Loading...
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
18#include <linux/freezer.h>
19#include <linux/mman.h>
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
31unsigned long transparent_hugepage_flags __read_mostly =
32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
92} khugepaged_scan = {
93 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
94};
95
96
97static int set_recommended_min_free_kbytes(void)
98{
99 struct zone *zone;
100 int nr_zones = 0;
101 unsigned long recommended_min;
102 extern int min_free_kbytes;
103
104 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
105 &transparent_hugepage_flags) &&
106 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
107 &transparent_hugepage_flags))
108 return 0;
109
110 for_each_populated_zone(zone)
111 nr_zones++;
112
113 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116 /*
117 * Make sure that on average at least two pageblocks are almost free
118 * of another type, one for a migratetype to fall back to and a
119 * second to avoid subsequent fallbacks of other types There are 3
120 * MIGRATE_TYPES we care about.
121 */
122 recommended_min += pageblock_nr_pages * nr_zones *
123 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125 /* don't ever allow to reserve more than 5% of the lowmem */
126 recommended_min = min(recommended_min,
127 (unsigned long) nr_free_buffer_pages() / 20);
128 recommended_min <<= (PAGE_SHIFT-10);
129
130 if (recommended_min > min_free_kbytes)
131 min_free_kbytes = recommended_min;
132 setup_per_zone_wmarks();
133 return 0;
134}
135late_initcall(set_recommended_min_free_kbytes);
136
137static int start_khugepaged(void)
138{
139 int err = 0;
140 if (khugepaged_enabled()) {
141 int wakeup;
142 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
143 err = -ENOMEM;
144 goto out;
145 }
146 mutex_lock(&khugepaged_mutex);
147 if (!khugepaged_thread)
148 khugepaged_thread = kthread_run(khugepaged, NULL,
149 "khugepaged");
150 if (unlikely(IS_ERR(khugepaged_thread))) {
151 printk(KERN_ERR
152 "khugepaged: kthread_run(khugepaged) failed\n");
153 err = PTR_ERR(khugepaged_thread);
154 khugepaged_thread = NULL;
155 }
156 wakeup = !list_empty(&khugepaged_scan.mm_head);
157 mutex_unlock(&khugepaged_mutex);
158 if (wakeup)
159 wake_up_interruptible(&khugepaged_wait);
160
161 set_recommended_min_free_kbytes();
162 } else
163 /* wakeup to exit */
164 wake_up_interruptible(&khugepaged_wait);
165out:
166 return err;
167}
168
169#ifdef CONFIG_SYSFS
170
171static ssize_t double_flag_show(struct kobject *kobj,
172 struct kobj_attribute *attr, char *buf,
173 enum transparent_hugepage_flag enabled,
174 enum transparent_hugepage_flag req_madv)
175{
176 if (test_bit(enabled, &transparent_hugepage_flags)) {
177 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
178 return sprintf(buf, "[always] madvise never\n");
179 } else if (test_bit(req_madv, &transparent_hugepage_flags))
180 return sprintf(buf, "always [madvise] never\n");
181 else
182 return sprintf(buf, "always madvise [never]\n");
183}
184static ssize_t double_flag_store(struct kobject *kobj,
185 struct kobj_attribute *attr,
186 const char *buf, size_t count,
187 enum transparent_hugepage_flag enabled,
188 enum transparent_hugepage_flag req_madv)
189{
190 if (!memcmp("always", buf,
191 min(sizeof("always")-1, count))) {
192 set_bit(enabled, &transparent_hugepage_flags);
193 clear_bit(req_madv, &transparent_hugepage_flags);
194 } else if (!memcmp("madvise", buf,
195 min(sizeof("madvise")-1, count))) {
196 clear_bit(enabled, &transparent_hugepage_flags);
197 set_bit(req_madv, &transparent_hugepage_flags);
198 } else if (!memcmp("never", buf,
199 min(sizeof("never")-1, count))) {
200 clear_bit(enabled, &transparent_hugepage_flags);
201 clear_bit(req_madv, &transparent_hugepage_flags);
202 } else
203 return -EINVAL;
204
205 return count;
206}
207
208static ssize_t enabled_show(struct kobject *kobj,
209 struct kobj_attribute *attr, char *buf)
210{
211 return double_flag_show(kobj, attr, buf,
212 TRANSPARENT_HUGEPAGE_FLAG,
213 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
214}
215static ssize_t enabled_store(struct kobject *kobj,
216 struct kobj_attribute *attr,
217 const char *buf, size_t count)
218{
219 ssize_t ret;
220
221 ret = double_flag_store(kobj, attr, buf, count,
222 TRANSPARENT_HUGEPAGE_FLAG,
223 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
224
225 if (ret > 0) {
226 int err = start_khugepaged();
227 if (err)
228 ret = err;
229 }
230
231 if (ret > 0 &&
232 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
233 &transparent_hugepage_flags) ||
234 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
235 &transparent_hugepage_flags)))
236 set_recommended_min_free_kbytes();
237
238 return ret;
239}
240static struct kobj_attribute enabled_attr =
241 __ATTR(enabled, 0644, enabled_show, enabled_store);
242
243static ssize_t single_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag flag)
246{
247 return sprintf(buf, "%d\n",
248 !!test_bit(flag, &transparent_hugepage_flags));
249}
250
251static ssize_t single_flag_store(struct kobject *kobj,
252 struct kobj_attribute *attr,
253 const char *buf, size_t count,
254 enum transparent_hugepage_flag flag)
255{
256 unsigned long value;
257 int ret;
258
259 ret = kstrtoul(buf, 10, &value);
260 if (ret < 0)
261 return ret;
262 if (value > 1)
263 return -EINVAL;
264
265 if (value)
266 set_bit(flag, &transparent_hugepage_flags);
267 else
268 clear_bit(flag, &transparent_hugepage_flags);
269
270 return count;
271}
272
273/*
274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
276 * memory just to allocate one more hugepage.
277 */
278static ssize_t defrag_show(struct kobject *kobj,
279 struct kobj_attribute *attr, char *buf)
280{
281 return double_flag_show(kobj, attr, buf,
282 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
283 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
284}
285static ssize_t defrag_store(struct kobject *kobj,
286 struct kobj_attribute *attr,
287 const char *buf, size_t count)
288{
289 return double_flag_store(kobj, attr, buf, count,
290 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
291 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
292}
293static struct kobj_attribute defrag_attr =
294 __ATTR(defrag, 0644, defrag_show, defrag_store);
295
296#ifdef CONFIG_DEBUG_VM
297static ssize_t debug_cow_show(struct kobject *kobj,
298 struct kobj_attribute *attr, char *buf)
299{
300 return single_flag_show(kobj, attr, buf,
301 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302}
303static ssize_t debug_cow_store(struct kobject *kobj,
304 struct kobj_attribute *attr,
305 const char *buf, size_t count)
306{
307 return single_flag_store(kobj, attr, buf, count,
308 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
309}
310static struct kobj_attribute debug_cow_attr =
311 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
312#endif /* CONFIG_DEBUG_VM */
313
314static struct attribute *hugepage_attr[] = {
315 &enabled_attr.attr,
316 &defrag_attr.attr,
317#ifdef CONFIG_DEBUG_VM
318 &debug_cow_attr.attr,
319#endif
320 NULL,
321};
322
323static struct attribute_group hugepage_attr_group = {
324 .attrs = hugepage_attr,
325};
326
327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
328 struct kobj_attribute *attr,
329 char *buf)
330{
331 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
332}
333
334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
335 struct kobj_attribute *attr,
336 const char *buf, size_t count)
337{
338 unsigned long msecs;
339 int err;
340
341 err = strict_strtoul(buf, 10, &msecs);
342 if (err || msecs > UINT_MAX)
343 return -EINVAL;
344
345 khugepaged_scan_sleep_millisecs = msecs;
346 wake_up_interruptible(&khugepaged_wait);
347
348 return count;
349}
350static struct kobj_attribute scan_sleep_millisecs_attr =
351 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
352 scan_sleep_millisecs_store);
353
354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 char *buf)
357{
358 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
359}
360
361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
362 struct kobj_attribute *attr,
363 const char *buf, size_t count)
364{
365 unsigned long msecs;
366 int err;
367
368 err = strict_strtoul(buf, 10, &msecs);
369 if (err || msecs > UINT_MAX)
370 return -EINVAL;
371
372 khugepaged_alloc_sleep_millisecs = msecs;
373 wake_up_interruptible(&khugepaged_wait);
374
375 return count;
376}
377static struct kobj_attribute alloc_sleep_millisecs_attr =
378 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
379 alloc_sleep_millisecs_store);
380
381static ssize_t pages_to_scan_show(struct kobject *kobj,
382 struct kobj_attribute *attr,
383 char *buf)
384{
385 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
386}
387static ssize_t pages_to_scan_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
390{
391 int err;
392 unsigned long pages;
393
394 err = strict_strtoul(buf, 10, &pages);
395 if (err || !pages || pages > UINT_MAX)
396 return -EINVAL;
397
398 khugepaged_pages_to_scan = pages;
399
400 return count;
401}
402static struct kobj_attribute pages_to_scan_attr =
403 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
404 pages_to_scan_store);
405
406static ssize_t pages_collapsed_show(struct kobject *kobj,
407 struct kobj_attribute *attr,
408 char *buf)
409{
410 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
411}
412static struct kobj_attribute pages_collapsed_attr =
413 __ATTR_RO(pages_collapsed);
414
415static ssize_t full_scans_show(struct kobject *kobj,
416 struct kobj_attribute *attr,
417 char *buf)
418{
419 return sprintf(buf, "%u\n", khugepaged_full_scans);
420}
421static struct kobj_attribute full_scans_attr =
422 __ATTR_RO(full_scans);
423
424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
425 struct kobj_attribute *attr, char *buf)
426{
427 return single_flag_show(kobj, attr, buf,
428 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
429}
430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
431 struct kobj_attribute *attr,
432 const char *buf, size_t count)
433{
434 return single_flag_store(kobj, attr, buf, count,
435 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
436}
437static struct kobj_attribute khugepaged_defrag_attr =
438 __ATTR(defrag, 0644, khugepaged_defrag_show,
439 khugepaged_defrag_store);
440
441/*
442 * max_ptes_none controls if khugepaged should collapse hugepages over
443 * any unmapped ptes in turn potentially increasing the memory
444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
445 * reduce the available free memory in the system as it
446 * runs. Increasing max_ptes_none will instead potentially reduce the
447 * free memory in the system during the khugepaged scan.
448 */
449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
450 struct kobj_attribute *attr,
451 char *buf)
452{
453 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
454}
455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
456 struct kobj_attribute *attr,
457 const char *buf, size_t count)
458{
459 int err;
460 unsigned long max_ptes_none;
461
462 err = strict_strtoul(buf, 10, &max_ptes_none);
463 if (err || max_ptes_none > HPAGE_PMD_NR-1)
464 return -EINVAL;
465
466 khugepaged_max_ptes_none = max_ptes_none;
467
468 return count;
469}
470static struct kobj_attribute khugepaged_max_ptes_none_attr =
471 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
472 khugepaged_max_ptes_none_store);
473
474static struct attribute *khugepaged_attr[] = {
475 &khugepaged_defrag_attr.attr,
476 &khugepaged_max_ptes_none_attr.attr,
477 &pages_to_scan_attr.attr,
478 &pages_collapsed_attr.attr,
479 &full_scans_attr.attr,
480 &scan_sleep_millisecs_attr.attr,
481 &alloc_sleep_millisecs_attr.attr,
482 NULL,
483};
484
485static struct attribute_group khugepaged_attr_group = {
486 .attrs = khugepaged_attr,
487 .name = "khugepaged",
488};
489#endif /* CONFIG_SYSFS */
490
491static int __init hugepage_init(void)
492{
493 int err;
494#ifdef CONFIG_SYSFS
495 static struct kobject *hugepage_kobj;
496#endif
497
498 err = -EINVAL;
499 if (!has_transparent_hugepage()) {
500 transparent_hugepage_flags = 0;
501 goto out;
502 }
503
504#ifdef CONFIG_SYSFS
505 err = -ENOMEM;
506 hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
507 if (unlikely(!hugepage_kobj)) {
508 printk(KERN_ERR "hugepage: failed kobject create\n");
509 goto out;
510 }
511
512 err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
513 if (err) {
514 printk(KERN_ERR "hugepage: failed register hugeage group\n");
515 goto out;
516 }
517
518 err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
519 if (err) {
520 printk(KERN_ERR "hugepage: failed register hugeage group\n");
521 goto out;
522 }
523#endif
524
525 err = khugepaged_slab_init();
526 if (err)
527 goto out;
528
529 err = mm_slots_hash_init();
530 if (err) {
531 khugepaged_slab_free();
532 goto out;
533 }
534
535 /*
536 * By default disable transparent hugepages on smaller systems,
537 * where the extra memory used could hurt more than TLB overhead
538 * is likely to save. The admin can still enable it through /sys.
539 */
540 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
541 transparent_hugepage_flags = 0;
542
543 start_khugepaged();
544
545 set_recommended_min_free_kbytes();
546
547out:
548 return err;
549}
550module_init(hugepage_init)
551
552static int __init setup_transparent_hugepage(char *str)
553{
554 int ret = 0;
555 if (!str)
556 goto out;
557 if (!strcmp(str, "always")) {
558 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
559 &transparent_hugepage_flags);
560 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
561 &transparent_hugepage_flags);
562 ret = 1;
563 } else if (!strcmp(str, "madvise")) {
564 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
565 &transparent_hugepage_flags);
566 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
567 &transparent_hugepage_flags);
568 ret = 1;
569 } else if (!strcmp(str, "never")) {
570 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
571 &transparent_hugepage_flags);
572 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
573 &transparent_hugepage_flags);
574 ret = 1;
575 }
576out:
577 if (!ret)
578 printk(KERN_WARNING
579 "transparent_hugepage= cannot parse, ignored\n");
580 return ret;
581}
582__setup("transparent_hugepage=", setup_transparent_hugepage);
583
584static void prepare_pmd_huge_pte(pgtable_t pgtable,
585 struct mm_struct *mm)
586{
587 assert_spin_locked(&mm->page_table_lock);
588
589 /* FIFO */
590 if (!mm->pmd_huge_pte)
591 INIT_LIST_HEAD(&pgtable->lru);
592 else
593 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
594 mm->pmd_huge_pte = pgtable;
595}
596
597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
598{
599 if (likely(vma->vm_flags & VM_WRITE))
600 pmd = pmd_mkwrite(pmd);
601 return pmd;
602}
603
604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
605 struct vm_area_struct *vma,
606 unsigned long haddr, pmd_t *pmd,
607 struct page *page)
608{
609 int ret = 0;
610 pgtable_t pgtable;
611
612 VM_BUG_ON(!PageCompound(page));
613 pgtable = pte_alloc_one(mm, haddr);
614 if (unlikely(!pgtable)) {
615 mem_cgroup_uncharge_page(page);
616 put_page(page);
617 return VM_FAULT_OOM;
618 }
619
620 clear_huge_page(page, haddr, HPAGE_PMD_NR);
621 __SetPageUptodate(page);
622
623 spin_lock(&mm->page_table_lock);
624 if (unlikely(!pmd_none(*pmd))) {
625 spin_unlock(&mm->page_table_lock);
626 mem_cgroup_uncharge_page(page);
627 put_page(page);
628 pte_free(mm, pgtable);
629 } else {
630 pmd_t entry;
631 entry = mk_pmd(page, vma->vm_page_prot);
632 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
633 entry = pmd_mkhuge(entry);
634 /*
635 * The spinlocking to take the lru_lock inside
636 * page_add_new_anon_rmap() acts as a full memory
637 * barrier to be sure clear_huge_page writes become
638 * visible after the set_pmd_at() write.
639 */
640 page_add_new_anon_rmap(page, vma, haddr);
641 set_pmd_at(mm, haddr, pmd, entry);
642 prepare_pmd_huge_pte(pgtable, mm);
643 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
644 spin_unlock(&mm->page_table_lock);
645 }
646
647 return ret;
648}
649
650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
651{
652 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
653}
654
655static inline struct page *alloc_hugepage_vma(int defrag,
656 struct vm_area_struct *vma,
657 unsigned long haddr, int nd,
658 gfp_t extra_gfp)
659{
660 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
661 HPAGE_PMD_ORDER, vma, haddr, nd);
662}
663
664#ifndef CONFIG_NUMA
665static inline struct page *alloc_hugepage(int defrag)
666{
667 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
668 HPAGE_PMD_ORDER);
669}
670#endif
671
672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
673 unsigned long address, pmd_t *pmd,
674 unsigned int flags)
675{
676 struct page *page;
677 unsigned long haddr = address & HPAGE_PMD_MASK;
678 pte_t *pte;
679
680 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
681 if (unlikely(anon_vma_prepare(vma)))
682 return VM_FAULT_OOM;
683 if (unlikely(khugepaged_enter(vma)))
684 return VM_FAULT_OOM;
685 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
686 vma, haddr, numa_node_id(), 0);
687 if (unlikely(!page)) {
688 count_vm_event(THP_FAULT_FALLBACK);
689 goto out;
690 }
691 count_vm_event(THP_FAULT_ALLOC);
692 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
693 put_page(page);
694 goto out;
695 }
696
697 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
698 }
699out:
700 /*
701 * Use __pte_alloc instead of pte_alloc_map, because we can't
702 * run pte_offset_map on the pmd, if an huge pmd could
703 * materialize from under us from a different thread.
704 */
705 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
706 return VM_FAULT_OOM;
707 /* if an huge pmd materialized from under us just retry later */
708 if (unlikely(pmd_trans_huge(*pmd)))
709 return 0;
710 /*
711 * A regular pmd is established and it can't morph into a huge pmd
712 * from under us anymore at this point because we hold the mmap_sem
713 * read mode and khugepaged takes it in write mode. So now it's
714 * safe to run pte_offset_map().
