Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
 
 
 
 
 
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
 
 
 
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
  79}
  80
  81/* internal prototypes */
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
 
 
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 
 
 
 
 
 
 
 
 
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 
 
 
 
 
 
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 
 
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 
 
 
 
 
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 241
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 
 
 
 
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 252	kobject_put(&policy->kobj);
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 266
 267	up_write(&policy->rwsem);
 268
 269	cpufreq_cpu_put(policy);
 270}
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 299}
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 336#endif
 337}
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 354
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 365	switch (state) {
 
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 
 
 
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 
 
 
 
 397	}
 398}
 399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency) {
 579		/*
 580		 * For platforms that can change the frequency very fast (< 10
 581		 * us), the above formula gives a decent transition delay. But
 582		 * for platforms where transition_latency is in milliseconds, it
 583		 * ends up giving unrealistic values.
 584		 *
 585		 * Cap the default transition delay to 10 ms, which seems to be
 586		 * a reasonable amount of time after which we should reevaluate
 587		 * the frequency.
 588		 */
 589		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 590	}
 591
 592	return LATENCY_MULTIPLIER;
 593}
 594EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 595
 596/*********************************************************************
 597 *                          SYSFS INTERFACE                          *
 598 *********************************************************************/
 599static ssize_t show_boost(struct kobject *kobj,
 600			  struct kobj_attribute *attr, char *buf)
 601{
 602	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 603}
 604
 605static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 606			   const char *buf, size_t count)
 607{
 608	int ret, enable;
 609
 610	ret = sscanf(buf, "%d", &enable);
 611	if (ret != 1 || enable < 0 || enable > 1)
 612		return -EINVAL;
 613
 614	if (cpufreq_boost_trigger_state(enable)) {
 615		pr_err("%s: Cannot %s BOOST!\n",
 616		       __func__, enable ? "enable" : "disable");
 617		return -EINVAL;
 618	}
 619
 620	pr_debug("%s: cpufreq BOOST %s\n",
 621		 __func__, enable ? "enabled" : "disabled");
 622
 623	return count;
 624}
 625define_one_global_rw(boost);
 626
 627static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 628{
 629	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 630}
 631
 632static ssize_t store_local_boost(struct cpufreq_policy *policy,
 633				 const char *buf, size_t count)
 634{
 635	int ret, enable;
 636
 637	ret = kstrtoint(buf, 10, &enable);
 638	if (ret || enable < 0 || enable > 1)
 639		return -EINVAL;
 640
 641	if (!cpufreq_driver->boost_enabled)
 642		return -EINVAL;
 643
 644	if (policy->boost_enabled == enable)
 645		return count;
 646
 647	cpus_read_lock();
 648	ret = cpufreq_driver->set_boost(policy, enable);
 649	cpus_read_unlock();
 650
 651	if (ret)
 652		return ret;
 653
 654	policy->boost_enabled = enable;
 655
 656	return count;
 657}
 658
 659static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 660
 661static struct cpufreq_governor *find_governor(const char *str_governor)
 662{
 663	struct cpufreq_governor *t;
 664
 665	for_each_governor(t)
 666		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 667			return t;
 668
 669	return NULL;
 670}
 671
 672static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 673{
 674	struct cpufreq_governor *t;
 675
 676	mutex_lock(&cpufreq_governor_mutex);
 677	t = find_governor(str_governor);
 678	if (!t)
 679		goto unlock;
 680
 681	if (!try_module_get(t->owner))
 682		t = NULL;
 
 
 
 
 683
 684unlock:
 685	mutex_unlock(&cpufreq_governor_mutex);
 686
 687	return t;
 688}
 
 689
 690static unsigned int cpufreq_parse_policy(char *str_governor)
 691{
 692	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 693		return CPUFREQ_POLICY_PERFORMANCE;
 694
 695	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 696		return CPUFREQ_POLICY_POWERSAVE;
 
 697
 698	return CPUFREQ_POLICY_UNKNOWN;
 699}
 700
 701/**
 702 * cpufreq_parse_governor - parse a governor string only for has_target()
 703 * @str_governor: Governor name.
 704 */
 705static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 706{
 707	struct cpufreq_governor *t;
 708
 709	t = get_governor(str_governor);
 710	if (t)
 711		return t;
 712
 713	if (request_module("cpufreq_%s", str_governor))
 714		return NULL;
 
 
 
 715
 716	return get_governor(str_governor);
 717}
 718
 719/*
 720 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 721 * print out cpufreq information
 722 *
 723 * Write out information from cpufreq_driver->policy[cpu]; object must be
 724 * "unsigned int".
 725 */
 726
 727#define show_one(file_name, object)			\
 728static ssize_t show_##file_name				\
 729(struct cpufreq_policy *policy, char *buf)		\
 730{							\
 731	return sprintf(buf, "%u\n", policy->object);	\
 732}
 733
 734show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 735show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 736show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 737show_one(scaling_min_freq, min);
 738show_one(scaling_max_freq, max);
 739
 740__weak unsigned int arch_freq_get_on_cpu(int cpu)
 741{
 742	return 0;
 743}
 744
 745static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 746{
 747	ssize_t ret;
 748	unsigned int freq;
 749
 750	freq = arch_freq_get_on_cpu(policy->cpu);
 751	if (freq)
 752		ret = sprintf(buf, "%u\n", freq);
 753	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 
 754		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 755	else
 756		ret = sprintf(buf, "%u\n", policy->cur);
 757	return ret;
 758}
 759
 760/*
 
 
 
 761 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 762 */
 763#define store_one(file_name, object)			\
 764static ssize_t store_##file_name					\
 765(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 766{									\
 767	unsigned long val;						\
 768	int ret;							\
 
 
 
 
 
 
 769									\
 770	ret = kstrtoul(buf, 0, &val);					\
 771	if (ret)							\
 772		return ret;						\
 
 773									\
 774	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 775	return ret >= 0 ? count : ret;					\
 776}
 777
 778store_one(scaling_min_freq, min);
 779store_one(scaling_max_freq, max);
 780
 781/*
 782 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 783 */
 784static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 785					char *buf)
 786{
 787	unsigned int cur_freq = __cpufreq_get(policy);
 788
 789	if (cur_freq)
 790		return sprintf(buf, "%u\n", cur_freq);
 791
 792	return sprintf(buf, "<unknown>\n");
 793}
 794
 795/*
 796 * show_scaling_governor - show the current policy for the specified CPU
 797 */
 798static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 799{
 800	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 801		return sprintf(buf, "powersave\n");
 802	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 803		return sprintf(buf, "performance\n");
 804	else if (policy->governor)
 805		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 806				policy->governor->name);
 807	return -EINVAL;
 808}
 809
 810/*
 811 * store_scaling_governor - store policy for the specified CPU
 812 */
 813static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 814					const char *buf, size_t count)
 815{
 816	char str_governor[16];
 817	int ret;
 
 
 
 
 818
 819	ret = sscanf(buf, "%15s", str_governor);
 820	if (ret != 1)
 821		return -EINVAL;
 822
 823	if (cpufreq_driver->setpolicy) {
 824		unsigned int new_pol;
 825
 826		new_pol = cpufreq_parse_policy(str_governor);
 827		if (!new_pol)
 828			return -EINVAL;
 829
 830		ret = cpufreq_set_policy(policy, NULL, new_pol);
 831	} else {
 832		struct cpufreq_governor *new_gov;
 833
 834		new_gov = cpufreq_parse_governor(str_governor);
 835		if (!new_gov)
 836			return -EINVAL;
 837
 838		ret = cpufreq_set_policy(policy, new_gov,
 839					 CPUFREQ_POLICY_UNKNOWN);
 840
 841		module_put(new_gov->owner);
 842	}
 843
 844	return ret ? ret : count;
 845}
 846
 847/*
 848 * show_scaling_driver - show the cpufreq driver currently loaded
 849 */
 850static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 851{
 852	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 853}
 854
 855/*
 856 * show_scaling_available_governors - show the available CPUfreq governors
 857 */
 858static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 859						char *buf)
 860{
 861	ssize_t i = 0;
 862	struct cpufreq_governor *t;
 863
 864	if (!has_target()) {
 865		i += sprintf(buf, "performance powersave");
 866		goto out;
 867	}
 868
 869	mutex_lock(&cpufreq_governor_mutex);
 870	for_each_governor(t) {
 871		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 872		    - (CPUFREQ_NAME_LEN + 2)))
 873			break;
 874		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 875	}
 876	mutex_unlock(&cpufreq_governor_mutex);
 877out:
 878	i += sprintf(&buf[i], "\n");
 879	return i;
 880}
 881
 882ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 883{
 884	ssize_t i = 0;
 885	unsigned int cpu;
 886
 887	for_each_cpu(cpu, mask) {
 888		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
 
 
 889		if (i >= (PAGE_SIZE - 5))
 890			break;
 891	}
 892
 893	/* Remove the extra space at the end */
 894	i--;
 895
 896	i += sprintf(&buf[i], "\n");
 897	return i;
 898}
 899EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 900
 901/*
 902 * show_related_cpus - show the CPUs affected by each transition even if
 903 * hw coordination is in use
 904 */
 905static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 906{
 907	return cpufreq_show_cpus(policy->related_cpus, buf);
 908}
 909
 910/*
 911 * show_affected_cpus - show the CPUs affected by each transition
 912 */
 913static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 914{
 915	return cpufreq_show_cpus(policy->cpus, buf);
 916}
 917
 918static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 919					const char *buf, size_t count)
 920{
 921	unsigned int freq = 0;
 922	unsigned int ret;
 923
 924	if (!policy->governor || !policy->governor->store_setspeed)
 925		return -EINVAL;
 926
 927	ret = sscanf(buf, "%u", &freq);
 928	if (ret != 1)
 929		return -EINVAL;
 930
 931	policy->governor->store_setspeed(policy, freq);
 932
 933	return count;
 934}
 935
 936static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 937{
 938	if (!policy->governor || !policy->governor->show_setspeed)
 939		return sprintf(buf, "<unsupported>\n");
 940
 941	return policy->governor->show_setspeed(policy, buf);
 942}
 943
 944/*
 945 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 946 */
 947static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 948{
 949	unsigned int limit;
 950	int ret;
 951	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 952	if (!ret)
 953		return sprintf(buf, "%u\n", limit);
 
 
 954	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 955}
 956
 957cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 958cpufreq_freq_attr_ro(cpuinfo_min_freq);
 959cpufreq_freq_attr_ro(cpuinfo_max_freq);
 960cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 961cpufreq_freq_attr_ro(scaling_available_governors);
 962cpufreq_freq_attr_ro(scaling_driver);
 963cpufreq_freq_attr_ro(scaling_cur_freq);
 964cpufreq_freq_attr_ro(bios_limit);
 965cpufreq_freq_attr_ro(related_cpus);
 966cpufreq_freq_attr_ro(affected_cpus);
 967cpufreq_freq_attr_rw(scaling_min_freq);
 968cpufreq_freq_attr_rw(scaling_max_freq);
 969cpufreq_freq_attr_rw(scaling_governor);
 970cpufreq_freq_attr_rw(scaling_setspeed);
 971
 972static struct attribute *cpufreq_attrs[] = {
 973	&cpuinfo_min_freq.attr,
 974	&cpuinfo_max_freq.attr,
 975	&cpuinfo_transition_latency.attr,
 976	&scaling_min_freq.attr,
 977	&scaling_max_freq.attr,
 978	&affected_cpus.attr,
 979	&related_cpus.attr,
 980	&scaling_governor.attr,
 981	&scaling_driver.attr,
 982	&scaling_available_governors.attr,
 983	&scaling_setspeed.attr,
 984	NULL
 985};
 986ATTRIBUTE_GROUPS(cpufreq);
 987
 988#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 989#define to_attr(a) container_of(a, struct freq_attr, attr)
 990
 991static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 992{
 993	struct cpufreq_policy *policy = to_policy(kobj);
 994	struct freq_attr *fattr = to_attr(attr);
 995	ssize_t ret = -EBUSY;
 996
 997	if (!fattr->show)
 998		return -EIO;
 999
1000	down_read(&policy->rwsem);
1001	if (likely(!policy_is_inactive(policy)))
1002		ret = fattr->show(policy, buf);
1003	up_read(&policy->rwsem);
1004
1005	return ret;
1006}
1007
1008static ssize_t store(struct kobject *kobj, struct attribute *attr,
1009		     const char *buf, size_t count)
1010{
1011	struct cpufreq_policy *policy = to_policy(kobj);
1012	struct freq_attr *fattr = to_attr(attr);
1013	ssize_t ret = -EBUSY;
1014
1015	if (!fattr->store)
1016		return -EIO;
1017
1018	down_write(&policy->rwsem);
1019	if (likely(!policy_is_inactive(policy)))
1020		ret = fattr->store(policy, buf, count);
1021	up_write(&policy->rwsem);
 
 
 
1022
1023	return ret;
1024}
1025
1026static void cpufreq_sysfs_release(struct kobject *kobj)
1027{
1028	struct cpufreq_policy *policy = to_policy(kobj);
1029	pr_debug("last reference is dropped\n");
1030	complete(&policy->kobj_unregister);
1031}
1032
1033static const struct sysfs_ops sysfs_ops = {
1034	.show	= show,
1035	.store	= store,
1036};
1037
1038static const struct kobj_type ktype_cpufreq = {
1039	.sysfs_ops	= &sysfs_ops,
1040	.default_groups	= cpufreq_groups,
1041	.release	= cpufreq_sysfs_release,
1042};
1043
1044static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1045				struct device *dev)
1046{
1047	if (unlikely(!dev))
 
 
1048		return;
1049
1050	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1051		return;
1052
1053	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1054	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1055		dev_err(dev, "cpufreq symlink creation failed\n");
1056}
1057
1058static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1059				   struct device *dev)
1060{
1061	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1062	sysfs_remove_link(&dev->kobj, "cpufreq");
1063	cpumask_clear_cpu(cpu, policy->real_cpus);
1064}
1065
1066static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1067{
1068	struct freq_attr **drv_attr;
1069	int ret = 0;
1070
1071	/* set up files for this cpu device */
1072	drv_attr = cpufreq_driver->attr;
1073	while (drv_attr && *drv_attr) {
1074		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1075		if (ret)
1076			return ret;
1077		drv_attr++;
1078	}
1079	if (cpufreq_driver->get) {
1080		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1081		if (ret)
1082			return ret;
1083	}
1084
1085	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1086	if (ret)
1087		return ret;
1088
1089	if (cpufreq_driver->bios_limit) {
1090		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1091		if (ret)
1092			return ret;
1093	}
1094
1095	if (cpufreq_boost_supported()) {
1096		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1097		if (ret)
1098			return ret;
1099	}
1100
1101	return 0;
1102}
1103
 
 
 
 
 
1104static int cpufreq_init_policy(struct cpufreq_policy *policy)
1105{
1106	struct cpufreq_governor *gov = NULL;
1107	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1108	int ret;
1109
1110	if (has_target()) {
1111		/* Update policy governor to the one used before hotplug. */
1112		gov = get_governor(policy->last_governor);
1113		if (gov) {
1114			pr_debug("Restoring governor %s for cpu %d\n",
1115				 gov->name, policy->cpu);
1116		} else {
1117			gov = get_governor(default_governor);
1118		}
1119
1120		if (!gov) {
1121			gov = cpufreq_default_governor();
1122			__module_get(gov->owner);
1123		}
1124
 
 
 
 
 
1125	} else {
1126
1127		/* Use the default policy if there is no last_policy. */
1128		if (policy->last_policy) {
1129			pol = policy->last_policy;
1130		} else {
1131			pol = cpufreq_parse_policy(default_governor);
1132			/*
1133			 * In case the default governor is neither "performance"
1134			 * nor "powersave", fall back to the initial policy
1135			 * value set by the driver.
1136			 */
1137			if (pol == CPUFREQ_POLICY_UNKNOWN)
1138				pol = policy->policy;
1139		}
1140		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1141		    pol != CPUFREQ_POLICY_POWERSAVE)
1142			return -ENODATA;
1143	}
1144
1145	ret = cpufreq_set_policy(policy, gov, pol);
1146	if (gov)
1147		module_put(gov->owner);
1148
1149	return ret;
 
 
 
 
 
 
 
