Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
 
   6 *
   7 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   8 *	Added handling for CPU hotplug
   9 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  10 *	Fix handling for CPU hotplug -- affected CPUs
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/init.h>
  21#include <linux/notifier.h>
  22#include <linux/cpufreq.h>
  23#include <linux/delay.h>
  24#include <linux/interrupt.h>
  25#include <linux/spinlock.h>
  26#include <linux/device.h>
  27#include <linux/slab.h>
  28#include <linux/cpu.h>
  29#include <linux/completion.h>
  30#include <linux/mutex.h>
  31#include <linux/syscore_ops.h>
  32
 
  33#include <trace/events/power.h>
  34
  35/**
  36 * The "cpufreq driver" - the arch- or hardware-dependent low
  37 * level driver of CPUFreq support, and its spinlock. This lock
  38 * also protects the cpufreq_cpu_data array.
  39 */
  40static struct cpufreq_driver *cpufreq_driver;
  41static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  42#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
  43/* This one keeps track of the previously set governor of a removed CPU */
  44static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
  45#endif
  46static DEFINE_SPINLOCK(cpufreq_driver_lock);
  47
  48/*
  49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
  50 * all cpufreq/hotplug/workqueue/etc related lock issues.
  51 *
  52 * The rules for this semaphore:
  53 * - Any routine that wants to read from the policy structure will
  54 *   do a down_read on this semaphore.
  55 * - Any routine that will write to the policy structure and/or may take away
  56 *   the policy altogether (eg. CPU hotplug), will hold this lock in write
  57 *   mode before doing so.
  58 *
  59 * Additional rules:
  60 * - All holders of the lock should check to make sure that the CPU they
  61 *   are concerned with are online after they get the lock.
  62 * - Governor routines that can be called in cpufreq hotplug path should not
  63 *   take this sem as top level hotplug notifier handler takes this.
  64 * - Lock should not be held across
  65 *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
  66 */
  67static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
  68static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
  69
  70#define lock_policy_rwsem(mode, cpu)					\
  71static int lock_policy_rwsem_##mode					\
  72(int cpu)								\
  73{									\
  74	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);		\
  75	BUG_ON(policy_cpu == -1);					\
  76	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
  77	if (unlikely(!cpu_online(cpu))) {				\
  78		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
  79		return -1;						\
  80	}								\
  81									\
  82	return 0;							\
  83}
  84
  85lock_policy_rwsem(read, cpu);
  86
  87lock_policy_rwsem(write, cpu);
  88
  89static void unlock_policy_rwsem_read(int cpu)
  90{
  91	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  92	BUG_ON(policy_cpu == -1);
  93	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
  94}
  95
  96static void unlock_policy_rwsem_write(int cpu)
  97{
  98	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  99	BUG_ON(policy_cpu == -1);
 100	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
 101}
 102
 
 
 
 
 
 103
 104/* internal prototypes */
 105static int __cpufreq_governor(struct cpufreq_policy *policy,
 106		unsigned int event);
 107static unsigned int __cpufreq_get(unsigned int cpu);
 108static void handle_update(struct work_struct *work);
 109
 110/**
 111 * Two notifier lists: the "policy" list is involved in the
 112 * validation process for a new CPU frequency policy; the
 113 * "transition" list for kernel code that needs to handle
 114 * changes to devices when the CPU clock speed changes.
 115 * The mutex locks both lists.
 116 */
 117static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
 118static struct srcu_notifier_head cpufreq_transition_notifier_list;
 119
 120static bool init_cpufreq_transition_notifier_list_called;
 121static int __init init_cpufreq_transition_notifier_list(void)
 122{
 123	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
 124	init_cpufreq_transition_notifier_list_called = true;
 125	return 0;
 126}
 127pure_initcall(init_cpufreq_transition_notifier_list);
 128
 
 
 
 
 
 
 
 
 
 129static LIST_HEAD(cpufreq_governor_list);
 130static DEFINE_MUTEX(cpufreq_governor_mutex);
 131
 132struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 133{
 134	struct cpufreq_policy *data;
 135	unsigned long flags;
 
 136
 137	if (cpu >= nr_cpu_ids)
 138		goto err_out;
 
 
 
 
 
 
 139
 140	/* get the cpufreq driver */
 141	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 
 142
 143	if (!cpufreq_driver)
 144		goto err_out_unlock;
 145
 146	if (!try_module_get(cpufreq_driver->owner))
 147		goto err_out_unlock;
 
 
 
 
 148
 
 
 
 149
 150	/* get the CPU */
 151	data = per_cpu(cpufreq_cpu_data, cpu);
 152
 153	if (!data)
 154		goto err_out_put_module;
 
 155
 156	if (!kobject_get(&data->kobj))
 157		goto err_out_put_module;
 
 
 158
 159	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 160	return data;
 
 161
 162err_out_put_module:
 163	module_put(cpufreq_driver->owner);
 164err_out_unlock:
 165	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 166err_out:
 167	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168}
 169EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 170
 
 
 
 
 
 
 
 
 
 171
 172void cpufreq_cpu_put(struct cpufreq_policy *data)
 
 
 
 
 
 173{
 174	kobject_put(&data->kobj);
 175	module_put(cpufreq_driver->owner);
 176}
 177EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179
 180/*********************************************************************
 181 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 182 *********************************************************************/
 183
 184/**
 185 * adjust_jiffies - adjust the system "loops_per_jiffy"
 186 *
 187 * This function alters the system "loops_per_jiffy" for the clock
 188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 189 * systems as each CPU might be scaled differently. So, use the arch
 190 * per-CPU loops_per_jiffy value wherever possible.
 191 */
 192#ifndef CONFIG_SMP
 193static unsigned long l_p_j_ref;
 194static unsigned int  l_p_j_ref_freq;
 195
 196static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 197{
 198	if (ci->flags & CPUFREQ_CONST_LOOPS)
 199		return;
 200
 201	if (!l_p_j_ref_freq) {
 202		l_p_j_ref = loops_per_jiffy;
 203		l_p_j_ref_freq = ci->old;
 204		pr_debug("saving %lu as reference value for loops_per_jiffy; "
 205			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
 206	}
 207	if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
 208	    (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
 209	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
 210		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 211								ci->new);
 212		pr_debug("scaling loops_per_jiffy to %lu "
 213			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
 214	}
 215}
 216#else
 217static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 218{
 219	return;
 220}
 221#endif
 222
 223
 224/**
 225 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 226 * on frequency transition.
 227 *
 228 * This function calls the transition notifiers and the "adjust_jiffies"
 229 * function. It is called twice on all CPU frequency changes that have
 230 * external effects.
 231 */
 232void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
 233{
 234	struct cpufreq_policy *policy;
 235
 236	BUG_ON(irqs_disabled());
 237
 
 
 
 238	freqs->flags = cpufreq_driver->flags;
 239	pr_debug("notification %u of frequency transition to %u kHz\n",
 240		state, freqs->new);
 241
 242	policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
 243	switch (state) {
 244
 245	case CPUFREQ_PRECHANGE:
 246		/* detect if the driver reported a value as "old frequency"
 247		 * which is not equal to what the cpufreq core thinks is
 248		 * "old frequency".
 249		 */
 250		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 251			if ((policy) && (policy->cpu == freqs->cpu) &&
 252			    (policy->cur) && (policy->cur != freqs->old)) {
 253				pr_debug("Warning: CPU frequency is"
 254					" %u, cpufreq assumed %u kHz.\n",
 255					freqs->old, policy->cur);
 256				freqs->old = policy->cur;
 257			}
 258		}
 259		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 260				CPUFREQ_PRECHANGE, freqs);
 261		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 262		break;
 263
 264	case CPUFREQ_POSTCHANGE:
 265		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 266		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
 267			(unsigned long)freqs->cpu);
 268		trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
 269		trace_cpu_frequency(freqs->new, freqs->cpu);
 270		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 271				CPUFREQ_POSTCHANGE, freqs);
 272		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 273			policy->cur = freqs->new;
 274		break;
 275	}
 276}
 277EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
 278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279
 280
 281/*********************************************************************
 282 *                          SYSFS INTERFACE                          *
 283 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285static struct cpufreq_governor *__find_governor(const char *str_governor)
 286{
 287	struct cpufreq_governor *t;
 288
 289	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 290		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 291			return t;
 292
 293	return NULL;
 294}
 295
 296/**
 297 * cpufreq_parse_governor - parse a governor string
 298 */
 299static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 300				struct cpufreq_governor **governor)
 301{
 302	int err = -EINVAL;
 303
 304	if (!cpufreq_driver)
 305		goto out;
 306
 307	if (cpufreq_driver->setpolicy) {
 308		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 309			*policy = CPUFREQ_POLICY_PERFORMANCE;
 310			err = 0;
 311		} else if (!strnicmp(str_governor, "powersave",
 312						CPUFREQ_NAME_LEN)) {
 313			*policy = CPUFREQ_POLICY_POWERSAVE;
 314			err = 0;
 315		}
 316	} else if (cpufreq_driver->target) {
 317		struct cpufreq_governor *t;
 318
 319		mutex_lock(&cpufreq_governor_mutex);
 320
 321		t = __find_governor(str_governor);
 322
 323		if (t == NULL) {
 324			int ret;
 325
 326			mutex_unlock(&cpufreq_governor_mutex);
 327			ret = request_module("cpufreq_%s", str_governor);
 328			mutex_lock(&cpufreq_governor_mutex);
 329
 330			if (ret == 0)
 331				t = __find_governor(str_governor);
 332		}
 333
 334		if (t != NULL) {
 335			*governor = t;
 336			err = 0;
 337		}
 338
 339		mutex_unlock(&cpufreq_governor_mutex);
 340	}
 341out:
 342	return err;
 343}
 344
 345
 346/**
 347 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 348 * print out cpufreq information
 349 *
 350 * Write out information from cpufreq_driver->policy[cpu]; object must be
 351 * "unsigned int".
 352 */
 353
 354#define show_one(file_name, object)			\
 355static ssize_t show_##file_name				\
 356(struct cpufreq_policy *policy, char *buf)		\
 357{							\
 358	return sprintf(buf, "%u\n", policy->object);	\
 359}
 360
 361show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 362show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 363show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 364show_one(scaling_min_freq, min);
 365show_one(scaling_max_freq, max);
 366show_one(scaling_cur_freq, cur);
 367
 368static int __cpufreq_set_policy(struct cpufreq_policy *data,
 369				struct cpufreq_policy *policy);
 370
 371/**
 372 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 373 */
 374#define store_one(file_name, object)			\
 375static ssize_t store_##file_name					\
 376(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 377{									\
 378	unsigned int ret = -EINVAL;					\
 379	struct cpufreq_policy new_policy;				\
 380									\
 381	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 382	if (ret)							\
 383		return -EINVAL;						\
 384									\
 385	ret = sscanf(buf, "%u", &new_policy.object);			\
 386	if (ret != 1)							\
 387		return -EINVAL;						\
 388									\
 389	ret = __cpufreq_set_policy(policy, &new_policy);		\
 390	policy->user_policy.object = policy->object;			\
 391									\
 392	return ret ? ret : count;					\
 393}
 394
 395store_one(scaling_min_freq, min);
 396store_one(scaling_max_freq, max);
 397
 398/**
 399 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 400 */
 401static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 402					char *buf)
 403{
 404	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 405	if (!cur_freq)
 406		return sprintf(buf, "<unknown>");
 407	return sprintf(buf, "%u\n", cur_freq);
 408}
 409
 410
 411/**
 412 * show_scaling_governor - show the current policy for the specified CPU
 413 */
 414static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 415{
 416	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 417		return sprintf(buf, "powersave\n");
 418	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 419		return sprintf(buf, "performance\n");
 420	else if (policy->governor)
 421		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
 422				policy->governor->name);
 423	return -EINVAL;
 424}
 425
 426
 427/**
 428 * store_scaling_governor - store policy for the specified CPU
 429 */
 430static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 431					const char *buf, size_t count)
 432{
 433	unsigned int ret = -EINVAL;
 434	char	str_governor[16];
 435	struct cpufreq_policy new_policy;
 436
 437	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 438	if (ret)
 439		return ret;
 440
 441	ret = sscanf(buf, "%15s", str_governor);
 442	if (ret != 1)
 443		return -EINVAL;
 444
 445	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 446						&new_policy.governor))
 447		return -EINVAL;
 448
 449	/* Do not use cpufreq_set_policy here or the user_policy.max
 450	   will be wrongly overridden */
 451	ret = __cpufreq_set_policy(policy, &new_policy);
 452
 453	policy->user_policy.policy = policy->policy;
 454	policy->user_policy.governor = policy->governor;
 455
 456	if (ret)
 457		return ret;
 458	else
 459		return count;
 460}
 461
 462/**
 463 * show_scaling_driver - show the cpufreq driver currently loaded
 464 */
 465static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 466{
 467	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
 468}
 469
 470/**
 471 * show_scaling_available_governors - show the available CPUfreq governors
 472 */
 473static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 474						char *buf)
 475{
 476	ssize_t i = 0;
 477	struct cpufreq_governor *t;
 478
 479	if (!cpufreq_driver->target) {
 480		i += sprintf(buf, "performance powersave");
 481		goto out;
 482	}
 483
 484	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 485		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 486		    - (CPUFREQ_NAME_LEN + 2)))
 487			goto out;
 488		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
 489	}
 490out:
 491	i += sprintf(&buf[i], "\n");
 492	return i;
 493}
 494
 495static ssize_t show_cpus(const struct cpumask *mask, char *buf)
 496{
 497	ssize_t i = 0;
 498	unsigned int cpu;
 499
 500	for_each_cpu(cpu, mask) {
 501		if (i)
 502			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 503		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 504		if (i >= (PAGE_SIZE - 5))
 505			break;
 506	}
 507	i += sprintf(&buf[i], "\n");
 508	return i;
 509}
 
