Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
  79}
  80
  81/* internal prototypes */
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 241
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 252	kobject_put(&policy->kobj);
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 266
 267	up_write(&policy->rwsem);
 268
 269	cpufreq_cpu_put(policy);
 270}
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 299}
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 336#endif
 337}
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 354
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 365	switch (state) {
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 397	}
 398}
 399
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency) {
 579		/*
 580		 * For platforms that can change the frequency very fast (< 10
 581		 * us), the above formula gives a decent transition delay. But
 582		 * for platforms where transition_latency is in milliseconds, it
 583		 * ends up giving unrealistic values.
 584		 *
 585		 * Cap the default transition delay to 10 ms, which seems to be
 586		 * a reasonable amount of time after which we should reevaluate
 587		 * the frequency.
 588		 */
 589		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 590	}
 591
 592	return LATENCY_MULTIPLIER;
 593}
 594EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 595
 596/*********************************************************************
 597 *                          SYSFS INTERFACE                          *
 598 *********************************************************************/
 599static ssize_t show_boost(struct kobject *kobj,
 600			  struct kobj_attribute *attr, char *buf)
 601{
 602	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 603}
 604
 605static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 606			   const char *buf, size_t count)
 607{
 608	int ret, enable;
 609
 610	ret = sscanf(buf, "%d", &enable);
 611	if (ret != 1 || enable < 0 || enable > 1)
 612		return -EINVAL;
 613
 614	if (cpufreq_boost_trigger_state(enable)) {
 615		pr_err("%s: Cannot %s BOOST!\n",
 616		       __func__, enable ? "enable" : "disable");
 617		return -EINVAL;
 618	}
 619
 620	pr_debug("%s: cpufreq BOOST %s\n",
 621		 __func__, enable ? "enabled" : "disabled");
 622
 623	return count;
 624}
 625define_one_global_rw(boost);
 626
 627static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 628{
 629	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 630}
 631
 632static ssize_t store_local_boost(struct cpufreq_policy *policy,
 633				 const char *buf, size_t count)
 634{
 635	int ret, enable;
 
 636
 637	ret = kstrtoint(buf, 10, &enable);
 638	if (ret || enable < 0 || enable > 1)
 639		return -EINVAL;
 640
 641	if (!cpufreq_driver->boost_enabled)
 642		return -EINVAL;
 643
 644	if (policy->boost_enabled == enable)
 645		return count;
 646
 
 
 647	cpus_read_lock();
 648	ret = cpufreq_driver->set_boost(policy, enable);
 649	cpus_read_unlock();
 650
 651	if (ret)
 
 652		return ret;
 653
 654	policy->boost_enabled = enable;
 655
 656	return count;
 657}
 658
 659static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 660
 661static struct cpufreq_governor *find_governor(const char *str_governor)
 662{
 663	struct cpufreq_governor *t;
 664
 665	for_each_governor(t)
 666		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 667			return t;
 668
 669	return NULL;
 670}
 671
 672static struct cpufreq_governor *get_governor(const char *str_governor)
 673{
 674	struct cpufreq_governor *t;
 675
 676	mutex_lock(&cpufreq_governor_mutex);
 677	t = find_governor(str_governor);
 678	if (!t)
 679		goto unlock;
 680
 681	if (!try_module_get(t->owner))
 682		t = NULL;
 683
 684unlock:
 685	mutex_unlock(&cpufreq_governor_mutex);
 686
 687	return t;
 688}
 689
 690static unsigned int cpufreq_parse_policy(char *str_governor)
 691{
 692	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 693		return CPUFREQ_POLICY_PERFORMANCE;
 694
 695	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 696		return CPUFREQ_POLICY_POWERSAVE;
 697
 698	return CPUFREQ_POLICY_UNKNOWN;
 699}
 700
 701/**
 702 * cpufreq_parse_governor - parse a governor string only for has_target()
 703 * @str_governor: Governor name.
 704 */
 705static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 706{
 707	struct cpufreq_governor *t;
 708
 709	t = get_governor(str_governor);
 710	if (t)
 711		return t;
 712
 713	if (request_module("cpufreq_%s", str_governor))
 714		return NULL;
 715
 716	return get_governor(str_governor);
 717}
 718
 719/*
 720 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 721 * print out cpufreq information
 722 *
 723 * Write out information from cpufreq_driver->policy[cpu]; object must be
 724 * "unsigned int".
 725 */
 726
 727#define show_one(file_name, object)			\
 728static ssize_t show_##file_name				\
 729(struct cpufreq_policy *policy, char *buf)		\
 730{							\
 731	return sprintf(buf, "%u\n", policy->object);	\
 732}
 733
 734show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 735show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 736show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 737show_one(scaling_min_freq, min);
 738show_one(scaling_max_freq, max);
 739
 740__weak unsigned int arch_freq_get_on_cpu(int cpu)
 741{
 742	return 0;
 743}
 744
 745static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 746{
 747	ssize_t ret;
 748	unsigned int freq;
 749
 750	freq = arch_freq_get_on_cpu(policy->cpu);
 751	if (freq)
 752		ret = sprintf(buf, "%u\n", freq);
 753	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 754		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 755	else
 756		ret = sprintf(buf, "%u\n", policy->cur);
 757	return ret;
 758}
 759
 760/*
 761 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 762 */
 763#define store_one(file_name, object)			\
 764static ssize_t store_##file_name					\
 765(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 766{									\
 767	unsigned long val;						\
 768	int ret;							\
 769									\
 770	ret = kstrtoul(buf, 0, &val);					\
 771	if (ret)							\
 772		return ret;						\
 773									\
 774	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 775	return ret >= 0 ? count : ret;					\
 776}
 777
 778store_one(scaling_min_freq, min);
 779store_one(scaling_max_freq, max);
 780
 781/*
 782 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 783 */
 784static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 785					char *buf)
 786{
 787	unsigned int cur_freq = __cpufreq_get(policy);
 788
 789	if (cur_freq)
 790		return sprintf(buf, "%u\n", cur_freq);
 791
 792	return sprintf(buf, "<unknown>\n");
 793}
 794
 795/*
 796 * show_scaling_governor - show the current policy for the specified CPU
 797 */
 798static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 799{
 800	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 801		return sprintf(buf, "powersave\n");
 802	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 803		return sprintf(buf, "performance\n");
 804	else if (policy->governor)
 805		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 806				policy->governor->name);
 807	return -EINVAL;
 808}
 809
 810/*
 811 * store_scaling_governor - store policy for the specified CPU
 812 */
 813static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 814					const char *buf, size_t count)
 815{
 816	char str_governor[16];
 817	int ret;
 818
 819	ret = sscanf(buf, "%15s", str_governor);
 820	if (ret != 1)
 821		return -EINVAL;
 822
 823	if (cpufreq_driver->setpolicy) {
 824		unsigned int new_pol;
 825
 826		new_pol = cpufreq_parse_policy(str_governor);
 827		if (!new_pol)
 828			return -EINVAL;
 829
 830		ret = cpufreq_set_policy(policy, NULL, new_pol);
 831	} else {
 832		struct cpufreq_governor *new_gov;
 833
 834		new_gov = cpufreq_parse_governor(str_governor);
 835		if (!new_gov)
 836			return -EINVAL;
 837
 838		ret = cpufreq_set_policy(policy, new_gov,
 839					 CPUFREQ_POLICY_UNKNOWN);
 840
 841		module_put(new_gov->owner);
 842	}
 843
 844	return ret ? ret : count;
 845}
 846
 847/*
 848 * show_scaling_driver - show the cpufreq driver currently loaded
 849 */
 850static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 851{
 852	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 853}
 854
 855/*
 856 * show_scaling_available_governors - show the available CPUfreq governors
 857 */
 858static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 859						char *buf)
 860{
 861	ssize_t i = 0;
 862	struct cpufreq_governor *t;
 863
 864	if (!has_target()) {
 865		i += sprintf(buf, "performance powersave");
 866		goto out;
 867	}
 868
 869	mutex_lock(&cpufreq_governor_mutex);
 870	for_each_governor(t) {
 871		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 872		    - (CPUFREQ_NAME_LEN + 2)))
 873			break;
 874		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 875	}
 876	mutex_unlock(&cpufreq_governor_mutex);
 877out:
 878	i += sprintf(&buf[i], "\n");
 879	return i;
 880}
 881
 882ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 883{
 884	ssize_t i = 0;
 885	unsigned int cpu;
 886
 887	for_each_cpu(cpu, mask) {
 888		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
 889		if (i >= (PAGE_SIZE - 5))
 890			break;
 891	}
 892
 893	/* Remove the extra space at the end */
 894	i--;
 895
 896	i += sprintf(&buf[i], "\n");
 897	return i;
 898}
 899EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 900
 901/*
 902 * show_related_cpus - show the CPUs affected by each transition even if
 903 * hw coordination is in use
 904 */
 905static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 906{
 907	return cpufreq_show_cpus(policy->related_cpus, buf);
 908}
 909
 910/*
 911 * show_affected_cpus - show the CPUs affected by each transition
 912 */
 913static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 914{
 915	return cpufreq_show_cpus(policy->cpus, buf);
 916}
 917
 918static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 919					const char *buf, size_t count)
 920{
 921	unsigned int freq = 0;
 922	unsigned int ret;
 923
 924	if (!policy->governor || !policy->governor->store_setspeed)
 925		return -EINVAL;
 926
 927	ret = sscanf(buf, "%u", &freq);
 928	if (ret != 1)
 929		return -EINVAL;
 930
 931	policy->governor->store_setspeed(policy, freq);
 932
 933	return count;
 934}
 935
 936static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 937{
 938	if (!policy->governor || !policy->governor->show_setspeed)
 939		return sprintf(buf, "<unsupported>\n");
 940
 941	return policy->governor->show_setspeed(policy, buf);
 942}
 943
 944/*
 945 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 946 */
 947static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 948{
 949	unsigned int limit;
 950	int ret;
 951	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 952	if (!ret)
 953		return sprintf(buf, "%u\n", limit);
 954	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 955}
 956
 957cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 958cpufreq_freq_attr_ro(cpuinfo_min_freq);
 959cpufreq_freq_attr_ro(cpuinfo_max_freq);
 960cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 961cpufreq_freq_attr_ro(scaling_available_governors);
 962cpufreq_freq_attr_ro(scaling_driver);
 963cpufreq_freq_attr_ro(scaling_cur_freq);
 964cpufreq_freq_attr_ro(bios_limit);
 965cpufreq_freq_attr_ro(related_cpus);
 966cpufreq_freq_attr_ro(affected_cpus);
 967cpufreq_freq_attr_rw(scaling_min_freq);
 968cpufreq_freq_attr_rw(scaling_max_freq);
 969cpufreq_freq_attr_rw(scaling_governor);
 970cpufreq_freq_attr_rw(scaling_setspeed);
 971
 972static struct attribute *cpufreq_attrs[] = {
 973	&cpuinfo_min_freq.attr,
 974	&cpuinfo_max_freq.attr,
 975	&cpuinfo_transition_latency.attr,
 976	&scaling_min_freq.attr,
 977	&scaling_max_freq.attr,
 978	&affected_cpus.attr,
 979	&related_cpus.attr,
 980	&scaling_governor.attr,
 981	&scaling_driver.attr,
 982	&scaling_available_governors.attr,
 983	&scaling_setspeed.attr,
 984	NULL
 985};
 986ATTRIBUTE_GROUPS(cpufreq);
 987
 988#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 989#define to_attr(a) container_of(a, struct freq_attr, attr)
 990
 991static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 992{
 993	struct cpufreq_policy *policy = to_policy(kobj);
 994	struct freq_attr *fattr = to_attr(attr);
 995	ssize_t ret = -EBUSY;
 996
 997	if (!fattr->show)
 998		return -EIO;
 999
1000	down_read(&policy->rwsem);
1001	if (likely(!policy_is_inactive(policy)))
1002		ret = fattr->show(policy, buf);
1003	up_read(&policy->rwsem);
1004
1005	return ret;
1006}
1007
1008static ssize_t store(struct kobject *kobj, struct attribute *attr,
1009		     const char *buf, size_t count)
1010{
1011	struct cpufreq_policy *policy = to_policy(kobj);
1012	struct freq_attr *fattr = to_attr(attr);
1013	ssize_t ret = -EBUSY;
1014
1015	if (!fattr->store)
1016		return -EIO;
1017
1018	down_write(&policy->rwsem);
1019	if (likely(!policy_is_inactive(policy)))
1020		ret = fattr->store(policy, buf, count);
1021	up_write(&policy->rwsem);
1022
1023	return ret;
1024}
1025
1026static void cpufreq_sysfs_release(struct kobject *kobj)
1027{
1028	struct cpufreq_policy *policy = to_policy(kobj);
1029	pr_debug("last reference is dropped\n");
1030	complete(&policy->kobj_unregister);
1031}
1032
1033static const struct sysfs_ops sysfs_ops = {
1034	.show	= show,
1035	.store	= store,
1036};
1037
1038static const struct kobj_type ktype_cpufreq = {
1039	.sysfs_ops	= &sysfs_ops,
1040	.default_groups	= cpufreq_groups,
1041	.release	= cpufreq_sysfs_release,
1042};
1043
1044static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1045				struct device *dev)
1046{
1047	if (unlikely(!dev))
1048		return;
1049
1050	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1051		return;
1052
1053	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1054	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1055		dev_err(dev, "cpufreq symlink creation failed\n");
1056}
1057
1058static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1059				   struct device *dev)
1060{
1061	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1062	sysfs_remove_link(&dev->kobj, "cpufreq");
1063	cpumask_clear_cpu(cpu, policy->real_cpus);
1064}
1065
1066static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1067{
1068	struct freq_attr **drv_attr;
1069	int ret = 0;
1070
1071	/* set up files for this cpu device */
1072	drv_attr = cpufreq_driver->attr;
1073	while (drv_attr && *drv_attr) {
1074		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1075		if (ret)
1076			return ret;
1077		drv_attr++;
1078	}
1079	if (cpufreq_driver->get) {
1080		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1081		if (ret)
1082			return ret;
1083	}
1084
1085	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1086	if (ret)
1087		return ret;
1088
1089	if (cpufreq_driver->bios_limit) {
1090		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1091		if (ret)
1092			return ret;
1093	}
1094
1095	if (cpufreq_boost_supported()) {
1096		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1097		if (ret)
1098			return ret;
1099	}
1100
1101	return 0;
1102}
1103
1104static int cpufreq_init_policy(struct cpufreq_policy *policy)
1105{
1106	struct cpufreq_governor *gov = NULL;
1107	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1108	int ret;
1109
1110	if (has_target()) {
1111		/* Update policy governor to the one used before hotplug. */
1112		gov = get_governor(policy->last_governor);
1113		if (gov) {
1114			pr_debug("Restoring governor %s for cpu %d\n",
1115				 gov->name, policy->cpu);
1116		} else {
1117			gov = get_governor(default_governor);
1118		}
1119
1120		if (!gov) {
1121			gov = cpufreq_default_governor();
1122			__module_get(gov->owner);
1123		}
1124
1125	} else {
1126
1127		/* Use the default policy if there is no last_policy. */
1128		if (policy->last_policy) {
1129			pol = policy->last_policy;
1130		} else {
1131			pol = cpufreq_parse_policy(default_governor);
1132			/*
1133			 * In case the default governor is neither "performance"
1134			 * nor "powersave", fall back to the initial policy
1135			 * value set by the driver.
1136			 */
1137			if (pol == CPUFREQ_POLICY_UNKNOWN)
1138				pol = policy->policy;
1139		}
1140		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1141		    pol != CPUFREQ_POLICY_POWERSAVE)
1142			return -ENODATA;
1143	}
1144
1145	ret = cpufreq_set_policy(policy, gov, pol);
1146	if (gov)
1147		module_put(gov->owner);
1148
1149	return ret;
1150}
1151
1152static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1153{
1154	int ret = 0;
1155
1156	/* Has this CPU been taken care of already? */
1157	if (cpumask_test_cpu(cpu, policy->cpus))
1158		return 0;
1159
1160	down_write(&policy->rwsem);
1161	if (has_target())
1162		cpufreq_stop_governor(policy);
1163
1164	cpumask_set_cpu(cpu, policy->cpus);
1165
1166	if (has_target()) {
1167		ret = cpufreq_start_governor(policy);
1168		if (ret)
1169			pr_err("%s: Failed to start governor\n", __func__);
1170	}
1171	up_write(&policy->rwsem);
1172	return ret;
1173}
1174
1175void refresh_frequency_limits(struct cpufreq_policy *policy)
1176{
1177	if (!policy_is_inactive(policy)) {
1178		pr_debug("updating policy for CPU %u\n", policy->cpu);
1179
1180		cpufreq_set_policy(policy, policy->governor, policy->policy);
1181	}
1182}
1183EXPORT_SYMBOL(refresh_frequency_limits);
1184
1185static void handle_update(struct work_struct *work)
1186{
1187	struct cpufreq_policy *policy =
1188		container_of(work, struct cpufreq_policy, update);
1189
1190	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1191	down_write(&policy->rwsem);
1192	refresh_frequency_limits(policy);
1193	up_write(&policy->rwsem);
1194}
1195
1196static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1197				void *data)
1198{
1199	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1200
1201	schedule_work(&policy->update);
1202	return 0;
1203}
1204
1205static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1206				void *data)
1207{
1208	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1209
1210	schedule_work(&policy->update);
1211	return 0;
1212}
1213
1214static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1215{
1216	struct kobject *kobj;
1217	struct completion *cmp;
1218
1219	down_write(&policy->rwsem);
1220	cpufreq_stats_free_table(policy);
1221	kobj = &policy->kobj;
1222	cmp = &policy->kobj_unregister;
1223	up_write(&policy->rwsem);
1224	kobject_put(kobj);
1225
1226	/*
1227	 * We need to make sure that the underlying kobj is
1228	 * actually not referenced anymore by anybody before we
1229	 * proceed with unloading.
1230	 */
1231	pr_debug("waiting for dropping of refcount\n");
1232	wait_for_completion(cmp);
1233	pr_debug("wait complete\n");
1234}
1235
1236static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1237{
1238	struct cpufreq_policy *policy;
1239	struct device *dev = get_cpu_device(cpu);
1240	int ret;
1241
1242	if (!dev)
1243		return NULL;
1244
1245	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1246	if (!policy)
1247		return NULL;
1248
1249	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1250		goto err_free_policy;
1251
1252	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1253		goto err_free_cpumask;
1254
1255	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1256		goto err_free_rcpumask;
1257
1258	init_completion(&policy->kobj_unregister);
1259	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1260				   cpufreq_global_kobject, "policy%u", cpu);
1261	if (ret) {
1262		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1263		/*
1264		 * The entire policy object will be freed below, but the extra
1265		 * memory allocated for the kobject name needs to be freed by
1266		 * releasing the kobject.
1267		 */
1268		kobject_put(&policy->kobj);
1269		goto err_free_real_cpus;
1270	}
1271
1272	freq_constraints_init(&policy->constraints);
1273
1274	policy->nb_min.notifier_call = cpufreq_notifier_min;
1275	policy->nb_max.notifier_call = cpufreq_notifier_max;
1276
1277	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1278				    &policy->nb_min);
1279	if (ret) {
1280		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1281			ret, cpu);
1282		goto err_kobj_remove;
1283	}
1284
1285	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1286				    &policy->nb_max);
1287	if (ret) {
1288		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1289			ret, cpu);
1290		goto err_min_qos_notifier;
1291	}
1292
1293	INIT_LIST_HEAD(&policy->policy_list);
1294	init_rwsem(&policy->rwsem);
1295	spin_lock_init(&policy->transition_lock);
1296	init_waitqueue_head(&policy->transition_wait);
1297	INIT_WORK(&policy->update, handle_update);
1298
1299	policy->cpu = cpu;
1300	return policy;
1301
1302err_min_qos_notifier:
1303	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1304				 &policy->nb_min);
1305err_kobj_remove:
1306	cpufreq_policy_put_kobj(policy);
1307err_free_real_cpus:
1308	free_cpumask_var(policy->real_cpus);
1309err_free_rcpumask:
1310	free_cpumask_var(policy->related_cpus);
1311err_free_cpumask:
1312	free_cpumask_var(policy->cpus);
1313err_free_policy:
1314	kfree(policy);
1315
1316	return NULL;
1317}
1318
1319static void cpufreq_policy_free(struct cpufreq_policy *policy)
1320{
1321	unsigned long flags;
1322	int cpu;
1323
1324	/*
1325	 * The callers must ensure the policy is inactive by now, to avoid any
1326	 * races with show()/store() callbacks.
1327	 */
1328	if (unlikely(!policy_is_inactive(policy)))
1329		pr_warn("%s: Freeing active policy\n", __func__);
1330
1331	/* Remove policy from list */
1332	write_lock_irqsave(&cpufreq_driver_lock, flags);
1333	list_del(&policy->policy_list);
1334
1335	for_each_cpu(cpu, policy->related_cpus)
1336		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1337	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1338
1339	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1340				 &policy->nb_max);
1341	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1342				 &policy->nb_min);
1343
1344	/* Cancel any pending policy->update work before freeing the policy. */
1345	cancel_work_sync(&policy->update);
1346
1347	if (policy->max_freq_req) {
1348		/*
1349		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1350		 * notification, since CPUFREQ_CREATE_POLICY notification was
1351		 * sent after adding max_freq_req earlier.
1352		 */
1353		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1354					     CPUFREQ_REMOVE_POLICY, policy);
1355		freq_qos_remove_request(policy->max_freq_req);
1356	}
1357
1358	freq_qos_remove_request(policy->min_freq_req);
1359	kfree(policy->min_freq_req);
1360
1361	cpufreq_policy_put_kobj(policy);
1362	free_cpumask_var(policy->real_cpus);
1363	free_cpumask_var(policy->related_cpus);
1364	free_cpumask_var(policy->cpus);
1365	kfree(policy);
1366}
1367
1368static int cpufreq_online(unsigned int cpu)
1369{
1370	struct cpufreq_policy *policy;
1371	bool new_policy;
1372	unsigned long flags;
1373	unsigned int j;
1374	int ret;
1375
1376	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1377
1378	/* Check if this CPU already has a policy to manage it */
1379	policy = per_cpu(cpufreq_cpu_data, cpu);
1380	if (policy) {
1381		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1382		if (!policy_is_inactive(policy))
1383			return cpufreq_add_policy_cpu(policy, cpu);
1384
1385		/* This is the only online CPU for the policy.  Start over. */
1386		new_policy = false;
1387		down_write(&policy->rwsem);
1388		policy->cpu = cpu;
1389		policy->governor = NULL;
1390	} else {
1391		new_policy = true;
1392		policy = cpufreq_policy_alloc(cpu);
1393		if (!policy)
1394			return -ENOMEM;
1395		down_write(&policy->rwsem);
1396	}
1397
1398	if (!new_policy && cpufreq_driver->online) {
1399		/* Recover policy->cpus using related_cpus */
1400		cpumask_copy(policy->cpus, policy->related_cpus);
1401
1402		ret = cpufreq_driver->online(policy);
1403		if (ret) {
1404			pr_debug("%s: %d: initialization failed\n", __func__,
1405				 __LINE__);
1406			goto out_exit_policy;
1407		}
1408	} else {
1409		cpumask_copy(policy->cpus, cpumask_of(cpu));
1410
1411		/*
1412		 * Call driver. From then on the cpufreq must be able
1413		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1414		 */
1415		ret = cpufreq_driver->init(policy);
1416		if (ret) {
1417			pr_debug("%s: %d: initialization failed\n", __func__,
1418				 __LINE__);
1419			goto out_free_policy;
1420		}
1421
 
