Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
 
 
 
 
 
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
 
 
 
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
  79}
  80
  81/* internal prototypes */
 
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 
 
 
 
 
 
 
 
 
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 
 
 
 
 
 
 
 
 
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 
 
 
 
 
 
 
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 
 
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 
 
 
 
 
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 241
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 
 
 
 
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 252	kobject_put(&policy->kobj);
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 266
 267	up_write(&policy->rwsem);
 268
 269	cpufreq_cpu_put(policy);
 270}
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 299}
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 336#endif
 337}
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 354
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 365	switch (state) {
 
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 
 
 
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 397	}
 398}
 399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency) {
 579		/*
 580		 * For platforms that can change the frequency very fast (< 10
 581		 * us), the above formula gives a decent transition delay. But
 582		 * for platforms where transition_latency is in milliseconds, it
 583		 * ends up giving unrealistic values.
 584		 *
 585		 * Cap the default transition delay to 10 ms, which seems to be
 586		 * a reasonable amount of time after which we should reevaluate
 587		 * the frequency.
 588		 */
 589		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 590	}
 591
 592	return LATENCY_MULTIPLIER;
 593}
 594EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 595
 596/*********************************************************************
 597 *                          SYSFS INTERFACE                          *
 598 *********************************************************************/
 599static ssize_t show_boost(struct kobject *kobj,
 600			  struct kobj_attribute *attr, char *buf)
 601{
 602	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 603}
 604
 605static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 606			   const char *buf, size_t count)
 607{
 608	int ret, enable;
 609
 610	ret = sscanf(buf, "%d", &enable);
 611	if (ret != 1 || enable < 0 || enable > 1)
 612		return -EINVAL;
 613
 614	if (cpufreq_boost_trigger_state(enable)) {
 615		pr_err("%s: Cannot %s BOOST!\n",
 616		       __func__, enable ? "enable" : "disable");
 617		return -EINVAL;
 618	}
 619
 620	pr_debug("%s: cpufreq BOOST %s\n",
 621		 __func__, enable ? "enabled" : "disabled");
 622
 623	return count;
 624}
 625define_one_global_rw(boost);
 626
 627static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 628{
 629	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 630}
 631
 632static ssize_t store_local_boost(struct cpufreq_policy *policy,
 633				 const char *buf, size_t count)
 634{
 635	int ret, enable;
 636
 637	ret = kstrtoint(buf, 10, &enable);
 638	if (ret || enable < 0 || enable > 1)
 639		return -EINVAL;
 640
 641	if (!cpufreq_driver->boost_enabled)
 642		return -EINVAL;
 643
 644	if (policy->boost_enabled == enable)
 645		return count;
 646
 647	cpus_read_lock();
 648	ret = cpufreq_driver->set_boost(policy, enable);
 649	cpus_read_unlock();
 650
 651	if (ret)
 652		return ret;
 653
 654	policy->boost_enabled = enable;
 655
 656	return count;
 657}
 658
 659static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 660
 661static struct cpufreq_governor *find_governor(const char *str_governor)
 662{
 663	struct cpufreq_governor *t;
 664
 665	for_each_governor(t)
 666		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 667			return t;
 668
 669	return NULL;
 670}
 671
 672static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 673{
 674	struct cpufreq_governor *t;
 675
 676	mutex_lock(&cpufreq_governor_mutex);
 677	t = find_governor(str_governor);
 678	if (!t)
 679		goto unlock;
 680
 681	if (!try_module_get(t->owner))
 682		t = NULL;
 683
 684unlock:
 685	mutex_unlock(&cpufreq_governor_mutex);
 686
 687	return t;
 688}
 
 
 
 
 
 
 
 
 
 689
 690static unsigned int cpufreq_parse_policy(char *str_governor)
 691{
 692	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 693		return CPUFREQ_POLICY_PERFORMANCE;
 694
 695	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 696		return CPUFREQ_POLICY_POWERSAVE;
 697
 698	return CPUFREQ_POLICY_UNKNOWN;
 699}
 700
 701/**
 702 * cpufreq_parse_governor - parse a governor string only for has_target()
 703 * @str_governor: Governor name.
 704 */
 705static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 706{
 707	struct cpufreq_governor *t;
 708
 709	t = get_governor(str_governor);
 710	if (t)
 711		return t;
 712
 713	if (request_module("cpufreq_%s", str_governor))
 714		return NULL;
 
 
 715
 716	return get_governor(str_governor);
 
 
 717}
 718
 719/*
 720 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 721 * print out cpufreq information
 722 *
 723 * Write out information from cpufreq_driver->policy[cpu]; object must be
 724 * "unsigned int".
 725 */
 726
 727#define show_one(file_name, object)			\
 728static ssize_t show_##file_name				\
 729(struct cpufreq_policy *policy, char *buf)		\
 730{							\
 731	return sprintf(buf, "%u\n", policy->object);	\
 732}
 733
 734show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 735show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 736show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 737show_one(scaling_min_freq, min);
 738show_one(scaling_max_freq, max);
 739
 740__weak unsigned int arch_freq_get_on_cpu(int cpu)
 741{
 742	return 0;
 743}
 744
 745static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 746{
 747	ssize_t ret;
 748	unsigned int freq;
 749
 750	freq = arch_freq_get_on_cpu(policy->cpu);
 751	if (freq)
 752		ret = sprintf(buf, "%u\n", freq);
 753	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 754		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 755	else
 756		ret = sprintf(buf, "%u\n", policy->cur);
 757	return ret;
 758}
 759
 760/*
 
 
 
 761 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 762 */
 763#define store_one(file_name, object)			\
 764static ssize_t store_##file_name					\
 765(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 766{									\
 767	unsigned long val;						\
 768	int ret;							\
 
 
 769									\
 770	ret = kstrtoul(buf, 0, &val);					\
 771	if (ret)							\
 772		return ret;						\
 773									\
 774	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 775	return ret >= 0 ? count : ret;					\
 
 
 
 
 776}
 777
 778store_one(scaling_min_freq, min);
 779store_one(scaling_max_freq, max);
 780
 781/*
 782 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 783 */
 784static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 785					char *buf)
 786{
 787	unsigned int cur_freq = __cpufreq_get(policy);
 788
 789	if (cur_freq)
 790		return sprintf(buf, "%u\n", cur_freq);
 791
 792	return sprintf(buf, "<unknown>\n");
 793}
 794
 795/*
 796 * show_scaling_governor - show the current policy for the specified CPU
 797 */
 798static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 799{
 800	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 801		return sprintf(buf, "powersave\n");
 802	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 803		return sprintf(buf, "performance\n");
 804	else if (policy->governor)
 805		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 806				policy->governor->name);
 807	return -EINVAL;
 808}
 809
 810/*
 811 * store_scaling_governor - store policy for the specified CPU
 812 */
 813static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 814					const char *buf, size_t count)
 815{
 816	char str_governor[16];
 817	int ret;
 
 
 
 
 818
 819	ret = sscanf(buf, "%15s", str_governor);
 820	if (ret != 1)
 821		return -EINVAL;
 822
 823	if (cpufreq_driver->setpolicy) {
 824		unsigned int new_pol;
 825
 826		new_pol = cpufreq_parse_policy(str_governor);
 827		if (!new_pol)
 828			return -EINVAL;
 829
 830		ret = cpufreq_set_policy(policy, NULL, new_pol);
 831	} else {
 832		struct cpufreq_governor *new_gov;
 833
 834		new_gov = cpufreq_parse_governor(str_governor);
 835		if (!new_gov)
 836			return -EINVAL;
 837
 838		ret = cpufreq_set_policy(policy, new_gov,
 839					 CPUFREQ_POLICY_UNKNOWN);
 840
 841		module_put(new_gov->owner);
 842	}
 843
 
 844	return ret ? ret : count;
 845}
 846
 847/*
 848 * show_scaling_driver - show the cpufreq driver currently loaded
 849 */
 850static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 851{
 852	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 853}
 854
 855/*
 856 * show_scaling_available_governors - show the available CPUfreq governors
 857 */
 858static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 859						char *buf)
 860{
 861	ssize_t i = 0;
 862	struct cpufreq_governor *t;
 863
 864	if (!has_target()) {
 865		i += sprintf(buf, "performance powersave");
 866		goto out;
 867	}
 868
 869	mutex_lock(&cpufreq_governor_mutex);
 870	for_each_governor(t) {
 871		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 872		    - (CPUFREQ_NAME_LEN + 2)))
 873			break;
 874		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 875	}
 876	mutex_unlock(&cpufreq_governor_mutex);
 877out:
 878	i += sprintf(&buf[i], "\n");
 879	return i;
 880}
 881
 882ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 883{
 884	ssize_t i = 0;
 885	unsigned int cpu;
 886
 887	for_each_cpu(cpu, mask) {
 888		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
 
 
 889		if (i >= (PAGE_SIZE - 5))
 890			break;
 891	}
 892
 893	/* Remove the extra space at the end */
 894	i--;
 895
 896	i += sprintf(&buf[i], "\n");
 897	return i;
 898}
 899EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 900
 901/*
 902 * show_related_cpus - show the CPUs affected by each transition even if
 903 * hw coordination is in use
 904 */
 905static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 906{
 907	return cpufreq_show_cpus(policy->related_cpus, buf);
 908}
 909
 910/*
 911 * show_affected_cpus - show the CPUs affected by each transition
 912 */
 913static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 914{
 915	return cpufreq_show_cpus(policy->cpus, buf);
 916}
 917
 918static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 919					const char *buf, size_t count)
 920{
 921	unsigned int freq = 0;
 922	unsigned int ret;
 923
 924	if (!policy->governor || !policy->governor->store_setspeed)
 925		return -EINVAL;
 926
 927	ret = sscanf(buf, "%u", &freq);
 928	if (ret != 1)
 929		return -EINVAL;
 930
 931	policy->governor->store_setspeed(policy, freq);
 932
 933	return count;
 934}
 935
 936static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 937{
 938	if (!policy->governor || !policy->governor->show_setspeed)
 939		return sprintf(buf, "<unsupported>\n");
 940
 941	return policy->governor->show_setspeed(policy, buf);
 942}
 943
 944/*
 945 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 946 */
 947static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 948{
 949	unsigned int limit;
 950	int ret;
 951	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 952	if (!ret)
 953		return sprintf(buf, "%u\n", limit);
 
 
 954	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 955}
 956
 957cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 958cpufreq_freq_attr_ro(cpuinfo_min_freq);
 959cpufreq_freq_attr_ro(cpuinfo_max_freq);
 960cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 961cpufreq_freq_attr_ro(scaling_available_governors);
 962cpufreq_freq_attr_ro(scaling_driver);
 963cpufreq_freq_attr_ro(scaling_cur_freq);
 964cpufreq_freq_attr_ro(bios_limit);
 965cpufreq_freq_attr_ro(related_cpus);
 966cpufreq_freq_attr_ro(affected_cpus);
 967cpufreq_freq_attr_rw(scaling_min_freq);
 968cpufreq_freq_attr_rw(scaling_max_freq);
 969cpufreq_freq_attr_rw(scaling_governor);
 970cpufreq_freq_attr_rw(scaling_setspeed);
 971
 972static struct attribute *cpufreq_attrs[] = {
 973	&cpuinfo_min_freq.attr,
 974	&cpuinfo_max_freq.attr,
 975	&cpuinfo_transition_latency.attr,
 976	&scaling_min_freq.attr,
 977	&scaling_max_freq.attr,
 978	&affected_cpus.attr,
 979	&related_cpus.attr,
 980	&scaling_governor.attr,
 981	&scaling_driver.attr,
 982	&scaling_available_governors.attr,
 983	&scaling_setspeed.attr,
 984	NULL
 985};
 986ATTRIBUTE_GROUPS(cpufreq);
 987
 988#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 989#define to_attr(a) container_of(a, struct freq_attr, attr)
 990
 991static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 992{
 993	struct cpufreq_policy *policy = to_policy(kobj);
 994	struct freq_attr *fattr = to_attr(attr);
 995	ssize_t ret = -EBUSY;
 996
 997	if (!fattr->show)
 998		return -EIO;
 999
1000	down_read(&policy->rwsem);
1001	if (likely(!policy_is_inactive(policy)))
1002		ret = fattr->show(policy, buf);
1003	up_read(&policy->rwsem);
1004
1005	return ret;
1006}
1007
1008static ssize_t store(struct kobject *kobj, struct attribute *attr,
1009		     const char *buf, size_t count)
1010{
1011	struct cpufreq_policy *policy = to_policy(kobj);
1012	struct freq_attr *fattr = to_attr(attr);
1013	ssize_t ret = -EBUSY;
1014
1015	if (!fattr->store)
1016		return -EIO;
1017
1018	down_write(&policy->rwsem);
1019	if (likely(!policy_is_inactive(policy)))
1020		ret = fattr->store(policy, buf, count);
1021	up_write(&policy->rwsem);
 
