Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
 
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
 
 
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
 
 
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
 
 
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
 
 
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
 
 
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
 
 
  79}
  80
 
  81/* internal prototypes */
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 
 
 
 
 
 
 
 
 
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 241
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 252	kobject_put(&policy->kobj);
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 
 266
 267	up_write(&policy->rwsem);
 
 268
 269	cpufreq_cpu_put(policy);
 
 
 
 
 
 270}
 
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 
 
 
 299}
 
 
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 
 
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 336#endif
 337}
 
 
 
 
 
 
 
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 354
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 
 365	switch (state) {
 
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 
 
 
 
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 397	}
 398}
 399
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency) {
 579		/*
 580		 * For platforms that can change the frequency very fast (< 10
 581		 * us), the above formula gives a decent transition delay. But
 582		 * for platforms where transition_latency is in milliseconds, it
 583		 * ends up giving unrealistic values.
 584		 *
 585		 * Cap the default transition delay to 10 ms, which seems to be
 586		 * a reasonable amount of time after which we should reevaluate
 587		 * the frequency.
 588		 */
 589		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 590	}
 591
 592	return LATENCY_MULTIPLIER;
 593}
 594EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 595
 596/*********************************************************************
 597 *                          SYSFS INTERFACE                          *
 598 *********************************************************************/
 599static ssize_t show_boost(struct kobject *kobj,
 600			  struct kobj_attribute *attr, char *buf)
 601{
 602	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 603}
 604
 605static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 606			   const char *buf, size_t count)
 607{
 608	int ret, enable;
 609
 610	ret = sscanf(buf, "%d", &enable);
 611	if (ret != 1 || enable < 0 || enable > 1)
 612		return -EINVAL;
 613
 614	if (cpufreq_boost_trigger_state(enable)) {
 615		pr_err("%s: Cannot %s BOOST!\n",
 616		       __func__, enable ? "enable" : "disable");
 617		return -EINVAL;
 618	}
 619
 620	pr_debug("%s: cpufreq BOOST %s\n",
 621		 __func__, enable ? "enabled" : "disabled");
 622
 623	return count;
 624}
 625define_one_global_rw(boost);
 626
 627static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 628{
 629	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 630}
 631
 632static ssize_t store_local_boost(struct cpufreq_policy *policy,
 633				 const char *buf, size_t count)
 634{
 635	int ret, enable;
 636
 637	ret = kstrtoint(buf, 10, &enable);
 638	if (ret || enable < 0 || enable > 1)
 639		return -EINVAL;
 640
 641	if (!cpufreq_driver->boost_enabled)
 642		return -EINVAL;
 643
 644	if (policy->boost_enabled == enable)
 645		return count;
 646
 647	cpus_read_lock();
 648	ret = cpufreq_driver->set_boost(policy, enable);
 649	cpus_read_unlock();
 650
 651	if (ret)
 652		return ret;
 653
 654	policy->boost_enabled = enable;
 655
 656	return count;
 657}
 658
 659static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 660
 661static struct cpufreq_governor *find_governor(const char *str_governor)
 662{
 663	struct cpufreq_governor *t;
 664
 665	for_each_governor(t)
 666		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 667			return t;
 668
 669	return NULL;
 670}
 671
 672static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 673{
 674	struct cpufreq_governor *t;
 675
 676	mutex_lock(&cpufreq_governor_mutex);
 677	t = find_governor(str_governor);
 678	if (!t)
 679		goto unlock;
 680
 681	if (!try_module_get(t->owner))
 682		t = NULL;
 683
 684unlock:
 685	mutex_unlock(&cpufreq_governor_mutex);
 686
 687	return t;
 688}
 
 
 
 
 
 
 
 
 
 689
 690static unsigned int cpufreq_parse_policy(char *str_governor)
 691{
 692	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 693		return CPUFREQ_POLICY_PERFORMANCE;
 694
 695	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 696		return CPUFREQ_POLICY_POWERSAVE;
 697
 698	return CPUFREQ_POLICY_UNKNOWN;
 699}
 700
 701/**
 702 * cpufreq_parse_governor - parse a governor string only for has_target()
 703 * @str_governor: Governor name.
 704 */
 705static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 706{
 707	struct cpufreq_governor *t;
 708
 709	t = get_governor(str_governor);
 710	if (t)
 711		return t;
 712
 713	if (request_module("cpufreq_%s", str_governor))
 714		return NULL;
 
 
 715
 716	return get_governor(str_governor);
 
 
 
 717}
 718
 719/*
 
 720 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 721 * print out cpufreq information
 722 *
 723 * Write out information from cpufreq_driver->policy[cpu]; object must be
 724 * "unsigned int".
 725 */
 726
 727#define show_one(file_name, object)			\
 728static ssize_t show_##file_name				\
 729(struct cpufreq_policy *policy, char *buf)		\
 730{							\
 731	return sprintf(buf, "%u\n", policy->object);	\
 732}
 733
 734show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 735show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 736show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 737show_one(scaling_min_freq, min);
 738show_one(scaling_max_freq, max);
 
 739
 740__weak unsigned int arch_freq_get_on_cpu(int cpu)
 741{
 742	return 0;
 743}
 744
 745static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 746{
 747	ssize_t ret;
 748	unsigned int freq;
 749
 750	freq = arch_freq_get_on_cpu(policy->cpu);
 751	if (freq)
 752		ret = sprintf(buf, "%u\n", freq);
 753	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 754		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 755	else
 756		ret = sprintf(buf, "%u\n", policy->cur);
 757	return ret;
 758}
 759
 760/*
 761 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 762 */
 763#define store_one(file_name, object)			\
 764static ssize_t store_##file_name					\
 765(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 766{									\
 767	unsigned long val;						\
 768	int ret;							\
 769									\
 770	ret = kstrtoul(buf, 0, &val);					\
 771	if (ret)							\
 772		return ret;						\
 
 
 
 
 773									\
 774	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 775	return ret >= 0 ? count : ret;					\
 
 
 776}
 777
 778store_one(scaling_min_freq, min);
 779store_one(scaling_max_freq, max);
 780
 781/*
 782 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 783 */
 784static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 785					char *buf)
 786{
 787	unsigned int cur_freq = __cpufreq_get(policy);
 788
 789	if (cur_freq)
 790		return sprintf(buf, "%u\n", cur_freq);
 791
 792	return sprintf(buf, "<unknown>\n");
 793}
 794
 795/*
 
 796 * show_scaling_governor - show the current policy for the specified CPU
 797 */
 798static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 799{
 800	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 801		return sprintf(buf, "powersave\n");
 802	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 803		return sprintf(buf, "performance\n");
 804	else if (policy->governor)
 805		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 806				policy->governor->name);
 807	return -EINVAL;
 808}
 809
 810/*
 
 811 * store_scaling_governor - store policy for the specified CPU
 812 */
 813static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 814					const char *buf, size_t count)
 815{
 816	char str_governor[16];
 817	int ret;
 
 
 
 
 
 818
 819	ret = sscanf(buf, "%15s", str_governor);
 820	if (ret != 1)
 821		return -EINVAL;
 822
 823	if (cpufreq_driver->setpolicy) {
 824		unsigned int new_pol;
 825
 826		new_pol = cpufreq_parse_policy(str_governor);
 827		if (!new_pol)
 828			return -EINVAL;
 829
 830		ret = cpufreq_set_policy(policy, NULL, new_pol);
 831	} else {
 832		struct cpufreq_governor *new_gov;
 833
 834		new_gov = cpufreq_parse_governor(str_governor);
 835		if (!new_gov)
 836			return -EINVAL;
 837
 838		ret = cpufreq_set_policy(policy, new_gov,
 839					 CPUFREQ_POLICY_UNKNOWN);
 
 840
 841		module_put(new_gov->owner);
 842	}
 843
 844	return ret ? ret : count;
 
 
 
 845}
 846
 847/*
 848 * show_scaling_driver - show the cpufreq driver currently loaded
 849 */
 850static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 851{
 852	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 853}
 854
 855/*
 856 * show_scaling_available_governors - show the available CPUfreq governors
 857 */
 858static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 859						char *buf)
 860{
 861	ssize_t i = 0;
 862	struct cpufreq_governor *t;
 863
 864	if (!has_target()) {
 865		i += sprintf(buf, "performance powersave");
 866		goto out;
 867	}
 868
 869	mutex_lock(&cpufreq_governor_mutex);
 870	for_each_governor(t) {
 871		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 872		    - (CPUFREQ_NAME_LEN + 2)))
 873			break;
 874		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 875	}
 876	mutex_unlock(&cpufreq_governor_mutex);
 877out:
 878	i += sprintf(&buf[i], "\n");
 879	return i;
 880}
 881
 882ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 883{
 884	ssize_t i = 0;
 885	unsigned int cpu;
 886
 887	for_each_cpu(cpu, mask) {
 888		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
 
 
 889		if (i >= (PAGE_SIZE - 5))
 890			break;
 891	}
 892
 893	/* Remove the extra space at the end */
 894	i--;
 895
 896	i += sprintf(&buf[i], "\n");
 897	return i;
 898}
 899EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 900
 901/*
 902 * show_related_cpus - show the CPUs affected by each transition even if
 903 * hw coordination is in use
 904 */
 905static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 906{
 907	return cpufreq_show_cpus(policy->related_cpus, buf);
 
 
 908}
 909
 910/*
 911 * show_affected_cpus - show the CPUs affected by each transition
 912 */
 913static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 914{
 915	return cpufreq_show_cpus(policy->cpus, buf);
 916}
 917
 918static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 919					const char *buf, size_t count)
 920{
 921	unsigned int freq = 0;
 922	unsigned int ret;
 923
 924	if (!policy->governor || !policy->governor->store_setspeed)
 925		return -EINVAL;
 926
 927	ret = sscanf(buf, "%u", &freq);
 928	if (ret != 1)
 929		return -EINVAL;
 930
 931	policy->governor->store_setspeed(policy, freq);
 932
 933	return count;
 934}
 935
 936static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 937{
 938	if (!policy->governor || !policy->governor->show_setspeed)
 939		return sprintf(buf, "<unsupported>\n");
 940
 941	return policy->governor->show_setspeed(policy, buf);
 942}
 943
 944/*
 945 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 946 */
 947static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 948{
 949	unsigned int limit;
 950	int ret;
 951	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 952	if (!ret)
 953		return sprintf(buf, "%u\n", limit);
 
 
 954	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 955}
 956
 957cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 958cpufreq_freq_attr_ro(cpuinfo_min_freq);
 959cpufreq_freq_attr_ro(cpuinfo_max_freq);
 960cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 961cpufreq_freq_attr_ro(scaling_available_governors);
 962cpufreq_freq_attr_ro(scaling_driver);
 963cpufreq_freq_attr_ro(scaling_cur_freq);
 964cpufreq_freq_attr_ro(bios_limit);
 965cpufreq_freq_attr_ro(related_cpus);
 966cpufreq_freq_attr_ro(affected_cpus);
 967cpufreq_freq_attr_rw(scaling_min_freq);
 968cpufreq_freq_attr_rw(scaling_max_freq);
 969cpufreq_freq_attr_rw(scaling_governor);
 970cpufreq_freq_attr_rw(scaling_setspeed);
 971
 972static struct attribute *cpufreq_attrs[] = {
 973	&cpuinfo_min_freq.attr,
 974	&cpuinfo_max_freq.attr,
 975	&cpuinfo_transition_latency.attr,
 976	&scaling_min_freq.attr,
 977	&scaling_max_freq.attr,
 978	&affected_cpus.attr,
 979	&related_cpus.attr,
 980	&scaling_governor.attr,
 981	&scaling_driver.attr,
 982	&scaling_available_governors.attr,
 983	&scaling_setspeed.attr,
 984	NULL
 985};
 986ATTRIBUTE_GROUPS(cpufreq);
 
 
 987
 988#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 989#define to_attr(a) container_of(a, struct freq_attr, attr)
 990
 991static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 992{
 993	struct cpufreq_policy *policy = to_policy(kobj);
 994	struct freq_attr *fattr = to_attr(attr);
 995	ssize_t ret = -EBUSY;
 
 
 
 996
 997	if (!fattr->show)
 998		return -EIO;
 999
1000	down_read(&policy->rwsem);
1001	if (likely(!policy_is_inactive(policy)))
1002		ret = fattr->show(policy, buf);
1003	up_read(&policy->rwsem);
 
1004
 
 
 
 
1005	return ret;
1006}
1007
1008static ssize_t store(struct kobject *kobj, struct attribute *attr,
1009		     const char *buf, size_t count)
1010{
1011	struct cpufreq_policy *policy = to_policy(kobj);
1012	struct freq_attr *fattr = to_attr(attr);
1013	ssize_t ret = -EBUSY;
 
 
 
1014
1015	if (!fattr->store)
1016		return -EIO;
1017
1018	down_write(&policy->rwsem);
1019	if (likely(!policy_is_inactive(policy)))
1020		ret = fattr->store(policy, buf, count);
1021	up_write(&policy->rwsem);
 
1022
 
 
 
 
1023	return ret;
1024}
1025
1026static void cpufreq_sysfs_release(struct kobject *kobj)
1027{
1028	struct cpufreq_policy *policy = to_policy(kobj);
1029	pr_debug("last reference is dropped\n");
1030	complete(&policy->kobj_unregister);
1031}
1032
1033static const struct sysfs_ops sysfs_ops = {
1034	.show	= show,
1035	.store	= store,
1036};
1037
1038static const struct kobj_type ktype_cpufreq = {
1039	.sysfs_ops	= &sysfs_ops,
1040	.default_groups	= cpufreq_groups,
1041	.release	= cpufreq_sysfs_release,
1042};
1043
1044static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1045				struct device *dev)
 
 
 
 
 
 
 
1046{
1047	if (unlikely(!dev))
1048		return;
 
 
 
 
1049
1050	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1051		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052
1053	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1054	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1055		dev_err(dev, "cpufreq symlink creation failed\n");
 
 
 
 
 
1056}
1057
1058static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1059				   struct device *dev)
 
 
1060{
1061	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1062	sysfs_remove_link(&dev->kobj, "cpufreq");
1063	cpumask_clear_cpu(cpu, policy->real_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064}
1065
1066static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
 
1067{
 
1068	struct freq_attr **drv_attr;
 
1069	int ret = 0;
 
 
 
 
 
 
 
1070
1071	/* set up files for this cpu device */
1072	drv_attr = cpufreq_driver->attr;
1073	while (drv_attr && *drv_attr) {
1074		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1075		if (ret)
1076			return ret;
1077		drv_attr++;
1078	}
1079	if (cpufreq_driver->get) {
1080		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1081		if (ret)
1082			return ret;
 
 
 
 
 
1083	}
1084
1085	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1086	if (ret)
1087		return ret;
1088
1089	if (cpufreq_driver->bios_limit) {
1090		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1091		if (ret)
1092			return ret;
1093	}
1094
1095	if (cpufreq_boost_supported()) {
1096		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1097		if (ret)
1098			return ret;
 
 
1099	}
 
1100
1101	return 0;
1102}
1103
1104static int cpufreq_init_policy(struct cpufreq_policy *policy)
1105{
1106	struct cpufreq_governor *gov = NULL;
1107	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1108	int ret;
1109
1110	if (has_target()) {
1111		/* Update policy governor to the one used before hotplug. */
1112		gov = get_governor(policy->last_governor);
1113		if (gov) {
1114			pr_debug("Restoring governor %s for cpu %d\n",
1115				 gov->name, policy->cpu);
1116		} else {
1117			gov = get_governor(default_governor);
1118		}
1119
1120		if (!gov) {
1121			gov = cpufreq_default_governor();
1122			__module_get(gov->owner);
1123		}
1124
1125	} else {
 
 
 
 
 
 
 
