Loading...
1/*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/init.h>
21#include <linux/notifier.h>
22#include <linux/cpufreq.h>
23#include <linux/delay.h>
24#include <linux/interrupt.h>
25#include <linux/spinlock.h>
26#include <linux/device.h>
27#include <linux/slab.h>
28#include <linux/cpu.h>
29#include <linux/completion.h>
30#include <linux/mutex.h>
31#include <linux/syscore_ops.h>
32
33#include <trace/events/power.h>
34
35/**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
39 */
40static struct cpufreq_driver *cpufreq_driver;
41static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42#ifdef CONFIG_HOTPLUG_CPU
43/* This one keeps track of the previously set governor of a removed CPU */
44static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
45#endif
46static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48/*
49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50 * all cpufreq/hotplug/workqueue/etc related lock issues.
51 *
52 * The rules for this semaphore:
53 * - Any routine that wants to read from the policy structure will
54 * do a down_read on this semaphore.
55 * - Any routine that will write to the policy structure and/or may take away
56 * the policy altogether (eg. CPU hotplug), will hold this lock in write
57 * mode before doing so.
58 *
59 * Additional rules:
60 * - All holders of the lock should check to make sure that the CPU they
61 * are concerned with are online after they get the lock.
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 * - Lock should not be held across
65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP);
66 */
67static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
68static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
69
70#define lock_policy_rwsem(mode, cpu) \
71static int lock_policy_rwsem_##mode \
72(int cpu) \
73{ \
74 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \
75 BUG_ON(policy_cpu == -1); \
76 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77 if (unlikely(!cpu_online(cpu))) { \
78 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
79 return -1; \
80 } \
81 \
82 return 0; \
83}
84
85lock_policy_rwsem(read, cpu);
86
87lock_policy_rwsem(write, cpu);
88
89static void unlock_policy_rwsem_read(int cpu)
90{
91 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
92 BUG_ON(policy_cpu == -1);
93 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94}
95
96static void unlock_policy_rwsem_write(int cpu)
97{
98 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
99 BUG_ON(policy_cpu == -1);
100 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
101}
102
103
104/* internal prototypes */
105static int __cpufreq_governor(struct cpufreq_policy *policy,
106 unsigned int event);
107static unsigned int __cpufreq_get(unsigned int cpu);
108static void handle_update(struct work_struct *work);
109
110/**
111 * Two notifier lists: the "policy" list is involved in the
112 * validation process for a new CPU frequency policy; the
113 * "transition" list for kernel code that needs to handle
114 * changes to devices when the CPU clock speed changes.
115 * The mutex locks both lists.
116 */
117static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
118static struct srcu_notifier_head cpufreq_transition_notifier_list;
119
120static bool init_cpufreq_transition_notifier_list_called;
121static int __init init_cpufreq_transition_notifier_list(void)
122{
123 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
124 init_cpufreq_transition_notifier_list_called = true;
125 return 0;
126}
127pure_initcall(init_cpufreq_transition_notifier_list);
128
129static LIST_HEAD(cpufreq_governor_list);
130static DEFINE_MUTEX(cpufreq_governor_mutex);
131
132struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
133{
134 struct cpufreq_policy *data;
135 unsigned long flags;
136
137 if (cpu >= nr_cpu_ids)
138 goto err_out;
139
140 /* get the cpufreq driver */
141 spin_lock_irqsave(&cpufreq_driver_lock, flags);
142
143 if (!cpufreq_driver)
144 goto err_out_unlock;
145
146 if (!try_module_get(cpufreq_driver->owner))
147 goto err_out_unlock;
148
149
150 /* get the CPU */
151 data = per_cpu(cpufreq_cpu_data, cpu);
152
153 if (!data)
154 goto err_out_put_module;
155
156 if (!kobject_get(&data->kobj))
157 goto err_out_put_module;
158
159 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
160 return data;
161
162err_out_put_module:
163 module_put(cpufreq_driver->owner);
164err_out_unlock:
165 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
166err_out:
167 return NULL;
168}
169EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
170
171
172void cpufreq_cpu_put(struct cpufreq_policy *data)
173{
174 kobject_put(&data->kobj);
175 module_put(cpufreq_driver->owner);
176}
177EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
178
179
180/*********************************************************************
181 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
182 *********************************************************************/
183
184/**
185 * adjust_jiffies - adjust the system "loops_per_jiffy"
186 *
187 * This function alters the system "loops_per_jiffy" for the clock
188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
189 * systems as each CPU might be scaled differently. So, use the arch
190 * per-CPU loops_per_jiffy value wherever possible.
191 */
192#ifndef CONFIG_SMP
193static unsigned long l_p_j_ref;
194static unsigned int l_p_j_ref_freq;
195
196static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
197{
198 if (ci->flags & CPUFREQ_CONST_LOOPS)
199 return;
200
201 if (!l_p_j_ref_freq) {
202 l_p_j_ref = loops_per_jiffy;
203 l_p_j_ref_freq = ci->old;
204 pr_debug("saving %lu as reference value for loops_per_jiffy; "
205 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
206 }
207 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
208 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
209 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
210 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
211 ci->new);
212 pr_debug("scaling loops_per_jiffy to %lu "
213 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
214 }
215}
216#else
217static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
218{
219 return;
220}
221#endif
222
223
224/**
225 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
226 * on frequency transition.
227 *
228 * This function calls the transition notifiers and the "adjust_jiffies"
229 * function. It is called twice on all CPU frequency changes that have
230 * external effects.
231 */
232void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
233{
234 struct cpufreq_policy *policy;
235
236 BUG_ON(irqs_disabled());
237
238 freqs->flags = cpufreq_driver->flags;
239 pr_debug("notification %u of frequency transition to %u kHz\n",
240 state, freqs->new);
241
242 policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
243 switch (state) {
244
245 case CPUFREQ_PRECHANGE:
246 /* detect if the driver reported a value as "old frequency"
247 * which is not equal to what the cpufreq core thinks is
248 * "old frequency".
249 */
250 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
251 if ((policy) && (policy->cpu == freqs->cpu) &&
252 (policy->cur) && (policy->cur != freqs->old)) {
253 pr_debug("Warning: CPU frequency is"
254 " %u, cpufreq assumed %u kHz.\n",
255 freqs->old, policy->cur);
256 freqs->old = policy->cur;
257 }
258 }
259 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
260 CPUFREQ_PRECHANGE, freqs);
261 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
262 break;
263
264 case CPUFREQ_POSTCHANGE:
265 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
266 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
267 (unsigned long)freqs->cpu);
268 trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
269 trace_cpu_frequency(freqs->new, freqs->cpu);
270 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
271 CPUFREQ_POSTCHANGE, freqs);
272 if (likely(policy) && likely(policy->cpu == freqs->cpu))
273 policy->cur = freqs->new;
274 break;
275 }
276}
277EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
278
279
280
281/*********************************************************************
282 * SYSFS INTERFACE *
283 *********************************************************************/
284
285static struct cpufreq_governor *__find_governor(const char *str_governor)
286{
287 struct cpufreq_governor *t;
288
289 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
290 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
291 return t;
292
293 return NULL;
294}
295
296/**
297 * cpufreq_parse_governor - parse a governor string
298 */
299static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
300 struct cpufreq_governor **governor)
301{
302 int err = -EINVAL;
303
304 if (!cpufreq_driver)
305 goto out;
306
307 if (cpufreq_driver->setpolicy) {
308 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
309 *policy = CPUFREQ_POLICY_PERFORMANCE;
310 err = 0;
311 } else if (!strnicmp(str_governor, "powersave",
312 CPUFREQ_NAME_LEN)) {
313 *policy = CPUFREQ_POLICY_POWERSAVE;
314 err = 0;
315 }
316 } else if (cpufreq_driver->target) {
317 struct cpufreq_governor *t;
318
319 mutex_lock(&cpufreq_governor_mutex);
320
321 t = __find_governor(str_governor);
322
323 if (t == NULL) {
324 int ret;
325
326 mutex_unlock(&cpufreq_governor_mutex);
327 ret = request_module("cpufreq_%s", str_governor);
328 mutex_lock(&cpufreq_governor_mutex);
329
330 if (ret == 0)
331 t = __find_governor(str_governor);
332 }
333
334 if (t != NULL) {
335 *governor = t;
336 err = 0;
337 }
338
339 mutex_unlock(&cpufreq_governor_mutex);
340 }
341out:
342 return err;
343}
344
345
346/**
347 * cpufreq_per_cpu_attr_read() / show_##file_name() -
348 * print out cpufreq information
349 *
350 * Write out information from cpufreq_driver->policy[cpu]; object must be
351 * "unsigned int".
352 */
353
354#define show_one(file_name, object) \
355static ssize_t show_##file_name \
356(struct cpufreq_policy *policy, char *buf) \
357{ \
358 return sprintf(buf, "%u\n", policy->object); \
359}
360
361show_one(cpuinfo_min_freq, cpuinfo.min_freq);
362show_one(cpuinfo_max_freq, cpuinfo.max_freq);
363show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
364show_one(scaling_min_freq, min);
365show_one(scaling_max_freq, max);
366show_one(scaling_cur_freq, cur);
367
368static int __cpufreq_set_policy(struct cpufreq_policy *data,
369 struct cpufreq_policy *policy);
370
371/**
372 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
373 */
374#define store_one(file_name, object) \
375static ssize_t store_##file_name \
376(struct cpufreq_policy *policy, const char *buf, size_t count) \
377{ \
378 unsigned int ret = -EINVAL; \
379 struct cpufreq_policy new_policy; \
380 \
381 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
382 if (ret) \
383 return -EINVAL; \
384 \
385 ret = sscanf(buf, "%u", &new_policy.object); \
386 if (ret != 1) \
387 return -EINVAL; \
388 \
389 ret = __cpufreq_set_policy(policy, &new_policy); \
390 policy->user_policy.object = policy->object; \
391 \
392 return ret ? ret : count; \
393}
394
395store_one(scaling_min_freq, min);
396store_one(scaling_max_freq, max);
397
398/**
399 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
400 */
401static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
402 char *buf)
403{
404 unsigned int cur_freq = __cpufreq_get(policy->cpu);
405 if (!cur_freq)
406 return sprintf(buf, "<unknown>");
407 return sprintf(buf, "%u\n", cur_freq);
408}
409
410
411/**
412 * show_scaling_governor - show the current policy for the specified CPU
413 */
414static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
415{
416 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
417 return sprintf(buf, "powersave\n");
418 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
419 return sprintf(buf, "performance\n");
420 else if (policy->governor)
421 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
422 policy->governor->name);
423 return -EINVAL;
424}
425
426
427/**
428 * store_scaling_governor - store policy for the specified CPU
429 */
430static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
431 const char *buf, size_t count)
432{
433 unsigned int ret = -EINVAL;
434 char str_governor[16];
435 struct cpufreq_policy new_policy;
436
437 ret = cpufreq_get_policy(&new_policy, policy->cpu);
438 if (ret)
439 return ret;
440
441 ret = sscanf(buf, "%15s", str_governor);
442 if (ret != 1)
443 return -EINVAL;
444
445 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
446 &new_policy.governor))
447 return -EINVAL;
448
449 /* Do not use cpufreq_set_policy here or the user_policy.max
450 will be wrongly overridden */
451 ret = __cpufreq_set_policy(policy, &new_policy);
452
453 policy->user_policy.policy = policy->policy;
454 policy->user_policy.governor = policy->governor;
455
456 if (ret)
457 return ret;
458 else
459 return count;
460}
461
462/**
463 * show_scaling_driver - show the cpufreq driver currently loaded
464 */
465static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
466{
467 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
468}
469
470/**
471 * show_scaling_available_governors - show the available CPUfreq governors
472 */
473static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
474 char *buf)
475{
476 ssize_t i = 0;
477 struct cpufreq_governor *t;
478
479 if (!cpufreq_driver->target) {
480 i += sprintf(buf, "performance powersave");
481 goto out;
482 }
483
484 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
485 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
486 - (CPUFREQ_NAME_LEN + 2)))
487 goto out;
488 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
489 }
490out:
491 i += sprintf(&buf[i], "\n");
492 return i;
493}
494
495static ssize_t show_cpus(const struct cpumask *mask, char *buf)
496{
497 ssize_t i = 0;
498 unsigned int cpu;
499
500 for_each_cpu(cpu, mask) {
501 if (i)
502 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
503 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
504 if (i >= (PAGE_SIZE - 5))
505 break;
506 }
507 i += sprintf(&buf[i], "\n");
508 return i;
509}
510
511/**
512 * show_related_cpus - show the CPUs affected by each transition even if
513 * hw coordination is in use
514 */
515static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
516{
517 if (cpumask_empty(policy->related_cpus))
518 return show_cpus(policy->cpus, buf);
519 return show_cpus(policy->related_cpus, buf);
520}
521
522/**
523 * show_affected_cpus - show the CPUs affected by each transition
524 */
525static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
526{
527 return show_cpus(policy->cpus, buf);
528}
529
530static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
531 const char *buf, size_t count)
532{
533 unsigned int freq = 0;
534 unsigned int ret;
535
536 if (!policy->governor || !policy->governor->store_setspeed)
537 return -EINVAL;
538
539 ret = sscanf(buf, "%u", &freq);
540 if (ret != 1)
541 return -EINVAL;
542
543 policy->governor->store_setspeed(policy, freq);
544
545 return count;
546}
547
548static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
549{
550 if (!policy->governor || !policy->governor->show_setspeed)
551 return sprintf(buf, "<unsupported>\n");
552
553 return policy->governor->show_setspeed(policy, buf);
554}
555
556/**
557 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
558 */
559static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
560{
561 unsigned int limit;
562 int ret;
563 if (cpufreq_driver->bios_limit) {
564 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
565 if (!ret)
566 return sprintf(buf, "%u\n", limit);
567 }
568 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
569}
570
571cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
572cpufreq_freq_attr_ro(cpuinfo_min_freq);
573cpufreq_freq_attr_ro(cpuinfo_max_freq);
574cpufreq_freq_attr_ro(cpuinfo_transition_latency);
575cpufreq_freq_attr_ro(scaling_available_governors);
576cpufreq_freq_attr_ro(scaling_driver);
577cpufreq_freq_attr_ro(scaling_cur_freq);
578cpufreq_freq_attr_ro(bios_limit);
579cpufreq_freq_attr_ro(related_cpus);
580cpufreq_freq_attr_ro(affected_cpus);
581cpufreq_freq_attr_rw(scaling_min_freq);
582cpufreq_freq_attr_rw(scaling_max_freq);
583cpufreq_freq_attr_rw(scaling_governor);
584cpufreq_freq_attr_rw(scaling_setspeed);
585
586static struct attribute *default_attrs[] = {
587 &cpuinfo_min_freq.attr,
588 &cpuinfo_max_freq.attr,
589 &cpuinfo_transition_latency.attr,
590 &scaling_min_freq.attr,
591 &scaling_max_freq.attr,
592 &affected_cpus.attr,
593 &related_cpus.attr,
594 &scaling_governor.attr,
595 &scaling_driver.attr,
596 &scaling_available_governors.attr,
597 &scaling_setspeed.attr,
598 NULL
599};
600
601struct kobject *cpufreq_global_kobject;
602EXPORT_SYMBOL(cpufreq_global_kobject);
603
604#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
605#define to_attr(a) container_of(a, struct freq_attr, attr)
606
607static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
608{
609 struct cpufreq_policy *policy = to_policy(kobj);
610 struct freq_attr *fattr = to_attr(attr);
611 ssize_t ret = -EINVAL;
612 policy = cpufreq_cpu_get(policy->cpu);
613 if (!policy)
614 goto no_policy;
615
616 if (lock_policy_rwsem_read(policy->cpu) < 0)
617 goto fail;
618
619 if (fattr->show)
620 ret = fattr->show(policy, buf);
621 else
622 ret = -EIO;
623
624 unlock_policy_rwsem_read(policy->cpu);
625fail:
626 cpufreq_cpu_put(policy);
627no_policy:
628 return ret;
629}
630
631static ssize_t store(struct kobject *kobj, struct attribute *attr,
632 const char *buf, size_t count)
633{
634 struct cpufreq_policy *policy = to_policy(kobj);
635 struct freq_attr *fattr = to_attr(attr);
636 ssize_t ret = -EINVAL;
637 policy = cpufreq_cpu_get(policy->cpu);
638 if (!policy)
639 goto no_policy;
640
641 if (lock_policy_rwsem_write(policy->cpu) < 0)
642 goto fail;
643
644 if (fattr->store)
645 ret = fattr->store(policy, buf, count);
646 else
647 ret = -EIO;
648
649 unlock_policy_rwsem_write(policy->cpu);
650fail:
651 cpufreq_cpu_put(policy);
652no_policy:
653 return ret;
654}
655
656static void cpufreq_sysfs_release(struct kobject *kobj)
657{
658 struct cpufreq_policy *policy = to_policy(kobj);
659 pr_debug("last reference is dropped\n");
660 complete(&policy->kobj_unregister);
661}
662
663static const struct sysfs_ops sysfs_ops = {
664 .show = show,
665 .store = store,
666};
667
668static struct kobj_type ktype_cpufreq = {
669 .sysfs_ops = &sysfs_ops,
670 .default_attrs = default_attrs,
671 .release = cpufreq_sysfs_release,
672};
673
674/*
675 * Returns:
676 * Negative: Failure
677 * 0: Success
678 * Positive: When we have a managed CPU and the sysfs got symlinked
679 */
680static int cpufreq_add_dev_policy(unsigned int cpu,
681 struct cpufreq_policy *policy,
682 struct sys_device *sys_dev)
683{
684 int ret = 0;
685#ifdef CONFIG_SMP
686 unsigned long flags;
687 unsigned int j;
688#ifdef CONFIG_HOTPLUG_CPU
689 struct cpufreq_governor *gov;
690
691 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
692 if (gov) {
693 policy->governor = gov;
694 pr_debug("Restoring governor %s for cpu %d\n",
695 policy->governor->name, cpu);
696 }
697#endif
698
699 for_each_cpu(j, policy->cpus) {
700 struct cpufreq_policy *managed_policy;
701
702 if (cpu == j)
703 continue;
704
705 /* Check for existing affected CPUs.