 
 
1022
1023	return ret;
1024}
1025
1026static void cpufreq_sysfs_release(struct kobject *kobj)
1027{
1028	struct cpufreq_policy *policy = to_policy(kobj);
1029	pr_debug("last reference is dropped\n");
1030	complete(&policy->kobj_unregister);
1031}
1032
1033static const struct sysfs_ops sysfs_ops = {
1034	.show	= show,
1035	.store	= store,
1036};
1037
1038static const struct kobj_type ktype_cpufreq = {
1039	.sysfs_ops	= &sysfs_ops,
1040	.default_groups	= cpufreq_groups,
1041	.release	= cpufreq_sysfs_release,
1042};
1043
1044static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1045				struct device *dev)
1046{
1047	if (unlikely(!dev))
1048		return;
1049
1050	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051		return;
1052
1053	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1054	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1055		dev_err(dev, "cpufreq symlink creation failed\n");
1056}
1057
1058static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1059				   struct device *dev)
1060{
1061	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1062	sysfs_remove_link(&dev->kobj, "cpufreq");
1063	cpumask_clear_cpu(cpu, policy->real_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064}
1065
1066static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1067{
1068	struct freq_attr **drv_attr;
1069	int ret = 0;
1070
1071	/* set up files for this cpu device */
1072	drv_attr = cpufreq_driver->attr;
1073	while (drv_attr && *drv_attr) {
1074		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1075		if (ret)
1076			return ret;
1077		drv_attr++;
1078	}
1079	if (cpufreq_driver->get) {
1080		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1081		if (ret)
1082			return ret;
1083	}
1084
1085	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1086	if (ret)
1087		return ret;
1088
1089	if (cpufreq_driver->bios_limit) {
1090		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1091		if (ret)
1092			return ret;
1093	}
1094
1095	if (cpufreq_boost_supported()) {
1096		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1097		if (ret)
1098			return ret;
1099	}
1100
1101	return 0;
 
 
1102}
1103
1104static int cpufreq_init_policy(struct cpufreq_policy *policy)
1105{
1106	struct cpufreq_governor *gov = NULL;
1107	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1108	int ret;
1109
1110	if (has_target()) {
1111		/* Update policy governor to the one used before hotplug. */
1112		gov = get_governor(policy->last_governor);
1113		if (gov) {
1114			pr_debug("Restoring governor %s for cpu %d\n",
1115				 gov->name, policy->cpu);
1116		} else {
1117			gov = get_governor(default_governor);
1118		}
1119
1120		if (!gov) {
1121			gov = cpufreq_default_governor();
1122			__module_get(gov->owner);
1123		}
1124
 
 
 
 
 
1125	} else {
1126
1127		/* Use the default policy if there is no last_policy. */
1128		if (policy->last_policy) {
1129			pol = policy->last_policy;
1130		} else {
1131			pol = cpufreq_parse_policy(default_governor);
1132			/*
1133			 * In case the default governor is neither "performance"
1134			 * nor "powersave", fall back to the initial policy
1135			 * value set by the driver.
1136			 */
1137			if (pol == CPUFREQ_POLICY_UNKNOWN)
1138				pol = policy->policy;
1139		}
1140		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1141		    pol != CPUFREQ_POLICY_POWERSAVE)
1142			return -ENODATA;
1143	}
1144
1145	ret = cpufreq_set_policy(policy, gov, pol);
1146	if (gov)
1147		module_put(gov->owner);
1148
1149	return ret;
 
 
 
 
 
 
 
 
 
1150}
1151
1152static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1153{
1154	int ret = 0;
1155
1156	/* Has this CPU been taken care of already? */
1157	if (cpumask_test_cpu(cpu, policy->cpus))
1158		return 0;
1159
1160	down_write(&policy->rwsem);
1161	if (has_target())
1162		cpufreq_stop_governor(policy);
 
 
 
 
 
1163
1164	cpumask_set_cpu(cpu, policy->cpus);
1165
1166	if (has_target()) {
1167		ret = cpufreq_start_governor(policy);
1168		if (ret)
1169			pr_err("%s: Failed to start governor\n", __func__);
1170	}
 
 
1171	up_write(&policy->rwsem);
1172	return ret;
1173}
1174
1175void refresh_frequency_limits(struct cpufreq_policy *policy)
1176{
1177	if (!policy_is_inactive(policy)) {
1178		pr_debug("updating policy for CPU %u\n", policy->cpu);
1179
1180		cpufreq_set_policy(policy, policy->governor, policy->policy);
1181	}
1182}
1183EXPORT_SYMBOL(refresh_frequency_limits);
1184
1185static void handle_update(struct work_struct *work)
1186{
1187	struct cpufreq_policy *policy =
1188		container_of(work, struct cpufreq_policy, update);
1189
1190	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1191	down_write(&policy->rwsem);
1192	refresh_frequency_limits(policy);
1193	up_write(&policy->rwsem);
1194}
1195
1196static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1197				void *data)
1198{
1199	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1200
1201	schedule_work(&policy->update);
1202	return 0;
1203}
1204
1205static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1206				void *data)
1207{
1208	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1209
1210	schedule_work(&policy->update);
1211	return 0;
1212}
1213
1214static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1215{
1216	struct kobject *kobj;
1217	struct completion *cmp;
1218
1219	down_write(&policy->rwsem);
1220	cpufreq_stats_free_table(policy);
1221	kobj = &policy->kobj;
1222	cmp = &policy->kobj_unregister;
1223	up_write(&policy->rwsem);
1224	kobject_put(kobj);
1225
1226	/*
1227	 * We need to make sure that the underlying kobj is
1228	 * actually not referenced anymore by anybody before we
1229	 * proceed with unloading.
1230	 */
1231	pr_debug("waiting for dropping of refcount\n");
1232	wait_for_completion(cmp);
1233	pr_debug("wait complete\n");
1234}
1235
1236static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1237{
1238	struct cpufreq_policy *policy;
1239	struct device *dev = get_cpu_device(cpu);
 
1240	int ret;
1241
1242	if (!dev)
1243		return NULL;
1244
1245	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1246	if (!policy)
1247		return NULL;
1248
1249	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1250		goto err_free_policy;
1251
1252	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1253		goto err_free_cpumask;
1254
1255	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1256		goto err_free_rcpumask;
1257
1258	init_completion(&policy->kobj_unregister);
1259	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1260				   cpufreq_global_kobject, "policy%u", cpu);
1261	if (ret) {
1262		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1263		/*
1264		 * The entire policy object will be freed below, but the extra
1265		 * memory allocated for the kobject name needs to be freed by
1266		 * releasing the kobject.
1267		 */
1268		kobject_put(&policy->kobj);
1269		goto err_free_real_cpus;
1270	}
1271
1272	freq_constraints_init(&policy->constraints);
1273
1274	policy->nb_min.notifier_call = cpufreq_notifier_min;
1275	policy->nb_max.notifier_call = cpufreq_notifier_max;
1276
1277	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1278				    &policy->nb_min);
1279	if (ret) {
1280		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1281			ret, cpu);
1282		goto err_kobj_remove;
1283	}
1284
1285	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1286				    &policy->nb_max);
1287	if (ret) {
1288		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1289			ret, cpu);
1290		goto err_min_qos_notifier;
1291	}
1292
1293	INIT_LIST_HEAD(&policy->policy_list);
1294	init_rwsem(&policy->rwsem);
1295	spin_lock_init(&policy->transition_lock);
1296	init_waitqueue_head(&policy->transition_wait);
 
1297	INIT_WORK(&policy->update, handle_update);
1298
1299	policy->cpu = cpu;
1300	return policy;
1301
1302err_min_qos_notifier:
1303	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1304				 &policy->nb_min);
1305err_kobj_remove:
1306	cpufreq_policy_put_kobj(policy);
1307err_free_real_cpus:
1308	free_cpumask_var(policy->real_cpus);
1309err_free_rcpumask:
1310	free_cpumask_var(policy->related_cpus);
1311err_free_cpumask:
1312	free_cpumask_var(policy->cpus);
1313err_free_policy:
1314	kfree(policy);
1315
1316	return NULL;
1317}
1318
1319static void cpufreq_policy_free(struct cpufreq_policy *policy)
1320{
1321	unsigned long flags;
1322	int cpu;
 
 
 
 
 
 
 
 
 
 
 
1323
1324	/*
1325	 * The callers must ensure the policy is inactive by now, to avoid any
1326	 * races with show()/store() callbacks.
 
1327	 */
1328	if (unlikely(!policy_is_inactive(policy)))
1329		pr_warn("%s: Freeing active policy\n", __func__);
 
 
 
 
 
 
 
1330
1331	/* Remove policy from list */
1332	write_lock_irqsave(&cpufreq_driver_lock, flags);
1333	list_del(&policy->policy_list);
1334
1335	for_each_cpu(cpu, policy->related_cpus)
1336		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1337	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1338
1339	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1340				 &policy->nb_max);
1341	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1342				 &policy->nb_min);
1343
1344	/* Cancel any pending policy->update work before freeing the policy. */
1345	cancel_work_sync(&policy->update);
1346
1347	if (policy->max_freq_req) {
1348		/*
1349		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1350		 * notification, since CPUFREQ_CREATE_POLICY notification was
1351		 * sent after adding max_freq_req earlier.
1352		 */
1353		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1354					     CPUFREQ_REMOVE_POLICY, policy);
1355		freq_qos_remove_request(policy->max_freq_req);
1356	}
1357
1358	freq_qos_remove_request(policy->min_freq_req);
1359	kfree(policy->min_freq_req);
1360
1361	cpufreq_policy_put_kobj(policy);
1362	free_cpumask_var(policy->real_cpus);
1363	free_cpumask_var(policy->related_cpus);
1364	free_cpumask_var(policy->cpus);
1365	kfree(policy);
1366}
1367
1368static int cpufreq_online(unsigned int cpu)
1369{
1370	struct cpufreq_policy *policy;
1371	bool new_policy;
1372	unsigned long flags;
1373	unsigned int j;
1374	int ret;
1375
1376	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1377
1378	/* Check if this CPU already has a policy to manage it */
1379	policy = per_cpu(cpufreq_cpu_data, cpu);
1380	if (policy) {
1381		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1382		if (!policy_is_inactive(policy))
1383			return cpufreq_add_policy_cpu(policy, cpu);
1384
1385		/* This is the only online CPU for the policy.  Start over. */
1386		new_policy = false;
1387		down_write(&policy->rwsem);
1388		policy->cpu = cpu;
1389		policy->governor = NULL;
 
