Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
 
 
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
 
  15#include <linux/mm_inline.h>
 
 
  16#include <linux/kthread.h>
  17#include <linux/khugepaged.h>
  18#include <linux/freezer.h>
 
  19#include <linux/mman.h>
 
 
 
 
 
 
 
 
  20#include <asm/tlb.h>
  21#include <asm/pgalloc.h>
  22#include "internal.h"
  23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24/*
  25 * By default transparent hugepage support is enabled for all mappings
  26 * and khugepaged scans all mappings. Defrag is only invoked by
  27 * khugepaged hugepage allocations and by page faults inside
  28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29 * allocations.
 
  30 */
  31unsigned long transparent_hugepage_flags __read_mostly =
  32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34#endif
  35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37#endif
  38	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 
  40
  41/* default scan 8*512 pte (or vmas) every 30 second */
  42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  43static unsigned int khugepaged_pages_collapsed;
  44static unsigned int khugepaged_full_scans;
  45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  46/* during fragmentation poll the hugepage allocator once every minute */
  47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  48static struct task_struct *khugepaged_thread __read_mostly;
  49static DEFINE_MUTEX(khugepaged_mutex);
  50static DEFINE_SPINLOCK(khugepaged_mm_lock);
  51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  52/*
  53 * default collapse hugepages if there is at least one pte mapped like
  54 * it would have happened if the vma was large enough during page
  55 * fault.
  56 */
  57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  58
  59static int khugepaged(void *none);
  60static int mm_slots_hash_init(void);
  61static int khugepaged_slab_init(void);
  62static void khugepaged_slab_free(void);
 
 
 
  63
  64#define MM_SLOTS_HASH_HEADS 1024
  65static struct hlist_head *mm_slots_hash __read_mostly;
  66static struct kmem_cache *mm_slot_cache __read_mostly;
  67
  68/**
  69 * struct mm_slot - hash lookup from mm to mm_slot
  70 * @hash: hash collision list
  71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72 * @mm: the mm that this information is valid for
  73 */
  74struct mm_slot {
  75	struct hlist_node hash;
  76	struct list_head mm_node;
  77	struct mm_struct *mm;
  78};
  79
  80/**
  81 * struct khugepaged_scan - cursor for scanning
  82 * @mm_head: the head of the mm list to scan
  83 * @mm_slot: the current mm_slot we are scanning
  84 * @address: the next address inside that to be scanned
  85 *
  86 * There is only the one khugepaged_scan instance of this cursor structure.
  87 */
  88struct khugepaged_scan {
  89	struct list_head mm_head;
  90	struct mm_slot *mm_slot;
  91	unsigned long address;
  92} khugepaged_scan = {
 
  93	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94};
  95
 
  96
  97static int set_recommended_min_free_kbytes(void)
  98{
  99	struct zone *zone;
 100	int nr_zones = 0;
 101	unsigned long recommended_min;
 102	extern int min_free_kbytes;
 103
 104	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 105		      &transparent_hugepage_flags) &&
 106	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 107		      &transparent_hugepage_flags))
 108		return 0;
 109
 110	for_each_populated_zone(zone)
 111		nr_zones++;
 112
 113	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 114	recommended_min = pageblock_nr_pages * nr_zones * 2;
 115
 116	/*
 117	 * Make sure that on average at least two pageblocks are almost free
 118	 * of another type, one for a migratetype to fall back to and a
 119	 * second to avoid subsequent fallbacks of other types There are 3
 120	 * MIGRATE_TYPES we care about.
 121	 */
 122	recommended_min += pageblock_nr_pages * nr_zones *
 123			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 124
 125	/* don't ever allow to reserve more than 5% of the lowmem */
 126	recommended_min = min(recommended_min,
 127			      (unsigned long) nr_free_buffer_pages() / 20);
 128	recommended_min <<= (PAGE_SHIFT-10);
 129
 130	if (recommended_min > min_free_kbytes)
 
 
 
 
 131		min_free_kbytes = recommended_min;
 
 132	setup_per_zone_wmarks();
 133	return 0;
 134}
 135late_initcall(set_recommended_min_free_kbytes);
 136
 137static int start_khugepaged(void)
 138{
 139	int err = 0;
 140	if (khugepaged_enabled()) {
 141		int wakeup;
 142		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
 143			err = -ENOMEM;
 144			goto out;
 145		}
 146		mutex_lock(&khugepaged_mutex);
 147		if (!khugepaged_thread)
 148			khugepaged_thread = kthread_run(khugepaged, NULL,
 149							"khugepaged");
 150		if (unlikely(IS_ERR(khugepaged_thread))) {
 151			printk(KERN_ERR
 152			       "khugepaged: kthread_run(khugepaged) failed\n");
 153			err = PTR_ERR(khugepaged_thread);
 154			khugepaged_thread = NULL;
 
 155		}
 156		wakeup = !list_empty(&khugepaged_scan.mm_head);
 157		mutex_unlock(&khugepaged_mutex);
 158		if (wakeup)
 159			wake_up_interruptible(&khugepaged_wait);
 160
 161		set_recommended_min_free_kbytes();
 162	} else
 163		/* wakeup to exit */
 164		wake_up_interruptible(&khugepaged_wait);
 165out:
 
 166	return err;
 167}
 168
 169#ifdef CONFIG_SYSFS
 
 170
 171static ssize_t double_flag_show(struct kobject *kobj,
 172				struct kobj_attribute *attr, char *buf,
 173				enum transparent_hugepage_flag enabled,
 174				enum transparent_hugepage_flag req_madv)
 175{
 176	if (test_bit(enabled, &transparent_hugepage_flags)) {
 177		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 178		return sprintf(buf, "[always] madvise never\n");
 179	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 180		return sprintf(buf, "always [madvise] never\n");
 181	else
 182		return sprintf(buf, "always madvise [never]\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 183}
 184static ssize_t double_flag_store(struct kobject *kobj,
 
 
 
 
 
 
 
 
 
 185				 struct kobj_attribute *attr,
 186				 const char *buf, size_t count,
 187				 enum transparent_hugepage_flag enabled,
 
 188				 enum transparent_hugepage_flag req_madv)
 189{
 190	if (!memcmp("always", buf,
 
 
 
 
 
 
 
 191		    min(sizeof("always")-1, count))) {
 192		set_bit(enabled, &transparent_hugepage_flags);
 193		clear_bit(req_madv, &transparent_hugepage_flags);
 
 194	} else if (!memcmp("madvise", buf,
 195			   min(sizeof("madvise")-1, count))) {
 196		clear_bit(enabled, &transparent_hugepage_flags);
 
 197		set_bit(req_madv, &transparent_hugepage_flags);
 198	} else if (!memcmp("never", buf,
 199			   min(sizeof("never")-1, count))) {
 200		clear_bit(enabled, &transparent_hugepage_flags);
 201		clear_bit(req_madv, &transparent_hugepage_flags);
 
 202	} else
 203		return -EINVAL;
 204
 205	return count;
 206}
 207
 208static ssize_t enabled_show(struct kobject *kobj,
 209			    struct kobj_attribute *attr, char *buf)
 210{
 211	return double_flag_show(kobj, attr, buf,
 212				TRANSPARENT_HUGEPAGE_FLAG,
 213				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 
 
 
 214}
 
 215static ssize_t enabled_store(struct kobject *kobj,
 216			     struct kobj_attribute *attr,
 217			     const char *buf, size_t count)
 218{
 219	ssize_t ret;
 220
 221	ret = double_flag_store(kobj, attr, buf, count,
 
 222				TRANSPARENT_HUGEPAGE_FLAG,
 223				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 224
 225	if (ret > 0) {
 226		int err = start_khugepaged();
 
 
 
 
 
 227		if (err)
 228			ret = err;
 229	}
 230
 231	if (ret > 0 &&
 232	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
 233		      &transparent_hugepage_flags) ||
 234	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 235		      &transparent_hugepage_flags)))
 236		set_recommended_min_free_kbytes();
 237
 238	return ret;
 239}
 240static struct kobj_attribute enabled_attr =
 241	__ATTR(enabled, 0644, enabled_show, enabled_store);
 242
 243static ssize_t single_flag_show(struct kobject *kobj,
 244				struct kobj_attribute *attr, char *buf,
 245				enum transparent_hugepage_flag flag)
 246{
 247	return sprintf(buf, "%d\n",
 248		       !!test_bit(flag, &transparent_hugepage_flags));
 249}
 250
 251static ssize_t single_flag_store(struct kobject *kobj,
 252				 struct kobj_attribute *attr,
 253				 const char *buf, size_t count,
 254				 enum transparent_hugepage_flag flag)
 255{
 256	unsigned long value;
 257	int ret;
 258
 259	ret = kstrtoul(buf, 10, &value);
 260	if (ret < 0)
 261		return ret;
 262	if (value > 1)
 263		return -EINVAL;
 264
 265	if (value)
 266		set_bit(flag, &transparent_hugepage_flags);
 267	else
 268		clear_bit(flag, &transparent_hugepage_flags);
 269
 270	return count;
 271}
 272
 273/*
 274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 276 * memory just to allocate one more hugepage.
 277 */
 278static ssize_t defrag_show(struct kobject *kobj,
 279			   struct kobj_attribute *attr, char *buf)
 280{
 281	return double_flag_show(kobj, attr, buf,
 282				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 283				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 284}
 285static ssize_t defrag_store(struct kobject *kobj,
 286			    struct kobj_attribute *attr,
 287			    const char *buf, size_t count)
 288{
 289	return double_flag_store(kobj, attr, buf, count,
 290				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 
 291				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 292}
 293static struct kobj_attribute defrag_attr =
 294	__ATTR(defrag, 0644, defrag_show, defrag_store);
 295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296#ifdef CONFIG_DEBUG_VM
 297static ssize_t debug_cow_show(struct kobject *kobj,
 298				struct kobj_attribute *attr, char *buf)
 299{
 300	return single_flag_show(kobj, attr, buf,
 301				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 302}
 303static ssize_t debug_cow_store(struct kobject *kobj,
 304			       struct kobj_attribute *attr,
 305			       const char *buf, size_t count)
 306{
 307	return single_flag_store(kobj, attr, buf, count,
 308				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 309}
 310static struct kobj_attribute debug_cow_attr =
 311	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 312#endif /* CONFIG_DEBUG_VM */
 313
 314static struct attribute *hugepage_attr[] = {
 315	&enabled_attr.attr,
 316	&defrag_attr.attr,
 
 317#ifdef CONFIG_DEBUG_VM
 318	&debug_cow_attr.attr,
 319#endif
 320	NULL,
 321};
 322
 323static struct attribute_group hugepage_attr_group = {
 324	.attrs = hugepage_attr,
 325};
 326
 327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 328					 struct kobj_attribute *attr,
 329					 char *buf)
 330{
 331	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 332}
 333
 334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 335					  struct kobj_attribute *attr,
 336					  const char *buf, size_t count)
 337{
 338	unsigned long msecs;
 339	int err;
 340
 341	err = strict_strtoul(buf, 10, &msecs);
 342	if (err || msecs > UINT_MAX)
 343		return -EINVAL;
 344
 345	khugepaged_scan_sleep_millisecs = msecs;
 346	wake_up_interruptible(&khugepaged_wait);
 347
 348	return count;
 349}
 350static struct kobj_attribute scan_sleep_millisecs_attr =
 351	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 352	       scan_sleep_millisecs_store);
 353
 354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 355					  struct kobj_attribute *attr,
 356					  char *buf)
 357{
 358	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 359}
 360
 361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 362					   struct kobj_attribute *attr,
 363					   const char *buf, size_t count)
 364{
 365	unsigned long msecs;
 366	int err;
 367
 368	err = strict_strtoul(buf, 10, &msecs);
 369	if (err || msecs > UINT_MAX)
 370		return -EINVAL;
 371
 372	khugepaged_alloc_sleep_millisecs = msecs;
 373	wake_up_interruptible(&khugepaged_wait);
 374
 375	return count;
 376}
 377static struct kobj_attribute alloc_sleep_millisecs_attr =
 378	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 379	       alloc_sleep_millisecs_store);
 380
 381static ssize_t pages_to_scan_show(struct kobject *kobj,
 382				  struct kobj_attribute *attr,
 383				  char *buf)
 384{
 385	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 386}
 387static ssize_t pages_to_scan_store(struct kobject *kobj,
 388				   struct kobj_attribute *attr,
 389				   const char *buf, size_t count)
 390{
 391	int err;
 392	unsigned long pages;
 393
 394	err = strict_strtoul(buf, 10, &pages);
 395	if (err || !pages || pages > UINT_MAX)
 396		return -EINVAL;
 397
 398	khugepaged_pages_to_scan = pages;
 399
 400	return count;
 401}
 402static struct kobj_attribute pages_to_scan_attr =
 403	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 404	       pages_to_scan_store);
 405
 406static ssize_t pages_collapsed_show(struct kobject *kobj,
 407				    struct kobj_attribute *attr,
 408				    char *buf)
 409{
 410	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 411}
 412static struct kobj_attribute pages_collapsed_attr =
 413	__ATTR_RO(pages_collapsed);
 414
 415static ssize_t full_scans_show(struct kobject *kobj,
 416			       struct kobj_attribute *attr,
 417			       char *buf)
 418{
 419	return sprintf(buf, "%u\n", khugepaged_full_scans);
 420}
 421static struct kobj_attribute full_scans_attr =
 422	__ATTR_RO(full_scans);
 423
 424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 425				      struct kobj_attribute *attr, char *buf)
 426{
 427	return single_flag_show(kobj, attr, buf,
 428				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 429}
 430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 431				       struct kobj_attribute *attr,
 432				       const char *buf, size_t count)
 433{
 434	return single_flag_store(kobj, attr, buf, count,
 435				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 436}
 437static struct kobj_attribute khugepaged_defrag_attr =
 438	__ATTR(defrag, 0644, khugepaged_defrag_show,
 439	       khugepaged_defrag_store);
 440
 441/*
 442 * max_ptes_none controls if khugepaged should collapse hugepages over
 443 * any unmapped ptes in turn potentially increasing the memory
 444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 445 * reduce the available free memory in the system as it
 446 * runs. Increasing max_ptes_none will instead potentially reduce the
 447 * free memory in the system during the khugepaged scan.
 448 */
 449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 450					     struct kobj_attribute *attr,
 451					     char *buf)
 452{
 453	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 454}
 455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 456					      struct kobj_attribute *attr,
 457					      const char *buf, size_t count)
 458{
 459	int err;
 460	unsigned long max_ptes_none;
 461
 462	err = strict_strtoul(buf, 10, &max_ptes_none);
 463	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 464		return -EINVAL;
 465
 466	khugepaged_max_ptes_none = max_ptes_none;
 467
 468	return count;
 469}
 470static struct kobj_attribute khugepaged_max_ptes_none_attr =
 471	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 472	       khugepaged_max_ptes_none_store);
 473
 474static struct attribute *khugepaged_attr[] = {
 475	&khugepaged_defrag_attr.attr,
 476	&khugepaged_max_ptes_none_attr.attr,
 477	&pages_to_scan_attr.attr,
 478	&pages_collapsed_attr.attr,
 479	&full_scans_attr.attr,
 480	&scan_sleep_millisecs_attr.attr,
 481	&alloc_sleep_millisecs_attr.attr,
 482	NULL,
 483};
 484
 485static struct attribute_group khugepaged_attr_group = {
 486	.attrs = khugepaged_attr,
 487	.name = "khugepaged",
 488};
 489#endif /* CONFIG_SYSFS */
 490
 491static int __init hugepage_init(void)
 492{
 493	int err;
 494#ifdef CONFIG_SYSFS
 495	static struct kobject *hugepage_kobj;
 496#endif
 497
 498	err = -EINVAL;
 499	if (!has_transparent_hugepage()) {
 500		transparent_hugepage_flags = 0;
 501		goto out;
 502	}
 503
 504#ifdef CONFIG_SYSFS
 505	err = -ENOMEM;
 506	hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 507	if (unlikely(!hugepage_kobj)) {
 508		printk(KERN_ERR "hugepage: failed kobject create\n");
 509		goto out;
 510	}
 511
 512	err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
 513	if (err) {
 514		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 515		goto out;
 516	}
 517
 518	err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
 519	if (err) {
 520		printk(KERN_ERR "hugepage: failed register hugeage group\n");
 521		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522	}
 523#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524
 525	err = khugepaged_slab_init();
 526	if (err)
 527		goto out;
 528
 529	err = mm_slots_hash_init();
 530	if (err) {
 531		khugepaged_slab_free();
 532		goto out;
 533	}
 
 534
 535	/*
 536	 * By default disable transparent hugepages on smaller systems,
 537	 * where the extra memory used could hurt more than TLB overhead
 538	 * is likely to save.  The admin can still enable it through /sys.
 539	 */
 540	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 541		transparent_hugepage_flags = 0;
 
 
 542
 543	start_khugepaged();
 544
 545	set_recommended_min_free_kbytes();
 546
 547out:
 
 
 
 
 
 
 
 
 
 548	return err;
 549}
 550module_init(hugepage_init)
 551
 552static int __init setup_transparent_hugepage(char *str)
 553{
 554	int ret = 0;
 555	if (!str)
 556		goto out;
 557	if (!strcmp(str, "always")) {
 558		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 559			&transparent_hugepage_flags);
 560		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 561			  &transparent_hugepage_flags);
 562		ret = 1;
 563	} else if (!strcmp(str, "madvise")) {
 564		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 565			  &transparent_hugepage_flags);
 566		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 567			&transparent_hugepage_flags);
 568		ret = 1;
 569	} else if (!strcmp(str, "never")) {
 570		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 571			  &transparent_hugepage_flags);
 572		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 573			  &transparent_hugepage_flags);
 574		ret = 1;
 575	}
 576out:
 577	if (!ret)
 578		printk(KERN_WARNING
 579		       "transparent_hugepage= cannot parse, ignored\n");
 580	return ret;
 581}
 582__setup("transparent_hugepage=", setup_transparent_hugepage);
 583
 584static void prepare_pmd_huge_pte(pgtable_t pgtable,
 585				 struct mm_struct *mm)
 586{
 587	assert_spin_locked(&mm->page_table_lock);
 
 
 
 588
 589	/* FIFO */
 590	if (!mm->pmd_huge_pte)
 591		INIT_LIST_HEAD(&pgtable->lru);
 592	else
 593		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
 594	mm->pmd_huge_pte = pgtable;
 595}
 596
 597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 598{
 599	if (likely(vma->vm_flags & VM_WRITE))
 600		pmd = pmd_mkwrite(pmd);
 601	return pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 602}
 603
 604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 605					struct vm_area_struct *vma,
 606					unsigned long haddr, pmd_t *pmd,
 607					struct page *page)
 
 608{
 609	int ret = 0;
 610	pgtable_t pgtable;
 
 
 
 
 
 
 
 
 
 
 611
 612	VM_BUG_ON(!PageCompound(page));
 613	pgtable = pte_alloc_one(mm, haddr);
 614	if (unlikely(!pgtable)) {
 615		mem_cgroup_uncharge_page(page);
 616		put_page(page);
 617		return VM_FAULT_OOM;
 618	}
 619
 620	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 
 
 
 
 
 621	__SetPageUptodate(page);
 622
 623	spin_lock(&mm->page_table_lock);
 624	if (unlikely(!pmd_none(*pmd))) {
 625		spin_unlock(&mm->page_table_lock);
 626		mem_cgroup_uncharge_page(page);
 627		put_page(page);
 628		pte_free(mm, pgtable);
 629	} else {
 630		pmd_t entry;
 631		entry = mk_pmd(page, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 633		entry = pmd_mkhuge(entry);
 634		/*
 635		 * The spinlocking to take the lru_lock inside
 636		 * page_add_new_anon_rmap() acts as a full memory
 637		 * barrier to be sure clear_huge_page writes become
 638		 * visible after the set_pmd_at() write.
 639		 */
 640		page_add_new_anon_rmap(page, vma, haddr);
 641		set_pmd_at(mm, haddr, pmd, entry);
 642		prepare_pmd_huge_pte(pgtable, mm);
 643		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 644		spin_unlock(&mm->page_table_lock);
 
 
 645	}
 646
 647	return ret;
 648}
 649
 650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 651{
 652	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 653}
 654
 655static inline struct page *alloc_hugepage_vma(int defrag,
 656					      struct vm_area_struct *vma,
 657					      unsigned long haddr, int nd,
 658					      gfp_t extra_gfp)
 
 
 659{
 660	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 661			       HPAGE_PMD_ORDER, vma, haddr, nd);
 662}
 663
 664#ifndef CONFIG_NUMA
 665static inline struct page *alloc_hugepage(int defrag)
 666{
 667	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
 668			   HPAGE_PMD_ORDER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669}
 670#endif
 671
 672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 673			       unsigned long address, pmd_t *pmd,
 674			       unsigned int flags)
 675{
 
 676	struct page *page;
 677	unsigned long haddr = address & HPAGE_PMD_MASK;
 678	pte_t *pte;
 679
 680	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
 681		if (unlikely(anon_vma_prepare(vma)))
 682			return VM_FAULT_OOM;
 683		if (unlikely(khugepaged_enter(vma)))
 
 
 
 
 
 
 
 
 
 
 
 684			return VM_FAULT_OOM;
 685		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 686					  vma, haddr, numa_node_id(), 0);
 687		if (unlikely(!page)) {
 688			count_vm_event(THP_FAULT_FALLBACK);
 689			goto out;
 690		}
 691		count_vm_event(THP_FAULT_ALLOC);
 692		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
 693			put_page(page);
 694			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696
 697		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
 
 
 
 
 
 
 698	}
 699out:
 
 
 
 
 
 
 
 
 700	/*
 701	 * Use __pte_alloc instead of pte_alloc_map, because we can't
 702	 * run pte_offset_map on the pmd, if an huge pmd could
 703	 * materialize from under us from a different thread.
 704	 */
 705	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
 706		return VM_FAULT_OOM;
 707	/* if an huge pmd materialized from under us just retry later */
 708	if (unlikely(pmd_trans_huge(*pmd)))
 709		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710	/*
 711	 * A regular pmd is established and it can't morph into a huge pmd
 712	 * from under us anymore at this point because we hold the mmap_sem
 713	 * read mode and khugepaged takes it in write mode. So now it's
 714	 * safe to run pte_offset_map().
 715	 */
 716	pte = pte_offset_map(pmd, address);
 717	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 
 
 
 
 
 
 
 
 
 
 718}
 719
 720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 721		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 722		  struct vm_area_struct *vma)
 723{
 
 724	struct page *src_page;
 725	pmd_t pmd;
 726	pgtable_t pgtable;
 727	int ret;
 728
 729	ret = -ENOMEM;
 730	pgtable = pte_alloc_one(dst_mm, addr);
 731	if (unlikely(!pgtable))
 732		goto out;
 
 
 733
 734	spin_lock(&dst_mm->page_table_lock);
 735	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
 
 736
 737	ret = -EAGAIN;
 738	pmd = *src_pmd;
 739	if (unlikely(!pmd_trans_huge(pmd))) {
 740		pte_free(dst_mm, pgtable);
 741		goto out_unlock;
 742	}
 743	if (unlikely(pmd_trans_splitting(pmd))) {
 744		/* split huge page running from under us */
 745		spin_unlock(&src_mm->page_table_lock);
 746		spin_unlock(&dst_mm->page_table_lock);
 747		pte_free(dst_mm, pgtable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 748
 749		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 750		goto out;
 
 
 
 
 
 
 