 
 
 
1422		/*
1423		 * The initialization has succeeded and the policy is online.
1424		 * If there is a problem with its frequency table, take it
1425		 * offline and drop it.
1426		 */
1427		ret = cpufreq_table_validate_and_sort(policy);
1428		if (ret)
1429			goto out_offline_policy;
1430
1431		/* related_cpus should at least include policy->cpus. */
1432		cpumask_copy(policy->related_cpus, policy->cpus);
1433	}
1434
1435	/*
1436	 * affected cpus must always be the one, which are online. We aren't
1437	 * managing offline cpus here.
1438	 */
1439	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1440
1441	if (new_policy) {
1442		for_each_cpu(j, policy->related_cpus) {
1443			per_cpu(cpufreq_cpu_data, j) = policy;
1444			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1445		}
1446
1447		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1448					       GFP_KERNEL);
1449		if (!policy->min_freq_req) {
1450			ret = -ENOMEM;
1451			goto out_destroy_policy;
1452		}
1453
1454		ret = freq_qos_add_request(&policy->constraints,
1455					   policy->min_freq_req, FREQ_QOS_MIN,
1456					   FREQ_QOS_MIN_DEFAULT_VALUE);
1457		if (ret < 0) {
1458			/*
1459			 * So we don't call freq_qos_remove_request() for an
1460			 * uninitialized request.
1461			 */
1462			kfree(policy->min_freq_req);
1463			policy->min_freq_req = NULL;
1464			goto out_destroy_policy;
1465		}
1466
1467		/*
1468		 * This must be initialized right here to avoid calling
1469		 * freq_qos_remove_request() on uninitialized request in case
1470		 * of errors.
1471		 */
1472		policy->max_freq_req = policy->min_freq_req + 1;
1473
1474		ret = freq_qos_add_request(&policy->constraints,
1475					   policy->max_freq_req, FREQ_QOS_MAX,
1476					   FREQ_QOS_MAX_DEFAULT_VALUE);
1477		if (ret < 0) {
1478			policy->max_freq_req = NULL;
1479			goto out_destroy_policy;
1480		}
1481
1482		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1483				CPUFREQ_CREATE_POLICY, policy);
1484	}
1485
1486	if (cpufreq_driver->get && has_target()) {
1487		policy->cur = cpufreq_driver->get(policy->cpu);
1488		if (!policy->cur) {
1489			ret = -EIO;
1490			pr_err("%s: ->get() failed\n", __func__);
1491			goto out_destroy_policy;
1492		}
1493	}
1494
1495	/*
1496	 * Sometimes boot loaders set CPU frequency to a value outside of
1497	 * frequency table present with cpufreq core. In such cases CPU might be
1498	 * unstable if it has to run on that frequency for long duration of time
1499	 * and so its better to set it to a frequency which is specified in
1500	 * freq-table. This also makes cpufreq stats inconsistent as
1501	 * cpufreq-stats would fail to register because current frequency of CPU
1502	 * isn't found in freq-table.
1503	 *
1504	 * Because we don't want this change to effect boot process badly, we go
1505	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1506	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1507	 * is initialized to zero).
1508	 *
1509	 * We are passing target-freq as "policy->cur - 1" otherwise
1510	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1511	 * equal to target-freq.
1512	 */
1513	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1514	    && has_target()) {
1515		unsigned int old_freq = policy->cur;
1516
1517		/* Are we running at unknown frequency ? */
1518		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1519		if (ret == -EINVAL) {
1520			ret = __cpufreq_driver_target(policy, old_freq - 1,
1521						      CPUFREQ_RELATION_L);
1522
1523			/*
1524			 * Reaching here after boot in a few seconds may not
1525			 * mean that system will remain stable at "unknown"
1526			 * frequency for longer duration. Hence, a BUG_ON().
1527			 */
1528			BUG_ON(ret);
1529			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1530				__func__, policy->cpu, old_freq, policy->cur);
1531		}
1532	}
1533
1534	if (new_policy) {
1535		ret = cpufreq_add_dev_interface(policy);
1536		if (ret)
1537			goto out_destroy_policy;
1538
1539		cpufreq_stats_create_table(policy);
1540
1541		write_lock_irqsave(&cpufreq_driver_lock, flags);
1542		list_add(&policy->policy_list, &cpufreq_policy_list);
1543		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544
1545		/*
1546		 * Register with the energy model before
1547		 * sugov_eas_rebuild_sd() is called, which will result
1548		 * in rebuilding of the sched domains, which should only be done
1549		 * once the energy model is properly initialized for the policy
1550		 * first.
1551		 *
1552		 * Also, this should be called before the policy is registered
1553		 * with cooling framework.
1554		 */
1555		if (cpufreq_driver->register_em)
1556			cpufreq_driver->register_em(policy);
1557	}
1558
1559	ret = cpufreq_init_policy(policy);
1560	if (ret) {
1561		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1562		       __func__, cpu, ret);
1563		goto out_destroy_policy;
1564	}
1565
1566	up_write(&policy->rwsem);
1567
1568	kobject_uevent(&policy->kobj, KOBJ_ADD);
1569
1570	/* Callback for handling stuff after policy is ready */
1571	if (cpufreq_driver->ready)
1572		cpufreq_driver->ready(policy);
1573
1574	if (cpufreq_thermal_control_enabled(cpufreq_driver))
 
1575		policy->cdev = of_cpufreq_cooling_register(policy);
1576
1577	pr_debug("initialization complete\n");
1578
1579	return 0;
1580
1581out_destroy_policy:
1582	for_each_cpu(j, policy->real_cpus)
1583		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1584
1585out_offline_policy:
1586	if (cpufreq_driver->offline)
1587		cpufreq_driver->offline(policy);
1588
1589out_exit_policy:
1590	if (cpufreq_driver->exit)
1591		cpufreq_driver->exit(policy);
1592
1593out_free_policy:
1594	cpumask_clear(policy->cpus);
1595	up_write(&policy->rwsem);
1596
1597	cpufreq_policy_free(policy);
1598	return ret;
1599}
1600
1601/**
1602 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1603 * @dev: CPU device.
1604 * @sif: Subsystem interface structure pointer (not used)
1605 */
1606static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1607{
1608	struct cpufreq_policy *policy;
1609	unsigned cpu = dev->id;
1610	int ret;
1611
1612	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1613
1614	if (cpu_online(cpu)) {
1615		ret = cpufreq_online(cpu);
1616		if (ret)
1617			return ret;
1618	}
1619
1620	/* Create sysfs link on CPU registration */
1621	policy = per_cpu(cpufreq_cpu_data, cpu);
1622	if (policy)
1623		add_cpu_dev_symlink(policy, cpu, dev);
1624
1625	return 0;
1626}
1627
1628static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1629{
1630	int ret;
1631
1632	if (has_target())
1633		cpufreq_stop_governor(policy);
1634
1635	cpumask_clear_cpu(cpu, policy->cpus);
1636
1637	if (!policy_is_inactive(policy)) {
1638		/* Nominate a new CPU if necessary. */
1639		if (cpu == policy->cpu)
1640			policy->cpu = cpumask_any(policy->cpus);
1641
1642		/* Start the governor again for the active policy. */
1643		if (has_target()) {
1644			ret = cpufreq_start_governor(policy);
1645			if (ret)
1646				pr_err("%s: Failed to start governor\n", __func__);
1647		}
1648
1649		return;
1650	}
1651
1652	if (has_target())
1653		strscpy(policy->last_governor, policy->governor->name,
1654			CPUFREQ_NAME_LEN);
1655	else
1656		policy->last_policy = policy->policy;
1657
1658	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1659		cpufreq_cooling_unregister(policy->cdev);
1660		policy->cdev = NULL;
1661	}
1662
1663	if (has_target())
1664		cpufreq_exit_governor(policy);
1665
1666	/*
1667	 * Perform the ->offline() during light-weight tear-down, as
1668	 * that allows fast recovery when the CPU comes back.
1669	 */
1670	if (cpufreq_driver->offline) {
1671		cpufreq_driver->offline(policy);
1672	} else if (cpufreq_driver->exit) {
1673		cpufreq_driver->exit(policy);
1674		policy->freq_table = NULL;
1675	}
 
 
 
 
 
1676}
1677
1678static int cpufreq_offline(unsigned int cpu)
1679{
1680	struct cpufreq_policy *policy;
1681
1682	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1683
1684	policy = cpufreq_cpu_get_raw(cpu);
1685	if (!policy) {
1686		pr_debug("%s: No cpu_data found\n", __func__);
1687		return 0;
1688	}
1689
1690	down_write(&policy->rwsem);
1691
1692	__cpufreq_offline(cpu, policy);
1693
1694	up_write(&policy->rwsem);
1695	return 0;
1696}
1697
1698/*
1699 * cpufreq_remove_dev - remove a CPU device
1700 *
1701 * Removes the cpufreq interface for a CPU device.
1702 */
1703static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1704{
1705	unsigned int cpu = dev->id;
1706	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1707
1708	if (!policy)
1709		return;
1710
1711	down_write(&policy->rwsem);
1712
1713	if (cpu_online(cpu))
1714		__cpufreq_offline(cpu, policy);
1715
1716	remove_cpu_dev_symlink(policy, cpu, dev);
1717
1718	if (!cpumask_empty(policy->real_cpus)) {
1719		up_write(&policy->rwsem);
1720		return;
1721	}
1722
 
 
 
 
 
 
 
 
 