1390	} else {
1391		new_policy = true;
1392		policy = cpufreq_policy_alloc(cpu);
1393		if (!policy)
1394			return -ENOMEM;
1395		down_write(&policy->rwsem);
1396	}
1397
1398	if (!new_policy && cpufreq_driver->online) {
1399		/* Recover policy->cpus using related_cpus */
1400		cpumask_copy(policy->cpus, policy->related_cpus);
1401
1402		ret = cpufreq_driver->online(policy);
1403		if (ret) {
1404			pr_debug("%s: %d: initialization failed\n", __func__,
1405				 __LINE__);
1406			goto out_exit_policy;
1407		}
1408	} else {
1409		cpumask_copy(policy->cpus, cpumask_of(cpu));
1410
1411		/*
1412		 * Call driver. From then on the cpufreq must be able
1413		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1414		 */
1415		ret = cpufreq_driver->init(policy);
1416		if (ret) {
1417			pr_debug("%s: %d: initialization failed\n", __func__,
1418				 __LINE__);
1419			goto out_free_policy;
1420		}
1421
1422		/*
1423		 * The initialization has succeeded and the policy is online.
1424		 * If there is a problem with its frequency table, take it
1425		 * offline and drop it.
1426		 */
1427		ret = cpufreq_table_validate_and_sort(policy);
1428		if (ret)
1429			goto out_offline_policy;
1430
 
1431		/* related_cpus should at least include policy->cpus. */
1432		cpumask_copy(policy->related_cpus, policy->cpus);
 
 
1433	}
1434
1435	/*
1436	 * affected cpus must always be the one, which are online. We aren't
1437	 * managing offline cpus here.
1438	 */
1439	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1440
1441	if (new_policy) {
1442		for_each_cpu(j, policy->related_cpus) {
1443			per_cpu(cpufreq_cpu_data, j) = policy;
1444			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1445		}
1446
1447		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1448					       GFP_KERNEL);
1449		if (!policy->min_freq_req) {
1450			ret = -ENOMEM;
1451			goto out_destroy_policy;
1452		}
1453
1454		ret = freq_qos_add_request(&policy->constraints,
1455					   policy->min_freq_req, FREQ_QOS_MIN,
1456					   FREQ_QOS_MIN_DEFAULT_VALUE);
1457		if (ret < 0) {
1458			/*
1459			 * So we don't call freq_qos_remove_request() for an
1460			 * uninitialized request.
1461			 */
1462			kfree(policy->min_freq_req);
1463			policy->min_freq_req = NULL;
1464			goto out_destroy_policy;
1465		}
1466
1467		/*
1468		 * This must be initialized right here to avoid calling
1469		 * freq_qos_remove_request() on uninitialized request in case
1470		 * of errors.
1471		 */
1472		policy->max_freq_req = policy->min_freq_req + 1;
1473
1474		ret = freq_qos_add_request(&policy->constraints,
1475					   policy->max_freq_req, FREQ_QOS_MAX,
1476					   FREQ_QOS_MAX_DEFAULT_VALUE);
1477		if (ret < 0) {
1478			policy->max_freq_req = NULL;
1479			goto out_destroy_policy;
1480		}
1481
1482		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1483				CPUFREQ_CREATE_POLICY, policy);
 
 
1484	}
1485
1486	if (cpufreq_driver->get && has_target()) {
1487		policy->cur = cpufreq_driver->get(policy->cpu);
1488		if (!policy->cur) {
1489			ret = -EIO;
1490			pr_err("%s: ->get() failed\n", __func__);
1491			goto out_destroy_policy;
1492		}
1493	}
1494
1495	/*
1496	 * Sometimes boot loaders set CPU frequency to a value outside of
1497	 * frequency table present with cpufreq core. In such cases CPU might be
1498	 * unstable if it has to run on that frequency for long duration of time
1499	 * and so its better to set it to a frequency which is specified in
1500	 * freq-table. This also makes cpufreq stats inconsistent as
1501	 * cpufreq-stats would fail to register because current frequency of CPU
1502	 * isn't found in freq-table.
1503	 *
1504	 * Because we don't want this change to effect boot process badly, we go
1505	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1506	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1507	 * is initialized to zero).
1508	 *
1509	 * We are passing target-freq as "policy->cur - 1" otherwise
1510	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1511	 * equal to target-freq.
1512	 */
1513	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1514	    && has_target()) {
1515		unsigned int old_freq = policy->cur;
1516
1517		/* Are we running at unknown frequency ? */
1518		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1519		if (ret == -EINVAL) {
1520			ret = __cpufreq_driver_target(policy, old_freq - 1,
1521						      CPUFREQ_RELATION_L);
 
 
 
1522
1523			/*
1524			 * Reaching here after boot in a few seconds may not
1525			 * mean that system will remain stable at "unknown"
1526			 * frequency for longer duration. Hence, a BUG_ON().
1527			 */
1528			BUG_ON(ret);
1529			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1530				__func__, policy->cpu, old_freq, policy->cur);
1531		}
1532	}
1533
 
 
 
1534	if (new_policy) {
1535		ret = cpufreq_add_dev_interface(policy);
1536		if (ret)
1537			goto out_destroy_policy;
1538
1539		cpufreq_stats_create_table(policy);
1540
1541		write_lock_irqsave(&cpufreq_driver_lock, flags);
1542		list_add(&policy->policy_list, &cpufreq_policy_list);
1543		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544
1545		/*
1546		 * Register with the energy model before
1547		 * sugov_eas_rebuild_sd() is called, which will result
1548		 * in rebuilding of the sched domains, which should only be done
1549		 * once the energy model is properly initialized for the policy
1550		 * first.
1551		 *
1552		 * Also, this should be called before the policy is registered
1553		 * with cooling framework.
1554		 */
1555		if (cpufreq_driver->register_em)
1556			cpufreq_driver->register_em(policy);
1557	}
1558
1559	ret = cpufreq_init_policy(policy);
1560	if (ret) {
1561		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1562		       __func__, cpu, ret);
1563		goto out_destroy_policy;
 
 
1564	}
1565
1566	up_write(&policy->rwsem);
1567
1568	kobject_uevent(&policy->kobj, KOBJ_ADD);
1569
1570	/* Callback for handling stuff after policy is ready */
1571	if (cpufreq_driver->ready)
1572		cpufreq_driver->ready(policy);
1573
1574	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1575		policy->cdev = of_cpufreq_cooling_register(policy);
1576
1577	pr_debug("initialization complete\n");
1578
1579	return 0;
1580
1581out_destroy_policy:
1582	for_each_cpu(j, policy->real_cpus)
1583		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1584
1585out_offline_policy:
1586	if (cpufreq_driver->offline)
1587		cpufreq_driver->offline(policy);
1588
1589out_exit_policy:
 
 
1590	if (cpufreq_driver->exit)
1591		cpufreq_driver->exit(policy);
1592
1593out_free_policy:
1594	cpumask_clear(policy->cpus);
1595	up_write(&policy->rwsem);
1596
1597	cpufreq_policy_free(policy);
1598	return ret;
1599}
1600
1601/**
1602 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1603 * @dev: CPU device.
1604 * @sif: Subsystem interface structure pointer (not used)
1605 */
1606static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1607{
1608	struct cpufreq_policy *policy;
1609	unsigned cpu = dev->id;
1610	int ret;
1611
1612	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1613
1614	if (cpu_online(cpu)) {
1615		ret = cpufreq_online(cpu);
1616		if (ret)
1617			return ret;
1618	}
 
 
 
 
1619
1620	/* Create sysfs link on CPU registration */
1621	policy = per_cpu(cpufreq_cpu_data, cpu);
1622	if (policy)
1623		add_cpu_dev_symlink(policy, cpu, dev);
1624
1625	return 0;
1626}
1627
1628static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1629{
 
1630	int ret;
1631
1632	if (has_target())
1633		cpufreq_stop_governor(policy);
 
 
 
 
 
 
 
 
 
 
 
 
1634
1635	cpumask_clear_cpu(cpu, policy->cpus);
1636
1637	if (!policy_is_inactive(policy)) {
1638		/* Nominate a new CPU if necessary. */
1639		if (cpu == policy->cpu)
1640			policy->cpu = cpumask_any(policy->cpus);
 
 
 
 
 
 
1641
1642		/* Start the governor again for the active policy. */
 
1643		if (has_target()) {
1644			ret = cpufreq_start_governor(policy);
1645			if (ret)
1646				pr_err("%s: Failed to start governor\n", __func__);
1647		}
1648
1649		return;
1650	}
1651
1652	if (has_target())
1653		strscpy(policy->last_governor, policy->governor->name,
1654			CPUFREQ_NAME_LEN);
1655	else
1656		policy->last_policy = policy->policy;
1657
1658	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1659		cpufreq_cooling_unregister(policy->cdev);
1660		policy->cdev = NULL;
 
 
1661	}
1662
1663	if (has_target())
1664		cpufreq_exit_governor(policy);
1665
1666	/*
1667	 * Perform the ->offline() during light-weight tear-down, as
1668	 * that allows fast recovery when the CPU comes back.
 
1669	 */
1670	if (cpufreq_driver->offline) {
1671		cpufreq_driver->offline(policy);
1672	} else if (cpufreq_driver->exit) {
1673		cpufreq_driver->exit(policy);
1674		policy->freq_table = NULL;
1675	}
1676}
1677
1678static int cpufreq_offline(unsigned int cpu)
1679{
1680	struct cpufreq_policy *policy;
1681
1682	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1683
1684	policy = cpufreq_cpu_get_raw(cpu);
1685	if (!policy) {
1686		pr_debug("%s: No cpu_data found\n", __func__);
1687		return 0;
1688	}
1689
1690	down_write(&policy->rwsem);
1691
1692	__cpufreq_offline(cpu, policy);
1693
 
1694	up_write(&policy->rwsem);
1695	return 0;
1696}
1697
1698/*
1699 * cpufreq_remove_dev - remove a CPU device
1700 *
1701 * Removes the cpufreq interface for a CPU device.
1702 */
1703static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1704{
1705	unsigned int cpu = dev->id;
1706	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1707
1708	if (!policy)
1709		return;
1710
1711	down_write(&policy->rwsem);
1712
1713	if (cpu_online(cpu))
1714		__cpufreq_offline(cpu, policy);
1715
1716	remove_cpu_dev_symlink(policy, cpu, dev);
1717
1718	if (!cpumask_empty(policy->real_cpus)) {
1719		up_write(&policy->rwsem);
1720		return;
1721	}
1722
1723	/* We did light-weight exit earlier, do full tear down now */
1724	if (cpufreq_driver->offline)
1725		cpufreq_driver->exit(policy);
1726
1727	up_write(&policy->rwsem);
1728
1729	cpufreq_policy_free(policy);
 
1730}
1731
1732/**
1733 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1734 * @policy: Policy managing CPUs.
1735 * @new_freq: New CPU frequency.
 