 751	}
 752	src_page = pmd_page(pmd);
 753	VM_BUG_ON(!PageHead(src_page));
 754	get_page(src_page);
 755	page_dup_rmap(src_page);
 756	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 757
 758	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 759	pmd = pmd_mkold(pmd_wrprotect(pmd));
 760	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 761	prepare_pmd_huge_pte(pgtable, dst_mm);
 762
 763	ret = 0;
 764out_unlock:
 765	spin_unlock(&src_mm->page_table_lock);
 766	spin_unlock(&dst_mm->page_table_lock);
 767out:
 768	return ret;
 769}
 770
 771/* no "address" argument so destroys page coloring of some arch */
 772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
 
 
 
 773{
 774	pgtable_t pgtable;
 
 
 
 
 
 
 775
 776	assert_spin_locked(&mm->page_table_lock);
 
 
 
 777
 778	/* FIFO */
 779	pgtable = mm->pmd_huge_pte;
 780	if (list_empty(&pgtable->lru))
 781		mm->pmd_huge_pte = NULL;
 782	else {
 783		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
 784					      struct page, lru);
 785		list_del(&pgtable->lru);
 786	}
 787	return pgtable;
 788}
 789
 790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 791					struct vm_area_struct *vma,
 792					unsigned long address,
 793					pmd_t *pmd, pmd_t orig_pmd,
 794					struct page *page,
 795					unsigned long haddr)
 796{
 
 
 797	pgtable_t pgtable;
 798	pmd_t _pmd;
 799	int ret = 0, i;
 800	struct page **pages;
 
 
 801
 802	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 803			GFP_KERNEL);
 804	if (unlikely(!pages)) {
 805		ret |= VM_FAULT_OOM;
 806		goto out;
 807	}
 808
 809	for (i = 0; i < HPAGE_PMD_NR; i++) {
 810		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 811					       __GFP_OTHER_NODE,
 812					       vma, address, page_to_nid(page));
 813		if (unlikely(!pages[i] ||
 814			     mem_cgroup_newpage_charge(pages[i], mm,
 815						       GFP_KERNEL))) {
 816			if (pages[i])
 817				put_page(pages[i]);
 818			mem_cgroup_uncharge_start();
 819			while (--i >= 0) {
 820				mem_cgroup_uncharge_page(pages[i]);
 
 
 
 821				put_page(pages[i]);
 822			}
 823			mem_cgroup_uncharge_end();
 824			kfree(pages);
 825			ret |= VM_FAULT_OOM;
 826			goto out;
 827		}
 
 828	}
 829
 830	for (i = 0; i < HPAGE_PMD_NR; i++) {
 831		copy_user_highpage(pages[i], page + i,
 832				   haddr + PAGE_SHIFT*i, vma);
 833		__SetPageUptodate(pages[i]);
 834		cond_resched();
 835	}
 836
 837	spin_lock(&mm->page_table_lock);
 
 
 
 
 838	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 839		goto out_free_pages;
 840	VM_BUG_ON(!PageHead(page));
 841
 842	pmdp_clear_flush_notify(vma, haddr, pmd);
 843	/* leave pmd empty until pte is filled */
 844
 845	pgtable = get_pmd_huge_pte(mm);
 846	pmd_populate(mm, &_pmd, pgtable);
 847
 848	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 849		pte_t *pte, entry;
 850		entry = mk_pte(pages[i], vma->vm_page_prot);
 851		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 852		page_add_new_anon_rmap(pages[i], vma, haddr);
 
 
 
 
 853		pte = pte_offset_map(&_pmd, haddr);
 854		VM_BUG_ON(!pte_none(*pte));
 855		set_pte_at(mm, haddr, pte, entry);
 856		pte_unmap(pte);
 857	}
 858	kfree(pages);
 859
 860	mm->nr_ptes++;
 861	smp_wmb(); /* make pte visible before pmd */
 862	pmd_populate(mm, pmd, pgtable);
 863	page_remove_rmap(page);
 864	spin_unlock(&mm->page_table_lock);
 
 
 865
 866	ret |= VM_FAULT_WRITE;
 867	put_page(page);
 868
 869out:
 870	return ret;
 871
 872out_free_pages:
 873	spin_unlock(&mm->page_table_lock);
 874	mem_cgroup_uncharge_start();
 875	for (i = 0; i < HPAGE_PMD_NR; i++) {
 876		mem_cgroup_uncharge_page(pages[i]);
 
 
 877		put_page(pages[i]);
 878	}
 879	mem_cgroup_uncharge_end();
 880	kfree(pages);
 881	goto out;
 882}
 883
 884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 885			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
 886{
 
 887	int ret = 0;
 888	struct page *page, *new_page;
 
 889	unsigned long haddr;
 
 
 
 890
 891	VM_BUG_ON(!vma->anon_vma);
 892	spin_lock(&mm->page_table_lock);
 
 
 
 
 893	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 894		goto out_unlock;
 895
 896	page = pmd_page(orig_pmd);
 897	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
 898	haddr = address & HPAGE_PMD_MASK;
 899	if (page_mapcount(page) == 1) {
 
 
 
 900		pmd_t entry;
 901		entry = pmd_mkyoung(orig_pmd);
 902		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 903		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
 904			update_mmu_cache(vma, address, entry);
 905		ret |= VM_FAULT_WRITE;
 906		goto out_unlock;
 907	}
 908	get_page(page);
 909	spin_unlock(&mm->page_table_lock);
 910
 911	if (transparent_hugepage_enabled(vma) &&
 912	    !transparent_hugepage_debug_cow())
 913		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 914					      vma, haddr, numa_node_id(), 0);
 915	else
 916		new_page = NULL;
 917
 918	if (unlikely(!new_page)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919		count_vm_event(THP_FAULT_FALLBACK);
 920		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
 921						   pmd, orig_pmd, page, haddr);
 922		put_page(page);
 923		goto out;
 924	}
 925	count_vm_event(THP_FAULT_ALLOC);
 926
 927	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
 
 928		put_page(new_page);
 929		put_page(page);
 930		ret |= VM_FAULT_OOM;
 
 
 
 
 
 931		goto out;
 932	}
 933
 934	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 
 
 
 
 
 935	__SetPageUptodate(new_page);
 936
 937	spin_lock(&mm->page_table_lock);
 938	put_page(page);
 
 
 
 
 
 939	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
 940		mem_cgroup_uncharge_page(new_page);
 
 941		put_page(new_page);
 
 942	} else {
 943		pmd_t entry;
 944		VM_BUG_ON(!PageHead(page));
 945		entry = mk_pmd(new_page, vma->vm_page_prot);
 946		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 947		entry = pmd_mkhuge(entry);
 948		pmdp_clear_flush_notify(vma, haddr, pmd);
 949		page_add_new_anon_rmap(new_page, vma, haddr);
 
 950		set_pmd_at(mm, haddr, pmd, entry);
 951		update_mmu_cache(vma, address, entry);
 952		page_remove_rmap(page);
 953		put_page(page);
 
 
 
 
 
 
 954		ret |= VM_FAULT_WRITE;
 955	}
 956out_unlock:
 957	spin_unlock(&mm->page_table_lock);
 
 958out:
 959	return ret;
 
 
 
 960}
 961
 962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
 963				   unsigned long addr,
 964				   pmd_t *pmd,
 965				   unsigned int flags)
 966{
 
 967	struct page *page = NULL;
 968
 969	assert_spin_locked(&mm->page_table_lock);
 970
 971	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 972		goto out;
 973
 
 
 
 
 
 
 
 
 974	page = pmd_page(*pmd);
 975	VM_BUG_ON(!PageHead(page));
 976	if (flags & FOLL_TOUCH) {
 977		pmd_t _pmd;
 
 978		/*
 979		 * We should set the dirty bit only for FOLL_WRITE but
 980		 * for now the dirty bit in the pmd is meaningless.
 981		 * And if the dirty bit will become meaningful and
 982		 * we'll only set it with FOLL_WRITE, an atomic
 983		 * set_bit will be required on the pmd to set the
 984		 * young bit, instead of the current set_pmd_at.
 
 
 
 
 985		 */
 986		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 987		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
 
 
 
 
 
 988	}
 989	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 990	VM_BUG_ON(!PageCompound(page));
 991	if (flags & FOLL_GET)
 992		get_page(page);
 993
 994out:
 995	return page;
 996}
 997
 998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 999		 pmd_t *pmd)
 
1000{
1001	int ret = 0;
 
 
 
 
 
 
 
 
 
1002
1003	spin_lock(&tlb->mm->page_table_lock);
1004	if (likely(pmd_trans_huge(*pmd))) {
1005		if (unlikely(pmd_trans_splitting(*pmd))) {
1006			spin_unlock(&tlb->mm->page_table_lock);
1007			wait_split_huge_page(vma->anon_vma,
1008					     pmd);
1009		} else {
1010			struct page *page;
1011			pgtable_t pgtable;
1012			pgtable = get_pmd_huge_pte(tlb->mm);
1013			page = pmd_page(*pmd);
1014			pmd_clear(pmd);
1015			page_remove_rmap(page);
1016			VM_BUG_ON(page_mapcount(page) < 0);
1017			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018			VM_BUG_ON(!PageHead(page));
1019			spin_unlock(&tlb->mm->page_table_lock);
1020			tlb_remove_page(tlb, page);
1021			pte_free(tlb->mm, pgtable);
1022			ret = 1;
1023		}
1024	} else
1025		spin_unlock(&tlb->mm->page_table_lock);
1026
1027	return ret;
1028}
 
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031		unsigned long addr, unsigned long end,
1032		unsigned char *vec)
1033{
1034	int ret = 0;
 
 
 
 
 
 
1035
1036	spin_lock(&vma->vm_mm->page_table_lock);
1037	if (likely(pmd_trans_huge(*pmd))) {
1038		ret = !pmd_trans_splitting(*pmd);
1039		spin_unlock(&vma->vm_mm->page_table_lock);
1040		if (unlikely(!ret))
1041			wait_split_huge_page(vma->anon_vma, pmd);
1042		else {
1043			/*
1044			 * All logical pages in the range are present
1045			 * if backed by a huge page.
1046			 */
1047			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048		}
1049	} else
1050		spin_unlock(&vma->vm_mm->page_table_lock);
1051
1052	return ret;
1053}
 
1054
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056		unsigned long addr, pgprot_t newprot)
1057{
1058	struct mm_struct *mm = vma->vm_mm;
1059	int ret = 0;
 
 
 
 
 
 
1060
1061	spin_lock(&mm->page_table_lock);
1062	if (likely(pmd_trans_huge(*pmd))) {
1063		if (unlikely(pmd_trans_splitting(*pmd))) {
1064			spin_unlock(&mm->page_table_lock);
1065			wait_split_huge_page(vma->anon_vma, pmd);
1066		} else {
1067			pmd_t entry;
1068
1069			entry = pmdp_get_and_clear(mm, addr, pmd);
1070			entry = pmd_modify(entry, newprot);
1071			set_pmd_at(mm, addr, pmd, entry);
1072			spin_unlock(&vma->vm_mm->page_table_lock);
1073			flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074			ret = 1;
1075		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076	} else
1077		spin_unlock(&vma->vm_mm->page_table_lock);
1078
1079	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080}
1081
1082pmd_t *page_check_address_pmd(struct page *page,
1083			      struct mm_struct *mm,
1084			      unsigned long address,
1085			      enum page_check_address_pmd_flag flag)
1086{
1087	pgd_t *pgd;
1088	pud_t *pud;
1089	pmd_t *pmd, *ret = NULL;
 
 
1090
1091	if (address & ~HPAGE_PMD_MASK)
1092		goto out;
 
1093
1094	pgd = pgd_offset(mm, address);
1095	if (!pgd_present(*pgd))
 
1096		goto out;
 
1097
1098	pud = pud_offset(pgd, address);
1099	if (!pud_present(*pud))
 
 
 
 
1100		goto out;
1101
1102	pmd = pmd_offset(pud, address);
1103	if (pmd_none(*pmd))
1104		goto out;
1105	if (pmd_page(*pmd) != page)
1106		goto out;
 
1107	/*
1108	 * split_vma() may create temporary aliased mappings. There is
1109	 * no risk as long as all huge pmd are found and have their
1110	 * splitting bit set before __split_huge_page_refcount
1111	 * runs. Finding the same huge pmd more than once during the
1112	 * same rmap walk is not a problem.
1113	 */
1114	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115	    pmd_trans_splitting(*pmd))
1116		goto out;
1117	if (pmd_trans_huge(*pmd)) {
1118		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119			  !pmd_trans_splitting(*pmd));
1120		ret = pmd;
 
 
 
 
 
1121	}
1122out:
1123	return ret;
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127				       struct vm_area_struct *vma,
1128				       unsigned long address)
1129{
1130	struct mm_struct *mm = vma->vm_mm;
1131	pmd_t *pmd;
1132	int ret = 0;
1133
1134	spin_lock(&mm->page_table_lock);
1135	pmd = page_check_address_pmd(page, mm, address,
1136				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137	if (pmd) {
1138		/*
1139		 * We can't temporarily set the pmd to null in order
1140		 * to split it, the pmd must remain marked huge at all
1141		 * times or the VM won't take the pmd_trans_huge paths
1142		 * and it won't wait on the anon_vma->root->mutex to
1143		 * serialize against split_huge_page*.
1144		 */
1145		pmdp_splitting_flush_notify(vma, address, pmd);
1146		ret = 1;
1147	}
1148	spin_unlock(&mm->page_table_lock);
1149
 
 
 
 
 
 
 
 
 
 
 
 
 
1150	return ret;
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
 
1154{
1155	int i;
1156	unsigned long head_index = page->index;
1157	struct zone *zone = page_zone(page);
1158	int zonestat;
1159
1160	/* prevent PageLRU to go away from under us, and freeze lru stats */
1161	spin_lock_irq(&zone->lru_lock);
1162	compound_lock(page);
1163
1164	for (i = 1; i < HPAGE_PMD_NR; i++) {
1165		struct page *page_tail = page + i;
1166
1167		/* tail_page->_count cannot change */
1168		atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169		BUG_ON(page_count(page) <= 0);
1170		atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171		BUG_ON(atomic_read(&page_tail->_count) <= 0);
1172
1173		/* after clearing PageTail the gup refcount can be released */
1174		smp_mb();
1175
1176		/*
1177		 * retain hwpoison flag of the poisoned tail page:
1178		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1179		 *   by the memory-failure.
1180		 */
1181		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182		page_tail->flags |= (page->flags &
1183				     ((1L << PG_referenced) |
1184				      (1L << PG_swapbacked) |
1185				      (1L << PG_mlocked) |
1186				      (1L << PG_uptodate)));
1187		page_tail->flags |= (1L << PG_dirty);
1188
1189		/*
1190		 * 1) clear PageTail before overwriting first_page
1191		 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192		 */
1193		smp_wmb();
1194
1195		/*
1196		 * __split_huge_page_splitting() already set the
1197		 * splitting bit in all pmd that could map this
1198		 * hugepage, that will ensure no CPU can alter the
1199		 * mapcount on the head page. The mapcount is only
1200		 * accounted in the head page and it has to be
1201		 * transferred to all tail pages in the below code. So
1202		 * for this code to be safe, the split the mapcount
1203		 * can't change. But that doesn't mean userland can't
1204		 * keep changing and reading the page contents while
1205		 * we transfer the mapcount, so the pmd splitting
1206		 * status is achieved setting a reserved bit in the
1207		 * pmd, not by clearing the present bit.
1208		*/
1209		BUG_ON(page_mapcount(page_tail));
1210		page_tail->_mapcount = page->_mapcount;
1211
1212		BUG_ON(page_tail->mapping);
1213		page_tail->mapping = page->mapping;
1214
1215		page_tail->index = ++head_index;
1216
1217		BUG_ON(!PageAnon(page_tail));
1218		BUG_ON(!PageUptodate(page_tail));
1219		BUG_ON(!PageDirty(page_tail));
1220		BUG_ON(!PageSwapBacked(page_tail));
1221
1222		mem_cgroup_split_huge_fixup(page, page_tail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223
1224		lru_add_page_tail(zone, page, page_tail);
1225	}
1226
1227	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
 
 
 
1229
1230	/*
1231	 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232	 * so adjust those appropriately if this page is on the LRU.
1233	 */
1234	if (PageLRU(page)) {
1235		zonestat = NR_LRU_BASE + page_lru(page);
1236		__mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237	}
1238
1239	ClearPageCompound(page);
1240	compound_unlock(page);
1241	spin_unlock_irq(&zone->lru_lock);
1242
1243	for (i = 1; i < HPAGE_PMD_NR; i++) {
1244		struct page *page_tail = page + i;
1245		BUG_ON(page_count(page_tail) <= 0);
1246		/*
1247		 * Tail pages may be freed if there wasn't any mapping
1248		 * like if add_to_swap() is running on a lru page that
1249		 * had its mapping zapped. And freeing these pages
1250		 * requires taking the lru_lock so we do the put_page
1251		 * of the tail pages after the split is complete.
1252		 */
1253		put_page(page_tail);
1254	}
1255
1256	/*
1257	 * Only the head page (now become a regular page) is required
1258	 * to be pinned by the caller.
1259	 */
1260	BUG_ON(page_count(page) <= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261}
1262
1263static int __split_huge_page_map(struct page *page,
1264				 struct vm_area_struct *vma,
1265				 unsigned long address)
 
 
 
 
 
1266{
1267	struct mm_struct *mm = vma->vm_mm;
1268	pmd_t *pmd, _pmd;
1269	int ret = 0, i;
1270	pgtable_t pgtable;
1271	unsigned long haddr;
1272
1273	spin_lock(&mm->page_table_lock);
1274	pmd = page_check_address_pmd(page, mm, address,
1275				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276	if (pmd) {
1277		pgtable = get_pmd_huge_pte(mm);
1278		pmd_populate(mm, &_pmd, pgtable);
1279
1280		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281		     i++, haddr += PAGE_SIZE) {
1282			pte_t *pte, entry;
1283			BUG_ON(PageCompound(page+i));
1284			entry = mk_pte(page + i, vma->vm_page_prot);
1285			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286			if (!pmd_write(*pmd))
1287				entry = pte_wrprotect(entry);
1288			else
1289				BUG_ON(page_mapcount(page) != 1);
1290			if (!pmd_young(*pmd))
1291				entry = pte_mkold(entry);
1292			pte = pte_offset_map(&_pmd, haddr);
1293			BUG_ON(!pte_none(*pte));
1294			set_pte_at(mm, haddr, pte, entry);
1295			pte_unmap(pte);
1296		}
1297
1298		mm->nr_ptes++;
1299		smp_wmb(); /* make pte visible before pmd */
1300		/*
1301		 * Up to this point the pmd is present and huge and
1302		 * userland has the whole access to the hugepage
1303		 * during the split (which happens in place). If we
1304		 * overwrite the pmd with the not-huge version
1305		 * pointing to the pte here (which of course we could
1306		 * if all CPUs were bug free), userland could trigger
1307		 * a small page size TLB miss on the small sized TLB
1308		 * while the hugepage TLB entry is still established
1309		 * in the huge TLB. Some CPU doesn't like that. See
1310		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311		 * Erratum 383 on page 93. Intel should be safe but is
1312		 * also warns that it's only safe if the permission
1313		 * and cache attributes of the two entries loaded in
1314		 * the two TLB is identical (which should be the case
1315		 * here). But it is generally safer to never allow
1316		 * small and huge TLB entries for the same virtual
1317		 * address to be loaded simultaneously. So instead of
1318		 * doing "pmd_populate(); flush_tlb_range();" we first
1319		 * mark the current pmd notpresent (atomically because
1320		 * here the pmd_trans_huge and pmd_trans_splitting
1321		 * must remain set at all times on the pmd until the
1322		 * split is complete for this pmd), then we flush the
1323		 * SMP TLB and finally we write the non-huge version
1324		 * of the pmd entry with pmd_populate.
1325		 */
1326		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328		pmd_populate(mm, pmd, pgtable);
1329		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
1330	}
1331	spin_unlock(&mm->page_table_lock);
1332
1333	return ret;
1334}
1335
1336/* must be called with anon_vma->root->mutex hold */
1337static void __split_huge_page(struct page *page,
1338			      struct anon_vma *anon_vma)
1339{
1340	int mapcount, mapcount2;
1341	struct anon_vma_chain *avc;
1342
1343	BUG_ON(!PageHead(page));
1344	BUG_ON(PageTail(page));
1345
1346	mapcount = 0;
1347	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348		struct vm_area_struct *vma = avc->vma;
1349		unsigned long addr = vma_address(page, vma);
1350		BUG_ON(is_vma_temporary_stack(vma));
1351		if (addr == -EFAULT)
1352			continue;
1353		mapcount += __split_huge_page_splitting(page, vma, addr);
1354	}
1355	/*
1356	 * It is critical that new vmas are added to the tail of the
1357	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358	 * and establishes a child pmd before
1359	 * __split_huge_page_splitting() freezes the parent pmd (so if
1360	 * we fail to prevent copy_huge_pmd() from running until the
1361	 * whole __split_huge_page() is complete), we will still see
1362	 * the newly established pmd of the child later during the
1363	 * walk, to be able to set it as pmd_trans_splitting too.
1364	 */
1365	if (mapcount != page_mapcount(page))
1366		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367		       mapcount, page_mapcount(page));
1368	BUG_ON(mapcount != page_mapcount(page));
1369
1370	__split_huge_page_refcount(page);
1371
1372	mapcount2 = 0;
1373	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374		struct vm_area_struct *vma = avc->vma;
1375		unsigned long addr = vma_address(page, vma);
1376		BUG_ON(is_vma_temporary_stack(vma));
1377		if (addr == -EFAULT)
1378			continue;
1379		mapcount2 += __split_huge_page_map(page, vma, addr);
1380	}
1381	if (mapcount != mapcount2)
1382		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383		       mapcount, mapcount2, page_mapcount(page));
1384	BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
1388{
1389	struct anon_vma *anon_vma;
1390	int ret = 1;
1391
1392	BUG_ON(!PageAnon(page));
1393	anon_vma = page_lock_anon_vma(page);
1394	if (!anon_vma)
1395		goto out;
1396	ret = 0;
1397	if (!PageCompound(page))
1398		goto out_unlock;
1399
1400	BUG_ON(!PageSwapBacked(page));
1401	__split_huge_page(page, anon_vma);
1402	count_vm_event(THP_SPLIT);
1403
1404	BUG_ON(PageCompound(page));
1405out_unlock:
1406	page_unlock_anon_vma(anon_vma);
1407out:
1408	return ret;
1409}
1410
1411#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1412		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1413
1414int hugepage_madvise(struct vm_area_struct *vma,
1415		     unsigned long *vm_flags, int advice)
1416{
1417	switch (advice) {
1418	case MADV_HUGEPAGE:
 
 
 
 
 
 
 
 
 