1126
1127		/* Use the default policy if there is no last_policy. */
1128		if (policy->last_policy) {
1129			pol = policy->last_policy;
1130		} else {
1131			pol = cpufreq_parse_policy(default_governor);
1132			/*
1133			 * In case the default governor is neither "performance"
1134			 * nor "powersave", fall back to the initial policy
1135			 * value set by the driver.
1136			 */
1137			if (pol == CPUFREQ_POLICY_UNKNOWN)
1138				pol = policy->policy;
1139		}
1140		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1141		    pol != CPUFREQ_POLICY_POWERSAVE)
1142			return -ENODATA;
1143	}
 
1144
1145	ret = cpufreq_set_policy(policy, gov, pol);
1146	if (gov)
1147		module_put(gov->owner);
1148
1149	return ret;
1150}
1151
1152static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
1153{
1154	int ret = 0;
 
 
 
 
 
 
 
1155
1156	/* Has this CPU been taken care of already? */
1157	if (cpumask_test_cpu(cpu, policy->cpus))
1158		return 0;
1159
1160	down_write(&policy->rwsem);
1161	if (has_target())
1162		cpufreq_stop_governor(policy);
1163
1164	cpumask_set_cpu(cpu, policy->cpus);
1165
1166	if (has_target()) {
1167		ret = cpufreq_start_governor(policy);
1168		if (ret)
1169			pr_err("%s: Failed to start governor\n", __func__);
 
1170	}
1171	up_write(&policy->rwsem);
1172	return ret;
1173}
1174
1175void refresh_frequency_limits(struct cpufreq_policy *policy)
1176{
1177	if (!policy_is_inactive(policy)) {
1178		pr_debug("updating policy for CPU %u\n", policy->cpu);
1179
1180		cpufreq_set_policy(policy, policy->governor, policy->policy);
 
 
1181	}
1182}
1183EXPORT_SYMBOL(refresh_frequency_limits);
1184
1185static void handle_update(struct work_struct *work)
1186{
1187	struct cpufreq_policy *policy =
1188		container_of(work, struct cpufreq_policy, update);
1189
1190	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1191	down_write(&policy->rwsem);
1192	refresh_frequency_limits(policy);
1193	up_write(&policy->rwsem);
1194}
1195
1196static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1197				void *data)
1198{
1199	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1200
1201	schedule_work(&policy->update);
1202	return 0;
1203}
1204
1205static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1206				void *data)
1207{
1208	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1209
1210	schedule_work(&policy->update);
1211	return 0;
1212}
1213
1214static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1215{
1216	struct kobject *kobj;
1217	struct completion *cmp;
1218
1219	down_write(&policy->rwsem);
1220	cpufreq_stats_free_table(policy);
1221	kobj = &policy->kobj;
1222	cmp = &policy->kobj_unregister;
1223	up_write(&policy->rwsem);
1224	kobject_put(kobj);
1225
1226	/*
1227	 * We need to make sure that the underlying kobj is
1228	 * actually not referenced anymore by anybody before we
1229	 * proceed with unloading.
1230	 */
1231	pr_debug("waiting for dropping of refcount\n");
1232	wait_for_completion(cmp);
1233	pr_debug("wait complete\n");
1234}
1235
1236static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1237{
1238	struct cpufreq_policy *policy;
1239	struct device *dev = get_cpu_device(cpu);
1240	int ret;
1241
1242	if (!dev)
1243		return NULL;
1244
1245	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1246	if (!policy)
1247		return NULL;
1248
1249	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1250		goto err_free_policy;
1251
1252	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1253		goto err_free_cpumask;
1254
1255	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1256		goto err_free_rcpumask;
1257
1258	init_completion(&policy->kobj_unregister);
1259	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1260				   cpufreq_global_kobject, "policy%u", cpu);
1261	if (ret) {
1262		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1263		/*
1264		 * The entire policy object will be freed below, but the extra
1265		 * memory allocated for the kobject name needs to be freed by
1266		 * releasing the kobject.
1267		 */
1268		kobject_put(&policy->kobj);
1269		goto err_free_real_cpus;
1270	}
1271
1272	freq_constraints_init(&policy->constraints);
 
 
 
1273
1274	policy->nb_min.notifier_call = cpufreq_notifier_min;
1275	policy->nb_max.notifier_call = cpufreq_notifier_max;
1276
1277	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1278				    &policy->nb_min);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279	if (ret) {
1280		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1281			ret, cpu);
1282		goto err_kobj_remove;
1283	}
 
 
1284
1285	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1286				    &policy->nb_max);
 
 
1287	if (ret) {
1288		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1289			ret, cpu);
1290		goto err_min_qos_notifier;
 
 
1291	}
1292
1293	INIT_LIST_HEAD(&policy->policy_list);
1294	init_rwsem(&policy->rwsem);
1295	spin_lock_init(&policy->transition_lock);
1296	init_waitqueue_head(&policy->transition_wait);
1297	INIT_WORK(&policy->update, handle_update);
1298
1299	policy->cpu = cpu;
1300	return policy;
1301
1302err_min_qos_notifier:
1303	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1304				 &policy->nb_min);
1305err_kobj_remove:
1306	cpufreq_policy_put_kobj(policy);
1307err_free_real_cpus:
1308	free_cpumask_var(policy->real_cpus);
1309err_free_rcpumask:
1310	free_cpumask_var(policy->related_cpus);
1311err_free_cpumask:
1312	free_cpumask_var(policy->cpus);
1313err_free_policy:
1314	kfree(policy);
1315
1316	return NULL;
1317}
 
1318
1319static void cpufreq_policy_free(struct cpufreq_policy *policy)
1320{
1321	unsigned long flags;
1322	int cpu;
1323
1324	/*
1325	 * The callers must ensure the policy is inactive by now, to avoid any
1326	 * races with show()/store() callbacks.
1327	 */
1328	if (unlikely(!policy_is_inactive(policy)))
1329		pr_warn("%s: Freeing active policy\n", __func__);
1330
1331	/* Remove policy from list */
1332	write_lock_irqsave(&cpufreq_driver_lock, flags);
1333	list_del(&policy->policy_list);
1334
1335	for_each_cpu(cpu, policy->related_cpus)
1336		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1337	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1338
1339	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1340				 &policy->nb_max);
1341	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1342				 &policy->nb_min);
1343
1344	/* Cancel any pending policy->update work before freeing the policy. */
1345	cancel_work_sync(&policy->update);
1346
1347	if (policy->max_freq_req) {
1348		/*
1349		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1350		 * notification, since CPUFREQ_CREATE_POLICY notification was
1351		 * sent after adding max_freq_req earlier.
1352		 */
1353		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1354					     CPUFREQ_REMOVE_POLICY, policy);
1355		freq_qos_remove_request(policy->max_freq_req);
1356	}
1357
1358	freq_qos_remove_request(policy->min_freq_req);
1359	kfree(policy->min_freq_req);
1360
1361	cpufreq_policy_put_kobj(policy);
1362	free_cpumask_var(policy->real_cpus);
1363	free_cpumask_var(policy->related_cpus);
 
1364	free_cpumask_var(policy->cpus);
 
1365	kfree(policy);
 
 
 
 
1366}
1367
1368static int cpufreq_online(unsigned int cpu)
 
 
 
 
 
 
 
 
1369{
1370	struct cpufreq_policy *policy;
1371	bool new_policy;
1372	unsigned long flags;
 
 
 
 
 
1373	unsigned int j;
1374	int ret;
1375
1376	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1377
1378	/* Check if this CPU already has a policy to manage it */
1379	policy = per_cpu(cpufreq_cpu_data, cpu);
1380	if (policy) {
1381		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1382		if (!policy_is_inactive(policy))
1383			return cpufreq_add_policy_cpu(policy, cpu);
1384
1385		/* This is the only online CPU for the policy.  Start over. */
1386		new_policy = false;
1387		down_write(&policy->rwsem);
1388		policy->cpu = cpu;
1389		policy->governor = NULL;
1390	} else {
1391		new_policy = true;
1392		policy = cpufreq_policy_alloc(cpu);
1393		if (!policy)
1394			return -ENOMEM;
1395		down_write(&policy->rwsem);
1396	}
1397
1398	if (!new_policy && cpufreq_driver->online) {
1399		/* Recover policy->cpus using related_cpus */
1400		cpumask_copy(policy->cpus, policy->related_cpus);
1401
1402		ret = cpufreq_driver->online(policy);
1403		if (ret) {
1404			pr_debug("%s: %d: initialization failed\n", __func__,
1405				 __LINE__);
1406			goto out_exit_policy;
1407		}
1408	} else {
1409		cpumask_copy(policy->cpus, cpumask_of(cpu));
1410
1411		/*
1412		 * Call driver. From then on the cpufreq must be able
1413		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1414		 */
1415		ret = cpufreq_driver->init(policy);
1416		if (ret) {
1417			pr_debug("%s: %d: initialization failed\n", __func__,
1418				 __LINE__);
1419			goto out_free_policy;
1420		}
1421
1422		/*
1423		 * The initialization has succeeded and the policy is online.
1424		 * If there is a problem with its frequency table, take it
1425		 * offline and drop it.
1426		 */
1427		ret = cpufreq_table_validate_and_sort(policy);
1428		if (ret)
1429			goto out_offline_policy;
1430
1431		/* related_cpus should at least include policy->cpus. */
1432		cpumask_copy(policy->related_cpus, policy->cpus);
1433	}
1434
1435	/*
1436	 * affected cpus must always be the one, which are online. We aren't
1437	 * managing offline cpus here.
1438	 */
1439	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1440
1441	if (new_policy) {
1442		for_each_cpu(j, policy->related_cpus) {
1443			per_cpu(cpufreq_cpu_data, j) = policy;
1444			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1445		}
1446
1447		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1448					       GFP_KERNEL);
1449		if (!policy->min_freq_req) {
1450			ret = -ENOMEM;
1451			goto out_destroy_policy;
1452		}
1453
1454		ret = freq_qos_add_request(&policy->constraints,
1455					   policy->min_freq_req, FREQ_QOS_MIN,
1456					   FREQ_QOS_MIN_DEFAULT_VALUE);
1457		if (ret < 0) {
1458			/*
1459			 * So we don't call freq_qos_remove_request() for an
1460			 * uninitialized request.
1461			 */
1462			kfree(policy->min_freq_req);
1463			policy->min_freq_req = NULL;
1464			goto out_destroy_policy;
1465		}
1466
1467		/*
1468		 * This must be initialized right here to avoid calling
1469		 * freq_qos_remove_request() on uninitialized request in case
1470		 * of errors.
1471		 */
1472		policy->max_freq_req = policy->min_freq_req + 1;
1473
1474		ret = freq_qos_add_request(&policy->constraints,
1475					   policy->max_freq_req, FREQ_QOS_MAX,
1476					   FREQ_QOS_MAX_DEFAULT_VALUE);
1477		if (ret < 0) {
1478			policy->max_freq_req = NULL;
1479			goto out_destroy_policy;
1480		}
1481
1482		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1483				CPUFREQ_CREATE_POLICY, policy);
1484	}
 
1485
1486	if (cpufreq_driver->get && has_target()) {
1487		policy->cur = cpufreq_driver->get(policy->cpu);
1488		if (!policy->cur) {
1489			ret = -EIO;
1490			pr_err("%s: ->get() failed\n", __func__);
1491			goto out_destroy_policy;
1492		}
1493	}
1494
1495	/*
1496	 * Sometimes boot loaders set CPU frequency to a value outside of
1497	 * frequency table present with cpufreq core. In such cases CPU might be
1498	 * unstable if it has to run on that frequency for long duration of time
1499	 * and so its better to set it to a frequency which is specified in
1500	 * freq-table. This also makes cpufreq stats inconsistent as
1501	 * cpufreq-stats would fail to register because current frequency of CPU
1502	 * isn't found in freq-table.
1503	 *
1504	 * Because we don't want this change to effect boot process badly, we go
1505	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1506	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1507	 * is initialized to zero).
1508	 *
1509	 * We are passing target-freq as "policy->cur - 1" otherwise
1510	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1511	 * equal to target-freq.
1512	 */
1513	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1514	    && has_target()) {
1515		unsigned int old_freq = policy->cur;
1516
1517		/* Are we running at unknown frequency ? */
1518		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1519		if (ret == -EINVAL) {
1520			ret = __cpufreq_driver_target(policy, old_freq - 1,
1521						      CPUFREQ_RELATION_L);
1522
1523			/*
1524			 * Reaching here after boot in a few seconds may not
1525			 * mean that system will remain stable at "unknown"
1526			 * frequency for longer duration. Hence, a BUG_ON().
1527			 */
1528			BUG_ON(ret);
1529			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1530				__func__, policy->cpu, old_freq, policy->cur);
1531		}
1532	}
 
1533
1534	if (new_policy) {
1535		ret = cpufreq_add_dev_interface(policy);
1536		if (ret)
1537			goto out_destroy_policy;
1538
1539		cpufreq_stats_create_table(policy);
 
 
 
1540
1541		write_lock_irqsave(&cpufreq_driver_lock, flags);
1542		list_add(&policy->policy_list, &cpufreq_policy_list);
1543		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544
1545		/*
1546		 * Register with the energy model before
1547		 * sugov_eas_rebuild_sd() is called, which will result
1548		 * in rebuilding of the sched domains, which should only be done
1549		 * once the energy model is properly initialized for the policy
1550		 * first.
1551		 *
1552		 * Also, this should be called before the policy is registered
1553		 * with cooling framework.
1554		 */
1555		if (cpufreq_driver->register_em)
1556			cpufreq_driver->register_em(policy);
1557	}
1558
1559	ret = cpufreq_init_policy(policy);
1560	if (ret) {
1561		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1562		       __func__, cpu, ret);
1563		goto out_destroy_policy;
 
 
 
 
 
 
 
 
 
 
 
 
 
1564	}
 
 
 
1565
1566	up_write(&policy->rwsem);
1567
1568	kobject_uevent(&policy->kobj, KOBJ_ADD);
1569
1570	/* Callback for handling stuff after policy is ready */
1571	if (cpufreq_driver->ready)
1572		cpufreq_driver->ready(policy);
1573
1574	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1575		policy->cdev = of_cpufreq_cooling_register(policy);
1576
1577	pr_debug("initialization complete\n");
1578
1579	return 0;
 
 
 
1580
1581out_destroy_policy:
1582	for_each_cpu(j, policy->real_cpus)
1583		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1584
1585out_offline_policy:
1586	if (cpufreq_driver->offline)
1587		cpufreq_driver->offline(policy);
1588
1589out_exit_policy:
1590	if (cpufreq_driver->exit)
1591		cpufreq_driver->exit(policy);
1592
1593out_free_policy:
1594	cpumask_clear(policy->cpus);
1595	up_write(&policy->rwsem);
1596
1597	cpufreq_policy_free(policy);
1598	return ret;
1599}
1600
1601/**
1602 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1603 * @dev: CPU device.
1604 * @sif: Subsystem interface structure pointer (not used)
1605 */
1606static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1607{
1608	struct cpufreq_policy *policy;
1609	unsigned cpu = dev->id;
1610	int ret;
1611
1612	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1613
1614	if (cpu_online(cpu)) {
1615		ret = cpufreq_online(cpu);
1616		if (ret)
1617			return ret;
 
 
 
 
 
 
 
1618	}
 
1619
1620	/* Create sysfs link on CPU registration */
1621	policy = per_cpu(cpufreq_cpu_data, cpu);
1622	if (policy)
1623		add_cpu_dev_symlink(policy, cpu, dev);
1624
1625	return 0;
1626}
1627
1628static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1629{
1630	int ret;
1631
1632	if (has_target())
1633		cpufreq_stop_governor(policy);
1634
1635	cpumask_clear_cpu(cpu, policy->cpus);
1636
1637	if (!policy_is_inactive(policy)) {
1638		/* Nominate a new CPU if necessary. */
1639		if (cpu == policy->cpu)
1640			policy->cpu = cpumask_any(policy->cpus);
1641
1642		/* Start the governor again for the active policy. */
1643		if (has_target()) {
1644			ret = cpufreq_start_governor(policy);
1645			if (ret)
1646				pr_err("%s: Failed to start governor\n", __func__);
1647		}
1648
1649		return;
1650	}
1651
1652	if (has_target())
1653		strscpy(policy->last_governor, policy->governor->name,
1654			CPUFREQ_NAME_LEN);
1655	else
1656		policy->last_policy = policy->policy;
1657
1658	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1659		cpufreq_cooling_unregister(policy->cdev);
1660		policy->cdev = NULL;
1661	}
1662
1663	if (has_target())
1664		cpufreq_exit_governor(policy);
1665
1666	/*
1667	 * Perform the ->offline() during light-weight tear-down, as
1668	 * that allows fast recovery when the CPU comes back.
1669	 */
1670	if (cpufreq_driver->offline) {
1671		cpufreq_driver->offline(policy);
1672	} else if (cpufreq_driver->exit) {
1673		cpufreq_driver->exit(policy);
1674		policy->freq_table = NULL;
1675	}
1676}
1677
1678static int cpufreq_offline(unsigned int cpu)
1679{
1680	struct cpufreq_policy *policy;
1681
1682	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1683
1684	policy = cpufreq_cpu_get_raw(cpu);
1685	if (!policy) {
1686		pr_debug("%s: No cpu_data found\n", __func__);
1687		return 0;
1688	}
1689
1690	down_write(&policy->rwsem);
 
1691
1692	__cpufreq_offline(cpu, policy);
1693
1694	up_write(&policy->rwsem);
1695	return 0;
1696}
1697
1698/*
1699 * cpufreq_remove_dev - remove a CPU device
1700 *
1701 * Removes the cpufreq interface for a CPU device.
1702 */
1703static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1704{
1705	unsigned int cpu = dev->id;
1706	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1707
1708	if (!policy)
1709		return;
1710
1711	down_write(&policy->rwsem);
1712
1713	if (cpu_online(cpu))
1714		__cpufreq_offline(cpu, policy);
1715
1716	remove_cpu_dev_symlink(policy, cpu, dev);
1717
1718	if (!cpumask_empty(policy->real_cpus)) {
1719		up_write(&policy->rwsem);
1720		return;
1721	}
1722
1723	/* We did light-weight exit earlier, do full tear down now */
1724	if (cpufreq_driver->offline)
1725		cpufreq_driver->exit(policy);
1726
1727	up_write(&policy->rwsem);
1728
1729	cpufreq_policy_free(policy);
1730}
1731
1732/**
1733 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1734 * @policy: Policy managing CPUs.
1735 * @new_freq: New CPU frequency.
 