706 * They may not be aware of it due to CPU Hotplug.
707 * cpufreq_cpu_put is called when the device is removed
708 * in __cpufreq_remove_dev()
709 */
710 managed_policy = cpufreq_cpu_get(j);
711 if (unlikely(managed_policy)) {
712
713 /* Set proper policy_cpu */
714 unlock_policy_rwsem_write(cpu);
715 per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
716
717 if (lock_policy_rwsem_write(cpu) < 0) {
718 /* Should not go through policy unlock path */
719 if (cpufreq_driver->exit)
720 cpufreq_driver->exit(policy);
721 cpufreq_cpu_put(managed_policy);
722 return -EBUSY;
723 }
724
725 spin_lock_irqsave(&cpufreq_driver_lock, flags);
726 cpumask_copy(managed_policy->cpus, policy->cpus);
727 per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
728 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
729
730 pr_debug("CPU already managed, adding link\n");
731 ret = sysfs_create_link(&sys_dev->kobj,
732 &managed_policy->kobj,
733 "cpufreq");
734 if (ret)
735 cpufreq_cpu_put(managed_policy);
736 /*
737 * Success. We only needed to be added to the mask.
738 * Call driver->exit() because only the cpu parent of
739 * the kobj needed to call init().
740 */
741 if (cpufreq_driver->exit)
742 cpufreq_driver->exit(policy);
743
744 if (!ret)
745 return 1;
746 else
747 return ret;
748 }
749 }
750#endif
751 return ret;
752}
753
754
755/* symlink affected CPUs */
756static int cpufreq_add_dev_symlink(unsigned int cpu,
757 struct cpufreq_policy *policy)
758{
759 unsigned int j;
760 int ret = 0;
761
762 for_each_cpu(j, policy->cpus) {
763 struct cpufreq_policy *managed_policy;
764 struct sys_device *cpu_sys_dev;
765
766 if (j == cpu)
767 continue;
768 if (!cpu_online(j))
769 continue;
770
771 pr_debug("CPU %u already managed, adding link\n", j);
772 managed_policy = cpufreq_cpu_get(cpu);
773 cpu_sys_dev = get_cpu_sysdev(j);
774 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
775 "cpufreq");
776 if (ret) {
777 cpufreq_cpu_put(managed_policy);
778 return ret;
779 }
780 }
781 return ret;
782}
783
784static int cpufreq_add_dev_interface(unsigned int cpu,
785 struct cpufreq_policy *policy,
786 struct sys_device *sys_dev)
787{
788 struct cpufreq_policy new_policy;
789 struct freq_attr **drv_attr;
790 unsigned long flags;
791 int ret = 0;
792 unsigned int j;
793
794 /* prepare interface data */
795 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
796 &sys_dev->kobj, "cpufreq");
797 if (ret)
798 return ret;
799
800 /* set up files for this cpu device */
801 drv_attr = cpufreq_driver->attr;
802 while ((drv_attr) && (*drv_attr)) {
803 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
804 if (ret)
805 goto err_out_kobj_put;
806 drv_attr++;
807 }
808 if (cpufreq_driver->get) {
809 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
810 if (ret)
811 goto err_out_kobj_put;
812 }
813 if (cpufreq_driver->target) {
814 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
815 if (ret)
816 goto err_out_kobj_put;
817 }
818 if (cpufreq_driver->bios_limit) {
819 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
820 if (ret)
821 goto err_out_kobj_put;
822 }
823
824 spin_lock_irqsave(&cpufreq_driver_lock, flags);
825 for_each_cpu(j, policy->cpus) {
826 if (!cpu_online(j))
827 continue;
828 per_cpu(cpufreq_cpu_data, j) = policy;
829 per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
830 }
831 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
832
833 ret = cpufreq_add_dev_symlink(cpu, policy);
834 if (ret)
835 goto err_out_kobj_put;
836
837 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
838 /* assure that the starting sequence is run in __cpufreq_set_policy */
839 policy->governor = NULL;
840
841 /* set default policy */
842 ret = __cpufreq_set_policy(policy, &new_policy);
843 policy->user_policy.policy = policy->policy;
844 policy->user_policy.governor = policy->governor;
845
846 if (ret) {
847 pr_debug("setting policy failed\n");
848 if (cpufreq_driver->exit)
849 cpufreq_driver->exit(policy);
850 }
851 return ret;
852
853err_out_kobj_put:
854 kobject_put(&policy->kobj);
855 wait_for_completion(&policy->kobj_unregister);
856 return ret;
857}
858
859
860/**
861 * cpufreq_add_dev - add a CPU device
862 *
863 * Adds the cpufreq interface for a CPU device.
864 *
865 * The Oracle says: try running cpufreq registration/unregistration concurrently
866 * with with cpu hotplugging and all hell will break loose. Tried to clean this
867 * mess up, but more thorough testing is needed. - Mathieu
868 */
869static int cpufreq_add_dev(struct sys_device *sys_dev)
870{
871 unsigned int cpu = sys_dev->id;
872 int ret = 0, found = 0;
873 struct cpufreq_policy *policy;
874 unsigned long flags;
875 unsigned int j;
876#ifdef CONFIG_HOTPLUG_CPU
877 int sibling;
878#endif
879
880 if (cpu_is_offline(cpu))
881 return 0;
882
883 pr_debug("adding CPU %u\n", cpu);
884
885#ifdef CONFIG_SMP
886 /* check whether a different CPU already registered this
887 * CPU because it is in the same boat. */
888 policy = cpufreq_cpu_get(cpu);
889 if (unlikely(policy)) {
890 cpufreq_cpu_put(policy);
891 return 0;
892 }
893#endif
894
895 if (!try_module_get(cpufreq_driver->owner)) {
896 ret = -EINVAL;
897 goto module_out;
898 }
899
900 ret = -ENOMEM;
901 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
902 if (!policy)
903 goto nomem_out;
904
905 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
906 goto err_free_policy;
907
908 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
909 goto err_free_cpumask;
910
911 policy->cpu = cpu;
912 cpumask_copy(policy->cpus, cpumask_of(cpu));
913
914 /* Initially set CPU itself as the policy_cpu */
915 per_cpu(cpufreq_policy_cpu, cpu) = cpu;
916 ret = (lock_policy_rwsem_write(cpu) < 0);
917 WARN_ON(ret);
918
919 init_completion(&policy->kobj_unregister);
920 INIT_WORK(&policy->update, handle_update);
921
922 /* Set governor before ->init, so that driver could check it */
923#ifdef CONFIG_HOTPLUG_CPU
924 for_each_online_cpu(sibling) {
925 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
926 if (cp && cp->governor &&
927 (cpumask_test_cpu(cpu, cp->related_cpus))) {
928 policy->governor = cp->governor;
929 found = 1;
930 break;
931 }
932 }
933#endif
934 if (!found)
935 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
936 /* call driver. From then on the cpufreq must be able
937 * to accept all calls to ->verify and ->setpolicy for this CPU
938 */
939 ret = cpufreq_driver->init(policy);
940 if (ret) {
941 pr_debug("initialization failed\n");
942 goto err_unlock_policy;
943 }
944 policy->user_policy.min = policy->min;
945 policy->user_policy.max = policy->max;
946
947 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
948 CPUFREQ_START, policy);
949
950 ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
951 if (ret) {
952 if (ret > 0)
953 /* This is a managed cpu, symlink created,
954 exit with 0 */
955 ret = 0;
956 goto err_unlock_policy;
957 }
958
959 ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
960 if (ret)
961 goto err_out_unregister;
962
963 unlock_policy_rwsem_write(cpu);
964
965 kobject_uevent(&policy->kobj, KOBJ_ADD);
966 module_put(cpufreq_driver->owner);
967 pr_debug("initialization complete\n");
968
969 return 0;
970
971
972err_out_unregister:
973 spin_lock_irqsave(&cpufreq_driver_lock, flags);
974 for_each_cpu(j, policy->cpus)
975 per_cpu(cpufreq_cpu_data, j) = NULL;
976 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
977
978 kobject_put(&policy->kobj);
979 wait_for_completion(&policy->kobj_unregister);
980
981err_unlock_policy:
982 unlock_policy_rwsem_write(cpu);
983 free_cpumask_var(policy->related_cpus);
984err_free_cpumask:
985 free_cpumask_var(policy->cpus);
986err_free_policy:
987 kfree(policy);
988nomem_out:
989 module_put(cpufreq_driver->owner);
990module_out:
991 return ret;
992}
993
994
995/**
996 * __cpufreq_remove_dev - remove a CPU device
997 *
998 * Removes the cpufreq interface for a CPU device.
999 * Caller should already have policy_rwsem in write mode for this CPU.
1000 * This routine frees the rwsem before returning.
1001 */
1002static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1003{
1004 unsigned int cpu = sys_dev->id;
1005 unsigned long flags;
1006 struct cpufreq_policy *data;
1007 struct kobject *kobj;
1008 struct completion *cmp;
1009#ifdef CONFIG_SMP
1010 struct sys_device *cpu_sys_dev;
1011 unsigned int j;
1012#endif
1013
1014 pr_debug("unregistering CPU %u\n", cpu);
1015
1016 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1017 data = per_cpu(cpufreq_cpu_data, cpu);
1018
1019 if (!data) {
1020 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1021 unlock_policy_rwsem_write(cpu);
1022 return -EINVAL;
1023 }
1024 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1025
1026
1027#ifdef CONFIG_SMP
1028 /* if this isn't the CPU which is the parent of the kobj, we
1029 * only need to unlink, put and exit
1030 */
1031 if (unlikely(cpu != data->cpu)) {
1032 pr_debug("removing link\n");
1033 cpumask_clear_cpu(cpu, data->cpus);
1034 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1035 kobj = &sys_dev->kobj;
1036 cpufreq_cpu_put(data);
1037 unlock_policy_rwsem_write(cpu);
1038 sysfs_remove_link(kobj, "cpufreq");
1039 return 0;
1040 }
1041#endif
1042
1043#ifdef CONFIG_SMP
1044
1045#ifdef CONFIG_HOTPLUG_CPU
1046 strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1047 CPUFREQ_NAME_LEN);
1048#endif
1049
1050 /* if we have other CPUs still registered, we need to unlink them,
1051 * or else wait_for_completion below will lock up. Clean the
1052 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1053 * the sysfs links afterwards.
1054 */
1055 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1056 for_each_cpu(j, data->cpus) {
1057 if (j == cpu)
1058 continue;
1059 per_cpu(cpufreq_cpu_data, j) = NULL;
1060 }
1061 }
1062
1063 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064
1065 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1066 for_each_cpu(j, data->cpus) {
1067 if (j == cpu)
1068 continue;
1069 pr_debug("removing link for cpu %u\n", j);
1070#ifdef CONFIG_HOTPLUG_CPU
1071 strncpy(per_cpu(cpufreq_cpu_governor, j),
1072 data->governor->name, CPUFREQ_NAME_LEN);
1073#endif
1074 cpu_sys_dev = get_cpu_sysdev(j);
1075 kobj = &cpu_sys_dev->kobj;
1076 unlock_policy_rwsem_write(cpu);
1077 sysfs_remove_link(kobj, "cpufreq");
1078 lock_policy_rwsem_write(cpu);
1079 cpufreq_cpu_put(data);
1080 }
1081 }
1082#else
1083 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084#endif
1085
1086 if (cpufreq_driver->target)
1087 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1088
1089 kobj = &data->kobj;
1090 cmp = &data->kobj_unregister;
1091 unlock_policy_rwsem_write(cpu);
1092 kobject_put(kobj);
1093
1094 /* we need to make sure that the underlying kobj is actually
1095 * not referenced anymore by anybody before we proceed with
1096 * unloading.
1097 */
1098 pr_debug("waiting for dropping of refcount\n");
1099 wait_for_completion(cmp);
1100 pr_debug("wait complete\n");
1101
1102 lock_policy_rwsem_write(cpu);
1103 if (cpufreq_driver->exit)
1104 cpufreq_driver->exit(data);
1105 unlock_policy_rwsem_write(cpu);
1106
1107#ifdef CONFIG_HOTPLUG_CPU
1108 /* when the CPU which is the parent of the kobj is hotplugged
1109 * offline, check for siblings, and create cpufreq sysfs interface
1110 * and symlinks
1111 */
1112 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1113 /* first sibling now owns the new sysfs dir */
1114 cpumask_clear_cpu(cpu, data->cpus);
1115 cpufreq_add_dev(get_cpu_sysdev(cpumask_first(data->cpus)));
1116
1117 /* finally remove our own symlink */
1118 lock_policy_rwsem_write(cpu);
1119 __cpufreq_remove_dev(sys_dev);
1120 }
1121#endif
1122
1123 free_cpumask_var(data->related_cpus);
1124 free_cpumask_var(data->cpus);
1125 kfree(data);
1126
1127 return 0;
1128}
1129
1130
1131static int cpufreq_remove_dev(struct sys_device *sys_dev)
1132{
1133 unsigned int cpu = sys_dev->id;
1134 int retval;
1135
1136 if (cpu_is_offline(cpu))
1137 return 0;
1138
1139 if (unlikely(lock_policy_rwsem_write(cpu)))
1140 BUG();
1141
1142 retval = __cpufreq_remove_dev(sys_dev);
1143 return retval;
1144}
1145
1146
1147static void handle_update(struct work_struct *work)
1148{
1149 struct cpufreq_policy *policy =
1150 container_of(work, struct cpufreq_policy, update);
1151 unsigned int cpu = policy->cpu;
1152 pr_debug("handle_update for cpu %u called\n", cpu);
1153 cpufreq_update_policy(cpu);
1154}
1155
1156/**
1157 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1158 * @cpu: cpu number
1159 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1160 * @new_freq: CPU frequency the CPU actually runs at
1161 *
1162 * We adjust to current frequency first, and need to clean up later.
1163 * So either call to cpufreq_update_policy() or schedule handle_update()).
1164 */
1165static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1166 unsigned int new_freq)
1167{
1168 struct cpufreq_freqs freqs;
1169
1170 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1171 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172
1173 freqs.cpu = cpu;
1174 freqs.old = old_freq;
1175 freqs.new = new_freq;
1176 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1177 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1178}
1179
1180
1181/**
1182 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1183 * @cpu: CPU number
1184 *
1185 * This is the last known freq, without actually getting it from the driver.
