Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
 
  15#include <linux/mm_inline.h>
  16#include <linux/kthread.h>
  17#include <linux/khugepaged.h>
  18#include <linux/freezer.h>
  19#include <linux/mman.h>
 
 
 
 
  20#include <asm/tlb.h>
  21#include <asm/pgalloc.h>
  22#include "internal.h"
  23
  24/*
  25 * By default transparent hugepage support is enabled for all mappings
  26 * and khugepaged scans all mappings. Defrag is only invoked by
  27 * khugepaged hugepage allocations and by page faults inside
  28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29 * allocations.
 
  30 */
  31unsigned long transparent_hugepage_flags __read_mostly =
  32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34#endif
  35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37#endif
  38	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 
  40
  41/* default scan 8*512 pte (or vmas) every 30 second */
  42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  43static unsigned int khugepaged_pages_collapsed;
  44static unsigned int khugepaged_full_scans;
  45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  46/* during fragmentation poll the hugepage allocator once every minute */
  47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  48static struct task_struct *khugepaged_thread __read_mostly;
  49static DEFINE_MUTEX(khugepaged_mutex);
  50static DEFINE_SPINLOCK(khugepaged_mm_lock);
  51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  52/*
  53 * default collapse hugepages if there is at least one pte mapped like
  54 * it would have happened if the vma was large enough during page
  55 * fault.
  56 */
  57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  58
  59static int khugepaged(void *none);
  60static int mm_slots_hash_init(void);
  61static int khugepaged_slab_init(void);
  62static void khugepaged_slab_free(void);
  63
  64#define MM_SLOTS_HASH_HEADS 1024
  65static struct hlist_head *mm_slots_hash __read_mostly;
 
  66static struct kmem_cache *mm_slot_cache __read_mostly;
  67
  68/**
  69 * struct mm_slot - hash lookup from mm to mm_slot
  70 * @hash: hash collision list
  71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72 * @mm: the mm that this information is valid for
  73 */
  74struct mm_slot {
  75	struct hlist_node hash;
  76	struct list_head mm_node;
  77	struct mm_struct *mm;
  78};
  79
  80/**
  81 * struct khugepaged_scan - cursor for scanning
  82 * @mm_head: the head of the mm list to scan
  83 * @mm_slot: the current mm_slot we are scanning
  84 * @address: the next address inside that to be scanned
  85 *
  86 * There is only the one khugepaged_scan instance of this cursor structure.
  87 */
  88struct khugepaged_scan {
  89	struct list_head mm_head;
  90	struct mm_slot *mm_slot;
  91	unsigned long address;
  92} khugepaged_scan = {
 
  93	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94};
  95
  96
  97static int set_recommended_min_free_kbytes(void)
  98{
  99	struct zone *zone;
 100	int nr_zones = 0;
 101	unsigned long recommended_min;
 102	extern int min_free_kbytes;
 103
 104	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 105		      &transparent_hugepage_flags) &&
 106	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 107		      &transparent_hugepage_flags))
 108		return 0;
 109
 110	for_each_populated_zone(zone)
 111		nr_zones++;
 112
 113	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 114	recommended_min = pageblock_nr_pages * nr_zones * 2;
 115
 116	/*
 117	 * Make sure that on average at least two pageblocks are almost free
 118	 * of another type, one for a migratetype to fall back to and a
 119	 * second to avoid subsequent fallbacks of other types There are 3
 120	 * MIGRATE_TYPES we care about.
 121	 */
 122	recommended_min += pageblock_nr_pages * nr_zones *
 123			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 124
 125	/* don't ever allow to reserve more than 5% of the lowmem */
 126	recommended_min = min(recommended_min,
 127			      (unsigned long) nr_free_buffer_pages() / 20);
 128	recommended_min <<= (PAGE_SHIFT-10);
 129
 130	if (recommended_min > min_free_kbytes)
 
 
 
 
 
 131		min_free_kbytes = recommended_min;
 
 132	setup_per_zone_wmarks();
 133	return 0;
 134}
 135late_initcall(set_recommended_min_free_kbytes);
 136
 137static int start_khugepaged(void)
 138{
 139	int err = 0;
 140	if (khugepaged_enabled()) {
 141		int wakeup;
 142		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
 143			err = -ENOMEM;
 144			goto out;
 145		}
 146		mutex_lock(&khugepaged_mutex);
 147		if (!khugepaged_thread)
 148			khugepaged_thread = kthread_run(khugepaged, NULL,
 149							"khugepaged");
 150		if (unlikely(IS_ERR(khugepaged_thread))) {
 151			printk(KERN_ERR
 152			       "khugepaged: kthread_run(khugepaged) failed\n");
 153			err = PTR_ERR(khugepaged_thread);
 154			khugepaged_thread = NULL;
 155		}
 156		wakeup = !list_empty(&khugepaged_scan.mm_head);
 157		mutex_unlock(&khugepaged_mutex);
 158		if (wakeup)
 159			wake_up_interruptible(&khugepaged_wait);
 160
 161		set_recommended_min_free_kbytes();
 162	} else
 163		/* wakeup to exit */
 164		wake_up_interruptible(&khugepaged_wait);
 165out:
 
 166	return err;
 167}
 168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169#ifdef CONFIG_SYSFS
 170
 171static ssize_t double_flag_show(struct kobject *kobj,
 172				struct kobj_attribute *attr, char *buf,
 173				enum transparent_hugepage_flag enabled,
 174				enum transparent_hugepage_flag req_madv)
 175{
 176	if (test_bit(enabled, &transparent_hugepage_flags)) {
 177		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 178		return sprintf(buf, "[always] madvise never\n");
 179	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 180		return sprintf(buf, "always [madvise] never\n");
 181	else
 182		return sprintf(buf, "always madvise [never]\n");
 183}
 184static ssize_t double_flag_store(struct kobject *kobj,
 185				 struct kobj_attribute *attr,
 186				 const char *buf, size_t count,
 187				 enum transparent_hugepage_flag enabled,
 188				 enum transparent_hugepage_flag req_madv)
 189{
 190	if (!memcmp("always", buf,
 191		    min(sizeof("always")-1, count))) {
 192		set_bit(enabled, &transparent_hugepage_flags);
 193		clear_bit(req_madv, &transparent_hugepage_flags);
 194	} else if (!memcmp("madvise", buf,
 195			   min(sizeof("madvise")-1, count))) {
 196		clear_bit(enabled, &transparent_hugepage_flags);
 197		set_bit(req_madv, &transparent_hugepage_flags);
 198	} else if (!memcmp("never", buf,
 199			   min(sizeof("never")-1, count))) {
 200		clear_bit(enabled, &transparent_hugepage_flags);
 201		clear_bit(req_madv, &transparent_hugepage_flags);
 202	} else
 203		return -EINVAL;
 204
 205	return count;
 206}
 207
 208static ssize_t enabled_show(struct kobject *kobj,
 209			    struct kobj_attribute *attr, char *buf)
 210{
 211	return double_flag_show(kobj, attr, buf,
 212				TRANSPARENT_HUGEPAGE_FLAG,
 213				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 214}
 215static ssize_t enabled_store(struct kobject *kobj,
 216			     struct kobj_attribute *attr,
 217			     const char *buf, size_t count)
 218{
 219	ssize_t ret;
 220
 221	ret = double_flag_store(kobj, attr, buf, count,
 222				TRANSPARENT_HUGEPAGE_FLAG,
 223				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 224
 225	if (ret > 0) {
 226		int err = start_khugepaged();
 
 
 
 
 
 227		if (err)
 228			ret = err;
 229	}
 230
 231	if (ret > 0 &&
 232	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 233		      &transparent_hugepage_flags) ||
 234	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 235		      &transparent_hugepage_flags)))
 236		set_recommended_min_free_kbytes();
 237
 238	return ret;
 239}
 240static struct kobj_attribute enabled_attr =
 241	__ATTR(enabled, 0644, enabled_show, enabled_store);
 242
 243static ssize_t single_flag_show(struct kobject *kobj,
 244				struct kobj_attribute *attr, char *buf,
 245				enum transparent_hugepage_flag flag)
 246{
 247	return sprintf(buf, "%d\n",
 248		       !!test_bit(flag, &transparent_hugepage_flags));
 249}
 250
 251static ssize_t single_flag_store(struct kobject *kobj,
 252				 struct kobj_attribute *attr,
 253				 const char *buf, size_t count,
 254				 enum transparent_hugepage_flag flag)
 255{
 256	unsigned long value;
 257	int ret;
 258
 259	ret = kstrtoul(buf, 10, &value);
 260	if (ret < 0)
 261		return ret;
 262	if (value > 1)
 263		return -EINVAL;
 264
 265	if (value)
 266		set_bit(flag, &transparent_hugepage_flags);
 267	else
 268		clear_bit(flag, &transparent_hugepage_flags);
 269
 270	return count;
 271}
 272
 273/*
 274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 276 * memory just to allocate one more hugepage.
 277 */
 278static ssize_t defrag_show(struct kobject *kobj,
 279			   struct kobj_attribute *attr, char *buf)
 280{
 281	return double_flag_show(kobj, attr, buf,
 282				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 283				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 284}
 285static ssize_t defrag_store(struct kobject *kobj,
 286			    struct kobj_attribute *attr,
 287			    const char *buf, size_t count)
 288{
 289	return double_flag_store(kobj, attr, buf, count,
 290				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 291				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 292}
 293static struct kobj_attribute defrag_attr =
 294	__ATTR(defrag, 0644, defrag_show, defrag_store);
 295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296#ifdef CONFIG_DEBUG_VM
 297static ssize_t debug_cow_show(struct kobject *kobj,
 298				struct kobj_attribute *attr, char *buf)
 299{
 300	return single_flag_show(kobj, attr, buf,
 301				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 302}
 303static ssize_t debug_cow_store(struct kobject *kobj,
 304			       struct kobj_attribute *attr,
 305			       const char *buf, size_t count)
 306{
 307	return single_flag_store(kobj, attr, buf, count,
 308				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 309}
 310static struct kobj_attribute debug_cow_attr =
 311	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 312#endif /* CONFIG_DEBUG_VM */
 313
 314static struct attribute *hugepage_attr[] = {
 315	&enabled_attr.attr,
 316	&defrag_attr.attr,
 
 317#ifdef CONFIG_DEBUG_VM
 318	&debug_cow_attr.attr,
 319#endif
 320	NULL,
 321};
 322
 323static struct attribute_group hugepage_attr_group = {
 324	.attrs = hugepage_attr,
 325};
 326
 327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 328					 struct kobj_attribute *attr,
 329					 char *buf)
 330{
 331	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 332}
 333
 334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 335					  struct kobj_attribute *attr,
 336					  const char *buf, size_t count)
 337{
 338	unsigned long msecs;
 339	int err;
 340
 341	err = strict_strtoul(buf, 10, &msecs);
 342	if (err || msecs > UINT_MAX)
 343		return -EINVAL;
 344
 345	khugepaged_scan_sleep_millisecs = msecs;
 346	wake_up_interruptible(&khugepaged_wait);
 347
 348	return count;
 349}
 350static struct kobj_attribute scan_sleep_millisecs_attr =
 351	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 352	       scan_sleep_millisecs_store);
 353
 354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 355					  struct kobj_attribute *attr,
 356					  char *buf)
 357{
 358	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 359}
 360
 361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 362					   struct kobj_attribute *attr,
 363					   const char *buf, size_t count)
 364{
 365	unsigned long msecs;
 366	int err;
 367
 368	err = strict_strtoul(buf, 10, &msecs);
 369	if (err || msecs > UINT_MAX)
 370		return -EINVAL;
 371
 372	khugepaged_alloc_sleep_millisecs = msecs;
 373	wake_up_interruptible(&khugepaged_wait);
 374
 375	return count;
 376}
 377static struct kobj_attribute alloc_sleep_millisecs_attr =
 378	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 379	       alloc_sleep_millisecs_store);
 380
 381static ssize_t pages_to_scan_show(struct kobject *kobj,
 382				  struct kobj_attribute *attr,
 383				  char *buf)
 384{
 385	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 386}
 387static ssize_t pages_to_scan_store(struct kobject *kobj,
 388				   struct kobj_attribute *attr,
 389				   const char *buf, size_t count)
 390{
 391	int err;
 392	unsigned long pages;
 393
 394	err = strict_strtoul(buf, 10, &pages);
 395	if (err || !pages || pages > UINT_MAX)
 396		return -EINVAL;
 397
 398	khugepaged_pages_to_scan = pages;
 399
 400	return count;
 401}
 402static struct kobj_attribute pages_to_scan_attr =
 403	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 404	       pages_to_scan_store);
 405
 406static ssize_t pages_collapsed_show(struct kobject *kobj,
 407				    struct kobj_attribute *attr,
 408				    char *buf)
 409{
 410	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 411}
 412static struct kobj_attribute pages_collapsed_attr =
 413	__ATTR_RO(pages_collapsed);
 414
 415static ssize_t full_scans_show(struct kobject *kobj,
 416			       struct kobj_attribute *attr,
 417			       char *buf)
 418{
 419	return sprintf(buf, "%u\n", khugepaged_full_scans);
 420}
 421static struct kobj_attribute full_scans_attr =
 422	__ATTR_RO(full_scans);
 423
 424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 425				      struct kobj_attribute *attr, char *buf)
 426{
 427	return single_flag_show(kobj, attr, buf,
 428				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 429}
 430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 431				       struct kobj_attribute *attr,
 432				       const char *buf, size_t count)
 433{
 434	return single_flag_store(kobj, attr, buf, count,
 435				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 436}
 437static struct kobj_attribute khugepaged_defrag_attr =
 438	__ATTR(defrag, 0644, khugepaged_defrag_show,
 439	       khugepaged_defrag_store);
 440
 441/*
 442 * max_ptes_none controls if khugepaged should collapse hugepages over
 443 * any unmapped ptes in turn potentially increasing the memory
 444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 445 * reduce the available free memory in the system as it
 446 * runs. Increasing max_ptes_none will instead potentially reduce the
 447 * free memory in the system during the khugepaged scan.
 448 */
 449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 450					     struct kobj_attribute *attr,
 451					     char *buf)
 452{
 453	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 454}
 455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 456					      struct kobj_attribute *attr,
 457					      const char *buf, size_t count)
 458{
 459	int err;
 460	unsigned long max_ptes_none;
 461
 462	err = strict_strtoul(buf, 10, &max_ptes_none);
 463	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 464		return -EINVAL;
 465
 466	khugepaged_max_ptes_none = max_ptes_none;
 467
 468	return count;
 469}
 470static struct kobj_attribute khugepaged_max_ptes_none_attr =
 471	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 472	       khugepaged_max_ptes_none_store);
 473
 474static struct attribute *khugepaged_attr[] = {
 475	&khugepaged_defrag_attr.attr,
 476	&khugepaged_max_ptes_none_attr.attr,
 477	&pages_to_scan_attr.attr,
 478	&pages_collapsed_attr.attr,
 479	&full_scans_attr.attr,
 480	&scan_sleep_millisecs_attr.attr,
 481	&alloc_sleep_millisecs_attr.attr,
 482	NULL,
 483};
 484
 485static struct attribute_group khugepaged_attr_group = {
 486	.attrs = khugepaged_attr,
 487	.name = "khugepaged",
 488};
 489#endif /* CONFIG_SYSFS */
 490
 491static int __init hugepage_init(void)
 492{
 493	int err;
 494#ifdef CONFIG_SYSFS
 495	static struct kobject *hugepage_kobj;
 496#endif
 497
 498	err = -EINVAL;
 499	if (!has_transparent_hugepage()) {
 500		transparent_hugepage_flags = 0;
 501		goto out;
 502	}
 503
 504#ifdef CONFIG_SYSFS
 505	err = -ENOMEM;
 506	hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 507	if (unlikely(!hugepage_kobj)) {
 508		printk(KERN_ERR "hugepage: failed kobject create\n");
 509		goto out;
 510	}
 511
 512	err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
 513	if (err) {
 514		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 515		goto out;
 516	}
 517
 518	err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
 519	if (err) {
 520		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 521		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522	}
 523#endif
 
 
 
 524
 525	err = khugepaged_slab_init();
 526	if (err)
 527		goto out;
 528
 529	err = mm_slots_hash_init();
 530	if (err) {
 531		khugepaged_slab_free();
 532		goto out;
 533	}
 534
 535	/*
 536	 * By default disable transparent hugepages on smaller systems,
 537	 * where the extra memory used could hurt more than TLB overhead
 538	 * is likely to save.  The admin can still enable it through /sys.
 539	 */
 540	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 541		transparent_hugepage_flags = 0;
 542
 543	start_khugepaged();
 544
 545	set_recommended_min_free_kbytes();
 546
 547out:
 
 548	return err;
 549}
 550module_init(hugepage_init)
 551
 552static int __init setup_transparent_hugepage(char *str)
 553{
 554	int ret = 0;
 555	if (!str)
 556		goto out;
 557	if (!strcmp(str, "always")) {
 558		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 559			&transparent_hugepage_flags);
 560		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 561			  &transparent_hugepage_flags);
 562		ret = 1;
 563	} else if (!strcmp(str, "madvise")) {
 564		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 565			  &transparent_hugepage_flags);
 566		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 567			&transparent_hugepage_flags);
 568		ret = 1;
 569	} else if (!strcmp(str, "never")) {
 570		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 571			  &transparent_hugepage_flags);
 572		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 573			  &transparent_hugepage_flags);
 574		ret = 1;
 575	}
 576out:
 577	if (!ret)
 578		printk(KERN_WARNING
 579		       "transparent_hugepage= cannot parse, ignored\n");
 580	return ret;
 581}
 582__setup("transparent_hugepage=", setup_transparent_hugepage);
 583
 584static void prepare_pmd_huge_pte(pgtable_t pgtable,
 585				 struct mm_struct *mm)
 586{
 587	assert_spin_locked(&mm->page_table_lock);
 588
 589	/* FIFO */
 590	if (!mm->pmd_huge_pte)
 591		INIT_LIST_HEAD(&pgtable->lru);
 592	else
 593		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
 594	mm->pmd_huge_pte = pgtable;
 595}
 596
 597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 598{
 599	if (likely(vma->vm_flags & VM_WRITE))
 600		pmd = pmd_mkwrite(pmd);
 601	return pmd;
 602}
 603
 
 
 
 
 
 
 
 
 604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 605					struct vm_area_struct *vma,
 606					unsigned long haddr, pmd_t *pmd,
 607					struct page *page)
 608{
 609	int ret = 0;
 610	pgtable_t pgtable;
 
 611
 612	VM_BUG_ON(!PageCompound(page));
 613	pgtable = pte_alloc_one(mm, haddr);
 614	if (unlikely(!pgtable)) {
 615		mem_cgroup_uncharge_page(page);
 616		put_page(page);
 617		return VM_FAULT_OOM;
 618	}
 619
 620	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 
 
 
 
 
 621	__SetPageUptodate(page);
 622
 623	spin_lock(&mm->page_table_lock);
 624	if (unlikely(!pmd_none(*pmd))) {
 625		spin_unlock(&mm->page_table_lock);
 626		mem_cgroup_uncharge_page(page);
 627		put_page(page);
 628		pte_free(mm, pgtable);
 629	} else {
 630		pmd_t entry;
 631		entry = mk_pmd(page, vma->vm_page_prot);
 632		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 633		entry = pmd_mkhuge(entry);
 634		/*
 635		 * The spinlocking to take the lru_lock inside
 636		 * page_add_new_anon_rmap() acts as a full memory
 637		 * barrier to be sure clear_huge_page writes become
 638		 * visible after the set_pmd_at() write.
 639		 */
 640		page_add_new_anon_rmap(page, vma, haddr);
 
 641		set_pmd_at(mm, haddr, pmd, entry);
 642		prepare_pmd_huge_pte(pgtable, mm);
 643		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 644		spin_unlock(&mm->page_table_lock);
 
 645	}
 646
 647	return ret;
 648}
 649
 650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 651{
 652	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 653}
 654
 655static inline struct page *alloc_hugepage_vma(int defrag,
 656					      struct vm_area_struct *vma,
 657					      unsigned long haddr, int nd,
 658					      gfp_t extra_gfp)
 659{
 660	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 661			       HPAGE_PMD_ORDER, vma, haddr, nd);
 662}
 663
 664#ifndef CONFIG_NUMA
 665static inline struct page *alloc_hugepage(int defrag)
 666{
 667	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
 668			   HPAGE_PMD_ORDER);
 
 
 
 
 
 
 
 
 
 
 669}
 670#endif
 671
 672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 673			       unsigned long address, pmd_t *pmd,
 674			       unsigned int flags)
 675{
 676	struct page *page;
 677	unsigned long haddr = address & HPAGE_PMD_MASK;
 678	pte_t *pte;
 679
 680	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
 681		if (unlikely(anon_vma_prepare(vma)))
 682			return VM_FAULT_OOM;
 683		if (unlikely(khugepaged_enter(vma)))
 
 
 
 
 
 
 
 
 
