Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
 
 
 
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
  79}
  80
  81/* internal prototypes */
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 
 
 
 
 
 
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 241
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 252	kobject_put(&policy->kobj);
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 266
 267	up_write(&policy->rwsem);
 268
 269	cpufreq_cpu_put(policy);
 270}
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 299}
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 336#endif
 337}
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 354
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 365	switch (state) {
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 397	}
 398}
 399
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency) {
 579		/*
 580		 * For platforms that can change the frequency very fast (< 10
 581		 * us), the above formula gives a decent transition delay. But
 582		 * for platforms where transition_latency is in milliseconds, it
 583		 * ends up giving unrealistic values.
 584		 *
 585		 * Cap the default transition delay to 10 ms, which seems to be
 586		 * a reasonable amount of time after which we should reevaluate
 587		 * the frequency.
 588		 */
 589		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 590	}
 591
 592	return LATENCY_MULTIPLIER;
 593}
 594EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 595
 596/*********************************************************************
 597 *                          SYSFS INTERFACE                          *
 598 *********************************************************************/
 599static ssize_t show_boost(struct kobject *kobj,
 600			  struct kobj_attribute *attr, char *buf)
 601{
 602	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 603}
 604
 605static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 606			   const char *buf, size_t count)
 607{
 608	int ret, enable;
 609
 610	ret = sscanf(buf, "%d", &enable);
 611	if (ret != 1 || enable < 0 || enable > 1)
 612		return -EINVAL;
 613
 614	if (cpufreq_boost_trigger_state(enable)) {
 615		pr_err("%s: Cannot %s BOOST!\n",
 616		       __func__, enable ? "enable" : "disable");
 617		return -EINVAL;
 618	}
 619
 620	pr_debug("%s: cpufreq BOOST %s\n",
 621		 __func__, enable ? "enabled" : "disabled");
 622
 623	return count;
 624}
 625define_one_global_rw(boost);
 626
 627static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 628{
 629	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 630}
 631
 632static ssize_t store_local_boost(struct cpufreq_policy *policy,
 633				 const char *buf, size_t count)
 634{
 635	int ret, enable;
 636
 637	ret = kstrtoint(buf, 10, &enable);
 638	if (ret || enable < 0 || enable > 1)
 639		return -EINVAL;
 640
 641	if (!cpufreq_driver->boost_enabled)
 642		return -EINVAL;
 643
 644	if (policy->boost_enabled == enable)
 645		return count;
 646
 647	cpus_read_lock();
 648	ret = cpufreq_driver->set_boost(policy, enable);
 649	cpus_read_unlock();
 650
 651	if (ret)
 652		return ret;
 653
 654	policy->boost_enabled = enable;
 655
 656	return count;
 657}
 658
 659static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 660
 661static struct cpufreq_governor *find_governor(const char *str_governor)
 662{
 663	struct cpufreq_governor *t;
 664
 665	for_each_governor(t)
 666		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 667			return t;
 668
 669	return NULL;
 670}
 671
 672static struct cpufreq_governor *get_governor(const char *str_governor)
 673{
 674	struct cpufreq_governor *t;
 675
 676	mutex_lock(&cpufreq_governor_mutex);
 677	t = find_governor(str_governor);
 678	if (!t)
 679		goto unlock;
 680
 681	if (!try_module_get(t->owner))
 682		t = NULL;
 683
 684unlock:
 685	mutex_unlock(&cpufreq_governor_mutex);
 686
 687	return t;
 688}
 689
 690static unsigned int cpufreq_parse_policy(char *str_governor)
 691{
 692	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 693		return CPUFREQ_POLICY_PERFORMANCE;
 694
 695	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 696		return CPUFREQ_POLICY_POWERSAVE;
 697
 698	return CPUFREQ_POLICY_UNKNOWN;
 699}
 700
 701/**
 702 * cpufreq_parse_governor - parse a governor string only for has_target()
 703 * @str_governor: Governor name.
 704 */
 705static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 706{
 707	struct cpufreq_governor *t;
 708
 709	t = get_governor(str_governor);
 710	if (t)
 711		return t;
 712
 713	if (request_module("cpufreq_%s", str_governor))
 714		return NULL;
 715
 716	return get_governor(str_governor);
 717}
 718
 719/*
 720 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 721 * print out cpufreq information
 722 *
 723 * Write out information from cpufreq_driver->policy[cpu]; object must be
 724 * "unsigned int".
 725 */
 726
 727#define show_one(file_name, object)			\
 728static ssize_t show_##file_name				\
 729(struct cpufreq_policy *policy, char *buf)		\
 730{							\
 731	return sprintf(buf, "%u\n", policy->object);	\
 732}
 733
 734show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 735show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 736show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 737show_one(scaling_min_freq, min);
 738show_one(scaling_max_freq, max);
 739
 740__weak unsigned int arch_freq_get_on_cpu(int cpu)
 741{
 742	return 0;
 743}
 744
 745static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 746{
 747	ssize_t ret;
 748	unsigned int freq;
 749
 750	freq = arch_freq_get_on_cpu(policy->cpu);
 751	if (freq)
 752		ret = sprintf(buf, "%u\n", freq);
 753	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 754		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 755	else
 756		ret = sprintf(buf, "%u\n", policy->cur);
 757	return ret;
 758}
 759
 760/*
 761 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 762 */
 763#define store_one(file_name, object)			\
 764static ssize_t store_##file_name					\
 765(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 766{									\
 767	unsigned long val;						\
 768	int ret;							\
 769									\
 770	ret = kstrtoul(buf, 0, &val);					\
 771	if (ret)							\
 772		return ret;						\
 773									\
 774	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 775	return ret >= 0 ? count : ret;					\
 776}
 777
 778store_one(scaling_min_freq, min);
 779store_one(scaling_max_freq, max);
 780
 781/*
 782 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 783 */
 784static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 785					char *buf)
 786{
 787	unsigned int cur_freq = __cpufreq_get(policy);
 788
 789	if (cur_freq)
 790		return sprintf(buf, "%u\n", cur_freq);
 791
 792	return sprintf(buf, "<unknown>\n");
 793}
 794
 795/*
 796 * show_scaling_governor - show the current policy for the specified CPU
 797 */
 798static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 799{
 800	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 801		return sprintf(buf, "powersave\n");
 802	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 803		return sprintf(buf, "performance\n");
 804	else if (policy->governor)
 805		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 806				policy->governor->name);
 807	return -EINVAL;
 808}
 809
 810/*
 811 * store_scaling_governor - store policy for the specified CPU
 812 */
 813static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 814					const char *buf, size_t count)
 815{
 816	char str_governor[16];
 817	int ret;
 818
 819	ret = sscanf(buf, "%15s", str_governor);
 820	if (ret != 1)
 821		return -EINVAL;
 822
 823	if (cpufreq_driver->setpolicy) {
 824		unsigned int new_pol;
 825
 826		new_pol = cpufreq_parse_policy(str_governor);
 827		if (!new_pol)
 828			return -EINVAL;
 829
 830		ret = cpufreq_set_policy(policy, NULL, new_pol);
 831	} else {
 832		struct cpufreq_governor *new_gov;
 833
 834		new_gov = cpufreq_parse_governor(str_governor);
 835		if (!new_gov)
 836			return -EINVAL;
 837
 838		ret = cpufreq_set_policy(policy, new_gov,
 839					 CPUFREQ_POLICY_UNKNOWN);
 840
 841		module_put(new_gov->owner);
 842	}
 843
 844	return ret ? ret : count;
 845}
 846
 847/*
 848 * show_scaling_driver - show the cpufreq driver currently loaded
 849 */
 850static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 851{
 852	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 853}
 854
 855/*
 856 * show_scaling_available_governors - show the available CPUfreq governors
 857 */
 858static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 859						char *buf)
 860{
 861	ssize_t i = 0;
 862	struct cpufreq_governor *t;
 863
 864	if (!has_target()) {
 865		i += sprintf(buf, "performance powersave");
 866		goto out;
 867	}
 868
 869	mutex_lock(&cpufreq_governor_mutex);
 870	for_each_governor(t) {
 871		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 872		    - (CPUFREQ_NAME_LEN + 2)))
 873			break;
 874		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 875	}
 876	mutex_unlock(&cpufreq_governor_mutex);
 877out:
 878	i += sprintf(&buf[i], "\n");
 879	return i;
 880}
 881
 882ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 883{
 884	ssize_t i = 0;
 885	unsigned int cpu;
 886
 887	for_each_cpu(cpu, mask) {
 888		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
 
 
 889		if (i >= (PAGE_SIZE - 5))
 890			break;
 891	}
 892
 893	/* Remove the extra space at the end */
 894	i--;
 895
 896	i += sprintf(&buf[i], "\n");
 897	return i;
 898}
 899EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 900
 901/*
 902 * show_related_cpus - show the CPUs affected by each transition even if
 903 * hw coordination is in use
 904 */
 905static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 906{
 907	return cpufreq_show_cpus(policy->related_cpus, buf);
 908}
 909
 910/*
 911 * show_affected_cpus - show the CPUs affected by each transition
 912 */
 913static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 914{
 915	return cpufreq_show_cpus(policy->cpus, buf);
 916}
 917
 918static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 919					const char *buf, size_t count)
 920{
 921	unsigned int freq = 0;
 922	unsigned int ret;
 923
 924	if (!policy->governor || !policy->governor->store_setspeed)
 925		return -EINVAL;
 926
 927	ret = sscanf(buf, "%u", &freq);
 928	if (ret != 1)
 929		return -EINVAL;
 930
 931	policy->governor->store_setspeed(policy, freq);
 932
 933	return count;
 934}
 935
 936static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 937{
 938	if (!policy->governor || !policy->governor->show_setspeed)
 939		return sprintf(buf, "<unsupported>\n");
 940
 941	return policy->governor->show_setspeed(policy, buf);
 942}
 943
 944/*
 945 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 946 */
 947static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 948{
 949	unsigned int limit;
 950	int ret;
 951	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 952	if (!ret)
 953		return sprintf(buf, "%u\n", limit);
 954	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 955}
 956
 957cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 958cpufreq_freq_attr_ro(cpuinfo_min_freq);
 959cpufreq_freq_attr_ro(cpuinfo_max_freq);
 960cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 961cpufreq_freq_attr_ro(scaling_available_governors);
 962cpufreq_freq_attr_ro(scaling_driver);
 963cpufreq_freq_attr_ro(scaling_cur_freq);
 964cpufreq_freq_attr_ro(bios_limit);
 965cpufreq_freq_attr_ro(related_cpus);
 966cpufreq_freq_attr_ro(affected_cpus);
 967cpufreq_freq_attr_rw(scaling_min_freq);
 968cpufreq_freq_attr_rw(scaling_max_freq);
 969cpufreq_freq_attr_rw(scaling_governor);
 970cpufreq_freq_attr_rw(scaling_setspeed);
 971
 972static struct attribute *cpufreq_attrs[] = {
 973	&cpuinfo_min_freq.attr,
 974	&cpuinfo_max_freq.attr,
 975	&cpuinfo_transition_latency.attr,
 976	&scaling_min_freq.attr,
 977	&scaling_max_freq.attr,
 978	&affected_cpus.attr,
 979	&related_cpus.attr,
 980	&scaling_governor.attr,
 981	&scaling_driver.attr,
 982	&scaling_available_governors.attr,
 983	&scaling_setspeed.attr,
 984	NULL
 985};
 986ATTRIBUTE_GROUPS(cpufreq);
 987
 988#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 989#define to_attr(a) container_of(a, struct freq_attr, attr)
 990
 991static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 992{
 993	struct cpufreq_policy *policy = to_policy(kobj);
 994	struct freq_attr *fattr = to_attr(attr);
 995	ssize_t ret = -EBUSY;
 996
 997	if (!fattr->show)
 998		return -EIO;
 999
1000	down_read(&policy->rwsem);
1001	if (likely(!policy_is_inactive(policy)))
1002		ret = fattr->show(policy, buf);
1003	up_read(&policy->rwsem);
1004
1005	return ret;
1006}
1007
1008static ssize_t store(struct kobject *kobj, struct attribute *attr,
1009		     const char *buf, size_t count)
1010{
1011	struct cpufreq_policy *policy = to_policy(kobj);
1012	struct freq_attr *fattr = to_attr(attr);
1013	ssize_t ret = -EBUSY;
1014
1015	if (!fattr->store)
1016		return -EIO;
1017
1018	down_write(&policy->rwsem);
1019	if (likely(!policy_is_inactive(policy)))
 
 
 
 
 
 
 
1020		ret = fattr->store(policy, buf, count);
1021	up_write(&policy->rwsem);
 
 
 
1022
1023	return ret;
1024}
1025
1026static void cpufreq_sysfs_release(struct kobject *kobj)
1027{
1028	struct cpufreq_policy *policy = to_policy(kobj);
1029	pr_debug("last reference is dropped\n");
1030	complete(&policy->kobj_unregister);
1031}
1032
1033static const struct sysfs_ops sysfs_ops = {
1034	.show	= show,
1035	.store	= store,
1036};
1037
1038static const struct kobj_type ktype_cpufreq = {
1039	.sysfs_ops	= &sysfs_ops,
1040	.default_groups	= cpufreq_groups,
1041	.release	= cpufreq_sysfs_release,
1042};
1043
1044static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1045				struct device *dev)
1046{
 
 
1047	if (unlikely(!dev))
1048		return;
1049
1050	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1051		return;
1052
1053	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1054	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1055		dev_err(dev, "cpufreq symlink creation failed\n");
1056}
1057
1058static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1059				   struct device *dev)
1060{
1061	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1062	sysfs_remove_link(&dev->kobj, "cpufreq");
1063	cpumask_clear_cpu(cpu, policy->real_cpus);
1064}
1065
1066static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1067{
1068	struct freq_attr **drv_attr;
1069	int ret = 0;
1070
1071	/* set up files for this cpu device */
1072	drv_attr = cpufreq_driver->attr;
1073	while (drv_attr && *drv_attr) {
1074		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1075		if (ret)
1076			return ret;
1077		drv_attr++;
1078	}
1079	if (cpufreq_driver->get) {
1080		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1081		if (ret)
1082			return ret;
1083	}
1084
1085	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1086	if (ret)
1087		return ret;
1088
1089	if (cpufreq_driver->bios_limit) {
1090		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1091		if (ret)
1092			return ret;
1093	}
1094
1095	if (cpufreq_boost_supported()) {
1096		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1097		if (ret)
1098			return ret;
1099	}
1100
1101	return 0;
1102}
1103
1104static int cpufreq_init_policy(struct cpufreq_policy *policy)
1105{
1106	struct cpufreq_governor *gov = NULL;
1107	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1108	int ret;
1109
1110	if (has_target()) {
1111		/* Update policy governor to the one used before hotplug. */
1112		gov = get_governor(policy->last_governor);
1113		if (gov) {
1114			pr_debug("Restoring governor %s for cpu %d\n",
1115				 gov->name, policy->cpu);
1116		} else {
1117			gov = get_governor(default_governor);
1118		}
1119
1120		if (!gov) {
1121			gov = cpufreq_default_governor();
1122			__module_get(gov->owner);
1123		}
1124
1125	} else {
1126
1127		/* Use the default policy if there is no last_policy. */
1128		if (policy->last_policy) {
1129			pol = policy->last_policy;
1130		} else {
1131			pol = cpufreq_parse_policy(default_governor);
1132			/*
1133			 * In case the default governor is neither "performance"
1134			 * nor "powersave", fall back to the initial policy
1135			 * value set by the driver.
1136			 */
1137			if (pol == CPUFREQ_POLICY_UNKNOWN)
1138				pol = policy->policy;
1139		}
1140		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1141		    pol != CPUFREQ_POLICY_POWERSAVE)
1142			return -ENODATA;
1143	}
1144
1145	ret = cpufreq_set_policy(policy, gov, pol);
1146	if (gov)
1147		module_put(gov->owner);
1148
1149	return ret;
1150}
1151
1152static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1153{
1154	int ret = 0;
1155
1156	/* Has this CPU been taken care of already? */
1157	if (cpumask_test_cpu(cpu, policy->cpus))
1158		return 0;
1159
1160	down_write(&policy->rwsem);
1161	if (has_target())
1162		cpufreq_stop_governor(policy);
1163
1164	cpumask_set_cpu(cpu, policy->cpus);
1165
1166	if (has_target()) {
1167		ret = cpufreq_start_governor(policy);
1168		if (ret)
1169			pr_err("%s: Failed to start governor\n", __func__);
1170	}
1171	up_write(&policy->rwsem);
1172	return ret;
1173}
1174
1175void refresh_frequency_limits(struct cpufreq_policy *policy)
1176{
1177	if (!policy_is_inactive(policy)) {
1178		pr_debug("updating policy for CPU %u\n", policy->cpu);
1179
1180		cpufreq_set_policy(policy, policy->governor, policy->policy);
1181	}
1182}
1183EXPORT_SYMBOL(refresh_frequency_limits);
1184
1185static void handle_update(struct work_struct *work)
1186{
1187	struct cpufreq_policy *policy =
1188		container_of(work, struct cpufreq_policy, update);
1189
1190	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1191	down_write(&policy->rwsem);
1192	refresh_frequency_limits(policy);
1193	up_write(&policy->rwsem);
1194}
1195
1196static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1197				void *data)
1198{
1199	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1200
1201	schedule_work(&policy->update);
1202	return 0;
1203}
1204
1205static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1206				void *data)
1207{
1208	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1209
1210	schedule_work(&policy->update);
1211	return 0;
1212}
1213
1214static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1215{
1216	struct kobject *kobj;
1217	struct completion *cmp;
1218
1219	down_write(&policy->rwsem);
1220	cpufreq_stats_free_table(policy);
1221	kobj = &policy->kobj;
1222	cmp = &policy->kobj_unregister;
1223	up_write(&policy->rwsem);
1224	kobject_put(kobj);
1225
1226	/*
1227	 * We need to make sure that the underlying kobj is
1228	 * actually not referenced anymore by anybody before we
1229	 * proceed with unloading.
1230	 */
1231	pr_debug("waiting for dropping of refcount\n");
1232	wait_for_completion(cmp);
1233	pr_debug("wait complete\n");
1234}
1235
1236static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1237{
1238	struct cpufreq_policy *policy;
1239	struct device *dev = get_cpu_device(cpu);
1240	int ret;
1241
1242	if (!dev)
1243		return NULL;
1244
1245	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1246	if (!policy)
1247		return NULL;
1248
1249	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1250		goto err_free_policy;
1251
1252	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1253		goto err_free_cpumask;
1254
1255	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1256		goto err_free_rcpumask;
1257
1258	init_completion(&policy->kobj_unregister);
1259	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1260				   cpufreq_global_kobject, "policy%u", cpu);
1261	if (ret) {
1262		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1263		/*
1264		 * The entire policy object will be freed below, but the extra
1265		 * memory allocated for the kobject name needs to be freed by
1266		 * releasing the kobject.
1267		 */
1268		kobject_put(&policy->kobj);
1269		goto err_free_real_cpus;
1270	}
1271
1272	freq_constraints_init(&policy->constraints);
1273
1274	policy->nb_min.notifier_call = cpufreq_notifier_min;
1275	policy->nb_max.notifier_call = cpufreq_notifier_max;
1276
1277	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1278				    &policy->nb_min);
1279	if (ret) {
1280		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1281			ret, cpu);
1282		goto err_kobj_remove;
1283	}
1284
1285	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1286				    &policy->nb_max);
1287	if (ret) {
1288		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1289			ret, cpu);
1290		goto err_min_qos_notifier;
1291	}
1292
1293	INIT_LIST_HEAD(&policy->policy_list);
1294	init_rwsem(&policy->rwsem);
1295	spin_lock_init(&policy->transition_lock);
1296	init_waitqueue_head(&policy->transition_wait);
 