1186 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187 */
1188unsigned int cpufreq_quick_get(unsigned int cpu)
1189{
1190 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1191 unsigned int ret_freq = 0;
1192
1193 if (policy) {
1194 ret_freq = policy->cur;
1195 cpufreq_cpu_put(policy);
1196 }
1197
1198 return ret_freq;
1199}
1200EXPORT_SYMBOL(cpufreq_quick_get);
1201
1202/**
1203 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1204 * @cpu: CPU number
1205 *
1206 * Just return the max possible frequency for a given CPU.
1207 */
1208unsigned int cpufreq_quick_get_max(unsigned int cpu)
1209{
1210 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1211 unsigned int ret_freq = 0;
1212
1213 if (policy) {
1214 ret_freq = policy->max;
1215 cpufreq_cpu_put(policy);
1216 }
1217
1218 return ret_freq;
1219}
1220EXPORT_SYMBOL(cpufreq_quick_get_max);
1221
1222
1223static unsigned int __cpufreq_get(unsigned int cpu)
1224{
1225 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1226 unsigned int ret_freq = 0;
1227
1228 if (!cpufreq_driver->get)
1229 return ret_freq;
1230
1231 ret_freq = cpufreq_driver->get(cpu);
1232
1233 if (ret_freq && policy->cur &&
1234 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1235 /* verify no discrepancy between actual and
1236 saved value exists */
1237 if (unlikely(ret_freq != policy->cur)) {
1238 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1239 schedule_work(&policy->update);
1240 }
1241 }
1242
1243 return ret_freq;
1244}
1245
1246/**
1247 * cpufreq_get - get the current CPU frequency (in kHz)
1248 * @cpu: CPU number
1249 *
1250 * Get the CPU current (static) CPU frequency
1251 */
1252unsigned int cpufreq_get(unsigned int cpu)
1253{
1254 unsigned int ret_freq = 0;
1255 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1256
1257 if (!policy)
1258 goto out;
1259
1260 if (unlikely(lock_policy_rwsem_read(cpu)))
1261 goto out_policy;
1262
1263 ret_freq = __cpufreq_get(cpu);
1264
1265 unlock_policy_rwsem_read(cpu);
1266
1267out_policy:
1268 cpufreq_cpu_put(policy);
1269out:
1270 return ret_freq;
1271}
1272EXPORT_SYMBOL(cpufreq_get);
1273
1274static struct sysdev_driver cpufreq_sysdev_driver = {
1275 .add = cpufreq_add_dev,
1276 .remove = cpufreq_remove_dev,
1277};
1278
1279
1280/**
1281 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1282 *
1283 * This function is only executed for the boot processor. The other CPUs
1284 * have been put offline by means of CPU hotplug.
1285 */
1286static int cpufreq_bp_suspend(void)
1287{
1288 int ret = 0;
1289
1290 int cpu = smp_processor_id();
1291 struct cpufreq_policy *cpu_policy;
1292
1293 pr_debug("suspending cpu %u\n", cpu);
1294
1295 /* If there's no policy for the boot CPU, we have nothing to do. */
1296 cpu_policy = cpufreq_cpu_get(cpu);
1297 if (!cpu_policy)
1298 return 0;
1299
1300 if (cpufreq_driver->suspend) {
1301 ret = cpufreq_driver->suspend(cpu_policy);
1302 if (ret)
1303 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1304 "step on CPU %u\n", cpu_policy->cpu);
1305 }
1306
1307 cpufreq_cpu_put(cpu_policy);
1308 return ret;
1309}
1310
1311/**
1312 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1313 *
1314 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1315 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1316 * restored. It will verify that the current freq is in sync with
1317 * what we believe it to be. This is a bit later than when it
1318 * should be, but nonethteless it's better than calling
1319 * cpufreq_driver->get() here which might re-enable interrupts...
1320 *
1321 * This function is only executed for the boot CPU. The other CPUs have not
1322 * been turned on yet.
1323 */
1324static void cpufreq_bp_resume(void)
1325{
1326 int ret = 0;
1327
1328 int cpu = smp_processor_id();
1329 struct cpufreq_policy *cpu_policy;
1330
1331 pr_debug("resuming cpu %u\n", cpu);
1332
1333 /* If there's no policy for the boot CPU, we have nothing to do. */
1334 cpu_policy = cpufreq_cpu_get(cpu);
1335 if (!cpu_policy)
1336 return;
1337
1338 if (cpufreq_driver->resume) {
1339 ret = cpufreq_driver->resume(cpu_policy);
1340 if (ret) {
1341 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1342 "step on CPU %u\n", cpu_policy->cpu);
1343 goto fail;
1344 }
1345 }
1346
1347 schedule_work(&cpu_policy->update);
1348
1349fail:
1350 cpufreq_cpu_put(cpu_policy);
1351}
1352
1353static struct syscore_ops cpufreq_syscore_ops = {
1354 .suspend = cpufreq_bp_suspend,
1355 .resume = cpufreq_bp_resume,
1356};
1357
1358
1359/*********************************************************************
1360 * NOTIFIER LISTS INTERFACE *
1361 *********************************************************************/
1362
1363/**
1364 * cpufreq_register_notifier - register a driver with cpufreq
1365 * @nb: notifier function to register
1366 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1367 *
1368 * Add a driver to one of two lists: either a list of drivers that
1369 * are notified about clock rate changes (once before and once after
1370 * the transition), or a list of drivers that are notified about
1371 * changes in cpufreq policy.
1372 *
1373 * This function may sleep, and has the same return conditions as
1374 * blocking_notifier_chain_register.
1375 */
1376int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1377{
1378 int ret;
1379
1380 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1381
1382 switch (list) {
1383 case CPUFREQ_TRANSITION_NOTIFIER:
1384 ret = srcu_notifier_chain_register(
1385 &cpufreq_transition_notifier_list, nb);
1386 break;
1387 case CPUFREQ_POLICY_NOTIFIER:
1388 ret = blocking_notifier_chain_register(
1389 &cpufreq_policy_notifier_list, nb);
1390 break;
1391 default:
1392 ret = -EINVAL;
1393 }
1394
1395 return ret;
1396}
1397EXPORT_SYMBOL(cpufreq_register_notifier);
1398
1399
1400/**
1401 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1402 * @nb: notifier block to be unregistered
1403 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1404 *
1405 * Remove a driver from the CPU frequency notifier list.
1406 *
1407 * This function may sleep, and has the same return conditions as
1408 * blocking_notifier_chain_unregister.
1409 */
1410int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1411{
1412 int ret;
1413
1414 switch (list) {
1415 case CPUFREQ_TRANSITION_NOTIFIER:
1416 ret = srcu_notifier_chain_unregister(
1417 &cpufreq_transition_notifier_list, nb);
1418 break;
1419 case CPUFREQ_POLICY_NOTIFIER:
1420 ret = blocking_notifier_chain_unregister(
1421 &cpufreq_policy_notifier_list, nb);
1422 break;
1423 default:
1424 ret = -EINVAL;
1425 }
1426
1427 return ret;
1428}
1429EXPORT_SYMBOL(cpufreq_unregister_notifier);
1430
1431
1432/*********************************************************************
1433 * GOVERNORS *
1434 *********************************************************************/
1435
1436
1437int __cpufreq_driver_target(struct cpufreq_policy *policy,
1438 unsigned int target_freq,
1439 unsigned int relation)
1440{
1441 int retval = -EINVAL;
1442
1443 pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1444 target_freq, relation);
1445 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1446 retval = cpufreq_driver->target(policy, target_freq, relation);
1447
1448 return retval;
1449}
1450EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1451
1452int cpufreq_driver_target(struct cpufreq_policy *policy,
1453 unsigned int target_freq,
1454 unsigned int relation)
1455{
1456 int ret = -EINVAL;
1457
1458 policy = cpufreq_cpu_get(policy->cpu);
1459 if (!policy)
1460 goto no_policy;
1461
1462 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1463 goto fail;
1464
1465 ret = __cpufreq_driver_target(policy, target_freq, relation);
1466
1467 unlock_policy_rwsem_write(policy->cpu);
1468
1469fail:
1470 cpufreq_cpu_put(policy);
1471no_policy:
1472 return ret;
1473}
1474EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1475
1476int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1477{
1478 int ret = 0;
1479
1480 policy = cpufreq_cpu_get(policy->cpu);
1481 if (!policy)
1482 return -EINVAL;
1483
1484 if (cpu_online(cpu) && cpufreq_driver->getavg)
1485 ret = cpufreq_driver->getavg(policy, cpu);
1486
1487 cpufreq_cpu_put(policy);
1488 return ret;
1489}
1490EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1491
1492/*
1493 * when "event" is CPUFREQ_GOV_LIMITS
1494 */
1495
1496static int __cpufreq_governor(struct cpufreq_policy *policy,
1497 unsigned int event)
1498{
1499 int ret;
1500
1501 /* Only must be defined when default governor is known to have latency
1502 restrictions, like e.g. conservative or ondemand.
1503 That this is the case is already ensured in Kconfig
1504 */
1505#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1506 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1507#else
1508 struct cpufreq_governor *gov = NULL;
1509#endif
1510
1511 if (policy->governor->max_transition_latency &&
1512 policy->cpuinfo.transition_latency >
1513 policy->governor->max_transition_latency) {
1514 if (!gov)
1515 return -EINVAL;
1516 else {
1517 printk(KERN_WARNING "%s governor failed, too long"
1518 " transition latency of HW, fallback"
1519 " to %s governor\n",
1520 policy->governor->name,
1521 gov->name);
1522 policy->governor = gov;
1523 }
1524 }
1525
1526 if (!try_module_get(policy->governor->owner))
1527 return -EINVAL;
1528
1529 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1530 policy->cpu, event);
1531 ret = policy->governor->governor(policy, event);
1532
1533 /* we keep one module reference alive for
1534 each CPU governed by this CPU */
1535 if ((event != CPUFREQ_GOV_START) || ret)
1536 module_put(policy->governor->owner);
1537 if ((event == CPUFREQ_GOV_STOP) && !ret)
1538 module_put(policy->governor->owner);
1539
1540 return ret;
1541}
1542
1543
1544int cpufreq_register_governor(struct cpufreq_governor *governor)
1545{
1546 int err;
1547
1548 if (!governor)
1549 return -EINVAL;
1550
1551 mutex_lock(&cpufreq_governor_mutex);
1552
1553 err = -EBUSY;
1554 if (__find_governor(governor->name) == NULL) {
1555 err = 0;
1556 list_add(&governor->governor_list, &cpufreq_governor_list);
1557 }
1558
1559 mutex_unlock(&cpufreq_governor_mutex);
1560 return err;
1561}
1562EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1563
1564
1565void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1566{
1567#ifdef CONFIG_HOTPLUG_CPU
1568 int cpu;
1569#endif
1570
1571 if (!governor)
1572 return;
1573
1574#ifdef CONFIG_HOTPLUG_CPU
1575 for_each_present_cpu(cpu) {
1576 if (cpu_online(cpu))
1577 continue;
1578 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1579 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1580 }
1581#endif
1582
1583 mutex_lock(&cpufreq_governor_mutex);
1584 list_del(&governor->governor_list);
1585 mutex_unlock(&cpufreq_governor_mutex);
1586 return;
1587}
1588EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1589
1590
1591
1592/*********************************************************************
1593 * POLICY INTERFACE *
1594 *********************************************************************/
1595
1596/**
1597 * cpufreq_get_policy - get the current cpufreq_policy
1598 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1599 * is written
1600 *
1601 * Reads the current cpufreq policy.
1602 */
1603int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1604{
1605 struct cpufreq_policy *cpu_policy;
1606 if (!policy)
1607 return -EINVAL;
1608
1609 cpu_policy = cpufreq_cpu_get(cpu);
1610 if (!cpu_policy)
1611 return -EINVAL;
1612
1613 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1614
1615 cpufreq_cpu_put(cpu_policy);
1616 return 0;
1617}
1618EXPORT_SYMBOL(cpufreq_get_policy);
1619
1620
1621/*
1622 * data : current policy.
1623 * policy : policy to be set.
1624 */
1625static int __cpufreq_set_policy(struct cpufreq_policy *data,
1626 struct cpufreq_policy *policy)
1627{
1628 int ret = 0;
1629
1630 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1631 policy->min, policy->max);
1632
1633 memcpy(&policy->cpuinfo, &data->cpuinfo,
1634 sizeof(struct cpufreq_cpuinfo));
1635
1636 if (policy->min > data->max || policy->max < data->min) {
1637 ret = -EINVAL;
1638 goto error_out;
1639 }
1640
1641 /* verify the cpu speed can be set within this limit */
1642 ret = cpufreq_driver->verify(policy);
1643 if (ret)
1644 goto error_out;
1645
1646 /* adjust if necessary - all reasons */
1647 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1648 CPUFREQ_ADJUST, policy);
1649
1650 /* adjust if necessary - hardware incompatibility*/
1651 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1652 CPUFREQ_INCOMPATIBLE, policy);
1653
1654 /* verify the cpu speed can be set within this limit,
1655 which might be different to the first one */
1656 ret = cpufreq_driver->verify(policy);
1657 if (ret)
1658 goto error_out;
1659
1660 /* notification of the new policy */
1661 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1662 CPUFREQ_NOTIFY, policy);
1663
1664 data->min = policy->min;
1665 data->max = policy->max;
1666
1667 pr_debug("new min and max freqs are %u - %u kHz\n",
1668 data->min, data->max);
1669
1670 if (cpufreq_driver->setpolicy) {
1671 data->policy = policy->policy;
1672 pr_debug("setting range\n");
1673 ret = cpufreq_driver->setpolicy(policy);
1674 } else {
1675 if (policy->governor != data->governor) {
1676 /* save old, working values */
1677 struct cpufreq_governor *old_gov = data->governor;
1678
1679 pr_debug("governor switch\n");
1680
1681 /* end old governor */
1682 if (data->governor)
1683 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1684
1685 /* start new governor */
1686 data->governor = policy->governor;
1687 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1688 /* new governor failed, so re-start old one */
1689 pr_debug("starting governor %s failed\n",
1690 data->governor->name);
1691 if (old_gov) {
1692 data->governor = old_gov;
1693 __cpufreq_governor(data,
1694 CPUFREQ_GOV_START);
1695 }
1696 ret = -EINVAL;
1697 goto error_out;
1698 }
1699 /* might be a policy change, too, so fall through */
1700 }
1701 pr_debug("governor: change or update limits\n");
1702 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1703 }
1704
1705error_out:
1706 return ret;
1707}
1708
1709/**
1710 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1711 * @cpu: CPU which shall be re-evaluated
1712 *
1713 * Useful for policy notifiers which have different necessities
1714 * at different times.
1715 */
1716int cpufreq_update_policy(unsigned int cpu)
1717{
1718 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1719 struct cpufreq_policy policy;
1720 int ret;
1721
1722 if (!data) {
1723 ret = -ENODEV;
1724 goto no_policy;
1725 }
1726
1727 if (unlikely(lock_policy_rwsem_write(cpu))) {
1728 ret = -EINVAL;
1729 goto fail;
1730 }
1731
1732 pr_debug("updating policy for CPU %u\n", cpu);
1733 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1734 policy.min = data->user_policy.min;
1735 policy.max = data->user_policy.max;
1736 policy.policy = data->user_policy.policy;
1737 policy.governor = data->user_policy.governor;
1738
1739 /* BIOS might change freq behind our back
1740 -> ask driver for current freq and notify governors about a change */
1741 if (cpufreq_driver->get) {
1742 policy.cur = cpufreq_driver->get(cpu);
1743 if (!data->cur) {
1744 pr_debug("Driver did not initialize current freq");
1745 data->cur = policy.cur;
1746 } else {
1747 if (data->cur != policy.cur)
1748 cpufreq_out_of_sync(cpu, data->cur,
1749 policy.cur);
1750 }
1751 }
1752
1753 ret = __cpufreq_set_policy(data, &policy);
1754
1755 unlock_policy_rwsem_write(cpu);
1756
1757fail:
1758 cpufreq_cpu_put(data);
1759no_policy:
1760 return ret;
1761}
1762EXPORT_SYMBOL(cpufreq_update_policy);
1763
1764static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1765 unsigned long action, void *hcpu)
1766{
1767 unsigned int cpu = (unsigned long)hcpu;
1768 struct sys_device *sys_dev;
1769
1770 sys_dev = get_cpu_sysdev(cpu);
1771 if (sys_dev) {
1772 switch (action) {
1773 case CPU_ONLINE:
1774 case CPU_ONLINE_FROZEN:
1775 cpufreq_add_dev(sys_dev);
1776 break;
1777 case CPU_DOWN_PREPARE:
1778 case CPU_DOWN_PREPARE_FROZEN:
1779 if (unlikely(lock_policy_rwsem_write(cpu)))
1780 BUG();
1781
1782 __cpufreq_remove_dev(sys_dev);
1783 break;
1784 case CPU_DOWN_FAILED:
1785 case CPU_DOWN_FAILED_FROZEN:
1786 cpufreq_add_dev(sys_dev);
1787 break;
1788 }
1789 }
1790 return NOTIFY_OK;
1791}
1792
1793static struct notifier_block __refdata cpufreq_cpu_notifier = {
1794 .notifier_call = cpufreq_cpu_callback,
1795};
1796
1797/*********************************************************************
1798 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1799 *********************************************************************/
1800
1801/**
1802 * cpufreq_register_driver - register a CPU Frequency driver
1803 * @driver_data: A struct cpufreq_driver containing the values#
1804 * submitted by the CPU Frequency driver.