 
 684			return VM_FAULT_OOM;
 685		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 686					  vma, haddr, numa_node_id(), 0);
 687		if (unlikely(!page)) {
 688			count_vm_event(THP_FAULT_FALLBACK);
 689			goto out;
 690		}
 691		count_vm_event(THP_FAULT_ALLOC);
 692		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
 693			put_page(page);
 694			goto out;
 
 
 
 695		}
 696
 697		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
 698	}
 699out:
 700	/*
 701	 * Use __pte_alloc instead of pte_alloc_map, because we can't
 702	 * run pte_offset_map on the pmd, if an huge pmd could
 703	 * materialize from under us from a different thread.
 704	 */
 705	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
 706		return VM_FAULT_OOM;
 707	/* if an huge pmd materialized from under us just retry later */
 708	if (unlikely(pmd_trans_huge(*pmd)))
 709		return 0;
 710	/*
 711	 * A regular pmd is established and it can't morph into a huge pmd
 712	 * from under us anymore at this point because we hold the mmap_sem
 713	 * read mode and khugepaged takes it in write mode. So now it's
 714	 * safe to run pte_offset_map().
 715	 */
 716	pte = pte_offset_map(pmd, address);
 717	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 718}
 719
 720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 721		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 722		  struct vm_area_struct *vma)
 723{
 
 724	struct page *src_page;
 725	pmd_t pmd;
 726	pgtable_t pgtable;
 727	int ret;
 728
 729	ret = -ENOMEM;
 730	pgtable = pte_alloc_one(dst_mm, addr);
 731	if (unlikely(!pgtable))
 732		goto out;
 733
 734	spin_lock(&dst_mm->page_table_lock);
 735	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
 
 736
 737	ret = -EAGAIN;
 738	pmd = *src_pmd;
 739	if (unlikely(!pmd_trans_huge(pmd))) {
 740		pte_free(dst_mm, pgtable);
 741		goto out_unlock;
 742	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743	if (unlikely(pmd_trans_splitting(pmd))) {
 744		/* split huge page running from under us */
 745		spin_unlock(&src_mm->page_table_lock);
 746		spin_unlock(&dst_mm->page_table_lock);
 747		pte_free(dst_mm, pgtable);
 748
 749		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 750		goto out;
 751	}
 752	src_page = pmd_page(pmd);
 753	VM_BUG_ON(!PageHead(src_page));
 754	get_page(src_page);
 755	page_dup_rmap(src_page);
 756	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 757
 758	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 759	pmd = pmd_mkold(pmd_wrprotect(pmd));
 
 760	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 761	prepare_pmd_huge_pte(pgtable, dst_mm);
 762
 763	ret = 0;
 764out_unlock:
 765	spin_unlock(&src_mm->page_table_lock);
 766	spin_unlock(&dst_mm->page_table_lock);
 767out:
 768	return ret;
 769}
 770
 771/* no "address" argument so destroys page coloring of some arch */
 772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
 
 
 
 773{
 774	pgtable_t pgtable;
 
 
 775
 776	assert_spin_locked(&mm->page_table_lock);
 
 
 777
 778	/* FIFO */
 779	pgtable = mm->pmd_huge_pte;
 780	if (list_empty(&pgtable->lru))
 781		mm->pmd_huge_pte = NULL;
 782	else {
 783		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
 784					      struct page, lru);
 785		list_del(&pgtable->lru);
 786	}
 787	return pgtable;
 788}
 789
 790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 791					struct vm_area_struct *vma,
 792					unsigned long address,
 793					pmd_t *pmd, pmd_t orig_pmd,
 794					struct page *page,
 795					unsigned long haddr)
 796{
 
 797	pgtable_t pgtable;
 798	pmd_t _pmd;
 799	int ret = 0, i;
 800	struct page **pages;
 
 
 801
 802	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 803			GFP_KERNEL);
 804	if (unlikely(!pages)) {
 805		ret |= VM_FAULT_OOM;
 806		goto out;
 807	}
 808
 809	for (i = 0; i < HPAGE_PMD_NR; i++) {
 810		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 811					       __GFP_OTHER_NODE,
 812					       vma, address, page_to_nid(page));
 813		if (unlikely(!pages[i] ||
 814			     mem_cgroup_newpage_charge(pages[i], mm,
 815						       GFP_KERNEL))) {
 816			if (pages[i])
 817				put_page(pages[i]);
 818			mem_cgroup_uncharge_start();
 819			while (--i >= 0) {
 820				mem_cgroup_uncharge_page(pages[i]);
 821				put_page(pages[i]);
 822			}
 823			mem_cgroup_uncharge_end();
 824			kfree(pages);
 825			ret |= VM_FAULT_OOM;
 826			goto out;
 827		}
 828	}
 829
 830	for (i = 0; i < HPAGE_PMD_NR; i++) {
 831		copy_user_highpage(pages[i], page + i,
 832				   haddr + PAGE_SHIFT*i, vma);
 833		__SetPageUptodate(pages[i]);
 834		cond_resched();
 835	}
 836
 837	spin_lock(&mm->page_table_lock);
 
 
 
 
 838	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 839		goto out_free_pages;
 840	VM_BUG_ON(!PageHead(page));
 841
 842	pmdp_clear_flush_notify(vma, haddr, pmd);
 843	/* leave pmd empty until pte is filled */
 844
 845	pgtable = get_pmd_huge_pte(mm);
 846	pmd_populate(mm, &_pmd, pgtable);
 847
 848	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 849		pte_t *pte, entry;
 850		entry = mk_pte(pages[i], vma->vm_page_prot);
 851		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 852		page_add_new_anon_rmap(pages[i], vma, haddr);
 853		pte = pte_offset_map(&_pmd, haddr);
 854		VM_BUG_ON(!pte_none(*pte));
 855		set_pte_at(mm, haddr, pte, entry);
 856		pte_unmap(pte);
 857	}
 858	kfree(pages);
 859
 860	mm->nr_ptes++;
 861	smp_wmb(); /* make pte visible before pmd */
 862	pmd_populate(mm, pmd, pgtable);
 863	page_remove_rmap(page);
 864	spin_unlock(&mm->page_table_lock);
 
 
 865
 866	ret |= VM_FAULT_WRITE;
 867	put_page(page);
 868
 869out:
 870	return ret;
 871
 872out_free_pages:
 873	spin_unlock(&mm->page_table_lock);
 
 874	mem_cgroup_uncharge_start();
 875	for (i = 0; i < HPAGE_PMD_NR; i++) {
 876		mem_cgroup_uncharge_page(pages[i]);
 877		put_page(pages[i]);
 878	}
 879	mem_cgroup_uncharge_end();
 880	kfree(pages);
 881	goto out;
 882}
 883
 884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 885			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
 886{
 
 887	int ret = 0;
 888	struct page *page, *new_page;
 889	unsigned long haddr;
 
 
 890
 
 891	VM_BUG_ON(!vma->anon_vma);
 892	spin_lock(&mm->page_table_lock);
 
 
 
 893	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 894		goto out_unlock;
 895
 896	page = pmd_page(orig_pmd);
 897	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
 898	haddr = address & HPAGE_PMD_MASK;
 899	if (page_mapcount(page) == 1) {
 900		pmd_t entry;
 901		entry = pmd_mkyoung(orig_pmd);
 902		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 903		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
 904			update_mmu_cache(vma, address, entry);
 905		ret |= VM_FAULT_WRITE;
 906		goto out_unlock;
 907	}
 908	get_page(page);
 909	spin_unlock(&mm->page_table_lock);
 910
 911	if (transparent_hugepage_enabled(vma) &&
 912	    !transparent_hugepage_debug_cow())
 913		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 914					      vma, haddr, numa_node_id(), 0);
 915	else
 916		new_page = NULL;
 917
 918	if (unlikely(!new_page)) {
 
 
 
 
 
 
 
 
 
 
 
 
 919		count_vm_event(THP_FAULT_FALLBACK);
 920		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
 921						   pmd, orig_pmd, page, haddr);
 922		put_page(page);
 923		goto out;
 924	}
 925	count_vm_event(THP_FAULT_ALLOC);
 926
 927	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
 928		put_page(new_page);
 929		put_page(page);
 930		ret |= VM_FAULT_OOM;
 
 
 
 
 
 931		goto out;
 932	}
 933
 934	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 
 
 
 
 
 935	__SetPageUptodate(new_page);
 936
 937	spin_lock(&mm->page_table_lock);
 938	put_page(page);
 
 
 
 
 
 939	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
 
 940		mem_cgroup_uncharge_page(new_page);
 941		put_page(new_page);
 
 942	} else {
 943		pmd_t entry;
 944		VM_BUG_ON(!PageHead(page));
 945		entry = mk_pmd(new_page, vma->vm_page_prot);
 946		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 947		entry = pmd_mkhuge(entry);
 948		pmdp_clear_flush_notify(vma, haddr, pmd);
 949		page_add_new_anon_rmap(new_page, vma, haddr);
 950		set_pmd_at(mm, haddr, pmd, entry);
 951		update_mmu_cache(vma, address, entry);
 952		page_remove_rmap(page);
 953		put_page(page);
 
 
 
 
 
 
 954		ret |= VM_FAULT_WRITE;
 955	}
 956out_unlock:
 957	spin_unlock(&mm->page_table_lock);
 
 958out:
 959	return ret;
 
 
 
 960}
 961
 962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
 963				   unsigned long addr,
 964				   pmd_t *pmd,
 965				   unsigned int flags)
 966{
 
 967	struct page *page = NULL;
 968
 969	assert_spin_locked(&mm->page_table_lock);
 970
 971	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 972		goto out;
 973
 
 
 
 
 
 
 
 
 974	page = pmd_page(*pmd);
 975	VM_BUG_ON(!PageHead(page));
 976	if (flags & FOLL_TOUCH) {
 977		pmd_t _pmd;
 978		/*
 979		 * We should set the dirty bit only for FOLL_WRITE but
 980		 * for now the dirty bit in the pmd is meaningless.
 981		 * And if the dirty bit will become meaningful and
 982		 * we'll only set it with FOLL_WRITE, an atomic
 983		 * set_bit will be required on the pmd to set the
 984		 * young bit, instead of the current set_pmd_at.
 985		 */
 986		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 987		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
 
 
 
 
 
 
 
 
 
 
 988	}
 989	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 990	VM_BUG_ON(!PageCompound(page));
 991	if (flags & FOLL_GET)
 992		get_page(page);
 993
 994out:
 995	return page;
 996}
 997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 999		 pmd_t *pmd)
1000{
 
1001	int ret = 0;
1002
1003	spin_lock(&tlb->mm->page_table_lock);
1004	if (likely(pmd_trans_huge(*pmd))) {
1005		if (unlikely(pmd_trans_splitting(*pmd))) {
1006			spin_unlock(&tlb->mm->page_table_lock);
1007			wait_split_huge_page(vma->anon_vma,
1008					     pmd);
 
 
 
 
 
 
 
 
 
 
 
1009		} else {
1010			struct page *page;
1011			pgtable_t pgtable;
1012			pgtable = get_pmd_huge_pte(tlb->mm);
1013			page = pmd_page(*pmd);
1014			pmd_clear(pmd);
1015			page_remove_rmap(page);
1016			VM_BUG_ON(page_mapcount(page) < 0);
1017			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018			VM_BUG_ON(!PageHead(page));
1019			spin_unlock(&tlb->mm->page_table_lock);
 
1020			tlb_remove_page(tlb, page);
1021			pte_free(tlb->mm, pgtable);
1022			ret = 1;
1023		}
1024	} else
1025		spin_unlock(&tlb->mm->page_table_lock);
1026
1027	return ret;
1028}
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031		unsigned long addr, unsigned long end,
1032		unsigned char *vec)
1033{
 
1034	int ret = 0;
1035
1036	spin_lock(&vma->vm_mm->page_table_lock);
1037	if (likely(pmd_trans_huge(*pmd))) {
1038		ret = !pmd_trans_splitting(*pmd);
1039		spin_unlock(&vma->vm_mm->page_table_lock);
1040		if (unlikely(!ret))
1041			wait_split_huge_page(vma->anon_vma, pmd);
1042		else {
1043			/*
1044			 * All logical pages in the range are present
1045			 * if backed by a huge page.
1046			 */
1047			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048		}
1049	} else
1050		spin_unlock(&vma->vm_mm->page_table_lock);
1051
1052	return ret;
1053}
1054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056		unsigned long addr, pgprot_t newprot)
1057{
1058	struct mm_struct *mm = vma->vm_mm;
 
1059	int ret = 0;
1060
1061	spin_lock(&mm->page_table_lock);
1062	if (likely(pmd_trans_huge(*pmd))) {
1063		if (unlikely(pmd_trans_splitting(*pmd))) {
1064			spin_unlock(&mm->page_table_lock);
1065			wait_split_huge_page(vma->anon_vma, pmd);
1066		} else {
1067			pmd_t entry;
1068
1069			entry = pmdp_get_and_clear(mm, addr, pmd);
 
 
1070			entry = pmd_modify(entry, newprot);
 
1071			set_pmd_at(mm, addr, pmd, entry);
1072			spin_unlock(&vma->vm_mm->page_table_lock);
1073			flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074			ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
1075		}
1076	} else
1077		spin_unlock(&vma->vm_mm->page_table_lock);
1078
1079	return ret;
1080}
1081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082pmd_t *page_check_address_pmd(struct page *page,
1083			      struct mm_struct *mm,
1084			      unsigned long address,
1085			      enum page_check_address_pmd_flag flag)
 
1086{
1087	pgd_t *pgd;
1088	pud_t *pud;
1089	pmd_t *pmd, *ret = NULL;
1090
1091	if (address & ~HPAGE_PMD_MASK)
1092		goto out;
1093
1094	pgd = pgd_offset(mm, address);
1095	if (!pgd_present(*pgd))
1096		goto out;
1097
1098	pud = pud_offset(pgd, address);
1099	if (!pud_present(*pud))
1100		goto out;
1101
1102	pmd = pmd_offset(pud, address);
1103	if (pmd_none(*pmd))
1104		goto out;
 
 
1105	if (pmd_page(*pmd) != page)
1106		goto out;
1107	/*
1108	 * split_vma() may create temporary aliased mappings. There is
1109	 * no risk as long as all huge pmd are found and have their
1110	 * splitting bit set before __split_huge_page_refcount
1111	 * runs. Finding the same huge pmd more than once during the
1112	 * same rmap walk is not a problem.
1113	 */
1114	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115	    pmd_trans_splitting(*pmd))
1116		goto out;
1117	if (pmd_trans_huge(*pmd)) {
1118		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119			  !pmd_trans_splitting(*pmd));
1120		ret = pmd;
1121	}
1122out:
1123	return ret;
 
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127				       struct vm_area_struct *vma,
1128				       unsigned long address)
1129{
1130	struct mm_struct *mm = vma->vm_mm;
 
1131	pmd_t *pmd;
1132	int ret = 0;
 
 
 
1133
1134	spin_lock(&mm->page_table_lock);
1135	pmd = page_check_address_pmd(page, mm, address,
1136				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137	if (pmd) {
1138		/*
1139		 * We can't temporarily set the pmd to null in order
1140		 * to split it, the pmd must remain marked huge at all
1141		 * times or the VM won't take the pmd_trans_huge paths
1142		 * and it won't wait on the anon_vma->root->mutex to
1143		 * serialize against split_huge_page*.
1144		 */
1145		pmdp_splitting_flush_notify(vma, address, pmd);
1146		ret = 1;
 
1147	}
1148	spin_unlock(&mm->page_table_lock);
1149
1150	return ret;
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
 
1154{
1155	int i;
1156	unsigned long head_index = page->index;
1157	struct zone *zone = page_zone(page);
1158	int zonestat;
 
1159
1160	/* prevent PageLRU to go away from under us, and freeze lru stats */
1161	spin_lock_irq(&zone->lru_lock);
 
 
1162	compound_lock(page);
 
 
1163
1164	for (i = 1; i < HPAGE_PMD_NR; i++) {
1165		struct page *page_tail = page + i;
1166
1167		/* tail_page->_count cannot change */
1168		atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169		BUG_ON(page_count(page) <= 0);
1170		atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171		BUG_ON(atomic_read(&page_tail->_count) <= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172
1173		/* after clearing PageTail the gup refcount can be released */
1174		smp_mb();
1175
1176		/*
1177		 * retain hwpoison flag of the poisoned tail page:
1178		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1179		 *   by the memory-failure.
1180		 */
1181		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182		page_tail->flags |= (page->flags &
1183				     ((1L << PG_referenced) |
1184				      (1L << PG_swapbacked) |
1185				      (1L << PG_mlocked) |
1186				      (1L << PG_uptodate)));
 
 
1187		page_tail->flags |= (1L << PG_dirty);
1188
1189		/*
1190		 * 1) clear PageTail before overwriting first_page
1191		 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192		 */
1193		smp_wmb();
1194
1195		/*
1196		 * __split_huge_page_splitting() already set the
1197		 * splitting bit in all pmd that could map this
1198		 * hugepage, that will ensure no CPU can alter the
1199		 * mapcount on the head page. The mapcount is only
1200		 * accounted in the head page and it has to be
1201		 * transferred to all tail pages in the below code. So
1202		 * for this code to be safe, the split the mapcount
1203		 * can't change. But that doesn't mean userland can't
1204		 * keep changing and reading the page contents while
1205		 * we transfer the mapcount, so the pmd splitting
1206		 * status is achieved setting a reserved bit in the
1207		 * pmd, not by clearing the present bit.
1208		*/
1209		BUG_ON(page_mapcount(page_tail));
1210		page_tail->_mapcount = page->_mapcount;
1211
1212		BUG_ON(page_tail->mapping);
1213		page_tail->mapping = page->mapping;
1214
1215		page_tail->index = ++head_index;
 
1216
1217		BUG_ON(!PageAnon(page_tail));
1218		BUG_ON(!PageUptodate(page_tail));
1219		BUG_ON(!PageDirty(page_tail));
1220		BUG_ON(!PageSwapBacked(page_tail));
1221
1222		mem_cgroup_split_huge_fixup(page, page_tail);
1223
1224		lru_add_page_tail(zone, page, page_tail);
1225	}
 
 
1226
1227	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1229
1230	/*
1231	 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232	 * so adjust those appropriately if this page is on the LRU.
1233	 */
1234	if (PageLRU(page)) {
1235		zonestat = NR_LRU_BASE + page_lru(page);
1236		__mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237	}
1238
1239	ClearPageCompound(page);
1240	compound_unlock(page);
1241	spin_unlock_irq(&zone->lru_lock);
1242
1243	for (i = 1; i < HPAGE_PMD_NR; i++) {
1244		struct page *page_tail = page + i;
1245		BUG_ON(page_count(page_tail) <= 0);
1246		/*
1247		 * Tail pages may be freed if there wasn't any mapping
1248		 * like if add_to_swap() is running on a lru page that
1249		 * had its mapping zapped. And freeing these pages
1250		 * requires taking the lru_lock so we do the put_page
1251		 * of the tail pages after the split is complete.
1252		 */
1253		put_page(page_tail);
1254	}
1255
1256	/*
1257	 * Only the head page (now become a regular page) is required
1258	 * to be pinned by the caller.
1259	 */
1260	BUG_ON(page_count(page) <= 0);
1261}
1262
1263static int __split_huge_page_map(struct page *page,
1264				 struct vm_area_struct *vma,
1265				 unsigned long address)
1266{
1267	struct mm_struct *mm = vma->vm_mm;
 
1268	pmd_t *pmd, _pmd;
1269	int ret = 0, i;
1270	pgtable_t pgtable;
1271	unsigned long haddr;
1272
1273	spin_lock(&mm->page_table_lock);
1274	pmd = page_check_address_pmd(page, mm, address,
1275				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276	if (pmd) {
1277		pgtable = get_pmd_huge_pte(mm);
1278		pmd_populate(mm, &_pmd, pgtable);
1279
1280		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281		     i++, haddr += PAGE_SIZE) {
1282			pte_t *pte, entry;
1283			BUG_ON(PageCompound(page+i));
1284			entry = mk_pte(page + i, vma->vm_page_prot);
1285			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286			if (!pmd_write(*pmd))
1287				entry = pte_wrprotect(entry);
1288			else
1289				BUG_ON(page_mapcount(page) != 1);
1290			if (!pmd_young(*pmd))
1291				entry = pte_mkold(entry);
 