1736 *
1737 * Adjust to the current frequency first and clean up later by either calling
1738 * cpufreq_update_policy(), or scheduling handle_update().
1739 */
1740static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1741				unsigned int new_freq)
1742{
1743	struct cpufreq_freqs freqs;
1744
1745	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1746		 policy->cur, new_freq);
1747
1748	freqs.old = policy->cur;
 
1749	freqs.new = new_freq;
1750
1751	cpufreq_freq_transition_begin(policy, &freqs);
1752	cpufreq_freq_transition_end(policy, &freqs, 0);
1753}
1754
1755static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1756{
1757	unsigned int new_freq;
1758
1759	new_freq = cpufreq_driver->get(policy->cpu);
1760	if (!new_freq)
1761		return 0;
1762
1763	/*
1764	 * If fast frequency switching is used with the given policy, the check
1765	 * against policy->cur is pointless, so skip it in that case.
1766	 */
1767	if (policy->fast_switch_enabled || !has_target())
1768		return new_freq;
1769
1770	if (policy->cur != new_freq) {
1771		/*
1772		 * For some platforms, the frequency returned by hardware may be
1773		 * slightly different from what is provided in the frequency
1774		 * table, for example hardware may return 499 MHz instead of 500
1775		 * MHz. In such cases it is better to avoid getting into
1776		 * unnecessary frequency updates.
1777		 */
1778		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1779			return policy->cur;
1780
1781		cpufreq_out_of_sync(policy, new_freq);
1782		if (update)
1783			schedule_work(&policy->update);
1784	}
1785
1786	return new_freq;
1787}
1788
1789/**
1790 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1791 * @cpu: CPU number
1792 *
1793 * This is the last known freq, without actually getting it from the driver.
1794 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1795 */
1796unsigned int cpufreq_quick_get(unsigned int cpu)
1797{
1798	struct cpufreq_policy *policy;
1799	unsigned int ret_freq = 0;
1800	unsigned long flags;
1801
1802	read_lock_irqsave(&cpufreq_driver_lock, flags);
1803
1804	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1805		ret_freq = cpufreq_driver->get(cpu);
1806		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1807		return ret_freq;
1808	}
1809
1810	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1811
1812	policy = cpufreq_cpu_get(cpu);
1813	if (policy) {
1814		ret_freq = policy->cur;
1815		cpufreq_cpu_put(policy);
1816	}
1817
1818	return ret_freq;
1819}
1820EXPORT_SYMBOL(cpufreq_quick_get);
1821
1822/**
1823 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1824 * @cpu: CPU number
1825 *
1826 * Just return the max possible frequency for a given CPU.
1827 */
1828unsigned int cpufreq_quick_get_max(unsigned int cpu)
1829{
1830	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831	unsigned int ret_freq = 0;
1832
1833	if (policy) {
1834		ret_freq = policy->max;
1835		cpufreq_cpu_put(policy);
1836	}
1837
1838	return ret_freq;
1839}
1840EXPORT_SYMBOL(cpufreq_quick_get_max);
1841
1842/**
1843 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1844 * @cpu: CPU number
1845 *
1846 * The default return value is the max_freq field of cpuinfo.
1847 */
1848__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1849{
1850	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1851	unsigned int ret_freq = 0;
1852
1853	if (policy) {
1854		ret_freq = policy->cpuinfo.max_freq;
1855		cpufreq_cpu_put(policy);
1856	}
1857
1858	return ret_freq;
1859}
1860EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1861
1862static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1863{
1864	if (unlikely(policy_is_inactive(policy)))
1865		return 0;
 
 
 
 
 
1866
1867	return cpufreq_verify_current_freq(policy, true);
1868}
1869
1870/**
1871 * cpufreq_get - get the current CPU frequency (in kHz)
1872 * @cpu: CPU number
1873 *
1874 * Get the CPU current (static) CPU frequency
1875 */
1876unsigned int cpufreq_get(unsigned int cpu)
1877{
1878	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1879	unsigned int ret_freq = 0;
 
1880
1881	if (policy) {
1882		down_read(&policy->rwsem);
1883		if (cpufreq_driver->get)
1884			ret_freq = __cpufreq_get(policy);
1885		up_read(&policy->rwsem);
1886
1887		cpufreq_cpu_put(policy);
1888	}
1889
 
 
 
 
 
 
 
1890	return ret_freq;
1891}
1892EXPORT_SYMBOL(cpufreq_get);
1893
1894static struct subsys_interface cpufreq_interface = {
1895	.name		= "cpufreq",
1896	.subsys		= &cpu_subsys,
1897	.add_dev	= cpufreq_add_dev,
1898	.remove_dev	= cpufreq_remove_dev,
1899};
1900
1901/*
1902 * In case platform wants some specific frequency to be configured
1903 * during suspend..
1904 */
1905int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1906{
1907	int ret;
1908
1909	if (!policy->suspend_freq) {
1910		pr_debug("%s: suspend_freq not defined\n", __func__);
1911		return 0;
1912	}
1913
1914	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1915			policy->suspend_freq);
1916
1917	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1918			CPUFREQ_RELATION_H);
1919	if (ret)
1920		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1921				__func__, policy->suspend_freq, ret);
1922
1923	return ret;
1924}
1925EXPORT_SYMBOL(cpufreq_generic_suspend);
1926
1927/**
1928 * cpufreq_suspend() - Suspend CPUFreq governors.
1929 *
1930 * Called during system wide Suspend/Hibernate cycles for suspending governors
1931 * as some platforms can't change frequency after this point in suspend cycle.
1932 * Because some of the devices (like: i2c, regulators, etc) they use for
1933 * changing frequency are suspended quickly after this point.
1934 */
1935void cpufreq_suspend(void)
1936{
1937	struct cpufreq_policy *policy;
1938
1939	if (!cpufreq_driver)
1940		return;
1941
1942	if (!has_target() && !cpufreq_driver->suspend)
1943		goto suspend;
1944
1945	pr_debug("%s: Suspending Governors\n", __func__);
1946
1947	for_each_active_policy(policy) {
1948		if (has_target()) {
1949			down_write(&policy->rwsem);
1950			cpufreq_stop_governor(policy);
1951			up_write(&policy->rwsem);
1952		}
1953
1954		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1955			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1956				cpufreq_driver->name);
 
 
1957	}
1958
1959suspend:
1960	cpufreq_suspended = true;
1961}
1962
1963/**
1964 * cpufreq_resume() - Resume CPUFreq governors.
1965 *
1966 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1967 * are suspended with cpufreq_suspend().
 
 
 
 
 
 
 
1968 */
1969void cpufreq_resume(void)
1970{
1971	struct cpufreq_policy *policy;
1972	int ret;
1973
1974	if (!cpufreq_driver)
1975		return;
1976
1977	if (unlikely(!cpufreq_suspended))
1978		return;
1979
1980	cpufreq_suspended = false;
1981
1982	if (!has_target() && !cpufreq_driver->resume)
 
 
1983		return;
1984
1985	pr_debug("%s: Resuming Governors\n", __func__);
1986
1987	for_each_active_policy(policy) {
1988		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1989			pr_err("%s: Failed to resume driver: %s\n", __func__,
1990				cpufreq_driver->name);
1991		} else if (has_target()) {
1992			down_write(&policy->rwsem);
1993			ret = cpufreq_start_governor(policy);
1994			up_write(&policy->rwsem);
1995
1996			if (ret)
1997				pr_err("%s: Failed to start governor for CPU%u's policy\n",
1998				       __func__, policy->cpu);
1999		}
2000	}
2001}
2002
2003/**
2004 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2005 * @flags: Flags to test against the current cpufreq driver's flags.
2006 *
2007 * Assumes that the driver is there, so callers must ensure that this is the
2008 * case.
2009 */
2010bool cpufreq_driver_test_flags(u16 flags)
2011{
2012	return !!(cpufreq_driver->flags & flags);
2013}
2014
2015/**
2016 * cpufreq_get_current_driver - Return the current driver's name.
2017 *
2018 * Return the name string of the currently registered cpufreq driver or NULL if
2019 * none.
2020 */
2021const char *cpufreq_get_current_driver(void)
2022{
2023	if (cpufreq_driver)
2024		return cpufreq_driver->name;
2025
2026	return NULL;
 
2027}
2028EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2029
2030/**
2031 * cpufreq_get_driver_data - Return current driver data.
2032 *
2033 * Return the private data of the currently registered cpufreq driver, or NULL
2034 * if no cpufreq driver has been registered.
2035 */
2036void *cpufreq_get_driver_data(void)
2037{
2038	if (cpufreq_driver)
2039		return cpufreq_driver->driver_data;
2040
2041	return NULL;
2042}
2043EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2044
2045/*********************************************************************
2046 *                     NOTIFIER LISTS INTERFACE                      *
2047 *********************************************************************/
2048
2049/**
2050 * cpufreq_register_notifier - Register a notifier with cpufreq.
2051 * @nb: notifier function to register.
2052 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2053 *
2054 * Add a notifier to one of two lists: either a list of notifiers that run on
2055 * clock rate changes (once before and once after every transition), or a list
2056 * of notifiers that ron on cpufreq policy changes.
 
2057 *
2058 * This function may sleep and it has the same return values as
2059 * blocking_notifier_chain_register().
2060 */
2061int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2062{
2063	int ret;
2064
2065	if (cpufreq_disabled())
2066		return -EINVAL;
2067
2068	switch (list) {
2069	case CPUFREQ_TRANSITION_NOTIFIER:
2070		mutex_lock(&cpufreq_fast_switch_lock);
2071
2072		if (cpufreq_fast_switch_count > 0) {
2073			mutex_unlock(&cpufreq_fast_switch_lock);
2074			return -EBUSY;
2075		}
2076		ret = srcu_notifier_chain_register(
2077				&cpufreq_transition_notifier_list, nb);
2078		if (!ret)
2079			cpufreq_fast_switch_count--;
2080
2081		mutex_unlock(&cpufreq_fast_switch_lock);
2082		break;
2083	case CPUFREQ_POLICY_NOTIFIER:
2084		ret = blocking_notifier_chain_register(
2085				&cpufreq_policy_notifier_list, nb);
2086		break;
2087	default:
2088		ret = -EINVAL;
2089	}
2090
2091	return ret;
2092}
2093EXPORT_SYMBOL(cpufreq_register_notifier);
2094
 