1805 *
1806 * Registers a CPU Frequency driver to this core code. This code
1807 * returns zero on success, -EBUSY when another driver got here first
1808 * (and isn't unregistered in the meantime).
1809 *
1810 */
1811int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1812{
1813 unsigned long flags;
1814 int ret;
1815
1816 if (!driver_data || !driver_data->verify || !driver_data->init ||
1817 ((!driver_data->setpolicy) && (!driver_data->target)))
1818 return -EINVAL;
1819
1820 pr_debug("trying to register driver %s\n", driver_data->name);
1821
1822 if (driver_data->setpolicy)
1823 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1824
1825 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1826 if (cpufreq_driver) {
1827 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828 return -EBUSY;
1829 }
1830 cpufreq_driver = driver_data;
1831 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1832
1833 ret = sysdev_driver_register(&cpu_sysdev_class,
1834 &cpufreq_sysdev_driver);
1835 if (ret)
1836 goto err_null_driver;
1837
1838 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839 int i;
1840 ret = -ENODEV;
1841
1842 /* check for at least one working CPU */
1843 for (i = 0; i < nr_cpu_ids; i++)
1844 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845 ret = 0;
1846 break;
1847 }
1848
1849 /* if all ->init() calls failed, unregister */
1850 if (ret) {
1851 pr_debug("no CPU initialized for driver %s\n",
1852 driver_data->name);
1853 goto err_sysdev_unreg;
1854 }
1855 }
1856
1857 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1858 pr_debug("driver %s up and running\n", driver_data->name);
1859
1860 return 0;
1861err_sysdev_unreg:
1862 sysdev_driver_unregister(&cpu_sysdev_class,
1863 &cpufreq_sysdev_driver);
1864err_null_driver:
1865 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1866 cpufreq_driver = NULL;
1867 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1868 return ret;
1869}
1870EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1871
1872
1873/**
1874 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1875 *
1876 * Unregister the current CPUFreq driver. Only call this if you have
1877 * the right to do so, i.e. if you have succeeded in initialising before!
1878 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1879 * currently not initialised.
1880 */
1881int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1882{
1883 unsigned long flags;
1884
1885 if (!cpufreq_driver || (driver != cpufreq_driver))
1886 return -EINVAL;
1887
1888 pr_debug("unregistering driver %s\n", driver->name);
1889
1890 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1891 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1892
1893 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1894 cpufreq_driver = NULL;
1895 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1896
1897 return 0;
1898}
1899EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1900
1901static int __init cpufreq_core_init(void)
1902{
1903 int cpu;
1904
1905 for_each_possible_cpu(cpu) {
1906 per_cpu(cpufreq_policy_cpu, cpu) = -1;
1907 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1908 }
1909
1910 cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1911 &cpu_sysdev_class.kset.kobj);
1912 BUG_ON(!cpufreq_global_kobject);
1913 register_syscore_ops(&cpufreq_syscore_ops);
1914
1915 return 0;
1916}
1917core_initcall(cpufreq_core_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/cpu_cooling.h>
20#include <linux/delay.h>
21#include <linux/device.h>
22#include <linux/init.h>
23#include <linux/kernel_stat.h>
24#include <linux/module.h>
25#include <linux/mutex.h>
26#include <linux/pm_qos.h>
27#include <linux/slab.h>
28#include <linux/suspend.h>
29#include <linux/syscore_ops.h>
30#include <linux/tick.h>
31#include <trace/events/power.h>
32
33static LIST_HEAD(cpufreq_policy_list);
34
35/* Macros to iterate over CPU policies */
36#define for_each_suitable_policy(__policy, __active) \
37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 if ((__active) == !policy_is_inactive(__policy))
39
40#define for_each_active_policy(__policy) \
41 for_each_suitable_policy(__policy, true)
42#define for_each_inactive_policy(__policy) \
43 for_each_suitable_policy(__policy, false)
44
45#define for_each_policy(__policy) \
46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48/* Iterate over governors */
49static LIST_HEAD(cpufreq_governor_list);
50#define for_each_governor(__governor) \
51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53static char default_governor[CPUFREQ_NAME_LEN];
54
55/*
56 * The "cpufreq driver" - the arch- or hardware-dependent low
57 * level driver of CPUFreq support, and its spinlock. This lock
58 * also protects the cpufreq_cpu_data array.
59 */
60static struct cpufreq_driver *cpufreq_driver;
61static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62static DEFINE_RWLOCK(cpufreq_driver_lock);
63
64/* Flag to suspend/resume CPUFreq governors */
65static bool cpufreq_suspended;
66
67static inline bool has_target(void)
68{
69 return cpufreq_driver->target_index || cpufreq_driver->target;
70}
71
72/* internal prototypes */
73static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
74static int cpufreq_init_governor(struct cpufreq_policy *policy);
75static void cpufreq_exit_governor(struct cpufreq_policy *policy);
76static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77static int cpufreq_set_policy(struct cpufreq_policy *policy,
78 struct cpufreq_governor *new_gov,
79 unsigned int new_pol);
80
81/*
82 * Two notifier lists: the "policy" list is involved in the
83 * validation process for a new CPU frequency policy; the
84 * "transition" list for kernel code that needs to handle
85 * changes to devices when the CPU clock speed changes.
86 * The mutex locks both lists.
87 */
88static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
90
91static int off __read_mostly;
92static int cpufreq_disabled(void)
93{
94 return off;
95}
96void disable_cpufreq(void)
97{
98 off = 1;
99}
100static DEFINE_MUTEX(cpufreq_governor_mutex);
101
102bool have_governor_per_policy(void)
103{
104 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
105}
106EXPORT_SYMBOL_GPL(have_governor_per_policy);
107
108static struct kobject *cpufreq_global_kobject;
109
110struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
111{
112 if (have_governor_per_policy())
113 return &policy->kobj;
114 else
115 return cpufreq_global_kobject;
116}
117EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
118
119static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
120{
121 struct kernel_cpustat kcpustat;
122 u64 cur_wall_time;
123 u64 idle_time;
124 u64 busy_time;
125
126 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127
128 kcpustat_cpu_fetch(&kcpustat, cpu);
129
130 busy_time = kcpustat.cpustat[CPUTIME_USER];
131 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
132 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
133 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
134 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
135 busy_time += kcpustat.cpustat[CPUTIME_NICE];
136
137 idle_time = cur_wall_time - busy_time;
138 if (wall)
139 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
140
141 return div_u64(idle_time, NSEC_PER_USEC);
142}
143
144u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
145{
146 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
147
148 if (idle_time == -1ULL)
149 return get_cpu_idle_time_jiffy(cpu, wall);
150 else if (!io_busy)
151 idle_time += get_cpu_iowait_time_us(cpu, wall);
152
153 return idle_time;
154}
155EXPORT_SYMBOL_GPL(get_cpu_idle_time);
156
157__weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
158 unsigned long max_freq)
159{
160}
161EXPORT_SYMBOL_GPL(arch_set_freq_scale);
162
163/*
164 * This is a generic cpufreq init() routine which can be used by cpufreq
165 * drivers of SMP systems. It will do following:
166 * - validate & show freq table passed
167 * - set policies transition latency
168 * - policy->cpus with all possible CPUs
169 */
170void cpufreq_generic_init(struct cpufreq_policy *policy,
171 struct cpufreq_frequency_table *table,
172 unsigned int transition_latency)
173{
174 policy->freq_table = table;
175 policy->cpuinfo.transition_latency = transition_latency;
176
177 /*
178 * The driver only supports the SMP configuration where all processors
179 * share the clock and voltage and clock.
180 */
181 cpumask_setall(policy->cpus);
182}
183EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
185struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186{
187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190}
191EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
193unsigned int cpufreq_generic_get(unsigned int cpu)
194{
195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197 if (!policy || IS_ERR(policy->clk)) {
198 pr_err("%s: No %s associated to cpu: %d\n",
199 __func__, policy ? "clk" : "policy", cpu);
200 return 0;
201 }
202
203 return clk_get_rate(policy->clk) / 1000;
204}
205EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207/**
208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209 * @cpu: CPU to find the policy for.
210 *
211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212 * the kobject reference counter of that policy. Return a valid policy on
213 * success or NULL on failure.
214 *
215 * The policy returned by this function has to be released with the help of
216 * cpufreq_cpu_put() to balance its kobject reference counter properly.
217 */
218struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219{
220 struct cpufreq_policy *policy = NULL;
221 unsigned long flags;
222
223 if (WARN_ON(cpu >= nr_cpu_ids))
224 return NULL;
225
226 /* get the cpufreq driver */
227 read_lock_irqsave(&cpufreq_driver_lock, flags);
228
229 if (cpufreq_driver) {
230 /* get the CPU */
231 policy = cpufreq_cpu_get_raw(cpu);
232 if (policy)
233 kobject_get(&policy->kobj);
234 }
235
236 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237
238 return policy;
239}
240EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241
242/**
243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244 * @policy: cpufreq policy returned by cpufreq_cpu_get().
245 */
246void cpufreq_cpu_put(struct cpufreq_policy *policy)
247{
248 kobject_put(&policy->kobj);
249}
250EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251
252/**
253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255 */
256void cpufreq_cpu_release(struct cpufreq_policy *policy)
257{
258 if (WARN_ON(!policy))
259 return;
260
261 lockdep_assert_held(&policy->rwsem);
262
263 up_write(&policy->rwsem);
264
265 cpufreq_cpu_put(policy);
266}
267
268/**
269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270 * @cpu: CPU to find the policy for.
271 *
272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273 * if the policy returned by it is not NULL, acquire its rwsem for writing.
274 * Return the policy if it is active or release it and return NULL otherwise.
275 *
276 * The policy returned by this function has to be released with the help of
277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278 * counter properly.
279 */
280struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281{
282 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283
284 if (!policy)
285 return NULL;
286
287 down_write(&policy->rwsem);
288
289 if (policy_is_inactive(policy)) {
290 cpufreq_cpu_release(policy);
291 return NULL;
292 }
293
294 return policy;
295}
296
297/*********************************************************************
298 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
299 *********************************************************************/
300
301/*
302 * adjust_jiffies - adjust the system "loops_per_jiffy"
303 *
304 * This function alters the system "loops_per_jiffy" for the clock
305 * speed change. Note that loops_per_jiffy cannot be updated on SMP
306 * systems as each CPU might be scaled differently. So, use the arch
307 * per-CPU loops_per_jiffy value wherever possible.
308 */
309static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310{
311#ifndef CONFIG_SMP
312 static unsigned long l_p_j_ref;
313 static unsigned int l_p_j_ref_freq;
314
315 if (ci->flags & CPUFREQ_CONST_LOOPS)
316 return;
317
318 if (!l_p_j_ref_freq) {
319 l_p_j_ref = loops_per_jiffy;
320 l_p_j_ref_freq = ci->old;
321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 l_p_j_ref, l_p_j_ref_freq);
323 }
324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 ci->new);
327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 loops_per_jiffy, ci->new);
329 }
330#endif
331}
332
333/**
334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335 * @policy: cpufreq policy to enable fast frequency switching for.
336 * @freqs: contain details of the frequency update.
337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338 *
339 * This function calls the transition notifiers and the "adjust_jiffies"
340 * function. It is called twice on all CPU frequency changes that have
341 * external effects.
342 */
343static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 struct cpufreq_freqs *freqs,
345 unsigned int state)
346{
347 int cpu;
348
349 BUG_ON(irqs_disabled());
350
351 if (cpufreq_disabled())
352 return;
353
354 freqs->policy = policy;
355 freqs->flags = cpufreq_driver->flags;
356 pr_debug("notification %u of frequency transition to %u kHz\n",
357 state, freqs->new);
358
359 switch (state) {
360 case CPUFREQ_PRECHANGE:
361 /*
362 * Detect if the driver reported a value as "old frequency"
363 * which is not equal to what the cpufreq core thinks is
364 * "old frequency".
365 */
366 if (policy->cur && policy->cur != freqs->old) {
367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 freqs->old, policy->cur);
369 freqs->old = policy->cur;
370 }
371
372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 CPUFREQ_PRECHANGE, freqs);
374
375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 break;
377
378 case CPUFREQ_POSTCHANGE:
379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 cpumask_pr_args(policy->cpus));
382
383 for_each_cpu(cpu, policy->cpus)
384 trace_cpu_frequency(freqs->new, cpu);
385
386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 CPUFREQ_POSTCHANGE, freqs);
388
389 cpufreq_stats_record_transition(policy, freqs->new);
390 policy->cur = freqs->new;
391 }
392}
393
394/* Do post notifications when there are chances that transition has failed */
395static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 struct cpufreq_freqs *freqs, int transition_failed)
397{
398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 if (!transition_failed)
400 return;
401
402 swap(freqs->old, freqs->new);
403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405}
406
407void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 struct cpufreq_freqs *freqs)
409{
410
411 /*
412 * Catch double invocations of _begin() which lead to self-deadlock.
413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 * doesn't invoke _begin() on their behalf, and hence the chances of
415 * double invocations are very low. Moreover, there are scenarios
416 * where these checks can emit false-positive warnings in these
417 * drivers; so we avoid that by skipping them altogether.
418 */
419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 && current == policy->transition_task);
421
422wait:
423 wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425 spin_lock(&policy->transition_lock);
426
427 if (unlikely(policy->transition_ongoing)) {
428 spin_unlock(&policy->transition_lock);
429 goto wait;
430 }
431
432 policy->transition_ongoing = true;
433 policy->transition_task = current;
434
435 spin_unlock(&policy->transition_lock);
436
437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438}
439EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
441void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 struct cpufreq_freqs *freqs, int transition_failed)
443{
444 if (WARN_ON(!policy->transition_ongoing))
445 return;
446
447 cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449 policy->transition_ongoing = false;
450 policy->transition_task = NULL;
451
452 wake_up(&policy->transition_wait);
453}
454EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
455
456/*
457 * Fast frequency switching status count. Positive means "enabled", negative
458 * means "disabled" and 0 means "not decided yet".
459 */
460static int cpufreq_fast_switch_count;
461static DEFINE_MUTEX(cpufreq_fast_switch_lock);
462
463static void cpufreq_list_transition_notifiers(void)
464{
465 struct notifier_block *nb;
466
467 pr_info("Registered transition notifiers:\n");
468
469 mutex_lock(&cpufreq_transition_notifier_list.mutex);
470
471 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
472 pr_info("%pS\n", nb->notifier_call);
473
474 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
475}
476
477/**
478 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
479 * @policy: cpufreq policy to enable fast frequency switching for.
480 *
481 * Try to enable fast frequency switching for @policy.
482 *
483 * The attempt will fail if there is at least one transition notifier registered
484 * at this point, as fast frequency switching is quite fundamentally at odds
485 * with transition notifiers. Thus if successful, it will make registration of
486 * transition notifiers fail going forward.
