Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
 
   6 *
   7 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   8 *	Added handling for CPU hotplug
   9 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  10 *	Fix handling for CPU hotplug -- affected CPUs
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/init.h>
  21#include <linux/notifier.h>
  22#include <linux/cpufreq.h>
 
  23#include <linux/delay.h>
  24#include <linux/interrupt.h>
  25#include <linux/spinlock.h>
  26#include <linux/device.h>
  27#include <linux/slab.h>
  28#include <linux/cpu.h>
  29#include <linux/completion.h>
  30#include <linux/mutex.h>
 
 
 
  31#include <linux/syscore_ops.h>
  32
  33#include <trace/events/power.h>
  34
  35/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36 * The "cpufreq driver" - the arch- or hardware-dependent low
  37 * level driver of CPUFreq support, and its spinlock. This lock
  38 * also protects the cpufreq_cpu_data array.
  39 */
  40static struct cpufreq_driver *cpufreq_driver;
  41static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  42#ifdef CONFIG_HOTPLUG_CPU
  43/* This one keeps track of the previously set governor of a removed CPU */
  44static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
  45#endif
  46static DEFINE_SPINLOCK(cpufreq_driver_lock);
  47
  48/*
  49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
  50 * all cpufreq/hotplug/workqueue/etc related lock issues.
  51 *
  52 * The rules for this semaphore:
  53 * - Any routine that wants to read from the policy structure will
  54 *   do a down_read on this semaphore.
  55 * - Any routine that will write to the policy structure and/or may take away
  56 *   the policy altogether (eg. CPU hotplug), will hold this lock in write
  57 *   mode before doing so.
  58 *
  59 * Additional rules:
  60 * - All holders of the lock should check to make sure that the CPU they
  61 *   are concerned with are online after they get the lock.
  62 * - Governor routines that can be called in cpufreq hotplug path should not
  63 *   take this sem as top level hotplug notifier handler takes this.
  64 * - Lock should not be held across
  65 *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
  66 */
  67static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
  68static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
  69
  70#define lock_policy_rwsem(mode, cpu)					\
  71static int lock_policy_rwsem_##mode					\
  72(int cpu)								\
  73{									\
  74	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);		\
  75	BUG_ON(policy_cpu == -1);					\
  76	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
  77	if (unlikely(!cpu_online(cpu))) {				\
  78		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
  79		return -1;						\
  80	}								\
  81									\
  82	return 0;							\
  83}
  84
  85lock_policy_rwsem(read, cpu);
  86
  87lock_policy_rwsem(write, cpu);
  88
  89static void unlock_policy_rwsem_read(int cpu)
  90{
  91	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  92	BUG_ON(policy_cpu == -1);
  93	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
  94}
  95
  96static void unlock_policy_rwsem_write(int cpu)
  97{
  98	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  99	BUG_ON(policy_cpu == -1);
 100	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
 101}
 102
 103
 104/* internal prototypes */
 105static int __cpufreq_governor(struct cpufreq_policy *policy,
 106		unsigned int event);
 107static unsigned int __cpufreq_get(unsigned int cpu);
 108static void handle_update(struct work_struct *work);
 
 
 
 109
 110/**
 111 * Two notifier lists: the "policy" list is involved in the
 112 * validation process for a new CPU frequency policy; the
 113 * "transition" list for kernel code that needs to handle
 114 * changes to devices when the CPU clock speed changes.
 115 * The mutex locks both lists.
 116 */
 117static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
 118static struct srcu_notifier_head cpufreq_transition_notifier_list;
 119
 120static bool init_cpufreq_transition_notifier_list_called;
 121static int __init init_cpufreq_transition_notifier_list(void)
 122{
 123	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
 124	init_cpufreq_transition_notifier_list_called = true;
 125	return 0;
 
 
 126}
 127pure_initcall(init_cpufreq_transition_notifier_list);
 128
 129static LIST_HEAD(cpufreq_governor_list);
 130static DEFINE_MUTEX(cpufreq_governor_mutex);
 131
 132struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 133{
 134	struct cpufreq_policy *data;
 135	unsigned long flags;
 
 136
 137	if (cpu >= nr_cpu_ids)
 138		goto err_out;
 139
 140	/* get the cpufreq driver */
 141	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 142
 143	if (!cpufreq_driver)
 144		goto err_out_unlock;
 
 
 
 
 
 
 145
 146	if (!try_module_get(cpufreq_driver->owner))
 147		goto err_out_unlock;
 148
 
 
 
 
 
 
 149
 150	/* get the CPU */
 151	data = per_cpu(cpufreq_cpu_data, cpu);
 
 152
 153	if (!data)
 154		goto err_out_put_module;
 155
 156	if (!kobject_get(&data->kobj))
 157		goto err_out_put_module;
 
 158
 159	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 160	return data;
 
 
 161
 162err_out_put_module:
 163	module_put(cpufreq_driver->owner);
 164err_out_unlock:
 165	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 166err_out:
 167	return NULL;
 168}
 169EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171
 172void cpufreq_cpu_put(struct cpufreq_policy *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173{
 174	kobject_put(&data->kobj);
 175	module_put(cpufreq_driver->owner);
 176}
 177EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180/*********************************************************************
 181 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 182 *********************************************************************/
 183
 184/**
 185 * adjust_jiffies - adjust the system "loops_per_jiffy"
 186 *
 187 * This function alters the system "loops_per_jiffy" for the clock
 188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 189 * systems as each CPU might be scaled differently. So, use the arch
 190 * per-CPU loops_per_jiffy value wherever possible.
 191 */
 192#ifndef CONFIG_SMP
 193static unsigned long l_p_j_ref;
 194static unsigned int  l_p_j_ref_freq;
 195
 196static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 197{
 
 
 
 
 198	if (ci->flags & CPUFREQ_CONST_LOOPS)
 199		return;
 200
 201	if (!l_p_j_ref_freq) {
 202		l_p_j_ref = loops_per_jiffy;
 203		l_p_j_ref_freq = ci->old;
 204		pr_debug("saving %lu as reference value for loops_per_jiffy; "
 205			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
 206	}
 207	if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
 208	    (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
 209	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
 210		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 211								ci->new);
 212		pr_debug("scaling loops_per_jiffy to %lu "
 213			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
 214	}
 215}
 216#else
 217static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 218{
 219	return;
 220}
 221#endif
 222
 223
 224/**
 225 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 226 * on frequency transition.
 
 
 227 *
 228 * This function calls the transition notifiers and the "adjust_jiffies"
 229 * function. It is called twice on all CPU frequency changes that have
 230 * external effects.
 231 */
 232void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
 
 
 233{
 234	struct cpufreq_policy *policy;
 235
 236	BUG_ON(irqs_disabled());
 237
 
 
 
 
 238	freqs->flags = cpufreq_driver->flags;
 239	pr_debug("notification %u of frequency transition to %u kHz\n",
 240		state, freqs->new);
 241
 242	policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
 243	switch (state) {
 244
 245	case CPUFREQ_PRECHANGE:
 246		/* detect if the driver reported a value as "old frequency"
 
 247		 * which is not equal to what the cpufreq core thinks is
 248		 * "old frequency".
 249		 */
 250		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 251			if ((policy) && (policy->cpu == freqs->cpu) &&
 252			    (policy->cur) && (policy->cur != freqs->old)) {
 253				pr_debug("Warning: CPU frequency is"
 254					" %u, cpufreq assumed %u kHz.\n",
 255					freqs->old, policy->cur);
 256				freqs->old = policy->cur;
 257			}
 258		}
 
 259		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 260				CPUFREQ_PRECHANGE, freqs);
 
 261		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 262		break;
 263
 264	case CPUFREQ_POSTCHANGE:
 265		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 266		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
 267			(unsigned long)freqs->cpu);
 268		trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
 269		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 270		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 271				CPUFREQ_POSTCHANGE, freqs);
 272		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 273			policy->cur = freqs->new;
 274		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276}
 277EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
 
 
 
 
 
 
 
 278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279
 
 
 
 280
 281/*********************************************************************
 282 *                          SYSFS INTERFACE                          *
 283 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285static struct cpufreq_governor *__find_governor(const char *str_governor)
 286{
 287	struct cpufreq_governor *t;
 288
 289	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 290		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 291			return t;
 292
 293	return NULL;
 294}
 295
 296/**
 297 * cpufreq_parse_governor - parse a governor string
 298 */
 299static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 300				struct cpufreq_governor **governor)
 301{
 302	int err = -EINVAL;
 303
 304	if (!cpufreq_driver)
 305		goto out;
 
 
 306
 307	if (cpufreq_driver->setpolicy) {
 308		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 309			*policy = CPUFREQ_POLICY_PERFORMANCE;
 310			err = 0;
 311		} else if (!strnicmp(str_governor, "powersave",
 312						CPUFREQ_NAME_LEN)) {
 313			*policy = CPUFREQ_POLICY_POWERSAVE;
 314			err = 0;
 315		}
 316	} else if (cpufreq_driver->target) {
 317		struct cpufreq_governor *t;
 318
 319		mutex_lock(&cpufreq_governor_mutex);
 
 320
 321		t = __find_governor(str_governor);
 
 
 
 322
 323		if (t == NULL) {
 324			int ret;
 325
 326			mutex_unlock(&cpufreq_governor_mutex);
 327			ret = request_module("cpufreq_%s", str_governor);
 328			mutex_lock(&cpufreq_governor_mutex);
 329
 330			if (ret == 0)
 331				t = __find_governor(str_governor);
 332		}
 
 
 
 
 333
 334		if (t != NULL) {
 335			*governor = t;
 336			err = 0;
 337		}
 338
 339		mutex_unlock(&cpufreq_governor_mutex);
 340	}
 341out:
 342	return err;
 343}
 344
 
 
 345
 346/**
 347 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 348 * print out cpufreq information
 349 *
 350 * Write out information from cpufreq_driver->policy[cpu]; object must be
 351 * "unsigned int".
 352 */
 353
 354#define show_one(file_name, object)			\
 355static ssize_t show_##file_name				\
 356(struct cpufreq_policy *policy, char *buf)		\
 357{							\
 358	return sprintf(buf, "%u\n", policy->object);	\
 359}
 360
 361show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 362show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 363show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 364show_one(scaling_min_freq, min);
 365show_one(scaling_max_freq, max);
 366show_one(scaling_cur_freq, cur);
 367
 368static int __cpufreq_set_policy(struct cpufreq_policy *data,
 369				struct cpufreq_policy *policy);
 
 
 
 
 
 
 
 370
 371/**
 
 
 
 
 
 
 
 
 
 
 372 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 373 */
 374#define store_one(file_name, object)			\
 375static ssize_t store_##file_name					\
 376(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 377{									\
 378	unsigned int ret = -EINVAL;					\
 379	struct cpufreq_policy new_policy;				\
 380									\
 381	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 382	if (ret)							\
 383		return -EINVAL;						\
 384									\
 385	ret = sscanf(buf, "%u", &new_policy.object);			\
 386	if (ret != 1)							\
 387		return -EINVAL;						\
 388									\
 389	ret = __cpufreq_set_policy(policy, &new_policy);		\
 390	policy->user_policy.object = policy->object;			\
 391									\
 392	return ret ? ret : count;					\
 393}
 394
 395store_one(scaling_min_freq, min);
 396store_one(scaling_max_freq, max);
 397
 398/**
 399 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 400 */
 401static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 402					char *buf)
 403{
 404	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 405	if (!cur_freq)
 406		return sprintf(buf, "<unknown>");
 407	return sprintf(buf, "%u\n", cur_freq);
 408}
 409
 
 
 410
 411/**
 
 
 
 412 * show_scaling_governor - show the current policy for the specified CPU
 413 */
 414static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 415{
 416	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 417		return sprintf(buf, "powersave\n");
 418	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 419		return sprintf(buf, "performance\n");
 420	else if (policy->governor)
 421		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
 422				policy->governor->name);
 423	return -EINVAL;
 424}
 425
 426
 427/**
 428 * store_scaling_governor - store policy for the specified CPU
 429 */
 430static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 431					const char *buf, size_t count)
 432{
 433	unsigned int ret = -EINVAL;
 434	char	str_governor[16];
 435	struct cpufreq_policy new_policy;
 436
 437	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 438	if (ret)
 439		return ret;
 440
 441	ret = sscanf(buf, "%15s", str_governor);
 442	if (ret != 1)
 443		return -EINVAL;
 444
 445	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 446						&new_policy.governor))
 447		return -EINVAL;
 448
 449	/* Do not use cpufreq_set_policy here or the user_policy.max
 450	   will be wrongly overridden */
 451	ret = __cpufreq_set_policy(policy, &new_policy);
 452
 453	policy->user_policy.policy = policy->policy;
 454	policy->user_policy.governor = policy->governor;
 
 455
 456	if (ret)
 457		return ret;
 458	else
 459		return count;
 
 
 
 
 
 
 
 460}
 461
 462/**
 463 * show_scaling_driver - show the cpufreq driver currently loaded
 464 */
 465static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 466{
 467	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
 468}
 469
 470/**
 471 * show_scaling_available_governors - show the available CPUfreq governors
 472 */
 473static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 474						char *buf)
 475{
 476	ssize_t i = 0;
 477	struct cpufreq_governor *t;
 478
 479	if (!cpufreq_driver->target) {
 480		i += sprintf(buf, "performance powersave");
 481		goto out;
 482	}
 483
 484	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 
 485		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 486		    - (CPUFREQ_NAME_LEN + 2)))
 487			goto out;
 488		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
 489	}
 
 490out:
 491	i += sprintf(&buf[i], "\n");
 492	return i;
 493}
 494
 495static ssize_t show_cpus(const struct cpumask *mask, char *buf)
 496{
 497	ssize_t i = 0;
 498	unsigned int cpu;
 499
 500	for_each_cpu(cpu, mask) {
 501		if (i)
 502			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 503		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 504		if (i >= (PAGE_SIZE - 5))
 505			break;
 506	}
 507	i += sprintf(&buf[i], "\n");
 508	return i;
 509}
 
 510
 511/**
 512 * show_related_cpus - show the CPUs affected by each transition even if
 513 * hw coordination is in use
 514 */
 515static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 516{
 517	if (cpumask_empty(policy->related_cpus))
 518		return show_cpus(policy->cpus, buf);
 519	return show_cpus(policy->related_cpus, buf);
 520}
 521
 522/**
 523 * show_affected_cpus - show the CPUs affected by each transition
 524 */
 525static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 526{
 527	return show_cpus(policy->cpus, buf);
 528}
 529
 530static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 531					const char *buf, size_t count)
 532{
 533	unsigned int freq = 0;
 534	unsigned int ret;
 535
 536	if (!policy->governor || !policy->governor->store_setspeed)
 537		return -EINVAL;
 538
 539	ret = sscanf(buf, "%u", &freq);
 540	if (ret != 1)
 541		return -EINVAL;
 542
 543	policy->governor->store_setspeed(policy, freq);
 544
 545	return count;
 546}
 547
 548static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (!policy->governor || !policy->governor->show_setspeed)
 551		return sprintf(buf, "<unsupported>\n");
 552
 553	return policy->governor->show_setspeed(policy, buf);
 554}
 555
 556/**
 557 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
 558 */
 559static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 560{
 561	unsigned int limit;
 562	int ret;
 563	if (cpufreq_driver->bios_limit) {
 564		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 565		if (!ret)
 566			return sprintf(buf, "%u\n", limit);
 567	}
 568	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 569}
 570
 571cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 572cpufreq_freq_attr_ro(cpuinfo_min_freq);
 573cpufreq_freq_attr_ro(cpuinfo_max_freq);
 574cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 575cpufreq_freq_attr_ro(scaling_available_governors);
 576cpufreq_freq_attr_ro(scaling_driver);
 577cpufreq_freq_attr_ro(scaling_cur_freq);
 578cpufreq_freq_attr_ro(bios_limit);
 579cpufreq_freq_attr_ro(related_cpus);
 580cpufreq_freq_attr_ro(affected_cpus);
 581cpufreq_freq_attr_rw(scaling_min_freq);
 582cpufreq_freq_attr_rw(scaling_max_freq);
 583cpufreq_freq_attr_rw(scaling_governor);
 584cpufreq_freq_attr_rw(scaling_setspeed);
 585
 586static struct attribute *default_attrs[] = {
 587	&cpuinfo_min_freq.attr,
 588	&cpuinfo_max_freq.attr,
 589	&cpuinfo_transition_latency.attr,
 590	&scaling_min_freq.attr,
 591	&scaling_max_freq.attr,
 592	&affected_cpus.attr,
 593	&related_cpus.attr,
 594	&scaling_governor.attr,
 595	&scaling_driver.attr,
 596	&scaling_available_governors.attr,
 597	&scaling_setspeed.attr,
 598	NULL
 599};
 600
 601struct kobject *cpufreq_global_kobject;
 602EXPORT_SYMBOL(cpufreq_global_kobject);
 603
 604#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 605#define to_attr(a) container_of(a, struct freq_attr, attr)
 606
 607static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 608{
 609	struct cpufreq_policy *policy = to_policy(kobj);
 610	struct freq_attr *fattr = to_attr(attr);
 611	ssize_t ret = -EINVAL;
 612	policy = cpufreq_cpu_get(policy->cpu);
 613	if (!policy)
 614		goto no_policy;
 615
 616	if (lock_policy_rwsem_read(policy->cpu) < 0)
 617		goto fail;
 618
 619	if (fattr->show)
 620		ret = fattr->show(policy, buf);
 621	else
 622		ret = -EIO;
 623
 624	unlock_policy_rwsem_read(policy->cpu);
 625fail:
 626	cpufreq_cpu_put(policy);
 627no_policy:
 628	return ret;
 629}
 630
 631static ssize_t store(struct kobject *kobj, struct attribute *attr,
 632		     const char *buf, size_t count)
 633{
 634	struct cpufreq_policy *policy = to_policy(kobj);
 635	struct freq_attr *fattr = to_attr(attr);
 636	ssize_t ret = -EINVAL;
 637	policy = cpufreq_cpu_get(policy->cpu);
 638	if (!policy)
 639		goto no_policy;
 640
 641	if (lock_policy_rwsem_write(policy->cpu) < 0)
 642		goto fail;
 