715 */
716 pte = pte_offset_map(pmd, address);
717 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
718}
719
720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
721 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
722 struct vm_area_struct *vma)
723{
724 struct page *src_page;
725 pmd_t pmd;
726 pgtable_t pgtable;
727 int ret;
728
729 ret = -ENOMEM;
730 pgtable = pte_alloc_one(dst_mm, addr);
731 if (unlikely(!pgtable))
732 goto out;
733
734 spin_lock(&dst_mm->page_table_lock);
735 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
736
737 ret = -EAGAIN;
738 pmd = *src_pmd;
739 if (unlikely(!pmd_trans_huge(pmd))) {
740 pte_free(dst_mm, pgtable);
741 goto out_unlock;
742 }
743 if (unlikely(pmd_trans_splitting(pmd))) {
744 /* split huge page running from under us */
745 spin_unlock(&src_mm->page_table_lock);
746 spin_unlock(&dst_mm->page_table_lock);
747 pte_free(dst_mm, pgtable);
748
749 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
750 goto out;
751 }
752 src_page = pmd_page(pmd);
753 VM_BUG_ON(!PageHead(src_page));
754 get_page(src_page);
755 page_dup_rmap(src_page);
756 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
757
758 pmdp_set_wrprotect(src_mm, addr, src_pmd);
759 pmd = pmd_mkold(pmd_wrprotect(pmd));
760 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
761 prepare_pmd_huge_pte(pgtable, dst_mm);
762
763 ret = 0;
764out_unlock:
765 spin_unlock(&src_mm->page_table_lock);
766 spin_unlock(&dst_mm->page_table_lock);
767out:
768 return ret;
769}
770
771/* no "address" argument so destroys page coloring of some arch */
772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
773{
774 pgtable_t pgtable;
775
776 assert_spin_locked(&mm->page_table_lock);
777
778 /* FIFO */
779 pgtable = mm->pmd_huge_pte;
780 if (list_empty(&pgtable->lru))
781 mm->pmd_huge_pte = NULL;
782 else {
783 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
784 struct page, lru);
785 list_del(&pgtable->lru);
786 }
787 return pgtable;
788}
789
790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
791 struct vm_area_struct *vma,
792 unsigned long address,
793 pmd_t *pmd, pmd_t orig_pmd,
794 struct page *page,
795 unsigned long haddr)
796{
797 pgtable_t pgtable;
798 pmd_t _pmd;
799 int ret = 0, i;
800 struct page **pages;
801
802 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
803 GFP_KERNEL);
804 if (unlikely(!pages)) {
805 ret |= VM_FAULT_OOM;
806 goto out;
807 }
808
809 for (i = 0; i < HPAGE_PMD_NR; i++) {
810 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
811 __GFP_OTHER_NODE,
812 vma, address, page_to_nid(page));
813 if (unlikely(!pages[i] ||
814 mem_cgroup_newpage_charge(pages[i], mm,
815 GFP_KERNEL))) {
816 if (pages[i])
817 put_page(pages[i]);
818 mem_cgroup_uncharge_start();
819 while (--i >= 0) {
820 mem_cgroup_uncharge_page(pages[i]);
821 put_page(pages[i]);
822 }
823 mem_cgroup_uncharge_end();
824 kfree(pages);
825 ret |= VM_FAULT_OOM;
826 goto out;
827 }
828 }
829
830 for (i = 0; i < HPAGE_PMD_NR; i++) {
831 copy_user_highpage(pages[i], page + i,
832 haddr + PAGE_SHIFT*i, vma);
833 __SetPageUptodate(pages[i]);
834 cond_resched();
835 }
836
837 spin_lock(&mm->page_table_lock);
838 if (unlikely(!pmd_same(*pmd, orig_pmd)))
839 goto out_free_pages;
840 VM_BUG_ON(!PageHead(page));
841
842 pmdp_clear_flush_notify(vma, haddr, pmd);
843 /* leave pmd empty until pte is filled */
844
845 pgtable = get_pmd_huge_pte(mm);
846 pmd_populate(mm, &_pmd, pgtable);
847
848 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
849 pte_t *pte, entry;
850 entry = mk_pte(pages[i], vma->vm_page_prot);
851 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
852 page_add_new_anon_rmap(pages[i], vma, haddr);
853 pte = pte_offset_map(&_pmd, haddr);
854 VM_BUG_ON(!pte_none(*pte));
855 set_pte_at(mm, haddr, pte, entry);
856 pte_unmap(pte);
857 }
858 kfree(pages);
859
860 mm->nr_ptes++;
861 smp_wmb(); /* make pte visible before pmd */
862 pmd_populate(mm, pmd, pgtable);
863 page_remove_rmap(page);
864 spin_unlock(&mm->page_table_lock);
865
866 ret |= VM_FAULT_WRITE;
867 put_page(page);
868
869out:
870 return ret;
871
872out_free_pages:
873 spin_unlock(&mm->page_table_lock);
874 mem_cgroup_uncharge_start();
875 for (i = 0; i < HPAGE_PMD_NR; i++) {
876 mem_cgroup_uncharge_page(pages[i]);
877 put_page(pages[i]);
878 }
879 mem_cgroup_uncharge_end();
880 kfree(pages);
881 goto out;
882}
883
884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
885 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
886{
887 int ret = 0;
888 struct page *page, *new_page;
889 unsigned long haddr;
890
891 VM_BUG_ON(!vma->anon_vma);
892 spin_lock(&mm->page_table_lock);
893 if (unlikely(!pmd_same(*pmd, orig_pmd)))
894 goto out_unlock;
895
896 page = pmd_page(orig_pmd);
897 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
898 haddr = address & HPAGE_PMD_MASK;
899 if (page_mapcount(page) == 1) {
900 pmd_t entry;
901 entry = pmd_mkyoung(orig_pmd);
902 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
903 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
904 update_mmu_cache(vma, address, entry);
905 ret |= VM_FAULT_WRITE;
906 goto out_unlock;
907 }
908 get_page(page);
909 spin_unlock(&mm->page_table_lock);
910
911 if (transparent_hugepage_enabled(vma) &&
912 !transparent_hugepage_debug_cow())
913 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
914 vma, haddr, numa_node_id(), 0);
915 else
916 new_page = NULL;
917
918 if (unlikely(!new_page)) {
919 count_vm_event(THP_FAULT_FALLBACK);
920 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
921 pmd, orig_pmd, page, haddr);
922 put_page(page);
923 goto out;
924 }
925 count_vm_event(THP_FAULT_ALLOC);
926
927 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
928 put_page(new_page);
929 put_page(page);
930 ret |= VM_FAULT_OOM;
931 goto out;
932 }
933
934 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
935 __SetPageUptodate(new_page);
936
937 spin_lock(&mm->page_table_lock);
938 put_page(page);
939 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
940 mem_cgroup_uncharge_page(new_page);
941 put_page(new_page);
942 } else {
943 pmd_t entry;
944 VM_BUG_ON(!PageHead(page));
945 entry = mk_pmd(new_page, vma->vm_page_prot);
946 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
947 entry = pmd_mkhuge(entry);
948 pmdp_clear_flush_notify(vma, haddr, pmd);
949 page_add_new_anon_rmap(new_page, vma, haddr);
950 set_pmd_at(mm, haddr, pmd, entry);
951 update_mmu_cache(vma, address, entry);
952 page_remove_rmap(page);
953 put_page(page);
954 ret |= VM_FAULT_WRITE;
955 }
956out_unlock:
957 spin_unlock(&mm->page_table_lock);
958out:
959 return ret;
960}
961
962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
963 unsigned long addr,
964 pmd_t *pmd,
965 unsigned int flags)
966{
967 struct page *page = NULL;
968
969 assert_spin_locked(&mm->page_table_lock);
970
971 if (flags & FOLL_WRITE && !pmd_write(*pmd))
972 goto out;
973
974 page = pmd_page(*pmd);
975 VM_BUG_ON(!PageHead(page));
976 if (flags & FOLL_TOUCH) {
977 pmd_t _pmd;
978 /*
979 * We should set the dirty bit only for FOLL_WRITE but
980 * for now the dirty bit in the pmd is meaningless.
981 * And if the dirty bit will become meaningful and
982 * we'll only set it with FOLL_WRITE, an atomic
983 * set_bit will be required on the pmd to set the
984 * young bit, instead of the current set_pmd_at.
985 */
986 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
987 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
988 }
989 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
990 VM_BUG_ON(!PageCompound(page));
991 if (flags & FOLL_GET)
992 get_page(page);
993
994out:
995 return page;
996}
997
998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
999 pmd_t *pmd)
1000{
1001 int ret = 0;
1002
1003 spin_lock(&tlb->mm->page_table_lock);
1004 if (likely(pmd_trans_huge(*pmd))) {
1005 if (unlikely(pmd_trans_splitting(*pmd))) {
1006 spin_unlock(&tlb->mm->page_table_lock);
1007 wait_split_huge_page(vma->anon_vma,
1008 pmd);
1009 } else {
1010 struct page *page;
1011 pgtable_t pgtable;
1012 pgtable = get_pmd_huge_pte(tlb->mm);
1013 page = pmd_page(*pmd);
1014 pmd_clear(pmd);
1015 page_remove_rmap(page);
1016 VM_BUG_ON(page_mapcount(page) < 0);
1017 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018 VM_BUG_ON(!PageHead(page));
1019 spin_unlock(&tlb->mm->page_table_lock);
1020 tlb_remove_page(tlb, page);
1021 pte_free(tlb->mm, pgtable);
1022 ret = 1;
1023 }
1024 } else
1025 spin_unlock(&tlb->mm->page_table_lock);
1026
1027 return ret;
1028}
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031 unsigned long addr, unsigned long end,
1032 unsigned char *vec)
1033{
1034 int ret = 0;
1035
1036 spin_lock(&vma->vm_mm->page_table_lock);
1037 if (likely(pmd_trans_huge(*pmd))) {
1038 ret = !pmd_trans_splitting(*pmd);
1039 spin_unlock(&vma->vm_mm->page_table_lock);
1040 if (unlikely(!ret))
1041 wait_split_huge_page(vma->anon_vma, pmd);
1042 else {
1043 /*
1044 * All logical pages in the range are present
1045 * if backed by a huge page.
1046 */
1047 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048 }
1049 } else
1050 spin_unlock(&vma->vm_mm->page_table_lock);
1051
1052 return ret;
1053}
1054
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056 unsigned long addr, pgprot_t newprot)
1057{
1058 struct mm_struct *mm = vma->vm_mm;
1059 int ret = 0;
1060
1061 spin_lock(&mm->page_table_lock);
1062 if (likely(pmd_trans_huge(*pmd))) {
1063 if (unlikely(pmd_trans_splitting(*pmd))) {
1064 spin_unlock(&mm->page_table_lock);
1065 wait_split_huge_page(vma->anon_vma, pmd);
1066 } else {
1067 pmd_t entry;
1068
1069 entry = pmdp_get_and_clear(mm, addr, pmd);
1070 entry = pmd_modify(entry, newprot);
1071 set_pmd_at(mm, addr, pmd, entry);
1072 spin_unlock(&vma->vm_mm->page_table_lock);
1073 flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074 ret = 1;
1075 }
1076 } else
1077 spin_unlock(&vma->vm_mm->page_table_lock);
1078
1079 return ret;
1080}
1081
1082pmd_t *page_check_address_pmd(struct page *page,
1083 struct mm_struct *mm,
1084 unsigned long address,
1085 enum page_check_address_pmd_flag flag)
1086{
1087 pgd_t *pgd;
1088 pud_t *pud;
1089 pmd_t *pmd, *ret = NULL;
1090
1091 if (address & ~HPAGE_PMD_MASK)
1092 goto out;
1093
1094 pgd = pgd_offset(mm, address);
1095 if (!pgd_present(*pgd))
1096 goto out;
1097
1098 pud = pud_offset(pgd, address);
1099 if (!pud_present(*pud))
1100 goto out;
1101
1102 pmd = pmd_offset(pud, address);
1103 if (pmd_none(*pmd))
1104 goto out;
1105 if (pmd_page(*pmd) != page)
1106 goto out;
1107 /*
1108 * split_vma() may create temporary aliased mappings. There is
1109 * no risk as long as all huge pmd are found and have their
1110 * splitting bit set before __split_huge_page_refcount
1111 * runs. Finding the same huge pmd more than once during the
1112 * same rmap walk is not a problem.
1113 */
1114 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115 pmd_trans_splitting(*pmd))
1116 goto out;
1117 if (pmd_trans_huge(*pmd)) {
1118 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119 !pmd_trans_splitting(*pmd));
1120 ret = pmd;
1121 }
1122out:
1123 return ret;
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127 struct vm_area_struct *vma,
1128 unsigned long address)
1129{
1130 struct mm_struct *mm = vma->vm_mm;
1131 pmd_t *pmd;
1132 int ret = 0;
1133
1134 spin_lock(&mm->page_table_lock);
1135 pmd = page_check_address_pmd(page, mm, address,
1136 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137 if (pmd) {
1138 /*
1139 * We can't temporarily set the pmd to null in order
1140 * to split it, the pmd must remain marked huge at all
1141 * times or the VM won't take the pmd_trans_huge paths
1142 * and it won't wait on the anon_vma->root->mutex to
1143 * serialize against split_huge_page*.
1144 */
1145 pmdp_splitting_flush_notify(vma, address, pmd);
1146 ret = 1;
1147 }
1148 spin_unlock(&mm->page_table_lock);
1149
1150 return ret;
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
1154{
1155 int i;
1156 unsigned long head_index = page->index;
1157 struct zone *zone = page_zone(page);
1158 int zonestat;
1159
1160 /* prevent PageLRU to go away from under us, and freeze lru stats */
1161 spin_lock_irq(&zone->lru_lock);
1162 compound_lock(page);
1163
1164 for (i = 1; i < HPAGE_PMD_NR; i++) {
1165 struct page *page_tail = page + i;
1166
1167 /* tail_page->_count cannot change */
1168 atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169 BUG_ON(page_count(page) <= 0);
1170 atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171 BUG_ON(atomic_read(&page_tail->_count) <= 0);
1172
1173 /* after clearing PageTail the gup refcount can be released */
1174 smp_mb();
1175
1176 /*
1177 * retain hwpoison flag of the poisoned tail page:
1178 * fix for the unsuitable process killed on Guest Machine(KVM)
1179 * by the memory-failure.
1180 */
1181 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182 page_tail->flags |= (page->flags &
1183 ((1L << PG_referenced) |
1184 (1L << PG_swapbacked) |
1185 (1L << PG_mlocked) |
1186 (1L << PG_uptodate)));
1187 page_tail->flags |= (1L << PG_dirty);
1188
1189 /*
1190 * 1) clear PageTail before overwriting first_page
1191 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192 */
1193 smp_wmb();
1194
1195 /*
1196 * __split_huge_page_splitting() already set the
1197 * splitting bit in all pmd that could map this
1198 * hugepage, that will ensure no CPU can alter the
1199 * mapcount on the head page. The mapcount is only
1200 * accounted in the head page and it has to be
1201 * transferred to all tail pages in the below code. So
1202 * for this code to be safe, the split the mapcount
1203 * can't change. But that doesn't mean userland can't
1204 * keep changing and reading the page contents while
1205 * we transfer the mapcount, so the pmd splitting
1206 * status is achieved setting a reserved bit in the
1207 * pmd, not by clearing the present bit.
1208 */
1209 BUG_ON(page_mapcount(page_tail));
1210 page_tail->_mapcount = page->_mapcount;
1211
1212 BUG_ON(page_tail->mapping);
1213 page_tail->mapping = page->mapping;
1214
1215 page_tail->index = ++head_index;
1216
1217 BUG_ON(!PageAnon(page_tail));
1218 BUG_ON(!PageUptodate(page_tail));
1219 BUG_ON(!PageDirty(page_tail));
1220 BUG_ON(!PageSwapBacked(page_tail));
1221
1222 mem_cgroup_split_huge_fixup(page, page_tail);
1223
1224 lru_add_page_tail(zone, page, page_tail);
1225 }
1226
1227 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1229
1230 /*
1231 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232 * so adjust those appropriately if this page is on the LRU.
1233 */
1234 if (PageLRU(page)) {
1235 zonestat = NR_LRU_BASE + page_lru(page);
1236 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237 }
1238
1239 ClearPageCompound(page);
1240 compound_unlock(page);
1241 spin_unlock_irq(&zone->lru_lock);
1242
1243 for (i = 1; i < HPAGE_PMD_NR; i++) {
1244 struct page *page_tail = page + i;
1245 BUG_ON(page_count(page_tail) <= 0);
1246 /*
1247 * Tail pages may be freed if there wasn't any mapping
1248 * like if add_to_swap() is running on a lru page that
1249 * had its mapping zapped. And freeing these pages
1250 * requires taking the lru_lock so we do the put_page
1251 * of the tail pages after the split is complete.
1252 */
1253 put_page(page_tail);
1254 }
1255
1256 /*
1257 * Only the head page (now become a regular page) is required
1258 * to be pinned by the caller.
1259 */
1260 BUG_ON(page_count(page) <= 0);
1261}
1262
1263static int __split_huge_page_map(struct page *page,
1264 struct vm_area_struct *vma,
1265 unsigned long address)
1266{
1267 struct mm_struct *mm = vma->vm_mm;
1268 pmd_t *pmd, _pmd;
1269 int ret = 0, i;
1270 pgtable_t pgtable;
1271 unsigned long haddr;
1272
1273 spin_lock(&mm->page_table_lock);
1274 pmd = page_check_address_pmd(page, mm, address,
1275 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276 if (pmd) {
1277 pgtable = get_pmd_huge_pte(mm);
1278 pmd_populate(mm, &_pmd, pgtable);
1279
1280 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281 i++, haddr += PAGE_SIZE) {
1282 pte_t *pte, entry;
1283 BUG_ON(PageCompound(page+i));
1284 entry = mk_pte(page + i, vma->vm_page_prot);
1285 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286 if (!pmd_write(*pmd))
1287 entry = pte_wrprotect(entry);
1288 else
1289 BUG_ON(page_mapcount(page) != 1);
1290 if (!pmd_young(*pmd))
1291 entry = pte_mkold(entry);
1292 pte = pte_offset_map(&_pmd, haddr);
1293 BUG_ON(!pte_none(*pte));
1294 set_pte_at(mm, haddr, pte, entry);
1295 pte_unmap(pte);
1296 }
1297
1298 mm->nr_ptes++;
1299 smp_wmb(); /* make pte visible before pmd */
1300 /*
1301 * Up to this point the pmd is present and huge and
1302 * userland has the whole access to the hugepage
1303 * during the split (which happens in place). If we
1304 * overwrite the pmd with the not-huge version
1305 * pointing to the pte here (which of course we could
1306 * if all CPUs were bug free), userland could trigger
1307 * a small page size TLB miss on the small sized TLB
1308 * while the hugepage TLB entry is still established
1309 * in the huge TLB. Some CPU doesn't like that. See
1310 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311 * Erratum 383 on page 93. Intel should be safe but is
1312 * also warns that it's only safe if the permission
1313 * and cache attributes of the two entries loaded in
1314 * the two TLB is identical (which should be the case
1315 * here). But it is generally safer to never allow
1316 * small and huge TLB entries for the same virtual
1317 * address to be loaded simultaneously. So instead of
1318 * doing "pmd_populate(); flush_tlb_range();" we first
1319 * mark the current pmd notpresent (atomically because
1320 * here the pmd_trans_huge and pmd_trans_splitting
1321 * must remain set at all times on the pmd until the
1322 * split is complete for this pmd), then we flush the
1323 * SMP TLB and finally we write the non-huge version
1324 * of the pmd entry with pmd_populate.
1325 */
1326 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328 pmd_populate(mm, pmd, pgtable);
1329 ret = 1;
1330 }
1331 spin_unlock(&mm->page_table_lock);
1332
1333 return ret;
1334}
1335
1336/* must be called with anon_vma->root->mutex hold */
1337static void __split_huge_page(struct page *page,
1338 struct anon_vma *anon_vma)
1339{
1340 int mapcount, mapcount2;
1341 struct anon_vma_chain *avc;
1342
1343 BUG_ON(!PageHead(page));
1344 BUG_ON(PageTail(page));
1345
1346 mapcount = 0;
1347 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348 struct vm_area_struct *vma = avc->vma;
1349 unsigned long addr = vma_address(page, vma);
1350 BUG_ON(is_vma_temporary_stack(vma));
1351 if (addr == -EFAULT)
1352 continue;
1353 mapcount += __split_huge_page_splitting(page, vma, addr);
1354 }
1355 /*
1356 * It is critical that new vmas are added to the tail of the
1357 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358 * and establishes a child pmd before
1359 * __split_huge_page_splitting() freezes the parent pmd (so if
1360 * we fail to prevent copy_huge_pmd() from running until the
1361 * whole __split_huge_page() is complete), we will still see
1362 * the newly established pmd of the child later during the
1363 * walk, to be able to set it as pmd_trans_splitting too.