1419		/*
1420		 * Be somewhat over-protective like KSM for now!
1421		 */
1422		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1423			return -EINVAL;
1424		*vm_flags &= ~VM_NOHUGEPAGE;
1425		*vm_flags |= VM_HUGEPAGE;
1426		/*
1427		 * If the vma become good for khugepaged to scan,
1428		 * register it here without waiting a page fault that
1429		 * may not happen any time soon.
1430		 */
1431		if (unlikely(khugepaged_enter_vma_merge(vma)))
1432			return -ENOMEM;
1433		break;
1434	case MADV_NOHUGEPAGE:
1435		/*
1436		 * Be somewhat over-protective like KSM for now!
1437		 */
1438		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1439			return -EINVAL;
1440		*vm_flags &= ~VM_HUGEPAGE;
1441		*vm_flags |= VM_NOHUGEPAGE;
1442		/*
1443		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1444		 * this vma even if we leave the mm registered in khugepaged if
1445		 * it got registered before VM_NOHUGEPAGE was set.
1446		 */
1447		break;
1448	}
1449
1450	return 0;
1451}
1452
1453static int __init khugepaged_slab_init(void)
1454{
1455	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1456					  sizeof(struct mm_slot),
1457					  __alignof__(struct mm_slot), 0, NULL);
1458	if (!mm_slot_cache)
1459		return -ENOMEM;
1460
1461	return 0;
1462}
1463
1464static void __init khugepaged_slab_free(void)
1465{
1466	kmem_cache_destroy(mm_slot_cache);
1467	mm_slot_cache = NULL;
1468}
1469
1470static inline struct mm_slot *alloc_mm_slot(void)
1471{
1472	if (!mm_slot_cache)	/* initialization failed */
1473		return NULL;
1474	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1475}
1476
1477static inline void free_mm_slot(struct mm_slot *mm_slot)
1478{
1479	kmem_cache_free(mm_slot_cache, mm_slot);
1480}
1481
1482static int __init mm_slots_hash_init(void)
1483{
1484	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1485				GFP_KERNEL);
1486	if (!mm_slots_hash)
1487		return -ENOMEM;
1488	return 0;
1489}
1490
1491#if 0
1492static void __init mm_slots_hash_free(void)
1493{
1494	kfree(mm_slots_hash);
1495	mm_slots_hash = NULL;
1496}
1497#endif
1498
1499static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1500{
1501	struct mm_slot *mm_slot;
1502	struct hlist_head *bucket;
1503	struct hlist_node *node;
1504
1505	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1506				% MM_SLOTS_HASH_HEADS];
1507	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1508		if (mm == mm_slot->mm)
1509			return mm_slot;
1510	}
1511	return NULL;
1512}
1513
1514static void insert_to_mm_slots_hash(struct mm_struct *mm,
1515				    struct mm_slot *mm_slot)
1516{
1517	struct hlist_head *bucket;
1518
1519	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1520				% MM_SLOTS_HASH_HEADS];
1521	mm_slot->mm = mm;
1522	hlist_add_head(&mm_slot->hash, bucket);
1523}
1524
1525static inline int khugepaged_test_exit(struct mm_struct *mm)
1526{
1527	return atomic_read(&mm->mm_users) == 0;
1528}
1529
1530int __khugepaged_enter(struct mm_struct *mm)
1531{
1532	struct mm_slot *mm_slot;
1533	int wakeup;
1534
1535	mm_slot = alloc_mm_slot();
1536	if (!mm_slot)
1537		return -ENOMEM;
1538
1539	/* __khugepaged_exit() must not run from under us */
1540	VM_BUG_ON(khugepaged_test_exit(mm));
1541	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1542		free_mm_slot(mm_slot);
1543		return 0;
1544	}
1545
1546	spin_lock(&khugepaged_mm_lock);
1547	insert_to_mm_slots_hash(mm, mm_slot);
1548	/*
1549	 * Insert just behind the scanning cursor, to let the area settle
1550	 * down a little.
1551	 */
1552	wakeup = list_empty(&khugepaged_scan.mm_head);
1553	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1554	spin_unlock(&khugepaged_mm_lock);
1555
1556	atomic_inc(&mm->mm_count);
1557	if (wakeup)
1558		wake_up_interruptible(&khugepaged_wait);
1559
1560	return 0;
1561}
1562
1563int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
 
1564{
1565	unsigned long hstart, hend;
1566	if (!vma->anon_vma)
1567		/*
1568		 * Not yet faulted in so we will register later in the
1569		 * page fault if needed.
1570		 */
1571		return 0;
1572	if (vma->vm_ops)
1573		/* khugepaged not yet working on file or special mappings */
1574		return 0;
1575	/*
1576	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1577	 * true too, verify it here.
1578	 */
1579	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1580	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1581	hend = vma->vm_end & HPAGE_PMD_MASK;
1582	if (hstart < hend)
1583		return khugepaged_enter(vma);
1584	return 0;
1585}
1586
1587void __khugepaged_exit(struct mm_struct *mm)
1588{
1589	struct mm_slot *mm_slot;
1590	int free = 0;
1591
1592	spin_lock(&khugepaged_mm_lock);
1593	mm_slot = get_mm_slot(mm);
1594	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1595		hlist_del(&mm_slot->hash);
1596		list_del(&mm_slot->mm_node);
1597		free = 1;
1598	}
1599	spin_unlock(&khugepaged_mm_lock);
1600
1601	if (free) {
1602		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1603		free_mm_slot(mm_slot);
1604		mmdrop(mm);
1605	} else if (mm_slot) {
1606		/*
1607		 * This is required to serialize against
1608		 * khugepaged_test_exit() (which is guaranteed to run
1609		 * under mmap sem read mode). Stop here (after we
1610		 * return all pagetables will be destroyed) until
1611		 * khugepaged has finished working on the pagetables
1612		 * under the mmap_sem.
1613		 */
1614		down_write(&mm->mmap_sem);
1615		up_write(&mm->mmap_sem);
1616	}
1617}
1618
1619static void release_pte_page(struct page *page)
1620{
1621	/* 0 stands for page_is_file_cache(page) == false */
1622	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1623	unlock_page(page);
1624	putback_lru_page(page);
1625}
1626
1627static void release_pte_pages(pte_t *pte, pte_t *_pte)
1628{
1629	while (--_pte >= pte) {
1630		pte_t pteval = *_pte;
1631		if (!pte_none(pteval))
1632			release_pte_page(pte_page(pteval));
1633	}
1634}
1635
1636static void release_all_pte_pages(pte_t *pte)
1637{
1638	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1639}
1640
1641static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1642					unsigned long address,
1643					pte_t *pte)
1644{
1645	struct page *page;
1646	pte_t *_pte;
1647	int referenced = 0, isolated = 0, none = 0;
 
 
1648	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1649	     _pte++, address += PAGE_SIZE) {
1650		pte_t pteval = *_pte;
1651		if (pte_none(pteval)) {
1652			if (++none <= khugepaged_max_ptes_none)
 
 
1653				continue;
1654			else {
1655				release_pte_pages(pte, _pte);
1656				goto out;
1657			}
1658		}
1659		if (!pte_present(pteval) || !pte_write(pteval)) {
1660			release_pte_pages(pte, _pte);
1661			goto out;
1662		}
1663		page = vm_normal_page(vma, address, pteval);
1664		if (unlikely(!page)) {
1665			release_pte_pages(pte, _pte);
1666			goto out;
1667		}
1668		VM_BUG_ON(PageCompound(page));
1669		BUG_ON(!PageAnon(page));
1670		VM_BUG_ON(!PageSwapBacked(page));
1671
1672		/* cannot use mapcount: can't collapse if there's a gup pin */
1673		if (page_count(page) != 1) {
1674			release_pte_pages(pte, _pte);
1675			goto out;
1676		}
 
 
 
 
 
1677		/*
1678		 * We can do it before isolate_lru_page because the
1679		 * page can't be freed from under us. NOTE: PG_lock
1680		 * is needed to serialize against split_huge_page
1681		 * when invoked from the VM.
1682		 */
1683		if (!trylock_page(page)) {
1684			release_pte_pages(pte, _pte);
 
 
 
 
 
 
 
 
 
 
 
1685			goto out;
1686		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687		/*
1688		 * Isolate the page to avoid collapsing an hugepage
1689		 * currently in use by the VM.
1690		 */
1691		if (isolate_lru_page(page)) {
1692			unlock_page(page);
1693			release_pte_pages(pte, _pte);
1694			goto out;
1695		}
1696		/* 0 stands for page_is_file_cache(page) == false */
1697		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1698		VM_BUG_ON(!PageLocked(page));
1699		VM_BUG_ON(PageLRU(page));
1700
1701		/* If there is no mapped pte young don't collapse the page */
1702		if (pte_young(pteval) || PageReferenced(page) ||
 
1703		    mmu_notifier_test_young(vma->vm_mm, address))
1704			referenced = 1;
1705	}
1706	if (unlikely(!referenced))
1707		release_all_pte_pages(pte);
1708	else
1709		isolated = 1;
 
 
 
 
 
 
 
1710out:
1711	return isolated;
 
 
 
1712}
1713
1714static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1715				      struct vm_area_struct *vma,
1716				      unsigned long address,
1717				      spinlock_t *ptl)
1718{
1719	pte_t *_pte;
1720	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1721		pte_t pteval = *_pte;
1722		struct page *src_page;
1723
1724		if (pte_none(pteval)) {
1725			clear_user_highpage(page, address);
1726			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
 
 
 
 
 
 
 
 
 
 
 
 
1727		} else {
1728			src_page = pte_page(pteval);
1729			copy_user_highpage(page, src_page, address, vma);
1730			VM_BUG_ON(page_mapcount(src_page) != 1);
1731			VM_BUG_ON(page_count(src_page) != 2);
1732			release_pte_page(src_page);
1733			/*
1734			 * ptl mostly unnecessary, but preempt has to
1735			 * be disabled to update the per-cpu stats
1736			 * inside page_remove_rmap().
1737			 */
1738			spin_lock(ptl);
1739			/*
1740			 * paravirt calls inside pte_clear here are
1741			 * superfluous.
1742			 */
1743			pte_clear(vma->vm_mm, address, _pte);
1744			page_remove_rmap(src_page);
1745			spin_unlock(ptl);
1746			free_page_and_swap_cache(src_page);
1747		}
1748
1749		address += PAGE_SIZE;
1750		page++;
1751	}
1752}
1753
1754static void collapse_huge_page(struct mm_struct *mm,
1755			       unsigned long address,
1756			       struct page **hpage,
1757			       struct vm_area_struct *vma,
1758			       int node)
1759{
1760	pgd_t *pgd;
1761	pud_t *pud;
1762	pmd_t *pmd, _pmd;
1763	pte_t *pte;
1764	pgtable_t pgtable;
1765	struct page *new_page;
1766	spinlock_t *ptl;
1767	int isolated;
1768	unsigned long hstart, hend;
 
 
 
 
1769
1770	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1771#ifndef CONFIG_NUMA
1772	up_read(&mm->mmap_sem);
1773	VM_BUG_ON(!*hpage);
1774	new_page = *hpage;
1775#else
1776	VM_BUG_ON(*hpage);
1777	/*
1778	 * Allocate the page while the vma is still valid and under
1779	 * the mmap_sem read mode so there is no memory allocation
1780	 * later when we take the mmap_sem in write mode. This is more
1781	 * friendly behavior (OTOH it may actually hide bugs) to
1782	 * filesystems in userland with daemons allocating memory in
1783	 * the userland I/O paths.  Allocating memory with the
1784	 * mmap_sem in read mode is good idea also to allow greater
1785	 * scalability.
1786	 */
1787	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1788				      node, __GFP_OTHER_NODE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789
1790	/*
1791	 * After allocating the hugepage, release the mmap_sem read lock in
1792	 * preparation for taking it in write mode.
 
 
1793	 */
1794	up_read(&mm->mmap_sem);
1795	if (unlikely(!new_page)) {
 
 
1796		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1797		*hpage = ERR_PTR(-ENOMEM);
1798		return;
1799	}
1800#endif
1801
 
1802	count_vm_event(THP_COLLAPSE_ALLOC);
1803	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1804#ifdef CONFIG_NUMA
1805		put_page(new_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1806#endif
1807		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808	}
1809
1810	/*
1811	 * Prevent all access to pagetables with the exception of
1812	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1813	 * handled by the anon_vma lock + PG_lock.
1814	 */
1815	down_write(&mm->mmap_sem);
1816	if (unlikely(khugepaged_test_exit(mm)))
 
1817		goto out;
 
1818
1819	vma = find_vma(mm, address);
 
 
 
 
1820	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1821	hend = vma->vm_end & HPAGE_PMD_MASK;
1822	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1823		goto out;
1824
1825	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1826	    (vma->vm_flags & VM_NOHUGEPAGE))
1827		goto out;
1828
1829	if (!vma->anon_vma || vma->vm_ops)
1830		goto out;
1831	if (is_vma_temporary_stack(vma))
1832		goto out;
1833	/*
1834	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1835	 * true too, verify it here.
1836	 */
1837	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1838
1839	pgd = pgd_offset(mm, address);
1840	if (!pgd_present(*pgd))
1841		goto out;
1842
1843	pud = pud_offset(pgd, address);
1844	if (!pud_present(*pud))
1845		goto out;
1846
1847	pmd = pmd_offset(pud, address);
1848	/* pmd can't go away or become huge under us */
1849	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1850		goto out;
 
1851
1852	anon_vma_lock(vma->anon_vma);
1853
1854	pte = pte_offset_map(pmd, address);
1855	ptl = pte_lockptr(mm, pmd);
1856
1857	spin_lock(&mm->page_table_lock); /* probably unnecessary */
 
 
 
1858	/*
1859	 * After this gup_fast can't run anymore. This also removes
1860	 * any huge TLB entry from the CPU so we won't allow
1861	 * huge and small TLB entries for the same virtual address
1862	 * to avoid the risk of CPU bugs in that area.
1863	 */
1864	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1865	spin_unlock(&mm->page_table_lock);
 
1866
1867	spin_lock(ptl);
1868	isolated = __collapse_huge_page_isolate(vma, address, pte);
1869	spin_unlock(ptl);
1870
1871	if (unlikely(!isolated)) {
1872		pte_unmap(pte);
1873		spin_lock(&mm->page_table_lock);
1874		BUG_ON(!pmd_none(*pmd));
1875		set_pmd_at(mm, address, pmd, _pmd);
1876		spin_unlock(&mm->page_table_lock);
1877		anon_vma_unlock(vma->anon_vma);
 
 
 
 
 
 
1878		goto out;
1879	}
1880
1881	/*
1882	 * All pages are isolated and locked so anon_vma rmap
1883	 * can't run anymore.
1884	 */
1885	anon_vma_unlock(vma->anon_vma);
1886
1887	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1888	pte_unmap(pte);
1889	__SetPageUptodate(new_page);
1890	pgtable = pmd_pgtable(_pmd);
1891	VM_BUG_ON(page_count(pgtable) != 1);
1892	VM_BUG_ON(page_mapcount(pgtable) != 0);
1893
1894	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1895	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1896	_pmd = pmd_mkhuge(_pmd);
1897
1898	/*
1899	 * spin_lock() below is not the equivalent of smp_wmb(), so
1900	 * this is needed to avoid the copy_huge_page writes to become
1901	 * visible after the set_pmd_at() write.
1902	 */
1903	smp_wmb();
1904
1905	spin_lock(&mm->page_table_lock);
1906	BUG_ON(!pmd_none(*pmd));
1907	page_add_new_anon_rmap(new_page, vma, address);
 
 
 
1908	set_pmd_at(mm, address, pmd, _pmd);
1909	update_mmu_cache(vma, address, entry);
1910	prepare_pmd_huge_pte(pgtable, mm);
1911	mm->nr_ptes--;
1912	spin_unlock(&mm->page_table_lock);
1913
1914#ifndef CONFIG_NUMA
1915	*hpage = NULL;
1916#endif
1917	khugepaged_pages_collapsed++;
 
1918out_up_write:
1919	up_write(&mm->mmap_sem);
 
1920	return;
1921
 
 
 
1922out:
1923	mem_cgroup_uncharge_page(new_page);
1924#ifdef CONFIG_NUMA
1925	put_page(new_page);
1926#endif
1927	goto out_up_write;
1928}
1929
1930static int khugepaged_scan_pmd(struct mm_struct *mm,
1931			       struct vm_area_struct *vma,
1932			       unsigned long address,
1933			       struct page **hpage)
1934{
1935	pgd_t *pgd;
1936	pud_t *pud;
1937	pmd_t *pmd;
1938	pte_t *pte, *_pte;
1939	int ret = 0, referenced = 0, none = 0;
1940	struct page *page;
1941	unsigned long _address;
1942	spinlock_t *ptl;
1943	int node = -1;
 
1944
1945	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1946
1947	pgd = pgd_offset(mm, address);
1948	if (!pgd_present(*pgd))
1949		goto out;
1950
1951	pud = pud_offset(pgd, address);
1952	if (!pud_present(*pud))
1953		goto out;
1954
1955	pmd = pmd_offset(pud, address);
1956	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1957		goto out;
 
1958
 
1959	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1960	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1961	     _pte++, _address += PAGE_SIZE) {
1962		pte_t pteval = *_pte;
1963		if (pte_none(pteval)) {
1964			if (++none <= khugepaged_max_ptes_none)
 
1965				continue;
1966			else
 
1967				goto out_unmap;
 
1968		}
1969		if (!pte_present(pteval) || !pte_write(pteval))
 
1970			goto out_unmap;
 
 
 
 
1971		page = vm_normal_page(vma, _address, pteval);
1972		if (unlikely(!page))
 
 
 
 
 
 
 
1973			goto out_unmap;
 
 
1974		/*
1975		 * Chose the node of the first page. This could
1976		 * be more sophisticated and look at more pages,
1977		 * but isn't for now.
 
1978		 */
1979		if (node == -1)
1980			node = page_to_nid(page);
1981		VM_BUG_ON(PageCompound(page));
1982		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
 
 
 
 
1983			goto out_unmap;
1984		/* cannot use mapcount: can't collapse if there's a gup pin */
1985		if (page_count(page) != 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1986			goto out_unmap;
1987		if (pte_young(pteval) || PageReferenced(page) ||
 
 
1988		    mmu_notifier_test_young(vma->vm_mm, address))
1989			referenced = 1;
 
 
 
 
 
 
 
 
 
 
1990	}
1991	if (referenced)
1992		ret = 1;
1993out_unmap:
1994	pte_unmap_unlock(pte, ptl);
1995	if (ret)
 
1996		/* collapse_huge_page will return with the mmap_sem released */
1997		collapse_huge_page(mm, address, hpage, vma, node);
 
1998out:
 
 
1999	return ret;
2000}
2001
2002static void collect_mm_slot(struct mm_slot *mm_slot)
2003{
2004	struct mm_struct *mm = mm_slot->mm;
2005
2006	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2007
2008	if (khugepaged_test_exit(mm)) {
2009		/* free mm_slot */
2010		hlist_del(&mm_slot->hash);
2011		list_del(&mm_slot->mm_node);
2012
2013		/*
2014		 * Not strictly needed because the mm exited already.
2015		 *
2016		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2017		 */
2018
2019		/* khugepaged_mm_lock actually not necessary for the below */
2020		free_mm_slot(mm_slot);
2021		mmdrop(mm);
2022	}
2023}
2024
2025static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2026					    struct page **hpage)
 
 
2027{
2028	struct mm_slot *mm_slot;
2029	struct mm_struct *mm;
2030	struct vm_area_struct *vma;
2031	int progress = 0;
2032
2033	VM_BUG_ON(!pages);
2034	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2035
2036	if (khugepaged_scan.mm_slot)
2037		mm_slot = khugepaged_scan.mm_slot;
2038	else {
2039		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2040				     struct mm_slot, mm_node);
2041		khugepaged_scan.address = 0;
2042		khugepaged_scan.mm_slot = mm_slot;
2043	}
2044	spin_unlock(&khugepaged_mm_lock);
2045
2046	mm = mm_slot->mm;
2047	down_read(&mm->mmap_sem);
2048	if (unlikely(khugepaged_test_exit(mm)))
2049		vma = NULL;
2050	else
2051		vma = find_vma(mm, khugepaged_scan.address);
2052
2053	progress++;
2054	for (; vma; vma = vma->vm_next) {
2055		unsigned long hstart, hend;
2056
2057		cond_resched();
2058		if (unlikely(khugepaged_test_exit(mm))) {
2059			progress++;
2060			break;
2061		}
2062
2063		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2064		     !khugepaged_always()) ||
2065		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2066		skip:
2067			progress++;
2068			continue;
2069		}
2070		if (!vma->anon_vma || vma->vm_ops)
2071			goto skip;
2072		if (is_vma_temporary_stack(vma))
2073			goto skip;
2074		/*
2075		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2076		 * must be true too, verify it here.
2077		 */
2078		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2079			  vma->vm_flags & VM_NO_THP);
2080
2081		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2082		hend = vma->vm_end & HPAGE_PMD_MASK;
2083		if (hstart >= hend)
2084			goto skip;
2085		if (khugepaged_scan.address > hend)
2086			goto skip;
2087		if (khugepaged_scan.address < hstart)
2088			khugepaged_scan.address = hstart;
2089		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2090
2091		while (khugepaged_scan.address < hend) {
2092			int ret;
2093			cond_resched();
2094			if (unlikely(khugepaged_test_exit(mm)))
2095				goto breakouterloop;
2096
2097			VM_BUG_ON(khugepaged_scan.address < hstart ||
2098				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2099				  hend);
2100			ret = khugepaged_scan_pmd(mm, vma,
2101						  khugepaged_scan.address,
2102						  hpage);
2103			/* move to next address */
2104			khugepaged_scan.address += HPAGE_PMD_SIZE;
2105			progress += HPAGE_PMD_NR;
2106			if (ret)
2107				/* we released mmap_sem so break loop */
2108				goto breakouterloop_mmap_sem;
2109			if (progress >= pages)
2110				goto breakouterloop;
2111		}
2112	}
2113breakouterloop:
2114	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2115breakouterloop_mmap_sem:
2116
2117	spin_lock(&khugepaged_mm_lock);
2118	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2119	/*
2120	 * Release the current mm_slot if this mm is about to die, or
2121	 * if we scanned all vmas of this mm.
2122	 */
2123	if (khugepaged_test_exit(mm) || !vma) {
2124		/*
2125		 * Make sure that if mm_users is reaching zero while
2126		 * khugepaged runs here, khugepaged_exit will find
2127		 * mm_slot not pointing to the exiting mm.
2128		 */
2129		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2130			khugepaged_scan.mm_slot = list_entry(
2131				mm_slot->mm_node.next,
2132				struct mm_slot, mm_node);
2133			khugepaged_scan.address = 0;
2134		} else {
2135			khugepaged_scan.mm_slot = NULL;
2136			khugepaged_full_scans++;
2137		}
2138
2139		collect_mm_slot(mm_slot);
2140	}
2141
2142	return progress;
2143}
2144
2145static int khugepaged_has_work(void)
2146{
2147	return !list_empty(&khugepaged_scan.mm_head) &&
2148		khugepaged_enabled();
2149}
2150
2151static int khugepaged_wait_event(void)
2152{
2153	return !list_empty(&khugepaged_scan.mm_head) ||
2154		!khugepaged_enabled();
2155}
2156
2157static void khugepaged_do_scan(struct page **hpage)
2158{
 
2159	unsigned int progress = 0, pass_through_head = 0;
2160	unsigned int pages = khugepaged_pages_to_scan;
 
2161
2162	barrier(); /* write khugepaged_pages_to_scan to local stack */
2163
2164	while (progress < pages) {
2165		cond_resched();
2166
2167#ifndef CONFIG_NUMA
2168		if (!*hpage) {
2169			*hpage = alloc_hugepage(khugepaged_defrag());
2170			if (unlikely(!*hpage)) {
2171				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2172				break;
2173			}
2174			count_vm_event(THP_COLLAPSE_ALLOC);
2175		}
2176#else
2177		if (IS_ERR(*hpage))
2178			break;
2179#endif
2180
2181		if (unlikely(kthread_should_stop() || freezing(current)))
 
