2870	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2871	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2872	unsigned long flags;
2873	LIST_HEAD(list), *pos, *next;
2874	struct page *page;
2875	int split = 0;
2876
2877#ifdef CONFIG_MEMCG
2878	if (sc->memcg)
2879		ds_queue = &sc->memcg->deferred_split_queue;
2880#endif
 
 
 
 
 
2881
2882	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2883	/* Take pin on all head pages to avoid freeing them under us */
2884	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2885		page = list_entry((void *)pos, struct page, deferred_list);
2886		page = compound_head(page);
2887		if (get_page_unless_zero(page)) {
2888			list_move(page_deferred_list(page), &list);
2889		} else {
2890			/* We lost race with put_compound_page() */
2891			list_del_init(page_deferred_list(page));
2892			ds_queue->split_queue_len--;
2893		}
2894		if (!--sc->nr_to_scan)
2895			break;
2896	}
2897	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2898
2899	list_for_each_safe(pos, next, &list) {
2900		page = list_entry((void *)pos, struct page, deferred_list);
2901		if (!trylock_page(page))
2902			goto next;
2903		/* split_huge_page() removes page from list on success */
2904		if (!split_huge_page(page))
2905			split++;
2906		unlock_page(page);
2907next:
2908		put_page(page);
2909	}
2910
2911	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2912	list_splice_tail(&list, &ds_queue->split_queue);
2913	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
 
 
2914
2915	/*
2916	 * Stop shrinker if we didn't split any page, but the queue is empty.
2917	 * This can happen if pages were freed under us.
 
 
 
 
 
 
 
 
 
 
 
 
2918	 */
2919	if (!split && list_empty(&ds_queue->split_queue))
2920		return SHRINK_STOP;
2921	return split;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2922}
2923
2924static struct shrinker deferred_split_shrinker = {
2925	.count_objects = deferred_split_count,
2926	.scan_objects = deferred_split_scan,
2927	.seeks = DEFAULT_SEEKS,
2928	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2929		 SHRINKER_NONSLAB,
2930};
2931
2932#ifdef CONFIG_DEBUG_FS
2933static void split_huge_pages_all(void)
2934{
2935	struct zone *zone;
2936	struct page *page;
2937	unsigned long pfn, max_zone_pfn;
2938	unsigned long total = 0, split = 0;
 
2939
2940	pr_debug("Split all THPs\n");
2941	for_each_zone(zone) {
2942		if (!managed_zone(zone))
2943			continue;
2944		max_zone_pfn = zone_end_pfn(zone);
2945		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2946			int nr_pages;
2947
2948			page = pfn_to_online_page(pfn);
2949			if (!page || !get_page_unless_zero(page))
2950				continue;
2951
2952			if (zone != page_zone(page))
2953				goto next;
 
2954
2955			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2956				goto next;
 
2957
2958			total++;
2959			lock_page(page);
2960			nr_pages = thp_nr_pages(page);
2961			if (!split_huge_page(page))
2962				split++;
2963			pfn += nr_pages - 1;
2964			unlock_page(page);
2965next:
2966			put_page(page);
2967			cond_resched();
2968		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2969	}
2970
2971	pr_debug("%lu of %lu THP split\n", split, total);
 
 
 
 
 
 
 
2972}
2973
2974static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2975{
2976	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2977		    is_vm_hugetlb_page(vma);
2978}
2979
2980static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2981				unsigned long vaddr_end)
2982{
2983	int ret = 0;
2984	struct task_struct *task;
2985	struct mm_struct *mm;
2986	unsigned long total = 0, split = 0;
2987	unsigned long addr;
2988
2989	vaddr_start &= PAGE_MASK;
2990	vaddr_end &= PAGE_MASK;
 
 
 
2991
2992	/* Find the task_struct from pid */
2993	rcu_read_lock();
2994	task = find_task_by_vpid(pid);
2995	if (!task) {
2996		rcu_read_unlock();
2997		ret = -ESRCH;
2998		goto out;
2999	}
3000	get_task_struct(task);
3001	rcu_read_unlock();
3002
3003	/* Find the mm_struct */
3004	mm = get_task_mm(task);
3005	put_task_struct(task);
 
 
 