1364 */
1365 if (mapcount != page_mapcount(page))
1366 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367 mapcount, page_mapcount(page));
1368 BUG_ON(mapcount != page_mapcount(page));
1369
1370 __split_huge_page_refcount(page);
1371
1372 mapcount2 = 0;
1373 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374 struct vm_area_struct *vma = avc->vma;
1375 unsigned long addr = vma_address(page, vma);
1376 BUG_ON(is_vma_temporary_stack(vma));
1377 if (addr == -EFAULT)
1378 continue;
1379 mapcount2 += __split_huge_page_map(page, vma, addr);
1380 }
1381 if (mapcount != mapcount2)
1382 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383 mapcount, mapcount2, page_mapcount(page));
1384 BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
1388{
1389 struct anon_vma *anon_vma;
1390 int ret = 1;
1391
1392 BUG_ON(!PageAnon(page));
1393 anon_vma = page_lock_anon_vma(page);
1394 if (!anon_vma)
1395 goto out;
1396 ret = 0;
1397 if (!PageCompound(page))
1398 goto out_unlock;
1399
1400 BUG_ON(!PageSwapBacked(page));
1401 __split_huge_page(page, anon_vma);
1402 count_vm_event(THP_SPLIT);
1403
1404 BUG_ON(PageCompound(page));
1405out_unlock:
1406 page_unlock_anon_vma(anon_vma);
1407out:
1408 return ret;
1409}
1410
1411#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1412 VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1413
1414int hugepage_madvise(struct vm_area_struct *vma,
1415 unsigned long *vm_flags, int advice)
1416{
1417 switch (advice) {
1418 case MADV_HUGEPAGE:
1419 /*
1420 * Be somewhat over-protective like KSM for now!
1421 */
1422 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1423 return -EINVAL;
1424 *vm_flags &= ~VM_NOHUGEPAGE;
1425 *vm_flags |= VM_HUGEPAGE;
1426 /*
1427 * If the vma become good for khugepaged to scan,
1428 * register it here without waiting a page fault that
1429 * may not happen any time soon.
1430 */
1431 if (unlikely(khugepaged_enter_vma_merge(vma)))
1432 return -ENOMEM;
1433 break;
1434 case MADV_NOHUGEPAGE:
1435 /*
1436 * Be somewhat over-protective like KSM for now!
1437 */
1438 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1439 return -EINVAL;
1440 *vm_flags &= ~VM_HUGEPAGE;
1441 *vm_flags |= VM_NOHUGEPAGE;
1442 /*
1443 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1444 * this vma even if we leave the mm registered in khugepaged if
1445 * it got registered before VM_NOHUGEPAGE was set.
1446 */
1447 break;
1448 }
1449
1450 return 0;
1451}
1452
1453static int __init khugepaged_slab_init(void)
1454{
1455 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1456 sizeof(struct mm_slot),
1457 __alignof__(struct mm_slot), 0, NULL);
1458 if (!mm_slot_cache)
1459 return -ENOMEM;
1460
1461 return 0;
1462}
1463
1464static void __init khugepaged_slab_free(void)
1465{
1466 kmem_cache_destroy(mm_slot_cache);
1467 mm_slot_cache = NULL;
1468}
1469
1470static inline struct mm_slot *alloc_mm_slot(void)
1471{
1472 if (!mm_slot_cache) /* initialization failed */
1473 return NULL;
1474 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1475}
1476
1477static inline void free_mm_slot(struct mm_slot *mm_slot)
1478{
1479 kmem_cache_free(mm_slot_cache, mm_slot);
1480}
1481
1482static int __init mm_slots_hash_init(void)
1483{
1484 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1485 GFP_KERNEL);
1486 if (!mm_slots_hash)
1487 return -ENOMEM;
1488 return 0;
1489}
1490
1491#if 0
1492static void __init mm_slots_hash_free(void)
1493{
1494 kfree(mm_slots_hash);
1495 mm_slots_hash = NULL;
1496}
1497#endif
1498
1499static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1500{
1501 struct mm_slot *mm_slot;
1502 struct hlist_head *bucket;
1503 struct hlist_node *node;
1504
1505 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1506 % MM_SLOTS_HASH_HEADS];
1507 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1508 if (mm == mm_slot->mm)
1509 return mm_slot;
1510 }
1511 return NULL;
1512}
1513
1514static void insert_to_mm_slots_hash(struct mm_struct *mm,
1515 struct mm_slot *mm_slot)
1516{
1517 struct hlist_head *bucket;
1518
1519 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1520 % MM_SLOTS_HASH_HEADS];
1521 mm_slot->mm = mm;
1522 hlist_add_head(&mm_slot->hash, bucket);
1523}
1524
1525static inline int khugepaged_test_exit(struct mm_struct *mm)
1526{
1527 return atomic_read(&mm->mm_users) == 0;
1528}
1529
1530int __khugepaged_enter(struct mm_struct *mm)
1531{
1532 struct mm_slot *mm_slot;
1533 int wakeup;
1534
1535 mm_slot = alloc_mm_slot();
1536 if (!mm_slot)
1537 return -ENOMEM;
1538
1539 /* __khugepaged_exit() must not run from under us */
1540 VM_BUG_ON(khugepaged_test_exit(mm));
1541 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1542 free_mm_slot(mm_slot);
1543 return 0;
1544 }
1545
1546 spin_lock(&khugepaged_mm_lock);
1547 insert_to_mm_slots_hash(mm, mm_slot);
1548 /*
1549 * Insert just behind the scanning cursor, to let the area settle
1550 * down a little.
1551 */
1552 wakeup = list_empty(&khugepaged_scan.mm_head);
1553 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1554 spin_unlock(&khugepaged_mm_lock);
1555
1556 atomic_inc(&mm->mm_count);
1557 if (wakeup)
1558 wake_up_interruptible(&khugepaged_wait);
1559
1560 return 0;
1561}
1562
1563int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1564{
1565 unsigned long hstart, hend;
1566 if (!vma->anon_vma)
1567 /*
1568 * Not yet faulted in so we will register later in the
1569 * page fault if needed.
1570 */
1571 return 0;
1572 if (vma->vm_ops)
1573 /* khugepaged not yet working on file or special mappings */
1574 return 0;
1575 /*
1576 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1577 * true too, verify it here.
1578 */
1579 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1580 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1581 hend = vma->vm_end & HPAGE_PMD_MASK;
1582 if (hstart < hend)
1583 return khugepaged_enter(vma);
1584 return 0;
1585}
1586
1587void __khugepaged_exit(struct mm_struct *mm)
1588{
1589 struct mm_slot *mm_slot;
1590 int free = 0;
1591
1592 spin_lock(&khugepaged_mm_lock);
1593 mm_slot = get_mm_slot(mm);
1594 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1595 hlist_del(&mm_slot->hash);
1596 list_del(&mm_slot->mm_node);
1597 free = 1;
1598 }
1599 spin_unlock(&khugepaged_mm_lock);
1600
1601 if (free) {
1602 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1603 free_mm_slot(mm_slot);
1604 mmdrop(mm);
1605 } else if (mm_slot) {
1606 /*
1607 * This is required to serialize against
1608 * khugepaged_test_exit() (which is guaranteed to run
1609 * under mmap sem read mode). Stop here (after we
1610 * return all pagetables will be destroyed) until
1611 * khugepaged has finished working on the pagetables
1612 * under the mmap_sem.
1613 */
1614 down_write(&mm->mmap_sem);
1615 up_write(&mm->mmap_sem);
1616 }
1617}
1618
1619static void release_pte_page(struct page *page)
1620{
1621 /* 0 stands for page_is_file_cache(page) == false */
1622 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1623 unlock_page(page);
1624 putback_lru_page(page);
1625}
1626
1627static void release_pte_pages(pte_t *pte, pte_t *_pte)
1628{
1629 while (--_pte >= pte) {
1630 pte_t pteval = *_pte;
1631 if (!pte_none(pteval))
1632 release_pte_page(pte_page(pteval));
1633 }
1634}
1635
1636static void release_all_pte_pages(pte_t *pte)
1637{
1638 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1639}
1640
1641static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1642 unsigned long address,
1643 pte_t *pte)
1644{
1645 struct page *page;
1646 pte_t *_pte;
1647 int referenced = 0, isolated = 0, none = 0;
1648 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1649 _pte++, address += PAGE_SIZE) {
1650 pte_t pteval = *_pte;
1651 if (pte_none(pteval)) {
1652 if (++none <= khugepaged_max_ptes_none)
1653 continue;
1654 else {
1655 release_pte_pages(pte, _pte);
1656 goto out;
1657 }
1658 }
1659 if (!pte_present(pteval) || !pte_write(pteval)) {
1660 release_pte_pages(pte, _pte);
1661 goto out;
1662 }
1663 page = vm_normal_page(vma, address, pteval);
1664 if (unlikely(!page)) {
1665 release_pte_pages(pte, _pte);
1666 goto out;
1667 }
1668 VM_BUG_ON(PageCompound(page));
1669 BUG_ON(!PageAnon(page));
1670 VM_BUG_ON(!PageSwapBacked(page));
1671
1672 /* cannot use mapcount: can't collapse if there's a gup pin */
1673 if (page_count(page) != 1) {
1674 release_pte_pages(pte, _pte);
1675 goto out;
1676 }
1677 /*
1678 * We can do it before isolate_lru_page because the
1679 * page can't be freed from under us. NOTE: PG_lock
1680 * is needed to serialize against split_huge_page
1681 * when invoked from the VM.
1682 */
1683 if (!trylock_page(page)) {
1684 release_pte_pages(pte, _pte);
1685 goto out;
1686 }
1687 /*
1688 * Isolate the page to avoid collapsing an hugepage
1689 * currently in use by the VM.
1690 */
1691 if (isolate_lru_page(page)) {
1692 unlock_page(page);
1693 release_pte_pages(pte, _pte);
1694 goto out;
1695 }
1696 /* 0 stands for page_is_file_cache(page) == false */
1697 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698 VM_BUG_ON(!PageLocked(page));
1699 VM_BUG_ON(PageLRU(page));
1700
1701 /* If there is no mapped pte young don't collapse the page */
1702 if (pte_young(pteval) || PageReferenced(page) ||
1703 mmu_notifier_test_young(vma->vm_mm, address))
1704 referenced = 1;
1705 }
1706 if (unlikely(!referenced))
1707 release_all_pte_pages(pte);
1708 else
1709 isolated = 1;
1710out:
1711 return isolated;
1712}
1713
1714static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1715 struct vm_area_struct *vma,
1716 unsigned long address,
1717 spinlock_t *ptl)
1718{
1719 pte_t *_pte;
1720 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1721 pte_t pteval = *_pte;
1722 struct page *src_page;
1723
1724 if (pte_none(pteval)) {
1725 clear_user_highpage(page, address);
1726 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1727 } else {
1728 src_page = pte_page(pteval);
1729 copy_user_highpage(page, src_page, address, vma);
1730 VM_BUG_ON(page_mapcount(src_page) != 1);
1731 VM_BUG_ON(page_count(src_page) != 2);
1732 release_pte_page(src_page);
1733 /*
1734 * ptl mostly unnecessary, but preempt has to
1735 * be disabled to update the per-cpu stats
1736 * inside page_remove_rmap().
1737 */
1738 spin_lock(ptl);
1739 /*
1740 * paravirt calls inside pte_clear here are
1741 * superfluous.
1742 */
1743 pte_clear(vma->vm_mm, address, _pte);
1744 page_remove_rmap(src_page);
1745 spin_unlock(ptl);
1746 free_page_and_swap_cache(src_page);
1747 }
1748
1749 address += PAGE_SIZE;
1750 page++;
1751 }
1752}
1753
1754static void collapse_huge_page(struct mm_struct *mm,
1755 unsigned long address,
1756 struct page **hpage,
1757 struct vm_area_struct *vma,
1758 int node)
1759{
1760 pgd_t *pgd;
1761 pud_t *pud;
1762 pmd_t *pmd, _pmd;
1763 pte_t *pte;
1764 pgtable_t pgtable;
1765 struct page *new_page;
1766 spinlock_t *ptl;
1767 int isolated;
1768 unsigned long hstart, hend;
1769
1770 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1771#ifndef CONFIG_NUMA
1772 up_read(&mm->mmap_sem);
1773 VM_BUG_ON(!*hpage);
1774 new_page = *hpage;
1775#else
1776 VM_BUG_ON(*hpage);
1777 /*
1778 * Allocate the page while the vma is still valid and under
1779 * the mmap_sem read mode so there is no memory allocation
1780 * later when we take the mmap_sem in write mode. This is more
1781 * friendly behavior (OTOH it may actually hide bugs) to
1782 * filesystems in userland with daemons allocating memory in
1783 * the userland I/O paths. Allocating memory with the
1784 * mmap_sem in read mode is good idea also to allow greater
1785 * scalability.
1786 */
1787 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1788 node, __GFP_OTHER_NODE);
1789
1790 /*
1791 * After allocating the hugepage, release the mmap_sem read lock in
1792 * preparation for taking it in write mode.
1793 */
1794 up_read(&mm->mmap_sem);
1795 if (unlikely(!new_page)) {
1796 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1797 *hpage = ERR_PTR(-ENOMEM);
1798 return;
1799 }
1800#endif
1801
1802 count_vm_event(THP_COLLAPSE_ALLOC);
1803 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1804#ifdef CONFIG_NUMA
1805 put_page(new_page);
1806#endif
1807 return;
1808 }
1809
1810 /*
1811 * Prevent all access to pagetables with the exception of
1812 * gup_fast later hanlded by the ptep_clear_flush and the VM
1813 * handled by the anon_vma lock + PG_lock.
1814 */
1815 down_write(&mm->mmap_sem);
1816 if (unlikely(khugepaged_test_exit(mm)))
1817 goto out;
1818
1819 vma = find_vma(mm, address);
1820 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1821 hend = vma->vm_end & HPAGE_PMD_MASK;
1822 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1823 goto out;
1824
1825 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1826 (vma->vm_flags & VM_NOHUGEPAGE))
1827 goto out;
1828
1829 if (!vma->anon_vma || vma->vm_ops)
1830 goto out;
1831 if (is_vma_temporary_stack(vma))
1832 goto out;
1833 /*
1834 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1835 * true too, verify it here.
1836 */
1837 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1838
1839 pgd = pgd_offset(mm, address);
1840 if (!pgd_present(*pgd))
1841 goto out;
1842
1843 pud = pud_offset(pgd, address);
1844 if (!pud_present(*pud))
1845 goto out;
1846
1847 pmd = pmd_offset(pud, address);
1848 /* pmd can't go away or become huge under us */
1849 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1850 goto out;
1851
1852 anon_vma_lock(vma->anon_vma);
1853
1854 pte = pte_offset_map(pmd, address);
1855 ptl = pte_lockptr(mm, pmd);
1856
1857 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1858 /*
1859 * After this gup_fast can't run anymore. This also removes
1860 * any huge TLB entry from the CPU so we won't allow
1861 * huge and small TLB entries for the same virtual address
1862 * to avoid the risk of CPU bugs in that area.
1863 */
1864 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1865 spin_unlock(&mm->page_table_lock);
1866
1867 spin_lock(ptl);
1868 isolated = __collapse_huge_page_isolate(vma, address, pte);
1869 spin_unlock(ptl);
1870
1871 if (unlikely(!isolated)) {
1872 pte_unmap(pte);
1873 spin_lock(&mm->page_table_lock);
1874 BUG_ON(!pmd_none(*pmd));
1875 set_pmd_at(mm, address, pmd, _pmd);
1876 spin_unlock(&mm->page_table_lock);
1877 anon_vma_unlock(vma->anon_vma);
1878 goto out;
1879 }
1880
1881 /*
1882 * All pages are isolated and locked so anon_vma rmap
1883 * can't run anymore.
1884 */
1885 anon_vma_unlock(vma->anon_vma);
1886
1887 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1888 pte_unmap(pte);
1889 __SetPageUptodate(new_page);
1890 pgtable = pmd_pgtable(_pmd);
1891 VM_BUG_ON(page_count(pgtable) != 1);
1892 VM_BUG_ON(page_mapcount(pgtable) != 0);
1893
1894 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1895 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1896 _pmd = pmd_mkhuge(_pmd);
1897
1898 /*
1899 * spin_lock() below is not the equivalent of smp_wmb(), so
1900 * this is needed to avoid the copy_huge_page writes to become
1901 * visible after the set_pmd_at() write.
1902 */
1903 smp_wmb();
1904
1905 spin_lock(&mm->page_table_lock);
1906 BUG_ON(!pmd_none(*pmd));
1907 page_add_new_anon_rmap(new_page, vma, address);
1908 set_pmd_at(mm, address, pmd, _pmd);
1909 update_mmu_cache(vma, address, entry);
1910 prepare_pmd_huge_pte(pgtable, mm);
1911 mm->nr_ptes--;
1912 spin_unlock(&mm->page_table_lock);
1913
1914#ifndef CONFIG_NUMA
1915 *hpage = NULL;
1916#endif
1917 khugepaged_pages_collapsed++;
1918out_up_write:
1919 up_write(&mm->mmap_sem);
1920 return;
1921
1922out:
1923 mem_cgroup_uncharge_page(new_page);
1924#ifdef CONFIG_NUMA
1925 put_page(new_page);
1926#endif
1927 goto out_up_write;
1928}
1929
1930static int khugepaged_scan_pmd(struct mm_struct *mm,
1931 struct vm_area_struct *vma,
1932 unsigned long address,
1933 struct page **hpage)
1934{
1935 pgd_t *pgd;
1936 pud_t *pud;
1937 pmd_t *pmd;
1938 pte_t *pte, *_pte;
1939 int ret = 0, referenced = 0, none = 0;
1940 struct page *page;
1941 unsigned long _address;
1942 spinlock_t *ptl;
1943 int node = -1;
1944
1945 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1946
1947 pgd = pgd_offset(mm, address);
1948 if (!pgd_present(*pgd))
1949 goto out;
1950
1951 pud = pud_offset(pgd, address);
1952 if (!pud_present(*pud))
1953 goto out;
1954
1955 pmd = pmd_offset(pud, address);
1956 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1957 goto out;
1958
1959 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1960 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1961 _pte++, _address += PAGE_SIZE) {
1962 pte_t pteval = *_pte;
1963 if (pte_none(pteval)) {
1964 if (++none <= khugepaged_max_ptes_none)
1965 continue;
1966 else
1967 goto out_unmap;
1968 }
1969 if (!pte_present(pteval) || !pte_write(pteval))
1970 goto out_unmap;
1971 page = vm_normal_page(vma, _address, pteval);
1972 if (unlikely(!page))
1973 goto out_unmap;
1974 /*
1975 * Chose the node of the first page. This could
1976 * be more sophisticated and look at more pages,
1977 * but isn't for now.
1978 */
1979 if (node == -1)
1980 node = page_to_nid(page);
1981 VM_BUG_ON(PageCompound(page));
1982 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1983 goto out_unmap;
1984 /* cannot use mapcount: can't collapse if there's a gup pin */
1985 if (page_count(page) != 1)
1986 goto out_unmap;
1987 if (pte_young(pteval) || PageReferenced(page) ||
1988 mmu_notifier_test_young(vma->vm_mm, address))
1989 referenced = 1;
1990 }
1991 if (referenced)
1992 ret = 1;
1993out_unmap:
1994 pte_unmap_unlock(pte, ptl);
1995 if (ret)
1996 /* collapse_huge_page will return with the mmap_sem released */
1997 collapse_huge_page(mm, address, hpage, vma, node);
1998out:
1999 return ret;
2000}
2001
2002static void collect_mm_slot(struct mm_slot *mm_slot)
2003{
2004 struct mm_struct *mm = mm_slot->mm;
2005
2006 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2007
2008 if (khugepaged_test_exit(mm)) {
2009 /* free mm_slot */
2010 hlist_del(&mm_slot->hash);
2011 list_del(&mm_slot->mm_node);
2012
2013 /*
2014 * Not strictly needed because the mm exited already.