1297	INIT_WORK(&policy->update, handle_update);
1298
1299	policy->cpu = cpu;
1300	return policy;
1301
1302err_min_qos_notifier:
1303	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1304				 &policy->nb_min);
1305err_kobj_remove:
1306	cpufreq_policy_put_kobj(policy);
1307err_free_real_cpus:
1308	free_cpumask_var(policy->real_cpus);
1309err_free_rcpumask:
1310	free_cpumask_var(policy->related_cpus);
1311err_free_cpumask:
1312	free_cpumask_var(policy->cpus);
1313err_free_policy:
1314	kfree(policy);
1315
1316	return NULL;
1317}
1318
1319static void cpufreq_policy_free(struct cpufreq_policy *policy)
1320{
1321	unsigned long flags;
1322	int cpu;
1323
1324	/*
1325	 * The callers must ensure the policy is inactive by now, to avoid any
1326	 * races with show()/store() callbacks.
1327	 */
1328	if (unlikely(!policy_is_inactive(policy)))
1329		pr_warn("%s: Freeing active policy\n", __func__);
1330
1331	/* Remove policy from list */
1332	write_lock_irqsave(&cpufreq_driver_lock, flags);
1333	list_del(&policy->policy_list);
1334
1335	for_each_cpu(cpu, policy->related_cpus)
1336		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1337	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1338
1339	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1340				 &policy->nb_max);
1341	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1342				 &policy->nb_min);
1343
1344	/* Cancel any pending policy->update work before freeing the policy. */
1345	cancel_work_sync(&policy->update);
1346
1347	if (policy->max_freq_req) {
1348		/*
1349		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1350		 * notification, since CPUFREQ_CREATE_POLICY notification was
1351		 * sent after adding max_freq_req earlier.
1352		 */
1353		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1354					     CPUFREQ_REMOVE_POLICY, policy);
1355		freq_qos_remove_request(policy->max_freq_req);
1356	}
1357
1358	freq_qos_remove_request(policy->min_freq_req);
1359	kfree(policy->min_freq_req);
1360
1361	cpufreq_policy_put_kobj(policy);
1362	free_cpumask_var(policy->real_cpus);
1363	free_cpumask_var(policy->related_cpus);
1364	free_cpumask_var(policy->cpus);
1365	kfree(policy);
1366}
1367
1368static int cpufreq_online(unsigned int cpu)
1369{
1370	struct cpufreq_policy *policy;
1371	bool new_policy;
1372	unsigned long flags;
1373	unsigned int j;
1374	int ret;
1375
1376	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1377
1378	/* Check if this CPU already has a policy to manage it */
1379	policy = per_cpu(cpufreq_cpu_data, cpu);
1380	if (policy) {
1381		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1382		if (!policy_is_inactive(policy))
1383			return cpufreq_add_policy_cpu(policy, cpu);
1384
1385		/* This is the only online CPU for the policy.  Start over. */
1386		new_policy = false;
1387		down_write(&policy->rwsem);
1388		policy->cpu = cpu;
1389		policy->governor = NULL;
 
1390	} else {
1391		new_policy = true;
1392		policy = cpufreq_policy_alloc(cpu);
1393		if (!policy)
1394			return -ENOMEM;
1395		down_write(&policy->rwsem);
1396	}
1397
1398	if (!new_policy && cpufreq_driver->online) {
1399		/* Recover policy->cpus using related_cpus */
1400		cpumask_copy(policy->cpus, policy->related_cpus);
1401
1402		ret = cpufreq_driver->online(policy);
1403		if (ret) {
1404			pr_debug("%s: %d: initialization failed\n", __func__,
1405				 __LINE__);
1406			goto out_exit_policy;
1407		}
 
 
 
1408	} else {
1409		cpumask_copy(policy->cpus, cpumask_of(cpu));
1410
1411		/*
1412		 * Call driver. From then on the cpufreq must be able
1413		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1414		 */
1415		ret = cpufreq_driver->init(policy);
1416		if (ret) {
1417			pr_debug("%s: %d: initialization failed\n", __func__,
1418				 __LINE__);
1419			goto out_free_policy;
1420		}
1421
1422		/*
1423		 * The initialization has succeeded and the policy is online.
1424		 * If there is a problem with its frequency table, take it
1425		 * offline and drop it.
1426		 */
1427		ret = cpufreq_table_validate_and_sort(policy);
1428		if (ret)
1429			goto out_offline_policy;
1430
1431		/* related_cpus should at least include policy->cpus. */
1432		cpumask_copy(policy->related_cpus, policy->cpus);
1433	}
1434
 
1435	/*
1436	 * affected cpus must always be the one, which are online. We aren't
1437	 * managing offline cpus here.
1438	 */
1439	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1440
1441	if (new_policy) {
1442		for_each_cpu(j, policy->related_cpus) {
1443			per_cpu(cpufreq_cpu_data, j) = policy;
1444			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1445		}
1446
1447		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1448					       GFP_KERNEL);
1449		if (!policy->min_freq_req) {
1450			ret = -ENOMEM;
1451			goto out_destroy_policy;
1452		}
1453
1454		ret = freq_qos_add_request(&policy->constraints,
1455					   policy->min_freq_req, FREQ_QOS_MIN,
1456					   FREQ_QOS_MIN_DEFAULT_VALUE);
1457		if (ret < 0) {
1458			/*
1459			 * So we don't call freq_qos_remove_request() for an
1460			 * uninitialized request.
1461			 */
1462			kfree(policy->min_freq_req);
1463			policy->min_freq_req = NULL;
1464			goto out_destroy_policy;
1465		}
1466
1467		/*
1468		 * This must be initialized right here to avoid calling
1469		 * freq_qos_remove_request() on uninitialized request in case
1470		 * of errors.
1471		 */
1472		policy->max_freq_req = policy->min_freq_req + 1;
1473
1474		ret = freq_qos_add_request(&policy->constraints,
1475					   policy->max_freq_req, FREQ_QOS_MAX,
1476					   FREQ_QOS_MAX_DEFAULT_VALUE);
1477		if (ret < 0) {
1478			policy->max_freq_req = NULL;
1479			goto out_destroy_policy;
1480		}
1481
1482		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1483				CPUFREQ_CREATE_POLICY, policy);
1484	}
1485
1486	if (cpufreq_driver->get && has_target()) {
1487		policy->cur = cpufreq_driver->get(policy->cpu);
1488		if (!policy->cur) {
1489			ret = -EIO;
1490			pr_err("%s: ->get() failed\n", __func__);
1491			goto out_destroy_policy;
1492		}
1493	}
1494
1495	/*
1496	 * Sometimes boot loaders set CPU frequency to a value outside of
1497	 * frequency table present with cpufreq core. In such cases CPU might be
1498	 * unstable if it has to run on that frequency for long duration of time
1499	 * and so its better to set it to a frequency which is specified in
1500	 * freq-table. This also makes cpufreq stats inconsistent as
1501	 * cpufreq-stats would fail to register because current frequency of CPU
1502	 * isn't found in freq-table.
1503	 *
1504	 * Because we don't want this change to effect boot process badly, we go
1505	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1506	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1507	 * is initialized to zero).
1508	 *
1509	 * We are passing target-freq as "policy->cur - 1" otherwise
1510	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1511	 * equal to target-freq.
1512	 */
1513	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1514	    && has_target()) {
1515		unsigned int old_freq = policy->cur;
1516
1517		/* Are we running at unknown frequency ? */
1518		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1519		if (ret == -EINVAL) {
1520			ret = __cpufreq_driver_target(policy, old_freq - 1,
1521						      CPUFREQ_RELATION_L);
 
 
 
1522
1523			/*
1524			 * Reaching here after boot in a few seconds may not
1525			 * mean that system will remain stable at "unknown"
1526			 * frequency for longer duration. Hence, a BUG_ON().
1527			 */
1528			BUG_ON(ret);
1529			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1530				__func__, policy->cpu, old_freq, policy->cur);
1531		}
1532	}
1533
1534	if (new_policy) {
1535		ret = cpufreq_add_dev_interface(policy);
1536		if (ret)
1537			goto out_destroy_policy;
1538
1539		cpufreq_stats_create_table(policy);
1540
1541		write_lock_irqsave(&cpufreq_driver_lock, flags);
1542		list_add(&policy->policy_list, &cpufreq_policy_list);
1543		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544
1545		/*
1546		 * Register with the energy model before
1547		 * sugov_eas_rebuild_sd() is called, which will result
1548		 * in rebuilding of the sched domains, which should only be done
1549		 * once the energy model is properly initialized for the policy
1550		 * first.
1551		 *
1552		 * Also, this should be called before the policy is registered
1553		 * with cooling framework.
1554		 */
1555		if (cpufreq_driver->register_em)
1556			cpufreq_driver->register_em(policy);
1557	}
1558
1559	ret = cpufreq_init_policy(policy);
1560	if (ret) {
1561		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1562		       __func__, cpu, ret);
1563		goto out_destroy_policy;
1564	}
1565
1566	up_write(&policy->rwsem);
1567
1568	kobject_uevent(&policy->kobj, KOBJ_ADD);
1569
1570	/* Callback for handling stuff after policy is ready */
1571	if (cpufreq_driver->ready)
1572		cpufreq_driver->ready(policy);
1573
1574	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1575		policy->cdev = of_cpufreq_cooling_register(policy);
1576
1577	pr_debug("initialization complete\n");
1578
1579	return 0;
1580
1581out_destroy_policy:
1582	for_each_cpu(j, policy->real_cpus)
1583		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1584
1585out_offline_policy:
1586	if (cpufreq_driver->offline)
1587		cpufreq_driver->offline(policy);
1588
1589out_exit_policy:
1590	if (cpufreq_driver->exit)
1591		cpufreq_driver->exit(policy);
1592
1593out_free_policy:
1594	cpumask_clear(policy->cpus);
1595	up_write(&policy->rwsem);
1596
1597	cpufreq_policy_free(policy);
1598	return ret;
1599}
1600
1601/**
1602 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1603 * @dev: CPU device.
1604 * @sif: Subsystem interface structure pointer (not used)
1605 */
1606static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1607{
1608	struct cpufreq_policy *policy;
1609	unsigned cpu = dev->id;
1610	int ret;
1611
1612	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1613
1614	if (cpu_online(cpu)) {
1615		ret = cpufreq_online(cpu);
1616		if (ret)
1617			return ret;
1618	}
1619
1620	/* Create sysfs link on CPU registration */
1621	policy = per_cpu(cpufreq_cpu_data, cpu);
1622	if (policy)
1623		add_cpu_dev_symlink(policy, cpu, dev);
1624
1625	return 0;
1626}
1627
1628static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1629{
 
1630	int ret;
1631
 
 
 
 
 
 
 
 
 
1632	if (has_target())
1633		cpufreq_stop_governor(policy);
1634
1635	cpumask_clear_cpu(cpu, policy->cpus);
1636
1637	if (!policy_is_inactive(policy)) {
1638		/* Nominate a new CPU if necessary. */
1639		if (cpu == policy->cpu)
1640			policy->cpu = cpumask_any(policy->cpus);
 
 
 
 
 
 
1641
1642		/* Start the governor again for the active policy. */
 
1643		if (has_target()) {
1644			ret = cpufreq_start_governor(policy);
1645			if (ret)
1646				pr_err("%s: Failed to start governor\n", __func__);
1647		}
1648
1649		return;
1650	}
1651
1652	if (has_target())
1653		strscpy(policy->last_governor, policy->governor->name,
1654			CPUFREQ_NAME_LEN);
1655	else
1656		policy->last_policy = policy->policy;
1657
1658	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1659		cpufreq_cooling_unregister(policy->cdev);
1660		policy->cdev = NULL;
1661	}
1662
 
 
 
1663	if (has_target())
1664		cpufreq_exit_governor(policy);
1665
1666	/*
1667	 * Perform the ->offline() during light-weight tear-down, as
1668	 * that allows fast recovery when the CPU comes back.
1669	 */
1670	if (cpufreq_driver->offline) {
1671		cpufreq_driver->offline(policy);
1672	} else if (cpufreq_driver->exit) {
1673		cpufreq_driver->exit(policy);
1674		policy->freq_table = NULL;
1675	}
1676}
1677
1678static int cpufreq_offline(unsigned int cpu)
1679{
1680	struct cpufreq_policy *policy;
1681
1682	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1683
1684	policy = cpufreq_cpu_get_raw(cpu);
1685	if (!policy) {
1686		pr_debug("%s: No cpu_data found\n", __func__);
1687		return 0;
1688	}
1689
1690	down_write(&policy->rwsem);
1691
1692	__cpufreq_offline(cpu, policy);
1693
 
1694	up_write(&policy->rwsem);
1695	return 0;
1696}
1697
1698/*
1699 * cpufreq_remove_dev - remove a CPU device
1700 *
1701 * Removes the cpufreq interface for a CPU device.
1702 */
1703static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1704{
1705	unsigned int cpu = dev->id;
1706	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1707
1708	if (!policy)
1709		return;
1710
1711	down_write(&policy->rwsem);
1712
1713	if (cpu_online(cpu))
1714		__cpufreq_offline(cpu, policy);
1715
1716	remove_cpu_dev_symlink(policy, cpu, dev);
1717
1718	if (!cpumask_empty(policy->real_cpus)) {
1719		up_write(&policy->rwsem);
1720		return;
1721	}
1722
1723	/* We did light-weight exit earlier, do full tear down now */
1724	if (cpufreq_driver->offline)
1725		cpufreq_driver->exit(policy);
1726
1727	up_write(&policy->rwsem);
 
 
 
1728
1729	cpufreq_policy_free(policy);
 
1730}
1731
1732/**
1733 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1734 * @policy: Policy managing CPUs.
1735 * @new_freq: New CPU frequency.
 