 
1150}
1151
1152static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1153{
1154	int ret = 0;
1155
1156	/* Has this CPU been taken care of already? */
1157	if (cpumask_test_cpu(cpu, policy->cpus))
1158		return 0;
1159
1160	down_write(&policy->rwsem);
1161	if (has_target())
1162		cpufreq_stop_governor(policy);
1163
1164	cpumask_set_cpu(cpu, policy->cpus);
1165
1166	if (has_target()) {
1167		ret = cpufreq_start_governor(policy);
1168		if (ret)
1169			pr_err("%s: Failed to start governor\n", __func__);
1170	}
1171	up_write(&policy->rwsem);
1172	return ret;
1173}
1174
1175void refresh_frequency_limits(struct cpufreq_policy *policy)
1176{
1177	if (!policy_is_inactive(policy)) {
1178		pr_debug("updating policy for CPU %u\n", policy->cpu);
1179
1180		cpufreq_set_policy(policy, policy->governor, policy->policy);
1181	}
1182}
1183EXPORT_SYMBOL(refresh_frequency_limits);
1184
1185static void handle_update(struct work_struct *work)
1186{
1187	struct cpufreq_policy *policy =
1188		container_of(work, struct cpufreq_policy, update);
1189
1190	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1191	down_write(&policy->rwsem);
1192	refresh_frequency_limits(policy);
1193	up_write(&policy->rwsem);
1194}
1195
1196static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1197				void *data)
1198{
1199	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1200
1201	schedule_work(&policy->update);
1202	return 0;
1203}
1204
1205static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1206				void *data)
1207{
1208	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1209
1210	schedule_work(&policy->update);
1211	return 0;
1212}
1213
1214static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1215{
1216	struct kobject *kobj;
1217	struct completion *cmp;
1218
1219	down_write(&policy->rwsem);
1220	cpufreq_stats_free_table(policy);
1221	kobj = &policy->kobj;
1222	cmp = &policy->kobj_unregister;
1223	up_write(&policy->rwsem);
1224	kobject_put(kobj);
1225
1226	/*
1227	 * We need to make sure that the underlying kobj is
1228	 * actually not referenced anymore by anybody before we
1229	 * proceed with unloading.
1230	 */
1231	pr_debug("waiting for dropping of refcount\n");
1232	wait_for_completion(cmp);
1233	pr_debug("wait complete\n");
1234}
1235
1236static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1237{
1238	struct cpufreq_policy *policy;
1239	struct device *dev = get_cpu_device(cpu);
1240	int ret;
1241
1242	if (!dev)
1243		return NULL;
1244
1245	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1246	if (!policy)
1247		return NULL;
1248
1249	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1250		goto err_free_policy;
1251
1252	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1253		goto err_free_cpumask;
1254
1255	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1256		goto err_free_rcpumask;
1257
1258	init_completion(&policy->kobj_unregister);
1259	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1260				   cpufreq_global_kobject, "policy%u", cpu);
1261	if (ret) {
1262		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1263		/*
1264		 * The entire policy object will be freed below, but the extra
1265		 * memory allocated for the kobject name needs to be freed by
1266		 * releasing the kobject.
1267		 */
1268		kobject_put(&policy->kobj);
1269		goto err_free_real_cpus;
1270	}
1271
1272	freq_constraints_init(&policy->constraints);
1273
1274	policy->nb_min.notifier_call = cpufreq_notifier_min;
1275	policy->nb_max.notifier_call = cpufreq_notifier_max;
1276
1277	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1278				    &policy->nb_min);
1279	if (ret) {
1280		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1281			ret, cpu);
1282		goto err_kobj_remove;
1283	}
1284
1285	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1286				    &policy->nb_max);
1287	if (ret) {
1288		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1289			ret, cpu);
1290		goto err_min_qos_notifier;
1291	}
1292
1293	INIT_LIST_HEAD(&policy->policy_list);
1294	init_rwsem(&policy->rwsem);
1295	spin_lock_init(&policy->transition_lock);
1296	init_waitqueue_head(&policy->transition_wait);
 
1297	INIT_WORK(&policy->update, handle_update);
1298
1299	policy->cpu = cpu;
1300	return policy;
1301
1302err_min_qos_notifier:
1303	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1304				 &policy->nb_min);
1305err_kobj_remove:
1306	cpufreq_policy_put_kobj(policy);
1307err_free_real_cpus:
1308	free_cpumask_var(policy->real_cpus);
1309err_free_rcpumask:
1310	free_cpumask_var(policy->related_cpus);
1311err_free_cpumask:
1312	free_cpumask_var(policy->cpus);
1313err_free_policy:
1314	kfree(policy);
1315
1316	return NULL;
1317}
1318
1319static void cpufreq_policy_free(struct cpufreq_policy *policy)
1320{
1321	unsigned long flags;
1322	int cpu;
 
 
 
 
 
 
 
1323
1324	/*
1325	 * The callers must ensure the policy is inactive by now, to avoid any
1326	 * races with show()/store() callbacks.
 
1327	 */
1328	if (unlikely(!policy_is_inactive(policy)))
1329		pr_warn("%s: Freeing active policy\n", __func__);
 
 
 
 
 
 
 
1330
1331	/* Remove policy from list */
1332	write_lock_irqsave(&cpufreq_driver_lock, flags);
1333	list_del(&policy->policy_list);
1334
1335	for_each_cpu(cpu, policy->related_cpus)
1336		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1337	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1338
1339	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1340				 &policy->nb_max);
1341	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1342				 &policy->nb_min);
1343
1344	/* Cancel any pending policy->update work before freeing the policy. */
1345	cancel_work_sync(&policy->update);
1346
1347	if (policy->max_freq_req) {
1348		/*
1349		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1350		 * notification, since CPUFREQ_CREATE_POLICY notification was
1351		 * sent after adding max_freq_req earlier.
1352		 */
1353		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1354					     CPUFREQ_REMOVE_POLICY, policy);
1355		freq_qos_remove_request(policy->max_freq_req);
1356	}
1357
1358	freq_qos_remove_request(policy->min_freq_req);
1359	kfree(policy->min_freq_req);
1360
1361	cpufreq_policy_put_kobj(policy);
1362	free_cpumask_var(policy->real_cpus);
1363	free_cpumask_var(policy->related_cpus);
1364	free_cpumask_var(policy->cpus);
1365	kfree(policy);
1366}
1367
1368static int cpufreq_online(unsigned int cpu)
1369{
1370	struct cpufreq_policy *policy;
1371	bool new_policy;
1372	unsigned long flags;
1373	unsigned int j;
1374	int ret;
1375
1376	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1377
1378	/* Check if this CPU already has a policy to manage it */
1379	policy = per_cpu(cpufreq_cpu_data, cpu);
1380	if (policy) {
1381		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1382		if (!policy_is_inactive(policy))
1383			return cpufreq_add_policy_cpu(policy, cpu);
1384
1385		/* This is the only online CPU for the policy.  Start over. */
1386		new_policy = false;
1387		down_write(&policy->rwsem);
1388		policy->cpu = cpu;
1389		policy->governor = NULL;
 
1390	} else {
1391		new_policy = true;
1392		policy = cpufreq_policy_alloc(cpu);
1393		if (!policy)
1394			return -ENOMEM;
1395		down_write(&policy->rwsem);
1396	}
1397
1398	if (!new_policy && cpufreq_driver->online) {
1399		/* Recover policy->cpus using related_cpus */
1400		cpumask_copy(policy->cpus, policy->related_cpus);
1401
1402		ret = cpufreq_driver->online(policy);
1403		if (ret) {
1404			pr_debug("%s: %d: initialization failed\n", __func__,
1405				 __LINE__);
1406			goto out_exit_policy;
1407		}
1408	} else {
1409		cpumask_copy(policy->cpus, cpumask_of(cpu));
1410
1411		/*
1412		 * Call driver. From then on the cpufreq must be able
1413		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1414		 */
1415		ret = cpufreq_driver->init(policy);
1416		if (ret) {
1417			pr_debug("%s: %d: initialization failed\n", __func__,
1418				 __LINE__);
1419			goto out_free_policy;
1420		}
1421
1422		/*
1423		 * The initialization has succeeded and the policy is online.
1424		 * If there is a problem with its frequency table, take it
1425		 * offline and drop it.
1426		 */
1427		ret = cpufreq_table_validate_and_sort(policy);
1428		if (ret)
1429			goto out_offline_policy;
1430
 
1431		/* related_cpus should at least include policy->cpus. */
1432		cpumask_copy(policy->related_cpus, policy->cpus);
1433	}
1434
1435	/*
1436	 * affected cpus must always be the one, which are online. We aren't
1437	 * managing offline cpus here.
1438	 */
1439	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1440
1441	if (new_policy) {
 
 
 
1442		for_each_cpu(j, policy->related_cpus) {
1443			per_cpu(cpufreq_cpu_data, j) = policy;
1444			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1445		}
1446
1447		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1448					       GFP_KERNEL);
1449		if (!policy->min_freq_req) {
1450			ret = -ENOMEM;
1451			goto out_destroy_policy;
1452		}
1453
1454		ret = freq_qos_add_request(&policy->constraints,
1455					   policy->min_freq_req, FREQ_QOS_MIN,
1456					   FREQ_QOS_MIN_DEFAULT_VALUE);
1457		if (ret < 0) {
1458			/*
1459			 * So we don't call freq_qos_remove_request() for an
1460			 * uninitialized request.
1461			 */
1462			kfree(policy->min_freq_req);
1463			policy->min_freq_req = NULL;
1464			goto out_destroy_policy;
1465		}
1466
1467		/*
1468		 * This must be initialized right here to avoid calling
1469		 * freq_qos_remove_request() on uninitialized request in case
1470		 * of errors.
1471		 */
1472		policy->max_freq_req = policy->min_freq_req + 1;
1473
1474		ret = freq_qos_add_request(&policy->constraints,
1475					   policy->max_freq_req, FREQ_QOS_MAX,
1476					   FREQ_QOS_MAX_DEFAULT_VALUE);
1477		if (ret < 0) {
1478			policy->max_freq_req = NULL;
1479			goto out_destroy_policy;
1480		}
1481
1482		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1483				CPUFREQ_CREATE_POLICY, policy);
1484	}
1485
1486	if (cpufreq_driver->get && has_target()) {
1487		policy->cur = cpufreq_driver->get(policy->cpu);
1488		if (!policy->cur) {
1489			ret = -EIO;
1490			pr_err("%s: ->get() failed\n", __func__);
1491			goto out_destroy_policy;
1492		}
1493	}
1494
1495	/*
1496	 * Sometimes boot loaders set CPU frequency to a value outside of
1497	 * frequency table present with cpufreq core. In such cases CPU might be
1498	 * unstable if it has to run on that frequency for long duration of time
1499	 * and so its better to set it to a frequency which is specified in
1500	 * freq-table. This also makes cpufreq stats inconsistent as
1501	 * cpufreq-stats would fail to register because current frequency of CPU
1502	 * isn't found in freq-table.
1503	 *
1504	 * Because we don't want this change to effect boot process badly, we go
1505	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1506	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1507	 * is initialized to zero).
1508	 *
1509	 * We are passing target-freq as "policy->cur - 1" otherwise
1510	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1511	 * equal to target-freq.
1512	 */
1513	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1514	    && has_target()) {
1515		unsigned int old_freq = policy->cur;
1516
1517		/* Are we running at unknown frequency ? */
1518		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1519		if (ret == -EINVAL) {
1520			ret = __cpufreq_driver_target(policy, old_freq - 1,
1521						      CPUFREQ_RELATION_L);
 
 
 
1522
1523			/*
1524			 * Reaching here after boot in a few seconds may not
1525			 * mean that system will remain stable at "unknown"
1526			 * frequency for longer duration. Hence, a BUG_ON().
1527			 */
1528			BUG_ON(ret);
1529			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1530				__func__, policy->cpu, old_freq, policy->cur);
1531		}
1532	}
1533
1534	if (new_policy) {
1535		ret = cpufreq_add_dev_interface(policy);
1536		if (ret)
1537			goto out_destroy_policy;
1538
1539		cpufreq_stats_create_table(policy);
1540
1541		write_lock_irqsave(&cpufreq_driver_lock, flags);
1542		list_add(&policy->policy_list, &cpufreq_policy_list);
1543		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544
1545		/*
1546		 * Register with the energy model before
1547		 * sugov_eas_rebuild_sd() is called, which will result
1548		 * in rebuilding of the sched domains, which should only be done
1549		 * once the energy model is properly initialized for the policy
1550		 * first.
1551		 *
1552		 * Also, this should be called before the policy is registered
1553		 * with cooling framework.
1554		 */
1555		if (cpufreq_driver->register_em)
1556			cpufreq_driver->register_em(policy);
1557	}
1558
1559	ret = cpufreq_init_policy(policy);
1560	if (ret) {
1561		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1562		       __func__, cpu, ret);
 
 
1563		goto out_destroy_policy;
1564	}
1565
1566	up_write(&policy->rwsem);
1567
1568	kobject_uevent(&policy->kobj, KOBJ_ADD);
1569
1570	/* Callback for handling stuff after policy is ready */
1571	if (cpufreq_driver->ready)
1572		cpufreq_driver->ready(policy);
1573
1574	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1575		policy->cdev = of_cpufreq_cooling_register(policy);
1576
1577	pr_debug("initialization complete\n");
1578
1579	return 0;
1580
1581out_destroy_policy:
1582	for_each_cpu(j, policy->real_cpus)
1583		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1584
1585out_offline_policy:
1586	if (cpufreq_driver->offline)
1587		cpufreq_driver->offline(policy);
1588
1589out_exit_policy:
1590	if (cpufreq_driver->exit)
1591		cpufreq_driver->exit(policy);
1592
1593out_free_policy:
1594	cpumask_clear(policy->cpus);
1595	up_write(&policy->rwsem);
1596
1597	cpufreq_policy_free(policy);
1598	return ret;
1599}
1600
1601/**
1602 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1603 * @dev: CPU device.
1604 * @sif: Subsystem interface structure pointer (not used)
1605 */
1606static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1607{
1608	struct cpufreq_policy *policy;
1609	unsigned cpu = dev->id;
1610	int ret;
1611
1612	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1613
1614	if (cpu_online(cpu)) {
1615		ret = cpufreq_online(cpu);
1616		if (ret)
1617			return ret;
1618	}
1619
1620	/* Create sysfs link on CPU registration */
1621	policy = per_cpu(cpufreq_cpu_data, cpu);
1622	if (policy)
1623		add_cpu_dev_symlink(policy, cpu, dev);
1624
1625	return 0;
1626}
1627
1628static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1629{
 
1630	int ret;
1631
 
 
 
 
 
 
 
 
 
1632	if (has_target())
1633		cpufreq_stop_governor(policy);
1634
1635	cpumask_clear_cpu(cpu, policy->cpus);
1636
1637	if (!policy_is_inactive(policy)) {
1638		/* Nominate a new CPU if necessary. */
1639		if (cpu == policy->cpu)
1640			policy->cpu = cpumask_any(policy->cpus);
 
 
 
 
 
 
1641
1642		/* Start the governor again for the active policy. */
 
1643		if (has_target()) {
1644			ret = cpufreq_start_governor(policy);
1645			if (ret)
1646				pr_err("%s: Failed to start governor\n", __func__);
1647		}
1648
1649		return;
1650	}
1651
1652	if (has_target())
1653		strscpy(policy->last_governor, policy->governor->name,
1654			CPUFREQ_NAME_LEN);
1655	else
1656		policy->last_policy = policy->policy;
1657
1658	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1659		cpufreq_cooling_unregister(policy->cdev);
1660		policy->cdev = NULL;
1661	}
1662
1663	if (has_target())
1664		cpufreq_exit_governor(policy);
1665
1666	/*
1667	 * Perform the ->offline() during light-weight tear-down, as
1668	 * that allows fast recovery when the CPU comes back.
 
1669	 */
1670	if (cpufreq_driver->offline) {
1671		cpufreq_driver->offline(policy);
1672	} else if (cpufreq_driver->exit) {
1673		cpufreq_driver->exit(policy);
1674		policy->freq_table = NULL;
1675	}
1676}
1677
1678static int cpufreq_offline(unsigned int cpu)
1679{
1680	struct cpufreq_policy *policy;
1681
1682	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1683
1684	policy = cpufreq_cpu_get_raw(cpu);
1685	if (!policy) {
1686		pr_debug("%s: No cpu_data found\n", __func__);
1687		return 0;
1688	}
1689
1690	down_write(&policy->rwsem);
1691
1692	__cpufreq_offline(cpu, policy);
1693
 
1694	up_write(&policy->rwsem);
1695	return 0;
1696}
1697
1698/*
1699 * cpufreq_remove_dev - remove a CPU device
1700 *
1701 * Removes the cpufreq interface for a CPU device.
1702 */
1703static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1704{
1705	unsigned int cpu = dev->id;
1706	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1707
1708	if (!policy)
1709		return;
1710
1711	down_write(&policy->rwsem);
1712
1713	if (cpu_online(cpu))
1714		__cpufreq_offline(cpu, policy);
1715
1716	remove_cpu_dev_symlink(policy, cpu, dev);
1717
1718	if (!cpumask_empty(policy->real_cpus)) {
1719		up_write(&policy->rwsem);
1720		return;
1721	}
1722
1723	/* We did light-weight exit earlier, do full tear down now */
1724	if (cpufreq_driver->offline)
1725		cpufreq_driver->exit(policy);
1726
1727	up_write(&policy->rwsem);
1728
1729	cpufreq_policy_free(policy);
 
1730}
1731
1732/**
1733 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1734 * @policy: Policy managing CPUs.
1735 * @new_freq: New CPU frequency.
 