2015 *
2016 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2017 */
2018
2019 /* khugepaged_mm_lock actually not necessary for the below */
2020 free_mm_slot(mm_slot);
2021 mmdrop(mm);
2022 }
2023}
2024
2025static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2026 struct page **hpage)
2027{
2028 struct mm_slot *mm_slot;
2029 struct mm_struct *mm;
2030 struct vm_area_struct *vma;
2031 int progress = 0;
2032
2033 VM_BUG_ON(!pages);
2034 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2035
2036 if (khugepaged_scan.mm_slot)
2037 mm_slot = khugepaged_scan.mm_slot;
2038 else {
2039 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2040 struct mm_slot, mm_node);
2041 khugepaged_scan.address = 0;
2042 khugepaged_scan.mm_slot = mm_slot;
2043 }
2044 spin_unlock(&khugepaged_mm_lock);
2045
2046 mm = mm_slot->mm;
2047 down_read(&mm->mmap_sem);
2048 if (unlikely(khugepaged_test_exit(mm)))
2049 vma = NULL;
2050 else
2051 vma = find_vma(mm, khugepaged_scan.address);
2052
2053 progress++;
2054 for (; vma; vma = vma->vm_next) {
2055 unsigned long hstart, hend;
2056
2057 cond_resched();
2058 if (unlikely(khugepaged_test_exit(mm))) {
2059 progress++;
2060 break;
2061 }
2062
2063 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2064 !khugepaged_always()) ||
2065 (vma->vm_flags & VM_NOHUGEPAGE)) {
2066 skip:
2067 progress++;
2068 continue;
2069 }
2070 if (!vma->anon_vma || vma->vm_ops)
2071 goto skip;
2072 if (is_vma_temporary_stack(vma))
2073 goto skip;
2074 /*
2075 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2076 * must be true too, verify it here.
2077 */
2078 VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2079 vma->vm_flags & VM_NO_THP);
2080
2081 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2082 hend = vma->vm_end & HPAGE_PMD_MASK;
2083 if (hstart >= hend)
2084 goto skip;
2085 if (khugepaged_scan.address > hend)
2086 goto skip;
2087 if (khugepaged_scan.address < hstart)
2088 khugepaged_scan.address = hstart;
2089 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2090
2091 while (khugepaged_scan.address < hend) {
2092 int ret;
2093 cond_resched();
2094 if (unlikely(khugepaged_test_exit(mm)))
2095 goto breakouterloop;
2096
2097 VM_BUG_ON(khugepaged_scan.address < hstart ||
2098 khugepaged_scan.address + HPAGE_PMD_SIZE >
2099 hend);
2100 ret = khugepaged_scan_pmd(mm, vma,
2101 khugepaged_scan.address,
2102 hpage);
2103 /* move to next address */
2104 khugepaged_scan.address += HPAGE_PMD_SIZE;
2105 progress += HPAGE_PMD_NR;
2106 if (ret)
2107 /* we released mmap_sem so break loop */
2108 goto breakouterloop_mmap_sem;
2109 if (progress >= pages)
2110 goto breakouterloop;
2111 }
2112 }
2113breakouterloop:
2114 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2115breakouterloop_mmap_sem:
2116
2117 spin_lock(&khugepaged_mm_lock);
2118 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2119 /*
2120 * Release the current mm_slot if this mm is about to die, or
2121 * if we scanned all vmas of this mm.
2122 */
2123 if (khugepaged_test_exit(mm) || !vma) {
2124 /*
2125 * Make sure that if mm_users is reaching zero while
2126 * khugepaged runs here, khugepaged_exit will find
2127 * mm_slot not pointing to the exiting mm.
2128 */
2129 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2130 khugepaged_scan.mm_slot = list_entry(
2131 mm_slot->mm_node.next,
2132 struct mm_slot, mm_node);
2133 khugepaged_scan.address = 0;
2134 } else {
2135 khugepaged_scan.mm_slot = NULL;
2136 khugepaged_full_scans++;
2137 }
2138
2139 collect_mm_slot(mm_slot);
2140 }
2141
2142 return progress;
2143}
2144
2145static int khugepaged_has_work(void)
2146{
2147 return !list_empty(&khugepaged_scan.mm_head) &&
2148 khugepaged_enabled();
2149}
2150
2151static int khugepaged_wait_event(void)
2152{
2153 return !list_empty(&khugepaged_scan.mm_head) ||
2154 !khugepaged_enabled();
2155}
2156
2157static void khugepaged_do_scan(struct page **hpage)
2158{
2159 unsigned int progress = 0, pass_through_head = 0;
2160 unsigned int pages = khugepaged_pages_to_scan;
2161
2162 barrier(); /* write khugepaged_pages_to_scan to local stack */
2163
2164 while (progress < pages) {
2165 cond_resched();
2166
2167#ifndef CONFIG_NUMA
2168 if (!*hpage) {
2169 *hpage = alloc_hugepage(khugepaged_defrag());
2170 if (unlikely(!*hpage)) {
2171 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2172 break;
2173 }
2174 count_vm_event(THP_COLLAPSE_ALLOC);
2175 }
2176#else
2177 if (IS_ERR(*hpage))
2178 break;
2179#endif
2180
2181 if (unlikely(kthread_should_stop() || freezing(current)))
2182 break;
2183
2184 spin_lock(&khugepaged_mm_lock);
2185 if (!khugepaged_scan.mm_slot)
2186 pass_through_head++;
2187 if (khugepaged_has_work() &&
2188 pass_through_head < 2)
2189 progress += khugepaged_scan_mm_slot(pages - progress,
2190 hpage);
2191 else
2192 progress = pages;
2193 spin_unlock(&khugepaged_mm_lock);
2194 }
2195}
2196
2197static void khugepaged_alloc_sleep(void)
2198{
2199 DEFINE_WAIT(wait);
2200 add_wait_queue(&khugepaged_wait, &wait);
2201 schedule_timeout_interruptible(
2202 msecs_to_jiffies(
2203 khugepaged_alloc_sleep_millisecs));
2204 remove_wait_queue(&khugepaged_wait, &wait);
2205}
2206
2207#ifndef CONFIG_NUMA
2208static struct page *khugepaged_alloc_hugepage(void)
2209{
2210 struct page *hpage;
2211
2212 do {
2213 hpage = alloc_hugepage(khugepaged_defrag());
2214 if (!hpage) {
2215 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2216 khugepaged_alloc_sleep();
2217 } else
2218 count_vm_event(THP_COLLAPSE_ALLOC);
2219 } while (unlikely(!hpage) &&
2220 likely(khugepaged_enabled()));
2221 return hpage;
2222}
2223#endif
2224
2225static void khugepaged_loop(void)
2226{
2227 struct page *hpage;
2228
2229#ifdef CONFIG_NUMA
2230 hpage = NULL;
2231#endif
2232 while (likely(khugepaged_enabled())) {
2233#ifndef CONFIG_NUMA
2234 hpage = khugepaged_alloc_hugepage();
2235 if (unlikely(!hpage))
2236 break;
2237#else
2238 if (IS_ERR(hpage)) {
2239 khugepaged_alloc_sleep();
2240 hpage = NULL;
2241 }
2242#endif
2243
2244 khugepaged_do_scan(&hpage);
2245#ifndef CONFIG_NUMA
2246 if (hpage)
2247 put_page(hpage);
2248#endif
2249 try_to_freeze();
2250 if (unlikely(kthread_should_stop()))
2251 break;
2252 if (khugepaged_has_work()) {
2253 DEFINE_WAIT(wait);
2254 if (!khugepaged_scan_sleep_millisecs)
2255 continue;
2256 add_wait_queue(&khugepaged_wait, &wait);
2257 schedule_timeout_interruptible(
2258 msecs_to_jiffies(
2259 khugepaged_scan_sleep_millisecs));
2260 remove_wait_queue(&khugepaged_wait, &wait);
2261 } else if (khugepaged_enabled())
2262 wait_event_freezable(khugepaged_wait,
2263 khugepaged_wait_event());
2264 }
2265}
2266
2267static int khugepaged(void *none)
2268{
2269 struct mm_slot *mm_slot;
2270
2271 set_freezable();
2272 set_user_nice(current, 19);
2273
2274 /* serialize with start_khugepaged() */
2275 mutex_lock(&khugepaged_mutex);
2276
2277 for (;;) {
2278 mutex_unlock(&khugepaged_mutex);
2279 VM_BUG_ON(khugepaged_thread != current);
2280 khugepaged_loop();
2281 VM_BUG_ON(khugepaged_thread != current);
2282
2283 mutex_lock(&khugepaged_mutex);
2284 if (!khugepaged_enabled())
2285 break;
2286 if (unlikely(kthread_should_stop()))
2287 break;
2288 }
2289
2290 spin_lock(&khugepaged_mm_lock);
2291 mm_slot = khugepaged_scan.mm_slot;
2292 khugepaged_scan.mm_slot = NULL;
2293 if (mm_slot)
2294 collect_mm_slot(mm_slot);
2295 spin_unlock(&khugepaged_mm_lock);
2296
2297 khugepaged_thread = NULL;
2298 mutex_unlock(&khugepaged_mutex);
2299
2300 return 0;
2301}
2302
2303void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2304{
2305 struct page *page;
2306
2307 spin_lock(&mm->page_table_lock);
2308 if (unlikely(!pmd_trans_huge(*pmd))) {
2309 spin_unlock(&mm->page_table_lock);
2310 return;
2311 }
2312 page = pmd_page(*pmd);
2313 VM_BUG_ON(!page_count(page));
2314 get_page(page);
2315 spin_unlock(&mm->page_table_lock);
2316
2317 split_huge_page(page);
2318
2319 put_page(page);
2320 BUG_ON(pmd_trans_huge(*pmd));
2321}
2322
2323static void split_huge_page_address(struct mm_struct *mm,
2324 unsigned long address)
2325{
2326 pgd_t *pgd;
2327 pud_t *pud;
2328 pmd_t *pmd;
2329
2330 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2331
2332 pgd = pgd_offset(mm, address);
2333 if (!pgd_present(*pgd))
2334 return;
2335
2336 pud = pud_offset(pgd, address);
2337 if (!pud_present(*pud))
2338 return;
2339
2340 pmd = pmd_offset(pud, address);
2341 if (!pmd_present(*pmd))
2342 return;
2343 /*
2344 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2345 * materialize from under us.
2346 */
2347 split_huge_page_pmd(mm, pmd);
2348}
2349
2350void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2351 unsigned long start,
2352 unsigned long end,
2353 long adjust_next)
2354{
2355 /*
2356 * If the new start address isn't hpage aligned and it could
2357 * previously contain an hugepage: check if we need to split
2358 * an huge pmd.
2359 */
2360 if (start & ~HPAGE_PMD_MASK &&
2361 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2362 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2363 split_huge_page_address(vma->vm_mm, start);
2364
2365 /*
2366 * If the new end address isn't hpage aligned and it could
2367 * previously contain an hugepage: check if we need to split
2368 * an huge pmd.
2369 */
2370 if (end & ~HPAGE_PMD_MASK &&
2371 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2372 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2373 split_huge_page_address(vma->vm_mm, end);
2374
2375 /*
2376 * If we're also updating the vma->vm_next->vm_start, if the new
2377 * vm_next->vm_start isn't page aligned and it could previously
2378 * contain an hugepage: check if we need to split an huge pmd.
2379 */
2380 if (adjust_next > 0) {
2381 struct vm_area_struct *next = vma->vm_next;
2382 unsigned long nstart = next->vm_start;
2383 nstart += adjust_next << PAGE_SHIFT;
2384 if (nstart & ~HPAGE_PMD_MASK &&
2385 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2386 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2387 split_huge_page_address(next->vm_mm, nstart);
2388 }
2389}
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/shrinker.h>
16#include <linux/mm_inline.h>
17#include <linux/kthread.h>
18#include <linux/khugepaged.h>
19#include <linux/freezer.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/migrate.h>
23#include <linux/hashtable.h>
24
25#include <asm/tlb.h>
26#include <asm/pgalloc.h>
27#include "internal.h"
28
29/*
30 * By default transparent hugepage support is disabled in order that avoid
31 * to risk increase the memory footprint of applications without a guaranteed
32 * benefit. When transparent hugepage support is enabled, is for all mappings,
33 * and khugepaged scans all mappings.
34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
35 * for all hugepage allocations.
36 */
37unsigned long transparent_hugepage_flags __read_mostly =
38#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
40#endif
41#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43#endif
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47
48/* default scan 8*512 pte (or vmas) every 30 second */
49static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50static unsigned int khugepaged_pages_collapsed;
51static unsigned int khugepaged_full_scans;
52static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53/* during fragmentation poll the hugepage allocator once every minute */
54static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55static struct task_struct *khugepaged_thread __read_mostly;
56static DEFINE_MUTEX(khugepaged_mutex);
57static DEFINE_SPINLOCK(khugepaged_mm_lock);
58static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59/*
60 * default collapse hugepages if there is at least one pte mapped like
61 * it would have happened if the vma was large enough during page
62 * fault.
63 */
64static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65
66static int khugepaged(void *none);
67static int khugepaged_slab_init(void);
68
69#define MM_SLOTS_HASH_BITS 10
70static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71
72static struct kmem_cache *mm_slot_cache __read_mostly;
73
74/**
75 * struct mm_slot - hash lookup from mm to mm_slot
76 * @hash: hash collision list
77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78 * @mm: the mm that this information is valid for
79 */
80struct mm_slot {
81 struct hlist_node hash;
82 struct list_head mm_node;
83 struct mm_struct *mm;
84};
85
86/**
87 * struct khugepaged_scan - cursor for scanning
88 * @mm_head: the head of the mm list to scan
89 * @mm_slot: the current mm_slot we are scanning
90 * @address: the next address inside that to be scanned
91 *
92 * There is only the one khugepaged_scan instance of this cursor structure.
93 */
94struct khugepaged_scan {
95 struct list_head mm_head;
96 struct mm_slot *mm_slot;
97 unsigned long address;
98};
99static struct khugepaged_scan khugepaged_scan = {
100 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101};
102
103
104static int set_recommended_min_free_kbytes(void)
105{
106 struct zone *zone;
107 int nr_zones = 0;
108 unsigned long recommended_min;
109
110 if (!khugepaged_enabled())
111 return 0;
112
113 for_each_populated_zone(zone)
114 nr_zones++;
115
116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 recommended_min = pageblock_nr_pages * nr_zones * 2;
118
119 /*
120 * Make sure that on average at least two pageblocks are almost free
121 * of another type, one for a migratetype to fall back to and a
122 * second to avoid subsequent fallbacks of other types There are 3
123 * MIGRATE_TYPES we care about.
124 */
125 recommended_min += pageblock_nr_pages * nr_zones *
126 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127
128 /* don't ever allow to reserve more than 5% of the lowmem */
129 recommended_min = min(recommended_min,
130 (unsigned long) nr_free_buffer_pages() / 20);
131 recommended_min <<= (PAGE_SHIFT-10);
132
133 if (recommended_min > min_free_kbytes) {
134 if (user_min_free_kbytes >= 0)
135 pr_info("raising min_free_kbytes from %d to %lu "
136 "to help transparent hugepage allocations\n",
137 min_free_kbytes, recommended_min);
138
139 min_free_kbytes = recommended_min;
140 }
141 setup_per_zone_wmarks();
142 return 0;
143}
144late_initcall(set_recommended_min_free_kbytes);
145
146static int start_khugepaged(void)
147{
148 int err = 0;
149 if (khugepaged_enabled()) {
150 if (!khugepaged_thread)
151 khugepaged_thread = kthread_run(khugepaged, NULL,
152 "khugepaged");
153 if (unlikely(IS_ERR(khugepaged_thread))) {
154 printk(KERN_ERR
155 "khugepaged: kthread_run(khugepaged) failed\n");
156 err = PTR_ERR(khugepaged_thread);
157 khugepaged_thread = NULL;
158 }
159
160 if (!list_empty(&khugepaged_scan.mm_head))
161 wake_up_interruptible(&khugepaged_wait);
162
163 set_recommended_min_free_kbytes();
164 } else if (khugepaged_thread) {
165 kthread_stop(khugepaged_thread);
166 khugepaged_thread = NULL;
167 }
168
169 return err;
170}
171
172static atomic_t huge_zero_refcount;
173static struct page *huge_zero_page __read_mostly;
174
175static inline bool is_huge_zero_page(struct page *page)
176{
177 return ACCESS_ONCE(huge_zero_page) == page;
178}
179
180static inline bool is_huge_zero_pmd(pmd_t pmd)
181{
182 return is_huge_zero_page(pmd_page(pmd));
183}
184
185static struct page *get_huge_zero_page(void)
186{
187 struct page *zero_page;
188retry:
189 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
190 return ACCESS_ONCE(huge_zero_page);
191
192 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
193 HPAGE_PMD_ORDER);
194 if (!zero_page) {
195 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
196 return NULL;
197 }
198 count_vm_event(THP_ZERO_PAGE_ALLOC);
199 preempt_disable();
200 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
201 preempt_enable();
202 __free_page(zero_page);
203 goto retry;
204 }
205
206 /* We take additional reference here. It will be put back by shrinker */
207 atomic_set(&huge_zero_refcount, 2);
208 preempt_enable();
209 return ACCESS_ONCE(huge_zero_page);
210}
211
212static void put_huge_zero_page(void)
213{
214 /*
215 * Counter should never go to zero here. Only shrinker can put
216 * last reference.
217 */
218 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
219}
220
221static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
222 struct shrink_control *sc)
223{
224 /* we can free zero page only if last reference remains */
225 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
226}
227
228static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
229 struct shrink_control *sc)
230{
231 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
232 struct page *zero_page = xchg(&huge_zero_page, NULL);
233 BUG_ON(zero_page == NULL);
234 __free_page(zero_page);
235 return HPAGE_PMD_NR;
236 }
237
238 return 0;
239}
240
241static struct shrinker huge_zero_page_shrinker = {
242 .count_objects = shrink_huge_zero_page_count,
243 .scan_objects = shrink_huge_zero_page_scan,
244 .seeks = DEFAULT_SEEKS,
245};
246
247#ifdef CONFIG_SYSFS
248
249static ssize_t double_flag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf,
251 enum transparent_hugepage_flag enabled,
252 enum transparent_hugepage_flag req_madv)
253{
254 if (test_bit(enabled, &transparent_hugepage_flags)) {
255 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
256 return sprintf(buf, "[always] madvise never\n");
257 } else if (test_bit(req_madv, &transparent_hugepage_flags))
258 return sprintf(buf, "always [madvise] never\n");
259 else
260 return sprintf(buf, "always madvise [never]\n");
261}
262static ssize_t double_flag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count,
265 enum transparent_hugepage_flag enabled,
266 enum transparent_hugepage_flag req_madv)
267{
268 if (!memcmp("always", buf,
269 min(sizeof("always")-1, count))) {
270 set_bit(enabled, &transparent_hugepage_flags);
271 clear_bit(req_madv, &transparent_hugepage_flags);
272 } else if (!memcmp("madvise", buf,
273 min(sizeof("madvise")-1, count))) {
274 clear_bit(enabled, &transparent_hugepage_flags);
275 set_bit(req_madv, &transparent_hugepage_flags);
276 } else if (!memcmp("never", buf,
277 min(sizeof("never")-1, count))) {
278 clear_bit(enabled, &transparent_hugepage_flags);
279 clear_bit(req_madv, &transparent_hugepage_flags);
280 } else
281 return -EINVAL;
282
283 return count;
284}
285
286static ssize_t enabled_show(struct kobject *kobj,
287 struct kobj_attribute *attr, char *buf)
288{
289 return double_flag_show(kobj, attr, buf,
290 TRANSPARENT_HUGEPAGE_FLAG,
291 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
292}
293static ssize_t enabled_store(struct kobject *kobj,
294 struct kobj_attribute *attr,
295 const char *buf, size_t count)
296{
297 ssize_t ret;
298
299 ret = double_flag_store(kobj, attr, buf, count,
300 TRANSPARENT_HUGEPAGE_FLAG,
301 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
302
303 if (ret > 0) {
304 int err;
305
306 mutex_lock(&khugepaged_mutex);
307 err = start_khugepaged();
308 mutex_unlock(&khugepaged_mutex);
309
310 if (err)
311 ret = err;
312 }
313
314 return ret;
315}
316static struct kobj_attribute enabled_attr =
317 __ATTR(enabled, 0644, enabled_show, enabled_store);
318
319static ssize_t single_flag_show(struct kobject *kobj,
320 struct kobj_attribute *attr, char *buf,
321 enum transparent_hugepage_flag flag)
322{
323 return sprintf(buf, "%d\n",
324 !!test_bit(flag, &transparent_hugepage_flags));
325}
326
327static ssize_t single_flag_store(struct kobject *kobj,
328 struct kobj_attribute *attr,
329 const char *buf, size_t count,
330 enum transparent_hugepage_flag flag)
331{
332 unsigned long value;
333 int ret;
334
335 ret = kstrtoul(buf, 10, &value);
336 if (ret < 0)
337 return ret;
338 if (value > 1)
339 return -EINVAL;
340
341 if (value)
342 set_bit(flag, &transparent_hugepage_flags);
343 else
344 clear_bit(flag, &transparent_hugepage_flags);
345
346 return count;
347}
348
349/*
350 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
351 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
352 * memory just to allocate one more hugepage.