1736 *
1737 * Adjust to the current frequency first and clean up later by either calling
1738 * cpufreq_update_policy(), or scheduling handle_update().
1739 */
1740static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1741				unsigned int new_freq)
1742{
1743	struct cpufreq_freqs freqs;
1744
1745	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1746		 policy->cur, new_freq);
1747
1748	freqs.old = policy->cur;
1749	freqs.new = new_freq;
1750
1751	cpufreq_freq_transition_begin(policy, &freqs);
1752	cpufreq_freq_transition_end(policy, &freqs, 0);
1753}
1754
1755static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1756{
1757	unsigned int new_freq;
1758
1759	new_freq = cpufreq_driver->get(policy->cpu);
1760	if (!new_freq)
1761		return 0;
1762
1763	/*
1764	 * If fast frequency switching is used with the given policy, the check
1765	 * against policy->cur is pointless, so skip it in that case.
1766	 */
1767	if (policy->fast_switch_enabled || !has_target())
1768		return new_freq;
1769
1770	if (policy->cur != new_freq) {
1771		/*
1772		 * For some platforms, the frequency returned by hardware may be
1773		 * slightly different from what is provided in the frequency
1774		 * table, for example hardware may return 499 MHz instead of 500
1775		 * MHz. In such cases it is better to avoid getting into
1776		 * unnecessary frequency updates.
1777		 */
1778		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1779			return policy->cur;
1780
1781		cpufreq_out_of_sync(policy, new_freq);
1782		if (update)
1783			schedule_work(&policy->update);
1784	}
1785
1786	return new_freq;
1787}
1788
1789/**
1790 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1791 * @cpu: CPU number
1792 *
1793 * This is the last known freq, without actually getting it from the driver.
1794 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1795 */
1796unsigned int cpufreq_quick_get(unsigned int cpu)
1797{
1798	struct cpufreq_policy *policy;
1799	unsigned int ret_freq = 0;
1800	unsigned long flags;
1801
1802	read_lock_irqsave(&cpufreq_driver_lock, flags);
1803
1804	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1805		ret_freq = cpufreq_driver->get(cpu);
1806		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1807		return ret_freq;
1808	}
1809
1810	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1811
1812	policy = cpufreq_cpu_get(cpu);
1813	if (policy) {
1814		ret_freq = policy->cur;
1815		cpufreq_cpu_put(policy);
1816	}
1817
1818	return ret_freq;
1819}
1820EXPORT_SYMBOL(cpufreq_quick_get);
1821
1822/**
1823 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1824 * @cpu: CPU number
1825 *
1826 * Just return the max possible frequency for a given CPU.
1827 */
1828unsigned int cpufreq_quick_get_max(unsigned int cpu)
1829{
1830	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831	unsigned int ret_freq = 0;
1832
1833	if (policy) {
1834		ret_freq = policy->max;
1835		cpufreq_cpu_put(policy);
1836	}
1837
1838	return ret_freq;
1839}
1840EXPORT_SYMBOL(cpufreq_quick_get_max);
1841
1842/**
1843 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1844 * @cpu: CPU number
1845 *
1846 * The default return value is the max_freq field of cpuinfo.
1847 */
1848__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1849{
1850	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1851	unsigned int ret_freq = 0;
1852
1853	if (policy) {
1854		ret_freq = policy->cpuinfo.max_freq;
1855		cpufreq_cpu_put(policy);
1856	}
1857
1858	return ret_freq;
1859}
1860EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1861
1862static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1863{
1864	if (unlikely(policy_is_inactive(policy)))
1865		return 0;
1866
1867	return cpufreq_verify_current_freq(policy, true);
1868}
1869
1870/**
1871 * cpufreq_get - get the current CPU frequency (in kHz)
1872 * @cpu: CPU number
1873 *
1874 * Get the CPU current (static) CPU frequency
1875 */
1876unsigned int cpufreq_get(unsigned int cpu)
1877{
1878	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1879	unsigned int ret_freq = 0;
1880
1881	if (policy) {
1882		down_read(&policy->rwsem);
1883		if (cpufreq_driver->get)
1884			ret_freq = __cpufreq_get(policy);
1885		up_read(&policy->rwsem);
1886
1887		cpufreq_cpu_put(policy);
1888	}
1889
1890	return ret_freq;
1891}
1892EXPORT_SYMBOL(cpufreq_get);
1893
1894static struct subsys_interface cpufreq_interface = {
1895	.name		= "cpufreq",
1896	.subsys		= &cpu_subsys,
1897	.add_dev	= cpufreq_add_dev,
1898	.remove_dev	= cpufreq_remove_dev,
1899};
1900
1901/*
1902 * In case platform wants some specific frequency to be configured
1903 * during suspend..
1904 */
1905int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1906{
1907	int ret;
1908
1909	if (!policy->suspend_freq) {
1910		pr_debug("%s: suspend_freq not defined\n", __func__);
1911		return 0;
1912	}
1913
1914	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1915			policy->suspend_freq);
1916
1917	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1918			CPUFREQ_RELATION_H);
1919	if (ret)
1920		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1921				__func__, policy->suspend_freq, ret);
1922
1923	return ret;
1924}
1925EXPORT_SYMBOL(cpufreq_generic_suspend);
1926
1927/**
1928 * cpufreq_suspend() - Suspend CPUFreq governors.
1929 *
1930 * Called during system wide Suspend/Hibernate cycles for suspending governors
1931 * as some platforms can't change frequency after this point in suspend cycle.
1932 * Because some of the devices (like: i2c, regulators, etc) they use for
1933 * changing frequency are suspended quickly after this point.
1934 */
1935void cpufreq_suspend(void)
1936{
1937	struct cpufreq_policy *policy;
1938
1939	if (!cpufreq_driver)
1940		return;
1941
1942	if (!has_target() && !cpufreq_driver->suspend)
1943		goto suspend;
1944
1945	pr_debug("%s: Suspending Governors\n", __func__);
1946
1947	for_each_active_policy(policy) {
1948		if (has_target()) {
1949			down_write(&policy->rwsem);
1950			cpufreq_stop_governor(policy);
1951			up_write(&policy->rwsem);
1952		}
1953
1954		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1955			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1956				cpufreq_driver->name);
1957	}
1958
1959suspend:
1960	cpufreq_suspended = true;
1961}
1962
1963/**
1964 * cpufreq_resume() - Resume CPUFreq governors.
1965 *
1966 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1967 * are suspended with cpufreq_suspend().
1968 */
1969void cpufreq_resume(void)
1970{
1971	struct cpufreq_policy *policy;
1972	int ret;
1973
1974	if (!cpufreq_driver)
1975		return;
1976
1977	if (unlikely(!cpufreq_suspended))
1978		return;
1979
1980	cpufreq_suspended = false;
1981
1982	if (!has_target() && !cpufreq_driver->resume)
1983		return;
1984
1985	pr_debug("%s: Resuming Governors\n", __func__);
1986
1987	for_each_active_policy(policy) {
1988		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1989			pr_err("%s: Failed to resume driver: %s\n", __func__,
1990				cpufreq_driver->name);
1991		} else if (has_target()) {
1992			down_write(&policy->rwsem);
1993			ret = cpufreq_start_governor(policy);
1994			up_write(&policy->rwsem);
1995
1996			if (ret)
1997				pr_err("%s: Failed to start governor for CPU%u's policy\n",
1998				       __func__, policy->cpu);
1999		}
2000	}
2001}
2002
2003/**
2004 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2005 * @flags: Flags to test against the current cpufreq driver's flags.
2006 *
2007 * Assumes that the driver is there, so callers must ensure that this is the
2008 * case.
2009 */
2010bool cpufreq_driver_test_flags(u16 flags)
2011{
2012	return !!(cpufreq_driver->flags & flags);
2013}
2014
2015/**
2016 * cpufreq_get_current_driver - Return the current driver's name.
2017 *
2018 * Return the name string of the currently registered cpufreq driver or NULL if
2019 * none.
2020 */
2021const char *cpufreq_get_current_driver(void)
2022{
2023	if (cpufreq_driver)
2024		return cpufreq_driver->name;
2025
2026	return NULL;
2027}
2028EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2029
2030/**
2031 * cpufreq_get_driver_data - Return current driver data.
2032 *
2033 * Return the private data of the currently registered cpufreq driver, or NULL
2034 * if no cpufreq driver has been registered.
2035 */
2036void *cpufreq_get_driver_data(void)
2037{
2038	if (cpufreq_driver)
2039		return cpufreq_driver->driver_data;
2040
2041	return NULL;
2042}
2043EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2044
2045/*********************************************************************
2046 *                     NOTIFIER LISTS INTERFACE                      *
2047 *********************************************************************/
2048
2049/**
2050 * cpufreq_register_notifier - Register a notifier with cpufreq.
2051 * @nb: notifier function to register.
2052 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2053 *
2054 * Add a notifier to one of two lists: either a list of notifiers that run on
2055 * clock rate changes (once before and once after every transition), or a list
2056 * of notifiers that ron on cpufreq policy changes.
 
2057 *
2058 * This function may sleep and it has the same return values as
2059 * blocking_notifier_chain_register().
2060 */
2061int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2062{
2063	int ret;
2064
2065	if (cpufreq_disabled())
2066		return -EINVAL;
2067
2068	switch (list) {
2069	case CPUFREQ_TRANSITION_NOTIFIER:
2070		mutex_lock(&cpufreq_fast_switch_lock);
2071
2072		if (cpufreq_fast_switch_count > 0) {
2073			mutex_unlock(&cpufreq_fast_switch_lock);
2074			return -EBUSY;
2075		}
2076		ret = srcu_notifier_chain_register(
2077				&cpufreq_transition_notifier_list, nb);
2078		if (!ret)
2079			cpufreq_fast_switch_count--;
2080
2081		mutex_unlock(&cpufreq_fast_switch_lock);
2082		break;
2083	case CPUFREQ_POLICY_NOTIFIER:
2084		ret = blocking_notifier_chain_register(
2085				&cpufreq_policy_notifier_list, nb);
2086		break;
2087	default:
2088		ret = -EINVAL;
2089	}
2090
2091	return ret;
2092}
2093EXPORT_SYMBOL(cpufreq_register_notifier);
2094
2095/**
2096 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2097 * @nb: notifier block to be unregistered.
2098 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2099 *
2100 * Remove a notifier from one of the cpufreq notifier lists.
2101 *
2102 * This function may sleep and it has the same return values as
2103 * blocking_notifier_chain_unregister().
2104 */
2105int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2106{
2107	int ret;
2108
2109	if (cpufreq_disabled())
2110		return -EINVAL;
2111
2112	switch (list) {
2113	case CPUFREQ_TRANSITION_NOTIFIER:
2114		mutex_lock(&cpufreq_fast_switch_lock);
2115
2116		ret = srcu_notifier_chain_unregister(
2117				&cpufreq_transition_notifier_list, nb);
2118		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2119			cpufreq_fast_switch_count++;
2120
2121		mutex_unlock(&cpufreq_fast_switch_lock);
2122		break;
2123	case CPUFREQ_POLICY_NOTIFIER:
2124		ret = blocking_notifier_chain_unregister(
2125				&cpufreq_policy_notifier_list, nb);
2126		break;
2127	default:
2128		ret = -EINVAL;
2129	}
2130
2131	return ret;
2132}
2133EXPORT_SYMBOL(cpufreq_unregister_notifier);
2134
2135
2136/*********************************************************************
2137 *                              GOVERNORS                            *
2138 *********************************************************************/
2139
2140/**
2141 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2142 * @policy: cpufreq policy to switch the frequency for.
2143 * @target_freq: New frequency to set (may be approximate).
2144 *
2145 * Carry out a fast frequency switch without sleeping.
2146 *
2147 * The driver's ->fast_switch() callback invoked by this function must be
2148 * suitable for being called from within RCU-sched read-side critical sections
2149 * and it is expected to select the minimum available frequency greater than or
2150 * equal to @target_freq (CPUFREQ_RELATION_L).
2151 *
2152 * This function must not be called if policy->fast_switch_enabled is unset.
2153 *
2154 * Governors calling this function must guarantee that it will never be invoked
2155 * twice in parallel for the same policy and that it will never be called in
2156 * parallel with either ->target() or ->target_index() for the same policy.
2157 *
2158 * Returns the actual frequency set for the CPU.
2159 *
2160 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2161 * error condition, the hardware configuration must be preserved.
2162 */
2163unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2164					unsigned int target_freq)
2165{
2166	unsigned int freq;
2167	int cpu;
2168
2169	target_freq = clamp_val(target_freq, policy->min, policy->max);
2170	freq = cpufreq_driver->fast_switch(policy, target_freq);
2171
2172	if (!freq)
2173		return 0;
2174
2175	policy->cur = freq;
2176	arch_set_freq_scale(policy->related_cpus, freq,
2177			    arch_scale_freq_ref(policy->cpu));
2178	cpufreq_stats_record_transition(policy, freq);
2179
2180	if (trace_cpu_frequency_enabled()) {
2181		for_each_cpu(cpu, policy->cpus)
2182			trace_cpu_frequency(freq, cpu);
2183	}
2184
2185	return freq;
2186}
2187EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2188
2189/**
2190 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2191 * @cpu: Target CPU.
2192 * @min_perf: Minimum (required) performance level (units of @capacity).
2193 * @target_perf: Target (desired) performance level (units of @capacity).
2194 * @capacity: Capacity of the target CPU.
2195 *
2196 * Carry out a fast performance level switch of @cpu without sleeping.
2197 *
2198 * The driver's ->adjust_perf() callback invoked by this function must be
2199 * suitable for being called from within RCU-sched read-side critical sections
2200 * and it is expected to select a suitable performance level equal to or above
2201 * @min_perf and preferably equal to or below @target_perf.
2202 *
2203 * This function must not be called if policy->fast_switch_enabled is unset.
2204 *
2205 * Governors calling this function must guarantee that it will never be invoked
2206 * twice in parallel for the same CPU and that it will never be called in
2207 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2208 * the same CPU.
2209 */
2210void cpufreq_driver_adjust_perf(unsigned int cpu,
2211				 unsigned long min_perf,
2212				 unsigned long target_perf,
2213				 unsigned long capacity)
2214{
2215	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2216}
2217
2218/**
2219 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2220 *
2221 * Return 'true' if the ->adjust_perf callback is present for the
2222 * current driver or 'false' otherwise.
2223 */
2224bool cpufreq_driver_has_adjust_perf(void)
2225{
2226	return !!cpufreq_driver->adjust_perf;
2227}
2228
2229/* Must set freqs->new to intermediate frequency */
2230static int __target_intermediate(struct cpufreq_policy *policy,
2231				 struct cpufreq_freqs *freqs, int index)
2232{
2233	int ret;
2234
2235	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2236
2237	/* We don't need to switch to intermediate freq */
2238	if (!freqs->new)
2239		return 0;
2240
2241	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2242		 __func__, policy->cpu, freqs->old, freqs->new);
2243
2244	cpufreq_freq_transition_begin(policy, freqs);
2245	ret = cpufreq_driver->target_intermediate(policy, index);
2246	cpufreq_freq_transition_end(policy, freqs, ret);
2247
2248	if (ret)
2249		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2250		       __func__, ret);
2251
2252	return ret;
2253}
2254
2255static int __target_index(struct cpufreq_policy *policy, int index)
2256{
2257	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2258	unsigned int restore_freq, intermediate_freq = 0;
2259	unsigned int newfreq = policy->freq_table[index].frequency;
2260	int retval = -EINVAL;
2261	bool notify;
2262
2263	if (newfreq == policy->cur)
2264		return 0;
2265
2266	/* Save last value to restore later on errors */
2267	restore_freq = policy->cur;
2268
2269	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2270	if (notify) {
2271		/* Handle switching to intermediate frequency */
2272		if (cpufreq_driver->get_intermediate) {
2273			retval = __target_intermediate(policy, &freqs, index);
2274			if (retval)
2275				return retval;
2276
2277			intermediate_freq = freqs.new;
2278			/* Set old freq to intermediate */
2279			if (intermediate_freq)
2280				freqs.old = freqs.new;
2281		}
2282
2283		freqs.new = newfreq;
2284		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2285			 __func__, policy->cpu, freqs.old, freqs.new);
2286
2287		cpufreq_freq_transition_begin(policy, &freqs);
2288	}
2289
2290	retval = cpufreq_driver->target_index(policy, index);
2291	if (retval)
2292		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2293		       retval);
2294
2295	if (notify) {
2296		cpufreq_freq_transition_end(policy, &freqs, retval);
2297
2298		/*
2299		 * Failed after setting to intermediate freq? Driver should have
2300		 * reverted back to initial frequency and so should we. Check
2301		 * here for intermediate_freq instead of get_intermediate, in
2302		 * case we haven't switched to intermediate freq at all.
2303		 */
2304		if (unlikely(retval && intermediate_freq)) {
2305			freqs.old = intermediate_freq;
2306			freqs.new = restore_freq;
2307			cpufreq_freq_transition_begin(policy, &freqs);
2308			cpufreq_freq_transition_end(policy, &freqs, 0);
2309		}
2310	}
2311
2312	return retval;
2313}
2314
2315int __cpufreq_driver_target(struct cpufreq_policy *policy,
2316			    unsigned int target_freq,
2317			    unsigned int relation)
2318{
2319	unsigned int old_target_freq = target_freq;
 
2320
2321	if (cpufreq_disabled())
2322		return -ENODEV;
2323
2324	target_freq = __resolve_freq(policy, target_freq, relation);
 
2325
2326	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2327		 policy->cpu, target_freq, relation, old_target_freq);
2328
2329	/*
2330	 * This might look like a redundant call as we are checking it again
2331	 * after finding index. But it is left intentionally for cases where
2332	 * exactly same freq is called again and so we can save on few function
2333	 * calls.
2334	 */
2335	if (target_freq == policy->cur &&
2336	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2337		return 0;
2338
2339	if (cpufreq_driver->target) {
2340		/*
2341		 * If the driver hasn't setup a single inefficient frequency,
2342		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2343		 */
2344		if (!policy->efficiencies_available)
2345			relation &= ~CPUFREQ_RELATION_E;
2346
 
2347		return cpufreq_driver->target(policy, target_freq, relation);
2348	}
2349
2350	if (!cpufreq_driver->target_index)
2351		return -EINVAL;
2352
2353	return __target_index(policy, policy->cached_resolved_idx);
 