1723	/* We did light-weight exit earlier, do full tear down now */
1724	if (cpufreq_driver->offline)
1725		cpufreq_driver->exit(policy);
1726
1727	up_write(&policy->rwsem);
1728
1729	cpufreq_policy_free(policy);
1730}
1731
1732/**
1733 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1734 * @policy: Policy managing CPUs.
1735 * @new_freq: New CPU frequency.
1736 *
1737 * Adjust to the current frequency first and clean up later by either calling
1738 * cpufreq_update_policy(), or scheduling handle_update().
1739 */
1740static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1741				unsigned int new_freq)
1742{
1743	struct cpufreq_freqs freqs;
1744
1745	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1746		 policy->cur, new_freq);
1747
1748	freqs.old = policy->cur;
1749	freqs.new = new_freq;
1750
1751	cpufreq_freq_transition_begin(policy, &freqs);
1752	cpufreq_freq_transition_end(policy, &freqs, 0);
1753}
1754
1755static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1756{
1757	unsigned int new_freq;
1758
1759	new_freq = cpufreq_driver->get(policy->cpu);
1760	if (!new_freq)
1761		return 0;
1762
1763	/*
1764	 * If fast frequency switching is used with the given policy, the check
1765	 * against policy->cur is pointless, so skip it in that case.
1766	 */
1767	if (policy->fast_switch_enabled || !has_target())
1768		return new_freq;
1769
1770	if (policy->cur != new_freq) {
1771		/*
1772		 * For some platforms, the frequency returned by hardware may be
1773		 * slightly different from what is provided in the frequency
1774		 * table, for example hardware may return 499 MHz instead of 500
1775		 * MHz. In such cases it is better to avoid getting into
1776		 * unnecessary frequency updates.
1777		 */
1778		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1779			return policy->cur;
1780
1781		cpufreq_out_of_sync(policy, new_freq);
1782		if (update)
1783			schedule_work(&policy->update);
1784	}
1785
1786	return new_freq;
1787}
1788
1789/**
1790 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1791 * @cpu: CPU number
1792 *
1793 * This is the last known freq, without actually getting it from the driver.
1794 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1795 */
1796unsigned int cpufreq_quick_get(unsigned int cpu)
1797{
1798	struct cpufreq_policy *policy;
1799	unsigned int ret_freq = 0;
1800	unsigned long flags;
1801
1802	read_lock_irqsave(&cpufreq_driver_lock, flags);
1803
1804	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1805		ret_freq = cpufreq_driver->get(cpu);
1806		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1807		return ret_freq;
1808	}
1809
1810	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1811
1812	policy = cpufreq_cpu_get(cpu);
1813	if (policy) {
1814		ret_freq = policy->cur;
1815		cpufreq_cpu_put(policy);
1816	}
1817
1818	return ret_freq;
1819}
1820EXPORT_SYMBOL(cpufreq_quick_get);
1821
1822/**
1823 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1824 * @cpu: CPU number
1825 *
1826 * Just return the max possible frequency for a given CPU.
1827 */
1828unsigned int cpufreq_quick_get_max(unsigned int cpu)
1829{
1830	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831	unsigned int ret_freq = 0;
1832
1833	if (policy) {
1834		ret_freq = policy->max;
1835		cpufreq_cpu_put(policy);
1836	}
1837
1838	return ret_freq;
1839}
1840EXPORT_SYMBOL(cpufreq_quick_get_max);
1841
1842/**
1843 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1844 * @cpu: CPU number
1845 *
1846 * The default return value is the max_freq field of cpuinfo.
1847 */
1848__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1849{
1850	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1851	unsigned int ret_freq = 0;
1852
1853	if (policy) {
1854		ret_freq = policy->cpuinfo.max_freq;
1855		cpufreq_cpu_put(policy);
1856	}
1857
1858	return ret_freq;
1859}
1860EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1861
1862static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1863{
1864	if (unlikely(policy_is_inactive(policy)))
1865		return 0;
1866
1867	return cpufreq_verify_current_freq(policy, true);
1868}
1869
1870/**
1871 * cpufreq_get - get the current CPU frequency (in kHz)
1872 * @cpu: CPU number
1873 *
1874 * Get the CPU current (static) CPU frequency
1875 */
1876unsigned int cpufreq_get(unsigned int cpu)
1877{
1878	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1879	unsigned int ret_freq = 0;
1880
1881	if (policy) {
1882		down_read(&policy->rwsem);
1883		if (cpufreq_driver->get)
1884			ret_freq = __cpufreq_get(policy);
1885		up_read(&policy->rwsem);
1886
1887		cpufreq_cpu_put(policy);
1888	}
1889
1890	return ret_freq;
1891}
1892EXPORT_SYMBOL(cpufreq_get);
1893
1894static struct subsys_interface cpufreq_interface = {
1895	.name		= "cpufreq",
1896	.subsys		= &cpu_subsys,
1897	.add_dev	= cpufreq_add_dev,
1898	.remove_dev	= cpufreq_remove_dev,
1899};
1900
1901/*
1902 * In case platform wants some specific frequency to be configured
1903 * during suspend..
1904 */
1905int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1906{
1907	int ret;
1908
1909	if (!policy->suspend_freq) {
1910		pr_debug("%s: suspend_freq not defined\n", __func__);
1911		return 0;
1912	}
1913
1914	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1915			policy->suspend_freq);
1916
1917	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1918			CPUFREQ_RELATION_H);
1919	if (ret)
1920		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1921				__func__, policy->suspend_freq, ret);
1922
1923	return ret;
1924}
1925EXPORT_SYMBOL(cpufreq_generic_suspend);
1926
1927/**
1928 * cpufreq_suspend() - Suspend CPUFreq governors.
1929 *
1930 * Called during system wide Suspend/Hibernate cycles for suspending governors
1931 * as some platforms can't change frequency after this point in suspend cycle.
1932 * Because some of the devices (like: i2c, regulators, etc) they use for
1933 * changing frequency are suspended quickly after this point.
1934 */
1935void cpufreq_suspend(void)
1936{
1937	struct cpufreq_policy *policy;
1938
1939	if (!cpufreq_driver)
1940		return;
1941
1942	if (!has_target() && !cpufreq_driver->suspend)
1943		goto suspend;
1944
1945	pr_debug("%s: Suspending Governors\n", __func__);
1946
1947	for_each_active_policy(policy) {
1948		if (has_target()) {
1949			down_write(&policy->rwsem);
1950			cpufreq_stop_governor(policy);
1951			up_write(&policy->rwsem);
1952		}
1953
1954		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1955			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1956				cpufreq_driver->name);
1957	}
1958
1959suspend:
1960	cpufreq_suspended = true;
1961}
1962
1963/**
1964 * cpufreq_resume() - Resume CPUFreq governors.
1965 *
1966 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1967 * are suspended with cpufreq_suspend().
1968 */
1969void cpufreq_resume(void)
1970{
1971	struct cpufreq_policy *policy;
1972	int ret;
1973
1974	if (!cpufreq_driver)
1975		return;
1976
1977	if (unlikely(!cpufreq_suspended))
1978		return;
1979
1980	cpufreq_suspended = false;
1981
1982	if (!has_target() && !cpufreq_driver->resume)
1983		return;
1984
1985	pr_debug("%s: Resuming Governors\n", __func__);
1986
1987	for_each_active_policy(policy) {
1988		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1989			pr_err("%s: Failed to resume driver: %s\n", __func__,
1990				cpufreq_driver->name);
1991		} else if (has_target()) {
1992			down_write(&policy->rwsem);
1993			ret = cpufreq_start_governor(policy);
1994			up_write(&policy->rwsem);
1995
1996			if (ret)
1997				pr_err("%s: Failed to start governor for CPU%u's policy\n",
1998				       __func__, policy->cpu);
1999		}
2000	}
2001}
2002
2003/**
2004 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2005 * @flags: Flags to test against the current cpufreq driver's flags.
2006 *
2007 * Assumes that the driver is there, so callers must ensure that this is the
2008 * case.
2009 */
2010bool cpufreq_driver_test_flags(u16 flags)
2011{
2012	return !!(cpufreq_driver->flags & flags);
2013}
2014
2015/**
2016 * cpufreq_get_current_driver - Return the current driver's name.
2017 *
2018 * Return the name string of the currently registered cpufreq driver or NULL if
2019 * none.
2020 */
2021const char *cpufreq_get_current_driver(void)
2022{
2023	if (cpufreq_driver)
2024		return cpufreq_driver->name;
2025
2026	return NULL;
2027}
2028EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2029
2030/**
2031 * cpufreq_get_driver_data - Return current driver data.
2032 *
2033 * Return the private data of the currently registered cpufreq driver, or NULL
2034 * if no cpufreq driver has been registered.
2035 */
2036void *cpufreq_get_driver_data(void)
2037{
2038	if (cpufreq_driver)
2039		return cpufreq_driver->driver_data;
2040
2041	return NULL;
2042}
2043EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2044
2045/*********************************************************************
2046 *                     NOTIFIER LISTS INTERFACE                      *
2047 *********************************************************************/
2048
2049/**
2050 * cpufreq_register_notifier - Register a notifier with cpufreq.
2051 * @nb: notifier function to register.
2052 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2053 *
2054 * Add a notifier to one of two lists: either a list of notifiers that run on
2055 * clock rate changes (once before and once after every transition), or a list
2056 * of notifiers that ron on cpufreq policy changes.
2057 *
2058 * This function may sleep and it has the same return values as
2059 * blocking_notifier_chain_register().
2060 */
2061int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2062{
2063	int ret;
2064
2065	if (cpufreq_disabled())
2066		return -EINVAL;
2067
2068	switch (list) {
2069	case CPUFREQ_TRANSITION_NOTIFIER:
2070		mutex_lock(&cpufreq_fast_switch_lock);
2071
2072		if (cpufreq_fast_switch_count > 0) {
2073			mutex_unlock(&cpufreq_fast_switch_lock);
2074			return -EBUSY;
2075		}
2076		ret = srcu_notifier_chain_register(
2077				&cpufreq_transition_notifier_list, nb);
2078		if (!ret)
2079			cpufreq_fast_switch_count--;
2080
2081		mutex_unlock(&cpufreq_fast_switch_lock);
2082		break;
2083	case CPUFREQ_POLICY_NOTIFIER:
2084		ret = blocking_notifier_chain_register(
2085				&cpufreq_policy_notifier_list, nb);
2086		break;
2087	default:
2088		ret = -EINVAL;
2089	}
2090
2091	return ret;
2092}
2093EXPORT_SYMBOL(cpufreq_register_notifier);
2094
2095/**
2096 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2097 * @nb: notifier block to be unregistered.
2098 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2099 *
2100 * Remove a notifier from one of the cpufreq notifier lists.
2101 *
2102 * This function may sleep and it has the same return values as
2103 * blocking_notifier_chain_unregister().
2104 */
2105int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2106{
2107	int ret;
2108
2109	if (cpufreq_disabled())
2110		return -EINVAL;
2111
2112	switch (list) {
2113	case CPUFREQ_TRANSITION_NOTIFIER:
2114		mutex_lock(&cpufreq_fast_switch_lock);
2115
2116		ret = srcu_notifier_chain_unregister(
2117				&cpufreq_transition_notifier_list, nb);
2118		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2119			cpufreq_fast_switch_count++;
2120
2121		mutex_unlock(&cpufreq_fast_switch_lock);
2122		break;
2123	case CPUFREQ_POLICY_NOTIFIER:
2124		ret = blocking_notifier_chain_unregister(
2125				&cpufreq_policy_notifier_list, nb);
2126		break;
2127	default:
2128		ret = -EINVAL;
2129	}
2130
2131	return ret;
2132}
2133EXPORT_SYMBOL(cpufreq_unregister_notifier);
2134
2135
2136/*********************************************************************
2137 *                              GOVERNORS                            *
2138 *********************************************************************/
2139
2140/**
2141 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2142 * @policy: cpufreq policy to switch the frequency for.
2143 * @target_freq: New frequency to set (may be approximate).
2144 *
2145 * Carry out a fast frequency switch without sleeping.
2146 *
2147 * The driver's ->fast_switch() callback invoked by this function must be
2148 * suitable for being called from within RCU-sched read-side critical sections
2149 * and it is expected to select the minimum available frequency greater than or
2150 * equal to @target_freq (CPUFREQ_RELATION_L).
2151 *
2152 * This function must not be called if policy->fast_switch_enabled is unset.
2153 *
2154 * Governors calling this function must guarantee that it will never be invoked
2155 * twice in parallel for the same policy and that it will never be called in
2156 * parallel with either ->target() or ->target_index() for the same policy.
2157 *
2158 * Returns the actual frequency set for the CPU.
2159 *
2160 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2161 * error condition, the hardware configuration must be preserved.
2162 */
2163unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2164					unsigned int target_freq)
2165{
2166	unsigned int freq;
2167	int cpu;
2168
2169	target_freq = clamp_val(target_freq, policy->min, policy->max);
2170	freq = cpufreq_driver->fast_switch(policy, target_freq);
2171
2172	if (!freq)
2173		return 0;
2174
2175	policy->cur = freq;
2176	arch_set_freq_scale(policy->related_cpus, freq,
2177			    arch_scale_freq_ref(policy->cpu));
2178	cpufreq_stats_record_transition(policy, freq);
2179
2180	if (trace_cpu_frequency_enabled()) {
2181		for_each_cpu(cpu, policy->cpus)
2182			trace_cpu_frequency(freq, cpu);
2183	}
2184
2185	return freq;
2186}
2187EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2188
2189/**
2190 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2191 * @cpu: Target CPU.
2192 * @min_perf: Minimum (required) performance level (units of @capacity).
2193 * @target_perf: Target (desired) performance level (units of @capacity).
2194 * @capacity: Capacity of the target CPU.
2195 *
2196 * Carry out a fast performance level switch of @cpu without sleeping.
2197 *
2198 * The driver's ->adjust_perf() callback invoked by this function must be
2199 * suitable for being called from within RCU-sched read-side critical sections
2200 * and it is expected to select a suitable performance level equal to or above
2201 * @min_perf and preferably equal to or below @target_perf.
2202 *
2203 * This function must not be called if policy->fast_switch_enabled is unset.
2204 *
2205 * Governors calling this function must guarantee that it will never be invoked
2206 * twice in parallel for the same CPU and that it will never be called in
2207 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2208 * the same CPU.
2209 */
2210void cpufreq_driver_adjust_perf(unsigned int cpu,
2211				 unsigned long min_perf,
2212				 unsigned long target_perf,
2213				 unsigned long capacity)
2214{
2215	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2216}
2217
2218/**
2219 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2220 *
2221 * Return 'true' if the ->adjust_perf callback is present for the
2222 * current driver or 'false' otherwise.
2223 */
2224bool cpufreq_driver_has_adjust_perf(void)
2225{
2226	return !!cpufreq_driver->adjust_perf;
2227}
2228
2229/* Must set freqs->new to intermediate frequency */
2230static int __target_intermediate(struct cpufreq_policy *policy,
2231				 struct cpufreq_freqs *freqs, int index)
2232{
2233	int ret;
2234
2235	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2236
2237	/* We don't need to switch to intermediate freq */
2238	if (!freqs->new)
2239		return 0;
2240
2241	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2242		 __func__, policy->cpu, freqs->old, freqs->new);
2243
2244	cpufreq_freq_transition_begin(policy, freqs);
2245	ret = cpufreq_driver->target_intermediate(policy, index);
2246	cpufreq_freq_transition_end(policy, freqs, ret);
2247
2248	if (ret)
2249		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2250		       __func__, ret);
2251
2252	return ret;
2253}
2254
2255static int __target_index(struct cpufreq_policy *policy, int index)
2256{
2257	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2258	unsigned int restore_freq, intermediate_freq = 0;
2259	unsigned int newfreq = policy->freq_table[index].frequency;
2260	int retval = -EINVAL;
2261	bool notify;
2262
2263	if (newfreq == policy->cur)
2264		return 0;
2265
2266	/* Save last value to restore later on errors */
2267	restore_freq = policy->cur;
2268
2269	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2270	if (notify) {
2271		/* Handle switching to intermediate frequency */
2272		if (cpufreq_driver->get_intermediate) {
2273			retval = __target_intermediate(policy, &freqs, index);
2274			if (retval)
2275				return retval;
2276
2277			intermediate_freq = freqs.new;
2278			/* Set old freq to intermediate */
2279			if (intermediate_freq)
2280				freqs.old = freqs.new;
2281		}
2282
2283		freqs.new = newfreq;
2284		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2285			 __func__, policy->cpu, freqs.old, freqs.new);
2286
2287		cpufreq_freq_transition_begin(policy, &freqs);
2288	}
2289
2290	retval = cpufreq_driver->target_index(policy, index);
2291	if (retval)
2292		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2293		       retval);
2294
2295	if (notify) {
2296		cpufreq_freq_transition_end(policy, &freqs, retval);
2297
2298		/*
2299		 * Failed after setting to intermediate freq? Driver should have
2300		 * reverted back to initial frequency and so should we. Check
2301		 * here for intermediate_freq instead of get_intermediate, in
2302		 * case we haven't switched to intermediate freq at all.
2303		 */
2304		if (unlikely(retval && intermediate_freq)) {
2305			freqs.old = intermediate_freq;
2306			freqs.new = restore_freq;
2307			cpufreq_freq_transition_begin(policy, &freqs);
2308			cpufreq_freq_transition_end(policy, &freqs, 0);
2309		}
2310	}
2311
2312	return retval;
2313}
2314
2315int __cpufreq_driver_target(struct cpufreq_policy *policy,
2316			    unsigned int target_freq,
2317			    unsigned int relation)
2318{
2319	unsigned int old_target_freq = target_freq;
2320
2321	if (cpufreq_disabled())
2322		return -ENODEV;
2323
2324	target_freq = __resolve_freq(policy, target_freq, relation);
2325
2326	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2327		 policy->cpu, target_freq, relation, old_target_freq);
2328
2329	/*
2330	 * This might look like a redundant call as we are checking it again
2331	 * after finding index. But it is left intentionally for cases where
2332	 * exactly same freq is called again and so we can save on few function
2333	 * calls.
2334	 */
2335	if (target_freq == policy->cur &&
2336	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2337		return 0;
2338
2339	if (cpufreq_driver->target) {
2340		/*
2341		 * If the driver hasn't setup a single inefficient frequency,
2342		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2343		 */
2344		if (!policy->efficiencies_available)
2345			relation &= ~CPUFREQ_RELATION_E;
2346
2347		return cpufreq_driver->target(policy, target_freq, relation);
2348	}
2349
2350	if (!cpufreq_driver->target_index)
2351		return -EINVAL;
2352
2353	return __target_index(policy, policy->cached_resolved_idx);
2354}
2355EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2356
2357int cpufreq_driver_target(struct cpufreq_policy *policy,
2358			  unsigned int target_freq,
2359			  unsigned int relation)
2360{
2361	int ret;
2362
2363	down_write(&policy->rwsem);
2364
2365	ret = __cpufreq_driver_target(policy, target_freq, relation);
2366
2367	up_write(&policy->rwsem);
2368
2369	return ret;
2370}
2371EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2372
2373__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2374{
2375	return NULL;
2376}
2377
2378static int cpufreq_init_governor(struct cpufreq_policy *policy)
2379{
2380	int ret;
2381
2382	/* Don't start any governor operations if we are entering suspend */
2383	if (cpufreq_suspended)
2384		return 0;
2385	/*
2386	 * Governor might not be initiated here if ACPI _PPC changed
2387	 * notification happened, so check it.
2388	 */
2389	if (!policy->governor)
2390		return -EINVAL;
2391
2392	/* Platform doesn't want dynamic frequency switching ? */
2393	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2394	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2395		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2396
2397		if (gov) {
2398			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2399				policy->governor->name, gov->name);
2400			policy->governor = gov;
2401		} else {
2402			return -EINVAL;
2403		}
2404	}
2405
2406	if (!try_module_get(policy->governor->owner))
2407		return -EINVAL;
2408
2409	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2410
2411	if (policy->governor->init) {
2412		ret = policy->governor->init(policy);
2413		if (ret) {
2414			module_put(policy->governor->owner);
2415			return ret;
2416		}
2417	}
2418
2419	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2420
2421	return 0;
2422}
2423
2424static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2425{
2426	if (cpufreq_suspended || !policy->governor)
2427		return;
2428
2429	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2430
2431	if (policy->governor->exit)
2432		policy->governor->exit(policy);
2433
2434	module_put(policy->governor->owner);
2435}
2436
2437int cpufreq_start_governor(struct cpufreq_policy *policy)
2438{
2439	int ret;
2440
2441	if (cpufreq_suspended)
2442		return 0;
2443
2444	if (!policy->governor)
2445		return -EINVAL;
2446
2447	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2448
2449	if (cpufreq_driver->get)
2450		cpufreq_verify_current_freq(policy, false);
2451
2452	if (policy->governor->start) {
2453		ret = policy->governor->start(policy);
2454		if (ret)
2455			return ret;
2456	}
2457
2458	if (policy->governor->limits)
2459		policy->governor->limits(policy);
2460
2461	return 0;
2462}
2463
2464void cpufreq_stop_governor(struct cpufreq_policy *policy)
2465{
2466	if (cpufreq_suspended || !policy->governor)
2467		return;
2468
2469	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2470
2471	if (policy->governor->stop)
2472		policy->governor->stop(policy);
2473}
2474
2475static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2476{
2477	if (cpufreq_suspended || !policy->governor)
2478		return;
2479
2480	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2481
2482	if (policy->governor->limits)
2483		policy->governor->limits(policy);
2484}
2485
2486int cpufreq_register_governor(struct cpufreq_governor *governor)
2487{
2488	int err;
2489
2490	if (!governor)
2491		return -EINVAL;
2492
2493	if (cpufreq_disabled())
2494		return -ENODEV;
2495
2496	mutex_lock(&cpufreq_governor_mutex);
2497
2498	err = -EBUSY;
2499	if (!find_governor(governor->name)) {
2500		err = 0;
2501		list_add(&governor->governor_list, &cpufreq_governor_list);
2502	}
2503
2504	mutex_unlock(&cpufreq_governor_mutex);
2505	return err;
2506}
2507EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2508
2509void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2510{
2511	struct cpufreq_policy *policy;
2512	unsigned long flags;
2513
2514	if (!governor)
2515		return;
2516
2517	if (cpufreq_disabled())
2518		return;
2519
2520	/* clear last_governor for all inactive policies */
2521	read_lock_irqsave(&cpufreq_driver_lock, flags);
2522	for_each_inactive_policy(policy) {
2523		if (!strcmp(policy->last_governor, governor->name)) {
2524			policy->governor = NULL;
2525			strcpy(policy->last_governor, "\0");
2526		}
2527	}
2528	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2529
2530	mutex_lock(&cpufreq_governor_mutex);
2531	list_del(&governor->governor_list);
2532	mutex_unlock(&cpufreq_governor_mutex);
2533}
2534EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2535
2536
2537/*********************************************************************
2538 *                          POLICY INTERFACE                         *
2539 *********************************************************************/
2540
2541/**
2542 * cpufreq_get_policy - get the current cpufreq_policy
2543 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2544 *	is written
2545 * @cpu: CPU to find the policy for
2546 *
2547 * Reads the current cpufreq policy.
2548 */
2549int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2550{
2551	struct cpufreq_policy *cpu_policy;
2552	if (!policy)
2553		return -EINVAL;
2554
2555	cpu_policy = cpufreq_cpu_get(cpu);
2556	if (!cpu_policy)
2557		return -EINVAL;
2558
2559	memcpy(policy, cpu_policy, sizeof(*policy));
2560
2561	cpufreq_cpu_put(cpu_policy);
2562	return 0;
2563}
2564EXPORT_SYMBOL(cpufreq_get_policy);
2565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2566/**
2567 * cpufreq_set_policy - Modify cpufreq policy parameters.
2568 * @policy: Policy object to modify.
2569 * @new_gov: Policy governor pointer.
2570 * @new_pol: Policy value (for drivers with built-in governors).
2571 *
2572 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2573 * limits to be set for the policy, update @policy with the verified limits
2574 * values and either invoke the driver's ->setpolicy() callback (if present) or
2575 * carry out a governor update for @policy.  That is, run the current governor's
2576 * ->limits() callback (if @new_gov points to the same object as the one in
2577 * @policy) or replace the governor for @policy with @new_gov.
2578 *
2579 * The cpuinfo part of @policy is not updated by this function.
2580 */
2581static int cpufreq_set_policy(struct cpufreq_policy *policy,
2582			      struct cpufreq_governor *new_gov,
2583			      unsigned int new_pol)
2584{
2585	struct cpufreq_policy_data new_data;
2586	struct cpufreq_governor *old_gov;
2587	int ret;
2588
2589	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2590	new_data.freq_table = policy->freq_table;
2591	new_data.cpu = policy->cpu;
2592	/*
2593	 * PM QoS framework collects all the requests from users and provide us
2594	 * the final aggregated value here.
2595	 */
2596	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2597	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2598
2599	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2600		 new_data.cpu, new_data.min, new_data.max);
2601
2602	/*
2603	 * Verify that the CPU speed can be set within these limits and make sure
2604	 * that min <= max.
2605	 */
2606	ret = cpufreq_driver->verify(&new_data);
2607	if (ret)
2608		return ret;
2609
2610	/*
2611	 * Resolve policy min/max to available frequencies. It ensures
2612	 * no frequency resolution will neither overshoot the requested maximum
2613	 * nor undershoot the requested minimum.
2614	 */
2615	policy->min = new_data.min;
2616	policy->max = new_data.max;
2617	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2618	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2619	trace_cpu_frequency_limits(policy);
2620
 