487 */
488void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
489{
490 lockdep_assert_held(&policy->rwsem);
491
492 if (!policy->fast_switch_possible)
493 return;
494
495 mutex_lock(&cpufreq_fast_switch_lock);
496 if (cpufreq_fast_switch_count >= 0) {
497 cpufreq_fast_switch_count++;
498 policy->fast_switch_enabled = true;
499 } else {
500 pr_warn("CPU%u: Fast frequency switching not enabled\n",
501 policy->cpu);
502 cpufreq_list_transition_notifiers();
503 }
504 mutex_unlock(&cpufreq_fast_switch_lock);
505}
506EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
507
508/**
509 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
510 * @policy: cpufreq policy to disable fast frequency switching for.
511 */
512void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
513{
514 mutex_lock(&cpufreq_fast_switch_lock);
515 if (policy->fast_switch_enabled) {
516 policy->fast_switch_enabled = false;
517 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
518 cpufreq_fast_switch_count--;
519 }
520 mutex_unlock(&cpufreq_fast_switch_lock);
521}
522EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
523
524/**
525 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
526 * one.
527 * @policy: associated policy to interrogate
528 * @target_freq: target frequency to resolve.
529 *
530 * The target to driver frequency mapping is cached in the policy.
531 *
532 * Return: Lowest driver-supported frequency greater than or equal to the
533 * given target_freq, subject to policy (min/max) and driver limitations.
534 */
535unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
536 unsigned int target_freq)
537{
538 target_freq = clamp_val(target_freq, policy->min, policy->max);
539 policy->cached_target_freq = target_freq;
540
541 if (cpufreq_driver->target_index) {
542 unsigned int idx;
543
544 idx = cpufreq_frequency_table_target(policy, target_freq,
545 CPUFREQ_RELATION_L);
546 policy->cached_resolved_idx = idx;
547 return policy->freq_table[idx].frequency;
548 }
549
550 if (cpufreq_driver->resolve_freq)
551 return cpufreq_driver->resolve_freq(policy, target_freq);
552
553 return target_freq;
554}
555EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
556
557unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
558{
559 unsigned int latency;
560
561 if (policy->transition_delay_us)
562 return policy->transition_delay_us;
563
564 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
565 if (latency) {
566 /*
567 * For platforms that can change the frequency very fast (< 10
568 * us), the above formula gives a decent transition delay. But
569 * for platforms where transition_latency is in milliseconds, it
570 * ends up giving unrealistic values.
571 *
572 * Cap the default transition delay to 10 ms, which seems to be
573 * a reasonable amount of time after which we should reevaluate
574 * the frequency.
575 */
576 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
577 }
578
579 return LATENCY_MULTIPLIER;
580}
581EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
582
583/*********************************************************************
584 * SYSFS INTERFACE *
585 *********************************************************************/
586static ssize_t show_boost(struct kobject *kobj,
587 struct kobj_attribute *attr, char *buf)
588{
589 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
590}
591
592static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
593 const char *buf, size_t count)
594{
595 int ret, enable;
596
597 ret = sscanf(buf, "%d", &enable);
598 if (ret != 1 || enable < 0 || enable > 1)
599 return -EINVAL;
600
601 if (cpufreq_boost_trigger_state(enable)) {
602 pr_err("%s: Cannot %s BOOST!\n",
603 __func__, enable ? "enable" : "disable");
604 return -EINVAL;
605 }
606
607 pr_debug("%s: cpufreq BOOST %s\n",
608 __func__, enable ? "enabled" : "disabled");
609
610 return count;
611}
612define_one_global_rw(boost);
613
614static struct cpufreq_governor *find_governor(const char *str_governor)
615{
616 struct cpufreq_governor *t;
617
618 for_each_governor(t)
619 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
620 return t;
621
622 return NULL;
623}
624
625static struct cpufreq_governor *get_governor(const char *str_governor)
626{
627 struct cpufreq_governor *t;
628
629 mutex_lock(&cpufreq_governor_mutex);
630 t = find_governor(str_governor);
631 if (!t)
632 goto unlock;
633
634 if (!try_module_get(t->owner))
635 t = NULL;
636
637unlock:
638 mutex_unlock(&cpufreq_governor_mutex);
639
640 return t;
641}
642
643static unsigned int cpufreq_parse_policy(char *str_governor)
644{
645 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
646 return CPUFREQ_POLICY_PERFORMANCE;
647
648 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
649 return CPUFREQ_POLICY_POWERSAVE;
650
651 return CPUFREQ_POLICY_UNKNOWN;
652}
653
654/**
655 * cpufreq_parse_governor - parse a governor string only for has_target()
656 * @str_governor: Governor name.
657 */
658static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
659{
660 struct cpufreq_governor *t;
661
662 t = get_governor(str_governor);
663 if (t)
664 return t;
665
666 if (request_module("cpufreq_%s", str_governor))
667 return NULL;
668
669 return get_governor(str_governor);
670}
671
672/*
673 * cpufreq_per_cpu_attr_read() / show_##file_name() -
674 * print out cpufreq information
675 *
676 * Write out information from cpufreq_driver->policy[cpu]; object must be
677 * "unsigned int".
678 */
679
680#define show_one(file_name, object) \
681static ssize_t show_##file_name \
682(struct cpufreq_policy *policy, char *buf) \
683{ \
684 return sprintf(buf, "%u\n", policy->object); \
685}
686
687show_one(cpuinfo_min_freq, cpuinfo.min_freq);
688show_one(cpuinfo_max_freq, cpuinfo.max_freq);
689show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
690show_one(scaling_min_freq, min);
691show_one(scaling_max_freq, max);
692
693__weak unsigned int arch_freq_get_on_cpu(int cpu)
694{
695 return 0;
696}
697
698static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
699{
700 ssize_t ret;
701 unsigned int freq;
702
703 freq = arch_freq_get_on_cpu(policy->cpu);
704 if (freq)
705 ret = sprintf(buf, "%u\n", freq);
706 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
707 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
708 else
709 ret = sprintf(buf, "%u\n", policy->cur);
710 return ret;
711}
712
713/*
714 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
715 */
716#define store_one(file_name, object) \
717static ssize_t store_##file_name \
718(struct cpufreq_policy *policy, const char *buf, size_t count) \
719{ \
720 unsigned long val; \
721 int ret; \
722 \
723 ret = sscanf(buf, "%lu", &val); \
724 if (ret != 1) \
725 return -EINVAL; \
726 \
727 ret = freq_qos_update_request(policy->object##_freq_req, val);\
728 return ret >= 0 ? count : ret; \
729}
730
731store_one(scaling_min_freq, min);
732store_one(scaling_max_freq, max);
733
734/*
735 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
736 */
737static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
738 char *buf)
739{
740 unsigned int cur_freq = __cpufreq_get(policy);
741
742 if (cur_freq)
743 return sprintf(buf, "%u\n", cur_freq);
744
745 return sprintf(buf, "<unknown>\n");
746}
747
748/*
749 * show_scaling_governor - show the current policy for the specified CPU
750 */
751static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
752{
753 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
754 return sprintf(buf, "powersave\n");
755 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
756 return sprintf(buf, "performance\n");
757 else if (policy->governor)
758 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
759 policy->governor->name);
760 return -EINVAL;
761}
762
763/*
764 * store_scaling_governor - store policy for the specified CPU
765 */
766static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
767 const char *buf, size_t count)
768{
769 char str_governor[16];
770 int ret;
771
772 ret = sscanf(buf, "%15s", str_governor);
773 if (ret != 1)
774 return -EINVAL;
775
776 if (cpufreq_driver->setpolicy) {
777 unsigned int new_pol;
778
779 new_pol = cpufreq_parse_policy(str_governor);
780 if (!new_pol)
781 return -EINVAL;
782
783 ret = cpufreq_set_policy(policy, NULL, new_pol);
784 } else {
785 struct cpufreq_governor *new_gov;
786
787 new_gov = cpufreq_parse_governor(str_governor);
788 if (!new_gov)
789 return -EINVAL;
790
791 ret = cpufreq_set_policy(policy, new_gov,
792 CPUFREQ_POLICY_UNKNOWN);
793
794 module_put(new_gov->owner);
795 }
796
797 return ret ? ret : count;
798}
799
800/*
801 * show_scaling_driver - show the cpufreq driver currently loaded
802 */
803static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
804{
805 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
806}
807
808/*
809 * show_scaling_available_governors - show the available CPUfreq governors
810 */
811static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
812 char *buf)
813{
814 ssize_t i = 0;
815 struct cpufreq_governor *t;
816
817 if (!has_target()) {
818 i += sprintf(buf, "performance powersave");
819 goto out;
820 }
821
822 mutex_lock(&cpufreq_governor_mutex);
823 for_each_governor(t) {
824 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
825 - (CPUFREQ_NAME_LEN + 2)))
826 break;
827 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
828 }
829 mutex_unlock(&cpufreq_governor_mutex);
830out:
831 i += sprintf(&buf[i], "\n");
832 return i;
833}
834
835ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
836{
837 ssize_t i = 0;
838 unsigned int cpu;
839
840 for_each_cpu(cpu, mask) {
841 if (i)
842 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
843 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
844 if (i >= (PAGE_SIZE - 5))
845 break;
846 }
847 i += sprintf(&buf[i], "\n");
848 return i;
849}
850EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
851
852/*
853 * show_related_cpus - show the CPUs affected by each transition even if
854 * hw coordination is in use
855 */
856static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
857{
858 return cpufreq_show_cpus(policy->related_cpus, buf);
859}
860
861/*
862 * show_affected_cpus - show the CPUs affected by each transition
863 */
864static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
865{
866 return cpufreq_show_cpus(policy->cpus, buf);
867}
868
869static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
870 const char *buf, size_t count)
871{
872 unsigned int freq = 0;
873 unsigned int ret;
874
875 if (!policy->governor || !policy->governor->store_setspeed)
876 return -EINVAL;
877
878 ret = sscanf(buf, "%u", &freq);
879 if (ret != 1)
880 return -EINVAL;
881
882 policy->governor->store_setspeed(policy, freq);
883
884 return count;
885}
886
887static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
888{
889 if (!policy->governor || !policy->governor->show_setspeed)
890 return sprintf(buf, "<unsupported>\n");
891
892 return policy->governor->show_setspeed(policy, buf);
893}
894
895/*
896 * show_bios_limit - show the current cpufreq HW/BIOS limitation
897 */
898static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
899{
900 unsigned int limit;
901 int ret;
902 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
903 if (!ret)
904 return sprintf(buf, "%u\n", limit);
905 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
906}
907
908cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
909cpufreq_freq_attr_ro(cpuinfo_min_freq);
910cpufreq_freq_attr_ro(cpuinfo_max_freq);
911cpufreq_freq_attr_ro(cpuinfo_transition_latency);
912cpufreq_freq_attr_ro(scaling_available_governors);
913cpufreq_freq_attr_ro(scaling_driver);
914cpufreq_freq_attr_ro(scaling_cur_freq);
915cpufreq_freq_attr_ro(bios_limit);
916cpufreq_freq_attr_ro(related_cpus);
917cpufreq_freq_attr_ro(affected_cpus);
918cpufreq_freq_attr_rw(scaling_min_freq);
919cpufreq_freq_attr_rw(scaling_max_freq);
920cpufreq_freq_attr_rw(scaling_governor);
921cpufreq_freq_attr_rw(scaling_setspeed);
922
923static struct attribute *default_attrs[] = {
924 &cpuinfo_min_freq.attr,
925 &cpuinfo_max_freq.attr,
926 &cpuinfo_transition_latency.attr,
927 &scaling_min_freq.attr,
928 &scaling_max_freq.attr,
929 &affected_cpus.attr,
930 &related_cpus.attr,
931 &scaling_governor.attr,
932 &scaling_driver.attr,
933 &scaling_available_governors.attr,
934 &scaling_setspeed.attr,
935 NULL
936};
937
938#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
939#define to_attr(a) container_of(a, struct freq_attr, attr)
940
941static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
942{
943 struct cpufreq_policy *policy = to_policy(kobj);
944 struct freq_attr *fattr = to_attr(attr);
945 ssize_t ret;
946
947 if (!fattr->show)
948 return -EIO;
949
950 down_read(&policy->rwsem);
951 ret = fattr->show(policy, buf);
952 up_read(&policy->rwsem);
953
954 return ret;
955}
956
957static ssize_t store(struct kobject *kobj, struct attribute *attr,
958 const char *buf, size_t count)
959{
960 struct cpufreq_policy *policy = to_policy(kobj);
961 struct freq_attr *fattr = to_attr(attr);
962 ssize_t ret = -EINVAL;
963
964 if (!fattr->store)
965 return -EIO;
966
967 /*
968 * cpus_read_trylock() is used here to work around a circular lock
969 * dependency problem with respect to the cpufreq_register_driver().
970 */
971 if (!cpus_read_trylock())
972 return -EBUSY;
973
974 if (cpu_online(policy->cpu)) {
975 down_write(&policy->rwsem);
976 ret = fattr->store(policy, buf, count);
977 up_write(&policy->rwsem);
978 }
979
980 cpus_read_unlock();
981
982 return ret;
983}
984
985static void cpufreq_sysfs_release(struct kobject *kobj)
986{
987 struct cpufreq_policy *policy = to_policy(kobj);
988 pr_debug("last reference is dropped\n");
989 complete(&policy->kobj_unregister);
990}
991
992static const struct sysfs_ops sysfs_ops = {
993 .show = show,
994 .store = store,
995};
996
997static struct kobj_type ktype_cpufreq = {
998 .sysfs_ops = &sysfs_ops,
999 .default_attrs = default_attrs,
1000 .release = cpufreq_sysfs_release,
1001};
1002
1003static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1004{
1005 struct device *dev = get_cpu_device(cpu);
1006
1007 if (unlikely(!dev))
1008 return;
1009
1010 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1011 return;
1012
1013 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1014 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1015 dev_err(dev, "cpufreq symlink creation failed\n");
1016}
1017
1018static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1019 struct device *dev)
1020{
1021 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1022 sysfs_remove_link(&dev->kobj, "cpufreq");
1023}
1024
1025static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1026{
1027 struct freq_attr **drv_attr;
1028 int ret = 0;
1029
1030 /* set up files for this cpu device */
1031 drv_attr = cpufreq_driver->attr;
1032 while (drv_attr && *drv_attr) {
1033 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1034 if (ret)
1035 return ret;
1036 drv_attr++;
1037 }
1038 if (cpufreq_driver->get) {
1039 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1040 if (ret)
1041 return ret;
1042 }
1043
1044 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1045 if (ret)
1046 return ret;
1047
1048 if (cpufreq_driver->bios_limit) {
1049 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1050 if (ret)
1051 return ret;
1052 }
1053
1054 return 0;
1055}
1056
1057static int cpufreq_init_policy(struct cpufreq_policy *policy)
1058{
1059 struct cpufreq_governor *gov = NULL;
1060 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1061 int ret;
1062
1063 if (has_target()) {
1064 /* Update policy governor to the one used before hotplug. */
1065 gov = get_governor(policy->last_governor);
1066 if (gov) {
1067 pr_debug("Restoring governor %s for cpu %d\n",
1068 gov->name, policy->cpu);
1069 } else {
1070 gov = get_governor(default_governor);
1071 }
1072
1073 if (!gov) {
1074 gov = cpufreq_default_governor();
1075 __module_get(gov->owner);
1076 }
1077
1078 } else {
1079
1080 /* Use the default policy if there is no last_policy. */
1081 if (policy->last_policy) {
1082 pol = policy->last_policy;
1083 } else {
1084 pol = cpufreq_parse_policy(default_governor);
1085 /*
1086 * In case the default governor is neither "performance"
1087 * nor "powersave", fall back to the initial policy
1088 * value set by the driver.