 510
 511/**
 512 * show_related_cpus - show the CPUs affected by each transition even if
 513 * hw coordination is in use
 514 */
 515static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 516{
 517	if (cpumask_empty(policy->related_cpus))
 518		return show_cpus(policy->cpus, buf);
 519	return show_cpus(policy->related_cpus, buf);
 520}
 521
 522/**
 523 * show_affected_cpus - show the CPUs affected by each transition
 524 */
 525static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 526{
 527	return show_cpus(policy->cpus, buf);
 528}
 529
 530static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 531					const char *buf, size_t count)
 532{
 533	unsigned int freq = 0;
 534	unsigned int ret;
 535
 536	if (!policy->governor || !policy->governor->store_setspeed)
 537		return -EINVAL;
 538
 539	ret = sscanf(buf, "%u", &freq);
 540	if (ret != 1)
 541		return -EINVAL;
 542
 543	policy->governor->store_setspeed(policy, freq);
 544
 545	return count;
 546}
 547
 548static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (!policy->governor || !policy->governor->show_setspeed)
 551		return sprintf(buf, "<unsupported>\n");
 552
 553	return policy->governor->show_setspeed(policy, buf);
 554}
 555
 556/**
 557 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
 558 */
 559static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 560{
 561	unsigned int limit;
 562	int ret;
 563	if (cpufreq_driver->bios_limit) {
 564		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 565		if (!ret)
 566			return sprintf(buf, "%u\n", limit);
 567	}
 568	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 569}
 570
 571cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 572cpufreq_freq_attr_ro(cpuinfo_min_freq);
 573cpufreq_freq_attr_ro(cpuinfo_max_freq);
 574cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 575cpufreq_freq_attr_ro(scaling_available_governors);
 576cpufreq_freq_attr_ro(scaling_driver);
 577cpufreq_freq_attr_ro(scaling_cur_freq);
 578cpufreq_freq_attr_ro(bios_limit);
 579cpufreq_freq_attr_ro(related_cpus);
 580cpufreq_freq_attr_ro(affected_cpus);
 581cpufreq_freq_attr_rw(scaling_min_freq);
 582cpufreq_freq_attr_rw(scaling_max_freq);
 583cpufreq_freq_attr_rw(scaling_governor);
 584cpufreq_freq_attr_rw(scaling_setspeed);
 585
 586static struct attribute *default_attrs[] = {
 587	&cpuinfo_min_freq.attr,
 588	&cpuinfo_max_freq.attr,
 589	&cpuinfo_transition_latency.attr,
 590	&scaling_min_freq.attr,
 591	&scaling_max_freq.attr,
 592	&affected_cpus.attr,
 593	&related_cpus.attr,
 594	&scaling_governor.attr,
 595	&scaling_driver.attr,
 596	&scaling_available_governors.attr,
 597	&scaling_setspeed.attr,
 598	NULL
 599};
 600
 601struct kobject *cpufreq_global_kobject;
 602EXPORT_SYMBOL(cpufreq_global_kobject);
 603
 604#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 605#define to_attr(a) container_of(a, struct freq_attr, attr)
 606
 607static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 608{
 609	struct cpufreq_policy *policy = to_policy(kobj);
 610	struct freq_attr *fattr = to_attr(attr);
 611	ssize_t ret = -EINVAL;
 612	policy = cpufreq_cpu_get(policy->cpu);
 613	if (!policy)
 614		goto no_policy;
 615
 616	if (lock_policy_rwsem_read(policy->cpu) < 0)
 617		goto fail;
 618
 619	if (fattr->show)
 620		ret = fattr->show(policy, buf);
 621	else
 622		ret = -EIO;
 623
 624	unlock_policy_rwsem_read(policy->cpu);
 625fail:
 626	cpufreq_cpu_put(policy);
 627no_policy:
 628	return ret;
 629}
 630
 631static ssize_t store(struct kobject *kobj, struct attribute *attr,
 632		     const char *buf, size_t count)
 633{
 634	struct cpufreq_policy *policy = to_policy(kobj);
 635	struct freq_attr *fattr = to_attr(attr);
 636	ssize_t ret = -EINVAL;
 637	policy = cpufreq_cpu_get(policy->cpu);
 638	if (!policy)
 639		goto no_policy;
 640
 641	if (lock_policy_rwsem_write(policy->cpu) < 0)
 642		goto fail;
 
 
 
 
 
 
 
 643
 644	if (fattr->store)
 645		ret = fattr->store(policy, buf, count);
 646	else
 647		ret = -EIO;
 648
 649	unlock_policy_rwsem_write(policy->cpu);
 650fail:
 651	cpufreq_cpu_put(policy);
 652no_policy:
 
 
 653	return ret;
 654}
 655
 656static void cpufreq_sysfs_release(struct kobject *kobj)
 657{
 658	struct cpufreq_policy *policy = to_policy(kobj);
 659	pr_debug("last reference is dropped\n");
 660	complete(&policy->kobj_unregister);
 661}
 662
 663static const struct sysfs_ops sysfs_ops = {
 664	.show	= show,
 665	.store	= store,
 666};
 667
 668static struct kobj_type ktype_cpufreq = {
 669	.sysfs_ops	= &sysfs_ops,
 670	.default_attrs	= default_attrs,
 671	.release	= cpufreq_sysfs_release,
 672};
 673
 674/*
 675 * Returns:
 676 *   Negative: Failure
 677 *   0:        Success
 678 *   Positive: When we have a managed CPU and the sysfs got symlinked
 679 */
 680static int cpufreq_add_dev_policy(unsigned int cpu,
 681				  struct cpufreq_policy *policy,
 682				  struct sys_device *sys_dev)
 683{
 684	int ret = 0;
 685#ifdef CONFIG_SMP
 686	unsigned long flags;
 687	unsigned int j;
 688#ifdef CONFIG_HOTPLUG_CPU
 689	struct cpufreq_governor *gov;
 690
 691	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
 692	if (gov) {
 693		policy->governor = gov;
 694		pr_debug("Restoring governor %s for cpu %d\n",
 695		       policy->governor->name, cpu);
 696	}
 697#endif
 698
 699	for_each_cpu(j, policy->cpus) {
 700		struct cpufreq_policy *managed_policy;
 701
 702		if (cpu == j)
 703			continue;
 
 
 
 704
 705		/* Check for existing affected CPUs.
 706		 * They may not be aware of it due to CPU Hotplug.
 707		 * cpufreq_cpu_put is called when the device is removed
 708		 * in __cpufreq_remove_dev()
 709		 */
 710		managed_policy = cpufreq_cpu_get(j);
 711		if (unlikely(managed_policy)) {
 712
 713			/* Set proper policy_cpu */
 714			unlock_policy_rwsem_write(cpu);
 715			per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
 716
 717			if (lock_policy_rwsem_write(cpu) < 0) {
 718				/* Should not go through policy unlock path */
 719				if (cpufreq_driver->exit)
 720					cpufreq_driver->exit(policy);
 721				cpufreq_cpu_put(managed_policy);
 722				return -EBUSY;
 723			}
 724
 725			spin_lock_irqsave(&cpufreq_driver_lock, flags);
 726			cpumask_copy(managed_policy->cpus, policy->cpus);
 727			per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
 728			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 729
 730			pr_debug("CPU already managed, adding link\n");
 731			ret = sysfs_create_link(&sys_dev->kobj,
 732						&managed_policy->kobj,
 733						"cpufreq");
 734			if (ret)
 735				cpufreq_cpu_put(managed_policy);
 736			/*
 737			 * Success. We only needed to be added to the mask.
 738			 * Call driver->exit() because only the cpu parent of
 739			 * the kobj needed to call init().
 740			 */
 741			if (cpufreq_driver->exit)
 742				cpufreq_driver->exit(policy);
 743
 744			if (!ret)
 745				return 1;
 746			else
 747				return ret;
 748		}
 749	}
 750#endif
 751	return ret;
 752}
 
 753
 
 
 
 
 
 
 754
 755/* symlink affected CPUs */
 756static int cpufreq_add_dev_symlink(unsigned int cpu,
 757				   struct cpufreq_policy *policy)
 758{
 759	unsigned int j;
 760	int ret = 0;
 761
 762	for_each_cpu(j, policy->cpus) {
 763		struct cpufreq_policy *managed_policy;
 764		struct sys_device *cpu_sys_dev;
 765
 766		if (j == cpu)
 767			continue;
 768		if (!cpu_online(j))
 769			continue;
 770
 771		pr_debug("CPU %u already managed, adding link\n", j);
 772		managed_policy = cpufreq_cpu_get(cpu);
 773		cpu_sys_dev = get_cpu_sysdev(j);
 774		ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
 775					"cpufreq");
 776		if (ret) {
 777			cpufreq_cpu_put(managed_policy);
 778			return ret;
 779		}
 780	}
 781	return ret;
 782}
 783
 784static int cpufreq_add_dev_interface(unsigned int cpu,
 785				     struct cpufreq_policy *policy,
 786				     struct sys_device *sys_dev)
 787{
 788	struct cpufreq_policy new_policy;
 789	struct freq_attr **drv_attr;
 790	unsigned long flags;
 791	int ret = 0;
 792	unsigned int j;
 793
 794	/* prepare interface data */
 795	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 796				   &sys_dev->kobj, "cpufreq");
 797	if (ret)
 798		return ret;
 799
 800	/* set up files for this cpu device */
 801	drv_attr = cpufreq_driver->attr;
 802	while ((drv_attr) && (*drv_attr)) {
 803		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 804		if (ret)
 805			goto err_out_kobj_put;
 806		drv_attr++;
 807	}
 808	if (cpufreq_driver->get) {
 809		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 810		if (ret)
 811			goto err_out_kobj_put;
 812	}
 813	if (cpufreq_driver->target) {
 814		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 815		if (ret)
 816			goto err_out_kobj_put;
 817	}
 818	if (cpufreq_driver->bios_limit) {
 819		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 820		if (ret)
 821			goto err_out_kobj_put;
 822	}
 823
 824	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 825	for_each_cpu(j, policy->cpus) {
 826		if (!cpu_online(j))
 827			continue;
 828		per_cpu(cpufreq_cpu_data, j) = policy;
 829		per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
 830	}
 831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 832
 833	ret = cpufreq_add_dev_symlink(cpu, policy);
 834	if (ret)
 835		goto err_out_kobj_put;
 836
 837	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
 838	/* assure that the starting sequence is run in __cpufreq_set_policy */
 839	policy->governor = NULL;
 840
 841	/* set default policy */
 842	ret = __cpufreq_set_policy(policy, &new_policy);
 843	policy->user_policy.policy = policy->policy;
 844	policy->user_policy.governor = policy->governor;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845
 
 
 
 
 
 
 846	if (ret) {
 847		pr_debug("setting policy failed\n");
 848		if (cpufreq_driver->exit)
 849			cpufreq_driver->exit(policy);
 850	}
 851	return ret;
 852
 853err_out_kobj_put:
 854	kobject_put(&policy->kobj);
 855	wait_for_completion(&policy->kobj_unregister);
 856	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857}
 858
 
 
 
 859
 860/**
 861 * cpufreq_add_dev - add a CPU device
 862 *
 863 * Adds the cpufreq interface for a CPU device.
 864 *
 865 * The Oracle says: try running cpufreq registration/unregistration concurrently
 866 * with with cpu hotplugging and all hell will break loose. Tried to clean this
 867 * mess up, but more thorough testing is needed. - Mathieu
 868 */
 869static int cpufreq_add_dev(struct sys_device *sys_dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 870{
 871	unsigned int cpu = sys_dev->id;
 872	int ret = 0, found = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873	struct cpufreq_policy *policy;
 874	unsigned long flags;
 875	unsigned int j;
 876#ifdef CONFIG_HOTPLUG_CPU
 877	int sibling;
 878#endif
 879
 880	if (cpu_is_offline(cpu))
 881		return 0;
 882
 883	pr_debug("adding CPU %u\n", cpu);
 884
 885#ifdef CONFIG_SMP
 886	/* check whether a different CPU already registered this
 887	 * CPU because it is in the same boat. */
 888	policy = cpufreq_cpu_get(cpu);
 889	if (unlikely(policy)) {
 890		cpufreq_cpu_put(policy);
 891		return 0;
 892	}
 893#endif
 894
 895	if (!try_module_get(cpufreq_driver->owner)) {
 896		ret = -EINVAL;
 897		goto module_out;
 898	}
 899
 900	ret = -ENOMEM;
 901	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
 902	if (!policy)
 903		goto nomem_out;
 
 
 
 
 
 
 
 
 
 904
 905	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
 906		goto err_free_policy;
 
 
 
 
 
 
 
 
 
 907
 908	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
 909		goto err_free_cpumask;
 
 
 
 
 
 
 
 
 910
 911	policy->cpu = cpu;
 912	cpumask_copy(policy->cpus, cpumask_of(cpu));
 913
 914	/* Initially set CPU itself as the policy_cpu */
 915	per_cpu(cpufreq_policy_cpu, cpu) = cpu;
 916	ret = (lock_policy_rwsem_write(cpu) < 0);
 917	WARN_ON(ret);
 918
 919	init_completion(&policy->kobj_unregister);
 920	INIT_WORK(&policy->update, handle_update);
 921
 922	/* Set governor before ->init, so that driver could check it */
 923#ifdef CONFIG_HOTPLUG_CPU
 924	for_each_online_cpu(sibling) {
 925		struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
 926		if (cp && cp->governor &&
 927		    (cpumask_test_cpu(cpu, cp->related_cpus))) {
 928			policy->governor = cp->governor;
 929			found = 1;
 930			break;
 931		}
 932	}
 933#endif
 934	if (!found)
 935		policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
 936	/* call driver. From then on the cpufreq must be able
 937	 * to accept all calls to ->verify and ->setpolicy for this CPU
 938	 */
 939	ret = cpufreq_driver->init(policy);
 940	if (ret) {
 941		pr_debug("initialization failed\n");
 942		goto err_unlock_policy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943	}
 944	policy->user_policy.min = policy->min;
 945	policy->user_policy.max = policy->max;
 946
 947	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
 948				     CPUFREQ_START, policy);
 949
 950	ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
 951	if (ret) {
 952		if (ret > 0)
 953			/* This is a managed cpu, symlink created,
 954			   exit with 0 */
 955			ret = 0;
 956		goto err_unlock_policy;
 957	}
 958
 959	ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
 960	if (ret)
 961		goto err_out_unregister;
 
 
 962
 963	unlock_policy_rwsem_write(cpu);
 
 
 
 
 964
 965	kobject_uevent(&policy->kobj, KOBJ_ADD);
 966	module_put(cpufreq_driver->owner);
 
 967	pr_debug("initialization complete\n");
 968
 969	return 0;
 970
 971
 972err_out_unregister:
 973	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 
 974	for_each_cpu(j, policy->cpus)
 975		per_cpu(cpufreq_cpu_data, j) = NULL;
 976	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 977
 978	kobject_put(&policy->kobj);
 979	wait_for_completion(&policy->kobj_unregister);
 
 
 
 
 
 
 
 980
 981err_unlock_policy:
 982	unlock_policy_rwsem_write(cpu);
 983	free_cpumask_var(policy->related_cpus);
 984err_free_cpumask:
 985	free_cpumask_var(policy->cpus);
 986err_free_policy:
 987	kfree(policy);
 988nomem_out:
 989	module_put(cpufreq_driver->owner);
 990module_out:
 991	return ret;
 992}
 993
 994
 995/**
 996 * __cpufreq_remove_dev - remove a CPU device
 997 *
 998 * Removes the cpufreq interface for a CPU device.
 999 * Caller should already have policy_rwsem in write mode for this CPU.
1000 * This routine frees the rwsem before returning.
 