 
2621	policy->cached_target_freq = UINT_MAX;
2622
2623	pr_debug("new min and max freqs are %u - %u kHz\n",
2624		 policy->min, policy->max);
2625
2626	if (cpufreq_driver->setpolicy) {
2627		policy->policy = new_pol;
2628		pr_debug("setting range\n");
2629		return cpufreq_driver->setpolicy(policy);
2630	}
2631
2632	if (new_gov == policy->governor) {
2633		pr_debug("governor limits update\n");
2634		cpufreq_governor_limits(policy);
2635		return 0;
2636	}
2637
2638	pr_debug("governor switch\n");
2639
2640	/* save old, working values */
2641	old_gov = policy->governor;
2642	/* end old governor */
2643	if (old_gov) {
2644		cpufreq_stop_governor(policy);
2645		cpufreq_exit_governor(policy);
2646	}
2647
2648	/* start new governor */
2649	policy->governor = new_gov;
2650	ret = cpufreq_init_governor(policy);
2651	if (!ret) {
2652		ret = cpufreq_start_governor(policy);
2653		if (!ret) {
2654			pr_debug("governor change\n");
2655			return 0;
2656		}
2657		cpufreq_exit_governor(policy);
2658	}
2659
2660	/* new governor failed, so re-start old one */
2661	pr_debug("starting governor %s failed\n", policy->governor->name);
2662	if (old_gov) {
2663		policy->governor = old_gov;
2664		if (cpufreq_init_governor(policy))
2665			policy->governor = NULL;
2666		else
2667			cpufreq_start_governor(policy);
2668	}
2669
2670	return ret;
2671}
2672
2673/**
2674 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2675 * @cpu: CPU to re-evaluate the policy for.
2676 *
2677 * Update the current frequency for the cpufreq policy of @cpu and use
2678 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2679 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2680 * for the policy in question, among other things.
2681 */
2682void cpufreq_update_policy(unsigned int cpu)
2683{
2684	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2685
2686	if (!policy)
2687		return;
2688
2689	/*
2690	 * BIOS might change freq behind our back
2691	 * -> ask driver for current freq and notify governors about a change
2692	 */
2693	if (cpufreq_driver->get && has_target() &&
2694	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2695		goto unlock;
2696
2697	refresh_frequency_limits(policy);
2698
2699unlock:
2700	cpufreq_cpu_release(policy);
2701}
2702EXPORT_SYMBOL(cpufreq_update_policy);
2703
2704/**
2705 * cpufreq_update_limits - Update policy limits for a given CPU.
2706 * @cpu: CPU to update the policy limits for.
2707 *
2708 * Invoke the driver's ->update_limits callback if present or call
2709 * cpufreq_update_policy() for @cpu.
2710 */
2711void cpufreq_update_limits(unsigned int cpu)
2712{
2713	if (cpufreq_driver->update_limits)
2714		cpufreq_driver->update_limits(cpu);
2715	else
2716		cpufreq_update_policy(cpu);
2717}
2718EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2719
2720/*********************************************************************
2721 *               BOOST						     *
2722 *********************************************************************/
2723static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2724{
2725	int ret;
2726
2727	if (!policy->freq_table)
2728		return -ENXIO;
2729
2730	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2731	if (ret) {
2732		pr_err("%s: Policy frequency update failed\n", __func__);
2733		return ret;
2734	}
2735
2736	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2737	if (ret < 0)
2738		return ret;
2739
2740	return 0;
2741}
2742
2743int cpufreq_boost_trigger_state(int state)
2744{
2745	struct cpufreq_policy *policy;
2746	unsigned long flags;
2747	int ret = 0;
2748
2749	if (cpufreq_driver->boost_enabled == state)
2750		return 0;
2751
2752	write_lock_irqsave(&cpufreq_driver_lock, flags);
2753	cpufreq_driver->boost_enabled = state;
2754	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755
2756	cpus_read_lock();
2757	for_each_active_policy(policy) {
 
2758		ret = cpufreq_driver->set_boost(policy, state);
2759		if (ret)
 
2760			goto err_reset_state;
2761
2762		policy->boost_enabled = state;
2763	}
2764	cpus_read_unlock();
2765
2766	return 0;
2767
2768err_reset_state:
2769	cpus_read_unlock();
2770
2771	write_lock_irqsave(&cpufreq_driver_lock, flags);
2772	cpufreq_driver->boost_enabled = !state;
2773	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2774
2775	pr_err("%s: Cannot %s BOOST\n",
2776	       __func__, state ? "enable" : "disable");
2777
2778	return ret;
2779}
2780
2781static bool cpufreq_boost_supported(void)
2782{
2783	return cpufreq_driver->set_boost;
2784}
2785
2786static int create_boost_sysfs_file(void)
2787{
2788	int ret;
2789
2790	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2791	if (ret)
2792		pr_err("%s: cannot register global BOOST sysfs file\n",
2793		       __func__);
2794
2795	return ret;
2796}
2797
2798static void remove_boost_sysfs_file(void)
2799{
2800	if (cpufreq_boost_supported())
2801		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2802}
2803
2804int cpufreq_enable_boost_support(void)
2805{
2806	if (!cpufreq_driver)
2807		return -EINVAL;
2808
2809	if (cpufreq_boost_supported())
2810		return 0;
2811
2812	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2813
2814	/* This will get removed on driver unregister */
2815	return create_boost_sysfs_file();
2816}
2817EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2818
2819int cpufreq_boost_enabled(void)
2820{
2821	return cpufreq_driver->boost_enabled;
2822}
2823EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2824
2825/*********************************************************************
2826 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2827 *********************************************************************/
2828static enum cpuhp_state hp_online;
2829
2830static int cpuhp_cpufreq_online(unsigned int cpu)
2831{
2832	cpufreq_online(cpu);
2833
2834	return 0;
2835}
2836
2837static int cpuhp_cpufreq_offline(unsigned int cpu)
2838{
2839	cpufreq_offline(cpu);
2840
2841	return 0;
2842}
2843
2844/**
2845 * cpufreq_register_driver - register a CPU Frequency driver
2846 * @driver_data: A struct cpufreq_driver containing the values#
2847 * submitted by the CPU Frequency driver.
2848 *
2849 * Registers a CPU Frequency driver to this core code. This code
2850 * returns zero on success, -EEXIST when another driver got here first
2851 * (and isn't unregistered in the meantime).
2852 *
2853 */
2854int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2855{
2856	unsigned long flags;
2857	int ret;
2858
2859	if (cpufreq_disabled())
2860		return -ENODEV;
2861
2862	/*
2863	 * The cpufreq core depends heavily on the availability of device
2864	 * structure, make sure they are available before proceeding further.
2865	 */
2866	if (!get_cpu_device(0))
2867		return -EPROBE_DEFER;
2868
2869	if (!driver_data || !driver_data->verify || !driver_data->init ||
2870	    !(driver_data->setpolicy || driver_data->target_index ||
2871		    driver_data->target) ||
2872	     (driver_data->setpolicy && (driver_data->target_index ||
2873		    driver_data->target)) ||
2874	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2875	     (!driver_data->online != !driver_data->offline) ||
2876		 (driver_data->adjust_perf && !driver_data->fast_switch))
2877		return -EINVAL;
2878
2879	pr_debug("trying to register driver %s\n", driver_data->name);
2880
2881	/* Protect against concurrent CPU online/offline. */
2882	cpus_read_lock();
2883
2884	write_lock_irqsave(&cpufreq_driver_lock, flags);
2885	if (cpufreq_driver) {
2886		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2887		ret = -EEXIST;
2888		goto out;
2889	}
2890	cpufreq_driver = driver_data;
2891	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2892
2893	/*
2894	 * Mark support for the scheduler's frequency invariance engine for
2895	 * drivers that implement target(), target_index() or fast_switch().
2896	 */
2897	if (!cpufreq_driver->setpolicy) {
2898		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2899		pr_debug("supports frequency invariance");
2900	}
2901
2902	if (driver_data->setpolicy)
2903		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2904
2905	if (cpufreq_boost_supported()) {
2906		ret = create_boost_sysfs_file();
2907		if (ret)
2908			goto err_null_driver;
2909	}
2910
2911	ret = subsys_interface_register(&cpufreq_interface);
2912	if (ret)
2913		goto err_boost_unreg;
2914
2915	if (unlikely(list_empty(&cpufreq_policy_list))) {
2916		/* if all ->init() calls failed, unregister */
2917		ret = -ENODEV;
2918		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2919			 driver_data->name);
2920		goto err_if_unreg;
2921	}
2922
2923	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2924						   "cpufreq:online",
2925						   cpuhp_cpufreq_online,
2926						   cpuhp_cpufreq_offline);
2927	if (ret < 0)
2928		goto err_if_unreg;
2929	hp_online = ret;
2930	ret = 0;
2931
2932	pr_debug("driver %s up and running\n", driver_data->name);
2933	goto out;
2934
2935err_if_unreg:
2936	subsys_interface_unregister(&cpufreq_interface);
2937err_boost_unreg:
2938	remove_boost_sysfs_file();
2939err_null_driver:
2940	write_lock_irqsave(&cpufreq_driver_lock, flags);
2941	cpufreq_driver = NULL;
2942	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2943out:
2944	cpus_read_unlock();
2945	return ret;
2946}
2947EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2948
2949/*
2950 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2951 *
2952 * Unregister the current CPUFreq driver. Only call this if you have
2953 * the right to do so, i.e. if you have succeeded in initialising before!
2954 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2955 * currently not initialised.
2956 */
2957void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2958{
2959	unsigned long flags;
2960
2961	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2962		return;
2963
2964	pr_debug("unregistering driver %s\n", driver->name);
2965
2966	/* Protect against concurrent cpu hotplug */
2967	cpus_read_lock();
2968	subsys_interface_unregister(&cpufreq_interface);
2969	remove_boost_sysfs_file();
2970	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2971	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2972
2973	write_lock_irqsave(&cpufreq_driver_lock, flags);
2974
2975	cpufreq_driver = NULL;
2976
2977	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2978	cpus_read_unlock();
2979}
2980EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2981
2982static int __init cpufreq_core_init(void)
2983{
2984	struct cpufreq_governor *gov = cpufreq_default_governor();
2985	struct device *dev_root;
2986
2987	if (cpufreq_disabled())
2988		return -ENODEV;
2989
2990	dev_root = bus_get_dev_root(&cpu_subsys);
2991	if (dev_root) {
2992		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
2993		put_device(dev_root);
2994	}
2995	BUG_ON(!cpufreq_global_kobject);
2996
2997	if (!strlen(default_governor))
2998		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2999
3000	return 0;
3001}
3002module_param(off, int, 0444);
3003module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3004core_initcall(cpufreq_core_init);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
  79}
  80
  81/* internal prototypes */
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 241
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 252	kobject_put(&policy->kobj);
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 266
 267	up_write(&policy->rwsem);
 268
 269	cpufreq_cpu_put(policy);
 270}
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 299}
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 336#endif
 337}
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 354
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 365	switch (state) {
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 397	}
 398}
 399
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency)
 579		/* Give a 50% breathing room between updates */
 580		return latency + (latency >> 1);
 
 
 
 
 
 
 
 
 