1736 *
1737 * Adjust to the current frequency first and clean up later by either calling
1738 * cpufreq_update_policy(), or scheduling handle_update().
1739 */
1740static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1741				unsigned int new_freq)
1742{
1743	struct cpufreq_freqs freqs;
1744
1745	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1746		 policy->cur, new_freq);
1747
1748	freqs.old = policy->cur;
1749	freqs.new = new_freq;
1750
1751	cpufreq_freq_transition_begin(policy, &freqs);
1752	cpufreq_freq_transition_end(policy, &freqs, 0);
1753}
1754
1755static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1756{
1757	unsigned int new_freq;
1758
1759	new_freq = cpufreq_driver->get(policy->cpu);
1760	if (!new_freq)
1761		return 0;
1762
1763	/*
1764	 * If fast frequency switching is used with the given policy, the check
1765	 * against policy->cur is pointless, so skip it in that case.
1766	 */
1767	if (policy->fast_switch_enabled || !has_target())
1768		return new_freq;
1769
1770	if (policy->cur != new_freq) {
1771		/*
1772		 * For some platforms, the frequency returned by hardware may be
1773		 * slightly different from what is provided in the frequency
1774		 * table, for example hardware may return 499 MHz instead of 500
1775		 * MHz. In such cases it is better to avoid getting into
1776		 * unnecessary frequency updates.
1777		 */
1778		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1779			return policy->cur;
1780
1781		cpufreq_out_of_sync(policy, new_freq);
1782		if (update)
1783			schedule_work(&policy->update);
1784	}
1785
1786	return new_freq;
1787}
1788
1789/**
1790 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1791 * @cpu: CPU number
1792 *
1793 * This is the last known freq, without actually getting it from the driver.
1794 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1795 */
1796unsigned int cpufreq_quick_get(unsigned int cpu)
1797{
1798	struct cpufreq_policy *policy;
1799	unsigned int ret_freq = 0;
1800	unsigned long flags;
1801
1802	read_lock_irqsave(&cpufreq_driver_lock, flags);
1803
1804	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1805		ret_freq = cpufreq_driver->get(cpu);
1806		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1807		return ret_freq;
1808	}
1809
1810	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1811
1812	policy = cpufreq_cpu_get(cpu);
1813	if (policy) {
1814		ret_freq = policy->cur;
1815		cpufreq_cpu_put(policy);
1816	}
1817
1818	return ret_freq;
1819}
1820EXPORT_SYMBOL(cpufreq_quick_get);
1821
1822/**
1823 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1824 * @cpu: CPU number
1825 *
1826 * Just return the max possible frequency for a given CPU.
1827 */
1828unsigned int cpufreq_quick_get_max(unsigned int cpu)
1829{
1830	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831	unsigned int ret_freq = 0;
1832
1833	if (policy) {
1834		ret_freq = policy->max;
1835		cpufreq_cpu_put(policy);
1836	}
1837
1838	return ret_freq;
1839}
1840EXPORT_SYMBOL(cpufreq_quick_get_max);
1841
1842/**
1843 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1844 * @cpu: CPU number
1845 *
1846 * The default return value is the max_freq field of cpuinfo.
1847 */
1848__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1849{
1850	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1851	unsigned int ret_freq = 0;
1852
1853	if (policy) {
1854		ret_freq = policy->cpuinfo.max_freq;
1855		cpufreq_cpu_put(policy);
1856	}
1857
1858	return ret_freq;
1859}
1860EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1861
1862static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1863{
1864	if (unlikely(policy_is_inactive(policy)))
1865		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1866
1867	return cpufreq_verify_current_freq(policy, true);
1868}
1869
1870/**
1871 * cpufreq_get - get the current CPU frequency (in kHz)
1872 * @cpu: CPU number
1873 *
1874 * Get the CPU current (static) CPU frequency
1875 */
1876unsigned int cpufreq_get(unsigned int cpu)
1877{
1878	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1879	unsigned int ret_freq = 0;
1880
1881	if (policy) {
1882		down_read(&policy->rwsem);
1883		if (cpufreq_driver->get)
 
1884			ret_freq = __cpufreq_get(policy);
 
1885		up_read(&policy->rwsem);
1886
1887		cpufreq_cpu_put(policy);
1888	}
1889
1890	return ret_freq;
1891}
1892EXPORT_SYMBOL(cpufreq_get);
1893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894static struct subsys_interface cpufreq_interface = {
1895	.name		= "cpufreq",
1896	.subsys		= &cpu_subsys,
1897	.add_dev	= cpufreq_add_dev,
1898	.remove_dev	= cpufreq_remove_dev,
1899};
1900
1901/*
1902 * In case platform wants some specific frequency to be configured
1903 * during suspend..
1904 */
1905int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1906{
1907	int ret;
1908
1909	if (!policy->suspend_freq) {
1910		pr_debug("%s: suspend_freq not defined\n", __func__);
1911		return 0;
1912	}
1913
1914	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1915			policy->suspend_freq);
1916
1917	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1918			CPUFREQ_RELATION_H);
1919	if (ret)
1920		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1921				__func__, policy->suspend_freq, ret);
1922
1923	return ret;
1924}
1925EXPORT_SYMBOL(cpufreq_generic_suspend);
1926
1927/**
1928 * cpufreq_suspend() - Suspend CPUFreq governors.
1929 *
1930 * Called during system wide Suspend/Hibernate cycles for suspending governors
1931 * as some platforms can't change frequency after this point in suspend cycle.
1932 * Because some of the devices (like: i2c, regulators, etc) they use for
1933 * changing frequency are suspended quickly after this point.
1934 */
1935void cpufreq_suspend(void)
1936{
1937	struct cpufreq_policy *policy;
1938
1939	if (!cpufreq_driver)
1940		return;
1941
1942	if (!has_target() && !cpufreq_driver->suspend)
1943		goto suspend;
1944
1945	pr_debug("%s: Suspending Governors\n", __func__);
1946
1947	for_each_active_policy(policy) {
1948		if (has_target()) {
1949			down_write(&policy->rwsem);
1950			cpufreq_stop_governor(policy);
1951			up_write(&policy->rwsem);
1952		}
1953
1954		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1955			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1956				cpufreq_driver->name);
1957	}
1958
1959suspend:
1960	cpufreq_suspended = true;
1961}
1962
1963/**
1964 * cpufreq_resume() - Resume CPUFreq governors.
1965 *
1966 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1967 * are suspended with cpufreq_suspend().
1968 */
1969void cpufreq_resume(void)
1970{
1971	struct cpufreq_policy *policy;
1972	int ret;
1973
1974	if (!cpufreq_driver)
1975		return;
1976
1977	if (unlikely(!cpufreq_suspended))
1978		return;
1979
1980	cpufreq_suspended = false;
1981
1982	if (!has_target() && !cpufreq_driver->resume)
1983		return;
1984
1985	pr_debug("%s: Resuming Governors\n", __func__);
1986
1987	for_each_active_policy(policy) {
1988		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1989			pr_err("%s: Failed to resume driver: %s\n", __func__,
1990				cpufreq_driver->name);
1991		} else if (has_target()) {
1992			down_write(&policy->rwsem);
1993			ret = cpufreq_start_governor(policy);
1994			up_write(&policy->rwsem);
1995
1996			if (ret)
1997				pr_err("%s: Failed to start governor for CPU%u's policy\n",
1998				       __func__, policy->cpu);
1999		}
2000	}
2001}
2002
2003/**
2004 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2005 * @flags: Flags to test against the current cpufreq driver's flags.
2006 *
2007 * Assumes that the driver is there, so callers must ensure that this is the
2008 * case.
2009 */
2010bool cpufreq_driver_test_flags(u16 flags)
2011{
2012	return !!(cpufreq_driver->flags & flags);
2013}
2014
2015/**
2016 * cpufreq_get_current_driver - Return the current driver's name.
2017 *
2018 * Return the name string of the currently registered cpufreq driver or NULL if
2019 * none.
2020 */
2021const char *cpufreq_get_current_driver(void)
2022{
2023	if (cpufreq_driver)
2024		return cpufreq_driver->name;
2025
2026	return NULL;
2027}
2028EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2029
2030/**
2031 * cpufreq_get_driver_data - Return current driver data.
2032 *
2033 * Return the private data of the currently registered cpufreq driver, or NULL
2034 * if no cpufreq driver has been registered.
2035 */
2036void *cpufreq_get_driver_data(void)
2037{
2038	if (cpufreq_driver)
2039		return cpufreq_driver->driver_data;
2040
2041	return NULL;
2042}
2043EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2044
2045/*********************************************************************
2046 *                     NOTIFIER LISTS INTERFACE                      *
2047 *********************************************************************/
2048
2049/**
2050 * cpufreq_register_notifier - Register a notifier with cpufreq.
2051 * @nb: notifier function to register.
2052 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2053 *
2054 * Add a notifier to one of two lists: either a list of notifiers that run on
2055 * clock rate changes (once before and once after every transition), or a list
2056 * of notifiers that ron on cpufreq policy changes.
 
2057 *
2058 * This function may sleep and it has the same return values as
2059 * blocking_notifier_chain_register().
2060 */
2061int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2062{
2063	int ret;
2064
2065	if (cpufreq_disabled())
2066		return -EINVAL;
2067
 
 
2068	switch (list) {
2069	case CPUFREQ_TRANSITION_NOTIFIER:
2070		mutex_lock(&cpufreq_fast_switch_lock);
2071
2072		if (cpufreq_fast_switch_count > 0) {
2073			mutex_unlock(&cpufreq_fast_switch_lock);
2074			return -EBUSY;
2075		}
2076		ret = srcu_notifier_chain_register(
2077				&cpufreq_transition_notifier_list, nb);
2078		if (!ret)
2079			cpufreq_fast_switch_count--;
2080
2081		mutex_unlock(&cpufreq_fast_switch_lock);
2082		break;
2083	case CPUFREQ_POLICY_NOTIFIER:
2084		ret = blocking_notifier_chain_register(
2085				&cpufreq_policy_notifier_list, nb);
2086		break;
2087	default:
2088		ret = -EINVAL;
2089	}
2090
2091	return ret;
2092}
2093EXPORT_SYMBOL(cpufreq_register_notifier);
2094
2095/**
2096 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2097 * @nb: notifier block to be unregistered.
2098 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2099 *
2100 * Remove a notifier from one of the cpufreq notifier lists.
2101 *
2102 * This function may sleep and it has the same return values as
2103 * blocking_notifier_chain_unregister().
2104 */
2105int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2106{
2107	int ret;
2108
2109	if (cpufreq_disabled())
2110		return -EINVAL;
2111
2112	switch (list) {
2113	case CPUFREQ_TRANSITION_NOTIFIER:
2114		mutex_lock(&cpufreq_fast_switch_lock);
2115
2116		ret = srcu_notifier_chain_unregister(
2117				&cpufreq_transition_notifier_list, nb);
2118		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2119			cpufreq_fast_switch_count++;
2120
2121		mutex_unlock(&cpufreq_fast_switch_lock);
2122		break;
2123	case CPUFREQ_POLICY_NOTIFIER:
2124		ret = blocking_notifier_chain_unregister(
2125				&cpufreq_policy_notifier_list, nb);
2126		break;
2127	default:
2128		ret = -EINVAL;
2129	}
2130
2131	return ret;
2132}
2133EXPORT_SYMBOL(cpufreq_unregister_notifier);
2134
2135
2136/*********************************************************************
2137 *                              GOVERNORS                            *
2138 *********************************************************************/
2139
2140/**
2141 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2142 * @policy: cpufreq policy to switch the frequency for.
2143 * @target_freq: New frequency to set (may be approximate).
2144 *
2145 * Carry out a fast frequency switch without sleeping.
2146 *
2147 * The driver's ->fast_switch() callback invoked by this function must be
2148 * suitable for being called from within RCU-sched read-side critical sections
2149 * and it is expected to select the minimum available frequency greater than or
2150 * equal to @target_freq (CPUFREQ_RELATION_L).
2151 *
2152 * This function must not be called if policy->fast_switch_enabled is unset.
2153 *
2154 * Governors calling this function must guarantee that it will never be invoked
2155 * twice in parallel for the same policy and that it will never be called in
2156 * parallel with either ->target() or ->target_index() for the same policy.
2157 *
2158 * Returns the actual frequency set for the CPU.
2159 *
2160 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2161 * error condition, the hardware configuration must be preserved.
2162 */
2163unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2164					unsigned int target_freq)
2165{
2166	unsigned int freq;
2167	int cpu;
2168
2169	target_freq = clamp_val(target_freq, policy->min, policy->max);
2170	freq = cpufreq_driver->fast_switch(policy, target_freq);
2171
2172	if (!freq)
2173		return 0;
2174
2175	policy->cur = freq;
2176	arch_set_freq_scale(policy->related_cpus, freq,
2177			    arch_scale_freq_ref(policy->cpu));
2178	cpufreq_stats_record_transition(policy, freq);
2179
2180	if (trace_cpu_frequency_enabled()) {
2181		for_each_cpu(cpu, policy->cpus)
2182			trace_cpu_frequency(freq, cpu);
2183	}
2184
2185	return freq;
2186}
2187EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2188
2189/**
2190 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2191 * @cpu: Target CPU.
2192 * @min_perf: Minimum (required) performance level (units of @capacity).
2193 * @target_perf: Target (desired) performance level (units of @capacity).
2194 * @capacity: Capacity of the target CPU.
2195 *
2196 * Carry out a fast performance level switch of @cpu without sleeping.
2197 *
2198 * The driver's ->adjust_perf() callback invoked by this function must be
2199 * suitable for being called from within RCU-sched read-side critical sections
2200 * and it is expected to select a suitable performance level equal to or above
2201 * @min_perf and preferably equal to or below @target_perf.
2202 *
2203 * This function must not be called if policy->fast_switch_enabled is unset.
2204 *
2205 * Governors calling this function must guarantee that it will never be invoked
2206 * twice in parallel for the same CPU and that it will never be called in
2207 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2208 * the same CPU.
2209 */
2210void cpufreq_driver_adjust_perf(unsigned int cpu,
2211				 unsigned long min_perf,
2212				 unsigned long target_perf,
2213				 unsigned long capacity)
2214{
2215	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2216}
2217
2218/**
2219 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2220 *
2221 * Return 'true' if the ->adjust_perf callback is present for the
2222 * current driver or 'false' otherwise.
2223 */
2224bool cpufreq_driver_has_adjust_perf(void)
2225{
2226	return !!cpufreq_driver->adjust_perf;
2227}
2228
2229/* Must set freqs->new to intermediate frequency */
2230static int __target_intermediate(struct cpufreq_policy *policy,
2231				 struct cpufreq_freqs *freqs, int index)
2232{
2233	int ret;
2234
2235	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2236
2237	/* We don't need to switch to intermediate freq */
2238	if (!freqs->new)
2239		return 0;
2240
2241	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2242		 __func__, policy->cpu, freqs->old, freqs->new);
2243
2244	cpufreq_freq_transition_begin(policy, freqs);
2245	ret = cpufreq_driver->target_intermediate(policy, index);
2246	cpufreq_freq_transition_end(policy, freqs, ret);
2247
2248	if (ret)
2249		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2250		       __func__, ret);
2251
2252	return ret;
2253}
2254
2255static int __target_index(struct cpufreq_policy *policy, int index)
2256{
2257	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2258	unsigned int restore_freq, intermediate_freq = 0;
2259	unsigned int newfreq = policy->freq_table[index].frequency;
2260	int retval = -EINVAL;
2261	bool notify;
2262
2263	if (newfreq == policy->cur)
2264		return 0;
2265
2266	/* Save last value to restore later on errors */
2267	restore_freq = policy->cur;
2268
2269	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2270	if (notify) {
2271		/* Handle switching to intermediate frequency */
2272		if (cpufreq_driver->get_intermediate) {
2273			retval = __target_intermediate(policy, &freqs, index);
2274			if (retval)
2275				return retval;
2276
2277			intermediate_freq = freqs.new;
2278			/* Set old freq to intermediate */
2279			if (intermediate_freq)
2280				freqs.old = freqs.new;
2281		}
2282
2283		freqs.new = newfreq;
2284		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2285			 __func__, policy->cpu, freqs.old, freqs.new);
2286
2287		cpufreq_freq_transition_begin(policy, &freqs);
2288	}
2289
2290	retval = cpufreq_driver->target_index(policy, index);
2291	if (retval)
2292		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2293		       retval);
2294
2295	if (notify) {
2296		cpufreq_freq_transition_end(policy, &freqs, retval);
2297
2298		/*
2299		 * Failed after setting to intermediate freq? Driver should have
2300		 * reverted back to initial frequency and so should we. Check
2301		 * here for intermediate_freq instead of get_intermediate, in
2302		 * case we haven't switched to intermediate freq at all.
2303		 */
2304		if (unlikely(retval && intermediate_freq)) {
2305			freqs.old = intermediate_freq;
2306			freqs.new = restore_freq;
2307			cpufreq_freq_transition_begin(policy, &freqs);
2308			cpufreq_freq_transition_end(policy, &freqs, 0);
2309		}
2310	}
2311
2312	return retval;
2313}
2314
2315int __cpufreq_driver_target(struct cpufreq_policy *policy,
2316			    unsigned int target_freq,
2317			    unsigned int relation)
2318{
2319	unsigned int old_target_freq = target_freq;
 
2320
2321	if (cpufreq_disabled())
2322		return -ENODEV;
2323
2324	target_freq = __resolve_freq(policy, target_freq, relation);
 
2325
2326	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2327		 policy->cpu, target_freq, relation, old_target_freq);
2328
2329	/*
2330	 * This might look like a redundant call as we are checking it again
2331	 * after finding index. But it is left intentionally for cases where
2332	 * exactly same freq is called again and so we can save on few function
2333	 * calls.
2334	 */
2335	if (target_freq == policy->cur &&
2336	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2337		return 0;
2338
2339	if (cpufreq_driver->target) {
2340		/*
2341		 * If the driver hasn't setup a single inefficient frequency,
2342		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2343		 */
2344		if (!policy->efficiencies_available)
2345			relation &= ~CPUFREQ_RELATION_E;
2346
 
2347		return cpufreq_driver->target(policy, target_freq, relation);
2348	}
2349
2350	if (!cpufreq_driver->target_index)
2351		return -EINVAL;
2352
2353	return __target_index(policy, policy->cached_resolved_idx);
 