 
2182			break;
2183
2184		spin_lock(&khugepaged_mm_lock);
2185		if (!khugepaged_scan.mm_slot)
2186			pass_through_head++;
2187		if (khugepaged_has_work() &&
2188		    pass_through_head < 2)
2189			progress += khugepaged_scan_mm_slot(pages - progress,
2190							    hpage);
2191		else
2192			progress = pages;
2193		spin_unlock(&khugepaged_mm_lock);
2194	}
2195}
2196
2197static void khugepaged_alloc_sleep(void)
2198{
2199	DEFINE_WAIT(wait);
2200	add_wait_queue(&khugepaged_wait, &wait);
2201	schedule_timeout_interruptible(
2202		msecs_to_jiffies(
2203			khugepaged_alloc_sleep_millisecs));
2204	remove_wait_queue(&khugepaged_wait, &wait);
2205}
2206
2207#ifndef CONFIG_NUMA
2208static struct page *khugepaged_alloc_hugepage(void)
2209{
2210	struct page *hpage;
 
 
2211
2212	do {
2213		hpage = alloc_hugepage(khugepaged_defrag());
2214		if (!hpage) {
2215			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2216			khugepaged_alloc_sleep();
2217		} else
2218			count_vm_event(THP_COLLAPSE_ALLOC);
2219	} while (unlikely(!hpage) &&
2220		 likely(khugepaged_enabled()));
2221	return hpage;
2222}
2223#endif
2224
2225static void khugepaged_loop(void)
2226{
2227	struct page *hpage;
2228
2229#ifdef CONFIG_NUMA
2230	hpage = NULL;
2231#endif
2232	while (likely(khugepaged_enabled())) {
2233#ifndef CONFIG_NUMA
2234		hpage = khugepaged_alloc_hugepage();
2235		if (unlikely(!hpage))
2236			break;
2237#else
2238		if (IS_ERR(hpage)) {
2239			khugepaged_alloc_sleep();
2240			hpage = NULL;
2241		}
2242#endif
2243
2244		khugepaged_do_scan(&hpage);
2245#ifndef CONFIG_NUMA
2246		if (hpage)
2247			put_page(hpage);
2248#endif
2249		try_to_freeze();
2250		if (unlikely(kthread_should_stop()))
2251			break;
2252		if (khugepaged_has_work()) {
2253			DEFINE_WAIT(wait);
2254			if (!khugepaged_scan_sleep_millisecs)
2255				continue;
2256			add_wait_queue(&khugepaged_wait, &wait);
2257			schedule_timeout_interruptible(
2258				msecs_to_jiffies(
2259					khugepaged_scan_sleep_millisecs));
2260			remove_wait_queue(&khugepaged_wait, &wait);
2261		} else if (khugepaged_enabled())
2262			wait_event_freezable(khugepaged_wait,
2263					     khugepaged_wait_event());
2264	}
 
 
 
2265}
2266
2267static int khugepaged(void *none)
2268{
2269	struct mm_slot *mm_slot;
2270
2271	set_freezable();
2272	set_user_nice(current, 19);
2273
2274	/* serialize with start_khugepaged() */
2275	mutex_lock(&khugepaged_mutex);
2276
2277	for (;;) {
2278		mutex_unlock(&khugepaged_mutex);
2279		VM_BUG_ON(khugepaged_thread != current);
2280		khugepaged_loop();
2281		VM_BUG_ON(khugepaged_thread != current);
2282
2283		mutex_lock(&khugepaged_mutex);
2284		if (!khugepaged_enabled())
2285			break;
2286		if (unlikely(kthread_should_stop()))
2287			break;
2288	}
2289
2290	spin_lock(&khugepaged_mm_lock);
2291	mm_slot = khugepaged_scan.mm_slot;
2292	khugepaged_scan.mm_slot = NULL;
2293	if (mm_slot)
2294		collect_mm_slot(mm_slot);
2295	spin_unlock(&khugepaged_mm_lock);
 
 
2296
2297	khugepaged_thread = NULL;
2298	mutex_unlock(&khugepaged_mutex);
 
 
 
 
 
2299
2300	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2301}
2302
2303void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
 
2304{
 
2305	struct page *page;
 
 
 
 
 
2306
2307	spin_lock(&mm->page_table_lock);
2308	if (unlikely(!pmd_trans_huge(*pmd))) {
2309		spin_unlock(&mm->page_table_lock);
 
 
 
 
 
 
 
 
2310		return;
 
 
2311	}
 
2312	page = pmd_page(*pmd);
2313	VM_BUG_ON(!page_count(page));
2314	get_page(page);
2315	spin_unlock(&mm->page_table_lock);
 
 
2316
2317	split_huge_page(page);
 
 
2318
2319	put_page(page);
2320	BUG_ON(pmd_trans_huge(*pmd));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2321}
2322
2323static void split_huge_page_address(struct mm_struct *mm,
2324				    unsigned long address)
2325{
2326	pgd_t *pgd;
2327	pud_t *pud;
2328	pmd_t *pmd;
2329
2330	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2331
2332	pgd = pgd_offset(mm, address);
2333	if (!pgd_present(*pgd))
2334		return;
2335
2336	pud = pud_offset(pgd, address);
2337	if (!pud_present(*pud))
2338		return;
2339
2340	pmd = pmd_offset(pud, address);
2341	if (!pmd_present(*pmd))
2342		return;
 
 
 
 
 
 
 
 
 
2343	/*
2344	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2345	 * materialize from under us.
2346	 */
2347	split_huge_page_pmd(mm, pmd);
2348}
2349
2350void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2351			     unsigned long start,
2352			     unsigned long end,
2353			     long adjust_next)
2354{
2355	/*
2356	 * If the new start address isn't hpage aligned and it could
2357	 * previously contain an hugepage: check if we need to split
2358	 * an huge pmd.
2359	 */
2360	if (start & ~HPAGE_PMD_MASK &&
2361	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2362	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2363		split_huge_page_address(vma->vm_mm, start);
2364
2365	/*
2366	 * If the new end address isn't hpage aligned and it could
2367	 * previously contain an hugepage: check if we need to split
2368	 * an huge pmd.
2369	 */
2370	if (end & ~HPAGE_PMD_MASK &&
2371	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2372	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2373		split_huge_page_address(vma->vm_mm, end);
2374
2375	/*
2376	 * If we're also updating the vma->vm_next->vm_start, if the new
2377	 * vm_next->vm_start isn't page aligned and it could previously
2378	 * contain an hugepage: check if we need to split an huge pmd.
2379	 */
2380	if (adjust_next > 0) {
2381		struct vm_area_struct *next = vma->vm_next;
2382		unsigned long nstart = next->vm_start;
2383		nstart += adjust_next << PAGE_SHIFT;
2384		if (nstart & ~HPAGE_PMD_MASK &&
2385		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2386		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2387			split_huge_page_address(next->vm_mm, nstart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2388	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2389}
v4.6
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/highmem.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mmu_notifier.h>
  15#include <linux/rmap.h>
  16#include <linux/swap.h>
  17#include <linux/shrinker.h>
  18#include <linux/mm_inline.h>
  19#include <linux/swapops.h>
  20#include <linux/dax.h>
  21#include <linux/kthread.h>
  22#include <linux/khugepaged.h>
  23#include <linux/freezer.h>
  24#include <linux/pfn_t.h>
  25#include <linux/mman.h>
  26#include <linux/memremap.h>
  27#include <linux/pagemap.h>
  28#include <linux/debugfs.h>
  29#include <linux/migrate.h>
  30#include <linux/hashtable.h>
  31#include <linux/userfaultfd_k.h>
  32#include <linux/page_idle.h>
  33
  34#include <asm/tlb.h>
  35#include <asm/pgalloc.h>
  36#include "internal.h"
  37
  38enum scan_result {
  39	SCAN_FAIL,
  40	SCAN_SUCCEED,
  41	SCAN_PMD_NULL,
  42	SCAN_EXCEED_NONE_PTE,
  43	SCAN_PTE_NON_PRESENT,
  44	SCAN_PAGE_RO,
  45	SCAN_NO_REFERENCED_PAGE,
  46	SCAN_PAGE_NULL,
  47	SCAN_SCAN_ABORT,
  48	SCAN_PAGE_COUNT,
  49	SCAN_PAGE_LRU,
  50	SCAN_PAGE_LOCK,
  51	SCAN_PAGE_ANON,
  52	SCAN_PAGE_COMPOUND,
  53	SCAN_ANY_PROCESS,
  54	SCAN_VMA_NULL,
  55	SCAN_VMA_CHECK,
  56	SCAN_ADDRESS_RANGE,
  57	SCAN_SWAP_CACHE_PAGE,
  58	SCAN_DEL_PAGE_LRU,
  59	SCAN_ALLOC_HUGE_PAGE_FAIL,
  60	SCAN_CGROUP_CHARGE_FAIL
  61};
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/huge_memory.h>
  65
  66/*
  67 * By default transparent hugepage support is disabled in order that avoid
  68 * to risk increase the memory footprint of applications without a guaranteed
  69 * benefit. When transparent hugepage support is enabled, is for all mappings,
  70 * and khugepaged scans all mappings.
  71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  72 * for all hugepage allocations.
  73 */
  74unsigned long transparent_hugepage_flags __read_mostly =
  75#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  76	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  77#endif
  78#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  79	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  80#endif
  81	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  82	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  83	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  84
  85/* default scan 8*512 pte (or vmas) every 30 second */
  86static unsigned int khugepaged_pages_to_scan __read_mostly;
  87static unsigned int khugepaged_pages_collapsed;
  88static unsigned int khugepaged_full_scans;
  89static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  90/* during fragmentation poll the hugepage allocator once every minute */
  91static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  92static struct task_struct *khugepaged_thread __read_mostly;
  93static DEFINE_MUTEX(khugepaged_mutex);
  94static DEFINE_SPINLOCK(khugepaged_mm_lock);
  95static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  96/*
  97 * default collapse hugepages if there is at least one pte mapped like
  98 * it would have happened if the vma was large enough during page
  99 * fault.
 100 */
 101static unsigned int khugepaged_max_ptes_none __read_mostly;
 102
 103static int khugepaged(void *none);
 
 104static int khugepaged_slab_init(void);
 105static void khugepaged_slab_exit(void);
 106
 107#define MM_SLOTS_HASH_BITS 10
 108static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 109
 
 
 110static struct kmem_cache *mm_slot_cache __read_mostly;
 111
 112/**
 113 * struct mm_slot - hash lookup from mm to mm_slot
 114 * @hash: hash collision list
 115 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
 116 * @mm: the mm that this information is valid for
 117 */
 118struct mm_slot {
 119	struct hlist_node hash;
 120	struct list_head mm_node;
 121	struct mm_struct *mm;
 122};
 123
 124/**
 125 * struct khugepaged_scan - cursor for scanning
 126 * @mm_head: the head of the mm list to scan
 127 * @mm_slot: the current mm_slot we are scanning
 128 * @address: the next address inside that to be scanned
 129 *
 130 * There is only the one khugepaged_scan instance of this cursor structure.
 131 */
 132struct khugepaged_scan {
 133	struct list_head mm_head;
 134	struct mm_slot *mm_slot;
 135	unsigned long address;
 136};
 137static struct khugepaged_scan khugepaged_scan = {
 138	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 139};
 140
 141static struct shrinker deferred_split_shrinker;
 142
 143static void set_recommended_min_free_kbytes(void)
 144{
 145	struct zone *zone;
 146	int nr_zones = 0;
 147	unsigned long recommended_min;
 
 
 
 
 
 
 
 148
 149	for_each_populated_zone(zone)
 150		nr_zones++;
 151
 152	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
 153	recommended_min = pageblock_nr_pages * nr_zones * 2;
 154
 155	/*
 156	 * Make sure that on average at least two pageblocks are almost free
 157	 * of another type, one for a migratetype to fall back to and a
 158	 * second to avoid subsequent fallbacks of other types There are 3
 159	 * MIGRATE_TYPES we care about.
 160	 */
 161	recommended_min += pageblock_nr_pages * nr_zones *
 162			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 163
 164	/* don't ever allow to reserve more than 5% of the lowmem */
 165	recommended_min = min(recommended_min,
 166			      (unsigned long) nr_free_buffer_pages() / 20);
 167	recommended_min <<= (PAGE_SHIFT-10);
 168
 169	if (recommended_min > min_free_kbytes) {
 170		if (user_min_free_kbytes >= 0)
 171			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
 172				min_free_kbytes, recommended_min);
 173
 174		min_free_kbytes = recommended_min;
 175	}
 176	setup_per_zone_wmarks();
 
 177}
 
 178
 179static int start_stop_khugepaged(void)
 180{
 181	int err = 0;
 182	if (khugepaged_enabled()) {
 
 
 
 
 
 
 183		if (!khugepaged_thread)
 184			khugepaged_thread = kthread_run(khugepaged, NULL,
 185							"khugepaged");
 186		if (IS_ERR(khugepaged_thread)) {
 187			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
 
 188			err = PTR_ERR(khugepaged_thread);
 189			khugepaged_thread = NULL;
 190			goto fail;
 191		}
 192
 193		if (!list_empty(&khugepaged_scan.mm_head))
 
 194			wake_up_interruptible(&khugepaged_wait);
 195
 196		set_recommended_min_free_kbytes();
 197	} else if (khugepaged_thread) {
 198		kthread_stop(khugepaged_thread);
 199		khugepaged_thread = NULL;
 200	}
 201fail:
 202	return err;
 203}
 204
 205static atomic_t huge_zero_refcount;
 206struct page *huge_zero_page __read_mostly;
 207
 208struct page *get_huge_zero_page(void)
 
 
 
 209{
 210	struct page *zero_page;
 211retry:
 212	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 213		return READ_ONCE(huge_zero_page);
 214
 215	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 216			HPAGE_PMD_ORDER);
 217	if (!zero_page) {
 218		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 219		return NULL;
 220	}
 221	count_vm_event(THP_ZERO_PAGE_ALLOC);
 222	preempt_disable();
 223	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 224		preempt_enable();
 225		__free_pages(zero_page, compound_order(zero_page));
 226		goto retry;
 227	}
 228
 229	/* We take additional reference here. It will be put back by shrinker */
 230	atomic_set(&huge_zero_refcount, 2);
 231	preempt_enable();
 232	return READ_ONCE(huge_zero_page);
 233}
 234
 235void put_huge_zero_page(void)
 236{
 237	/*
 238	 * Counter should never go to zero here. Only shrinker can put
 239	 * last reference.
 240	 */
 241	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 242}
 243
 244static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 245					struct shrink_control *sc)
 246{
 247	/* we can free zero page only if last reference remains */
 248	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 249}
 250
 251static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 252				       struct shrink_control *sc)
 253{
 254	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 255		struct page *zero_page = xchg(&huge_zero_page, NULL);
 256		BUG_ON(zero_page == NULL);
 257		__free_pages(zero_page, compound_order(zero_page));
 258		return HPAGE_PMD_NR;
 259	}
 260
 261	return 0;
 262}
 263
 264static struct shrinker huge_zero_page_shrinker = {
 265	.count_objects = shrink_huge_zero_page_count,
 266	.scan_objects = shrink_huge_zero_page_scan,
 267	.seeks = DEFAULT_SEEKS,
 268};
 269
 270#ifdef CONFIG_SYSFS
 271
 272static ssize_t triple_flag_store(struct kobject *kobj,
 273				 struct kobj_attribute *attr,
 274				 const char *buf, size_t count,
 275				 enum transparent_hugepage_flag enabled,
 276				 enum transparent_hugepage_flag deferred,
 277				 enum transparent_hugepage_flag req_madv)
 278{
 279	if (!memcmp("defer", buf,
 280		    min(sizeof("defer")-1, count))) {
 281		if (enabled == deferred)
 282			return -EINVAL;
 283		clear_bit(enabled, &transparent_hugepage_flags);
 284		clear_bit(req_madv, &transparent_hugepage_flags);
 285		set_bit(deferred, &transparent_hugepage_flags);
 286	} else if (!memcmp("always", buf,
 287		    min(sizeof("always")-1, count))) {
 288		clear_bit(deferred, &transparent_hugepage_flags);
 289		clear_bit(req_madv, &transparent_hugepage_flags);
 290		set_bit(enabled, &transparent_hugepage_flags);
 291	} else if (!memcmp("madvise", buf,
 292			   min(sizeof("madvise")-1, count))) {
 293		clear_bit(enabled, &transparent_hugepage_flags);
 294		clear_bit(deferred, &transparent_hugepage_flags);
 295		set_bit(req_madv, &transparent_hugepage_flags);
 296	} else if (!memcmp("never", buf,
 297			   min(sizeof("never")-1, count))) {
 298		clear_bit(enabled, &transparent_hugepage_flags);
 299		clear_bit(req_madv, &transparent_hugepage_flags);
 300		clear_bit(deferred, &transparent_hugepage_flags);
 301	} else
 302		return -EINVAL;
 303
 304	return count;
 305}
 306
 307static ssize_t enabled_show(struct kobject *kobj,
 308			    struct kobj_attribute *attr, char *buf)
 309{
 310	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 311		return sprintf(buf, "[always] madvise never\n");
 312	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 313		return sprintf(buf, "always [madvise] never\n");
 314	else
 315		return sprintf(buf, "always madvise [never]\n");
 316}
 317
 318static ssize_t enabled_store(struct kobject *kobj,
 319			     struct kobj_attribute *attr,
 320			     const char *buf, size_t count)
 321{
 322	ssize_t ret;
 323
 324	ret = triple_flag_store(kobj, attr, buf, count,
 325				TRANSPARENT_HUGEPAGE_FLAG,
 326				TRANSPARENT_HUGEPAGE_FLAG,
 327				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 328
 329	if (ret > 0) {
 330		int err;
 331
 332		mutex_lock(&khugepaged_mutex);
 333		err = start_stop_khugepaged();
 334		mutex_unlock(&khugepaged_mutex);
 335
 336		if (err)
 337			ret = err;
 338	}
 339
 
 
 
 
 
 
 
 340	return ret;
 341}
 342static struct kobj_attribute enabled_attr =
 343	__ATTR(enabled, 0644, enabled_show, enabled_store);
 344
 345static ssize_t single_flag_show(struct kobject *kobj,
 346				struct kobj_attribute *attr, char *buf,
 347				enum transparent_hugepage_flag flag)
 348{
 349	return sprintf(buf, "%d\n",
 350		       !!test_bit(flag, &transparent_hugepage_flags));
 351}
 352
 353static ssize_t single_flag_store(struct kobject *kobj,
 354				 struct kobj_attribute *attr,
 355				 const char *buf, size_t count,
 356				 enum transparent_hugepage_flag flag)
 357{
 358	unsigned long value;
 359	int ret;
 360
 361	ret = kstrtoul(buf, 10, &value);
 362	if (ret < 0)
 363		return ret;
 364	if (value > 1)
 365		return -EINVAL;
 366
 367	if (value)
 368		set_bit(flag, &transparent_hugepage_flags);
 369	else
 370		clear_bit(flag, &transparent_hugepage_flags);
 371
 372	return count;
 373}
 374
 375/*
 376 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 377 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 378 * memory just to allocate one more hugepage.
 379 */
 380static ssize_t defrag_show(struct kobject *kobj,
 381			   struct kobj_attribute *attr, char *buf)
 382{
 383	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 384		return sprintf(buf, "[always] defer madvise never\n");
 385	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 386		return sprintf(buf, "always [defer] madvise never\n");
 387	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 388		return sprintf(buf, "always defer [madvise] never\n");
 389	else
 390		return sprintf(buf, "always defer madvise [never]\n");
 391
 392}
 393static ssize_t defrag_store(struct kobject *kobj,
 394			    struct kobj_attribute *attr,
 395			    const char *buf, size_t count)
 396{
 397	return triple_flag_store(kobj, attr, buf, count,
 398				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 399				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 400				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 401}
 402static struct kobj_attribute defrag_attr =
 403	__ATTR(defrag, 0644, defrag_show, defrag_store);
 404
 405static ssize_t use_zero_page_show(struct kobject *kobj,
 406		struct kobj_attribute *attr, char *buf)
 407{
 408	return single_flag_show(kobj, attr, buf,
 409				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 410}
 411static ssize_t use_zero_page_store(struct kobject *kobj,
 412		struct kobj_attribute *attr, const char *buf, size_t count)
 413{
 414	return single_flag_store(kobj, attr, buf, count,
 415				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 416}
 417static struct kobj_attribute use_zero_page_attr =
 418	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 419#ifdef CONFIG_DEBUG_VM
 420static ssize_t debug_cow_show(struct kobject *kobj,
 421				struct kobj_attribute *attr, char *buf)
 422{
 423	return single_flag_show(kobj, attr, buf,
 424				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 425}
 426static ssize_t debug_cow_store(struct kobject *kobj,
 427			       struct kobj_attribute *attr,
 428			       const char *buf, size_t count)
 429{
 430	return single_flag_store(kobj, attr, buf, count,
 431				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 432}
 433static struct kobj_attribute debug_cow_attr =
 434	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 435#endif /* CONFIG_DEBUG_VM */
 436
 437static struct attribute *hugepage_attr[] = {
 438	&enabled_attr.attr,
 439	&defrag_attr.attr,
 440	&use_zero_page_attr.attr,
 441#ifdef CONFIG_DEBUG_VM
 442	&debug_cow_attr.attr,
 443#endif
 444	NULL,
 445};
 446
 447static struct attribute_group hugepage_attr_group = {
 448	.attrs = hugepage_attr,
 449};
 450
 451static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 452					 struct kobj_attribute *attr,
 453					 char *buf)
 454{
 455	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 456}
 457
 458static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 459					  struct kobj_attribute *attr,
 460					  const char *buf, size_t count)
 461{
 462	unsigned long msecs;
 463	int err;
 464
 465	err = kstrtoul(buf, 10, &msecs);
 466	if (err || msecs > UINT_MAX)
 467		return -EINVAL;
 468
 469	khugepaged_scan_sleep_millisecs = msecs;
 470	wake_up_interruptible(&khugepaged_wait);
 471
 472	return count;
 473}
 474static struct kobj_attribute scan_sleep_millisecs_attr =
 475	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 476	       scan_sleep_millisecs_store);
 477
 478static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 479					  struct kobj_attribute *attr,
 480					  char *buf)
 481{
 482	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 483}
 484
 485static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 486					   struct kobj_attribute *attr,
 487					   const char *buf, size_t count)
 488{
 489	unsigned long msecs;
 490	int err;
 491
 492	err = kstrtoul(buf, 10, &msecs);
 493	if (err || msecs > UINT_MAX)
 494		return -EINVAL;
 495
 496	khugepaged_alloc_sleep_millisecs = msecs;
 497	wake_up_interruptible(&khugepaged_wait);
 498
 499	return count;
 500}
 501static struct kobj_attribute alloc_sleep_millisecs_attr =
 502	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 503	       alloc_sleep_millisecs_store);
 504
 505static ssize_t pages_to_scan_show(struct kobject *kobj,
 506				  struct kobj_attribute *attr,
 507				  char *buf)
 508{
 509	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 510}
 511static ssize_t pages_to_scan_store(struct kobject *kobj,
 512				   struct kobj_attribute *attr,
 513				   const char *buf, size_t count)
 514{
 515	int err;
 516	unsigned long pages;
 517
 518	err = kstrtoul(buf, 10, &pages);
 519	if (err || !pages || pages > UINT_MAX)
 520		return -EINVAL;
 521
 522	khugepaged_pages_to_scan = pages;
 523
 524	return count;
 525}
 526static struct kobj_attribute pages_to_scan_attr =
 527	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 528	       pages_to_scan_store);
 529
 530static ssize_t pages_collapsed_show(struct kobject *kobj,
 531				    struct kobj_attribute *attr,
 532				    char *buf)
 533{
 534	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 535}
 536static struct kobj_attribute pages_collapsed_attr =
 537	__ATTR_RO(pages_collapsed);
 538
 539static ssize_t full_scans_show(struct kobject *kobj,
 540			       struct kobj_attribute *attr,
 541			       char *buf)
 542{
 543	return sprintf(buf, "%u\n", khugepaged_full_scans);
 544}
 545static struct kobj_attribute full_scans_attr =
 546	__ATTR_RO(full_scans);
 547
 548static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 549				      struct kobj_attribute *attr, char *buf)
 550{
 551	return single_flag_show(kobj, attr, buf,
 552				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 553}
 554static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 555				       struct kobj_attribute *attr,
 556				       const char *buf, size_t count)
 557{
 558	return single_flag_store(kobj, attr, buf, count,
 559				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 560}
 561static struct kobj_attribute khugepaged_defrag_attr =
 562	__ATTR(defrag, 0644, khugepaged_defrag_show,
 563	       khugepaged_defrag_store);
 564
 565/*
 566 * max_ptes_none controls if khugepaged should collapse hugepages over
 567 * any unmapped ptes in turn potentially increasing the memory
 568 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 569 * reduce the available free memory in the system as it
 570 * runs. Increasing max_ptes_none will instead potentially reduce the
 571 * free memory in the system during the khugepaged scan.
 572 */
 573static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 574					     struct kobj_attribute *attr,
 575					     char *buf)
 576{
 577	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 578}
 579static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 580					      struct kobj_attribute *attr,
 581					      const char *buf, size_t count)
 582{
 583	int err;
 584	unsigned long max_ptes_none;
 585
 586	err = kstrtoul(buf, 10, &max_ptes_none);
 587	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 588		return -EINVAL;
 589
 590	khugepaged_max_ptes_none = max_ptes_none;
 591
 592	return count;
 593}
 594static struct kobj_attribute khugepaged_max_ptes_none_attr =
 595	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 596	       khugepaged_max_ptes_none_store);
 597
 598static struct attribute *khugepaged_attr[] = {
 599	&khugepaged_defrag_attr.attr,
 600	&khugepaged_max_ptes_none_attr.attr,
 601	&pages_to_scan_attr.attr,
 602	&pages_collapsed_attr.attr,
 603	&full_scans_attr.attr,
 604	&scan_sleep_millisecs_attr.attr,
 605	&alloc_sleep_millisecs_attr.attr,
 606	NULL,
 607};
 608
 609static struct attribute_group khugepaged_attr_group = {
 610	.attrs = khugepaged_attr,
 611	.name = "khugepaged",
 612};
 