2095/**
2096 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2097 * @nb: notifier block to be unregistered.
2098 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2099 *
2100 * Remove a notifier from one of the cpufreq notifier lists.
2101 *
2102 * This function may sleep and it has the same return values as
2103 * blocking_notifier_chain_unregister().
2104 */
2105int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2106{
2107	int ret;
2108
2109	if (cpufreq_disabled())
2110		return -EINVAL;
2111
2112	switch (list) {
2113	case CPUFREQ_TRANSITION_NOTIFIER:
2114		mutex_lock(&cpufreq_fast_switch_lock);
2115
2116		ret = srcu_notifier_chain_unregister(
2117				&cpufreq_transition_notifier_list, nb);
2118		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2119			cpufreq_fast_switch_count++;
2120
2121		mutex_unlock(&cpufreq_fast_switch_lock);
2122		break;
2123	case CPUFREQ_POLICY_NOTIFIER:
2124		ret = blocking_notifier_chain_unregister(
2125				&cpufreq_policy_notifier_list, nb);
2126		break;
2127	default:
2128		ret = -EINVAL;
2129	}
2130
2131	return ret;
2132}
2133EXPORT_SYMBOL(cpufreq_unregister_notifier);
2134
2135
2136/*********************************************************************
2137 *                              GOVERNORS                            *
2138 *********************************************************************/
2139
2140/**
2141 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2142 * @policy: cpufreq policy to switch the frequency for.
2143 * @target_freq: New frequency to set (may be approximate).
2144 *
2145 * Carry out a fast frequency switch without sleeping.
2146 *
2147 * The driver's ->fast_switch() callback invoked by this function must be
2148 * suitable for being called from within RCU-sched read-side critical sections
2149 * and it is expected to select the minimum available frequency greater than or
2150 * equal to @target_freq (CPUFREQ_RELATION_L).
2151 *
2152 * This function must not be called if policy->fast_switch_enabled is unset.
2153 *
2154 * Governors calling this function must guarantee that it will never be invoked
2155 * twice in parallel for the same policy and that it will never be called in
2156 * parallel with either ->target() or ->target_index() for the same policy.
2157 *
2158 * Returns the actual frequency set for the CPU.
2159 *
2160 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2161 * error condition, the hardware configuration must be preserved.
2162 */
2163unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2164					unsigned int target_freq)
2165{
2166	unsigned int freq;
2167	int cpu;
2168
2169	target_freq = clamp_val(target_freq, policy->min, policy->max);
2170	freq = cpufreq_driver->fast_switch(policy, target_freq);
2171
2172	if (!freq)
2173		return 0;
2174
2175	policy->cur = freq;
2176	arch_set_freq_scale(policy->related_cpus, freq,
2177			    arch_scale_freq_ref(policy->cpu));
2178	cpufreq_stats_record_transition(policy, freq);
2179
2180	if (trace_cpu_frequency_enabled()) {
2181		for_each_cpu(cpu, policy->cpus)
2182			trace_cpu_frequency(freq, cpu);
2183	}
2184
2185	return freq;
2186}
2187EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2188
2189/**
2190 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2191 * @cpu: Target CPU.
2192 * @min_perf: Minimum (required) performance level (units of @capacity).
2193 * @target_perf: Target (desired) performance level (units of @capacity).
2194 * @capacity: Capacity of the target CPU.
2195 *
2196 * Carry out a fast performance level switch of @cpu without sleeping.
2197 *
2198 * The driver's ->adjust_perf() callback invoked by this function must be
2199 * suitable for being called from within RCU-sched read-side critical sections
2200 * and it is expected to select a suitable performance level equal to or above
2201 * @min_perf and preferably equal to or below @target_perf.
2202 *
2203 * This function must not be called if policy->fast_switch_enabled is unset.
2204 *
2205 * Governors calling this function must guarantee that it will never be invoked
2206 * twice in parallel for the same CPU and that it will never be called in
2207 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2208 * the same CPU.
2209 */
2210void cpufreq_driver_adjust_perf(unsigned int cpu,
2211				 unsigned long min_perf,
2212				 unsigned long target_perf,
2213				 unsigned long capacity)
2214{
2215	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2216}
2217
2218/**
2219 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2220 *
2221 * Return 'true' if the ->adjust_perf callback is present for the
2222 * current driver or 'false' otherwise.
2223 */
2224bool cpufreq_driver_has_adjust_perf(void)
2225{
2226	return !!cpufreq_driver->adjust_perf;
2227}
2228
2229/* Must set freqs->new to intermediate frequency */
2230static int __target_intermediate(struct cpufreq_policy *policy,
2231				 struct cpufreq_freqs *freqs, int index)
2232{
2233	int ret;
2234
2235	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2236
2237	/* We don't need to switch to intermediate freq */
2238	if (!freqs->new)
2239		return 0;
2240
2241	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2242		 __func__, policy->cpu, freqs->old, freqs->new);
2243
2244	cpufreq_freq_transition_begin(policy, freqs);
2245	ret = cpufreq_driver->target_intermediate(policy, index);
2246	cpufreq_freq_transition_end(policy, freqs, ret);
2247
2248	if (ret)
2249		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2250		       __func__, ret);
2251
2252	return ret;
2253}
2254
2255static int __target_index(struct cpufreq_policy *policy, int index)
2256{
2257	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2258	unsigned int restore_freq, intermediate_freq = 0;
2259	unsigned int newfreq = policy->freq_table[index].frequency;
2260	int retval = -EINVAL;
2261	bool notify;
2262
2263	if (newfreq == policy->cur)
2264		return 0;
2265
2266	/* Save last value to restore later on errors */
2267	restore_freq = policy->cur;
2268
2269	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2270	if (notify) {
2271		/* Handle switching to intermediate frequency */
2272		if (cpufreq_driver->get_intermediate) {
2273			retval = __target_intermediate(policy, &freqs, index);
2274			if (retval)
2275				return retval;
2276
2277			intermediate_freq = freqs.new;
2278			/* Set old freq to intermediate */
2279			if (intermediate_freq)
2280				freqs.old = freqs.new;
2281		}
2282
2283		freqs.new = newfreq;
2284		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2285			 __func__, policy->cpu, freqs.old, freqs.new);
2286
2287		cpufreq_freq_transition_begin(policy, &freqs);
2288	}
2289
2290	retval = cpufreq_driver->target_index(policy, index);
2291	if (retval)
2292		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2293		       retval);
2294
2295	if (notify) {
2296		cpufreq_freq_transition_end(policy, &freqs, retval);
2297
2298		/*
2299		 * Failed after setting to intermediate freq? Driver should have
2300		 * reverted back to initial frequency and so should we. Check
2301		 * here for intermediate_freq instead of get_intermediate, in
2302		 * case we haven't switched to intermediate freq at all.
2303		 */
2304		if (unlikely(retval && intermediate_freq)) {
2305			freqs.old = intermediate_freq;
2306			freqs.new = restore_freq;
2307			cpufreq_freq_transition_begin(policy, &freqs);
2308			cpufreq_freq_transition_end(policy, &freqs, 0);
2309		}
2310	}
2311
2312	return retval;
2313}
2314
2315int __cpufreq_driver_target(struct cpufreq_policy *policy,
2316			    unsigned int target_freq,
2317			    unsigned int relation)
2318{
2319	unsigned int old_target_freq = target_freq;
2320
2321	if (cpufreq_disabled())
2322		return -ENODEV;
2323
2324	target_freq = __resolve_freq(policy, target_freq, relation);
2325
2326	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2327		 policy->cpu, target_freq, relation, old_target_freq);
2328
2329	/*
2330	 * This might look like a redundant call as we are checking it again
2331	 * after finding index. But it is left intentionally for cases where
2332	 * exactly same freq is called again and so we can save on few function
2333	 * calls.
2334	 */
2335	if (target_freq == policy->cur &&
2336	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2337		return 0;
2338
2339	if (cpufreq_driver->target) {
2340		/*
2341		 * If the driver hasn't setup a single inefficient frequency,
2342		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2343		 */
2344		if (!policy->efficiencies_available)
2345			relation &= ~CPUFREQ_RELATION_E;
2346
2347		return cpufreq_driver->target(policy, target_freq, relation);
2348	}
2349
2350	if (!cpufreq_driver->target_index)
2351		return -EINVAL;
2352
2353	return __target_index(policy, policy->cached_resolved_idx);
2354}
2355EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2356
2357int cpufreq_driver_target(struct cpufreq_policy *policy,
2358			  unsigned int target_freq,
2359			  unsigned int relation)
2360{
2361	int ret;
 
 
 
 
2362
2363	down_write(&policy->rwsem);
 
2364
2365	ret = __cpufreq_driver_target(policy, target_freq, relation);
2366
2367	up_write(&policy->rwsem);
2368
 
 
 
2369	return ret;
2370}
2371EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2372
2373__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2374{
2375	return NULL;
2376}
2377
2378static int cpufreq_init_governor(struct cpufreq_policy *policy)
2379{
2380	int ret;
2381
2382	/* Don't start any governor operations if we are entering suspend */
2383	if (cpufreq_suspended)
2384		return 0;
2385	/*
2386	 * Governor might not be initiated here if ACPI _PPC changed
2387	 * notification happened, so check it.
2388	 */
2389	if (!policy->governor)
2390		return -EINVAL;
2391
2392	/* Platform doesn't want dynamic frequency switching ? */
2393	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2394	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2395		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2396
2397		if (gov) {
2398			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2399				policy->governor->name, gov->name);
2400			policy->governor = gov;
2401		} else {
2402			return -EINVAL;
2403		}
2404	}
2405
2406	if (!try_module_get(policy->governor->owner))
 
2407		return -EINVAL;
2408
2409	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2410
2411	if (policy->governor->init) {
2412		ret = policy->governor->init(policy);
2413		if (ret) {
2414			module_put(policy->governor->owner);
2415			return ret;
2416		}
2417	}
2418
2419	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2420
2421	return 0;
 
2422}
 
2423
2424static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2425{
2426	if (cpufreq_suspended || !policy->governor)
2427		return;
2428
2429	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2430
2431	if (policy->governor->exit)
2432		policy->governor->exit(policy);
2433
2434	module_put(policy->governor->owner);
2435}
2436
2437int cpufreq_start_governor(struct cpufreq_policy *policy)
 
2438{
2439	int ret;
2440
2441	if (cpufreq_suspended)
2442		return 0;
2443
2444	if (!policy->governor)
2445		return -EINVAL;
2446
2447	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2448
2449	if (cpufreq_driver->get)
2450		cpufreq_verify_current_freq(policy, false);
2451
2452	if (policy->governor->start) {
2453		ret = policy->governor->start(policy);
2454		if (ret)
2455			return ret;
 
 
 
 
 
 
 
 
 
2456	}
2457
2458	if (policy->governor->limits)
2459		policy->governor->limits(policy);
2460
2461	return 0;
2462}
2463
2464void cpufreq_stop_governor(struct cpufreq_policy *policy)
2465{
2466	if (cpufreq_suspended || !policy->governor)
2467		return;
2468
2469	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
 
 
 
 
 
 
 
 
 
2470
2471	if (policy->governor->stop)
2472		policy->governor->stop(policy);
2473}
2474
2475static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2476{
2477	if (cpufreq_suspended || !policy->governor)
2478		return;
2479
2480	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2481
2482	if (policy->governor->limits)
2483		policy->governor->limits(policy);
2484}
2485
2486int cpufreq_register_governor(struct cpufreq_governor *governor)
2487{
2488	int err;
2489
2490	if (!governor)
2491		return -EINVAL;
2492
2493	if (cpufreq_disabled())
2494		return -ENODEV;
2495
2496	mutex_lock(&cpufreq_governor_mutex);
2497
2498	err = -EBUSY;
2499	if (!find_governor(governor->name)) {
2500		err = 0;
2501		list_add(&governor->governor_list, &cpufreq_governor_list);
2502	}
2503
2504	mutex_unlock(&cpufreq_governor_mutex);
2505	return err;
2506}
2507EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2508
 
2509void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2510{
2511	struct cpufreq_policy *policy;
2512	unsigned long flags;
 
2513
2514	if (!governor)
2515		return;
2516
2517	if (cpufreq_disabled())
2518		return;
2519
2520	/* clear last_governor for all inactive policies */
2521	read_lock_irqsave(&cpufreq_driver_lock, flags);
2522	for_each_inactive_policy(policy) {
2523		if (!strcmp(policy->last_governor, governor->name)) {
2524			policy->governor = NULL;
2525			strcpy(policy->last_governor, "\0");
2526		}
2527	}
2528	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2529
2530	mutex_lock(&cpufreq_governor_mutex);
2531	list_del(&governor->governor_list);
2532	mutex_unlock(&cpufreq_governor_mutex);
 
2533}
2534EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2535
2536
 
2537/*********************************************************************
2538 *                          POLICY INTERFACE                         *
2539 *********************************************************************/
2540
2541/**
2542 * cpufreq_get_policy - get the current cpufreq_policy
2543 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2544 *	is written
2545 * @cpu: CPU to find the policy for
2546 *
2547 * Reads the current cpufreq policy.
2548 */
2549int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2550{
2551	struct cpufreq_policy *cpu_policy;
2552	if (!policy)
2553		return -EINVAL;
2554
2555	cpu_policy = cpufreq_cpu_get(cpu);
2556	if (!cpu_policy)
2557		return -EINVAL;
2558
2559	memcpy(policy, cpu_policy, sizeof(*policy));
2560
2561	cpufreq_cpu_put(cpu_policy);
2562	return 0;
2563}
2564EXPORT_SYMBOL(cpufreq_get_policy);
2565
2566/**
2567 * cpufreq_set_policy - Modify cpufreq policy parameters.
2568 * @policy: Policy object to modify.
2569 * @new_gov: Policy governor pointer.
2570 * @new_pol: Policy value (for drivers with built-in governors).
2571 *
2572 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2573 * limits to be set for the policy, update @policy with the verified limits
2574 * values and either invoke the driver's ->setpolicy() callback (if present) or
2575 * carry out a governor update for @policy.  That is, run the current governor's
2576 * ->limits() callback (if @new_gov points to the same object as the one in
2577 * @policy) or replace the governor for @policy with @new_gov.
2578 *
2579 * The cpuinfo part of @policy is not updated by this function.
2580 */
2581static int cpufreq_set_policy(struct cpufreq_policy *policy,
2582			      struct cpufreq_governor *new_gov,
2583			      unsigned int new_pol)
2584{
2585	struct cpufreq_policy_data new_data;
2586	struct cpufreq_governor *old_gov;
2587	int ret;
2588
2589	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2590	new_data.freq_table = policy->freq_table;
2591	new_data.cpu = policy->cpu;
2592	/*
2593	 * PM QoS framework collects all the requests from users and provide us
2594	 * the final aggregated value here.
2595	 */
2596	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2597	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2598
2599	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2600		 new_data.cpu, new_data.min, new_data.max);
2601
2602	/*
2603	 * Verify that the CPU speed can be set within these limits and make sure
2604	 * that min <= max.
2605	 */
2606	ret = cpufreq_driver->verify(&new_data);
 
 
2607	if (ret)
2608		return ret;
2609
2610	/*
2611	 * Resolve policy min/max to available frequencies. It ensures
2612	 * no frequency resolution will neither overshoot the requested maximum
2613	 * nor undershoot the requested minimum.
2614	 */
2615	policy->min = new_data.min;
2616	policy->max = new_data.max;
2617	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2618	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2619	trace_cpu_frequency_limits(policy);
 
 
 
2620
2621	policy->cached_target_freq = UINT_MAX;
 
 
 
 
 
2622
2623	pr_debug("new min and max freqs are %u - %u kHz\n",
2624		 policy->min, policy->max);
2625
2626	if (cpufreq_driver->setpolicy) {
2627		policy->policy = new_pol;
2628		pr_debug("setting range\n");
2629		return cpufreq_driver->setpolicy(policy);
2630	}
2631
2632	if (new_gov == policy->governor) {
2633		pr_debug("governor limits update\n");
2634		cpufreq_governor_limits(policy);
2635		return 0;
2636	}
2637
2638	pr_debug("governor switch\n");
2639
2640	/* save old, working values */
2641	old_gov = policy->governor;
2642	/* end old governor */
2643	if (old_gov) {
2644		cpufreq_stop_governor(policy);
2645		cpufreq_exit_governor(policy);
2646	}
2647
2648	/* start new governor */
2649	policy->governor = new_gov;
2650	ret = cpufreq_init_governor(policy);
2651	if (!ret) {
2652		ret = cpufreq_start_governor(policy);
2653		if (!ret) {
2654			pr_debug("governor change\n");
2655			return 0;
2656		}
2657		cpufreq_exit_governor(policy);
2658	}
2659
2660	/* new governor failed, so re-start old one */
2661	pr_debug("starting governor %s failed\n", policy->governor->name);
2662	if (old_gov) {
2663		policy->governor = old_gov;
2664		if (cpufreq_init_governor(policy))
2665			policy->governor = NULL;
2666		else
2667			cpufreq_start_governor(policy);
2668	}
2669
 
2670	return ret;
2671}
2672
2673/**
2674 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2675 * @cpu: CPU to re-evaluate the policy for.
2676 *
2677 * Update the current frequency for the cpufreq policy of @cpu and use
2678 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2679 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2680 * for the policy in question, among other things.
2681 */
2682void cpufreq_update_policy(unsigned int cpu)
2683{
2684	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2685
2686	if (!policy)
2687		return;
2688
2689	/*
2690	 * BIOS might change freq behind our back
2691	 * -> ask driver for current freq and notify governors about a change
2692	 */
2693	if (cpufreq_driver->get && has_target() &&
2694	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2695		goto unlock;
2696
2697	refresh_frequency_limits(policy);
2698
2699unlock:
2700	cpufreq_cpu_release(policy);
2701}
2702EXPORT_SYMBOL(cpufreq_update_policy);
2703
2704/**
2705 * cpufreq_update_limits - Update policy limits for a given CPU.
2706 * @cpu: CPU to update the policy limits for.
2707 *
2708 * Invoke the driver's ->update_limits callback if present or call
2709 * cpufreq_update_policy() for @cpu.
2710 */
2711void cpufreq_update_limits(unsigned int cpu)
2712{
2713	if (cpufreq_driver->update_limits)
2714		cpufreq_driver->update_limits(cpu);
2715	else
2716		cpufreq_update_policy(cpu);
2717}
2718EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2719
2720/*********************************************************************
2721 *               BOOST						     *
2722 *********************************************************************/
2723static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2724{
 
 
2725	int ret;
2726
2727	if (!policy->freq_table)
2728		return -ENXIO;
2729
2730	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2731	if (ret) {
2732		pr_err("%s: Policy frequency update failed\n", __func__);
2733		return ret;
2734	}
2735
2736	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2737	if (ret < 0)
2738		return ret;
2739
2740	return 0;
2741}
2742
2743int cpufreq_boost_trigger_state(int state)
2744{
2745	struct cpufreq_policy *policy;
2746	unsigned long flags;
2747	int ret = 0;
2748
2749	if (cpufreq_driver->boost_enabled == state)
2750		return 0;
2751
2752	write_lock_irqsave(&cpufreq_driver_lock, flags);
2753	cpufreq_driver->boost_enabled = state;
2754	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755
2756	cpus_read_lock();
2757	for_each_active_policy(policy) {
2758		ret = cpufreq_driver->set_boost(policy, state);
2759		if (ret)
2760			goto err_reset_state;
2761
2762		policy->boost_enabled = state;
2763	}
2764	cpus_read_unlock();
2765
2766	return 0;
2767
2768err_reset_state:
2769	cpus_read_unlock();
2770
2771	write_lock_irqsave(&cpufreq_driver_lock, flags);
2772	cpufreq_driver->boost_enabled = !state;
2773	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
2774
2775	pr_err("%s: Cannot %s BOOST\n",
2776	       __func__, state ? "enable" : "disable");
2777
2778	return ret;
2779}
2780
2781static bool cpufreq_boost_supported(void)
2782{
2783	return cpufreq_driver->set_boost;
2784}
 