 
2354}
2355EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2356
2357int cpufreq_driver_target(struct cpufreq_policy *policy,
2358			  unsigned int target_freq,
2359			  unsigned int relation)
2360{
2361	int ret;
2362
2363	down_write(&policy->rwsem);
2364
2365	ret = __cpufreq_driver_target(policy, target_freq, relation);
2366
2367	up_write(&policy->rwsem);
2368
2369	return ret;
2370}
2371EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2372
2373__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2374{
2375	return NULL;
2376}
2377
2378static int cpufreq_init_governor(struct cpufreq_policy *policy)
2379{
2380	int ret;
2381
2382	/* Don't start any governor operations if we are entering suspend */
2383	if (cpufreq_suspended)
2384		return 0;
2385	/*
2386	 * Governor might not be initiated here if ACPI _PPC changed
2387	 * notification happened, so check it.
2388	 */
2389	if (!policy->governor)
2390		return -EINVAL;
2391
2392	/* Platform doesn't want dynamic frequency switching ? */
2393	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2394	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2395		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2396
2397		if (gov) {
2398			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2399				policy->governor->name, gov->name);
2400			policy->governor = gov;
2401		} else {
2402			return -EINVAL;
2403		}
2404	}
2405
2406	if (!try_module_get(policy->governor->owner))
2407		return -EINVAL;
2408
2409	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2410
2411	if (policy->governor->init) {
2412		ret = policy->governor->init(policy);
2413		if (ret) {
2414			module_put(policy->governor->owner);
2415			return ret;
2416		}
2417	}
2418
2419	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2420
2421	return 0;
2422}
2423
2424static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2425{
2426	if (cpufreq_suspended || !policy->governor)
2427		return;
2428
2429	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2430
2431	if (policy->governor->exit)
2432		policy->governor->exit(policy);
2433
2434	module_put(policy->governor->owner);
2435}
2436
2437int cpufreq_start_governor(struct cpufreq_policy *policy)
2438{
2439	int ret;
2440
2441	if (cpufreq_suspended)
2442		return 0;
2443
2444	if (!policy->governor)
2445		return -EINVAL;
2446
2447	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2448
2449	if (cpufreq_driver->get)
2450		cpufreq_verify_current_freq(policy, false);
2451
2452	if (policy->governor->start) {
2453		ret = policy->governor->start(policy);
2454		if (ret)
2455			return ret;
2456	}
2457
2458	if (policy->governor->limits)
2459		policy->governor->limits(policy);
2460
2461	return 0;
2462}
2463
2464void cpufreq_stop_governor(struct cpufreq_policy *policy)
2465{
2466	if (cpufreq_suspended || !policy->governor)
2467		return;
2468
2469	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2470
2471	if (policy->governor->stop)
2472		policy->governor->stop(policy);
2473}
2474
2475static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2476{
2477	if (cpufreq_suspended || !policy->governor)
2478		return;
2479
2480	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2481
2482	if (policy->governor->limits)
2483		policy->governor->limits(policy);
2484}
2485
2486int cpufreq_register_governor(struct cpufreq_governor *governor)
2487{
2488	int err;
2489
2490	if (!governor)
2491		return -EINVAL;
2492
2493	if (cpufreq_disabled())
2494		return -ENODEV;
2495
2496	mutex_lock(&cpufreq_governor_mutex);
2497
2498	err = -EBUSY;
2499	if (!find_governor(governor->name)) {
2500		err = 0;
2501		list_add(&governor->governor_list, &cpufreq_governor_list);
2502	}
2503
2504	mutex_unlock(&cpufreq_governor_mutex);
2505	return err;
2506}
2507EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2508
2509void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2510{
2511	struct cpufreq_policy *policy;
2512	unsigned long flags;
2513
2514	if (!governor)
2515		return;
2516
2517	if (cpufreq_disabled())
2518		return;
2519
2520	/* clear last_governor for all inactive policies */
2521	read_lock_irqsave(&cpufreq_driver_lock, flags);
2522	for_each_inactive_policy(policy) {
2523		if (!strcmp(policy->last_governor, governor->name)) {
2524			policy->governor = NULL;
2525			strcpy(policy->last_governor, "\0");
2526		}
2527	}
2528	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2529
2530	mutex_lock(&cpufreq_governor_mutex);
2531	list_del(&governor->governor_list);
2532	mutex_unlock(&cpufreq_governor_mutex);
2533}
2534EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2535
2536
2537/*********************************************************************
2538 *                          POLICY INTERFACE                         *
2539 *********************************************************************/
2540
2541/**
2542 * cpufreq_get_policy - get the current cpufreq_policy
2543 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2544 *	is written
2545 * @cpu: CPU to find the policy for
2546 *
2547 * Reads the current cpufreq policy.
2548 */
2549int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2550{
2551	struct cpufreq_policy *cpu_policy;
2552	if (!policy)
2553		return -EINVAL;
2554
2555	cpu_policy = cpufreq_cpu_get(cpu);
2556	if (!cpu_policy)
2557		return -EINVAL;
2558
2559	memcpy(policy, cpu_policy, sizeof(*policy));
2560
2561	cpufreq_cpu_put(cpu_policy);
2562	return 0;
2563}
2564EXPORT_SYMBOL(cpufreq_get_policy);
2565
2566/**
2567 * cpufreq_set_policy - Modify cpufreq policy parameters.
2568 * @policy: Policy object to modify.
2569 * @new_gov: Policy governor pointer.
2570 * @new_pol: Policy value (for drivers with built-in governors).
2571 *
2572 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2573 * limits to be set for the policy, update @policy with the verified limits
2574 * values and either invoke the driver's ->setpolicy() callback (if present) or
2575 * carry out a governor update for @policy.  That is, run the current governor's
2576 * ->limits() callback (if @new_gov points to the same object as the one in
2577 * @policy) or replace the governor for @policy with @new_gov.
2578 *
2579 * The cpuinfo part of @policy is not updated by this function.
2580 */
2581static int cpufreq_set_policy(struct cpufreq_policy *policy,
2582			      struct cpufreq_governor *new_gov,
2583			      unsigned int new_pol)
2584{
2585	struct cpufreq_policy_data new_data;
2586	struct cpufreq_governor *old_gov;
2587	int ret;
2588
2589	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2590	new_data.freq_table = policy->freq_table;
2591	new_data.cpu = policy->cpu;
2592	/*
2593	 * PM QoS framework collects all the requests from users and provide us
2594	 * the final aggregated value here.
2595	 */
2596	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2597	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2598
2599	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2600		 new_data.cpu, new_data.min, new_data.max);
2601
2602	/*
2603	 * Verify that the CPU speed can be set within these limits and make sure
2604	 * that min <= max.
2605	 */
2606	ret = cpufreq_driver->verify(&new_data);
2607	if (ret)
2608		return ret;
2609
2610	/*
2611	 * Resolve policy min/max to available frequencies. It ensures
2612	 * no frequency resolution will neither overshoot the requested maximum
2613	 * nor undershoot the requested minimum.
2614	 */
2615	policy->min = new_data.min;
2616	policy->max = new_data.max;
2617	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2618	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2619	trace_cpu_frequency_limits(policy);
2620
2621	policy->cached_target_freq = UINT_MAX;
2622
2623	pr_debug("new min and max freqs are %u - %u kHz\n",
2624		 policy->min, policy->max);
2625
2626	if (cpufreq_driver->setpolicy) {
2627		policy->policy = new_pol;
2628		pr_debug("setting range\n");
2629		return cpufreq_driver->setpolicy(policy);
2630	}
2631
2632	if (new_gov == policy->governor) {
2633		pr_debug("governor limits update\n");
2634		cpufreq_governor_limits(policy);
2635		return 0;
2636	}
2637
2638	pr_debug("governor switch\n");
2639
2640	/* save old, working values */
2641	old_gov = policy->governor;
2642	/* end old governor */
2643	if (old_gov) {
2644		cpufreq_stop_governor(policy);
2645		cpufreq_exit_governor(policy);
2646	}
2647
2648	/* start new governor */
2649	policy->governor = new_gov;
2650	ret = cpufreq_init_governor(policy);
2651	if (!ret) {
2652		ret = cpufreq_start_governor(policy);
2653		if (!ret) {
2654			pr_debug("governor change\n");
 
2655			return 0;
2656		}
2657		cpufreq_exit_governor(policy);
2658	}
2659
2660	/* new governor failed, so re-start old one */
2661	pr_debug("starting governor %s failed\n", policy->governor->name);
2662	if (old_gov) {
2663		policy->governor = old_gov;
2664		if (cpufreq_init_governor(policy))
2665			policy->governor = NULL;
2666		else
2667			cpufreq_start_governor(policy);
2668	}
2669
2670	return ret;
2671}
2672
2673/**
2674 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2675 * @cpu: CPU to re-evaluate the policy for.
2676 *
2677 * Update the current frequency for the cpufreq policy of @cpu and use
2678 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2679 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2680 * for the policy in question, among other things.
2681 */
2682void cpufreq_update_policy(unsigned int cpu)
2683{
2684	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2685
2686	if (!policy)
2687		return;
2688
2689	/*
2690	 * BIOS might change freq behind our back
2691	 * -> ask driver for current freq and notify governors about a change
2692	 */
2693	if (cpufreq_driver->get && has_target() &&
2694	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2695		goto unlock;
2696
2697	refresh_frequency_limits(policy);
2698
2699unlock:
2700	cpufreq_cpu_release(policy);
2701}
2702EXPORT_SYMBOL(cpufreq_update_policy);
2703
2704/**
2705 * cpufreq_update_limits - Update policy limits for a given CPU.
2706 * @cpu: CPU to update the policy limits for.
2707 *
2708 * Invoke the driver's ->update_limits callback if present or call
2709 * cpufreq_update_policy() for @cpu.
2710 */
2711void cpufreq_update_limits(unsigned int cpu)
2712{
2713	if (cpufreq_driver->update_limits)
2714		cpufreq_driver->update_limits(cpu);
2715	else
2716		cpufreq_update_policy(cpu);
2717}
2718EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2719
2720/*********************************************************************
2721 *               BOOST						     *
2722 *********************************************************************/
2723static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2724{
2725	int ret;
2726
2727	if (!policy->freq_table)
2728		return -ENXIO;
2729
2730	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2731	if (ret) {
2732		pr_err("%s: Policy frequency update failed\n", __func__);
2733		return ret;
2734	}
2735
2736	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2737	if (ret < 0)
2738		return ret;
2739
2740	return 0;
2741}
2742
2743int cpufreq_boost_trigger_state(int state)
2744{
2745	struct cpufreq_policy *policy;
2746	unsigned long flags;
2747	int ret = 0;
2748
2749	if (cpufreq_driver->boost_enabled == state)
2750		return 0;
2751
2752	write_lock_irqsave(&cpufreq_driver_lock, flags);
2753	cpufreq_driver->boost_enabled = state;
2754	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755
2756	cpus_read_lock();
2757	for_each_active_policy(policy) {
2758		ret = cpufreq_driver->set_boost(policy, state);
2759		if (ret)
2760			goto err_reset_state;
2761
2762		policy->boost_enabled = state;
2763	}
2764	cpus_read_unlock();
2765
2766	return 0;
2767
2768err_reset_state:
2769	cpus_read_unlock();
2770
2771	write_lock_irqsave(&cpufreq_driver_lock, flags);
2772	cpufreq_driver->boost_enabled = !state;
2773	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2774
2775	pr_err("%s: Cannot %s BOOST\n",
2776	       __func__, state ? "enable" : "disable");
2777
2778	return ret;
2779}
2780
2781static bool cpufreq_boost_supported(void)
2782{
2783	return cpufreq_driver->set_boost;
2784}
2785
2786static int create_boost_sysfs_file(void)
2787{
2788	int ret;
2789
2790	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2791	if (ret)
2792		pr_err("%s: cannot register global BOOST sysfs file\n",
2793		       __func__);
2794
2795	return ret;
2796}
2797
2798static void remove_boost_sysfs_file(void)
2799{
2800	if (cpufreq_boost_supported())
2801		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2802}
2803
2804int cpufreq_enable_boost_support(void)
2805{
2806	if (!cpufreq_driver)
2807		return -EINVAL;
2808
2809	if (cpufreq_boost_supported())
2810		return 0;
2811
2812	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2813
2814	/* This will get removed on driver unregister */
2815	return create_boost_sysfs_file();
2816}
2817EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2818
2819int cpufreq_boost_enabled(void)
2820{
2821	return cpufreq_driver->boost_enabled;
2822}
2823EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2824
2825/*********************************************************************
2826 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2827 *********************************************************************/
2828static enum cpuhp_state hp_online;
2829
2830static int cpuhp_cpufreq_online(unsigned int cpu)
2831{
2832	cpufreq_online(cpu);
2833
2834	return 0;
2835}
2836
2837static int cpuhp_cpufreq_offline(unsigned int cpu)
2838{
2839	cpufreq_offline(cpu);
2840
2841	return 0;
2842}
2843
2844/**
2845 * cpufreq_register_driver - register a CPU Frequency driver
2846 * @driver_data: A struct cpufreq_driver containing the values#
2847 * submitted by the CPU Frequency driver.
2848 *
2849 * Registers a CPU Frequency driver to this core code. This code
2850 * returns zero on success, -EEXIST when another driver got here first
2851 * (and isn't unregistered in the meantime).
2852 *
2853 */
2854int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2855{
2856	unsigned long flags;
2857	int ret;
2858
2859	if (cpufreq_disabled())
2860		return -ENODEV;
2861
2862	/*
2863	 * The cpufreq core depends heavily on the availability of device
2864	 * structure, make sure they are available before proceeding further.
2865	 */
2866	if (!get_cpu_device(0))
2867		return -EPROBE_DEFER;
2868
2869	if (!driver_data || !driver_data->verify || !driver_data->init ||
2870	    !(driver_data->setpolicy || driver_data->target_index ||
2871		    driver_data->target) ||
2872	     (driver_data->setpolicy && (driver_data->target_index ||
2873		    driver_data->target)) ||
2874	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2875	     (!driver_data->online != !driver_data->offline) ||
2876		 (driver_data->adjust_perf && !driver_data->fast_switch))
2877		return -EINVAL;
2878
2879	pr_debug("trying to register driver %s\n", driver_data->name);
2880
2881	/* Protect against concurrent CPU online/offline. */
2882	cpus_read_lock();
2883
2884	write_lock_irqsave(&cpufreq_driver_lock, flags);
2885	if (cpufreq_driver) {
2886		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2887		ret = -EEXIST;
2888		goto out;
2889	}
2890	cpufreq_driver = driver_data;
2891	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2892
2893	/*
2894	 * Mark support for the scheduler's frequency invariance engine for
2895	 * drivers that implement target(), target_index() or fast_switch().
2896	 */
2897	if (!cpufreq_driver->setpolicy) {
2898		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2899		pr_debug("supports frequency invariance");
2900	}
2901
2902	if (driver_data->setpolicy)
2903		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2904
2905	if (cpufreq_boost_supported()) {
2906		ret = create_boost_sysfs_file();
2907		if (ret)
2908			goto err_null_driver;
2909	}
2910
2911	ret = subsys_interface_register(&cpufreq_interface);
2912	if (ret)
2913		goto err_boost_unreg;
2914
2915	if (unlikely(list_empty(&cpufreq_policy_list))) {
 
2916		/* if all ->init() calls failed, unregister */
2917		ret = -ENODEV;
2918		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2919			 driver_data->name);
2920		goto err_if_unreg;
2921	}
2922
2923	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2924						   "cpufreq:online",
2925						   cpuhp_cpufreq_online,
2926						   cpuhp_cpufreq_offline);
2927	if (ret < 0)
2928		goto err_if_unreg;
2929	hp_online = ret;
2930	ret = 0;
2931
2932	pr_debug("driver %s up and running\n", driver_data->name);
2933	goto out;
2934
2935err_if_unreg:
2936	subsys_interface_unregister(&cpufreq_interface);
2937err_boost_unreg:
2938	remove_boost_sysfs_file();
2939err_null_driver:
2940	write_lock_irqsave(&cpufreq_driver_lock, flags);
2941	cpufreq_driver = NULL;
2942	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2943out:
2944	cpus_read_unlock();
2945	return ret;
2946}
2947EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2948
2949/*
2950 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2951 *
2952 * Unregister the current CPUFreq driver. Only call this if you have
2953 * the right to do so, i.e. if you have succeeded in initialising before!
2954 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2955 * currently not initialised.
2956 */
2957void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2958{
2959	unsigned long flags;
2960
2961	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2962		return;
2963
2964	pr_debug("unregistering driver %s\n", driver->name);
2965
2966	/* Protect against concurrent cpu hotplug */
2967	cpus_read_lock();
2968	subsys_interface_unregister(&cpufreq_interface);
2969	remove_boost_sysfs_file();
2970	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2971	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2972
2973	write_lock_irqsave(&cpufreq_driver_lock, flags);
2974
2975	cpufreq_driver = NULL;
2976
2977	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2978	cpus_read_unlock();
 
 
2979}
2980EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2981
2982static int __init cpufreq_core_init(void)
2983{
2984	struct cpufreq_governor *gov = cpufreq_default_governor();
2985	struct device *dev_root;
2986
2987	if (cpufreq_disabled())
2988		return -ENODEV;
2989
2990	dev_root = bus_get_dev_root(&cpu_subsys);
2991	if (dev_root) {
2992		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
2993		put_device(dev_root);
2994	}
2995	BUG_ON(!cpufreq_global_kobject);
2996
2997	if (!strlen(default_governor))
2998		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2999
3000	return 0;
3001}
3002module_param(off, int, 0444);
3003module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3004core_initcall(cpufreq_core_init);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
 
  31#include <trace/events/power.h>
  32
  33static LIST_HEAD(cpufreq_policy_list);
  34
  35/* Macros to iterate over CPU policies */
  36#define for_each_suitable_policy(__policy, __active)			 \
  37	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  38		if ((__active) == !policy_is_inactive(__policy))
  39
  40#define for_each_active_policy(__policy)		\
  41	for_each_suitable_policy(__policy, true)
  42#define for_each_inactive_policy(__policy)		\
  43	for_each_suitable_policy(__policy, false)
  44
  45#define for_each_policy(__policy)			\
  46	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
  47
  48/* Iterate over governors */
  49static LIST_HEAD(cpufreq_governor_list);
  50#define for_each_governor(__governor)				\
  51	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  52
  53static char default_governor[CPUFREQ_NAME_LEN];
  54
  55/*
  56 * The "cpufreq driver" - the arch- or hardware-dependent low
  57 * level driver of CPUFreq support, and its spinlock. This lock
  58 * also protects the cpufreq_cpu_data array.
  59 */
  60static struct cpufreq_driver *cpufreq_driver;
  61static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  62static DEFINE_RWLOCK(cpufreq_driver_lock);
  63
 
 
 
 
 
 
  64/* Flag to suspend/resume CPUFreq governors */
  65static bool cpufreq_suspended;
  66
  67static inline bool has_target(void)
  68{
  69	return cpufreq_driver->target_index || cpufreq_driver->target;
  70}
  71
 
 
 
 
 
  72/* internal prototypes */
  73static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  74static int cpufreq_init_governor(struct cpufreq_policy *policy);
  75static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  76static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  77static int cpufreq_set_policy(struct cpufreq_policy *policy,
  78			      struct cpufreq_governor *new_gov,
  79			      unsigned int new_pol);
 
  80
  81/*
  82 * Two notifier lists: the "policy" list is involved in the
  83 * validation process for a new CPU frequency policy; the
  84 * "transition" list for kernel code that needs to handle
  85 * changes to devices when the CPU clock speed changes.
  86 * The mutex locks both lists.
  87 */
  88static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  89SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
  90
  91static int off __read_mostly;
  92static int cpufreq_disabled(void)
  93{
  94	return off;
  95}
  96void disable_cpufreq(void)
  97{
  98	off = 1;
  99}
 100static DEFINE_MUTEX(cpufreq_governor_mutex);
 101
 102bool have_governor_per_policy(void)
 103{
 104	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 105}
 106EXPORT_SYMBOL_GPL(have_governor_per_policy);
 107
 108static struct kobject *cpufreq_global_kobject;
 109
 110struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 111{
 112	if (have_governor_per_policy())
 113		return &policy->kobj;
 114	else
 115		return cpufreq_global_kobject;
 116}
 117EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 118
 119static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 120{
 121	struct kernel_cpustat kcpustat;
 122	u64 cur_wall_time;
 123	u64 idle_time;
 124	u64 busy_time;
 125
 126	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 127
 128	kcpustat_cpu_fetch(&kcpustat, cpu);
 129
 130	busy_time = kcpustat.cpustat[CPUTIME_USER];
 131	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 132	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 133	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 134	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 135	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 136
 137	idle_time = cur_wall_time - busy_time;
 138	if (wall)
 139		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 140
 141	return div_u64(idle_time, NSEC_PER_USEC);
 142}
 143
 144u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 145{
 146	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 147
 148	if (idle_time == -1ULL)
 149		return get_cpu_idle_time_jiffy(cpu, wall);
 150	else if (!io_busy)
 151		idle_time += get_cpu_iowait_time_us(cpu, wall);
 152
 153	return idle_time;
 154}
 155EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 156
 157__weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
 158		unsigned long max_freq)
 159{
 160}
 161EXPORT_SYMBOL_GPL(arch_set_freq_scale);
 162
 163/*
 164 * This is a generic cpufreq init() routine which can be used by cpufreq
 165 * drivers of SMP systems. It will do following:
 166 * - validate & show freq table passed
 167 * - set policies transition latency
 168 * - policy->cpus with all possible CPUs
 169 */
 170void cpufreq_generic_init(struct cpufreq_policy *policy,
 171		struct cpufreq_frequency_table *table,
 172		unsigned int transition_latency)
 173{
 174	policy->freq_table = table;
 175	policy->cpuinfo.transition_latency = transition_latency;
 176
 177	/*
 178	 * The driver only supports the SMP configuration where all processors
 179	 * share the clock and voltage and clock.
 180	 */
 181	cpumask_setall(policy->cpus);
 182}
 183EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 184
 185struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 186{
 187	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 188
 189	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 190}
 191EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 192
 193unsigned int cpufreq_generic_get(unsigned int cpu)
 194{
 195	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 196
 197	if (!policy || IS_ERR(policy->clk)) {
 198		pr_err("%s: No %s associated to cpu: %d\n",
 199		       __func__, policy ? "clk" : "policy", cpu);
 200		return 0;
 201	}
 202
 203	return clk_get_rate(policy->clk) / 1000;
 204}
 205EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 206
 207/**
 208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 209 * @cpu: CPU to find the policy for.
 210 *
 211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 212 * the kobject reference counter of that policy.  Return a valid policy on
 213 * success or NULL on failure.
 214 *
 215 * The policy returned by this function has to be released with the help of
 216 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 217 */
 218struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 219{
 220	struct cpufreq_policy *policy = NULL;
 221	unsigned long flags;
 222
 223	if (WARN_ON(cpu >= nr_cpu_ids))
 224		return NULL;
 225
 226	/* get the cpufreq driver */
 227	read_lock_irqsave(&cpufreq_driver_lock, flags);
 228
 229	if (cpufreq_driver) {
 230		/* get the CPU */
 231		policy = cpufreq_cpu_get_raw(cpu);
 232		if (policy)
 233			kobject_get(&policy->kobj);
 234	}
 235
 236	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 237
 238	return policy;
 239}
 240EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 241
 242/**
 243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 244 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 245 */
 246void cpufreq_cpu_put(struct cpufreq_policy *policy)
 247{
 248	kobject_put(&policy->kobj);
 249}
 250EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 251
 252/**
 253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 255 */
 256void cpufreq_cpu_release(struct cpufreq_policy *policy)
 257{
 258	if (WARN_ON(!policy))
 259		return;
 260
 261	lockdep_assert_held(&policy->rwsem);
 262
 263	up_write(&policy->rwsem);
 264
 265	cpufreq_cpu_put(policy);
 266}
 267
 268/**
 269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 270 * @cpu: CPU to find the policy for.
 271 *
 272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 273 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 274 * Return the policy if it is active or release it and return NULL otherwise.
 275 *
 276 * The policy returned by this function has to be released with the help of
 277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 278 * counter properly.
 279 */
 280struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 281{
 282	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 283
 284	if (!policy)
 285		return NULL;
 286
 287	down_write(&policy->rwsem);
 288
 289	if (policy_is_inactive(policy)) {
 290		cpufreq_cpu_release(policy);
 291		return NULL;
 292	}
 293
 294	return policy;
 295}
 296
 297/*********************************************************************
 298 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 299 *********************************************************************/
 300
 301/*
 302 * adjust_jiffies - adjust the system "loops_per_jiffy"
 