 
3006
3007	if (!mm) {
3008		ret = -EINVAL;
3009		goto out;
3010	}
3011
3012	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3013		 pid, vaddr_start, vaddr_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014
3015	mmap_read_lock(mm);
3016	/*
3017	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3018	 * table filled with PTE-mapped THPs, each of which is distinct.
3019	 */
3020	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3021		struct vm_area_struct *vma = vma_lookup(mm, addr);
3022		struct page *page;
3023
3024		if (!vma)
 
 
3025			break;
 
3026
3027		/* skip special VMA and hugetlb VMA */
3028		if (vma_not_suitable_for_thp_split(vma)) {
3029			addr = vma->vm_end;
 
 
3030			continue;
3031		}
 
 
 
 
 
 
 
 
 
 
3032
3033		/* FOLL_DUMP to ignore special (like zero) pages */
3034		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
 
 
 
 
 
 
 
3035
3036		if (IS_ERR_OR_NULL(page))
3037			continue;
 
 
 
3038
3039		if (!is_transparent_hugepage(page))
3040			goto next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3041
3042		total++;
3043		if (!can_split_folio(page_folio(page), NULL))
3044			goto next;
3045
3046		if (!trylock_page(page))
3047			goto next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048
3049		if (!split_huge_page(page))
3050			split++;
3051
3052		unlock_page(page);
3053next:
3054		put_page(page);
3055		cond_resched();
3056	}
3057	mmap_read_unlock(mm);
3058	mmput(mm);
3059
3060	pr_debug("%lu of %lu THP split\n", split, total);
 
3061
3062out:
3063	return ret;
 
 
3064}
3065
3066static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3067				pgoff_t off_end)
3068{
3069	struct filename *file;
3070	struct file *candidate;
3071	struct address_space *mapping;
3072	int ret = -EINVAL;
3073	pgoff_t index;
3074	int nr_pages = 1;
3075	unsigned long total = 0, split = 0;
3076
3077	file = getname_kernel(file_path);
3078	if (IS_ERR(file))
3079		return ret;
 
3080
3081	candidate = file_open_name(file, O_RDONLY, 0);
3082	if (IS_ERR(candidate))
3083		goto out;
3084
3085	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3086		 file_path, off_start, off_end);
3087
3088	mapping = candidate->f_mapping;
 
 
 
 
 
 
 
 
 
 
 
 
3089
3090	for (index = off_start; index < off_end; index += nr_pages) {
3091		struct folio *folio = __filemap_get_folio(mapping, index,
3092						FGP_ENTRY, 0);
3093
3094		nr_pages = 1;
3095		if (xa_is_value(folio) || !folio)
3096			continue;
3097
3098		if (!folio_test_large(folio))
3099			goto next;
3100
3101		total++;
3102		nr_pages = folio_nr_pages(folio);
3103
3104		if (!folio_trylock(folio))
3105			goto next;
3106
3107		if (!split_folio(folio))
3108			split++;
3109
3110		folio_unlock(folio);
3111next:
3112		folio_put(folio);
3113		cond_resched();
3114	}
 
3115
3116	filp_close(candidate, NULL);
3117	ret = 0;
3118
3119	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3120out:
3121	putname(file);
3122	return ret;
 
3123}
3124
3125#define MAX_INPUT_BUF_SZ 255
3126
3127static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3128				size_t count, loff_t *ppops)
3129{
3130	static DEFINE_MUTEX(split_debug_mutex);
3131	ssize_t ret;
3132	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3133	char input_buf[MAX_INPUT_BUF_SZ];
3134	int pid;
3135	unsigned long vaddr_start, vaddr_end;
3136
3137	ret = mutex_lock_interruptible(&split_debug_mutex);
3138	if (ret)
3139		return ret;
 
 
 
 
 
 
 
 
 
3140
3141	ret = -EFAULT;
 
 
3142
3143	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3144	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3145		goto out;
 
 
 
 
 
 
 
 
 
 
 
3146
3147	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3148
3149	if (input_buf[0] == '/') {
3150		char *tok;
3151		char *buf = input_buf;
3152		char file_path[MAX_INPUT_BUF_SZ];
3153		pgoff_t off_start = 0, off_end = 0;
3154		size_t input_len = strlen(input_buf);
3155
3156		tok = strsep(&buf, ",");
3157		if (tok) {
3158			strcpy(file_path, tok);
3159		} else {
3160			ret = -EINVAL;
3161			goto out;
3162		}
3163
3164		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3165		if (ret != 2) {
3166			ret = -EINVAL;
3167			goto out;
3168		}
3169		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3170		if (!ret)
3171			ret = input_len;
3172
3173		goto out;
3174	}
 