 
 
2785
2786static int create_boost_sysfs_file(void)
2787{
2788	int ret;
2789
2790	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2791	if (ret)
2792		pr_err("%s: cannot register global BOOST sysfs file\n",
2793		       __func__);
2794
 
 
 
2795	return ret;
2796}
 
2797
2798static void remove_boost_sysfs_file(void)
2799{
2800	if (cpufreq_boost_supported())
2801		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2802}
2803
2804int cpufreq_enable_boost_support(void)
2805{
2806	if (!cpufreq_driver)
2807		return -EINVAL;
2808
2809	if (cpufreq_boost_supported())
2810		return 0;
2811
2812	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
 
 
 
 
 
 
 
 
 
 
2813
2814	/* This will get removed on driver unregister */
2815	return create_boost_sysfs_file();
 
 
 
 
 
 
 
2816}
2817EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2818
2819int cpufreq_boost_enabled(void)
2820{
2821	return cpufreq_driver->boost_enabled;
2822}
2823EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2824
2825/*********************************************************************
2826 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2827 *********************************************************************/
2828static enum cpuhp_state hp_online;
2829
2830static int cpuhp_cpufreq_online(unsigned int cpu)
2831{
2832	cpufreq_online(cpu);
2833
2834	return 0;
2835}
2836
2837static int cpuhp_cpufreq_offline(unsigned int cpu)
2838{
2839	cpufreq_offline(cpu);
2840
2841	return 0;
2842}
2843
2844/**
2845 * cpufreq_register_driver - register a CPU Frequency driver
2846 * @driver_data: A struct cpufreq_driver containing the values#
2847 * submitted by the CPU Frequency driver.
2848 *
2849 * Registers a CPU Frequency driver to this core code. This code
2850 * returns zero on success, -EEXIST when another driver got here first
2851 * (and isn't unregistered in the meantime).
2852 *
2853 */
2854int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2855{
2856	unsigned long flags;
2857	int ret;
2858
2859	if (cpufreq_disabled())
2860		return -ENODEV;
2861
2862	/*
2863	 * The cpufreq core depends heavily on the availability of device
2864	 * structure, make sure they are available before proceeding further.
2865	 */
2866	if (!get_cpu_device(0))
2867		return -EPROBE_DEFER;
2868
2869	if (!driver_data || !driver_data->verify || !driver_data->init ||
2870	    !(driver_data->setpolicy || driver_data->target_index ||
2871		    driver_data->target) ||
2872	     (driver_data->setpolicy && (driver_data->target_index ||
2873		    driver_data->target)) ||
2874	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2875	     (!driver_data->online != !driver_data->offline) ||
2876		 (driver_data->adjust_perf && !driver_data->fast_switch))
2877		return -EINVAL;
2878
2879	pr_debug("trying to register driver %s\n", driver_data->name);
2880
2881	/* Protect against concurrent CPU online/offline. */
2882	cpus_read_lock();
2883
2884	write_lock_irqsave(&cpufreq_driver_lock, flags);
2885	if (cpufreq_driver) {
2886		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2887		ret = -EEXIST;
2888		goto out;
2889	}
2890	cpufreq_driver = driver_data;
2891	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2892
2893	/*
2894	 * Mark support for the scheduler's frequency invariance engine for
2895	 * drivers that implement target(), target_index() or fast_switch().
2896	 */
2897	if (!cpufreq_driver->setpolicy) {
2898		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2899		pr_debug("supports frequency invariance");
2900	}
2901
2902	if (driver_data->setpolicy)
2903		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2904
2905	if (cpufreq_boost_supported()) {
2906		ret = create_boost_sysfs_file();
2907		if (ret)
2908			goto err_null_driver;
2909	}
 
 
2910
2911	ret = subsys_interface_register(&cpufreq_interface);
2912	if (ret)
2913		goto err_boost_unreg;
2914
2915	if (unlikely(list_empty(&cpufreq_policy_list))) {
2916		/* if all ->init() calls failed, unregister */
2917		ret = -ENODEV;
2918		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2919			 driver_data->name);
2920		goto err_if_unreg;
2921	}
2922
2923	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2924						   "cpufreq:online",
2925						   cpuhp_cpufreq_online,
2926						   cpuhp_cpufreq_offline);
2927	if (ret < 0)
2928		goto err_if_unreg;
2929	hp_online = ret;
2930	ret = 0;
 
 
 
 
 
 
2931
 
2932	pr_debug("driver %s up and running\n", driver_data->name);
2933	goto out;
2934
 
2935err_if_unreg:
2936	subsys_interface_unregister(&cpufreq_interface);
2937err_boost_unreg:
2938	remove_boost_sysfs_file();
2939err_null_driver:
2940	write_lock_irqsave(&cpufreq_driver_lock, flags);
2941	cpufreq_driver = NULL;
2942	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2943out:
2944	cpus_read_unlock();
2945	return ret;
2946}
2947EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2948
2949/*
 
2950 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2951 *
2952 * Unregister the current CPUFreq driver. Only call this if you have
2953 * the right to do so, i.e. if you have succeeded in initialising before!
2954 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2955 * currently not initialised.
2956 */
2957void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2958{
2959	unsigned long flags;
2960
2961	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2962		return;
2963
2964	pr_debug("unregistering driver %s\n", driver->name);
2965
2966	/* Protect against concurrent cpu hotplug */
2967	cpus_read_lock();
2968	subsys_interface_unregister(&cpufreq_interface);
2969	remove_boost_sysfs_file();
2970	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2971	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2972
2973	write_lock_irqsave(&cpufreq_driver_lock, flags);
2974
 
2975	cpufreq_driver = NULL;
 
2976
2977	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2978	cpus_read_unlock();
2979}
2980EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2981
2982static int __init cpufreq_core_init(void)
2983{
2984	struct cpufreq_governor *gov = cpufreq_default_governor();
2985	struct device *dev_root;
2986
2987	if (cpufreq_disabled())
2988		return -ENODEV;
2989
2990	dev_root = bus_get_dev_root(&cpu_subsys);
2991	if (dev_root) {
2992		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
2993		put_device(dev_root);
2994	}
2995	BUG_ON(!cpufreq_global_kobject);
2996
2997	if (!strlen(default_governor))
2998		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
 
2999
3000	return 0;
3001}
3002module_param(off, int, 0444);
3003module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3004core_initcall(cpufreq_core_init);
v3.5.6
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
 
   6 *
   7 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   8 *	Added handling for CPU hotplug
   9 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  10 *	Fix handling for CPU hotplug -- affected CPUs
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/init.h>
  21#include <linux/notifier.h>
  22#include <linux/cpufreq.h>
 
  23#include <linux/delay.h>
  24#include <linux/interrupt.h>
  25#include <linux/spinlock.h>
  26#include <linux/device.h>
 
 
 
 
 
  27#include <linux/slab.h>
  28#include <linux/cpu.h>
  29#include <linux/completion.h>
  30#include <linux/mutex.h>
  31#include <linux/syscore_ops.h>
 
 
 
 
 
  32
  33#include <trace/events/power.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34
  35/**
  36 * The "cpufreq driver" - the arch- or hardware-dependent low
  37 * level driver of CPUFreq support, and its spinlock. This lock
  38 * also protects the cpufreq_cpu_data array.
  39 */
  40static struct cpufreq_driver *cpufreq_driver;
  41static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  42#ifdef CONFIG_HOTPLUG_CPU
  43/* This one keeps track of the previously set governor of a removed CPU */
  44static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
  45#endif
  46static DEFINE_SPINLOCK(cpufreq_driver_lock);
  47
  48/*
  49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
  50 * all cpufreq/hotplug/workqueue/etc related lock issues.
  51 *
  52 * The rules for this semaphore:
  53 * - Any routine that wants to read from the policy structure will
  54 *   do a down_read on this semaphore.
  55 * - Any routine that will write to the policy structure and/or may take away
  56 *   the policy altogether (eg. CPU hotplug), will hold this lock in write
  57 *   mode before doing so.
  58 *
  59 * Additional rules:
  60 * - All holders of the lock should check to make sure that the CPU they
  61 *   are concerned with are online after they get the lock.
  62 * - Governor routines that can be called in cpufreq hotplug path should not
  63 *   take this sem as top level hotplug notifier handler takes this.
  64 * - Lock should not be held across
  65 *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
  66 */
  67static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
  68static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
  69
  70#define lock_policy_rwsem(mode, cpu)					\
  71static int lock_policy_rwsem_##mode					\
  72(int cpu)								\
  73{									\
  74	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);		\
  75	BUG_ON(policy_cpu == -1);					\
  76	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
  77	if (unlikely(!cpu_online(cpu))) {				\
  78		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
  79		return -1;						\
  80	}								\
  81									\
  82	return 0;							\
  83}
  84
  85lock_policy_rwsem(read, cpu);
 
  86
  87lock_policy_rwsem(write, cpu);
  88
  89static void unlock_policy_rwsem_read(int cpu)
  90{
  91	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  92	BUG_ON(policy_cpu == -1);
  93	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
  94}
  95
  96static void unlock_policy_rwsem_write(int cpu)
  97{
  98	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
  99	BUG_ON(policy_cpu == -1);
 100	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
 101}
 102
 103
 104/* internal prototypes */
 105static int __cpufreq_governor(struct cpufreq_policy *policy,
 106		unsigned int event);
 107static unsigned int __cpufreq_get(unsigned int cpu);
 108static void handle_update(struct work_struct *work);
 
 
 
 
 109
 110/**
 111 * Two notifier lists: the "policy" list is involved in the
 112 * validation process for a new CPU frequency policy; the
 113 * "transition" list for kernel code that needs to handle
 114 * changes to devices when the CPU clock speed changes.
 115 * The mutex locks both lists.
 116 */
 117static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
 118static struct srcu_notifier_head cpufreq_transition_notifier_list;
 119
 120static bool init_cpufreq_transition_notifier_list_called;
 121static int __init init_cpufreq_transition_notifier_list(void)
 122{
 123	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
 124	init_cpufreq_transition_notifier_list_called = true;
 125	return 0;
 126}
 127pure_initcall(init_cpufreq_transition_notifier_list);
 128
 129static int off __read_mostly;
 130int cpufreq_disabled(void)
 131{
 132	return off;
 133}
 134void disable_cpufreq(void)
 135{
 136	off = 1;
 137}
 138static LIST_HEAD(cpufreq_governor_list);
 139static DEFINE_MUTEX(cpufreq_governor_mutex);
 140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 142{
 143	struct cpufreq_policy *data;
 144	unsigned long flags;
 145
 146	if (cpu >= nr_cpu_ids)
 147		goto err_out;
 148
 149	/* get the cpufreq driver */
 150	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 151
 152	if (!cpufreq_driver)
 153		goto err_out_unlock;
 
 
 
 
 154
 155	if (!try_module_get(cpufreq_driver->owner))
 156		goto err_out_unlock;
 157
 
 
 
 158
 159	/* get the CPU */
 160	data = per_cpu(cpufreq_cpu_data, cpu);
 
 
 
 
 
 
 
 161
 162	if (!data)
 163		goto err_out_put_module;
 
 
 
 
 
 
 164
 165	if (!kobject_get(&data->kobj))
 166		goto err_out_put_module;
 167
 168	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 169	return data;
 170
 171err_out_put_module:
 172	module_put(cpufreq_driver->owner);
 173err_out_unlock:
 174	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 175err_out:
 176	return NULL;
 177}
 178EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180
 181void cpufreq_cpu_put(struct cpufreq_policy *data)
 182{
 183	kobject_put(&data->kobj);
 184	module_put(cpufreq_driver->owner);
 185}
 186EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 187
 188
 189/*********************************************************************
 190 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 191 *********************************************************************/
 192
 193/**
 194 * adjust_jiffies - adjust the system "loops_per_jiffy"
 
 
 195 *
 196 * This function alters the system "loops_per_jiffy" for the clock
 197 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 198 * systems as each CPU might be scaled differently. So, use the arch
 199 * per-CPU loops_per_jiffy value wherever possible.
 200 */
 
 
 201#ifndef CONFIG_SMP
 202static unsigned long l_p_j_ref;
 203static unsigned int  l_p_j_ref_freq;
 204
 205static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 206{
 207	if (ci->flags & CPUFREQ_CONST_LOOPS)
 208		return;
 209
 210	if (!l_p_j_ref_freq) {
 211		l_p_j_ref = loops_per_jiffy;
 212		l_p_j_ref_freq = ci->old;
 213		pr_debug("saving %lu as reference value for loops_per_jiffy; "
 214			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
 215	}
 216	if ((val == CPUFREQ_POSTCHANGE  && ci->old != ci->new) ||
 217	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
 218		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 219								ci->new);
 220		pr_debug("scaling loops_per_jiffy to %lu "
 221			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
 222	}
 
 223}
 224#else
 225static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 226{
 227	return;
 228}
 229#endif
 230
 231
 232/**
 233 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 234 * on frequency transition.
 235 *
 236 * This function calls the transition notifiers and the "adjust_jiffies"
 237 * function. It is called twice on all CPU frequency changes that have
 238 * external effects.
 239 */
 240void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 241{
 242	struct cpufreq_policy *policy;
 243
 244	BUG_ON(irqs_disabled());
 245
 
 
 
 
 246	freqs->flags = cpufreq_driver->flags;
 247	pr_debug("notification %u of frequency transition to %u kHz\n",
 248		state, freqs->new);
 249
 250	policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
 251	switch (state) {
 252
 253	case CPUFREQ_PRECHANGE:
 254		/* detect if the driver reported a value as "old frequency"
 
 255		 * which is not equal to what the cpufreq core thinks is
 256		 * "old frequency".
 257		 */
 258		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 259			if ((policy) && (policy->cpu == freqs->cpu) &&
 260			    (policy->cur) && (policy->cur != freqs->old)) {
 261				pr_debug("Warning: CPU frequency is"
 262					" %u, cpufreq assumed %u kHz.\n",
 263					freqs->old, policy->cur);
 264				freqs->old = policy->cur;
 265			}
 266		}
 
 267		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 268				CPUFREQ_PRECHANGE, freqs);
 
 269		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 270		break;
 271
 272	case CPUFREQ_POSTCHANGE:
 273		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 274		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
 275			(unsigned long)freqs->cpu);
 276		trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
 277		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 278		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 279				CPUFREQ_POSTCHANGE, freqs);
 280		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 281			policy->cur = freqs->new;
 282		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284}
 285EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
 286
 
 
 
 
 
 
 287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288
 289/*********************************************************************
 290 *                          SYSFS INTERFACE                          *
 291 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292
 293static struct cpufreq_governor *__find_governor(const char *str_governor)
 
 
 294{
 295	struct cpufreq_governor *t;
 296
 297	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 298		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 299			return t;
 300
 301	return NULL;
 302}
 303
 304/**
 305 * cpufreq_parse_governor - parse a governor string
 306 */
 307static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 308				struct cpufreq_governor **governor)
 309{
 310	int err = -EINVAL;
 
 
 
 
 
 311
 312	if (!cpufreq_driver)
 313		goto out;
 
 
 
 314
 315	if (cpufreq_driver->setpolicy) {
 316		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 317			*policy = CPUFREQ_POLICY_PERFORMANCE;
 318			err = 0;
 319		} else if (!strnicmp(str_governor, "powersave",
 320						CPUFREQ_NAME_LEN)) {
 321			*policy = CPUFREQ_POLICY_POWERSAVE;
 322			err = 0;
 323		}
 324	} else if (cpufreq_driver->target) {
 325		struct cpufreq_governor *t;
 326
 327		mutex_lock(&cpufreq_governor_mutex);
 