 
1292			pte = pte_offset_map(&_pmd, haddr);
1293			BUG_ON(!pte_none(*pte));
1294			set_pte_at(mm, haddr, pte, entry);
1295			pte_unmap(pte);
1296		}
1297
1298		mm->nr_ptes++;
1299		smp_wmb(); /* make pte visible before pmd */
1300		/*
1301		 * Up to this point the pmd is present and huge and
1302		 * userland has the whole access to the hugepage
1303		 * during the split (which happens in place). If we
1304		 * overwrite the pmd with the not-huge version
1305		 * pointing to the pte here (which of course we could
1306		 * if all CPUs were bug free), userland could trigger
1307		 * a small page size TLB miss on the small sized TLB
1308		 * while the hugepage TLB entry is still established
1309		 * in the huge TLB. Some CPU doesn't like that. See
1310		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311		 * Erratum 383 on page 93. Intel should be safe but is
1312		 * also warns that it's only safe if the permission
1313		 * and cache attributes of the two entries loaded in
1314		 * the two TLB is identical (which should be the case
1315		 * here). But it is generally safer to never allow
1316		 * small and huge TLB entries for the same virtual
1317		 * address to be loaded simultaneously. So instead of
1318		 * doing "pmd_populate(); flush_tlb_range();" we first
1319		 * mark the current pmd notpresent (atomically because
1320		 * here the pmd_trans_huge and pmd_trans_splitting
1321		 * must remain set at all times on the pmd until the
1322		 * split is complete for this pmd), then we flush the
1323		 * SMP TLB and finally we write the non-huge version
1324		 * of the pmd entry with pmd_populate.
1325		 */
1326		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328		pmd_populate(mm, pmd, pgtable);
1329		ret = 1;
 
1330	}
1331	spin_unlock(&mm->page_table_lock);
1332
1333	return ret;
1334}
1335
1336/* must be called with anon_vma->root->mutex hold */
1337static void __split_huge_page(struct page *page,
1338			      struct anon_vma *anon_vma)
 
1339{
1340	int mapcount, mapcount2;
 
1341	struct anon_vma_chain *avc;
1342
1343	BUG_ON(!PageHead(page));
1344	BUG_ON(PageTail(page));
1345
1346	mapcount = 0;
1347	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348		struct vm_area_struct *vma = avc->vma;
1349		unsigned long addr = vma_address(page, vma);
1350		BUG_ON(is_vma_temporary_stack(vma));
1351		if (addr == -EFAULT)
1352			continue;
1353		mapcount += __split_huge_page_splitting(page, vma, addr);
1354	}
1355	/*
1356	 * It is critical that new vmas are added to the tail of the
1357	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358	 * and establishes a child pmd before
1359	 * __split_huge_page_splitting() freezes the parent pmd (so if
1360	 * we fail to prevent copy_huge_pmd() from running until the
1361	 * whole __split_huge_page() is complete), we will still see
1362	 * the newly established pmd of the child later during the
1363	 * walk, to be able to set it as pmd_trans_splitting too.
1364	 */
1365	if (mapcount != page_mapcount(page))
1366		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367		       mapcount, page_mapcount(page));
1368	BUG_ON(mapcount != page_mapcount(page));
1369
1370	__split_huge_page_refcount(page);
1371
1372	mapcount2 = 0;
1373	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374		struct vm_area_struct *vma = avc->vma;
1375		unsigned long addr = vma_address(page, vma);
1376		BUG_ON(is_vma_temporary_stack(vma));
1377		if (addr == -EFAULT)
1378			continue;
1379		mapcount2 += __split_huge_page_map(page, vma, addr);
1380	}
1381	if (mapcount != mapcount2)
1382		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383		       mapcount, mapcount2, page_mapcount(page));
1384	BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
 
 
 
 
 
 
 
1388{
1389	struct anon_vma *anon_vma;
1390	int ret = 1;
1391
 
1392	BUG_ON(!PageAnon(page));
1393	anon_vma = page_lock_anon_vma(page);
 
 
 
 
 
 
 
 
1394	if (!anon_vma)
1395		goto out;
 
 
1396	ret = 0;
1397	if (!PageCompound(page))
1398		goto out_unlock;
1399
1400	BUG_ON(!PageSwapBacked(page));
1401	__split_huge_page(page, anon_vma);
1402	count_vm_event(THP_SPLIT);
1403
1404	BUG_ON(PageCompound(page));
1405out_unlock:
1406	page_unlock_anon_vma(anon_vma);
 
1407out:
1408	return ret;
1409}
1410
1411#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1412		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1413
1414int hugepage_madvise(struct vm_area_struct *vma,
1415		     unsigned long *vm_flags, int advice)
1416{
1417	switch (advice) {
1418	case MADV_HUGEPAGE:
 
 
 
 
 
 
 
 
 
1419		/*
1420		 * Be somewhat over-protective like KSM for now!
1421		 */
1422		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1423			return -EINVAL;
1424		*vm_flags &= ~VM_NOHUGEPAGE;
1425		*vm_flags |= VM_HUGEPAGE;
1426		/*
1427		 * If the vma become good for khugepaged to scan,
1428		 * register it here without waiting a page fault that
1429		 * may not happen any time soon.
1430		 */
1431		if (unlikely(khugepaged_enter_vma_merge(vma)))
1432			return -ENOMEM;
1433		break;
1434	case MADV_NOHUGEPAGE:
1435		/*
1436		 * Be somewhat over-protective like KSM for now!
1437		 */
1438		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1439			return -EINVAL;
1440		*vm_flags &= ~VM_HUGEPAGE;
1441		*vm_flags |= VM_NOHUGEPAGE;
1442		/*
1443		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1444		 * this vma even if we leave the mm registered in khugepaged if
1445		 * it got registered before VM_NOHUGEPAGE was set.
1446		 */
1447		break;
1448	}
1449
1450	return 0;
1451}
1452
1453static int __init khugepaged_slab_init(void)
1454{
1455	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1456					  sizeof(struct mm_slot),
1457					  __alignof__(struct mm_slot), 0, NULL);
1458	if (!mm_slot_cache)
1459		return -ENOMEM;
1460
1461	return 0;
1462}
1463
1464static void __init khugepaged_slab_free(void)
1465{
1466	kmem_cache_destroy(mm_slot_cache);
1467	mm_slot_cache = NULL;
1468}
1469
1470static inline struct mm_slot *alloc_mm_slot(void)
1471{
1472	if (!mm_slot_cache)	/* initialization failed */
1473		return NULL;
1474	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1475}
1476
1477static inline void free_mm_slot(struct mm_slot *mm_slot)
1478{
1479	kmem_cache_free(mm_slot_cache, mm_slot);
1480}
1481
1482static int __init mm_slots_hash_init(void)
1483{
1484	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1485				GFP_KERNEL);
1486	if (!mm_slots_hash)
1487		return -ENOMEM;
1488	return 0;
1489}
1490
1491#if 0
1492static void __init mm_slots_hash_free(void)
1493{
1494	kfree(mm_slots_hash);
1495	mm_slots_hash = NULL;
1496}
1497#endif
1498
1499static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1500{
1501	struct mm_slot *mm_slot;
1502	struct hlist_head *bucket;
1503	struct hlist_node *node;
1504
1505	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1506				% MM_SLOTS_HASH_HEADS];
1507	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1508		if (mm == mm_slot->mm)
1509			return mm_slot;
1510	}
1511	return NULL;
1512}
1513
1514static void insert_to_mm_slots_hash(struct mm_struct *mm,
1515				    struct mm_slot *mm_slot)
1516{
1517	struct hlist_head *bucket;
1518
1519	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1520				% MM_SLOTS_HASH_HEADS];
1521	mm_slot->mm = mm;
1522	hlist_add_head(&mm_slot->hash, bucket);
1523}
1524
1525static inline int khugepaged_test_exit(struct mm_struct *mm)
1526{
1527	return atomic_read(&mm->mm_users) == 0;
1528}
1529
1530int __khugepaged_enter(struct mm_struct *mm)
1531{
1532	struct mm_slot *mm_slot;
1533	int wakeup;
1534
1535	mm_slot = alloc_mm_slot();
1536	if (!mm_slot)
1537		return -ENOMEM;
1538
1539	/* __khugepaged_exit() must not run from under us */
1540	VM_BUG_ON(khugepaged_test_exit(mm));
1541	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1542		free_mm_slot(mm_slot);
1543		return 0;
1544	}
1545
1546	spin_lock(&khugepaged_mm_lock);
1547	insert_to_mm_slots_hash(mm, mm_slot);
1548	/*
1549	 * Insert just behind the scanning cursor, to let the area settle
1550	 * down a little.
1551	 */
1552	wakeup = list_empty(&khugepaged_scan.mm_head);
1553	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1554	spin_unlock(&khugepaged_mm_lock);
1555
1556	atomic_inc(&mm->mm_count);
1557	if (wakeup)
1558		wake_up_interruptible(&khugepaged_wait);
1559
1560	return 0;
1561}
1562
1563int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1564{
1565	unsigned long hstart, hend;
1566	if (!vma->anon_vma)
1567		/*
1568		 * Not yet faulted in so we will register later in the
1569		 * page fault if needed.
1570		 */
1571		return 0;
1572	if (vma->vm_ops)
1573		/* khugepaged not yet working on file or special mappings */
1574		return 0;
1575	/*
1576	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1577	 * true too, verify it here.
1578	 */
1579	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1580	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1581	hend = vma->vm_end & HPAGE_PMD_MASK;
1582	if (hstart < hend)
1583		return khugepaged_enter(vma);
1584	return 0;
1585}
1586
1587void __khugepaged_exit(struct mm_struct *mm)
1588{
1589	struct mm_slot *mm_slot;
1590	int free = 0;
1591
1592	spin_lock(&khugepaged_mm_lock);
1593	mm_slot = get_mm_slot(mm);
1594	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1595		hlist_del(&mm_slot->hash);
1596		list_del(&mm_slot->mm_node);
1597		free = 1;
1598	}
1599	spin_unlock(&khugepaged_mm_lock);
1600
1601	if (free) {
1602		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1603		free_mm_slot(mm_slot);
1604		mmdrop(mm);
1605	} else if (mm_slot) {
1606		/*
1607		 * This is required to serialize against
1608		 * khugepaged_test_exit() (which is guaranteed to run
1609		 * under mmap sem read mode). Stop here (after we
1610		 * return all pagetables will be destroyed) until
1611		 * khugepaged has finished working on the pagetables
1612		 * under the mmap_sem.
1613		 */
1614		down_write(&mm->mmap_sem);
1615		up_write(&mm->mmap_sem);
1616	}
1617}
1618
1619static void release_pte_page(struct page *page)
1620{
1621	/* 0 stands for page_is_file_cache(page) == false */
1622	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1623	unlock_page(page);
1624	putback_lru_page(page);
1625}
1626
1627static void release_pte_pages(pte_t *pte, pte_t *_pte)
1628{
1629	while (--_pte >= pte) {
1630		pte_t pteval = *_pte;
1631		if (!pte_none(pteval))
1632			release_pte_page(pte_page(pteval));
1633	}
1634}
1635
1636static void release_all_pte_pages(pte_t *pte)
1637{
1638	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1639}
1640
1641static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1642					unsigned long address,
1643					pte_t *pte)
1644{
1645	struct page *page;
1646	pte_t *_pte;
1647	int referenced = 0, isolated = 0, none = 0;
1648	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1649	     _pte++, address += PAGE_SIZE) {
1650		pte_t pteval = *_pte;
1651		if (pte_none(pteval)) {
1652			if (++none <= khugepaged_max_ptes_none)
1653				continue;
1654			else {
1655				release_pte_pages(pte, _pte);
1656				goto out;
1657			}
1658		}
1659		if (!pte_present(pteval) || !pte_write(pteval)) {
1660			release_pte_pages(pte, _pte);
1661			goto out;
1662		}
1663		page = vm_normal_page(vma, address, pteval);
1664		if (unlikely(!page)) {
1665			release_pte_pages(pte, _pte);
1666			goto out;
1667		}
1668		VM_BUG_ON(PageCompound(page));
1669		BUG_ON(!PageAnon(page));
1670		VM_BUG_ON(!PageSwapBacked(page));
1671
1672		/* cannot use mapcount: can't collapse if there's a gup pin */
1673		if (page_count(page) != 1) {
1674			release_pte_pages(pte, _pte);
1675			goto out;
1676		}
1677		/*
1678		 * We can do it before isolate_lru_page because the
1679		 * page can't be freed from under us. NOTE: PG_lock
1680		 * is needed to serialize against split_huge_page
1681		 * when invoked from the VM.
1682		 */
1683		if (!trylock_page(page)) {
1684			release_pte_pages(pte, _pte);
1685			goto out;
1686		}
1687		/*
1688		 * Isolate the page to avoid collapsing an hugepage
1689		 * currently in use by the VM.
1690		 */
1691		if (isolate_lru_page(page)) {
1692			unlock_page(page);
1693			release_pte_pages(pte, _pte);
1694			goto out;
1695		}
1696		/* 0 stands for page_is_file_cache(page) == false */
1697		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698		VM_BUG_ON(!PageLocked(page));
1699		VM_BUG_ON(PageLRU(page));
1700
1701		/* If there is no mapped pte young don't collapse the page */
1702		if (pte_young(pteval) || PageReferenced(page) ||
1703		    mmu_notifier_test_young(vma->vm_mm, address))
1704			referenced = 1;
1705	}
1706	if (unlikely(!referenced))
1707		release_all_pte_pages(pte);
1708	else
1709		isolated = 1;
1710out:
1711	return isolated;
 
1712}
1713
1714static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1715				      struct vm_area_struct *vma,
1716				      unsigned long address,
1717				      spinlock_t *ptl)
1718{
1719	pte_t *_pte;
1720	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1721		pte_t pteval = *_pte;
1722		struct page *src_page;
1723
1724		if (pte_none(pteval)) {
1725			clear_user_highpage(page, address);
1726			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1727		} else {
1728			src_page = pte_page(pteval);
1729			copy_user_highpage(page, src_page, address, vma);
1730			VM_BUG_ON(page_mapcount(src_page) != 1);
1731			VM_BUG_ON(page_count(src_page) != 2);
1732			release_pte_page(src_page);
1733			/*
1734			 * ptl mostly unnecessary, but preempt has to
1735			 * be disabled to update the per-cpu stats
1736			 * inside page_remove_rmap().
1737			 */
1738			spin_lock(ptl);
1739			/*
1740			 * paravirt calls inside pte_clear here are
1741			 * superfluous.
1742			 */
1743			pte_clear(vma->vm_mm, address, _pte);
1744			page_remove_rmap(src_page);
1745			spin_unlock(ptl);
1746			free_page_and_swap_cache(src_page);
1747		}
1748
1749		address += PAGE_SIZE;
1750		page++;
1751	}
1752}
1753
1754static void collapse_huge_page(struct mm_struct *mm,
1755			       unsigned long address,
1756			       struct page **hpage,
1757			       struct vm_area_struct *vma,
1758			       int node)
1759{
1760	pgd_t *pgd;
1761	pud_t *pud;
1762	pmd_t *pmd, _pmd;
1763	pte_t *pte;
1764	pgtable_t pgtable;
1765	struct page *new_page;
1766	spinlock_t *ptl;
1767	int isolated;
1768	unsigned long hstart, hend;
1769
1770	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1771#ifndef CONFIG_NUMA
1772	up_read(&mm->mmap_sem);
1773	VM_BUG_ON(!*hpage);
1774	new_page = *hpage;
1775#else
1776	VM_BUG_ON(*hpage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1777	/*
1778	 * Allocate the page while the vma is still valid and under
1779	 * the mmap_sem read mode so there is no memory allocation
1780	 * later when we take the mmap_sem in write mode. This is more
1781	 * friendly behavior (OTOH it may actually hide bugs) to
1782	 * filesystems in userland with daemons allocating memory in
1783	 * the userland I/O paths.  Allocating memory with the
1784	 * mmap_sem in read mode is good idea also to allow greater
1785	 * scalability.
1786	 */
1787	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1788				      node, __GFP_OTHER_NODE);
1789
1790	/*
1791	 * After allocating the hugepage, release the mmap_sem read lock in
1792	 * preparation for taking it in write mode.
1793	 */
1794	up_read(&mm->mmap_sem);
1795	if (unlikely(!new_page)) {
1796		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1797		*hpage = ERR_PTR(-ENOMEM);
1798		return;
1799	}
1800#endif
1801
1802	count_vm_event(THP_COLLAPSE_ALLOC);
1803	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1804#ifdef CONFIG_NUMA
1805		put_page(new_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1806#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807		return;
1808	}
1809
1810	/*
1811	 * Prevent all access to pagetables with the exception of
1812	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1813	 * handled by the anon_vma lock + PG_lock.
1814	 */
1815	down_write(&mm->mmap_sem);
1816	if (unlikely(khugepaged_test_exit(mm)))
1817		goto out;
1818
1819	vma = find_vma(mm, address);
 
 
1820	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1821	hend = vma->vm_end & HPAGE_PMD_MASK;
1822	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1823		goto out;
1824
1825	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1826	    (vma->vm_flags & VM_NOHUGEPAGE))
1827		goto out;
1828
1829	if (!vma->anon_vma || vma->vm_ops)
1830		goto out;
1831	if (is_vma_temporary_stack(vma))
1832		goto out;
1833	/*
1834	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1835	 * true too, verify it here.
1836	 */
1837	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1838
1839	pgd = pgd_offset(mm, address);
1840	if (!pgd_present(*pgd))
1841		goto out;
1842
1843	pud = pud_offset(pgd, address);
1844	if (!pud_present(*pud))
1845		goto out;
1846
1847	pmd = pmd_offset(pud, address);
1848	/* pmd can't go away or become huge under us */
1849	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1850		goto out;
1851
1852	anon_vma_lock(vma->anon_vma);
1853
1854	pte = pte_offset_map(pmd, address);
1855	ptl = pte_lockptr(mm, pmd);
1856
1857	spin_lock(&mm->page_table_lock); /* probably unnecessary */
 
 
 
1858	/*
1859	 * After this gup_fast can't run anymore. This also removes
1860	 * any huge TLB entry from the CPU so we won't allow
1861	 * huge and small TLB entries for the same virtual address
1862	 * to avoid the risk of CPU bugs in that area.
1863	 */
1864	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1865	spin_unlock(&mm->page_table_lock);
 
1866
1867	spin_lock(ptl);
1868	isolated = __collapse_huge_page_isolate(vma, address, pte);
1869	spin_unlock(ptl);
1870
1871	if (unlikely(!isolated)) {
1872		pte_unmap(pte);
1873		spin_lock(&mm->page_table_lock);
1874		BUG_ON(!pmd_none(*pmd));
1875		set_pmd_at(mm, address, pmd, _pmd);
1876		spin_unlock(&mm->page_table_lock);
1877		anon_vma_unlock(vma->anon_vma);
 
 
 
 
 
1878		goto out;
1879	}
1880
1881	/*
1882	 * All pages are isolated and locked so anon_vma rmap
1883	 * can't run anymore.
1884	 */
1885	anon_vma_unlock(vma->anon_vma);
1886
1887	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1888	pte_unmap(pte);
1889	__SetPageUptodate(new_page);
1890	pgtable = pmd_pgtable(_pmd);
1891	VM_BUG_ON(page_count(pgtable) != 1);
1892	VM_BUG_ON(page_mapcount(pgtable) != 0);
1893
1894	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1895	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1896	_pmd = pmd_mkhuge(_pmd);
1897
1898	/*
1899	 * spin_lock() below is not the equivalent of smp_wmb(), so
1900	 * this is needed to avoid the copy_huge_page writes to become
1901	 * visible after the set_pmd_at() write.
1902	 */
1903	smp_wmb();
1904
1905	spin_lock(&mm->page_table_lock);
1906	BUG_ON(!pmd_none(*pmd));
1907	page_add_new_anon_rmap(new_page, vma, address);
 
1908	set_pmd_at(mm, address, pmd, _pmd);
1909	update_mmu_cache(vma, address, entry);
1910	prepare_pmd_huge_pte(pgtable, mm);
1911	mm->nr_ptes--;
1912	spin_unlock(&mm->page_table_lock);
1913
1914#ifndef CONFIG_NUMA
1915	*hpage = NULL;
1916#endif
1917	khugepaged_pages_collapsed++;
1918out_up_write:
1919	up_write(&mm->mmap_sem);
1920	return;
1921
1922out:
1923	mem_cgroup_uncharge_page(new_page);
1924#ifdef CONFIG_NUMA
1925	put_page(new_page);
1926#endif
1927	goto out_up_write;
1928}
1929
1930static int khugepaged_scan_pmd(struct mm_struct *mm,
1931			       struct vm_area_struct *vma,
1932			       unsigned long address,
1933			       struct page **hpage)
1934{
1935	pgd_t *pgd;
1936	pud_t *pud;
1937	pmd_t *pmd;
1938	pte_t *pte, *_pte;
1939	int ret = 0, referenced = 0, none = 0;
1940	struct page *page;
1941	unsigned long _address;
1942	spinlock_t *ptl;
1943	int node = -1;
1944
1945	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1946
1947	pgd = pgd_offset(mm, address);
1948	if (!pgd_present(*pgd))
1949		goto out;
1950
1951	pud = pud_offset(pgd, address);
1952	if (!pud_present(*pud))
1953		goto out;
1954
1955	pmd = pmd_offset(pud, address);
1956	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1957		goto out;
1958
 