 613
 614static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 615{
 616	int err;
 
 
 
 617
 618	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 619	if (unlikely(!*hugepage_kobj)) {
 620		pr_err("failed to create transparent hugepage kobject\n");
 621		return -ENOMEM;
 622	}
 623
 624	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 625	if (err) {
 626		pr_err("failed to register transparent hugepage group\n");
 627		goto delete_obj;
 
 
 628	}
 629
 630	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 631	if (err) {
 632		pr_err("failed to register transparent hugepage group\n");
 633		goto remove_hp_group;
 634	}
 635
 636	return 0;
 637
 638remove_hp_group:
 639	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 640delete_obj:
 641	kobject_put(*hugepage_kobj);
 642	return err;
 643}
 644
 645static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 646{
 647	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 648	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 649	kobject_put(hugepage_kobj);
 650}
 651#else
 652static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 653{
 654	return 0;
 655}
 656
 657static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 658{
 659}
 660#endif /* CONFIG_SYSFS */
 661
 662static int __init hugepage_init(void)
 663{
 664	int err;
 665	struct kobject *hugepage_kobj;
 666
 667	if (!has_transparent_hugepage()) {
 668		transparent_hugepage_flags = 0;
 669		return -EINVAL;
 670	}
 671
 672	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
 673	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
 674	/*
 675	 * hugepages can't be allocated by the buddy allocator
 676	 */
 677	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 678	/*
 679	 * we use page->mapping and page->index in second tail page
 680	 * as list_head: assuming THP order >= 2
 681	 */
 682	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 683
 684	err = hugepage_init_sysfs(&hugepage_kobj);
 685	if (err)
 686		goto err_sysfs;
 687
 688	err = khugepaged_slab_init();
 689	if (err)
 690		goto err_slab;
 691
 692	err = register_shrinker(&huge_zero_page_shrinker);
 693	if (err)
 694		goto err_hzp_shrinker;
 695	err = register_shrinker(&deferred_split_shrinker);
 696	if (err)
 697		goto err_split_shrinker;
 698
 699	/*
 700	 * By default disable transparent hugepages on smaller systems,
 701	 * where the extra memory used could hurt more than TLB overhead
 702	 * is likely to save.  The admin can still enable it through /sys.
 703	 */
 704	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 705		transparent_hugepage_flags = 0;
 706		return 0;
 707	}
 708
 709	err = start_stop_khugepaged();
 710	if (err)
 711		goto err_khugepaged;
 712
 713	return 0;
 714err_khugepaged:
 715	unregister_shrinker(&deferred_split_shrinker);
 716err_split_shrinker:
 717	unregister_shrinker(&huge_zero_page_shrinker);
 718err_hzp_shrinker:
 719	khugepaged_slab_exit();
 720err_slab:
 721	hugepage_exit_sysfs(hugepage_kobj);
 722err_sysfs:
 723	return err;
 724}
 725subsys_initcall(hugepage_init);
 726
 727static int __init setup_transparent_hugepage(char *str)
 728{
 729	int ret = 0;
 730	if (!str)
 731		goto out;
 732	if (!strcmp(str, "always")) {
 733		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 734			&transparent_hugepage_flags);
 735		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 736			  &transparent_hugepage_flags);
 737		ret = 1;
 738	} else if (!strcmp(str, "madvise")) {
 739		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 740			  &transparent_hugepage_flags);
 741		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 742			&transparent_hugepage_flags);
 743		ret = 1;
 744	} else if (!strcmp(str, "never")) {
 745		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 746			  &transparent_hugepage_flags);
 747		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 748			  &transparent_hugepage_flags);
 749		ret = 1;
 750	}
 751out:
 752	if (!ret)
 753		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 
 754	return ret;
 755}
 756__setup("transparent_hugepage=", setup_transparent_hugepage);
 757
 758pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 
 759{
 760	if (likely(vma->vm_flags & VM_WRITE))
 761		pmd = pmd_mkwrite(pmd);
 762	return pmd;
 763}
 764
 765static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
 766{
 767	pmd_t entry;
 768	entry = mk_pmd(page, prot);
 769	entry = pmd_mkhuge(entry);
 770	return entry;
 771}
 772
 773static inline struct list_head *page_deferred_list(struct page *page)
 774{
 775	/*
 776	 * ->lru in the tail pages is occupied by compound_head.
 777	 * Let's use ->mapping + ->index in the second tail page as list_head.
 778	 */
 779	return (struct list_head *)&page[2].mapping;
 780}
 781
 782void prep_transhuge_page(struct page *page)
 783{
 784	/*
 785	 * we use page->mapping and page->indexlru in second tail page
 786	 * as list_head: assuming THP order >= 2
 787	 */
 788
 789	INIT_LIST_HEAD(page_deferred_list(page));
 790	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 791}
 792
 793static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 794					struct vm_area_struct *vma,
 795					unsigned long address, pmd_t *pmd,
 796					struct page *page, gfp_t gfp,
 797					unsigned int flags)
 798{
 799	struct mem_cgroup *memcg;
 800	pgtable_t pgtable;
 801	spinlock_t *ptl;
 802	unsigned long haddr = address & HPAGE_PMD_MASK;
 803
 804	VM_BUG_ON_PAGE(!PageCompound(page), page);
 805
 806	if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
 807		put_page(page);
 808		count_vm_event(THP_FAULT_FALLBACK);
 809		return VM_FAULT_FALLBACK;
 810	}
 811
 
 812	pgtable = pte_alloc_one(mm, haddr);
 813	if (unlikely(!pgtable)) {
 814		mem_cgroup_cancel_charge(page, memcg, true);
 815		put_page(page);
 816		return VM_FAULT_OOM;
 817	}
 818
 819	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 820	/*
 821	 * The memory barrier inside __SetPageUptodate makes sure that
 822	 * clear_huge_page writes become visible before the set_pmd_at()
 823	 * write.
 824	 */
 825	__SetPageUptodate(page);
 826
 827	ptl = pmd_lock(mm, pmd);
 828	if (unlikely(!pmd_none(*pmd))) {
 829		spin_unlock(ptl);
 830		mem_cgroup_cancel_charge(page, memcg, true);
 831		put_page(page);
 832		pte_free(mm, pgtable);
 833	} else {
 834		pmd_t entry;
 835
 836		/* Deliver the page fault to userland */
 837		if (userfaultfd_missing(vma)) {
 838			int ret;
 839
 840			spin_unlock(ptl);
 841			mem_cgroup_cancel_charge(page, memcg, true);
 842			put_page(page);
 843			pte_free(mm, pgtable);
 844			ret = handle_userfault(vma, address, flags,
 845					       VM_UFFD_MISSING);
 846			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 847			return ret;
 848		}
 849
 850		entry = mk_huge_pmd(page, vma->vm_page_prot);
 851		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 852		page_add_new_anon_rmap(page, vma, haddr, true);
 853		mem_cgroup_commit_charge(page, memcg, false, true);
 854		lru_cache_add_active_or_unevictable(page, vma);
 855		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 
 
 
 
 856		set_pmd_at(mm, haddr, pmd, entry);
 
 857		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 858		atomic_long_inc(&mm->nr_ptes);
 859		spin_unlock(ptl);
 860		count_vm_event(THP_FAULT_ALLOC);
 861	}
 862
 863	return 0;
 
 
 
 
 
 864}
 865
 866/*
 867 * If THP is set to always then directly reclaim/compact as necessary
 868 * If set to defer then do no reclaim and defer to khugepaged
 869 * If set to madvise and the VMA is flagged then directly reclaim/compact
 870 */
 871static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 872{
 873	gfp_t reclaim_flags = 0;
 
 
 874
 875	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
 876	    (vma->vm_flags & VM_HUGEPAGE))
 877		reclaim_flags = __GFP_DIRECT_RECLAIM;
 878	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 879		reclaim_flags = __GFP_KSWAPD_RECLAIM;
 880	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 881		reclaim_flags = __GFP_DIRECT_RECLAIM;
 882
 883	return GFP_TRANSHUGE | reclaim_flags;
 884}
 885
 886/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
 887static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
 888{
 889	return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
 890}
 891
 892/* Caller must hold page table lock. */
 893static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 894		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 895		struct page *zero_page)
 896{
 897	pmd_t entry;
 898	if (!pmd_none(*pmd))
 899		return false;
 900	entry = mk_pmd(zero_page, vma->vm_page_prot);
 901	entry = pmd_mkhuge(entry);
 902	if (pgtable)
 903		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 904	set_pmd_at(mm, haddr, pmd, entry);
 905	atomic_long_inc(&mm->nr_ptes);
 906	return true;
 907}
 
 908
 909int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 910			       unsigned long address, pmd_t *pmd,
 911			       unsigned int flags)
 912{
 913	gfp_t gfp;
 914	struct page *page;
 915	unsigned long haddr = address & HPAGE_PMD_MASK;
 
 916
 917	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 918		return VM_FAULT_FALLBACK;
 919	if (unlikely(anon_vma_prepare(vma)))
 920		return VM_FAULT_OOM;
 921	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 922		return VM_FAULT_OOM;
 923	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
 924			transparent_hugepage_use_zero_page()) {
 925		spinlock_t *ptl;
 926		pgtable_t pgtable;
 927		struct page *zero_page;
 928		bool set;
 929		int ret;
 930		pgtable = pte_alloc_one(mm, haddr);
 931		if (unlikely(!pgtable))
 932			return VM_FAULT_OOM;
 933		zero_page = get_huge_zero_page();
 934		if (unlikely(!zero_page)) {
 935			pte_free(mm, pgtable);
 936			count_vm_event(THP_FAULT_FALLBACK);
 937			return VM_FAULT_FALLBACK;
 938		}
 939		ptl = pmd_lock(mm, pmd);
 940		ret = 0;
 941		set = false;
 942		if (pmd_none(*pmd)) {
 943			if (userfaultfd_missing(vma)) {
 944				spin_unlock(ptl);
 945				ret = handle_userfault(vma, address, flags,
 946						       VM_UFFD_MISSING);
 947				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 948			} else {
 949				set_huge_zero_page(pgtable, mm, vma,
 950						   haddr, pmd,
 951						   zero_page);
 952				spin_unlock(ptl);
 953				set = true;
 954			}
 955		} else
 956			spin_unlock(ptl);
 957		if (!set) {
 958			pte_free(mm, pgtable);
 959			put_huge_zero_page();
 960		}
 961		return ret;
 962	}
 963	gfp = alloc_hugepage_direct_gfpmask(vma);
 964	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 965	if (unlikely(!page)) {
 966		count_vm_event(THP_FAULT_FALLBACK);
 967		return VM_FAULT_FALLBACK;
 968	}
 969	prep_transhuge_page(page);
 970	return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
 971					    flags);
 972}
 973
 974static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 975		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
 976{
 977	struct mm_struct *mm = vma->vm_mm;
 978	pmd_t entry;
 979	spinlock_t *ptl;
 980
 981	ptl = pmd_lock(mm, pmd);
 982	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 983	if (pfn_t_devmap(pfn))
 984		entry = pmd_mkdevmap(entry);
 985	if (write) {
 986		entry = pmd_mkyoung(pmd_mkdirty(entry));
 987		entry = maybe_pmd_mkwrite(entry, vma);
 988	}
 989	set_pmd_at(mm, addr, pmd, entry);
 990	update_mmu_cache_pmd(vma, addr, pmd);
 991	spin_unlock(ptl);
 992}
 993
 994int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 995			pmd_t *pmd, pfn_t pfn, bool write)
 996{
 997	pgprot_t pgprot = vma->vm_page_prot;
 998	/*
 999	 * If we had pmd_special, we could avoid all these restrictions,
1000	 * but we need to be consistent with PTEs and architectures that
1001	 * can't support a 'special' bit.
1002	 */
1003	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1004	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005						(VM_PFNMAP|VM_MIXEDMAP));
1006	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007	BUG_ON(!pfn_t_devmap(pfn));
1008
1009	if (addr < vma->vm_start || addr >= vma->vm_end)
1010		return VM_FAULT_SIGBUS;
1011	if (track_pfn_insert(vma, &pgprot, pfn))
1012		return VM_FAULT_SIGBUS;
1013	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1014	return VM_FAULT_NOPAGE;
1015}
1016
1017static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1018		pmd_t *pmd)
1019{
1020	pmd_t _pmd;
1021
1022	/*
1023	 * We should set the dirty bit only for FOLL_WRITE but for now
1024	 * the dirty bit in the pmd is meaningless.  And if the dirty
1025	 * bit will become meaningful and we'll only set it with
1026	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1027	 * set the young bit, instead of the current set_pmd_at.
1028	 */
1029	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1030	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1031				pmd, _pmd,  1))
1032		update_mmu_cache_pmd(vma, addr, pmd);
1033}
1034
1035struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1036		pmd_t *pmd, int flags)
1037{
1038	unsigned long pfn = pmd_pfn(*pmd);
1039	struct mm_struct *mm = vma->vm_mm;
1040	struct dev_pagemap *pgmap;
1041	struct page *page;
1042
1043	assert_spin_locked(pmd_lockptr(mm, pmd));
1044
1045	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1046		return NULL;
1047
1048	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1049		/* pass */;
1050	else
1051		return NULL;
1052
1053	if (flags & FOLL_TOUCH)
1054		touch_pmd(vma, addr, pmd);
1055
1056	/*
1057	 * device mapped pages can only be returned if the
1058	 * caller will manage the page reference count.
 
 
1059	 */
1060	if (!(flags & FOLL_GET))
1061		return ERR_PTR(-EEXIST);
1062
1063	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1064	pgmap = get_dev_pagemap(pfn, NULL);
1065	if (!pgmap)
1066		return ERR_PTR(-EFAULT);
1067	page = pfn_to_page(pfn);
1068	get_page(page);
1069	put_dev_pagemap(pgmap);
1070
1071	return page;
1072}
1073
1074int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1075		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1076		  struct vm_area_struct *vma)
1077{
1078	spinlock_t *dst_ptl, *src_ptl;
1079	struct page *src_page;
1080	pmd_t pmd;
1081	pgtable_t pgtable = NULL;
1082	int ret;
1083
1084	if (!vma_is_dax(vma)) {
1085		ret = -ENOMEM;
1086		pgtable = pte_alloc_one(dst_mm, addr);
1087		if (unlikely(!pgtable))
1088			goto out;
1089	}
1090
1091	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1092	src_ptl = pmd_lockptr(src_mm, src_pmd);
1093	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1094
1095	ret = -EAGAIN;
1096	pmd = *src_pmd;
1097	if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1098		pte_free(dst_mm, pgtable);
1099		goto out_unlock;
1100	}
1101	/*
1102	 * When page table lock is held, the huge zero pmd should not be
1103	 * under splitting since we don't split the page itself, only pmd to
1104	 * a page table.
1105	 */
1106	if (is_huge_zero_pmd(pmd)) {
1107		struct page *zero_page;
1108		/*
1109		 * get_huge_zero_page() will never allocate a new page here,
1110		 * since we already have a zero page to copy. It just takes a
1111		 * reference.
1112		 */
1113		zero_page = get_huge_zero_page();
1114		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1115				zero_page);
1116		ret = 0;
1117		goto out_unlock;
1118	}
1119
1120	if (!vma_is_dax(vma)) {
1121		/* thp accounting separate from pmd_devmap accounting */
1122		src_page = pmd_page(pmd);
1123		VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1124		get_page(src_page);
1125		page_dup_rmap(src_page, true);
1126		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1127		atomic_long_inc(&dst_mm->nr_ptes);
1128		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1129	}
 
 
 
 
 
1130
1131	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1132	pmd = pmd_mkold(pmd_wrprotect(pmd));
1133	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 
1134
1135	ret = 0;
1136out_unlock:
1137	spin_unlock(src_ptl);
1138	spin_unlock(dst_ptl);
1139out:
1140	return ret;
1141}
1142
1143void huge_pmd_set_accessed(struct mm_struct *mm,
1144			   struct vm_area_struct *vma,
1145			   unsigned long address,
1146			   pmd_t *pmd, pmd_t orig_pmd,
1147			   int dirty)
1148{
1149	spinlock_t *ptl;
1150	pmd_t entry;
1151	unsigned long haddr;
1152
1153	ptl = pmd_lock(mm, pmd);
1154	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1155		goto unlock;
1156
1157	entry = pmd_mkyoung(orig_pmd);
1158	haddr = address & HPAGE_PMD_MASK;
1159	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1160		update_mmu_cache_pmd(vma, address, pmd);
1161
1162unlock:
1163	spin_unlock(ptl);
 
 
 
 
 
 
 
 
1164}
1165
1166static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1167					struct vm_area_struct *vma,
1168					unsigned long address,
1169					pmd_t *pmd, pmd_t orig_pmd,
1170					struct page *page,
1171					unsigned long haddr)
1172{
1173	struct mem_cgroup *memcg;
1174	spinlock_t *ptl;
1175	pgtable_t pgtable;
1176	pmd_t _pmd;
1177	int ret = 0, i;
1178	struct page **pages;
1179	unsigned long mmun_start;	/* For mmu_notifiers */
1180	unsigned long mmun_end;		/* For mmu_notifiers */
1181
1182	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1183			GFP_KERNEL);
1184	if (unlikely(!pages)) {
1185		ret |= VM_FAULT_OOM;
1186		goto out;
1187	}
1188
1189	for (i = 0; i < HPAGE_PMD_NR; i++) {
1190		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1191					       __GFP_OTHER_NODE,
1192					       vma, address, page_to_nid(page));
1193		if (unlikely(!pages[i] ||
1194			     mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1195						   &memcg, false))) {
1196			if (pages[i])
1197				put_page(pages[i]);
 
1198			while (--i >= 0) {
1199				memcg = (void *)page_private(pages[i]);
1200				set_page_private(pages[i], 0);
1201				mem_cgroup_cancel_charge(pages[i], memcg,
1202						false);
1203				put_page(pages[i]);
1204			}
 
1205			kfree(pages);
1206			ret |= VM_FAULT_OOM;
1207			goto out;
1208		}
1209		set_page_private(pages[i], (unsigned long)memcg);
1210	}
1211
1212	for (i = 0; i < HPAGE_PMD_NR; i++) {
1213		copy_user_highpage(pages[i], page + i,
1214				   haddr + PAGE_SIZE * i, vma);
1215		__SetPageUptodate(pages[i]);
1216		cond_resched();
1217	}
1218
1219	mmun_start = haddr;
1220	mmun_end   = haddr + HPAGE_PMD_SIZE;
1221	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1222
1223	ptl = pmd_lock(mm, pmd);
1224	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1225		goto out_free_pages;
1226	VM_BUG_ON_PAGE(!PageHead(page), page);
1227
1228	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1229	/* leave pmd empty until pte is filled */
1230
1231	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1232	pmd_populate(mm, &_pmd, pgtable);
1233
1234	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1235		pte_t *pte, entry;
1236		entry = mk_pte(pages[i], vma->vm_page_prot);
1237		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1238		memcg = (void *)page_private(pages[i]);
1239		set_page_private(pages[i], 0);
1240		page_add_new_anon_rmap(pages[i], vma, haddr, false);
1241		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1242		lru_cache_add_active_or_unevictable(pages[i], vma);
1243		pte = pte_offset_map(&_pmd, haddr);
1244		VM_BUG_ON(!pte_none(*pte));
1245		set_pte_at(mm, haddr, pte, entry);
1246		pte_unmap(pte);
1247	}
1248	kfree(pages);
1249
 
1250	smp_wmb(); /* make pte visible before pmd */
1251	pmd_populate(mm, pmd, pgtable);
1252	page_remove_rmap(page, true);
1253	spin_unlock(ptl);
1254
1255	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1256
1257	ret |= VM_FAULT_WRITE;
1258	put_page(page);
1259
1260out:
1261	return ret;
1262
1263out_free_pages:
1264	spin_unlock(ptl);
1265	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1266	for (i = 0; i < HPAGE_PMD_NR; i++) {
1267		memcg = (void *)page_private(pages[i]);
1268		set_page_private(pages[i], 0);
1269		mem_cgroup_cancel_charge(pages[i], memcg, false);
1270		put_page(pages[i]);
1271	}
 