 
2354}
2355EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2356
2357int cpufreq_driver_target(struct cpufreq_policy *policy,
2358			  unsigned int target_freq,
2359			  unsigned int relation)
2360{
2361	int ret;
2362
2363	down_write(&policy->rwsem);
2364
2365	ret = __cpufreq_driver_target(policy, target_freq, relation);
2366
2367	up_write(&policy->rwsem);
2368
2369	return ret;
2370}
2371EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2372
2373__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2374{
2375	return NULL;
2376}
2377
2378static int cpufreq_init_governor(struct cpufreq_policy *policy)
2379{
2380	int ret;
2381
2382	/* Don't start any governor operations if we are entering suspend */
2383	if (cpufreq_suspended)
2384		return 0;
2385	/*
2386	 * Governor might not be initiated here if ACPI _PPC changed
2387	 * notification happened, so check it.
2388	 */
2389	if (!policy->governor)
2390		return -EINVAL;
2391
2392	/* Platform doesn't want dynamic frequency switching ? */
2393	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2394	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2395		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2396
2397		if (gov) {
2398			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2399				policy->governor->name, gov->name);
2400			policy->governor = gov;
2401		} else {
2402			return -EINVAL;
2403		}
2404	}
2405
2406	if (!try_module_get(policy->governor->owner))
2407		return -EINVAL;
2408
2409	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2410
2411	if (policy->governor->init) {
2412		ret = policy->governor->init(policy);
2413		if (ret) {
2414			module_put(policy->governor->owner);
2415			return ret;
2416		}
2417	}
2418
2419	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2420
2421	return 0;
2422}
2423
2424static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2425{
2426	if (cpufreq_suspended || !policy->governor)
2427		return;
2428
2429	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2430
2431	if (policy->governor->exit)
2432		policy->governor->exit(policy);
2433
2434	module_put(policy->governor->owner);
2435}
2436
2437int cpufreq_start_governor(struct cpufreq_policy *policy)
2438{
2439	int ret;
2440
2441	if (cpufreq_suspended)
2442		return 0;
2443
2444	if (!policy->governor)
2445		return -EINVAL;
2446
2447	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2448
2449	if (cpufreq_driver->get)
2450		cpufreq_verify_current_freq(policy, false);
2451
2452	if (policy->governor->start) {
2453		ret = policy->governor->start(policy);
2454		if (ret)
2455			return ret;
2456	}
2457
2458	if (policy->governor->limits)
2459		policy->governor->limits(policy);
2460
2461	return 0;
2462}
2463
2464void cpufreq_stop_governor(struct cpufreq_policy *policy)
2465{
2466	if (cpufreq_suspended || !policy->governor)
2467		return;
2468
2469	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2470
2471	if (policy->governor->stop)
2472		policy->governor->stop(policy);
2473}
2474
2475static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2476{
2477	if (cpufreq_suspended || !policy->governor)
2478		return;
2479
2480	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2481
2482	if (policy->governor->limits)
2483		policy->governor->limits(policy);
2484}
2485
2486int cpufreq_register_governor(struct cpufreq_governor *governor)
2487{
2488	int err;
2489
2490	if (!governor)
2491		return -EINVAL;
2492
2493	if (cpufreq_disabled())
2494		return -ENODEV;
2495
2496	mutex_lock(&cpufreq_governor_mutex);
2497
2498	err = -EBUSY;
2499	if (!find_governor(governor->name)) {
2500		err = 0;
2501		list_add(&governor->governor_list, &cpufreq_governor_list);
2502	}
2503
2504	mutex_unlock(&cpufreq_governor_mutex);
2505	return err;
2506}
2507EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2508
2509void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2510{
2511	struct cpufreq_policy *policy;
2512	unsigned long flags;
2513
2514	if (!governor)
2515		return;
2516
2517	if (cpufreq_disabled())
2518		return;
2519
2520	/* clear last_governor for all inactive policies */
2521	read_lock_irqsave(&cpufreq_driver_lock, flags);
2522	for_each_inactive_policy(policy) {
2523		if (!strcmp(policy->last_governor, governor->name)) {
2524			policy->governor = NULL;
2525			strcpy(policy->last_governor, "\0");
2526		}
2527	}
2528	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2529
2530	mutex_lock(&cpufreq_governor_mutex);
2531	list_del(&governor->governor_list);
2532	mutex_unlock(&cpufreq_governor_mutex);
2533}
2534EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2535
2536
2537/*********************************************************************
2538 *                          POLICY INTERFACE                         *
2539 *********************************************************************/
2540
2541/**
2542 * cpufreq_get_policy - get the current cpufreq_policy
2543 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2544 *	is written
2545 * @cpu: CPU to find the policy for
2546 *
2547 * Reads the current cpufreq policy.
2548 */
2549int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2550{
2551	struct cpufreq_policy *cpu_policy;
2552	if (!policy)
2553		return -EINVAL;
2554
2555	cpu_policy = cpufreq_cpu_get(cpu);
2556	if (!cpu_policy)
2557		return -EINVAL;
2558
2559	memcpy(policy, cpu_policy, sizeof(*policy));
2560
2561	cpufreq_cpu_put(cpu_policy);
2562	return 0;
2563}
2564EXPORT_SYMBOL(cpufreq_get_policy);
2565
2566/**
2567 * cpufreq_set_policy - Modify cpufreq policy parameters.
2568 * @policy: Policy object to modify.
2569 * @new_gov: Policy governor pointer.
2570 * @new_pol: Policy value (for drivers with built-in governors).
2571 *
2572 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2573 * limits to be set for the policy, update @policy with the verified limits
2574 * values and either invoke the driver's ->setpolicy() callback (if present) or
2575 * carry out a governor update for @policy.  That is, run the current governor's
2576 * ->limits() callback (if @new_gov points to the same object as the one in
2577 * @policy) or replace the governor for @policy with @new_gov.
2578 *
2579 * The cpuinfo part of @policy is not updated by this function.
2580 */
2581static int cpufreq_set_policy(struct cpufreq_policy *policy,
2582			      struct cpufreq_governor *new_gov,
2583			      unsigned int new_pol)
2584{
2585	struct cpufreq_policy_data new_data;
2586	struct cpufreq_governor *old_gov;
2587	int ret;
2588
2589	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2590	new_data.freq_table = policy->freq_table;
2591	new_data.cpu = policy->cpu;
2592	/*
2593	 * PM QoS framework collects all the requests from users and provide us
2594	 * the final aggregated value here.
2595	 */
2596	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2597	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2598
2599	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2600		 new_data.cpu, new_data.min, new_data.max);
 
 
2601
2602	/*
2603	 * Verify that the CPU speed can be set within these limits and make sure
2604	 * that min <= max.
2605	 */
2606	ret = cpufreq_driver->verify(&new_data);
 
 
 
 
2607	if (ret)
2608		return ret;
2609
 
 
 
 
2610	/*
2611	 * Resolve policy min/max to available frequencies. It ensures
2612	 * no frequency resolution will neither overshoot the requested maximum
2613	 * nor undershoot the requested minimum.
2614	 */
2615	policy->min = new_data.min;
2616	policy->max = new_data.max;
2617	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2618	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2619	trace_cpu_frequency_limits(policy);
 
 
 
 
 
2620
2621	policy->cached_target_freq = UINT_MAX;
2622
2623	pr_debug("new min and max freqs are %u - %u kHz\n",
2624		 policy->min, policy->max);
2625
2626	if (cpufreq_driver->setpolicy) {
2627		policy->policy = new_pol;
2628		pr_debug("setting range\n");
2629		return cpufreq_driver->setpolicy(policy);
2630	}
2631
2632	if (new_gov == policy->governor) {
2633		pr_debug("governor limits update\n");
2634		cpufreq_governor_limits(policy);
2635		return 0;
2636	}
2637
2638	pr_debug("governor switch\n");
2639
2640	/* save old, working values */
2641	old_gov = policy->governor;
2642	/* end old governor */
2643	if (old_gov) {
2644		cpufreq_stop_governor(policy);
2645		cpufreq_exit_governor(policy);
2646	}
2647
2648	/* start new governor */
2649	policy->governor = new_gov;
2650	ret = cpufreq_init_governor(policy);
2651	if (!ret) {
2652		ret = cpufreq_start_governor(policy);
2653		if (!ret) {
2654			pr_debug("governor change\n");
2655			return 0;
2656		}
2657		cpufreq_exit_governor(policy);
2658	}
2659
2660	/* new governor failed, so re-start old one */
2661	pr_debug("starting governor %s failed\n", policy->governor->name);
2662	if (old_gov) {
2663		policy->governor = old_gov;
2664		if (cpufreq_init_governor(policy))
2665			policy->governor = NULL;
2666		else
2667			cpufreq_start_governor(policy);
2668	}
2669
2670	return ret;
2671}
2672
2673/**
2674 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2675 * @cpu: CPU to re-evaluate the policy for.
2676 *
2677 * Update the current frequency for the cpufreq policy of @cpu and use
2678 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2679 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2680 * for the policy in question, among other things.
2681 */
2682void cpufreq_update_policy(unsigned int cpu)
2683{
2684	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
 
2685
2686	if (!policy)
2687		return;
2688
 
 
 
 
 
 
 
 
 
 
2689	/*
2690	 * BIOS might change freq behind our back
2691	 * -> ask driver for current freq and notify governors about a change
2692	 */
2693	if (cpufreq_driver->get && has_target() &&
2694	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2695		goto unlock;
 
 
 
 
 
2696
2697	refresh_frequency_limits(policy);
2698
2699unlock:
2700	cpufreq_cpu_release(policy);
2701}
2702EXPORT_SYMBOL(cpufreq_update_policy);
2703
2704/**
2705 * cpufreq_update_limits - Update policy limits for a given CPU.
2706 * @cpu: CPU to update the policy limits for.
2707 *
2708 * Invoke the driver's ->update_limits callback if present or call
2709 * cpufreq_update_policy() for @cpu.
2710 */
2711void cpufreq_update_limits(unsigned int cpu)
2712{
2713	if (cpufreq_driver->update_limits)
2714		cpufreq_driver->update_limits(cpu);
2715	else
2716		cpufreq_update_policy(cpu);
2717}
2718EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2719
2720/*********************************************************************
2721 *               BOOST						     *
2722 *********************************************************************/
2723static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2724{
2725	int ret;
 
2726
2727	if (!policy->freq_table)
2728		return -ENXIO;
 
2729
2730	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2731	if (ret) {
2732		pr_err("%s: Policy frequency update failed\n", __func__);
2733		return ret;
2734	}
 
 
2735
2736	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2737	if (ret < 0)
2738		return ret;
 
 
2739
2740	return 0;
2741}
2742
2743int cpufreq_boost_trigger_state(int state)
2744{
2745	struct cpufreq_policy *policy;
2746	unsigned long flags;
2747	int ret = 0;
2748
2749	if (cpufreq_driver->boost_enabled == state)
2750		return 0;
2751
2752	write_lock_irqsave(&cpufreq_driver_lock, flags);
2753	cpufreq_driver->boost_enabled = state;
2754	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755
2756	cpus_read_lock();
2757	for_each_active_policy(policy) {
2758		ret = cpufreq_driver->set_boost(policy, state);
2759		if (ret)
2760			goto err_reset_state;
2761
2762		policy->boost_enabled = state;
 
2763	}
2764	cpus_read_unlock();
2765
2766	return 0;
2767
2768err_reset_state:
2769	cpus_read_unlock();
2770
2771	write_lock_irqsave(&cpufreq_driver_lock, flags);
2772	cpufreq_driver->boost_enabled = !state;
2773	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2774
2775	pr_err("%s: Cannot %s BOOST\n",
2776	       __func__, state ? "enable" : "disable");
2777
2778	return ret;
2779}
2780
2781static bool cpufreq_boost_supported(void)
2782{
2783	return cpufreq_driver->set_boost;
2784}
2785
2786static int create_boost_sysfs_file(void)
2787{
2788	int ret;
2789
2790	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2791	if (ret)
2792		pr_err("%s: cannot register global BOOST sysfs file\n",
2793		       __func__);
2794
2795	return ret;
2796}
2797
2798static void remove_boost_sysfs_file(void)
2799{
2800	if (cpufreq_boost_supported())
2801		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2802}
2803
2804int cpufreq_enable_boost_support(void)
2805{
2806	if (!cpufreq_driver)
2807		return -EINVAL;
2808
2809	if (cpufreq_boost_supported())
2810		return 0;
2811
2812	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2813
2814	/* This will get removed on driver unregister */
2815	return create_boost_sysfs_file();
2816}
2817EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2818
2819int cpufreq_boost_enabled(void)
2820{
2821	return cpufreq_driver->boost_enabled;
2822}
2823EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2824
2825/*********************************************************************
2826 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2827 *********************************************************************/
2828static enum cpuhp_state hp_online;
2829
2830static int cpuhp_cpufreq_online(unsigned int cpu)
2831{
2832	cpufreq_online(cpu);
2833
2834	return 0;
2835}
2836
2837static int cpuhp_cpufreq_offline(unsigned int cpu)
2838{
2839	cpufreq_offline(cpu);
2840
2841	return 0;
2842}
2843
2844/**
2845 * cpufreq_register_driver - register a CPU Frequency driver
2846 * @driver_data: A struct cpufreq_driver containing the values#
2847 * submitted by the CPU Frequency driver.
2848 *
2849 * Registers a CPU Frequency driver to this core code. This code
2850 * returns zero on success, -EEXIST when another driver got here first
2851 * (and isn't unregistered in the meantime).
2852 *
2853 */
2854int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2855{
2856	unsigned long flags;
2857	int ret;
2858
2859	if (cpufreq_disabled())
2860		return -ENODEV;
2861
2862	/*
2863	 * The cpufreq core depends heavily on the availability of device
2864	 * structure, make sure they are available before proceeding further.
2865	 */
2866	if (!get_cpu_device(0))
2867		return -EPROBE_DEFER;
2868
2869	if (!driver_data || !driver_data->verify || !driver_data->init ||
2870	    !(driver_data->setpolicy || driver_data->target_index ||
2871		    driver_data->target) ||
2872	     (driver_data->setpolicy && (driver_data->target_index ||
2873		    driver_data->target)) ||
2874	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2875	     (!driver_data->online != !driver_data->offline) ||
2876		 (driver_data->adjust_perf && !driver_data->fast_switch))
2877		return -EINVAL;
2878
2879	pr_debug("trying to register driver %s\n", driver_data->name);
2880
2881	/* Protect against concurrent CPU online/offline. */
2882	cpus_read_lock();
2883
2884	write_lock_irqsave(&cpufreq_driver_lock, flags);
2885	if (cpufreq_driver) {
2886		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2887		ret = -EEXIST;
2888		goto out;
2889	}
2890	cpufreq_driver = driver_data;
2891	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2892
2893	/*
2894	 * Mark support for the scheduler's frequency invariance engine for
2895	 * drivers that implement target(), target_index() or fast_switch().
2896	 */
2897	if (!cpufreq_driver->setpolicy) {
2898		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2899		pr_debug("supports frequency invariance");
2900	}
2901
2902	if (driver_data->setpolicy)
2903		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2904
2905	if (cpufreq_boost_supported()) {
2906		ret = create_boost_sysfs_file();
2907		if (ret)
2908			goto err_null_driver;
2909	}
2910
2911	ret = subsys_interface_register(&cpufreq_interface);
2912	if (ret)
2913		goto err_boost_unreg;
2914
2915	if (unlikely(list_empty(&cpufreq_policy_list))) {
 
2916		/* if all ->init() calls failed, unregister */
2917		ret = -ENODEV;
2918		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2919			 driver_data->name);
2920		goto err_if_unreg;
2921	}
2922
2923	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2924						   "cpufreq:online",
2925						   cpuhp_cpufreq_online,
2926						   cpuhp_cpufreq_offline);
2927	if (ret < 0)
2928		goto err_if_unreg;
2929	hp_online = ret;
2930	ret = 0;
2931
2932	pr_debug("driver %s up and running\n", driver_data->name);
2933	goto out;
2934
2935err_if_unreg:
2936	subsys_interface_unregister(&cpufreq_interface);
2937err_boost_unreg:
2938	remove_boost_sysfs_file();
2939err_null_driver:
2940	write_lock_irqsave(&cpufreq_driver_lock, flags);
2941	cpufreq_driver = NULL;
2942	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2943out:
2944	cpus_read_unlock();
2945	return ret;
2946}
2947EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2948
2949/*
2950 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2951 *
2952 * Unregister the current CPUFreq driver. Only call this if you have
2953 * the right to do so, i.e. if you have succeeded in initialising before!
2954 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2955 * currently not initialised.
2956 */
2957void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2958{
2959	unsigned long flags;
2960
2961	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2962		return;
2963
2964	pr_debug("unregistering driver %s\n", driver->name);
2965
2966	/* Protect against concurrent cpu hotplug */
2967	cpus_read_lock();
2968	subsys_interface_unregister(&cpufreq_interface);
2969	remove_boost_sysfs_file();
2970	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2971	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2972
2973	write_lock_irqsave(&cpufreq_driver_lock, flags);
2974
2975	cpufreq_driver = NULL;
2976
2977	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2978	cpus_read_unlock();
 
 
2979}
2980EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2981
 
 
 
 
 
 
 
 
 
 
 
2982static int __init cpufreq_core_init(void)
2983{
2984	struct cpufreq_governor *gov = cpufreq_default_governor();
2985	struct device *dev_root;
2986
2987	if (cpufreq_disabled())
2988		return -ENODEV;
2989
2990	dev_root = bus_get_dev_root(&cpu_subsys);
2991	if (dev_root) {
2992		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
2993		put_device(dev_root);
2994	}
2995	BUG_ON(!cpufreq_global_kobject);
2996
2997	if (!strlen(default_governor))
2998		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2999
3000	return 0;
3001}
3002module_param(off, int, 0444);
3003module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3004core_initcall(cpufreq_core_init);
v4.17
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   6 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   7 *
   8 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   9 *	Added handling for CPU hotplug
  10 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  11 *	Fix handling for CPU hotplug -- affected CPUs
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
 
  22#include <linux/delay.h>
  23#include <linux/device.h>
  24#include <linux/init.h>
  25#include <linux/kernel_stat.h>
  26#include <linux/module.h>
  27#include <linux/mutex.h>
 
  28#include <linux/slab.h>
  29#include <linux/suspend.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/tick.h>
 
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36static inline bool policy_is_inactive(struct cpufreq_policy *policy)
  37{
  38	return cpumask_empty(policy->cpus);
  39}
  40
  41/* Macros to iterate over CPU policies */
  42#define for_each_suitable_policy(__policy, __active)			 \
  43	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  44		if ((__active) == !policy_is_inactive(__policy))
  45
  46#define for_each_active_policy(__policy)		\
  47	for_each_suitable_policy(__policy, true)
  48#define for_each_inactive_policy(__policy)		\
  49	for_each_suitable_policy(__policy, false)
  50
  51#define for_each_policy(__policy)			\
  52	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
  53
  54/* Iterate over governors */
  55static LIST_HEAD(cpufreq_governor_list);
  56#define for_each_governor(__governor)				\
  57	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  58
  59/**
 
 
  60 * The "cpufreq driver" - the arch- or hardware-dependent low
  61 * level driver of CPUFreq support, and its spinlock. This lock
  62 * also protects the cpufreq_cpu_data array.
  63 */
  64static struct cpufreq_driver *cpufreq_driver;
  65static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  66static DEFINE_RWLOCK(cpufreq_driver_lock);
  67
 
 
 
 
 
 
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
 
 
 
 
 
  76/* internal prototypes */
  77static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  78static int cpufreq_init_governor(struct cpufreq_policy *policy);
  79static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  80static int cpufreq_start_governor(struct cpufreq_policy *policy);
  81static void cpufreq_stop_governor(struct cpufreq_policy *policy);
  82static void cpufreq_governor_limits(struct cpufreq_policy *policy);
 