 
 581
 582	return USEC_PER_MSEC;
 583}
 584EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 585
 586/*********************************************************************
 587 *                          SYSFS INTERFACE                          *
 588 *********************************************************************/
 589static ssize_t show_boost(struct kobject *kobj,
 590			  struct kobj_attribute *attr, char *buf)
 591{
 592	return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled);
 593}
 594
 595static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 596			   const char *buf, size_t count)
 597{
 598	bool enable;
 599
 600	if (kstrtobool(buf, &enable))
 
 601		return -EINVAL;
 602
 603	if (cpufreq_boost_trigger_state(enable)) {
 604		pr_err("%s: Cannot %s BOOST!\n",
 605		       __func__, enable ? "enable" : "disable");
 606		return -EINVAL;
 607	}
 608
 609	pr_debug("%s: cpufreq BOOST %s\n",
 610		 __func__, enable ? "enabled" : "disabled");
 611
 612	return count;
 613}
 614define_one_global_rw(boost);
 615
 616static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 617{
 618	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 619}
 620
 621static ssize_t store_local_boost(struct cpufreq_policy *policy,
 622				 const char *buf, size_t count)
 623{
 624	int ret;
 625	bool enable;
 626
 627	if (kstrtobool(buf, &enable))
 
 628		return -EINVAL;
 629
 630	if (!cpufreq_driver->boost_enabled)
 631		return -EINVAL;
 632
 633	if (policy->boost_enabled == enable)
 634		return count;
 635
 636	policy->boost_enabled = enable;
 637
 638	cpus_read_lock();
 639	ret = cpufreq_driver->set_boost(policy, enable);
 640	cpus_read_unlock();
 641
 642	if (ret) {
 643		policy->boost_enabled = !policy->boost_enabled;
 644		return ret;
 645	}
 
 646
 647	return count;
 648}
 649
 650static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 651
 652static struct cpufreq_governor *find_governor(const char *str_governor)
 653{
 654	struct cpufreq_governor *t;
 655
 656	for_each_governor(t)
 657		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 658			return t;
 659
 660	return NULL;
 661}
 662
 663static struct cpufreq_governor *get_governor(const char *str_governor)
 664{
 665	struct cpufreq_governor *t;
 666
 667	mutex_lock(&cpufreq_governor_mutex);
 668	t = find_governor(str_governor);
 669	if (!t)
 670		goto unlock;
 671
 672	if (!try_module_get(t->owner))
 673		t = NULL;
 674
 675unlock:
 676	mutex_unlock(&cpufreq_governor_mutex);
 677
 678	return t;
 679}
 680
 681static unsigned int cpufreq_parse_policy(char *str_governor)
 682{
 683	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 684		return CPUFREQ_POLICY_PERFORMANCE;
 685
 686	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 687		return CPUFREQ_POLICY_POWERSAVE;
 688
 689	return CPUFREQ_POLICY_UNKNOWN;
 690}
 691
 692/**
 693 * cpufreq_parse_governor - parse a governor string only for has_target()
 694 * @str_governor: Governor name.
 695 */
 696static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 697{
 698	struct cpufreq_governor *t;
 699
 700	t = get_governor(str_governor);
 701	if (t)
 702		return t;
 703
 704	if (request_module("cpufreq_%s", str_governor))
 705		return NULL;
 706
 707	return get_governor(str_governor);
 708}
 709
 710/*
 711 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 712 * print out cpufreq information
 713 *
 714 * Write out information from cpufreq_driver->policy[cpu]; object must be
 715 * "unsigned int".
 716 */
 717
 718#define show_one(file_name, object)			\
 719static ssize_t show_##file_name				\
 720(struct cpufreq_policy *policy, char *buf)		\
 721{							\
 722	return sysfs_emit(buf, "%u\n", policy->object);	\
 723}
 724
 725show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 726show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 727show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 728show_one(scaling_min_freq, min);
 729show_one(scaling_max_freq, max);
 730
 731__weak unsigned int arch_freq_get_on_cpu(int cpu)
 732{
 733	return 0;
 734}
 735
 736static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 737{
 738	ssize_t ret;
 739	unsigned int freq;
 740
 741	freq = arch_freq_get_on_cpu(policy->cpu);
 742	if (freq)
 743		ret = sysfs_emit(buf, "%u\n", freq);
 744	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 745		ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 746	else
 747		ret = sysfs_emit(buf, "%u\n", policy->cur);
 748	return ret;
 749}
 750
 751/*
 752 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 753 */
 754#define store_one(file_name, object)			\
 755static ssize_t store_##file_name					\
 756(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 757{									\
 758	unsigned long val;						\
 759	int ret;							\
 760									\
 761	ret = kstrtoul(buf, 0, &val);					\
 762	if (ret)							\
 763		return ret;						\
 764									\
 765	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 766	return ret >= 0 ? count : ret;					\
 767}
 768
 769store_one(scaling_min_freq, min);
 770store_one(scaling_max_freq, max);
 771
 772/*
 773 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 774 */
 775static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 776					char *buf)
 777{
 778	unsigned int cur_freq = __cpufreq_get(policy);
 779
 780	if (cur_freq)
 781		return sysfs_emit(buf, "%u\n", cur_freq);
 782
 783	return sysfs_emit(buf, "<unknown>\n");
 784}
 785
 786/*
 787 * show_scaling_governor - show the current policy for the specified CPU
 788 */
 789static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 790{
 791	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 792		return sysfs_emit(buf, "powersave\n");
 793	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 794		return sysfs_emit(buf, "performance\n");
 795	else if (policy->governor)
 796		return sysfs_emit(buf, "%s\n", policy->governor->name);
 