353 */
354static ssize_t defrag_show(struct kobject *kobj,
355 struct kobj_attribute *attr, char *buf)
356{
357 return double_flag_show(kobj, attr, buf,
358 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
359 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
360}
361static ssize_t defrag_store(struct kobject *kobj,
362 struct kobj_attribute *attr,
363 const char *buf, size_t count)
364{
365 return double_flag_store(kobj, attr, buf, count,
366 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
367 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
368}
369static struct kobj_attribute defrag_attr =
370 __ATTR(defrag, 0644, defrag_show, defrag_store);
371
372static ssize_t use_zero_page_show(struct kobject *kobj,
373 struct kobj_attribute *attr, char *buf)
374{
375 return single_flag_show(kobj, attr, buf,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377}
378static ssize_t use_zero_page_store(struct kobject *kobj,
379 struct kobj_attribute *attr, const char *buf, size_t count)
380{
381 return single_flag_store(kobj, attr, buf, count,
382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383}
384static struct kobj_attribute use_zero_page_attr =
385 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
386#ifdef CONFIG_DEBUG_VM
387static ssize_t debug_cow_show(struct kobject *kobj,
388 struct kobj_attribute *attr, char *buf)
389{
390 return single_flag_show(kobj, attr, buf,
391 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
392}
393static ssize_t debug_cow_store(struct kobject *kobj,
394 struct kobj_attribute *attr,
395 const char *buf, size_t count)
396{
397 return single_flag_store(kobj, attr, buf, count,
398 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
399}
400static struct kobj_attribute debug_cow_attr =
401 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
402#endif /* CONFIG_DEBUG_VM */
403
404static struct attribute *hugepage_attr[] = {
405 &enabled_attr.attr,
406 &defrag_attr.attr,
407 &use_zero_page_attr.attr,
408#ifdef CONFIG_DEBUG_VM
409 &debug_cow_attr.attr,
410#endif
411 NULL,
412};
413
414static struct attribute_group hugepage_attr_group = {
415 .attrs = hugepage_attr,
416};
417
418static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
419 struct kobj_attribute *attr,
420 char *buf)
421{
422 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
423}
424
425static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
426 struct kobj_attribute *attr,
427 const char *buf, size_t count)
428{
429 unsigned long msecs;
430 int err;
431
432 err = kstrtoul(buf, 10, &msecs);
433 if (err || msecs > UINT_MAX)
434 return -EINVAL;
435
436 khugepaged_scan_sleep_millisecs = msecs;
437 wake_up_interruptible(&khugepaged_wait);
438
439 return count;
440}
441static struct kobj_attribute scan_sleep_millisecs_attr =
442 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
443 scan_sleep_millisecs_store);
444
445static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 char *buf)
448{
449 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
450}
451
452static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
453 struct kobj_attribute *attr,
454 const char *buf, size_t count)
455{
456 unsigned long msecs;
457 int err;
458
459 err = kstrtoul(buf, 10, &msecs);
460 if (err || msecs > UINT_MAX)
461 return -EINVAL;
462
463 khugepaged_alloc_sleep_millisecs = msecs;
464 wake_up_interruptible(&khugepaged_wait);
465
466 return count;
467}
468static struct kobj_attribute alloc_sleep_millisecs_attr =
469 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
470 alloc_sleep_millisecs_store);
471
472static ssize_t pages_to_scan_show(struct kobject *kobj,
473 struct kobj_attribute *attr,
474 char *buf)
475{
476 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
477}
478static ssize_t pages_to_scan_store(struct kobject *kobj,
479 struct kobj_attribute *attr,
480 const char *buf, size_t count)
481{
482 int err;
483 unsigned long pages;
484
485 err = kstrtoul(buf, 10, &pages);
486 if (err || !pages || pages > UINT_MAX)
487 return -EINVAL;
488
489 khugepaged_pages_to_scan = pages;
490
491 return count;
492}
493static struct kobj_attribute pages_to_scan_attr =
494 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
495 pages_to_scan_store);
496
497static ssize_t pages_collapsed_show(struct kobject *kobj,
498 struct kobj_attribute *attr,
499 char *buf)
500{
501 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
502}
503static struct kobj_attribute pages_collapsed_attr =
504 __ATTR_RO(pages_collapsed);
505
506static ssize_t full_scans_show(struct kobject *kobj,
507 struct kobj_attribute *attr,
508 char *buf)
509{
510 return sprintf(buf, "%u\n", khugepaged_full_scans);
511}
512static struct kobj_attribute full_scans_attr =
513 __ATTR_RO(full_scans);
514
515static ssize_t khugepaged_defrag_show(struct kobject *kobj,
516 struct kobj_attribute *attr, char *buf)
517{
518 return single_flag_show(kobj, attr, buf,
519 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
520}
521static ssize_t khugepaged_defrag_store(struct kobject *kobj,
522 struct kobj_attribute *attr,
523 const char *buf, size_t count)
524{
525 return single_flag_store(kobj, attr, buf, count,
526 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
527}
528static struct kobj_attribute khugepaged_defrag_attr =
529 __ATTR(defrag, 0644, khugepaged_defrag_show,
530 khugepaged_defrag_store);
531
532/*
533 * max_ptes_none controls if khugepaged should collapse hugepages over
534 * any unmapped ptes in turn potentially increasing the memory
535 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
536 * reduce the available free memory in the system as it
537 * runs. Increasing max_ptes_none will instead potentially reduce the
538 * free memory in the system during the khugepaged scan.
539 */
540static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 char *buf)
543{
544 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
545}
546static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
547 struct kobj_attribute *attr,
548 const char *buf, size_t count)
549{
550 int err;
551 unsigned long max_ptes_none;
552
553 err = kstrtoul(buf, 10, &max_ptes_none);
554 if (err || max_ptes_none > HPAGE_PMD_NR-1)
555 return -EINVAL;
556
557 khugepaged_max_ptes_none = max_ptes_none;
558
559 return count;
560}
561static struct kobj_attribute khugepaged_max_ptes_none_attr =
562 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
563 khugepaged_max_ptes_none_store);
564
565static struct attribute *khugepaged_attr[] = {
566 &khugepaged_defrag_attr.attr,
567 &khugepaged_max_ptes_none_attr.attr,
568 &pages_to_scan_attr.attr,
569 &pages_collapsed_attr.attr,
570 &full_scans_attr.attr,
571 &scan_sleep_millisecs_attr.attr,
572 &alloc_sleep_millisecs_attr.attr,
573 NULL,
574};
575
576static struct attribute_group khugepaged_attr_group = {
577 .attrs = khugepaged_attr,
578 .name = "khugepaged",
579};
580
581static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
582{
583 int err;
584
585 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
586 if (unlikely(!*hugepage_kobj)) {
587 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
588 return -ENOMEM;
589 }
590
591 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
592 if (err) {
593 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 goto delete_obj;
595 }
596
597 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
598 if (err) {
599 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
600 goto remove_hp_group;
601 }
602
603 return 0;
604
605remove_hp_group:
606 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
607delete_obj:
608 kobject_put(*hugepage_kobj);
609 return err;
610}
611
612static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
613{
614 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
615 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
616 kobject_put(hugepage_kobj);
617}
618#else
619static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
620{
621 return 0;
622}
623
624static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
625{
626}
627#endif /* CONFIG_SYSFS */
628
629static int __init hugepage_init(void)
630{
631 int err;
632 struct kobject *hugepage_kobj;
633
634 if (!has_transparent_hugepage()) {
635 transparent_hugepage_flags = 0;
636 return -EINVAL;
637 }
638
639 err = hugepage_init_sysfs(&hugepage_kobj);
640 if (err)
641 return err;
642
643 err = khugepaged_slab_init();
644 if (err)
645 goto out;
646
647 register_shrinker(&huge_zero_page_shrinker);
648
649 /*
650 * By default disable transparent hugepages on smaller systems,
651 * where the extra memory used could hurt more than TLB overhead
652 * is likely to save. The admin can still enable it through /sys.
653 */
654 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
655 transparent_hugepage_flags = 0;
656
657 start_khugepaged();
658
659 return 0;
660out:
661 hugepage_exit_sysfs(hugepage_kobj);
662 return err;
663}
664subsys_initcall(hugepage_init);
665
666static int __init setup_transparent_hugepage(char *str)
667{
668 int ret = 0;
669 if (!str)
670 goto out;
671 if (!strcmp(str, "always")) {
672 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
676 ret = 1;
677 } else if (!strcmp(str, "madvise")) {
678 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 &transparent_hugepage_flags);
680 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 &transparent_hugepage_flags);
682 ret = 1;
683 } else if (!strcmp(str, "never")) {
684 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
685 &transparent_hugepage_flags);
686 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
687 &transparent_hugepage_flags);
688 ret = 1;
689 }
690out:
691 if (!ret)
692 printk(KERN_WARNING
693 "transparent_hugepage= cannot parse, ignored\n");
694 return ret;
695}
696__setup("transparent_hugepage=", setup_transparent_hugepage);
697
698pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
699{
700 if (likely(vma->vm_flags & VM_WRITE))
701 pmd = pmd_mkwrite(pmd);
702 return pmd;
703}
704
705static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
706{
707 pmd_t entry;
708 entry = mk_pmd(page, prot);
709 entry = pmd_mkhuge(entry);
710 return entry;
711}
712
713static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 struct vm_area_struct *vma,
715 unsigned long haddr, pmd_t *pmd,
716 struct page *page)
717{
718 pgtable_t pgtable;
719 spinlock_t *ptl;
720
721 VM_BUG_ON_PAGE(!PageCompound(page), page);
722 pgtable = pte_alloc_one(mm, haddr);
723 if (unlikely(!pgtable))
724 return VM_FAULT_OOM;
725
726 clear_huge_page(page, haddr, HPAGE_PMD_NR);
727 /*
728 * The memory barrier inside __SetPageUptodate makes sure that
729 * clear_huge_page writes become visible before the set_pmd_at()
730 * write.
731 */
732 __SetPageUptodate(page);
733
734 ptl = pmd_lock(mm, pmd);
735 if (unlikely(!pmd_none(*pmd))) {
736 spin_unlock(ptl);
737 mem_cgroup_uncharge_page(page);
738 put_page(page);
739 pte_free(mm, pgtable);
740 } else {
741 pmd_t entry;
742 entry = mk_huge_pmd(page, vma->vm_page_prot);
743 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
744 page_add_new_anon_rmap(page, vma, haddr);
745 pgtable_trans_huge_deposit(mm, pmd, pgtable);
746 set_pmd_at(mm, haddr, pmd, entry);
747 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
748 atomic_long_inc(&mm->nr_ptes);
749 spin_unlock(ptl);
750 }
751
752 return 0;
753}
754
755static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
756{
757 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
758}
759
760static inline struct page *alloc_hugepage_vma(int defrag,
761 struct vm_area_struct *vma,
762 unsigned long haddr, int nd,
763 gfp_t extra_gfp)
764{
765 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
766 HPAGE_PMD_ORDER, vma, haddr, nd);
767}
768
769/* Caller must hold page table lock. */
770static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
771 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
772 struct page *zero_page)
773{
774 pmd_t entry;
775 if (!pmd_none(*pmd))
776 return false;
777 entry = mk_pmd(zero_page, vma->vm_page_prot);
778 entry = pmd_wrprotect(entry);
779 entry = pmd_mkhuge(entry);
780 pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 set_pmd_at(mm, haddr, pmd, entry);
782 atomic_long_inc(&mm->nr_ptes);
783 return true;
784}
785
786int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
787 unsigned long address, pmd_t *pmd,
788 unsigned int flags)
789{
790 struct page *page;
791 unsigned long haddr = address & HPAGE_PMD_MASK;
792
793 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
794 return VM_FAULT_FALLBACK;
795 if (unlikely(anon_vma_prepare(vma)))
796 return VM_FAULT_OOM;
797 if (unlikely(khugepaged_enter(vma)))
798 return VM_FAULT_OOM;
799 if (!(flags & FAULT_FLAG_WRITE) &&
800 transparent_hugepage_use_zero_page()) {
801 spinlock_t *ptl;
802 pgtable_t pgtable;
803 struct page *zero_page;
804 bool set;
805 pgtable = pte_alloc_one(mm, haddr);
806 if (unlikely(!pgtable))
807 return VM_FAULT_OOM;
808 zero_page = get_huge_zero_page();
809 if (unlikely(!zero_page)) {
810 pte_free(mm, pgtable);
811 count_vm_event(THP_FAULT_FALLBACK);
812 return VM_FAULT_FALLBACK;
813 }
814 ptl = pmd_lock(mm, pmd);
815 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
816 zero_page);
817 spin_unlock(ptl);
818 if (!set) {
819 pte_free(mm, pgtable);
820 put_huge_zero_page();
821 }
822 return 0;
823 }
824 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
825 vma, haddr, numa_node_id(), 0);
826 if (unlikely(!page)) {
827 count_vm_event(THP_FAULT_FALLBACK);
828 return VM_FAULT_FALLBACK;
829 }
830 if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
831 put_page(page);
832 count_vm_event(THP_FAULT_FALLBACK);
833 return VM_FAULT_FALLBACK;
834 }
835 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
836 mem_cgroup_uncharge_page(page);
837 put_page(page);
838 count_vm_event(THP_FAULT_FALLBACK);
839 return VM_FAULT_FALLBACK;
840 }
841
842 count_vm_event(THP_FAULT_ALLOC);
843 return 0;
844}
845
846int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
848 struct vm_area_struct *vma)
849{
850 spinlock_t *dst_ptl, *src_ptl;
851 struct page *src_page;
852 pmd_t pmd;
853 pgtable_t pgtable;
854 int ret;
855
856 ret = -ENOMEM;
857 pgtable = pte_alloc_one(dst_mm, addr);
858 if (unlikely(!pgtable))
859 goto out;
860
861 dst_ptl = pmd_lock(dst_mm, dst_pmd);
862 src_ptl = pmd_lockptr(src_mm, src_pmd);
863 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
864
865 ret = -EAGAIN;
866 pmd = *src_pmd;
867 if (unlikely(!pmd_trans_huge(pmd))) {
868 pte_free(dst_mm, pgtable);
869 goto out_unlock;
870 }
871 /*
872 * When page table lock is held, the huge zero pmd should not be
873 * under splitting since we don't split the page itself, only pmd to
874 * a page table.
875 */
876 if (is_huge_zero_pmd(pmd)) {
877 struct page *zero_page;
878 bool set;
879 /*
880 * get_huge_zero_page() will never allocate a new page here,
881 * since we already have a zero page to copy. It just takes a
882 * reference.