 
 
 
  83
  84/**
  85 * Two notifier lists: the "policy" list is involved in the
  86 * validation process for a new CPU frequency policy; the
  87 * "transition" list for kernel code that needs to handle
  88 * changes to devices when the CPU clock speed changes.
  89 * The mutex locks both lists.
  90 */
  91static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  92static struct srcu_notifier_head cpufreq_transition_notifier_list;
  93
  94static bool init_cpufreq_transition_notifier_list_called;
  95static int __init init_cpufreq_transition_notifier_list(void)
  96{
  97	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
  98	init_cpufreq_transition_notifier_list_called = true;
  99	return 0;
 100}
 101pure_initcall(init_cpufreq_transition_notifier_list);
 102
 103static int off __read_mostly;
 104static int cpufreq_disabled(void)
 105{
 106	return off;
 107}
 108void disable_cpufreq(void)
 109{
 110	off = 1;
 111}
 112static DEFINE_MUTEX(cpufreq_governor_mutex);
 113
 114bool have_governor_per_policy(void)
 115{
 116	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 117}
 118EXPORT_SYMBOL_GPL(have_governor_per_policy);
 119
 
 
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 
 
 131	u64 idle_time;
 132	u64 cur_wall_time;
 133	u64 busy_time;
 134
 135	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 136
 137	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 138	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 139	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 140	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 141	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 142	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 
 
 143
 144	idle_time = cur_wall_time - busy_time;
 145	if (wall)
 146		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 147
 148	return div_u64(idle_time, NSEC_PER_USEC);
 149}
 150
 151u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 152{
 153	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 154
 155	if (idle_time == -1ULL)
 156		return get_cpu_idle_time_jiffy(cpu, wall);
 157	else if (!io_busy)
 158		idle_time += get_cpu_iowait_time_us(cpu, wall);
 159
 160	return idle_time;
 161}
 162EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 163
 164__weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
 165		unsigned long max_freq)
 166{
 167}
 168EXPORT_SYMBOL_GPL(arch_set_freq_scale);
 169
 170/*
 171 * This is a generic cpufreq init() routine which can be used by cpufreq
 172 * drivers of SMP systems. It will do following:
 173 * - validate & show freq table passed
 174 * - set policies transition latency
 175 * - policy->cpus with all possible CPUs
 176 */
 177int cpufreq_generic_init(struct cpufreq_policy *policy,
 178		struct cpufreq_frequency_table *table,
 179		unsigned int transition_latency)
 180{
 181	policy->freq_table = table;
 182	policy->cpuinfo.transition_latency = transition_latency;
 183
 184	/*
 185	 * The driver only supports the SMP configuration where all processors
 186	 * share the clock and voltage and clock.
 187	 */
 188	cpumask_setall(policy->cpus);
 189
 190	return 0;
 191}
 192EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 193
 194struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 195{
 196	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 197
 198	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 199}
 200EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 201
 202unsigned int cpufreq_generic_get(unsigned int cpu)
 203{
 204	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 205
 206	if (!policy || IS_ERR(policy->clk)) {
 207		pr_err("%s: No %s associated to cpu: %d\n",
 208		       __func__, policy ? "clk" : "policy", cpu);
 209		return 0;
 210	}
 211
 212	return clk_get_rate(policy->clk) / 1000;
 213}
 214EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 215
 216/**
 217 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
 
 218 *
 219 * @cpu: cpu to find policy for.
 
 
 220 *
 221 * This returns policy for 'cpu', returns NULL if it doesn't exist.
 222 * It also increments the kobject reference count to mark it busy and so would
 223 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
 224 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
 225 * freed as that depends on the kobj count.
 226 *
 227 * Return: A valid policy on success, otherwise NULL on failure.
 228 */
 229struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 230{
 231	struct cpufreq_policy *policy = NULL;
 232	unsigned long flags;
 233
 234	if (WARN_ON(cpu >= nr_cpu_ids))
 235		return NULL;
 236
 237	/* get the cpufreq driver */
 238	read_lock_irqsave(&cpufreq_driver_lock, flags);
 239
 240	if (cpufreq_driver) {
 241		/* get the CPU */
 242		policy = cpufreq_cpu_get_raw(cpu);
 243		if (policy)
 244			kobject_get(&policy->kobj);
 245	}
 246
 247	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 248
 249	return policy;
 250}
 251EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 252
 253/**
 254 * cpufreq_cpu_put: Decrements the usage count of a policy
 255 *
 256 * @policy: policy earlier returned by cpufreq_cpu_get().
 257 *
 258 * This decrements the kobject reference count incremented earlier by calling
 259 * cpufreq_cpu_get().
 260 */
 261void cpufreq_cpu_put(struct cpufreq_policy *policy)
 262{
 263	kobject_put(&policy->kobj);
 264}
 265EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267/*********************************************************************
 268 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 269 *********************************************************************/
 270
 271/**
 272 * adjust_jiffies - adjust the system "loops_per_jiffy"
 
 
 273 *
 274 * This function alters the system "loops_per_jiffy" for the clock
 275 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 276 * systems as each CPU might be scaled differently. So, use the arch
 277 * per-CPU loops_per_jiffy value wherever possible.
 278 */
 279static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 280{
 281#ifndef CONFIG_SMP
 282	static unsigned long l_p_j_ref;
 283	static unsigned int l_p_j_ref_freq;
 284
 285	if (ci->flags & CPUFREQ_CONST_LOOPS)
 286		return;
 287
 288	if (!l_p_j_ref_freq) {
 289		l_p_j_ref = loops_per_jiffy;
 290		l_p_j_ref_freq = ci->old;
 291		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 292			 l_p_j_ref, l_p_j_ref_freq);
 293	}
 294	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 295		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 296								ci->new);
 297		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 298			 loops_per_jiffy, ci->new);
 299	}
 300#endif
 301}
 302
 303static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
 304		struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 
 
 
 
 
 
 
 305{
 
 
 306	BUG_ON(irqs_disabled());
 307
 308	if (cpufreq_disabled())
 309		return;
 310
 
 311	freqs->flags = cpufreq_driver->flags;
 312	pr_debug("notification %u of frequency transition to %u kHz\n",
 313		 state, freqs->new);
 314
 315	switch (state) {
 316
 317	case CPUFREQ_PRECHANGE:
 318		/* detect if the driver reported a value as "old frequency"
 
 319		 * which is not equal to what the cpufreq core thinks is
 320		 * "old frequency".
 321		 */
 322		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 323			if ((policy) && (policy->cpu == freqs->cpu) &&
 324			    (policy->cur) && (policy->cur != freqs->old)) {
 325				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 326					 freqs->old, policy->cur);
 327				freqs->old = policy->cur;
 328			}
 329		}
 
 330		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 331				CPUFREQ_PRECHANGE, freqs);
 
 332		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 333		break;
 334
 335	case CPUFREQ_POSTCHANGE:
 336		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 337		pr_debug("FREQ: %lu - CPU: %lu\n",
 338			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
 339		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 
 
 
 
 340		cpufreq_stats_record_transition(policy, freqs->new);
 341		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 342				CPUFREQ_POSTCHANGE, freqs);
 343		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 344			policy->cur = freqs->new;
 345		break;
 346	}
 347}
 348
 349/**
 350 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 351 * on frequency transition.
 352 *
 353 * This function calls the transition notifiers and the "adjust_jiffies"
 354 * function. It is called twice on all CPU frequency changes that have
 355 * external effects.
 356 */
 357static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 358		struct cpufreq_freqs *freqs, unsigned int state)
 359{
 360	for_each_cpu(freqs->cpu, policy->cpus)
 361		__cpufreq_notify_transition(policy, freqs, state);
 362}
 363
 364/* Do post notifications when there are chances that transition has failed */
 365static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 366		struct cpufreq_freqs *freqs, int transition_failed)
 367{
 368	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 369	if (!transition_failed)
 370		return;
 371
 372	swap(freqs->old, freqs->new);
 373	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 374	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 375}
 376
 377void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 378		struct cpufreq_freqs *freqs)
 379{
 380
 381	/*
 382	 * Catch double invocations of _begin() which lead to self-deadlock.
 383	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 384	 * doesn't invoke _begin() on their behalf, and hence the chances of
 385	 * double invocations are very low. Moreover, there are scenarios
 386	 * where these checks can emit false-positive warnings in these
 387	 * drivers; so we avoid that by skipping them altogether.
 388	 */
 389	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 390				&& current == policy->transition_task);
 391
 392wait:
 393	wait_event(policy->transition_wait, !policy->transition_ongoing);
 394
 395	spin_lock(&policy->transition_lock);
 396
 397	if (unlikely(policy->transition_ongoing)) {
 398		spin_unlock(&policy->transition_lock);
 399		goto wait;
 400	}
 401
 402	policy->transition_ongoing = true;
 403	policy->transition_task = current;
 404
 405	spin_unlock(&policy->transition_lock);
 406
 407	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 408}
 409EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 410
 411void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 412		struct cpufreq_freqs *freqs, int transition_failed)
 413{
 414	if (unlikely(WARN_ON(!policy->transition_ongoing)))
 415		return;
 416
 417	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 418
 
 
 
 
 
 419	policy->transition_ongoing = false;
 420	policy->transition_task = NULL;
 
 421
 422	wake_up(&policy->transition_wait);
 423}
 424EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 425
 426/*
 427 * Fast frequency switching status count.  Positive means "enabled", negative
 428 * means "disabled" and 0 means "not decided yet".
 429 */
 430static int cpufreq_fast_switch_count;
 431static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 432
 433static void cpufreq_list_transition_notifiers(void)
 434{
 435	struct notifier_block *nb;
 436
 437	pr_info("Registered transition notifiers:\n");
 438
 439	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 440
 441	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 442		pr_info("%pF\n", nb->notifier_call);
 443
 444	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 445}
 446
 447/**
 448 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 449 * @policy: cpufreq policy to enable fast frequency switching for.
 450 *
 451 * Try to enable fast frequency switching for @policy.
 452 *
 453 * The attempt will fail if there is at least one transition notifier registered
 454 * at this point, as fast frequency switching is quite fundamentally at odds
 455 * with transition notifiers.  Thus if successful, it will make registration of
 456 * transition notifiers fail going forward.
 457 */
 458void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 459{
 460	lockdep_assert_held(&policy->rwsem);
 461
 462	if (!policy->fast_switch_possible)
 463		return;
 464
 465	mutex_lock(&cpufreq_fast_switch_lock);
 466	if (cpufreq_fast_switch_count >= 0) {
 467		cpufreq_fast_switch_count++;
 468		policy->fast_switch_enabled = true;
 469	} else {
 470		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 471			policy->cpu);
 472		cpufreq_list_transition_notifiers();
 473	}
 474	mutex_unlock(&cpufreq_fast_switch_lock);
 475}
 476EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 477
 478/**
 479 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 480 * @policy: cpufreq policy to disable fast frequency switching for.
 481 */
 482void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 483{
 484	mutex_lock(&cpufreq_fast_switch_lock);
 485	if (policy->fast_switch_enabled) {
 486		policy->fast_switch_enabled = false;
 487		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 488			cpufreq_fast_switch_count--;
 489	}
 490	mutex_unlock(&cpufreq_fast_switch_lock);
 491}
 492EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494/**
 495 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 496 * one.
 
 497 * @target_freq: target frequency to resolve.
 498 *
 499 * The target to driver frequency mapping is cached in the policy.
 500 *
 501 * Return: Lowest driver-supported frequency greater than or equal to the
 502 * given target_freq, subject to policy (min/max) and driver limitations.
 503 */
 504unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 505					 unsigned int target_freq)
 506{
 507	target_freq = clamp_val(target_freq, policy->min, policy->max);
 508	policy->cached_target_freq = target_freq;
 509
 510	if (cpufreq_driver->target_index) {
 511		int idx;
 512
 513		idx = cpufreq_frequency_table_target(policy, target_freq,
 514						     CPUFREQ_RELATION_L);
 515		policy->cached_resolved_idx = idx;
 516		return policy->freq_table[idx].frequency;
 517	}
 518
 519	if (cpufreq_driver->resolve_freq)
 520		return cpufreq_driver->resolve_freq(policy, target_freq);
 521
 522	return target_freq;
 523}
 524EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 525
 526unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 527{
 528	unsigned int latency;
 529
 530	if (policy->transition_delay_us)
 531		return policy->transition_delay_us;
 532
 533	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 534	if (latency) {
 535		/*
 536		 * For platforms that can change the frequency very fast (< 10
 537		 * us), the above formula gives a decent transition delay. But
 538		 * for platforms where transition_latency is in milliseconds, it
 539		 * ends up giving unrealistic values.
 540		 *
 541		 * Cap the default transition delay to 10 ms, which seems to be
 542		 * a reasonable amount of time after which we should reevaluate
 543		 * the frequency.
 544		 */
 545		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 546	}
 547
 548	return LATENCY_MULTIPLIER;
 549}
 550EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 551
 552/*********************************************************************
 553 *                          SYSFS INTERFACE                          *
 554 *********************************************************************/
 555static ssize_t show_boost(struct kobject *kobj,
 556				 struct attribute *attr, char *buf)
 557{
 558	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 559}
 560
 561static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
 562				  const char *buf, size_t count)
 563{
 564	int ret, enable;
 565
 566	ret = sscanf(buf, "%d", &enable);
 567	if (ret != 1 || enable < 0 || enable > 1)
 568		return -EINVAL;
 569
 570	if (cpufreq_boost_trigger_state(enable)) {
 571		pr_err("%s: Cannot %s BOOST!\n",
 572		       __func__, enable ? "enable" : "disable");
 573		return -EINVAL;
 574	}
 575
 576	pr_debug("%s: cpufreq BOOST %s\n",
 577		 __func__, enable ? "enabled" : "disabled");
 578
 579	return count;
 580}
 581define_one_global_rw(boost);
 582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583static struct cpufreq_governor *find_governor(const char *str_governor)
 584{
 585	struct cpufreq_governor *t;
 586
 587	for_each_governor(t)
 588		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 589			return t;
 590
 591	return NULL;
 592}
 593
 594/**
 595 * cpufreq_parse_governor - parse a governor string
 596 */
 597static int cpufreq_parse_governor(char *str_governor,
 598				  struct cpufreq_policy *policy)
 599{
 600	if (cpufreq_driver->setpolicy) {
 601		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 602			policy->policy = CPUFREQ_POLICY_PERFORMANCE;
 603			return 0;
 604		}
 
 605
 606		if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
 607			policy->policy = CPUFREQ_POLICY_POWERSAVE;
 608			return 0;
 609		}
 610	} else {
 611		struct cpufreq_governor *t;
 612
 613		mutex_lock(&cpufreq_governor_mutex);
 
 614
 615		t = find_governor(str_governor);
 616		if (!t) {
 617			int ret;
 618
 619			mutex_unlock(&cpufreq_governor_mutex);
 
 
 
 620
 621			ret = request_module("cpufreq_%s", str_governor);
 622			if (ret)
 623				return -EINVAL;
 624
 625			mutex_lock(&cpufreq_governor_mutex);
 
 626
 627			t = find_governor(str_governor);
 628		}
 629		if (t && !try_module_get(t->owner))
 630			t = NULL;
 
 
 
 631
 632		mutex_unlock(&cpufreq_governor_mutex);
 
 
 633
 634		if (t) {
 635			policy->governor = t;
 636			return 0;
 637		}
 638	}
 639
 640	return -EINVAL;
 641}
 642
 643/**
 644 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 645 * print out cpufreq information
 646 *
 647 * Write out information from cpufreq_driver->policy[cpu]; object must be
 648 * "unsigned int".
 649 */
 650
 651#define show_one(file_name, object)			\
 652static ssize_t show_##file_name				\
 653(struct cpufreq_policy *policy, char *buf)		\
 654{							\
 655	return sprintf(buf, "%u\n", policy->object);	\
 656}
 657
 658show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 659show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 660show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 661show_one(scaling_min_freq, min);
 662show_one(scaling_max_freq, max);
 663
 664__weak unsigned int arch_freq_get_on_cpu(int cpu)
 665{
 666	return 0;
 667}
 668
 669static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 670{
 671	ssize_t ret;
 672	unsigned int freq;
 673
 674	freq = arch_freq_get_on_cpu(policy->cpu);
 675	if (freq)
 676		ret = sprintf(buf, "%u\n", freq);
 677	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
 678			cpufreq_driver->get)
 679		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 680	else
 681		ret = sprintf(buf, "%u\n", policy->cur);
 682	return ret;
 683}
 684
 685static int cpufreq_set_policy(struct cpufreq_policy *policy,
 686				struct cpufreq_policy *new_policy);
 687
 688/**
 689 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 690 */
 691#define store_one(file_name, object)			\
 692static ssize_t store_##file_name					\
 693(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 694{									\
 695	int ret, temp;							\
 696	struct cpufreq_policy new_policy;				\
 697									\
 698	memcpy(&new_policy, policy, sizeof(*policy));			\
 699									\
 700	ret = sscanf(buf, "%u", &new_policy.object);			\
 701	if (ret != 1)							\
 702		return -EINVAL;						\
 703									\
 704	temp = new_policy.object;					\
 705	ret = cpufreq_set_policy(policy, &new_policy);		\
 706	if (!ret)							\
 707		policy->user_policy.object = temp;			\
 708									\
 709	return ret ? ret : count;					\
 
 710}
 711
 712store_one(scaling_min_freq, min);
 713store_one(scaling_max_freq, max);
 714
 715/**
 716 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 717 */
 718static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 719					char *buf)
 720{
 721	unsigned int cur_freq = __cpufreq_get(policy);
 722
 723	if (cur_freq)
 724		return sprintf(buf, "%u\n", cur_freq);
 725
 726	return sprintf(buf, "<unknown>\n");
 727}
 728
 729/**
 730 * show_scaling_governor - show the current policy for the specified CPU
 731 */
 732static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 733{
 734	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 735		return sprintf(buf, "powersave\n");
 736	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 737		return sprintf(buf, "performance\n");
 738	else if (policy->governor)
 739		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 740				policy->governor->name);
 741	return -EINVAL;
 742}
 743
 744/**
 745 * store_scaling_governor - store policy for the specified CPU
 746 */
 747static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 748					const char *buf, size_t count)
 749{
 