1089 */
1090 if (pol == CPUFREQ_POLICY_UNKNOWN)
1091 pol = policy->policy;
1092 }
1093 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1094 pol != CPUFREQ_POLICY_POWERSAVE)
1095 return -ENODATA;
1096 }
1097
1098 ret = cpufreq_set_policy(policy, gov, pol);
1099 if (gov)
1100 module_put(gov->owner);
1101
1102 return ret;
1103}
1104
1105static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1106{
1107 int ret = 0;
1108
1109 /* Has this CPU been taken care of already? */
1110 if (cpumask_test_cpu(cpu, policy->cpus))
1111 return 0;
1112
1113 down_write(&policy->rwsem);
1114 if (has_target())
1115 cpufreq_stop_governor(policy);
1116
1117 cpumask_set_cpu(cpu, policy->cpus);
1118
1119 if (has_target()) {
1120 ret = cpufreq_start_governor(policy);
1121 if (ret)
1122 pr_err("%s: Failed to start governor\n", __func__);
1123 }
1124 up_write(&policy->rwsem);
1125 return ret;
1126}
1127
1128void refresh_frequency_limits(struct cpufreq_policy *policy)
1129{
1130 if (!policy_is_inactive(policy)) {
1131 pr_debug("updating policy for CPU %u\n", policy->cpu);
1132
1133 cpufreq_set_policy(policy, policy->governor, policy->policy);
1134 }
1135}
1136EXPORT_SYMBOL(refresh_frequency_limits);
1137
1138static void handle_update(struct work_struct *work)
1139{
1140 struct cpufreq_policy *policy =
1141 container_of(work, struct cpufreq_policy, update);
1142
1143 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1144 down_write(&policy->rwsem);
1145 refresh_frequency_limits(policy);
1146 up_write(&policy->rwsem);
1147}
1148
1149static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1150 void *data)
1151{
1152 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1153
1154 schedule_work(&policy->update);
1155 return 0;
1156}
1157
1158static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1159 void *data)
1160{
1161 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1162
1163 schedule_work(&policy->update);
1164 return 0;
1165}
1166
1167static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1168{
1169 struct kobject *kobj;
1170 struct completion *cmp;
1171
1172 down_write(&policy->rwsem);
1173 cpufreq_stats_free_table(policy);
1174 kobj = &policy->kobj;
1175 cmp = &policy->kobj_unregister;
1176 up_write(&policy->rwsem);
1177 kobject_put(kobj);
1178
1179 /*
1180 * We need to make sure that the underlying kobj is
1181 * actually not referenced anymore by anybody before we
1182 * proceed with unloading.
1183 */
1184 pr_debug("waiting for dropping of refcount\n");
1185 wait_for_completion(cmp);
1186 pr_debug("wait complete\n");
1187}
1188
1189static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1190{
1191 struct cpufreq_policy *policy;
1192 struct device *dev = get_cpu_device(cpu);
1193 int ret;
1194
1195 if (!dev)
1196 return NULL;
1197
1198 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1199 if (!policy)
1200 return NULL;
1201
1202 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1203 goto err_free_policy;
1204
1205 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1206 goto err_free_cpumask;
1207
1208 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1209 goto err_free_rcpumask;
1210
1211 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1212 cpufreq_global_kobject, "policy%u", cpu);
1213 if (ret) {
1214 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1215 /*
1216 * The entire policy object will be freed below, but the extra
1217 * memory allocated for the kobject name needs to be freed by
1218 * releasing the kobject.
1219 */
1220 kobject_put(&policy->kobj);
1221 goto err_free_real_cpus;
1222 }
1223
1224 freq_constraints_init(&policy->constraints);
1225
1226 policy->nb_min.notifier_call = cpufreq_notifier_min;
1227 policy->nb_max.notifier_call = cpufreq_notifier_max;
1228
1229 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1230 &policy->nb_min);
1231 if (ret) {
1232 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1233 ret, cpumask_pr_args(policy->cpus));
1234 goto err_kobj_remove;
1235 }
1236
1237 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1238 &policy->nb_max);
1239 if (ret) {
1240 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1241 ret, cpumask_pr_args(policy->cpus));
1242 goto err_min_qos_notifier;
1243 }
1244
1245 INIT_LIST_HEAD(&policy->policy_list);
1246 init_rwsem(&policy->rwsem);
1247 spin_lock_init(&policy->transition_lock);
1248 init_waitqueue_head(&policy->transition_wait);
1249 init_completion(&policy->kobj_unregister);
1250 INIT_WORK(&policy->update, handle_update);
1251
1252 policy->cpu = cpu;
1253 return policy;
1254
1255err_min_qos_notifier:
1256 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1257 &policy->nb_min);
1258err_kobj_remove:
1259 cpufreq_policy_put_kobj(policy);
1260err_free_real_cpus:
1261 free_cpumask_var(policy->real_cpus);
1262err_free_rcpumask:
1263 free_cpumask_var(policy->related_cpus);
1264err_free_cpumask:
1265 free_cpumask_var(policy->cpus);
1266err_free_policy:
1267 kfree(policy);
1268
1269 return NULL;
1270}
1271
1272static void cpufreq_policy_free(struct cpufreq_policy *policy)
1273{
1274 unsigned long flags;
1275 int cpu;
1276
1277 /* Remove policy from list */
1278 write_lock_irqsave(&cpufreq_driver_lock, flags);
1279 list_del(&policy->policy_list);
1280
1281 for_each_cpu(cpu, policy->related_cpus)
1282 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1283 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1284
1285 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1286 &policy->nb_max);
1287 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1288 &policy->nb_min);
1289
1290 /* Cancel any pending policy->update work before freeing the policy. */
1291 cancel_work_sync(&policy->update);
1292
1293 if (policy->max_freq_req) {
1294 /*
1295 * CPUFREQ_CREATE_POLICY notification is sent only after
1296 * successfully adding max_freq_req request.
1297 */
1298 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1299 CPUFREQ_REMOVE_POLICY, policy);
1300 freq_qos_remove_request(policy->max_freq_req);
1301 }
1302
1303 freq_qos_remove_request(policy->min_freq_req);
1304 kfree(policy->min_freq_req);
1305
1306 cpufreq_policy_put_kobj(policy);
1307 free_cpumask_var(policy->real_cpus);
1308 free_cpumask_var(policy->related_cpus);
1309 free_cpumask_var(policy->cpus);
1310 kfree(policy);
1311}
1312
1313static int cpufreq_online(unsigned int cpu)
1314{
1315 struct cpufreq_policy *policy;
1316 bool new_policy;
1317 unsigned long flags;
1318 unsigned int j;
1319 int ret;
1320
1321 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1322
1323 /* Check if this CPU already has a policy to manage it */
1324 policy = per_cpu(cpufreq_cpu_data, cpu);
1325 if (policy) {
1326 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1327 if (!policy_is_inactive(policy))
1328 return cpufreq_add_policy_cpu(policy, cpu);
1329
1330 /* This is the only online CPU for the policy. Start over. */
1331 new_policy = false;
1332 down_write(&policy->rwsem);
1333 policy->cpu = cpu;
1334 policy->governor = NULL;
1335 up_write(&policy->rwsem);
1336 } else {
1337 new_policy = true;
1338 policy = cpufreq_policy_alloc(cpu);
1339 if (!policy)
1340 return -ENOMEM;
1341 }
1342
1343 if (!new_policy && cpufreq_driver->online) {
1344 ret = cpufreq_driver->online(policy);
1345 if (ret) {
1346 pr_debug("%s: %d: initialization failed\n", __func__,
1347 __LINE__);
1348 goto out_exit_policy;
1349 }
1350
1351 /* Recover policy->cpus using related_cpus */
1352 cpumask_copy(policy->cpus, policy->related_cpus);
1353 } else {
1354 cpumask_copy(policy->cpus, cpumask_of(cpu));
1355
1356 /*
1357 * Call driver. From then on the cpufreq must be able
1358 * to accept all calls to ->verify and ->setpolicy for this CPU.
1359 */
1360 ret = cpufreq_driver->init(policy);
1361 if (ret) {
1362 pr_debug("%s: %d: initialization failed\n", __func__,
1363 __LINE__);
1364 goto out_free_policy;
1365 }
1366
1367 ret = cpufreq_table_validate_and_sort(policy);
1368 if (ret)
1369 goto out_exit_policy;
1370
1371 /* related_cpus should at least include policy->cpus. */
1372 cpumask_copy(policy->related_cpus, policy->cpus);
1373 }
1374
1375 down_write(&policy->rwsem);
1376 /*
1377 * affected cpus must always be the one, which are online. We aren't
1378 * managing offline cpus here.
1379 */
1380 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1381
1382 if (new_policy) {
1383 for_each_cpu(j, policy->related_cpus) {
1384 per_cpu(cpufreq_cpu_data, j) = policy;
1385 add_cpu_dev_symlink(policy, j);
1386 }
1387
1388 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1389 GFP_KERNEL);
1390 if (!policy->min_freq_req)
1391 goto out_destroy_policy;
1392
1393 ret = freq_qos_add_request(&policy->constraints,
1394 policy->min_freq_req, FREQ_QOS_MIN,
1395 policy->min);
1396 if (ret < 0) {
1397 /*
1398 * So we don't call freq_qos_remove_request() for an
1399 * uninitialized request.
1400 */
1401 kfree(policy->min_freq_req);
1402 policy->min_freq_req = NULL;
1403 goto out_destroy_policy;
1404 }
1405
1406 /*
1407 * This must be initialized right here to avoid calling
1408 * freq_qos_remove_request() on uninitialized request in case
1409 * of errors.
1410 */
1411 policy->max_freq_req = policy->min_freq_req + 1;
1412
1413 ret = freq_qos_add_request(&policy->constraints,
1414 policy->max_freq_req, FREQ_QOS_MAX,
1415 policy->max);
1416 if (ret < 0) {
1417 policy->max_freq_req = NULL;
1418 goto out_destroy_policy;
1419 }
1420
1421 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1422 CPUFREQ_CREATE_POLICY, policy);
1423 }
1424
1425 if (cpufreq_driver->get && has_target()) {
1426 policy->cur = cpufreq_driver->get(policy->cpu);
1427 if (!policy->cur) {
1428 pr_err("%s: ->get() failed\n", __func__);
1429 goto out_destroy_policy;
1430 }
1431 }
1432
1433 /*
1434 * Sometimes boot loaders set CPU frequency to a value outside of
1435 * frequency table present with cpufreq core. In such cases CPU might be
1436 * unstable if it has to run on that frequency for long duration of time
1437 * and so its better to set it to a frequency which is specified in
1438 * freq-table. This also makes cpufreq stats inconsistent as
1439 * cpufreq-stats would fail to register because current frequency of CPU
1440 * isn't found in freq-table.
1441 *
1442 * Because we don't want this change to effect boot process badly, we go
1443 * for the next freq which is >= policy->cur ('cur' must be set by now,
1444 * otherwise we will end up setting freq to lowest of the table as 'cur'
1445 * is initialized to zero).
1446 *
1447 * We are passing target-freq as "policy->cur - 1" otherwise
1448 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1449 * equal to target-freq.
1450 */
1451 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1452 && has_target()) {
1453 /* Are we running at unknown frequency ? */
1454 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1455 if (ret == -EINVAL) {
1456 /* Warn user and fix it */
1457 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1458 __func__, policy->cpu, policy->cur);
1459 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1460 CPUFREQ_RELATION_L);
1461
1462 /*
1463 * Reaching here after boot in a few seconds may not
1464 * mean that system will remain stable at "unknown"
1465 * frequency for longer duration. Hence, a BUG_ON().
1466 */
1467 BUG_ON(ret);
1468 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1469 __func__, policy->cpu, policy->cur);
1470 }
1471 }
1472
1473 if (new_policy) {
1474 ret = cpufreq_add_dev_interface(policy);
1475 if (ret)
1476 goto out_destroy_policy;
1477
1478 cpufreq_stats_create_table(policy);
1479
1480 write_lock_irqsave(&cpufreq_driver_lock, flags);
1481 list_add(&policy->policy_list, &cpufreq_policy_list);
1482 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1483 }
1484
1485 ret = cpufreq_init_policy(policy);
1486 if (ret) {
1487 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1488 __func__, cpu, ret);
1489 goto out_destroy_policy;
1490 }
1491
1492 up_write(&policy->rwsem);
1493
1494 kobject_uevent(&policy->kobj, KOBJ_ADD);
1495
1496 /* Callback for handling stuff after policy is ready */
1497 if (cpufreq_driver->ready)
1498 cpufreq_driver->ready(policy);
1499
1500 if (cpufreq_thermal_control_enabled(cpufreq_driver))
1501 policy->cdev = of_cpufreq_cooling_register(policy);
1502
1503 pr_debug("initialization complete\n");
1504
1505 return 0;
1506
1507out_destroy_policy:
1508 for_each_cpu(j, policy->real_cpus)
1509 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1510
1511 up_write(&policy->rwsem);
1512
1513out_exit_policy:
1514 if (cpufreq_driver->exit)
1515 cpufreq_driver->exit(policy);
1516
1517out_free_policy:
1518 cpufreq_policy_free(policy);
1519 return ret;
1520}
1521
1522/**
1523 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1524 * @dev: CPU device.
1525 * @sif: Subsystem interface structure pointer (not used)
1526 */
1527static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1528{
1529 struct cpufreq_policy *policy;
1530 unsigned cpu = dev->id;
1531 int ret;
1532
1533 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1534
1535 if (cpu_online(cpu)) {
1536 ret = cpufreq_online(cpu);
1537 if (ret)
1538 return ret;
1539 }
1540
1541 /* Create sysfs link on CPU registration */
1542 policy = per_cpu(cpufreq_cpu_data, cpu);
1543 if (policy)
1544 add_cpu_dev_symlink(policy, cpu);
1545
1546 return 0;
1547}
1548
1549static int cpufreq_offline(unsigned int cpu)
1550{
1551 struct cpufreq_policy *policy;
1552 int ret;
1553
1554 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1555
1556 policy = cpufreq_cpu_get_raw(cpu);
1557 if (!policy) {
1558 pr_debug("%s: No cpu_data found\n", __func__);
1559 return 0;
1560 }
1561
1562 down_write(&policy->rwsem);
1563 if (has_target())
1564 cpufreq_stop_governor(policy);
1565
1566 cpumask_clear_cpu(cpu, policy->cpus);
1567
1568 if (policy_is_inactive(policy)) {
1569 if (has_target())
1570 strncpy(policy->last_governor, policy->governor->name,
1571 CPUFREQ_NAME_LEN);
1572 else
1573 policy->last_policy = policy->policy;
1574 } else if (cpu == policy->cpu) {
1575 /* Nominate new CPU */
1576 policy->cpu = cpumask_any(policy->cpus);
1577 }
1578
1579 /* Start governor again for active policy */
1580 if (!policy_is_inactive(policy)) {
1581 if (has_target()) {
1582 ret = cpufreq_start_governor(policy);
1583 if (ret)
1584 pr_err("%s: Failed to start governor\n", __func__);
1585 }
1586
1587 goto unlock;
1588 }
1589
1590 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1591 cpufreq_cooling_unregister(policy->cdev);
1592 policy->cdev = NULL;
1593 }
1594
1595 if (cpufreq_driver->stop_cpu)
1596 cpufreq_driver->stop_cpu(policy);
1597
1598 if (has_target())
1599 cpufreq_exit_governor(policy);
1600
1601 /*
1602 * Perform the ->offline() during light-weight tear-down, as
1603 * that allows fast recovery when the CPU comes back.
1604 */
1605 if (cpufreq_driver->offline) {
1606 cpufreq_driver->offline(policy);
1607 } else if (cpufreq_driver->exit) {
1608 cpufreq_driver->exit(policy);
1609 policy->freq_table = NULL;
1610 }
1611
1612unlock:
1613 up_write(&policy->rwsem);
1614 return 0;
1615}
1616
1617/*
1618 * cpufreq_remove_dev - remove a CPU device
1619 *
1620 * Removes the cpufreq interface for a CPU device.
1621 */
1622static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1623{
1624 unsigned int cpu = dev->id;
1625 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1626
1627 if (!policy)
1628 return;
1629
1630 if (cpu_online(cpu))
1631 cpufreq_offline(cpu);
1632
1633 cpumask_clear_cpu(cpu, policy->real_cpus);
1634 remove_cpu_dev_symlink(policy, dev);
1635
1636 if (cpumask_empty(policy->real_cpus)) {
1637 /* We did light-weight exit earlier, do full tear down now */
1638 if (cpufreq_driver->offline)
1639 cpufreq_driver->exit(policy);
1640
1641 cpufreq_policy_free(policy);
1642 }
1643}
1644
1645/**
1646 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1647 * in deep trouble.