1959	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1960	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1961	     _pte++, _address += PAGE_SIZE) {
1962		pte_t pteval = *_pte;
1963		if (pte_none(pteval)) {
1964			if (++none <= khugepaged_max_ptes_none)
1965				continue;
1966			else
1967				goto out_unmap;
1968		}
1969		if (!pte_present(pteval) || !pte_write(pteval))
1970			goto out_unmap;
1971		page = vm_normal_page(vma, _address, pteval);
1972		if (unlikely(!page))
1973			goto out_unmap;
1974		/*
1975		 * Chose the node of the first page. This could
1976		 * be more sophisticated and look at more pages,
1977		 * but isn't for now.
1978		 */
1979		if (node == -1)
1980			node = page_to_nid(page);
1981		VM_BUG_ON(PageCompound(page));
 
1982		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1983			goto out_unmap;
1984		/* cannot use mapcount: can't collapse if there's a gup pin */
1985		if (page_count(page) != 1)
1986			goto out_unmap;
1987		if (pte_young(pteval) || PageReferenced(page) ||
1988		    mmu_notifier_test_young(vma->vm_mm, address))
1989			referenced = 1;
1990	}
1991	if (referenced)
1992		ret = 1;
1993out_unmap:
1994	pte_unmap_unlock(pte, ptl);
1995	if (ret)
 
1996		/* collapse_huge_page will return with the mmap_sem released */
1997		collapse_huge_page(mm, address, hpage, vma, node);
 
1998out:
1999	return ret;
2000}
2001
2002static void collect_mm_slot(struct mm_slot *mm_slot)
2003{
2004	struct mm_struct *mm = mm_slot->mm;
2005
2006	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2007
2008	if (khugepaged_test_exit(mm)) {
2009		/* free mm_slot */
2010		hlist_del(&mm_slot->hash);
2011		list_del(&mm_slot->mm_node);
2012
2013		/*
2014		 * Not strictly needed because the mm exited already.
2015		 *
2016		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2017		 */
2018
2019		/* khugepaged_mm_lock actually not necessary for the below */
2020		free_mm_slot(mm_slot);
2021		mmdrop(mm);
2022	}
2023}
2024
2025static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2026					    struct page **hpage)
 
 
2027{
2028	struct mm_slot *mm_slot;
2029	struct mm_struct *mm;
2030	struct vm_area_struct *vma;
2031	int progress = 0;
2032
2033	VM_BUG_ON(!pages);
2034	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2035
2036	if (khugepaged_scan.mm_slot)
2037		mm_slot = khugepaged_scan.mm_slot;
2038	else {
2039		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2040				     struct mm_slot, mm_node);
2041		khugepaged_scan.address = 0;
2042		khugepaged_scan.mm_slot = mm_slot;
2043	}
2044	spin_unlock(&khugepaged_mm_lock);
2045
2046	mm = mm_slot->mm;
2047	down_read(&mm->mmap_sem);
2048	if (unlikely(khugepaged_test_exit(mm)))
2049		vma = NULL;
2050	else
2051		vma = find_vma(mm, khugepaged_scan.address);
2052
2053	progress++;
2054	for (; vma; vma = vma->vm_next) {
2055		unsigned long hstart, hend;
2056
2057		cond_resched();
2058		if (unlikely(khugepaged_test_exit(mm))) {
2059			progress++;
2060			break;
2061		}
2062
2063		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2064		     !khugepaged_always()) ||
2065		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2066		skip:
2067			progress++;
2068			continue;
2069		}
2070		if (!vma->anon_vma || vma->vm_ops)
2071			goto skip;
2072		if (is_vma_temporary_stack(vma))
2073			goto skip;
2074		/*
2075		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2076		 * must be true too, verify it here.
2077		 */
2078		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2079			  vma->vm_flags & VM_NO_THP);
2080
2081		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2082		hend = vma->vm_end & HPAGE_PMD_MASK;
2083		if (hstart >= hend)
2084			goto skip;
2085		if (khugepaged_scan.address > hend)
2086			goto skip;
2087		if (khugepaged_scan.address < hstart)
2088			khugepaged_scan.address = hstart;
2089		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2090
2091		while (khugepaged_scan.address < hend) {
2092			int ret;
2093			cond_resched();
2094			if (unlikely(khugepaged_test_exit(mm)))
2095				goto breakouterloop;
2096
2097			VM_BUG_ON(khugepaged_scan.address < hstart ||
2098				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2099				  hend);
2100			ret = khugepaged_scan_pmd(mm, vma,
2101						  khugepaged_scan.address,
2102						  hpage);
2103			/* move to next address */
2104			khugepaged_scan.address += HPAGE_PMD_SIZE;
2105			progress += HPAGE_PMD_NR;
2106			if (ret)
2107				/* we released mmap_sem so break loop */
2108				goto breakouterloop_mmap_sem;
2109			if (progress >= pages)
2110				goto breakouterloop;
2111		}
2112	}
2113breakouterloop:
2114	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2115breakouterloop_mmap_sem:
2116
2117	spin_lock(&khugepaged_mm_lock);
2118	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2119	/*
2120	 * Release the current mm_slot if this mm is about to die, or
2121	 * if we scanned all vmas of this mm.
2122	 */
2123	if (khugepaged_test_exit(mm) || !vma) {
2124		/*
2125		 * Make sure that if mm_users is reaching zero while
2126		 * khugepaged runs here, khugepaged_exit will find
2127		 * mm_slot not pointing to the exiting mm.
2128		 */
2129		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2130			khugepaged_scan.mm_slot = list_entry(
2131				mm_slot->mm_node.next,
2132				struct mm_slot, mm_node);
2133			khugepaged_scan.address = 0;
2134		} else {
2135			khugepaged_scan.mm_slot = NULL;
2136			khugepaged_full_scans++;
2137		}
2138
2139		collect_mm_slot(mm_slot);
2140	}
2141
2142	return progress;
2143}
2144
2145static int khugepaged_has_work(void)
2146{
2147	return !list_empty(&khugepaged_scan.mm_head) &&
2148		khugepaged_enabled();
2149}
2150
2151static int khugepaged_wait_event(void)
2152{
2153	return !list_empty(&khugepaged_scan.mm_head) ||
2154		!khugepaged_enabled();
2155}
2156
2157static void khugepaged_do_scan(struct page **hpage)
2158{
 
2159	unsigned int progress = 0, pass_through_head = 0;
2160	unsigned int pages = khugepaged_pages_to_scan;
 
2161
2162	barrier(); /* write khugepaged_pages_to_scan to local stack */
2163
2164	while (progress < pages) {
2165		cond_resched();
2166
2167#ifndef CONFIG_NUMA
2168		if (!*hpage) {
2169			*hpage = alloc_hugepage(khugepaged_defrag());
2170			if (unlikely(!*hpage)) {
2171				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2172				break;
2173			}
2174			count_vm_event(THP_COLLAPSE_ALLOC);
2175		}
2176#else
2177		if (IS_ERR(*hpage))
2178			break;
2179#endif
 
2180
2181		if (unlikely(kthread_should_stop() || freezing(current)))
2182			break;
2183
2184		spin_lock(&khugepaged_mm_lock);
2185		if (!khugepaged_scan.mm_slot)
2186			pass_through_head++;
2187		if (khugepaged_has_work() &&
2188		    pass_through_head < 2)
2189			progress += khugepaged_scan_mm_slot(pages - progress,
2190							    hpage);
2191		else
2192			progress = pages;
2193		spin_unlock(&khugepaged_mm_lock);
2194	}
2195}
2196
2197static void khugepaged_alloc_sleep(void)
2198{
2199	DEFINE_WAIT(wait);
2200	add_wait_queue(&khugepaged_wait, &wait);
2201	schedule_timeout_interruptible(
2202		msecs_to_jiffies(
2203			khugepaged_alloc_sleep_millisecs));
2204	remove_wait_queue(&khugepaged_wait, &wait);
2205}
2206
2207#ifndef CONFIG_NUMA
2208static struct page *khugepaged_alloc_hugepage(void)
2209{
2210	struct page *hpage;
2211
2212	do {
2213		hpage = alloc_hugepage(khugepaged_defrag());
2214		if (!hpage) {
2215			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2216			khugepaged_alloc_sleep();
2217		} else
2218			count_vm_event(THP_COLLAPSE_ALLOC);
2219	} while (unlikely(!hpage) &&
2220		 likely(khugepaged_enabled()));
2221	return hpage;
2222}
2223#endif
2224
2225static void khugepaged_loop(void)
2226{
2227	struct page *hpage;
2228
2229#ifdef CONFIG_NUMA
2230	hpage = NULL;
2231#endif
2232	while (likely(khugepaged_enabled())) {
2233#ifndef CONFIG_NUMA
2234		hpage = khugepaged_alloc_hugepage();
2235		if (unlikely(!hpage))
2236			break;
2237#else
2238		if (IS_ERR(hpage)) {
2239			khugepaged_alloc_sleep();
2240			hpage = NULL;
2241		}
2242#endif
2243
2244		khugepaged_do_scan(&hpage);
2245#ifndef CONFIG_NUMA
2246		if (hpage)
2247			put_page(hpage);
2248#endif
2249		try_to_freeze();
2250		if (unlikely(kthread_should_stop()))
2251			break;
2252		if (khugepaged_has_work()) {
2253			DEFINE_WAIT(wait);
2254			if (!khugepaged_scan_sleep_millisecs)
2255				continue;
2256			add_wait_queue(&khugepaged_wait, &wait);
2257			schedule_timeout_interruptible(
2258				msecs_to_jiffies(
2259					khugepaged_scan_sleep_millisecs));
2260			remove_wait_queue(&khugepaged_wait, &wait);
2261		} else if (khugepaged_enabled())
2262			wait_event_freezable(khugepaged_wait,
2263					     khugepaged_wait_event());
2264	}
 
 
 
2265}
2266
2267static int khugepaged(void *none)
2268{
2269	struct mm_slot *mm_slot;
2270
2271	set_freezable();
2272	set_user_nice(current, 19);
2273
2274	/* serialize with start_khugepaged() */
2275	mutex_lock(&khugepaged_mutex);
2276
2277	for (;;) {
2278		mutex_unlock(&khugepaged_mutex);
2279		VM_BUG_ON(khugepaged_thread != current);
2280		khugepaged_loop();
2281		VM_BUG_ON(khugepaged_thread != current);
2282
2283		mutex_lock(&khugepaged_mutex);
2284		if (!khugepaged_enabled())
2285			break;
2286		if (unlikely(kthread_should_stop()))
2287			break;
2288	}
2289
2290	spin_lock(&khugepaged_mm_lock);
2291	mm_slot = khugepaged_scan.mm_slot;
2292	khugepaged_scan.mm_slot = NULL;
2293	if (mm_slot)
2294		collect_mm_slot(mm_slot);
2295	spin_unlock(&khugepaged_mm_lock);
 
 
2296
2297	khugepaged_thread = NULL;
2298	mutex_unlock(&khugepaged_mutex);
 
 
 
 
 
2299
2300	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2301}
2302
2303void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
 
2304{
 
2305	struct page *page;
 
 
 
 
 
 
2306
2307	spin_lock(&mm->page_table_lock);
 
 
 
 
2308	if (unlikely(!pmd_trans_huge(*pmd))) {
2309		spin_unlock(&mm->page_table_lock);
 
 
 
 
 
 
 
2310		return;
2311	}
2312	page = pmd_page(*pmd);
2313	VM_BUG_ON(!page_count(page));
2314	get_page(page);
2315	spin_unlock(&mm->page_table_lock);
 
2316
2317	split_huge_page(page);
2318
2319	put_page(page);
2320	BUG_ON(pmd_trans_huge(*pmd));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2321}
2322
2323static void split_huge_page_address(struct mm_struct *mm,
2324				    unsigned long address)
2325{
2326	pgd_t *pgd;
2327	pud_t *pud;
2328	pmd_t *pmd;
2329
2330	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2331
2332	pgd = pgd_offset(mm, address);
2333	if (!pgd_present(*pgd))
2334		return;
2335
2336	pud = pud_offset(pgd, address);
2337	if (!pud_present(*pud))
2338		return;
2339
2340	pmd = pmd_offset(pud, address);
2341	if (!pmd_present(*pmd))
2342		return;
2343	/*
2344	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2345	 * materialize from under us.
2346	 */
2347	split_huge_page_pmd(mm, pmd);
2348}
2349
2350void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2351			     unsigned long start,
2352			     unsigned long end,
2353			     long adjust_next)
2354{
2355	/*
2356	 * If the new start address isn't hpage aligned and it could
2357	 * previously contain an hugepage: check if we need to split
2358	 * an huge pmd.
2359	 */
2360	if (start & ~HPAGE_PMD_MASK &&
2361	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2362	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2363		split_huge_page_address(vma->vm_mm, start);
2364
2365	/*
2366	 * If the new end address isn't hpage aligned and it could
2367	 * previously contain an hugepage: check if we need to split
2368	 * an huge pmd.
2369	 */
2370	if (end & ~HPAGE_PMD_MASK &&
2371	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2372	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2373		split_huge_page_address(vma->vm_mm, end);
2374
2375	/*
2376	 * If we're also updating the vma->vm_next->vm_start, if the new
2377	 * vm_next->vm_start isn't page aligned and it could previously
2378	 * contain an hugepage: check if we need to split an huge pmd.
2379	 */
2380	if (adjust_next > 0) {
2381		struct vm_area_struct *next = vma->vm_next;
2382		unsigned long nstart = next->vm_start;
2383		nstart += adjust_next << PAGE_SHIFT;
2384		if (nstart & ~HPAGE_PMD_MASK &&
2385		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2386		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2387			split_huge_page_address(next->vm_mm, nstart);
2388	}
2389}
v3.15
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
  15#include <linux/shrinker.h>
  16#include <linux/mm_inline.h>
  17#include <linux/kthread.h>
  18#include <linux/khugepaged.h>
  19#include <linux/freezer.h>
  20#include <linux/mman.h>
  21#include <linux/pagemap.h>
  22#include <linux/migrate.h>
  23#include <linux/hashtable.h>
  24
  25#include <asm/tlb.h>
  26#include <asm/pgalloc.h>
  27#include "internal.h"
  28
  29/*
  30 * By default transparent hugepage support is disabled in order that avoid
  31 * to risk increase the memory footprint of applications without a guaranteed
  32 * benefit. When transparent hugepage support is enabled, is for all mappings,
  33 * and khugepaged scans all mappings.
  34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  35 * for all hugepage allocations.
  36 */
  37unsigned long transparent_hugepage_flags __read_mostly =
  38#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  39	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  40#endif
  41#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  42	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  43#endif
  44	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  45	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  46	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  47
  48/* default scan 8*512 pte (or vmas) every 30 second */
  49static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  50static unsigned int khugepaged_pages_collapsed;
  51static unsigned int khugepaged_full_scans;
  52static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  53/* during fragmentation poll the hugepage allocator once every minute */
  54static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  55static struct task_struct *khugepaged_thread __read_mostly;
  56static DEFINE_MUTEX(khugepaged_mutex);
  57static DEFINE_SPINLOCK(khugepaged_mm_lock);
  58static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  59/*
  60 * default collapse hugepages if there is at least one pte mapped like
  61 * it would have happened if the vma was large enough during page
  62 * fault.
  63 */
  64static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  65
  66static int khugepaged(void *none);
 
  67static int khugepaged_slab_init(void);
 
  68
  69#define MM_SLOTS_HASH_BITS 10
  70static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  71
  72static struct kmem_cache *mm_slot_cache __read_mostly;
  73
  74/**
  75 * struct mm_slot - hash lookup from mm to mm_slot
  76 * @hash: hash collision list
  77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  78 * @mm: the mm that this information is valid for
  79 */
  80struct mm_slot {
  81	struct hlist_node hash;
  82	struct list_head mm_node;
  83	struct mm_struct *mm;
  84};
  85
  86/**
  87 * struct khugepaged_scan - cursor for scanning
  88 * @mm_head: the head of the mm list to scan
  89 * @mm_slot: the current mm_slot we are scanning
  90 * @address: the next address inside that to be scanned
  91 *
  92 * There is only the one khugepaged_scan instance of this cursor structure.
  93 */
  94struct khugepaged_scan {
  95	struct list_head mm_head;
  96	struct mm_slot *mm_slot;
  97	unsigned long address;
  98};
  99static struct khugepaged_scan khugepaged_scan = {
 100	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 101};
 102
 103
 104static int set_recommended_min_free_kbytes(void)
 105{
 106	struct zone *zone;
 107	int nr_zones = 0;
 108	unsigned long recommended_min;
 
 109
 110	if (!khugepaged_enabled())
 
 
 
 111		return 0;
 112
 113	for_each_populated_zone(zone)
 114		nr_zones++;
 115
 116	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 117	recommended_min = pageblock_nr_pages * nr_zones * 2;
 118
 119	/*
 120	 * Make sure that on average at least two pageblocks are almost free
 121	 * of another type, one for a migratetype to fall back to and a
 122	 * second to avoid subsequent fallbacks of other types There are 3
 123	 * MIGRATE_TYPES we care about.
 124	 */
 125	recommended_min += pageblock_nr_pages * nr_zones *
 126			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 127
 128	/* don't ever allow to reserve more than 5% of the lowmem */
 129	recommended_min = min(recommended_min,
 130			      (unsigned long) nr_free_buffer_pages() / 20);
 131	recommended_min <<= (PAGE_SHIFT-10);
 132
 133	if (recommended_min > min_free_kbytes) {
 134		if (user_min_free_kbytes >= 0)
 135			pr_info("raising min_free_kbytes from %d to %lu "
 136				"to help transparent hugepage allocations\n",
 137				min_free_kbytes, recommended_min);
 138
 139		min_free_kbytes = recommended_min;
 140	}
 141	setup_per_zone_wmarks();
 142	return 0;
 143}
 144late_initcall(set_recommended_min_free_kbytes);
 145
 146static int start_khugepaged(void)
 147{
 148	int err = 0;
 149	if (khugepaged_enabled()) {
 
 
 
 
 
 
 150		if (!khugepaged_thread)
 151			khugepaged_thread = kthread_run(khugepaged, NULL,
 152							"khugepaged");
 153		if (unlikely(IS_ERR(khugepaged_thread))) {
 154			printk(KERN_ERR
 155			       "khugepaged: kthread_run(khugepaged) failed\n");
 156			err = PTR_ERR(khugepaged_thread);
 157			khugepaged_thread = NULL;
 158		}
 159
 160		if (!list_empty(&khugepaged_scan.mm_head))
 
 161			wake_up_interruptible(&khugepaged_wait);
 162
 163		set_recommended_min_free_kbytes();
 164	} else if (khugepaged_thread) {
 165		kthread_stop(khugepaged_thread);
 166		khugepaged_thread = NULL;
 167	}
 168
 169	return err;
 170}
 171
 172static atomic_t huge_zero_refcount;
 173static struct page *huge_zero_page __read_mostly;
 174
 175static inline bool is_huge_zero_page(struct page *page)
 176{
 177	return ACCESS_ONCE(huge_zero_page) == page;
 178}
 179
 180static inline bool is_huge_zero_pmd(pmd_t pmd)
 181{
 182	return is_huge_zero_page(pmd_page(pmd));
 183}
 184
 185static struct page *get_huge_zero_page(void)
 186{
 187	struct page *zero_page;
 188retry:
 189	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 190		return ACCESS_ONCE(huge_zero_page);
 191
 192	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 193			HPAGE_PMD_ORDER);
 194	if (!zero_page) {
 195		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 196		return NULL;
 197	}
 198	count_vm_event(THP_ZERO_PAGE_ALLOC);
 199	preempt_disable();
 200	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 201		preempt_enable();
 202		__free_page(zero_page);
 203		goto retry;
 204	}
 205
 206	/* We take additional reference here. It will be put back by shrinker */
 207	atomic_set(&huge_zero_refcount, 2);
 208	preempt_enable();
 209	return ACCESS_ONCE(huge_zero_page);
 210}
 211
 212static void put_huge_zero_page(void)
 213{
 214	/*
 215	 * Counter should never go to zero here. Only shrinker can put
 216	 * last reference.
 217	 */
 218	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 219}
 220
 221static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 222					struct shrink_control *sc)
 223{
 224	/* we can free zero page only if last reference remains */
 225	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 226}
 227
 228static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 229				       struct shrink_control *sc)
 230{
 231	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 232		struct page *zero_page = xchg(&huge_zero_page, NULL);
 233		BUG_ON(zero_page == NULL);
 234		__free_page(zero_page);
 235		return HPAGE_PMD_NR;
 236	}
 237
 238	return 0;
 239}
 240
 241static struct shrinker huge_zero_page_shrinker = {
 242	.count_objects = shrink_huge_zero_page_count,
 243	.scan_objects = shrink_huge_zero_page_scan,
 244	.seeks = DEFAULT_SEEKS,
 245};
 246
 247#ifdef CONFIG_SYSFS
 248
 249static ssize_t double_flag_show(struct kobject *kobj,
 250				struct kobj_attribute *attr, char *buf,
 251				enum transparent_hugepage_flag enabled,
 252				enum transparent_hugepage_flag req_madv)
 253{
 254	if (test_bit(enabled, &transparent_hugepage_flags)) {
 255		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 256		return sprintf(buf, "[always] madvise never\n");
 257	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 258		return sprintf(buf, "always [madvise] never\n");
 259	else
 260		return sprintf(buf, "always madvise [never]\n");
 261}
 262static ssize_t double_flag_store(struct kobject *kobj,
 263				 struct kobj_attribute *attr,
 264				 const char *buf, size_t count,
 265				 enum transparent_hugepage_flag enabled,
 266				 enum transparent_hugepage_flag req_madv)
 267{
 268	if (!memcmp("always", buf,
 269		    min(sizeof("always")-1, count))) {
 270		set_bit(enabled, &transparent_hugepage_flags);
 271		clear_bit(req_madv, &transparent_hugepage_flags);
 272	} else if (!memcmp("madvise", buf,
 273			   min(sizeof("madvise")-1, count))) {
 274		clear_bit(enabled, &transparent_hugepage_flags);
 275		set_bit(req_madv, &transparent_hugepage_flags);
 276	} else if (!memcmp("never", buf,
 277			   min(sizeof("never")-1, count))) {
 278		clear_bit(enabled, &transparent_hugepage_flags);
 279		clear_bit(req_madv, &transparent_hugepage_flags);
 280	} else
 281		return -EINVAL;
 282
 283	return count;
 284}
 285
 286static ssize_t enabled_show(struct kobject *kobj,
 287			    struct kobj_attribute *attr, char *buf)
 288{
 289	return double_flag_show(kobj, attr, buf,
 290				TRANSPARENT_HUGEPAGE_FLAG,
 291				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 292}
 293static ssize_t enabled_store(struct kobject *kobj,
 294			     struct kobj_attribute *attr,
 295			     const char *buf, size_t count)
 296{
 297	ssize_t ret;
 298
 299	ret = double_flag_store(kobj, attr, buf, count,
 300				TRANSPARENT_HUGEPAGE_FLAG,
 301				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 302
 303	if (ret > 0) {
 304		int err;
 305
 306		mutex_lock(&khugepaged_mutex);
 307		err = start_khugepaged();
 308		mutex_unlock(&khugepaged_mutex);
 309
 310		if (err)
 311			ret = err;
 312	}
 313
 