 
1001 */
1002static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1003{
1004	unsigned int cpu = sys_dev->id;
1005	unsigned long flags;
1006	struct cpufreq_policy *data;
1007	struct kobject *kobj;
1008	struct completion *cmp;
1009#ifdef CONFIG_SMP
1010	struct sys_device *cpu_sys_dev;
1011	unsigned int j;
1012#endif
1013
1014	pr_debug("unregistering CPU %u\n", cpu);
 
1015
1016	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1017	data = per_cpu(cpufreq_cpu_data, cpu);
 
 
 
 
 
 
 
 
 
1018
1019	if (!data) {
1020		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1021		unlock_policy_rwsem_write(cpu);
1022		return -EINVAL;
1023	}
1024	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1025
 
 
1026
1027#ifdef CONFIG_SMP
1028	/* if this isn't the CPU which is the parent of the kobj, we
1029	 * only need to unlink, put and exit
1030	 */
1031	if (unlikely(cpu != data->cpu)) {
1032		pr_debug("removing link\n");
1033		cpumask_clear_cpu(cpu, data->cpus);
1034		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1035		kobj = &sys_dev->kobj;
1036		cpufreq_cpu_put(data);
1037		unlock_policy_rwsem_write(cpu);
1038		sysfs_remove_link(kobj, "cpufreq");
1039		return 0;
1040	}
1041#endif
1042
1043#ifdef CONFIG_SMP
1044
1045#ifdef CONFIG_HOTPLUG_CPU
1046	strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1047			CPUFREQ_NAME_LEN);
1048#endif
1049
1050	/* if we have other CPUs still registered, we need to unlink them,
1051	 * or else wait_for_completion below will lock up. Clean the
1052	 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1053	 * the sysfs links afterwards.
1054	 */
1055	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1056		for_each_cpu(j, data->cpus) {
1057			if (j == cpu)
1058				continue;
1059			per_cpu(cpufreq_cpu_data, j) = NULL;
1060		}
1061	}
1062
1063	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1064
1065	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1066		for_each_cpu(j, data->cpus) {
1067			if (j == cpu)
1068				continue;
1069			pr_debug("removing link for cpu %u\n", j);
1070#ifdef CONFIG_HOTPLUG_CPU
1071			strncpy(per_cpu(cpufreq_cpu_governor, j),
1072				data->governor->name, CPUFREQ_NAME_LEN);
1073#endif
1074			cpu_sys_dev = get_cpu_sysdev(j);
1075			kobj = &cpu_sys_dev->kobj;
1076			unlock_policy_rwsem_write(cpu);
1077			sysfs_remove_link(kobj, "cpufreq");
1078			lock_policy_rwsem_write(cpu);
1079			cpufreq_cpu_put(data);
1080		}
1081	}
1082#else
1083	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084#endif
1085
1086	if (cpufreq_driver->target)
1087		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088
1089	kobj = &data->kobj;
1090	cmp = &data->kobj_unregister;
1091	unlock_policy_rwsem_write(cpu);
1092	kobject_put(kobj);
1093
1094	/* we need to make sure that the underlying kobj is actually
1095	 * not referenced anymore by anybody before we proceed with
1096	 * unloading.
1097	 */
1098	pr_debug("waiting for dropping of refcount\n");
1099	wait_for_completion(cmp);
1100	pr_debug("wait complete\n");
1101
1102	lock_policy_rwsem_write(cpu);
1103	if (cpufreq_driver->exit)
1104		cpufreq_driver->exit(data);
1105	unlock_policy_rwsem_write(cpu);
1106
1107#ifdef CONFIG_HOTPLUG_CPU
1108	/* when the CPU which is the parent of the kobj is hotplugged
1109	 * offline, check for siblings, and create cpufreq sysfs interface
1110	 * and symlinks
1111	 */
1112	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1113		/* first sibling now owns the new sysfs dir */
1114		cpumask_clear_cpu(cpu, data->cpus);
1115		cpufreq_add_dev(get_cpu_sysdev(cpumask_first(data->cpus)));
1116
1117		/* finally remove our own symlink */
1118		lock_policy_rwsem_write(cpu);
1119		__cpufreq_remove_dev(sys_dev);
1120	}
1121#endif
1122
1123	free_cpumask_var(data->related_cpus);
1124	free_cpumask_var(data->cpus);
1125	kfree(data);
1126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127	return 0;
1128}
1129
1130
1131static int cpufreq_remove_dev(struct sys_device *sys_dev)
 
 
 
 
1132{
1133	unsigned int cpu = sys_dev->id;
1134	int retval;
1135
1136	if (cpu_is_offline(cpu))
1137		return 0;
1138
1139	if (unlikely(lock_policy_rwsem_write(cpu)))
1140		BUG();
1141
1142	retval = __cpufreq_remove_dev(sys_dev);
1143	return retval;
1144}
1145
 
 
1146
1147static void handle_update(struct work_struct *work)
1148{
1149	struct cpufreq_policy *policy =
1150		container_of(work, struct cpufreq_policy, update);
1151	unsigned int cpu = policy->cpu;
1152	pr_debug("handle_update for cpu %u called\n", cpu);
1153	cpufreq_update_policy(cpu);
1154}
1155
1156/**
1157 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
 
1158 *	@cpu: cpu number
1159 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1160 *	@new_freq: CPU frequency the CPU actually runs at
1161 *
1162 *	We adjust to current frequency first, and need to clean up later.
1163 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1164 */
1165static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1166				unsigned int new_freq)
1167{
 
1168	struct cpufreq_freqs freqs;
 
1169
1170	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1171	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172
1173	freqs.cpu = cpu;
1174	freqs.old = old_freq;
1175	freqs.new = new_freq;
1176	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1177	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1178}
1179
 
 
 
 
 
 
 
1180
1181/**
1182 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1183 * @cpu: CPU number
1184 *
1185 * This is the last known freq, without actually getting it from the driver.
1186 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187 */
1188unsigned int cpufreq_quick_get(unsigned int cpu)
1189{
1190	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1191	unsigned int ret_freq = 0;
1192
 
 
 
 
1193	if (policy) {
1194		ret_freq = policy->cur;
1195		cpufreq_cpu_put(policy);
1196	}
1197
1198	return ret_freq;
1199}
1200EXPORT_SYMBOL(cpufreq_quick_get);
1201
1202/**
1203 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1204 * @cpu: CPU number
1205 *
1206 * Just return the max possible frequency for a given CPU.
1207 */
1208unsigned int cpufreq_quick_get_max(unsigned int cpu)
1209{
1210	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1211	unsigned int ret_freq = 0;
1212
1213	if (policy) {
1214		ret_freq = policy->max;
1215		cpufreq_cpu_put(policy);
1216	}
1217
1218	return ret_freq;
1219}
1220EXPORT_SYMBOL(cpufreq_quick_get_max);
1221
1222
1223static unsigned int __cpufreq_get(unsigned int cpu)
1224{
1225	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1226	unsigned int ret_freq = 0;
1227
1228	if (!cpufreq_driver->get)
1229		return ret_freq;
1230
1231	ret_freq = cpufreq_driver->get(cpu);
1232
1233	if (ret_freq && policy->cur &&
1234		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1235		/* verify no discrepancy between actual and
1236					saved value exists */
1237		if (unlikely(ret_freq != policy->cur)) {
1238			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1239			schedule_work(&policy->update);
1240		}
1241	}
1242
1243	return ret_freq;
1244}
1245
1246/**
1247 * cpufreq_get - get the current CPU frequency (in kHz)
1248 * @cpu: CPU number
1249 *
1250 * Get the CPU current (static) CPU frequency
1251 */
1252unsigned int cpufreq_get(unsigned int cpu)
1253{
1254	unsigned int ret_freq = 0;
1255	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 
1256
1257	if (!policy)
1258		goto out;
1259
1260	if (unlikely(lock_policy_rwsem_read(cpu)))
1261		goto out_policy;
1262
1263	ret_freq = __cpufreq_get(cpu);
1264
1265	unlock_policy_rwsem_read(cpu);
 
1266
1267out_policy:
1268	cpufreq_cpu_put(policy);
1269out:
1270	return ret_freq;
1271}
1272EXPORT_SYMBOL(cpufreq_get);
1273
1274static struct sysdev_driver cpufreq_sysdev_driver = {
1275	.add		= cpufreq_add_dev,
1276	.remove		= cpufreq_remove_dev,
 
 
1277};
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279
1280/**
1281 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1282 *
1283 * This function is only executed for the boot processor.  The other CPUs
1284 * have been put offline by means of CPU hotplug.
 
 
1285 */
1286static int cpufreq_bp_suspend(void)
1287{
1288	int ret = 0;
1289
1290	int cpu = smp_processor_id();
1291	struct cpufreq_policy *cpu_policy;
1292
1293	pr_debug("suspending cpu %u\n", cpu);
 
1294
1295	/* If there's no policy for the boot CPU, we have nothing to do. */
1296	cpu_policy = cpufreq_cpu_get(cpu);
1297	if (!cpu_policy)
1298		return 0;
1299
1300	if (cpufreq_driver->suspend) {
1301		ret = cpufreq_driver->suspend(cpu_policy);
1302		if (ret)
1303			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1304					"step on CPU %u\n", cpu_policy->cpu);
 
 
 
1305	}
1306
1307	cpufreq_cpu_put(cpu_policy);
1308	return ret;
1309}
1310
1311/**
1312 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1313 *
1314 *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1315 *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1316 *	    restored. It will verify that the current freq is in sync with
1317 *	    what we believe it to be. This is a bit later than when it
1318 *	    should be, but nonethteless it's better than calling
1319 *	    cpufreq_driver->get() here which might re-enable interrupts...
1320 *
1321 * This function is only executed for the boot CPU.  The other CPUs have not
1322 * been turned on yet.
1323 */
1324static void cpufreq_bp_resume(void)
1325{
1326	int ret = 0;
1327
1328	int cpu = smp_processor_id();
1329	struct cpufreq_policy *cpu_policy;
1330
1331	pr_debug("resuming cpu %u\n", cpu);
 
1332
1333	/* If there's no policy for the boot CPU, we have nothing to do. */
1334	cpu_policy = cpufreq_cpu_get(cpu);
1335	if (!cpu_policy)
1336		return;
1337
1338	if (cpufreq_driver->resume) {
1339		ret = cpufreq_driver->resume(cpu_policy);
1340		if (ret) {
1341			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1342					"step on CPU %u\n", cpu_policy->cpu);
1343			goto fail;
1344		}
1345	}
1346
1347	schedule_work(&cpu_policy->update);
1348
1349fail:
1350	cpufreq_cpu_put(cpu_policy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351}
1352
1353static struct syscore_ops cpufreq_syscore_ops = {
1354	.suspend	= cpufreq_bp_suspend,
1355	.resume		= cpufreq_bp_resume,
1356};
 
 
 
 
 
 
1357
 
 
 
1358
1359/*********************************************************************
1360 *                     NOTIFIER LISTS INTERFACE                      *
1361 *********************************************************************/
1362
1363/**
1364 *	cpufreq_register_notifier - register a driver with cpufreq
1365 *	@nb: notifier function to register
1366 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1367 *
1368 *	Add a driver to one of two lists: either a list of drivers that
1369 *      are notified about clock rate changes (once before and once after
1370 *      the transition), or a list of drivers that are notified about
1371 *      changes in cpufreq policy.
1372 *
1373 *	This function may sleep, and has the same return conditions as
1374 *	blocking_notifier_chain_register.
1375 */
1376int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1377{
1378	int ret;
1379
 
 
 
1380	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1381
1382	switch (list) {
1383	case CPUFREQ_TRANSITION_NOTIFIER:
1384		ret = srcu_notifier_chain_register(
1385				&cpufreq_transition_notifier_list, nb);
1386		break;
1387	case CPUFREQ_POLICY_NOTIFIER:
1388		ret = blocking_notifier_chain_register(
1389				&cpufreq_policy_notifier_list, nb);
1390		break;
1391	default:
1392		ret = -EINVAL;
1393	}
1394
1395	return ret;
1396}
1397EXPORT_SYMBOL(cpufreq_register_notifier);
1398
1399
1400/**
1401 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1402 *	@nb: notifier block to be unregistered
1403 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1404 *
1405 *	Remove a driver from the CPU frequency notifier list.
1406 *
1407 *	This function may sleep, and has the same return conditions as
1408 *	blocking_notifier_chain_unregister.
1409 */
1410int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1411{
1412	int ret;
1413
 
 
 
1414	switch (list) {
1415	case CPUFREQ_TRANSITION_NOTIFIER:
1416		ret = srcu_notifier_chain_unregister(
1417				&cpufreq_transition_notifier_list, nb);
1418		break;
1419	case CPUFREQ_POLICY_NOTIFIER:
1420		ret = blocking_notifier_chain_unregister(
1421				&cpufreq_policy_notifier_list, nb);
1422		break;
1423	default:
1424		ret = -EINVAL;
1425	}
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL(cpufreq_unregister_notifier);
1430
1431
1432/*********************************************************************
1433 *                              GOVERNORS                            *
1434 *********************************************************************/
1435
1436
1437int __cpufreq_driver_target(struct cpufreq_policy *policy,
1438			    unsigned int target_freq,
1439			    unsigned int relation)
1440{
1441	int retval = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442
1443	pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1444		target_freq, relation);
1445	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1446		retval = cpufreq_driver->target(policy, target_freq, relation);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448	return retval;
1449}
1450EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1451
1452int cpufreq_driver_target(struct cpufreq_policy *policy,
1453			  unsigned int target_freq,
1454			  unsigned int relation)
1455{
1456	int ret = -EINVAL;
1457
1458	policy = cpufreq_cpu_get(policy->cpu);
1459	if (!policy)
1460		goto no_policy;
1461
1462	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1463		goto fail;
1464
1465	ret = __cpufreq_driver_target(policy, target_freq, relation);
1466
1467	unlock_policy_rwsem_write(policy->cpu);
1468
1469fail:
1470	cpufreq_cpu_put(policy);
1471no_policy:
1472	return ret;
1473}
1474EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1475
1476int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1477{
1478	int ret = 0;
1479
1480	policy = cpufreq_cpu_get(policy->cpu);
1481	if (!policy)
1482		return -EINVAL;
1483
1484	if (cpu_online(cpu) && cpufreq_driver->getavg)
1485		ret = cpufreq_driver->getavg(policy, cpu);
1486
1487	cpufreq_cpu_put(policy);
1488	return ret;
1489}
1490EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1491
1492/*
1493 * when "event" is CPUFREQ_GOV_LIMITS
1494 */
1495
1496static int __cpufreq_governor(struct cpufreq_policy *policy,
1497					unsigned int event)
1498{
1499	int ret;
1500
1501	/* Only must be defined when default governor is known to have latency
1502	   restrictions, like e.g. conservative or ondemand.
1503	   That this is the case is already ensured in Kconfig
1504	*/
1505#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1506	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1507#else
1508	struct cpufreq_governor *gov = NULL;
1509#endif
1510
 
 
 
 
1511	if (policy->governor->max_transition_latency &&
1512	    policy->cpuinfo.transition_latency >
1513	    policy->governor->max_transition_latency) {
1514		if (!gov)
1515			return -EINVAL;
1516		else {
1517			printk(KERN_WARNING "%s governor failed, too long"
1518			       " transition latency of HW, fallback"
1519			       " to %s governor\n",
1520			       policy->governor->name,
1521			       gov->name);
1522			policy->governor = gov;
1523		}
1524	}
1525
1526	if (!try_module_get(policy->governor->owner))
1527		return -EINVAL;
 
1528
1529	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1530						policy->cpu, event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531	ret = policy->governor->governor(policy, event);
1532
1533	/* we keep one module reference alive for
1534			each CPU governed by this CPU */
1535	if ((event != CPUFREQ_GOV_START) || ret)
1536		module_put(policy->governor->owner);
1537	if ((event == CPUFREQ_GOV_STOP) && !ret)
 
 
 
 
 
 
 
 
 
 
 
 
1538		module_put(policy->governor->owner);
1539
1540	return ret;
1541}
1542
1543
1544int cpufreq_register_governor(struct cpufreq_governor *governor)
1545{
1546	int err;
1547
1548	if (!governor)
1549		return -EINVAL;
1550
 
 
 
1551	mutex_lock(&cpufreq_governor_mutex);
1552
 
1553	err = -EBUSY;
1554	if (__find_governor(governor->name) == NULL) {
1555		err = 0;
1556		list_add(&governor->governor_list, &cpufreq_governor_list);
1557	}
1558
1559	mutex_unlock(&cpufreq_governor_mutex);
1560	return err;
1561}
1562EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1563
1564
1565void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1566{
1567#ifdef CONFIG_HOTPLUG_CPU
1568	int cpu;
1569#endif
1570
1571	if (!governor)
1572		return;
1573
1574#ifdef CONFIG_HOTPLUG_CPU
 
 
1575	for_each_present_cpu(cpu) {
1576		if (cpu_online(cpu))
1577			continue;
1578		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1579			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1580	}
1581#endif
1582
1583	mutex_lock(&cpufreq_governor_mutex);
1584	list_del(&governor->governor_list);
1585	mutex_unlock(&cpufreq_governor_mutex);
1586	return;
1587}
1588EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1589
1590
1591
1592/*********************************************************************
1593 *                          POLICY INTERFACE                         *
1594 *********************************************************************/
1595
1596/**
1597 * cpufreq_get_policy - get the current cpufreq_policy
1598 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1599 *	is written
1600 *
1601 * Reads the current cpufreq policy.
1602 */
1603int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1604{
1605	struct cpufreq_policy *cpu_policy;
1606	if (!policy)
1607		return -EINVAL;
1608
1609	cpu_policy = cpufreq_cpu_get(cpu);
1610	if (!cpu_policy)
1611		return -EINVAL;
1612
1613	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1614
1615	cpufreq_cpu_put(cpu_policy);
1616	return 0;
1617}
1618EXPORT_SYMBOL(cpufreq_get_policy);
1619
1620
1621/*
1622 * data   : current policy.
1623 * policy : policy to be set.
1624 */
1625static int __cpufreq_set_policy(struct cpufreq_policy *data,
1626				struct cpufreq_policy *policy)
1627{
1628	int ret = 0;
 