 
 303 *
 304 * This function alters the system "loops_per_jiffy" for the clock
 305 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 306 * systems as each CPU might be scaled differently. So, use the arch
 307 * per-CPU loops_per_jiffy value wherever possible.
 308 */
 309static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 310{
 311#ifndef CONFIG_SMP
 312	static unsigned long l_p_j_ref;
 313	static unsigned int l_p_j_ref_freq;
 314
 315	if (ci->flags & CPUFREQ_CONST_LOOPS)
 316		return;
 317
 318	if (!l_p_j_ref_freq) {
 319		l_p_j_ref = loops_per_jiffy;
 320		l_p_j_ref_freq = ci->old;
 321		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 322			 l_p_j_ref, l_p_j_ref_freq);
 323	}
 324	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 325		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 326								ci->new);
 327		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 328			 loops_per_jiffy, ci->new);
 329	}
 330#endif
 331}
 332
 333/**
 334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
 335 * @policy: cpufreq policy to enable fast frequency switching for.
 336 * @freqs: contain details of the frequency update.
 337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 338 *
 339 * This function calls the transition notifiers and the "adjust_jiffies"
 340 * function. It is called twice on all CPU frequency changes that have
 341 * external effects.
 342 */
 343static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 344				      struct cpufreq_freqs *freqs,
 345				      unsigned int state)
 346{
 347	int cpu;
 348
 349	BUG_ON(irqs_disabled());
 350
 351	if (cpufreq_disabled())
 352		return;
 353
 354	freqs->policy = policy;
 355	freqs->flags = cpufreq_driver->flags;
 356	pr_debug("notification %u of frequency transition to %u kHz\n",
 357		 state, freqs->new);
 358
 359	switch (state) {
 360	case CPUFREQ_PRECHANGE:
 361		/*
 362		 * Detect if the driver reported a value as "old frequency"
 363		 * which is not equal to what the cpufreq core thinks is
 364		 * "old frequency".
 365		 */
 366		if (policy->cur && policy->cur != freqs->old) {
 367			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 368				 freqs->old, policy->cur);
 369			freqs->old = policy->cur;
 370		}
 371
 372		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 373					 CPUFREQ_PRECHANGE, freqs);
 374
 375		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 376		break;
 377
 378	case CPUFREQ_POSTCHANGE:
 379		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 380		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 381			 cpumask_pr_args(policy->cpus));
 382
 383		for_each_cpu(cpu, policy->cpus)
 384			trace_cpu_frequency(freqs->new, cpu);
 385
 386		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 387					 CPUFREQ_POSTCHANGE, freqs);
 388
 389		cpufreq_stats_record_transition(policy, freqs->new);
 390		policy->cur = freqs->new;
 391	}
 392}
 393
 394/* Do post notifications when there are chances that transition has failed */
 395static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 396		struct cpufreq_freqs *freqs, int transition_failed)
 397{
 398	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 399	if (!transition_failed)
 400		return;
 401
 402	swap(freqs->old, freqs->new);
 403	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405}
 406
 407void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 408		struct cpufreq_freqs *freqs)
 409{
 410
 411	/*
 412	 * Catch double invocations of _begin() which lead to self-deadlock.
 413	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 414	 * doesn't invoke _begin() on their behalf, and hence the chances of
 415	 * double invocations are very low. Moreover, there are scenarios
 416	 * where these checks can emit false-positive warnings in these
 417	 * drivers; so we avoid that by skipping them altogether.
 418	 */
 419	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 420				&& current == policy->transition_task);
 421
 422wait:
 423	wait_event(policy->transition_wait, !policy->transition_ongoing);
 424
 425	spin_lock(&policy->transition_lock);
 426
 427	if (unlikely(policy->transition_ongoing)) {
 428		spin_unlock(&policy->transition_lock);
 429		goto wait;
 430	}
 431
 432	policy->transition_ongoing = true;
 433	policy->transition_task = current;
 434
 435	spin_unlock(&policy->transition_lock);
 436
 437	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 438}
 439EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 440
 441void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 442		struct cpufreq_freqs *freqs, int transition_failed)
 443{
 444	if (WARN_ON(!policy->transition_ongoing))
 445		return;
 446
 447	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 448
 
 
 
 
 
 449	policy->transition_ongoing = false;
 450	policy->transition_task = NULL;
 
 451
 452	wake_up(&policy->transition_wait);
 453}
 454EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 455
 456/*
 457 * Fast frequency switching status count.  Positive means "enabled", negative
 458 * means "disabled" and 0 means "not decided yet".
 459 */
 460static int cpufreq_fast_switch_count;
 461static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 462
 463static void cpufreq_list_transition_notifiers(void)
 464{
 465	struct notifier_block *nb;
 466
 467	pr_info("Registered transition notifiers:\n");
 468
 469	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 470
 471	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 472		pr_info("%pS\n", nb->notifier_call);
 473
 474	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 475}
 476
 477/**
 478 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 479 * @policy: cpufreq policy to enable fast frequency switching for.
 480 *
 481 * Try to enable fast frequency switching for @policy.
 482 *
 483 * The attempt will fail if there is at least one transition notifier registered
 484 * at this point, as fast frequency switching is quite fundamentally at odds
 485 * with transition notifiers.  Thus if successful, it will make registration of
 486 * transition notifiers fail going forward.
 487 */
 488void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 489{
 490	lockdep_assert_held(&policy->rwsem);
 491
 492	if (!policy->fast_switch_possible)
 493		return;
 494
 495	mutex_lock(&cpufreq_fast_switch_lock);
 496	if (cpufreq_fast_switch_count >= 0) {
 497		cpufreq_fast_switch_count++;
 498		policy->fast_switch_enabled = true;
 499	} else {
 500		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 501			policy->cpu);
 502		cpufreq_list_transition_notifiers();
 503	}
 504	mutex_unlock(&cpufreq_fast_switch_lock);
 505}
 506EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 507
 508/**
 509 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 510 * @policy: cpufreq policy to disable fast frequency switching for.
 511 */
 512void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 513{
 514	mutex_lock(&cpufreq_fast_switch_lock);
 515	if (policy->fast_switch_enabled) {
 516		policy->fast_switch_enabled = false;
 517		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 518			cpufreq_fast_switch_count--;
 519	}
 520	mutex_unlock(&cpufreq_fast_switch_lock);
 521}
 522EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524/**
 525 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 526 * one.
 527 * @policy: associated policy to interrogate
 528 * @target_freq: target frequency to resolve.
 529 *
 530 * The target to driver frequency mapping is cached in the policy.
 531 *
 532 * Return: Lowest driver-supported frequency greater than or equal to the
 533 * given target_freq, subject to policy (min/max) and driver limitations.
 534 */
 535unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 536					 unsigned int target_freq)
 537{
 538	target_freq = clamp_val(target_freq, policy->min, policy->max);
 539	policy->cached_target_freq = target_freq;
 540
 541	if (cpufreq_driver->target_index) {
 542		unsigned int idx;
 543
 544		idx = cpufreq_frequency_table_target(policy, target_freq,
 545						     CPUFREQ_RELATION_L);
 546		policy->cached_resolved_idx = idx;
 547		return policy->freq_table[idx].frequency;
 548	}
 549
 550	if (cpufreq_driver->resolve_freq)
 551		return cpufreq_driver->resolve_freq(policy, target_freq);
 552
 553	return target_freq;
 554}
 555EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 556
 557unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 558{
 559	unsigned int latency;
 560
 561	if (policy->transition_delay_us)
 562		return policy->transition_delay_us;
 563
 564	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 565	if (latency) {
 566		/*
 567		 * For platforms that can change the frequency very fast (< 10
 568		 * us), the above formula gives a decent transition delay. But
 569		 * for platforms where transition_latency is in milliseconds, it
 570		 * ends up giving unrealistic values.
 571		 *
 572		 * Cap the default transition delay to 10 ms, which seems to be
 573		 * a reasonable amount of time after which we should reevaluate
 574		 * the frequency.
 575		 */
 576		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 577	}
 578
 579	return LATENCY_MULTIPLIER;
 580}
 581EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 582
 583/*********************************************************************
 584 *                          SYSFS INTERFACE                          *
 585 *********************************************************************/
 586static ssize_t show_boost(struct kobject *kobj,
 587			  struct kobj_attribute *attr, char *buf)
 588{
 589	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 590}
 591
 592static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 593			   const char *buf, size_t count)
 594{
 595	int ret, enable;
 596
 597	ret = sscanf(buf, "%d", &enable);
 598	if (ret != 1 || enable < 0 || enable > 1)
 599		return -EINVAL;
 600
 601	if (cpufreq_boost_trigger_state(enable)) {
 602		pr_err("%s: Cannot %s BOOST!\n",
 603		       __func__, enable ? "enable" : "disable");
 604		return -EINVAL;
 605	}
 606
 607	pr_debug("%s: cpufreq BOOST %s\n",
 608		 __func__, enable ? "enabled" : "disabled");
 609
 610	return count;
 611}
 612define_one_global_rw(boost);
 613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614static struct cpufreq_governor *find_governor(const char *str_governor)
 615{
 616	struct cpufreq_governor *t;
 617
 618	for_each_governor(t)
 619		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 620			return t;
 621
 622	return NULL;
 623}
 624
 625static struct cpufreq_governor *get_governor(const char *str_governor)
 626{
 627	struct cpufreq_governor *t;
 628
 629	mutex_lock(&cpufreq_governor_mutex);
 630	t = find_governor(str_governor);
 631	if (!t)
 632		goto unlock;
 633
 634	if (!try_module_get(t->owner))
 635		t = NULL;
 636
 637unlock:
 638	mutex_unlock(&cpufreq_governor_mutex);
 639
 640	return t;
 641}
 642
 643static unsigned int cpufreq_parse_policy(char *str_governor)
 644{
 645	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 646		return CPUFREQ_POLICY_PERFORMANCE;
 647
 648	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 649		return CPUFREQ_POLICY_POWERSAVE;
 650
 651	return CPUFREQ_POLICY_UNKNOWN;
 652}
 653
 654/**
 655 * cpufreq_parse_governor - parse a governor string only for has_target()
 656 * @str_governor: Governor name.
 657 */
 658static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 659{
 660	struct cpufreq_governor *t;
 661
 662	t = get_governor(str_governor);
 663	if (t)
 664		return t;
 665
 666	if (request_module("cpufreq_%s", str_governor))
 667		return NULL;
 668
 669	return get_governor(str_governor);
 670}
 671
 672/*
 673 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 674 * print out cpufreq information
 675 *
 676 * Write out information from cpufreq_driver->policy[cpu]; object must be
 677 * "unsigned int".
 678 */
 679
 680#define show_one(file_name, object)			\
 681static ssize_t show_##file_name				\
 682(struct cpufreq_policy *policy, char *buf)		\
 683{							\
 684	return sprintf(buf, "%u\n", policy->object);	\
 685}
 686
 687show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 688show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 689show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 690show_one(scaling_min_freq, min);
 691show_one(scaling_max_freq, max);
 692
 693__weak unsigned int arch_freq_get_on_cpu(int cpu)
 694{
 695	return 0;
 696}
 697
 698static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 699{
 700	ssize_t ret;
 701	unsigned int freq;
 702
 703	freq = arch_freq_get_on_cpu(policy->cpu);
 704	if (freq)
 705		ret = sprintf(buf, "%u\n", freq);
 706	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 707		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 708	else
 709		ret = sprintf(buf, "%u\n", policy->cur);
 710	return ret;
 711}
 712
 713/*
 714 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 715 */
 716#define store_one(file_name, object)			\
 717static ssize_t store_##file_name					\
 718(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 719{									\
 720	unsigned long val;						\
 721	int ret;							\
 722									\
 723	ret = sscanf(buf, "%lu", &val);					\
 724	if (ret != 1)							\
 725		return -EINVAL;						\
 726									\
 727	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 728	return ret >= 0 ? count : ret;					\
 729}
 730
 731store_one(scaling_min_freq, min);
 732store_one(scaling_max_freq, max);
 733
 734/*
 735 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 736 */
 737static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 738					char *buf)
 739{
 740	unsigned int cur_freq = __cpufreq_get(policy);
 741
 742	if (cur_freq)
 743		return sprintf(buf, "%u\n", cur_freq);
 744
 745	return sprintf(buf, "<unknown>\n");
 746}
 747
 748/*
 749 * show_scaling_governor - show the current policy for the specified CPU
 750 */
 751static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 752{
 753	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 754		return sprintf(buf, "powersave\n");
 755	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 756		return sprintf(buf, "performance\n");
 757	else if (policy->governor)
 758		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 759				policy->governor->name);
 760	return -EINVAL;
 761}
 762
 763/*
 764 * store_scaling_governor - store policy for the specified CPU
 765 */
 766static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 767					const char *buf, size_t count)
 768{
 769	char str_governor[16];
 770	int ret;
 771
 772	ret = sscanf(buf, "%15s", str_governor);
 773	if (ret != 1)
 774		return -EINVAL;
 775
 776	if (cpufreq_driver->setpolicy) {
 777		unsigned int new_pol;
 778
 779		new_pol = cpufreq_parse_policy(str_governor);
 780		if (!new_pol)
 781			return -EINVAL;
 782
 783		ret = cpufreq_set_policy(policy, NULL, new_pol);
 784	} else {
 785		struct cpufreq_governor *new_gov;
 786
 787		new_gov = cpufreq_parse_governor(str_governor);
 788		if (!new_gov)
 789			return -EINVAL;
 790
 791		ret = cpufreq_set_policy(policy, new_gov,
 792					 CPUFREQ_POLICY_UNKNOWN);
 793
 794		module_put(new_gov->owner);
 795	}
 796
 797	return ret ? ret : count;
 798}
 799
 800/*
 801 * show_scaling_driver - show the cpufreq driver currently loaded
 802 */
 803static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 804{
 805	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 806}
 807
 808/*
 809 * show_scaling_available_governors - show the available CPUfreq governors
 810 */
 811static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 812						char *buf)
 813{
 814	ssize_t i = 0;
 815	struct cpufreq_governor *t;
 816
 817	if (!has_target()) {
 818		i += sprintf(buf, "performance powersave");
 819		goto out;
 820	}
 821
 822	mutex_lock(&cpufreq_governor_mutex);
 823	for_each_governor(t) {
 824		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 825		    - (CPUFREQ_NAME_LEN + 2)))
 826			break;
 827		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 828	}
 829	mutex_unlock(&cpufreq_governor_mutex);
 830out:
 831	i += sprintf(&buf[i], "\n");
 832	return i;
 833}
 834
 835ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 836{
 837	ssize_t i = 0;
 838	unsigned int cpu;
 839
 840	for_each_cpu(cpu, mask) {
 841		if (i)
 842			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 843		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 844		if (i >= (PAGE_SIZE - 5))
 845			break;
 846	}
 
 
 