 
 
 
 
 
 
 643
 644	if (fattr->store)
 
 645		ret = fattr->store(policy, buf, count);
 646	else
 647		ret = -EIO;
 
 
 648
 649	unlock_policy_rwsem_write(policy->cpu);
 650fail:
 651	cpufreq_cpu_put(policy);
 652no_policy:
 653	return ret;
 654}
 655
 656static void cpufreq_sysfs_release(struct kobject *kobj)
 657{
 658	struct cpufreq_policy *policy = to_policy(kobj);
 659	pr_debug("last reference is dropped\n");
 660	complete(&policy->kobj_unregister);
 661}
 662
 663static const struct sysfs_ops sysfs_ops = {
 664	.show	= show,
 665	.store	= store,
 666};
 667
 668static struct kobj_type ktype_cpufreq = {
 669	.sysfs_ops	= &sysfs_ops,
 670	.default_attrs	= default_attrs,
 671	.release	= cpufreq_sysfs_release,
 672};
 673
 674/*
 675 * Returns:
 676 *   Negative: Failure
 677 *   0:        Success
 678 *   Positive: When we have a managed CPU and the sysfs got symlinked
 679 */
 680static int cpufreq_add_dev_policy(unsigned int cpu,
 681				  struct cpufreq_policy *policy,
 682				  struct sys_device *sys_dev)
 683{
 684	int ret = 0;
 685#ifdef CONFIG_SMP
 686	unsigned long flags;
 687	unsigned int j;
 688#ifdef CONFIG_HOTPLUG_CPU
 689	struct cpufreq_governor *gov;
 690
 691	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
 692	if (gov) {
 693		policy->governor = gov;
 694		pr_debug("Restoring governor %s for cpu %d\n",
 695		       policy->governor->name, cpu);
 696	}
 697#endif
 698
 699	for_each_cpu(j, policy->cpus) {
 700		struct cpufreq_policy *managed_policy;
 701
 702		if (cpu == j)
 703			continue;
 704
 705		/* Check for existing affected CPUs.
 706		 * They may not be aware of it due to CPU Hotplug.
 707		 * cpufreq_cpu_put is called when the device is removed
 708		 * in __cpufreq_remove_dev()
 709		 */
 710		managed_policy = cpufreq_cpu_get(j);
 711		if (unlikely(managed_policy)) {
 712
 713			/* Set proper policy_cpu */
 714			unlock_policy_rwsem_write(cpu);
 715			per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
 716
 717			if (lock_policy_rwsem_write(cpu) < 0) {
 718				/* Should not go through policy unlock path */
 719				if (cpufreq_driver->exit)
 720					cpufreq_driver->exit(policy);
 721				cpufreq_cpu_put(managed_policy);
 722				return -EBUSY;
 723			}
 724
 725			spin_lock_irqsave(&cpufreq_driver_lock, flags);
 726			cpumask_copy(managed_policy->cpus, policy->cpus);
 727			per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
 728			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 729
 730			pr_debug("CPU already managed, adding link\n");
 731			ret = sysfs_create_link(&sys_dev->kobj,
 732						&managed_policy->kobj,
 733						"cpufreq");
 734			if (ret)
 735				cpufreq_cpu_put(managed_policy);
 736			/*
 737			 * Success. We only needed to be added to the mask.
 738			 * Call driver->exit() because only the cpu parent of
 739			 * the kobj needed to call init().
 740			 */
 741			if (cpufreq_driver->exit)
 742				cpufreq_driver->exit(policy);
 743
 744			if (!ret)
 745				return 1;
 746			else
 747				return ret;
 748		}
 749	}
 750#endif
 751	return ret;
 752}
 753
 754
 755/* symlink affected CPUs */
 756static int cpufreq_add_dev_symlink(unsigned int cpu,
 757				   struct cpufreq_policy *policy)
 758{
 759	unsigned int j;
 760	int ret = 0;
 761
 762	for_each_cpu(j, policy->cpus) {
 763		struct cpufreq_policy *managed_policy;
 764		struct sys_device *cpu_sys_dev;
 765
 766		if (j == cpu)
 767			continue;
 768		if (!cpu_online(j))
 769			continue;
 770
 771		pr_debug("CPU %u already managed, adding link\n", j);
 772		managed_policy = cpufreq_cpu_get(cpu);
 773		cpu_sys_dev = get_cpu_sysdev(j);
 774		ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
 775					"cpufreq");
 776		if (ret) {
 777			cpufreq_cpu_put(managed_policy);
 778			return ret;
 779		}
 780	}
 781	return ret;
 782}
 783
 784static int cpufreq_add_dev_interface(unsigned int cpu,
 785				     struct cpufreq_policy *policy,
 786				     struct sys_device *sys_dev)
 787{
 788	struct cpufreq_policy new_policy;
 789	struct freq_attr **drv_attr;
 790	unsigned long flags;
 791	int ret = 0;
 792	unsigned int j;
 793
 794	/* prepare interface data */
 795	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 796				   &sys_dev->kobj, "cpufreq");
 797	if (ret)
 798		return ret;
 799
 800	/* set up files for this cpu device */
 801	drv_attr = cpufreq_driver->attr;
 802	while ((drv_attr) && (*drv_attr)) {
 803		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 804		if (ret)
 805			goto err_out_kobj_put;
 806		drv_attr++;
 807	}
 808	if (cpufreq_driver->get) {
 809		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 810		if (ret)
 811			goto err_out_kobj_put;
 812	}
 813	if (cpufreq_driver->target) {
 814		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 815		if (ret)
 816			goto err_out_kobj_put;
 817	}
 
 
 
 
 
 818	if (cpufreq_driver->bios_limit) {
 819		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 820		if (ret)
 821			goto err_out_kobj_put;
 822	}
 823
 824	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 825	for_each_cpu(j, policy->cpus) {
 826		if (!cpu_online(j))
 827			continue;
 828		per_cpu(cpufreq_cpu_data, j) = policy;
 829		per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
 830	}
 831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 832
 833	ret = cpufreq_add_dev_symlink(cpu, policy);
 834	if (ret)
 835		goto err_out_kobj_put;
 
 
 836
 837	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
 838	/* assure that the starting sequence is run in __cpufreq_set_policy */
 839	policy->governor = NULL;
 840
 841	/* set default policy */
 842	ret = __cpufreq_set_policy(policy, &new_policy);
 843	policy->user_policy.policy = policy->policy;
 844	policy->user_policy.governor = policy->governor;
 
 845
 846	if (ret) {
 847		pr_debug("setting policy failed\n");
 848		if (cpufreq_driver->exit)
 849			cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	}
 851	return ret;
 852
 853err_out_kobj_put:
 854	kobject_put(&policy->kobj);
 855	wait_for_completion(&policy->kobj_unregister);
 
 856	return ret;
 857}
 858
 859
 860/**
 861 * cpufreq_add_dev - add a CPU device
 862 *
 863 * Adds the cpufreq interface for a CPU device.
 864 *
 865 * The Oracle says: try running cpufreq registration/unregistration concurrently
 866 * with with cpu hotplugging and all hell will break loose. Tried to clean this
 867 * mess up, but more thorough testing is needed. - Mathieu
 868 */
 869static int cpufreq_add_dev(struct sys_device *sys_dev)
 870{
 871	unsigned int cpu = sys_dev->id;
 872	int ret = 0, found = 0;
 873	struct cpufreq_policy *policy;
 874	unsigned long flags;
 875	unsigned int j;
 876#ifdef CONFIG_HOTPLUG_CPU
 877	int sibling;
 878#endif
 879
 880	if (cpu_is_offline(cpu))
 
 881		return 0;
 882
 883	pr_debug("adding CPU %u\n", cpu);
 
 
 884
 885#ifdef CONFIG_SMP
 886	/* check whether a different CPU already registered this
 887	 * CPU because it is in the same boat. */
 888	policy = cpufreq_cpu_get(cpu);
 889	if (unlikely(policy)) {
 890		cpufreq_cpu_put(policy);
 891		return 0;
 892	}
 893#endif
 
 
 894
 895	if (!try_module_get(cpufreq_driver->owner)) {
 896		ret = -EINVAL;
 897		goto module_out;
 
 
 
 898	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900	ret = -ENOMEM;
 901	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902	if (!policy)
 903		goto nomem_out;
 904
 905	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
 906		goto err_free_policy;
 907
 908	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
 909		goto err_free_cpumask;
 910
 911	policy->cpu = cpu;
 912	cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 913
 914	/* Initially set CPU itself as the policy_cpu */
 915	per_cpu(cpufreq_policy_cpu, cpu) = cpu;
 916	ret = (lock_policy_rwsem_write(cpu) < 0);
 917	WARN_ON(ret);
 918
 919	init_completion(&policy->kobj_unregister);
 920	INIT_WORK(&policy->update, handle_update);
 921
 922	/* Set governor before ->init, so that driver could check it */
 923#ifdef CONFIG_HOTPLUG_CPU
 924	for_each_online_cpu(sibling) {
 925		struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
 926		if (cp && cp->governor &&
 927		    (cpumask_test_cpu(cpu, cp->related_cpus))) {
 928			policy->governor = cp->governor;
 929			found = 1;
 930			break;
 931		}
 932	}
 933#endif
 934	if (!found)
 935		policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
 936	/* call driver. From then on the cpufreq must be able
 937	 * to accept all calls to ->verify and ->setpolicy for this CPU
 938	 */
 939	ret = cpufreq_driver->init(policy);
 940	if (ret) {
 941		pr_debug("initialization failed\n");
 942		goto err_unlock_policy;
 
 943	}
 944	policy->user_policy.min = policy->min;
 945	policy->user_policy.max = policy->max;
 946
 947	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
 948				     CPUFREQ_START, policy);
 949
 950	ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
 
 951	if (ret) {
 952		if (ret > 0)
 953			/* This is a managed cpu, symlink created,
 954			   exit with 0 */
 955			ret = 0;
 956		goto err_unlock_policy;
 957	}
 958
 959	ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
 960	if (ret)
 961		goto err_out_unregister;
 
 
 
 962
 963	unlock_policy_rwsem_write(cpu);
 
 964
 965	kobject_uevent(&policy->kobj, KOBJ_ADD);
 966	module_put(cpufreq_driver->owner);
 967	pr_debug("initialization complete\n");
 
 
 
 
 
 
 
 
 
 
 968
 969	return 0;
 
 970
 
 
 
 
 971
 972err_out_unregister:
 973	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 974	for_each_cpu(j, policy->cpus)
 975		per_cpu(cpufreq_cpu_data, j) = NULL;
 976	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977
 978	kobject_put(&policy->kobj);
 979	wait_for_completion(&policy->kobj_unregister);
 980
 981err_unlock_policy:
 982	unlock_policy_rwsem_write(cpu);
 983	free_cpumask_var(policy->related_cpus);
 984err_free_cpumask:
 985	free_cpumask_var(policy->cpus);
 986err_free_policy:
 987	kfree(policy);
 988nomem_out:
 989	module_put(cpufreq_driver->owner);
 990module_out:
 991	return ret;
 992}
 993
 994
 995/**
 996 * __cpufreq_remove_dev - remove a CPU device
 997 *
 998 * Removes the cpufreq interface for a CPU device.
 999 * Caller should already have policy_rwsem in write mode for this CPU.
1000 * This routine frees the rwsem before returning.
1001 */
1002static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1003{
1004	unsigned int cpu = sys_dev->id;
 
1005	unsigned long flags;
1006	struct cpufreq_policy *data;
1007	struct kobject *kobj;
1008	struct completion *cmp;
1009#ifdef CONFIG_SMP
1010	struct sys_device *cpu_sys_dev;
1011	unsigned int j;
1012#endif
1013
1014	pr_debug("unregistering CPU %u\n", cpu);
1015
1016	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1017	data = per_cpu(cpufreq_cpu_data, cpu);
1018
1019	if (!data) {
1020		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1021		unlock_policy_rwsem_write(cpu);
1022		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023	}
1024	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1025
 
 
 
 
 
 
 
1026
1027#ifdef CONFIG_SMP
1028	/* if this isn't the CPU which is the parent of the kobj, we
1029	 * only need to unlink, put and exit
1030	 */
1031	if (unlikely(cpu != data->cpu)) {
1032		pr_debug("removing link\n");
1033		cpumask_clear_cpu(cpu, data->cpus);
1034		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1035		kobj = &sys_dev->kobj;
1036		cpufreq_cpu_put(data);
1037		unlock_policy_rwsem_write(cpu);
1038		sysfs_remove_link(kobj, "cpufreq");
1039		return 0;
1040	}
1041#endif
1042
1043#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
1044
1045#ifdef CONFIG_HOTPLUG_CPU
1046	strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1047			CPUFREQ_NAME_LEN);
1048#endif
 
 
 
1049
1050	/* if we have other CPUs still registered, we need to unlink them,
1051	 * or else wait_for_completion below will lock up. Clean the
1052	 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1053	 * the sysfs links afterwards.
1054	 */
1055	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1056		for_each_cpu(j, data->cpus) {
1057			if (j == cpu)
1058				continue;
1059			per_cpu(cpufreq_cpu_data, j) = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061	}
1062
1063	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064
1065	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1066		for_each_cpu(j, data->cpus) {
1067			if (j == cpu)
1068				continue;
1069			pr_debug("removing link for cpu %u\n", j);
1070#ifdef CONFIG_HOTPLUG_CPU
1071			strncpy(per_cpu(cpufreq_cpu_governor, j),
1072				data->governor->name, CPUFREQ_NAME_LEN);
1073#endif
1074			cpu_sys_dev = get_cpu_sysdev(j);
1075			kobj = &cpu_sys_dev->kobj;
1076			unlock_policy_rwsem_write(cpu);
1077			sysfs_remove_link(kobj, "cpufreq");
1078			lock_policy_rwsem_write(cpu);
1079			cpufreq_cpu_put(data);
1080		}
1081	}
1082#else
1083	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084#endif
1085
1086	if (cpufreq_driver->target)
1087		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088
1089	kobj = &data->kobj;
1090	cmp = &data->kobj_unregister;
1091	unlock_policy_rwsem_write(cpu);
1092	kobject_put(kobj);
 
 
 
 
 
 
1093
1094	/* we need to make sure that the underlying kobj is actually
1095	 * not referenced anymore by anybody before we proceed with
1096	 * unloading.
1097	 */
1098	pr_debug("waiting for dropping of refcount\n");
1099	wait_for_completion(cmp);
1100	pr_debug("wait complete\n");
1101
1102	lock_policy_rwsem_write(cpu);
1103	if (cpufreq_driver->exit)
1104		cpufreq_driver->exit(data);
1105	unlock_policy_rwsem_write(cpu);
1106
1107#ifdef CONFIG_HOTPLUG_CPU
1108	/* when the CPU which is the parent of the kobj is hotplugged
1109	 * offline, check for siblings, and create cpufreq sysfs interface
1110	 * and symlinks
1111	 */
1112	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1113		/* first sibling now owns the new sysfs dir */
1114		cpumask_clear_cpu(cpu, data->cpus);
1115		cpufreq_add_dev(get_cpu_sysdev(cpumask_first(data->cpus)));
1116
1117		/* finally remove our own symlink */
1118		lock_policy_rwsem_write(cpu);
1119		__cpufreq_remove_dev(sys_dev);
1120	}
1121#endif
1122
1123	free_cpumask_var(data->related_cpus);
1124	free_cpumask_var(data->cpus);
1125	kfree(data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126
1127	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128}
1129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130
1131static int cpufreq_remove_dev(struct sys_device *sys_dev)
 
 
 
 
 
 
 
 
1132{
1133	unsigned int cpu = sys_dev->id;
1134	int retval;
 
 
1135
1136	if (cpu_is_offline(cpu))
 
 
1137		return 0;
 