1629
1630	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1631		policy->min, policy->max);
1632
1633	memcpy(&policy->cpuinfo, &data->cpuinfo,
1634				sizeof(struct cpufreq_cpuinfo));
1635
1636	if (policy->min > data->max || policy->max < data->min) {
1637		ret = -EINVAL;
1638		goto error_out;
1639	}
1640
1641	/* verify the cpu speed can be set within this limit */
1642	ret = cpufreq_driver->verify(policy);
1643	if (ret)
1644		goto error_out;
1645
1646	/* adjust if necessary - all reasons */
1647	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1648			CPUFREQ_ADJUST, policy);
1649
1650	/* adjust if necessary - hardware incompatibility*/
1651	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1652			CPUFREQ_INCOMPATIBLE, policy);
1653
1654	/* verify the cpu speed can be set within this limit,
1655	   which might be different to the first one */
1656	ret = cpufreq_driver->verify(policy);
 
 
1657	if (ret)
1658		goto error_out;
1659
1660	/* notification of the new policy */
1661	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1662			CPUFREQ_NOTIFY, policy);
1663
1664	data->min = policy->min;
1665	data->max = policy->max;
1666
1667	pr_debug("new min and max freqs are %u - %u kHz\n",
1668					data->min, data->max);
1669
1670	if (cpufreq_driver->setpolicy) {
1671		data->policy = policy->policy;
1672		pr_debug("setting range\n");
1673		ret = cpufreq_driver->setpolicy(policy);
1674	} else {
1675		if (policy->governor != data->governor) {
1676			/* save old, working values */
1677			struct cpufreq_governor *old_gov = data->governor;
1678
1679			pr_debug("governor switch\n");
1680
1681			/* end old governor */
1682			if (data->governor)
1683				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1684
1685			/* start new governor */
1686			data->governor = policy->governor;
1687			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1688				/* new governor failed, so re-start old one */
1689				pr_debug("starting governor %s failed\n",
1690							data->governor->name);
1691				if (old_gov) {
1692					data->governor = old_gov;
1693					__cpufreq_governor(data,
1694							   CPUFREQ_GOV_START);
1695				}
1696				ret = -EINVAL;
1697				goto error_out;
1698			}
1699			/* might be a policy change, too, so fall through */
1700		}
1701		pr_debug("governor: change or update limits\n");
1702		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1703	}
1704
1705error_out:
1706	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707}
1708
1709/**
1710 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1711 *	@cpu: CPU which shall be re-evaluated
1712 *
1713 *	Useful for policy notifiers which have different necessities
1714 *	at different times.
1715 */
1716int cpufreq_update_policy(unsigned int cpu)
1717{
1718	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1719	struct cpufreq_policy policy;
1720	int ret;
1721
1722	if (!data) {
1723		ret = -ENODEV;
1724		goto no_policy;
1725	}
1726
1727	if (unlikely(lock_policy_rwsem_write(cpu))) {
1728		ret = -EINVAL;
1729		goto fail;
1730	}
1731
1732	pr_debug("updating policy for CPU %u\n", cpu);
1733	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1734	policy.min = data->user_policy.min;
1735	policy.max = data->user_policy.max;
1736	policy.policy = data->user_policy.policy;
1737	policy.governor = data->user_policy.governor;
 
 
 
 
 
 
 
 
 
 
 
1738
1739	/* BIOS might change freq behind our back
1740	  -> ask driver for current freq and notify governors about a change */
1741	if (cpufreq_driver->get) {
1742		policy.cur = cpufreq_driver->get(cpu);
1743		if (!data->cur) {
1744			pr_debug("Driver did not initialize current freq");
1745			data->cur = policy.cur;
1746		} else {
1747			if (data->cur != policy.cur)
1748				cpufreq_out_of_sync(cpu, data->cur,
1749								policy.cur);
1750		}
1751	}
1752
1753	ret = __cpufreq_set_policy(data, &policy);
1754
1755	unlock_policy_rwsem_write(cpu);
1756
1757fail:
1758	cpufreq_cpu_put(data);
1759no_policy:
1760	return ret;
1761}
1762EXPORT_SYMBOL(cpufreq_update_policy);
1763
1764static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1765					unsigned long action, void *hcpu)
1766{
1767	unsigned int cpu = (unsigned long)hcpu;
1768	struct sys_device *sys_dev;
1769
1770	sys_dev = get_cpu_sysdev(cpu);
1771	if (sys_dev) {
1772		switch (action) {
1773		case CPU_ONLINE:
1774		case CPU_ONLINE_FROZEN:
1775			cpufreq_add_dev(sys_dev);
1776			break;
 
1777		case CPU_DOWN_PREPARE:
1778		case CPU_DOWN_PREPARE_FROZEN:
1779			if (unlikely(lock_policy_rwsem_write(cpu)))
1780				BUG();
1781
1782			__cpufreq_remove_dev(sys_dev);
 
1783			break;
 
1784		case CPU_DOWN_FAILED:
1785		case CPU_DOWN_FAILED_FROZEN:
1786			cpufreq_add_dev(sys_dev);
1787			break;
1788		}
1789	}
1790	return NOTIFY_OK;
1791}
1792
1793static struct notifier_block __refdata cpufreq_cpu_notifier = {
1794    .notifier_call = cpufreq_cpu_callback,
1795};
1796
1797/*********************************************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1798 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1799 *********************************************************************/
1800
1801/**
1802 * cpufreq_register_driver - register a CPU Frequency driver
1803 * @driver_data: A struct cpufreq_driver containing the values#
1804 * submitted by the CPU Frequency driver.
1805 *
1806 *   Registers a CPU Frequency driver to this core code. This code
1807 * returns zero on success, -EBUSY when another driver got here first
1808 * (and isn't unregistered in the meantime).
1809 *
1810 */
1811int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1812{
1813	unsigned long flags;
1814	int ret;
1815
 
 
 
1816	if (!driver_data || !driver_data->verify || !driver_data->init ||
1817	    ((!driver_data->setpolicy) && (!driver_data->target)))
 
 
 
1818		return -EINVAL;
1819
1820	pr_debug("trying to register driver %s\n", driver_data->name);
1821
1822	if (driver_data->setpolicy)
1823		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1824
1825	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1826	if (cpufreq_driver) {
1827		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828		return -EBUSY;
1829	}
1830	cpufreq_driver = driver_data;
1831	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
1832
1833	ret = sysdev_driver_register(&cpu_sysdev_class,
1834					&cpufreq_sysdev_driver);
 
 
 
 
 
 
 
1835	if (ret)
1836		goto err_null_driver;
1837
1838	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839		int i;
1840		ret = -ENODEV;
1841
1842		/* check for at least one working CPU */
1843		for (i = 0; i < nr_cpu_ids; i++)
1844			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845				ret = 0;
1846				break;
1847			}
1848
1849		/* if all ->init() calls failed, unregister */
1850		if (ret) {
1851			pr_debug("no CPU initialized for driver %s\n",
1852							driver_data->name);
1853			goto err_sysdev_unreg;
1854		}
1855	}
1856
1857	register_hotcpu_notifier(&cpufreq_cpu_notifier);
1858	pr_debug("driver %s up and running\n", driver_data->name);
1859
1860	return 0;
1861err_sysdev_unreg:
1862	sysdev_driver_unregister(&cpu_sysdev_class,
1863			&cpufreq_sysdev_driver);
 
 
1864err_null_driver:
1865	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1866	cpufreq_driver = NULL;
1867	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1868	return ret;
1869}
1870EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1871
1872
1873/**
1874 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1875 *
1876 *    Unregister the current CPUFreq driver. Only call this if you have
1877 * the right to do so, i.e. if you have succeeded in initialising before!
1878 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1879 * currently not initialised.
1880 */
1881int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1882{
1883	unsigned long flags;
1884
1885	if (!cpufreq_driver || (driver != cpufreq_driver))
1886		return -EINVAL;
1887
1888	pr_debug("unregistering driver %s\n", driver->name);
1889
1890	sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
 
 
 
1891	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1892
1893	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
1894	cpufreq_driver = NULL;
1895	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1896
1897	return 0;
1898}
1899EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1900
1901static int __init cpufreq_core_init(void)
1902{
1903	int cpu;
1904
1905	for_each_possible_cpu(cpu) {
1906		per_cpu(cpufreq_policy_cpu, cpu) = -1;
1907		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1908	}
1909
1910	cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1911						&cpu_sysdev_class.kset.kobj);
1912	BUG_ON(!cpufreq_global_kobject);
1913	register_syscore_ops(&cpufreq_syscore_ops);
1914
1915	return 0;
1916}
1917core_initcall(cpufreq_core_init);
v3.15
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   6 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   7 *
   8 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   9 *	Added handling for CPU hotplug
  10 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  11 *	Fix handling for CPU hotplug -- affected CPUs
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
 
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/cpu.h>
 
  21#include <linux/cpufreq.h>
  22#include <linux/delay.h>
 
 
  23#include <linux/device.h>
  24#include <linux/init.h>
  25#include <linux/kernel_stat.h>
  26#include <linux/module.h>
  27#include <linux/mutex.h>
  28#include <linux/slab.h>
  29#include <linux/suspend.h>
  30#include <linux/tick.h>
  31#include <trace/events/power.h>
  32
  33/**
  34 * The "cpufreq driver" - the arch- or hardware-dependent low
  35 * level driver of CPUFreq support, and its spinlock. This lock
  36 * also protects the cpufreq_cpu_data array.
  37 */
  38static struct cpufreq_driver *cpufreq_driver;
  39static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  40static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
  41static DEFINE_RWLOCK(cpufreq_driver_lock);
  42DEFINE_MUTEX(cpufreq_governor_lock);
  43static LIST_HEAD(cpufreq_policy_list);
  44
  45/* This one keeps track of the previously set governor of a removed CPU */
  46static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
 
 
  47
  48/* Flag to suspend/resume CPUFreq governors */
  49static bool cpufreq_suspended;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50
  51static inline bool has_target(void)
  52{
  53	return cpufreq_driver->target_index || cpufreq_driver->target;
 
 
 
 
 
 
 
 
 
  54}
  55
  56/*
  57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
  58 * sections
  59 */
  60static DECLARE_RWSEM(cpufreq_rwsem);
  61
  62/* internal prototypes */
  63static int __cpufreq_governor(struct cpufreq_policy *policy,
  64		unsigned int event);
  65static unsigned int __cpufreq_get(unsigned int cpu);
  66static void handle_update(struct work_struct *work);
  67
  68/**
  69 * Two notifier lists: the "policy" list is involved in the
  70 * validation process for a new CPU frequency policy; the
  71 * "transition" list for kernel code that needs to handle
  72 * changes to devices when the CPU clock speed changes.
  73 * The mutex locks both lists.
  74 */
  75static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  76static struct srcu_notifier_head cpufreq_transition_notifier_list;
  77
  78static bool init_cpufreq_transition_notifier_list_called;
  79static int __init init_cpufreq_transition_notifier_list(void)
  80{
  81	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
  82	init_cpufreq_transition_notifier_list_called = true;
  83	return 0;
  84}
  85pure_initcall(init_cpufreq_transition_notifier_list);
  86
  87static int off __read_mostly;
  88static int cpufreq_disabled(void)
  89{
  90	return off;
  91}
  92void disable_cpufreq(void)
  93{
  94	off = 1;
  95}
  96static LIST_HEAD(cpufreq_governor_list);
  97static DEFINE_MUTEX(cpufreq_governor_mutex);
  98
  99bool have_governor_per_policy(void)
 100{
 101	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 102}
 103EXPORT_SYMBOL_GPL(have_governor_per_policy);
 104
 105struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 106{
 107	if (have_governor_per_policy())
 108		return &policy->kobj;
 109	else
 110		return cpufreq_global_kobject;
 111}
 112EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 113
 114static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 115{
 116	u64 idle_time;
 117	u64 cur_wall_time;
 118	u64 busy_time;
 119
 120	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
 
 121
 122	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 123	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 124	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 125	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 126	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 127	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 128
 129	idle_time = cur_wall_time - busy_time;
 130	if (wall)
 131		*wall = cputime_to_usecs(cur_wall_time);
 132
 133	return cputime_to_usecs(idle_time);
 134}
 135
 136u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 137{
 138	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 139
 140	if (idle_time == -1ULL)
 141		return get_cpu_idle_time_jiffy(cpu, wall);
 142	else if (!io_busy)
 143		idle_time += get_cpu_iowait_time_us(cpu, wall);
 144
 145	return idle_time;
 146}
 147EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 148
 149/*
 150 * This is a generic cpufreq init() routine which can be used by cpufreq
 151 * drivers of SMP systems. It will do following:
 152 * - validate & show freq table passed
 153 * - set policies transition latency
 154 * - policy->cpus with all possible CPUs
 155 */
 156int cpufreq_generic_init(struct cpufreq_policy *policy,
 157		struct cpufreq_frequency_table *table,
 158		unsigned int transition_latency)
 159{
 160	int ret;
 161
 162	ret = cpufreq_table_validate_and_show(policy, table);
 163	if (ret) {
 164		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
 165		return ret;
 166	}
 167
 168	policy->cpuinfo.transition_latency = transition_latency;
 169
 170	/*
 171	 * The driver only supports the SMP configuartion where all processors
 172	 * share the clock and voltage and clock.
 173	 */
 174	cpumask_setall(policy->cpus);
 175
 176	return 0;
 177}
 178EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 179
 180unsigned int cpufreq_generic_get(unsigned int cpu)
 181{
 182	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 183
 184	if (!policy || IS_ERR(policy->clk)) {
 185		pr_err("%s: No %s associated to cpu: %d\n",
 186		       __func__, policy ? "clk" : "policy", cpu);
 187		return 0;
 188	}
 189
 190	return clk_get_rate(policy->clk) / 1000;
 191}
 192EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 193
 194/* Only for cpufreq core internal use */
 195struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 196{
 197	return per_cpu(cpufreq_cpu_data, cpu);
 
 198}
 
 199
 200struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 201{
 202	struct cpufreq_policy *policy = NULL;
 203	unsigned long flags;
 204
 205	if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
 206		return NULL;
 207
 208	if (!down_read_trylock(&cpufreq_rwsem))
 209		return NULL;
 210
 211	/* get the cpufreq driver */
 212	read_lock_irqsave(&cpufreq_driver_lock, flags);
 213
 214	if (cpufreq_driver) {
 215		/* get the CPU */
 216		policy = per_cpu(cpufreq_cpu_data, cpu);
 217		if (policy)
 218			kobject_get(&policy->kobj);
 219	}
 220
 221	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 222
 223	if (!policy)
 224		up_read(&cpufreq_rwsem);
 225
 226	return policy;
 227}
 228EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 229
 230void cpufreq_cpu_put(struct cpufreq_policy *policy)
 231{
 232	if (cpufreq_disabled())
 233		return;
 234
 235	kobject_put(&policy->kobj);
 236	up_read(&cpufreq_rwsem);
 237}
 238EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 239
 240/*********************************************************************
 241 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 242 *********************************************************************/
 243
 244/**
 245 * adjust_jiffies - adjust the system "loops_per_jiffy"
 246 *
 247 * This function alters the system "loops_per_jiffy" for the clock
 248 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 249 * systems as each CPU might be scaled differently. So, use the arch
 250 * per-CPU loops_per_jiffy value wherever possible.
 251 */
 252#ifndef CONFIG_SMP
 253static unsigned long l_p_j_ref;
 254static unsigned int l_p_j_ref_freq;
 255
 256static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 257{
 258	if (ci->flags & CPUFREQ_CONST_LOOPS)
 259		return;
 260
 261	if (!l_p_j_ref_freq) {
 262		l_p_j_ref = loops_per_jiffy;
 263		l_p_j_ref_freq = ci->old;
 264		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 265			 l_p_j_ref, l_p_j_ref_freq);
 266	}
 267	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 
 