 
 
 
 
 
 
 314	return ret;
 315}
 316static struct kobj_attribute enabled_attr =
 317	__ATTR(enabled, 0644, enabled_show, enabled_store);
 318
 319static ssize_t single_flag_show(struct kobject *kobj,
 320				struct kobj_attribute *attr, char *buf,
 321				enum transparent_hugepage_flag flag)
 322{
 323	return sprintf(buf, "%d\n",
 324		       !!test_bit(flag, &transparent_hugepage_flags));
 325}
 326
 327static ssize_t single_flag_store(struct kobject *kobj,
 328				 struct kobj_attribute *attr,
 329				 const char *buf, size_t count,
 330				 enum transparent_hugepage_flag flag)
 331{
 332	unsigned long value;
 333	int ret;
 334
 335	ret = kstrtoul(buf, 10, &value);
 336	if (ret < 0)
 337		return ret;
 338	if (value > 1)
 339		return -EINVAL;
 340
 341	if (value)
 342		set_bit(flag, &transparent_hugepage_flags);
 343	else
 344		clear_bit(flag, &transparent_hugepage_flags);
 345
 346	return count;
 347}
 348
 349/*
 350 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 351 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 352 * memory just to allocate one more hugepage.
 353 */
 354static ssize_t defrag_show(struct kobject *kobj,
 355			   struct kobj_attribute *attr, char *buf)
 356{
 357	return double_flag_show(kobj, attr, buf,
 358				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 359				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 360}
 361static ssize_t defrag_store(struct kobject *kobj,
 362			    struct kobj_attribute *attr,
 363			    const char *buf, size_t count)
 364{
 365	return double_flag_store(kobj, attr, buf, count,
 366				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 367				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 368}
 369static struct kobj_attribute defrag_attr =
 370	__ATTR(defrag, 0644, defrag_show, defrag_store);
 371
 372static ssize_t use_zero_page_show(struct kobject *kobj,
 373		struct kobj_attribute *attr, char *buf)
 374{
 375	return single_flag_show(kobj, attr, buf,
 376				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 377}
 378static ssize_t use_zero_page_store(struct kobject *kobj,
 379		struct kobj_attribute *attr, const char *buf, size_t count)
 380{
 381	return single_flag_store(kobj, attr, buf, count,
 382				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 383}
 384static struct kobj_attribute use_zero_page_attr =
 385	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 386#ifdef CONFIG_DEBUG_VM
 387static ssize_t debug_cow_show(struct kobject *kobj,
 388				struct kobj_attribute *attr, char *buf)
 389{
 390	return single_flag_show(kobj, attr, buf,
 391				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 392}
 393static ssize_t debug_cow_store(struct kobject *kobj,
 394			       struct kobj_attribute *attr,
 395			       const char *buf, size_t count)
 396{
 397	return single_flag_store(kobj, attr, buf, count,
 398				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 399}
 400static struct kobj_attribute debug_cow_attr =
 401	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 402#endif /* CONFIG_DEBUG_VM */
 403
 404static struct attribute *hugepage_attr[] = {
 405	&enabled_attr.attr,
 406	&defrag_attr.attr,
 407	&use_zero_page_attr.attr,
 408#ifdef CONFIG_DEBUG_VM
 409	&debug_cow_attr.attr,
 410#endif
 411	NULL,
 412};
 413
 414static struct attribute_group hugepage_attr_group = {
 415	.attrs = hugepage_attr,
 416};
 417
 418static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 419					 struct kobj_attribute *attr,
 420					 char *buf)
 421{
 422	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 423}
 424
 425static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 426					  struct kobj_attribute *attr,
 427					  const char *buf, size_t count)
 428{
 429	unsigned long msecs;
 430	int err;
 431
 432	err = kstrtoul(buf, 10, &msecs);
 433	if (err || msecs > UINT_MAX)
 434		return -EINVAL;
 435
 436	khugepaged_scan_sleep_millisecs = msecs;
 437	wake_up_interruptible(&khugepaged_wait);
 438
 439	return count;
 440}
 441static struct kobj_attribute scan_sleep_millisecs_attr =
 442	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 443	       scan_sleep_millisecs_store);
 444
 445static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 446					  struct kobj_attribute *attr,
 447					  char *buf)
 448{
 449	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 450}
 451
 452static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 453					   struct kobj_attribute *attr,
 454					   const char *buf, size_t count)
 455{
 456	unsigned long msecs;
 457	int err;
 458
 459	err = kstrtoul(buf, 10, &msecs);
 460	if (err || msecs > UINT_MAX)
 461		return -EINVAL;
 462
 463	khugepaged_alloc_sleep_millisecs = msecs;
 464	wake_up_interruptible(&khugepaged_wait);
 465
 466	return count;
 467}
 468static struct kobj_attribute alloc_sleep_millisecs_attr =
 469	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 470	       alloc_sleep_millisecs_store);
 471
 472static ssize_t pages_to_scan_show(struct kobject *kobj,
 473				  struct kobj_attribute *attr,
 474				  char *buf)
 475{
 476	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 477}
 478static ssize_t pages_to_scan_store(struct kobject *kobj,
 479				   struct kobj_attribute *attr,
 480				   const char *buf, size_t count)
 481{
 482	int err;
 483	unsigned long pages;
 484
 485	err = kstrtoul(buf, 10, &pages);
 486	if (err || !pages || pages > UINT_MAX)
 487		return -EINVAL;
 488
 489	khugepaged_pages_to_scan = pages;
 490
 491	return count;
 492}
 493static struct kobj_attribute pages_to_scan_attr =
 494	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 495	       pages_to_scan_store);
 496
 497static ssize_t pages_collapsed_show(struct kobject *kobj,
 498				    struct kobj_attribute *attr,
 499				    char *buf)
 500{
 501	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 502}
 503static struct kobj_attribute pages_collapsed_attr =
 504	__ATTR_RO(pages_collapsed);
 505
 506static ssize_t full_scans_show(struct kobject *kobj,
 507			       struct kobj_attribute *attr,
 508			       char *buf)
 509{
 510	return sprintf(buf, "%u\n", khugepaged_full_scans);
 511}
 512static struct kobj_attribute full_scans_attr =
 513	__ATTR_RO(full_scans);
 514
 515static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 516				      struct kobj_attribute *attr, char *buf)
 517{
 518	return single_flag_show(kobj, attr, buf,
 519				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 520}
 521static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 522				       struct kobj_attribute *attr,
 523				       const char *buf, size_t count)
 524{
 525	return single_flag_store(kobj, attr, buf, count,
 526				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 527}
 528static struct kobj_attribute khugepaged_defrag_attr =
 529	__ATTR(defrag, 0644, khugepaged_defrag_show,
 530	       khugepaged_defrag_store);
 531
 532/*
 533 * max_ptes_none controls if khugepaged should collapse hugepages over
 534 * any unmapped ptes in turn potentially increasing the memory
 535 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 536 * reduce the available free memory in the system as it
 537 * runs. Increasing max_ptes_none will instead potentially reduce the
 538 * free memory in the system during the khugepaged scan.
 539 */
 540static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 541					     struct kobj_attribute *attr,
 542					     char *buf)
 543{
 544	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 545}
 546static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 547					      struct kobj_attribute *attr,
 548					      const char *buf, size_t count)
 549{
 550	int err;
 551	unsigned long max_ptes_none;
 552
 553	err = kstrtoul(buf, 10, &max_ptes_none);
 554	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 555		return -EINVAL;
 556
 557	khugepaged_max_ptes_none = max_ptes_none;
 558
 559	return count;
 560}
 561static struct kobj_attribute khugepaged_max_ptes_none_attr =
 562	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 563	       khugepaged_max_ptes_none_store);
 564
 565static struct attribute *khugepaged_attr[] = {
 566	&khugepaged_defrag_attr.attr,
 567	&khugepaged_max_ptes_none_attr.attr,
 568	&pages_to_scan_attr.attr,
 569	&pages_collapsed_attr.attr,
 570	&full_scans_attr.attr,
 571	&scan_sleep_millisecs_attr.attr,
 572	&alloc_sleep_millisecs_attr.attr,
 573	NULL,
 574};
 575
 576static struct attribute_group khugepaged_attr_group = {
 577	.attrs = khugepaged_attr,
 578	.name = "khugepaged",
 579};
 
 580
 581static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 582{
 583	int err;
 
 
 
 584
 585	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 586	if (unlikely(!*hugepage_kobj)) {
 587		printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
 588		return -ENOMEM;
 589	}
 590
 591	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 592	if (err) {
 593		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
 594		goto delete_obj;
 
 
 595	}
 596
 597	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 598	if (err) {
 599		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
 600		goto remove_hp_group;
 601	}
 602
 603	return 0;
 604
 605remove_hp_group:
 606	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 607delete_obj:
 608	kobject_put(*hugepage_kobj);
 609	return err;
 610}
 611
 612static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 613{
 614	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 615	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 616	kobject_put(hugepage_kobj);
 617}
 618#else
 619static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 620{
 621	return 0;
 622}
 623
 624static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 625{
 626}
 627#endif /* CONFIG_SYSFS */
 628
 629static int __init hugepage_init(void)
 630{
 631	int err;
 632	struct kobject *hugepage_kobj;
 633
 634	if (!has_transparent_hugepage()) {
 635		transparent_hugepage_flags = 0;
 636		return -EINVAL;
 637	}
 638
 639	err = hugepage_init_sysfs(&hugepage_kobj);
 640	if (err)
 641		return err;
 642
 643	err = khugepaged_slab_init();
 644	if (err)
 645		goto out;
 646
 647	register_shrinker(&huge_zero_page_shrinker);
 
 
 
 
 648
 649	/*
 650	 * By default disable transparent hugepages on smaller systems,
 651	 * where the extra memory used could hurt more than TLB overhead
 652	 * is likely to save.  The admin can still enable it through /sys.
 653	 */
 654	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 655		transparent_hugepage_flags = 0;
 656
 657	start_khugepaged();
 658
 659	return 0;
 
 660out:
 661	hugepage_exit_sysfs(hugepage_kobj);
 662	return err;
 663}
 664subsys_initcall(hugepage_init);
 665
 666static int __init setup_transparent_hugepage(char *str)
 667{
 668	int ret = 0;
 669	if (!str)
 670		goto out;
 671	if (!strcmp(str, "always")) {
 672		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 673			&transparent_hugepage_flags);
 674		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 675			  &transparent_hugepage_flags);
 676		ret = 1;
 677	} else if (!strcmp(str, "madvise")) {
 678		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 679			  &transparent_hugepage_flags);
 680		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 681			&transparent_hugepage_flags);
 682		ret = 1;
 683	} else if (!strcmp(str, "never")) {
 684		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 685			  &transparent_hugepage_flags);
 686		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 687			  &transparent_hugepage_flags);
 688		ret = 1;
 689	}
 690out:
 691	if (!ret)
 692		printk(KERN_WARNING
 693		       "transparent_hugepage= cannot parse, ignored\n");
 694	return ret;
 695}
 696__setup("transparent_hugepage=", setup_transparent_hugepage);
 697
 698pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 699{
 700	if (likely(vma->vm_flags & VM_WRITE))
 701		pmd = pmd_mkwrite(pmd);
 702	return pmd;
 703}
 704
 705static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
 706{
 707	pmd_t entry;
 708	entry = mk_pmd(page, prot);
 709	entry = pmd_mkhuge(entry);
 710	return entry;
 711}
 712
 713static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 714					struct vm_area_struct *vma,
 715					unsigned long haddr, pmd_t *pmd,
 716					struct page *page)
 717{
 
 718	pgtable_t pgtable;
 719	spinlock_t *ptl;
 720
 721	VM_BUG_ON_PAGE(!PageCompound(page), page);
 722	pgtable = pte_alloc_one(mm, haddr);
 723	if (unlikely(!pgtable))
 
 
 724		return VM_FAULT_OOM;
 
 725
 726	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 727	/*
 728	 * The memory barrier inside __SetPageUptodate makes sure that
 729	 * clear_huge_page writes become visible before the set_pmd_at()
 730	 * write.
 731	 */
 732	__SetPageUptodate(page);
 733
 734	ptl = pmd_lock(mm, pmd);
 735	if (unlikely(!pmd_none(*pmd))) {
 736		spin_unlock(ptl);
 737		mem_cgroup_uncharge_page(page);
 738		put_page(page);
 739		pte_free(mm, pgtable);
 740	} else {
 741		pmd_t entry;
 742		entry = mk_huge_pmd(page, vma->vm_page_prot);
 743		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 
 
 
 
 
 
 
 744		page_add_new_anon_rmap(page, vma, haddr);
 745		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 746		set_pmd_at(mm, haddr, pmd, entry);
 
 747		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 748		atomic_long_inc(&mm->nr_ptes);
 749		spin_unlock(ptl);
 750	}
 751
 752	return 0;
 753}
 754
 755static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 756{
 757	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 758}
 759
 760static inline struct page *alloc_hugepage_vma(int defrag,
 761					      struct vm_area_struct *vma,
 762					      unsigned long haddr, int nd,
 763					      gfp_t extra_gfp)
 764{
 765	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 766			       HPAGE_PMD_ORDER, vma, haddr, nd);
 767}
 768
 769/* Caller must hold page table lock. */
 770static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 771		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 772		struct page *zero_page)
 773{
 774	pmd_t entry;
 775	if (!pmd_none(*pmd))
 776		return false;
 777	entry = mk_pmd(zero_page, vma->vm_page_prot);
 778	entry = pmd_wrprotect(entry);
 779	entry = pmd_mkhuge(entry);
 780	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 781	set_pmd_at(mm, haddr, pmd, entry);
 782	atomic_long_inc(&mm->nr_ptes);
 783	return true;
 784}
 
 785
 786int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 787			       unsigned long address, pmd_t *pmd,
 788			       unsigned int flags)
 789{
 790	struct page *page;
 791	unsigned long haddr = address & HPAGE_PMD_MASK;
 
 792
 793	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 794		return VM_FAULT_FALLBACK;
 795	if (unlikely(anon_vma_prepare(vma)))
 796		return VM_FAULT_OOM;
 797	if (unlikely(khugepaged_enter(vma)))
 798		return VM_FAULT_OOM;
 799	if (!(flags & FAULT_FLAG_WRITE) &&
 800			transparent_hugepage_use_zero_page()) {
 801		spinlock_t *ptl;
 802		pgtable_t pgtable;
 803		struct page *zero_page;
 804		bool set;
 805		pgtable = pte_alloc_one(mm, haddr);
 806		if (unlikely(!pgtable))
 807			return VM_FAULT_OOM;
 808		zero_page = get_huge_zero_page();
 809		if (unlikely(!zero_page)) {
 810			pte_free(mm, pgtable);
 811			count_vm_event(THP_FAULT_FALLBACK);
 812			return VM_FAULT_FALLBACK;
 813		}
 814		ptl = pmd_lock(mm, pmd);
 815		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
 816				zero_page);
 817		spin_unlock(ptl);
 818		if (!set) {
 819			pte_free(mm, pgtable);
 820			put_huge_zero_page();
 821		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 822		return 0;
 823	}
 824	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 825			vma, haddr, numa_node_id(), 0);
 826	if (unlikely(!page)) {
 827		count_vm_event(THP_FAULT_FALLBACK);
 828		return VM_FAULT_FALLBACK;
 829	}
 830	if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
 831		put_page(page);
 832		count_vm_event(THP_FAULT_FALLBACK);
 833		return VM_FAULT_FALLBACK;
 834	}
 835	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
 836		mem_cgroup_uncharge_page(page);
 837		put_page(page);
 838		count_vm_event(THP_FAULT_FALLBACK);
 839		return VM_FAULT_FALLBACK;
 840	}
 841
 842	count_vm_event(THP_FAULT_ALLOC);
 843	return 0;
 844}
 845
 846int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 847		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 848		  struct vm_area_struct *vma)
 849{
 850	spinlock_t *dst_ptl, *src_ptl;
 851	struct page *src_page;
 852	pmd_t pmd;
 853	pgtable_t pgtable;
 854	int ret;
 855
 856	ret = -ENOMEM;
 857	pgtable = pte_alloc_one(dst_mm, addr);
 858	if (unlikely(!pgtable))
 859		goto out;
 860
 861	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 862	src_ptl = pmd_lockptr(src_mm, src_pmd);
 863	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 864
 865	ret = -EAGAIN;
 866	pmd = *src_pmd;
 867	if (unlikely(!pmd_trans_huge(pmd))) {
 868		pte_free(dst_mm, pgtable);
 869		goto out_unlock;
 870	}
 871	/*
 872	 * When page table lock is held, the huge zero pmd should not be
 873	 * under splitting since we don't split the page itself, only pmd to
 874	 * a page table.
 875	 */
 876	if (is_huge_zero_pmd(pmd)) {
 877		struct page *zero_page;
 878		bool set;
 879		/*
 880		 * get_huge_zero_page() will never allocate a new page here,
 881		 * since we already have a zero page to copy. It just takes a
 882		 * reference.
 883		 */
 884		zero_page = get_huge_zero_page();
 885		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 886				zero_page);
 887		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
 888		ret = 0;
 889		goto out_unlock;
 890	}
 891
 892	if (unlikely(pmd_trans_splitting(pmd))) {
 893		/* split huge page running from under us */
 894		spin_unlock(src_ptl);
 895		spin_unlock(dst_ptl);
 896		pte_free(dst_mm, pgtable);
 897
 898		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 899		goto out;
 900	}
 901	src_page = pmd_page(pmd);
 902	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 903	get_page(src_page);
 904	page_dup_rmap(src_page);
 905	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 906
 907	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 908	pmd = pmd_mkold(pmd_wrprotect(pmd));
 909	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 910	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 911	atomic_long_inc(&dst_mm->nr_ptes);
 912
 913	ret = 0;
 914out_unlock:
 915	spin_unlock(src_ptl);
 916	spin_unlock(dst_ptl);
 917out:
 918	return ret;
 919}
 920
 921void huge_pmd_set_accessed(struct mm_struct *mm,
 922			   struct vm_area_struct *vma,
 923			   unsigned long address,
 924			   pmd_t *pmd, pmd_t orig_pmd,
 925			   int dirty)
 926{
 927	spinlock_t *ptl;
 928	pmd_t entry;
 929	unsigned long haddr;
 930
 931	ptl = pmd_lock(mm, pmd);
 932	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 933		goto unlock;
 934
 935	entry = pmd_mkyoung(orig_pmd);
 936	haddr = address & HPAGE_PMD_MASK;
 937	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
 938		update_mmu_cache_pmd(vma, address, pmd);
 939
 940unlock:
 941	spin_unlock(ptl);
 
 
 