1138
1139	if (unlikely(lock_policy_rwsem_write(cpu)))
1140		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141
1142	retval = __cpufreq_remove_dev(sys_dev);
1143	return retval;
1144}
1145
 
 
 
 
1146
1147static void handle_update(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148{
1149	struct cpufreq_policy *policy =
1150		container_of(work, struct cpufreq_policy, update);
1151	unsigned int cpu = policy->cpu;
1152	pr_debug("handle_update for cpu %u called\n", cpu);
1153	cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154}
1155
1156/**
1157 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1158 *	@cpu: cpu number
1159 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1160 *	@new_freq: CPU frequency the CPU actually runs at
1161 *
1162 *	We adjust to current frequency first, and need to clean up later.
1163 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1164 */
1165static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1166				unsigned int new_freq)
1167{
1168	struct cpufreq_freqs freqs;
1169
1170	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1171	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172
1173	freqs.cpu = cpu;
1174	freqs.old = old_freq;
1175	freqs.new = new_freq;
1176	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1177	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
 
1178}
1179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181/**
1182 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1183 * @cpu: CPU number
1184 *
1185 * This is the last known freq, without actually getting it from the driver.
1186 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187 */
1188unsigned int cpufreq_quick_get(unsigned int cpu)
1189{
1190	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1191	unsigned int ret_freq = 0;
 
 
 
 
 
 
 
 
 
 
 
1192
 
1193	if (policy) {
1194		ret_freq = policy->cur;
1195		cpufreq_cpu_put(policy);
1196	}
1197
1198	return ret_freq;
1199}
1200EXPORT_SYMBOL(cpufreq_quick_get);
1201
1202/**
1203 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1204 * @cpu: CPU number
1205 *
1206 * Just return the max possible frequency for a given CPU.
1207 */
1208unsigned int cpufreq_quick_get_max(unsigned int cpu)
1209{
1210	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1211	unsigned int ret_freq = 0;
1212
1213	if (policy) {
1214		ret_freq = policy->max;
1215		cpufreq_cpu_put(policy);
1216	}
1217
1218	return ret_freq;
1219}
1220EXPORT_SYMBOL(cpufreq_quick_get_max);
1221
1222
1223static unsigned int __cpufreq_get(unsigned int cpu)
 
 
 
 
 
1224{
1225	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1226	unsigned int ret_freq = 0;
1227
1228	if (!cpufreq_driver->get)
1229		return ret_freq;
1230
1231	ret_freq = cpufreq_driver->get(cpu);
1232
1233	if (ret_freq && policy->cur &&
1234		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1235		/* verify no discrepancy between actual and
1236					saved value exists */
1237		if (unlikely(ret_freq != policy->cur)) {
1238			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1239			schedule_work(&policy->update);
1240		}
1241	}
1242
1243	return ret_freq;
1244}
 
 
 
 
 
 
 
 
 
1245
1246/**
1247 * cpufreq_get - get the current CPU frequency (in kHz)
1248 * @cpu: CPU number
1249 *
1250 * Get the CPU current (static) CPU frequency
1251 */
1252unsigned int cpufreq_get(unsigned int cpu)
1253{
1254	unsigned int ret_freq = 0;
1255	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 
1256
1257	if (!policy)
1258		goto out;
1259
1260	if (unlikely(lock_policy_rwsem_read(cpu)))
1261		goto out_policy;
1262
1263	ret_freq = __cpufreq_get(cpu);
1264
1265	unlock_policy_rwsem_read(cpu);
 
1266
1267out_policy:
1268	cpufreq_cpu_put(policy);
1269out:
1270	return ret_freq;
1271}
1272EXPORT_SYMBOL(cpufreq_get);
1273
1274static struct sysdev_driver cpufreq_sysdev_driver = {
1275	.add		= cpufreq_add_dev,
1276	.remove		= cpufreq_remove_dev,
 
 
1277};
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279
1280/**
1281 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1282 *
1283 * This function is only executed for the boot processor.  The other CPUs
1284 * have been put offline by means of CPU hotplug.
 
 
1285 */
1286static int cpufreq_bp_suspend(void)
1287{
1288	int ret = 0;
1289
1290	int cpu = smp_processor_id();
1291	struct cpufreq_policy *cpu_policy;
1292
1293	pr_debug("suspending cpu %u\n", cpu);
 
1294
1295	/* If there's no policy for the boot CPU, we have nothing to do. */
1296	cpu_policy = cpufreq_cpu_get(cpu);
1297	if (!cpu_policy)
1298		return 0;
1299
1300	if (cpufreq_driver->suspend) {
1301		ret = cpufreq_driver->suspend(cpu_policy);
1302		if (ret)
1303			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1304					"step on CPU %u\n", cpu_policy->cpu);
 
 
 
 
 
1305	}
1306
1307	cpufreq_cpu_put(cpu_policy);
1308	return ret;
1309}
1310
1311/**
1312 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1313 *
1314 *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1315 *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1316 *	    restored. It will verify that the current freq is in sync with
1317 *	    what we believe it to be. This is a bit later than when it
1318 *	    should be, but nonethteless it's better than calling
1319 *	    cpufreq_driver->get() here which might re-enable interrupts...
1320 *
1321 * This function is only executed for the boot CPU.  The other CPUs have not
1322 * been turned on yet.
1323 */
1324static void cpufreq_bp_resume(void)
1325{
1326	int ret = 0;
 
1327
1328	int cpu = smp_processor_id();
1329	struct cpufreq_policy *cpu_policy;
1330
1331	pr_debug("resuming cpu %u\n", cpu);
 
1332
1333	/* If there's no policy for the boot CPU, we have nothing to do. */
1334	cpu_policy = cpufreq_cpu_get(cpu);
1335	if (!cpu_policy)
1336		return;
1337
1338	if (cpufreq_driver->resume) {
1339		ret = cpufreq_driver->resume(cpu_policy);
1340		if (ret) {
1341			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1342					"step on CPU %u\n", cpu_policy->cpu);
1343			goto fail;
 
 
 
 
 
 
 
 
1344		}
1345	}
 
1346
1347	schedule_work(&cpu_policy->update);
 
 
 
 
 
 
 
 
 
1348
1349fail:
1350	cpufreq_cpu_put(cpu_policy);
1351}
 
1352
1353static struct syscore_ops cpufreq_syscore_ops = {
1354	.suspend	= cpufreq_bp_suspend,
1355	.resume		= cpufreq_bp_resume,
1356};
 
 
 
 
 
 
1357
 
 
 
1358
1359/*********************************************************************
1360 *                     NOTIFIER LISTS INTERFACE                      *
1361 *********************************************************************/
1362
1363/**
1364 *	cpufreq_register_notifier - register a driver with cpufreq
1365 *	@nb: notifier function to register
1366 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1367 *
1368 *	Add a driver to one of two lists: either a list of drivers that
1369 *      are notified about clock rate changes (once before and once after
1370 *      the transition), or a list of drivers that are notified about
1371 *      changes in cpufreq policy.
1372 *
1373 *	This function may sleep, and has the same return conditions as
1374 *	blocking_notifier_chain_register.
1375 */
1376int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1377{
1378	int ret;
1379
1380	WARN_ON(!init_cpufreq_transition_notifier_list_called);
 
1381
1382	switch (list) {
1383	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1384		ret = srcu_notifier_chain_register(
1385				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1386		break;
1387	case CPUFREQ_POLICY_NOTIFIER:
1388		ret = blocking_notifier_chain_register(
1389				&cpufreq_policy_notifier_list, nb);
1390		break;
1391	default:
1392		ret = -EINVAL;
1393	}
1394
1395	return ret;
1396}
1397EXPORT_SYMBOL(cpufreq_register_notifier);
1398
1399
1400/**
1401 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1402 *	@nb: notifier block to be unregistered
1403 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1404 *
1405 *	Remove a driver from the CPU frequency notifier list.
1406 *
1407 *	This function may sleep, and has the same return conditions as
1408 *	blocking_notifier_chain_unregister.
1409 */
1410int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1411{
1412	int ret;
1413
 
 
 
1414	switch (list) {
1415	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1416		ret = srcu_notifier_chain_unregister(
1417				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1418		break;
1419	case CPUFREQ_POLICY_NOTIFIER:
1420		ret = blocking_notifier_chain_unregister(
1421				&cpufreq_policy_notifier_list, nb);
1422		break;
1423	default:
1424		ret = -EINVAL;
1425	}
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL(cpufreq_unregister_notifier);
1430
1431
1432/*********************************************************************
1433 *                              GOVERNORS                            *
1434 *********************************************************************/
1435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436
1437int __cpufreq_driver_target(struct cpufreq_policy *policy,
1438			    unsigned int target_freq,
1439			    unsigned int relation)
1440{
1441	int retval = -EINVAL;
 
1442
1443	pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1444		target_freq, relation);
1445	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1446		retval = cpufreq_driver->target(policy, target_freq, relation);
1447
1448	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449}
1450EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1451
1452int cpufreq_driver_target(struct cpufreq_policy *policy,
1453			  unsigned int target_freq,
1454			  unsigned int relation)
1455{
1456	int ret = -EINVAL;
1457
1458	policy = cpufreq_cpu_get(policy->cpu);
1459	if (!policy)
1460		goto no_policy;
1461
1462	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1463		goto fail;
1464
1465	ret = __cpufreq_driver_target(policy, target_freq, relation);
1466
1467	unlock_policy_rwsem_write(policy->cpu);
1468
1469fail:
1470	cpufreq_cpu_put(policy);
1471no_policy:
1472	return ret;
1473}
1474EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1475
1476int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1477{
1478	int ret = 0;
 
1479
1480	policy = cpufreq_cpu_get(policy->cpu);
1481	if (!policy)
 
 
 
 
 
 
 
 
 
 
1482		return -EINVAL;
1483
1484	if (cpu_online(cpu) && cpufreq_driver->getavg)
1485		ret = cpufreq_driver->getavg(policy, cpu);
 
 
 
 
 
 
 
 
 
 
 
1486
1487	cpufreq_cpu_put(policy);
1488	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1489}
1490EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1491
1492/*
1493 * when "event" is CPUFREQ_GOV_LIMITS
1494 */
 
 
 
1495
1496static int __cpufreq_governor(struct cpufreq_policy *policy,
1497					unsigned int event)
 
 
 
 
 
1498{
1499	int ret;
1500
1501	/* Only must be defined when default governor is known to have latency
1502	   restrictions, like e.g. conservative or ondemand.
1503	   That this is the case is already ensured in Kconfig
1504	*/
1505#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1506	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1507#else
1508	struct cpufreq_governor *gov = NULL;
1509#endif
1510
1511	if (policy->governor->max_transition_latency &&
1512	    policy->cpuinfo.transition_latency >
1513	    policy->governor->max_transition_latency) {
1514		if (!gov)
1515			return -EINVAL;
1516		else {
1517			printk(KERN_WARNING "%s governor failed, too long"
1518			       " transition latency of HW, fallback"
1519			       " to %s governor\n",
1520			       policy->governor->name,
1521			       gov->name);
1522			policy->governor = gov;
1523		}
1524	}
1525
1526	if (!try_module_get(policy->governor->owner))
1527		return -EINVAL;
1528
1529	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1530						policy->cpu, event);
1531	ret = policy->governor->governor(policy, event);
1532
1533	/* we keep one module reference alive for
1534			each CPU governed by this CPU */
1535	if ((event != CPUFREQ_GOV_START) || ret)
1536		module_put(policy->governor->owner);
1537	if ((event == CPUFREQ_GOV_STOP) && !ret)
1538		module_put(policy->governor->owner);
1539
1540	return ret;
 
 
 
 
 
 
 
 
1541}
1542
 
 
 
 
 
 
 
 
 
 
1543
1544int cpufreq_register_governor(struct cpufreq_governor *governor)
1545{
1546	int err;
1547
1548	if (!governor)
1549		return -EINVAL;
1550
 
 
 
1551	mutex_lock(&cpufreq_governor_mutex);
1552
1553	err = -EBUSY;
1554	if (__find_governor(governor->name) == NULL) {
1555		err = 0;
1556		list_add(&governor->governor_list, &cpufreq_governor_list);
1557	}
1558
1559	mutex_unlock(&cpufreq_governor_mutex);
1560	return err;
1561}
1562EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1563
1564
1565void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1566{
1567#ifdef CONFIG_HOTPLUG_CPU
1568	int cpu;
1569#endif
1570
1571	if (!governor)
1572		return;
1573
1574#ifdef CONFIG_HOTPLUG_CPU
1575	for_each_present_cpu(cpu) {
1576		if (cpu_online(cpu))
1577			continue;
1578		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1579			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
 
 
 
1580	}
1581#endif
1582
1583	mutex_lock(&cpufreq_governor_mutex);
1584	list_del(&governor->governor_list);
1585	mutex_unlock(&cpufreq_governor_mutex);
1586	return;
1587}
1588EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1589
1590
1591
1592/*********************************************************************
1593 *                          POLICY INTERFACE                         *
1594 *********************************************************************/
1595
1596/**
1597 * cpufreq_get_policy - get the current cpufreq_policy
1598 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1599 *	is written
 
1600 *
1601 * Reads the current cpufreq policy.
1602 */
1603int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1604{
1605	struct cpufreq_policy *cpu_policy;
1606	if (!policy)
1607		return -EINVAL;
1608
1609	cpu_policy = cpufreq_cpu_get(cpu);
1610	if (!cpu_policy)
1611		return -EINVAL;
1612
1613	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1614
1615	cpufreq_cpu_put(cpu_policy);
1616	return 0;
1617}
1618EXPORT_SYMBOL(cpufreq_get_policy);
1619
1620
1621/*
1622 * data   : current policy.
1623 * policy : policy to be set.
1624 */
1625static int __cpufreq_set_policy(struct cpufreq_policy *data,
1626				struct cpufreq_policy *policy)
 
 
 
 
 
 
 
 
 
 
 
1627{
1628	int ret = 0;
1629
1630	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1631		policy->min, policy->max);
1632
1633	memcpy(&policy->cpuinfo, &data->cpuinfo,
1634				sizeof(struct cpufreq_cpuinfo));
1635
1636	if (policy->min > data->max || policy->max < data->min) {
1637		ret = -EINVAL;
1638		goto error_out;
1639	}
 
 
 
 
 
1640
1641	/* verify the cpu speed can be set within this limit */
1642	ret = cpufreq_driver->verify(policy);
1643	if (ret)
1644		goto error_out;
1645
1646	/* adjust if necessary - all reasons */
1647	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1648			CPUFREQ_ADJUST, policy);
1649
1650	/* adjust if necessary - hardware incompatibility*/
1651	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1652			CPUFREQ_INCOMPATIBLE, policy);
1653
1654	/* verify the cpu speed can be set within this limit,
1655	   which might be different to the first one */
1656	ret = cpufreq_driver->verify(policy);
1657	if (ret)
1658		goto error_out;
1659
1660	/* notification of the new policy */
1661	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1662			CPUFREQ_NOTIFY, policy);
1663
1664	data->min = policy->min;
1665	data->max = policy->max;
1666
1667	pr_debug("new min and max freqs are %u - %u kHz\n",
1668					data->min, data->max);
1669
1670	if (cpufreq_driver->setpolicy) {
1671		data->policy = policy->policy;
1672		pr_debug("setting range\n");
1673		ret = cpufreq_driver->setpolicy(policy);
1674	} else {
1675		if (policy->governor != data->governor) {
1676			/* save old, working values */
1677			struct cpufreq_governor *old_gov = data->governor;
1678
1679			pr_debug("governor switch\n");
1680
1681			/* end old governor */
1682			if (data->governor)
1683				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1684
1685			/* start new governor */
1686			data->governor = policy->governor;
1687			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1688				/* new governor failed, so re-start old one */
1689				pr_debug("starting governor %s failed\n",
1690							data->governor->name);
1691				if (old_gov) {
1692					data->governor = old_gov;
1693					__cpufreq_governor(data,
1694							   CPUFREQ_GOV_START);
1695				}
1696				ret = -EINVAL;
1697				goto error_out;
1698			}
1699			/* might be a policy change, too, so fall through */
 
1700		}
1701		pr_debug("governor: change or update limits\n");
1702		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
 
 
 
 
 
 
 
 
 
1703	}
1704
1705error_out:
1706	return ret;
1707}
1708
1709/**
1710 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1711 *	@cpu: CPU which shall be re-evaluated
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712 *
1713 *	Useful for policy notifiers which have different necessities
1714 *	at different times.
1715 */
1716int cpufreq_update_policy(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
1717{
1718	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1719	struct cpufreq_policy policy;
1720	int ret;
1721
1722	if (!data) {
1723		ret = -ENODEV;
1724		goto no_policy;
1725	}
1726
1727	if (unlikely(lock_policy_rwsem_write(cpu))) {
1728		ret = -EINVAL;
1729		goto fail;
 