1272	kfree(pages);
1273	goto out;
1274}
1275
1276int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1277			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1278{
1279	spinlock_t *ptl;
1280	int ret = 0;
1281	struct page *page = NULL, *new_page;
1282	struct mem_cgroup *memcg;
1283	unsigned long haddr;
1284	unsigned long mmun_start;	/* For mmu_notifiers */
1285	unsigned long mmun_end;		/* For mmu_notifiers */
1286	gfp_t huge_gfp;			/* for allocation and charge */
1287
1288	ptl = pmd_lockptr(mm, pmd);
1289	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1290	haddr = address & HPAGE_PMD_MASK;
1291	if (is_huge_zero_pmd(orig_pmd))
1292		goto alloc;
1293	spin_lock(ptl);
1294	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1295		goto out_unlock;
1296
1297	page = pmd_page(orig_pmd);
1298	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1299	/*
1300	 * We can only reuse the page if nobody else maps the huge page or it's
1301	 * part.
1302	 */
1303	if (page_trans_huge_mapcount(page, NULL) == 1) {
1304		pmd_t entry;
1305		entry = pmd_mkyoung(orig_pmd);
1306		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1307		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1308			update_mmu_cache_pmd(vma, address, pmd);
1309		ret |= VM_FAULT_WRITE;
1310		goto out_unlock;
1311	}
1312	get_page(page);
1313	spin_unlock(ptl);
1314alloc:
1315	if (transparent_hugepage_enabled(vma) &&
1316	    !transparent_hugepage_debug_cow()) {
1317		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1318		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1319	} else
1320		new_page = NULL;
1321
1322	if (likely(new_page)) {
1323		prep_transhuge_page(new_page);
1324	} else {
1325		if (!page) {
1326			split_huge_pmd(vma, pmd, address);
1327			ret |= VM_FAULT_FALLBACK;
1328		} else {
1329			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1330					pmd, orig_pmd, page, haddr);
1331			if (ret & VM_FAULT_OOM) {
1332				split_huge_pmd(vma, pmd, address);
1333				ret |= VM_FAULT_FALLBACK;
1334			}
1335			put_page(page);
1336		}
1337		count_vm_event(THP_FAULT_FALLBACK);
 
 
 
1338		goto out;
1339	}
 
1340
1341	if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1342					   true))) {
1343		put_page(new_page);
1344		if (page) {
1345			split_huge_pmd(vma, pmd, address);
1346			put_page(page);
1347		} else
1348			split_huge_pmd(vma, pmd, address);
1349		ret |= VM_FAULT_FALLBACK;
1350		count_vm_event(THP_FAULT_FALLBACK);
1351		goto out;
1352	}
1353
1354	count_vm_event(THP_FAULT_ALLOC);
1355
1356	if (!page)
1357		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1358	else
1359		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1360	__SetPageUptodate(new_page);
1361
1362	mmun_start = haddr;
1363	mmun_end   = haddr + HPAGE_PMD_SIZE;
1364	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1365
1366	spin_lock(ptl);
1367	if (page)
1368		put_page(page);
1369	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1370		spin_unlock(ptl);
1371		mem_cgroup_cancel_charge(new_page, memcg, true);
1372		put_page(new_page);
1373		goto out_mn;
1374	} else {
1375		pmd_t entry;
1376		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
 
1377		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1378		pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1379		page_add_new_anon_rmap(new_page, vma, haddr, true);
1380		mem_cgroup_commit_charge(new_page, memcg, false, true);
1381		lru_cache_add_active_or_unevictable(new_page, vma);
1382		set_pmd_at(mm, haddr, pmd, entry);
1383		update_mmu_cache_pmd(vma, address, pmd);
1384		if (!page) {
1385			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1386			put_huge_zero_page();
1387		} else {
1388			VM_BUG_ON_PAGE(!PageHead(page), page);
1389			page_remove_rmap(page, true);
1390			put_page(page);
1391		}
1392		ret |= VM_FAULT_WRITE;
1393	}
1394	spin_unlock(ptl);
1395out_mn:
1396	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1397out:
1398	return ret;
1399out_unlock:
1400	spin_unlock(ptl);
1401	return ret;
1402}
1403
1404struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1405				   unsigned long addr,
1406				   pmd_t *pmd,
1407				   unsigned int flags)
1408{
1409	struct mm_struct *mm = vma->vm_mm;
1410	struct page *page = NULL;
1411
1412	assert_spin_locked(pmd_lockptr(mm, pmd));
1413
1414	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1415		goto out;
1416
1417	/* Avoid dumping huge zero page */
1418	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1419		return ERR_PTR(-EFAULT);
1420
1421	/* Full NUMA hinting faults to serialise migration in fault paths */
1422	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1423		goto out;
1424
1425	page = pmd_page(*pmd);
1426	VM_BUG_ON_PAGE(!PageHead(page), page);
1427	if (flags & FOLL_TOUCH)
1428		touch_pmd(vma, addr, pmd);
1429	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1430		/*
1431		 * We don't mlock() pte-mapped THPs. This way we can avoid
1432		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1433		 *
1434		 * In most cases the pmd is the only mapping of the page as we
1435		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1436		 * writable private mappings in populate_vma_page_range().
1437		 *
1438		 * The only scenario when we have the page shared here is if we
1439		 * mlocking read-only mapping shared over fork(). We skip
1440		 * mlocking such pages.
1441		 */
1442		if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1443				page->mapping && trylock_page(page)) {
1444			lru_add_drain();
1445			if (page->mapping)
1446				mlock_vma_page(page);
1447			unlock_page(page);
1448		}
1449	}
1450	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1451	VM_BUG_ON_PAGE(!PageCompound(page), page);
1452	if (flags & FOLL_GET)
1453		get_page(page);
1454
1455out:
1456	return page;
1457}
1458
1459/* NUMA hinting page fault entry point for trans huge pmds */
1460int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1461				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1462{
1463	spinlock_t *ptl;
1464	struct anon_vma *anon_vma = NULL;
1465	struct page *page;
1466	unsigned long haddr = addr & HPAGE_PMD_MASK;
1467	int page_nid = -1, this_nid = numa_node_id();
1468	int target_nid, last_cpupid = -1;
1469	bool page_locked;
1470	bool migrated = false;
1471	bool was_writable;
1472	int flags = 0;
1473
1474	/* A PROT_NONE fault should not end up here */
1475	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476
1477	ptl = pmd_lock(mm, pmdp);
1478	if (unlikely(!pmd_same(pmd, *pmdp)))
1479		goto out_unlock;
1480
1481	/*
1482	 * If there are potential migrations, wait for completion and retry
1483	 * without disrupting NUMA hinting information. Do not relock and
1484	 * check_same as the page may no longer be mapped.
1485	 */
1486	if (unlikely(pmd_trans_migrating(*pmdp))) {
1487		page = pmd_page(*pmdp);
1488		spin_unlock(ptl);
1489		wait_on_page_locked(page);
1490		goto out;
1491	}
1492
1493	page = pmd_page(pmd);
1494	BUG_ON(is_huge_zero_page(page));
1495	page_nid = page_to_nid(page);
1496	last_cpupid = page_cpupid_last(page);
1497	count_vm_numa_event(NUMA_HINT_FAULTS);
1498	if (page_nid == this_nid) {
1499		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1500		flags |= TNF_FAULT_LOCAL;
1501	}
 
 
 
 
 
 
1502
1503	/* See similar comment in do_numa_page for explanation */
1504	if (!(vma->vm_flags & VM_WRITE))
1505		flags |= TNF_NO_GROUP;
1506
1507	/*
1508	 * Acquire the page lock to serialise THP migrations but avoid dropping
1509	 * page_table_lock if at all possible
1510	 */
1511	page_locked = trylock_page(page);
1512	target_nid = mpol_misplaced(page, vma, haddr);
1513	if (target_nid == -1) {
1514		/* If the page was locked, there are no parallel migrations */
1515		if (page_locked)
1516			goto clear_pmdnuma;
1517	}
1518
1519	/* Migration could have started since the pmd_trans_migrating check */
1520	if (!page_locked) {
1521		spin_unlock(ptl);
1522		wait_on_page_locked(page);
1523		page_nid = -1;
1524		goto out;
1525	}
1526
1527	/*
1528	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1529	 * to serialises splits
1530	 */
1531	get_page(page);
1532	spin_unlock(ptl);
1533	anon_vma = page_lock_anon_vma_read(page);
1534
1535	/* Confirm the PMD did not change while page_table_lock was released */
1536	spin_lock(ptl);
1537	if (unlikely(!pmd_same(pmd, *pmdp))) {
1538		unlock_page(page);
1539		put_page(page);
1540		page_nid = -1;
1541		goto out_unlock;
1542	}
1543
1544	/* Bail if we fail to protect against THP splits for any reason */
1545	if (unlikely(!anon_vma)) {
1546		put_page(page);
1547		page_nid = -1;
1548		goto clear_pmdnuma;
1549	}
1550
1551	/*
1552	 * Migrate the THP to the requested node, returns with page unlocked
1553	 * and access rights restored.
1554	 */
1555	spin_unlock(ptl);
1556	migrated = migrate_misplaced_transhuge_page(mm, vma,
1557				pmdp, pmd, addr, page, target_nid);
1558	if (migrated) {
1559		flags |= TNF_MIGRATED;
1560		page_nid = target_nid;
1561	} else
1562		flags |= TNF_MIGRATE_FAIL;
1563
1564	goto out;
1565clear_pmdnuma:
1566	BUG_ON(!PageLocked(page));
1567	was_writable = pmd_write(pmd);
1568	pmd = pmd_modify(pmd, vma->vm_page_prot);
1569	pmd = pmd_mkyoung(pmd);
1570	if (was_writable)
1571		pmd = pmd_mkwrite(pmd);
1572	set_pmd_at(mm, haddr, pmdp, pmd);
1573	update_mmu_cache_pmd(vma, addr, pmdp);
1574	unlock_page(page);
1575out_unlock:
1576	spin_unlock(ptl);
1577
1578out:
1579	if (anon_vma)
1580		page_unlock_anon_vma_read(anon_vma);
1581
1582	if (page_nid != -1)
1583		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1584
1585	return 0;
1586}
1587
1588int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1589		pmd_t *pmd, unsigned long addr, unsigned long next)
1590
 
1591{
1592	spinlock_t *ptl;
1593	pmd_t orig_pmd;
1594	struct page *page;
1595	struct mm_struct *mm = tlb->mm;
1596	int ret = 0;
1597
1598	ptl = pmd_trans_huge_lock(pmd, vma);
1599	if (!ptl)
1600		goto out_unlocked;
1601
1602	orig_pmd = *pmd;
1603	if (is_huge_zero_pmd(orig_pmd)) {
1604		ret = 1;
1605		goto out;
1606	}
1607
1608	page = pmd_page(orig_pmd);
1609	/*
1610	 * If other processes are mapping this page, we couldn't discard
1611	 * the page unless they all do MADV_FREE so let's skip the page.
1612	 */
1613	if (page_mapcount(page) != 1)
1614		goto out;
1615
1616	if (!trylock_page(page))
 
 
 
1617		goto out;
1618
1619	/*
1620	 * If user want to discard part-pages of THP, split it so MADV_FREE
1621	 * will deactivate only them.
 
 
 
1622	 */
1623	if (next - addr != HPAGE_PMD_SIZE) {
1624		get_page(page);
1625		spin_unlock(ptl);
1626		if (split_huge_page(page)) {
1627			put_page(page);
1628			unlock_page(page);
1629			goto out_unlocked;
1630		}
1631		put_page(page);
1632		unlock_page(page);
1633		ret = 1;
1634		goto out_unlocked;
1635	}
 
 
 
1636
1637	if (PageDirty(page))
1638		ClearPageDirty(page);
1639	unlock_page(page);
 
 
 
 
1640
1641	if (PageActive(page))
1642		deactivate_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
1643
1644	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1645		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1646			tlb->fullmm);
1647		orig_pmd = pmd_mkold(orig_pmd);
1648		orig_pmd = pmd_mkclean(orig_pmd);
1649
1650		set_pmd_at(mm, addr, pmd, orig_pmd);
1651		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1652	}
1653	ret = 1;
1654out:
1655	spin_unlock(ptl);
1656out_unlocked:
1657	return ret;
1658}
1659
1660int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1661		 pmd_t *pmd, unsigned long addr)
1662{
1663	pmd_t orig_pmd;
1664	spinlock_t *ptl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1665
1666	ptl = __pmd_trans_huge_lock(pmd, vma);
1667	if (!ptl)
1668		return 0;
1669	/*
1670	 * For architectures like ppc64 we look at deposited pgtable
1671	 * when calling pmdp_huge_get_and_clear. So do the
1672	 * pgtable_trans_huge_withdraw after finishing pmdp related
1673	 * operations.
1674	 */
1675	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1676			tlb->fullmm);
1677	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1678	if (vma_is_dax(vma)) {
1679		spin_unlock(ptl);
1680		if (is_huge_zero_pmd(orig_pmd))
1681			tlb_remove_page(tlb, pmd_page(orig_pmd));
1682	} else if (is_huge_zero_pmd(orig_pmd)) {
1683		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1684		atomic_long_dec(&tlb->mm->nr_ptes);
1685		spin_unlock(ptl);
1686		tlb_remove_page(tlb, pmd_page(orig_pmd));
1687	} else {
1688		struct page *page = pmd_page(orig_pmd);
1689		page_remove_rmap(page, true);
1690		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1691		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1692		VM_BUG_ON_PAGE(!PageHead(page), page);
1693		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1694		atomic_long_dec(&tlb->mm->nr_ptes);
1695		spin_unlock(ptl);
1696		tlb_remove_page(tlb, page);
1697	}
1698	return 1;
1699}
1700
1701bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1702		  unsigned long old_addr,
1703		  unsigned long new_addr, unsigned long old_end,
1704		  pmd_t *old_pmd, pmd_t *new_pmd)
1705{
1706	spinlock_t *old_ptl, *new_ptl;
1707	pmd_t pmd;
1708
1709	struct mm_struct *mm = vma->vm_mm;
 
1710
1711	if ((old_addr & ~HPAGE_PMD_MASK) ||
1712	    (new_addr & ~HPAGE_PMD_MASK) ||
1713	    old_end - old_addr < HPAGE_PMD_SIZE ||
1714	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1715		return false;
1716
1717	/*
1718	 * The destination pmd shouldn't be established, free_pgtables()
1719	 * should have release it.
1720	 */
1721	if (WARN_ON(!pmd_none(*new_pmd))) {
1722		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1723		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1724	}
1725
1726	/*
1727	 * We don't have to worry about the ordering of src and dst
1728	 * ptlocks because exclusive mmap_sem prevents deadlock.
1729	 */
1730	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1731	if (old_ptl) {
1732		new_ptl = pmd_lockptr(mm, new_pmd);
1733		if (new_ptl != old_ptl)
1734			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1735		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1736		VM_BUG_ON(!pmd_none(*new_pmd));
1737
1738		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1739				vma_is_anonymous(vma)) {
1740			pgtable_t pgtable;
1741			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1742			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1743		}
1744		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1745		if (new_ptl != old_ptl)
1746			spin_unlock(new_ptl);
1747		spin_unlock(old_ptl);
1748		return true;
1749	}
1750	return false;
1751}
1752
1753/*
1754 * Returns
1755 *  - 0 if PMD could not be locked
1756 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1757 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1758 */
1759int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1760		unsigned long addr, pgprot_t newprot, int prot_numa)
1761{
1762	struct mm_struct *mm = vma->vm_mm;
1763	spinlock_t *ptl;
1764	int ret = 0;
 
 
1765
1766	ptl = __pmd_trans_huge_lock(pmd, vma);
1767	if (ptl) {
1768		pmd_t entry;
1769		bool preserve_write = prot_numa && pmd_write(*pmd);
1770		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1771
 
 
1772		/*
1773		 * Avoid trapping faults against the zero page. The read-only
1774		 * data is likely to be read-cached on the local CPU and
1775		 * local/remote hits to the zero page are not interesting.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776		 */
1777		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1778			spin_unlock(ptl);
1779			return ret;
1780		}
1781
1782		if (!prot_numa || !pmd_protnone(*pmd)) {
1783			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1784			entry = pmd_modify(entry, newprot);
1785			if (preserve_write)
1786				entry = pmd_mkwrite(entry);
1787			ret = HPAGE_PMD_NR;
1788			set_pmd_at(mm, addr, pmd, entry);
1789			BUG_ON(!preserve_write && pmd_write(entry));
1790		}
1791		spin_unlock(ptl);
1792	}
 
1793
1794	return ret;
1795}
1796
1797/*
1798 * Returns true if a given pmd maps a thp, false otherwise.
1799 *
1800 * Note that if it returns true, this routine returns without unlocking page
1801 * table lock. So callers must unlock it.
1802 */
1803spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804{
1805	spinlock_t *ptl;
1806	ptl = pmd_lock(vma->vm_mm, pmd);
1807	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1808		return ptl;
1809	spin_unlock(ptl);
1810	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811}
1812
1813#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
 
1814
1815int hugepage_madvise(struct vm_area_struct *vma,
1816		     unsigned long *vm_flags, int advice)
1817{
1818	switch (advice) {
1819	case MADV_HUGEPAGE:
1820#ifdef CONFIG_S390
1821		/*
1822		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1823		 * can't handle this properly after s390_enable_sie, so we simply
1824		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1825		 */
1826		if (mm_has_pgste(vma->vm_mm))
1827			return 0;
1828#endif
1829		/*
1830		 * Be somewhat over-protective like KSM for now!
1831		 */
1832		if (*vm_flags & VM_NO_THP)
1833			return -EINVAL;
1834		*vm_flags &= ~VM_NOHUGEPAGE;
1835		*vm_flags |= VM_HUGEPAGE;
1836		/*
1837		 * If the vma become good for khugepaged to scan,
1838		 * register it here without waiting a page fault that
1839		 * may not happen any time soon.
1840		 */
1841		if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1842			return -ENOMEM;
1843		break;
1844	case MADV_NOHUGEPAGE:
1845		/*
1846		 * Be somewhat over-protective like KSM for now!
1847		 */
1848		if (*vm_flags & VM_NO_THP)
1849			return -EINVAL;
1850		*vm_flags &= ~VM_HUGEPAGE;
1851		*vm_flags |= VM_NOHUGEPAGE;
1852		/*
1853		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1854		 * this vma even if we leave the mm registered in khugepaged if
1855		 * it got registered before VM_NOHUGEPAGE was set.
1856		 */
1857		break;
1858	}
1859
1860	return 0;
1861}
1862
1863static int __init khugepaged_slab_init(void)
1864{
1865	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1866					  sizeof(struct mm_slot),
1867					  __alignof__(struct mm_slot), 0, NULL);
1868	if (!mm_slot_cache)
1869		return -ENOMEM;
1870
1871	return 0;
1872}
1873
1874static void __init khugepaged_slab_exit(void)
1875{
1876	kmem_cache_destroy(mm_slot_cache);
 
1877}
1878
1879static inline struct mm_slot *alloc_mm_slot(void)
1880{
1881	if (!mm_slot_cache)	/* initialization failed */
1882		return NULL;
1883	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1884}
1885
1886static inline void free_mm_slot(struct mm_slot *mm_slot)
1887{
1888	kmem_cache_free(mm_slot_cache, mm_slot);
1889}
1890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1892{
1893	struct mm_slot *mm_slot;
 
 
1894
1895	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
 
 
1896		if (mm == mm_slot->mm)
1897			return mm_slot;
1898
1899	return NULL;
1900}
1901
1902static void insert_to_mm_slots_hash(struct mm_struct *mm,
1903				    struct mm_slot *mm_slot)
1904{
 
 
 
 
1905	mm_slot->mm = mm;
1906	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1907}
1908
1909static inline int khugepaged_test_exit(struct mm_struct *mm)
1910{
1911	return atomic_read(&mm->mm_users) == 0;
1912}
1913
1914int __khugepaged_enter(struct mm_struct *mm)
1915{
1916	struct mm_slot *mm_slot;
1917	int wakeup;
1918
1919	mm_slot = alloc_mm_slot();
1920	if (!mm_slot)
1921		return -ENOMEM;
1922
1923	/* __khugepaged_exit() must not run from under us */
1924	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1925	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1926		free_mm_slot(mm_slot);
1927		return 0;
1928	}
1929
1930	spin_lock(&khugepaged_mm_lock);
1931	insert_to_mm_slots_hash(mm, mm_slot);
1932	/*
1933	 * Insert just behind the scanning cursor, to let the area settle
1934	 * down a little.
1935	 */
1936	wakeup = list_empty(&khugepaged_scan.mm_head);
1937	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1938	spin_unlock(&khugepaged_mm_lock);
1939
1940	atomic_inc(&mm->mm_count);
1941	if (wakeup)
1942		wake_up_interruptible(&khugepaged_wait);
1943
1944	return 0;
1945}
1946
1947int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1948			       unsigned long vm_flags)
1949{
1950	unsigned long hstart, hend;
1951	if (!vma->anon_vma)
1952		/*
1953		 * Not yet faulted in so we will register later in the
1954		 * page fault if needed.
1955		 */
1956		return 0;
1957	if (vma->vm_ops || (vm_flags & VM_NO_THP))
1958		/* khugepaged not yet working on file or special mappings */
1959		return 0;
 
 
 
 
 
1960	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1961	hend = vma->vm_end & HPAGE_PMD_MASK;
1962	if (hstart < hend)
1963		return khugepaged_enter(vma, vm_flags);
1964	return 0;
1965}
1966
1967void __khugepaged_exit(struct mm_struct *mm)
1968{
1969	struct mm_slot *mm_slot;
1970	int free = 0;
1971
1972	spin_lock(&khugepaged_mm_lock);
1973	mm_slot = get_mm_slot(mm);
1974	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1975		hash_del(&mm_slot->hash);
1976		list_del(&mm_slot->mm_node);
1977		free = 1;
1978	}
1979	spin_unlock(&khugepaged_mm_lock);
1980
1981	if (free) {
1982		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1983		free_mm_slot(mm_slot);
1984		mmdrop(mm);
1985	} else if (mm_slot) {
1986		/*
1987		 * This is required to serialize against
1988		 * khugepaged_test_exit() (which is guaranteed to run
1989		 * under mmap sem read mode). Stop here (after we
1990		 * return all pagetables will be destroyed) until
1991		 * khugepaged has finished working on the pagetables
1992		 * under the mmap_sem.
1993		 */
1994		down_write(&mm->mmap_sem);
1995		up_write(&mm->mmap_sem);
1996	}
1997}
1998
1999static void release_pte_page(struct page *page)
2000{
2001	/* 0 stands for page_is_file_cache(page) == false */
2002	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2003	unlock_page(page);
2004	putback_lru_page(page);
2005}
2006
2007static void release_pte_pages(pte_t *pte, pte_t *_pte)
2008{
2009	while (--_pte >= pte) {
2010		pte_t pteval = *_pte;
2011		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2012			release_pte_page(pte_page(pteval));
2013	}
2014}
2015
 
 
 
 
 
2016static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2017					unsigned long address,
2018					pte_t *pte)
2019{
2020	struct page *page = NULL;
2021	pte_t *_pte;
2022	int none_or_zero = 0, result = 0;
2023	bool referenced = false, writable = false;
2024
2025	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2026	     _pte++, address += PAGE_SIZE) {
2027		pte_t pteval = *_pte;
2028		if (pte_none(pteval) || (pte_present(pteval) &&
2029				is_zero_pfn(pte_pfn(pteval)))) {
2030			if (!userfaultfd_armed(vma) &&
2031			    ++none_or_zero <= khugepaged_max_ptes_none) {
2032				continue;
2033			} else {
2034				result = SCAN_EXCEED_NONE_PTE;
2035				goto out;
2036			}
2037		}
2038		if (!pte_present(pteval)) {
2039			result = SCAN_PTE_NON_PRESENT;
2040			goto out;
2041		}
2042		page = vm_normal_page(vma, address, pteval);
2043		if (unlikely(!page)) {
2044			result = SCAN_PAGE_NULL;
 
 
 
 
 
 
 
 
 