 
 847	i += sprintf(&buf[i], "\n");
 848	return i;
 849}
 850EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 851
 852/*
 853 * show_related_cpus - show the CPUs affected by each transition even if
 854 * hw coordination is in use
 855 */
 856static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 857{
 858	return cpufreq_show_cpus(policy->related_cpus, buf);
 859}
 860
 861/*
 862 * show_affected_cpus - show the CPUs affected by each transition
 863 */
 864static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 865{
 866	return cpufreq_show_cpus(policy->cpus, buf);
 867}
 868
 869static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 870					const char *buf, size_t count)
 871{
 872	unsigned int freq = 0;
 873	unsigned int ret;
 874
 875	if (!policy->governor || !policy->governor->store_setspeed)
 876		return -EINVAL;
 877
 878	ret = sscanf(buf, "%u", &freq);
 879	if (ret != 1)
 880		return -EINVAL;
 881
 882	policy->governor->store_setspeed(policy, freq);
 883
 884	return count;
 885}
 886
 887static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 888{
 889	if (!policy->governor || !policy->governor->show_setspeed)
 890		return sprintf(buf, "<unsupported>\n");
 891
 892	return policy->governor->show_setspeed(policy, buf);
 893}
 894
 895/*
 896 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 897 */
 898static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 899{
 900	unsigned int limit;
 901	int ret;
 902	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 903	if (!ret)
 904		return sprintf(buf, "%u\n", limit);
 905	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 906}
 907
 908cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 909cpufreq_freq_attr_ro(cpuinfo_min_freq);
 910cpufreq_freq_attr_ro(cpuinfo_max_freq);
 911cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 912cpufreq_freq_attr_ro(scaling_available_governors);
 913cpufreq_freq_attr_ro(scaling_driver);
 914cpufreq_freq_attr_ro(scaling_cur_freq);
 915cpufreq_freq_attr_ro(bios_limit);
 916cpufreq_freq_attr_ro(related_cpus);
 917cpufreq_freq_attr_ro(affected_cpus);
 918cpufreq_freq_attr_rw(scaling_min_freq);
 919cpufreq_freq_attr_rw(scaling_max_freq);
 920cpufreq_freq_attr_rw(scaling_governor);
 921cpufreq_freq_attr_rw(scaling_setspeed);
 922
 923static struct attribute *default_attrs[] = {
 924	&cpuinfo_min_freq.attr,
 925	&cpuinfo_max_freq.attr,
 926	&cpuinfo_transition_latency.attr,
 927	&scaling_min_freq.attr,
 928	&scaling_max_freq.attr,
 929	&affected_cpus.attr,
 930	&related_cpus.attr,
 931	&scaling_governor.attr,
 932	&scaling_driver.attr,
 933	&scaling_available_governors.attr,
 934	&scaling_setspeed.attr,
 935	NULL
 936};
 
 937
 938#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 939#define to_attr(a) container_of(a, struct freq_attr, attr)
 940
 941static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 942{
 943	struct cpufreq_policy *policy = to_policy(kobj);
 944	struct freq_attr *fattr = to_attr(attr);
 945	ssize_t ret;
 946
 947	if (!fattr->show)
 948		return -EIO;
 949
 950	down_read(&policy->rwsem);
 951	ret = fattr->show(policy, buf);
 
 952	up_read(&policy->rwsem);
 953
 954	return ret;
 955}
 956
 957static ssize_t store(struct kobject *kobj, struct attribute *attr,
 958		     const char *buf, size_t count)
 959{
 960	struct cpufreq_policy *policy = to_policy(kobj);
 961	struct freq_attr *fattr = to_attr(attr);
 962	ssize_t ret = -EINVAL;
 963
 964	if (!fattr->store)
 965		return -EIO;
 966
 967	/*
 968	 * cpus_read_trylock() is used here to work around a circular lock
 969	 * dependency problem with respect to the cpufreq_register_driver().
 970	 */
 971	if (!cpus_read_trylock())
 972		return -EBUSY;
 973
 974	if (cpu_online(policy->cpu)) {
 975		down_write(&policy->rwsem);
 976		ret = fattr->store(policy, buf, count);
 977		up_write(&policy->rwsem);
 978	}
 979
 980	cpus_read_unlock();
 981
 982	return ret;
 983}
 984
 985static void cpufreq_sysfs_release(struct kobject *kobj)
 986{
 987	struct cpufreq_policy *policy = to_policy(kobj);
 988	pr_debug("last reference is dropped\n");
 989	complete(&policy->kobj_unregister);
 990}
 991
 992static const struct sysfs_ops sysfs_ops = {
 993	.show	= show,
 994	.store	= store,
 995};
 996
 997static struct kobj_type ktype_cpufreq = {
 998	.sysfs_ops	= &sysfs_ops,
 999	.default_attrs	= default_attrs,
1000	.release	= cpufreq_sysfs_release,
1001};
1002
1003static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
 
1004{
1005	struct device *dev = get_cpu_device(cpu);
1006
1007	if (unlikely(!dev))
1008		return;
1009
1010	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1011		return;
1012
1013	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1014	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1015		dev_err(dev, "cpufreq symlink creation failed\n");
1016}
1017
1018static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1019				   struct device *dev)
1020{
1021	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1022	sysfs_remove_link(&dev->kobj, "cpufreq");
 
1023}
1024
1025static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1026{
1027	struct freq_attr **drv_attr;
1028	int ret = 0;
1029
1030	/* set up files for this cpu device */
1031	drv_attr = cpufreq_driver->attr;
1032	while (drv_attr && *drv_attr) {
1033		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1034		if (ret)
1035			return ret;
1036		drv_attr++;
1037	}
1038	if (cpufreq_driver->get) {
1039		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1040		if (ret)
1041			return ret;
1042	}
1043
1044	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1045	if (ret)
1046		return ret;
1047
1048	if (cpufreq_driver->bios_limit) {
1049		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1050		if (ret)
1051			return ret;
1052	}
1053
 
 
 
 
 
 
1054	return 0;
1055}
1056
1057static int cpufreq_init_policy(struct cpufreq_policy *policy)
1058{
1059	struct cpufreq_governor *gov = NULL;
1060	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1061	int ret;
1062
1063	if (has_target()) {
1064		/* Update policy governor to the one used before hotplug. */
1065		gov = get_governor(policy->last_governor);
1066		if (gov) {
1067			pr_debug("Restoring governor %s for cpu %d\n",
1068				 gov->name, policy->cpu);
1069		} else {
1070			gov = get_governor(default_governor);
1071		}
1072
1073		if (!gov) {
1074			gov = cpufreq_default_governor();
1075			__module_get(gov->owner);
1076		}
1077
1078	} else {
1079
1080		/* Use the default policy if there is no last_policy. */
1081		if (policy->last_policy) {
1082			pol = policy->last_policy;
1083		} else {
1084			pol = cpufreq_parse_policy(default_governor);
1085			/*
1086			 * In case the default governor is neither "performance"
1087			 * nor "powersave", fall back to the initial policy
1088			 * value set by the driver.
1089			 */
1090			if (pol == CPUFREQ_POLICY_UNKNOWN)
1091				pol = policy->policy;
1092		}
1093		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1094		    pol != CPUFREQ_POLICY_POWERSAVE)
1095			return -ENODATA;
1096	}
1097
1098	ret = cpufreq_set_policy(policy, gov, pol);
1099	if (gov)
1100		module_put(gov->owner);
1101
1102	return ret;
1103}
1104
1105static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1106{
1107	int ret = 0;
1108
1109	/* Has this CPU been taken care of already? */
1110	if (cpumask_test_cpu(cpu, policy->cpus))
1111		return 0;
1112
1113	down_write(&policy->rwsem);
1114	if (has_target())
1115		cpufreq_stop_governor(policy);
1116
1117	cpumask_set_cpu(cpu, policy->cpus);
1118
1119	if (has_target()) {
1120		ret = cpufreq_start_governor(policy);
1121		if (ret)
1122			pr_err("%s: Failed to start governor\n", __func__);
1123	}
1124	up_write(&policy->rwsem);
1125	return ret;
1126}
1127
1128void refresh_frequency_limits(struct cpufreq_policy *policy)
1129{
1130	if (!policy_is_inactive(policy)) {
1131		pr_debug("updating policy for CPU %u\n", policy->cpu);
1132
1133		cpufreq_set_policy(policy, policy->governor, policy->policy);
1134	}
1135}
1136EXPORT_SYMBOL(refresh_frequency_limits);
1137
1138static void handle_update(struct work_struct *work)
1139{
1140	struct cpufreq_policy *policy =
1141		container_of(work, struct cpufreq_policy, update);
1142
1143	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1144	down_write(&policy->rwsem);
1145	refresh_frequency_limits(policy);
1146	up_write(&policy->rwsem);
1147}
1148
1149static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1150				void *data)
1151{
1152	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1153
1154	schedule_work(&policy->update);
1155	return 0;
1156}
1157
1158static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1159				void *data)
1160{
1161	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1162
1163	schedule_work(&policy->update);
1164	return 0;
1165}
1166
1167static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1168{
1169	struct kobject *kobj;
1170	struct completion *cmp;
1171
1172	down_write(&policy->rwsem);
1173	cpufreq_stats_free_table(policy);
1174	kobj = &policy->kobj;
1175	cmp = &policy->kobj_unregister;
1176	up_write(&policy->rwsem);
1177	kobject_put(kobj);
1178
1179	/*
1180	 * We need to make sure that the underlying kobj is
1181	 * actually not referenced anymore by anybody before we
1182	 * proceed with unloading.
1183	 */
1184	pr_debug("waiting for dropping of refcount\n");
1185	wait_for_completion(cmp);
1186	pr_debug("wait complete\n");
1187}
1188
1189static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1190{
1191	struct cpufreq_policy *policy;
1192	struct device *dev = get_cpu_device(cpu);
1193	int ret;
1194
1195	if (!dev)
1196		return NULL;
1197
1198	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1199	if (!policy)
1200		return NULL;
1201
1202	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1203		goto err_free_policy;
1204
1205	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1206		goto err_free_cpumask;
1207
1208	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1209		goto err_free_rcpumask;
1210
 
1211	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1212				   cpufreq_global_kobject, "policy%u", cpu);
1213	if (ret) {
1214		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1215		/*
1216		 * The entire policy object will be freed below, but the extra
1217		 * memory allocated for the kobject name needs to be freed by
1218		 * releasing the kobject.
1219		 */
1220		kobject_put(&policy->kobj);
1221		goto err_free_real_cpus;
1222	}
1223
1224	freq_constraints_init(&policy->constraints);
1225
1226	policy->nb_min.notifier_call = cpufreq_notifier_min;
1227	policy->nb_max.notifier_call = cpufreq_notifier_max;
1228
1229	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1230				    &policy->nb_min);
1231	if (ret) {
1232		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1233			ret, cpumask_pr_args(policy->cpus));
1234		goto err_kobj_remove;
1235	}
1236
1237	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1238				    &policy->nb_max);
1239	if (ret) {
1240		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1241			ret, cpumask_pr_args(policy->cpus));
1242		goto err_min_qos_notifier;
1243	}
1244
1245	INIT_LIST_HEAD(&policy->policy_list);
1246	init_rwsem(&policy->rwsem);
1247	spin_lock_init(&policy->transition_lock);
1248	init_waitqueue_head(&policy->transition_wait);
1249	init_completion(&policy->kobj_unregister);
1250	INIT_WORK(&policy->update, handle_update);
1251
1252	policy->cpu = cpu;
1253	return policy;
1254
1255err_min_qos_notifier:
1256	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1257				 &policy->nb_min);
1258err_kobj_remove:
1259	cpufreq_policy_put_kobj(policy);
1260err_free_real_cpus:
1261	free_cpumask_var(policy->real_cpus);
1262err_free_rcpumask:
1263	free_cpumask_var(policy->related_cpus);
1264err_free_cpumask:
1265	free_cpumask_var(policy->cpus);
1266err_free_policy:
1267	kfree(policy);
1268
1269	return NULL;
1270}
1271
1272static void cpufreq_policy_free(struct cpufreq_policy *policy)
1273{
1274	unsigned long flags;
1275	int cpu;
1276
 
 
 
 
 
 
 
1277	/* Remove policy from list */
1278	write_lock_irqsave(&cpufreq_driver_lock, flags);
1279	list_del(&policy->policy_list);
1280
1281	for_each_cpu(cpu, policy->related_cpus)
1282		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1283	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1284
1285	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1286				 &policy->nb_max);
1287	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1288				 &policy->nb_min);
1289
1290	/* Cancel any pending policy->update work before freeing the policy. */
1291	cancel_work_sync(&policy->update);
1292
1293	if (policy->max_freq_req) {
1294		/*
1295		 * CPUFREQ_CREATE_POLICY notification is sent only after
1296		 * successfully adding max_freq_req request.
 
1297		 */
1298		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1299					     CPUFREQ_REMOVE_POLICY, policy);
1300		freq_qos_remove_request(policy->max_freq_req);
1301	}
1302
1303	freq_qos_remove_request(policy->min_freq_req);
1304	kfree(policy->min_freq_req);
1305
1306	cpufreq_policy_put_kobj(policy);
1307	free_cpumask_var(policy->real_cpus);
1308	free_cpumask_var(policy->related_cpus);
1309	free_cpumask_var(policy->cpus);
1310	kfree(policy);
1311}
1312
1313static int cpufreq_online(unsigned int cpu)
1314{
1315	struct cpufreq_policy *policy;
1316	bool new_policy;
1317	unsigned long flags;
1318	unsigned int j;
1319	int ret;
1320
1321	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1322
1323	/* Check if this CPU already has a policy to manage it */
1324	policy = per_cpu(cpufreq_cpu_data, cpu);
1325	if (policy) {
1326		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1327		if (!policy_is_inactive(policy))
1328			return cpufreq_add_policy_cpu(policy, cpu);
1329
1330		/* This is the only online CPU for the policy.  Start over. */
1331		new_policy = false;
1332		down_write(&policy->rwsem);
1333		policy->cpu = cpu;
1334		policy->governor = NULL;
1335		up_write(&policy->rwsem);
1336	} else {
1337		new_policy = true;
1338		policy = cpufreq_policy_alloc(cpu);
1339		if (!policy)
1340			return -ENOMEM;
 
1341	}
1342
1343	if (!new_policy && cpufreq_driver->online) {
 
 
 
1344		ret = cpufreq_driver->online(policy);
1345		if (ret) {
1346			pr_debug("%s: %d: initialization failed\n", __func__,
1347				 __LINE__);
1348			goto out_exit_policy;
1349		}
1350
1351		/* Recover policy->cpus using related_cpus */
1352		cpumask_copy(policy->cpus, policy->related_cpus);
1353	} else {
1354		cpumask_copy(policy->cpus, cpumask_of(cpu));
1355
1356		/*
1357		 * Call driver. From then on the cpufreq must be able
1358		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1359		 */
1360		ret = cpufreq_driver->init(policy);
1361		if (ret) {
1362			pr_debug("%s: %d: initialization failed\n", __func__,
1363				 __LINE__);
1364			goto out_free_policy;
1365		}
1366
 
 
 
 
 
1367		ret = cpufreq_table_validate_and_sort(policy);
1368		if (ret)
1369			goto out_exit_policy;
1370
1371		/* related_cpus should at least include policy->cpus. */
1372		cpumask_copy(policy->related_cpus, policy->cpus);
1373	}
1374
1375	down_write(&policy->rwsem);
1376	/*
1377	 * affected cpus must always be the one, which are online. We aren't
1378	 * managing offline cpus here.
1379	 */
1380	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1381
1382	if (new_policy) {
1383		for_each_cpu(j, policy->related_cpus) {
1384			per_cpu(cpufreq_cpu_data, j) = policy;
1385			add_cpu_dev_symlink(policy, j);
1386		}
1387
1388		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1389					       GFP_KERNEL);
1390		if (!policy->min_freq_req)
 
1391			goto out_destroy_policy;
 
1392
1393		ret = freq_qos_add_request(&policy->constraints,
1394					   policy->min_freq_req, FREQ_QOS_MIN,
1395					   policy->min);
1396		if (ret < 0) {
1397			/*
1398			 * So we don't call freq_qos_remove_request() for an
1399			 * uninitialized request.
1400			 */
1401			kfree(policy->min_freq_req);
1402			policy->min_freq_req = NULL;
1403			goto out_destroy_policy;
1404		}
1405
1406		/*
1407		 * This must be initialized right here to avoid calling
1408		 * freq_qos_remove_request() on uninitialized request in case
1409		 * of errors.
1410		 */
1411		policy->max_freq_req = policy->min_freq_req + 1;
1412
1413		ret = freq_qos_add_request(&policy->constraints,
1414					   policy->max_freq_req, FREQ_QOS_MAX,
1415					   policy->max);
1416		if (ret < 0) {
1417			policy->max_freq_req = NULL;
1418			goto out_destroy_policy;
1419		}
1420
1421		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1422				CPUFREQ_CREATE_POLICY, policy);
1423	}
1424
1425	if (cpufreq_driver->get && has_target()) {
1426		policy->cur = cpufreq_driver->get(policy->cpu);
1427		if (!policy->cur) {
 
1428			pr_err("%s: ->get() failed\n", __func__);
1429			goto out_destroy_policy;
1430		}
1431	}
1432
1433	/*
1434	 * Sometimes boot loaders set CPU frequency to a value outside of
1435	 * frequency table present with cpufreq core. In such cases CPU might be
1436	 * unstable if it has to run on that frequency for long duration of time
1437	 * and so its better to set it to a frequency which is specified in
1438	 * freq-table. This also makes cpufreq stats inconsistent as
1439	 * cpufreq-stats would fail to register because current frequency of CPU
1440	 * isn't found in freq-table.
1441	 *
1442	 * Because we don't want this change to effect boot process badly, we go
1443	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1444	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1445	 * is initialized to zero).
1446	 *
1447	 * We are passing target-freq as "policy->cur - 1" otherwise
1448	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1449	 * equal to target-freq.
1450	 */
1451	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1452	    && has_target()) {
 
 
1453		/* Are we running at unknown frequency ? */
1454		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1455		if (ret == -EINVAL) {
1456			/* Warn user and fix it */
1457			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1458				__func__, policy->cpu, policy->cur);
1459			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1460				CPUFREQ_RELATION_L);
1461
1462			/*
1463			 * Reaching here after boot in a few seconds may not
1464			 * mean that system will remain stable at "unknown"
1465			 * frequency for longer duration. Hence, a BUG_ON().
1466			 */
1467			BUG_ON(ret);
1468			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1469				__func__, policy->cpu, policy->cur);
1470		}
1471	}
1472
1473	if (new_policy) {
1474		ret = cpufreq_add_dev_interface(policy);
1475		if (ret)
1476			goto out_destroy_policy;
1477
1478		cpufreq_stats_create_table(policy);
1479
1480		write_lock_irqsave(&cpufreq_driver_lock, flags);
1481		list_add(&policy->policy_list, &cpufreq_policy_list);
1482		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1483	}
1484
1485	ret = cpufreq_init_policy(policy);
1486	if (ret) {
1487		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1488		       __func__, cpu, ret);
1489		goto out_destroy_policy;
1490	}
1491
1492	up_write(&policy->rwsem);
1493
1494	kobject_uevent(&policy->kobj, KOBJ_ADD);
1495
1496	/* Callback for handling stuff after policy is ready */
1497	if (cpufreq_driver->ready)
1498		cpufreq_driver->ready(policy);
1499
1500	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1501		policy->cdev = of_cpufreq_cooling_register(policy);
1502
1503	pr_debug("initialization complete\n");
1504
1505	return 0;
1506
1507out_destroy_policy:
1508	for_each_cpu(j, policy->real_cpus)
1509		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1510
1511	up_write(&policy->rwsem);
 