1730	}
1731
1732	pr_debug("updating policy for CPU %u\n", cpu);
1733	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1734	policy.min = data->user_policy.min;
1735	policy.max = data->user_policy.max;
1736	policy.policy = data->user_policy.policy;
1737	policy.governor = data->user_policy.governor;
1738
1739	/* BIOS might change freq behind our back
1740	  -> ask driver for current freq and notify governors about a change */
1741	if (cpufreq_driver->get) {
1742		policy.cur = cpufreq_driver->get(cpu);
1743		if (!data->cur) {
1744			pr_debug("Driver did not initialize current freq");
1745			data->cur = policy.cur;
1746		} else {
1747			if (data->cur != policy.cur)
1748				cpufreq_out_of_sync(cpu, data->cur,
1749								policy.cur);
1750		}
 
 
 
 
 
 
 
 
 
1751	}
 
 
 
1752
1753	ret = __cpufreq_set_policy(data, &policy);
 
1754
1755	unlock_policy_rwsem_write(cpu);
 
 
 
 
 
1756
1757fail:
1758	cpufreq_cpu_put(data);
1759no_policy:
1760	return ret;
1761}
1762EXPORT_SYMBOL(cpufreq_update_policy);
1763
1764static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1765					unsigned long action, void *hcpu)
1766{
1767	unsigned int cpu = (unsigned long)hcpu;
1768	struct sys_device *sys_dev;
1769
1770	sys_dev = get_cpu_sysdev(cpu);
1771	if (sys_dev) {
1772		switch (action) {
1773		case CPU_ONLINE:
1774		case CPU_ONLINE_FROZEN:
1775			cpufreq_add_dev(sys_dev);
1776			break;
1777		case CPU_DOWN_PREPARE:
1778		case CPU_DOWN_PREPARE_FROZEN:
1779			if (unlikely(lock_policy_rwsem_write(cpu)))
1780				BUG();
1781
1782			__cpufreq_remove_dev(sys_dev);
1783			break;
1784		case CPU_DOWN_FAILED:
1785		case CPU_DOWN_FAILED_FROZEN:
1786			cpufreq_add_dev(sys_dev);
1787			break;
1788		}
1789	}
1790	return NOTIFY_OK;
1791}
1792
1793static struct notifier_block __refdata cpufreq_cpu_notifier = {
1794    .notifier_call = cpufreq_cpu_callback,
1795};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796
1797/*********************************************************************
1798 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1799 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
1801/**
1802 * cpufreq_register_driver - register a CPU Frequency driver
1803 * @driver_data: A struct cpufreq_driver containing the values#
1804 * submitted by the CPU Frequency driver.
1805 *
1806 *   Registers a CPU Frequency driver to this core code. This code
1807 * returns zero on success, -EBUSY when another driver got here first
1808 * (and isn't unregistered in the meantime).
1809 *
1810 */
1811int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1812{
1813	unsigned long flags;
1814	int ret;
1815
 
 
 
 
 
 
 
 
 
 
1816	if (!driver_data || !driver_data->verify || !driver_data->init ||
1817	    ((!driver_data->setpolicy) && (!driver_data->target)))
 
 
 
 
 
1818		return -EINVAL;
1819
1820	pr_debug("trying to register driver %s\n", driver_data->name);
1821
1822	if (driver_data->setpolicy)
1823		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1824
1825	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1826	if (cpufreq_driver) {
1827		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828		return -EBUSY;
 
1829	}
1830	cpufreq_driver = driver_data;
1831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1832
1833	ret = sysdev_driver_register(&cpu_sysdev_class,
1834					&cpufreq_sysdev_driver);
1835	if (ret)
1836		goto err_null_driver;
1837
1838	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839		int i;
1840		ret = -ENODEV;
 
 
1841
1842		/* check for at least one working CPU */
1843		for (i = 0; i < nr_cpu_ids; i++)
1844			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845				ret = 0;
1846				break;
1847			}
1848
 
 
1849		/* if all ->init() calls failed, unregister */
1850		if (ret) {
1851			pr_debug("no CPU initialized for driver %s\n",
1852							driver_data->name);
1853			goto err_sysdev_unreg;
1854		}
1855	}
1856
1857	register_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
 
 
1858	pr_debug("driver %s up and running\n", driver_data->name);
 
1859
1860	return 0;
1861err_sysdev_unreg:
1862	sysdev_driver_unregister(&cpu_sysdev_class,
1863			&cpufreq_sysdev_driver);
1864err_null_driver:
1865	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1866	cpufreq_driver = NULL;
1867	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1868	return ret;
1869}
1870EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1871
1872
1873/**
1874 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1875 *
1876 *    Unregister the current CPUFreq driver. Only call this if you have
1877 * the right to do so, i.e. if you have succeeded in initialising before!
1878 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1879 * currently not initialised.
1880 */
1881int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1882{
1883	unsigned long flags;
1884
1885	if (!cpufreq_driver || (driver != cpufreq_driver))
1886		return -EINVAL;
1887
1888	pr_debug("unregistering driver %s\n", driver->name);
1889
1890	sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1891	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
1892
1893	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1894	cpufreq_driver = NULL;
1895	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1896
1897	return 0;
1898}
1899EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1900
1901static int __init cpufreq_core_init(void)
1902{
1903	int cpu;
1904
1905	for_each_possible_cpu(cpu) {
1906		per_cpu(cpufreq_policy_cpu, cpu) = -1;
1907		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1908	}
1909
1910	cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1911						&cpu_sysdev_class.kset.kobj);
1912	BUG_ON(!cpufreq_global_kobject);
1913	register_syscore_ops(&cpufreq_syscore_ops);
 
 
1914
1915	return 0;
1916}
 
 
1917core_initcall(cpufreq_core_init);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
 
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
 
 
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <trace/events/power.h>
  32
  33static LIST_HEAD(cpufreq_policy_list);
  34
  35/* Macros to iterate over CPU policies */
  36#define for_each_suitable_policy(__policy, __active)			 \
  37	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  38		if ((__active) == !policy_is_inactive(__policy))
  39
  40#define for_each_active_policy(__policy)		\
  41	for_each_suitable_policy(__policy, true)
  42#define for_each_inactive_policy(__policy)		\
  43	for_each_suitable_policy(__policy, false)
  44
  45#define for_each_policy(__policy)			\
  46	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
  47
  48/* Iterate over governors */
  49static LIST_HEAD(cpufreq_governor_list);
  50#define for_each_governor(__governor)				\
  51	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  52
  53static char default_governor[CPUFREQ_NAME_LEN];
  54
  55/*
  56 * The "cpufreq driver" - the arch- or hardware-dependent low
  57 * level driver of CPUFreq support, and its spinlock. This lock
  58 * also protects the cpufreq_cpu_data array.
  59 */
  60static struct cpufreq_driver *cpufreq_driver;
  61static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  62static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
 
 
  63
  64/* Flag to suspend/resume CPUFreq governors */
  65static bool cpufreq_suspended;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66
  67static inline bool has_target(void)
  68{
  69	return cpufreq_driver->target_index || cpufreq_driver->target;
 
 
  70}
  71
 
  72/* internal prototypes */
  73static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  74static int cpufreq_init_governor(struct cpufreq_policy *policy);
  75static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  76static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  77static int cpufreq_set_policy(struct cpufreq_policy *policy,
  78			      struct cpufreq_governor *new_gov,
  79			      unsigned int new_pol);
  80
  81/*
  82 * Two notifier lists: the "policy" list is involved in the
  83 * validation process for a new CPU frequency policy; the
  84 * "transition" list for kernel code that needs to handle
  85 * changes to devices when the CPU clock speed changes.
  86 * The mutex locks both lists.
  87 */
  88static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  89SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
  90
  91static int off __read_mostly;
  92static int cpufreq_disabled(void)
  93{
  94	return off;
  95}
  96void disable_cpufreq(void)
  97{
  98	off = 1;
  99}
 
 
 
 100static DEFINE_MUTEX(cpufreq_governor_mutex);
 101
 102bool have_governor_per_policy(void)
 103{
 104	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 105}
 106EXPORT_SYMBOL_GPL(have_governor_per_policy);
 107
 108static struct kobject *cpufreq_global_kobject;
 
 109
 110struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 111{
 112	if (have_governor_per_policy())
 113		return &policy->kobj;
 114	else
 115		return cpufreq_global_kobject;
 116}
 117EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 118
 119static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 120{
 121	struct kernel_cpustat kcpustat;
 122	u64 cur_wall_time;
 123	u64 idle_time;
 124	u64 busy_time;
 125
 126	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 127
 128	kcpustat_cpu_fetch(&kcpustat, cpu);
 
 129
 130	busy_time = kcpustat.cpustat[CPUTIME_USER];
 131	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 132	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 133	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 134	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 135	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 136
 137	idle_time = cur_wall_time - busy_time;
 138	if (wall)
 139		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 140
 141	return div_u64(idle_time, NSEC_PER_USEC);
 142}
 143
 144u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 145{
 146	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 147
 148	if (idle_time == -1ULL)
 149		return get_cpu_idle_time_jiffy(cpu, wall);
 150	else if (!io_busy)
 151		idle_time += get_cpu_iowait_time_us(cpu, wall);
 152
 153	return idle_time;
 
 
 
 
 
 154}
 155EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 156
 157__weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
 158		unsigned long max_freq)
 159{
 160}
 161EXPORT_SYMBOL_GPL(arch_set_freq_scale);
 162
 163/*
 164 * This is a generic cpufreq init() routine which can be used by cpufreq
 165 * drivers of SMP systems. It will do following:
 166 * - validate & show freq table passed
 167 * - set policies transition latency
 168 * - policy->cpus with all possible CPUs
 169 */
 170void cpufreq_generic_init(struct cpufreq_policy *policy,
 171		struct cpufreq_frequency_table *table,
 172		unsigned int transition_latency)
 173{
 174	policy->freq_table = table;
 175	policy->cpuinfo.transition_latency = transition_latency;
 176
 177	/*
 178	 * The driver only supports the SMP configuration where all processors
 179	 * share the clock and voltage and clock.
 180	 */
 181	cpumask_setall(policy->cpus);
 182}
 183EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 184
 185struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 186{
 187	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 188
 189	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 190}
 191EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 192
 193unsigned int cpufreq_generic_get(unsigned int cpu)
 194{
 195	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 196
 197	if (!policy || IS_ERR(policy->clk)) {
 198		pr_err("%s: No %s associated to cpu: %d\n",
 199		       __func__, policy ? "clk" : "policy", cpu);
 200		return 0;
 201	}
 202
 203	return clk_get_rate(policy->clk) / 1000;
 204}
 205EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 206
 207/**
 208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 209 * @cpu: CPU to find the policy for.
 210 *
 211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 212 * the kobject reference counter of that policy.  Return a valid policy on
 213 * success or NULL on failure.
 214 *
 215 * The policy returned by this function has to be released with the help of
 216 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 217 */
 218struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 219{
 220	struct cpufreq_policy *policy = NULL;
 221	unsigned long flags;
 222
 223	if (WARN_ON(cpu >= nr_cpu_ids))
 224		return NULL;
 225
 226	/* get the cpufreq driver */
 227	read_lock_irqsave(&cpufreq_driver_lock, flags);
 228
 229	if (cpufreq_driver) {
 230		/* get the CPU */
 231		policy = cpufreq_cpu_get_raw(cpu);
 232		if (policy)
 233			kobject_get(&policy->kobj);
 234	}
 235
 236	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 237
 238	return policy;
 239}
 240EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 241
 242/**
 243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 244 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 245 */
 246void cpufreq_cpu_put(struct cpufreq_policy *policy)
 247{
 248	kobject_put(&policy->kobj);
 
 249}
 250EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 251
 252/**
 253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 255 */
 256void cpufreq_cpu_release(struct cpufreq_policy *policy)
 257{
 258	if (WARN_ON(!policy))
 259		return;
 260
 261	lockdep_assert_held(&policy->rwsem);
 262
 263	up_write(&policy->rwsem);
 264
 265	cpufreq_cpu_put(policy);
 266}
 267
 268/**
 269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 270 * @cpu: CPU to find the policy for.
 271 *
 272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 273 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 274 * Return the policy if it is active or release it and return NULL otherwise.
 275 *
 276 * The policy returned by this function has to be released with the help of
 277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 278 * counter properly.
 279 */
 280struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 281{
 282	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 283
 284	if (!policy)
 285		return NULL;
 286
 287	down_write(&policy->rwsem);
 288
 289	if (policy_is_inactive(policy)) {
 290		cpufreq_cpu_release(policy);
 291		return NULL;
 292	}
 293
 294	return policy;
 295}
 296
 297/*********************************************************************
 298 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 299 *********************************************************************/
 300
 301/*
 302 * adjust_jiffies - adjust the system "loops_per_jiffy"
 303 *
 304 * This function alters the system "loops_per_jiffy" for the clock
 305 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 306 * systems as each CPU might be scaled differently. So, use the arch
 307 * per-CPU loops_per_jiffy value wherever possible.
 308 */
 
 
 
 
 309static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 310{
 311#ifndef CONFIG_SMP
 312	static unsigned long l_p_j_ref;
 313	static unsigned int l_p_j_ref_freq;
 314
 315	if (ci->flags & CPUFREQ_CONST_LOOPS)
 316		return;
 317
 318	if (!l_p_j_ref_freq) {
 319		l_p_j_ref = loops_per_jiffy;
 320		l_p_j_ref_freq = ci->old;
 321		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 322			 l_p_j_ref, l_p_j_ref_freq);
 323	}
 324	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 
 
 325		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 326								ci->new);
 327		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 328			 loops_per_jiffy, ci->new);
 329	}
 
 
 
 
 
 
 330#endif
 331}
 332
 333/**
 334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
 335 * @policy: cpufreq policy to enable fast frequency switching for.
 336 * @freqs: contain details of the frequency update.
 337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 338 *
 339 * This function calls the transition notifiers and the "adjust_jiffies"
 340 * function. It is called twice on all CPU frequency changes that have
 341 * external effects.
 342 */
 343static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 344				      struct cpufreq_freqs *freqs,
 345				      unsigned int state)
 346{
 347	int cpu;
 348
 349	BUG_ON(irqs_disabled());
 350
 351	if (cpufreq_disabled())
 352		return;
 353
 354	freqs->policy = policy;
 355	freqs->flags = cpufreq_driver->flags;
 356	pr_debug("notification %u of frequency transition to %u kHz\n",
 357		 state, freqs->new);
 358
 
 359	switch (state) {
 
 360	case CPUFREQ_PRECHANGE:
 361		/*
 362		 * Detect if the driver reported a value as "old frequency"
 363		 * which is not equal to what the cpufreq core thinks is
 364		 * "old frequency".
 365		 */
 366		if (policy->cur && policy->cur != freqs->old) {
 367			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 368				 freqs->old, policy->cur);
 369			freqs->old = policy->cur;
 
 
 