 750	int ret;
 751	char	str_governor[16];
 752	struct cpufreq_policy new_policy;
 753
 754	memcpy(&new_policy, policy, sizeof(*policy));
 755
 756	ret = sscanf(buf, "%15s", str_governor);
 757	if (ret != 1)
 758		return -EINVAL;
 759
 760	if (cpufreq_parse_governor(str_governor, &new_policy))
 761		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 762
 763	ret = cpufreq_set_policy(policy, &new_policy);
 
 764
 765	if (new_policy.governor)
 766		module_put(new_policy.governor->owner);
 767
 768	return ret ? ret : count;
 769}
 770
 771/**
 772 * show_scaling_driver - show the cpufreq driver currently loaded
 773 */
 774static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 775{
 776	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 777}
 778
 779/**
 780 * show_scaling_available_governors - show the available CPUfreq governors
 781 */
 782static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 783						char *buf)
 784{
 785	ssize_t i = 0;
 786	struct cpufreq_governor *t;
 787
 788	if (!has_target()) {
 789		i += sprintf(buf, "performance powersave");
 790		goto out;
 791	}
 792
 
 793	for_each_governor(t) {
 794		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 795		    - (CPUFREQ_NAME_LEN + 2)))
 796			goto out;
 797		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 798	}
 
 799out:
 800	i += sprintf(&buf[i], "\n");
 801	return i;
 802}
 803
 804ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 805{
 806	ssize_t i = 0;
 807	unsigned int cpu;
 808
 809	for_each_cpu(cpu, mask) {
 810		if (i)
 811			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 812		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 813		if (i >= (PAGE_SIZE - 5))
 814			break;
 815	}
 
 
 
 
 816	i += sprintf(&buf[i], "\n");
 817	return i;
 818}
 819EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 820
 821/**
 822 * show_related_cpus - show the CPUs affected by each transition even if
 823 * hw coordination is in use
 824 */
 825static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 826{
 827	return cpufreq_show_cpus(policy->related_cpus, buf);
 828}
 829
 830/**
 831 * show_affected_cpus - show the CPUs affected by each transition
 832 */
 833static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 834{
 835	return cpufreq_show_cpus(policy->cpus, buf);
 836}
 837
 838static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 839					const char *buf, size_t count)
 840{
 841	unsigned int freq = 0;
 842	unsigned int ret;
 843
 844	if (!policy->governor || !policy->governor->store_setspeed)
 845		return -EINVAL;
 846
 847	ret = sscanf(buf, "%u", &freq);
 848	if (ret != 1)
 849		return -EINVAL;
 850
 851	policy->governor->store_setspeed(policy, freq);
 852
 853	return count;
 854}
 855
 856static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 857{
 858	if (!policy->governor || !policy->governor->show_setspeed)
 859		return sprintf(buf, "<unsupported>\n");
 860
 861	return policy->governor->show_setspeed(policy, buf);
 862}
 863
 864/**
 865 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 866 */
 867static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 868{
 869	unsigned int limit;
 870	int ret;
 871	if (cpufreq_driver->bios_limit) {
 872		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 873		if (!ret)
 874			return sprintf(buf, "%u\n", limit);
 875	}
 876	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 877}
 878
 879cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 880cpufreq_freq_attr_ro(cpuinfo_min_freq);
 881cpufreq_freq_attr_ro(cpuinfo_max_freq);
 882cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 883cpufreq_freq_attr_ro(scaling_available_governors);
 884cpufreq_freq_attr_ro(scaling_driver);
 885cpufreq_freq_attr_ro(scaling_cur_freq);
 886cpufreq_freq_attr_ro(bios_limit);
 887cpufreq_freq_attr_ro(related_cpus);
 888cpufreq_freq_attr_ro(affected_cpus);
 889cpufreq_freq_attr_rw(scaling_min_freq);
 890cpufreq_freq_attr_rw(scaling_max_freq);
 891cpufreq_freq_attr_rw(scaling_governor);
 892cpufreq_freq_attr_rw(scaling_setspeed);
 893
 894static struct attribute *default_attrs[] = {
 895	&cpuinfo_min_freq.attr,
 896	&cpuinfo_max_freq.attr,
 897	&cpuinfo_transition_latency.attr,
 898	&scaling_min_freq.attr,
 899	&scaling_max_freq.attr,
 900	&affected_cpus.attr,
 901	&related_cpus.attr,
 902	&scaling_governor.attr,
 903	&scaling_driver.attr,
 904	&scaling_available_governors.attr,
 905	&scaling_setspeed.attr,
 906	NULL
 907};
 
 908
 909#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 910#define to_attr(a) container_of(a, struct freq_attr, attr)
 911
 912static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 913{
 914	struct cpufreq_policy *policy = to_policy(kobj);
 915	struct freq_attr *fattr = to_attr(attr);
 916	ssize_t ret;
 
 
 
 917
 918	down_read(&policy->rwsem);
 919	ret = fattr->show(policy, buf);
 
 920	up_read(&policy->rwsem);
 921
 922	return ret;
 923}
 924
 925static ssize_t store(struct kobject *kobj, struct attribute *attr,
 926		     const char *buf, size_t count)
 927{
 928	struct cpufreq_policy *policy = to_policy(kobj);
 929	struct freq_attr *fattr = to_attr(attr);
 930	ssize_t ret = -EINVAL;
 931
 932	cpus_read_lock();
 
 933
 934	if (cpu_online(policy->cpu)) {
 935		down_write(&policy->rwsem);
 936		ret = fattr->store(policy, buf, count);
 937		up_write(&policy->rwsem);
 938	}
 939
 940	cpus_read_unlock();
 941
 942	return ret;
 943}
 944
 945static void cpufreq_sysfs_release(struct kobject *kobj)
 946{
 947	struct cpufreq_policy *policy = to_policy(kobj);
 948	pr_debug("last reference is dropped\n");
 949	complete(&policy->kobj_unregister);
 950}
 951
 952static const struct sysfs_ops sysfs_ops = {
 953	.show	= show,
 954	.store	= store,
 955};
 956
 957static struct kobj_type ktype_cpufreq = {
 958	.sysfs_ops	= &sysfs_ops,
 959	.default_attrs	= default_attrs,
 960	.release	= cpufreq_sysfs_release,
 961};
 962
 963static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
 
 964{
 965	struct device *dev = get_cpu_device(cpu);
 966
 967	if (!dev)
 968		return;
 969
 970	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
 971		return;
 972
 973	dev_dbg(dev, "%s: Adding symlink\n", __func__);
 974	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
 975		dev_err(dev, "cpufreq symlink creation failed\n");
 976}
 977
 978static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
 979				   struct device *dev)
 980{
 981	dev_dbg(dev, "%s: Removing symlink\n", __func__);
 982	sysfs_remove_link(&dev->kobj, "cpufreq");
 
 983}
 984
 985static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 986{
 987	struct freq_attr **drv_attr;
 988	int ret = 0;
 989
 990	/* set up files for this cpu device */
 991	drv_attr = cpufreq_driver->attr;
 992	while (drv_attr && *drv_attr) {
 993		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 994		if (ret)
 995			return ret;
 996		drv_attr++;
 997	}
 998	if (cpufreq_driver->get) {
 999		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1000		if (ret)
1001			return ret;
1002	}
1003
1004	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1005	if (ret)
1006		return ret;
1007
1008	if (cpufreq_driver->bios_limit) {
1009		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1010		if (ret)
1011			return ret;
1012	}
1013
 
 
 
 
 
 
1014	return 0;
1015}
1016
1017__weak struct cpufreq_governor *cpufreq_default_governor(void)
1018{
1019	return NULL;
1020}
1021
1022static int cpufreq_init_policy(struct cpufreq_policy *policy)
1023{
1024	struct cpufreq_governor *gov = NULL;
1025	struct cpufreq_policy new_policy;
 
1026
1027	memcpy(&new_policy, policy, sizeof(*policy));
 
 
 
 
 
 
 
 
 
 
 
 
 
1028
1029	/* Update governor of new_policy to the governor used before hotplug */
1030	gov = find_governor(policy->last_governor);
1031	if (gov) {
1032		pr_debug("Restoring governor %s for cpu %d\n",
1033				policy->governor->name, policy->cpu);
1034	} else {
1035		gov = cpufreq_default_governor();
1036		if (!gov)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037			return -ENODATA;
1038	}
1039
1040	new_policy.governor = gov;
 
 
1041
1042	/* Use the default policy if there is no last_policy. */
1043	if (cpufreq_driver->setpolicy) {
1044		if (policy->last_policy)
1045			new_policy.policy = policy->last_policy;
1046		else
1047			cpufreq_parse_governor(gov->name, &new_policy);
1048	}
1049	/* set default policy */
1050	return cpufreq_set_policy(policy, &new_policy);
1051}
1052
1053static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1054{
1055	int ret = 0;
1056
1057	/* Has this CPU been taken care of already? */
1058	if (cpumask_test_cpu(cpu, policy->cpus))
1059		return 0;
1060
1061	down_write(&policy->rwsem);
1062	if (has_target())
1063		cpufreq_stop_governor(policy);
1064
1065	cpumask_set_cpu(cpu, policy->cpus);
1066
1067	if (has_target()) {
1068		ret = cpufreq_start_governor(policy);
1069		if (ret)
1070			pr_err("%s: Failed to start governor\n", __func__);
1071	}
1072	up_write(&policy->rwsem);
1073	return ret;
1074}
1075
 
 
 
 
 
 
 
 
 
 
1076static void handle_update(struct work_struct *work)
1077{
1078	struct cpufreq_policy *policy =
1079		container_of(work, struct cpufreq_policy, update);
1080	unsigned int cpu = policy->cpu;
1081	pr_debug("handle_update for cpu %u called\n", cpu);
1082	cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083}
1084
1085static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1086{
1087	struct cpufreq_policy *policy;
 
1088	int ret;
1089
 
 
 
1090	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1091	if (!policy)
1092		return NULL;
1093
1094	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1095		goto err_free_policy;
1096
1097	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1098		goto err_free_cpumask;
1099
1100	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1101		goto err_free_rcpumask;
1102
 
1103	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1104				   cpufreq_global_kobject, "policy%u", cpu);
1105	if (ret) {
1106		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
 
 
 
 
 
 
1107		goto err_free_real_cpus;
1108	}
1109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110	INIT_LIST_HEAD(&policy->policy_list);
1111	init_rwsem(&policy->rwsem);
1112	spin_lock_init(&policy->transition_lock);
1113	init_waitqueue_head(&policy->transition_wait);
1114	init_completion(&policy->kobj_unregister);
1115	INIT_WORK(&policy->update, handle_update);
1116
1117	policy->cpu = cpu;
1118	return policy;
1119
 
 
 
 
 
1120err_free_real_cpus:
1121	free_cpumask_var(policy->real_cpus);
1122err_free_rcpumask:
1123	free_cpumask_var(policy->related_cpus);
1124err_free_cpumask:
1125	free_cpumask_var(policy->cpus);
1126err_free_policy:
1127	kfree(policy);
1128
1129	return NULL;
1130}
1131
1132static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1133{
1134	struct kobject *kobj;
1135	struct completion *cmp;
1136
1137	down_write(&policy->rwsem);
1138	cpufreq_stats_free_table(policy);
1139	kobj = &policy->kobj;
1140	cmp = &policy->kobj_unregister;
1141	up_write(&policy->rwsem);
1142	kobject_put(kobj);
1143
1144	/*
1145	 * We need to make sure that the underlying kobj is
1146	 * actually not referenced anymore by anybody before we
1147	 * proceed with unloading.
1148	 */
1149	pr_debug("waiting for dropping of refcount\n");
1150	wait_for_completion(cmp);
1151	pr_debug("wait complete\n");
1152}
1153
1154static void cpufreq_policy_free(struct cpufreq_policy *policy)
1155{
1156	unsigned long flags;
1157	int cpu;
1158
1159	/* Remove policy from list */
1160	write_lock_irqsave(&cpufreq_driver_lock, flags);
1161	list_del(&policy->policy_list);
1162
1163	for_each_cpu(cpu, policy->related_cpus)
1164		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1165	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167	cpufreq_policy_put_kobj(policy);
1168	free_cpumask_var(policy->real_cpus);
1169	free_cpumask_var(policy->related_cpus);
1170	free_cpumask_var(policy->cpus);
1171	kfree(policy);
1172}
1173
1174static int cpufreq_online(unsigned int cpu)
1175{
1176	struct cpufreq_policy *policy;
1177	bool new_policy;
1178	unsigned long flags;
1179	unsigned int j;
1180	int ret;
1181
1182	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1183
1184	/* Check if this CPU already has a policy to manage it */
1185	policy = per_cpu(cpufreq_cpu_data, cpu);
1186	if (policy) {
1187		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1188		if (!policy_is_inactive(policy))
1189			return cpufreq_add_policy_cpu(policy, cpu);
1190
1191		/* This is the only online CPU for the policy.  Start over. */
1192		new_policy = false;
1193		down_write(&policy->rwsem);
1194		policy->cpu = cpu;
1195		policy->governor = NULL;
1196		up_write(&policy->rwsem);
1197	} else {
1198		new_policy = true;
1199		policy = cpufreq_policy_alloc(cpu);
1200		if (!policy)
1201			return -ENOMEM;
 
1202	}
1203
1204	cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
1205
1206	/* call driver. From then on the cpufreq must be able
1207	 * to accept all calls to ->verify and ->setpolicy for this CPU
1208	 */
1209	ret = cpufreq_driver->init(policy);
1210	if (ret) {
1211		pr_debug("initialization failed\n");
1212		goto out_free_policy;
1213	}
1214
1215	ret = cpufreq_table_validate_and_sort(policy);
1216	if (ret)
1217		goto out_exit_policy;
 
 
 
 
 
 
 
1218
1219	down_write(&policy->rwsem);
 
 
 
 
 
 
 
1220
1221	if (new_policy) {
1222		/* related_cpus should at least include policy->cpus. */
1223		cpumask_copy(policy->related_cpus, policy->cpus);
1224	}
1225
1226	/*
1227	 * affected cpus must always be the one, which are online. We aren't
1228	 * managing offline cpus here.
1229	 */
1230	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1231
1232	if (new_policy) {
1233		policy->user_policy.min = policy->min;
1234		policy->user_policy.max = policy->max;
1235
1236		for_each_cpu(j, policy->related_cpus) {
1237			per_cpu(cpufreq_cpu_data, j) = policy;
1238			add_cpu_dev_symlink(policy, j);
1239		}
1240	} else {
1241		policy->min = policy->user_policy.min;
1242		policy->max = policy->user_policy.max;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243	}
1244
1245	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1246		policy->cur = cpufreq_driver->get(policy->cpu);
1247		if (!policy->cur) {
 
1248			pr_err("%s: ->get() failed\n", __func__);
1249			goto out_destroy_policy;
1250		}
1251	}
1252
1253	/*
1254	 * Sometimes boot loaders set CPU frequency to a value outside of
1255	 * frequency table present with cpufreq core. In such cases CPU might be
1256	 * unstable if it has to run on that frequency for long duration of time
1257	 * and so its better to set it to a frequency which is specified in
1258	 * freq-table. This also makes cpufreq stats inconsistent as
1259	 * cpufreq-stats would fail to register because current frequency of CPU
1260	 * isn't found in freq-table.
1261	 *
1262	 * Because we don't want this change to effect boot process badly, we go
1263	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1264	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1265	 * is initialized to zero).
1266	 *
1267	 * We are passing target-freq as "policy->cur - 1" otherwise
1268	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1269	 * equal to target-freq.
1270	 */
1271	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1272	    && has_target()) {
 
 
1273		/* Are we running at unknown frequency ? */
1274		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1275		if (ret == -EINVAL) {
1276			/* Warn user and fix it */
1277			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1278				__func__, policy->cpu, policy->cur);
1279			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1280				CPUFREQ_RELATION_L);
1281
1282			/*
1283			 * Reaching here after boot in a few seconds may not
1284			 * mean that system will remain stable at "unknown"
1285			 * frequency for longer duration. Hence, a BUG_ON().
1286			 */
1287			BUG_ON(ret);
1288			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1289				__func__, policy->cpu, policy->cur);
1290		}
1291	}
1292
1293	if (new_policy) {
1294		ret = cpufreq_add_dev_interface(policy);
1295		if (ret)
1296			goto out_destroy_policy;
1297
1298		cpufreq_stats_create_table(policy);
1299
1300		write_lock_irqsave(&cpufreq_driver_lock, flags);
1301		list_add(&policy->policy_list, &cpufreq_policy_list);
1302		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1303	}
1304
1305	ret = cpufreq_init_policy(policy);
1306	if (ret) {
1307		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1308		       __func__, cpu, ret);
1309		/* cpufreq_policy_free() will notify based on this */
1310		new_policy = false;
1311		goto out_destroy_policy;
1312	}
1313
1314	up_write(&policy->rwsem);
1315
1316	kobject_uevent(&policy->kobj, KOBJ_ADD);
1317
1318	/* Callback for handling stuff after policy is ready */
1319	if (cpufreq_driver->ready)
1320		cpufreq_driver->ready(policy);
1321
 
 
 
1322	pr_debug("initialization complete\n");
1323
1324	return 0;
1325
1326out_destroy_policy:
1327	for_each_cpu(j, policy->real_cpus)
1328		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1329
1330	up_write(&policy->rwsem);
 
 
1331
1332out_exit_policy:
1333	if (cpufreq_driver->exit)
1334		cpufreq_driver->exit(policy);
1335
1336out_free_policy:
 
 
 