1648 * @policy: policy managing CPUs
1649 * @new_freq: CPU frequency the CPU actually runs at
1650 *
1651 * We adjust to current frequency first, and need to clean up later.
1652 * So either call to cpufreq_update_policy() or schedule handle_update()).
1653 */
1654static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1655 unsigned int new_freq)
1656{
1657 struct cpufreq_freqs freqs;
1658
1659 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1660 policy->cur, new_freq);
1661
1662 freqs.old = policy->cur;
1663 freqs.new = new_freq;
1664
1665 cpufreq_freq_transition_begin(policy, &freqs);
1666 cpufreq_freq_transition_end(policy, &freqs, 0);
1667}
1668
1669static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1670{
1671 unsigned int new_freq;
1672
1673 new_freq = cpufreq_driver->get(policy->cpu);
1674 if (!new_freq)
1675 return 0;
1676
1677 /*
1678 * If fast frequency switching is used with the given policy, the check
1679 * against policy->cur is pointless, so skip it in that case.
1680 */
1681 if (policy->fast_switch_enabled || !has_target())
1682 return new_freq;
1683
1684 if (policy->cur != new_freq) {
1685 cpufreq_out_of_sync(policy, new_freq);
1686 if (update)
1687 schedule_work(&policy->update);
1688 }
1689
1690 return new_freq;
1691}
1692
1693/**
1694 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1695 * @cpu: CPU number
1696 *
1697 * This is the last known freq, without actually getting it from the driver.
1698 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1699 */
1700unsigned int cpufreq_quick_get(unsigned int cpu)
1701{
1702 struct cpufreq_policy *policy;
1703 unsigned int ret_freq = 0;
1704 unsigned long flags;
1705
1706 read_lock_irqsave(&cpufreq_driver_lock, flags);
1707
1708 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1709 ret_freq = cpufreq_driver->get(cpu);
1710 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1711 return ret_freq;
1712 }
1713
1714 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1715
1716 policy = cpufreq_cpu_get(cpu);
1717 if (policy) {
1718 ret_freq = policy->cur;
1719 cpufreq_cpu_put(policy);
1720 }
1721
1722 return ret_freq;
1723}
1724EXPORT_SYMBOL(cpufreq_quick_get);
1725
1726/**
1727 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1728 * @cpu: CPU number
1729 *
1730 * Just return the max possible frequency for a given CPU.
1731 */
1732unsigned int cpufreq_quick_get_max(unsigned int cpu)
1733{
1734 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1735 unsigned int ret_freq = 0;
1736
1737 if (policy) {
1738 ret_freq = policy->max;
1739 cpufreq_cpu_put(policy);
1740 }
1741
1742 return ret_freq;
1743}
1744EXPORT_SYMBOL(cpufreq_quick_get_max);
1745
1746/**
1747 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1748 * @cpu: CPU number
1749 *
1750 * The default return value is the max_freq field of cpuinfo.
1751 */
1752__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1753{
1754 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1755 unsigned int ret_freq = 0;
1756
1757 if (policy) {
1758 ret_freq = policy->cpuinfo.max_freq;
1759 cpufreq_cpu_put(policy);
1760 }
1761
1762 return ret_freq;
1763}
1764EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1765
1766static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1767{
1768 if (unlikely(policy_is_inactive(policy)))
1769 return 0;
1770
1771 return cpufreq_verify_current_freq(policy, true);
1772}
1773
1774/**
1775 * cpufreq_get - get the current CPU frequency (in kHz)
1776 * @cpu: CPU number
1777 *
1778 * Get the CPU current (static) CPU frequency
1779 */
1780unsigned int cpufreq_get(unsigned int cpu)
1781{
1782 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1783 unsigned int ret_freq = 0;
1784
1785 if (policy) {
1786 down_read(&policy->rwsem);
1787 if (cpufreq_driver->get)
1788 ret_freq = __cpufreq_get(policy);
1789 up_read(&policy->rwsem);
1790
1791 cpufreq_cpu_put(policy);
1792 }
1793
1794 return ret_freq;
1795}
1796EXPORT_SYMBOL(cpufreq_get);
1797
1798static struct subsys_interface cpufreq_interface = {
1799 .name = "cpufreq",
1800 .subsys = &cpu_subsys,
1801 .add_dev = cpufreq_add_dev,
1802 .remove_dev = cpufreq_remove_dev,
1803};
1804
1805/*
1806 * In case platform wants some specific frequency to be configured
1807 * during suspend..
1808 */
1809int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1810{
1811 int ret;
1812
1813 if (!policy->suspend_freq) {
1814 pr_debug("%s: suspend_freq not defined\n", __func__);
1815 return 0;
1816 }
1817
1818 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1819 policy->suspend_freq);
1820
1821 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1822 CPUFREQ_RELATION_H);
1823 if (ret)
1824 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1825 __func__, policy->suspend_freq, ret);
1826
1827 return ret;
1828}
1829EXPORT_SYMBOL(cpufreq_generic_suspend);
1830
1831/**
1832 * cpufreq_suspend() - Suspend CPUFreq governors
1833 *
1834 * Called during system wide Suspend/Hibernate cycles for suspending governors
1835 * as some platforms can't change frequency after this point in suspend cycle.
1836 * Because some of the devices (like: i2c, regulators, etc) they use for
1837 * changing frequency are suspended quickly after this point.
1838 */
1839void cpufreq_suspend(void)
1840{
1841 struct cpufreq_policy *policy;
1842
1843 if (!cpufreq_driver)
1844 return;
1845
1846 if (!has_target() && !cpufreq_driver->suspend)
1847 goto suspend;
1848
1849 pr_debug("%s: Suspending Governors\n", __func__);
1850
1851 for_each_active_policy(policy) {
1852 if (has_target()) {
1853 down_write(&policy->rwsem);
1854 cpufreq_stop_governor(policy);
1855 up_write(&policy->rwsem);
1856 }
1857
1858 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1859 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1860 cpufreq_driver->name);
1861 }
1862
1863suspend:
1864 cpufreq_suspended = true;
1865}
1866
1867/**
1868 * cpufreq_resume() - Resume CPUFreq governors
1869 *
1870 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1871 * are suspended with cpufreq_suspend().
1872 */
1873void cpufreq_resume(void)
1874{
1875 struct cpufreq_policy *policy;
1876 int ret;
1877
1878 if (!cpufreq_driver)
1879 return;
1880
1881 if (unlikely(!cpufreq_suspended))
1882 return;
1883
1884 cpufreq_suspended = false;
1885
1886 if (!has_target() && !cpufreq_driver->resume)
1887 return;
1888
1889 pr_debug("%s: Resuming Governors\n", __func__);
1890
1891 for_each_active_policy(policy) {
1892 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1893 pr_err("%s: Failed to resume driver: %p\n", __func__,
1894 policy);
1895 } else if (has_target()) {
1896 down_write(&policy->rwsem);
1897 ret = cpufreq_start_governor(policy);
1898 up_write(&policy->rwsem);
1899
1900 if (ret)
1901 pr_err("%s: Failed to start governor for policy: %p\n",
1902 __func__, policy);
1903 }
1904 }
1905}
1906
1907/**
1908 * cpufreq_get_current_driver - return current driver's name
1909 *
1910 * Return the name string of the currently loaded cpufreq driver
1911 * or NULL, if none.
1912 */
1913const char *cpufreq_get_current_driver(void)
1914{
1915 if (cpufreq_driver)
1916 return cpufreq_driver->name;
1917
1918 return NULL;
1919}
1920EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1921
1922/**
1923 * cpufreq_get_driver_data - return current driver data
1924 *
1925 * Return the private data of the currently loaded cpufreq
1926 * driver, or NULL if no cpufreq driver is loaded.
1927 */
1928void *cpufreq_get_driver_data(void)
1929{
1930 if (cpufreq_driver)
1931 return cpufreq_driver->driver_data;
1932
1933 return NULL;
1934}
1935EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1936
1937/*********************************************************************
1938 * NOTIFIER LISTS INTERFACE *
1939 *********************************************************************/
1940
1941/**
1942 * cpufreq_register_notifier - register a driver with cpufreq
1943 * @nb: notifier function to register
1944 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1945 *
1946 * Add a driver to one of two lists: either a list of drivers that
1947 * are notified about clock rate changes (once before and once after
1948 * the transition), or a list of drivers that are notified about
1949 * changes in cpufreq policy.
1950 *
1951 * This function may sleep, and has the same return conditions as
1952 * blocking_notifier_chain_register.
1953 */
1954int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1955{
1956 int ret;
1957
1958 if (cpufreq_disabled())
1959 return -EINVAL;
1960
1961 switch (list) {
1962 case CPUFREQ_TRANSITION_NOTIFIER:
1963 mutex_lock(&cpufreq_fast_switch_lock);
1964
1965 if (cpufreq_fast_switch_count > 0) {
1966 mutex_unlock(&cpufreq_fast_switch_lock);
1967 return -EBUSY;
1968 }
1969 ret = srcu_notifier_chain_register(
1970 &cpufreq_transition_notifier_list, nb);
1971 if (!ret)
1972 cpufreq_fast_switch_count--;
1973
1974 mutex_unlock(&cpufreq_fast_switch_lock);
1975 break;
1976 case CPUFREQ_POLICY_NOTIFIER:
1977 ret = blocking_notifier_chain_register(
1978 &cpufreq_policy_notifier_list, nb);
1979 break;
1980 default:
1981 ret = -EINVAL;
1982 }
1983
1984 return ret;
1985}
1986EXPORT_SYMBOL(cpufreq_register_notifier);
1987
1988/**
1989 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1990 * @nb: notifier block to be unregistered
1991 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1992 *
1993 * Remove a driver from the CPU frequency notifier list.
1994 *
1995 * This function may sleep, and has the same return conditions as
1996 * blocking_notifier_chain_unregister.
1997 */
1998int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1999{
2000 int ret;
2001
2002 if (cpufreq_disabled())
2003 return -EINVAL;
2004
2005 switch (list) {
2006 case CPUFREQ_TRANSITION_NOTIFIER:
2007 mutex_lock(&cpufreq_fast_switch_lock);
2008
2009 ret = srcu_notifier_chain_unregister(
2010 &cpufreq_transition_notifier_list, nb);
2011 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2012 cpufreq_fast_switch_count++;
2013
2014 mutex_unlock(&cpufreq_fast_switch_lock);
2015 break;
2016 case CPUFREQ_POLICY_NOTIFIER:
2017 ret = blocking_notifier_chain_unregister(
2018 &cpufreq_policy_notifier_list, nb);
2019 break;
2020 default:
2021 ret = -EINVAL;
2022 }
2023
2024 return ret;
2025}
2026EXPORT_SYMBOL(cpufreq_unregister_notifier);
2027
2028
2029/*********************************************************************
2030 * GOVERNORS *
2031 *********************************************************************/
2032
2033/**
2034 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2035 * @policy: cpufreq policy to switch the frequency for.
2036 * @target_freq: New frequency to set (may be approximate).
2037 *
2038 * Carry out a fast frequency switch without sleeping.
2039 *
2040 * The driver's ->fast_switch() callback invoked by this function must be
2041 * suitable for being called from within RCU-sched read-side critical sections
2042 * and it is expected to select the minimum available frequency greater than or
2043 * equal to @target_freq (CPUFREQ_RELATION_L).
2044 *
2045 * This function must not be called if policy->fast_switch_enabled is unset.
2046 *
2047 * Governors calling this function must guarantee that it will never be invoked
2048 * twice in parallel for the same policy and that it will never be called in
2049 * parallel with either ->target() or ->target_index() for the same policy.
2050 *
2051 * Returns the actual frequency set for the CPU.
2052 *
2053 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2054 * error condition, the hardware configuration must be preserved.
2055 */
2056unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2057 unsigned int target_freq)
2058{
2059 target_freq = clamp_val(target_freq, policy->min, policy->max);
2060
2061 return cpufreq_driver->fast_switch(policy, target_freq);
2062}
2063EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2064
2065/* Must set freqs->new to intermediate frequency */
2066static int __target_intermediate(struct cpufreq_policy *policy,
2067 struct cpufreq_freqs *freqs, int index)
2068{
2069 int ret;
2070
2071 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2072
2073 /* We don't need to switch to intermediate freq */
2074 if (!freqs->new)
2075 return 0;
2076
2077 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2078 __func__, policy->cpu, freqs->old, freqs->new);
2079
2080 cpufreq_freq_transition_begin(policy, freqs);
2081 ret = cpufreq_driver->target_intermediate(policy, index);
2082 cpufreq_freq_transition_end(policy, freqs, ret);
2083
2084 if (ret)
2085 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2086 __func__, ret);
2087
2088 return ret;
2089}
2090
2091static int __target_index(struct cpufreq_policy *policy, int index)
2092{
2093 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2094 unsigned int intermediate_freq = 0;
2095 unsigned int newfreq = policy->freq_table[index].frequency;
2096 int retval = -EINVAL;
2097 bool notify;
2098
2099 if (newfreq == policy->cur)
2100 return 0;
2101
2102 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2103 if (notify) {
2104 /* Handle switching to intermediate frequency */
2105 if (cpufreq_driver->get_intermediate) {
2106 retval = __target_intermediate(policy, &freqs, index);
2107 if (retval)
2108 return retval;
2109
2110 intermediate_freq = freqs.new;
2111 /* Set old freq to intermediate */
2112 if (intermediate_freq)
2113 freqs.old = freqs.new;
2114 }
2115
2116 freqs.new = newfreq;
2117 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2118 __func__, policy->cpu, freqs.old, freqs.new);
2119
2120 cpufreq_freq_transition_begin(policy, &freqs);
2121 }
2122
2123 retval = cpufreq_driver->target_index(policy, index);
2124 if (retval)
2125 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2126 retval);
2127
2128 if (notify) {
2129 cpufreq_freq_transition_end(policy, &freqs, retval);
2130
2131 /*
2132 * Failed after setting to intermediate freq? Driver should have
2133 * reverted back to initial frequency and so should we. Check
2134 * here for intermediate_freq instead of get_intermediate, in
2135 * case we haven't switched to intermediate freq at all.
2136 */
2137 if (unlikely(retval && intermediate_freq)) {
2138 freqs.old = intermediate_freq;
2139 freqs.new = policy->restore_freq;
2140 cpufreq_freq_transition_begin(policy, &freqs);
2141 cpufreq_freq_transition_end(policy, &freqs, 0);
2142 }
2143 }
2144
2145 return retval;
2146}
2147
2148int __cpufreq_driver_target(struct cpufreq_policy *policy,
2149 unsigned int target_freq,
2150 unsigned int relation)
2151{
2152 unsigned int old_target_freq = target_freq;
2153 int index;
2154
2155 if (cpufreq_disabled())
2156 return -ENODEV;
2157
2158 /* Make sure that target_freq is within supported range */
2159 target_freq = clamp_val(target_freq, policy->min, policy->max);
2160
2161 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2162 policy->cpu, target_freq, relation, old_target_freq);
2163
2164 /*
2165 * This might look like a redundant call as we are checking it again
2166 * after finding index. But it is left intentionally for cases where
2167 * exactly same freq is called again and so we can save on few function
2168 * calls.
2169 */
2170 if (target_freq == policy->cur)
2171 return 0;
2172
2173 /* Save last value to restore later on errors */
2174 policy->restore_freq = policy->cur;
2175
2176 if (cpufreq_driver->target)
2177 return cpufreq_driver->target(policy, target_freq, relation);
2178
2179 if (!cpufreq_driver->target_index)
2180 return -EINVAL;
2181
2182 index = cpufreq_frequency_table_target(policy, target_freq, relation);
2183
2184 return __target_index(policy, index);
2185}
2186EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2187
2188int cpufreq_driver_target(struct cpufreq_policy *policy,
2189 unsigned int target_freq,
2190 unsigned int relation)
2191{
2192 int ret;
2193
2194 down_write(&policy->rwsem);
2195
2196 ret = __cpufreq_driver_target(policy, target_freq, relation);
2197
2198 up_write(&policy->rwsem);
2199
2200 return ret;
2201}
2202EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2203
2204__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2205{
2206 return NULL;
2207}
2208
2209static int cpufreq_init_governor(struct cpufreq_policy *policy)
2210{
2211 int ret;
2212
2213 /* Don't start any governor operations if we are entering suspend */
2214 if (cpufreq_suspended)
2215 return 0;
2216 /*
2217 * Governor might not be initiated here if ACPI _PPC changed
2218 * notification happened, so check it.