 
 370		}
 371
 372		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 373					 CPUFREQ_PRECHANGE, freqs);
 374
 375		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 376		break;
 377
 378	case CPUFREQ_POSTCHANGE:
 379		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 380		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 381			 cpumask_pr_args(policy->cpus));
 382
 383		for_each_cpu(cpu, policy->cpus)
 384			trace_cpu_frequency(freqs->new, cpu);
 385
 386		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 387					 CPUFREQ_POSTCHANGE, freqs);
 388
 389		cpufreq_stats_record_transition(policy, freqs->new);
 390		policy->cur = freqs->new;
 391	}
 392}
 393
 394/* Do post notifications when there are chances that transition has failed */
 395static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 396		struct cpufreq_freqs *freqs, int transition_failed)
 397{
 398	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 399	if (!transition_failed)
 400		return;
 401
 402	swap(freqs->old, freqs->new);
 403	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405}
 406
 407void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 408		struct cpufreq_freqs *freqs)
 409{
 410
 411	/*
 412	 * Catch double invocations of _begin() which lead to self-deadlock.
 413	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 414	 * doesn't invoke _begin() on their behalf, and hence the chances of
 415	 * double invocations are very low. Moreover, there are scenarios
 416	 * where these checks can emit false-positive warnings in these
 417	 * drivers; so we avoid that by skipping them altogether.
 418	 */
 419	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 420				&& current == policy->transition_task);
 421
 422wait:
 423	wait_event(policy->transition_wait, !policy->transition_ongoing);
 424
 425	spin_lock(&policy->transition_lock);
 426
 427	if (unlikely(policy->transition_ongoing)) {
 428		spin_unlock(&policy->transition_lock);
 429		goto wait;
 430	}
 431
 432	policy->transition_ongoing = true;
 433	policy->transition_task = current;
 434
 435	spin_unlock(&policy->transition_lock);
 436
 437	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 438}
 439EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 440
 441void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 442		struct cpufreq_freqs *freqs, int transition_failed)
 443{
 444	if (WARN_ON(!policy->transition_ongoing))
 445		return;
 446
 447	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 448
 449	policy->transition_ongoing = false;
 450	policy->transition_task = NULL;
 451
 452	wake_up(&policy->transition_wait);
 453}
 454EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 455
 456/*
 457 * Fast frequency switching status count.  Positive means "enabled", negative
 458 * means "disabled" and 0 means "not decided yet".
 459 */
 460static int cpufreq_fast_switch_count;
 461static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 462
 463static void cpufreq_list_transition_notifiers(void)
 464{
 465	struct notifier_block *nb;
 466
 467	pr_info("Registered transition notifiers:\n");
 468
 469	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 470
 471	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 472		pr_info("%pS\n", nb->notifier_call);
 473
 474	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 475}
 476
 477/**
 478 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 479 * @policy: cpufreq policy to enable fast frequency switching for.
 480 *
 481 * Try to enable fast frequency switching for @policy.
 482 *
 483 * The attempt will fail if there is at least one transition notifier registered
 484 * at this point, as fast frequency switching is quite fundamentally at odds
 485 * with transition notifiers.  Thus if successful, it will make registration of
 486 * transition notifiers fail going forward.
 487 */
 488void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 489{
 490	lockdep_assert_held(&policy->rwsem);
 491
 492	if (!policy->fast_switch_possible)
 493		return;
 494
 495	mutex_lock(&cpufreq_fast_switch_lock);
 496	if (cpufreq_fast_switch_count >= 0) {
 497		cpufreq_fast_switch_count++;
 498		policy->fast_switch_enabled = true;
 499	} else {
 500		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 501			policy->cpu);
 502		cpufreq_list_transition_notifiers();
 503	}
 504	mutex_unlock(&cpufreq_fast_switch_lock);
 505}
 506EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 507
 508/**
 509 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 510 * @policy: cpufreq policy to disable fast frequency switching for.
 511 */
 512void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 513{
 514	mutex_lock(&cpufreq_fast_switch_lock);
 515	if (policy->fast_switch_enabled) {
 516		policy->fast_switch_enabled = false;
 517		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 518			cpufreq_fast_switch_count--;
 519	}
 520	mutex_unlock(&cpufreq_fast_switch_lock);
 521}
 522EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 523
 524/**
 525 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 526 * one.
 527 * @policy: associated policy to interrogate
 528 * @target_freq: target frequency to resolve.
 529 *
 530 * The target to driver frequency mapping is cached in the policy.
 531 *
 532 * Return: Lowest driver-supported frequency greater than or equal to the
 533 * given target_freq, subject to policy (min/max) and driver limitations.
 534 */
 535unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 536					 unsigned int target_freq)
 537{
 538	target_freq = clamp_val(target_freq, policy->min, policy->max);
 539	policy->cached_target_freq = target_freq;
 540
 541	if (cpufreq_driver->target_index) {
 542		unsigned int idx;
 543
 544		idx = cpufreq_frequency_table_target(policy, target_freq,
 545						     CPUFREQ_RELATION_L);
 546		policy->cached_resolved_idx = idx;
 547		return policy->freq_table[idx].frequency;
 548	}
 549
 550	if (cpufreq_driver->resolve_freq)
 551		return cpufreq_driver->resolve_freq(policy, target_freq);
 552
 553	return target_freq;
 554}
 555EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 556
 557unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 558{
 559	unsigned int latency;
 560
 561	if (policy->transition_delay_us)
 562		return policy->transition_delay_us;
 563
 564	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 565	if (latency) {
 566		/*
 567		 * For platforms that can change the frequency very fast (< 10
 568		 * us), the above formula gives a decent transition delay. But
 569		 * for platforms where transition_latency is in milliseconds, it
 570		 * ends up giving unrealistic values.
 571		 *
 572		 * Cap the default transition delay to 10 ms, which seems to be
 573		 * a reasonable amount of time after which we should reevaluate
 574		 * the frequency.
 575		 */
 576		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 577	}
 578
 579	return LATENCY_MULTIPLIER;
 580}
 581EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 582
 583/*********************************************************************
 584 *                          SYSFS INTERFACE                          *
 585 *********************************************************************/
 586static ssize_t show_boost(struct kobject *kobj,
 587			  struct kobj_attribute *attr, char *buf)
 588{
 589	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 590}
 591
 592static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 593			   const char *buf, size_t count)
 594{
 595	int ret, enable;
 596
 597	ret = sscanf(buf, "%d", &enable);
 598	if (ret != 1 || enable < 0 || enable > 1)
 599		return -EINVAL;
 600
 601	if (cpufreq_boost_trigger_state(enable)) {
 602		pr_err("%s: Cannot %s BOOST!\n",
 603		       __func__, enable ? "enable" : "disable");
 604		return -EINVAL;
 605	}
 606
 607	pr_debug("%s: cpufreq BOOST %s\n",
 608		 __func__, enable ? "enabled" : "disabled");
 609
 610	return count;
 611}
 612define_one_global_rw(boost);
 613
 614static struct cpufreq_governor *find_governor(const char *str_governor)
 615{
 616	struct cpufreq_governor *t;
 617
 618	for_each_governor(t)
 619		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 620			return t;
 621
 622	return NULL;
 623}
 624
 625static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 626{
 627	struct cpufreq_governor *t;
 628
 629	mutex_lock(&cpufreq_governor_mutex);
 630	t = find_governor(str_governor);
 631	if (!t)
 632		goto unlock;
 633
 634	if (!try_module_get(t->owner))
 635		t = NULL;
 636
 637unlock:
 638	mutex_unlock(&cpufreq_governor_mutex);
 
 
 
 
 
 
 639
 640	return t;
 641}
 642
 643static unsigned int cpufreq_parse_policy(char *str_governor)
 644{
 645	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 646		return CPUFREQ_POLICY_PERFORMANCE;
 647
 648	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 649		return CPUFREQ_POLICY_POWERSAVE;
 650
 651	return CPUFREQ_POLICY_UNKNOWN;
 652}
 
 653
 654/**
 655 * cpufreq_parse_governor - parse a governor string only for has_target()
 656 * @str_governor: Governor name.
 657 */
 658static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 659{
 660	struct cpufreq_governor *t;
 661
 662	t = get_governor(str_governor);
 663	if (t)
 664		return t;
 
 665
 666	if (request_module("cpufreq_%s", str_governor))
 667		return NULL;
 
 
 
 668
 669	return get_governor(str_governor);
 670}
 671
 672/*
 673 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 674 * print out cpufreq information
 675 *
 676 * Write out information from cpufreq_driver->policy[cpu]; object must be
 677 * "unsigned int".
 678 */
 679
 680#define show_one(file_name, object)			\
 681static ssize_t show_##file_name				\
 682(struct cpufreq_policy *policy, char *buf)		\
 683{							\
 684	return sprintf(buf, "%u\n", policy->object);	\
 685}
 686
 687show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 688show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 689show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 690show_one(scaling_min_freq, min);
 691show_one(scaling_max_freq, max);
 
 692
 693__weak unsigned int arch_freq_get_on_cpu(int cpu)
 694{
 695	return 0;
 696}
 697
 698static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 699{
 700	ssize_t ret;
 701	unsigned int freq;
 702
 703	freq = arch_freq_get_on_cpu(policy->cpu);
 704	if (freq)
 705		ret = sprintf(buf, "%u\n", freq);
 706	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 707		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 708	else
 709		ret = sprintf(buf, "%u\n", policy->cur);
 710	return ret;
 711}
 712
 713/*
 714 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 715 */
 716#define store_one(file_name, object)			\
 717static ssize_t store_##file_name					\
 718(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 719{									\
 720	unsigned long val;						\
 721	int ret;							\
 722									\
 723	ret = sscanf(buf, "%lu", &val);					\
 
 
 
 
 724	if (ret != 1)							\
 725		return -EINVAL;						\
 726									\
 727	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 728	return ret >= 0 ? count : ret;					\
 
 
 729}
 730
 731store_one(scaling_min_freq, min);
 732store_one(scaling_max_freq, max);
 733
 734/*
 735 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 736 */
 737static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 738					char *buf)
 739{
 740	unsigned int cur_freq = __cpufreq_get(policy);
 
 
 
 
 741
 742	if (cur_freq)
 743		return sprintf(buf, "%u\n", cur_freq);
 744
 745	return sprintf(buf, "<unknown>\n");
 746}
 747
 748/*
 749 * show_scaling_governor - show the current policy for the specified CPU
 750 */
 751static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 752{
 753	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 754		return sprintf(buf, "powersave\n");
 755	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 756		return sprintf(buf, "performance\n");
 757	else if (policy->governor)
 758		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 759				policy->governor->name);
 760	return -EINVAL;
 761}
 762
 763/*
 
 764 * store_scaling_governor - store policy for the specified CPU
 765 */
 766static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 767					const char *buf, size_t count)
 768{
 769	char str_governor[16];
 770	int ret;
 
 
 
 
 
 771
 772	ret = sscanf(buf, "%15s", str_governor);
 773	if (ret != 1)
 774		return -EINVAL;
 775
 776	if (cpufreq_driver->setpolicy) {
 777		unsigned int new_pol;
 
 778
 779		new_pol = cpufreq_parse_policy(str_governor);
 780		if (!new_pol)
 781			return -EINVAL;
 782
 783		ret = cpufreq_set_policy(policy, NULL, new_pol);
 784	} else {
 785		struct cpufreq_governor *new_gov;
 786
 787		new_gov = cpufreq_parse_governor(str_governor);
 788		if (!new_gov)
 789			return -EINVAL;
 790
 791		ret = cpufreq_set_policy(policy, new_gov,
 792					 CPUFREQ_POLICY_UNKNOWN);
 793
 794		module_put(new_gov->owner);
 795	}
 796
 797	return ret ? ret : count;
 798}
 799
 800/*
 801 * show_scaling_driver - show the cpufreq driver currently loaded
 802 */
 803static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 804{
 805	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 806}
 807
 808/*
 809 * show_scaling_available_governors - show the available CPUfreq governors
 810 */
 811static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 812						char *buf)
 813{
 814	ssize_t i = 0;
 815	struct cpufreq_governor *t;
 816
 817	if (!has_target()) {
 818		i += sprintf(buf, "performance powersave");
 819		goto out;
 820	}
 821
 822	mutex_lock(&cpufreq_governor_mutex);
 823	for_each_governor(t) {
 824		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 825		    - (CPUFREQ_NAME_LEN + 2)))
 826			break;
 827		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 828	}
 829	mutex_unlock(&cpufreq_governor_mutex);
 830out:
 831	i += sprintf(&buf[i], "\n");
 832	return i;
 833}
 834
 835ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 836{
 837	ssize_t i = 0;
 838	unsigned int cpu;
 839
 840	for_each_cpu(cpu, mask) {
 841		if (i)
 842			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 843		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 844		if (i >= (PAGE_SIZE - 5))
 845			break;
 846	}
 847	i += sprintf(&buf[i], "\n");
 848	return i;
 849}
 850EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 851
 852/*
 853 * show_related_cpus - show the CPUs affected by each transition even if
 854 * hw coordination is in use
 855 */
 856static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 857{
 858	return cpufreq_show_cpus(policy->related_cpus, buf);
 
 
 859}
 860
 861/*
 862 * show_affected_cpus - show the CPUs affected by each transition
 863 */
 864static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 865{
 866	return cpufreq_show_cpus(policy->cpus, buf);
 867}
 868
 869static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 870					const char *buf, size_t count)
 871{
 872	unsigned int freq = 0;
 873	unsigned int ret;
 874
 875	if (!policy->governor || !policy->governor->store_setspeed)
 876		return -EINVAL;
 877
 878	ret = sscanf(buf, "%u", &freq);
 879	if (ret != 1)
 880		return -EINVAL;
 881
 882	policy->governor->store_setspeed(policy, freq);
 883
 884	return count;
 885}
 886
 887static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 888{
 889	if (!policy->governor || !policy->governor->show_setspeed)
 890		return sprintf(buf, "<unsupported>\n");
 891
 892	return policy->governor->show_setspeed(policy, buf);
 893}
 894
 895/*
 896 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 897 */
 898static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 899{
 900	unsigned int limit;
 901	int ret;
 902	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 903	if (!ret)
 904		return sprintf(buf, "%u\n", limit);
 
 
 905	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 906}
 907
 908cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 909cpufreq_freq_attr_ro(cpuinfo_min_freq);
 910cpufreq_freq_attr_ro(cpuinfo_max_freq);
 911cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 912cpufreq_freq_attr_ro(scaling_available_governors);
 913cpufreq_freq_attr_ro(scaling_driver);
 914cpufreq_freq_attr_ro(scaling_cur_freq);
 915cpufreq_freq_attr_ro(bios_limit);
 916cpufreq_freq_attr_ro(related_cpus);
 917cpufreq_freq_attr_ro(affected_cpus);
 918cpufreq_freq_attr_rw(scaling_min_freq);
 919cpufreq_freq_attr_rw(scaling_max_freq);
 920cpufreq_freq_attr_rw(scaling_governor);
 921cpufreq_freq_attr_rw(scaling_setspeed);
 922
 923static struct attribute *default_attrs[] = {
 924	&cpuinfo_min_freq.attr,
 925	&cpuinfo_max_freq.attr,
 926	&cpuinfo_transition_latency.attr,
 927	&scaling_min_freq.attr,
 928	&scaling_max_freq.attr,
 929	&affected_cpus.attr,
 930	&related_cpus.attr,
 931	&scaling_governor.attr,
 932	&scaling_driver.attr,
 933	&scaling_available_governors.attr,
 934	&scaling_setspeed.attr,
 935	NULL
 936};
 937
 
 
 
 938#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 939#define to_attr(a) container_of(a, struct freq_attr, attr)
 940
 941static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 942{
 943	struct cpufreq_policy *policy = to_policy(kobj);
 944	struct freq_attr *fattr = to_attr(attr);
 945	ssize_t ret;
 
 
 
 946
 947	if (!fattr->show)
 948		return -EIO;
 949
 950	down_read(&policy->rwsem);
 951	ret = fattr->show(policy, buf);
 952	up_read(&policy->rwsem);
 
 953
 
 
 
 
 954	return ret;
 955}
 956
 957static ssize_t store(struct kobject *kobj, struct attribute *attr,
 958		     const char *buf, size_t count)
 959{
 960	struct cpufreq_policy *policy = to_policy(kobj);
 961	struct freq_attr *fattr = to_attr(attr);
 962	ssize_t ret = -EINVAL;
 
 
 
 963
 964	if (!fattr->store)
 965		return -EIO;
 966
 967	/*
 968	 * cpus_read_trylock() is used here to work around a circular lock
 969	 * dependency problem with respect to the cpufreq_register_driver().
 970	 */
 971	if (!cpus_read_trylock())
 972		return -EBUSY;
 973
 974	if (cpu_online(policy->cpu)) {
 975		down_write(&policy->rwsem);
 976		ret = fattr->store(policy, buf, count);
 977		up_write(&policy->rwsem);
 978	}
 979
 980	cpus_read_unlock();
 981
 
 
 
 
 982	return ret;
 983}
 984
 985static void cpufreq_sysfs_release(struct kobject *kobj)
 986{
 987	struct cpufreq_policy *policy = to_policy(kobj);
 988	pr_debug("last reference is dropped\n");
 989	complete(&policy->kobj_unregister);
 990}
 991
 992static const struct sysfs_ops sysfs_ops = {
 993	.show	= show,
 994	.store	= store,
 995};
 996
 997static struct kobj_type ktype_cpufreq = {
 998	.sysfs_ops	= &sysfs_ops,
 999	.default_attrs	= default_attrs,
1000	.release	= cpufreq_sysfs_release,
1001};
1002
1003static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
1004{
1005	struct device *dev = get_cpu_device(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006
1007	if (unlikely(!dev))
1008		return;
 
 
 
 
 
1009
1010	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1011		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012
1013	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1014	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1015		dev_err(dev, "cpufreq symlink creation failed\n");
 
 
 
 
 
1016}
1017
1018static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1019				   struct device *dev)
 
 
1020{
1021	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1022	sysfs_remove_link(&dev->kobj, "cpufreq");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023}
1024
1025static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
 
1026{
 
1027	struct freq_attr **drv_attr;
 
1028	int ret = 0;
 
 
 
 
 
 
 
1029
1030	/* set up files for this cpu device */
1031	drv_attr = cpufreq_driver->attr;
1032	while (drv_attr && *drv_attr) {
1033		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1034		if (ret)
1035			return ret;
1036		drv_attr++;
1037	}
1038	if (cpufreq_driver->get) {
1039		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1040		if (ret)
1041			return ret;
 
 
 
 
 
1042	}
1043
1044	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1045	if (ret)
1046		return ret;
1047
1048	if (cpufreq_driver->bios_limit) {
1049		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1050		if (ret)
1051			return ret;
1052	}
1053
1054	return 0;
1055}
 
 
 
 
 