1736 *
1737 * Adjust to the current frequency first and clean up later by either calling
1738 * cpufreq_update_policy(), or scheduling handle_update().
1739 */
1740static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1741				unsigned int new_freq)
1742{
1743	struct cpufreq_freqs freqs;
1744
1745	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1746		 policy->cur, new_freq);
1747
1748	freqs.old = policy->cur;
1749	freqs.new = new_freq;
1750
1751	cpufreq_freq_transition_begin(policy, &freqs);
1752	cpufreq_freq_transition_end(policy, &freqs, 0);
1753}
1754
1755static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1756{
1757	unsigned int new_freq;
1758
1759	new_freq = cpufreq_driver->get(policy->cpu);
1760	if (!new_freq)
1761		return 0;
1762
1763	/*
1764	 * If fast frequency switching is used with the given policy, the check
1765	 * against policy->cur is pointless, so skip it in that case.
1766	 */
1767	if (policy->fast_switch_enabled || !has_target())
1768		return new_freq;
1769
1770	if (policy->cur != new_freq) {
1771		/*
1772		 * For some platforms, the frequency returned by hardware may be
1773		 * slightly different from what is provided in the frequency
1774		 * table, for example hardware may return 499 MHz instead of 500
1775		 * MHz. In such cases it is better to avoid getting into
1776		 * unnecessary frequency updates.
1777		 */
1778		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1779			return policy->cur;
1780
1781		cpufreq_out_of_sync(policy, new_freq);
1782		if (update)
1783			schedule_work(&policy->update);
1784	}
1785
1786	return new_freq;
1787}
1788
1789/**
1790 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1791 * @cpu: CPU number
1792 *
1793 * This is the last known freq, without actually getting it from the driver.
1794 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1795 */
1796unsigned int cpufreq_quick_get(unsigned int cpu)
1797{
1798	struct cpufreq_policy *policy;
1799	unsigned int ret_freq = 0;
1800	unsigned long flags;
1801
1802	read_lock_irqsave(&cpufreq_driver_lock, flags);
1803
1804	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1805		ret_freq = cpufreq_driver->get(cpu);
1806		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1807		return ret_freq;
1808	}
1809
1810	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1811
1812	policy = cpufreq_cpu_get(cpu);
1813	if (policy) {
1814		ret_freq = policy->cur;
1815		cpufreq_cpu_put(policy);
1816	}
1817
1818	return ret_freq;
1819}
1820EXPORT_SYMBOL(cpufreq_quick_get);
1821
1822/**
1823 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1824 * @cpu: CPU number
1825 *
1826 * Just return the max possible frequency for a given CPU.
1827 */
1828unsigned int cpufreq_quick_get_max(unsigned int cpu)
1829{
1830	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831	unsigned int ret_freq = 0;
1832
1833	if (policy) {
1834		ret_freq = policy->max;
1835		cpufreq_cpu_put(policy);
1836	}
1837
1838	return ret_freq;
1839}
1840EXPORT_SYMBOL(cpufreq_quick_get_max);
1841
1842/**
1843 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1844 * @cpu: CPU number
1845 *
1846 * The default return value is the max_freq field of cpuinfo.
1847 */
1848__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1849{
1850	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1851	unsigned int ret_freq = 0;
1852
1853	if (policy) {
1854		ret_freq = policy->cpuinfo.max_freq;
1855		cpufreq_cpu_put(policy);
1856	}
1857
1858	return ret_freq;
1859}
1860EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1861
1862static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1863{
1864	if (unlikely(policy_is_inactive(policy)))
1865		return 0;
1866
1867	return cpufreq_verify_current_freq(policy, true);
 
 
 
 
 
 
 
 
 
 
1868}
1869
1870/**
1871 * cpufreq_get - get the current CPU frequency (in kHz)
1872 * @cpu: CPU number
1873 *
1874 * Get the CPU current (static) CPU frequency
1875 */
1876unsigned int cpufreq_get(unsigned int cpu)
1877{
1878	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1879	unsigned int ret_freq = 0;
1880
1881	if (policy) {
1882		down_read(&policy->rwsem);
1883		if (cpufreq_driver->get)
1884			ret_freq = __cpufreq_get(policy);
1885		up_read(&policy->rwsem);
1886
1887		cpufreq_cpu_put(policy);
1888	}
1889
1890	return ret_freq;
1891}
1892EXPORT_SYMBOL(cpufreq_get);
1893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894static struct subsys_interface cpufreq_interface = {
1895	.name		= "cpufreq",
1896	.subsys		= &cpu_subsys,
1897	.add_dev	= cpufreq_add_dev,
1898	.remove_dev	= cpufreq_remove_dev,
1899};
1900
1901/*
1902 * In case platform wants some specific frequency to be configured
1903 * during suspend..
1904 */
1905int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1906{
1907	int ret;
1908
1909	if (!policy->suspend_freq) {
1910		pr_debug("%s: suspend_freq not defined\n", __func__);
1911		return 0;
1912	}
1913
1914	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1915			policy->suspend_freq);
1916
1917	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1918			CPUFREQ_RELATION_H);
1919	if (ret)
1920		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1921				__func__, policy->suspend_freq, ret);
1922
1923	return ret;
1924}
1925EXPORT_SYMBOL(cpufreq_generic_suspend);
1926
1927/**
1928 * cpufreq_suspend() - Suspend CPUFreq governors.
1929 *
1930 * Called during system wide Suspend/Hibernate cycles for suspending governors
1931 * as some platforms can't change frequency after this point in suspend cycle.
1932 * Because some of the devices (like: i2c, regulators, etc) they use for
1933 * changing frequency are suspended quickly after this point.
1934 */
1935void cpufreq_suspend(void)
1936{
1937	struct cpufreq_policy *policy;
 
1938
1939	if (!cpufreq_driver)
1940		return;
1941
1942	if (!has_target() && !cpufreq_driver->suspend)
1943		goto suspend;
1944
1945	pr_debug("%s: Suspending Governors\n", __func__);
1946
1947	for_each_active_policy(policy) {
1948		if (has_target()) {
1949			down_write(&policy->rwsem);
1950			cpufreq_stop_governor(policy);
1951			up_write(&policy->rwsem);
 
 
 
 
 
 
1952		}
1953
1954		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1955			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1956				cpufreq_driver->name);
1957	}
1958
1959suspend:
1960	cpufreq_suspended = true;
1961}
1962
1963/**
1964 * cpufreq_resume() - Resume CPUFreq governors.
1965 *
1966 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1967 * are suspended with cpufreq_suspend().
1968 */
1969void cpufreq_resume(void)
1970{
1971	struct cpufreq_policy *policy;
1972	int ret;
1973
1974	if (!cpufreq_driver)
1975		return;
1976
1977	if (unlikely(!cpufreq_suspended))
1978		return;
1979
1980	cpufreq_suspended = false;
1981
1982	if (!has_target() && !cpufreq_driver->resume)
1983		return;
1984
1985	pr_debug("%s: Resuming Governors\n", __func__);
1986
1987	for_each_active_policy(policy) {
1988		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1989			pr_err("%s: Failed to resume driver: %s\n", __func__,
1990				cpufreq_driver->name);
1991		} else if (has_target()) {
1992			down_write(&policy->rwsem);
1993			ret = cpufreq_start_governor(policy);
1994			up_write(&policy->rwsem);
1995
1996			if (ret)
1997				pr_err("%s: Failed to start governor for CPU%u's policy\n",
1998				       __func__, policy->cpu);
1999		}
2000	}
2001}
2002
2003/**
2004 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2005 * @flags: Flags to test against the current cpufreq driver's flags.
2006 *
2007 * Assumes that the driver is there, so callers must ensure that this is the
2008 * case.
2009 */
2010bool cpufreq_driver_test_flags(u16 flags)
2011{
2012	return !!(cpufreq_driver->flags & flags);
2013}
2014
2015/**
2016 * cpufreq_get_current_driver - Return the current driver's name.
2017 *
2018 * Return the name string of the currently registered cpufreq driver or NULL if
2019 * none.
2020 */
2021const char *cpufreq_get_current_driver(void)
2022{
2023	if (cpufreq_driver)
2024		return cpufreq_driver->name;
2025
2026	return NULL;
2027}
2028EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2029
2030/**
2031 * cpufreq_get_driver_data - Return current driver data.
2032 *
2033 * Return the private data of the currently registered cpufreq driver, or NULL
2034 * if no cpufreq driver has been registered.
2035 */
2036void *cpufreq_get_driver_data(void)
2037{
2038	if (cpufreq_driver)
2039		return cpufreq_driver->driver_data;
2040
2041	return NULL;
2042}
2043EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2044
2045/*********************************************************************
2046 *                     NOTIFIER LISTS INTERFACE                      *
2047 *********************************************************************/
2048
2049/**
2050 * cpufreq_register_notifier - Register a notifier with cpufreq.
2051 * @nb: notifier function to register.
2052 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2053 *
2054 * Add a notifier to one of two lists: either a list of notifiers that run on
2055 * clock rate changes (once before and once after every transition), or a list
2056 * of notifiers that ron on cpufreq policy changes.
 
2057 *
2058 * This function may sleep and it has the same return values as
2059 * blocking_notifier_chain_register().
2060 */
2061int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2062{
2063	int ret;
2064
2065	if (cpufreq_disabled())
2066		return -EINVAL;
2067
 
 
2068	switch (list) {
2069	case CPUFREQ_TRANSITION_NOTIFIER:
2070		mutex_lock(&cpufreq_fast_switch_lock);
2071
2072		if (cpufreq_fast_switch_count > 0) {
2073			mutex_unlock(&cpufreq_fast_switch_lock);
2074			return -EBUSY;
2075		}
2076		ret = srcu_notifier_chain_register(
2077				&cpufreq_transition_notifier_list, nb);
2078		if (!ret)
2079			cpufreq_fast_switch_count--;
2080
2081		mutex_unlock(&cpufreq_fast_switch_lock);
2082		break;
2083	case CPUFREQ_POLICY_NOTIFIER:
2084		ret = blocking_notifier_chain_register(
2085				&cpufreq_policy_notifier_list, nb);
2086		break;
2087	default:
2088		ret = -EINVAL;
2089	}
2090
2091	return ret;
2092}
2093EXPORT_SYMBOL(cpufreq_register_notifier);
2094
2095/**
2096 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2097 * @nb: notifier block to be unregistered.
2098 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2099 *
2100 * Remove a notifier from one of the cpufreq notifier lists.
2101 *
2102 * This function may sleep and it has the same return values as
2103 * blocking_notifier_chain_unregister().
2104 */
2105int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2106{
2107	int ret;
2108
2109	if (cpufreq_disabled())
2110		return -EINVAL;
2111
2112	switch (list) {
2113	case CPUFREQ_TRANSITION_NOTIFIER:
2114		mutex_lock(&cpufreq_fast_switch_lock);
2115
2116		ret = srcu_notifier_chain_unregister(
2117				&cpufreq_transition_notifier_list, nb);
2118		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2119			cpufreq_fast_switch_count++;
2120
2121		mutex_unlock(&cpufreq_fast_switch_lock);
2122		break;
2123	case CPUFREQ_POLICY_NOTIFIER:
2124		ret = blocking_notifier_chain_unregister(
2125				&cpufreq_policy_notifier_list, nb);
2126		break;
2127	default:
2128		ret = -EINVAL;
2129	}
2130
2131	return ret;
2132}
2133EXPORT_SYMBOL(cpufreq_unregister_notifier);
2134
2135
2136/*********************************************************************
2137 *                              GOVERNORS                            *
2138 *********************************************************************/
2139
2140/**
2141 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2142 * @policy: cpufreq policy to switch the frequency for.
2143 * @target_freq: New frequency to set (may be approximate).
2144 *
2145 * Carry out a fast frequency switch without sleeping.
2146 *
2147 * The driver's ->fast_switch() callback invoked by this function must be
2148 * suitable for being called from within RCU-sched read-side critical sections
2149 * and it is expected to select the minimum available frequency greater than or
2150 * equal to @target_freq (CPUFREQ_RELATION_L).
2151 *
2152 * This function must not be called if policy->fast_switch_enabled is unset.
2153 *
2154 * Governors calling this function must guarantee that it will never be invoked
2155 * twice in parallel for the same policy and that it will never be called in
2156 * parallel with either ->target() or ->target_index() for the same policy.
2157 *
2158 * Returns the actual frequency set for the CPU.
2159 *
2160 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2161 * error condition, the hardware configuration must be preserved.
2162 */
2163unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2164					unsigned int target_freq)
2165{
2166	unsigned int freq;
2167	int cpu;
2168
2169	target_freq = clamp_val(target_freq, policy->min, policy->max);
2170	freq = cpufreq_driver->fast_switch(policy, target_freq);
2171
2172	if (!freq)
2173		return 0;
2174
2175	policy->cur = freq;
2176	arch_set_freq_scale(policy->related_cpus, freq,
2177			    arch_scale_freq_ref(policy->cpu));
2178	cpufreq_stats_record_transition(policy, freq);
2179
2180	if (trace_cpu_frequency_enabled()) {
2181		for_each_cpu(cpu, policy->cpus)
2182			trace_cpu_frequency(freq, cpu);
2183	}
2184
2185	return freq;
2186}
2187EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2188
2189/**
2190 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2191 * @cpu: Target CPU.
2192 * @min_perf: Minimum (required) performance level (units of @capacity).
2193 * @target_perf: Target (desired) performance level (units of @capacity).
2194 * @capacity: Capacity of the target CPU.
2195 *
2196 * Carry out a fast performance level switch of @cpu without sleeping.
2197 *
2198 * The driver's ->adjust_perf() callback invoked by this function must be
2199 * suitable for being called from within RCU-sched read-side critical sections
2200 * and it is expected to select a suitable performance level equal to or above
2201 * @min_perf and preferably equal to or below @target_perf.
2202 *
2203 * This function must not be called if policy->fast_switch_enabled is unset.
2204 *
2205 * Governors calling this function must guarantee that it will never be invoked
2206 * twice in parallel for the same CPU and that it will never be called in
2207 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2208 * the same CPU.
2209 */
2210void cpufreq_driver_adjust_perf(unsigned int cpu,
2211				 unsigned long min_perf,
2212				 unsigned long target_perf,
2213				 unsigned long capacity)
2214{
2215	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2216}
2217
2218/**
2219 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2220 *
2221 * Return 'true' if the ->adjust_perf callback is present for the
2222 * current driver or 'false' otherwise.
2223 */
2224bool cpufreq_driver_has_adjust_perf(void)
2225{
2226	return !!cpufreq_driver->adjust_perf;
2227}
2228
2229/* Must set freqs->new to intermediate frequency */
2230static int __target_intermediate(struct cpufreq_policy *policy,
2231				 struct cpufreq_freqs *freqs, int index)
2232{
2233	int ret;
2234
2235	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2236
2237	/* We don't need to switch to intermediate freq */
2238	if (!freqs->new)
2239		return 0;
2240
2241	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2242		 __func__, policy->cpu, freqs->old, freqs->new);
2243
2244	cpufreq_freq_transition_begin(policy, freqs);
2245	ret = cpufreq_driver->target_intermediate(policy, index);
2246	cpufreq_freq_transition_end(policy, freqs, ret);
2247
2248	if (ret)
2249		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2250		       __func__, ret);
2251
2252	return ret;
2253}
2254
2255static int __target_index(struct cpufreq_policy *policy, int index)
 