883 */
884 zero_page = get_huge_zero_page();
885 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
886 zero_page);
887 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
888 ret = 0;
889 goto out_unlock;
890 }
891
892 if (unlikely(pmd_trans_splitting(pmd))) {
893 /* split huge page running from under us */
894 spin_unlock(src_ptl);
895 spin_unlock(dst_ptl);
896 pte_free(dst_mm, pgtable);
897
898 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
899 goto out;
900 }
901 src_page = pmd_page(pmd);
902 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
903 get_page(src_page);
904 page_dup_rmap(src_page);
905 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
906
907 pmdp_set_wrprotect(src_mm, addr, src_pmd);
908 pmd = pmd_mkold(pmd_wrprotect(pmd));
909 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
910 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
911 atomic_long_inc(&dst_mm->nr_ptes);
912
913 ret = 0;
914out_unlock:
915 spin_unlock(src_ptl);
916 spin_unlock(dst_ptl);
917out:
918 return ret;
919}
920
921void huge_pmd_set_accessed(struct mm_struct *mm,
922 struct vm_area_struct *vma,
923 unsigned long address,
924 pmd_t *pmd, pmd_t orig_pmd,
925 int dirty)
926{
927 spinlock_t *ptl;
928 pmd_t entry;
929 unsigned long haddr;
930
931 ptl = pmd_lock(mm, pmd);
932 if (unlikely(!pmd_same(*pmd, orig_pmd)))
933 goto unlock;
934
935 entry = pmd_mkyoung(orig_pmd);
936 haddr = address & HPAGE_PMD_MASK;
937 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
938 update_mmu_cache_pmd(vma, address, pmd);
939
940unlock:
941 spin_unlock(ptl);
942}
943
944static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
945 struct vm_area_struct *vma,
946 unsigned long address,
947 pmd_t *pmd, pmd_t orig_pmd,
948 struct page *page,
949 unsigned long haddr)
950{
951 spinlock_t *ptl;
952 pgtable_t pgtable;
953 pmd_t _pmd;
954 int ret = 0, i;
955 struct page **pages;
956 unsigned long mmun_start; /* For mmu_notifiers */
957 unsigned long mmun_end; /* For mmu_notifiers */
958
959 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
960 GFP_KERNEL);
961 if (unlikely(!pages)) {
962 ret |= VM_FAULT_OOM;
963 goto out;
964 }
965
966 for (i = 0; i < HPAGE_PMD_NR; i++) {
967 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
968 __GFP_OTHER_NODE,
969 vma, address, page_to_nid(page));
970 if (unlikely(!pages[i] ||
971 mem_cgroup_charge_anon(pages[i], mm,
972 GFP_KERNEL))) {
973 if (pages[i])
974 put_page(pages[i]);
975 mem_cgroup_uncharge_start();
976 while (--i >= 0) {
977 mem_cgroup_uncharge_page(pages[i]);
978 put_page(pages[i]);
979 }
980 mem_cgroup_uncharge_end();
981 kfree(pages);
982 ret |= VM_FAULT_OOM;
983 goto out;
984 }
985 }
986
987 for (i = 0; i < HPAGE_PMD_NR; i++) {
988 copy_user_highpage(pages[i], page + i,
989 haddr + PAGE_SIZE * i, vma);
990 __SetPageUptodate(pages[i]);
991 cond_resched();
992 }
993
994 mmun_start = haddr;
995 mmun_end = haddr + HPAGE_PMD_SIZE;
996 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
997
998 ptl = pmd_lock(mm, pmd);
999 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000 goto out_free_pages;
1001 VM_BUG_ON_PAGE(!PageHead(page), page);
1002
1003 pmdp_clear_flush(vma, haddr, pmd);
1004 /* leave pmd empty until pte is filled */
1005
1006 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1007 pmd_populate(mm, &_pmd, pgtable);
1008
1009 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1010 pte_t *pte, entry;
1011 entry = mk_pte(pages[i], vma->vm_page_prot);
1012 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1013 page_add_new_anon_rmap(pages[i], vma, haddr);
1014 pte = pte_offset_map(&_pmd, haddr);
1015 VM_BUG_ON(!pte_none(*pte));
1016 set_pte_at(mm, haddr, pte, entry);
1017 pte_unmap(pte);
1018 }
1019 kfree(pages);
1020
1021 smp_wmb(); /* make pte visible before pmd */
1022 pmd_populate(mm, pmd, pgtable);
1023 page_remove_rmap(page);
1024 spin_unlock(ptl);
1025
1026 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1027
1028 ret |= VM_FAULT_WRITE;
1029 put_page(page);
1030
1031out:
1032 return ret;
1033
1034out_free_pages:
1035 spin_unlock(ptl);
1036 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1037 mem_cgroup_uncharge_start();
1038 for (i = 0; i < HPAGE_PMD_NR; i++) {
1039 mem_cgroup_uncharge_page(pages[i]);
1040 put_page(pages[i]);
1041 }
1042 mem_cgroup_uncharge_end();
1043 kfree(pages);
1044 goto out;
1045}
1046
1047int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1048 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1049{
1050 spinlock_t *ptl;
1051 int ret = 0;
1052 struct page *page = NULL, *new_page;
1053 unsigned long haddr;
1054 unsigned long mmun_start; /* For mmu_notifiers */
1055 unsigned long mmun_end; /* For mmu_notifiers */
1056
1057 ptl = pmd_lockptr(mm, pmd);
1058 VM_BUG_ON(!vma->anon_vma);
1059 haddr = address & HPAGE_PMD_MASK;
1060 if (is_huge_zero_pmd(orig_pmd))
1061 goto alloc;
1062 spin_lock(ptl);
1063 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1064 goto out_unlock;
1065
1066 page = pmd_page(orig_pmd);
1067 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1068 if (page_mapcount(page) == 1) {
1069 pmd_t entry;
1070 entry = pmd_mkyoung(orig_pmd);
1071 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1073 update_mmu_cache_pmd(vma, address, pmd);
1074 ret |= VM_FAULT_WRITE;
1075 goto out_unlock;
1076 }
1077 get_page(page);
1078 spin_unlock(ptl);
1079alloc:
1080 if (transparent_hugepage_enabled(vma) &&
1081 !transparent_hugepage_debug_cow())
1082 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1083 vma, haddr, numa_node_id(), 0);
1084 else
1085 new_page = NULL;
1086
1087 if (unlikely(!new_page)) {
1088 if (!page) {
1089 split_huge_page_pmd(vma, address, pmd);
1090 ret |= VM_FAULT_FALLBACK;
1091 } else {
1092 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1093 pmd, orig_pmd, page, haddr);
1094 if (ret & VM_FAULT_OOM) {
1095 split_huge_page(page);
1096 ret |= VM_FAULT_FALLBACK;
1097 }
1098 put_page(page);
1099 }
1100 count_vm_event(THP_FAULT_FALLBACK);
1101 goto out;
1102 }
1103
1104 if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
1105 put_page(new_page);
1106 if (page) {
1107 split_huge_page(page);
1108 put_page(page);
1109 } else
1110 split_huge_page_pmd(vma, address, pmd);
1111 ret |= VM_FAULT_FALLBACK;
1112 count_vm_event(THP_FAULT_FALLBACK);
1113 goto out;
1114 }
1115
1116 count_vm_event(THP_FAULT_ALLOC);
1117
1118 if (!page)
1119 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1120 else
1121 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1122 __SetPageUptodate(new_page);
1123
1124 mmun_start = haddr;
1125 mmun_end = haddr + HPAGE_PMD_SIZE;
1126 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1127
1128 spin_lock(ptl);
1129 if (page)
1130 put_page(page);
1131 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1132 spin_unlock(ptl);
1133 mem_cgroup_uncharge_page(new_page);
1134 put_page(new_page);
1135 goto out_mn;
1136 } else {
1137 pmd_t entry;
1138 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1139 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140 pmdp_clear_flush(vma, haddr, pmd);
1141 page_add_new_anon_rmap(new_page, vma, haddr);
1142 set_pmd_at(mm, haddr, pmd, entry);
1143 update_mmu_cache_pmd(vma, address, pmd);
1144 if (!page) {
1145 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146 put_huge_zero_page();
1147 } else {
1148 VM_BUG_ON_PAGE(!PageHead(page), page);
1149 page_remove_rmap(page);
1150 put_page(page);
1151 }
1152 ret |= VM_FAULT_WRITE;
1153 }
1154 spin_unlock(ptl);
1155out_mn:
1156 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1157out:
1158 return ret;
1159out_unlock:
1160 spin_unlock(ptl);
1161 return ret;
1162}
1163
1164struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1165 unsigned long addr,
1166 pmd_t *pmd,
1167 unsigned int flags)
1168{
1169 struct mm_struct *mm = vma->vm_mm;
1170 struct page *page = NULL;
1171
1172 assert_spin_locked(pmd_lockptr(mm, pmd));
1173
1174 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1175 goto out;
1176
1177 /* Avoid dumping huge zero page */
1178 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1179 return ERR_PTR(-EFAULT);
1180
1181 /* Full NUMA hinting faults to serialise migration in fault paths */
1182 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1183 goto out;
1184
1185 page = pmd_page(*pmd);
1186 VM_BUG_ON_PAGE(!PageHead(page), page);
1187 if (flags & FOLL_TOUCH) {
1188 pmd_t _pmd;
1189 /*
1190 * We should set the dirty bit only for FOLL_WRITE but
1191 * for now the dirty bit in the pmd is meaningless.
1192 * And if the dirty bit will become meaningful and
1193 * we'll only set it with FOLL_WRITE, an atomic
1194 * set_bit will be required on the pmd to set the
1195 * young bit, instead of the current set_pmd_at.
1196 */
1197 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1198 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1199 pmd, _pmd, 1))
1200 update_mmu_cache_pmd(vma, addr, pmd);
1201 }
1202 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1203 if (page->mapping && trylock_page(page)) {
1204 lru_add_drain();
1205 if (page->mapping)
1206 mlock_vma_page(page);
1207 unlock_page(page);
1208 }
1209 }
1210 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1211 VM_BUG_ON_PAGE(!PageCompound(page), page);
1212 if (flags & FOLL_GET)
1213 get_page_foll(page);
1214
1215out:
1216 return page;
1217}
1218
1219/* NUMA hinting page fault entry point for trans huge pmds */
1220int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1221 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1222{
1223 spinlock_t *ptl;
1224 struct anon_vma *anon_vma = NULL;
1225 struct page *page;
1226 unsigned long haddr = addr & HPAGE_PMD_MASK;
1227 int page_nid = -1, this_nid = numa_node_id();
1228 int target_nid, last_cpupid = -1;
1229 bool page_locked;
1230 bool migrated = false;
1231 int flags = 0;
1232
1233 ptl = pmd_lock(mm, pmdp);
1234 if (unlikely(!pmd_same(pmd, *pmdp)))
1235 goto out_unlock;
1236
1237 /*
1238 * If there are potential migrations, wait for completion and retry
1239 * without disrupting NUMA hinting information. Do not relock and
1240 * check_same as the page may no longer be mapped.
1241 */
1242 if (unlikely(pmd_trans_migrating(*pmdp))) {
1243 spin_unlock(ptl);
1244 wait_migrate_huge_page(vma->anon_vma, pmdp);
1245 goto out;
1246 }
1247
1248 page = pmd_page(pmd);
1249 BUG_ON(is_huge_zero_page(page));
1250 page_nid = page_to_nid(page);
1251 last_cpupid = page_cpupid_last(page);
1252 count_vm_numa_event(NUMA_HINT_FAULTS);
1253 if (page_nid == this_nid) {
1254 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1255 flags |= TNF_FAULT_LOCAL;
1256 }
1257
1258 /*
1259 * Avoid grouping on DSO/COW pages in specific and RO pages
1260 * in general, RO pages shouldn't hurt as much anyway since
1261 * they can be in shared cache state.
1262 */
1263 if (!pmd_write(pmd))
1264 flags |= TNF_NO_GROUP;
1265
1266 /*
1267 * Acquire the page lock to serialise THP migrations but avoid dropping
1268 * page_table_lock if at all possible
1269 */
1270 page_locked = trylock_page(page);
1271 target_nid = mpol_misplaced(page, vma, haddr);
1272 if (target_nid == -1) {
1273 /* If the page was locked, there are no parallel migrations */
1274 if (page_locked)
1275 goto clear_pmdnuma;
1276 }
1277
1278 /* Migration could have started since the pmd_trans_migrating check */
1279 if (!page_locked) {
1280 spin_unlock(ptl);
1281 wait_on_page_locked(page);
1282 page_nid = -1;
1283 goto out;
1284 }
1285
1286 /*
1287 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1288 * to serialises splits
1289 */
1290 get_page(page);
1291 spin_unlock(ptl);
1292 anon_vma = page_lock_anon_vma_read(page);
1293
1294 /* Confirm the PMD did not change while page_table_lock was released */
1295 spin_lock(ptl);
1296 if (unlikely(!pmd_same(pmd, *pmdp))) {
1297 unlock_page(page);
1298 put_page(page);
1299 page_nid = -1;
1300 goto out_unlock;
1301 }
1302
1303 /* Bail if we fail to protect against THP splits for any reason */
1304 if (unlikely(!anon_vma)) {
1305 put_page(page);
1306 page_nid = -1;
1307 goto clear_pmdnuma;
1308 }
1309
1310 /*
1311 * Migrate the THP to the requested node, returns with page unlocked
1312 * and pmd_numa cleared.
1313 */
1314 spin_unlock(ptl);
1315 migrated = migrate_misplaced_transhuge_page(mm, vma,
1316 pmdp, pmd, addr, page, target_nid);
1317 if (migrated) {
1318 flags |= TNF_MIGRATED;
1319 page_nid = target_nid;
1320 }
1321
1322 goto out;
1323clear_pmdnuma:
1324 BUG_ON(!PageLocked(page));
1325 pmd = pmd_mknonnuma(pmd);
1326 set_pmd_at(mm, haddr, pmdp, pmd);
1327 VM_BUG_ON(pmd_numa(*pmdp));
1328 update_mmu_cache_pmd(vma, addr, pmdp);
1329 unlock_page(page);
1330out_unlock:
1331 spin_unlock(ptl);
1332
1333out:
1334 if (anon_vma)
1335 page_unlock_anon_vma_read(anon_vma);
1336
1337 if (page_nid != -1)
1338 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1339
1340 return 0;
1341}
1342
1343int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1344 pmd_t *pmd, unsigned long addr)
1345{
1346 spinlock_t *ptl;
1347 int ret = 0;
1348
1349 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1350 struct page *page;
1351 pgtable_t pgtable;
1352 pmd_t orig_pmd;
1353 /*
1354 * For architectures like ppc64 we look at deposited pgtable
1355 * when calling pmdp_get_and_clear. So do the
1356 * pgtable_trans_huge_withdraw after finishing pmdp related
1357 * operations.
1358 */
1359 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1360 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1361 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1362 if (is_huge_zero_pmd(orig_pmd)) {
1363 atomic_long_dec(&tlb->mm->nr_ptes);
1364 spin_unlock(ptl);
1365 put_huge_zero_page();
1366 } else {
1367 page = pmd_page(orig_pmd);
1368 page_remove_rmap(page);
1369 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1370 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1371 VM_BUG_ON_PAGE(!PageHead(page), page);
1372 atomic_long_dec(&tlb->mm->nr_ptes);
1373 spin_unlock(ptl);
1374 tlb_remove_page(tlb, page);
1375 }
1376 pte_free(tlb->mm, pgtable);
1377 ret = 1;
1378 }
1379 return ret;
1380}
1381
1382int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1383 unsigned long addr, unsigned long end,
1384 unsigned char *vec)
1385{
1386 spinlock_t *ptl;
1387 int ret = 0;
1388
1389 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1390 /*
1391 * All logical pages in the range are present
1392 * if backed by a huge page.
1393 */
1394 spin_unlock(ptl);
1395 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1396 ret = 1;
1397 }
1398
1399 return ret;
1400}
1401
1402int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1403 unsigned long old_addr,
1404 unsigned long new_addr, unsigned long old_end,
1405 pmd_t *old_pmd, pmd_t *new_pmd)
1406{
1407 spinlock_t *old_ptl, *new_ptl;
1408 int ret = 0;
1409 pmd_t pmd;
1410
1411 struct mm_struct *mm = vma->vm_mm;
1412
1413 if ((old_addr & ~HPAGE_PMD_MASK) ||
1414 (new_addr & ~HPAGE_PMD_MASK) ||
1415 old_end - old_addr < HPAGE_PMD_SIZE ||
1416 (new_vma->vm_flags & VM_NOHUGEPAGE))
1417 goto out;
1418
1419 /*
1420 * The destination pmd shouldn't be established, free_pgtables()
1421 * should have release it.
1422 */
1423 if (WARN_ON(!pmd_none(*new_pmd))) {
1424 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1425 goto out;
1426 }
1427
1428 /*
1429 * We don't have to worry about the ordering of src and dst
1430 * ptlocks because exclusive mmap_sem prevents deadlock.
1431 */
1432 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1433 if (ret == 1) {
1434 new_ptl = pmd_lockptr(mm, new_pmd);
1435 if (new_ptl != old_ptl)
1436 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1437 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1438 VM_BUG_ON(!pmd_none(*new_pmd));
1439
1440 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1441 pgtable_t pgtable;
1442 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1443 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1444 }
1445 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1446 if (new_ptl != old_ptl)
1447 spin_unlock(new_ptl);
1448 spin_unlock(old_ptl);
1449 }
1450out:
1451 return ret;
1452}
1453
1454/*
1455 * Returns
1456 * - 0 if PMD could not be locked
1457 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1458 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1459 */
1460int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1461 unsigned long addr, pgprot_t newprot, int prot_numa)
1462{
1463 struct mm_struct *mm = vma->vm_mm;
1464 spinlock_t *ptl;
1465 int ret = 0;
1466
1467 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1468 pmd_t entry;
1469 ret = 1;
1470 if (!prot_numa) {
1471 entry = pmdp_get_and_clear(mm, addr, pmd);
1472 if (pmd_numa(entry))
1473 entry = pmd_mknonnuma(entry);
1474 entry = pmd_modify(entry, newprot);
1475 ret = HPAGE_PMD_NR;
1476 set_pmd_at(mm, addr, pmd, entry);
1477 BUG_ON(pmd_write(entry));
1478 } else {
1479 struct page *page = pmd_page(*pmd);
1480
1481 /*
1482 * Do not trap faults against the zero page. The
1483 * read-only data is likely to be read-cached on the
1484 * local CPU cache and it is less useful to know about
1485 * local vs remote hits on the zero page.
1486 */
1487 if (!is_huge_zero_page(page) &&
1488 !pmd_numa(*pmd)) {
1489 pmdp_set_numa(mm, addr, pmd);
1490 ret = HPAGE_PMD_NR;
1491 }
1492 }
1493 spin_unlock(ptl);
1494 }
1495
1496 return ret;
1497}
1498
1499/*
1500 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1501 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1502 *
1503 * Note that if it returns 1, this routine returns without unlocking page
1504 * table locks. So callers must unlock them.
1505 */
1506int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1507 spinlock_t **ptl)
1508{
1509 *ptl = pmd_lock(vma->vm_mm, pmd);
1510 if (likely(pmd_trans_huge(*pmd))) {
1511 if (unlikely(pmd_trans_splitting(*pmd))) {
1512 spin_unlock(*ptl);
1513 wait_split_huge_page(vma->anon_vma, pmd);
1514 return -1;
1515 } else {
1516 /* Thp mapped by 'pmd' is stable, so we can
1517 * handle it as it is. */
1518 return 1;
1519 }
1520 }
1521 spin_unlock(*ptl);
1522 return 0;
1523}
1524
1525/*
1526 * This function returns whether a given @page is mapped onto the @address
1527 * in the virtual space of @mm.
1528 *
1529 * When it's true, this function returns *pmd with holding the page table lock
1530 * and passing it back to the caller via @ptl.
1531 * If it's false, returns NULL without holding the page table lock.
1532 */
1533pmd_t *page_check_address_pmd(struct page *page,
1534 struct mm_struct *mm,
1535 unsigned long address,
1536 enum page_check_address_pmd_flag flag,
1537 spinlock_t **ptl)
1538{
1539 pgd_t *pgd;
1540 pud_t *pud;
1541 pmd_t *pmd;
1542
1543 if (address & ~HPAGE_PMD_MASK)
1544 return NULL;
1545
1546 pgd = pgd_offset(mm, address);
1547 if (!pgd_present(*pgd))
1548 return NULL;
1549 pud = pud_offset(pgd, address);
1550 if (!pud_present(*pud))
1551 return NULL;
1552 pmd = pmd_offset(pud, address);
1553
1554 *ptl = pmd_lock(mm, pmd);
1555 if (!pmd_present(*pmd))
1556 goto unlock;
1557 if (pmd_page(*pmd) != page)
1558 goto unlock;
1559 /*
1560 * split_vma() may create temporary aliased mappings. There is
1561 * no risk as long as all huge pmd are found and have their
1562 * splitting bit set before __split_huge_page_refcount
1563 * runs. Finding the same huge pmd more than once during the
1564 * same rmap walk is not a problem.
1565 */
1566 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1567 pmd_trans_splitting(*pmd))
1568 goto unlock;
1569 if (pmd_trans_huge(*pmd)) {
1570 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1571 !pmd_trans_splitting(*pmd));
1572 return pmd;
1573 }
1574unlock:
1575 spin_unlock(*ptl);
1576 return NULL;
1577}
1578
1579static int __split_huge_page_splitting(struct page *page,
1580 struct vm_area_struct *vma,
1581 unsigned long address)
1582{
1583 struct mm_struct *mm = vma->vm_mm;
1584 spinlock_t *ptl;
1585 pmd_t *pmd;
1586 int ret = 0;
1587 /* For mmu_notifiers */
1588 const unsigned long mmun_start = address;
1589 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1590
1591 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1592 pmd = page_check_address_pmd(page, mm, address,
1593 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1594 if (pmd) {
1595 /*
1596 * We can't temporarily set the pmd to null in order
1597 * to split it, the pmd must remain marked huge at all
1598 * times or the VM won't take the pmd_trans_huge paths
1599 * and it won't wait on the anon_vma->root->rwsem to
1600 * serialize against split_huge_page*.
1601 */
1602 pmdp_splitting_flush(vma, address, pmd);
1603 ret = 1;
1604 spin_unlock(ptl);
1605 }
1606 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1607
1608 return ret;
1609}
1610
1611static void __split_huge_page_refcount(struct page *page,
1612 struct list_head *list)
1613{
1614 int i;
1615 struct zone *zone = page_zone(page);
1616 struct lruvec *lruvec;
1617 int tail_count = 0;
1618
1619 /* prevent PageLRU to go away from under us, and freeze lru stats */
1620 spin_lock_irq(&zone->lru_lock);
1621 lruvec = mem_cgroup_page_lruvec(page, zone);
1622
1623 compound_lock(page);
1624 /* complete memcg works before add pages to LRU */
1625 mem_cgroup_split_huge_fixup(page);
1626
1627 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1628 struct page *page_tail = page + i;
1629
1630 /* tail_page->_mapcount cannot change */
1631 BUG_ON(page_mapcount(page_tail) < 0);
1632 tail_count += page_mapcount(page_tail);
1633 /* check for overflow */
1634 BUG_ON(tail_count < 0);
1635 BUG_ON(atomic_read(&page_tail->_count) != 0);
1636 /*
1637 * tail_page->_count is zero and not changing from
1638 * under us. But get_page_unless_zero() may be running
1639 * from under us on the tail_page. If we used
1640 * atomic_set() below instead of atomic_add(), we
1641 * would then run atomic_set() concurrently with
1642 * get_page_unless_zero(), and atomic_set() is
1643 * implemented in C not using locked ops. spin_unlock
1644 * on x86 sometime uses locked ops because of PPro
1645 * errata 66, 92, so unless somebody can guarantee
1646 * atomic_set() here would be safe on all archs (and
1647 * not only on x86), it's safer to use atomic_add().