 
1056
1057static int cpufreq_init_policy(struct cpufreq_policy *policy)
1058{
1059	struct cpufreq_governor *gov = NULL;
1060	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1061	int ret;
1062
1063	if (has_target()) {
1064		/* Update policy governor to the one used before hotplug. */
1065		gov = get_governor(policy->last_governor);
1066		if (gov) {
1067			pr_debug("Restoring governor %s for cpu %d\n",
1068				 gov->name, policy->cpu);
1069		} else {
1070			gov = get_governor(default_governor);
1071		}
1072
1073		if (!gov) {
1074			gov = cpufreq_default_governor();
1075			__module_get(gov->owner);
1076		}
1077
1078	} else {
1079
1080		/* Use the default policy if there is no last_policy. */
1081		if (policy->last_policy) {
1082			pol = policy->last_policy;
1083		} else {
1084			pol = cpufreq_parse_policy(default_governor);
1085			/*
1086			 * In case the default governor is neither "performance"
1087			 * nor "powersave", fall back to the initial policy
1088			 * value set by the driver.
1089			 */
1090			if (pol == CPUFREQ_POLICY_UNKNOWN)
1091				pol = policy->policy;
1092		}
1093		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1094		    pol != CPUFREQ_POLICY_POWERSAVE)
1095			return -ENODATA;
1096	}
 
1097
1098	ret = cpufreq_set_policy(policy, gov, pol);
1099	if (gov)
1100		module_put(gov->owner);
1101
1102	return ret;
1103}
1104
1105static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
1106{
1107	int ret = 0;
 
 
 
 
 
 
 
1108
1109	/* Has this CPU been taken care of already? */
1110	if (cpumask_test_cpu(cpu, policy->cpus))
1111		return 0;
1112
1113	down_write(&policy->rwsem);
1114	if (has_target())
1115		cpufreq_stop_governor(policy);
1116
1117	cpumask_set_cpu(cpu, policy->cpus);
1118
1119	if (has_target()) {
1120		ret = cpufreq_start_governor(policy);
1121		if (ret)
1122			pr_err("%s: Failed to start governor\n", __func__);
 
1123	}
1124	up_write(&policy->rwsem);
1125	return ret;
1126}
1127
1128void refresh_frequency_limits(struct cpufreq_policy *policy)
1129{
1130	if (!policy_is_inactive(policy)) {
1131		pr_debug("updating policy for CPU %u\n", policy->cpu);
1132
1133		cpufreq_set_policy(policy, policy->governor, policy->policy);
1134	}
1135}
1136EXPORT_SYMBOL(refresh_frequency_limits);
1137
1138static void handle_update(struct work_struct *work)
1139{
1140	struct cpufreq_policy *policy =
1141		container_of(work, struct cpufreq_policy, update);
1142
1143	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1144	down_write(&policy->rwsem);
1145	refresh_frequency_limits(policy);
1146	up_write(&policy->rwsem);
1147}
1148
1149static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1150				void *data)
1151{
1152	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1153
1154	schedule_work(&policy->update);
1155	return 0;
1156}
1157
1158static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1159				void *data)
1160{
1161	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1162
1163	schedule_work(&policy->update);
1164	return 0;
1165}
1166
1167static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1168{
1169	struct kobject *kobj;
1170	struct completion *cmp;
1171
1172	down_write(&policy->rwsem);
1173	cpufreq_stats_free_table(policy);
1174	kobj = &policy->kobj;
1175	cmp = &policy->kobj_unregister;
1176	up_write(&policy->rwsem);
1177	kobject_put(kobj);
1178
1179	/*
1180	 * We need to make sure that the underlying kobj is
1181	 * actually not referenced anymore by anybody before we
1182	 * proceed with unloading.
1183	 */
1184	pr_debug("waiting for dropping of refcount\n");
1185	wait_for_completion(cmp);
1186	pr_debug("wait complete\n");
1187}
1188
1189static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1190{
1191	struct cpufreq_policy *policy;
1192	struct device *dev = get_cpu_device(cpu);
1193	int ret;
1194
1195	if (!dev)
1196		return NULL;
1197
1198	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1199	if (!policy)
1200		return NULL;
1201
1202	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1203		goto err_free_policy;
1204
1205	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1206		goto err_free_cpumask;
1207
1208	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1209		goto err_free_rcpumask;
1210
1211	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1212				   cpufreq_global_kobject, "policy%u", cpu);
1213	if (ret) {
1214		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1215		/*
1216		 * The entire policy object will be freed below, but the extra
1217		 * memory allocated for the kobject name needs to be freed by
1218		 * releasing the kobject.
1219		 */
1220		kobject_put(&policy->kobj);
1221		goto err_free_real_cpus;
1222	}
1223
1224	freq_constraints_init(&policy->constraints);
 
 
 
1225
1226	policy->nb_min.notifier_call = cpufreq_notifier_min;
1227	policy->nb_max.notifier_call = cpufreq_notifier_max;
1228
1229	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1230				    &policy->nb_min);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231	if (ret) {
1232		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1233			ret, cpumask_pr_args(policy->cpus));
1234		goto err_kobj_remove;
1235	}
 
 
 
 
 
1236
1237	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1238				    &policy->nb_max);
1239	if (ret) {
1240		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1241			ret, cpumask_pr_args(policy->cpus));
1242		goto err_min_qos_notifier;
 
 
1243	}
1244
1245	INIT_LIST_HEAD(&policy->policy_list);
1246	init_rwsem(&policy->rwsem);
1247	spin_lock_init(&policy->transition_lock);
1248	init_waitqueue_head(&policy->transition_wait);
1249	init_completion(&policy->kobj_unregister);
1250	INIT_WORK(&policy->update, handle_update);
1251
1252	policy->cpu = cpu;
1253	return policy;
1254
1255err_min_qos_notifier:
1256	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1257				 &policy->nb_min);
1258err_kobj_remove:
1259	cpufreq_policy_put_kobj(policy);
1260err_free_real_cpus:
1261	free_cpumask_var(policy->real_cpus);
1262err_free_rcpumask:
1263	free_cpumask_var(policy->related_cpus);
1264err_free_cpumask:
1265	free_cpumask_var(policy->cpus);
1266err_free_policy:
1267	kfree(policy);
1268
1269	return NULL;
1270}
1271
1272static void cpufreq_policy_free(struct cpufreq_policy *policy)
1273{
1274	unsigned long flags;
1275	int cpu;
1276
1277	/* Remove policy from list */
1278	write_lock_irqsave(&cpufreq_driver_lock, flags);
1279	list_del(&policy->policy_list);
1280
1281	for_each_cpu(cpu, policy->related_cpus)
1282		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1283	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1284
1285	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1286				 &policy->nb_max);
1287	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1288				 &policy->nb_min);
1289
1290	/* Cancel any pending policy->update work before freeing the policy. */
1291	cancel_work_sync(&policy->update);
1292
1293	if (policy->max_freq_req) {
1294		/*
1295		 * CPUFREQ_CREATE_POLICY notification is sent only after
1296		 * successfully adding max_freq_req request.
1297		 */
1298		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1299					     CPUFREQ_REMOVE_POLICY, policy);
1300		freq_qos_remove_request(policy->max_freq_req);
1301	}
1302
1303	freq_qos_remove_request(policy->min_freq_req);
1304	kfree(policy->min_freq_req);
1305
1306	cpufreq_policy_put_kobj(policy);
1307	free_cpumask_var(policy->real_cpus);
1308	free_cpumask_var(policy->related_cpus);
 
1309	free_cpumask_var(policy->cpus);
 
1310	kfree(policy);
 
 
 
 
1311}
1312
1313static int cpufreq_online(unsigned int cpu)
 
 
 
 
 
 
 
 
1314{
1315	struct cpufreq_policy *policy;
1316	bool new_policy;
1317	unsigned long flags;
 
 
 
 
 
1318	unsigned int j;
1319	int ret;
 
 
1320
1321	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
 
1322
1323	/* Check if this CPU already has a policy to manage it */
1324	policy = per_cpu(cpufreq_cpu_data, cpu);
1325	if (policy) {
1326		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1327		if (!policy_is_inactive(policy))
1328			return cpufreq_add_policy_cpu(policy, cpu);
1329
1330		/* This is the only online CPU for the policy.  Start over. */
1331		new_policy = false;
1332		down_write(&policy->rwsem);
1333		policy->cpu = cpu;
1334		policy->governor = NULL;
1335		up_write(&policy->rwsem);
1336	} else {
1337		new_policy = true;
1338		policy = cpufreq_policy_alloc(cpu);
1339		if (!policy)
1340			return -ENOMEM;
1341	}
 
1342
1343	if (!new_policy && cpufreq_driver->online) {
1344		ret = cpufreq_driver->online(policy);
1345		if (ret) {
1346			pr_debug("%s: %d: initialization failed\n", __func__,
1347				 __LINE__);
1348			goto out_exit_policy;
1349		}
1350
1351		/* Recover policy->cpus using related_cpus */
1352		cpumask_copy(policy->cpus, policy->related_cpus);
1353	} else {
1354		cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
 
 
 
 
 
 
 
 
 
1355
1356		/*
1357		 * Call driver. From then on the cpufreq must be able
1358		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1359		 */
1360		ret = cpufreq_driver->init(policy);
1361		if (ret) {
1362			pr_debug("%s: %d: initialization failed\n", __func__,
1363				 __LINE__);
1364			goto out_free_policy;
1365		}
1366
1367		ret = cpufreq_table_validate_and_sort(policy);
1368		if (ret)
1369			goto out_exit_policy;
1370
1371		/* related_cpus should at least include policy->cpus. */
1372		cpumask_copy(policy->related_cpus, policy->cpus);
1373	}
1374
1375	down_write(&policy->rwsem);
1376	/*
1377	 * affected cpus must always be the one, which are online. We aren't
1378	 * managing offline cpus here.
1379	 */
1380	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1381
1382	if (new_policy) {
1383		for_each_cpu(j, policy->related_cpus) {
1384			per_cpu(cpufreq_cpu_data, j) = policy;
1385			add_cpu_dev_symlink(policy, j);
1386		}
1387
1388		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1389					       GFP_KERNEL);
1390		if (!policy->min_freq_req)
1391			goto out_destroy_policy;
1392
1393		ret = freq_qos_add_request(&policy->constraints,
1394					   policy->min_freq_req, FREQ_QOS_MIN,
1395					   policy->min);
1396		if (ret < 0) {
1397			/*
1398			 * So we don't call freq_qos_remove_request() for an
1399			 * uninitialized request.
1400			 */
1401			kfree(policy->min_freq_req);
1402			policy->min_freq_req = NULL;
1403			goto out_destroy_policy;
1404		}
1405
1406		/*
1407		 * This must be initialized right here to avoid calling
1408		 * freq_qos_remove_request() on uninitialized request in case
1409		 * of errors.
1410		 */
1411		policy->max_freq_req = policy->min_freq_req + 1;
1412
1413		ret = freq_qos_add_request(&policy->constraints,
1414					   policy->max_freq_req, FREQ_QOS_MAX,
1415					   policy->max);
1416		if (ret < 0) {
1417			policy->max_freq_req = NULL;
1418			goto out_destroy_policy;
1419		}
1420
1421		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1422				CPUFREQ_CREATE_POLICY, policy);
1423	}
1424
1425	if (cpufreq_driver->get && has_target()) {
1426		policy->cur = cpufreq_driver->get(policy->cpu);
1427		if (!policy->cur) {
1428			pr_err("%s: ->get() failed\n", __func__);
1429			goto out_destroy_policy;
 
 
 
 
 
 
 
 
 
 
 
 
1430		}
1431	}
 
 
 
1432
1433	/*
1434	 * Sometimes boot loaders set CPU frequency to a value outside of
1435	 * frequency table present with cpufreq core. In such cases CPU might be
1436	 * unstable if it has to run on that frequency for long duration of time
1437	 * and so its better to set it to a frequency which is specified in
1438	 * freq-table. This also makes cpufreq stats inconsistent as
1439	 * cpufreq-stats would fail to register because current frequency of CPU
1440	 * isn't found in freq-table.
1441	 *
1442	 * Because we don't want this change to effect boot process badly, we go
1443	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1444	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1445	 * is initialized to zero).
1446	 *
1447	 * We are passing target-freq as "policy->cur - 1" otherwise
1448	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1449	 * equal to target-freq.
1450	 */
1451	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1452	    && has_target()) {
1453		/* Are we running at unknown frequency ? */
1454		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1455		if (ret == -EINVAL) {
1456			/* Warn user and fix it */
1457			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1458				__func__, policy->cpu, policy->cur);
1459			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1460				CPUFREQ_RELATION_L);
1461
1462			/*
1463			 * Reaching here after boot in a few seconds may not
1464			 * mean that system will remain stable at "unknown"
1465			 * frequency for longer duration. Hence, a BUG_ON().
1466			 */
1467			BUG_ON(ret);
1468			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1469				__func__, policy->cpu, policy->cur);
1470		}
1471	}
1472
1473	if (new_policy) {
1474		ret = cpufreq_add_dev_interface(policy);
1475		if (ret)
1476			goto out_destroy_policy;
 
 
 
1477
1478		cpufreq_stats_create_table(policy);
 
 
 
1479
1480		write_lock_irqsave(&cpufreq_driver_lock, flags);
1481		list_add(&policy->policy_list, &cpufreq_policy_list);
1482		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
1483	}
 
1484
1485	ret = cpufreq_init_policy(policy);
1486	if (ret) {
1487		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1488		       __func__, cpu, ret);
1489		goto out_destroy_policy;
1490	}
1491
1492	up_write(&policy->rwsem);
1493
1494	kobject_uevent(&policy->kobj, KOBJ_ADD);
1495
1496	/* Callback for handling stuff after policy is ready */
1497	if (cpufreq_driver->ready)
1498		cpufreq_driver->ready(policy);
1499
1500	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1501		policy->cdev = of_cpufreq_cooling_register(policy);
1502
1503	pr_debug("initialization complete\n");
1504
1505	return 0;
1506
1507out_destroy_policy:
1508	for_each_cpu(j, policy->real_cpus)
1509		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1510
1511	up_write(&policy->rwsem);
1512
1513out_exit_policy:
1514	if (cpufreq_driver->exit)
1515		cpufreq_driver->exit(policy);
1516
1517out_free_policy:
1518	cpufreq_policy_free(policy);
1519	return ret;
1520}
1521
1522/**
1523 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1524 * @dev: CPU device.
1525 * @sif: Subsystem interface structure pointer (not used)
1526 */
1527static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1528{
1529	struct cpufreq_policy *policy;
1530	unsigned cpu = dev->id;
1531	int ret;
1532
1533	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1534
1535	if (cpu_online(cpu)) {
1536		ret = cpufreq_online(cpu);
1537		if (ret)
1538			return ret;
1539	}
1540
1541	/* Create sysfs link on CPU registration */
1542	policy = per_cpu(cpufreq_cpu_data, cpu);
1543	if (policy)
1544		add_cpu_dev_symlink(policy, cpu);
1545
1546	return 0;
1547}
1548
1549static int cpufreq_offline(unsigned int cpu)
1550{
1551	struct cpufreq_policy *policy;
1552	int ret;
1553
1554	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1555
1556	policy = cpufreq_cpu_get_raw(cpu);
1557	if (!policy) {
1558		pr_debug("%s: No cpu_data found\n", __func__);
1559		return 0;
1560	}
1561
1562	down_write(&policy->rwsem);
1563	if (has_target())
1564		cpufreq_stop_governor(policy);
1565
1566	cpumask_clear_cpu(cpu, policy->cpus);
1567
1568	if (policy_is_inactive(policy)) {
1569		if (has_target())
1570			strncpy(policy->last_governor, policy->governor->name,
1571				CPUFREQ_NAME_LEN);
1572		else
1573			policy->last_policy = policy->policy;
1574	} else if (cpu == policy->cpu) {
1575		/* Nominate new CPU */
1576		policy->cpu = cpumask_any(policy->cpus);
1577	}
1578
1579	/* Start governor again for active policy */
1580	if (!policy_is_inactive(policy)) {
1581		if (has_target()) {
1582			ret = cpufreq_start_governor(policy);
1583			if (ret)
1584				pr_err("%s: Failed to start governor\n", __func__);
1585		}
1586
1587		goto unlock;
1588	}
 