 942}
 943
 944static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 945					struct vm_area_struct *vma,
 946					unsigned long address,
 947					pmd_t *pmd, pmd_t orig_pmd,
 948					struct page *page,
 949					unsigned long haddr)
 950{
 951	spinlock_t *ptl;
 952	pgtable_t pgtable;
 953	pmd_t _pmd;
 954	int ret = 0, i;
 955	struct page **pages;
 956	unsigned long mmun_start;	/* For mmu_notifiers */
 957	unsigned long mmun_end;		/* For mmu_notifiers */
 958
 959	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 960			GFP_KERNEL);
 961	if (unlikely(!pages)) {
 962		ret |= VM_FAULT_OOM;
 963		goto out;
 964	}
 965
 966	for (i = 0; i < HPAGE_PMD_NR; i++) {
 967		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 968					       __GFP_OTHER_NODE,
 969					       vma, address, page_to_nid(page));
 970		if (unlikely(!pages[i] ||
 971			     mem_cgroup_charge_anon(pages[i], mm,
 972						       GFP_KERNEL))) {
 973			if (pages[i])
 974				put_page(pages[i]);
 975			mem_cgroup_uncharge_start();
 976			while (--i >= 0) {
 977				mem_cgroup_uncharge_page(pages[i]);
 978				put_page(pages[i]);
 979			}
 980			mem_cgroup_uncharge_end();
 981			kfree(pages);
 982			ret |= VM_FAULT_OOM;
 983			goto out;
 984		}
 985	}
 986
 987	for (i = 0; i < HPAGE_PMD_NR; i++) {
 988		copy_user_highpage(pages[i], page + i,
 989				   haddr + PAGE_SIZE * i, vma);
 990		__SetPageUptodate(pages[i]);
 991		cond_resched();
 992	}
 993
 994	mmun_start = haddr;
 995	mmun_end   = haddr + HPAGE_PMD_SIZE;
 996	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 997
 998	ptl = pmd_lock(mm, pmd);
 999	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000		goto out_free_pages;
1001	VM_BUG_ON_PAGE(!PageHead(page), page);
1002
1003	pmdp_clear_flush(vma, haddr, pmd);
1004	/* leave pmd empty until pte is filled */
1005
1006	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1007	pmd_populate(mm, &_pmd, pgtable);
1008
1009	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1010		pte_t *pte, entry;
1011		entry = mk_pte(pages[i], vma->vm_page_prot);
1012		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1013		page_add_new_anon_rmap(pages[i], vma, haddr);
1014		pte = pte_offset_map(&_pmd, haddr);
1015		VM_BUG_ON(!pte_none(*pte));
1016		set_pte_at(mm, haddr, pte, entry);
1017		pte_unmap(pte);
1018	}
1019	kfree(pages);
1020
 
1021	smp_wmb(); /* make pte visible before pmd */
1022	pmd_populate(mm, pmd, pgtable);
1023	page_remove_rmap(page);
1024	spin_unlock(ptl);
1025
1026	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1027
1028	ret |= VM_FAULT_WRITE;
1029	put_page(page);
1030
1031out:
1032	return ret;
1033
1034out_free_pages:
1035	spin_unlock(ptl);
1036	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1037	mem_cgroup_uncharge_start();
1038	for (i = 0; i < HPAGE_PMD_NR; i++) {
1039		mem_cgroup_uncharge_page(pages[i]);
1040		put_page(pages[i]);
1041	}
1042	mem_cgroup_uncharge_end();
1043	kfree(pages);
1044	goto out;
1045}
1046
1047int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1048			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1049{
1050	spinlock_t *ptl;
1051	int ret = 0;
1052	struct page *page = NULL, *new_page;
1053	unsigned long haddr;
1054	unsigned long mmun_start;	/* For mmu_notifiers */
1055	unsigned long mmun_end;		/* For mmu_notifiers */
1056
1057	ptl = pmd_lockptr(mm, pmd);
1058	VM_BUG_ON(!vma->anon_vma);
1059	haddr = address & HPAGE_PMD_MASK;
1060	if (is_huge_zero_pmd(orig_pmd))
1061		goto alloc;
1062	spin_lock(ptl);
1063	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1064		goto out_unlock;
1065
1066	page = pmd_page(orig_pmd);
1067	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
 
1068	if (page_mapcount(page) == 1) {
1069		pmd_t entry;
1070		entry = pmd_mkyoung(orig_pmd);
1071		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1073			update_mmu_cache_pmd(vma, address, pmd);
1074		ret |= VM_FAULT_WRITE;
1075		goto out_unlock;
1076	}
1077	get_page(page);
1078	spin_unlock(ptl);
1079alloc:
1080	if (transparent_hugepage_enabled(vma) &&
1081	    !transparent_hugepage_debug_cow())
1082		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1083					      vma, haddr, numa_node_id(), 0);
1084	else
1085		new_page = NULL;
1086
1087	if (unlikely(!new_page)) {
1088		if (!page) {
1089			split_huge_page_pmd(vma, address, pmd);
1090			ret |= VM_FAULT_FALLBACK;
1091		} else {
1092			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1093					pmd, orig_pmd, page, haddr);
1094			if (ret & VM_FAULT_OOM) {
1095				split_huge_page(page);
1096				ret |= VM_FAULT_FALLBACK;
1097			}
1098			put_page(page);
1099		}
1100		count_vm_event(THP_FAULT_FALLBACK);
 
 
 
1101		goto out;
1102	}
 
1103
1104	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
1105		put_page(new_page);
1106		if (page) {
1107			split_huge_page(page);
1108			put_page(page);
1109		} else
1110			split_huge_page_pmd(vma, address, pmd);
1111		ret |= VM_FAULT_FALLBACK;
1112		count_vm_event(THP_FAULT_FALLBACK);
1113		goto out;
1114	}
1115
1116	count_vm_event(THP_FAULT_ALLOC);
1117
1118	if (!page)
1119		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1120	else
1121		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1122	__SetPageUptodate(new_page);
1123
1124	mmun_start = haddr;
1125	mmun_end   = haddr + HPAGE_PMD_SIZE;
1126	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1127
1128	spin_lock(ptl);
1129	if (page)
1130		put_page(page);
1131	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1132		spin_unlock(ptl);
1133		mem_cgroup_uncharge_page(new_page);
1134		put_page(new_page);
1135		goto out_mn;
1136	} else {
1137		pmd_t entry;
1138		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
 
1139		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140		pmdp_clear_flush(vma, haddr, pmd);
 
1141		page_add_new_anon_rmap(new_page, vma, haddr);
1142		set_pmd_at(mm, haddr, pmd, entry);
1143		update_mmu_cache_pmd(vma, address, pmd);
1144		if (!page) {
1145			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146			put_huge_zero_page();
1147		} else {
1148			VM_BUG_ON_PAGE(!PageHead(page), page);
1149			page_remove_rmap(page);
1150			put_page(page);
1151		}
1152		ret |= VM_FAULT_WRITE;
1153	}
1154	spin_unlock(ptl);
1155out_mn:
1156	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1157out:
1158	return ret;
1159out_unlock:
1160	spin_unlock(ptl);
1161	return ret;
1162}
1163
1164struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1165				   unsigned long addr,
1166				   pmd_t *pmd,
1167				   unsigned int flags)
1168{
1169	struct mm_struct *mm = vma->vm_mm;
1170	struct page *page = NULL;
1171
1172	assert_spin_locked(pmd_lockptr(mm, pmd));
1173
1174	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1175		goto out;
1176
1177	/* Avoid dumping huge zero page */
1178	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1179		return ERR_PTR(-EFAULT);
1180
1181	/* Full NUMA hinting faults to serialise migration in fault paths */
1182	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1183		goto out;
1184
1185	page = pmd_page(*pmd);
1186	VM_BUG_ON_PAGE(!PageHead(page), page);
1187	if (flags & FOLL_TOUCH) {
1188		pmd_t _pmd;
1189		/*
1190		 * We should set the dirty bit only for FOLL_WRITE but
1191		 * for now the dirty bit in the pmd is meaningless.
1192		 * And if the dirty bit will become meaningful and
1193		 * we'll only set it with FOLL_WRITE, an atomic
1194		 * set_bit will be required on the pmd to set the
1195		 * young bit, instead of the current set_pmd_at.
1196		 */
1197		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1198		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1199					  pmd, _pmd,  1))
1200			update_mmu_cache_pmd(vma, addr, pmd);
1201	}
1202	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1203		if (page->mapping && trylock_page(page)) {
1204			lru_add_drain();
1205			if (page->mapping)
1206				mlock_vma_page(page);
1207			unlock_page(page);
1208		}
1209	}
1210	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1211	VM_BUG_ON_PAGE(!PageCompound(page), page);
1212	if (flags & FOLL_GET)
1213		get_page_foll(page);
1214
1215out:
1216	return page;
1217}
1218
1219/* NUMA hinting page fault entry point for trans huge pmds */
1220int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1221				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1222{
1223	spinlock_t *ptl;
1224	struct anon_vma *anon_vma = NULL;
1225	struct page *page;
1226	unsigned long haddr = addr & HPAGE_PMD_MASK;
1227	int page_nid = -1, this_nid = numa_node_id();
1228	int target_nid, last_cpupid = -1;
1229	bool page_locked;
1230	bool migrated = false;
1231	int flags = 0;
1232
1233	ptl = pmd_lock(mm, pmdp);
1234	if (unlikely(!pmd_same(pmd, *pmdp)))
1235		goto out_unlock;
1236
1237	/*
1238	 * If there are potential migrations, wait for completion and retry
1239	 * without disrupting NUMA hinting information. Do not relock and
1240	 * check_same as the page may no longer be mapped.
1241	 */
1242	if (unlikely(pmd_trans_migrating(*pmdp))) {
1243		spin_unlock(ptl);
1244		wait_migrate_huge_page(vma->anon_vma, pmdp);
1245		goto out;
1246	}
1247
1248	page = pmd_page(pmd);
1249	BUG_ON(is_huge_zero_page(page));
1250	page_nid = page_to_nid(page);
1251	last_cpupid = page_cpupid_last(page);
1252	count_vm_numa_event(NUMA_HINT_FAULTS);
1253	if (page_nid == this_nid) {
1254		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1255		flags |= TNF_FAULT_LOCAL;
1256	}
1257
1258	/*
1259	 * Avoid grouping on DSO/COW pages in specific and RO pages
1260	 * in general, RO pages shouldn't hurt as much anyway since
1261	 * they can be in shared cache state.
1262	 */
1263	if (!pmd_write(pmd))
1264		flags |= TNF_NO_GROUP;
1265
1266	/*
1267	 * Acquire the page lock to serialise THP migrations but avoid dropping
1268	 * page_table_lock if at all possible
1269	 */
1270	page_locked = trylock_page(page);
1271	target_nid = mpol_misplaced(page, vma, haddr);
1272	if (target_nid == -1) {
1273		/* If the page was locked, there are no parallel migrations */
1274		if (page_locked)
1275			goto clear_pmdnuma;
1276	}
1277
1278	/* Migration could have started since the pmd_trans_migrating check */
1279	if (!page_locked) {
1280		spin_unlock(ptl);
1281		wait_on_page_locked(page);
1282		page_nid = -1;
1283		goto out;
1284	}
1285
1286	/*
1287	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1288	 * to serialises splits
1289	 */
1290	get_page(page);
1291	spin_unlock(ptl);
1292	anon_vma = page_lock_anon_vma_read(page);
1293
1294	/* Confirm the PMD did not change while page_table_lock was released */
1295	spin_lock(ptl);
1296	if (unlikely(!pmd_same(pmd, *pmdp))) {
1297		unlock_page(page);
1298		put_page(page);
1299		page_nid = -1;
1300		goto out_unlock;
1301	}
1302
1303	/* Bail if we fail to protect against THP splits for any reason */
1304	if (unlikely(!anon_vma)) {
1305		put_page(page);
1306		page_nid = -1;
1307		goto clear_pmdnuma;
1308	}
1309
1310	/*
1311	 * Migrate the THP to the requested node, returns with page unlocked
1312	 * and pmd_numa cleared.
1313	 */
1314	spin_unlock(ptl);
1315	migrated = migrate_misplaced_transhuge_page(mm, vma,
1316				pmdp, pmd, addr, page, target_nid);
1317	if (migrated) {
1318		flags |= TNF_MIGRATED;
1319		page_nid = target_nid;
1320	}
1321
1322	goto out;
1323clear_pmdnuma:
1324	BUG_ON(!PageLocked(page));
1325	pmd = pmd_mknonnuma(pmd);
1326	set_pmd_at(mm, haddr, pmdp, pmd);
1327	VM_BUG_ON(pmd_numa(*pmdp));
1328	update_mmu_cache_pmd(vma, addr, pmdp);
1329	unlock_page(page);
1330out_unlock:
1331	spin_unlock(ptl);
1332
1333out:
1334	if (anon_vma)
1335		page_unlock_anon_vma_read(anon_vma);
1336
1337	if (page_nid != -1)
1338		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1339
1340	return 0;
1341}
1342
1343int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1344		 pmd_t *pmd, unsigned long addr)
1345{
1346	spinlock_t *ptl;
1347	int ret = 0;
1348
1349	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1350		struct page *page;
1351		pgtable_t pgtable;
1352		pmd_t orig_pmd;
1353		/*
1354		 * For architectures like ppc64 we look at deposited pgtable
1355		 * when calling pmdp_get_and_clear. So do the
1356		 * pgtable_trans_huge_withdraw after finishing pmdp related
1357		 * operations.
1358		 */
1359		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1360		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1361		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1362		if (is_huge_zero_pmd(orig_pmd)) {
1363			atomic_long_dec(&tlb->mm->nr_ptes);
1364			spin_unlock(ptl);
1365			put_huge_zero_page();
1366		} else {
1367			page = pmd_page(orig_pmd);
 
 
 
 
1368			page_remove_rmap(page);
1369			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1370			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1371			VM_BUG_ON_PAGE(!PageHead(page), page);
1372			atomic_long_dec(&tlb->mm->nr_ptes);
1373			spin_unlock(ptl);
1374			tlb_remove_page(tlb, page);
 
 
1375		}
1376		pte_free(tlb->mm, pgtable);
1377		ret = 1;
1378	}
1379	return ret;
1380}
1381
1382int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1383		unsigned long addr, unsigned long end,
1384		unsigned char *vec)
1385{
1386	spinlock_t *ptl;
1387	int ret = 0;
1388
1389	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1390		/*
1391		 * All logical pages in the range are present
1392		 * if backed by a huge page.
1393		 */
1394		spin_unlock(ptl);
1395		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1396		ret = 1;
1397	}
 
 
 
 
 
 
1398
1399	return ret;
1400}
1401
1402int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1403		  unsigned long old_addr,
1404		  unsigned long new_addr, unsigned long old_end,
1405		  pmd_t *old_pmd, pmd_t *new_pmd)
1406{
1407	spinlock_t *old_ptl, *new_ptl;
1408	int ret = 0;
1409	pmd_t pmd;
1410
1411	struct mm_struct *mm = vma->vm_mm;
1412
1413	if ((old_addr & ~HPAGE_PMD_MASK) ||
1414	    (new_addr & ~HPAGE_PMD_MASK) ||
1415	    old_end - old_addr < HPAGE_PMD_SIZE ||
1416	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1417		goto out;
1418
1419	/*
1420	 * The destination pmd shouldn't be established, free_pgtables()
1421	 * should have release it.
1422	 */
1423	if (WARN_ON(!pmd_none(*new_pmd))) {
1424		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1425		goto out;
1426	}
1427
1428	/*
1429	 * We don't have to worry about the ordering of src and dst
1430	 * ptlocks because exclusive mmap_sem prevents deadlock.
1431	 */
1432	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1433	if (ret == 1) {
1434		new_ptl = pmd_lockptr(mm, new_pmd);
1435		if (new_ptl != old_ptl)
1436			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1437		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1438		VM_BUG_ON(!pmd_none(*new_pmd));
1439
1440		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1441			pgtable_t pgtable;
1442			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1443			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1444		}
1445		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1446		if (new_ptl != old_ptl)
1447			spin_unlock(new_ptl);
1448		spin_unlock(old_ptl);
1449	}
1450out:
1451	return ret;
1452}
1453
1454/*
1455 * Returns
1456 *  - 0 if PMD could not be locked
1457 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1458 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1459 */
1460int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1461		unsigned long addr, pgprot_t newprot, int prot_numa)
1462{
1463	struct mm_struct *mm = vma->vm_mm;
1464	spinlock_t *ptl;
1465	int ret = 0;
1466
1467	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1468		pmd_t entry;
1469		ret = 1;
1470		if (!prot_numa) {
 
 
 
 
1471			entry = pmdp_get_and_clear(mm, addr, pmd);
1472			if (pmd_numa(entry))
1473				entry = pmd_mknonnuma(entry);
1474			entry = pmd_modify(entry, newprot);
1475			ret = HPAGE_PMD_NR;
1476			set_pmd_at(mm, addr, pmd, entry);
1477			BUG_ON(pmd_write(entry));
1478		} else {
1479			struct page *page = pmd_page(*pmd);
1480
1481			/*
1482			 * Do not trap faults against the zero page. The
1483			 * read-only data is likely to be read-cached on the
1484			 * local CPU cache and it is less useful to know about
1485			 * local vs remote hits on the zero page.
1486			 */
1487			if (!is_huge_zero_page(page) &&
1488			    !pmd_numa(*pmd)) {
1489				pmdp_set_numa(mm, addr, pmd);
1490				ret = HPAGE_PMD_NR;
1491			}
1492		}
1493		spin_unlock(ptl);
1494	}
1495
1496	return ret;
1497}
1498
1499/*
1500 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1501 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1502 *
1503 * Note that if it returns 1, this routine returns without unlocking page
1504 * table locks. So callers must unlock them.
1505 */
1506int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1507		spinlock_t **ptl)
1508{
1509	*ptl = pmd_lock(vma->vm_mm, pmd);
1510	if (likely(pmd_trans_huge(*pmd))) {
1511		if (unlikely(pmd_trans_splitting(*pmd))) {
1512			spin_unlock(*ptl);
1513			wait_split_huge_page(vma->anon_vma, pmd);
1514			return -1;
1515		} else {
1516			/* Thp mapped by 'pmd' is stable, so we can
1517			 * handle it as it is. */
1518			return 1;
1519		}
1520	}
1521	spin_unlock(*ptl);
1522	return 0;
1523}
1524
1525/*
1526 * This function returns whether a given @page is mapped onto the @address
1527 * in the virtual space of @mm.
1528 *
1529 * When it's true, this function returns *pmd with holding the page table lock
1530 * and passing it back to the caller via @ptl.
1531 * If it's false, returns NULL without holding the page table lock.
1532 */
1533pmd_t *page_check_address_pmd(struct page *page,
1534			      struct mm_struct *mm,
1535			      unsigned long address,
1536			      enum page_check_address_pmd_flag flag,
1537			      spinlock_t **ptl)
1538{
1539	pgd_t *pgd;
1540	pud_t *pud;
1541	pmd_t *pmd;
1542
1543	if (address & ~HPAGE_PMD_MASK)
1544		return NULL;
1545
1546	pgd = pgd_offset(mm, address);
1547	if (!pgd_present(*pgd))
1548		return NULL;
 
1549	pud = pud_offset(pgd, address);
1550	if (!pud_present(*pud))
1551		return NULL;
 
1552	pmd = pmd_offset(pud, address);
1553
1554	*ptl = pmd_lock(mm, pmd);
1555	if (!pmd_present(*pmd))
1556		goto unlock;
1557	if (pmd_page(*pmd) != page)
1558		goto unlock;
1559	/*
1560	 * split_vma() may create temporary aliased mappings. There is
1561	 * no risk as long as all huge pmd are found and have their
1562	 * splitting bit set before __split_huge_page_refcount
1563	 * runs. Finding the same huge pmd more than once during the
1564	 * same rmap walk is not a problem.
1565	 */
1566	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1567	    pmd_trans_splitting(*pmd))
1568		goto unlock;
1569	if (pmd_trans_huge(*pmd)) {
1570		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1571			  !pmd_trans_splitting(*pmd));
1572		return pmd;
1573	}
1574unlock:
1575	spin_unlock(*ptl);
1576	return NULL;
1577}
1578
1579static int __split_huge_page_splitting(struct page *page,
1580				       struct vm_area_struct *vma,
1581				       unsigned long address)
1582{
1583	struct mm_struct *mm = vma->vm_mm;
1584	spinlock_t *ptl;
1585	pmd_t *pmd;
1586	int ret = 0;
1587	/* For mmu_notifiers */
1588	const unsigned long mmun_start = address;
1589	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1590
1591	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1592	pmd = page_check_address_pmd(page, mm, address,
1593			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1594	if (pmd) {
1595		/*
1596		 * We can't temporarily set the pmd to null in order
1597		 * to split it, the pmd must remain marked huge at all
1598		 * times or the VM won't take the pmd_trans_huge paths
1599		 * and it won't wait on the anon_vma->root->rwsem to
1600		 * serialize against split_huge_page*.
1601		 */
1602		pmdp_splitting_flush(vma, address, pmd);
1603		ret = 1;
1604		spin_unlock(ptl);
1605	}
1606	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1607
1608	return ret;
1609}
1610
1611static void __split_huge_page_refcount(struct page *page,
1612				       struct list_head *list)
1613{
1614	int i;
 