 
 
 328
 329		t = __find_governor(str_governor);
 
 330
 331		if (t == NULL) {
 332			int ret;
 333
 334			mutex_unlock(&cpufreq_governor_mutex);
 335			ret = request_module("cpufreq_%s", str_governor);
 336			mutex_lock(&cpufreq_governor_mutex);
 
 
 
 
 337
 338			if (ret == 0)
 339				t = __find_governor(str_governor);
 340		}
 341
 342		if (t != NULL) {
 343			*governor = t;
 344			err = 0;
 345		}
 346
 347		mutex_unlock(&cpufreq_governor_mutex);
 348	}
 349out:
 350	return err;
 351}
 352
 353
 354/**
 355 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 356 * print out cpufreq information
 357 *
 358 * Write out information from cpufreq_driver->policy[cpu]; object must be
 359 * "unsigned int".
 360 */
 361
 362#define show_one(file_name, object)			\
 363static ssize_t show_##file_name				\
 364(struct cpufreq_policy *policy, char *buf)		\
 365{							\
 366	return sprintf(buf, "%u\n", policy->object);	\
 367}
 368
 369show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 370show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 371show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 372show_one(scaling_min_freq, min);
 373show_one(scaling_max_freq, max);
 374show_one(scaling_cur_freq, cur);
 375
 376static int __cpufreq_set_policy(struct cpufreq_policy *data,
 377				struct cpufreq_policy *policy);
 
 
 378
 379/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 380 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 381 */
 382#define store_one(file_name, object)			\
 383static ssize_t store_##file_name					\
 384(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 385{									\
 386	unsigned int ret = -EINVAL;					\
 387	struct cpufreq_policy new_policy;				\
 388									\
 389	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 390	if (ret)							\
 391		return -EINVAL;						\
 392									\
 393	ret = sscanf(buf, "%u", &new_policy.object);			\
 394	if (ret != 1)							\
 395		return -EINVAL;						\
 396									\
 397	ret = __cpufreq_set_policy(policy, &new_policy);		\
 398	policy->user_policy.object = policy->object;			\
 399									\
 400	return ret ? ret : count;					\
 401}
 402
 403store_one(scaling_min_freq, min);
 404store_one(scaling_max_freq, max);
 405
 406/**
 407 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 408 */
 409static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 410					char *buf)
 411{
 412	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 413	if (!cur_freq)
 414		return sprintf(buf, "<unknown>");
 415	return sprintf(buf, "%u\n", cur_freq);
 
 
 416}
 417
 418
 419/**
 420 * show_scaling_governor - show the current policy for the specified CPU
 421 */
 422static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 423{
 424	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 425		return sprintf(buf, "powersave\n");
 426	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 427		return sprintf(buf, "performance\n");
 428	else if (policy->governor)
 429		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
 430				policy->governor->name);
 431	return -EINVAL;
 432}
 433
 434
 435/**
 436 * store_scaling_governor - store policy for the specified CPU
 437 */
 438static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 439					const char *buf, size_t count)
 440{
 441	unsigned int ret = -EINVAL;
 442	char	str_governor[16];
 443	struct cpufreq_policy new_policy;
 444
 445	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 446	if (ret)
 447		return ret;
 448
 449	ret = sscanf(buf, "%15s", str_governor);
 450	if (ret != 1)
 451		return -EINVAL;
 452
 453	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 454						&new_policy.governor))
 455		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 456
 457	/* Do not use cpufreq_set_policy here or the user_policy.max
 458	   will be wrongly overridden */
 459	ret = __cpufreq_set_policy(policy, &new_policy);
 460
 461	policy->user_policy.policy = policy->policy;
 462	policy->user_policy.governor = policy->governor;
 463
 464	if (ret)
 465		return ret;
 466	else
 467		return count;
 468}
 469
 470/**
 471 * show_scaling_driver - show the cpufreq driver currently loaded
 472 */
 473static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 474{
 475	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
 476}
 477
 478/**
 479 * show_scaling_available_governors - show the available CPUfreq governors
 480 */
 481static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 482						char *buf)
 483{
 484	ssize_t i = 0;
 485	struct cpufreq_governor *t;
 486
 487	if (!cpufreq_driver->target) {
 488		i += sprintf(buf, "performance powersave");
 489		goto out;
 490	}
 491
 492	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 
 493		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 494		    - (CPUFREQ_NAME_LEN + 2)))
 495			goto out;
 496		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
 497	}
 
 498out:
 499	i += sprintf(&buf[i], "\n");
 500	return i;
 501}
 502
 503static ssize_t show_cpus(const struct cpumask *mask, char *buf)
 504{
 505	ssize_t i = 0;
 506	unsigned int cpu;
 507
 508	for_each_cpu(cpu, mask) {
 509		if (i)
 510			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 511		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 512		if (i >= (PAGE_SIZE - 5))
 513			break;
 514	}
 
 
 
 
 515	i += sprintf(&buf[i], "\n");
 516	return i;
 517}
 
 518
 519/**
 520 * show_related_cpus - show the CPUs affected by each transition even if
 521 * hw coordination is in use
 522 */
 523static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 524{
 525	if (cpumask_empty(policy->related_cpus))
 526		return show_cpus(policy->cpus, buf);
 527	return show_cpus(policy->related_cpus, buf);
 528}
 529
 530/**
 531 * show_affected_cpus - show the CPUs affected by each transition
 532 */
 533static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 534{
 535	return show_cpus(policy->cpus, buf);
 536}
 537
 538static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 539					const char *buf, size_t count)
 540{
 541	unsigned int freq = 0;
 542	unsigned int ret;
 543
 544	if (!policy->governor || !policy->governor->store_setspeed)
 545		return -EINVAL;
 546
 547	ret = sscanf(buf, "%u", &freq);
 548	if (ret != 1)
 549		return -EINVAL;
 550
 551	policy->governor->store_setspeed(policy, freq);
 552
 553	return count;
 554}
 555
 556static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 557{
 558	if (!policy->governor || !policy->governor->show_setspeed)
 559		return sprintf(buf, "<unsupported>\n");
 560
 561	return policy->governor->show_setspeed(policy, buf);
 562}
 563
 564/**
 565 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
 566 */
 567static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 568{
 569	unsigned int limit;
 570	int ret;
 571	if (cpufreq_driver->bios_limit) {
 572		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 573		if (!ret)
 574			return sprintf(buf, "%u\n", limit);
 575	}
 576	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 577}
 578
 579cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 580cpufreq_freq_attr_ro(cpuinfo_min_freq);
 581cpufreq_freq_attr_ro(cpuinfo_max_freq);
 582cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 583cpufreq_freq_attr_ro(scaling_available_governors);
 584cpufreq_freq_attr_ro(scaling_driver);
 585cpufreq_freq_attr_ro(scaling_cur_freq);
 586cpufreq_freq_attr_ro(bios_limit);
 587cpufreq_freq_attr_ro(related_cpus);
 588cpufreq_freq_attr_ro(affected_cpus);
 589cpufreq_freq_attr_rw(scaling_min_freq);
 590cpufreq_freq_attr_rw(scaling_max_freq);
 591cpufreq_freq_attr_rw(scaling_governor);
 592cpufreq_freq_attr_rw(scaling_setspeed);
 593
 594static struct attribute *default_attrs[] = {
 595	&cpuinfo_min_freq.attr,
 596	&cpuinfo_max_freq.attr,
 597	&cpuinfo_transition_latency.attr,
 598	&scaling_min_freq.attr,
 599	&scaling_max_freq.attr,
 600	&affected_cpus.attr,
 601	&related_cpus.attr,
 602	&scaling_governor.attr,
 603	&scaling_driver.attr,
 604	&scaling_available_governors.attr,
 605	&scaling_setspeed.attr,
 606	NULL
 607};
 608
 609struct kobject *cpufreq_global_kobject;
 610EXPORT_SYMBOL(cpufreq_global_kobject);
 611
 612#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 613#define to_attr(a) container_of(a, struct freq_attr, attr)
 614
 615static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 616{
 617	struct cpufreq_policy *policy = to_policy(kobj);
 618	struct freq_attr *fattr = to_attr(attr);
 619	ssize_t ret = -EINVAL;
 620	policy = cpufreq_cpu_get(policy->cpu);
 621	if (!policy)
 622		goto no_policy;
 623
 624	if (lock_policy_rwsem_read(policy->cpu) < 0)
 625		goto fail;
 626
 627	if (fattr->show)
 
 628		ret = fattr->show(policy, buf);
 629	else
 630		ret = -EIO;
 631
 632	unlock_policy_rwsem_read(policy->cpu);
 633fail:
 634	cpufreq_cpu_put(policy);
 635no_policy:
 636	return ret;
 637}
 638
 639static ssize_t store(struct kobject *kobj, struct attribute *attr,
 640		     const char *buf, size_t count)
 641{
 642	struct cpufreq_policy *policy = to_policy(kobj);
 643	struct freq_attr *fattr = to_attr(attr);
 644	ssize_t ret = -EINVAL;
 645	policy = cpufreq_cpu_get(policy->cpu);
 646	if (!policy)
 647		goto no_policy;
 648
 649	if (lock_policy_rwsem_write(policy->cpu) < 0)
 650		goto fail;
 651
 652	if (fattr->store)
 
 653		ret = fattr->store(policy, buf, count);
 654	else
 655		ret = -EIO;
 656
 657	unlock_policy_rwsem_write(policy->cpu);
 658fail:
 659	cpufreq_cpu_put(policy);
 660no_policy:
 661	return ret;
 662}
 663
 664static void cpufreq_sysfs_release(struct kobject *kobj)
 665{
 666	struct cpufreq_policy *policy = to_policy(kobj);
 667	pr_debug("last reference is dropped\n");
 668	complete(&policy->kobj_unregister);
 669}
 670
 671static const struct sysfs_ops sysfs_ops = {
 672	.show	= show,
 673	.store	= store,
 674};
 675
 676static struct kobj_type ktype_cpufreq = {
 677	.sysfs_ops	= &sysfs_ops,
 678	.default_attrs	= default_attrs,
 679	.release	= cpufreq_sysfs_release,
 680};
 681
 682/*
 683 * Returns:
 684 *   Negative: Failure
 685 *   0:        Success
 686 *   Positive: When we have a managed CPU and the sysfs got symlinked
 687 */
 688static int cpufreq_add_dev_policy(unsigned int cpu,
 689				  struct cpufreq_policy *policy,
 690				  struct device *dev)
 691{
 692	int ret = 0;
 693#ifdef CONFIG_SMP
 694	unsigned long flags;
 695	unsigned int j;
 696#ifdef CONFIG_HOTPLUG_CPU
 697	struct cpufreq_governor *gov;
 698
 699	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
 700	if (gov) {
 701		policy->governor = gov;
 702		pr_debug("Restoring governor %s for cpu %d\n",
 703		       policy->governor->name, cpu);
 704	}
 705#endif
 706
 707	for_each_cpu(j, policy->cpus) {
 708		struct cpufreq_policy *managed_policy;
 709
 710		if (cpu == j)
 711			continue;
 712
 713		/* Check for existing affected CPUs.
 714		 * They may not be aware of it due to CPU Hotplug.
 715		 * cpufreq_cpu_put is called when the device is removed
 716		 * in __cpufreq_remove_dev()
 717		 */
 718		managed_policy = cpufreq_cpu_get(j);
 719		if (unlikely(managed_policy)) {
 720
 721			/* Set proper policy_cpu */
 722			unlock_policy_rwsem_write(cpu);
 723			per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
 724
 725			if (lock_policy_rwsem_write(cpu) < 0) {
 726				/* Should not go through policy unlock path */
 727				if (cpufreq_driver->exit)
 728					cpufreq_driver->exit(policy);
 729				cpufreq_cpu_put(managed_policy);
 730				return -EBUSY;
 731			}
 732
 733			spin_lock_irqsave(&cpufreq_driver_lock, flags);
 734			cpumask_copy(managed_policy->cpus, policy->cpus);
 735			per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
 736			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 737
 738			pr_debug("CPU already managed, adding link\n");
 739			ret = sysfs_create_link(&dev->kobj,
 740						&managed_policy->kobj,
 741						"cpufreq");
 742			if (ret)
 743				cpufreq_cpu_put(managed_policy);
 744			/*
 745			 * Success. We only needed to be added to the mask.
 746			 * Call driver->exit() because only the cpu parent of
 747			 * the kobj needed to call init().
 748			 */
 749			if (cpufreq_driver->exit)
 750				cpufreq_driver->exit(policy);
 751
 752			if (!ret)
 753				return 1;
 754			else
 755				return ret;
 756		}
 757	}
 758#endif
 759	return ret;
 760}
 761
 762
 763/* symlink affected CPUs */
 764static int cpufreq_add_dev_symlink(unsigned int cpu,
 765				   struct cpufreq_policy *policy)
 766{
 767	unsigned int j;
 768	int ret = 0;
 769
 770	for_each_cpu(j, policy->cpus) {
 771		struct cpufreq_policy *managed_policy;
 772		struct device *cpu_dev;
 773
 774		if (j == cpu)
 775			continue;
 776		if (!cpu_online(j))
 777			continue;
 778
 779		pr_debug("CPU %u already managed, adding link\n", j);
 780		managed_policy = cpufreq_cpu_get(cpu);
 781		cpu_dev = get_cpu_device(j);
 782		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
 783					"cpufreq");
 784		if (ret) {
 785			cpufreq_cpu_put(managed_policy);
 786			return ret;
 787		}
 788	}
 789	return ret;
 790}
 791
 792static int cpufreq_add_dev_interface(unsigned int cpu,
 793				     struct cpufreq_policy *policy,
 794				     struct device *dev)
 795{
 796	struct cpufreq_policy new_policy;
 797	struct freq_attr **drv_attr;
 798	unsigned long flags;
 799	int ret = 0;
 800	unsigned int j;
 801
 802	/* prepare interface data */
 803	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 804				   &dev->kobj, "cpufreq");
 805	if (ret)
 806		return ret;
 807
 808	/* set up files for this cpu device */
 809	drv_attr = cpufreq_driver->attr;
 810	while ((drv_attr) && (*drv_attr)) {
 811		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 812		if (ret)
 813			goto err_out_kobj_put;
 814		drv_attr++;
 815	}
 816	if (cpufreq_driver->get) {
 817		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 818		if (ret)
 819			goto err_out_kobj_put;
 820	}
 821	if (cpufreq_driver->target) {
 822		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 823		if (ret)
 824			goto err_out_kobj_put;
 825	}
 
 
 
 
 
 826	if (cpufreq_driver->bios_limit) {
 827		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 828		if (ret)
 829			goto err_out_kobj_put;
 830	}
 831
 832	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 833	for_each_cpu(j, policy->cpus) {
 834		if (!cpu_online(j))
 835			continue;
 836		per_cpu(cpufreq_cpu_data, j) = policy;
 837		per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
 838	}
 839	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 840
 841	ret = cpufreq_add_dev_symlink(cpu, policy);
 842	if (ret)
 843		goto err_out_kobj_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844
 845	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
 846	/* assure that the starting sequence is run in __cpufreq_set_policy */
 847	policy->governor = NULL;
 848
 849	/* set default policy */
 850	ret = __cpufreq_set_policy(policy, &new_policy);
 851	policy->user_policy.policy = policy->policy;
 852	policy->user_policy.governor = policy->governor;
 853
 854	if (ret) {
 855		pr_debug("setting policy failed\n");
 856		if (cpufreq_driver->exit)
 857			cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
 
 
 
 
 
 858	}
 859	return ret;
 860
 861err_out_kobj_put:
 862	kobject_put(&policy->kobj);
 863	wait_for_completion(&policy->kobj_unregister);
 