1589
1590	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1591		cpufreq_cooling_unregister(policy->cdev);
1592		policy->cdev = NULL;
1593	}
1594
1595	if (cpufreq_driver->stop_cpu)
1596		cpufreq_driver->stop_cpu(policy);
1597
1598	if (has_target())
1599		cpufreq_exit_governor(policy);
1600
1601	/*
1602	 * Perform the ->offline() during light-weight tear-down, as
1603	 * that allows fast recovery when the CPU comes back.
1604	 */
1605	if (cpufreq_driver->offline) {
1606		cpufreq_driver->offline(policy);
1607	} else if (cpufreq_driver->exit) {
1608		cpufreq_driver->exit(policy);
1609		policy->freq_table = NULL;
1610	}
1611
1612unlock:
1613	up_write(&policy->rwsem);
1614	return 0;
1615}
1616
1617/*
1618 * cpufreq_remove_dev - remove a CPU device
1619 *
1620 * Removes the cpufreq interface for a CPU device.
1621 */
1622static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1623{
1624	unsigned int cpu = dev->id;
1625	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1626
1627	if (!policy)
1628		return;
1629
1630	if (cpu_online(cpu))
1631		cpufreq_offline(cpu);
1632
1633	cpumask_clear_cpu(cpu, policy->real_cpus);
1634	remove_cpu_dev_symlink(policy, dev);
1635
1636	if (cpumask_empty(policy->real_cpus)) {
1637		/* We did light-weight exit earlier, do full tear down now */
1638		if (cpufreq_driver->offline)
1639			cpufreq_driver->exit(policy);
1640
1641		cpufreq_policy_free(policy);
1642	}
1643}
1644
1645/**
1646 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1647 *	in deep trouble.
1648 *	@policy: policy managing CPUs
1649 *	@new_freq: CPU frequency the CPU actually runs at
1650 *
1651 *	We adjust to current frequency first, and need to clean up later.
1652 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1653 */
1654static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1655				unsigned int new_freq)
1656{
1657	struct cpufreq_freqs freqs;
1658
1659	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1660		 policy->cur, new_freq);
1661
1662	freqs.old = policy->cur;
 
1663	freqs.new = new_freq;
1664
1665	cpufreq_freq_transition_begin(policy, &freqs);
1666	cpufreq_freq_transition_end(policy, &freqs, 0);
1667}
1668
1669static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1670{
1671	unsigned int new_freq;
1672
1673	new_freq = cpufreq_driver->get(policy->cpu);
1674	if (!new_freq)
1675		return 0;
1676
1677	/*
1678	 * If fast frequency switching is used with the given policy, the check
1679	 * against policy->cur is pointless, so skip it in that case.
1680	 */
1681	if (policy->fast_switch_enabled || !has_target())
1682		return new_freq;
1683
1684	if (policy->cur != new_freq) {
1685		cpufreq_out_of_sync(policy, new_freq);
1686		if (update)
1687			schedule_work(&policy->update);
1688	}
1689
1690	return new_freq;
1691}
1692
1693/**
1694 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1695 * @cpu: CPU number
1696 *
1697 * This is the last known freq, without actually getting it from the driver.
1698 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1699 */
1700unsigned int cpufreq_quick_get(unsigned int cpu)
1701{
1702	struct cpufreq_policy *policy;
1703	unsigned int ret_freq = 0;
1704	unsigned long flags;
1705
1706	read_lock_irqsave(&cpufreq_driver_lock, flags);
1707
1708	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1709		ret_freq = cpufreq_driver->get(cpu);
1710		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1711		return ret_freq;
1712	}
1713
1714	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1715
1716	policy = cpufreq_cpu_get(cpu);
1717	if (policy) {
1718		ret_freq = policy->cur;
1719		cpufreq_cpu_put(policy);
1720	}
1721
1722	return ret_freq;
1723}
1724EXPORT_SYMBOL(cpufreq_quick_get);
1725
1726/**
1727 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1728 * @cpu: CPU number
1729 *
1730 * Just return the max possible frequency for a given CPU.
1731 */
1732unsigned int cpufreq_quick_get_max(unsigned int cpu)
1733{
1734	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1735	unsigned int ret_freq = 0;
1736
1737	if (policy) {
1738		ret_freq = policy->max;
1739		cpufreq_cpu_put(policy);
1740	}
1741
1742	return ret_freq;
1743}
1744EXPORT_SYMBOL(cpufreq_quick_get_max);
1745
1746/**
1747 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1748 * @cpu: CPU number
1749 *
1750 * The default return value is the max_freq field of cpuinfo.
1751 */
1752__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1753{
1754	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1755	unsigned int ret_freq = 0;
1756
1757	if (policy) {
1758		ret_freq = policy->cpuinfo.max_freq;
1759		cpufreq_cpu_put(policy);
 
 
 
 
 
 
 
 
 
 
1760	}
1761
1762	return ret_freq;
1763}
1764EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1765
1766static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1767{
1768	if (unlikely(policy_is_inactive(policy)))
1769		return 0;
1770
1771	return cpufreq_verify_current_freq(policy, true);
1772}
1773
1774/**
1775 * cpufreq_get - get the current CPU frequency (in kHz)
1776 * @cpu: CPU number
1777 *
1778 * Get the CPU current (static) CPU frequency
1779 */
1780unsigned int cpufreq_get(unsigned int cpu)
1781{
 
1782	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1783	unsigned int ret_freq = 0;
1784
1785	if (policy) {
1786		down_read(&policy->rwsem);
1787		if (cpufreq_driver->get)
1788			ret_freq = __cpufreq_get(policy);
1789		up_read(&policy->rwsem);
 
 
1790
1791		cpufreq_cpu_put(policy);
1792	}
1793
 
 
 
1794	return ret_freq;
1795}
1796EXPORT_SYMBOL(cpufreq_get);
1797
1798static struct subsys_interface cpufreq_interface = {
1799	.name		= "cpufreq",
1800	.subsys		= &cpu_subsys,
1801	.add_dev	= cpufreq_add_dev,
1802	.remove_dev	= cpufreq_remove_dev,
1803};
1804
1805/*
1806 * In case platform wants some specific frequency to be configured
1807 * during suspend..
1808 */
1809int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1810{
1811	int ret;
1812
1813	if (!policy->suspend_freq) {
1814		pr_debug("%s: suspend_freq not defined\n", __func__);
1815		return 0;
1816	}
1817
1818	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1819			policy->suspend_freq);
1820
1821	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1822			CPUFREQ_RELATION_H);
1823	if (ret)
1824		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1825				__func__, policy->suspend_freq, ret);
1826
1827	return ret;
1828}
1829EXPORT_SYMBOL(cpufreq_generic_suspend);
1830
1831/**
1832 * cpufreq_suspend() - Suspend CPUFreq governors
1833 *
1834 * Called during system wide Suspend/Hibernate cycles for suspending governors
1835 * as some platforms can't change frequency after this point in suspend cycle.
1836 * Because some of the devices (like: i2c, regulators, etc) they use for
1837 * changing frequency are suspended quickly after this point.
1838 */
1839void cpufreq_suspend(void)
1840{
1841	struct cpufreq_policy *policy;
1842
1843	if (!cpufreq_driver)
1844		return;
1845
1846	if (!has_target() && !cpufreq_driver->suspend)
1847		goto suspend;
1848
1849	pr_debug("%s: Suspending Governors\n", __func__);
 
 
 
1850
1851	for_each_active_policy(policy) {
1852		if (has_target()) {
1853			down_write(&policy->rwsem);
1854			cpufreq_stop_governor(policy);
1855			up_write(&policy->rwsem);
1856		}
1857
1858		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1859			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1860				cpufreq_driver->name);
1861	}
1862
1863suspend:
1864	cpufreq_suspended = true;
1865}
1866
1867/**
1868 * cpufreq_resume() - Resume CPUFreq governors
 
 
 
 
 
 
 
1869 *
1870 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1871 * are suspended with cpufreq_suspend().
1872 */
1873void cpufreq_resume(void)
1874{
1875	struct cpufreq_policy *policy;
1876	int ret;
1877
1878	if (!cpufreq_driver)
1879		return;
1880
1881	if (unlikely(!cpufreq_suspended))
1882		return;
1883
1884	cpufreq_suspended = false;
1885
1886	if (!has_target() && !cpufreq_driver->resume)
1887		return;
1888
1889	pr_debug("%s: Resuming Governors\n", __func__);
1890
1891	for_each_active_policy(policy) {
1892		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1893			pr_err("%s: Failed to resume driver: %p\n", __func__,
1894				policy);
1895		} else if (has_target()) {
1896			down_write(&policy->rwsem);
1897			ret = cpufreq_start_governor(policy);
1898			up_write(&policy->rwsem);
1899
1900			if (ret)
1901				pr_err("%s: Failed to start governor for policy: %p\n",
1902				       __func__, policy);
1903		}
1904	}
1905}
1906
1907/**
1908 *	cpufreq_get_current_driver - return current driver's name
1909 *
1910 *	Return the name string of the currently loaded cpufreq driver
1911 *	or NULL, if none.
1912 */
1913const char *cpufreq_get_current_driver(void)
1914{
1915	if (cpufreq_driver)
1916		return cpufreq_driver->name;
1917
1918	return NULL;
 
1919}
1920EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1921
1922/**
1923 *	cpufreq_get_driver_data - return current driver data
1924 *
1925 *	Return the private data of the currently loaded cpufreq
1926 *	driver, or NULL if no cpufreq driver is loaded.
1927 */
1928void *cpufreq_get_driver_data(void)
1929{
1930	if (cpufreq_driver)
1931		return cpufreq_driver->driver_data;
1932
1933	return NULL;
1934}
1935EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1936
1937/*********************************************************************
1938 *                     NOTIFIER LISTS INTERFACE                      *
1939 *********************************************************************/
1940
1941/**
1942 *	cpufreq_register_notifier - register a driver with cpufreq
1943 *	@nb: notifier function to register
1944 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1945 *
1946 *	Add a driver to one of two lists: either a list of drivers that
1947 *      are notified about clock rate changes (once before and once after
1948 *      the transition), or a list of drivers that are notified about
1949 *      changes in cpufreq policy.
1950 *
1951 *	This function may sleep, and has the same return conditions as
1952 *	blocking_notifier_chain_register.
1953 */
1954int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1955{
1956	int ret;
1957
1958	if (cpufreq_disabled())
1959		return -EINVAL;
1960
1961	switch (list) {
1962	case CPUFREQ_TRANSITION_NOTIFIER:
1963		mutex_lock(&cpufreq_fast_switch_lock);
1964
1965		if (cpufreq_fast_switch_count > 0) {
1966			mutex_unlock(&cpufreq_fast_switch_lock);
1967			return -EBUSY;
1968		}
1969		ret = srcu_notifier_chain_register(
1970				&cpufreq_transition_notifier_list, nb);
1971		if (!ret)
1972			cpufreq_fast_switch_count--;
1973
1974		mutex_unlock(&cpufreq_fast_switch_lock);
1975		break;
1976	case CPUFREQ_POLICY_NOTIFIER:
1977		ret = blocking_notifier_chain_register(
1978				&cpufreq_policy_notifier_list, nb);
1979		break;
1980	default:
1981		ret = -EINVAL;
1982	}
1983
1984	return ret;
1985}
1986EXPORT_SYMBOL(cpufreq_register_notifier);
1987
 
1988/**
1989 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1990 *	@nb: notifier block to be unregistered
1991 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1992 *
1993 *	Remove a driver from the CPU frequency notifier list.
1994 *
1995 *	This function may sleep, and has the same return conditions as
1996 *	blocking_notifier_chain_unregister.
1997 */
1998int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1999{
2000	int ret;
2001
2002	if (cpufreq_disabled())
2003		return -EINVAL;
2004
2005	switch (list) {
2006	case CPUFREQ_TRANSITION_NOTIFIER:
2007		mutex_lock(&cpufreq_fast_switch_lock);
2008
2009		ret = srcu_notifier_chain_unregister(
2010				&cpufreq_transition_notifier_list, nb);
2011		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2012			cpufreq_fast_switch_count++;
2013
2014		mutex_unlock(&cpufreq_fast_switch_lock);
2015		break;
2016	case CPUFREQ_POLICY_NOTIFIER:
2017		ret = blocking_notifier_chain_unregister(
2018				&cpufreq_policy_notifier_list, nb);
2019		break;
2020	default:
2021		ret = -EINVAL;
2022	}
2023
2024	return ret;
2025}
2026EXPORT_SYMBOL(cpufreq_unregister_notifier);
2027
2028
2029/*********************************************************************
2030 *                              GOVERNORS                            *
2031 *********************************************************************/
2032
2033/**
2034 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2035 * @policy: cpufreq policy to switch the frequency for.
2036 * @target_freq: New frequency to set (may be approximate).
2037 *
2038 * Carry out a fast frequency switch without sleeping.
2039 *
2040 * The driver's ->fast_switch() callback invoked by this function must be
2041 * suitable for being called from within RCU-sched read-side critical sections
2042 * and it is expected to select the minimum available frequency greater than or
2043 * equal to @target_freq (CPUFREQ_RELATION_L).
2044 *
2045 * This function must not be called if policy->fast_switch_enabled is unset.
2046 *
2047 * Governors calling this function must guarantee that it will never be invoked
2048 * twice in parallel for the same policy and that it will never be called in
2049 * parallel with either ->target() or ->target_index() for the same policy.
2050 *
2051 * Returns the actual frequency set for the CPU.
2052 *
2053 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2054 * error condition, the hardware configuration must be preserved.
2055 */
2056unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2057					unsigned int target_freq)
2058{
2059	target_freq = clamp_val(target_freq, policy->min, policy->max);
2060
2061	return cpufreq_driver->fast_switch(policy, target_freq);
2062}
2063EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2064
2065/* Must set freqs->new to intermediate frequency */
2066static int __target_intermediate(struct cpufreq_policy *policy,
2067				 struct cpufreq_freqs *freqs, int index)
2068{
2069	int ret;
2070
2071	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2072
2073	/* We don't need to switch to intermediate freq */
2074	if (!freqs->new)
2075		return 0;
2076
2077	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2078		 __func__, policy->cpu, freqs->old, freqs->new);
2079
2080	cpufreq_freq_transition_begin(policy, freqs);
2081	ret = cpufreq_driver->target_intermediate(policy, index);
2082	cpufreq_freq_transition_end(policy, freqs, ret);
2083
2084	if (ret)
2085		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2086		       __func__, ret);
2087
2088	return ret;
2089}
2090
2091static int __target_index(struct cpufreq_policy *policy, int index)
2092{
2093	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2094	unsigned int intermediate_freq = 0;
2095	unsigned int newfreq = policy->freq_table[index].frequency;
2096	int retval = -EINVAL;
2097	bool notify;
2098
2099	if (newfreq == policy->cur)
2100		return 0;
2101
2102	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2103	if (notify) {
2104		/* Handle switching to intermediate frequency */
2105		if (cpufreq_driver->get_intermediate) {
2106			retval = __target_intermediate(policy, &freqs, index);
2107			if (retval)
2108				return retval;
2109
2110			intermediate_freq = freqs.new;
2111			/* Set old freq to intermediate */
2112			if (intermediate_freq)
2113				freqs.old = freqs.new;
2114		}
2115
2116		freqs.new = newfreq;
2117		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2118			 __func__, policy->cpu, freqs.old, freqs.new);
2119
2120		cpufreq_freq_transition_begin(policy, &freqs);
2121	}
2122
2123	retval = cpufreq_driver->target_index(policy, index);
2124	if (retval)
2125		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2126		       retval);
2127
2128	if (notify) {
2129		cpufreq_freq_transition_end(policy, &freqs, retval);
2130
2131		/*
2132		 * Failed after setting to intermediate freq? Driver should have
2133		 * reverted back to initial frequency and so should we. Check
2134		 * here for intermediate_freq instead of get_intermediate, in
2135		 * case we haven't switched to intermediate freq at all.
2136		 */
2137		if (unlikely(retval && intermediate_freq)) {
2138			freqs.old = intermediate_freq;
2139			freqs.new = policy->restore_freq;
2140			cpufreq_freq_transition_begin(policy, &freqs);
2141			cpufreq_freq_transition_end(policy, &freqs, 0);
2142		}
2143	}
2144
2145	return retval;
2146}
2147
2148int __cpufreq_driver_target(struct cpufreq_policy *policy,
2149			    unsigned int target_freq,
2150			    unsigned int relation)
2151{
2152	unsigned int old_target_freq = target_freq;
2153	int index;
2154
2155	if (cpufreq_disabled())
2156		return -ENODEV;
 
 
2157
2158	/* Make sure that target_freq is within supported range */
2159	target_freq = clamp_val(target_freq, policy->min, policy->max);
2160
2161	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2162		 policy->cpu, target_freq, relation, old_target_freq);
2163
2164	/*
2165	 * This might look like a redundant call as we are checking it again
2166	 * after finding index. But it is left intentionally for cases where
2167	 * exactly same freq is called again and so we can save on few function
2168	 * calls.
2169	 */
2170	if (target_freq == policy->cur)
2171		return 0;
2172
2173	/* Save last value to restore later on errors */
2174	policy->restore_freq = policy->cur;
2175
2176	if (cpufreq_driver->target)
2177		return cpufreq_driver->target(policy, target_freq, relation);
2178
2179	if (!cpufreq_driver->target_index)
2180		return -EINVAL;
2181
2182	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2183
2184	return __target_index(policy, index);
2185}
2186EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2187
2188int cpufreq_driver_target(struct cpufreq_policy *policy,
2189			  unsigned int target_freq,
2190			  unsigned int relation)
2191{
2192	int ret;
 
 
 
 
2193
2194	down_write(&policy->rwsem);
 
2195
2196	ret = __cpufreq_driver_target(policy, target_freq, relation);
2197
2198	up_write(&policy->rwsem);
2199
 
 
 