 
1512
1513out_exit_policy:
1514	if (cpufreq_driver->exit)
1515		cpufreq_driver->exit(policy);
1516
1517out_free_policy:
 
 
 
1518	cpufreq_policy_free(policy);
1519	return ret;
1520}
1521
1522/**
1523 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1524 * @dev: CPU device.
1525 * @sif: Subsystem interface structure pointer (not used)
1526 */
1527static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1528{
1529	struct cpufreq_policy *policy;
1530	unsigned cpu = dev->id;
1531	int ret;
1532
1533	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1534
1535	if (cpu_online(cpu)) {
1536		ret = cpufreq_online(cpu);
1537		if (ret)
1538			return ret;
1539	}
1540
1541	/* Create sysfs link on CPU registration */
1542	policy = per_cpu(cpufreq_cpu_data, cpu);
1543	if (policy)
1544		add_cpu_dev_symlink(policy, cpu);
1545
1546	return 0;
1547}
1548
1549static int cpufreq_offline(unsigned int cpu)
1550{
1551	struct cpufreq_policy *policy;
1552	int ret;
1553
1554	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1555
1556	policy = cpufreq_cpu_get_raw(cpu);
1557	if (!policy) {
1558		pr_debug("%s: No cpu_data found\n", __func__);
1559		return 0;
1560	}
1561
1562	down_write(&policy->rwsem);
1563	if (has_target())
1564		cpufreq_stop_governor(policy);
1565
1566	cpumask_clear_cpu(cpu, policy->cpus);
1567
1568	if (policy_is_inactive(policy)) {
1569		if (has_target())
1570			strncpy(policy->last_governor, policy->governor->name,
1571				CPUFREQ_NAME_LEN);
1572		else
1573			policy->last_policy = policy->policy;
1574	} else if (cpu == policy->cpu) {
1575		/* Nominate new CPU */
1576		policy->cpu = cpumask_any(policy->cpus);
1577	}
1578
1579	/* Start governor again for active policy */
1580	if (!policy_is_inactive(policy)) {
1581		if (has_target()) {
1582			ret = cpufreq_start_governor(policy);
1583			if (ret)
1584				pr_err("%s: Failed to start governor\n", __func__);
1585		}
1586
1587		goto unlock;
1588	}
1589
 
 
 
 
 
 
1590	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1591		cpufreq_cooling_unregister(policy->cdev);
1592		policy->cdev = NULL;
1593	}
1594
1595	if (cpufreq_driver->stop_cpu)
1596		cpufreq_driver->stop_cpu(policy);
1597
1598	if (has_target())
1599		cpufreq_exit_governor(policy);
1600
1601	/*
1602	 * Perform the ->offline() during light-weight tear-down, as
1603	 * that allows fast recovery when the CPU comes back.
1604	 */
1605	if (cpufreq_driver->offline) {
1606		cpufreq_driver->offline(policy);
1607	} else if (cpufreq_driver->exit) {
1608		cpufreq_driver->exit(policy);
1609		policy->freq_table = NULL;
1610	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1611
1612unlock:
1613	up_write(&policy->rwsem);
1614	return 0;
1615}
1616
1617/*
1618 * cpufreq_remove_dev - remove a CPU device
1619 *
1620 * Removes the cpufreq interface for a CPU device.
1621 */
1622static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1623{
1624	unsigned int cpu = dev->id;
1625	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1626
1627	if (!policy)
1628		return;
1629
 
 
1630	if (cpu_online(cpu))
1631		cpufreq_offline(cpu);
 
 
 
 
 
 
 
1632
1633	cpumask_clear_cpu(cpu, policy->real_cpus);
1634	remove_cpu_dev_symlink(policy, dev);
 
1635
1636	if (cpumask_empty(policy->real_cpus)) {
1637		/* We did light-weight exit earlier, do full tear down now */
1638		if (cpufreq_driver->offline)
1639			cpufreq_driver->exit(policy);
1640
1641		cpufreq_policy_free(policy);
1642	}
1643}
1644
1645/**
1646 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1647 *	in deep trouble.
1648 *	@policy: policy managing CPUs
1649 *	@new_freq: CPU frequency the CPU actually runs at
1650 *
1651 *	We adjust to current frequency first, and need to clean up later.
1652 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1653 */
1654static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1655				unsigned int new_freq)
1656{
1657	struct cpufreq_freqs freqs;
1658
1659	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1660		 policy->cur, new_freq);
1661
1662	freqs.old = policy->cur;
1663	freqs.new = new_freq;
1664
1665	cpufreq_freq_transition_begin(policy, &freqs);
1666	cpufreq_freq_transition_end(policy, &freqs, 0);
1667}
1668
1669static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1670{
1671	unsigned int new_freq;
1672
1673	new_freq = cpufreq_driver->get(policy->cpu);
1674	if (!new_freq)
1675		return 0;
1676
1677	/*
1678	 * If fast frequency switching is used with the given policy, the check
1679	 * against policy->cur is pointless, so skip it in that case.
1680	 */
1681	if (policy->fast_switch_enabled || !has_target())
1682		return new_freq;
1683
1684	if (policy->cur != new_freq) {
 
 
 
 
 
 
 
 
 
 
1685		cpufreq_out_of_sync(policy, new_freq);
1686		if (update)
1687			schedule_work(&policy->update);
1688	}
1689
1690	return new_freq;
1691}
1692
1693/**
1694 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1695 * @cpu: CPU number
1696 *
1697 * This is the last known freq, without actually getting it from the driver.
1698 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1699 */
1700unsigned int cpufreq_quick_get(unsigned int cpu)
1701{
1702	struct cpufreq_policy *policy;
1703	unsigned int ret_freq = 0;
1704	unsigned long flags;
1705
1706	read_lock_irqsave(&cpufreq_driver_lock, flags);
1707
1708	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1709		ret_freq = cpufreq_driver->get(cpu);
1710		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1711		return ret_freq;
1712	}
1713
1714	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1715
1716	policy = cpufreq_cpu_get(cpu);
1717	if (policy) {
1718		ret_freq = policy->cur;
1719		cpufreq_cpu_put(policy);
1720	}
1721
1722	return ret_freq;
1723}
1724EXPORT_SYMBOL(cpufreq_quick_get);
1725
1726/**
1727 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1728 * @cpu: CPU number
1729 *
1730 * Just return the max possible frequency for a given CPU.
1731 */
1732unsigned int cpufreq_quick_get_max(unsigned int cpu)
1733{
1734	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1735	unsigned int ret_freq = 0;
1736
1737	if (policy) {
1738		ret_freq = policy->max;
1739		cpufreq_cpu_put(policy);
1740	}
1741
1742	return ret_freq;
1743}
1744EXPORT_SYMBOL(cpufreq_quick_get_max);
1745
1746/**
1747 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1748 * @cpu: CPU number
1749 *
1750 * The default return value is the max_freq field of cpuinfo.
1751 */
1752__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1753{
1754	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1755	unsigned int ret_freq = 0;
1756
1757	if (policy) {
1758		ret_freq = policy->cpuinfo.max_freq;
1759		cpufreq_cpu_put(policy);
1760	}
1761
1762	return ret_freq;
1763}
1764EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1765
1766static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1767{
1768	if (unlikely(policy_is_inactive(policy)))
1769		return 0;
1770
1771	return cpufreq_verify_current_freq(policy, true);
1772}
1773
1774/**
1775 * cpufreq_get - get the current CPU frequency (in kHz)
1776 * @cpu: CPU number
1777 *
1778 * Get the CPU current (static) CPU frequency
1779 */
1780unsigned int cpufreq_get(unsigned int cpu)
1781{
1782	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1783	unsigned int ret_freq = 0;
1784
1785	if (policy) {
1786		down_read(&policy->rwsem);
1787		if (cpufreq_driver->get)
1788			ret_freq = __cpufreq_get(policy);
1789		up_read(&policy->rwsem);
1790
1791		cpufreq_cpu_put(policy);
1792	}
1793
1794	return ret_freq;
1795}
1796EXPORT_SYMBOL(cpufreq_get);
1797
1798static struct subsys_interface cpufreq_interface = {
1799	.name		= "cpufreq",
1800	.subsys		= &cpu_subsys,
1801	.add_dev	= cpufreq_add_dev,
1802	.remove_dev	= cpufreq_remove_dev,
1803};
1804
1805/*
1806 * In case platform wants some specific frequency to be configured
1807 * during suspend..
1808 */
1809int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1810{
1811	int ret;
1812
1813	if (!policy->suspend_freq) {
1814		pr_debug("%s: suspend_freq not defined\n", __func__);
1815		return 0;
1816	}
1817
1818	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1819			policy->suspend_freq);
1820
1821	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1822			CPUFREQ_RELATION_H);
1823	if (ret)
1824		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1825				__func__, policy->suspend_freq, ret);
1826
1827	return ret;
1828}
1829EXPORT_SYMBOL(cpufreq_generic_suspend);
1830
1831/**
1832 * cpufreq_suspend() - Suspend CPUFreq governors
1833 *
1834 * Called during system wide Suspend/Hibernate cycles for suspending governors
1835 * as some platforms can't change frequency after this point in suspend cycle.
1836 * Because some of the devices (like: i2c, regulators, etc) they use for
1837 * changing frequency are suspended quickly after this point.
1838 */
1839void cpufreq_suspend(void)
1840{
1841	struct cpufreq_policy *policy;
1842
1843	if (!cpufreq_driver)
1844		return;
1845
1846	if (!has_target() && !cpufreq_driver->suspend)
1847		goto suspend;
1848
1849	pr_debug("%s: Suspending Governors\n", __func__);
1850
1851	for_each_active_policy(policy) {
1852		if (has_target()) {
1853			down_write(&policy->rwsem);
1854			cpufreq_stop_governor(policy);
1855			up_write(&policy->rwsem);
1856		}
1857
1858		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1859			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1860				cpufreq_driver->name);
1861	}
1862
1863suspend:
1864	cpufreq_suspended = true;
1865}
1866
1867/**
1868 * cpufreq_resume() - Resume CPUFreq governors
1869 *
1870 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1871 * are suspended with cpufreq_suspend().
1872 */
1873void cpufreq_resume(void)
1874{
1875	struct cpufreq_policy *policy;
1876	int ret;
1877
1878	if (!cpufreq_driver)
1879		return;
1880
1881	if (unlikely(!cpufreq_suspended))
1882		return;
1883
1884	cpufreq_suspended = false;
1885
1886	if (!has_target() && !cpufreq_driver->resume)
1887		return;
1888
1889	pr_debug("%s: Resuming Governors\n", __func__);
1890
1891	for_each_active_policy(policy) {
1892		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1893			pr_err("%s: Failed to resume driver: %p\n", __func__,
1894				policy);
1895		} else if (has_target()) {
1896			down_write(&policy->rwsem);
1897			ret = cpufreq_start_governor(policy);
1898			up_write(&policy->rwsem);
1899
1900			if (ret)
1901				pr_err("%s: Failed to start governor for policy: %p\n",
1902				       __func__, policy);
1903		}
1904	}
1905}
1906
1907/**
1908 *	cpufreq_get_current_driver - return current driver's name
 
1909 *
1910 *	Return the name string of the currently loaded cpufreq driver
1911 *	or NULL, if none.
 
 
 
 
 
 
 
 
 
 
 
1912 */
1913const char *cpufreq_get_current_driver(void)
1914{
1915	if (cpufreq_driver)
1916		return cpufreq_driver->name;
1917
1918	return NULL;
1919}
1920EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1921
1922/**
1923 *	cpufreq_get_driver_data - return current driver data
1924 *
1925 *	Return the private data of the currently loaded cpufreq
1926 *	driver, or NULL if no cpufreq driver is loaded.
1927 */
1928void *cpufreq_get_driver_data(void)
1929{
1930	if (cpufreq_driver)
1931		return cpufreq_driver->driver_data;
1932
1933	return NULL;
1934}
1935EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1936
1937/*********************************************************************
1938 *                     NOTIFIER LISTS INTERFACE                      *
1939 *********************************************************************/
1940
1941/**
1942 *	cpufreq_register_notifier - register a driver with cpufreq
1943 *	@nb: notifier function to register
1944 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1945 *
1946 *	Add a driver to one of two lists: either a list of drivers that
1947 *      are notified about clock rate changes (once before and once after
1948 *      the transition), or a list of drivers that are notified about
1949 *      changes in cpufreq policy.
1950 *
1951 *	This function may sleep, and has the same return conditions as
1952 *	blocking_notifier_chain_register.
1953 */
1954int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1955{
1956	int ret;
1957
1958	if (cpufreq_disabled())
1959		return -EINVAL;
1960
1961	switch (list) {
1962	case CPUFREQ_TRANSITION_NOTIFIER:
1963		mutex_lock(&cpufreq_fast_switch_lock);
1964
1965		if (cpufreq_fast_switch_count > 0) {
1966			mutex_unlock(&cpufreq_fast_switch_lock);
1967			return -EBUSY;
1968		}
1969		ret = srcu_notifier_chain_register(
1970				&cpufreq_transition_notifier_list, nb);
1971		if (!ret)
1972			cpufreq_fast_switch_count--;
1973
1974		mutex_unlock(&cpufreq_fast_switch_lock);
1975		break;
1976	case CPUFREQ_POLICY_NOTIFIER:
1977		ret = blocking_notifier_chain_register(
1978				&cpufreq_policy_notifier_list, nb);
1979		break;
1980	default:
1981		ret = -EINVAL;
1982	}
1983
1984	return ret;
1985}
1986EXPORT_SYMBOL(cpufreq_register_notifier);
1987
1988/**
1989 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1990 *	@nb: notifier block to be unregistered
1991 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1992 *
1993 *	Remove a driver from the CPU frequency notifier list.
1994 *
1995 *	This function may sleep, and has the same return conditions as
1996 *	blocking_notifier_chain_unregister.
1997 */
1998int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1999{
2000	int ret;
2001
2002	if (cpufreq_disabled())
2003		return -EINVAL;
2004
2005	switch (list) {
2006	case CPUFREQ_TRANSITION_NOTIFIER:
2007		mutex_lock(&cpufreq_fast_switch_lock);
2008
2009		ret = srcu_notifier_chain_unregister(
2010				&cpufreq_transition_notifier_list, nb);
2011		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2012			cpufreq_fast_switch_count++;
2013
2014		mutex_unlock(&cpufreq_fast_switch_lock);
2015		break;
2016	case CPUFREQ_POLICY_NOTIFIER:
2017		ret = blocking_notifier_chain_unregister(
2018				&cpufreq_policy_notifier_list, nb);
2019		break;
2020	default:
2021		ret = -EINVAL;
2022	}
2023
2024	return ret;
2025}
2026EXPORT_SYMBOL(cpufreq_unregister_notifier);
2027
2028
2029/*********************************************************************
2030 *                              GOVERNORS                            *
2031 *********************************************************************/
2032
2033/**
2034 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2035 * @policy: cpufreq policy to switch the frequency for.
2036 * @target_freq: New frequency to set (may be approximate).
2037 *
2038 * Carry out a fast frequency switch without sleeping.
2039 *
2040 * The driver's ->fast_switch() callback invoked by this function must be
2041 * suitable for being called from within RCU-sched read-side critical sections
2042 * and it is expected to select the minimum available frequency greater than or
2043 * equal to @target_freq (CPUFREQ_RELATION_L).
2044 *
2045 * This function must not be called if policy->fast_switch_enabled is unset.
2046 *
2047 * Governors calling this function must guarantee that it will never be invoked
2048 * twice in parallel for the same policy and that it will never be called in
2049 * parallel with either ->target() or ->target_index() for the same policy.
2050 *
2051 * Returns the actual frequency set for the CPU.
2052 *
2053 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2054 * error condition, the hardware configuration must be preserved.
2055 */
2056unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2057					unsigned int target_freq)
2058{
 
 
 
2059	target_freq = clamp_val(target_freq, policy->min, policy->max);
 
 
 
 
2060
2061	return cpufreq_driver->fast_switch(policy, target_freq);
 
 
 
 
 
 
 
 
 
 
2062}
2063EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2065/* Must set freqs->new to intermediate frequency */
2066static int __target_intermediate(struct cpufreq_policy *policy,
2067				 struct cpufreq_freqs *freqs, int index)
2068{
2069	int ret;
2070
2071	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2072
2073	/* We don't need to switch to intermediate freq */
2074	if (!freqs->new)
2075		return 0;
2076
2077	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2078		 __func__, policy->cpu, freqs->old, freqs->new);
2079
2080	cpufreq_freq_transition_begin(policy, freqs);
2081	ret = cpufreq_driver->target_intermediate(policy, index);
2082	cpufreq_freq_transition_end(policy, freqs, ret);
2083
2084	if (ret)
2085		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2086		       __func__, ret);
2087
2088	return ret;
2089}
2090
2091static int __target_index(struct cpufreq_policy *policy, int index)
2092{
2093	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2094	unsigned int intermediate_freq = 0;
2095	unsigned int newfreq = policy->freq_table[index].frequency;
2096	int retval = -EINVAL;
2097	bool notify;
2098
2099	if (newfreq == policy->cur)
2100		return 0;
2101
 
 
 
2102	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2103	if (notify) {
2104		/* Handle switching to intermediate frequency */
2105		if (cpufreq_driver->get_intermediate) {
2106			retval = __target_intermediate(policy, &freqs, index);
2107			if (retval)
2108				return retval;
2109
2110			intermediate_freq = freqs.new;
2111			/* Set old freq to intermediate */
2112			if (intermediate_freq)
2113				freqs.old = freqs.new;
2114		}
2115
2116		freqs.new = newfreq;
2117		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2118			 __func__, policy->cpu, freqs.old, freqs.new);
2119
2120		cpufreq_freq_transition_begin(policy, &freqs);
2121	}
2122
2123	retval = cpufreq_driver->target_index(policy, index);
2124	if (retval)
2125		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2126		       retval);
2127
2128	if (notify) {
2129		cpufreq_freq_transition_end(policy, &freqs, retval);
2130
2131		/*
2132		 * Failed after setting to intermediate freq? Driver should have
2133		 * reverted back to initial frequency and so should we. Check
2134		 * here for intermediate_freq instead of get_intermediate, in
2135		 * case we haven't switched to intermediate freq at all.
2136		 */
2137		if (unlikely(retval && intermediate_freq)) {
2138			freqs.old = intermediate_freq;
2139			freqs.new = policy->restore_freq;
2140			cpufreq_freq_transition_begin(policy, &freqs);
2141			cpufreq_freq_transition_end(policy, &freqs, 0);
2142		}
2143	}
2144
2145	return retval;
2146}
2147
2148int __cpufreq_driver_target(struct cpufreq_policy *policy,
2149			    unsigned int target_freq,
2150			    unsigned int relation)
2151{
2152	unsigned int old_target_freq = target_freq;
2153	int index;
2154
2155	if (cpufreq_disabled())
2156		return -ENODEV;
2157
2158	/* Make sure that target_freq is within supported range */
2159	target_freq = clamp_val(target_freq, policy->min, policy->max);
2160
2161	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2162		 policy->cpu, target_freq, relation, old_target_freq);
2163
2164	/*
2165	 * This might look like a redundant call as we are checking it again
2166	 * after finding index. But it is left intentionally for cases where
2167	 * exactly same freq is called again and so we can save on few function
2168	 * calls.
2169	 */
2170	if (target_freq == policy->cur)
 