 797	return -EINVAL;
 798}
 799
 800/*
 801 * store_scaling_governor - store policy for the specified CPU
 802 */
 803static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 804					const char *buf, size_t count)
 805{
 806	char str_governor[16];
 807	int ret;
 808
 809	ret = sscanf(buf, "%15s", str_governor);
 810	if (ret != 1)
 811		return -EINVAL;
 812
 813	if (cpufreq_driver->setpolicy) {
 814		unsigned int new_pol;
 815
 816		new_pol = cpufreq_parse_policy(str_governor);
 817		if (!new_pol)
 818			return -EINVAL;
 819
 820		ret = cpufreq_set_policy(policy, NULL, new_pol);
 821	} else {
 822		struct cpufreq_governor *new_gov;
 823
 824		new_gov = cpufreq_parse_governor(str_governor);
 825		if (!new_gov)
 826			return -EINVAL;
 827
 828		ret = cpufreq_set_policy(policy, new_gov,
 829					 CPUFREQ_POLICY_UNKNOWN);
 830
 831		module_put(new_gov->owner);
 832	}
 833
 834	return ret ? ret : count;
 835}
 836
 837/*
 838 * show_scaling_driver - show the cpufreq driver currently loaded
 839 */
 840static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 841{
 842	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 843}
 844
 845/*
 846 * show_scaling_available_governors - show the available CPUfreq governors
 847 */
 848static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 849						char *buf)
 850{
 851	ssize_t i = 0;
 852	struct cpufreq_governor *t;
 853
 854	if (!has_target()) {
 855		i += sysfs_emit(buf, "performance powersave");
 856		goto out;
 857	}
 858
 859	mutex_lock(&cpufreq_governor_mutex);
 860	for_each_governor(t) {
 861		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 862		    - (CPUFREQ_NAME_LEN + 2)))
 863			break;
 864		i += sysfs_emit_at(buf, i, "%s ", t->name);
 865	}
 866	mutex_unlock(&cpufreq_governor_mutex);
 867out:
 868	i += sysfs_emit_at(buf, i, "\n");
 869	return i;
 870}
 871
 872ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 873{
 874	ssize_t i = 0;
 875	unsigned int cpu;
 876
 877	for_each_cpu(cpu, mask) {
 878		i += sysfs_emit_at(buf, i, "%u ", cpu);
 879		if (i >= (PAGE_SIZE - 5))
 880			break;
 881	}
 882
 883	/* Remove the extra space at the end */
 884	i--;
 885
 886	i += sysfs_emit_at(buf, i, "\n");
 887	return i;
 888}
 889EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 890
 891/*
 892 * show_related_cpus - show the CPUs affected by each transition even if
 893 * hw coordination is in use
 894 */
 895static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 896{
 897	return cpufreq_show_cpus(policy->related_cpus, buf);
 898}
 899
 900/*
 901 * show_affected_cpus - show the CPUs affected by each transition
 902 */
 903static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 904{
 905	return cpufreq_show_cpus(policy->cpus, buf);
 906}
 907
 908static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 909					const char *buf, size_t count)
 910{
 911	unsigned int freq = 0;
 912	unsigned int ret;
 913
 914	if (!policy->governor || !policy->governor->store_setspeed)
 915		return -EINVAL;
 916
 917	ret = sscanf(buf, "%u", &freq);
 918	if (ret != 1)
 919		return -EINVAL;
 920
 921	policy->governor->store_setspeed(policy, freq);
 922
 923	return count;
 924}
 925
 926static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 927{
 928	if (!policy->governor || !policy->governor->show_setspeed)
 929		return sysfs_emit(buf, "<unsupported>\n");
 930
 931	return policy->governor->show_setspeed(policy, buf);
 932}
 933
 934/*
 935 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 936 */
 937static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 938{
 939	unsigned int limit;
 940	int ret;
 941	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 942	if (!ret)
 943		return sysfs_emit(buf, "%u\n", limit);
 944	return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq);
 945}
 946
 947cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 948cpufreq_freq_attr_ro(cpuinfo_min_freq);
 949cpufreq_freq_attr_ro(cpuinfo_max_freq);
 950cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 951cpufreq_freq_attr_ro(scaling_available_governors);
 952cpufreq_freq_attr_ro(scaling_driver);
 953cpufreq_freq_attr_ro(scaling_cur_freq);
 954cpufreq_freq_attr_ro(bios_limit);
 955cpufreq_freq_attr_ro(related_cpus);
 956cpufreq_freq_attr_ro(affected_cpus);
 957cpufreq_freq_attr_rw(scaling_min_freq);
 958cpufreq_freq_attr_rw(scaling_max_freq);
 959cpufreq_freq_attr_rw(scaling_governor);
 960cpufreq_freq_attr_rw(scaling_setspeed);
 961
 962static struct attribute *cpufreq_attrs[] = {
 963	&cpuinfo_min_freq.attr,
 964	&cpuinfo_max_freq.attr,
 965	&cpuinfo_transition_latency.attr,
 966	&scaling_min_freq.attr,
 967	&scaling_max_freq.attr,
 968	&affected_cpus.attr,
 969	&related_cpus.attr,
 970	&scaling_governor.attr,
 971	&scaling_driver.attr,
 972	&scaling_available_governors.attr,
 973	&scaling_setspeed.attr,
 974	NULL
 975};
 976ATTRIBUTE_GROUPS(cpufreq);
 977
 978#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 979#define to_attr(a) container_of(a, struct freq_attr, attr)
 980
 981static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 982{
 983	struct cpufreq_policy *policy = to_policy(kobj);
 984	struct freq_attr *fattr = to_attr(attr);
 985	ssize_t ret = -EBUSY;
 986
 987	if (!fattr->show)
 988		return -EIO;
 989
 990	down_read(&policy->rwsem);
 991	if (likely(!policy_is_inactive(policy)))
 992		ret = fattr->show(policy, buf);
 993	up_read(&policy->rwsem);
 994
 995	return ret;
 996}
 997
 998static ssize_t store(struct kobject *kobj, struct attribute *attr,
 999		     const char *buf, size_t count)
1000{
1001	struct cpufreq_policy *policy = to_policy(kobj);
1002	struct freq_attr *fattr = to_attr(attr);
1003	ssize_t ret = -EBUSY;
1004
1005	if (!fattr->store)
1006		return -EIO;
1007
1008	down_write(&policy->rwsem);
1009	if (likely(!policy_is_inactive(policy)))
1010		ret = fattr->store(policy, buf, count);
1011	up_write(&policy->rwsem);
1012
1013	return ret;
1014}
1015
1016static void cpufreq_sysfs_release(struct kobject *kobj)
1017{
1018	struct cpufreq_policy *policy = to_policy(kobj);
1019	pr_debug("last reference is dropped\n");
1020	complete(&policy->kobj_unregister);
1021}
1022
1023static const struct sysfs_ops sysfs_ops = {
1024	.show	= show,
1025	.store	= store,
1026};
1027
1028static const struct kobj_type ktype_cpufreq = {
1029	.sysfs_ops	= &sysfs_ops,
1030	.default_groups	= cpufreq_groups,
1031	.release	= cpufreq_sysfs_release,
1032};
1033
1034static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1035				struct device *dev)
1036{
1037	if (unlikely(!dev))
1038		return;
1039
1040	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1041		return;
1042
1043	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1044	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1045		dev_err(dev, "cpufreq symlink creation failed\n");
1046}
1047
1048static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1049				   struct device *dev)
1050{
1051	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1052	sysfs_remove_link(&dev->kobj, "cpufreq");
1053	cpumask_clear_cpu(cpu, policy->real_cpus);
1054}
1055
1056static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1057{
1058	struct freq_attr **drv_attr;
1059	int ret = 0;
1060
1061	/* set up files for this cpu device */
1062	drv_attr = cpufreq_driver->attr;
1063	while (drv_attr && *drv_attr) {
1064		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1065		if (ret)
1066			return ret;
1067		drv_attr++;
1068	}
1069	if (cpufreq_driver->get) {
1070		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1071		if (ret)
1072			return ret;
1073	}
1074
1075	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1076	if (ret)
1077		return ret;
1078
1079	if (cpufreq_driver->bios_limit) {
1080		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1081		if (ret)
1082			return ret;
1083	}
1084
1085	if (cpufreq_boost_supported()) {
1086		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1087		if (ret)
1088			return ret;
1089	}
1090
1091	return 0;
1092}
1093
1094static int cpufreq_init_policy(struct cpufreq_policy *policy)
1095{
1096	struct cpufreq_governor *gov = NULL;
1097	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1098	int ret;
1099
1100	if (has_target()) {
1101		/* Update policy governor to the one used before hotplug. */
1102		gov = get_governor(policy->last_governor);
1103		if (gov) {
1104			pr_debug("Restoring governor %s for cpu %d\n",
1105				 gov->name, policy->cpu);
1106		} else {
1107			gov = get_governor(default_governor);
1108		}
1109
1110		if (!gov) {
1111			gov = cpufreq_default_governor();
1112			__module_get(gov->owner);
1113		}
1114
1115	} else {
1116
1117		/* Use the default policy if there is no last_policy. */
1118		if (policy->last_policy) {
1119			pol = policy->last_policy;
1120		} else {
1121			pol = cpufreq_parse_policy(default_governor);
1122			/*
1123			 * In case the default governor is neither "performance"
1124			 * nor "powersave", fall back to the initial policy
1125			 * value set by the driver.
1126			 */
1127			if (pol == CPUFREQ_POLICY_UNKNOWN)
1128				pol = policy->policy;
1129		}
1130		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1131		    pol != CPUFREQ_POLICY_POWERSAVE)
1132			return -ENODATA;
1133	}
1134
1135	ret = cpufreq_set_policy(policy, gov, pol);
1136	if (gov)
1137		module_put(gov->owner);
1138
1139	return ret;
1140}
1141
1142static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1143{
1144	int ret = 0;
1145
1146	/* Has this CPU been taken care of already? */
1147	if (cpumask_test_cpu(cpu, policy->cpus))
1148		return 0;
1149
1150	down_write(&policy->rwsem);
1151	if (has_target())
1152		cpufreq_stop_governor(policy);
1153
1154	cpumask_set_cpu(cpu, policy->cpus);
1155
1156	if (has_target()) {
1157		ret = cpufreq_start_governor(policy);
1158		if (ret)
1159			pr_err("%s: Failed to start governor\n", __func__);
1160	}
1161	up_write(&policy->rwsem);
1162	return ret;
1163}
1164
1165void refresh_frequency_limits(struct cpufreq_policy *policy)
1166{
1167	if (!policy_is_inactive(policy)) {
1168		pr_debug("updating policy for CPU %u\n", policy->cpu);
1169
1170		cpufreq_set_policy(policy, policy->governor, policy->policy);
1171	}
1172}
1173EXPORT_SYMBOL(refresh_frequency_limits);
1174
1175static void handle_update(struct work_struct *work)
1176{
1177	struct cpufreq_policy *policy =
1178		container_of(work, struct cpufreq_policy, update);
1179
1180	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1181	down_write(&policy->rwsem);
1182	refresh_frequency_limits(policy);
1183	up_write(&policy->rwsem);
1184}
1185
1186static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1187				void *data)
1188{
1189	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1190
1191	schedule_work(&policy->update);
1192	return 0;
1193}
1194
1195static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1196				void *data)
1197{
1198	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1199
1200	schedule_work(&policy->update);
1201	return 0;
1202}
1203
1204static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1205{
1206	struct kobject *kobj;
1207	struct completion *cmp;
1208
1209	down_write(&policy->rwsem);
1210	cpufreq_stats_free_table(policy);
1211	kobj = &policy->kobj;
1212	cmp = &policy->kobj_unregister;
1213	up_write(&policy->rwsem);
1214	kobject_put(kobj);
1215
1216	/*
1217	 * We need to make sure that the underlying kobj is
1218	 * actually not referenced anymore by anybody before we
1219	 * proceed with unloading.
1220	 */
1221	pr_debug("waiting for dropping of refcount\n");
1222	wait_for_completion(cmp);
1223	pr_debug("wait complete\n");
1224}
1225
1226static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1227{
1228	struct cpufreq_policy *policy;
1229	struct device *dev = get_cpu_device(cpu);
1230	int ret;
1231
1232	if (!dev)
1233		return NULL;
1234
1235	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1236	if (!policy)
1237		return NULL;
1238
1239	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1240		goto err_free_policy;
1241
1242	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1243		goto err_free_cpumask;
1244
1245	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1246		goto err_free_rcpumask;
1247
1248	init_completion(&policy->kobj_unregister);
1249	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1250				   cpufreq_global_kobject, "policy%u", cpu);
1251	if (ret) {
1252		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1253		/*
1254		 * The entire policy object will be freed below, but the extra
1255		 * memory allocated for the kobject name needs to be freed by
1256		 * releasing the kobject.
1257		 */
1258		kobject_put(&policy->kobj);
1259		goto err_free_real_cpus;
1260	}
1261
1262	freq_constraints_init(&policy->constraints);
1263
1264	policy->nb_min.notifier_call = cpufreq_notifier_min;
1265	policy->nb_max.notifier_call = cpufreq_notifier_max;
1266
1267	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1268				    &policy->nb_min);
1269	if (ret) {
1270		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1271			ret, cpu);
1272		goto err_kobj_remove;
1273	}
1274
1275	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1276				    &policy->nb_max);
1277	if (ret) {
1278		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1279			ret, cpu);
1280		goto err_min_qos_notifier;
1281	}
1282
1283	INIT_LIST_HEAD(&policy->policy_list);
1284	init_rwsem(&policy->rwsem);
1285	spin_lock_init(&policy->transition_lock);
1286	init_waitqueue_head(&policy->transition_wait);
1287	INIT_WORK(&policy->update, handle_update);
1288
1289	policy->cpu = cpu;
1290	return policy;
1291
1292err_min_qos_notifier:
1293	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1294				 &policy->nb_min);
1295err_kobj_remove:
1296	cpufreq_policy_put_kobj(policy);
1297err_free_real_cpus:
1298	free_cpumask_var(policy->real_cpus);
1299err_free_rcpumask:
1300	free_cpumask_var(policy->related_cpus);
1301err_free_cpumask:
1302	free_cpumask_var(policy->cpus);
1303err_free_policy:
1304	kfree(policy);
1305
1306	return NULL;
1307}
1308
1309static void cpufreq_policy_free(struct cpufreq_policy *policy)
1310{
1311	unsigned long flags;
1312	int cpu;
1313
1314	/*
1315	 * The callers must ensure the policy is inactive by now, to avoid any
1316	 * races with show()/store() callbacks.
1317	 */
1318	if (unlikely(!policy_is_inactive(policy)))
1319		pr_warn("%s: Freeing active policy\n", __func__);
1320
1321	/* Remove policy from list */
1322	write_lock_irqsave(&cpufreq_driver_lock, flags);
1323	list_del(&policy->policy_list);
1324
1325	for_each_cpu(cpu, policy->related_cpus)
1326		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1327	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1328
1329	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1330				 &policy->nb_max);
1331	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1332				 &policy->nb_min);
1333
1334	/* Cancel any pending policy->update work before freeing the policy. */
1335	cancel_work_sync(&policy->update);
1336
1337	if (policy->max_freq_req) {
1338		/*
1339		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1340		 * notification, since CPUFREQ_CREATE_POLICY notification was
1341		 * sent after adding max_freq_req earlier.
1342		 */
1343		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1344					     CPUFREQ_REMOVE_POLICY, policy);
1345		freq_qos_remove_request(policy->max_freq_req);
1346	}
1347
1348	freq_qos_remove_request(policy->min_freq_req);
1349	kfree(policy->min_freq_req);
1350
1351	cpufreq_policy_put_kobj(policy);
1352	free_cpumask_var(policy->real_cpus);
1353	free_cpumask_var(policy->related_cpus);
1354	free_cpumask_var(policy->cpus);
1355	kfree(policy);
1356}
1357
1358static int cpufreq_online(unsigned int cpu)
1359{
1360	struct cpufreq_policy *policy;
1361	bool new_policy;
1362	unsigned long flags;
1363	unsigned int j;
1364	int ret;
1365
1366	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1367
1368	/* Check if this CPU already has a policy to manage it */
1369	policy = per_cpu(cpufreq_cpu_data, cpu);
1370	if (policy) {
1371		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1372		if (!policy_is_inactive(policy))
1373			return cpufreq_add_policy_cpu(policy, cpu);
1374
1375		/* This is the only online CPU for the policy.  Start over. */
1376		new_policy = false;
1377		down_write(&policy->rwsem);
1378		policy->cpu = cpu;
1379		policy->governor = NULL;
1380	} else {
1381		new_policy = true;
1382		policy = cpufreq_policy_alloc(cpu);
1383		if (!policy)
1384			return -ENOMEM;
1385		down_write(&policy->rwsem);
1386	}
1387
1388	if (!new_policy && cpufreq_driver->online) {
1389		/* Recover policy->cpus using related_cpus */
1390		cpumask_copy(policy->cpus, policy->related_cpus);
1391
1392		ret = cpufreq_driver->online(policy);
1393		if (ret) {
1394			pr_debug("%s: %d: initialization failed\n", __func__,
1395				 __LINE__);
1396			goto out_exit_policy;
1397		}
1398	} else {
1399		cpumask_copy(policy->cpus, cpumask_of(cpu));
1400
1401		/*
1402		 * Call driver. From then on the cpufreq must be able
1403		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1404		 */
1405		ret = cpufreq_driver->init(policy);
1406		if (ret) {
1407			pr_debug("%s: %d: initialization failed\n", __func__,
1408				 __LINE__);
1409			goto out_free_policy;
1410		}
1411
1412		/* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1413		if (cpufreq_boost_enabled() && policy_has_boost_freq(policy))
1414			policy->boost_enabled = true;
1415
1416		/*
1417		 * The initialization has succeeded and the policy is online.
1418		 * If there is a problem with its frequency table, take it
1419		 * offline and drop it.
1420		 */
1421		ret = cpufreq_table_validate_and_sort(policy);
1422		if (ret)
1423			goto out_offline_policy;
1424
1425		/* related_cpus should at least include policy->cpus. */
1426		cpumask_copy(policy->related_cpus, policy->cpus);
1427	}
1428
1429	/*
1430	 * affected cpus must always be the one, which are online. We aren't
1431	 * managing offline cpus here.
1432	 */
1433	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1434
1435	if (new_policy) {
1436		for_each_cpu(j, policy->related_cpus) {
1437			per_cpu(cpufreq_cpu_data, j) = policy;
1438			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1439		}
1440
1441		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1442					       GFP_KERNEL);
1443		if (!policy->min_freq_req) {
1444			ret = -ENOMEM;
1445			goto out_destroy_policy;
1446		}
1447
1448		ret = freq_qos_add_request(&policy->constraints,
1449					   policy->min_freq_req, FREQ_QOS_MIN,
1450					   FREQ_QOS_MIN_DEFAULT_VALUE);
1451		if (ret < 0) {
1452			/*
1453			 * So we don't call freq_qos_remove_request() for an
1454			 * uninitialized request.
1455			 */
1456			kfree(policy->min_freq_req);
1457			policy->min_freq_req = NULL;
1458			goto out_destroy_policy;
1459		}
1460
1461		/*
1462		 * This must be initialized right here to avoid calling
1463		 * freq_qos_remove_request() on uninitialized request in case
1464		 * of errors.
1465		 */
1466		policy->max_freq_req = policy->min_freq_req + 1;
1467
1468		ret = freq_qos_add_request(&policy->constraints,
1469					   policy->max_freq_req, FREQ_QOS_MAX,
1470					   FREQ_QOS_MAX_DEFAULT_VALUE);
1471		if (ret < 0) {
1472			policy->max_freq_req = NULL;
1473			goto out_destroy_policy;
1474		}
1475
1476		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1477				CPUFREQ_CREATE_POLICY, policy);
1478	}
1479
1480	if (cpufreq_driver->get && has_target()) {
1481		policy->cur = cpufreq_driver->get(policy->cpu);
1482		if (!policy->cur) {
1483			ret = -EIO;
1484			pr_err("%s: ->get() failed\n", __func__);
1485			goto out_destroy_policy;
1486		}
1487	}
1488
1489	/*
1490	 * Sometimes boot loaders set CPU frequency to a value outside of
1491	 * frequency table present with cpufreq core. In such cases CPU might be
1492	 * unstable if it has to run on that frequency for long duration of time
1493	 * and so its better to set it to a frequency which is specified in
1494	 * freq-table. This also makes cpufreq stats inconsistent as
1495	 * cpufreq-stats would fail to register because current frequency of CPU
1496	 * isn't found in freq-table.
1497	 *
1498	 * Because we don't want this change to effect boot process badly, we go
1499	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1500	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1501	 * is initialized to zero).
1502	 *
1503	 * We are passing target-freq as "policy->cur - 1" otherwise
1504	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1505	 * equal to target-freq.
1506	 */
1507	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1508	    && has_target()) {
1509		unsigned int old_freq = policy->cur;
1510
1511		/* Are we running at unknown frequency ? */
1512		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1513		if (ret == -EINVAL) {
1514			ret = __cpufreq_driver_target(policy, old_freq - 1,
1515						      CPUFREQ_RELATION_L);
1516
1517			/*
1518			 * Reaching here after boot in a few seconds may not
1519			 * mean that system will remain stable at "unknown"
1520			 * frequency for longer duration. Hence, a BUG_ON().
1521			 */
1522			BUG_ON(ret);
1523			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u kHz, changing to: %u kHz\n",
1524				__func__, policy->cpu, old_freq, policy->cur);
1525		}
1526	}
1527
1528	if (new_policy) {
1529		ret = cpufreq_add_dev_interface(policy);
1530		if (ret)
1531			goto out_destroy_policy;
1532
1533		cpufreq_stats_create_table(policy);
1534
1535		write_lock_irqsave(&cpufreq_driver_lock, flags);
1536		list_add(&policy->policy_list, &cpufreq_policy_list);
1537		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1538
1539		/*
1540		 * Register with the energy model before
1541		 * sugov_eas_rebuild_sd() is called, which will result
1542		 * in rebuilding of the sched domains, which should only be done
1543		 * once the energy model is properly initialized for the policy
1544		 * first.
1545		 *
1546		 * Also, this should be called before the policy is registered
1547		 * with cooling framework.
1548		 */
1549		if (cpufreq_driver->register_em)
1550			cpufreq_driver->register_em(policy);
1551	}
1552
1553	ret = cpufreq_init_policy(policy);
1554	if (ret) {
1555		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1556		       __func__, cpu, ret);
1557		goto out_destroy_policy;
1558	}
1559
1560	up_write(&policy->rwsem);
1561
1562	kobject_uevent(&policy->kobj, KOBJ_ADD);
1563
1564	/* Callback for handling stuff after policy is ready */
1565	if (cpufreq_driver->ready)
1566		cpufreq_driver->ready(policy);
1567
1568	/* Register cpufreq cooling only for a new policy */
1569	if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1570		policy->cdev = of_cpufreq_cooling_register(policy);
1571
1572	pr_debug("initialization complete\n");
1573
1574	return 0;
1575
1576out_destroy_policy:
1577	for_each_cpu(j, policy->real_cpus)
1578		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1579
1580out_offline_policy:
1581	if (cpufreq_driver->offline)
1582		cpufreq_driver->offline(policy);
1583
1584out_exit_policy:
1585	if (cpufreq_driver->exit)
1586		cpufreq_driver->exit(policy);
1587
1588out_free_policy:
1589	cpumask_clear(policy->cpus);
1590	up_write(&policy->rwsem);
1591
1592	cpufreq_policy_free(policy);
1593	return ret;
1594}
1595
1596/**
1597 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1598 * @dev: CPU device.
1599 * @sif: Subsystem interface structure pointer (not used)
1600 */
1601static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1602{
1603	struct cpufreq_policy *policy;
1604	unsigned cpu = dev->id;
1605	int ret;
1606
1607	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1608
1609	if (cpu_online(cpu)) {
1610		ret = cpufreq_online(cpu);
1611		if (ret)
1612			return ret;
1613	}
1614
1615	/* Create sysfs link on CPU registration */
1616	policy = per_cpu(cpufreq_cpu_data, cpu);
1617	if (policy)
1618		add_cpu_dev_symlink(policy, cpu, dev);
1619
1620	return 0;
1621}
1622
1623static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1624{
1625	int ret;
1626
1627	if (has_target())
1628		cpufreq_stop_governor(policy);
1629
1630	cpumask_clear_cpu(cpu, policy->cpus);
1631
1632	if (!policy_is_inactive(policy)) {
1633		/* Nominate a new CPU if necessary. */
1634		if (cpu == policy->cpu)
1635			policy->cpu = cpumask_any(policy->cpus);
1636
1637		/* Start the governor again for the active policy. */
1638		if (has_target()) {
1639			ret = cpufreq_start_governor(policy);
1640			if (ret)
1641				pr_err("%s: Failed to start governor\n", __func__);
1642		}
1643
1644		return;
1645	}
1646
1647	if (has_target())
1648		strscpy(policy->last_governor, policy->governor->name,
1649			CPUFREQ_NAME_LEN);
1650	else
1651		policy->last_policy = policy->policy;
1652
 
 
 
 
 
1653	if (has_target())
1654		cpufreq_exit_governor(policy);
1655
1656	/*
1657	 * Perform the ->offline() during light-weight tear-down, as
1658	 * that allows fast recovery when the CPU comes back.
1659	 */
1660	if (cpufreq_driver->offline) {
1661		cpufreq_driver->offline(policy);
1662		return;
 