2045			goto out;
2046		}
2047
2048		VM_BUG_ON_PAGE(PageCompound(page), page);
2049		VM_BUG_ON_PAGE(!PageAnon(page), page);
2050		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2051
2052		/*
2053		 * We can do it before isolate_lru_page because the
2054		 * page can't be freed from under us. NOTE: PG_lock
2055		 * is needed to serialize against split_huge_page
2056		 * when invoked from the VM.
2057		 */
2058		if (!trylock_page(page)) {
2059			result = SCAN_PAGE_LOCK;
2060			goto out;
2061		}
2062
2063		/*
2064		 * cannot use mapcount: can't collapse if there's a gup pin.
2065		 * The page must only be referenced by the scanned process
2066		 * and page swap cache.
2067		 */
2068		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2069			unlock_page(page);
2070			result = SCAN_PAGE_COUNT;
2071			goto out;
2072		}
2073		if (pte_write(pteval)) {
2074			writable = true;
2075		} else {
2076			if (PageSwapCache(page) &&
2077			    !reuse_swap_page(page, NULL)) {
2078				unlock_page(page);
2079				result = SCAN_SWAP_CACHE_PAGE;
2080				goto out;
2081			}
2082			/*
2083			 * Page is not in the swap cache. It can be collapsed
2084			 * into a THP.
2085			 */
2086		}
2087
2088		/*
2089		 * Isolate the page to avoid collapsing an hugepage
2090		 * currently in use by the VM.
2091		 */
2092		if (isolate_lru_page(page)) {
2093			unlock_page(page);
2094			result = SCAN_DEL_PAGE_LRU;
2095			goto out;
2096		}
2097		/* 0 stands for page_is_file_cache(page) == false */
2098		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2099		VM_BUG_ON_PAGE(!PageLocked(page), page);
2100		VM_BUG_ON_PAGE(PageLRU(page), page);
2101
2102		/* If there is no mapped pte young don't collapse the page */
2103		if (pte_young(pteval) ||
2104		    page_is_young(page) || PageReferenced(page) ||
2105		    mmu_notifier_test_young(vma->vm_mm, address))
2106			referenced = true;
2107	}
2108	if (likely(writable)) {
2109		if (likely(referenced)) {
2110			result = SCAN_SUCCEED;
2111			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2112							    referenced, writable, result);
2113			return 1;
2114		}
2115	} else {
2116		result = SCAN_PAGE_RO;
2117	}
2118
2119out:
2120	release_pte_pages(pte, _pte);
2121	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2122					    referenced, writable, result);
2123	return 0;
2124}
2125
2126static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2127				      struct vm_area_struct *vma,
2128				      unsigned long address,
2129				      spinlock_t *ptl)
2130{
2131	pte_t *_pte;
2132	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2133		pte_t pteval = *_pte;
2134		struct page *src_page;
2135
2136		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2137			clear_user_highpage(page, address);
2138			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2139			if (is_zero_pfn(pte_pfn(pteval))) {
2140				/*
2141				 * ptl mostly unnecessary.
2142				 */
2143				spin_lock(ptl);
2144				/*
2145				 * paravirt calls inside pte_clear here are
2146				 * superfluous.
2147				 */
2148				pte_clear(vma->vm_mm, address, _pte);
2149				spin_unlock(ptl);
2150			}
2151		} else {
2152			src_page = pte_page(pteval);
2153			copy_user_highpage(page, src_page, address, vma);
2154			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
 
2155			release_pte_page(src_page);
2156			/*
2157			 * ptl mostly unnecessary, but preempt has to
2158			 * be disabled to update the per-cpu stats
2159			 * inside page_remove_rmap().
2160			 */
2161			spin_lock(ptl);
2162			/*
2163			 * paravirt calls inside pte_clear here are
2164			 * superfluous.
2165			 */
2166			pte_clear(vma->vm_mm, address, _pte);
2167			page_remove_rmap(src_page, false);
2168			spin_unlock(ptl);
2169			free_page_and_swap_cache(src_page);
2170		}
2171
2172		address += PAGE_SIZE;
2173		page++;
2174	}
2175}
2176
2177static void khugepaged_alloc_sleep(void)
 
 
 
 
2178{
2179	DEFINE_WAIT(wait);
2180
2181	add_wait_queue(&khugepaged_wait, &wait);
2182	freezable_schedule_timeout_interruptible(
2183		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2184	remove_wait_queue(&khugepaged_wait, &wait);
2185}
2186
2187static int khugepaged_node_load[MAX_NUMNODES];
2188
2189static bool khugepaged_scan_abort(int nid)
2190{
2191	int i;
2192
 
 
 
 
 
 
 
2193	/*
2194	 * If zone_reclaim_mode is disabled, then no extra effort is made to
2195	 * allocate memory locally.
 
 
 
 
 
 
2196	 */
2197	if (!zone_reclaim_mode)
2198		return false;
2199
2200	/* If there is a count for this node already, it must be acceptable */
2201	if (khugepaged_node_load[nid])
2202		return false;
2203
2204	for (i = 0; i < MAX_NUMNODES; i++) {
2205		if (!khugepaged_node_load[i])
2206			continue;
2207		if (node_distance(nid, i) > RECLAIM_DISTANCE)
2208			return true;
2209	}
2210	return false;
2211}
2212
2213#ifdef CONFIG_NUMA
2214static int khugepaged_find_target_node(void)
2215{
2216	static int last_khugepaged_target_node = NUMA_NO_NODE;
2217	int nid, target_node = 0, max_value = 0;
2218
2219	/* find first node with max normal pages hit */
2220	for (nid = 0; nid < MAX_NUMNODES; nid++)
2221		if (khugepaged_node_load[nid] > max_value) {
2222			max_value = khugepaged_node_load[nid];
2223			target_node = nid;
2224		}
2225
2226	/* do some balance if several nodes have the same hit record */
2227	if (target_node <= last_khugepaged_target_node)
2228		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2229				nid++)
2230			if (max_value == khugepaged_node_load[nid]) {
2231				target_node = nid;
2232				break;
2233			}
2234
2235	last_khugepaged_target_node = target_node;
2236	return target_node;
2237}
2238
2239static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2240{
2241	if (IS_ERR(*hpage)) {
2242		if (!*wait)
2243			return false;
2244
2245		*wait = false;
2246		*hpage = NULL;
2247		khugepaged_alloc_sleep();
2248	} else if (*hpage) {
2249		put_page(*hpage);
2250		*hpage = NULL;
2251	}
2252
2253	return true;
2254}
2255
2256static struct page *
2257khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2258		       unsigned long address, int node)
2259{
2260	VM_BUG_ON_PAGE(*hpage, *hpage);
2261
2262	/*
2263	 * Before allocating the hugepage, release the mmap_sem read lock.
2264	 * The allocation can take potentially a long time if it involves
2265	 * sync compaction, and we do not need to hold the mmap_sem during
2266	 * that. We will recheck the vma after taking it again in write mode.
2267	 */
2268	up_read(&mm->mmap_sem);
2269
2270	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2271	if (unlikely(!*hpage)) {
2272		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2273		*hpage = ERR_PTR(-ENOMEM);
2274		return NULL;
2275	}
 
2276
2277	prep_transhuge_page(*hpage);
2278	count_vm_event(THP_COLLAPSE_ALLOC);
2279	return *hpage;
2280}
2281#else
2282static int khugepaged_find_target_node(void)
2283{
2284	return 0;
2285}
2286
2287static inline struct page *alloc_khugepaged_hugepage(void)
2288{
2289	struct page *page;
2290
2291	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2292			   HPAGE_PMD_ORDER);
2293	if (page)
2294		prep_transhuge_page(page);
2295	return page;
2296}
2297
2298static struct page *khugepaged_alloc_hugepage(bool *wait)
2299{
2300	struct page *hpage;
2301
2302	do {
2303		hpage = alloc_khugepaged_hugepage();
2304		if (!hpage) {
2305			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2306			if (!*wait)
2307				return NULL;
2308
2309			*wait = false;
2310			khugepaged_alloc_sleep();
2311		} else
2312			count_vm_event(THP_COLLAPSE_ALLOC);
2313	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2314
2315	return hpage;
2316}
2317
2318static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2319{
2320	if (!*hpage)
2321		*hpage = khugepaged_alloc_hugepage(wait);
2322
2323	if (unlikely(!*hpage))
2324		return false;
2325
2326	return true;
2327}
2328
2329static struct page *
2330khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2331		       unsigned long address, int node)
2332{
2333	up_read(&mm->mmap_sem);
2334	VM_BUG_ON(!*hpage);
2335
2336	return  *hpage;
2337}
2338#endif
2339
2340static bool hugepage_vma_check(struct vm_area_struct *vma)
2341{
2342	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2343	    (vma->vm_flags & VM_NOHUGEPAGE))
2344		return false;
2345	if (!vma->anon_vma || vma->vm_ops)
2346		return false;
2347	if (is_vma_temporary_stack(vma))
2348		return false;
2349	return !(vma->vm_flags & VM_NO_THP);
2350}
2351
2352static void collapse_huge_page(struct mm_struct *mm,
2353				   unsigned long address,
2354				   struct page **hpage,
2355				   struct vm_area_struct *vma,
2356				   int node)
2357{
2358	pmd_t *pmd, _pmd;
2359	pte_t *pte;
2360	pgtable_t pgtable;
2361	struct page *new_page;
2362	spinlock_t *pmd_ptl, *pte_ptl;
2363	int isolated = 0, result = 0;
2364	unsigned long hstart, hend;
2365	struct mem_cgroup *memcg;
2366	unsigned long mmun_start;	/* For mmu_notifiers */
2367	unsigned long mmun_end;		/* For mmu_notifiers */
2368	gfp_t gfp;
2369
2370	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2371
2372	/* Only allocate from the target node */
2373	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2374
2375	/* release the mmap_sem read lock. */
2376	new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2377	if (!new_page) {
2378		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2379		goto out_nolock;
2380	}
2381
2382	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2383		result = SCAN_CGROUP_CHARGE_FAIL;
2384		goto out_nolock;
2385	}
2386
2387	/*
2388	 * Prevent all access to pagetables with the exception of
2389	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2390	 * handled by the anon_vma lock + PG_lock.
2391	 */
2392	down_write(&mm->mmap_sem);
2393	if (unlikely(khugepaged_test_exit(mm))) {
2394		result = SCAN_ANY_PROCESS;
2395		goto out;
2396	}
2397
2398	vma = find_vma(mm, address);
2399	if (!vma) {
2400		result = SCAN_VMA_NULL;
2401		goto out;
2402	}
2403	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2404	hend = vma->vm_end & HPAGE_PMD_MASK;
2405	if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2406		result = SCAN_ADDRESS_RANGE;
 
 
 
 
 
 
2407		goto out;
2408	}
2409	if (!hugepage_vma_check(vma)) {
2410		result = SCAN_VMA_CHECK;
 
 
 
 
 
 
 
 
 
 
 
2411		goto out;
2412	}
2413	pmd = mm_find_pmd(mm, address);
2414	if (!pmd) {
2415		result = SCAN_PMD_NULL;
2416		goto out;
2417	}
2418
2419	anon_vma_lock_write(vma->anon_vma);
2420
2421	pte = pte_offset_map(pmd, address);
2422	pte_ptl = pte_lockptr(mm, pmd);
2423
2424	mmun_start = address;
2425	mmun_end   = address + HPAGE_PMD_SIZE;
2426	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2427	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2428	/*
2429	 * After this gup_fast can't run anymore. This also removes
2430	 * any huge TLB entry from the CPU so we won't allow
2431	 * huge and small TLB entries for the same virtual address
2432	 * to avoid the risk of CPU bugs in that area.
2433	 */
2434	_pmd = pmdp_collapse_flush(vma, address, pmd);
2435	spin_unlock(pmd_ptl);
2436	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2437
2438	spin_lock(pte_ptl);
2439	isolated = __collapse_huge_page_isolate(vma, address, pte);
2440	spin_unlock(pte_ptl);
2441
2442	if (unlikely(!isolated)) {
2443		pte_unmap(pte);
2444		spin_lock(pmd_ptl);
2445		BUG_ON(!pmd_none(*pmd));
2446		/*
2447		 * We can only use set_pmd_at when establishing
2448		 * hugepmds and never for establishing regular pmds that
2449		 * points to regular pagetables. Use pmd_populate for that
2450		 */
2451		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2452		spin_unlock(pmd_ptl);
2453		anon_vma_unlock_write(vma->anon_vma);
2454		result = SCAN_FAIL;
2455		goto out;
2456	}
2457
2458	/*
2459	 * All pages are isolated and locked so anon_vma rmap
2460	 * can't run anymore.
2461	 */
2462	anon_vma_unlock_write(vma->anon_vma);
2463
2464	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2465	pte_unmap(pte);
2466	__SetPageUptodate(new_page);
2467	pgtable = pmd_pgtable(_pmd);
 
 
2468
2469	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2470	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
 
2471
2472	/*
2473	 * spin_lock() below is not the equivalent of smp_wmb(), so
2474	 * this is needed to avoid the copy_huge_page writes to become
2475	 * visible after the set_pmd_at() write.
2476	 */
2477	smp_wmb();
2478
2479	spin_lock(pmd_ptl);
2480	BUG_ON(!pmd_none(*pmd));
2481	page_add_new_anon_rmap(new_page, vma, address, true);
2482	mem_cgroup_commit_charge(new_page, memcg, false, true);
2483	lru_cache_add_active_or_unevictable(new_page, vma);
2484	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2485	set_pmd_at(mm, address, pmd, _pmd);
2486	update_mmu_cache_pmd(vma, address, pmd);
2487	spin_unlock(pmd_ptl);
 
 
2488
 
2489	*hpage = NULL;
2490
2491	khugepaged_pages_collapsed++;
2492	result = SCAN_SUCCEED;
2493out_up_write:
2494	up_write(&mm->mmap_sem);
2495	trace_mm_collapse_huge_page(mm, isolated, result);
2496	return;
2497
2498out_nolock:
2499	trace_mm_collapse_huge_page(mm, isolated, result);
2500	return;
2501out:
2502	mem_cgroup_cancel_charge(new_page, memcg, true);
 
 
 
2503	goto out_up_write;
2504}
2505
2506static int khugepaged_scan_pmd(struct mm_struct *mm,
2507			       struct vm_area_struct *vma,
2508			       unsigned long address,
2509			       struct page **hpage)
2510{
 
 
2511	pmd_t *pmd;
2512	pte_t *pte, *_pte;
2513	int ret = 0, none_or_zero = 0, result = 0;
2514	struct page *page = NULL;
2515	unsigned long _address;
2516	spinlock_t *ptl;
2517	int node = NUMA_NO_NODE;
2518	bool writable = false, referenced = false;
2519
2520	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2521
2522	pmd = mm_find_pmd(mm, address);
2523	if (!pmd) {
2524		result = SCAN_PMD_NULL;
 
 
 
 
 
 
 
2525		goto out;
2526	}
2527
2528	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2529	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2530	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2531	     _pte++, _address += PAGE_SIZE) {
2532		pte_t pteval = *_pte;
2533		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2534			if (!userfaultfd_armed(vma) &&
2535			    ++none_or_zero <= khugepaged_max_ptes_none) {
2536				continue;
2537			} else {
2538				result = SCAN_EXCEED_NONE_PTE;
2539				goto out_unmap;
2540			}
2541		}
2542		if (!pte_present(pteval)) {
2543			result = SCAN_PTE_NON_PRESENT;
2544			goto out_unmap;
2545		}
2546		if (pte_write(pteval))
2547			writable = true;
2548
2549		page = vm_normal_page(vma, _address, pteval);
2550		if (unlikely(!page)) {
2551			result = SCAN_PAGE_NULL;
2552			goto out_unmap;
2553		}
2554
2555		/* TODO: teach khugepaged to collapse THP mapped with pte */
2556		if (PageCompound(page)) {
2557			result = SCAN_PAGE_COMPOUND;
2558			goto out_unmap;
2559		}
2560
2561		/*
2562		 * Record which node the original page is from and save this
2563		 * information to khugepaged_node_load[].
2564		 * Khupaged will allocate hugepage from the node has the max
2565		 * hit record.
2566		 */
2567		node = page_to_nid(page);
2568		if (khugepaged_scan_abort(node)) {
2569			result = SCAN_SCAN_ABORT;
2570			goto out_unmap;
2571		}
2572		khugepaged_node_load[node]++;
2573		if (!PageLRU(page)) {
2574			result = SCAN_PAGE_LRU;
2575			goto out_unmap;
2576		}
2577		if (PageLocked(page)) {
2578			result = SCAN_PAGE_LOCK;
2579			goto out_unmap;
2580		}
2581		if (!PageAnon(page)) {
2582			result = SCAN_PAGE_ANON;
2583			goto out_unmap;
2584		}
2585
2586		/*
2587		 * cannot use mapcount: can't collapse if there's a gup pin.
2588		 * The page must only be referenced by the scanned process
2589		 * and page swap cache.
2590		 */
2591		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2592			result = SCAN_PAGE_COUNT;
2593			goto out_unmap;
2594		}
2595		if (pte_young(pteval) ||
2596		    page_is_young(page) || PageReferenced(page) ||
2597		    mmu_notifier_test_young(vma->vm_mm, address))
2598			referenced = true;
2599	}
2600	if (writable) {
2601		if (referenced) {
2602			result = SCAN_SUCCEED;
2603			ret = 1;
2604		} else {
2605			result = SCAN_NO_REFERENCED_PAGE;
2606		}
2607	} else {
2608		result = SCAN_PAGE_RO;
2609	}
 
 
2610out_unmap:
2611	pte_unmap_unlock(pte, ptl);
2612	if (ret) {
2613		node = khugepaged_find_target_node();
2614		/* collapse_huge_page will return with the mmap_sem released */
2615		collapse_huge_page(mm, address, hpage, vma, node);
2616	}
2617out:
2618	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2619				     none_or_zero, result);
2620	return ret;
2621}
2622
2623static void collect_mm_slot(struct mm_slot *mm_slot)
2624{
2625	struct mm_struct *mm = mm_slot->mm;
2626
2627	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2628
2629	if (khugepaged_test_exit(mm)) {
2630		/* free mm_slot */
2631		hash_del(&mm_slot->hash);
2632		list_del(&mm_slot->mm_node);
2633
2634		/*
2635		 * Not strictly needed because the mm exited already.
2636		 *
2637		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2638		 */
2639
2640		/* khugepaged_mm_lock actually not necessary for the below */
2641		free_mm_slot(mm_slot);
2642		mmdrop(mm);
2643	}
2644}
2645
2646static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2647					    struct page **hpage)
2648	__releases(&khugepaged_mm_lock)
2649	__acquires(&khugepaged_mm_lock)
2650{
2651	struct mm_slot *mm_slot;
2652	struct mm_struct *mm;
2653	struct vm_area_struct *vma;
2654	int progress = 0;
2655
2656	VM_BUG_ON(!pages);
2657	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2658
2659	if (khugepaged_scan.mm_slot)
2660		mm_slot = khugepaged_scan.mm_slot;
2661	else {
2662		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2663				     struct mm_slot, mm_node);
2664		khugepaged_scan.address = 0;
2665		khugepaged_scan.mm_slot = mm_slot;
2666	}
2667	spin_unlock(&khugepaged_mm_lock);
2668
2669	mm = mm_slot->mm;
2670	down_read(&mm->mmap_sem);
2671	if (unlikely(khugepaged_test_exit(mm)))
2672		vma = NULL;
2673	else
2674		vma = find_vma(mm, khugepaged_scan.address);
2675
2676	progress++;
2677	for (; vma; vma = vma->vm_next) {
2678		unsigned long hstart, hend;
2679
2680		cond_resched();
2681		if (unlikely(khugepaged_test_exit(mm))) {
2682			progress++;
2683			break;
2684		}
2685		if (!hugepage_vma_check(vma)) {
2686skip:
 
 
 
2687			progress++;
2688			continue;
2689		}
 
 
 
 
 
 
 
 
 
 
 
2690		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2691		hend = vma->vm_end & HPAGE_PMD_MASK;
2692		if (hstart >= hend)
2693			goto skip;
2694		if (khugepaged_scan.address > hend)
2695			goto skip;
2696		if (khugepaged_scan.address < hstart)
2697			khugepaged_scan.address = hstart;
2698		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2699
2700		while (khugepaged_scan.address < hend) {
2701			int ret;
2702			cond_resched();
2703			if (unlikely(khugepaged_test_exit(mm)))
2704				goto breakouterloop;
2705
2706			VM_BUG_ON(khugepaged_scan.address < hstart ||
2707				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2708				  hend);
2709			ret = khugepaged_scan_pmd(mm, vma,
2710						  khugepaged_scan.address,
2711						  hpage);
2712			/* move to next address */
2713			khugepaged_scan.address += HPAGE_PMD_SIZE;
2714			progress += HPAGE_PMD_NR;
2715			if (ret)
2716				/* we released mmap_sem so break loop */
2717				goto breakouterloop_mmap_sem;
2718			if (progress >= pages)
2719				goto breakouterloop;
2720		}
2721	}
2722breakouterloop:
2723	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2724breakouterloop_mmap_sem:
2725
2726	spin_lock(&khugepaged_mm_lock);
2727	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2728	/*
2729	 * Release the current mm_slot if this mm is about to die, or
2730	 * if we scanned all vmas of this mm.
2731	 */
2732	if (khugepaged_test_exit(mm) || !vma) {
2733		/*
2734		 * Make sure that if mm_users is reaching zero while
2735		 * khugepaged runs here, khugepaged_exit will find
2736		 * mm_slot not pointing to the exiting mm.
2737		 */
2738		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2739			khugepaged_scan.mm_slot = list_entry(
2740				mm_slot->mm_node.next,
2741				struct mm_slot, mm_node);
2742			khugepaged_scan.address = 0;
2743		} else {
2744			khugepaged_scan.mm_slot = NULL;
2745			khugepaged_full_scans++;
2746		}
2747
2748		collect_mm_slot(mm_slot);
2749	}
2750
2751	return progress;
2752}
2753
2754static int khugepaged_has_work(void)
2755{
2756	return !list_empty(&khugepaged_scan.mm_head) &&
2757		khugepaged_enabled();
2758}
2759
2760static int khugepaged_wait_event(void)
2761{
2762	return !list_empty(&khugepaged_scan.mm_head) ||
2763		kthread_should_stop();
2764}
2765
2766static void khugepaged_do_scan(void)
2767{
2768	struct page *hpage = NULL;
2769	unsigned int progress = 0, pass_through_head = 0;
2770	unsigned int pages = khugepaged_pages_to_scan;
2771	bool wait = true;
2772
2773	barrier(); /* write khugepaged_pages_to_scan to local stack */
2774
2775	while (progress < pages) {
2776		if (!khugepaged_prealloc_page(&hpage, &wait))
 
 
 
 
 
 
 
 
 
 
 
 
2777			break;
 
2778
2779		cond_resched();
2780
2781		if (unlikely(kthread_should_stop() || try_to_freeze()))
2782			break;
2783
2784		spin_lock(&khugepaged_mm_lock);
2785		if (!khugepaged_scan.mm_slot)
2786			pass_through_head++;
2787		if (khugepaged_has_work() &&
2788		    pass_through_head < 2)
2789			progress += khugepaged_scan_mm_slot(pages - progress,
2790							    &hpage);
2791		else
2792			progress = pages;
2793		spin_unlock(&khugepaged_mm_lock);
2794	}
 
2795
2796	if (!IS_ERR_OR_NULL(hpage))
2797		put_page(hpage);
 