2256{
2257	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2258	unsigned int restore_freq, intermediate_freq = 0;
2259	unsigned int newfreq = policy->freq_table[index].frequency;
2260	int retval = -EINVAL;
2261	bool notify;
2262
2263	if (newfreq == policy->cur)
2264		return 0;
2265
2266	/* Save last value to restore later on errors */
2267	restore_freq = policy->cur;
2268
2269	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2270	if (notify) {
2271		/* Handle switching to intermediate frequency */
2272		if (cpufreq_driver->get_intermediate) {
2273			retval = __target_intermediate(policy, &freqs, index);
2274			if (retval)
2275				return retval;
2276
2277			intermediate_freq = freqs.new;
2278			/* Set old freq to intermediate */
2279			if (intermediate_freq)
2280				freqs.old = freqs.new;
2281		}
2282
2283		freqs.new = newfreq;
2284		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2285			 __func__, policy->cpu, freqs.old, freqs.new);
2286
2287		cpufreq_freq_transition_begin(policy, &freqs);
2288	}
2289
2290	retval = cpufreq_driver->target_index(policy, index);
2291	if (retval)
2292		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2293		       retval);
2294
2295	if (notify) {
2296		cpufreq_freq_transition_end(policy, &freqs, retval);
2297
2298		/*
2299		 * Failed after setting to intermediate freq? Driver should have
2300		 * reverted back to initial frequency and so should we. Check
2301		 * here for intermediate_freq instead of get_intermediate, in
2302		 * case we haven't switched to intermediate freq at all.
2303		 */
2304		if (unlikely(retval && intermediate_freq)) {
2305			freqs.old = intermediate_freq;
2306			freqs.new = restore_freq;
2307			cpufreq_freq_transition_begin(policy, &freqs);
2308			cpufreq_freq_transition_end(policy, &freqs, 0);
2309		}
2310	}
2311
2312	return retval;
2313}
2314
2315int __cpufreq_driver_target(struct cpufreq_policy *policy,
2316			    unsigned int target_freq,
2317			    unsigned int relation)
2318{
2319	unsigned int old_target_freq = target_freq;
 
 
2320
2321	if (cpufreq_disabled())
2322		return -ENODEV;
2323
2324	target_freq = __resolve_freq(policy, target_freq, relation);
 
 
 
 
2325
2326	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2327		 policy->cpu, target_freq, relation, old_target_freq);
2328
2329	/*
2330	 * This might look like a redundant call as we are checking it again
2331	 * after finding index. But it is left intentionally for cases where
2332	 * exactly same freq is called again and so we can save on few function
2333	 * calls.
2334	 */
2335	if (target_freq == policy->cur &&
2336	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2337		return 0;
2338
2339	if (cpufreq_driver->target) {
2340		/*
2341		 * If the driver hasn't setup a single inefficient frequency,
2342		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2343		 */
2344		if (!policy->efficiencies_available)
2345			relation &= ~CPUFREQ_RELATION_E;
2346
 
2347		return cpufreq_driver->target(policy, target_freq, relation);
2348	}
2349
2350	if (!cpufreq_driver->target_index)
2351		return -EINVAL;
2352
2353	return __target_index(policy, policy->cached_resolved_idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2354}
2355EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2356
2357int cpufreq_driver_target(struct cpufreq_policy *policy,
2358			  unsigned int target_freq,
2359			  unsigned int relation)
2360{
2361	int ret;
2362
2363	down_write(&policy->rwsem);
2364
2365	ret = __cpufreq_driver_target(policy, target_freq, relation);
2366
2367	up_write(&policy->rwsem);
2368
2369	return ret;
2370}
2371EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2372
2373__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2374{
2375	return NULL;
2376}
2377
2378static int cpufreq_init_governor(struct cpufreq_policy *policy)
2379{
2380	int ret;
2381
2382	/* Don't start any governor operations if we are entering suspend */
2383	if (cpufreq_suspended)
2384		return 0;
2385	/*
2386	 * Governor might not be initiated here if ACPI _PPC changed
2387	 * notification happened, so check it.
2388	 */
2389	if (!policy->governor)
2390		return -EINVAL;
2391
2392	/* Platform doesn't want dynamic frequency switching ? */
2393	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2394	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2395		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2396
2397		if (gov) {
2398			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2399				policy->governor->name, gov->name);
2400			policy->governor = gov;
2401		} else {
2402			return -EINVAL;
2403		}
2404	}
2405
2406	if (!try_module_get(policy->governor->owner))
2407		return -EINVAL;
2408
2409	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2410
2411	if (policy->governor->init) {
2412		ret = policy->governor->init(policy);
2413		if (ret) {
2414			module_put(policy->governor->owner);
2415			return ret;
2416		}
2417	}
2418
2419	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2420
2421	return 0;
2422}
2423
2424static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2425{
2426	if (cpufreq_suspended || !policy->governor)
2427		return;
2428
2429	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2430
2431	if (policy->governor->exit)
2432		policy->governor->exit(policy);
2433
2434	module_put(policy->governor->owner);
2435}
2436
2437int cpufreq_start_governor(struct cpufreq_policy *policy)
2438{
2439	int ret;
2440
2441	if (cpufreq_suspended)
2442		return 0;
2443
2444	if (!policy->governor)
2445		return -EINVAL;
2446
2447	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2448
2449	if (cpufreq_driver->get)
2450		cpufreq_verify_current_freq(policy, false);
2451
2452	if (policy->governor->start) {
2453		ret = policy->governor->start(policy);
2454		if (ret)
2455			return ret;
 
2456	}
2457
2458	if (policy->governor->limits)
2459		policy->governor->limits(policy);
 
2460
2461	return 0;
2462}
2463
2464void cpufreq_stop_governor(struct cpufreq_policy *policy)
2465{
2466	if (cpufreq_suspended || !policy->governor)
2467		return;
2468
2469	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2470
2471	if (policy->governor->stop)
2472		policy->governor->stop(policy);
2473}
2474
2475static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2476{
2477	if (cpufreq_suspended || !policy->governor)
2478		return;
2479
2480	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
 
2481
2482	if (policy->governor->limits)
2483		policy->governor->limits(policy);
2484}
2485
2486int cpufreq_register_governor(struct cpufreq_governor *governor)
2487{
2488	int err;
2489
2490	if (!governor)
2491		return -EINVAL;
2492
2493	if (cpufreq_disabled())
2494		return -ENODEV;
2495
2496	mutex_lock(&cpufreq_governor_mutex);
2497
 
2498	err = -EBUSY;
2499	if (!find_governor(governor->name)) {
2500		err = 0;
2501		list_add(&governor->governor_list, &cpufreq_governor_list);
2502	}
2503
2504	mutex_unlock(&cpufreq_governor_mutex);
2505	return err;
2506}
2507EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2508
2509void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2510{
2511	struct cpufreq_policy *policy;
2512	unsigned long flags;
2513
2514	if (!governor)
2515		return;
2516
2517	if (cpufreq_disabled())
2518		return;
2519
2520	/* clear last_governor for all inactive policies */
2521	read_lock_irqsave(&cpufreq_driver_lock, flags);
2522	for_each_inactive_policy(policy) {
2523		if (!strcmp(policy->last_governor, governor->name)) {
2524			policy->governor = NULL;
2525			strcpy(policy->last_governor, "\0");
2526		}
2527	}
2528	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2529
2530	mutex_lock(&cpufreq_governor_mutex);
2531	list_del(&governor->governor_list);
2532	mutex_unlock(&cpufreq_governor_mutex);
 
2533}
2534EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2535
2536
2537/*********************************************************************
2538 *                          POLICY INTERFACE                         *
2539 *********************************************************************/
2540
2541/**
2542 * cpufreq_get_policy - get the current cpufreq_policy
2543 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2544 *	is written
2545 * @cpu: CPU to find the policy for
2546 *
2547 * Reads the current cpufreq policy.
2548 */
2549int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2550{
2551	struct cpufreq_policy *cpu_policy;
2552	if (!policy)
2553		return -EINVAL;
2554
2555	cpu_policy = cpufreq_cpu_get(cpu);
2556	if (!cpu_policy)
2557		return -EINVAL;
2558
2559	memcpy(policy, cpu_policy, sizeof(*policy));
2560
2561	cpufreq_cpu_put(cpu_policy);
2562	return 0;
2563}
2564EXPORT_SYMBOL(cpufreq_get_policy);
2565
2566/**
2567 * cpufreq_set_policy - Modify cpufreq policy parameters.
2568 * @policy: Policy object to modify.
2569 * @new_gov: Policy governor pointer.
2570 * @new_pol: Policy value (for drivers with built-in governors).
2571 *
2572 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2573 * limits to be set for the policy, update @policy with the verified limits
2574 * values and either invoke the driver's ->setpolicy() callback (if present) or
2575 * carry out a governor update for @policy.  That is, run the current governor's
2576 * ->limits() callback (if @new_gov points to the same object as the one in
2577 * @policy) or replace the governor for @policy with @new_gov.
2578 *
2579 * The cpuinfo part of @policy is not updated by this function.
2580 */
2581static int cpufreq_set_policy(struct cpufreq_policy *policy,
2582			      struct cpufreq_governor *new_gov,
2583			      unsigned int new_pol)
2584{
2585	struct cpufreq_policy_data new_data;
2586	struct cpufreq_governor *old_gov;
2587	int ret;
2588
2589	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2590	new_data.freq_table = policy->freq_table;
2591	new_data.cpu = policy->cpu;
2592	/*
2593	 * PM QoS framework collects all the requests from users and provide us
2594	 * the final aggregated value here.
2595	 */
2596	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2597	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2598
2599	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2600		 new_data.cpu, new_data.min, new_data.max);
 
 
2601
2602	/*
2603	 * Verify that the CPU speed can be set within these limits and make sure
2604	 * that min <= max.
2605	 */
2606	ret = cpufreq_driver->verify(&new_data);
 