 
 
3175
3176	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3177	if (ret == 1 && pid == 1) {
3178		split_huge_pages_all();
3179		ret = strlen(input_buf);
3180		goto out;
3181	} else if (ret != 3) {
3182		ret = -EINVAL;
3183		goto out;
3184	}
3185
3186	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3187	if (!ret)
3188		ret = strlen(input_buf);
3189out:
3190	mutex_unlock(&split_debug_mutex);
3191	return ret;
3192
3193}
3194
3195static const struct file_operations split_huge_pages_fops = {
3196	.owner	 = THIS_MODULE,
3197	.write	 = split_huge_pages_write,
3198	.llseek  = no_llseek,
3199};
3200
3201static int __init split_huge_pages_debugfs(void)
3202{
3203	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3204			    &split_huge_pages_fops);
3205	return 0;
3206}
3207late_initcall(split_huge_pages_debugfs);
3208#endif
3209
3210#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3211int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3212		struct page *page)
3213{
3214	struct vm_area_struct *vma = pvmw->vma;
3215	struct mm_struct *mm = vma->vm_mm;
3216	unsigned long address = pvmw->address;
3217	bool anon_exclusive;
3218	pmd_t pmdval;
3219	swp_entry_t entry;
3220	pmd_t pmdswp;
3221
3222	if (!(pvmw->pmd && !pvmw->pte))
3223		return 0;
 
 
 
 
 
 
 
3224
3225	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3226	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3227
3228	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3229	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3230	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3231		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3232		return -EBUSY;
3233	}
3234
3235	if (pmd_dirty(pmdval))
3236		set_page_dirty(page);
3237	if (pmd_write(pmdval))
3238		entry = make_writable_migration_entry(page_to_pfn(page));
3239	else if (anon_exclusive)
3240		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3241	else
3242		entry = make_readable_migration_entry(page_to_pfn(page));
3243	if (pmd_young(pmdval))
3244		entry = make_migration_entry_young(entry);
3245	if (pmd_dirty(pmdval))
3246		entry = make_migration_entry_dirty(entry);
3247	pmdswp = swp_entry_to_pmd(entry);
3248	if (pmd_soft_dirty(pmdval))
3249		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3250	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3251	page_remove_rmap(page, vma, true);
3252	put_page(page);
3253	trace_set_migration_pmd(address, pmd_val(pmdswp));
3254
3255	return 0;
3256}
3257
3258void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
 
3259{
3260	struct vm_area_struct *vma = pvmw->vma;
3261	struct mm_struct *mm = vma->vm_mm;
3262	unsigned long address = pvmw->address;
3263	unsigned long haddr = address & HPAGE_PMD_MASK;
3264	pmd_t pmde;
3265	swp_entry_t entry;
 
 
 
3266
3267	if (!(pvmw->pmd && !pvmw->pte))
 
3268		return;
3269
3270	entry = pmd_to_swp_entry(*pvmw->pmd);
3271	get_page(new);
3272	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3273	if (pmd_swp_soft_dirty(*pvmw->pmd))
3274		pmde = pmd_mksoft_dirty(pmde);
3275	if (pmd_swp_uffd_wp(*pvmw->pmd))
3276		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3277	if (!is_migration_entry_young(entry))
3278		pmde = pmd_mkold(pmde);
3279	/* NOTE: this may contain setting soft-dirty on some archs */
3280	if (PageDirty(new) && is_migration_entry_dirty(entry))
3281		pmde = pmd_mkdirty(pmde);
3282	if (is_writable_migration_entry(entry))
3283		pmde = maybe_pmd_mkwrite(pmde, vma);
3284	else
3285		pmde = pmd_wrprotect(pmde);
3286
3287	if (PageAnon(new)) {
3288		rmap_t rmap_flags = RMAP_COMPOUND;
 
 
 
 
 
 
 
 
 
 
 
 
3289
3290		if (!is_readable_migration_entry(entry))
3291			rmap_flags |= RMAP_EXCLUSIVE;
 
 
 
 
 
 
 
3292
3293		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3294	} else {
3295		page_add_file_rmap(new, vma, true);
 
 
 
 
 
 
 
 
 
 
3296	}
3297	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3298	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3299
3300	/* No need to invalidate - it was non-present before */
3301	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3302	trace_remove_migration_pmd(address, pmd_val(pmde));
3303}
3304#endif