2171		return 0;
2172
2173	/* Save last value to restore later on errors */
2174	policy->restore_freq = policy->cur;
 
 
 
 
 
2175
2176	if (cpufreq_driver->target)
2177		return cpufreq_driver->target(policy, target_freq, relation);
 
2178
2179	if (!cpufreq_driver->target_index)
2180		return -EINVAL;
2181
2182	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2183
2184	return __target_index(policy, index);
2185}
2186EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2187
2188int cpufreq_driver_target(struct cpufreq_policy *policy,
2189			  unsigned int target_freq,
2190			  unsigned int relation)
2191{
2192	int ret;
2193
2194	down_write(&policy->rwsem);
2195
2196	ret = __cpufreq_driver_target(policy, target_freq, relation);
2197
2198	up_write(&policy->rwsem);
2199
2200	return ret;
2201}
2202EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2203
2204__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2205{
2206	return NULL;
2207}
2208
2209static int cpufreq_init_governor(struct cpufreq_policy *policy)
2210{
2211	int ret;
2212
2213	/* Don't start any governor operations if we are entering suspend */
2214	if (cpufreq_suspended)
2215		return 0;
2216	/*
2217	 * Governor might not be initiated here if ACPI _PPC changed
2218	 * notification happened, so check it.
2219	 */
2220	if (!policy->governor)
2221		return -EINVAL;
2222
2223	/* Platform doesn't want dynamic frequency switching ? */
2224	if (policy->governor->dynamic_switching &&
2225	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2226		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2227
2228		if (gov) {
2229			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2230				policy->governor->name, gov->name);
2231			policy->governor = gov;
2232		} else {
2233			return -EINVAL;
2234		}
2235	}
2236
2237	if (!try_module_get(policy->governor->owner))
2238		return -EINVAL;
2239
2240	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2241
2242	if (policy->governor->init) {
2243		ret = policy->governor->init(policy);
2244		if (ret) {
2245			module_put(policy->governor->owner);
2246			return ret;
2247		}
2248	}
2249
 
 
2250	return 0;
2251}
2252
2253static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2254{
2255	if (cpufreq_suspended || !policy->governor)
2256		return;
2257
2258	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2259
2260	if (policy->governor->exit)
2261		policy->governor->exit(policy);
2262
2263	module_put(policy->governor->owner);
2264}
2265
2266int cpufreq_start_governor(struct cpufreq_policy *policy)
2267{
2268	int ret;
2269
2270	if (cpufreq_suspended)
2271		return 0;
2272
2273	if (!policy->governor)
2274		return -EINVAL;
2275
2276	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2277
2278	if (cpufreq_driver->get)
2279		cpufreq_verify_current_freq(policy, false);
2280
2281	if (policy->governor->start) {
2282		ret = policy->governor->start(policy);
2283		if (ret)
2284			return ret;
2285	}
2286
2287	if (policy->governor->limits)
2288		policy->governor->limits(policy);
2289
2290	return 0;
2291}
2292
2293void cpufreq_stop_governor(struct cpufreq_policy *policy)
2294{
2295	if (cpufreq_suspended || !policy->governor)
2296		return;
2297
2298	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2299
2300	if (policy->governor->stop)
2301		policy->governor->stop(policy);
2302}
2303
2304static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2305{
2306	if (cpufreq_suspended || !policy->governor)
2307		return;
2308
2309	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2310
2311	if (policy->governor->limits)
2312		policy->governor->limits(policy);
2313}
2314
2315int cpufreq_register_governor(struct cpufreq_governor *governor)
2316{
2317	int err;
2318
2319	if (!governor)
2320		return -EINVAL;
2321
2322	if (cpufreq_disabled())
2323		return -ENODEV;
2324
2325	mutex_lock(&cpufreq_governor_mutex);
2326
2327	err = -EBUSY;
2328	if (!find_governor(governor->name)) {
2329		err = 0;
2330		list_add(&governor->governor_list, &cpufreq_governor_list);
2331	}
2332
2333	mutex_unlock(&cpufreq_governor_mutex);
2334	return err;
2335}
2336EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2337
2338void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2339{
2340	struct cpufreq_policy *policy;
2341	unsigned long flags;
2342
2343	if (!governor)
2344		return;
2345
2346	if (cpufreq_disabled())
2347		return;
2348
2349	/* clear last_governor for all inactive policies */
2350	read_lock_irqsave(&cpufreq_driver_lock, flags);
2351	for_each_inactive_policy(policy) {
2352		if (!strcmp(policy->last_governor, governor->name)) {
2353			policy->governor = NULL;
2354			strcpy(policy->last_governor, "\0");
2355		}
2356	}
2357	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2358
2359	mutex_lock(&cpufreq_governor_mutex);
2360	list_del(&governor->governor_list);
2361	mutex_unlock(&cpufreq_governor_mutex);
2362}
2363EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2364
2365
2366/*********************************************************************
2367 *                          POLICY INTERFACE                         *
2368 *********************************************************************/
2369
2370/**
2371 * cpufreq_get_policy - get the current cpufreq_policy
2372 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2373 *	is written
2374 * @cpu: CPU to find the policy for
2375 *
2376 * Reads the current cpufreq policy.
2377 */
2378int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2379{
2380	struct cpufreq_policy *cpu_policy;
2381	if (!policy)
2382		return -EINVAL;
2383
2384	cpu_policy = cpufreq_cpu_get(cpu);
2385	if (!cpu_policy)
2386		return -EINVAL;
2387
2388	memcpy(policy, cpu_policy, sizeof(*policy));
2389
2390	cpufreq_cpu_put(cpu_policy);
2391	return 0;
2392}
2393EXPORT_SYMBOL(cpufreq_get_policy);
2394
2395/**
2396 * cpufreq_set_policy - Modify cpufreq policy parameters.
2397 * @policy: Policy object to modify.
2398 * @new_gov: Policy governor pointer.
2399 * @new_pol: Policy value (for drivers with built-in governors).
2400 *
2401 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2402 * limits to be set for the policy, update @policy with the verified limits
2403 * values and either invoke the driver's ->setpolicy() callback (if present) or
2404 * carry out a governor update for @policy.  That is, run the current governor's
2405 * ->limits() callback (if @new_gov points to the same object as the one in
2406 * @policy) or replace the governor for @policy with @new_gov.
2407 *
2408 * The cpuinfo part of @policy is not updated by this function.
2409 */
2410static int cpufreq_set_policy(struct cpufreq_policy *policy,
2411			      struct cpufreq_governor *new_gov,
2412			      unsigned int new_pol)
2413{
2414	struct cpufreq_policy_data new_data;
2415	struct cpufreq_governor *old_gov;
2416	int ret;
2417
2418	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2419	new_data.freq_table = policy->freq_table;
2420	new_data.cpu = policy->cpu;
2421	/*
2422	 * PM QoS framework collects all the requests from users and provide us
2423	 * the final aggregated value here.
2424	 */
2425	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2426	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2427
2428	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2429		 new_data.cpu, new_data.min, new_data.max);
2430
2431	/*
2432	 * Verify that the CPU speed can be set within these limits and make sure
2433	 * that min <= max.
2434	 */
2435	ret = cpufreq_driver->verify(&new_data);
2436	if (ret)
2437		return ret;
2438
 
 
 
 
 
2439	policy->min = new_data.min;
2440	policy->max = new_data.max;
 
 
2441	trace_cpu_frequency_limits(policy);
2442
2443	policy->cached_target_freq = UINT_MAX;
2444
2445	pr_debug("new min and max freqs are %u - %u kHz\n",
2446		 policy->min, policy->max);
2447
2448	if (cpufreq_driver->setpolicy) {
2449		policy->policy = new_pol;
2450		pr_debug("setting range\n");
2451		return cpufreq_driver->setpolicy(policy);
2452	}
2453
2454	if (new_gov == policy->governor) {
2455		pr_debug("governor limits update\n");
2456		cpufreq_governor_limits(policy);
2457		return 0;
2458	}
2459
2460	pr_debug("governor switch\n");
2461
2462	/* save old, working values */
2463	old_gov = policy->governor;
2464	/* end old governor */
2465	if (old_gov) {
2466		cpufreq_stop_governor(policy);
2467		cpufreq_exit_governor(policy);
2468	}
2469
2470	/* start new governor */
2471	policy->governor = new_gov;
2472	ret = cpufreq_init_governor(policy);
2473	if (!ret) {
2474		ret = cpufreq_start_governor(policy);
2475		if (!ret) {
2476			pr_debug("governor change\n");
2477			sched_cpufreq_governor_change(policy, old_gov);
2478			return 0;
2479		}
2480		cpufreq_exit_governor(policy);
2481	}
2482
2483	/* new governor failed, so re-start old one */
2484	pr_debug("starting governor %s failed\n", policy->governor->name);
2485	if (old_gov) {
2486		policy->governor = old_gov;
2487		if (cpufreq_init_governor(policy))
2488			policy->governor = NULL;
2489		else
2490			cpufreq_start_governor(policy);
2491	}
2492
2493	return ret;
2494}
2495
2496/**
2497 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2498 * @cpu: CPU to re-evaluate the policy for.
2499 *
2500 * Update the current frequency for the cpufreq policy of @cpu and use
2501 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2502 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2503 * for the policy in question, among other things.
2504 */
2505void cpufreq_update_policy(unsigned int cpu)
2506{
2507	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2508
2509	if (!policy)
2510		return;
2511
2512	/*
2513	 * BIOS might change freq behind our back
2514	 * -> ask driver for current freq and notify governors about a change
2515	 */
2516	if (cpufreq_driver->get && has_target() &&
2517	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2518		goto unlock;
2519
2520	refresh_frequency_limits(policy);
2521
2522unlock:
2523	cpufreq_cpu_release(policy);
2524}
2525EXPORT_SYMBOL(cpufreq_update_policy);
2526
2527/**
2528 * cpufreq_update_limits - Update policy limits for a given CPU.
2529 * @cpu: CPU to update the policy limits for.
2530 *
2531 * Invoke the driver's ->update_limits callback if present or call
2532 * cpufreq_update_policy() for @cpu.
2533 */
2534void cpufreq_update_limits(unsigned int cpu)
2535{
2536	if (cpufreq_driver->update_limits)
2537		cpufreq_driver->update_limits(cpu);
2538	else
2539		cpufreq_update_policy(cpu);
2540}
2541EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2542
2543/*********************************************************************
2544 *               BOOST						     *
2545 *********************************************************************/
2546static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2547{
2548	int ret;
2549
2550	if (!policy->freq_table)
2551		return -ENXIO;
2552
2553	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2554	if (ret) {
2555		pr_err("%s: Policy frequency update failed\n", __func__);
2556		return ret;
2557	}
2558
2559	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2560	if (ret < 0)
2561		return ret;
2562
2563	return 0;
2564}
2565
2566int cpufreq_boost_trigger_state(int state)
2567{
2568	struct cpufreq_policy *policy;
2569	unsigned long flags;
2570	int ret = 0;
2571
2572	if (cpufreq_driver->boost_enabled == state)
2573		return 0;
2574
2575	write_lock_irqsave(&cpufreq_driver_lock, flags);
2576	cpufreq_driver->boost_enabled = state;
2577	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2578
2579	get_online_cpus();
2580	for_each_active_policy(policy) {
2581		ret = cpufreq_driver->set_boost(policy, state);
2582		if (ret)
2583			goto err_reset_state;
 
 
2584	}
2585	put_online_cpus();
2586
2587	return 0;
2588
2589err_reset_state:
2590	put_online_cpus();
2591
2592	write_lock_irqsave(&cpufreq_driver_lock, flags);
2593	cpufreq_driver->boost_enabled = !state;
2594	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2595
2596	pr_err("%s: Cannot %s BOOST\n",
2597	       __func__, state ? "enable" : "disable");
2598
2599	return ret;
2600}
2601
2602static bool cpufreq_boost_supported(void)
2603{
2604	return cpufreq_driver->set_boost;
2605}
2606
2607static int create_boost_sysfs_file(void)
2608{
2609	int ret;
2610
2611	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2612	if (ret)
2613		pr_err("%s: cannot register global BOOST sysfs file\n",
2614		       __func__);
2615
2616	return ret;
2617}
2618
2619static void remove_boost_sysfs_file(void)
2620{
2621	if (cpufreq_boost_supported())
2622		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2623}
2624
2625int cpufreq_enable_boost_support(void)
2626{
2627	if (!cpufreq_driver)
2628		return -EINVAL;
2629
2630	if (cpufreq_boost_supported())
2631		return 0;
2632
2633	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2634
2635	/* This will get removed on driver unregister */
2636	return create_boost_sysfs_file();
2637}
2638EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2639
2640int cpufreq_boost_enabled(void)
2641{
2642	return cpufreq_driver->boost_enabled;
2643}
2644EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2645
2646/*********************************************************************
2647 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2648 *********************************************************************/
2649static enum cpuhp_state hp_online;
2650
2651static int cpuhp_cpufreq_online(unsigned int cpu)
2652{
2653	cpufreq_online(cpu);
2654
2655	return 0;
2656}
2657
2658static int cpuhp_cpufreq_offline(unsigned int cpu)
2659{
2660	cpufreq_offline(cpu);
2661
2662	return 0;
2663}
2664
2665/**
2666 * cpufreq_register_driver - register a CPU Frequency driver
2667 * @driver_data: A struct cpufreq_driver containing the values#
2668 * submitted by the CPU Frequency driver.
2669 *
2670 * Registers a CPU Frequency driver to this core code. This code
2671 * returns zero on success, -EEXIST when another driver got here first
2672 * (and isn't unregistered in the meantime).
2673 *
2674 */
2675int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2676{
2677	unsigned long flags;
2678	int ret;
2679
2680	if (cpufreq_disabled())
2681		return -ENODEV;
2682
2683	/*
2684	 * The cpufreq core depends heavily on the availability of device
2685	 * structure, make sure they are available before proceeding further.
2686	 */
2687	if (!get_cpu_device(0))
2688		return -EPROBE_DEFER;
2689
2690	if (!driver_data || !driver_data->verify || !driver_data->init ||
2691	    !(driver_data->setpolicy || driver_data->target_index ||
2692		    driver_data->target) ||
2693	     (driver_data->setpolicy && (driver_data->target_index ||
2694		    driver_data->target)) ||
2695	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2696	     (!driver_data->online != !driver_data->offline))
 
2697		return -EINVAL;
2698
2699	pr_debug("trying to register driver %s\n", driver_data->name);
2700
2701	/* Protect against concurrent CPU online/offline. */
2702	cpus_read_lock();
2703
2704	write_lock_irqsave(&cpufreq_driver_lock, flags);
2705	if (cpufreq_driver) {
2706		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2707		ret = -EEXIST;
2708		goto out;
2709	}
2710	cpufreq_driver = driver_data;
2711	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2712
 
 
 
 
 
 
 
 
 
2713	if (driver_data->setpolicy)
2714		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2715
2716	if (cpufreq_boost_supported()) {
2717		ret = create_boost_sysfs_file();
2718		if (ret)
2719			goto err_null_driver;
2720	}
2721
2722	ret = subsys_interface_register(&cpufreq_interface);
2723	if (ret)
2724		goto err_boost_unreg;
2725
2726	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2727	    list_empty(&cpufreq_policy_list)) {
2728		/* if all ->init() calls failed, unregister */
2729		ret = -ENODEV;
2730		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2731			 driver_data->name);
2732		goto err_if_unreg;
2733	}
2734
2735	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2736						   "cpufreq:online",
2737						   cpuhp_cpufreq_online,
2738						   cpuhp_cpufreq_offline);
2739	if (ret < 0)
2740		goto err_if_unreg;
2741	hp_online = ret;
2742	ret = 0;
2743
2744	pr_debug("driver %s up and running\n", driver_data->name);
2745	goto out;
2746
2747err_if_unreg:
2748	subsys_interface_unregister(&cpufreq_interface);
2749err_boost_unreg:
2750	remove_boost_sysfs_file();
2751err_null_driver:
2752	write_lock_irqsave(&cpufreq_driver_lock, flags);
2753	cpufreq_driver = NULL;
2754	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755out:
2756	cpus_read_unlock();
2757	return ret;
2758}
2759EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2760
2761/*
2762 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2763 *
2764 * Unregister the current CPUFreq driver. Only call this if you have
2765 * the right to do so, i.e. if you have succeeded in initialising before!
2766 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2767 * currently not initialised.
2768 */
2769int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2770{
2771	unsigned long flags;
2772
2773	if (!cpufreq_driver || (driver != cpufreq_driver))
2774		return -EINVAL;
2775
2776	pr_debug("unregistering driver %s\n", driver->name);
2777
2778	/* Protect against concurrent cpu hotplug */
2779	cpus_read_lock();
2780	subsys_interface_unregister(&cpufreq_interface);
2781	remove_boost_sysfs_file();
 
2782	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2783
2784	write_lock_irqsave(&cpufreq_driver_lock, flags);
2785
2786	cpufreq_driver = NULL;
2787
2788	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2789	cpus_read_unlock();
2790
2791	return 0;
2792}
2793EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2794
2795static int __init cpufreq_core_init(void)
2796{
2797	struct cpufreq_governor *gov = cpufreq_default_governor();
 
2798
2799	if (cpufreq_disabled())
2800		return -ENODEV;
2801
2802	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
 
 
 
 
2803	BUG_ON(!cpufreq_global_kobject);
2804
2805	if (!strlen(default_governor))
2806		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2807
2808	return 0;
2809}
2810module_param(off, int, 0444);
2811module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2812core_initcall(cpufreq_core_init);