 
 
 
2607	if (ret)
2608		return ret;
2609
 
 
 
 
2610	/*
2611	 * Resolve policy min/max to available frequencies. It ensures
2612	 * no frequency resolution will neither overshoot the requested maximum
2613	 * nor undershoot the requested minimum.
2614	 */
2615	policy->min = new_data.min;
2616	policy->max = new_data.max;
2617	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2618	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2619	trace_cpu_frequency_limits(policy);
 
 
2620
2621	policy->cached_target_freq = UINT_MAX;
 
2622
2623	pr_debug("new min and max freqs are %u - %u kHz\n",
2624		 policy->min, policy->max);
2625
2626	if (cpufreq_driver->setpolicy) {
2627		policy->policy = new_pol;
2628		pr_debug("setting range\n");
2629		return cpufreq_driver->setpolicy(policy);
2630	}
2631
2632	if (new_gov == policy->governor) {
2633		pr_debug("governor limits update\n");
2634		cpufreq_governor_limits(policy);
2635		return 0;
2636	}
2637
2638	pr_debug("governor switch\n");
2639
2640	/* save old, working values */
2641	old_gov = policy->governor;
2642	/* end old governor */
2643	if (old_gov) {
2644		cpufreq_stop_governor(policy);
2645		cpufreq_exit_governor(policy);
 
 
 
 
 
 
 
 
 
 
 
 
2646	}
2647
2648	/* start new governor */
2649	policy->governor = new_gov;
2650	ret = cpufreq_init_governor(policy);
2651	if (!ret) {
2652		ret = cpufreq_start_governor(policy);
2653		if (!ret) {
2654			pr_debug("governor change\n");
2655			return 0;
2656		}
2657		cpufreq_exit_governor(policy);
2658	}
2659
2660	/* new governor failed, so re-start old one */
2661	pr_debug("starting governor %s failed\n", policy->governor->name);
2662	if (old_gov) {
2663		policy->governor = old_gov;
2664		if (cpufreq_init_governor(policy))
2665			policy->governor = NULL;
2666		else
2667			cpufreq_start_governor(policy);
2668	}
2669
2670	return ret;
2671}
2672
2673/**
2674 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2675 * @cpu: CPU to re-evaluate the policy for.
2676 *
2677 * Update the current frequency for the cpufreq policy of @cpu and use
2678 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2679 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2680 * for the policy in question, among other things.
2681 */
2682void cpufreq_update_policy(unsigned int cpu)
2683{
2684	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
 
 
2685
2686	if (!policy)
2687		return;
 
 
 
 
 
 
 
2688
2689	/*
2690	 * BIOS might change freq behind our back
2691	 * -> ask driver for current freq and notify governors about a change
2692	 */
2693	if (cpufreq_driver->get && has_target() &&
2694	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2695		goto unlock;
 
 
 
 
2696
2697	refresh_frequency_limits(policy);
2698
2699unlock:
2700	cpufreq_cpu_release(policy);
 
 
 
2701}
2702EXPORT_SYMBOL(cpufreq_update_policy);
2703
2704/**
2705 * cpufreq_update_limits - Update policy limits for a given CPU.
2706 * @cpu: CPU to update the policy limits for.
2707 *
2708 * Invoke the driver's ->update_limits callback if present or call
2709 * cpufreq_update_policy() for @cpu.
2710 */
2711void cpufreq_update_limits(unsigned int cpu)
2712{
2713	if (cpufreq_driver->update_limits)
2714		cpufreq_driver->update_limits(cpu);
2715	else
2716		cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
2717}
2718EXPORT_SYMBOL_GPL(cpufreq_update_limits);
 
 
 
2719
2720/*********************************************************************
2721 *               BOOST						     *
2722 *********************************************************************/
2723static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2724{
2725	int ret;
 
 
2726
2727	if (!policy->freq_table)
2728		return -ENXIO;
 
 
 
 
 
 
 
 
2729
2730	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2731	if (ret) {
2732		pr_err("%s: Policy frequency update failed\n", __func__);
2733		return ret;
 
2734	}
2735
2736	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2737	if (ret < 0)
2738		return ret;
2739
2740	return 0;
2741}
2742
2743int cpufreq_boost_trigger_state(int state)
2744{
2745	struct cpufreq_policy *policy;
2746	unsigned long flags;
2747	int ret = 0;
2748
2749	if (cpufreq_driver->boost_enabled == state)
2750		return 0;
2751
2752	write_lock_irqsave(&cpufreq_driver_lock, flags);
2753	cpufreq_driver->boost_enabled = state;
2754	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755
2756	cpus_read_lock();
2757	for_each_active_policy(policy) {
2758		ret = cpufreq_driver->set_boost(policy, state);
2759		if (ret)
2760			goto err_reset_state;
2761
2762		policy->boost_enabled = state;
 
2763	}
2764	cpus_read_unlock();
2765
2766	return 0;
2767
2768err_reset_state:
2769	cpus_read_unlock();
2770
2771	write_lock_irqsave(&cpufreq_driver_lock, flags);
2772	cpufreq_driver->boost_enabled = !state;
2773	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2774
2775	pr_err("%s: Cannot %s BOOST\n",
2776	       __func__, state ? "enable" : "disable");
2777
2778	return ret;
2779}
2780
2781static bool cpufreq_boost_supported(void)
2782{
2783	return cpufreq_driver->set_boost;
2784}
2785
2786static int create_boost_sysfs_file(void)
2787{
2788	int ret;
2789
2790	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2791	if (ret)
2792		pr_err("%s: cannot register global BOOST sysfs file\n",
2793		       __func__);
2794
2795	return ret;
2796}
2797
2798static void remove_boost_sysfs_file(void)
2799{
2800	if (cpufreq_boost_supported())
2801		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2802}
2803
2804int cpufreq_enable_boost_support(void)
2805{
2806	if (!cpufreq_driver)
2807		return -EINVAL;
2808
2809	if (cpufreq_boost_supported())
2810		return 0;
2811
2812	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2813
2814	/* This will get removed on driver unregister */
2815	return create_boost_sysfs_file();
2816}
2817EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2818
2819int cpufreq_boost_enabled(void)
2820{
2821	return cpufreq_driver->boost_enabled;
2822}
2823EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2824
2825/*********************************************************************
2826 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2827 *********************************************************************/
2828static enum cpuhp_state hp_online;
2829
2830static int cpuhp_cpufreq_online(unsigned int cpu)
2831{
2832	cpufreq_online(cpu);
2833
2834	return 0;
2835}
2836
2837static int cpuhp_cpufreq_offline(unsigned int cpu)
2838{
2839	cpufreq_offline(cpu);
2840
2841	return 0;
2842}
2843
2844/**
2845 * cpufreq_register_driver - register a CPU Frequency driver
2846 * @driver_data: A struct cpufreq_driver containing the values#
2847 * submitted by the CPU Frequency driver.
2848 *
2849 * Registers a CPU Frequency driver to this core code. This code
2850 * returns zero on success, -EEXIST when another driver got here first
2851 * (and isn't unregistered in the meantime).
2852 *
2853 */
2854int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2855{
2856	unsigned long flags;
2857	int ret;
2858
2859	if (cpufreq_disabled())
2860		return -ENODEV;
2861
2862	/*
2863	 * The cpufreq core depends heavily on the availability of device
2864	 * structure, make sure they are available before proceeding further.
2865	 */
2866	if (!get_cpu_device(0))
2867		return -EPROBE_DEFER;
2868
2869	if (!driver_data || !driver_data->verify || !driver_data->init ||
2870	    !(driver_data->setpolicy || driver_data->target_index ||
2871		    driver_data->target) ||
2872	     (driver_data->setpolicy && (driver_data->target_index ||
2873		    driver_data->target)) ||
2874	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2875	     (!driver_data->online != !driver_data->offline) ||
2876		 (driver_data->adjust_perf && !driver_data->fast_switch))
2877		return -EINVAL;
2878
2879	pr_debug("trying to register driver %s\n", driver_data->name);
2880
2881	/* Protect against concurrent CPU online/offline. */
2882	cpus_read_lock();
2883
2884	write_lock_irqsave(&cpufreq_driver_lock, flags);
2885	if (cpufreq_driver) {
2886		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2887		ret = -EEXIST;
2888		goto out;
2889	}
2890	cpufreq_driver = driver_data;
2891	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2892
2893	/*
2894	 * Mark support for the scheduler's frequency invariance engine for
2895	 * drivers that implement target(), target_index() or fast_switch().
2896	 */
2897	if (!cpufreq_driver->setpolicy) {
2898		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2899		pr_debug("supports frequency invariance");
2900	}
2901
2902	if (driver_data->setpolicy)
2903		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2904
2905	if (cpufreq_boost_supported()) {
2906		ret = create_boost_sysfs_file();
2907		if (ret)
2908			goto err_null_driver;
2909	}
2910
2911	ret = subsys_interface_register(&cpufreq_interface);
2912	if (ret)
2913		goto err_boost_unreg;
2914
2915	if (unlikely(list_empty(&cpufreq_policy_list))) {
 
2916		/* if all ->init() calls failed, unregister */
2917		ret = -ENODEV;
2918		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2919			 driver_data->name);
2920		goto err_if_unreg;
2921	}
2922
2923	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2924						   "cpufreq:online",
2925						   cpuhp_cpufreq_online,
2926						   cpuhp_cpufreq_offline);
2927	if (ret < 0)
2928		goto err_if_unreg;
2929	hp_online = ret;
2930	ret = 0;
2931
2932	pr_debug("driver %s up and running\n", driver_data->name);
2933	goto out;
 
 
 
2934
2935err_if_unreg:
2936	subsys_interface_unregister(&cpufreq_interface);
2937err_boost_unreg:
2938	remove_boost_sysfs_file();
2939err_null_driver:
2940	write_lock_irqsave(&cpufreq_driver_lock, flags);
2941	cpufreq_driver = NULL;
2942	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2943out:
2944	cpus_read_unlock();
2945	return ret;
2946}
2947EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2948
2949/*
2950 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2951 *
2952 * Unregister the current CPUFreq driver. Only call this if you have
2953 * the right to do so, i.e. if you have succeeded in initialising before!
2954 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2955 * currently not initialised.
2956 */
2957void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2958{
2959	unsigned long flags;
2960
2961	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2962		return;
2963
2964	pr_debug("unregistering driver %s\n", driver->name);
2965
2966	/* Protect against concurrent cpu hotplug */
2967	cpus_read_lock();
2968	subsys_interface_unregister(&cpufreq_interface);
2969	remove_boost_sysfs_file();
2970	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2971	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2972
2973	write_lock_irqsave(&cpufreq_driver_lock, flags);
2974
2975	cpufreq_driver = NULL;
2976
2977	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2978	cpus_read_unlock();
 
 
2979}
2980EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2981
 
 
 
 
 
 
 
 
 
 
 
2982static int __init cpufreq_core_init(void)
2983{
2984	struct cpufreq_governor *gov = cpufreq_default_governor();
2985	struct device *dev_root;
2986
2987	if (cpufreq_disabled())
2988		return -ENODEV;
2989
2990	dev_root = bus_get_dev_root(&cpu_subsys);
2991	if (dev_root) {
2992		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
2993		put_device(dev_root);
2994	}
2995	BUG_ON(!cpufreq_global_kobject);
2996
2997	if (!strlen(default_governor))
2998		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2999
3000	return 0;
3001}
3002module_param(off, int, 0444);
3003module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3004core_initcall(cpufreq_core_init);
v4.6
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   6 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   7 *
   8 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   9 *	Added handling for CPU hotplug
  10 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  11 *	Fix handling for CPU hotplug -- affected CPUs
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
 
  22#include <linux/delay.h>
  23#include <linux/device.h>
  24#include <linux/init.h>
  25#include <linux/kernel_stat.h>
  26#include <linux/module.h>
  27#include <linux/mutex.h>
 
  28#include <linux/slab.h>
  29#include <linux/suspend.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/tick.h>
 