 268		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 269								ci->new);
 270		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 271			 loops_per_jiffy, ci->new);
 272	}
 273}
 274#else
 275static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 276{
 277	return;
 278}
 279#endif
 280
 281static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
 282		struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 
 
 
 
 283{
 
 
 284	BUG_ON(irqs_disabled());
 285
 286	if (cpufreq_disabled())
 287		return;
 288
 289	freqs->flags = cpufreq_driver->flags;
 290	pr_debug("notification %u of frequency transition to %u kHz\n",
 291		 state, freqs->new);
 292
 
 293	switch (state) {
 294
 295	case CPUFREQ_PRECHANGE:
 296		/* detect if the driver reported a value as "old frequency"
 297		 * which is not equal to what the cpufreq core thinks is
 298		 * "old frequency".
 299		 */
 300		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 301			if ((policy) && (policy->cpu == freqs->cpu) &&
 302			    (policy->cur) && (policy->cur != freqs->old)) {
 303				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 304					 freqs->old, policy->cur);
 
 305				freqs->old = policy->cur;
 306			}
 307		}
 308		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 309				CPUFREQ_PRECHANGE, freqs);
 310		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 311		break;
 312
 313	case CPUFREQ_POSTCHANGE:
 314		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 315		pr_debug("FREQ: %lu - CPU: %lu\n",
 316			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
 
 317		trace_cpu_frequency(freqs->new, freqs->cpu);
 318		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 319				CPUFREQ_POSTCHANGE, freqs);
 320		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 321			policy->cur = freqs->new;
 322		break;
 323	}
 324}
 
 325
 326/**
 327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 328 * on frequency transition.
 329 *
 330 * This function calls the transition notifiers and the "adjust_jiffies"
 331 * function. It is called twice on all CPU frequency changes that have
 332 * external effects.
 333 */
 334static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 335		struct cpufreq_freqs *freqs, unsigned int state)
 336{
 337	for_each_cpu(freqs->cpu, policy->cpus)
 338		__cpufreq_notify_transition(policy, freqs, state);
 339}
 340
 341/* Do post notifications when there are chances that transition has failed */
 342static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 343		struct cpufreq_freqs *freqs, int transition_failed)
 344{
 345	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 346	if (!transition_failed)
 347		return;
 348
 349	swap(freqs->old, freqs->new);
 350	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 351	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 352}
 353
 354void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 355		struct cpufreq_freqs *freqs)
 356{
 357wait:
 358	wait_event(policy->transition_wait, !policy->transition_ongoing);
 359
 360	spin_lock(&policy->transition_lock);
 361
 362	if (unlikely(policy->transition_ongoing)) {
 363		spin_unlock(&policy->transition_lock);
 364		goto wait;
 365	}
 366
 367	policy->transition_ongoing = true;
 368
 369	spin_unlock(&policy->transition_lock);
 370
 371	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 372}
 373EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 374
 375void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 376		struct cpufreq_freqs *freqs, int transition_failed)
 377{
 378	if (unlikely(WARN_ON(!policy->transition_ongoing)))
 379		return;
 380
 381	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 382
 383	policy->transition_ongoing = false;
 384
 385	wake_up(&policy->transition_wait);
 386}
 387EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 388
 389
 390/*********************************************************************
 391 *                          SYSFS INTERFACE                          *
 392 *********************************************************************/
 393static ssize_t show_boost(struct kobject *kobj,
 394				 struct attribute *attr, char *buf)
 395{
 396	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 397}
 398
 399static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
 400				  const char *buf, size_t count)
 401{
 402	int ret, enable;
 403
 404	ret = sscanf(buf, "%d", &enable);
 405	if (ret != 1 || enable < 0 || enable > 1)
 406		return -EINVAL;
 407
 408	if (cpufreq_boost_trigger_state(enable)) {
 409		pr_err("%s: Cannot %s BOOST!\n",
 410		       __func__, enable ? "enable" : "disable");
 411		return -EINVAL;
 412	}
 413
 414	pr_debug("%s: cpufreq BOOST %s\n",
 415		 __func__, enable ? "enabled" : "disabled");
 416
 417	return count;
 418}
 419define_one_global_rw(boost);
 420
 421static struct cpufreq_governor *__find_governor(const char *str_governor)
 422{
 423	struct cpufreq_governor *t;
 424
 425	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 426		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 427			return t;
 428
 429	return NULL;
 430}
 431
 432/**
 433 * cpufreq_parse_governor - parse a governor string
 434 */
 435static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 436				struct cpufreq_governor **governor)
 437{
 438	int err = -EINVAL;
 439
 440	if (!cpufreq_driver)
 441		goto out;
 442
 443	if (cpufreq_driver->setpolicy) {
 444		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 445			*policy = CPUFREQ_POLICY_PERFORMANCE;
 446			err = 0;
 447		} else if (!strnicmp(str_governor, "powersave",
 448						CPUFREQ_NAME_LEN)) {
 449			*policy = CPUFREQ_POLICY_POWERSAVE;
 450			err = 0;
 451		}
 452	} else if (has_target()) {
 453		struct cpufreq_governor *t;
 454
 455		mutex_lock(&cpufreq_governor_mutex);
 456
 457		t = __find_governor(str_governor);
 458
 459		if (t == NULL) {
 460			int ret;
 461
 462			mutex_unlock(&cpufreq_governor_mutex);
 463			ret = request_module("cpufreq_%s", str_governor);
 464			mutex_lock(&cpufreq_governor_mutex);
 465
 466			if (ret == 0)
 467				t = __find_governor(str_governor);
 468		}
 469
 470		if (t != NULL) {
 471			*governor = t;
 472			err = 0;
 473		}
 474
 475		mutex_unlock(&cpufreq_governor_mutex);
 476	}
 477out:
 478	return err;
 479}
 480
 
 481/**
 482 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 483 * print out cpufreq information
 484 *
 485 * Write out information from cpufreq_driver->policy[cpu]; object must be
 486 * "unsigned int".
 487 */
 488
 489#define show_one(file_name, object)			\
 490static ssize_t show_##file_name				\
 491(struct cpufreq_policy *policy, char *buf)		\
 492{							\
 493	return sprintf(buf, "%u\n", policy->object);	\
 494}
 495
 496show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 497show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 498show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 499show_one(scaling_min_freq, min);
 500show_one(scaling_max_freq, max);
 501show_one(scaling_cur_freq, cur);
 502
 503static int cpufreq_set_policy(struct cpufreq_policy *policy,
 504				struct cpufreq_policy *new_policy);
 505
 506/**
 507 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 508 */
 509#define store_one(file_name, object)			\
 510static ssize_t store_##file_name					\
 511(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 512{									\
 513	int ret;							\
 514	struct cpufreq_policy new_policy;				\
 515									\
 516	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 517	if (ret)							\
 518		return -EINVAL;						\
 519									\
 520	ret = sscanf(buf, "%u", &new_policy.object);			\
 521	if (ret != 1)							\
 522		return -EINVAL;						\
 523									\
 524	ret = cpufreq_set_policy(policy, &new_policy);		\
 525	policy->user_policy.object = policy->object;			\
 526									\
 527	return ret ? ret : count;					\
 528}
 529
 530store_one(scaling_min_freq, min);
 531store_one(scaling_max_freq, max);
 532
 533/**
 534 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 535 */
 536static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 537					char *buf)
 538{
 539	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 540	if (!cur_freq)
 541		return sprintf(buf, "<unknown>");
 542	return sprintf(buf, "%u\n", cur_freq);
 543}
 544
 
 545/**
 546 * show_scaling_governor - show the current policy for the specified CPU
 547 */
 548static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 551		return sprintf(buf, "powersave\n");
 552	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 553		return sprintf(buf, "performance\n");
 554	else if (policy->governor)
 555		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 556				policy->governor->name);
 557	return -EINVAL;
 558}
 559
 
 560/**
 561 * store_scaling_governor - store policy for the specified CPU
 562 */
 563static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 564					const char *buf, size_t count)
 565{
 566	int ret;
 567	char	str_governor[16];
 568	struct cpufreq_policy new_policy;
 569
 570	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 571	if (ret)
 572		return ret;
 573
 574	ret = sscanf(buf, "%15s", str_governor);
 575	if (ret != 1)
 576		return -EINVAL;
 577
 578	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 579						&new_policy.governor))
 580		return -EINVAL;
 581
 582	ret = cpufreq_set_policy(policy, &new_policy);
 
 
 583
 584	policy->user_policy.policy = policy->policy;
 585	policy->user_policy.governor = policy->governor;
 586
 587	if (ret)
 588		return ret;
 589	else
 590		return count;
 591}
 592
 593/**
 594 * show_scaling_driver - show the cpufreq driver currently loaded
 595 */
 596static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 597{
 598	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 599}
 600
 601/**
 602 * show_scaling_available_governors - show the available CPUfreq governors
 603 */
 604static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 605						char *buf)
 606{
 607	ssize_t i = 0;
 608	struct cpufreq_governor *t;
 609
 610	if (!has_target()) {
 611		i += sprintf(buf, "performance powersave");
 612		goto out;
 613	}
 614
 615	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 616		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 617		    - (CPUFREQ_NAME_LEN + 2)))
 618			goto out;
 619		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 620	}
 621out:
 622	i += sprintf(&buf[i], "\n");
 623	return i;
 624}
 625
 626ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 627{
 628	ssize_t i = 0;
 629	unsigned int cpu;
 630
 631	for_each_cpu(cpu, mask) {
 632		if (i)
 633			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 634		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 635		if (i >= (PAGE_SIZE - 5))
 636			break;
 637	}
 638	i += sprintf(&buf[i], "\n");
 639	return i;
 640}
 641EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 642
 643/**
 644 * show_related_cpus - show the CPUs affected by each transition even if
 645 * hw coordination is in use
 646 */
 647static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 648{
 649	return cpufreq_show_cpus(policy->related_cpus, buf);
 
 
 650}
 651
 652/**
 653 * show_affected_cpus - show the CPUs affected by each transition
 654 */
 655static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 656{
 657	return cpufreq_show_cpus(policy->cpus, buf);
 658}
 659
 660static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 661					const char *buf, size_t count)
 662{
 663	unsigned int freq = 0;
 664	unsigned int ret;
 665
 666	if (!policy->governor || !policy->governor->store_setspeed)
 667		return -EINVAL;
 668
 669	ret = sscanf(buf, "%u", &freq);
 670	if (ret != 1)
 671		return -EINVAL;
 672
 673	policy->governor->store_setspeed(policy, freq);
 674
 675	return count;
 676}
 677
 678static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 679{
 680	if (!policy->governor || !policy->governor->show_setspeed)
 681		return sprintf(buf, "<unsupported>\n");
 682
 683	return policy->governor->show_setspeed(policy, buf);
 684}
 685
 686/**
 687 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 688 */
 689static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 690{
 691	unsigned int limit;
 692	int ret;
 693	if (cpufreq_driver->bios_limit) {
 694		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 695		if (!ret)
 696			return sprintf(buf, "%u\n", limit);
 697	}
 698	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 699}
 700
 701cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 702cpufreq_freq_attr_ro(cpuinfo_min_freq);
 703cpufreq_freq_attr_ro(cpuinfo_max_freq);
 704cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 705cpufreq_freq_attr_ro(scaling_available_governors);
 706cpufreq_freq_attr_ro(scaling_driver);
 707cpufreq_freq_attr_ro(scaling_cur_freq);
 708cpufreq_freq_attr_ro(bios_limit);
 709cpufreq_freq_attr_ro(related_cpus);
 710cpufreq_freq_attr_ro(affected_cpus);
 711cpufreq_freq_attr_rw(scaling_min_freq);
 712cpufreq_freq_attr_rw(scaling_max_freq);
 713cpufreq_freq_attr_rw(scaling_governor);
 714cpufreq_freq_attr_rw(scaling_setspeed);
 715
 716static struct attribute *default_attrs[] = {
 717	&cpuinfo_min_freq.attr,
 718	&cpuinfo_max_freq.attr,
 719	&cpuinfo_transition_latency.attr,
 720	&scaling_min_freq.attr,
 721	&scaling_max_freq.attr,
 722	&affected_cpus.attr,
 723	&related_cpus.attr,
 724	&scaling_governor.attr,
 725	&scaling_driver.attr,
 726	&scaling_available_governors.attr,
 727	&scaling_setspeed.attr,
 728	NULL
 729};
 730
 
 
 
 731#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 732#define to_attr(a) container_of(a, struct freq_attr, attr)
 733
 734static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 735{
 736	struct cpufreq_policy *policy = to_policy(kobj);
 737	struct freq_attr *fattr = to_attr(attr);
 738	ssize_t ret;
 739
 740	if (!down_read_trylock(&cpufreq_rwsem))
 741		return -EINVAL;
 742
 743	down_read(&policy->rwsem);
 
 744
 745	if (fattr->show)
 746		ret = fattr->show(policy, buf);
 747	else
 748		ret = -EIO;
 749
 750	up_read(&policy->rwsem);
 751	up_read(&cpufreq_rwsem);
 752
 
 753	return ret;
 754}
 755
 756static ssize_t store(struct kobject *kobj, struct attribute *attr,
 757		     const char *buf, size_t count)
 758{
 759	struct cpufreq_policy *policy = to_policy(kobj);
 760	struct freq_attr *fattr = to_attr(attr);
 761	ssize_t ret = -EINVAL;
 
 
 
 762
 763	get_online_cpus();
 764
 765	if (!cpu_online(policy->cpu))
 766		goto unlock;
 767
 768	if (!down_read_trylock(&cpufreq_rwsem))
 769		goto unlock;
 770
 771	down_write(&policy->rwsem);
 772
 773	if (fattr->store)
 774		ret = fattr->store(policy, buf, count);
 775	else
 776		ret = -EIO;
 777
 778	up_write(&policy->rwsem);
 779
 780	up_read(&cpufreq_rwsem);
 781unlock:
 782	put_online_cpus();
 783
 784	return ret;
 785}
 786
 787static void cpufreq_sysfs_release(struct kobject *kobj)
 788{
 789	struct cpufreq_policy *policy = to_policy(kobj);
 790	pr_debug("last reference is dropped\n");
 791	complete(&policy->kobj_unregister);
 792}
 793
 794static const struct sysfs_ops sysfs_ops = {
 795	.show	= show,
 796	.store	= store,
 797};
 798
 799static struct kobj_type ktype_cpufreq = {
 800	.sysfs_ops	= &sysfs_ops,
 801	.default_attrs	= default_attrs,
 802	.release	= cpufreq_sysfs_release,
 803};
 804
 805struct kobject *cpufreq_global_kobject;
 806EXPORT_SYMBOL(cpufreq_global_kobject);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 807
 808static int cpufreq_global_kobject_usage;
 
 809
 810int cpufreq_get_global_kobject(void)
 811{
 812	if (!cpufreq_global_kobject_usage++)
 813		return kobject_add(cpufreq_global_kobject,
 814				&cpu_subsys.dev_root->kobj, "%s", "cpufreq");
 815
 816	return 0;
 817}
 818EXPORT_SYMBOL(cpufreq_get_global_kobject);
 
 
 
 
 819
 820void cpufreq_put_global_kobject(void)
 821{
 822	if (!--cpufreq_global_kobject_usage)
 823		kobject_del(cpufreq_global_kobject);
 824}
 825EXPORT_SYMBOL(cpufreq_put_global_kobject);
 
 
 
 
 
 826
 827int cpufreq_sysfs_create_file(const struct attribute *attr)
 828{
 829	int ret = cpufreq_get_global_kobject();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830
 831	if (!ret) {
 832		ret = sysfs_create_file(cpufreq_global_kobject, attr);
 833		if (ret)
 834			cpufreq_put_global_kobject();
 