 
1663	}
1664
1665	if (cpufreq_driver->exit)
1666		cpufreq_driver->exit(policy);
1667
1668	policy->freq_table = NULL;
1669}
1670
1671static int cpufreq_offline(unsigned int cpu)
1672{
1673	struct cpufreq_policy *policy;
1674
1675	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1676
1677	policy = cpufreq_cpu_get_raw(cpu);
1678	if (!policy) {
1679		pr_debug("%s: No cpu_data found\n", __func__);
1680		return 0;
1681	}
1682
1683	down_write(&policy->rwsem);
1684
1685	__cpufreq_offline(cpu, policy);
1686
1687	up_write(&policy->rwsem);
1688	return 0;
1689}
1690
1691/*
1692 * cpufreq_remove_dev - remove a CPU device
1693 *
1694 * Removes the cpufreq interface for a CPU device.
1695 */
1696static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1697{
1698	unsigned int cpu = dev->id;
1699	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1700
1701	if (!policy)
1702		return;
1703
1704	down_write(&policy->rwsem);
1705
1706	if (cpu_online(cpu))
1707		__cpufreq_offline(cpu, policy);
1708
1709	remove_cpu_dev_symlink(policy, cpu, dev);
1710
1711	if (!cpumask_empty(policy->real_cpus)) {
1712		up_write(&policy->rwsem);
1713		return;
1714	}
1715
1716	/*
1717	 * Unregister cpufreq cooling once all the CPUs of the policy are
1718	 * removed.
1719	 */
1720	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1721		cpufreq_cooling_unregister(policy->cdev);
1722		policy->cdev = NULL;
1723	}
1724
1725	/* We did light-weight exit earlier, do full tear down now */
1726	if (cpufreq_driver->offline && cpufreq_driver->exit)
1727		cpufreq_driver->exit(policy);
1728
1729	up_write(&policy->rwsem);
1730
1731	cpufreq_policy_free(policy);
1732}
1733
1734/**
1735 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1736 * @policy: Policy managing CPUs.
1737 * @new_freq: New CPU frequency.
1738 *
1739 * Adjust to the current frequency first and clean up later by either calling
1740 * cpufreq_update_policy(), or scheduling handle_update().
1741 */
1742static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1743				unsigned int new_freq)
1744{
1745	struct cpufreq_freqs freqs;
1746
1747	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1748		 policy->cur, new_freq);
1749
1750	freqs.old = policy->cur;
1751	freqs.new = new_freq;
1752
1753	cpufreq_freq_transition_begin(policy, &freqs);
1754	cpufreq_freq_transition_end(policy, &freqs, 0);
1755}
1756
1757static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1758{
1759	unsigned int new_freq;
1760
1761	new_freq = cpufreq_driver->get(policy->cpu);
1762	if (!new_freq)
1763		return 0;
1764
1765	/*
1766	 * If fast frequency switching is used with the given policy, the check
1767	 * against policy->cur is pointless, so skip it in that case.
1768	 */
1769	if (policy->fast_switch_enabled || !has_target())
1770		return new_freq;
1771
1772	if (policy->cur != new_freq) {
1773		/*
1774		 * For some platforms, the frequency returned by hardware may be
1775		 * slightly different from what is provided in the frequency
1776		 * table, for example hardware may return 499 MHz instead of 500
1777		 * MHz. In such cases it is better to avoid getting into
1778		 * unnecessary frequency updates.
1779		 */
1780		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1781			return policy->cur;
1782
1783		cpufreq_out_of_sync(policy, new_freq);
1784		if (update)
1785			schedule_work(&policy->update);
1786	}
1787
1788	return new_freq;
1789}
1790
1791/**
1792 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1793 * @cpu: CPU number
1794 *
1795 * This is the last known freq, without actually getting it from the driver.
1796 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1797 */
1798unsigned int cpufreq_quick_get(unsigned int cpu)
1799{
1800	struct cpufreq_policy *policy;
1801	unsigned int ret_freq = 0;
1802	unsigned long flags;
1803
1804	read_lock_irqsave(&cpufreq_driver_lock, flags);
1805
1806	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1807		ret_freq = cpufreq_driver->get(cpu);
1808		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1809		return ret_freq;
1810	}
1811
1812	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1813
1814	policy = cpufreq_cpu_get(cpu);
1815	if (policy) {
1816		ret_freq = policy->cur;
1817		cpufreq_cpu_put(policy);
1818	}
1819
1820	return ret_freq;
1821}
1822EXPORT_SYMBOL(cpufreq_quick_get);
1823
1824/**
1825 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1826 * @cpu: CPU number
1827 *
1828 * Just return the max possible frequency for a given CPU.
1829 */
1830unsigned int cpufreq_quick_get_max(unsigned int cpu)
1831{
1832	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1833	unsigned int ret_freq = 0;
1834
1835	if (policy) {
1836		ret_freq = policy->max;
1837		cpufreq_cpu_put(policy);
1838	}
1839
1840	return ret_freq;
1841}
1842EXPORT_SYMBOL(cpufreq_quick_get_max);
1843
1844/**
1845 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1846 * @cpu: CPU number
1847 *
1848 * The default return value is the max_freq field of cpuinfo.
1849 */
1850__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1851{
1852	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1853	unsigned int ret_freq = 0;
1854
1855	if (policy) {
1856		ret_freq = policy->cpuinfo.max_freq;
1857		cpufreq_cpu_put(policy);
1858	}
1859
1860	return ret_freq;
1861}
1862EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1863
1864static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1865{
1866	if (unlikely(policy_is_inactive(policy)))
1867		return 0;
1868
1869	return cpufreq_verify_current_freq(policy, true);
1870}
1871
1872/**
1873 * cpufreq_get - get the current CPU frequency (in kHz)
1874 * @cpu: CPU number
1875 *
1876 * Get the CPU current (static) CPU frequency
1877 */
1878unsigned int cpufreq_get(unsigned int cpu)
1879{
1880	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1881	unsigned int ret_freq = 0;
1882
1883	if (policy) {
1884		down_read(&policy->rwsem);
1885		if (cpufreq_driver->get)
1886			ret_freq = __cpufreq_get(policy);
1887		up_read(&policy->rwsem);
1888
1889		cpufreq_cpu_put(policy);
1890	}
1891
1892	return ret_freq;
1893}
1894EXPORT_SYMBOL(cpufreq_get);
1895
1896static struct subsys_interface cpufreq_interface = {
1897	.name		= "cpufreq",
1898	.subsys		= &cpu_subsys,
1899	.add_dev	= cpufreq_add_dev,
1900	.remove_dev	= cpufreq_remove_dev,
1901};
1902
1903/*
1904 * In case platform wants some specific frequency to be configured
1905 * during suspend..
1906 */
1907int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1908{
1909	int ret;
1910
1911	if (!policy->suspend_freq) {
1912		pr_debug("%s: suspend_freq not defined\n", __func__);
1913		return 0;
1914	}
1915
1916	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1917			policy->suspend_freq);
1918
1919	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1920			CPUFREQ_RELATION_H);
1921	if (ret)
1922		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1923				__func__, policy->suspend_freq, ret);
1924
1925	return ret;
1926}
1927EXPORT_SYMBOL(cpufreq_generic_suspend);
1928
1929/**
1930 * cpufreq_suspend() - Suspend CPUFreq governors.
1931 *
1932 * Called during system wide Suspend/Hibernate cycles for suspending governors
1933 * as some platforms can't change frequency after this point in suspend cycle.
1934 * Because some of the devices (like: i2c, regulators, etc) they use for
1935 * changing frequency are suspended quickly after this point.
1936 */
1937void cpufreq_suspend(void)
1938{
1939	struct cpufreq_policy *policy;
1940
1941	if (!cpufreq_driver)
1942		return;
1943
1944	if (!has_target() && !cpufreq_driver->suspend)
1945		goto suspend;
1946
1947	pr_debug("%s: Suspending Governors\n", __func__);
1948
1949	for_each_active_policy(policy) {
1950		if (has_target()) {
1951			down_write(&policy->rwsem);
1952			cpufreq_stop_governor(policy);
1953			up_write(&policy->rwsem);
1954		}
1955
1956		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1957			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1958				cpufreq_driver->name);
1959	}
1960
1961suspend:
1962	cpufreq_suspended = true;
1963}
1964
1965/**
1966 * cpufreq_resume() - Resume CPUFreq governors.
1967 *
1968 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1969 * are suspended with cpufreq_suspend().
1970 */
1971void cpufreq_resume(void)
1972{
1973	struct cpufreq_policy *policy;
1974	int ret;
1975
1976	if (!cpufreq_driver)
1977		return;
1978
1979	if (unlikely(!cpufreq_suspended))
1980		return;
1981
1982	cpufreq_suspended = false;
1983
1984	if (!has_target() && !cpufreq_driver->resume)
1985		return;
1986
1987	pr_debug("%s: Resuming Governors\n", __func__);
1988
1989	for_each_active_policy(policy) {
1990		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1991			pr_err("%s: Failed to resume driver: %s\n", __func__,
1992				cpufreq_driver->name);
1993		} else if (has_target()) {
1994			down_write(&policy->rwsem);
1995			ret = cpufreq_start_governor(policy);
1996			up_write(&policy->rwsem);
1997
1998			if (ret)
1999				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2000				       __func__, policy->cpu);
2001		}
2002	}
2003}
2004
2005/**
2006 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2007 * @flags: Flags to test against the current cpufreq driver's flags.
2008 *
2009 * Assumes that the driver is there, so callers must ensure that this is the
2010 * case.
2011 */
2012bool cpufreq_driver_test_flags(u16 flags)
2013{
2014	return !!(cpufreq_driver->flags & flags);
2015}
2016
2017/**
2018 * cpufreq_get_current_driver - Return the current driver's name.
2019 *
2020 * Return the name string of the currently registered cpufreq driver or NULL if
2021 * none.
2022 */
2023const char *cpufreq_get_current_driver(void)
2024{
2025	if (cpufreq_driver)
2026		return cpufreq_driver->name;
2027
2028	return NULL;
2029}
2030EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2031
2032/**
2033 * cpufreq_get_driver_data - Return current driver data.
2034 *
2035 * Return the private data of the currently registered cpufreq driver, or NULL
2036 * if no cpufreq driver has been registered.
2037 */
2038void *cpufreq_get_driver_data(void)
2039{
2040	if (cpufreq_driver)
2041		return cpufreq_driver->driver_data;
2042
2043	return NULL;
2044}
2045EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2046
2047/*********************************************************************
2048 *                     NOTIFIER LISTS INTERFACE                      *
2049 *********************************************************************/
2050
2051/**
2052 * cpufreq_register_notifier - Register a notifier with cpufreq.
2053 * @nb: notifier function to register.
2054 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2055 *
2056 * Add a notifier to one of two lists: either a list of notifiers that run on
2057 * clock rate changes (once before and once after every transition), or a list
2058 * of notifiers that ron on cpufreq policy changes.
2059 *
2060 * This function may sleep and it has the same return values as
2061 * blocking_notifier_chain_register().
2062 */
2063int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2064{
2065	int ret;
2066
2067	if (cpufreq_disabled())
2068		return -EINVAL;
2069
2070	switch (list) {
2071	case CPUFREQ_TRANSITION_NOTIFIER:
2072		mutex_lock(&cpufreq_fast_switch_lock);
2073
2074		if (cpufreq_fast_switch_count > 0) {
2075			mutex_unlock(&cpufreq_fast_switch_lock);
2076			return -EBUSY;
2077		}
2078		ret = srcu_notifier_chain_register(
2079				&cpufreq_transition_notifier_list, nb);
2080		if (!ret)
2081			cpufreq_fast_switch_count--;
2082
2083		mutex_unlock(&cpufreq_fast_switch_lock);
2084		break;
2085	case CPUFREQ_POLICY_NOTIFIER:
2086		ret = blocking_notifier_chain_register(
2087				&cpufreq_policy_notifier_list, nb);
2088		break;
2089	default:
2090		ret = -EINVAL;
2091	}
2092
2093	return ret;
2094}
2095EXPORT_SYMBOL(cpufreq_register_notifier);
2096
2097/**
2098 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2099 * @nb: notifier block to be unregistered.
2100 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2101 *
2102 * Remove a notifier from one of the cpufreq notifier lists.
2103 *
2104 * This function may sleep and it has the same return values as
2105 * blocking_notifier_chain_unregister().
2106 */
2107int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2108{
2109	int ret;
2110
2111	if (cpufreq_disabled())
2112		return -EINVAL;
2113
2114	switch (list) {
2115	case CPUFREQ_TRANSITION_NOTIFIER:
2116		mutex_lock(&cpufreq_fast_switch_lock);
2117
2118		ret = srcu_notifier_chain_unregister(
2119				&cpufreq_transition_notifier_list, nb);
2120		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2121			cpufreq_fast_switch_count++;
2122
2123		mutex_unlock(&cpufreq_fast_switch_lock);
2124		break;
2125	case CPUFREQ_POLICY_NOTIFIER:
2126		ret = blocking_notifier_chain_unregister(
2127				&cpufreq_policy_notifier_list, nb);
2128		break;
2129	default:
2130		ret = -EINVAL;
2131	}
2132
2133	return ret;
2134}
2135EXPORT_SYMBOL(cpufreq_unregister_notifier);
2136
2137
2138/*********************************************************************
2139 *                              GOVERNORS                            *
2140 *********************************************************************/
2141
2142/**
2143 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2144 * @policy: cpufreq policy to switch the frequency for.
2145 * @target_freq: New frequency to set (may be approximate).
2146 *
2147 * Carry out a fast frequency switch without sleeping.
2148 *
2149 * The driver's ->fast_switch() callback invoked by this function must be
2150 * suitable for being called from within RCU-sched read-side critical sections
2151 * and it is expected to select the minimum available frequency greater than or
2152 * equal to @target_freq (CPUFREQ_RELATION_L).
2153 *
2154 * This function must not be called if policy->fast_switch_enabled is unset.
2155 *
2156 * Governors calling this function must guarantee that it will never be invoked
2157 * twice in parallel for the same policy and that it will never be called in
2158 * parallel with either ->target() or ->target_index() for the same policy.
2159 *
2160 * Returns the actual frequency set for the CPU.
2161 *
2162 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2163 * error condition, the hardware configuration must be preserved.
2164 */
2165unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2166					unsigned int target_freq)
2167{
2168	unsigned int freq;
2169	int cpu;
2170
2171	target_freq = clamp_val(target_freq, policy->min, policy->max);
2172	freq = cpufreq_driver->fast_switch(policy, target_freq);
2173
2174	if (!freq)
2175		return 0;
2176
2177	policy->cur = freq;
2178	arch_set_freq_scale(policy->related_cpus, freq,
2179			    arch_scale_freq_ref(policy->cpu));
2180	cpufreq_stats_record_transition(policy, freq);
2181
2182	if (trace_cpu_frequency_enabled()) {
2183		for_each_cpu(cpu, policy->cpus)
2184			trace_cpu_frequency(freq, cpu);
2185	}
2186
2187	return freq;
2188}
2189EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2190
2191/**
2192 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2193 * @cpu: Target CPU.
2194 * @min_perf: Minimum (required) performance level (units of @capacity).
2195 * @target_perf: Target (desired) performance level (units of @capacity).
2196 * @capacity: Capacity of the target CPU.
2197 *
2198 * Carry out a fast performance level switch of @cpu without sleeping.
2199 *
2200 * The driver's ->adjust_perf() callback invoked by this function must be
2201 * suitable for being called from within RCU-sched read-side critical sections
2202 * and it is expected to select a suitable performance level equal to or above
2203 * @min_perf and preferably equal to or below @target_perf.
2204 *
2205 * This function must not be called if policy->fast_switch_enabled is unset.
2206 *
2207 * Governors calling this function must guarantee that it will never be invoked
2208 * twice in parallel for the same CPU and that it will never be called in
2209 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2210 * the same CPU.
2211 */
2212void cpufreq_driver_adjust_perf(unsigned int cpu,
2213				 unsigned long min_perf,
2214				 unsigned long target_perf,
2215				 unsigned long capacity)
2216{
2217	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2218}
2219
2220/**
2221 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2222 *
2223 * Return 'true' if the ->adjust_perf callback is present for the
2224 * current driver or 'false' otherwise.
2225 */
2226bool cpufreq_driver_has_adjust_perf(void)
2227{
2228	return !!cpufreq_driver->adjust_perf;
2229}
2230
2231/* Must set freqs->new to intermediate frequency */
2232static int __target_intermediate(struct cpufreq_policy *policy,
2233				 struct cpufreq_freqs *freqs, int index)
2234{
2235	int ret;
2236
2237	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2238
2239	/* We don't need to switch to intermediate freq */
2240	if (!freqs->new)
2241		return 0;
2242
2243	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2244		 __func__, policy->cpu, freqs->old, freqs->new);
2245
2246	cpufreq_freq_transition_begin(policy, freqs);
2247	ret = cpufreq_driver->target_intermediate(policy, index);
2248	cpufreq_freq_transition_end(policy, freqs, ret);
2249
2250	if (ret)
2251		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2252		       __func__, ret);
2253
2254	return ret;
2255}
2256
2257static int __target_index(struct cpufreq_policy *policy, int index)
2258{
2259	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2260	unsigned int restore_freq, intermediate_freq = 0;
2261	unsigned int newfreq = policy->freq_table[index].frequency;
2262	int retval = -EINVAL;
2263	bool notify;
2264
2265	if (newfreq == policy->cur)
2266		return 0;
2267
2268	/* Save last value to restore later on errors */
2269	restore_freq = policy->cur;
2270
2271	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2272	if (notify) {
2273		/* Handle switching to intermediate frequency */
2274		if (cpufreq_driver->get_intermediate) {
2275			retval = __target_intermediate(policy, &freqs, index);
2276			if (retval)
2277				return retval;
2278
2279			intermediate_freq = freqs.new;
2280			/* Set old freq to intermediate */
2281			if (intermediate_freq)
2282				freqs.old = freqs.new;
2283		}
2284
2285		freqs.new = newfreq;
2286		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2287			 __func__, policy->cpu, freqs.old, freqs.new);
2288
2289		cpufreq_freq_transition_begin(policy, &freqs);
2290	}
2291
2292	retval = cpufreq_driver->target_index(policy, index);
2293	if (retval)
2294		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2295		       retval);
2296
2297	if (notify) {
2298		cpufreq_freq_transition_end(policy, &freqs, retval);
2299
2300		/*
2301		 * Failed after setting to intermediate freq? Driver should have
2302		 * reverted back to initial frequency and so should we. Check
2303		 * here for intermediate_freq instead of get_intermediate, in
2304		 * case we haven't switched to intermediate freq at all.
2305		 */
2306		if (unlikely(retval && intermediate_freq)) {
2307			freqs.old = intermediate_freq;
2308			freqs.new = restore_freq;
2309			cpufreq_freq_transition_begin(policy, &freqs);
2310			cpufreq_freq_transition_end(policy, &freqs, 0);
2311		}
2312	}
2313
2314	return retval;
2315}
2316
2317int __cpufreq_driver_target(struct cpufreq_policy *policy,
2318			    unsigned int target_freq,
2319			    unsigned int relation)
2320{
2321	unsigned int old_target_freq = target_freq;
2322
2323	if (cpufreq_disabled())
2324		return -ENODEV;
2325
2326	target_freq = __resolve_freq(policy, target_freq, relation);
2327
2328	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2329		 policy->cpu, target_freq, relation, old_target_freq);
2330
2331	/*
2332	 * This might look like a redundant call as we are checking it again
2333	 * after finding index. But it is left intentionally for cases where
2334	 * exactly same freq is called again and so we can save on few function
2335	 * calls.
2336	 */
2337	if (target_freq == policy->cur &&
2338	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2339		return 0;
2340
2341	if (cpufreq_driver->target) {
2342		/*
2343		 * If the driver hasn't setup a single inefficient frequency,
2344		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2345		 */
2346		if (!policy->efficiencies_available)
2347			relation &= ~CPUFREQ_RELATION_E;
2348
2349		return cpufreq_driver->target(policy, target_freq, relation);
2350	}
2351
2352	if (!cpufreq_driver->target_index)
2353		return -EINVAL;
2354
2355	return __target_index(policy, policy->cached_resolved_idx);
2356}
2357EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2358
2359int cpufreq_driver_target(struct cpufreq_policy *policy,
2360			  unsigned int target_freq,
2361			  unsigned int relation)
2362{
2363	int ret;
2364
2365	down_write(&policy->rwsem);
2366
2367	ret = __cpufreq_driver_target(policy, target_freq, relation);
2368
2369	up_write(&policy->rwsem);
2370
2371	return ret;
2372}
2373EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2374
2375__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2376{
2377	return NULL;
2378}
2379
2380static int cpufreq_init_governor(struct cpufreq_policy *policy)
2381{
2382	int ret;
2383
2384	/* Don't start any governor operations if we are entering suspend */
2385	if (cpufreq_suspended)
2386		return 0;
2387	/*
2388	 * Governor might not be initiated here if ACPI _PPC changed
2389	 * notification happened, so check it.
2390	 */
2391	if (!policy->governor)
2392		return -EINVAL;
2393
2394	/* Platform doesn't want dynamic frequency switching ? */
2395	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2396	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2397		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2398
2399		if (gov) {
2400			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2401				policy->governor->name, gov->name);
2402			policy->governor = gov;
2403		} else {
2404			return -EINVAL;
2405		}
2406	}
2407
2408	if (!try_module_get(policy->governor->owner))
2409		return -EINVAL;
2410
2411	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2412
2413	if (policy->governor->init) {
2414		ret = policy->governor->init(policy);
2415		if (ret) {
2416			module_put(policy->governor->owner);
2417			return ret;
2418		}
2419	}
2420
2421	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2422
2423	return 0;
2424}
2425
2426static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2427{
2428	if (cpufreq_suspended || !policy->governor)
2429		return;
2430
2431	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2432
2433	if (policy->governor->exit)
2434		policy->governor->exit(policy);
2435
2436	module_put(policy->governor->owner);
2437}
2438
2439int cpufreq_start_governor(struct cpufreq_policy *policy)
2440{
2441	int ret;
2442
2443	if (cpufreq_suspended)
2444		return 0;
2445
2446	if (!policy->governor)
2447		return -EINVAL;
2448
2449	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2450
2451	if (cpufreq_driver->get)
2452		cpufreq_verify_current_freq(policy, false);
2453
2454	if (policy->governor->start) {
2455		ret = policy->governor->start(policy);
2456		if (ret)
2457			return ret;
2458	}
2459
2460	if (policy->governor->limits)
2461		policy->governor->limits(policy);
2462
2463	return 0;
2464}
2465
2466void cpufreq_stop_governor(struct cpufreq_policy *policy)
2467{
2468	if (cpufreq_suspended || !policy->governor)
2469		return;
2470
2471	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2472
2473	if (policy->governor->stop)
2474		policy->governor->stop(policy);
2475}
2476
2477static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2478{
2479	if (cpufreq_suspended || !policy->governor)
2480		return;
2481
2482	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2483
2484	if (policy->governor->limits)
2485		policy->governor->limits(policy);
2486}
2487
2488int cpufreq_register_governor(struct cpufreq_governor *governor)
2489{
2490	int err;
2491
2492	if (!governor)
2493		return -EINVAL;
2494
2495	if (cpufreq_disabled())
2496		return -ENODEV;
2497
2498	mutex_lock(&cpufreq_governor_mutex);
2499
2500	err = -EBUSY;
2501	if (!find_governor(governor->name)) {
2502		err = 0;
2503		list_add(&governor->governor_list, &cpufreq_governor_list);
2504	}
2505
2506	mutex_unlock(&cpufreq_governor_mutex);
2507	return err;
2508}
2509EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2510
2511void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2512{
2513	struct cpufreq_policy *policy;
2514	unsigned long flags;
2515
2516	if (!governor)
2517		return;
2518
2519	if (cpufreq_disabled())
2520		return;
2521
2522	/* clear last_governor for all inactive policies */
2523	read_lock_irqsave(&cpufreq_driver_lock, flags);
2524	for_each_inactive_policy(policy) {
2525		if (!strcmp(policy->last_governor, governor->name)) {
2526			policy->governor = NULL;
2527			strcpy(policy->last_governor, "\0");
2528		}
2529	}
2530	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2531
2532	mutex_lock(&cpufreq_governor_mutex);
2533	list_del(&governor->governor_list);
2534	mutex_unlock(&cpufreq_governor_mutex);
2535}
2536EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2537
2538
2539/*********************************************************************
2540 *                          POLICY INTERFACE                         *
2541 *********************************************************************/
2542
2543/**
2544 * cpufreq_get_policy - get the current cpufreq_policy
2545 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2546 *	is written
2547 * @cpu: CPU to find the policy for
2548 *
2549 * Reads the current cpufreq policy.
2550 */
2551int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2552{
2553	struct cpufreq_policy *cpu_policy;
2554	if (!policy)
2555		return -EINVAL;
2556
2557	cpu_policy = cpufreq_cpu_get(cpu);
2558	if (!cpu_policy)
2559		return -EINVAL;
2560
2561	memcpy(policy, cpu_policy, sizeof(*policy));
2562
2563	cpufreq_cpu_put(cpu_policy);
2564	return 0;
2565}
2566EXPORT_SYMBOL(cpufreq_get_policy);
2567
2568DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2569
2570/**
2571 * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2572 * @policy: cpufreq policy of the CPUs.
2573 *
2574 * Update the value of cpufreq pressure for all @cpus in the policy.
2575 */
2576static void cpufreq_update_pressure(struct cpufreq_policy *policy)
2577{
2578	unsigned long max_capacity, capped_freq, pressure;
2579	u32 max_freq;
2580	int cpu;
2581
2582	cpu = cpumask_first(policy->related_cpus);
2583	max_freq = arch_scale_freq_ref(cpu);
2584	capped_freq = policy->max;
2585
2586	/*
2587	 * Handle properly the boost frequencies, which should simply clean
2588	 * the cpufreq pressure value.
2589	 */
2590	if (max_freq <= capped_freq) {
2591		pressure = 0;
2592	} else {
2593		max_capacity = arch_scale_cpu_capacity(cpu);
2594		pressure = max_capacity -
2595			   mult_frac(max_capacity, capped_freq, max_freq);
2596	}
2597
2598	for_each_cpu(cpu, policy->related_cpus)
2599		WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2600}
2601
2602/**
2603 * cpufreq_set_policy - Modify cpufreq policy parameters.
2604 * @policy: Policy object to modify.
2605 * @new_gov: Policy governor pointer.
2606 * @new_pol: Policy value (for drivers with built-in governors).
2607 *
2608 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2609 * limits to be set for the policy, update @policy with the verified limits
2610 * values and either invoke the driver's ->setpolicy() callback (if present) or
2611 * carry out a governor update for @policy.  That is, run the current governor's
2612 * ->limits() callback (if @new_gov points to the same object as the one in
2613 * @policy) or replace the governor for @policy with @new_gov.
2614 *
2615 * The cpuinfo part of @policy is not updated by this function.
2616 */
2617static int cpufreq_set_policy(struct cpufreq_policy *policy,
2618			      struct cpufreq_governor *new_gov,
2619			      unsigned int new_pol)
2620{
2621	struct cpufreq_policy_data new_data;
2622	struct cpufreq_governor *old_gov;
2623	int ret;
2624
2625	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2626	new_data.freq_table = policy->freq_table;
2627	new_data.cpu = policy->cpu;
2628	/*
2629	 * PM QoS framework collects all the requests from users and provide us
2630	 * the final aggregated value here.
2631	 */
2632	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2633	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2634
2635	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2636		 new_data.cpu, new_data.min, new_data.max);
2637
2638	/*
2639	 * Verify that the CPU speed can be set within these limits and make sure
2640	 * that min <= max.
2641	 */
2642	ret = cpufreq_driver->verify(&new_data);
2643	if (ret)
2644		return ret;
2645
2646	/*
2647	 * Resolve policy min/max to available frequencies. It ensures
2648	 * no frequency resolution will neither overshoot the requested maximum
2649	 * nor undershoot the requested minimum.
2650	 */
2651	policy->min = new_data.min;
2652	policy->max = new_data.max;
2653	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2654	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2655	trace_cpu_frequency_limits(policy);
2656
2657	cpufreq_update_pressure(policy);
2658
2659	policy->cached_target_freq = UINT_MAX;
2660
2661	pr_debug("new min and max freqs are %u - %u kHz\n",
2662		 policy->min, policy->max);
2663
2664	if (cpufreq_driver->setpolicy) {
2665		policy->policy = new_pol;
2666		pr_debug("setting range\n");
2667		return cpufreq_driver->setpolicy(policy);
2668	}
2669
2670	if (new_gov == policy->governor) {
2671		pr_debug("governor limits update\n");
2672		cpufreq_governor_limits(policy);
2673		return 0;
2674	}
2675
2676	pr_debug("governor switch\n");
2677
2678	/* save old, working values */
2679	old_gov = policy->governor;
2680	/* end old governor */
2681	if (old_gov) {
2682		cpufreq_stop_governor(policy);
2683		cpufreq_exit_governor(policy);
2684	}
2685
2686	/* start new governor */
2687	policy->governor = new_gov;
2688	ret = cpufreq_init_governor(policy);
2689	if (!ret) {
2690		ret = cpufreq_start_governor(policy);
2691		if (!ret) {
2692			pr_debug("governor change\n");
2693			return 0;
2694		}
2695		cpufreq_exit_governor(policy);
2696	}
2697
2698	/* new governor failed, so re-start old one */
2699	pr_debug("starting governor %s failed\n", policy->governor->name);
2700	if (old_gov) {
2701		policy->governor = old_gov;
2702		if (cpufreq_init_governor(policy))
2703			policy->governor = NULL;
2704		else
2705			cpufreq_start_governor(policy);
2706	}
2707
2708	return ret;
2709}
2710
2711/**
2712 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2713 * @cpu: CPU to re-evaluate the policy for.
2714 *
2715 * Update the current frequency for the cpufreq policy of @cpu and use
2716 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2717 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2718 * for the policy in question, among other things.
2719 */
2720void cpufreq_update_policy(unsigned int cpu)
2721{
2722	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2723
2724	if (!policy)
2725		return;
2726
2727	/*
2728	 * BIOS might change freq behind our back
2729	 * -> ask driver for current freq and notify governors about a change
2730	 */
2731	if (cpufreq_driver->get && has_target() &&
2732	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2733		goto unlock;
2734
2735	refresh_frequency_limits(policy);
2736
2737unlock:
2738	cpufreq_cpu_release(policy);
2739}
2740EXPORT_SYMBOL(cpufreq_update_policy);
2741
2742/**
2743 * cpufreq_update_limits - Update policy limits for a given CPU.
2744 * @cpu: CPU to update the policy limits for.
2745 *
2746 * Invoke the driver's ->update_limits callback if present or call
2747 * cpufreq_update_policy() for @cpu.
2748 */
2749void cpufreq_update_limits(unsigned int cpu)
2750{
2751	if (cpufreq_driver->update_limits)
2752		cpufreq_driver->update_limits(cpu);
2753	else
2754		cpufreq_update_policy(cpu);
2755}
2756EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2757
2758/*********************************************************************
2759 *               BOOST						     *
2760 *********************************************************************/
2761static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2762{
2763	int ret;
2764
2765	if (!policy->freq_table)
2766		return -ENXIO;
2767
2768	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2769	if (ret) {
2770		pr_err("%s: Policy frequency update failed\n", __func__);
2771		return ret;
2772	}
2773
2774	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2775	if (ret < 0)
2776		return ret;
2777
2778	return 0;
2779}
2780
2781int cpufreq_boost_trigger_state(int state)
2782{
2783	struct cpufreq_policy *policy;
2784	unsigned long flags;
2785	int ret = 0;
2786
2787	if (cpufreq_driver->boost_enabled == state)
2788		return 0;
2789
2790	write_lock_irqsave(&cpufreq_driver_lock, flags);
2791	cpufreq_driver->boost_enabled = state;
2792	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2793
2794	cpus_read_lock();
2795	for_each_active_policy(policy) {
2796		policy->boost_enabled = state;
2797		ret = cpufreq_driver->set_boost(policy, state);
2798		if (ret) {
2799			policy->boost_enabled = !policy->boost_enabled;
2800			goto err_reset_state;
2801		}
 