2219 */
2220 if (!policy->governor)
2221 return -EINVAL;
2222
2223 /* Platform doesn't want dynamic frequency switching ? */
2224 if (policy->governor->dynamic_switching &&
2225 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2226 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2227
2228 if (gov) {
2229 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2230 policy->governor->name, gov->name);
2231 policy->governor = gov;
2232 } else {
2233 return -EINVAL;
2234 }
2235 }
2236
2237 if (!try_module_get(policy->governor->owner))
2238 return -EINVAL;
2239
2240 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2241
2242 if (policy->governor->init) {
2243 ret = policy->governor->init(policy);
2244 if (ret) {
2245 module_put(policy->governor->owner);
2246 return ret;
2247 }
2248 }
2249
2250 return 0;
2251}
2252
2253static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2254{
2255 if (cpufreq_suspended || !policy->governor)
2256 return;
2257
2258 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2259
2260 if (policy->governor->exit)
2261 policy->governor->exit(policy);
2262
2263 module_put(policy->governor->owner);
2264}
2265
2266int cpufreq_start_governor(struct cpufreq_policy *policy)
2267{
2268 int ret;
2269
2270 if (cpufreq_suspended)
2271 return 0;
2272
2273 if (!policy->governor)
2274 return -EINVAL;
2275
2276 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2277
2278 if (cpufreq_driver->get)
2279 cpufreq_verify_current_freq(policy, false);
2280
2281 if (policy->governor->start) {
2282 ret = policy->governor->start(policy);
2283 if (ret)
2284 return ret;
2285 }
2286
2287 if (policy->governor->limits)
2288 policy->governor->limits(policy);
2289
2290 return 0;
2291}
2292
2293void cpufreq_stop_governor(struct cpufreq_policy *policy)
2294{
2295 if (cpufreq_suspended || !policy->governor)
2296 return;
2297
2298 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2299
2300 if (policy->governor->stop)
2301 policy->governor->stop(policy);
2302}
2303
2304static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2305{
2306 if (cpufreq_suspended || !policy->governor)
2307 return;
2308
2309 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2310
2311 if (policy->governor->limits)
2312 policy->governor->limits(policy);
2313}
2314
2315int cpufreq_register_governor(struct cpufreq_governor *governor)
2316{
2317 int err;
2318
2319 if (!governor)
2320 return -EINVAL;
2321
2322 if (cpufreq_disabled())
2323 return -ENODEV;
2324
2325 mutex_lock(&cpufreq_governor_mutex);
2326
2327 err = -EBUSY;
2328 if (!find_governor(governor->name)) {
2329 err = 0;
2330 list_add(&governor->governor_list, &cpufreq_governor_list);
2331 }
2332
2333 mutex_unlock(&cpufreq_governor_mutex);
2334 return err;
2335}
2336EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2337
2338void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2339{
2340 struct cpufreq_policy *policy;
2341 unsigned long flags;
2342
2343 if (!governor)
2344 return;
2345
2346 if (cpufreq_disabled())
2347 return;
2348
2349 /* clear last_governor for all inactive policies */
2350 read_lock_irqsave(&cpufreq_driver_lock, flags);
2351 for_each_inactive_policy(policy) {
2352 if (!strcmp(policy->last_governor, governor->name)) {
2353 policy->governor = NULL;
2354 strcpy(policy->last_governor, "\0");
2355 }
2356 }
2357 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2358
2359 mutex_lock(&cpufreq_governor_mutex);
2360 list_del(&governor->governor_list);
2361 mutex_unlock(&cpufreq_governor_mutex);
2362}
2363EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2364
2365
2366/*********************************************************************
2367 * POLICY INTERFACE *
2368 *********************************************************************/
2369
2370/**
2371 * cpufreq_get_policy - get the current cpufreq_policy
2372 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2373 * is written
2374 * @cpu: CPU to find the policy for
2375 *
2376 * Reads the current cpufreq policy.
2377 */
2378int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2379{
2380 struct cpufreq_policy *cpu_policy;
2381 if (!policy)
2382 return -EINVAL;
2383
2384 cpu_policy = cpufreq_cpu_get(cpu);
2385 if (!cpu_policy)
2386 return -EINVAL;
2387
2388 memcpy(policy, cpu_policy, sizeof(*policy));
2389
2390 cpufreq_cpu_put(cpu_policy);
2391 return 0;
2392}
2393EXPORT_SYMBOL(cpufreq_get_policy);
2394
2395/**
2396 * cpufreq_set_policy - Modify cpufreq policy parameters.
2397 * @policy: Policy object to modify.
2398 * @new_gov: Policy governor pointer.
2399 * @new_pol: Policy value (for drivers with built-in governors).
2400 *
2401 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2402 * limits to be set for the policy, update @policy with the verified limits
2403 * values and either invoke the driver's ->setpolicy() callback (if present) or
2404 * carry out a governor update for @policy. That is, run the current governor's
2405 * ->limits() callback (if @new_gov points to the same object as the one in
2406 * @policy) or replace the governor for @policy with @new_gov.
2407 *
2408 * The cpuinfo part of @policy is not updated by this function.
2409 */
2410static int cpufreq_set_policy(struct cpufreq_policy *policy,
2411 struct cpufreq_governor *new_gov,
2412 unsigned int new_pol)
2413{
2414 struct cpufreq_policy_data new_data;
2415 struct cpufreq_governor *old_gov;
2416 int ret;
2417
2418 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2419 new_data.freq_table = policy->freq_table;
2420 new_data.cpu = policy->cpu;
2421 /*
2422 * PM QoS framework collects all the requests from users and provide us
2423 * the final aggregated value here.
2424 */
2425 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2426 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2427
2428 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2429 new_data.cpu, new_data.min, new_data.max);
2430
2431 /*
2432 * Verify that the CPU speed can be set within these limits and make sure
2433 * that min <= max.
2434 */
2435 ret = cpufreq_driver->verify(&new_data);
2436 if (ret)
2437 return ret;
2438
2439 policy->min = new_data.min;
2440 policy->max = new_data.max;
2441 trace_cpu_frequency_limits(policy);
2442
2443 policy->cached_target_freq = UINT_MAX;
2444
2445 pr_debug("new min and max freqs are %u - %u kHz\n",
2446 policy->min, policy->max);
2447
2448 if (cpufreq_driver->setpolicy) {
2449 policy->policy = new_pol;
2450 pr_debug("setting range\n");
2451 return cpufreq_driver->setpolicy(policy);
2452 }
2453
2454 if (new_gov == policy->governor) {
2455 pr_debug("governor limits update\n");
2456 cpufreq_governor_limits(policy);
2457 return 0;
2458 }
2459
2460 pr_debug("governor switch\n");
2461
2462 /* save old, working values */
2463 old_gov = policy->governor;
2464 /* end old governor */
2465 if (old_gov) {
2466 cpufreq_stop_governor(policy);
2467 cpufreq_exit_governor(policy);
2468 }
2469
2470 /* start new governor */
2471 policy->governor = new_gov;
2472 ret = cpufreq_init_governor(policy);
2473 if (!ret) {
2474 ret = cpufreq_start_governor(policy);
2475 if (!ret) {
2476 pr_debug("governor change\n");
2477 sched_cpufreq_governor_change(policy, old_gov);
2478 return 0;
2479 }
2480 cpufreq_exit_governor(policy);
2481 }
2482
2483 /* new governor failed, so re-start old one */
2484 pr_debug("starting governor %s failed\n", policy->governor->name);
2485 if (old_gov) {
2486 policy->governor = old_gov;
2487 if (cpufreq_init_governor(policy))
2488 policy->governor = NULL;
2489 else
2490 cpufreq_start_governor(policy);
2491 }
2492
2493 return ret;
2494}
2495
2496/**
2497 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2498 * @cpu: CPU to re-evaluate the policy for.
2499 *
2500 * Update the current frequency for the cpufreq policy of @cpu and use
2501 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2502 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2503 * for the policy in question, among other things.
2504 */
2505void cpufreq_update_policy(unsigned int cpu)
2506{
2507 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2508
2509 if (!policy)
2510 return;
2511
2512 /*
2513 * BIOS might change freq behind our back
2514 * -> ask driver for current freq and notify governors about a change
2515 */
2516 if (cpufreq_driver->get && has_target() &&
2517 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2518 goto unlock;
2519
2520 refresh_frequency_limits(policy);
2521
2522unlock:
2523 cpufreq_cpu_release(policy);
2524}
2525EXPORT_SYMBOL(cpufreq_update_policy);
2526
2527/**
2528 * cpufreq_update_limits - Update policy limits for a given CPU.
2529 * @cpu: CPU to update the policy limits for.
2530 *
2531 * Invoke the driver's ->update_limits callback if present or call
2532 * cpufreq_update_policy() for @cpu.
2533 */
2534void cpufreq_update_limits(unsigned int cpu)
2535{
2536 if (cpufreq_driver->update_limits)
2537 cpufreq_driver->update_limits(cpu);
2538 else
2539 cpufreq_update_policy(cpu);
2540}
2541EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2542
2543/*********************************************************************
2544 * BOOST *
2545 *********************************************************************/
2546static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2547{
2548 int ret;
2549
2550 if (!policy->freq_table)
2551 return -ENXIO;
2552
2553 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2554 if (ret) {
2555 pr_err("%s: Policy frequency update failed\n", __func__);
2556 return ret;
2557 }
2558
2559 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2560 if (ret < 0)
2561 return ret;
2562
2563 return 0;
2564}
2565
2566int cpufreq_boost_trigger_state(int state)
2567{
2568 struct cpufreq_policy *policy;
2569 unsigned long flags;
2570 int ret = 0;
2571
2572 if (cpufreq_driver->boost_enabled == state)
2573 return 0;
2574
2575 write_lock_irqsave(&cpufreq_driver_lock, flags);
2576 cpufreq_driver->boost_enabled = state;
2577 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2578
2579 get_online_cpus();
2580 for_each_active_policy(policy) {
2581 ret = cpufreq_driver->set_boost(policy, state);
2582 if (ret)
2583 goto err_reset_state;
2584 }
2585 put_online_cpus();
2586
2587 return 0;
2588
2589err_reset_state:
2590 put_online_cpus();
2591
2592 write_lock_irqsave(&cpufreq_driver_lock, flags);
2593 cpufreq_driver->boost_enabled = !state;
2594 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2595
2596 pr_err("%s: Cannot %s BOOST\n",
2597 __func__, state ? "enable" : "disable");
2598
2599 return ret;
2600}
2601
2602static bool cpufreq_boost_supported(void)
2603{
2604 return cpufreq_driver->set_boost;
2605}
2606
2607static int create_boost_sysfs_file(void)
2608{
2609 int ret;
2610
2611 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2612 if (ret)
2613 pr_err("%s: cannot register global BOOST sysfs file\n",
2614 __func__);
2615
2616 return ret;
2617}
2618
2619static void remove_boost_sysfs_file(void)
2620{
2621 if (cpufreq_boost_supported())
2622 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2623}
2624
2625int cpufreq_enable_boost_support(void)
2626{
2627 if (!cpufreq_driver)
2628 return -EINVAL;
2629
2630 if (cpufreq_boost_supported())
2631 return 0;
2632
2633 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2634
2635 /* This will get removed on driver unregister */
2636 return create_boost_sysfs_file();
2637}
2638EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2639
2640int cpufreq_boost_enabled(void)
2641{
2642 return cpufreq_driver->boost_enabled;
2643}
2644EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2645
2646/*********************************************************************
2647 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2648 *********************************************************************/
2649static enum cpuhp_state hp_online;
2650
2651static int cpuhp_cpufreq_online(unsigned int cpu)
2652{
2653 cpufreq_online(cpu);
2654
2655 return 0;
2656}
2657
2658static int cpuhp_cpufreq_offline(unsigned int cpu)
2659{
2660 cpufreq_offline(cpu);
2661
2662 return 0;
2663}
2664
2665/**
2666 * cpufreq_register_driver - register a CPU Frequency driver
2667 * @driver_data: A struct cpufreq_driver containing the values#
2668 * submitted by the CPU Frequency driver.
2669 *
2670 * Registers a CPU Frequency driver to this core code. This code
2671 * returns zero on success, -EEXIST when another driver got here first
2672 * (and isn't unregistered in the meantime).
2673 *
2674 */
2675int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2676{
2677 unsigned long flags;
2678 int ret;
2679
2680 if (cpufreq_disabled())
2681 return -ENODEV;
2682
2683 /*
2684 * The cpufreq core depends heavily on the availability of device
2685 * structure, make sure they are available before proceeding further.
2686 */
2687 if (!get_cpu_device(0))
2688 return -EPROBE_DEFER;
2689
2690 if (!driver_data || !driver_data->verify || !driver_data->init ||
2691 !(driver_data->setpolicy || driver_data->target_index ||
2692 driver_data->target) ||
2693 (driver_data->setpolicy && (driver_data->target_index ||
2694 driver_data->target)) ||
2695 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2696 (!driver_data->online != !driver_data->offline))
2697 return -EINVAL;
2698
2699 pr_debug("trying to register driver %s\n", driver_data->name);
2700
2701 /* Protect against concurrent CPU online/offline. */
2702 cpus_read_lock();
2703
2704 write_lock_irqsave(&cpufreq_driver_lock, flags);
2705 if (cpufreq_driver) {
2706 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2707 ret = -EEXIST;
2708 goto out;
2709 }
2710 cpufreq_driver = driver_data;
2711 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2712
2713 if (driver_data->setpolicy)
2714 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2715
2716 if (cpufreq_boost_supported()) {
2717 ret = create_boost_sysfs_file();
2718 if (ret)
2719 goto err_null_driver;
2720 }
2721
2722 ret = subsys_interface_register(&cpufreq_interface);
2723 if (ret)
2724 goto err_boost_unreg;
2725
2726 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2727 list_empty(&cpufreq_policy_list)) {
2728 /* if all ->init() calls failed, unregister */
2729 ret = -ENODEV;
2730 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2731 driver_data->name);
2732 goto err_if_unreg;
2733 }
2734
2735 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2736 "cpufreq:online",
2737 cpuhp_cpufreq_online,
2738 cpuhp_cpufreq_offline);
2739 if (ret < 0)
2740 goto err_if_unreg;
2741 hp_online = ret;
2742 ret = 0;
2743
2744 pr_debug("driver %s up and running\n", driver_data->name);
2745 goto out;
2746
2747err_if_unreg:
2748 subsys_interface_unregister(&cpufreq_interface);
2749err_boost_unreg:
2750 remove_boost_sysfs_file();
2751err_null_driver:
2752 write_lock_irqsave(&cpufreq_driver_lock, flags);
2753 cpufreq_driver = NULL;
2754 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755out:
2756 cpus_read_unlock();
2757 return ret;
2758}
2759EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2760
2761/*
2762 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2763 *
2764 * Unregister the current CPUFreq driver. Only call this if you have
2765 * the right to do so, i.e. if you have succeeded in initialising before!
2766 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2767 * currently not initialised.
2768 */
2769int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2770{
2771 unsigned long flags;
2772
2773 if (!cpufreq_driver || (driver != cpufreq_driver))
2774 return -EINVAL;
2775
2776 pr_debug("unregistering driver %s\n", driver->name);
2777
2778 /* Protect against concurrent cpu hotplug */
2779 cpus_read_lock();
2780 subsys_interface_unregister(&cpufreq_interface);
2781 remove_boost_sysfs_file();
2782 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2783
2784 write_lock_irqsave(&cpufreq_driver_lock, flags);
2785
2786 cpufreq_driver = NULL;
2787
2788 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2789 cpus_read_unlock();
2790
2791 return 0;
2792}
2793EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2794
2795static int __init cpufreq_core_init(void)
2796{
2797 struct cpufreq_governor *gov = cpufreq_default_governor();
2798
2799 if (cpufreq_disabled())
2800 return -ENODEV;
2801
2802 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2803 BUG_ON(!cpufreq_global_kobject);
2804
2805 if (!strlen(default_governor))
2806 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2807
2808 return 0;
2809}
2810module_param(off, int, 0444);
2811module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2812core_initcall(cpufreq_core_init);