 835	}
 836
 837	return ret;
 838}
 839EXPORT_SYMBOL(cpufreq_sysfs_create_file);
 840
 841void cpufreq_sysfs_remove_file(const struct attribute *attr)
 842{
 843	sysfs_remove_file(cpufreq_global_kobject, attr);
 844	cpufreq_put_global_kobject();
 845}
 846EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
 847
 848/* symlink affected CPUs */
 849static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
 
 850{
 851	unsigned int j;
 852	int ret = 0;
 853
 854	for_each_cpu(j, policy->cpus) {
 855		struct device *cpu_dev;
 
 856
 857		if (j == policy->cpu)
 
 
 858			continue;
 859
 860		pr_debug("Adding link for CPU: %u\n", j);
 861		cpu_dev = get_cpu_device(j);
 862		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
 
 863					"cpufreq");
 864		if (ret)
 865			break;
 
 
 866	}
 867	return ret;
 868}
 869
 870static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
 871				     struct device *dev)
 
 872{
 
 873	struct freq_attr **drv_attr;
 
 874	int ret = 0;
 
 875
 876	/* prepare interface data */
 877	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 878				   &dev->kobj, "cpufreq");
 879	if (ret)
 880		return ret;
 881
 882	/* set up files for this cpu device */
 883	drv_attr = cpufreq_driver->attr;
 884	while ((drv_attr) && (*drv_attr)) {
 885		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 886		if (ret)
 887			goto err_out_kobj_put;
 888		drv_attr++;
 889	}
 890	if (cpufreq_driver->get) {
 891		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 892		if (ret)
 893			goto err_out_kobj_put;
 894	}
 895	if (has_target()) {
 896		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 897		if (ret)
 898			goto err_out_kobj_put;
 899	}
 900	if (cpufreq_driver->bios_limit) {
 901		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 902		if (ret)
 903			goto err_out_kobj_put;
 904	}
 905
 906	ret = cpufreq_add_dev_symlink(policy);
 
 
 
 
 
 
 
 
 
 907	if (ret)
 908		goto err_out_kobj_put;
 909
 910	return ret;
 
 
 911
 912err_out_kobj_put:
 913	kobject_put(&policy->kobj);
 914	wait_for_completion(&policy->kobj_unregister);
 915	return ret;
 916}
 917
 918static void cpufreq_init_policy(struct cpufreq_policy *policy)
 919{
 920	struct cpufreq_governor *gov = NULL;
 921	struct cpufreq_policy new_policy;
 922	int ret = 0;
 923
 924	memcpy(&new_policy, policy, sizeof(*policy));
 925
 926	/* Update governor of new_policy to the governor used before hotplug */
 927	gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
 928	if (gov)
 929		pr_debug("Restoring governor %s for cpu %d\n",
 930				policy->governor->name, policy->cpu);
 931	else
 932		gov = CPUFREQ_DEFAULT_GOVERNOR;
 933
 934	new_policy.governor = gov;
 935
 936	/* Use the default policy if its valid. */
 937	if (cpufreq_driver->setpolicy)
 938		cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
 939
 940	/* set default policy */
 941	ret = cpufreq_set_policy(policy, &new_policy);
 942	if (ret) {
 943		pr_debug("setting policy failed\n");
 944		if (cpufreq_driver->exit)
 945			cpufreq_driver->exit(policy);
 946	}
 947}
 948
 949#ifdef CONFIG_HOTPLUG_CPU
 950static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
 951				  unsigned int cpu, struct device *dev)
 952{
 953	int ret = 0;
 954	unsigned long flags;
 955
 956	if (has_target()) {
 957		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
 958		if (ret) {
 959			pr_err("%s: Failed to stop governor\n", __func__);
 960			return ret;
 961		}
 962	}
 963
 964	down_write(&policy->rwsem);
 965
 966	write_lock_irqsave(&cpufreq_driver_lock, flags);
 967
 968	cpumask_set_cpu(cpu, policy->cpus);
 969	per_cpu(cpufreq_cpu_data, cpu) = policy;
 970	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 971
 972	up_write(&policy->rwsem);
 973
 974	if (has_target()) {
 975		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
 976		if (!ret)
 977			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
 978
 979		if (ret) {
 980			pr_err("%s: Failed to start governor\n", __func__);
 981			return ret;
 982		}
 983	}
 984
 985	return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
 986}
 987#endif
 988
 989static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
 990{
 991	struct cpufreq_policy *policy;
 992	unsigned long flags;
 993
 994	read_lock_irqsave(&cpufreq_driver_lock, flags);
 995
 996	policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
 997
 998	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 999
1000	policy->governor = NULL;
1001
1002	return policy;
1003}
1004
1005static struct cpufreq_policy *cpufreq_policy_alloc(void)
1006{
1007	struct cpufreq_policy *policy;
1008
1009	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1010	if (!policy)
1011		return NULL;
1012
1013	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1014		goto err_free_policy;
1015
1016	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1017		goto err_free_cpumask;
1018
1019	INIT_LIST_HEAD(&policy->policy_list);
1020	init_rwsem(&policy->rwsem);
1021	spin_lock_init(&policy->transition_lock);
1022	init_waitqueue_head(&policy->transition_wait);
1023
1024	return policy;
1025
1026err_free_cpumask:
1027	free_cpumask_var(policy->cpus);
1028err_free_policy:
1029	kfree(policy);
1030
1031	return NULL;
1032}
1033
1034static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1035{
1036	struct kobject *kobj;
1037	struct completion *cmp;
1038
1039	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1040			CPUFREQ_REMOVE_POLICY, policy);
1041
1042	down_read(&policy->rwsem);
1043	kobj = &policy->kobj;
1044	cmp = &policy->kobj_unregister;
1045	up_read(&policy->rwsem);
1046	kobject_put(kobj);
1047
1048	/*
1049	 * We need to make sure that the underlying kobj is
1050	 * actually not referenced anymore by anybody before we
1051	 * proceed with unloading.
1052	 */
1053	pr_debug("waiting for dropping of refcount\n");
1054	wait_for_completion(cmp);
1055	pr_debug("wait complete\n");
1056}
1057
1058static void cpufreq_policy_free(struct cpufreq_policy *policy)
1059{
1060	free_cpumask_var(policy->related_cpus);
1061	free_cpumask_var(policy->cpus);
1062	kfree(policy);
1063}
1064
1065static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1066{
1067	if (WARN_ON(cpu == policy->cpu))
1068		return;
1069
1070	down_write(&policy->rwsem);
1071
1072	policy->last_cpu = policy->cpu;
1073	policy->cpu = cpu;
1074
1075	up_write(&policy->rwsem);
1076
1077	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1078			CPUFREQ_UPDATE_POLICY_CPU, policy);
1079}
1080
1081static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1082{
1083	unsigned int j, cpu = dev->id;
1084	int ret = -ENOMEM;
1085	struct cpufreq_policy *policy;
1086	unsigned long flags;
1087	bool recover_policy = cpufreq_suspended;
1088#ifdef CONFIG_HOTPLUG_CPU
1089	struct cpufreq_policy *tpolicy;
1090#endif
1091
1092	if (cpu_is_offline(cpu))
1093		return 0;
1094
1095	pr_debug("adding CPU %u\n", cpu);
1096
1097#ifdef CONFIG_SMP
1098	/* check whether a different CPU already registered this
1099	 * CPU because it is in the same boat. */
1100	policy = cpufreq_cpu_get(cpu);
1101	if (unlikely(policy)) {
1102		cpufreq_cpu_put(policy);
1103		return 0;
1104	}
1105#endif
1106
1107	if (!down_read_trylock(&cpufreq_rwsem))
1108		return 0;
 
 
1109
1110#ifdef CONFIG_HOTPLUG_CPU
1111	/* Check if this cpu was hot-unplugged earlier and has siblings */
1112	read_lock_irqsave(&cpufreq_driver_lock, flags);
1113	list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1114		if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1115			read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1116			ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1117			up_read(&cpufreq_rwsem);
1118			return ret;
1119		}
1120	}
1121	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1122#endif
1123
1124	/*
1125	 * Restore the saved policy when doing light-weight init and fall back
1126	 * to the full init if that fails.
1127	 */
1128	policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1129	if (!policy) {
1130		recover_policy = false;
1131		policy = cpufreq_policy_alloc();
1132		if (!policy)
1133			goto nomem_out;
1134	}
1135
1136	/*
1137	 * In the resume path, since we restore a saved policy, the assignment
1138	 * to policy->cpu is like an update of the existing policy, rather than
1139	 * the creation of a brand new one. So we need to perform this update
1140	 * by invoking update_policy_cpu().
1141	 */
1142	if (recover_policy && cpu != policy->cpu)
1143		update_policy_cpu(policy, cpu);
1144	else
1145		policy->cpu = cpu;
1146
 
1147	cpumask_copy(policy->cpus, cpumask_of(cpu));
1148
 
 
 
 
 
1149	init_completion(&policy->kobj_unregister);
1150	INIT_WORK(&policy->update, handle_update);
1151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152	/* call driver. From then on the cpufreq must be able
1153	 * to accept all calls to ->verify and ->setpolicy for this CPU
1154	 */
1155	ret = cpufreq_driver->init(policy);
1156	if (ret) {
1157		pr_debug("initialization failed\n");
1158		goto err_set_policy_cpu;
1159	}
1160
1161	/* related cpus should atleast have policy->cpus */
1162	cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1163
1164	/*
1165	 * affected cpus must always be the one, which are online. We aren't
1166	 * managing offline cpus here.
1167	 */
1168	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1169
1170	if (!recover_policy) {
1171		policy->user_policy.min = policy->min;
1172		policy->user_policy.max = policy->max;
1173	}
1174
1175	down_write(&policy->rwsem);
1176	write_lock_irqsave(&cpufreq_driver_lock, flags);
1177	for_each_cpu(j, policy->cpus)
1178		per_cpu(cpufreq_cpu_data, j) = policy;
1179	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1180
1181	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1182		policy->cur = cpufreq_driver->get(policy->cpu);
1183		if (!policy->cur) {
1184			pr_err("%s: ->get() failed\n", __func__);
1185			goto err_get_freq;
1186		}
1187	}
1188
1189	/*
1190	 * Sometimes boot loaders set CPU frequency to a value outside of
1191	 * frequency table present with cpufreq core. In such cases CPU might be
1192	 * unstable if it has to run on that frequency for long duration of time
1193	 * and so its better to set it to a frequency which is specified in
1194	 * freq-table. This also makes cpufreq stats inconsistent as
1195	 * cpufreq-stats would fail to register because current frequency of CPU
1196	 * isn't found in freq-table.
1197	 *
1198	 * Because we don't want this change to effect boot process badly, we go
1199	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1200	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1201	 * is initialized to zero).
1202	 *
1203	 * We are passing target-freq as "policy->cur - 1" otherwise
1204	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1205	 * equal to target-freq.
1206	 */
1207	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1208	    && has_target()) {
1209		/* Are we running at unknown frequency ? */
1210		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1211		if (ret == -EINVAL) {
1212			/* Warn user and fix it */
1213			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1214				__func__, policy->cpu, policy->cur);
1215			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1216				CPUFREQ_RELATION_L);
1217
1218			/*
1219			 * Reaching here after boot in a few seconds may not
1220			 * mean that system will remain stable at "unknown"
1221			 * frequency for longer duration. Hence, a BUG_ON().
1222			 */
1223			BUG_ON(ret);
1224			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1225				__func__, policy->cpu, policy->cur);
1226		}
1227	}
 
 
1228
1229	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1230				     CPUFREQ_START, policy);
1231
1232	if (!recover_policy) {
1233		ret = cpufreq_add_dev_interface(policy, dev);
1234		if (ret)
1235			goto err_out_unregister;
1236		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1237				CPUFREQ_CREATE_POLICY, policy);
 
1238	}
1239
1240	write_lock_irqsave(&cpufreq_driver_lock, flags);
1241	list_add(&policy->policy_list, &cpufreq_policy_list);
1242	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1243
1244	cpufreq_init_policy(policy);
1245
1246	if (!recover_policy) {
1247		policy->user_policy.policy = policy->policy;
1248		policy->user_policy.governor = policy->governor;
1249	}
1250	up_write(&policy->rwsem);
1251
1252	kobject_uevent(&policy->kobj, KOBJ_ADD);
1253	up_read(&cpufreq_rwsem);
1254
1255	pr_debug("initialization complete\n");
1256
1257	return 0;
1258
 
1259err_out_unregister:
1260err_get_freq:
1261	write_lock_irqsave(&cpufreq_driver_lock, flags);
1262	for_each_cpu(j, policy->cpus)
1263		per_cpu(cpufreq_cpu_data, j) = NULL;
1264	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1265
1266	if (cpufreq_driver->exit)
1267		cpufreq_driver->exit(policy);
1268err_set_policy_cpu:
1269	if (recover_policy) {
1270		/* Do not leave stale fallback data behind. */
1271		per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1272		cpufreq_policy_put_kobj(policy);
1273	}
1274	cpufreq_policy_free(policy);
1275
 
 
 
 
 
 
 
1276nomem_out:
1277	up_read(&cpufreq_rwsem);
1278
1279	return ret;
1280}
1281
 
1282/**
1283 * cpufreq_add_dev - add a CPU device
1284 *
1285 * Adds the cpufreq interface for a CPU device.
1286 *
1287 * The Oracle says: try running cpufreq registration/unregistration concurrently
1288 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1289 * mess up, but more thorough testing is needed. - Mathieu
1290 */
1291static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1292{
1293	return __cpufreq_add_dev(dev, sif);
1294}
1295
1296static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1297					   unsigned int old_cpu)
1298{
1299	struct device *cpu_dev;
1300	int ret;
 
1301
1302	/* first sibling now owns the new sysfs dir */
1303	cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1304
1305	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1306	ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1307	if (ret) {
1308		pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1309
1310		down_write(&policy->rwsem);
1311		cpumask_set_cpu(old_cpu, policy->cpus);
1312		up_write(&policy->rwsem);
1313
1314		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1315					"cpufreq");
1316
 
 
 
1317		return -EINVAL;
1318	}
 
1319
1320	return cpu_dev->id;
1321}
1322
1323static int __cpufreq_remove_dev_prepare(struct device *dev,
1324					struct subsys_interface *sif)
1325{
1326	unsigned int cpu = dev->id, cpus;
1327	int new_cpu, ret;
1328	unsigned long flags;
1329	struct cpufreq_policy *policy;
 
 
 
 
 
 
 
 
1330
1331	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1332
1333	write_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 
1334
1335	policy = per_cpu(cpufreq_cpu_data, cpu);
 
 
 
 
 
 
 
 
 
 
 
1336
1337	/* Save the policy somewhere when doing a light-weight tear-down */
1338	if (cpufreq_suspended)
1339		per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1340
1341	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1342
1343	if (!policy) {
1344		pr_debug("%s: No cpu_data found\n", __func__);
1345		return -EINVAL;
1346	}
1347
1348	if (has_target()) {
1349		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1350		if (ret) {
1351			pr_err("%s: Failed to stop governor\n", __func__);
1352			return ret;
 
 
 
1353		}
1354	}
 
 
 
1355
1356	if (!cpufreq_driver->setpolicy)
1357		strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1358			policy->governor->name, CPUFREQ_NAME_LEN);
1359
1360	down_read(&policy->rwsem);
1361	cpus = cpumask_weight(policy->cpus);
1362	up_read(&policy->rwsem);
1363
1364	if (cpu != policy->cpu) {
1365		sysfs_remove_link(&dev->kobj, "cpufreq");
1366	} else if (cpus > 1) {
1367		new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu);
1368		if (new_cpu >= 0) {
1369			update_policy_cpu(policy, new_cpu);
1370
1371			if (!cpufreq_suspended)
1372				pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1373					 __func__, new_cpu, cpu);
1374		}
1375	} else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1376		cpufreq_driver->stop_cpu(policy);
1377	}
1378
1379	return 0;
1380}
 