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36static inline bool policy_is_inactive(struct cpufreq_policy *policy)
  37{
  38	return cpumask_empty(policy->cpus);
  39}
  40
  41/* Macros to iterate over CPU policies */
  42#define for_each_suitable_policy(__policy, __active)			 \
  43	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  44		if ((__active) == !policy_is_inactive(__policy))
  45
  46#define for_each_active_policy(__policy)		\
  47	for_each_suitable_policy(__policy, true)
  48#define for_each_inactive_policy(__policy)		\
  49	for_each_suitable_policy(__policy, false)
  50
  51#define for_each_policy(__policy)			\
  52	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
  53
  54/* Iterate over governors */
  55static LIST_HEAD(cpufreq_governor_list);
  56#define for_each_governor(__governor)				\
  57	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  58
  59/**
 
 
  60 * The "cpufreq driver" - the arch- or hardware-dependent low
  61 * level driver of CPUFreq support, and its spinlock. This lock
  62 * also protects the cpufreq_cpu_data array.
  63 */
  64static struct cpufreq_driver *cpufreq_driver;
  65static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  66static DEFINE_RWLOCK(cpufreq_driver_lock);
  67
 
 
 
 
 
 
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
 
 
 
 
 
  76/* internal prototypes */
  77static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
  78static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  79static int cpufreq_start_governor(struct cpufreq_policy *policy);
 
 
 
 
 
 
  80
  81/**
  82 * Two notifier lists: the "policy" list is involved in the
  83 * validation process for a new CPU frequency policy; the
  84 * "transition" list for kernel code that needs to handle
  85 * changes to devices when the CPU clock speed changes.
  86 * The mutex locks both lists.
  87 */
  88static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  89static struct srcu_notifier_head cpufreq_transition_notifier_list;
  90
  91static bool init_cpufreq_transition_notifier_list_called;
  92static int __init init_cpufreq_transition_notifier_list(void)
  93{
  94	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
  95	init_cpufreq_transition_notifier_list_called = true;
  96	return 0;
  97}
  98pure_initcall(init_cpufreq_transition_notifier_list);
  99
 100static int off __read_mostly;
 101static int cpufreq_disabled(void)
 102{
 103	return off;
 104}
 105void disable_cpufreq(void)
 106{
 107	off = 1;
 108}
 109static DEFINE_MUTEX(cpufreq_governor_mutex);
 110
 111bool have_governor_per_policy(void)
 112{
 113	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 114}
 115EXPORT_SYMBOL_GPL(have_governor_per_policy);
 116
 
 
 117struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 118{
 119	if (have_governor_per_policy())
 120		return &policy->kobj;
 121	else
 122		return cpufreq_global_kobject;
 123}
 124EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 125
 126struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu)
 127{
 128	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 129
 130	return policy && !policy_is_inactive(policy) ?
 131		policy->freq_table : NULL;
 132}
 133EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table);
 134
 135static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 136{
 
 
 137	u64 idle_time;
 138	u64 cur_wall_time;
 139	u64 busy_time;
 140
 141	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
 142
 143	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 144	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 145	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 146	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 147	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 148	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 
 
 149
 150	idle_time = cur_wall_time - busy_time;
 151	if (wall)
 152		*wall = cputime_to_usecs(cur_wall_time);
 153
 154	return cputime_to_usecs(idle_time);
 155}
 156
 157u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 158{
 159	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 160
 161	if (idle_time == -1ULL)
 162		return get_cpu_idle_time_jiffy(cpu, wall);
 163	else if (!io_busy)
 164		idle_time += get_cpu_iowait_time_us(cpu, wall);
 165
 166	return idle_time;
 167}
 168EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 169
 170/*
 171 * This is a generic cpufreq init() routine which can be used by cpufreq
 172 * drivers of SMP systems. It will do following:
 173 * - validate & show freq table passed
 174 * - set policies transition latency
 175 * - policy->cpus with all possible CPUs
 176 */
 177int cpufreq_generic_init(struct cpufreq_policy *policy,
 178		struct cpufreq_frequency_table *table,
 179		unsigned int transition_latency)
 180{
 181	int ret;
 182
 183	ret = cpufreq_table_validate_and_show(policy, table);
 184	if (ret) {
 185		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
 186		return ret;
 187	}
 188
 189	policy->cpuinfo.transition_latency = transition_latency;
 190
 191	/*
 192	 * The driver only supports the SMP configuration where all processors
 193	 * share the clock and voltage and clock.
 194	 */
 195	cpumask_setall(policy->cpus);
 196
 197	return 0;
 198}
 199EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 200
 201struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 202{
 203	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 204
 205	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 206}
 207EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 208
 209unsigned int cpufreq_generic_get(unsigned int cpu)
 210{
 211	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 212
 213	if (!policy || IS_ERR(policy->clk)) {
 214		pr_err("%s: No %s associated to cpu: %d\n",
 215		       __func__, policy ? "clk" : "policy", cpu);
 216		return 0;
 217	}
 218
 219	return clk_get_rate(policy->clk) / 1000;
 220}
 221EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 222
 223/**
 224 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
 
 225 *
 226 * @cpu: cpu to find policy for.
 
 
 227 *
 228 * This returns policy for 'cpu', returns NULL if it doesn't exist.
 229 * It also increments the kobject reference count to mark it busy and so would
 230 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
 231 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
 232 * freed as that depends on the kobj count.
 233 *
 234 * Return: A valid policy on success, otherwise NULL on failure.
 235 */
 236struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 237{
 238	struct cpufreq_policy *policy = NULL;
 239	unsigned long flags;
 240
 241	if (WARN_ON(cpu >= nr_cpu_ids))
 242		return NULL;
 243
 244	/* get the cpufreq driver */
 245	read_lock_irqsave(&cpufreq_driver_lock, flags);
 246
 247	if (cpufreq_driver) {
 248		/* get the CPU */
 249		policy = cpufreq_cpu_get_raw(cpu);
 250		if (policy)
 251			kobject_get(&policy->kobj);
 252	}
 253
 254	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 255
 256	return policy;
 257}
 258EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 259
 260/**
 261 * cpufreq_cpu_put: Decrements the usage count of a policy
 262 *
 263 * @policy: policy earlier returned by cpufreq_cpu_get().
 264 *
 265 * This decrements the kobject reference count incremented earlier by calling
 266 * cpufreq_cpu_get().
 267 */
 268void cpufreq_cpu_put(struct cpufreq_policy *policy)
 269{
 270	kobject_put(&policy->kobj);
 271}
 272EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274/*********************************************************************
 275 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 276 *********************************************************************/
 277
 278/**
 279 * adjust_jiffies - adjust the system "loops_per_jiffy"
 
 
 280 *
 281 * This function alters the system "loops_per_jiffy" for the clock
 282 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 283 * systems as each CPU might be scaled differently. So, use the arch
 284 * per-CPU loops_per_jiffy value wherever possible.
 285 */
 286static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 287{
 288#ifndef CONFIG_SMP
 289	static unsigned long l_p_j_ref;
 290	static unsigned int l_p_j_ref_freq;
 291
 292	if (ci->flags & CPUFREQ_CONST_LOOPS)
 293		return;
 294
 295	if (!l_p_j_ref_freq) {
 296		l_p_j_ref = loops_per_jiffy;
 297		l_p_j_ref_freq = ci->old;
 298		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 299			 l_p_j_ref, l_p_j_ref_freq);
 300	}
 301	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 302		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 303								ci->new);
 304		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 305			 loops_per_jiffy, ci->new);
 306	}
 307#endif
 308}
 309
 310static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
 311		struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 
 
 
 
 
 
 
 312{
 
 
 313	BUG_ON(irqs_disabled());
 314
 315	if (cpufreq_disabled())
 316		return;
 317
 
 318	freqs->flags = cpufreq_driver->flags;
 319	pr_debug("notification %u of frequency transition to %u kHz\n",
 320		 state, freqs->new);
 321
 322	switch (state) {
 323
 324	case CPUFREQ_PRECHANGE:
 325		/* detect if the driver reported a value as "old frequency"
 
 326		 * which is not equal to what the cpufreq core thinks is
 327		 * "old frequency".
 328		 */
 329		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 330			if ((policy) && (policy->cpu == freqs->cpu) &&
 331			    (policy->cur) && (policy->cur != freqs->old)) {
 332				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 333					 freqs->old, policy->cur);
 334				freqs->old = policy->cur;
 335			}
 336		}
 
 337		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 338				CPUFREQ_PRECHANGE, freqs);
 
 339		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 340		break;
 341
 342	case CPUFREQ_POSTCHANGE:
 343		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 344		pr_debug("FREQ: %lu - CPU: %lu\n",
 345			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
 346		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 
 347		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 348				CPUFREQ_POSTCHANGE, freqs);
 349		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 350			policy->cur = freqs->new;
 351		break;
 352	}
 353}
 354
 355/**
 356 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 357 * on frequency transition.
 358 *
 359 * This function calls the transition notifiers and the "adjust_jiffies"
 360 * function. It is called twice on all CPU frequency changes that have
 361 * external effects.
 362 */
 363static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 364		struct cpufreq_freqs *freqs, unsigned int state)
 365{
 366	for_each_cpu(freqs->cpu, policy->cpus)
 367		__cpufreq_notify_transition(policy, freqs, state);
 368}
 369
 370/* Do post notifications when there are chances that transition has failed */
 371static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 372		struct cpufreq_freqs *freqs, int transition_failed)
 373{
 374	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 375	if (!transition_failed)
 376		return;
 377
 378	swap(freqs->old, freqs->new);
 379	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 380	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 381}
 382
 383void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 384		struct cpufreq_freqs *freqs)
 385{
 386
 387	/*
 388	 * Catch double invocations of _begin() which lead to self-deadlock.
 389	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 390	 * doesn't invoke _begin() on their behalf, and hence the chances of
 391	 * double invocations are very low. Moreover, there are scenarios
 392	 * where these checks can emit false-positive warnings in these
 393	 * drivers; so we avoid that by skipping them altogether.
 394	 */
 395	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 396				&& current == policy->transition_task);
 397
 398wait:
 399	wait_event(policy->transition_wait, !policy->transition_ongoing);
 400
 401	spin_lock(&policy->transition_lock);
 402
 403	if (unlikely(policy->transition_ongoing)) {
 404		spin_unlock(&policy->transition_lock);
 405		goto wait;
 406	}
 407
 408	policy->transition_ongoing = true;
 409	policy->transition_task = current;
 410
 411	spin_unlock(&policy->transition_lock);
 412
 413	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 414}
 415EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 416
 417void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 418		struct cpufreq_freqs *freqs, int transition_failed)
 419{
 420	if (unlikely(WARN_ON(!policy->transition_ongoing)))
 421		return;
 422
 423	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 424
 
 
 
 
 
 425	policy->transition_ongoing = false;
 426	policy->transition_task = NULL;
 
 427
 428	wake_up(&policy->transition_wait);
 429}
 430EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432
 433/*********************************************************************
 434 *                          SYSFS INTERFACE                          *
 435 *********************************************************************/
 436static ssize_t show_boost(struct kobject *kobj,
 437				 struct attribute *attr, char *buf)
 438{
 439	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 440}
 441
 442static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
 443				  const char *buf, size_t count)
 444{
 445	int ret, enable;
 446
 447	ret = sscanf(buf, "%d", &enable);
 448	if (ret != 1 || enable < 0 || enable > 1)
 449		return -EINVAL;
 450
 451	if (cpufreq_boost_trigger_state(enable)) {
 452		pr_err("%s: Cannot %s BOOST!\n",
 453		       __func__, enable ? "enable" : "disable");
 454		return -EINVAL;
 455	}
 456
 457	pr_debug("%s: cpufreq BOOST %s\n",
 458		 __func__, enable ? "enabled" : "disabled");
 459
 460	return count;
 461}
 462define_one_global_rw(boost);
 463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464static struct cpufreq_governor *find_governor(const char *str_governor)
 465{
 466	struct cpufreq_governor *t;
 467
 468	for_each_governor(t)
 469		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 470			return t;
 471
 472	return NULL;
 473}
 474
 475/**
 476 * cpufreq_parse_governor - parse a governor string
 477 */
 478static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 479				struct cpufreq_governor **governor)
 480{
 481	int err = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 482
 483	if (cpufreq_driver->setpolicy) {
 484		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 485			*policy = CPUFREQ_POLICY_PERFORMANCE;
 486			err = 0;
 487		} else if (!strncasecmp(str_governor, "powersave",
 488						CPUFREQ_NAME_LEN)) {
 489			*policy = CPUFREQ_POLICY_POWERSAVE;
 490			err = 0;
 491		}
 492	} else {
 493		struct cpufreq_governor *t;
 494
 495		mutex_lock(&cpufreq_governor_mutex);
 