1615	struct zone *zone = page_zone(page);
1616	struct lruvec *lruvec;
1617	int tail_count = 0;
1618
1619	/* prevent PageLRU to go away from under us, and freeze lru stats */
1620	spin_lock_irq(&zone->lru_lock);
1621	lruvec = mem_cgroup_page_lruvec(page, zone);
1622
1623	compound_lock(page);
1624	/* complete memcg works before add pages to LRU */
1625	mem_cgroup_split_huge_fixup(page);
1626
1627	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1628		struct page *page_tail = page + i;
1629
1630		/* tail_page->_mapcount cannot change */
1631		BUG_ON(page_mapcount(page_tail) < 0);
1632		tail_count += page_mapcount(page_tail);
1633		/* check for overflow */
1634		BUG_ON(tail_count < 0);
1635		BUG_ON(atomic_read(&page_tail->_count) != 0);
1636		/*
1637		 * tail_page->_count is zero and not changing from
1638		 * under us. But get_page_unless_zero() may be running
1639		 * from under us on the tail_page. If we used
1640		 * atomic_set() below instead of atomic_add(), we
1641		 * would then run atomic_set() concurrently with
1642		 * get_page_unless_zero(), and atomic_set() is
1643		 * implemented in C not using locked ops. spin_unlock
1644		 * on x86 sometime uses locked ops because of PPro
1645		 * errata 66, 92, so unless somebody can guarantee
1646		 * atomic_set() here would be safe on all archs (and
1647		 * not only on x86), it's safer to use atomic_add().
1648		 */
1649		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1650			   &page_tail->_count);
1651
1652		/* after clearing PageTail the gup refcount can be released */
1653		smp_mb();
1654
1655		/*
1656		 * retain hwpoison flag of the poisoned tail page:
1657		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1658		 *   by the memory-failure.
1659		 */
1660		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1661		page_tail->flags |= (page->flags &
1662				     ((1L << PG_referenced) |
1663				      (1L << PG_swapbacked) |
1664				      (1L << PG_mlocked) |
1665				      (1L << PG_uptodate) |
1666				      (1L << PG_active) |
1667				      (1L << PG_unevictable)));
1668		page_tail->flags |= (1L << PG_dirty);
1669
1670		/* clear PageTail before overwriting first_page */
 
 
 
1671		smp_wmb();
1672
1673		/*
1674		 * __split_huge_page_splitting() already set the
1675		 * splitting bit in all pmd that could map this
1676		 * hugepage, that will ensure no CPU can alter the
1677		 * mapcount on the head page. The mapcount is only
1678		 * accounted in the head page and it has to be
1679		 * transferred to all tail pages in the below code. So
1680		 * for this code to be safe, the split the mapcount
1681		 * can't change. But that doesn't mean userland can't
1682		 * keep changing and reading the page contents while
1683		 * we transfer the mapcount, so the pmd splitting
1684		 * status is achieved setting a reserved bit in the
1685		 * pmd, not by clearing the present bit.
1686		*/
 
1687		page_tail->_mapcount = page->_mapcount;
1688
1689		BUG_ON(page_tail->mapping);
1690		page_tail->mapping = page->mapping;
1691
1692		page_tail->index = page->index + i;
1693		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1694
1695		BUG_ON(!PageAnon(page_tail));
1696		BUG_ON(!PageUptodate(page_tail));
1697		BUG_ON(!PageDirty(page_tail));
1698		BUG_ON(!PageSwapBacked(page_tail));
1699
1700		lru_add_page_tail(page, page_tail, lruvec, list);
 
 
1701	}
1702	atomic_sub(tail_count, &page->_count);
1703	BUG_ON(atomic_read(&page->_count) <= 0);
1704
1705	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
 
 
 
 
 
 
 
 
 
 
1706
1707	ClearPageCompound(page);
1708	compound_unlock(page);
1709	spin_unlock_irq(&zone->lru_lock);
1710
1711	for (i = 1; i < HPAGE_PMD_NR; i++) {
1712		struct page *page_tail = page + i;
1713		BUG_ON(page_count(page_tail) <= 0);
1714		/*
1715		 * Tail pages may be freed if there wasn't any mapping
1716		 * like if add_to_swap() is running on a lru page that
1717		 * had its mapping zapped. And freeing these pages
1718		 * requires taking the lru_lock so we do the put_page
1719		 * of the tail pages after the split is complete.
1720		 */
1721		put_page(page_tail);
1722	}
1723
1724	/*
1725	 * Only the head page (now become a regular page) is required
1726	 * to be pinned by the caller.
1727	 */
1728	BUG_ON(page_count(page) <= 0);
1729}
1730
1731static int __split_huge_page_map(struct page *page,
1732				 struct vm_area_struct *vma,
1733				 unsigned long address)
1734{
1735	struct mm_struct *mm = vma->vm_mm;
1736	spinlock_t *ptl;
1737	pmd_t *pmd, _pmd;
1738	int ret = 0, i;
1739	pgtable_t pgtable;
1740	unsigned long haddr;
1741
 
1742	pmd = page_check_address_pmd(page, mm, address,
1743			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1744	if (pmd) {
1745		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1746		pmd_populate(mm, &_pmd, pgtable);
1747
1748		haddr = address;
1749		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1750			pte_t *pte, entry;
1751			BUG_ON(PageCompound(page+i));
1752			entry = mk_pte(page + i, vma->vm_page_prot);
1753			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1754			if (!pmd_write(*pmd))
1755				entry = pte_wrprotect(entry);
1756			else
1757				BUG_ON(page_mapcount(page) != 1);
1758			if (!pmd_young(*pmd))
1759				entry = pte_mkold(entry);
1760			if (pmd_numa(*pmd))
1761				entry = pte_mknuma(entry);
1762			pte = pte_offset_map(&_pmd, haddr);
1763			BUG_ON(!pte_none(*pte));
1764			set_pte_at(mm, haddr, pte, entry);
1765			pte_unmap(pte);
1766		}
1767
 
1768		smp_wmb(); /* make pte visible before pmd */
1769		/*
1770		 * Up to this point the pmd is present and huge and
1771		 * userland has the whole access to the hugepage
1772		 * during the split (which happens in place). If we
1773		 * overwrite the pmd with the not-huge version
1774		 * pointing to the pte here (which of course we could
1775		 * if all CPUs were bug free), userland could trigger
1776		 * a small page size TLB miss on the small sized TLB
1777		 * while the hugepage TLB entry is still established
1778		 * in the huge TLB. Some CPU doesn't like that. See
1779		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1780		 * Erratum 383 on page 93. Intel should be safe but is
1781		 * also warns that it's only safe if the permission
1782		 * and cache attributes of the two entries loaded in
1783		 * the two TLB is identical (which should be the case
1784		 * here). But it is generally safer to never allow
1785		 * small and huge TLB entries for the same virtual
1786		 * address to be loaded simultaneously. So instead of
1787		 * doing "pmd_populate(); flush_tlb_range();" we first
1788		 * mark the current pmd notpresent (atomically because
1789		 * here the pmd_trans_huge and pmd_trans_splitting
1790		 * must remain set at all times on the pmd until the
1791		 * split is complete for this pmd), then we flush the
1792		 * SMP TLB and finally we write the non-huge version
1793		 * of the pmd entry with pmd_populate.
1794		 */
1795		pmdp_invalidate(vma, address, pmd);
 
1796		pmd_populate(mm, pmd, pgtable);
1797		ret = 1;
1798		spin_unlock(ptl);
1799	}
 
1800
1801	return ret;
1802}
1803
1804/* must be called with anon_vma->root->rwsem held */
1805static void __split_huge_page(struct page *page,
1806			      struct anon_vma *anon_vma,
1807			      struct list_head *list)
1808{
1809	int mapcount, mapcount2;
1810	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1811	struct anon_vma_chain *avc;
1812
1813	BUG_ON(!PageHead(page));
1814	BUG_ON(PageTail(page));
1815
1816	mapcount = 0;
1817	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1818		struct vm_area_struct *vma = avc->vma;
1819		unsigned long addr = vma_address(page, vma);
1820		BUG_ON(is_vma_temporary_stack(vma));
 
 
1821		mapcount += __split_huge_page_splitting(page, vma, addr);
1822	}
1823	/*
1824	 * It is critical that new vmas are added to the tail of the
1825	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1826	 * and establishes a child pmd before
1827	 * __split_huge_page_splitting() freezes the parent pmd (so if
1828	 * we fail to prevent copy_huge_pmd() from running until the
1829	 * whole __split_huge_page() is complete), we will still see
1830	 * the newly established pmd of the child later during the
1831	 * walk, to be able to set it as pmd_trans_splitting too.
1832	 */
1833	if (mapcount != page_mapcount(page))
1834		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1835		       mapcount, page_mapcount(page));
1836	BUG_ON(mapcount != page_mapcount(page));
1837
1838	__split_huge_page_refcount(page, list);
1839
1840	mapcount2 = 0;
1841	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1842		struct vm_area_struct *vma = avc->vma;
1843		unsigned long addr = vma_address(page, vma);
1844		BUG_ON(is_vma_temporary_stack(vma));
 
 
1845		mapcount2 += __split_huge_page_map(page, vma, addr);
1846	}
1847	if (mapcount != mapcount2)
1848		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1849		       mapcount, mapcount2, page_mapcount(page));
1850	BUG_ON(mapcount != mapcount2);
1851}
1852
1853/*
1854 * Split a hugepage into normal pages. This doesn't change the position of head
1855 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1856 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1857 * from the hugepage.
1858 * Return 0 if the hugepage is split successfully otherwise return 1.
1859 */
1860int split_huge_page_to_list(struct page *page, struct list_head *list)
1861{
1862	struct anon_vma *anon_vma;
1863	int ret = 1;
1864
1865	BUG_ON(is_huge_zero_page(page));
1866	BUG_ON(!PageAnon(page));
1867
1868	/*
1869	 * The caller does not necessarily hold an mmap_sem that would prevent
1870	 * the anon_vma disappearing so we first we take a reference to it
1871	 * and then lock the anon_vma for write. This is similar to
1872	 * page_lock_anon_vma_read except the write lock is taken to serialise
1873	 * against parallel split or collapse operations.
1874	 */
1875	anon_vma = page_get_anon_vma(page);
1876	if (!anon_vma)
1877		goto out;
1878	anon_vma_lock_write(anon_vma);
1879
1880	ret = 0;
1881	if (!PageCompound(page))
1882		goto out_unlock;
1883
1884	BUG_ON(!PageSwapBacked(page));
1885	__split_huge_page(page, anon_vma, list);
1886	count_vm_event(THP_SPLIT);
1887
1888	BUG_ON(PageCompound(page));
1889out_unlock:
1890	anon_vma_unlock_write(anon_vma);
1891	put_anon_vma(anon_vma);
1892out:
1893	return ret;
1894}
1895
1896#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
 
1897
1898int hugepage_madvise(struct vm_area_struct *vma,
1899		     unsigned long *vm_flags, int advice)
1900{
1901	switch (advice) {
1902	case MADV_HUGEPAGE:
1903#ifdef CONFIG_S390
1904		/*
1905		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1906		 * can't handle this properly after s390_enable_sie, so we simply
1907		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1908		 */
1909		if (mm_has_pgste(vma->vm_mm))
1910			return 0;
1911#endif
1912		/*
1913		 * Be somewhat over-protective like KSM for now!
1914		 */
1915		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1916			return -EINVAL;
1917		*vm_flags &= ~VM_NOHUGEPAGE;
1918		*vm_flags |= VM_HUGEPAGE;
1919		/*
1920		 * If the vma become good for khugepaged to scan,
1921		 * register it here without waiting a page fault that
1922		 * may not happen any time soon.
1923		 */
1924		if (unlikely(khugepaged_enter_vma_merge(vma)))
1925			return -ENOMEM;
1926		break;
1927	case MADV_NOHUGEPAGE:
1928		/*
1929		 * Be somewhat over-protective like KSM for now!
1930		 */
1931		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1932			return -EINVAL;
1933		*vm_flags &= ~VM_HUGEPAGE;
1934		*vm_flags |= VM_NOHUGEPAGE;
1935		/*
1936		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1937		 * this vma even if we leave the mm registered in khugepaged if
1938		 * it got registered before VM_NOHUGEPAGE was set.
1939		 */
1940		break;
1941	}
1942
1943	return 0;
1944}
1945
1946static int __init khugepaged_slab_init(void)
1947{
1948	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1949					  sizeof(struct mm_slot),
1950					  __alignof__(struct mm_slot), 0, NULL);
1951	if (!mm_slot_cache)
1952		return -ENOMEM;
1953
1954	return 0;
1955}
1956
 
 
 
 
 
 
1957static inline struct mm_slot *alloc_mm_slot(void)
1958{
1959	if (!mm_slot_cache)	/* initialization failed */
1960		return NULL;
1961	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1962}
1963
1964static inline void free_mm_slot(struct mm_slot *mm_slot)
1965{
1966	kmem_cache_free(mm_slot_cache, mm_slot);
1967}
1968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1969static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1970{
1971	struct mm_slot *mm_slot;
 
 
1972
1973	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
 
 
1974		if (mm == mm_slot->mm)
1975			return mm_slot;
1976
1977	return NULL;
1978}
1979
1980static void insert_to_mm_slots_hash(struct mm_struct *mm,
1981				    struct mm_slot *mm_slot)
1982{
 
 
 
 
1983	mm_slot->mm = mm;
1984	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1985}
1986
1987static inline int khugepaged_test_exit(struct mm_struct *mm)
1988{
1989	return atomic_read(&mm->mm_users) == 0;
1990}
1991
1992int __khugepaged_enter(struct mm_struct *mm)
1993{
1994	struct mm_slot *mm_slot;
1995	int wakeup;
1996
1997	mm_slot = alloc_mm_slot();
1998	if (!mm_slot)
1999		return -ENOMEM;
2000
2001	/* __khugepaged_exit() must not run from under us */
2002	VM_BUG_ON(khugepaged_test_exit(mm));
2003	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2004		free_mm_slot(mm_slot);
2005		return 0;
2006	}
2007
2008	spin_lock(&khugepaged_mm_lock);
2009	insert_to_mm_slots_hash(mm, mm_slot);
2010	/*
2011	 * Insert just behind the scanning cursor, to let the area settle
2012	 * down a little.
2013	 */
2014	wakeup = list_empty(&khugepaged_scan.mm_head);
2015	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2016	spin_unlock(&khugepaged_mm_lock);
2017
2018	atomic_inc(&mm->mm_count);
2019	if (wakeup)
2020		wake_up_interruptible(&khugepaged_wait);
2021
2022	return 0;
2023}
2024
2025int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2026{
2027	unsigned long hstart, hend;
2028	if (!vma->anon_vma)
2029		/*
2030		 * Not yet faulted in so we will register later in the
2031		 * page fault if needed.
2032		 */
2033		return 0;
2034	if (vma->vm_ops)
2035		/* khugepaged not yet working on file or special mappings */
2036		return 0;
2037	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
 
 
 
 
2038	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2039	hend = vma->vm_end & HPAGE_PMD_MASK;
2040	if (hstart < hend)
2041		return khugepaged_enter(vma);
2042	return 0;
2043}
2044
2045void __khugepaged_exit(struct mm_struct *mm)
2046{
2047	struct mm_slot *mm_slot;
2048	int free = 0;
2049
2050	spin_lock(&khugepaged_mm_lock);
2051	mm_slot = get_mm_slot(mm);
2052	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2053		hash_del(&mm_slot->hash);
2054		list_del(&mm_slot->mm_node);
2055		free = 1;
2056	}
2057	spin_unlock(&khugepaged_mm_lock);
2058
2059	if (free) {
2060		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2061		free_mm_slot(mm_slot);
2062		mmdrop(mm);
2063	} else if (mm_slot) {
2064		/*
2065		 * This is required to serialize against
2066		 * khugepaged_test_exit() (which is guaranteed to run
2067		 * under mmap sem read mode). Stop here (after we
2068		 * return all pagetables will be destroyed) until
2069		 * khugepaged has finished working on the pagetables
2070		 * under the mmap_sem.
2071		 */
2072		down_write(&mm->mmap_sem);
2073		up_write(&mm->mmap_sem);
2074	}
2075}
2076
2077static void release_pte_page(struct page *page)
2078{
2079	/* 0 stands for page_is_file_cache(page) == false */
2080	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2081	unlock_page(page);
2082	putback_lru_page(page);
2083}
2084
2085static void release_pte_pages(pte_t *pte, pte_t *_pte)
2086{
2087	while (--_pte >= pte) {
2088		pte_t pteval = *_pte;
2089		if (!pte_none(pteval))
2090			release_pte_page(pte_page(pteval));
2091	}
2092}
2093
 
 
 
 
 
2094static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2095					unsigned long address,
2096					pte_t *pte)
2097{
2098	struct page *page;
2099	pte_t *_pte;
2100	int referenced = 0, none = 0;
2101	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2102	     _pte++, address += PAGE_SIZE) {
2103		pte_t pteval = *_pte;
2104		if (pte_none(pteval)) {
2105			if (++none <= khugepaged_max_ptes_none)
2106				continue;
2107			else
 
2108				goto out;
 
2109		}
2110		if (!pte_present(pteval) || !pte_write(pteval))
 
2111			goto out;
 
2112		page = vm_normal_page(vma, address, pteval);
2113		if (unlikely(!page))
 
2114			goto out;
2115
2116		VM_BUG_ON_PAGE(PageCompound(page), page);
2117		VM_BUG_ON_PAGE(!PageAnon(page), page);
2118		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2119
2120		/* cannot use mapcount: can't collapse if there's a gup pin */
2121		if (page_count(page) != 1)
 
2122			goto out;
 
2123		/*
2124		 * We can do it before isolate_lru_page because the
2125		 * page can't be freed from under us. NOTE: PG_lock
2126		 * is needed to serialize against split_huge_page
2127		 * when invoked from the VM.
2128		 */
2129		if (!trylock_page(page))
 
2130			goto out;
 
2131		/*
2132		 * Isolate the page to avoid collapsing an hugepage
2133		 * currently in use by the VM.
2134		 */
2135		if (isolate_lru_page(page)) {
2136			unlock_page(page);
 
2137			goto out;
2138		}
2139		/* 0 stands for page_is_file_cache(page) == false */
2140		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2141		VM_BUG_ON_PAGE(!PageLocked(page), page);
2142		VM_BUG_ON_PAGE(PageLRU(page), page);
2143
2144		/* If there is no mapped pte young don't collapse the page */
2145		if (pte_young(pteval) || PageReferenced(page) ||
2146		    mmu_notifier_test_young(vma->vm_mm, address))
2147			referenced = 1;
2148	}
2149	if (likely(referenced))
2150		return 1;
 
 
2151out:
2152	release_pte_pages(pte, _pte);
2153	return 0;
2154}
2155
2156static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2157				      struct vm_area_struct *vma,
2158				      unsigned long address,
2159				      spinlock_t *ptl)
2160{
2161	pte_t *_pte;
2162	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2163		pte_t pteval = *_pte;
2164		struct page *src_page;
2165
2166		if (pte_none(pteval)) {
2167			clear_user_highpage(page, address);
2168			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2169		} else {
2170			src_page = pte_page(pteval);
2171			copy_user_highpage(page, src_page, address, vma);
2172			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
 
2173			release_pte_page(src_page);
2174			/*
2175			 * ptl mostly unnecessary, but preempt has to
2176			 * be disabled to update the per-cpu stats
2177			 * inside page_remove_rmap().
2178			 */
2179			spin_lock(ptl);
2180			/*
2181			 * paravirt calls inside pte_clear here are
2182			 * superfluous.
2183			 */
2184			pte_clear(vma->vm_mm, address, _pte);
2185			page_remove_rmap(src_page);
2186			spin_unlock(ptl);
2187			free_page_and_swap_cache(src_page);
2188		}
2189
2190		address += PAGE_SIZE;
2191		page++;
2192	}
2193}
2194
2195static void khugepaged_alloc_sleep(void)
 
 
 
 
2196{
2197	wait_event_freezable_timeout(khugepaged_wait, false,
2198			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2199}
 
 
 
 
 
 
2200
2201static int khugepaged_node_load[MAX_NUMNODES];
2202
2203#ifdef CONFIG_NUMA
2204static int khugepaged_find_target_node(void)
2205{
2206	static int last_khugepaged_target_node = NUMA_NO_NODE;
2207	int nid, target_node = 0, max_value = 0;
2208
2209	/* find first node with max normal pages hit */
2210	for (nid = 0; nid < MAX_NUMNODES; nid++)
2211		if (khugepaged_node_load[nid] > max_value) {
2212			max_value = khugepaged_node_load[nid];
2213			target_node = nid;
2214		}
2215
2216	/* do some balance if several nodes have the same hit record */
2217	if (target_node <= last_khugepaged_target_node)
2218		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2219				nid++)
2220			if (max_value == khugepaged_node_load[nid]) {
2221				target_node = nid;
2222				break;
2223			}
2224
2225	last_khugepaged_target_node = target_node;
2226	return target_node;
2227}
2228
2229static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2230{
2231	if (IS_ERR(*hpage)) {
2232		if (!*wait)
2233			return false;
2234
2235		*wait = false;
2236		*hpage = NULL;
2237		khugepaged_alloc_sleep();
2238	} else if (*hpage) {
2239		put_page(*hpage);
2240		*hpage = NULL;
2241	}
2242
2243	return true;
2244}
2245
2246static struct page
2247*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2248		       struct vm_area_struct *vma, unsigned long address,
2249		       int node)
2250{
2251	VM_BUG_ON_PAGE(*hpage, *hpage);
2252	/*
2253	 * Allocate the page while the vma is still valid and under
2254	 * the mmap_sem read mode so there is no memory allocation
2255	 * later when we take the mmap_sem in write mode. This is more
2256	 * friendly behavior (OTOH it may actually hide bugs) to
2257	 * filesystems in userland with daemons allocating memory in
2258	 * the userland I/O paths.  Allocating memory with the
2259	 * mmap_sem in read mode is good idea also to allow greater
2260	 * scalability.
2261	 */
2262	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2263		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
 