 
1381
1382static int __cpufreq_remove_dev_finish(struct device *dev,
1383				       struct subsys_interface *sif)
1384{
1385	unsigned int cpu = dev->id, cpus;
1386	int ret;
1387	unsigned long flags;
1388	struct cpufreq_policy *policy;
1389
1390	read_lock_irqsave(&cpufreq_driver_lock, flags);
1391	policy = per_cpu(cpufreq_cpu_data, cpu);
1392	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
1393
1394	if (!policy) {
1395		pr_debug("%s: No cpu_data found\n", __func__);
1396		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
1397	}
 
1398
1399	down_write(&policy->rwsem);
1400	cpus = cpumask_weight(policy->cpus);
 
1401
1402	if (cpus > 1)
1403		cpumask_clear_cpu(cpu, policy->cpus);
1404	up_write(&policy->rwsem);
1405
1406	/* If cpu is last user of policy, free policy */
1407	if (cpus == 1) {
1408		if (has_target()) {
1409			ret = __cpufreq_governor(policy,
1410					CPUFREQ_GOV_POLICY_EXIT);
1411			if (ret) {
1412				pr_err("%s: Failed to exit governor\n",
1413				       __func__);
1414				return ret;
1415			}
1416		}
1417
1418		if (!cpufreq_suspended)
1419			cpufreq_policy_put_kobj(policy);
1420
1421		/*
1422		 * Perform the ->exit() even during light-weight tear-down,
1423		 * since this is a core component, and is essential for the
1424		 * subsequent light-weight ->init() to succeed.
1425		 */
1426		if (cpufreq_driver->exit)
1427			cpufreq_driver->exit(policy);
1428
1429		/* Remove policy from list of active policies */
1430		write_lock_irqsave(&cpufreq_driver_lock, flags);
1431		list_del(&policy->policy_list);
1432		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1433
1434		if (!cpufreq_suspended)
1435			cpufreq_policy_free(policy);
1436	} else if (has_target()) {
1437		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1438		if (!ret)
1439			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1440
1441		if (ret) {
1442			pr_err("%s: Failed to start governor\n", __func__);
1443			return ret;
1444		}
1445	}
1446
1447	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1448	return 0;
1449}
1450
1451/**
1452 * cpufreq_remove_dev - remove a CPU device
1453 *
1454 * Removes the cpufreq interface for a CPU device.
1455 */
1456static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1457{
1458	unsigned int cpu = dev->id;
1459	int ret;
1460
1461	if (cpu_is_offline(cpu))
1462		return 0;
1463
1464	ret = __cpufreq_remove_dev_prepare(dev, sif);
 
1465
1466	if (!ret)
1467		ret = __cpufreq_remove_dev_finish(dev, sif);
 
1468
1469	return ret;
1470}
1471
1472static void handle_update(struct work_struct *work)
1473{
1474	struct cpufreq_policy *policy =
1475		container_of(work, struct cpufreq_policy, update);
1476	unsigned int cpu = policy->cpu;
1477	pr_debug("handle_update for cpu %u called\n", cpu);
1478	cpufreq_update_policy(cpu);
1479}
1480
1481/**
1482 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1483 *	in deep trouble.
1484 *	@cpu: cpu number
1485 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1486 *	@new_freq: CPU frequency the CPU actually runs at
1487 *
1488 *	We adjust to current frequency first, and need to clean up later.
1489 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1490 */
1491static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1492				unsigned int new_freq)
1493{
1494	struct cpufreq_policy *policy;
1495	struct cpufreq_freqs freqs;
1496	unsigned long flags;
1497
1498	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1499		 old_freq, new_freq);
1500
 
1501	freqs.old = old_freq;
1502	freqs.new = new_freq;
 
 
 
1503
1504	read_lock_irqsave(&cpufreq_driver_lock, flags);
1505	policy = per_cpu(cpufreq_cpu_data, cpu);
1506	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1507
1508	cpufreq_freq_transition_begin(policy, &freqs);
1509	cpufreq_freq_transition_end(policy, &freqs, 0);
1510}
1511
1512/**
1513 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1514 * @cpu: CPU number
1515 *
1516 * This is the last known freq, without actually getting it from the driver.
1517 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1518 */
1519unsigned int cpufreq_quick_get(unsigned int cpu)
1520{
1521	struct cpufreq_policy *policy;
1522	unsigned int ret_freq = 0;
1523
1524	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1525		return cpufreq_driver->get(cpu);
1526
1527	policy = cpufreq_cpu_get(cpu);
1528	if (policy) {
1529		ret_freq = policy->cur;
1530		cpufreq_cpu_put(policy);
1531	}
1532
1533	return ret_freq;
1534}
1535EXPORT_SYMBOL(cpufreq_quick_get);
1536
1537/**
1538 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1539 * @cpu: CPU number
1540 *
1541 * Just return the max possible frequency for a given CPU.
1542 */
1543unsigned int cpufreq_quick_get_max(unsigned int cpu)
1544{
1545	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1546	unsigned int ret_freq = 0;
1547
1548	if (policy) {
1549		ret_freq = policy->max;
1550		cpufreq_cpu_put(policy);
1551	}
1552
1553	return ret_freq;
1554}
1555EXPORT_SYMBOL(cpufreq_quick_get_max);
1556
 
1557static unsigned int __cpufreq_get(unsigned int cpu)
1558{
1559	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1560	unsigned int ret_freq = 0;
1561
1562	if (!cpufreq_driver->get)
1563		return ret_freq;
1564
1565	ret_freq = cpufreq_driver->get(cpu);
1566
1567	if (ret_freq && policy->cur &&
1568		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1569		/* verify no discrepancy between actual and
1570					saved value exists */
1571		if (unlikely(ret_freq != policy->cur)) {
1572			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1573			schedule_work(&policy->update);
1574		}
1575	}
1576
1577	return ret_freq;
1578}
1579
1580/**
1581 * cpufreq_get - get the current CPU frequency (in kHz)
1582 * @cpu: CPU number
1583 *
1584 * Get the CPU current (static) CPU frequency
1585 */
1586unsigned int cpufreq_get(unsigned int cpu)
1587{
 
1588	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1589	unsigned int ret_freq = 0;
1590
1591	if (policy) {
1592		down_read(&policy->rwsem);
1593		ret_freq = __cpufreq_get(cpu);
1594		up_read(&policy->rwsem);
 
 
 
1595
1596		cpufreq_cpu_put(policy);
1597	}
1598
 
 
 
1599	return ret_freq;
1600}
1601EXPORT_SYMBOL(cpufreq_get);
1602
1603static struct subsys_interface cpufreq_interface = {
1604	.name		= "cpufreq",
1605	.subsys		= &cpu_subsys,
1606	.add_dev	= cpufreq_add_dev,
1607	.remove_dev	= cpufreq_remove_dev,
1608};
1609
1610/*
1611 * In case platform wants some specific frequency to be configured
1612 * during suspend..
1613 */
1614int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1615{
1616	int ret;
1617
1618	if (!policy->suspend_freq) {
1619		pr_err("%s: suspend_freq can't be zero\n", __func__);
1620		return -EINVAL;
1621	}
1622
1623	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1624			policy->suspend_freq);
1625
1626	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1627			CPUFREQ_RELATION_H);
1628	if (ret)
1629		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1630				__func__, policy->suspend_freq, ret);
1631
1632	return ret;
1633}
1634EXPORT_SYMBOL(cpufreq_generic_suspend);
1635
1636/**
1637 * cpufreq_suspend() - Suspend CPUFreq governors
1638 *
1639 * Called during system wide Suspend/Hibernate cycles for suspending governors
1640 * as some platforms can't change frequency after this point in suspend cycle.
1641 * Because some of the devices (like: i2c, regulators, etc) they use for
1642 * changing frequency are suspended quickly after this point.
1643 */
1644void cpufreq_suspend(void)
1645{
1646	struct cpufreq_policy *policy;
1647
1648	if (!cpufreq_driver)
1649		return;
1650
1651	if (!has_target())
1652		return;
1653
1654	pr_debug("%s: Suspending Governors\n", __func__);
 
 
 
1655
1656	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1657		if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1658			pr_err("%s: Failed to stop governor for policy: %p\n",
1659				__func__, policy);
1660		else if (cpufreq_driver->suspend
1661		    && cpufreq_driver->suspend(policy))
1662			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1663				policy);
1664	}
1665
1666	cpufreq_suspended = true;
 
1667}
1668
1669/**
1670 * cpufreq_resume() - Resume CPUFreq governors
1671 *
1672 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1673 * are suspended with cpufreq_suspend().
 
 
 
 
 
 
 
1674 */
1675void cpufreq_resume(void)
1676{
1677	struct cpufreq_policy *policy;
 
 
 
1678
1679	if (!cpufreq_driver)
1680		return;
1681
1682	if (!has_target())
 
 
1683		return;
1684
1685	pr_debug("%s: Resuming Governors\n", __func__);
 
 
 
 
 
 
 
1686
1687	cpufreq_suspended = false;
1688
1689	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1690		if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1691			pr_err("%s: Failed to resume driver: %p\n", __func__,
1692				policy);
1693		else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1694		    || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1695			pr_err("%s: Failed to start governor for policy: %p\n",
1696				__func__, policy);
1697
1698		/*
1699		 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1700		 * policy in list. It will verify that the current freq is in
1701		 * sync with what we believe it to be.
1702		 */
1703		if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1704			schedule_work(&policy->update);
1705	}
1706}
1707
1708/**
1709 *	cpufreq_get_current_driver - return current driver's name
1710 *
1711 *	Return the name string of the currently loaded cpufreq driver
1712 *	or NULL, if none.
1713 */
1714const char *cpufreq_get_current_driver(void)
1715{
1716	if (cpufreq_driver)
1717		return cpufreq_driver->name;
1718
1719	return NULL;
1720}
1721EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1722
1723/*********************************************************************
1724 *                     NOTIFIER LISTS INTERFACE                      *
1725 *********************************************************************/
1726
1727/**
1728 *	cpufreq_register_notifier - register a driver with cpufreq
1729 *	@nb: notifier function to register
1730 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1731 *
1732 *	Add a driver to one of two lists: either a list of drivers that
1733 *      are notified about clock rate changes (once before and once after
1734 *      the transition), or a list of drivers that are notified about
1735 *      changes in cpufreq policy.
1736 *
1737 *	This function may sleep, and has the same return conditions as
1738 *	blocking_notifier_chain_register.
1739 */
1740int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1741{
1742	int ret;
1743
1744	if (cpufreq_disabled())
1745		return -EINVAL;
1746
1747	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1748
1749	switch (list) {
1750	case CPUFREQ_TRANSITION_NOTIFIER:
1751		ret = srcu_notifier_chain_register(
1752				&cpufreq_transition_notifier_list, nb);
1753		break;
1754	case CPUFREQ_POLICY_NOTIFIER:
1755		ret = blocking_notifier_chain_register(
1756				&cpufreq_policy_notifier_list, nb);
1757		break;
1758	default:
1759		ret = -EINVAL;
1760	}
1761
1762	return ret;
1763}
1764EXPORT_SYMBOL(cpufreq_register_notifier);
1765
 
1766/**
1767 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1768 *	@nb: notifier block to be unregistered
1769 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1770 *
1771 *	Remove a driver from the CPU frequency notifier list.
1772 *
1773 *	This function may sleep, and has the same return conditions as
1774 *	blocking_notifier_chain_unregister.
1775 */
1776int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1777{
1778	int ret;
1779
1780	if (cpufreq_disabled())
1781		return -EINVAL;
1782
1783	switch (list) {
1784	case CPUFREQ_TRANSITION_NOTIFIER:
1785		ret = srcu_notifier_chain_unregister(
1786				&cpufreq_transition_notifier_list, nb);
1787		break;
1788	case CPUFREQ_POLICY_NOTIFIER:
1789		ret = blocking_notifier_chain_unregister(
1790				&cpufreq_policy_notifier_list, nb);
1791		break;
1792	default:
1793		ret = -EINVAL;
1794	}
1795
1796	return ret;
1797}
1798EXPORT_SYMBOL(cpufreq_unregister_notifier);
1799
1800
1801/*********************************************************************
1802 *                              GOVERNORS                            *
1803 *********************************************************************/
1804
 
1805int __cpufreq_driver_target(struct cpufreq_policy *policy,
1806			    unsigned int target_freq,
1807			    unsigned int relation)
1808{
1809	int retval = -EINVAL;
1810	unsigned int old_target_freq = target_freq;
1811
1812	if (cpufreq_disabled())
1813		return -ENODEV;
1814
1815	/* Make sure that target_freq is within supported range */
1816	if (target_freq > policy->max)
1817		target_freq = policy->max;
1818	if (target_freq < policy->min)
1819		target_freq = policy->min;
1820
1821	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1822		 policy->cpu, target_freq, relation, old_target_freq);
1823
1824	/*
1825	 * This might look like a redundant call as we are checking it again
1826	 * after finding index. But it is left intentionally for cases where
1827	 * exactly same freq is called again and so we can save on few function
1828	 * calls.
1829	 */
1830	if (target_freq == policy->cur)
1831		return 0;
1832
1833	if (cpufreq_driver->target)
 
 
1834		retval = cpufreq_driver->target(policy, target_freq, relation);
1835	else if (cpufreq_driver->target_index) {
1836		struct cpufreq_frequency_table *freq_table;
1837		struct cpufreq_freqs freqs;
1838		bool notify;
1839		int index;
1840
1841		freq_table = cpufreq_frequency_get_table(policy->cpu);
1842		if (unlikely(!freq_table)) {
1843			pr_err("%s: Unable to find freq_table\n", __func__);
1844			goto out;
1845		}
1846
1847		retval = cpufreq_frequency_table_target(policy, freq_table,
1848				target_freq, relation, &index);
1849		if (unlikely(retval)) {
1850			pr_err("%s: Unable to find matching freq\n", __func__);
1851			goto out;
1852		}
1853
1854		if (freq_table[index].frequency == policy->cur) {
1855			retval = 0;
1856			goto out;
1857		}
1858
1859		notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1860
1861		if (notify) {
1862			freqs.old = policy->cur;
1863			freqs.new = freq_table[index].frequency;
1864			freqs.flags = 0;
1865
1866			pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1867				 __func__, policy->cpu, freqs.old, freqs.new);
1868
1869			cpufreq_freq_transition_begin(policy, &freqs);
1870		}
1871
1872		retval = cpufreq_driver->target_index(policy, index);
1873		if (retval)
1874			pr_err("%s: Failed to change cpu frequency: %d\n",
1875			       __func__, retval);
1876
1877		if (notify)
1878			cpufreq_freq_transition_end(policy, &freqs, retval);
1879	}
1880
1881out:
1882	return retval;
1883}
1884EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1885
1886int cpufreq_driver_target(struct cpufreq_policy *policy,
1887			  unsigned int target_freq,
1888			  unsigned int relation)
1889{
1890	int ret = -EINVAL;
1891
1892	down_write(&policy->rwsem);
 
 
 
 
 
1893
1894	ret = __cpufreq_driver_target(policy, target_freq, relation);
1895
1896	up_write(&policy->rwsem);
1897
 
 
 
1898	return ret;
1899}
1900EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1902/*
1903 * when "event" is CPUFREQ_GOV_LIMITS
1904 */
1905
1906static int __cpufreq_governor(struct cpufreq_policy *policy,
1907					unsigned int event)
1908{
1909	int ret;
1910
1911	/* Only must be defined when default governor is known to have latency
1912	   restrictions, like e.g. conservative or ondemand.
1913	   That this is the case is already ensured in Kconfig
1914	*/
1915#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1916	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1917#else
1918	struct cpufreq_governor *gov = NULL;
1919#endif
1920
1921	/* Don't start any governor operations if we are entering suspend */
1922	if (cpufreq_suspended)
1923		return 0;
1924
1925	if (policy->governor->max_transition_latency &&
1926	    policy->cpuinfo.transition_latency >
1927	    policy->governor->max_transition_latency) {
1928		if (!gov)
1929			return -EINVAL;
1930		else {
1931			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1932				policy->governor->name, gov->name);
 