1648 */
1649 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1650 &page_tail->_count);
1651
1652 /* after clearing PageTail the gup refcount can be released */
1653 smp_mb();
1654
1655 /*
1656 * retain hwpoison flag of the poisoned tail page:
1657 * fix for the unsuitable process killed on Guest Machine(KVM)
1658 * by the memory-failure.
1659 */
1660 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1661 page_tail->flags |= (page->flags &
1662 ((1L << PG_referenced) |
1663 (1L << PG_swapbacked) |
1664 (1L << PG_mlocked) |
1665 (1L << PG_uptodate) |
1666 (1L << PG_active) |
1667 (1L << PG_unevictable)));
1668 page_tail->flags |= (1L << PG_dirty);
1669
1670 /* clear PageTail before overwriting first_page */
1671 smp_wmb();
1672
1673 /*
1674 * __split_huge_page_splitting() already set the
1675 * splitting bit in all pmd that could map this
1676 * hugepage, that will ensure no CPU can alter the
1677 * mapcount on the head page. The mapcount is only
1678 * accounted in the head page and it has to be
1679 * transferred to all tail pages in the below code. So
1680 * for this code to be safe, the split the mapcount
1681 * can't change. But that doesn't mean userland can't
1682 * keep changing and reading the page contents while
1683 * we transfer the mapcount, so the pmd splitting
1684 * status is achieved setting a reserved bit in the
1685 * pmd, not by clearing the present bit.
1686 */
1687 page_tail->_mapcount = page->_mapcount;
1688
1689 BUG_ON(page_tail->mapping);
1690 page_tail->mapping = page->mapping;
1691
1692 page_tail->index = page->index + i;
1693 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1694
1695 BUG_ON(!PageAnon(page_tail));
1696 BUG_ON(!PageUptodate(page_tail));
1697 BUG_ON(!PageDirty(page_tail));
1698 BUG_ON(!PageSwapBacked(page_tail));
1699
1700 lru_add_page_tail(page, page_tail, lruvec, list);
1701 }
1702 atomic_sub(tail_count, &page->_count);
1703 BUG_ON(atomic_read(&page->_count) <= 0);
1704
1705 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1706
1707 ClearPageCompound(page);
1708 compound_unlock(page);
1709 spin_unlock_irq(&zone->lru_lock);
1710
1711 for (i = 1; i < HPAGE_PMD_NR; i++) {
1712 struct page *page_tail = page + i;
1713 BUG_ON(page_count(page_tail) <= 0);
1714 /*
1715 * Tail pages may be freed if there wasn't any mapping
1716 * like if add_to_swap() is running on a lru page that
1717 * had its mapping zapped. And freeing these pages
1718 * requires taking the lru_lock so we do the put_page
1719 * of the tail pages after the split is complete.
1720 */
1721 put_page(page_tail);
1722 }
1723
1724 /*
1725 * Only the head page (now become a regular page) is required
1726 * to be pinned by the caller.
1727 */
1728 BUG_ON(page_count(page) <= 0);
1729}
1730
1731static int __split_huge_page_map(struct page *page,
1732 struct vm_area_struct *vma,
1733 unsigned long address)
1734{
1735 struct mm_struct *mm = vma->vm_mm;
1736 spinlock_t *ptl;
1737 pmd_t *pmd, _pmd;
1738 int ret = 0, i;
1739 pgtable_t pgtable;
1740 unsigned long haddr;
1741
1742 pmd = page_check_address_pmd(page, mm, address,
1743 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1744 if (pmd) {
1745 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1746 pmd_populate(mm, &_pmd, pgtable);
1747
1748 haddr = address;
1749 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1750 pte_t *pte, entry;
1751 BUG_ON(PageCompound(page+i));
1752 entry = mk_pte(page + i, vma->vm_page_prot);
1753 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1754 if (!pmd_write(*pmd))
1755 entry = pte_wrprotect(entry);
1756 else
1757 BUG_ON(page_mapcount(page) != 1);
1758 if (!pmd_young(*pmd))
1759 entry = pte_mkold(entry);
1760 if (pmd_numa(*pmd))
1761 entry = pte_mknuma(entry);
1762 pte = pte_offset_map(&_pmd, haddr);
1763 BUG_ON(!pte_none(*pte));
1764 set_pte_at(mm, haddr, pte, entry);
1765 pte_unmap(pte);
1766 }
1767
1768 smp_wmb(); /* make pte visible before pmd */
1769 /*
1770 * Up to this point the pmd is present and huge and
1771 * userland has the whole access to the hugepage
1772 * during the split (which happens in place). If we
1773 * overwrite the pmd with the not-huge version
1774 * pointing to the pte here (which of course we could
1775 * if all CPUs were bug free), userland could trigger
1776 * a small page size TLB miss on the small sized TLB
1777 * while the hugepage TLB entry is still established
1778 * in the huge TLB. Some CPU doesn't like that. See
1779 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1780 * Erratum 383 on page 93. Intel should be safe but is
1781 * also warns that it's only safe if the permission
1782 * and cache attributes of the two entries loaded in
1783 * the two TLB is identical (which should be the case
1784 * here). But it is generally safer to never allow
1785 * small and huge TLB entries for the same virtual
1786 * address to be loaded simultaneously. So instead of
1787 * doing "pmd_populate(); flush_tlb_range();" we first
1788 * mark the current pmd notpresent (atomically because
1789 * here the pmd_trans_huge and pmd_trans_splitting
1790 * must remain set at all times on the pmd until the
1791 * split is complete for this pmd), then we flush the
1792 * SMP TLB and finally we write the non-huge version
1793 * of the pmd entry with pmd_populate.
1794 */
1795 pmdp_invalidate(vma, address, pmd);
1796 pmd_populate(mm, pmd, pgtable);
1797 ret = 1;
1798 spin_unlock(ptl);
1799 }
1800
1801 return ret;
1802}
1803
1804/* must be called with anon_vma->root->rwsem held */
1805static void __split_huge_page(struct page *page,
1806 struct anon_vma *anon_vma,
1807 struct list_head *list)
1808{
1809 int mapcount, mapcount2;
1810 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1811 struct anon_vma_chain *avc;
1812
1813 BUG_ON(!PageHead(page));
1814 BUG_ON(PageTail(page));
1815
1816 mapcount = 0;
1817 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1818 struct vm_area_struct *vma = avc->vma;
1819 unsigned long addr = vma_address(page, vma);
1820 BUG_ON(is_vma_temporary_stack(vma));
1821 mapcount += __split_huge_page_splitting(page, vma, addr);
1822 }
1823 /*
1824 * It is critical that new vmas are added to the tail of the
1825 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1826 * and establishes a child pmd before
1827 * __split_huge_page_splitting() freezes the parent pmd (so if
1828 * we fail to prevent copy_huge_pmd() from running until the
1829 * whole __split_huge_page() is complete), we will still see
1830 * the newly established pmd of the child later during the
1831 * walk, to be able to set it as pmd_trans_splitting too.
1832 */
1833 if (mapcount != page_mapcount(page))
1834 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1835 mapcount, page_mapcount(page));
1836 BUG_ON(mapcount != page_mapcount(page));
1837
1838 __split_huge_page_refcount(page, list);
1839
1840 mapcount2 = 0;
1841 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1842 struct vm_area_struct *vma = avc->vma;
1843 unsigned long addr = vma_address(page, vma);
1844 BUG_ON(is_vma_temporary_stack(vma));
1845 mapcount2 += __split_huge_page_map(page, vma, addr);
1846 }
1847 if (mapcount != mapcount2)
1848 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1849 mapcount, mapcount2, page_mapcount(page));
1850 BUG_ON(mapcount != mapcount2);
1851}
1852
1853/*
1854 * Split a hugepage into normal pages. This doesn't change the position of head
1855 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1856 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1857 * from the hugepage.
1858 * Return 0 if the hugepage is split successfully otherwise return 1.
1859 */
1860int split_huge_page_to_list(struct page *page, struct list_head *list)
1861{
1862 struct anon_vma *anon_vma;
1863 int ret = 1;
1864
1865 BUG_ON(is_huge_zero_page(page));
1866 BUG_ON(!PageAnon(page));
1867
1868 /*
1869 * The caller does not necessarily hold an mmap_sem that would prevent
1870 * the anon_vma disappearing so we first we take a reference to it
1871 * and then lock the anon_vma for write. This is similar to
1872 * page_lock_anon_vma_read except the write lock is taken to serialise
1873 * against parallel split or collapse operations.
1874 */
1875 anon_vma = page_get_anon_vma(page);
1876 if (!anon_vma)
1877 goto out;
1878 anon_vma_lock_write(anon_vma);
1879
1880 ret = 0;
1881 if (!PageCompound(page))
1882 goto out_unlock;
1883
1884 BUG_ON(!PageSwapBacked(page));
1885 __split_huge_page(page, anon_vma, list);
1886 count_vm_event(THP_SPLIT);
1887
1888 BUG_ON(PageCompound(page));
1889out_unlock:
1890 anon_vma_unlock_write(anon_vma);
1891 put_anon_vma(anon_vma);
1892out:
1893 return ret;
1894}
1895
1896#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1897
1898int hugepage_madvise(struct vm_area_struct *vma,
1899 unsigned long *vm_flags, int advice)
1900{
1901 switch (advice) {
1902 case MADV_HUGEPAGE:
1903#ifdef CONFIG_S390
1904 /*
1905 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1906 * can't handle this properly after s390_enable_sie, so we simply
1907 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1908 */
1909 if (mm_has_pgste(vma->vm_mm))
1910 return 0;
1911#endif
1912 /*
1913 * Be somewhat over-protective like KSM for now!
1914 */
1915 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1916 return -EINVAL;
1917 *vm_flags &= ~VM_NOHUGEPAGE;
1918 *vm_flags |= VM_HUGEPAGE;
1919 /*
1920 * If the vma become good for khugepaged to scan,
1921 * register it here without waiting a page fault that
1922 * may not happen any time soon.
1923 */
1924 if (unlikely(khugepaged_enter_vma_merge(vma)))
1925 return -ENOMEM;
1926 break;
1927 case MADV_NOHUGEPAGE:
1928 /*
1929 * Be somewhat over-protective like KSM for now!
1930 */
1931 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1932 return -EINVAL;
1933 *vm_flags &= ~VM_HUGEPAGE;
1934 *vm_flags |= VM_NOHUGEPAGE;
1935 /*
1936 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1937 * this vma even if we leave the mm registered in khugepaged if
1938 * it got registered before VM_NOHUGEPAGE was set.
1939 */
1940 break;
1941 }
1942
1943 return 0;
1944}
1945
1946static int __init khugepaged_slab_init(void)
1947{
1948 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1949 sizeof(struct mm_slot),
1950 __alignof__(struct mm_slot), 0, NULL);
1951 if (!mm_slot_cache)
1952 return -ENOMEM;
1953
1954 return 0;
1955}
1956
1957static inline struct mm_slot *alloc_mm_slot(void)
1958{
1959 if (!mm_slot_cache) /* initialization failed */
1960 return NULL;
1961 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1962}
1963
1964static inline void free_mm_slot(struct mm_slot *mm_slot)
1965{
1966 kmem_cache_free(mm_slot_cache, mm_slot);
1967}
1968
1969static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1970{
1971 struct mm_slot *mm_slot;
1972
1973 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1974 if (mm == mm_slot->mm)
1975 return mm_slot;
1976
1977 return NULL;
1978}
1979
1980static void insert_to_mm_slots_hash(struct mm_struct *mm,
1981 struct mm_slot *mm_slot)
1982{
1983 mm_slot->mm = mm;
1984 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1985}
1986
1987static inline int khugepaged_test_exit(struct mm_struct *mm)
1988{
1989 return atomic_read(&mm->mm_users) == 0;
1990}
1991
1992int __khugepaged_enter(struct mm_struct *mm)
1993{
1994 struct mm_slot *mm_slot;
1995 int wakeup;
1996
1997 mm_slot = alloc_mm_slot();
1998 if (!mm_slot)
1999 return -ENOMEM;
2000
2001 /* __khugepaged_exit() must not run from under us */
2002 VM_BUG_ON(khugepaged_test_exit(mm));
2003 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2004 free_mm_slot(mm_slot);
2005 return 0;
2006 }
2007
2008 spin_lock(&khugepaged_mm_lock);
2009 insert_to_mm_slots_hash(mm, mm_slot);
2010 /*
2011 * Insert just behind the scanning cursor, to let the area settle
2012 * down a little.
2013 */
2014 wakeup = list_empty(&khugepaged_scan.mm_head);
2015 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2016 spin_unlock(&khugepaged_mm_lock);
2017
2018 atomic_inc(&mm->mm_count);
2019 if (wakeup)
2020 wake_up_interruptible(&khugepaged_wait);
2021
2022 return 0;
2023}
2024
2025int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2026{
2027 unsigned long hstart, hend;
2028 if (!vma->anon_vma)
2029 /*
2030 * Not yet faulted in so we will register later in the
2031 * page fault if needed.
2032 */
2033 return 0;
2034 if (vma->vm_ops)
2035 /* khugepaged not yet working on file or special mappings */
2036 return 0;
2037 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2038 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2039 hend = vma->vm_end & HPAGE_PMD_MASK;
2040 if (hstart < hend)
2041 return khugepaged_enter(vma);
2042 return 0;
2043}
2044
2045void __khugepaged_exit(struct mm_struct *mm)
2046{
2047 struct mm_slot *mm_slot;
2048 int free = 0;
2049
2050 spin_lock(&khugepaged_mm_lock);
2051 mm_slot = get_mm_slot(mm);
2052 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2053 hash_del(&mm_slot->hash);
2054 list_del(&mm_slot->mm_node);
2055 free = 1;
2056 }
2057 spin_unlock(&khugepaged_mm_lock);
2058
2059 if (free) {
2060 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2061 free_mm_slot(mm_slot);
2062 mmdrop(mm);
2063 } else if (mm_slot) {
2064 /*
2065 * This is required to serialize against
2066 * khugepaged_test_exit() (which is guaranteed to run
2067 * under mmap sem read mode). Stop here (after we
2068 * return all pagetables will be destroyed) until
2069 * khugepaged has finished working on the pagetables
2070 * under the mmap_sem.
2071 */
2072 down_write(&mm->mmap_sem);
2073 up_write(&mm->mmap_sem);
2074 }
2075}
2076
2077static void release_pte_page(struct page *page)
2078{
2079 /* 0 stands for page_is_file_cache(page) == false */
2080 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2081 unlock_page(page);
2082 putback_lru_page(page);
2083}
2084
2085static void release_pte_pages(pte_t *pte, pte_t *_pte)
2086{
2087 while (--_pte >= pte) {
2088 pte_t pteval = *_pte;
2089 if (!pte_none(pteval))
2090 release_pte_page(pte_page(pteval));
2091 }
2092}
2093
2094static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2095 unsigned long address,
2096 pte_t *pte)
2097{
2098 struct page *page;
2099 pte_t *_pte;
2100 int referenced = 0, none = 0;
2101 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2102 _pte++, address += PAGE_SIZE) {
2103 pte_t pteval = *_pte;
2104 if (pte_none(pteval)) {
2105 if (++none <= khugepaged_max_ptes_none)
2106 continue;
2107 else
2108 goto out;
2109 }
2110 if (!pte_present(pteval) || !pte_write(pteval))
2111 goto out;
2112 page = vm_normal_page(vma, address, pteval);
2113 if (unlikely(!page))
2114 goto out;
2115
2116 VM_BUG_ON_PAGE(PageCompound(page), page);
2117 VM_BUG_ON_PAGE(!PageAnon(page), page);
2118 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2119
2120 /* cannot use mapcount: can't collapse if there's a gup pin */
2121 if (page_count(page) != 1)
2122 goto out;
2123 /*
2124 * We can do it before isolate_lru_page because the
2125 * page can't be freed from under us. NOTE: PG_lock
2126 * is needed to serialize against split_huge_page
2127 * when invoked from the VM.
2128 */
2129 if (!trylock_page(page))
2130 goto out;
2131 /*
2132 * Isolate the page to avoid collapsing an hugepage
2133 * currently in use by the VM.
2134 */
2135 if (isolate_lru_page(page)) {
2136 unlock_page(page);
2137 goto out;
2138 }
2139 /* 0 stands for page_is_file_cache(page) == false */
2140 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2141 VM_BUG_ON_PAGE(!PageLocked(page), page);
2142 VM_BUG_ON_PAGE(PageLRU(page), page);
2143
2144 /* If there is no mapped pte young don't collapse the page */
2145 if (pte_young(pteval) || PageReferenced(page) ||
2146 mmu_notifier_test_young(vma->vm_mm, address))
2147 referenced = 1;
2148 }
2149 if (likely(referenced))
2150 return 1;
2151out:
2152 release_pte_pages(pte, _pte);
2153 return 0;
2154}
2155
2156static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2157 struct vm_area_struct *vma,
2158 unsigned long address,
2159 spinlock_t *ptl)
2160{
2161 pte_t *_pte;
2162 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2163 pte_t pteval = *_pte;
2164 struct page *src_page;
2165
2166 if (pte_none(pteval)) {
2167 clear_user_highpage(page, address);
2168 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2169 } else {
2170 src_page = pte_page(pteval);
2171 copy_user_highpage(page, src_page, address, vma);
2172 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2173 release_pte_page(src_page);
2174 /*
2175 * ptl mostly unnecessary, but preempt has to
2176 * be disabled to update the per-cpu stats
2177 * inside page_remove_rmap().
2178 */
2179 spin_lock(ptl);
2180 /*
2181 * paravirt calls inside pte_clear here are
2182 * superfluous.
2183 */
2184 pte_clear(vma->vm_mm, address, _pte);
2185 page_remove_rmap(src_page);
2186 spin_unlock(ptl);
2187 free_page_and_swap_cache(src_page);
2188 }
2189
2190 address += PAGE_SIZE;
2191 page++;
2192 }
2193}
2194
2195static void khugepaged_alloc_sleep(void)
2196{
2197 wait_event_freezable_timeout(khugepaged_wait, false,
2198 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2199}
2200
2201static int khugepaged_node_load[MAX_NUMNODES];
2202
2203#ifdef CONFIG_NUMA
2204static int khugepaged_find_target_node(void)
2205{
2206 static int last_khugepaged_target_node = NUMA_NO_NODE;
2207 int nid, target_node = 0, max_value = 0;
2208
2209 /* find first node with max normal pages hit */
2210 for (nid = 0; nid < MAX_NUMNODES; nid++)
2211 if (khugepaged_node_load[nid] > max_value) {
2212 max_value = khugepaged_node_load[nid];
2213 target_node = nid;
2214 }
2215
2216 /* do some balance if several nodes have the same hit record */
2217 if (target_node <= last_khugepaged_target_node)
2218 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2219 nid++)
2220 if (max_value == khugepaged_node_load[nid]) {
2221 target_node = nid;
2222 break;
2223 }
2224
2225 last_khugepaged_target_node = target_node;
2226 return target_node;
2227}
2228
2229static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2230{
2231 if (IS_ERR(*hpage)) {
2232 if (!*wait)
2233 return false;
2234
2235 *wait = false;
2236 *hpage = NULL;
2237 khugepaged_alloc_sleep();
2238 } else if (*hpage) {
2239 put_page(*hpage);
2240 *hpage = NULL;
2241 }
2242
2243 return true;
2244}
2245
2246static struct page
2247*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2248 struct vm_area_struct *vma, unsigned long address,
2249 int node)
2250{
2251 VM_BUG_ON_PAGE(*hpage, *hpage);
2252 /*
2253 * Allocate the page while the vma is still valid and under
2254 * the mmap_sem read mode so there is no memory allocation
2255 * later when we take the mmap_sem in write mode. This is more
2256 * friendly behavior (OTOH it may actually hide bugs) to
2257 * filesystems in userland with daemons allocating memory in
2258 * the userland I/O paths. Allocating memory with the
2259 * mmap_sem in read mode is good idea also to allow greater
2260 * scalability.