 864	return ret;
 865}
 866
 867
 868/**
 869 * cpufreq_add_dev - add a CPU device
 870 *
 871 * Adds the cpufreq interface for a CPU device.
 872 *
 873 * The Oracle says: try running cpufreq registration/unregistration concurrently
 874 * with with cpu hotplugging and all hell will break loose. Tried to clean this
 875 * mess up, but more thorough testing is needed. - Mathieu
 876 */
 877static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
 878{
 879	unsigned int cpu = dev->id;
 880	int ret = 0, found = 0;
 881	struct cpufreq_policy *policy;
 882	unsigned long flags;
 883	unsigned int j;
 884#ifdef CONFIG_HOTPLUG_CPU
 885	int sibling;
 886#endif
 887
 888	if (cpu_is_offline(cpu))
 
 889		return 0;
 890
 891	pr_debug("adding CPU %u\n", cpu);
 
 
 892
 893#ifdef CONFIG_SMP
 894	/* check whether a different CPU already registered this
 895	 * CPU because it is in the same boat. */
 896	policy = cpufreq_cpu_get(cpu);
 897	if (unlikely(policy)) {
 898		cpufreq_cpu_put(policy);
 899		return 0;
 900	}
 901#endif
 
 
 
 
 
 
 
 902
 903	if (!try_module_get(cpufreq_driver->owner)) {
 904		ret = -EINVAL;
 905		goto module_out;
 906	}
 
 
 907
 908	ret = -ENOMEM;
 909	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910	if (!policy)
 911		goto nomem_out;
 912
 913	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
 914		goto err_free_policy;
 915
 916	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
 917		goto err_free_cpumask;
 918
 919	policy->cpu = cpu;
 920	cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 921
 922	/* Initially set CPU itself as the policy_cpu */
 923	per_cpu(cpufreq_policy_cpu, cpu) = cpu;
 924	ret = (lock_policy_rwsem_write(cpu) < 0);
 925	WARN_ON(ret);
 926
 927	init_completion(&policy->kobj_unregister);
 928	INIT_WORK(&policy->update, handle_update);
 929
 930	/* Set governor before ->init, so that driver could check it */
 931#ifdef CONFIG_HOTPLUG_CPU
 932	for_each_online_cpu(sibling) {
 933		struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
 934		if (cp && cp->governor &&
 935		    (cpumask_test_cpu(cpu, cp->related_cpus))) {
 936			policy->governor = cp->governor;
 937			found = 1;
 938			break;
 939		}
 940	}
 941#endif
 942	if (!found)
 943		policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
 944	/* call driver. From then on the cpufreq must be able
 945	 * to accept all calls to ->verify and ->setpolicy for this CPU
 946	 */
 947	ret = cpufreq_driver->init(policy);
 948	if (ret) {
 949		pr_debug("initialization failed\n");
 950		goto err_unlock_policy;
 
 951	}
 952	policy->user_policy.min = policy->min;
 953	policy->user_policy.max = policy->max;
 954
 955	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
 956				     CPUFREQ_START, policy);
 957
 958	ret = cpufreq_add_dev_policy(cpu, policy, dev);
 959	if (ret) {
 960		if (ret > 0)
 961			/* This is a managed cpu, symlink created,
 962			   exit with 0 */
 963			ret = 0;
 964		goto err_unlock_policy;
 965	}
 966
 967	ret = cpufreq_add_dev_interface(cpu, policy, dev);
 968	if (ret)
 969		goto err_out_unregister;
 
 
 
 
 
 970
 971	unlock_policy_rwsem_write(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 972
 973	kobject_uevent(&policy->kobj, KOBJ_ADD);
 974	module_put(cpufreq_driver->owner);
 975	pr_debug("initialization complete\n");
 976
 977	return 0;
 
 
 
 978
 
 
 
 
 
 
 979
 980err_out_unregister:
 981	spin_lock_irqsave(&cpufreq_driver_lock, flags);
 982	for_each_cpu(j, policy->cpus)
 983		per_cpu(cpufreq_cpu_data, j) = NULL;
 984	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985
 986	kobject_put(&policy->kobj);
 987	wait_for_completion(&policy->kobj_unregister);
 988
 989err_unlock_policy:
 990	unlock_policy_rwsem_write(cpu);
 991	free_cpumask_var(policy->related_cpus);
 992err_free_cpumask:
 993	free_cpumask_var(policy->cpus);
 994err_free_policy:
 995	kfree(policy);
 996nomem_out:
 997	module_put(cpufreq_driver->owner);
 998module_out:
 999	return ret;
1000}
1001
1002
1003/**
1004 * __cpufreq_remove_dev - remove a CPU device
1005 *
1006 * Removes the cpufreq interface for a CPU device.
1007 * Caller should already have policy_rwsem in write mode for this CPU.
1008 * This routine frees the rwsem before returning.
1009 */
1010static int __cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1011{
1012	unsigned int cpu = dev->id;
 
1013	unsigned long flags;
1014	struct cpufreq_policy *data;
1015	struct kobject *kobj;
1016	struct completion *cmp;
1017#ifdef CONFIG_SMP
1018	struct device *cpu_dev;
1019	unsigned int j;
1020#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1021
1022	pr_debug("unregistering CPU %u\n", cpu);
 
 
 
 
1023
1024	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1025	data = per_cpu(cpufreq_cpu_data, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026
1027	if (!data) {
1028		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1029		unlock_policy_rwsem_write(cpu);
1030		return -EINVAL;
 
 
 
 
 
 
1031	}
1032	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1033
 
 
 
 
 
 
 
 
1034
1035#ifdef CONFIG_SMP
1036	/* if this isn't the CPU which is the parent of the kobj, we
1037	 * only need to unlink, put and exit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038	 */
1039	if (unlikely(cpu != data->cpu)) {
1040		pr_debug("removing link\n");
1041		cpumask_clear_cpu(cpu, data->cpus);
1042		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1043		kobj = &dev->kobj;
1044		cpufreq_cpu_put(data);
1045		unlock_policy_rwsem_write(cpu);
1046		sysfs_remove_link(kobj, "cpufreq");
1047		return 0;
 
 
 
 
 
 
 
 
 
 
1048	}
1049#endif
1050
1051#ifdef CONFIG_SMP
 
 
 
1052
1053#ifdef CONFIG_HOTPLUG_CPU
1054	strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1055			CPUFREQ_NAME_LEN);
1056#endif
1057
1058	/* if we have other CPUs still registered, we need to unlink them,
1059	 * or else wait_for_completion below will lock up. Clean the
1060	 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1061	 * the sysfs links afterwards.
1062	 */
1063	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1064		for_each_cpu(j, data->cpus) {
1065			if (j == cpu)
1066				continue;
1067			per_cpu(cpufreq_cpu_data, j) = NULL;
1068		}
 
 
 
 
 
1069	}
1070
1071	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1072
1073	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1074		for_each_cpu(j, data->cpus) {
1075			if (j == cpu)
1076				continue;
1077			pr_debug("removing link for cpu %u\n", j);
1078#ifdef CONFIG_HOTPLUG_CPU
1079			strncpy(per_cpu(cpufreq_cpu_governor, j),
1080				data->governor->name, CPUFREQ_NAME_LEN);
1081#endif
1082			cpu_dev = get_cpu_device(j);
1083			kobj = &cpu_dev->kobj;
1084			unlock_policy_rwsem_write(cpu);
1085			sysfs_remove_link(kobj, "cpufreq");
1086			lock_policy_rwsem_write(cpu);
1087			cpufreq_cpu_put(data);
1088		}
1089	}
1090#else
1091	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1092#endif
1093
1094	if (cpufreq_driver->target)
1095		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
 
 
 
 
 
 
 
 
 
 
1096
1097	kobj = &data->kobj;
1098	cmp = &data->kobj_unregister;
1099	unlock_policy_rwsem_write(cpu);
1100	kobject_put(kobj);
1101
1102	/* we need to make sure that the underlying kobj is actually
1103	 * not referenced anymore by anybody before we proceed with
1104	 * unloading.
1105	 */
1106	pr_debug("waiting for dropping of refcount\n");
1107	wait_for_completion(cmp);
1108	pr_debug("wait complete\n");
1109
1110	lock_policy_rwsem_write(cpu);
1111	if (cpufreq_driver->exit)
1112		cpufreq_driver->exit(data);
1113	unlock_policy_rwsem_write(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114
1115#ifdef CONFIG_HOTPLUG_CPU
1116	/* when the CPU which is the parent of the kobj is hotplugged
1117	 * offline, check for siblings, and create cpufreq sysfs interface
1118	 * and symlinks
1119	 */
1120	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1121		/* first sibling now owns the new sysfs dir */
1122		cpumask_clear_cpu(cpu, data->cpus);
1123		cpufreq_add_dev(get_cpu_device(cpumask_first(data->cpus)), NULL);
1124
1125		/* finally remove our own symlink */
1126		lock_policy_rwsem_write(cpu);
1127		__cpufreq_remove_dev(dev, sif);
1128	}
1129#endif
1130
1131	free_cpumask_var(data->related_cpus);
1132	free_cpumask_var(data->cpus);
1133	kfree(data);
 
1134
1135	return 0;
1136}
1137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138
1139static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
 
 
 
 
 
 
 
 
 
 
 
 
1140{
1141	unsigned int cpu = dev->id;
1142	int retval;
 
1143
1144	if (cpu_is_offline(cpu))
 
 
1145		return 0;
 
1146
1147	if (unlikely(lock_policy_rwsem_write(cpu)))
1148		BUG();
1149
1150	retval = __cpufreq_remove_dev(dev, sif);
1151	return retval;
 
 
1152}
1153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154
1155static void handle_update(struct work_struct *work)
1156{
1157	struct cpufreq_policy *policy =
1158		container_of(work, struct cpufreq_policy, update);
1159	unsigned int cpu = policy->cpu;
1160	pr_debug("handle_update for cpu %u called\n", cpu);
1161	cpufreq_update_policy(cpu);
 
 
 
 
 
1162}
1163
1164/**
1165 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1166 *	@cpu: cpu number
1167 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1168 *	@new_freq: CPU frequency the CPU actually runs at
1169 *
1170 *	We adjust to current frequency first, and need to clean up later.
1171 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1172 */
1173static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1174				unsigned int new_freq)
1175{
1176	struct cpufreq_freqs freqs;
1177
1178	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1179	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1180
1181	freqs.cpu = cpu;
1182	freqs.old = old_freq;
1183	freqs.new = new_freq;
1184	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1185	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
 
1186}
1187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188
1189/**
1190 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1191 * @cpu: CPU number
1192 *
1193 * This is the last known freq, without actually getting it from the driver.
1194 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1195 */
1196unsigned int cpufreq_quick_get(unsigned int cpu)
1197{
1198	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1199	unsigned int ret_freq = 0;
 
 
 
 
 
 
 
 
 
 
 
1200
 
1201	if (policy) {
1202		ret_freq = policy->cur;
1203		cpufreq_cpu_put(policy);
1204	}
1205
1206	return ret_freq;
1207}
1208EXPORT_SYMBOL(cpufreq_quick_get);
1209
1210/**
1211 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1212 * @cpu: CPU number
1213 *
1214 * Just return the max possible frequency for a given CPU.
1215 */
1216unsigned int cpufreq_quick_get_max(unsigned int cpu)
1217{
1218	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1219	unsigned int ret_freq = 0;
1220
1221	if (policy) {
1222		ret_freq = policy->max;
1223		cpufreq_cpu_put(policy);
1224	}
1225
1226	return ret_freq;
1227}
1228EXPORT_SYMBOL(cpufreq_quick_get_max);
1229
1230
1231static unsigned int __cpufreq_get(unsigned int cpu)
 
 
 
 
 
1232{
1233	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1234	unsigned int ret_freq = 0;
1235
1236	if (!cpufreq_driver->get)
1237		return ret_freq;
 
 
1238
1239	ret_freq = cpufreq_driver->get(cpu);
 
 
1240
1241	if (ret_freq && policy->cur &&
1242		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1243		/* verify no discrepancy between actual and
1244					saved value exists */
1245		if (unlikely(ret_freq != policy->cur)) {
1246			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1247			schedule_work(&policy->update);
1248		}
1249	}
1250
1251	return ret_freq;
1252}
1253
1254/**
1255 * cpufreq_get - get the current CPU frequency (in kHz)
1256 * @cpu: CPU number
1257 *
1258 * Get the CPU current (static) CPU frequency
1259 */
1260unsigned int cpufreq_get(unsigned int cpu)
1261{
 
1262	unsigned int ret_freq = 0;
1263	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1264
1265	if (!policy)
1266		goto out;
 
 
 
1267
1268	if (unlikely(lock_policy_rwsem_read(cpu)))
1269		goto out_policy;
1270
1271	ret_freq = __cpufreq_get(cpu);
1272
1273	unlock_policy_rwsem_read(cpu);
1274
1275out_policy:
1276	cpufreq_cpu_put(policy);
1277out:
1278	return ret_freq;
1279}
1280EXPORT_SYMBOL(cpufreq_get);
1281
1282static struct subsys_interface cpufreq_interface = {
1283	.name		= "cpufreq",
1284	.subsys		= &cpu_subsys,
1285	.add_dev	= cpufreq_add_dev,
1286	.remove_dev	= cpufreq_remove_dev,
1287};
1288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289
1290/**
1291 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1292 *
1293 * This function is only executed for the boot processor.  The other CPUs
1294 * have been put offline by means of CPU hotplug.
 
 
1295 */
1296static int cpufreq_bp_suspend(void)
1297{
1298	int ret = 0;
 
 
 
1299
1300	int cpu = smp_processor_id();
1301	struct cpufreq_policy *cpu_policy;
1302
1303	pr_debug("suspending cpu %u\n", cpu);
1304
1305	/* If there's no policy for the boot CPU, we have nothing to do. */
1306	cpu_policy = cpufreq_cpu_get(cpu);
1307	if (!cpu_policy)
1308		return 0;
 
 
1309
1310	if (cpufreq_driver->suspend) {
1311		ret = cpufreq_driver->suspend(cpu_policy);
1312		if (ret)
1313			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1314					"step on CPU %u\n", cpu_policy->cpu);
1315	}
1316
1317	cpufreq_cpu_put(cpu_policy);
1318	return ret;
1319}
1320
1321/**
1322 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1323 *
1324 *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1325 *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1326 *	    restored. It will verify that the current freq is in sync with
1327 *	    what we believe it to be. This is a bit later than when it
1328 *	    should be, but nonethteless it's better than calling
1329 *	    cpufreq_driver->get() here which might re-enable interrupts...
1330 *
1331 * This function is only executed for the boot CPU.  The other CPUs have not
1332 * been turned on yet.
1333 */
1334static void cpufreq_bp_resume(void)
1335{
1336	int ret = 0;
 
 
 
 
1337
1338	int cpu = smp_processor_id();
1339	struct cpufreq_policy *cpu_policy;
1340
1341	pr_debug("resuming cpu %u\n", cpu);
1342
1343	/* If there's no policy for the boot CPU, we have nothing to do. */
1344	cpu_policy = cpufreq_cpu_get(cpu);
1345	if (!cpu_policy)
1346		return;
1347
1348	if (cpufreq_driver->resume) {
1349		ret = cpufreq_driver->resume(cpu_policy);
1350		if (ret) {
1351			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1352					"step on CPU %u\n", cpu_policy->cpu);
1353			goto fail;
 
 
 
 
 
 
 
 
1354		}
1355	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1356
1357	schedule_work(&cpu_policy->update);
 
 
 
 
 
 
 
 
 
1358
1359fail:
1360	cpufreq_cpu_put(cpu_policy);
1361}
 
1362
1363static struct syscore_ops cpufreq_syscore_ops = {
1364	.suspend	= cpufreq_bp_suspend,
1365	.resume		= cpufreq_bp_resume,
1366};
 
 
 
 
 
 
1367
 
 
 
1368
1369/*********************************************************************
1370 *                     NOTIFIER LISTS INTERFACE                      *
1371 *********************************************************************/
1372
1373/**
1374 *	cpufreq_register_notifier - register a driver with cpufreq
1375 *	@nb: notifier function to register
1376 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1377 *
1378 *	Add a driver to one of two lists: either a list of drivers that
1379 *      are notified about clock rate changes (once before and once after
1380 *      the transition), or a list of drivers that are notified about
1381 *      changes in cpufreq policy.
1382 *
1383 *	This function may sleep, and has the same return conditions as
1384 *	blocking_notifier_chain_register.
1385 */
1386int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1387{
1388	int ret;
1389
1390	WARN_ON(!init_cpufreq_transition_notifier_list_called);
 