 
 
1933			policy->governor = gov;
1934		}
1935	}
1936
1937	if (event == CPUFREQ_GOV_POLICY_INIT)
1938		if (!try_module_get(policy->governor->owner))
1939			return -EINVAL;
1940
1941	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1942		 policy->cpu, event);
1943
1944	mutex_lock(&cpufreq_governor_lock);
1945	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1946	    || (!policy->governor_enabled
1947	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1948		mutex_unlock(&cpufreq_governor_lock);
1949		return -EBUSY;
1950	}
1951
1952	if (event == CPUFREQ_GOV_STOP)
1953		policy->governor_enabled = false;
1954	else if (event == CPUFREQ_GOV_START)
1955		policy->governor_enabled = true;
1956
1957	mutex_unlock(&cpufreq_governor_lock);
1958
1959	ret = policy->governor->governor(policy, event);
1960
1961	if (!ret) {
1962		if (event == CPUFREQ_GOV_POLICY_INIT)
1963			policy->governor->initialized++;
1964		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1965			policy->governor->initialized--;
1966	} else {
1967		/* Restore original values */
1968		mutex_lock(&cpufreq_governor_lock);
1969		if (event == CPUFREQ_GOV_STOP)
1970			policy->governor_enabled = true;
1971		else if (event == CPUFREQ_GOV_START)
1972			policy->governor_enabled = false;
1973		mutex_unlock(&cpufreq_governor_lock);
1974	}
1975
1976	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1977			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1978		module_put(policy->governor->owner);
1979
1980	return ret;
1981}
1982
 
1983int cpufreq_register_governor(struct cpufreq_governor *governor)
1984{
1985	int err;
1986
1987	if (!governor)
1988		return -EINVAL;
1989
1990	if (cpufreq_disabled())
1991		return -ENODEV;
1992
1993	mutex_lock(&cpufreq_governor_mutex);
1994
1995	governor->initialized = 0;
1996	err = -EBUSY;
1997	if (__find_governor(governor->name) == NULL) {
1998		err = 0;
1999		list_add(&governor->governor_list, &cpufreq_governor_list);
2000	}
2001
2002	mutex_unlock(&cpufreq_governor_mutex);
2003	return err;
2004}
2005EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2006
 
2007void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2008{
 
2009	int cpu;
 
2010
2011	if (!governor)
2012		return;
2013
2014	if (cpufreq_disabled())
2015		return;
2016
2017	for_each_present_cpu(cpu) {
2018		if (cpu_online(cpu))
2019			continue;
2020		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2021			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
2022	}
 
2023
2024	mutex_lock(&cpufreq_governor_mutex);
2025	list_del(&governor->governor_list);
2026	mutex_unlock(&cpufreq_governor_mutex);
2027	return;
2028}
2029EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2030
2031
 
2032/*********************************************************************
2033 *                          POLICY INTERFACE                         *
2034 *********************************************************************/
2035
2036/**
2037 * cpufreq_get_policy - get the current cpufreq_policy
2038 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2039 *	is written
2040 *
2041 * Reads the current cpufreq policy.
2042 */
2043int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2044{
2045	struct cpufreq_policy *cpu_policy;
2046	if (!policy)
2047		return -EINVAL;
2048
2049	cpu_policy = cpufreq_cpu_get(cpu);
2050	if (!cpu_policy)
2051		return -EINVAL;
2052
2053	memcpy(policy, cpu_policy, sizeof(*policy));
2054
2055	cpufreq_cpu_put(cpu_policy);
2056	return 0;
2057}
2058EXPORT_SYMBOL(cpufreq_get_policy);
2059
 
2060/*
2061 * policy : current policy.
2062 * new_policy: policy to be set.
2063 */
2064static int cpufreq_set_policy(struct cpufreq_policy *policy,
2065				struct cpufreq_policy *new_policy)
2066{
2067	struct cpufreq_governor *old_gov;
2068	int ret;
2069
2070	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2071		 new_policy->cpu, new_policy->min, new_policy->max);
2072
2073	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
 
2074
2075	if (new_policy->min > policy->max || new_policy->max < policy->min)
2076		return -EINVAL;
 
 
2077
2078	/* verify the cpu speed can be set within this limit */
2079	ret = cpufreq_driver->verify(new_policy);
2080	if (ret)
2081		return ret;
2082
2083	/* adjust if necessary - all reasons */
2084	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2085			CPUFREQ_ADJUST, new_policy);
2086
2087	/* adjust if necessary - hardware incompatibility*/
2088	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2089			CPUFREQ_INCOMPATIBLE, new_policy);
2090
2091	/*
2092	 * verify the cpu speed can be set within this limit, which might be
2093	 * different to the first one
2094	 */
2095	ret = cpufreq_driver->verify(new_policy);
2096	if (ret)
2097		return ret;
2098
2099	/* notification of the new policy */
2100	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2101			CPUFREQ_NOTIFY, new_policy);
2102
2103	policy->min = new_policy->min;
2104	policy->max = new_policy->max;
2105
2106	pr_debug("new min and max freqs are %u - %u kHz\n",
2107		 policy->min, policy->max);
2108
2109	if (cpufreq_driver->setpolicy) {
2110		policy->policy = new_policy->policy;
2111		pr_debug("setting range\n");
2112		return cpufreq_driver->setpolicy(new_policy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2113	}
2114
2115	if (new_policy->governor == policy->governor)
2116		goto out;
2117
2118	pr_debug("governor switch\n");
2119
2120	/* save old, working values */
2121	old_gov = policy->governor;
2122	/* end old governor */
2123	if (old_gov) {
2124		__cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2125		up_write(&policy->rwsem);
2126		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2127		down_write(&policy->rwsem);
2128	}
2129
2130	/* start new governor */
2131	policy->governor = new_policy->governor;
2132	if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2133		if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2134			goto out;
2135
2136		up_write(&policy->rwsem);
2137		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2138		down_write(&policy->rwsem);
2139	}
2140
2141	/* new governor failed, so re-start old one */
2142	pr_debug("starting governor %s failed\n", policy->governor->name);
2143	if (old_gov) {
2144		policy->governor = old_gov;
2145		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2146		__cpufreq_governor(policy, CPUFREQ_GOV_START);
2147	}
2148
2149	return -EINVAL;
2150
2151 out:
2152	pr_debug("governor: change or update limits\n");
2153	return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2154}
2155
2156/**
2157 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2158 *	@cpu: CPU which shall be re-evaluated
2159 *
2160 *	Useful for policy notifiers which have different necessities
2161 *	at different times.
2162 */
2163int cpufreq_update_policy(unsigned int cpu)
2164{
2165	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2166	struct cpufreq_policy new_policy;
2167	int ret;
2168
2169	if (!policy) {
2170		ret = -ENODEV;
2171		goto no_policy;
2172	}
2173
2174	down_write(&policy->rwsem);
 
 
 
2175
2176	pr_debug("updating policy for CPU %u\n", cpu);
2177	memcpy(&new_policy, policy, sizeof(*policy));
2178	new_policy.min = policy->user_policy.min;
2179	new_policy.max = policy->user_policy.max;
2180	new_policy.policy = policy->user_policy.policy;
2181	new_policy.governor = policy->user_policy.governor;
2182
2183	/*
2184	 * BIOS might change freq behind our back
2185	 * -> ask driver for current freq and notify governors about a change
2186	 */
2187	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2188		new_policy.cur = cpufreq_driver->get(cpu);
2189		if (WARN_ON(!new_policy.cur)) {
2190			ret = -EIO;
2191			goto no_policy;
2192		}
2193
2194		if (!policy->cur) {
2195			pr_debug("Driver did not initialize current freq\n");
2196			policy->cur = new_policy.cur;
 
 
 
 
2197		} else {
2198			if (policy->cur != new_policy.cur && has_target())
2199				cpufreq_out_of_sync(cpu, policy->cur,
2200								new_policy.cur);
2201		}
2202	}
2203
2204	ret = cpufreq_set_policy(policy, &new_policy);
2205
2206	up_write(&policy->rwsem);
2207
2208	cpufreq_cpu_put(policy);
 
2209no_policy:
2210	return ret;
2211}
2212EXPORT_SYMBOL(cpufreq_update_policy);
2213
2214static int cpufreq_cpu_callback(struct notifier_block *nfb,
2215					unsigned long action, void *hcpu)
2216{
2217	unsigned int cpu = (unsigned long)hcpu;
2218	struct device *dev;
2219
2220	dev = get_cpu_device(cpu);
2221	if (dev) {
2222		switch (action & ~CPU_TASKS_FROZEN) {
2223		case CPU_ONLINE:
2224			__cpufreq_add_dev(dev, NULL);
 
2225			break;
2226
2227		case CPU_DOWN_PREPARE:
2228			__cpufreq_remove_dev_prepare(dev, NULL);
2229			break;
 
2230
2231		case CPU_POST_DEAD:
2232			__cpufreq_remove_dev_finish(dev, NULL);
2233			break;
2234
2235		case CPU_DOWN_FAILED:
2236			__cpufreq_add_dev(dev, NULL);
 
2237			break;
2238		}
2239	}
2240	return NOTIFY_OK;
2241}
2242
2243static struct notifier_block __refdata cpufreq_cpu_notifier = {
2244	.notifier_call = cpufreq_cpu_callback,
2245};
2246
2247/*********************************************************************
2248 *               BOOST						     *
2249 *********************************************************************/
2250static int cpufreq_boost_set_sw(int state)
2251{
2252	struct cpufreq_frequency_table *freq_table;
2253	struct cpufreq_policy *policy;
2254	int ret = -EINVAL;
2255
2256	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2257		freq_table = cpufreq_frequency_get_table(policy->cpu);
2258		if (freq_table) {
2259			ret = cpufreq_frequency_table_cpuinfo(policy,
2260							freq_table);
2261			if (ret) {
2262				pr_err("%s: Policy frequency update failed\n",
2263				       __func__);
2264				break;
2265			}
2266			policy->user_policy.max = policy->max;
2267			__cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2268		}
2269	}
2270
2271	return ret;
2272}
2273
2274int cpufreq_boost_trigger_state(int state)
2275{
2276	unsigned long flags;
2277	int ret = 0;
2278
2279	if (cpufreq_driver->boost_enabled == state)
2280		return 0;
2281
2282	write_lock_irqsave(&cpufreq_driver_lock, flags);
2283	cpufreq_driver->boost_enabled = state;
2284	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2285
2286	ret = cpufreq_driver->set_boost(state);
2287	if (ret) {
2288		write_lock_irqsave(&cpufreq_driver_lock, flags);
2289		cpufreq_driver->boost_enabled = !state;
2290		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2291
2292		pr_err("%s: Cannot %s BOOST\n",
2293		       __func__, state ? "enable" : "disable");
2294	}
2295
2296	return ret;
2297}
2298
2299int cpufreq_boost_supported(void)
2300{
2301	if (likely(cpufreq_driver))
2302		return cpufreq_driver->boost_supported;
2303
2304	return 0;
2305}
2306EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2307
2308int cpufreq_boost_enabled(void)
2309{
2310	return cpufreq_driver->boost_enabled;
2311}
2312EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2313
2314/*********************************************************************
2315 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2316 *********************************************************************/
2317
2318/**
2319 * cpufreq_register_driver - register a CPU Frequency driver
2320 * @driver_data: A struct cpufreq_driver containing the values#
2321 * submitted by the CPU Frequency driver.
2322 *
2323 * Registers a CPU Frequency driver to this core code. This code
2324 * returns zero on success, -EBUSY when another driver got here first
2325 * (and isn't unregistered in the meantime).
2326 *
2327 */
2328int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2329{
2330	unsigned long flags;
2331	int ret;
2332
2333	if (cpufreq_disabled())
2334		return -ENODEV;
2335
2336	if (!driver_data || !driver_data->verify || !driver_data->init ||
2337	    !(driver_data->setpolicy || driver_data->target_index ||
2338		    driver_data->target) ||
2339	     (driver_data->setpolicy && (driver_data->target_index ||
2340		    driver_data->target)))
2341		return -EINVAL;
2342
2343	pr_debug("trying to register driver %s\n", driver_data->name);
2344
2345	if (driver_data->setpolicy)
2346		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2347
2348	write_lock_irqsave(&cpufreq_driver_lock, flags);
2349	if (cpufreq_driver) {
2350		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351		return -EEXIST;
2352	}
2353	cpufreq_driver = driver_data;
2354	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2355
2356	if (cpufreq_boost_supported()) {
2357		/*
2358		 * Check if driver provides function to enable boost -
2359		 * if not, use cpufreq_boost_set_sw as default
2360		 */
2361		if (!cpufreq_driver->set_boost)
2362			cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2363
2364		ret = cpufreq_sysfs_create_file(&boost.attr);
2365		if (ret) {
2366			pr_err("%s: cannot register global BOOST sysfs file\n",
2367			       __func__);
2368			goto err_null_driver;
2369		}
2370	}
2371
2372	ret = subsys_interface_register(&cpufreq_interface);
2373	if (ret)
2374		goto err_boost_unreg;
2375
2376	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2377		int i;
2378		ret = -ENODEV;
2379
2380		/* check for at least one working CPU */
2381		for (i = 0; i < nr_cpu_ids; i++)
2382			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2383				ret = 0;
2384				break;
2385			}
2386
2387		/* if all ->init() calls failed, unregister */
2388		if (ret) {
2389			pr_debug("no CPU initialized for driver %s\n",
2390				 driver_data->name);
2391			goto err_if_unreg;
2392		}
2393	}
2394
2395	register_hotcpu_notifier(&cpufreq_cpu_notifier);
2396	pr_debug("driver %s up and running\n", driver_data->name);
2397
2398	return 0;
2399err_if_unreg:
2400	subsys_interface_unregister(&cpufreq_interface);
2401err_boost_unreg:
2402	if (cpufreq_boost_supported())
2403		cpufreq_sysfs_remove_file(&boost.attr);
2404err_null_driver:
2405	write_lock_irqsave(&cpufreq_driver_lock, flags);
2406	cpufreq_driver = NULL;
2407	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2408	return ret;
2409}
2410EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2411
 
2412/**
2413 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2414 *
2415 * Unregister the current CPUFreq driver. Only call this if you have
2416 * the right to do so, i.e. if you have succeeded in initialising before!
2417 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2418 * currently not initialised.
2419 */
2420int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2421{
2422	unsigned long flags;
2423
2424	if (!cpufreq_driver || (driver != cpufreq_driver))
2425		return -EINVAL;
2426
2427	pr_debug("unregistering driver %s\n", driver->name);
2428
2429	subsys_interface_unregister(&cpufreq_interface);
2430	if (cpufreq_boost_supported())
2431		cpufreq_sysfs_remove_file(&boost.attr);
2432
2433	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2434
2435	down_write(&cpufreq_rwsem);
2436	write_lock_irqsave(&cpufreq_driver_lock, flags);
2437
2438	cpufreq_driver = NULL;
2439
2440	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2441	up_write(&cpufreq_rwsem);
2442
2443	return 0;
2444}
2445EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2446
2447static int __init cpufreq_core_init(void)
2448{
2449	if (cpufreq_disabled())
2450		return -ENODEV;
 
 
 
 
2451
2452	cpufreq_global_kobject = kobject_create();
 
2453	BUG_ON(!cpufreq_global_kobject);
 
2454
2455	return 0;
2456}
2457core_initcall(cpufreq_core_init);