2802	}
2803	cpus_read_unlock();
2804
2805	return 0;
2806
2807err_reset_state:
2808	cpus_read_unlock();
2809
2810	write_lock_irqsave(&cpufreq_driver_lock, flags);
2811	cpufreq_driver->boost_enabled = !state;
2812	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2813
2814	pr_err("%s: Cannot %s BOOST\n",
2815	       __func__, state ? "enable" : "disable");
2816
2817	return ret;
2818}
2819
2820static bool cpufreq_boost_supported(void)
2821{
2822	return cpufreq_driver->set_boost;
2823}
2824
2825static int create_boost_sysfs_file(void)
2826{
2827	int ret;
2828
2829	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2830	if (ret)
2831		pr_err("%s: cannot register global BOOST sysfs file\n",
2832		       __func__);
2833
2834	return ret;
2835}
2836
2837static void remove_boost_sysfs_file(void)
2838{
2839	if (cpufreq_boost_supported())
2840		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2841}
2842
2843int cpufreq_enable_boost_support(void)
2844{
2845	if (!cpufreq_driver)
2846		return -EINVAL;
2847
2848	if (cpufreq_boost_supported())
2849		return 0;
2850
2851	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2852
2853	/* This will get removed on driver unregister */
2854	return create_boost_sysfs_file();
2855}
2856EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2857
2858bool cpufreq_boost_enabled(void)
2859{
2860	return cpufreq_driver->boost_enabled;
2861}
2862EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2863
2864/*********************************************************************
2865 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2866 *********************************************************************/
2867static enum cpuhp_state hp_online;
2868
2869static int cpuhp_cpufreq_online(unsigned int cpu)
2870{
2871	cpufreq_online(cpu);
2872
2873	return 0;
2874}
2875
2876static int cpuhp_cpufreq_offline(unsigned int cpu)
2877{
2878	cpufreq_offline(cpu);
2879
2880	return 0;
2881}
2882
2883/**
2884 * cpufreq_register_driver - register a CPU Frequency driver
2885 * @driver_data: A struct cpufreq_driver containing the values#
2886 * submitted by the CPU Frequency driver.
2887 *
2888 * Registers a CPU Frequency driver to this core code. This code
2889 * returns zero on success, -EEXIST when another driver got here first
2890 * (and isn't unregistered in the meantime).
2891 *
2892 */
2893int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2894{
2895	unsigned long flags;
2896	int ret;
2897
2898	if (cpufreq_disabled())
2899		return -ENODEV;
2900
2901	/*
2902	 * The cpufreq core depends heavily on the availability of device
2903	 * structure, make sure they are available before proceeding further.
2904	 */
2905	if (!get_cpu_device(0))
2906		return -EPROBE_DEFER;
2907
2908	if (!driver_data || !driver_data->verify || !driver_data->init ||
2909	    !(driver_data->setpolicy || driver_data->target_index ||
2910		    driver_data->target) ||
2911	     (driver_data->setpolicy && (driver_data->target_index ||
2912		    driver_data->target)) ||
2913	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2914	     (!driver_data->online != !driver_data->offline) ||
2915		 (driver_data->adjust_perf && !driver_data->fast_switch))
2916		return -EINVAL;
2917
2918	pr_debug("trying to register driver %s\n", driver_data->name);
2919
2920	/* Protect against concurrent CPU online/offline. */
2921	cpus_read_lock();
2922
2923	write_lock_irqsave(&cpufreq_driver_lock, flags);
2924	if (cpufreq_driver) {
2925		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2926		ret = -EEXIST;
2927		goto out;
2928	}
2929	cpufreq_driver = driver_data;
2930	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2931
2932	/*
2933	 * Mark support for the scheduler's frequency invariance engine for
2934	 * drivers that implement target(), target_index() or fast_switch().
2935	 */
2936	if (!cpufreq_driver->setpolicy) {
2937		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2938		pr_debug("supports frequency invariance");
2939	}
2940
2941	if (driver_data->setpolicy)
2942		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2943
2944	if (cpufreq_boost_supported()) {
2945		ret = create_boost_sysfs_file();
2946		if (ret)
2947			goto err_null_driver;
2948	}
2949
2950	ret = subsys_interface_register(&cpufreq_interface);
2951	if (ret)
2952		goto err_boost_unreg;
2953
2954	if (unlikely(list_empty(&cpufreq_policy_list))) {
2955		/* if all ->init() calls failed, unregister */
2956		ret = -ENODEV;
2957		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2958			 driver_data->name);
2959		goto err_if_unreg;
2960	}
2961
2962	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2963						   "cpufreq:online",
2964						   cpuhp_cpufreq_online,
2965						   cpuhp_cpufreq_offline);
2966	if (ret < 0)
2967		goto err_if_unreg;
2968	hp_online = ret;
2969	ret = 0;
2970
2971	pr_debug("driver %s up and running\n", driver_data->name);
2972	goto out;
2973
2974err_if_unreg:
2975	subsys_interface_unregister(&cpufreq_interface);
2976err_boost_unreg:
2977	remove_boost_sysfs_file();
2978err_null_driver:
2979	write_lock_irqsave(&cpufreq_driver_lock, flags);
2980	cpufreq_driver = NULL;
2981	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2982out:
2983	cpus_read_unlock();
2984	return ret;
2985}
2986EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2987
2988/*
2989 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2990 *
2991 * Unregister the current CPUFreq driver. Only call this if you have
2992 * the right to do so, i.e. if you have succeeded in initialising before!
2993 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2994 * currently not initialised.
2995 */
2996void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2997{
2998	unsigned long flags;
2999
3000	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3001		return;
3002
3003	pr_debug("unregistering driver %s\n", driver->name);
3004
3005	/* Protect against concurrent cpu hotplug */
3006	cpus_read_lock();
3007	subsys_interface_unregister(&cpufreq_interface);
3008	remove_boost_sysfs_file();
3009	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3010	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3011
3012	write_lock_irqsave(&cpufreq_driver_lock, flags);
3013
3014	cpufreq_driver = NULL;
3015
3016	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3017	cpus_read_unlock();
3018}
3019EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3020
3021static int __init cpufreq_core_init(void)
3022{
3023	struct cpufreq_governor *gov = cpufreq_default_governor();
3024	struct device *dev_root;
3025
3026	if (cpufreq_disabled())
3027		return -ENODEV;
3028
3029	dev_root = bus_get_dev_root(&cpu_subsys);
3030	if (dev_root) {
3031		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3032		put_device(dev_root);
3033	}
3034	BUG_ON(!cpufreq_global_kobject);
3035
3036	if (!strlen(default_governor))
3037		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3038
3039	return 0;
3040}
3041module_param(off, int, 0444);
3042module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3043core_initcall(cpufreq_core_init);