2264	/*
2265	 * After allocating the hugepage, release the mmap_sem read lock in
2266	 * preparation for taking it in write mode.
2267	 */
2268	up_read(&mm->mmap_sem);
2269	if (unlikely(!*hpage)) {
2270		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2271		*hpage = ERR_PTR(-ENOMEM);
2272		return NULL;
2273	}
 
2274
2275	count_vm_event(THP_COLLAPSE_ALLOC);
2276	return *hpage;
2277}
2278#else
2279static int khugepaged_find_target_node(void)
2280{
2281	return 0;
2282}
2283
2284static inline struct page *alloc_hugepage(int defrag)
2285{
2286	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2287			   HPAGE_PMD_ORDER);
2288}
2289
2290static struct page *khugepaged_alloc_hugepage(bool *wait)
2291{
2292	struct page *hpage;
2293
2294	do {
2295		hpage = alloc_hugepage(khugepaged_defrag());
2296		if (!hpage) {
2297			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2298			if (!*wait)
2299				return NULL;
2300
2301			*wait = false;
2302			khugepaged_alloc_sleep();
2303		} else
2304			count_vm_event(THP_COLLAPSE_ALLOC);
2305	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2306
2307	return hpage;
2308}
2309
2310static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2311{
2312	if (!*hpage)
2313		*hpage = khugepaged_alloc_hugepage(wait);
2314
2315	if (unlikely(!*hpage))
2316		return false;
2317
2318	return true;
2319}
2320
2321static struct page
2322*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2323		       struct vm_area_struct *vma, unsigned long address,
2324		       int node)
2325{
2326	up_read(&mm->mmap_sem);
2327	VM_BUG_ON(!*hpage);
2328	return  *hpage;
2329}
2330#endif
2331
2332static bool hugepage_vma_check(struct vm_area_struct *vma)
2333{
2334	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2335	    (vma->vm_flags & VM_NOHUGEPAGE))
2336		return false;
2337
2338	if (!vma->anon_vma || vma->vm_ops)
2339		return false;
2340	if (is_vma_temporary_stack(vma))
2341		return false;
2342	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2343	return true;
2344}
2345
2346static void collapse_huge_page(struct mm_struct *mm,
2347				   unsigned long address,
2348				   struct page **hpage,
2349				   struct vm_area_struct *vma,
2350				   int node)
2351{
2352	pmd_t *pmd, _pmd;
2353	pte_t *pte;
2354	pgtable_t pgtable;
2355	struct page *new_page;
2356	spinlock_t *pmd_ptl, *pte_ptl;
2357	int isolated;
2358	unsigned long hstart, hend;
2359	unsigned long mmun_start;	/* For mmu_notifiers */
2360	unsigned long mmun_end;		/* For mmu_notifiers */
2361
2362	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2363
2364	/* release the mmap_sem read lock. */
2365	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2366	if (!new_page)
2367		return;
2368
2369	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
2370		return;
 
2371
2372	/*
2373	 * Prevent all access to pagetables with the exception of
2374	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2375	 * handled by the anon_vma lock + PG_lock.
2376	 */
2377	down_write(&mm->mmap_sem);
2378	if (unlikely(khugepaged_test_exit(mm)))
2379		goto out;
2380
2381	vma = find_vma(mm, address);
2382	if (!vma)
2383		goto out;
2384	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2385	hend = vma->vm_end & HPAGE_PMD_MASK;
2386	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2387		goto out;
2388	if (!hugepage_vma_check(vma))
 
 
2389		goto out;
2390	pmd = mm_find_pmd(mm, address);
2391	if (!pmd)
2392		goto out;
2393	if (pmd_trans_huge(*pmd))
 
 
 
 
 
 
 
 
 
2394		goto out;
2395
2396	anon_vma_lock_write(vma->anon_vma);
 
 
 
 
 
 
 
 
 
2397
2398	pte = pte_offset_map(pmd, address);
2399	pte_ptl = pte_lockptr(mm, pmd);
2400
2401	mmun_start = address;
2402	mmun_end   = address + HPAGE_PMD_SIZE;
2403	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2404	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2405	/*
2406	 * After this gup_fast can't run anymore. This also removes
2407	 * any huge TLB entry from the CPU so we won't allow
2408	 * huge and small TLB entries for the same virtual address
2409	 * to avoid the risk of CPU bugs in that area.
2410	 */
2411	_pmd = pmdp_clear_flush(vma, address, pmd);
2412	spin_unlock(pmd_ptl);
2413	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2414
2415	spin_lock(pte_ptl);
2416	isolated = __collapse_huge_page_isolate(vma, address, pte);
2417	spin_unlock(pte_ptl);
2418
2419	if (unlikely(!isolated)) {
2420		pte_unmap(pte);
2421		spin_lock(pmd_ptl);
2422		BUG_ON(!pmd_none(*pmd));
2423		/*
2424		 * We can only use set_pmd_at when establishing
2425		 * hugepmds and never for establishing regular pmds that
2426		 * points to regular pagetables. Use pmd_populate for that
2427		 */
2428		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2429		spin_unlock(pmd_ptl);
2430		anon_vma_unlock_write(vma->anon_vma);
2431		goto out;
2432	}
2433
2434	/*
2435	 * All pages are isolated and locked so anon_vma rmap
2436	 * can't run anymore.
2437	 */
2438	anon_vma_unlock_write(vma->anon_vma);
2439
2440	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2441	pte_unmap(pte);
2442	__SetPageUptodate(new_page);
2443	pgtable = pmd_pgtable(_pmd);
 
 
2444
2445	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2446	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
 
2447
2448	/*
2449	 * spin_lock() below is not the equivalent of smp_wmb(), so
2450	 * this is needed to avoid the copy_huge_page writes to become
2451	 * visible after the set_pmd_at() write.
2452	 */
2453	smp_wmb();
2454
2455	spin_lock(pmd_ptl);
2456	BUG_ON(!pmd_none(*pmd));
2457	page_add_new_anon_rmap(new_page, vma, address);
2458	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2459	set_pmd_at(mm, address, pmd, _pmd);
2460	update_mmu_cache_pmd(vma, address, pmd);
2461	spin_unlock(pmd_ptl);
 
 
2462
 
2463	*hpage = NULL;
2464
2465	khugepaged_pages_collapsed++;
2466out_up_write:
2467	up_write(&mm->mmap_sem);
2468	return;
2469
2470out:
2471	mem_cgroup_uncharge_page(new_page);
 
 
 
2472	goto out_up_write;
2473}
2474
2475static int khugepaged_scan_pmd(struct mm_struct *mm,
2476			       struct vm_area_struct *vma,
2477			       unsigned long address,
2478			       struct page **hpage)
2479{
 
 
2480	pmd_t *pmd;
2481	pte_t *pte, *_pte;
2482	int ret = 0, referenced = 0, none = 0;
2483	struct page *page;
2484	unsigned long _address;
2485	spinlock_t *ptl;
2486	int node = NUMA_NO_NODE;
2487
2488	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2489
2490	pmd = mm_find_pmd(mm, address);
2491	if (!pmd)
 
 
 
 
2492		goto out;
2493	if (pmd_trans_huge(*pmd))
 
 
2494		goto out;
2495
2496	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2497	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2498	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2499	     _pte++, _address += PAGE_SIZE) {
2500		pte_t pteval = *_pte;
2501		if (pte_none(pteval)) {
2502			if (++none <= khugepaged_max_ptes_none)
2503				continue;
2504			else
2505				goto out_unmap;
2506		}
2507		if (!pte_present(pteval) || !pte_write(pteval))
2508			goto out_unmap;
2509		page = vm_normal_page(vma, _address, pteval);
2510		if (unlikely(!page))
2511			goto out_unmap;
2512		/*
2513		 * Record which node the original page is from and save this
2514		 * information to khugepaged_node_load[].
2515		 * Khupaged will allocate hugepage from the node has the max
2516		 * hit record.
2517		 */
2518		node = page_to_nid(page);
2519		khugepaged_node_load[node]++;
2520		VM_BUG_ON_PAGE(PageCompound(page), page);
2521		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2522			goto out_unmap;
2523		/* cannot use mapcount: can't collapse if there's a gup pin */
2524		if (page_count(page) != 1)
2525			goto out_unmap;
2526		if (pte_young(pteval) || PageReferenced(page) ||
2527		    mmu_notifier_test_young(vma->vm_mm, address))
2528			referenced = 1;
2529	}
2530	if (referenced)
2531		ret = 1;
2532out_unmap:
2533	pte_unmap_unlock(pte, ptl);
2534	if (ret) {
2535		node = khugepaged_find_target_node();
2536		/* collapse_huge_page will return with the mmap_sem released */
2537		collapse_huge_page(mm, address, hpage, vma, node);
2538	}
2539out:
2540	return ret;
2541}
2542
2543static void collect_mm_slot(struct mm_slot *mm_slot)
2544{
2545	struct mm_struct *mm = mm_slot->mm;
2546
2547	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2548
2549	if (khugepaged_test_exit(mm)) {
2550		/* free mm_slot */
2551		hash_del(&mm_slot->hash);
2552		list_del(&mm_slot->mm_node);
2553
2554		/*
2555		 * Not strictly needed because the mm exited already.
2556		 *
2557		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2558		 */
2559
2560		/* khugepaged_mm_lock actually not necessary for the below */
2561		free_mm_slot(mm_slot);
2562		mmdrop(mm);
2563	}
2564}
2565
2566static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2567					    struct page **hpage)
2568	__releases(&khugepaged_mm_lock)
2569	__acquires(&khugepaged_mm_lock)
2570{
2571	struct mm_slot *mm_slot;
2572	struct mm_struct *mm;
2573	struct vm_area_struct *vma;
2574	int progress = 0;
2575
2576	VM_BUG_ON(!pages);
2577	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2578
2579	if (khugepaged_scan.mm_slot)
2580		mm_slot = khugepaged_scan.mm_slot;
2581	else {
2582		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2583				     struct mm_slot, mm_node);
2584		khugepaged_scan.address = 0;
2585		khugepaged_scan.mm_slot = mm_slot;
2586	}
2587	spin_unlock(&khugepaged_mm_lock);
2588
2589	mm = mm_slot->mm;
2590	down_read(&mm->mmap_sem);
2591	if (unlikely(khugepaged_test_exit(mm)))
2592		vma = NULL;
2593	else
2594		vma = find_vma(mm, khugepaged_scan.address);
2595
2596	progress++;
2597	for (; vma; vma = vma->vm_next) {
2598		unsigned long hstart, hend;
2599
2600		cond_resched();
2601		if (unlikely(khugepaged_test_exit(mm))) {
2602			progress++;
2603			break;
2604		}
2605		if (!hugepage_vma_check(vma)) {
2606skip:
 
 
 
2607			progress++;
2608			continue;
2609		}
 
 
 
 
 
 
 
 
 
 
 
2610		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2611		hend = vma->vm_end & HPAGE_PMD_MASK;
2612		if (hstart >= hend)
2613			goto skip;
2614		if (khugepaged_scan.address > hend)
2615			goto skip;
2616		if (khugepaged_scan.address < hstart)
2617			khugepaged_scan.address = hstart;
2618		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2619
2620		while (khugepaged_scan.address < hend) {
2621			int ret;
2622			cond_resched();
2623			if (unlikely(khugepaged_test_exit(mm)))
2624				goto breakouterloop;
2625
2626			VM_BUG_ON(khugepaged_scan.address < hstart ||
2627				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2628				  hend);
2629			ret = khugepaged_scan_pmd(mm, vma,
2630						  khugepaged_scan.address,
2631						  hpage);
2632			/* move to next address */
2633			khugepaged_scan.address += HPAGE_PMD_SIZE;
2634			progress += HPAGE_PMD_NR;
2635			if (ret)
2636				/* we released mmap_sem so break loop */
2637				goto breakouterloop_mmap_sem;
2638			if (progress >= pages)
2639				goto breakouterloop;
2640		}
2641	}
2642breakouterloop:
2643	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2644breakouterloop_mmap_sem:
2645
2646	spin_lock(&khugepaged_mm_lock);
2647	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2648	/*
2649	 * Release the current mm_slot if this mm is about to die, or
2650	 * if we scanned all vmas of this mm.
2651	 */
2652	if (khugepaged_test_exit(mm) || !vma) {
2653		/*
2654		 * Make sure that if mm_users is reaching zero while
2655		 * khugepaged runs here, khugepaged_exit will find
2656		 * mm_slot not pointing to the exiting mm.
2657		 */
2658		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2659			khugepaged_scan.mm_slot = list_entry(
2660				mm_slot->mm_node.next,
2661				struct mm_slot, mm_node);
2662			khugepaged_scan.address = 0;
2663		} else {
2664			khugepaged_scan.mm_slot = NULL;
2665			khugepaged_full_scans++;
2666		}
2667
2668		collect_mm_slot(mm_slot);
2669	}
2670
2671	return progress;
2672}
2673
2674static int khugepaged_has_work(void)
2675{
2676	return !list_empty(&khugepaged_scan.mm_head) &&
2677		khugepaged_enabled();
2678}
2679
2680static int khugepaged_wait_event(void)
2681{
2682	return !list_empty(&khugepaged_scan.mm_head) ||
2683		kthread_should_stop();
2684}
2685
2686static void khugepaged_do_scan(void)
2687{
2688	struct page *hpage = NULL;
2689	unsigned int progress = 0, pass_through_head = 0;
2690	unsigned int pages = khugepaged_pages_to_scan;
2691	bool wait = true;
2692
2693	barrier(); /* write khugepaged_pages_to_scan to local stack */
2694
2695	while (progress < pages) {
2696		if (!khugepaged_prealloc_page(&hpage, &wait))
 
 
 
 
 
 
 
 
 
 
 
 
2697			break;
2698
2699		cond_resched();
2700
2701		if (unlikely(kthread_should_stop() || freezing(current)))
2702			break;
2703
2704		spin_lock(&khugepaged_mm_lock);
2705		if (!khugepaged_scan.mm_slot)
2706			pass_through_head++;
2707		if (khugepaged_has_work() &&
2708		    pass_through_head < 2)
2709			progress += khugepaged_scan_mm_slot(pages - progress,
2710							    &hpage);
2711		else
2712			progress = pages;
2713		spin_unlock(&khugepaged_mm_lock);
2714	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2715
2716	if (!IS_ERR_OR_NULL(hpage))
2717		put_page(hpage);
 
 
 
 
 
 
 
 
2718}
 
2719
2720static void khugepaged_wait_work(void)
2721{
2722	try_to_freeze();
2723
2724	if (khugepaged_has_work()) {
2725		if (!khugepaged_scan_sleep_millisecs)
2726			return;
 
 
 
 
 
 
 
 
 
 
 
2727
2728		wait_event_freezable_timeout(khugepaged_wait,
2729					     kthread_should_stop(),
2730			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2731		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2732	}
2733
2734	if (khugepaged_enabled())
2735		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2736}
2737
2738static int khugepaged(void *none)
2739{
2740	struct mm_slot *mm_slot;
2741
2742	set_freezable();
2743	set_user_nice(current, 19);
2744
2745	while (!kthread_should_stop()) {
2746		khugepaged_do_scan();
2747		khugepaged_wait_work();
 
 
 
 
 
 
 
 
 
 
 
2748	}
2749
2750	spin_lock(&khugepaged_mm_lock);
2751	mm_slot = khugepaged_scan.mm_slot;
2752	khugepaged_scan.mm_slot = NULL;
2753	if (mm_slot)
2754		collect_mm_slot(mm_slot);
2755	spin_unlock(&khugepaged_mm_lock);
2756	return 0;
2757}
2758
2759static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2760		unsigned long haddr, pmd_t *pmd)
2761{
2762	struct mm_struct *mm = vma->vm_mm;
2763	pgtable_t pgtable;
2764	pmd_t _pmd;
2765	int i;
2766
2767	pmdp_clear_flush(vma, haddr, pmd);
2768	/* leave pmd empty until pte is filled */
2769
2770	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2771	pmd_populate(mm, &_pmd, pgtable);
2772
2773	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2774		pte_t *pte, entry;
2775		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2776		entry = pte_mkspecial(entry);
2777		pte = pte_offset_map(&_pmd, haddr);
2778		VM_BUG_ON(!pte_none(*pte));
2779		set_pte_at(mm, haddr, pte, entry);
2780		pte_unmap(pte);
2781	}
2782	smp_wmb(); /* make pte visible before pmd */
2783	pmd_populate(mm, pmd, pgtable);
2784	put_huge_zero_page();
2785}
2786
2787void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2788		pmd_t *pmd)
2789{
2790	spinlock_t *ptl;
2791	struct page *page;
2792	struct mm_struct *mm = vma->vm_mm;
2793	unsigned long haddr = address & HPAGE_PMD_MASK;
2794	unsigned long mmun_start;	/* For mmu_notifiers */
2795	unsigned long mmun_end;		/* For mmu_notifiers */
2796
2797	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2798
2799	mmun_start = haddr;
2800	mmun_end   = haddr + HPAGE_PMD_SIZE;
2801again:
2802	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2803	ptl = pmd_lock(mm, pmd);
2804	if (unlikely(!pmd_trans_huge(*pmd))) {
2805		spin_unlock(ptl);
2806		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2807		return;
2808	}
2809	if (is_huge_zero_pmd(*pmd)) {
2810		__split_huge_zero_page_pmd(vma, haddr, pmd);
2811		spin_unlock(ptl);
2812		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2813		return;
2814	}
2815	page = pmd_page(*pmd);
2816	VM_BUG_ON_PAGE(!page_count(page), page);
2817	get_page(page);
2818	spin_unlock(ptl);
2819	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2820
2821	split_huge_page(page);
2822
2823	put_page(page);
2824
2825	/*
2826	 * We don't always have down_write of mmap_sem here: a racing
2827	 * do_huge_pmd_wp_page() might have copied-on-write to another
2828	 * huge page before our split_huge_page() got the anon_vma lock.
2829	 */
2830	if (unlikely(pmd_trans_huge(*pmd)))
2831		goto again;
2832}
2833
2834void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2835		pmd_t *pmd)
2836{
2837	struct vm_area_struct *vma;
2838
2839	vma = find_vma(mm, address);
2840	BUG_ON(vma == NULL);
2841	split_huge_page_pmd(vma, address, pmd);
2842}
2843
2844static void split_huge_page_address(struct mm_struct *mm,
2845				    unsigned long address)
2846{
 
 
2847	pmd_t *pmd;
2848
2849	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2850
2851	pmd = mm_find_pmd(mm, address);
2852	if (!pmd)
 
 
 
 
 
 
 
 
2853		return;
2854	/*
2855	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2856	 * materialize from under us.
2857	 */
2858	split_huge_page_pmd_mm(mm, address, pmd);
2859}
2860
2861void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2862			     unsigned long start,
2863			     unsigned long end,
2864			     long adjust_next)
2865{
2866	/*
2867	 * If the new start address isn't hpage aligned and it could
2868	 * previously contain an hugepage: check if we need to split
2869	 * an huge pmd.
2870	 */
2871	if (start & ~HPAGE_PMD_MASK &&
2872	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2873	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2874		split_huge_page_address(vma->vm_mm, start);
2875
2876	/*
2877	 * If the new end address isn't hpage aligned and it could
2878	 * previously contain an hugepage: check if we need to split
2879	 * an huge pmd.
2880	 */
2881	if (end & ~HPAGE_PMD_MASK &&
2882	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2883	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2884		split_huge_page_address(vma->vm_mm, end);
2885
2886	/*
2887	 * If we're also updating the vma->vm_next->vm_start, if the new
2888	 * vm_next->vm_start isn't page aligned and it could previously
2889	 * contain an hugepage: check if we need to split an huge pmd.
2890	 */
2891	if (adjust_next > 0) {
2892		struct vm_area_struct *next = vma->vm_next;
2893		unsigned long nstart = next->vm_start;
2894		nstart += adjust_next << PAGE_SHIFT;
2895		if (nstart & ~HPAGE_PMD_MASK &&
2896		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2897		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2898			split_huge_page_address(next->vm_mm, nstart);
2899	}
2900}