1391
1392	switch (list) {
1393	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1394		ret = srcu_notifier_chain_register(
1395				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1396		break;
1397	case CPUFREQ_POLICY_NOTIFIER:
1398		ret = blocking_notifier_chain_register(
1399				&cpufreq_policy_notifier_list, nb);
1400		break;
1401	default:
1402		ret = -EINVAL;
1403	}
1404
1405	return ret;
1406}
1407EXPORT_SYMBOL(cpufreq_register_notifier);
1408
1409
1410/**
1411 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1412 *	@nb: notifier block to be unregistered
1413 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1414 *
1415 *	Remove a driver from the CPU frequency notifier list.
1416 *
1417 *	This function may sleep, and has the same return conditions as
1418 *	blocking_notifier_chain_unregister.
1419 */
1420int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1421{
1422	int ret;
1423
 
 
 
1424	switch (list) {
1425	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1426		ret = srcu_notifier_chain_unregister(
1427				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1428		break;
1429	case CPUFREQ_POLICY_NOTIFIER:
1430		ret = blocking_notifier_chain_unregister(
1431				&cpufreq_policy_notifier_list, nb);
1432		break;
1433	default:
1434		ret = -EINVAL;
1435	}
1436
1437	return ret;
1438}
1439EXPORT_SYMBOL(cpufreq_unregister_notifier);
1440
1441
1442/*********************************************************************
1443 *                              GOVERNORS                            *
1444 *********************************************************************/
1445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446
1447int __cpufreq_driver_target(struct cpufreq_policy *policy,
1448			    unsigned int target_freq,
1449			    unsigned int relation)
1450{
1451	int retval = -EINVAL;
1452
1453	if (cpufreq_disabled())
1454		return -ENODEV;
1455
1456	pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1457		target_freq, relation);
1458	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1459		retval = cpufreq_driver->target(policy, target_freq, relation);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460
1461	return retval;
1462}
1463EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1464
1465int cpufreq_driver_target(struct cpufreq_policy *policy,
1466			  unsigned int target_freq,
1467			  unsigned int relation)
1468{
1469	int ret = -EINVAL;
1470
1471	policy = cpufreq_cpu_get(policy->cpu);
1472	if (!policy)
1473		goto no_policy;
1474
1475	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1476		goto fail;
1477
1478	ret = __cpufreq_driver_target(policy, target_freq, relation);
1479
1480	unlock_policy_rwsem_write(policy->cpu);
1481
1482fail:
1483	cpufreq_cpu_put(policy);
1484no_policy:
1485	return ret;
1486}
1487EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1488
1489int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
 
 
 
 
 
1490{
1491	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1492
1493	policy = cpufreq_cpu_get(policy->cpu);
1494	if (!policy)
1495		return -EINVAL;
1496
1497	if (cpu_online(cpu) && cpufreq_driver->getavg)
1498		ret = cpufreq_driver->getavg(policy, cpu);
 
 
 
 
 
 
 
 
 
1499
1500	cpufreq_cpu_put(policy);
1501	return ret;
1502}
1503EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1504
1505/*
1506 * when "event" is CPUFREQ_GOV_LIMITS
1507 */
 
 
 
 
 
 
 
 
 
1508
1509static int __cpufreq_governor(struct cpufreq_policy *policy,
1510					unsigned int event)
1511{
1512	int ret;
1513
1514	/* Only must be defined when default governor is known to have latency
1515	   restrictions, like e.g. conservative or ondemand.
1516	   That this is the case is already ensured in Kconfig
1517	*/
1518#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1519	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1520#else
1521	struct cpufreq_governor *gov = NULL;
1522#endif
 
1523
1524	if (policy->governor->max_transition_latency &&
1525	    policy->cpuinfo.transition_latency >
1526	    policy->governor->max_transition_latency) {
1527		if (!gov)
1528			return -EINVAL;
1529		else {
1530			printk(KERN_WARNING "%s governor failed, too long"
1531			       " transition latency of HW, fallback"
1532			       " to %s governor\n",
1533			       policy->governor->name,
1534			       gov->name);
1535			policy->governor = gov;
1536		}
1537	}
1538
1539	if (!try_module_get(policy->governor->owner))
1540		return -EINVAL;
 
 
 
 
 
 
 
 
1541
1542	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1543						policy->cpu, event);
1544	ret = policy->governor->governor(policy, event);
1545
1546	/* we keep one module reference alive for
1547			each CPU governed by this CPU */
1548	if ((event != CPUFREQ_GOV_START) || ret)
1549		module_put(policy->governor->owner);
1550	if ((event == CPUFREQ_GOV_STOP) && !ret)
1551		module_put(policy->governor->owner);
1552
1553	return ret;
 
1554}
1555
 
 
 
 
 
 
 
 
 
 
1556
1557int cpufreq_register_governor(struct cpufreq_governor *governor)
1558{
1559	int err;
1560
1561	if (!governor)
1562		return -EINVAL;
1563
1564	if (cpufreq_disabled())
1565		return -ENODEV;
1566
1567	mutex_lock(&cpufreq_governor_mutex);
1568
1569	err = -EBUSY;
1570	if (__find_governor(governor->name) == NULL) {
1571		err = 0;
1572		list_add(&governor->governor_list, &cpufreq_governor_list);
1573	}
1574
1575	mutex_unlock(&cpufreq_governor_mutex);
1576	return err;
1577}
1578EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1579
1580
1581void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1582{
1583#ifdef CONFIG_HOTPLUG_CPU
1584	int cpu;
1585#endif
1586
1587	if (!governor)
1588		return;
1589
1590	if (cpufreq_disabled())
1591		return;
1592
1593#ifdef CONFIG_HOTPLUG_CPU
1594	for_each_present_cpu(cpu) {
1595		if (cpu_online(cpu))
1596			continue;
1597		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1598			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
1599	}
1600#endif
1601
1602	mutex_lock(&cpufreq_governor_mutex);
1603	list_del(&governor->governor_list);
1604	mutex_unlock(&cpufreq_governor_mutex);
1605	return;
1606}
1607EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1608
1609
1610
1611/*********************************************************************
1612 *                          POLICY INTERFACE                         *
1613 *********************************************************************/
1614
1615/**
1616 * cpufreq_get_policy - get the current cpufreq_policy
1617 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1618 *	is written
 
1619 *
1620 * Reads the current cpufreq policy.
1621 */
1622int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1623{
1624	struct cpufreq_policy *cpu_policy;
1625	if (!policy)
1626		return -EINVAL;
1627
1628	cpu_policy = cpufreq_cpu_get(cpu);
1629	if (!cpu_policy)
1630		return -EINVAL;
1631
1632	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1633
1634	cpufreq_cpu_put(cpu_policy);
1635	return 0;
1636}
1637EXPORT_SYMBOL(cpufreq_get_policy);
1638
1639
1640/*
1641 * data   : current policy.
1642 * policy : policy to be set.
1643 */
1644static int __cpufreq_set_policy(struct cpufreq_policy *data,
1645				struct cpufreq_policy *policy)
 
 
 
 
 
 
 
 
 
 
 
1646{
1647	int ret = 0;
 
 
1648
1649	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1650		policy->min, policy->max);
 
 
 
 
 
 
 
1651
1652	memcpy(&policy->cpuinfo, &data->cpuinfo,
1653				sizeof(struct cpufreq_cpuinfo));
1654
1655	if (policy->min > data->max || policy->max < data->min) {
1656		ret = -EINVAL;
1657		goto error_out;
1658	}
1659
1660	/* verify the cpu speed can be set within this limit */
1661	ret = cpufreq_driver->verify(policy);
1662	if (ret)
1663		goto error_out;
1664
1665	/* adjust if necessary - all reasons */
1666	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1667			CPUFREQ_ADJUST, policy);
1668
1669	/* adjust if necessary - hardware incompatibility*/
1670	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1671			CPUFREQ_INCOMPATIBLE, policy);
1672
1673	/* verify the cpu speed can be set within this limit,
1674	   which might be different to the first one */
1675	ret = cpufreq_driver->verify(policy);
1676	if (ret)
1677		goto error_out;
1678
1679	/* notification of the new policy */
1680	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1681			CPUFREQ_NOTIFY, policy);
1682
1683	data->min = policy->min;
1684	data->max = policy->max;
1685
1686	pr_debug("new min and max freqs are %u - %u kHz\n",
1687					data->min, data->max);
1688
1689	if (cpufreq_driver->setpolicy) {
1690		data->policy = policy->policy;
1691		pr_debug("setting range\n");
1692		ret = cpufreq_driver->setpolicy(policy);
1693	} else {
1694		if (policy->governor != data->governor) {
1695			/* save old, working values */
1696			struct cpufreq_governor *old_gov = data->governor;
1697
1698			pr_debug("governor switch\n");
1699
1700			/* end old governor */
1701			if (data->governor)
1702				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1703
1704			/* start new governor */
1705			data->governor = policy->governor;
1706			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1707				/* new governor failed, so re-start old one */
1708				pr_debug("starting governor %s failed\n",
1709							data->governor->name);
1710				if (old_gov) {
1711					data->governor = old_gov;
1712					__cpufreq_governor(data,
1713							   CPUFREQ_GOV_START);
1714				}
1715				ret = -EINVAL;
1716				goto error_out;
1717			}
1718			/* might be a policy change, too, so fall through */
1719		}
1720		pr_debug("governor: change or update limits\n");
1721		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
 
 
 
 
 
 
 
 
 
1722	}
1723
1724error_out:
1725	return ret;
1726}
1727
1728/**
1729 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1730 *	@cpu: CPU which shall be re-evaluated
1731 *
1732 *	Useful for policy notifiers which have different necessities
1733 *	at different times.
 
 
1734 */
1735int cpufreq_update_policy(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1736{
1737	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1738	struct cpufreq_policy policy;
1739	int ret;
1740
1741	if (!data) {
1742		ret = -ENODEV;
1743		goto no_policy;
 
 
 
 
1744	}
1745
1746	if (unlikely(lock_policy_rwsem_write(cpu))) {
1747		ret = -EINVAL;
1748		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749	}
 
 
 
 
 
 
1750
1751	pr_debug("updating policy for CPU %u\n", cpu);
1752	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1753	policy.min = data->user_policy.min;
1754	policy.max = data->user_policy.max;
1755	policy.policy = data->user_policy.policy;
1756	policy.governor = data->user_policy.governor;
1757
1758	/* BIOS might change freq behind our back
1759	  -> ask driver for current freq and notify governors about a change */
1760	if (cpufreq_driver->get) {
1761		policy.cur = cpufreq_driver->get(cpu);
1762		if (!data->cur) {
1763			pr_debug("Driver did not initialize current freq");
1764			data->cur = policy.cur;
1765		} else {
1766			if (data->cur != policy.cur)
1767				cpufreq_out_of_sync(cpu, data->cur,
1768								policy.cur);
1769		}
1770	}
1771
1772	ret = __cpufreq_set_policy(data, &policy);
 
 
1773
1774	unlock_policy_rwsem_write(cpu);
 
 
 
1775
1776fail:
1777	cpufreq_cpu_put(data);
1778no_policy:
1779	return ret;
1780}
1781EXPORT_SYMBOL(cpufreq_update_policy);
1782
1783static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1784					unsigned long action, void *hcpu)
 
 
 
 
 
1785{
1786	unsigned int cpu = (unsigned long)hcpu;
1787	struct device *dev;
 
 
 
1788
1789	dev = get_cpu_device(cpu);
1790	if (dev) {
1791		switch (action) {
1792		case CPU_ONLINE:
1793		case CPU_ONLINE_FROZEN:
1794			cpufreq_add_dev(dev, NULL);
1795			break;
1796		case CPU_DOWN_PREPARE:
1797		case CPU_DOWN_PREPARE_FROZEN:
1798			if (unlikely(lock_policy_rwsem_write(cpu)))
1799				BUG();
1800
1801			__cpufreq_remove_dev(dev, NULL);
1802			break;
1803		case CPU_DOWN_FAILED:
1804		case CPU_DOWN_FAILED_FROZEN:
1805			cpufreq_add_dev(dev, NULL);
1806			break;
1807		}
1808	}
1809	return NOTIFY_OK;
1810}
 
1811
1812static struct notifier_block __refdata cpufreq_cpu_notifier = {
1813    .notifier_call = cpufreq_cpu_callback,
1814};
 
 
1815
1816/*********************************************************************
1817 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1818 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1819
1820/**
1821 * cpufreq_register_driver - register a CPU Frequency driver
1822 * @driver_data: A struct cpufreq_driver containing the values#
1823 * submitted by the CPU Frequency driver.
1824 *
1825 *   Registers a CPU Frequency driver to this core code. This code
1826 * returns zero on success, -EBUSY when another driver got here first
1827 * (and isn't unregistered in the meantime).
1828 *
1829 */
1830int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1831{
1832	unsigned long flags;
1833	int ret;
1834
1835	if (cpufreq_disabled())
1836		return -ENODEV;
1837
 
 
 
 
 
 
 
1838	if (!driver_data || !driver_data->verify || !driver_data->init ||
1839	    ((!driver_data->setpolicy) && (!driver_data->target)))
 
 
 
 
 
 
1840		return -EINVAL;
1841
1842	pr_debug("trying to register driver %s\n", driver_data->name);
1843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1844	if (driver_data->setpolicy)
1845		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1846
1847	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1848	if (cpufreq_driver) {
1849		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1850		return -EBUSY;
1851	}
1852	cpufreq_driver = driver_data;
1853	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1854
1855	ret = subsys_interface_register(&cpufreq_interface);
1856	if (ret)
1857		goto err_null_driver;
1858
1859	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1860		int i;
1861		ret = -ENODEV;
 
 
 
 
1862
1863		/* check for at least one working CPU */
1864		for (i = 0; i < nr_cpu_ids; i++)
1865			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1866				ret = 0;
1867				break;
1868			}
1869
1870		/* if all ->init() calls failed, unregister */
1871		if (ret) {
1872			pr_debug("no CPU initialized for driver %s\n",
1873							driver_data->name);
1874			goto err_if_unreg;
1875		}
1876	}
1877
1878	register_hotcpu_notifier(&cpufreq_cpu_notifier);
1879	pr_debug("driver %s up and running\n", driver_data->name);
 
1880
1881	return 0;
1882err_if_unreg:
1883	subsys_interface_unregister(&cpufreq_interface);
 
 
1884err_null_driver:
1885	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1886	cpufreq_driver = NULL;
1887	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
1888	return ret;
1889}
1890EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1891
1892
1893/**
1894 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1895 *
1896 *    Unregister the current CPUFreq driver. Only call this if you have
1897 * the right to do so, i.e. if you have succeeded in initialising before!
1898 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1899 * currently not initialised.
1900 */
1901int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1902{
1903	unsigned long flags;
1904
1905	if (!cpufreq_driver || (driver != cpufreq_driver))
1906		return -EINVAL;
1907
1908	pr_debug("unregistering driver %s\n", driver->name);
1909
 
 
1910	subsys_interface_unregister(&cpufreq_interface);
1911	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
1912
1913	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1914	cpufreq_driver = NULL;
1915	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1916
1917	return 0;
 
1918}
1919EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1920
1921static int __init cpufreq_core_init(void)
1922{
1923	int cpu;
 
1924
1925	if (cpufreq_disabled())
1926		return -ENODEV;
1927
1928	for_each_possible_cpu(cpu) {
1929		per_cpu(cpufreq_policy_cpu, cpu) = -1;
1930		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
 
1931	}
 
1932
1933	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
1934	BUG_ON(!cpufreq_global_kobject);
1935	register_syscore_ops(&cpufreq_syscore_ops);
1936
1937	return 0;
1938}
 
 
1939core_initcall(cpufreq_core_init);