1337	cpufreq_policy_free(policy);
1338	return ret;
1339}
1340
1341/**
1342 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1343 * @dev: CPU device.
1344 * @sif: Subsystem interface structure pointer (not used)
1345 */
1346static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1347{
1348	struct cpufreq_policy *policy;
1349	unsigned cpu = dev->id;
1350	int ret;
1351
1352	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1353
1354	if (cpu_online(cpu)) {
1355		ret = cpufreq_online(cpu);
1356		if (ret)
1357			return ret;
1358	}
1359
1360	/* Create sysfs link on CPU registration */
1361	policy = per_cpu(cpufreq_cpu_data, cpu);
1362	if (policy)
1363		add_cpu_dev_symlink(policy, cpu);
1364
1365	return 0;
1366}
1367
1368static int cpufreq_offline(unsigned int cpu)
1369{
1370	struct cpufreq_policy *policy;
1371	int ret;
1372
1373	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1374
1375	policy = cpufreq_cpu_get_raw(cpu);
1376	if (!policy) {
1377		pr_debug("%s: No cpu_data found\n", __func__);
1378		return 0;
1379	}
1380
1381	down_write(&policy->rwsem);
1382	if (has_target())
1383		cpufreq_stop_governor(policy);
1384
1385	cpumask_clear_cpu(cpu, policy->cpus);
1386
1387	if (policy_is_inactive(policy)) {
1388		if (has_target())
1389			strncpy(policy->last_governor, policy->governor->name,
1390				CPUFREQ_NAME_LEN);
1391		else
1392			policy->last_policy = policy->policy;
1393	} else if (cpu == policy->cpu) {
1394		/* Nominate new CPU */
1395		policy->cpu = cpumask_any(policy->cpus);
1396	}
1397
1398	/* Start governor again for active policy */
1399	if (!policy_is_inactive(policy)) {
1400		if (has_target()) {
1401			ret = cpufreq_start_governor(policy);
1402			if (ret)
1403				pr_err("%s: Failed to start governor\n", __func__);
1404		}
1405
1406		goto unlock;
1407	}
1408
1409	if (cpufreq_driver->stop_cpu)
1410		cpufreq_driver->stop_cpu(policy);
 
 
 
 
 
 
 
 
1411
1412	if (has_target())
1413		cpufreq_exit_governor(policy);
1414
1415	/*
1416	 * Perform the ->exit() even during light-weight tear-down,
1417	 * since this is a core component, and is essential for the
1418	 * subsequent light-weight ->init() to succeed.
1419	 */
1420	if (cpufreq_driver->exit) {
 
 
1421		cpufreq_driver->exit(policy);
1422		policy->freq_table = NULL;
1423	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424
1425unlock:
1426	up_write(&policy->rwsem);
1427	return 0;
1428}
1429
1430/**
1431 * cpufreq_remove_dev - remove a CPU device
1432 *
1433 * Removes the cpufreq interface for a CPU device.
1434 */
1435static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1436{
1437	unsigned int cpu = dev->id;
1438	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1439
1440	if (!policy)
1441		return;
1442
 
 
1443	if (cpu_online(cpu))
1444		cpufreq_offline(cpu);
 
 
1445
1446	cpumask_clear_cpu(cpu, policy->real_cpus);
1447	remove_cpu_dev_symlink(policy, dev);
 
 
 
 
 
 
 
 
1448
1449	if (cpumask_empty(policy->real_cpus))
1450		cpufreq_policy_free(policy);
1451}
1452
1453/**
1454 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1455 *	in deep trouble.
1456 *	@policy: policy managing CPUs
1457 *	@new_freq: CPU frequency the CPU actually runs at
1458 *
1459 *	We adjust to current frequency first, and need to clean up later.
1460 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1461 */
1462static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1463				unsigned int new_freq)
1464{
1465	struct cpufreq_freqs freqs;
1466
1467	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1468		 policy->cur, new_freq);
1469
1470	freqs.old = policy->cur;
1471	freqs.new = new_freq;
1472
1473	cpufreq_freq_transition_begin(policy, &freqs);
1474	cpufreq_freq_transition_end(policy, &freqs, 0);
1475}
1476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477/**
1478 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1479 * @cpu: CPU number
1480 *
1481 * This is the last known freq, without actually getting it from the driver.
1482 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1483 */
1484unsigned int cpufreq_quick_get(unsigned int cpu)
1485{
1486	struct cpufreq_policy *policy;
1487	unsigned int ret_freq = 0;
1488	unsigned long flags;
1489
1490	read_lock_irqsave(&cpufreq_driver_lock, flags);
1491
1492	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1493		ret_freq = cpufreq_driver->get(cpu);
1494		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1495		return ret_freq;
1496	}
1497
1498	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1499
1500	policy = cpufreq_cpu_get(cpu);
1501	if (policy) {
1502		ret_freq = policy->cur;
1503		cpufreq_cpu_put(policy);
1504	}
1505
1506	return ret_freq;
1507}
1508EXPORT_SYMBOL(cpufreq_quick_get);
1509
1510/**
1511 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1512 * @cpu: CPU number
1513 *
1514 * Just return the max possible frequency for a given CPU.
1515 */
1516unsigned int cpufreq_quick_get_max(unsigned int cpu)
1517{
1518	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1519	unsigned int ret_freq = 0;
1520
1521	if (policy) {
1522		ret_freq = policy->max;
1523		cpufreq_cpu_put(policy);
1524	}
1525
1526	return ret_freq;
1527}
1528EXPORT_SYMBOL(cpufreq_quick_get_max);
1529
1530static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
 
 
 
 
 
 
1531{
 
1532	unsigned int ret_freq = 0;
1533
1534	if (!cpufreq_driver->get)
1535		return ret_freq;
 
 
1536
1537	ret_freq = cpufreq_driver->get(policy->cpu);
 
 
1538
1539	/*
1540	 * Updating inactive policies is invalid, so avoid doing that.  Also
1541	 * if fast frequency switching is used with the given policy, the check
1542	 * against policy->cur is pointless, so skip it in that case too.
1543	 */
1544	if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1545		return ret_freq;
1546
1547	if (ret_freq && policy->cur &&
1548		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1549		/* verify no discrepancy between actual and
1550					saved value exists */
1551		if (unlikely(ret_freq != policy->cur)) {
1552			cpufreq_out_of_sync(policy, ret_freq);
1553			schedule_work(&policy->update);
1554		}
1555	}
1556
1557	return ret_freq;
1558}
1559
1560/**
1561 * cpufreq_get - get the current CPU frequency (in kHz)
1562 * @cpu: CPU number
1563 *
1564 * Get the CPU current (static) CPU frequency
1565 */
1566unsigned int cpufreq_get(unsigned int cpu)
1567{
1568	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1569	unsigned int ret_freq = 0;
1570
1571	if (policy) {
1572		down_read(&policy->rwsem);
1573
1574		if (!policy_is_inactive(policy))
1575			ret_freq = __cpufreq_get(policy);
1576
1577		up_read(&policy->rwsem);
1578
1579		cpufreq_cpu_put(policy);
1580	}
1581
1582	return ret_freq;
1583}
1584EXPORT_SYMBOL(cpufreq_get);
1585
1586static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1587{
1588	unsigned int new_freq;
1589
1590	new_freq = cpufreq_driver->get(policy->cpu);
1591	if (!new_freq)
1592		return 0;
1593
1594	if (!policy->cur) {
1595		pr_debug("cpufreq: Driver did not initialize current freq\n");
1596		policy->cur = new_freq;
1597	} else if (policy->cur != new_freq && has_target()) {
1598		cpufreq_out_of_sync(policy, new_freq);
1599	}
1600
1601	return new_freq;
1602}
1603
1604static struct subsys_interface cpufreq_interface = {
1605	.name		= "cpufreq",
1606	.subsys		= &cpu_subsys,
1607	.add_dev	= cpufreq_add_dev,
1608	.remove_dev	= cpufreq_remove_dev,
1609};
1610
1611/*
1612 * In case platform wants some specific frequency to be configured
1613 * during suspend..
1614 */
1615int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1616{
1617	int ret;
1618
1619	if (!policy->suspend_freq) {
1620		pr_debug("%s: suspend_freq not defined\n", __func__);
1621		return 0;
1622	}
1623
1624	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1625			policy->suspend_freq);
1626
1627	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1628			CPUFREQ_RELATION_H);
1629	if (ret)
1630		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1631				__func__, policy->suspend_freq, ret);
1632
1633	return ret;
1634}
1635EXPORT_SYMBOL(cpufreq_generic_suspend);
1636
1637/**
1638 * cpufreq_suspend() - Suspend CPUFreq governors
1639 *
1640 * Called during system wide Suspend/Hibernate cycles for suspending governors
1641 * as some platforms can't change frequency after this point in suspend cycle.
1642 * Because some of the devices (like: i2c, regulators, etc) they use for
1643 * changing frequency are suspended quickly after this point.
1644 */
1645void cpufreq_suspend(void)
1646{
1647	struct cpufreq_policy *policy;
1648
1649	if (!cpufreq_driver)
1650		return;
1651
1652	if (!has_target() && !cpufreq_driver->suspend)
1653		goto suspend;
1654
1655	pr_debug("%s: Suspending Governors\n", __func__);
1656
1657	for_each_active_policy(policy) {
1658		if (has_target()) {
1659			down_write(&policy->rwsem);
1660			cpufreq_stop_governor(policy);
1661			up_write(&policy->rwsem);
1662		}
1663
1664		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1665			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1666				policy);
1667	}
1668
1669suspend:
1670	cpufreq_suspended = true;
1671}
1672
1673/**
1674 * cpufreq_resume() - Resume CPUFreq governors
1675 *
1676 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1677 * are suspended with cpufreq_suspend().
1678 */
1679void cpufreq_resume(void)
1680{
1681	struct cpufreq_policy *policy;
1682	int ret;
1683
1684	if (!cpufreq_driver)
1685		return;
1686
1687	if (unlikely(!cpufreq_suspended))
1688		return;
1689
1690	cpufreq_suspended = false;
1691
1692	if (!has_target() && !cpufreq_driver->resume)
1693		return;
1694
1695	pr_debug("%s: Resuming Governors\n", __func__);
1696
1697	for_each_active_policy(policy) {
1698		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1699			pr_err("%s: Failed to resume driver: %p\n", __func__,
1700				policy);
1701		} else if (has_target()) {
1702			down_write(&policy->rwsem);
1703			ret = cpufreq_start_governor(policy);
1704			up_write(&policy->rwsem);
1705
1706			if (ret)
1707				pr_err("%s: Failed to start governor for policy: %p\n",
1708				       __func__, policy);
1709		}
1710	}
1711}
1712
1713/**
1714 *	cpufreq_get_current_driver - return current driver's name
 
 
 
 
 
 
 
 
 
 
 
 
1715 *
1716 *	Return the name string of the currently loaded cpufreq driver
1717 *	or NULL, if none.
1718 */
1719const char *cpufreq_get_current_driver(void)
1720{
1721	if (cpufreq_driver)
1722		return cpufreq_driver->name;
1723
1724	return NULL;
1725}
1726EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1727
1728/**
1729 *	cpufreq_get_driver_data - return current driver data
1730 *
1731 *	Return the private data of the currently loaded cpufreq
1732 *	driver, or NULL if no cpufreq driver is loaded.
1733 */
1734void *cpufreq_get_driver_data(void)
1735{
1736	if (cpufreq_driver)
1737		return cpufreq_driver->driver_data;
1738
1739	return NULL;
1740}
1741EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1742
1743/*********************************************************************
1744 *                     NOTIFIER LISTS INTERFACE                      *
1745 *********************************************************************/
1746
1747/**
1748 *	cpufreq_register_notifier - register a driver with cpufreq
1749 *	@nb: notifier function to register
1750 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1751 *
1752 *	Add a driver to one of two lists: either a list of drivers that
1753 *      are notified about clock rate changes (once before and once after
1754 *      the transition), or a list of drivers that are notified about
1755 *      changes in cpufreq policy.
1756 *
1757 *	This function may sleep, and has the same return conditions as
1758 *	blocking_notifier_chain_register.
1759 */
1760int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1761{
1762	int ret;
1763
1764	if (cpufreq_disabled())
1765		return -EINVAL;
1766
1767	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1768
1769	switch (list) {
1770	case CPUFREQ_TRANSITION_NOTIFIER:
1771		mutex_lock(&cpufreq_fast_switch_lock);
1772
1773		if (cpufreq_fast_switch_count > 0) {
1774			mutex_unlock(&cpufreq_fast_switch_lock);
1775			return -EBUSY;
1776		}
1777		ret = srcu_notifier_chain_register(
1778				&cpufreq_transition_notifier_list, nb);
1779		if (!ret)
1780			cpufreq_fast_switch_count--;
1781
1782		mutex_unlock(&cpufreq_fast_switch_lock);
1783		break;
1784	case CPUFREQ_POLICY_NOTIFIER:
1785		ret = blocking_notifier_chain_register(
1786				&cpufreq_policy_notifier_list, nb);
1787		break;
1788	default:
1789		ret = -EINVAL;
1790	}
1791
1792	return ret;
1793}
1794EXPORT_SYMBOL(cpufreq_register_notifier);
1795
1796/**
1797 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1798 *	@nb: notifier block to be unregistered
1799 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1800 *
1801 *	Remove a driver from the CPU frequency notifier list.
1802 *
1803 *	This function may sleep, and has the same return conditions as
1804 *	blocking_notifier_chain_unregister.
1805 */
1806int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1807{
1808	int ret;
1809
1810	if (cpufreq_disabled())
1811		return -EINVAL;
1812
1813	switch (list) {
1814	case CPUFREQ_TRANSITION_NOTIFIER:
1815		mutex_lock(&cpufreq_fast_switch_lock);
1816
1817		ret = srcu_notifier_chain_unregister(
1818				&cpufreq_transition_notifier_list, nb);
1819		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1820			cpufreq_fast_switch_count++;
1821
1822		mutex_unlock(&cpufreq_fast_switch_lock);
1823		break;
1824	case CPUFREQ_POLICY_NOTIFIER:
1825		ret = blocking_notifier_chain_unregister(
1826				&cpufreq_policy_notifier_list, nb);
1827		break;
1828	default:
1829		ret = -EINVAL;
1830	}
1831
1832	return ret;
1833}
1834EXPORT_SYMBOL(cpufreq_unregister_notifier);
1835
1836
1837/*********************************************************************
1838 *                              GOVERNORS                            *
1839 *********************************************************************/
1840
1841/**
1842 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1843 * @policy: cpufreq policy to switch the frequency for.
1844 * @target_freq: New frequency to set (may be approximate).
1845 *
1846 * Carry out a fast frequency switch without sleeping.
1847 *
1848 * The driver's ->fast_switch() callback invoked by this function must be
1849 * suitable for being called from within RCU-sched read-side critical sections
1850 * and it is expected to select the minimum available frequency greater than or
1851 * equal to @target_freq (CPUFREQ_RELATION_L).
1852 *
1853 * This function must not be called if policy->fast_switch_enabled is unset.
1854 *
1855 * Governors calling this function must guarantee that it will never be invoked
1856 * twice in parallel for the same policy and that it will never be called in
1857 * parallel with either ->target() or ->target_index() for the same policy.
1858 *
1859 * Returns the actual frequency set for the CPU.
1860 *
1861 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1862 * error condition, the hardware configuration must be preserved.
1863 */
1864unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1865					unsigned int target_freq)
1866{
 
 
 
1867	target_freq = clamp_val(target_freq, policy->min, policy->max);
 
 
 
 
1868
1869	return cpufreq_driver->fast_switch(policy, target_freq);
 
 
 
 
 
 
 
 
 
 
1870}
1871EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873/* Must set freqs->new to intermediate frequency */
1874static int __target_intermediate(struct cpufreq_policy *policy,
1875				 struct cpufreq_freqs *freqs, int index)
1876{
1877	int ret;
1878
1879	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1880
1881	/* We don't need to switch to intermediate freq */
1882	if (!freqs->new)
1883		return 0;
1884
1885	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1886		 __func__, policy->cpu, freqs->old, freqs->new);
1887
1888	cpufreq_freq_transition_begin(policy, freqs);
1889	ret = cpufreq_driver->target_intermediate(policy, index);
1890	cpufreq_freq_transition_end(policy, freqs, ret);
1891
1892	if (ret)
1893		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1894		       __func__, ret);
1895
1896	return ret;
1897}
1898
1899static int __target_index(struct cpufreq_policy *policy, int index)
1900{
1901	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1902	unsigned int intermediate_freq = 0;
1903	unsigned int newfreq = policy->freq_table[index].frequency;
1904	int retval = -EINVAL;
1905	bool notify;
1906
1907	if (newfreq == policy->cur)
1908		return 0;
1909
 
 
 
1910	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1911	if (notify) {
1912		/* Handle switching to intermediate frequency */
1913		if (cpufreq_driver->get_intermediate) {
1914			retval = __target_intermediate(policy, &freqs, index);
1915			if (retval)
1916				return retval;
1917
1918			intermediate_freq = freqs.new;
1919			/* Set old freq to intermediate */
1920			if (intermediate_freq)
1921				freqs.old = freqs.new;
1922		}
1923
1924		freqs.new = newfreq;
1925		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1926			 __func__, policy->cpu, freqs.old, freqs.new);
1927
1928		cpufreq_freq_transition_begin(policy, &freqs);
1929	}
1930
1931	retval = cpufreq_driver->target_index(policy, index);
1932	if (retval)
1933		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1934		       retval);
1935
1936	if (notify) {
1937		cpufreq_freq_transition_end(policy, &freqs, retval);
1938
1939		/*
1940		 * Failed after setting to intermediate freq? Driver should have
1941		 * reverted back to initial frequency and so should we. Check
1942		 * here for intermediate_freq instead of get_intermediate, in
1943		 * case we haven't switched to intermediate freq at all.
1944		 */
1945		if (unlikely(retval && intermediate_freq)) {
1946			freqs.old = intermediate_freq;
1947			freqs.new = policy->restore_freq;
1948			cpufreq_freq_transition_begin(policy, &freqs);
1949			cpufreq_freq_transition_end(policy, &freqs, 0);
1950		}
1951	}
1952
1953	return retval;
1954}
1955
1956int __cpufreq_driver_target(struct cpufreq_policy *policy,
1957			    unsigned int target_freq,
1958			    unsigned int relation)
1959{
1960	unsigned int old_target_freq = target_freq;
1961	int index;
1962
1963	if (cpufreq_disabled())
1964		return -ENODEV;
1965
1966	/* Make sure that target_freq is within supported range */
1967	target_freq = clamp_val(target_freq, policy->min, policy->max);
1968
1969	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1970		 policy->cpu, target_freq, relation, old_target_freq);
1971
1972	/*
1973	 * This might look like a redundant call as we are checking it again
1974	 * after finding index. But it is left intentionally for cases where
1975	 * exactly same freq is called again and so we can save on few function
1976	 * calls.
1977	 */
1978	if (target_freq == policy->cur)
 