2261 */
2262 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2263 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2264 /*
2265 * After allocating the hugepage, release the mmap_sem read lock in
2266 * preparation for taking it in write mode.
2267 */
2268 up_read(&mm->mmap_sem);
2269 if (unlikely(!*hpage)) {
2270 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2271 *hpage = ERR_PTR(-ENOMEM);
2272 return NULL;
2273 }
2274
2275 count_vm_event(THP_COLLAPSE_ALLOC);
2276 return *hpage;
2277}
2278#else
2279static int khugepaged_find_target_node(void)
2280{
2281 return 0;
2282}
2283
2284static inline struct page *alloc_hugepage(int defrag)
2285{
2286 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2287 HPAGE_PMD_ORDER);
2288}
2289
2290static struct page *khugepaged_alloc_hugepage(bool *wait)
2291{
2292 struct page *hpage;
2293
2294 do {
2295 hpage = alloc_hugepage(khugepaged_defrag());
2296 if (!hpage) {
2297 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2298 if (!*wait)
2299 return NULL;
2300
2301 *wait = false;
2302 khugepaged_alloc_sleep();
2303 } else
2304 count_vm_event(THP_COLLAPSE_ALLOC);
2305 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2306
2307 return hpage;
2308}
2309
2310static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2311{
2312 if (!*hpage)
2313 *hpage = khugepaged_alloc_hugepage(wait);
2314
2315 if (unlikely(!*hpage))
2316 return false;
2317
2318 return true;
2319}
2320
2321static struct page
2322*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2323 struct vm_area_struct *vma, unsigned long address,
2324 int node)
2325{
2326 up_read(&mm->mmap_sem);
2327 VM_BUG_ON(!*hpage);
2328 return *hpage;
2329}
2330#endif
2331
2332static bool hugepage_vma_check(struct vm_area_struct *vma)
2333{
2334 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2335 (vma->vm_flags & VM_NOHUGEPAGE))
2336 return false;
2337
2338 if (!vma->anon_vma || vma->vm_ops)
2339 return false;
2340 if (is_vma_temporary_stack(vma))
2341 return false;
2342 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2343 return true;
2344}
2345
2346static void collapse_huge_page(struct mm_struct *mm,
2347 unsigned long address,
2348 struct page **hpage,
2349 struct vm_area_struct *vma,
2350 int node)
2351{
2352 pmd_t *pmd, _pmd;
2353 pte_t *pte;
2354 pgtable_t pgtable;
2355 struct page *new_page;
2356 spinlock_t *pmd_ptl, *pte_ptl;
2357 int isolated;
2358 unsigned long hstart, hend;
2359 unsigned long mmun_start; /* For mmu_notifiers */
2360 unsigned long mmun_end; /* For mmu_notifiers */
2361
2362 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2363
2364 /* release the mmap_sem read lock. */
2365 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2366 if (!new_page)
2367 return;
2368
2369 if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
2370 return;
2371
2372 /*
2373 * Prevent all access to pagetables with the exception of
2374 * gup_fast later hanlded by the ptep_clear_flush and the VM
2375 * handled by the anon_vma lock + PG_lock.
2376 */
2377 down_write(&mm->mmap_sem);
2378 if (unlikely(khugepaged_test_exit(mm)))
2379 goto out;
2380
2381 vma = find_vma(mm, address);
2382 if (!vma)
2383 goto out;
2384 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2385 hend = vma->vm_end & HPAGE_PMD_MASK;
2386 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2387 goto out;
2388 if (!hugepage_vma_check(vma))
2389 goto out;
2390 pmd = mm_find_pmd(mm, address);
2391 if (!pmd)
2392 goto out;
2393 if (pmd_trans_huge(*pmd))
2394 goto out;
2395
2396 anon_vma_lock_write(vma->anon_vma);
2397
2398 pte = pte_offset_map(pmd, address);
2399 pte_ptl = pte_lockptr(mm, pmd);
2400
2401 mmun_start = address;
2402 mmun_end = address + HPAGE_PMD_SIZE;
2403 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2404 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2405 /*
2406 * After this gup_fast can't run anymore. This also removes
2407 * any huge TLB entry from the CPU so we won't allow
2408 * huge and small TLB entries for the same virtual address
2409 * to avoid the risk of CPU bugs in that area.
2410 */
2411 _pmd = pmdp_clear_flush(vma, address, pmd);
2412 spin_unlock(pmd_ptl);
2413 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2414
2415 spin_lock(pte_ptl);
2416 isolated = __collapse_huge_page_isolate(vma, address, pte);
2417 spin_unlock(pte_ptl);
2418
2419 if (unlikely(!isolated)) {
2420 pte_unmap(pte);
2421 spin_lock(pmd_ptl);
2422 BUG_ON(!pmd_none(*pmd));
2423 /*
2424 * We can only use set_pmd_at when establishing
2425 * hugepmds and never for establishing regular pmds that
2426 * points to regular pagetables. Use pmd_populate for that
2427 */
2428 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2429 spin_unlock(pmd_ptl);
2430 anon_vma_unlock_write(vma->anon_vma);
2431 goto out;
2432 }
2433
2434 /*
2435 * All pages are isolated and locked so anon_vma rmap
2436 * can't run anymore.
2437 */
2438 anon_vma_unlock_write(vma->anon_vma);
2439
2440 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2441 pte_unmap(pte);
2442 __SetPageUptodate(new_page);
2443 pgtable = pmd_pgtable(_pmd);
2444
2445 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2446 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2447
2448 /*
2449 * spin_lock() below is not the equivalent of smp_wmb(), so
2450 * this is needed to avoid the copy_huge_page writes to become
2451 * visible after the set_pmd_at() write.
2452 */
2453 smp_wmb();
2454
2455 spin_lock(pmd_ptl);
2456 BUG_ON(!pmd_none(*pmd));
2457 page_add_new_anon_rmap(new_page, vma, address);
2458 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2459 set_pmd_at(mm, address, pmd, _pmd);
2460 update_mmu_cache_pmd(vma, address, pmd);
2461 spin_unlock(pmd_ptl);
2462
2463 *hpage = NULL;
2464
2465 khugepaged_pages_collapsed++;
2466out_up_write:
2467 up_write(&mm->mmap_sem);
2468 return;
2469
2470out:
2471 mem_cgroup_uncharge_page(new_page);
2472 goto out_up_write;
2473}
2474
2475static int khugepaged_scan_pmd(struct mm_struct *mm,
2476 struct vm_area_struct *vma,
2477 unsigned long address,
2478 struct page **hpage)
2479{
2480 pmd_t *pmd;
2481 pte_t *pte, *_pte;
2482 int ret = 0, referenced = 0, none = 0;
2483 struct page *page;
2484 unsigned long _address;
2485 spinlock_t *ptl;
2486 int node = NUMA_NO_NODE;
2487
2488 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2489
2490 pmd = mm_find_pmd(mm, address);
2491 if (!pmd)
2492 goto out;
2493 if (pmd_trans_huge(*pmd))
2494 goto out;
2495
2496 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2497 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2498 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2499 _pte++, _address += PAGE_SIZE) {
2500 pte_t pteval = *_pte;
2501 if (pte_none(pteval)) {
2502 if (++none <= khugepaged_max_ptes_none)
2503 continue;
2504 else
2505 goto out_unmap;
2506 }
2507 if (!pte_present(pteval) || !pte_write(pteval))
2508 goto out_unmap;
2509 page = vm_normal_page(vma, _address, pteval);
2510 if (unlikely(!page))
2511 goto out_unmap;
2512 /*
2513 * Record which node the original page is from and save this
2514 * information to khugepaged_node_load[].
2515 * Khupaged will allocate hugepage from the node has the max
2516 * hit record.
2517 */
2518 node = page_to_nid(page);
2519 khugepaged_node_load[node]++;
2520 VM_BUG_ON_PAGE(PageCompound(page), page);
2521 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2522 goto out_unmap;
2523 /* cannot use mapcount: can't collapse if there's a gup pin */
2524 if (page_count(page) != 1)
2525 goto out_unmap;
2526 if (pte_young(pteval) || PageReferenced(page) ||
2527 mmu_notifier_test_young(vma->vm_mm, address))
2528 referenced = 1;
2529 }
2530 if (referenced)
2531 ret = 1;
2532out_unmap:
2533 pte_unmap_unlock(pte, ptl);
2534 if (ret) {
2535 node = khugepaged_find_target_node();
2536 /* collapse_huge_page will return with the mmap_sem released */
2537 collapse_huge_page(mm, address, hpage, vma, node);
2538 }
2539out:
2540 return ret;
2541}
2542
2543static void collect_mm_slot(struct mm_slot *mm_slot)
2544{
2545 struct mm_struct *mm = mm_slot->mm;
2546
2547 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2548
2549 if (khugepaged_test_exit(mm)) {
2550 /* free mm_slot */
2551 hash_del(&mm_slot->hash);
2552 list_del(&mm_slot->mm_node);
2553
2554 /*
2555 * Not strictly needed because the mm exited already.
2556 *
2557 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2558 */
2559
2560 /* khugepaged_mm_lock actually not necessary for the below */
2561 free_mm_slot(mm_slot);
2562 mmdrop(mm);
2563 }
2564}
2565
2566static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2567 struct page **hpage)
2568 __releases(&khugepaged_mm_lock)
2569 __acquires(&khugepaged_mm_lock)
2570{
2571 struct mm_slot *mm_slot;
2572 struct mm_struct *mm;
2573 struct vm_area_struct *vma;
2574 int progress = 0;
2575
2576 VM_BUG_ON(!pages);
2577 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2578
2579 if (khugepaged_scan.mm_slot)
2580 mm_slot = khugepaged_scan.mm_slot;
2581 else {
2582 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2583 struct mm_slot, mm_node);
2584 khugepaged_scan.address = 0;
2585 khugepaged_scan.mm_slot = mm_slot;
2586 }
2587 spin_unlock(&khugepaged_mm_lock);
2588
2589 mm = mm_slot->mm;
2590 down_read(&mm->mmap_sem);
2591 if (unlikely(khugepaged_test_exit(mm)))
2592 vma = NULL;
2593 else
2594 vma = find_vma(mm, khugepaged_scan.address);
2595
2596 progress++;
2597 for (; vma; vma = vma->vm_next) {
2598 unsigned long hstart, hend;
2599
2600 cond_resched();
2601 if (unlikely(khugepaged_test_exit(mm))) {
2602 progress++;
2603 break;
2604 }
2605 if (!hugepage_vma_check(vma)) {
2606skip:
2607 progress++;
2608 continue;
2609 }
2610 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2611 hend = vma->vm_end & HPAGE_PMD_MASK;
2612 if (hstart >= hend)
2613 goto skip;
2614 if (khugepaged_scan.address > hend)
2615 goto skip;
2616 if (khugepaged_scan.address < hstart)
2617 khugepaged_scan.address = hstart;
2618 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2619
2620 while (khugepaged_scan.address < hend) {
2621 int ret;
2622 cond_resched();
2623 if (unlikely(khugepaged_test_exit(mm)))
2624 goto breakouterloop;
2625
2626 VM_BUG_ON(khugepaged_scan.address < hstart ||
2627 khugepaged_scan.address + HPAGE_PMD_SIZE >
2628 hend);
2629 ret = khugepaged_scan_pmd(mm, vma,
2630 khugepaged_scan.address,
2631 hpage);
2632 /* move to next address */
2633 khugepaged_scan.address += HPAGE_PMD_SIZE;
2634 progress += HPAGE_PMD_NR;
2635 if (ret)
2636 /* we released mmap_sem so break loop */
2637 goto breakouterloop_mmap_sem;
2638 if (progress >= pages)
2639 goto breakouterloop;
2640 }
2641 }
2642breakouterloop:
2643 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2644breakouterloop_mmap_sem:
2645
2646 spin_lock(&khugepaged_mm_lock);
2647 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2648 /*
2649 * Release the current mm_slot if this mm is about to die, or
2650 * if we scanned all vmas of this mm.
2651 */
2652 if (khugepaged_test_exit(mm) || !vma) {
2653 /*
2654 * Make sure that if mm_users is reaching zero while
2655 * khugepaged runs here, khugepaged_exit will find
2656 * mm_slot not pointing to the exiting mm.
2657 */
2658 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2659 khugepaged_scan.mm_slot = list_entry(
2660 mm_slot->mm_node.next,
2661 struct mm_slot, mm_node);
2662 khugepaged_scan.address = 0;
2663 } else {
2664 khugepaged_scan.mm_slot = NULL;
2665 khugepaged_full_scans++;
2666 }
2667
2668 collect_mm_slot(mm_slot);
2669 }
2670
2671 return progress;
2672}
2673
2674static int khugepaged_has_work(void)
2675{
2676 return !list_empty(&khugepaged_scan.mm_head) &&
2677 khugepaged_enabled();
2678}
2679
2680static int khugepaged_wait_event(void)
2681{
2682 return !list_empty(&khugepaged_scan.mm_head) ||
2683 kthread_should_stop();
2684}
2685
2686static void khugepaged_do_scan(void)
2687{
2688 struct page *hpage = NULL;
2689 unsigned int progress = 0, pass_through_head = 0;
2690 unsigned int pages = khugepaged_pages_to_scan;
2691 bool wait = true;
2692
2693 barrier(); /* write khugepaged_pages_to_scan to local stack */
2694
2695 while (progress < pages) {
2696 if (!khugepaged_prealloc_page(&hpage, &wait))
2697 break;
2698
2699 cond_resched();
2700
2701 if (unlikely(kthread_should_stop() || freezing(current)))
2702 break;
2703
2704 spin_lock(&khugepaged_mm_lock);
2705 if (!khugepaged_scan.mm_slot)
2706 pass_through_head++;
2707 if (khugepaged_has_work() &&
2708 pass_through_head < 2)
2709 progress += khugepaged_scan_mm_slot(pages - progress,
2710 &hpage);
2711 else
2712 progress = pages;
2713 spin_unlock(&khugepaged_mm_lock);
2714 }
2715
2716 if (!IS_ERR_OR_NULL(hpage))
2717 put_page(hpage);
2718}
2719
2720static void khugepaged_wait_work(void)
2721{
2722 try_to_freeze();
2723
2724 if (khugepaged_has_work()) {
2725 if (!khugepaged_scan_sleep_millisecs)
2726 return;
2727
2728 wait_event_freezable_timeout(khugepaged_wait,
2729 kthread_should_stop(),
2730 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2731 return;
2732 }
2733
2734 if (khugepaged_enabled())
2735 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2736}
2737
2738static int khugepaged(void *none)
2739{
2740 struct mm_slot *mm_slot;
2741
2742 set_freezable();
2743 set_user_nice(current, 19);
2744
2745 while (!kthread_should_stop()) {
2746 khugepaged_do_scan();
2747 khugepaged_wait_work();
2748 }
2749
2750 spin_lock(&khugepaged_mm_lock);
2751 mm_slot = khugepaged_scan.mm_slot;
2752 khugepaged_scan.mm_slot = NULL;
2753 if (mm_slot)
2754 collect_mm_slot(mm_slot);
2755 spin_unlock(&khugepaged_mm_lock);
2756 return 0;
2757}
2758
2759static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2760 unsigned long haddr, pmd_t *pmd)
2761{
2762 struct mm_struct *mm = vma->vm_mm;
2763 pgtable_t pgtable;
2764 pmd_t _pmd;
2765 int i;
2766
2767 pmdp_clear_flush(vma, haddr, pmd);
2768 /* leave pmd empty until pte is filled */
2769
2770 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2771 pmd_populate(mm, &_pmd, pgtable);
2772
2773 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2774 pte_t *pte, entry;
2775 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2776 entry = pte_mkspecial(entry);
2777 pte = pte_offset_map(&_pmd, haddr);
2778 VM_BUG_ON(!pte_none(*pte));
2779 set_pte_at(mm, haddr, pte, entry);
2780 pte_unmap(pte);
2781 }
2782 smp_wmb(); /* make pte visible before pmd */
2783 pmd_populate(mm, pmd, pgtable);
2784 put_huge_zero_page();
2785}
2786
2787void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2788 pmd_t *pmd)
2789{
2790 spinlock_t *ptl;
2791 struct page *page;
2792 struct mm_struct *mm = vma->vm_mm;
2793 unsigned long haddr = address & HPAGE_PMD_MASK;
2794 unsigned long mmun_start; /* For mmu_notifiers */
2795 unsigned long mmun_end; /* For mmu_notifiers */
2796
2797 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2798
2799 mmun_start = haddr;
2800 mmun_end = haddr + HPAGE_PMD_SIZE;
2801again:
2802 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2803 ptl = pmd_lock(mm, pmd);
2804 if (unlikely(!pmd_trans_huge(*pmd))) {
2805 spin_unlock(ptl);
2806 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2807 return;
2808 }
2809 if (is_huge_zero_pmd(*pmd)) {
2810 __split_huge_zero_page_pmd(vma, haddr, pmd);
2811 spin_unlock(ptl);
2812 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2813 return;
2814 }
2815 page = pmd_page(*pmd);
2816 VM_BUG_ON_PAGE(!page_count(page), page);
2817 get_page(page);
2818 spin_unlock(ptl);
2819 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2820
2821 split_huge_page(page);
2822
2823 put_page(page);
2824
2825 /*
2826 * We don't always have down_write of mmap_sem here: a racing
2827 * do_huge_pmd_wp_page() might have copied-on-write to another
2828 * huge page before our split_huge_page() got the anon_vma lock.
2829 */
2830 if (unlikely(pmd_trans_huge(*pmd)))
2831 goto again;
2832}
2833
2834void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2835 pmd_t *pmd)
2836{
2837 struct vm_area_struct *vma;
2838
2839 vma = find_vma(mm, address);
2840 BUG_ON(vma == NULL);
2841 split_huge_page_pmd(vma, address, pmd);
2842}
2843
2844static void split_huge_page_address(struct mm_struct *mm,
2845 unsigned long address)
2846{
2847 pmd_t *pmd;
2848
2849 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2850
2851 pmd = mm_find_pmd(mm, address);
2852 if (!pmd)
2853 return;
2854 /*
2855 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2856 * materialize from under us.
2857 */
2858 split_huge_page_pmd_mm(mm, address, pmd);
2859}
2860
2861void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2862 unsigned long start,
2863 unsigned long end,
2864 long adjust_next)
2865{
2866 /*
2867 * If the new start address isn't hpage aligned and it could
2868 * previously contain an hugepage: check if we need to split
2869 * an huge pmd.
2870 */
2871 if (start & ~HPAGE_PMD_MASK &&
2872 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2873 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2874 split_huge_page_address(vma->vm_mm, start);
2875
2876 /*
2877 * If the new end address isn't hpage aligned and it could
2878 * previously contain an hugepage: check if we need to split
2879 * an huge pmd.
2880 */
2881 if (end & ~HPAGE_PMD_MASK &&
2882 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2883 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2884 split_huge_page_address(vma->vm_mm, end);
2885
2886 /*
2887 * If we're also updating the vma->vm_next->vm_start, if the new
2888 * vm_next->vm_start isn't page aligned and it could previously
2889 * contain an hugepage: check if we need to split an huge pmd.
2890 */
2891 if (adjust_next > 0) {
2892 struct vm_area_struct *next = vma->vm_next;
2893 unsigned long nstart = next->vm_start;
2894 nstart += adjust_next << PAGE_SHIFT;
2895 if (nstart & ~HPAGE_PMD_MASK &&
2896 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2897 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2898 split_huge_page_address(next->vm_mm, nstart);
2899 }
2900}