2200	return ret;
2201}
2202EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2203
2204__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2205{
2206	return NULL;
2207}
2208
2209static int cpufreq_init_governor(struct cpufreq_policy *policy)
2210{
2211	int ret;
2212
2213	/* Don't start any governor operations if we are entering suspend */
2214	if (cpufreq_suspended)
2215		return 0;
2216	/*
2217	 * Governor might not be initiated here if ACPI _PPC changed
2218	 * notification happened, so check it.
2219	 */
2220	if (!policy->governor)
2221		return -EINVAL;
2222
2223	/* Platform doesn't want dynamic frequency switching ? */
2224	if (policy->governor->dynamic_switching &&
2225	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2226		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2227
2228		if (gov) {
2229			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2230				policy->governor->name, gov->name);
2231			policy->governor = gov;
2232		} else {
2233			return -EINVAL;
2234		}
2235	}
2236
2237	if (!try_module_get(policy->governor->owner))
2238		return -EINVAL;
2239
2240	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2241
2242	if (policy->governor->init) {
2243		ret = policy->governor->init(policy);
2244		if (ret) {
2245			module_put(policy->governor->owner);
2246			return ret;
2247		}
2248	}
2249
2250	return 0;
2251}
 
2252
2253static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2254{
2255	if (cpufreq_suspended || !policy->governor)
2256		return;
2257
2258	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2259
2260	if (policy->governor->exit)
2261		policy->governor->exit(policy);
2262
2263	module_put(policy->governor->owner);
2264}
2265
2266int cpufreq_start_governor(struct cpufreq_policy *policy)
2267{
2268	int ret;
2269
2270	if (cpufreq_suspended)
2271		return 0;
 
 
 
 
 
 
 
2272
2273	if (!policy->governor)
2274		return -EINVAL;
2275
2276	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2277
2278	if (cpufreq_driver->get)
2279		cpufreq_verify_current_freq(policy, false);
2280
2281	if (policy->governor->start) {
2282		ret = policy->governor->start(policy);
2283		if (ret)
2284			return ret;
 
2285	}
2286
2287	if (policy->governor->limits)
2288		policy->governor->limits(policy);
2289
2290	return 0;
2291}
 
 
 
 
 
 
 
 
2292
2293void cpufreq_stop_governor(struct cpufreq_policy *policy)
2294{
2295	if (cpufreq_suspended || !policy->governor)
2296		return;
2297
2298	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2299
2300	if (policy->governor->stop)
2301		policy->governor->stop(policy);
2302}
2303
2304static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2305{
2306	if (cpufreq_suspended || !policy->governor)
2307		return;
2308
2309	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2310
2311	if (policy->governor->limits)
2312		policy->governor->limits(policy);
2313}
2314
2315int cpufreq_register_governor(struct cpufreq_governor *governor)
2316{
2317	int err;
2318
2319	if (!governor)
2320		return -EINVAL;
2321
2322	if (cpufreq_disabled())
2323		return -ENODEV;
2324
2325	mutex_lock(&cpufreq_governor_mutex);
2326
2327	err = -EBUSY;
2328	if (!find_governor(governor->name)) {
2329		err = 0;
2330		list_add(&governor->governor_list, &cpufreq_governor_list);
2331	}
2332
2333	mutex_unlock(&cpufreq_governor_mutex);
2334	return err;
2335}
2336EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2337
 
2338void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2339{
2340	struct cpufreq_policy *policy;
2341	unsigned long flags;
 
2342
2343	if (!governor)
2344		return;
2345
2346	if (cpufreq_disabled())
2347		return;
2348
2349	/* clear last_governor for all inactive policies */
2350	read_lock_irqsave(&cpufreq_driver_lock, flags);
2351	for_each_inactive_policy(policy) {
2352		if (!strcmp(policy->last_governor, governor->name)) {
2353			policy->governor = NULL;
2354			strcpy(policy->last_governor, "\0");
2355		}
2356	}
2357	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2358
2359	mutex_lock(&cpufreq_governor_mutex);
2360	list_del(&governor->governor_list);
2361	mutex_unlock(&cpufreq_governor_mutex);
 
2362}
2363EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2364
2365
 
2366/*********************************************************************
2367 *                          POLICY INTERFACE                         *
2368 *********************************************************************/
2369
2370/**
2371 * cpufreq_get_policy - get the current cpufreq_policy
2372 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2373 *	is written
2374 * @cpu: CPU to find the policy for
2375 *
2376 * Reads the current cpufreq policy.
2377 */
2378int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2379{
2380	struct cpufreq_policy *cpu_policy;
2381	if (!policy)
2382		return -EINVAL;
2383
2384	cpu_policy = cpufreq_cpu_get(cpu);
2385	if (!cpu_policy)
2386		return -EINVAL;
2387
2388	memcpy(policy, cpu_policy, sizeof(*policy));
2389
2390	cpufreq_cpu_put(cpu_policy);
2391	return 0;
2392}
2393EXPORT_SYMBOL(cpufreq_get_policy);
2394
2395/**
2396 * cpufreq_set_policy - Modify cpufreq policy parameters.
2397 * @policy: Policy object to modify.
2398 * @new_gov: Policy governor pointer.
2399 * @new_pol: Policy value (for drivers with built-in governors).
2400 *
2401 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2402 * limits to be set for the policy, update @policy with the verified limits
2403 * values and either invoke the driver's ->setpolicy() callback (if present) or
2404 * carry out a governor update for @policy.  That is, run the current governor's
2405 * ->limits() callback (if @new_gov points to the same object as the one in
2406 * @policy) or replace the governor for @policy with @new_gov.
2407 *
2408 * The cpuinfo part of @policy is not updated by this function.
2409 */
2410static int cpufreq_set_policy(struct cpufreq_policy *policy,
2411			      struct cpufreq_governor *new_gov,
2412			      unsigned int new_pol)
2413{
2414	struct cpufreq_policy_data new_data;
2415	struct cpufreq_governor *old_gov;
2416	int ret;
 
 
 
 
2417
2418	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2419	new_data.freq_table = policy->freq_table;
2420	new_data.cpu = policy->cpu;
2421	/*
2422	 * PM QoS framework collects all the requests from users and provide us
2423	 * the final aggregated value here.
2424	 */
2425	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2426	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2427
2428	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2429		 new_data.cpu, new_data.min, new_data.max);
 
 
2430
2431	/*
2432	 * Verify that the CPU speed can be set within these limits and make sure
2433	 * that min <= max.
2434	 */
2435	ret = cpufreq_driver->verify(&new_data);
 
 
 
 
 
 
2436	if (ret)
2437		return ret;
2438
2439	policy->min = new_data.min;
2440	policy->max = new_data.max;
2441	trace_cpu_frequency_limits(policy);
2442
2443	policy->cached_target_freq = UINT_MAX;
 
2444
2445	pr_debug("new min and max freqs are %u - %u kHz\n",
2446		 policy->min, policy->max);
2447
2448	if (cpufreq_driver->setpolicy) {
2449		policy->policy = new_pol;
2450		pr_debug("setting range\n");
2451		return cpufreq_driver->setpolicy(policy);
2452	}
2453
2454	if (new_gov == policy->governor) {
2455		pr_debug("governor limits update\n");
2456		cpufreq_governor_limits(policy);
2457		return 0;
2458	}
2459
2460	pr_debug("governor switch\n");
2461
2462	/* save old, working values */
2463	old_gov = policy->governor;
2464	/* end old governor */
2465	if (old_gov) {
2466		cpufreq_stop_governor(policy);
2467		cpufreq_exit_governor(policy);
2468	}
2469
2470	/* start new governor */
2471	policy->governor = new_gov;
2472	ret = cpufreq_init_governor(policy);
2473	if (!ret) {
2474		ret = cpufreq_start_governor(policy);
2475		if (!ret) {
2476			pr_debug("governor change\n");
2477			sched_cpufreq_governor_change(policy, old_gov);
2478			return 0;
2479		}
2480		cpufreq_exit_governor(policy);
2481	}
2482
2483	/* new governor failed, so re-start old one */
2484	pr_debug("starting governor %s failed\n", policy->governor->name);
2485	if (old_gov) {
2486		policy->governor = old_gov;
2487		if (cpufreq_init_governor(policy))
2488			policy->governor = NULL;
2489		else
2490			cpufreq_start_governor(policy);
2491	}
2492
 
2493	return ret;
2494}
2495
2496/**
2497 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2498 * @cpu: CPU to re-evaluate the policy for.
2499 *
2500 * Update the current frequency for the cpufreq policy of @cpu and use
2501 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2502 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2503 * for the policy in question, among other things.
2504 */
2505void cpufreq_update_policy(unsigned int cpu)
2506{
2507	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2508
2509	if (!policy)
2510		return;
2511
2512	/*
2513	 * BIOS might change freq behind our back
2514	 * -> ask driver for current freq and notify governors about a change
2515	 */
2516	if (cpufreq_driver->get && has_target() &&
2517	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2518		goto unlock;
2519
2520	refresh_frequency_limits(policy);
2521
2522unlock:
2523	cpufreq_cpu_release(policy);
2524}
2525EXPORT_SYMBOL(cpufreq_update_policy);
2526
2527/**
2528 * cpufreq_update_limits - Update policy limits for a given CPU.
2529 * @cpu: CPU to update the policy limits for.
2530 *
2531 * Invoke the driver's ->update_limits callback if present or call
2532 * cpufreq_update_policy() for @cpu.
2533 */
2534void cpufreq_update_limits(unsigned int cpu)
2535{
2536	if (cpufreq_driver->update_limits)
2537		cpufreq_driver->update_limits(cpu);
2538	else
2539		cpufreq_update_policy(cpu);
2540}
2541EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2542
2543/*********************************************************************
2544 *               BOOST						     *
2545 *********************************************************************/
2546static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2547{
 
 
2548	int ret;
2549
2550	if (!policy->freq_table)
2551		return -ENXIO;
 
 
2552
2553	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2554	if (ret) {
2555		pr_err("%s: Policy frequency update failed\n", __func__);
2556		return ret;
2557	}
2558
2559	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2560	if (ret < 0)
2561		return ret;
 
 
 
2562
2563	return 0;
2564}
2565
2566int cpufreq_boost_trigger_state(int state)
2567{
2568	struct cpufreq_policy *policy;
2569	unsigned long flags;
2570	int ret = 0;
2571
2572	if (cpufreq_driver->boost_enabled == state)
2573		return 0;
2574
2575	write_lock_irqsave(&cpufreq_driver_lock, flags);
2576	cpufreq_driver->boost_enabled = state;
2577	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2578
2579	get_online_cpus();
2580	for_each_active_policy(policy) {
2581		ret = cpufreq_driver->set_boost(policy, state);
2582		if (ret)
2583			goto err_reset_state;
2584	}
2585	put_online_cpus();
2586
2587	return 0;
2588
2589err_reset_state:
2590	put_online_cpus();
2591
2592	write_lock_irqsave(&cpufreq_driver_lock, flags);
2593	cpufreq_driver->boost_enabled = !state;
2594	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2595
2596	pr_err("%s: Cannot %s BOOST\n",
2597	       __func__, state ? "enable" : "disable");
2598
 
 
 
2599	return ret;
2600}
 
2601
2602static bool cpufreq_boost_supported(void)
 
2603{
2604	return cpufreq_driver->set_boost;
2605}
2606
2607static int create_boost_sysfs_file(void)
2608{
2609	int ret;
 
 
 
 
 
 
 
 
2610
2611	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2612	if (ret)
2613		pr_err("%s: cannot register global BOOST sysfs file\n",
2614		       __func__);
2615
2616	return ret;
 
 
 
2617}
2618
2619static void remove_boost_sysfs_file(void)
2620{
2621	if (cpufreq_boost_supported())
2622		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2623}
2624
2625int cpufreq_enable_boost_support(void)
2626{
2627	if (!cpufreq_driver)
2628		return -EINVAL;
2629
2630	if (cpufreq_boost_supported())
2631		return 0;
2632
2633	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2634
2635	/* This will get removed on driver unregister */
2636	return create_boost_sysfs_file();
2637}
2638EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2639
2640int cpufreq_boost_enabled(void)
2641{
2642	return cpufreq_driver->boost_enabled;
2643}
2644EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2645
2646/*********************************************************************
2647 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2648 *********************************************************************/
2649static enum cpuhp_state hp_online;
2650
2651static int cpuhp_cpufreq_online(unsigned int cpu)
2652{
2653	cpufreq_online(cpu);
2654
2655	return 0;
2656}
2657
2658static int cpuhp_cpufreq_offline(unsigned int cpu)
2659{
2660	cpufreq_offline(cpu);
2661
2662	return 0;
2663}
2664
2665/**
2666 * cpufreq_register_driver - register a CPU Frequency driver
2667 * @driver_data: A struct cpufreq_driver containing the values#
2668 * submitted by the CPU Frequency driver.
2669 *
2670 * Registers a CPU Frequency driver to this core code. This code
2671 * returns zero on success, -EEXIST when another driver got here first
2672 * (and isn't unregistered in the meantime).
2673 *
2674 */
2675int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2676{
2677	unsigned long flags;
2678	int ret;
2679
2680	if (cpufreq_disabled())
2681		return -ENODEV;
2682
2683	/*
2684	 * The cpufreq core depends heavily on the availability of device
2685	 * structure, make sure they are available before proceeding further.
2686	 */
2687	if (!get_cpu_device(0))
2688		return -EPROBE_DEFER;
2689
2690	if (!driver_data || !driver_data->verify || !driver_data->init ||
2691	    !(driver_data->setpolicy || driver_data->target_index ||
2692		    driver_data->target) ||
2693	     (driver_data->setpolicy && (driver_data->target_index ||
2694		    driver_data->target)) ||
2695	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2696	     (!driver_data->online != !driver_data->offline))
2697		return -EINVAL;
2698
2699	pr_debug("trying to register driver %s\n", driver_data->name);
2700
2701	/* Protect against concurrent CPU online/offline. */
2702	cpus_read_lock();
2703
2704	write_lock_irqsave(&cpufreq_driver_lock, flags);
2705	if (cpufreq_driver) {
2706		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2707		ret = -EEXIST;
2708		goto out;
2709	}
2710	cpufreq_driver = driver_data;
2711	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2712
2713	if (driver_data->setpolicy)
2714		driver_data->flags |= CPUFREQ_CONST_LOOPS;
 
 
2715
2716	if (cpufreq_boost_supported()) {
2717		ret = create_boost_sysfs_file();
2718		if (ret)
2719			goto err_null_driver;
2720	}
2721
2722	ret = subsys_interface_register(&cpufreq_interface);
2723	if (ret)
2724		goto err_boost_unreg;
 
 
 
2725
2726	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2727	    list_empty(&cpufreq_policy_list)) {
2728		/* if all ->init() calls failed, unregister */
2729		ret = -ENODEV;
2730		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2731			 driver_data->name);
2732		goto err_if_unreg;
 
2733	}
2734
2735	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2736						   "cpufreq:online",
2737						   cpuhp_cpufreq_online,
2738						   cpuhp_cpufreq_offline);
2739	if (ret < 0)
2740		goto err_if_unreg;
2741	hp_online = ret;
2742	ret = 0;
2743
2744	pr_debug("driver %s up and running\n", driver_data->name);
2745	goto out;
2746
2747err_if_unreg:
2748	subsys_interface_unregister(&cpufreq_interface);
2749err_boost_unreg:
2750	remove_boost_sysfs_file();
2751err_null_driver:
2752	write_lock_irqsave(&cpufreq_driver_lock, flags);
2753	cpufreq_driver = NULL;
2754	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755out:
2756	cpus_read_unlock();
2757	return ret;
2758}
2759EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2760
2761/*
 
2762 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2763 *
2764 * Unregister the current CPUFreq driver. Only call this if you have
2765 * the right to do so, i.e. if you have succeeded in initialising before!
2766 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2767 * currently not initialised.
2768 */
2769int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2770{
2771	unsigned long flags;
2772
2773	if (!cpufreq_driver || (driver != cpufreq_driver))
2774		return -EINVAL;
2775
2776	pr_debug("unregistering driver %s\n", driver->name);
2777
2778	/* Protect against concurrent cpu hotplug */
2779	cpus_read_lock();
2780	subsys_interface_unregister(&cpufreq_interface);
2781	remove_boost_sysfs_file();
2782	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2783
2784	write_lock_irqsave(&cpufreq_driver_lock, flags);
2785
 
2786	cpufreq_driver = NULL;
2787
2788	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2789	cpus_read_unlock();
2790
2791	return 0;
2792}
2793EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2794
2795static int __init cpufreq_core_init(void)
2796{
2797	struct cpufreq_governor *gov = cpufreq_default_governor();
2798
2799	if (cpufreq_disabled())
2800		return -ENODEV;
 
 
2801
2802	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
 
2803	BUG_ON(!cpufreq_global_kobject);
2804
2805	if (!strlen(default_governor))
2806		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2807
2808	return 0;
2809}
2810module_param(off, int, 0444);
2811module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2812core_initcall(cpufreq_core_init);