1979		return 0;
1980
1981	/* Save last value to restore later on errors */
1982	policy->restore_freq = policy->cur;
 
 
 
 
 
1983
1984	if (cpufreq_driver->target)
1985		return cpufreq_driver->target(policy, target_freq, relation);
 
1986
1987	if (!cpufreq_driver->target_index)
1988		return -EINVAL;
1989
1990	index = cpufreq_frequency_table_target(policy, target_freq, relation);
1991
1992	return __target_index(policy, index);
1993}
1994EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1995
1996int cpufreq_driver_target(struct cpufreq_policy *policy,
1997			  unsigned int target_freq,
1998			  unsigned int relation)
1999{
2000	int ret = -EINVAL;
2001
2002	down_write(&policy->rwsem);
2003
2004	ret = __cpufreq_driver_target(policy, target_freq, relation);
2005
2006	up_write(&policy->rwsem);
2007
2008	return ret;
2009}
2010EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2011
2012__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2013{
2014	return NULL;
2015}
2016
2017static int cpufreq_init_governor(struct cpufreq_policy *policy)
2018{
2019	int ret;
2020
2021	/* Don't start any governor operations if we are entering suspend */
2022	if (cpufreq_suspended)
2023		return 0;
2024	/*
2025	 * Governor might not be initiated here if ACPI _PPC changed
2026	 * notification happened, so check it.
2027	 */
2028	if (!policy->governor)
2029		return -EINVAL;
2030
2031	/* Platform doesn't want dynamic frequency switching ? */
2032	if (policy->governor->dynamic_switching &&
2033	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2034		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2035
2036		if (gov) {
2037			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2038				policy->governor->name, gov->name);
2039			policy->governor = gov;
2040		} else {
2041			return -EINVAL;
2042		}
2043	}
2044
2045	if (!try_module_get(policy->governor->owner))
2046		return -EINVAL;
2047
2048	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2049
2050	if (policy->governor->init) {
2051		ret = policy->governor->init(policy);
2052		if (ret) {
2053			module_put(policy->governor->owner);
2054			return ret;
2055		}
2056	}
2057
 
 
2058	return 0;
2059}
2060
2061static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2062{
2063	if (cpufreq_suspended || !policy->governor)
2064		return;
2065
2066	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2067
2068	if (policy->governor->exit)
2069		policy->governor->exit(policy);
2070
2071	module_put(policy->governor->owner);
2072}
2073
2074static int cpufreq_start_governor(struct cpufreq_policy *policy)
2075{
2076	int ret;
2077
2078	if (cpufreq_suspended)
2079		return 0;
2080
2081	if (!policy->governor)
2082		return -EINVAL;
2083
2084	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2085
2086	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2087		cpufreq_update_current_freq(policy);
2088
2089	if (policy->governor->start) {
2090		ret = policy->governor->start(policy);
2091		if (ret)
2092			return ret;
2093	}
2094
2095	if (policy->governor->limits)
2096		policy->governor->limits(policy);
2097
2098	return 0;
2099}
2100
2101static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2102{
2103	if (cpufreq_suspended || !policy->governor)
2104		return;
2105
2106	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2107
2108	if (policy->governor->stop)
2109		policy->governor->stop(policy);
2110}
2111
2112static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2113{
2114	if (cpufreq_suspended || !policy->governor)
2115		return;
2116
2117	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2118
2119	if (policy->governor->limits)
2120		policy->governor->limits(policy);
2121}
2122
2123int cpufreq_register_governor(struct cpufreq_governor *governor)
2124{
2125	int err;
2126
2127	if (!governor)
2128		return -EINVAL;
2129
2130	if (cpufreq_disabled())
2131		return -ENODEV;
2132
2133	mutex_lock(&cpufreq_governor_mutex);
2134
2135	err = -EBUSY;
2136	if (!find_governor(governor->name)) {
2137		err = 0;
2138		list_add(&governor->governor_list, &cpufreq_governor_list);
2139	}
2140
2141	mutex_unlock(&cpufreq_governor_mutex);
2142	return err;
2143}
2144EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2145
2146void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2147{
2148	struct cpufreq_policy *policy;
2149	unsigned long flags;
2150
2151	if (!governor)
2152		return;
2153
2154	if (cpufreq_disabled())
2155		return;
2156
2157	/* clear last_governor for all inactive policies */
2158	read_lock_irqsave(&cpufreq_driver_lock, flags);
2159	for_each_inactive_policy(policy) {
2160		if (!strcmp(policy->last_governor, governor->name)) {
2161			policy->governor = NULL;
2162			strcpy(policy->last_governor, "\0");
2163		}
2164	}
2165	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2166
2167	mutex_lock(&cpufreq_governor_mutex);
2168	list_del(&governor->governor_list);
2169	mutex_unlock(&cpufreq_governor_mutex);
2170}
2171EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2172
2173
2174/*********************************************************************
2175 *                          POLICY INTERFACE                         *
2176 *********************************************************************/
2177
2178/**
2179 * cpufreq_get_policy - get the current cpufreq_policy
2180 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2181 *	is written
 
2182 *
2183 * Reads the current cpufreq policy.
2184 */
2185int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2186{
2187	struct cpufreq_policy *cpu_policy;
2188	if (!policy)
2189		return -EINVAL;
2190
2191	cpu_policy = cpufreq_cpu_get(cpu);
2192	if (!cpu_policy)
2193		return -EINVAL;
2194
2195	memcpy(policy, cpu_policy, sizeof(*policy));
2196
2197	cpufreq_cpu_put(cpu_policy);
2198	return 0;
2199}
2200EXPORT_SYMBOL(cpufreq_get_policy);
2201
2202/*
2203 * policy : current policy.
2204 * new_policy: policy to be set.
 
 
 
 
 
 
 
 
 
 
 
2205 */
2206static int cpufreq_set_policy(struct cpufreq_policy *policy,
2207				struct cpufreq_policy *new_policy)
 
2208{
 
2209	struct cpufreq_governor *old_gov;
2210	int ret;
2211
 
 
 
 
 
 
 
 
 
 
2212	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2213		 new_policy->cpu, new_policy->min, new_policy->max);
2214
2215	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2216
2217	/*
2218	* This check works well when we store new min/max freq attributes,
2219	* because new_policy is a copy of policy with one field updated.
2220	*/
2221	if (new_policy->min > new_policy->max)
2222		return -EINVAL;
2223
2224	/* verify the cpu speed can be set within this limit */
2225	ret = cpufreq_driver->verify(new_policy);
2226	if (ret)
2227		return ret;
2228
2229	/* adjust if necessary - all reasons */
2230	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2231			CPUFREQ_ADJUST, new_policy);
2232
2233	/*
2234	 * verify the cpu speed can be set within this limit, which might be
2235	 * different to the first one
 
2236	 */
2237	ret = cpufreq_driver->verify(new_policy);
2238	if (ret)
2239		return ret;
2240
2241	/* notification of the new policy */
2242	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2243			CPUFREQ_NOTIFY, new_policy);
2244
2245	policy->min = new_policy->min;
2246	policy->max = new_policy->max;
2247
2248	policy->cached_target_freq = UINT_MAX;
2249
2250	pr_debug("new min and max freqs are %u - %u kHz\n",
2251		 policy->min, policy->max);
2252
2253	if (cpufreq_driver->setpolicy) {
2254		policy->policy = new_policy->policy;
2255		pr_debug("setting range\n");
2256		return cpufreq_driver->setpolicy(new_policy);
2257	}
2258
2259	if (new_policy->governor == policy->governor) {
2260		pr_debug("cpufreq: governor limits update\n");
2261		cpufreq_governor_limits(policy);
2262		return 0;
2263	}
2264
2265	pr_debug("governor switch\n");
2266
2267	/* save old, working values */
2268	old_gov = policy->governor;
2269	/* end old governor */
2270	if (old_gov) {
2271		cpufreq_stop_governor(policy);
2272		cpufreq_exit_governor(policy);
2273	}
2274
2275	/* start new governor */
2276	policy->governor = new_policy->governor;
2277	ret = cpufreq_init_governor(policy);
2278	if (!ret) {
2279		ret = cpufreq_start_governor(policy);
2280		if (!ret) {
2281			pr_debug("cpufreq: governor change\n");
2282			return 0;
2283		}
2284		cpufreq_exit_governor(policy);
2285	}
2286
2287	/* new governor failed, so re-start old one */
2288	pr_debug("starting governor %s failed\n", policy->governor->name);
2289	if (old_gov) {
2290		policy->governor = old_gov;
2291		if (cpufreq_init_governor(policy))
2292			policy->governor = NULL;
2293		else
2294			cpufreq_start_governor(policy);
2295	}
2296
2297	return ret;
2298}
2299
2300/**
2301 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2302 *	@cpu: CPU which shall be re-evaluated
2303 *
2304 *	Useful for policy notifiers which have different necessities
2305 *	at different times.
 
 
2306 */
2307void cpufreq_update_policy(unsigned int cpu)
2308{
2309	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2310	struct cpufreq_policy new_policy;
2311
2312	if (!policy)
2313		return;
2314
2315	down_write(&policy->rwsem);
2316
2317	if (policy_is_inactive(policy))
2318		goto unlock;
2319
2320	pr_debug("updating policy for CPU %u\n", cpu);
2321	memcpy(&new_policy, policy, sizeof(*policy));
2322	new_policy.min = policy->user_policy.min;
2323	new_policy.max = policy->user_policy.max;
2324
2325	/*
2326	 * BIOS might change freq behind our back
2327	 * -> ask driver for current freq and notify governors about a change
2328	 */
2329	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2330		if (cpufreq_suspended)
2331			goto unlock;
2332
2333		new_policy.cur = cpufreq_update_current_freq(policy);
2334		if (WARN_ON(!new_policy.cur))
2335			goto unlock;
2336	}
2337
2338	cpufreq_set_policy(policy, &new_policy);
2339
2340unlock:
2341	up_write(&policy->rwsem);
 
 
2342
2343	cpufreq_cpu_put(policy);
 
 
 
 
 
 
 
 
 
 
 
 
2344}
2345EXPORT_SYMBOL(cpufreq_update_policy);
2346
2347/*********************************************************************
2348 *               BOOST						     *
2349 *********************************************************************/
2350static int cpufreq_boost_set_sw(int state)
2351{
2352	struct cpufreq_policy *policy;
2353	int ret = -EINVAL;
2354
2355	for_each_active_policy(policy) {
2356		if (!policy->freq_table)
2357			continue;
2358
2359		ret = cpufreq_frequency_table_cpuinfo(policy,
2360						      policy->freq_table);
2361		if (ret) {
2362			pr_err("%s: Policy frequency update failed\n",
2363			       __func__);
2364			break;
2365		}
2366
2367		down_write(&policy->rwsem);
2368		policy->user_policy.max = policy->max;
2369		cpufreq_governor_limits(policy);
2370		up_write(&policy->rwsem);
2371	}
2372
2373	return ret;
2374}
2375
2376int cpufreq_boost_trigger_state(int state)
2377{
 
2378	unsigned long flags;
2379	int ret = 0;
2380
2381	if (cpufreq_driver->boost_enabled == state)
2382		return 0;
2383
2384	write_lock_irqsave(&cpufreq_driver_lock, flags);
2385	cpufreq_driver->boost_enabled = state;
2386	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2387
2388	ret = cpufreq_driver->set_boost(state);
2389	if (ret) {
2390		write_lock_irqsave(&cpufreq_driver_lock, flags);
2391		cpufreq_driver->boost_enabled = !state;
2392		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2393
2394		pr_err("%s: Cannot %s BOOST\n",
2395		       __func__, state ? "enable" : "disable");
2396	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2397
2398	return ret;
2399}
2400
2401static bool cpufreq_boost_supported(void)
2402{
2403	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2404}
2405
2406static int create_boost_sysfs_file(void)
2407{
2408	int ret;
2409
2410	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2411	if (ret)
2412		pr_err("%s: cannot register global BOOST sysfs file\n",
2413		       __func__);
2414
2415	return ret;
2416}
2417
2418static void remove_boost_sysfs_file(void)
2419{
2420	if (cpufreq_boost_supported())
2421		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2422}
2423
2424int cpufreq_enable_boost_support(void)
2425{
2426	if (!cpufreq_driver)
2427		return -EINVAL;
2428
2429	if (cpufreq_boost_supported())
2430		return 0;
2431
2432	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2433
2434	/* This will get removed on driver unregister */
2435	return create_boost_sysfs_file();
2436}
2437EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2438
2439int cpufreq_boost_enabled(void)
2440{
2441	return cpufreq_driver->boost_enabled;
2442}
2443EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2444
2445/*********************************************************************
2446 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2447 *********************************************************************/
2448static enum cpuhp_state hp_online;
2449
2450static int cpuhp_cpufreq_online(unsigned int cpu)
2451{
2452	cpufreq_online(cpu);
2453
2454	return 0;
2455}
2456
2457static int cpuhp_cpufreq_offline(unsigned int cpu)
2458{
2459	cpufreq_offline(cpu);
2460
2461	return 0;
2462}
2463
2464/**
2465 * cpufreq_register_driver - register a CPU Frequency driver
2466 * @driver_data: A struct cpufreq_driver containing the values#
2467 * submitted by the CPU Frequency driver.
2468 *
2469 * Registers a CPU Frequency driver to this core code. This code
2470 * returns zero on success, -EEXIST when another driver got here first
2471 * (and isn't unregistered in the meantime).
2472 *
2473 */
2474int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2475{
2476	unsigned long flags;
2477	int ret;
2478
2479	if (cpufreq_disabled())
2480		return -ENODEV;
2481
 
 
 
 
 
 
 
2482	if (!driver_data || !driver_data->verify || !driver_data->init ||
2483	    !(driver_data->setpolicy || driver_data->target_index ||
2484		    driver_data->target) ||
2485	     (driver_data->setpolicy && (driver_data->target_index ||
2486		    driver_data->target)) ||
2487	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
 
 
2488		return -EINVAL;
2489
2490	pr_debug("trying to register driver %s\n", driver_data->name);
2491
2492	/* Protect against concurrent CPU online/offline. */
2493	cpus_read_lock();
2494
2495	write_lock_irqsave(&cpufreq_driver_lock, flags);
2496	if (cpufreq_driver) {
2497		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2498		ret = -EEXIST;
2499		goto out;
2500	}
2501	cpufreq_driver = driver_data;
2502	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2503
 
 
 
 
 
 
 
 
 
2504	if (driver_data->setpolicy)
2505		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2506
2507	if (cpufreq_boost_supported()) {
2508		ret = create_boost_sysfs_file();
2509		if (ret)
2510			goto err_null_driver;
2511	}
2512
2513	ret = subsys_interface_register(&cpufreq_interface);
2514	if (ret)
2515		goto err_boost_unreg;
2516
2517	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2518	    list_empty(&cpufreq_policy_list)) {
2519		/* if all ->init() calls failed, unregister */
2520		ret = -ENODEV;
2521		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2522			 driver_data->name);
2523		goto err_if_unreg;
2524	}
2525
2526	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2527						   "cpufreq:online",
2528						   cpuhp_cpufreq_online,
2529						   cpuhp_cpufreq_offline);
2530	if (ret < 0)
2531		goto err_if_unreg;
2532	hp_online = ret;
2533	ret = 0;
2534
2535	pr_debug("driver %s up and running\n", driver_data->name);
2536	goto out;
2537
2538err_if_unreg:
2539	subsys_interface_unregister(&cpufreq_interface);
2540err_boost_unreg:
2541	remove_boost_sysfs_file();
2542err_null_driver:
2543	write_lock_irqsave(&cpufreq_driver_lock, flags);
2544	cpufreq_driver = NULL;
2545	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2546out:
2547	cpus_read_unlock();
2548	return ret;
2549}
2550EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2551
2552/**
2553 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2554 *
2555 * Unregister the current CPUFreq driver. Only call this if you have
2556 * the right to do so, i.e. if you have succeeded in initialising before!
2557 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2558 * currently not initialised.
2559 */
2560int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2561{
2562	unsigned long flags;
2563
2564	if (!cpufreq_driver || (driver != cpufreq_driver))
2565		return -EINVAL;
2566
2567	pr_debug("unregistering driver %s\n", driver->name);
2568
2569	/* Protect against concurrent cpu hotplug */
2570	cpus_read_lock();
2571	subsys_interface_unregister(&cpufreq_interface);
2572	remove_boost_sysfs_file();
 
2573	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2574
2575	write_lock_irqsave(&cpufreq_driver_lock, flags);
2576
2577	cpufreq_driver = NULL;
2578
2579	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2580	cpus_read_unlock();
2581
2582	return 0;
2583}
2584EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2585
2586/*
2587 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2588 * or mutexes when secondary CPUs are halted.
2589 */
2590static struct syscore_ops cpufreq_syscore_ops = {
2591	.shutdown = cpufreq_suspend,
2592};
2593
2594struct kobject *cpufreq_global_kobject;
2595EXPORT_SYMBOL(cpufreq_global_kobject);
2596
2597static int __init cpufreq_core_init(void)
2598{
 
 
 
2599	if (cpufreq_disabled())
2600		return -ENODEV;
2601
2602	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
 
 
 
 
2603	BUG_ON(!cpufreq_global_kobject);
2604
2605	register_syscore_ops(&cpufreq_syscore_ops);
 
2606
2607	return 0;
2608}
2609module_param(off, int, 0444);
 
2610core_initcall(cpufreq_core_init);