 
 
 
 
 
2798}
2799
2800static void khugepaged_wait_work(void)
 
2801{
2802	if (khugepaged_has_work()) {
2803		if (!khugepaged_scan_sleep_millisecs)
2804			return;
2805
2806		wait_event_freezable_timeout(khugepaged_wait,
2807					     kthread_should_stop(),
2808			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2809		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2810	}
2811
2812	if (khugepaged_enabled())
2813		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2814}
2815
2816static int khugepaged(void *none)
2817{
2818	struct mm_slot *mm_slot;
2819
2820	set_freezable();
2821	set_user_nice(current, MAX_NICE);
 
 
 
 
 
 
 
 
 
2822
2823	while (!kthread_should_stop()) {
2824		khugepaged_do_scan();
2825		khugepaged_wait_work();
 
 
2826	}
2827
2828	spin_lock(&khugepaged_mm_lock);
2829	mm_slot = khugepaged_scan.mm_slot;
2830	khugepaged_scan.mm_slot = NULL;
2831	if (mm_slot)
2832		collect_mm_slot(mm_slot);
2833	spin_unlock(&khugepaged_mm_lock);
2834	return 0;
2835}
2836
2837static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2838		unsigned long haddr, pmd_t *pmd)
2839{
2840	struct mm_struct *mm = vma->vm_mm;
2841	pgtable_t pgtable;
2842	pmd_t _pmd;
2843	int i;
2844
2845	/* leave pmd empty until pte is filled */
2846	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2847
2848	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2849	pmd_populate(mm, &_pmd, pgtable);
2850
2851	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2852		pte_t *pte, entry;
2853		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2854		entry = pte_mkspecial(entry);
2855		pte = pte_offset_map(&_pmd, haddr);
2856		VM_BUG_ON(!pte_none(*pte));
2857		set_pte_at(mm, haddr, pte, entry);
2858		pte_unmap(pte);
2859	}
2860	smp_wmb(); /* make pte visible before pmd */
2861	pmd_populate(mm, pmd, pgtable);
2862	put_huge_zero_page();
2863}
2864
2865static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2866		unsigned long haddr, bool freeze)
2867{
2868	struct mm_struct *mm = vma->vm_mm;
2869	struct page *page;
2870	pgtable_t pgtable;
2871	pmd_t _pmd;
2872	bool young, write, dirty;
2873	unsigned long addr;
2874	int i;
2875
2876	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2877	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2878	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2879	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2880
2881	count_vm_event(THP_SPLIT_PMD);
2882
2883	if (vma_is_dax(vma)) {
2884		pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2885		if (is_huge_zero_pmd(_pmd))
2886			put_huge_zero_page();
2887		return;
2888	} else if (is_huge_zero_pmd(*pmd)) {
2889		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2890	}
2891
2892	page = pmd_page(*pmd);
2893	VM_BUG_ON_PAGE(!page_count(page), page);
2894	page_ref_add(page, HPAGE_PMD_NR - 1);
2895	write = pmd_write(*pmd);
2896	young = pmd_young(*pmd);
2897	dirty = pmd_dirty(*pmd);
2898
2899	pmdp_huge_split_prepare(vma, haddr, pmd);
2900	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2901	pmd_populate(mm, &_pmd, pgtable);
2902
2903	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2904		pte_t entry, *pte;
2905		/*
2906		 * Note that NUMA hinting access restrictions are not
2907		 * transferred to avoid any possibility of altering
2908		 * permissions across VMAs.
2909		 */
2910		if (freeze) {
2911			swp_entry_t swp_entry;
2912			swp_entry = make_migration_entry(page + i, write);
2913			entry = swp_entry_to_pte(swp_entry);
2914		} else {
2915			entry = mk_pte(page + i, vma->vm_page_prot);
2916			entry = maybe_mkwrite(entry, vma);
2917			if (!write)
2918				entry = pte_wrprotect(entry);
2919			if (!young)
2920				entry = pte_mkold(entry);
2921		}
2922		if (dirty)
2923			SetPageDirty(page + i);
2924		pte = pte_offset_map(&_pmd, addr);
2925		BUG_ON(!pte_none(*pte));
2926		set_pte_at(mm, addr, pte, entry);
2927		atomic_inc(&page[i]._mapcount);
2928		pte_unmap(pte);
2929	}
2930
2931	/*
2932	 * Set PG_double_map before dropping compound_mapcount to avoid
2933	 * false-negative page_mapped().
2934	 */
2935	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2936		for (i = 0; i < HPAGE_PMD_NR; i++)
2937			atomic_inc(&page[i]._mapcount);
2938	}
2939
2940	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2941		/* Last compound_mapcount is gone. */
2942		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2943		if (TestClearPageDoubleMap(page)) {
2944			/* No need in mapcount reference anymore */
2945			for (i = 0; i < HPAGE_PMD_NR; i++)
2946				atomic_dec(&page[i]._mapcount);
2947		}
2948	}
2949
2950	smp_wmb(); /* make pte visible before pmd */
2951	/*
2952	 * Up to this point the pmd is present and huge and userland has the
2953	 * whole access to the hugepage during the split (which happens in
2954	 * place). If we overwrite the pmd with the not-huge version pointing
2955	 * to the pte here (which of course we could if all CPUs were bug
2956	 * free), userland could trigger a small page size TLB miss on the
2957	 * small sized TLB while the hugepage TLB entry is still established in
2958	 * the huge TLB. Some CPU doesn't like that.
2959	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2960	 * 383 on page 93. Intel should be safe but is also warns that it's
2961	 * only safe if the permission and cache attributes of the two entries
2962	 * loaded in the two TLB is identical (which should be the case here).
2963	 * But it is generally safer to never allow small and huge TLB entries
2964	 * for the same virtual address to be loaded simultaneously. So instead
2965	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2966	 * current pmd notpresent (atomically because here the pmd_trans_huge
2967	 * and pmd_trans_splitting must remain set at all times on the pmd
2968	 * until the split is complete for this pmd), then we flush the SMP TLB
2969	 * and finally we write the non-huge version of the pmd entry with
2970	 * pmd_populate.
2971	 */
2972	pmdp_invalidate(vma, haddr, pmd);
2973	pmd_populate(mm, pmd, pgtable);
2974
2975	if (freeze) {
2976		for (i = 0; i < HPAGE_PMD_NR; i++) {
2977			page_remove_rmap(page + i, false);
2978			put_page(page + i);
2979		}
2980	}
2981}
2982
2983void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2984		unsigned long address, bool freeze)
2985{
2986	spinlock_t *ptl;
2987	struct mm_struct *mm = vma->vm_mm;
2988	unsigned long haddr = address & HPAGE_PMD_MASK;
2989
2990	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2991	ptl = pmd_lock(mm, pmd);
2992	if (pmd_trans_huge(*pmd)) {
2993		struct page *page = pmd_page(*pmd);
2994		if (PageMlocked(page))
2995			clear_page_mlock(page);
2996	} else if (!pmd_devmap(*pmd))
2997		goto out;
2998	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2999out:
3000	spin_unlock(ptl);
3001	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3002}
3003
3004void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3005		bool freeze, struct page *page)
3006{
3007	pgd_t *pgd;
3008	pud_t *pud;
3009	pmd_t *pmd;
3010
3011	pgd = pgd_offset(vma->vm_mm, address);
 
 
3012	if (!pgd_present(*pgd))
3013		return;
3014
3015	pud = pud_offset(pgd, address);
3016	if (!pud_present(*pud))
3017		return;
3018
3019	pmd = pmd_offset(pud, address);
3020	if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
3021		return;
3022
3023	/*
3024	 * If caller asks to setup a migration entries, we need a page to check
3025	 * pmd against. Otherwise we can end up replacing wrong page.
3026	 */
3027	VM_BUG_ON(freeze && !page);
3028	if (page && page != pmd_page(*pmd))
3029		return;
3030
3031	/*
3032	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3033	 * materialize from under us.
3034	 */
3035	__split_huge_pmd(vma, pmd, address, freeze);
3036}
3037
3038void vma_adjust_trans_huge(struct vm_area_struct *vma,
3039			     unsigned long start,
3040			     unsigned long end,
3041			     long adjust_next)
3042{
3043	/*
3044	 * If the new start address isn't hpage aligned and it could
3045	 * previously contain an hugepage: check if we need to split
3046	 * an huge pmd.
3047	 */
3048	if (start & ~HPAGE_PMD_MASK &&
3049	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3050	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3051		split_huge_pmd_address(vma, start, false, NULL);
3052
3053	/*
3054	 * If the new end address isn't hpage aligned and it could
3055	 * previously contain an hugepage: check if we need to split
3056	 * an huge pmd.
3057	 */
3058	if (end & ~HPAGE_PMD_MASK &&
3059	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3060	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3061		split_huge_pmd_address(vma, end, false, NULL);
3062
3063	/*
3064	 * If we're also updating the vma->vm_next->vm_start, if the new
3065	 * vm_next->vm_start isn't page aligned and it could previously
3066	 * contain an hugepage: check if we need to split an huge pmd.
3067	 */
3068	if (adjust_next > 0) {
3069		struct vm_area_struct *next = vma->vm_next;
3070		unsigned long nstart = next->vm_start;
3071		nstart += adjust_next << PAGE_SHIFT;
3072		if (nstart & ~HPAGE_PMD_MASK &&
3073		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3074		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3075			split_huge_pmd_address(next, nstart, false, NULL);
3076	}
3077}
3078
3079static void freeze_page(struct page *page)
3080{
3081	enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3082		TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3083	int i, ret;
3084
3085	VM_BUG_ON_PAGE(!PageHead(page), page);
3086
3087	/* We only need TTU_SPLIT_HUGE_PMD once */
3088	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3089	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3090		/* Cut short if the page is unmapped */
3091		if (page_count(page) == 1)
3092			return;
3093
3094		ret = try_to_unmap(page + i, ttu_flags);
3095	}
3096	VM_BUG_ON(ret);
3097}
3098
3099static void unfreeze_page(struct page *page)
3100{
3101	int i;
3102
3103	for (i = 0; i < HPAGE_PMD_NR; i++)
3104		remove_migration_ptes(page + i, page + i, true);
3105}
3106
3107static void __split_huge_page_tail(struct page *head, int tail,
3108		struct lruvec *lruvec, struct list_head *list)
3109{
3110	struct page *page_tail = head + tail;
3111
3112	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3113	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3114
3115	/*
3116	 * tail_page->_count is zero and not changing from under us. But
3117	 * get_page_unless_zero() may be running from under us on the
3118	 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3119	 * would then run atomic_set() concurrently with
3120	 * get_page_unless_zero(), and atomic_set() is implemented in C not
3121	 * using locked ops. spin_unlock on x86 sometime uses locked ops
3122	 * because of PPro errata 66, 92, so unless somebody can guarantee
3123	 * atomic_set() here would be safe on all archs (and not only on x86),
3124	 * it's safer to use atomic_inc().
3125	 */
3126	page_ref_inc(page_tail);
3127
3128	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3129	page_tail->flags |= (head->flags &
3130			((1L << PG_referenced) |
3131			 (1L << PG_swapbacked) |
3132			 (1L << PG_mlocked) |
3133			 (1L << PG_uptodate) |
3134			 (1L << PG_active) |
3135			 (1L << PG_locked) |
3136			 (1L << PG_unevictable) |
3137			 (1L << PG_dirty)));
3138
3139	/*
3140	 * After clearing PageTail the gup refcount can be released.
3141	 * Page flags also must be visible before we make the page non-compound.
3142	 */
3143	smp_wmb();
3144
3145	clear_compound_head(page_tail);
3146
3147	if (page_is_young(head))
3148		set_page_young(page_tail);
3149	if (page_is_idle(head))
3150		set_page_idle(page_tail);
3151
3152	/* ->mapping in first tail page is compound_mapcount */
3153	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3154			page_tail);
3155	page_tail->mapping = head->mapping;
3156
3157	page_tail->index = head->index + tail;
3158	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3159	lru_add_page_tail(head, page_tail, lruvec, list);
3160}
3161
3162static void __split_huge_page(struct page *page, struct list_head *list)
3163{
3164	struct page *head = compound_head(page);
3165	struct zone *zone = page_zone(head);
3166	struct lruvec *lruvec;
3167	int i;
3168
3169	/* prevent PageLRU to go away from under us, and freeze lru stats */
3170	spin_lock_irq(&zone->lru_lock);
3171	lruvec = mem_cgroup_page_lruvec(head, zone);
3172
3173	/* complete memcg works before add pages to LRU */
3174	mem_cgroup_split_huge_fixup(head);
3175
3176	for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3177		__split_huge_page_tail(head, i, lruvec, list);
3178
3179	ClearPageCompound(head);
3180	spin_unlock_irq(&zone->lru_lock);
3181
3182	unfreeze_page(head);
3183
3184	for (i = 0; i < HPAGE_PMD_NR; i++) {
3185		struct page *subpage = head + i;
3186		if (subpage == page)
3187			continue;
3188		unlock_page(subpage);
3189
3190		/*
3191		 * Subpages may be freed if there wasn't any mapping
3192		 * like if add_to_swap() is running on a lru page that
3193		 * had its mapping zapped. And freeing these pages
3194		 * requires taking the lru_lock so we do the put_page
3195		 * of the tail pages after the split is complete.
3196		 */
3197		put_page(subpage);
3198	}
3199}
3200
3201int total_mapcount(struct page *page)
3202{
3203	int i, ret;
3204
3205	VM_BUG_ON_PAGE(PageTail(page), page);
3206
3207	if (likely(!PageCompound(page)))
3208		return atomic_read(&page->_mapcount) + 1;
3209
3210	ret = compound_mapcount(page);
3211	if (PageHuge(page))
3212		return ret;
3213	for (i = 0; i < HPAGE_PMD_NR; i++)
3214		ret += atomic_read(&page[i]._mapcount) + 1;
3215	if (PageDoubleMap(page))
3216		ret -= HPAGE_PMD_NR;
3217	return ret;
3218}
3219
3220/*
3221 * This calculates accurately how many mappings a transparent hugepage
3222 * has (unlike page_mapcount() which isn't fully accurate). This full
3223 * accuracy is primarily needed to know if copy-on-write faults can
3224 * reuse the page and change the mapping to read-write instead of
3225 * copying them. At the same time this returns the total_mapcount too.
3226 *
3227 * The function returns the highest mapcount any one of the subpages
3228 * has. If the return value is one, even if different processes are
3229 * mapping different subpages of the transparent hugepage, they can
3230 * all reuse it, because each process is reusing a different subpage.
3231 *
3232 * The total_mapcount is instead counting all virtual mappings of the
3233 * subpages. If the total_mapcount is equal to "one", it tells the
3234 * caller all mappings belong to the same "mm" and in turn the
3235 * anon_vma of the transparent hugepage can become the vma->anon_vma
3236 * local one as no other process may be mapping any of the subpages.
3237 *
3238 * It would be more accurate to replace page_mapcount() with
3239 * page_trans_huge_mapcount(), however we only use
3240 * page_trans_huge_mapcount() in the copy-on-write faults where we
3241 * need full accuracy to avoid breaking page pinning, because
3242 * page_trans_huge_mapcount() is slower than page_mapcount().
3243 */
3244int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3245{
3246	int i, ret, _total_mapcount, mapcount;
3247
3248	/* hugetlbfs shouldn't call it */
3249	VM_BUG_ON_PAGE(PageHuge(page), page);
3250
3251	if (likely(!PageTransCompound(page))) {
3252		mapcount = atomic_read(&page->_mapcount) + 1;
3253		if (total_mapcount)
3254			*total_mapcount = mapcount;
3255		return mapcount;
3256	}
3257
3258	page = compound_head(page);
3259
3260	_total_mapcount = ret = 0;
3261	for (i = 0; i < HPAGE_PMD_NR; i++) {
3262		mapcount = atomic_read(&page[i]._mapcount) + 1;
3263		ret = max(ret, mapcount);
3264		_total_mapcount += mapcount;
3265	}
3266	if (PageDoubleMap(page)) {
3267		ret -= 1;
3268		_total_mapcount -= HPAGE_PMD_NR;
3269	}
3270	mapcount = compound_mapcount(page);
3271	ret += mapcount;
3272	_total_mapcount += mapcount;
3273	if (total_mapcount)
3274		*total_mapcount = _total_mapcount;
3275	return ret;
3276}
3277
3278/*
3279 * This function splits huge page into normal pages. @page can point to any
3280 * subpage of huge page to split. Split doesn't change the position of @page.
3281 *
3282 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3283 * The huge page must be locked.
3284 *
3285 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3286 *
3287 * Both head page and tail pages will inherit mapping, flags, and so on from
3288 * the hugepage.
3289 *
3290 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3291 * they are not mapped.
3292 *
3293 * Returns 0 if the hugepage is split successfully.
3294 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3295 * us.
3296 */
3297int split_huge_page_to_list(struct page *page, struct list_head *list)
3298{
3299	struct page *head = compound_head(page);
3300	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3301	struct anon_vma *anon_vma;
3302	int count, mapcount, ret;
3303	bool mlocked;
3304	unsigned long flags;
3305
3306	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3307	VM_BUG_ON_PAGE(!PageAnon(page), page);
3308	VM_BUG_ON_PAGE(!PageLocked(page), page);
3309	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3310	VM_BUG_ON_PAGE(!PageCompound(page), page);
3311
3312	/*
3313	 * The caller does not necessarily hold an mmap_sem that would prevent
3314	 * the anon_vma disappearing so we first we take a reference to it
3315	 * and then lock the anon_vma for write. This is similar to
3316	 * page_lock_anon_vma_read except the write lock is taken to serialise
3317	 * against parallel split or collapse operations.
3318	 */
3319	anon_vma = page_get_anon_vma(head);
3320	if (!anon_vma) {
3321		ret = -EBUSY;
3322		goto out;
3323	}
3324	anon_vma_lock_write(anon_vma);
3325
3326	/*
3327	 * Racy check if we can split the page, before freeze_page() will
3328	 * split PMDs
3329	 */
3330	if (total_mapcount(head) != page_count(head) - 1) {
3331		ret = -EBUSY;
3332		goto out_unlock;
3333	}
3334
3335	mlocked = PageMlocked(page);
3336	freeze_page(head);
3337	VM_BUG_ON_PAGE(compound_mapcount(head), head);
3338
3339	/* Make sure the page is not on per-CPU pagevec as it takes pin */
3340	if (mlocked)
3341		lru_add_drain();
3342
3343	/* Prevent deferred_split_scan() touching ->_count */
3344	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3345	count = page_count(head);
3346	mapcount = total_mapcount(head);
3347	if (!mapcount && count == 1) {
3348		if (!list_empty(page_deferred_list(head))) {
3349			pgdata->split_queue_len--;
3350			list_del(page_deferred_list(head));
3351		}
3352		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3353		__split_huge_page(page, list);
3354		ret = 0;
3355	} else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3356		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3357		pr_alert("total_mapcount: %u, page_count(): %u\n",
3358				mapcount, count);
3359		if (PageTail(page))
3360			dump_page(head, NULL);
3361		dump_page(page, "total_mapcount(head) > 0");
3362		BUG();
3363	} else {
3364		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3365		unfreeze_page(head);
3366		ret = -EBUSY;
3367	}
3368
3369out_unlock:
3370	anon_vma_unlock_write(anon_vma);
3371	put_anon_vma(anon_vma);
3372out:
3373	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3374	return ret;
3375}
3376
3377void free_transhuge_page(struct page *page)
3378{
3379	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3380	unsigned long flags;
3381
3382	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3383	if (!list_empty(page_deferred_list(page))) {
3384		pgdata->split_queue_len--;
3385		list_del(page_deferred_list(page));
3386	}
3387	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3388	free_compound_page(page);
3389}
3390
3391void deferred_split_huge_page(struct page *page)
3392{
3393	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3394	unsigned long flags;
3395
3396	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3397
3398	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3399	if (list_empty(page_deferred_list(page))) {
3400		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3401		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3402		pgdata->split_queue_len++;
3403	}
3404	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3405}
3406
3407static unsigned long deferred_split_count(struct shrinker *shrink,
3408		struct shrink_control *sc)
3409{
3410	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3411	return ACCESS_ONCE(pgdata->split_queue_len);
3412}
3413
3414static unsigned long deferred_split_scan(struct shrinker *shrink,
3415		struct shrink_control *sc)
3416{
3417	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3418	unsigned long flags;
3419	LIST_HEAD(list), *pos, *next;
3420	struct page *page;
3421	int split = 0;
3422
3423	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3424	/* Take pin on all head pages to avoid freeing them under us */
3425	list_for_each_safe(pos, next, &pgdata->split_queue) {
3426		page = list_entry((void *)pos, struct page, mapping);
3427		page = compound_head(page);
3428		if (get_page_unless_zero(page)) {
3429			list_move(page_deferred_list(page), &list);
3430		} else {
3431			/* We lost race with put_compound_page() */
3432			list_del_init(page_deferred_list(page));
3433			pgdata->split_queue_len--;
3434		}
3435		if (!--sc->nr_to_scan)
3436			break;
3437	}
3438	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3439
3440	list_for_each_safe(pos, next, &list) {
3441		page = list_entry((void *)pos, struct page, mapping);
3442		lock_page(page);
3443		/* split_huge_page() removes page from list on success */
3444		if (!split_huge_page(page))
3445			split++;
3446		unlock_page(page);
3447		put_page(page);
3448	}
3449
3450	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3451	list_splice_tail(&list, &pgdata->split_queue);
3452	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3453
3454	/*
3455	 * Stop shrinker if we didn't split any page, but the queue is empty.
3456	 * This can happen if pages were freed under us.
3457	 */
3458	if (!split && list_empty(&pgdata->split_queue))
3459		return SHRINK_STOP;
3460	return split;
3461}
3462
3463static struct shrinker deferred_split_shrinker = {
3464	.count_objects = deferred_split_count,
3465	.scan_objects = deferred_split_scan,
3466	.seeks = DEFAULT_SEEKS,
3467	.flags = SHRINKER_NUMA_AWARE,
3468};
3469
3470#ifdef CONFIG_DEBUG_FS
3471static int split_huge_pages_set(void *data, u64 val)
3472{
3473	struct zone *zone;
3474	struct page *page;
3475	unsigned long pfn, max_zone_pfn;
3476	unsigned long total = 0, split = 0;
3477
3478	if (val != 1)
3479		return -EINVAL;
3480
3481	for_each_populated_zone(zone) {
3482		max_zone_pfn = zone_end_pfn(zone);
3483		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3484			if (!pfn_valid(pfn))
3485				continue;
3486
3487			page = pfn_to_page(pfn);
3488			if (!get_page_unless_zero(page))
3489				continue;
3490
3491			if (zone != page_zone(page))
3492				goto next;
3493
3494			if (!PageHead(page) || !PageAnon(page) ||
3495					PageHuge(page))
3496				goto next;
3497
3498			total++;
3499			lock_page(page);
3500			if (!split_huge_page(page))
3501				split++;
3502			unlock_page(page);
3503next:
3504			put_page(page);
3505		}
3506	}
3507
3508	pr_info("%lu of %lu THP split\n", split, total);
3509
3510	return 0;
3511}
3512DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3513		"%llu\n");
3514
3515static int __init split_huge_pages_debugfs(void)
3516{
3517	void *ret;
3518
3519	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3520			&split_huge_pages_fops);
3521	if (!ret)
3522		pr_warn("Failed to create split_huge_pages in debugfs");
3523	return 0;
3524}
3525late_initcall(split_huge_pages_debugfs);
3526#endif