 
 
 496
 497		t = find_governor(str_governor);
 
 498
 499		if (t == NULL) {
 500			int ret;
 501
 502			mutex_unlock(&cpufreq_governor_mutex);
 503			ret = request_module("cpufreq_%s", str_governor);
 504			mutex_lock(&cpufreq_governor_mutex);
 
 
 
 
 505
 506			if (ret == 0)
 507				t = find_governor(str_governor);
 508		}
 509
 510		if (t != NULL) {
 511			*governor = t;
 512			err = 0;
 513		}
 514
 515		mutex_unlock(&cpufreq_governor_mutex);
 516	}
 517	return err;
 518}
 519
 520/**
 521 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 522 * print out cpufreq information
 523 *
 524 * Write out information from cpufreq_driver->policy[cpu]; object must be
 525 * "unsigned int".
 526 */
 527
 528#define show_one(file_name, object)			\
 529static ssize_t show_##file_name				\
 530(struct cpufreq_policy *policy, char *buf)		\
 531{							\
 532	return sprintf(buf, "%u\n", policy->object);	\
 533}
 534
 535show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 536show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 537show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 538show_one(scaling_min_freq, min);
 539show_one(scaling_max_freq, max);
 540
 
 
 
 
 
 541static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 542{
 543	ssize_t ret;
 
 544
 545	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
 
 
 
 546		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 547	else
 548		ret = sprintf(buf, "%u\n", policy->cur);
 549	return ret;
 550}
 551
 552static int cpufreq_set_policy(struct cpufreq_policy *policy,
 553				struct cpufreq_policy *new_policy);
 554
 555/**
 556 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 557 */
 558#define store_one(file_name, object)			\
 559static ssize_t store_##file_name					\
 560(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 561{									\
 562	int ret, temp;							\
 563	struct cpufreq_policy new_policy;				\
 564									\
 565	memcpy(&new_policy, policy, sizeof(*policy));			\
 566									\
 567	ret = sscanf(buf, "%u", &new_policy.object);			\
 568	if (ret != 1)							\
 569		return -EINVAL;						\
 570									\
 571	temp = new_policy.object;					\
 572	ret = cpufreq_set_policy(policy, &new_policy);		\
 573	if (!ret)							\
 574		policy->user_policy.object = temp;			\
 575									\
 576	return ret ? ret : count;					\
 577}
 578
 579store_one(scaling_min_freq, min);
 580store_one(scaling_max_freq, max);
 581
 582/**
 583 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 584 */
 585static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 586					char *buf)
 587{
 588	unsigned int cur_freq = __cpufreq_get(policy);
 589	if (!cur_freq)
 590		return sprintf(buf, "<unknown>");
 591	return sprintf(buf, "%u\n", cur_freq);
 
 
 592}
 593
 594/**
 595 * show_scaling_governor - show the current policy for the specified CPU
 596 */
 597static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 598{
 599	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 600		return sprintf(buf, "powersave\n");
 601	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 602		return sprintf(buf, "performance\n");
 603	else if (policy->governor)
 604		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 605				policy->governor->name);
 606	return -EINVAL;
 607}
 608
 609/**
 610 * store_scaling_governor - store policy for the specified CPU
 611 */
 612static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 613					const char *buf, size_t count)
 614{
 
 615	int ret;
 616	char	str_governor[16];
 617	struct cpufreq_policy new_policy;
 618
 619	memcpy(&new_policy, policy, sizeof(*policy));
 620
 621	ret = sscanf(buf, "%15s", str_governor);
 622	if (ret != 1)
 623		return -EINVAL;
 624
 625	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 626						&new_policy.governor))
 627		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628
 629	ret = cpufreq_set_policy(policy, &new_policy);
 630	return ret ? ret : count;
 631}
 632
 633/**
 634 * show_scaling_driver - show the cpufreq driver currently loaded
 635 */
 636static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 637{
 638	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 639}
 640
 641/**
 642 * show_scaling_available_governors - show the available CPUfreq governors
 643 */
 644static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 645						char *buf)
 646{
 647	ssize_t i = 0;
 648	struct cpufreq_governor *t;
 649
 650	if (!has_target()) {
 651		i += sprintf(buf, "performance powersave");
 652		goto out;
 653	}
 654
 
 655	for_each_governor(t) {
 656		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 657		    - (CPUFREQ_NAME_LEN + 2)))
 658			goto out;
 659		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 660	}
 
 661out:
 662	i += sprintf(&buf[i], "\n");
 663	return i;
 664}
 665
 666ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 667{
 668	ssize_t i = 0;
 669	unsigned int cpu;
 670
 671	for_each_cpu(cpu, mask) {
 672		if (i)
 673			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 674		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 675		if (i >= (PAGE_SIZE - 5))
 676			break;
 677	}
 
 
 
 
 678	i += sprintf(&buf[i], "\n");
 679	return i;
 680}
 681EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 682
 683/**
 684 * show_related_cpus - show the CPUs affected by each transition even if
 685 * hw coordination is in use
 686 */
 687static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 688{
 689	return cpufreq_show_cpus(policy->related_cpus, buf);
 690}
 691
 692/**
 693 * show_affected_cpus - show the CPUs affected by each transition
 694 */
 695static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 696{
 697	return cpufreq_show_cpus(policy->cpus, buf);
 698}
 699
 700static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 701					const char *buf, size_t count)
 702{
 703	unsigned int freq = 0;
 704	unsigned int ret;
 705
 706	if (!policy->governor || !policy->governor->store_setspeed)
 707		return -EINVAL;
 708
 709	ret = sscanf(buf, "%u", &freq);
 710	if (ret != 1)
 711		return -EINVAL;
 712
 713	policy->governor->store_setspeed(policy, freq);
 714
 715	return count;
 716}
 717
 718static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 719{
 720	if (!policy->governor || !policy->governor->show_setspeed)
 721		return sprintf(buf, "<unsupported>\n");
 722
 723	return policy->governor->show_setspeed(policy, buf);
 724}
 725
 726/**
 727 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 728 */
 729static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 730{
 731	unsigned int limit;
 732	int ret;
 733	if (cpufreq_driver->bios_limit) {
 734		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 735		if (!ret)
 736			return sprintf(buf, "%u\n", limit);
 737	}
 738	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 739}
 740
 741cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 742cpufreq_freq_attr_ro(cpuinfo_min_freq);
 743cpufreq_freq_attr_ro(cpuinfo_max_freq);
 744cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 745cpufreq_freq_attr_ro(scaling_available_governors);
 746cpufreq_freq_attr_ro(scaling_driver);
 747cpufreq_freq_attr_ro(scaling_cur_freq);
 748cpufreq_freq_attr_ro(bios_limit);
 749cpufreq_freq_attr_ro(related_cpus);
 750cpufreq_freq_attr_ro(affected_cpus);
 751cpufreq_freq_attr_rw(scaling_min_freq);
 752cpufreq_freq_attr_rw(scaling_max_freq);
 753cpufreq_freq_attr_rw(scaling_governor);
 754cpufreq_freq_attr_rw(scaling_setspeed);
 755
 756static struct attribute *default_attrs[] = {
 757	&cpuinfo_min_freq.attr,
 758	&cpuinfo_max_freq.attr,
 759	&cpuinfo_transition_latency.attr,
 760	&scaling_min_freq.attr,
 761	&scaling_max_freq.attr,
 762	&affected_cpus.attr,
 763	&related_cpus.attr,
 764	&scaling_governor.attr,
 765	&scaling_driver.attr,
 766	&scaling_available_governors.attr,
 767	&scaling_setspeed.attr,
 768	NULL
 769};
 
 770
 771#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 772#define to_attr(a) container_of(a, struct freq_attr, attr)
 773
 774static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 775{
 776	struct cpufreq_policy *policy = to_policy(kobj);
 777	struct freq_attr *fattr = to_attr(attr);
 778	ssize_t ret;
 
 
 
 779
 780	down_read(&policy->rwsem);
 781	ret = fattr->show(policy, buf);
 
 782	up_read(&policy->rwsem);
 783
 784	return ret;
 785}
 786
 787static ssize_t store(struct kobject *kobj, struct attribute *attr,
 788		     const char *buf, size_t count)
 789{
 790	struct cpufreq_policy *policy = to_policy(kobj);
 791	struct freq_attr *fattr = to_attr(attr);
 792	ssize_t ret = -EINVAL;
 793
 794	get_online_cpus();
 
 795
 796	if (cpu_online(policy->cpu)) {
 797		down_write(&policy->rwsem);
 798		ret = fattr->store(policy, buf, count);
 799		up_write(&policy->rwsem);
 800	}
 801
 802	put_online_cpus();
 803
 804	return ret;
 805}
 806
 807static void cpufreq_sysfs_release(struct kobject *kobj)
 808{
 809	struct cpufreq_policy *policy = to_policy(kobj);
 810	pr_debug("last reference is dropped\n");
 811	complete(&policy->kobj_unregister);
 812}
 813
 814static const struct sysfs_ops sysfs_ops = {
 815	.show	= show,
 816	.store	= store,
 817};
 818
 819static struct kobj_type ktype_cpufreq = {
 820	.sysfs_ops	= &sysfs_ops,
 821	.default_attrs	= default_attrs,
 822	.release	= cpufreq_sysfs_release,
 823};
 824
 825static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
 
 826{
 827	struct device *cpu_dev;
 
 828
 829	pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
 830
 831	if (!policy)
 832		return 0;
 833
 834	cpu_dev = get_cpu_device(cpu);
 835	if (WARN_ON(!cpu_dev))
 836		return 0;
 837
 838	return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
 839}
 840
 841static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
 842{
 843	struct device *cpu_dev;
 844
 845	pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
 846
 847	cpu_dev = get_cpu_device(cpu);
 848	if (WARN_ON(!cpu_dev))
 849		return;
 850
 851	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
 
 
 852}
 853
 854/* Add/remove symlinks for all related CPUs */
 855static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
 856{
 857	unsigned int j;
 858	int ret = 0;
 859
 860	/* Some related CPUs might not be present (physically hotplugged) */
 861	for_each_cpu(j, policy->real_cpus) {
 862		ret = add_cpu_dev_symlink(policy, j);
 863		if (ret)
 864			break;
 865	}
 866
 867	return ret;
 868}
 869
 870static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
 871{
 872	unsigned int j;
 873
 874	/* Some related CPUs might not be present (physically hotplugged) */
 875	for_each_cpu(j, policy->real_cpus)
 876		remove_cpu_dev_symlink(policy, j);
 877}
 878
 879static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 880{
 881	struct freq_attr **drv_attr;
 882	int ret = 0;
 883
 884	/* set up files for this cpu device */
 885	drv_attr = cpufreq_driver->attr;
 886	while (drv_attr && *drv_attr) {
 887		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 888		if (ret)
 889			return ret;
 890		drv_attr++;
 891	}
 892	if (cpufreq_driver->get) {
 893		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 894		if (ret)
 895			return ret;
 896	}
 897
 898	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 899	if (ret)
 900		return ret;
 901
 902	if (cpufreq_driver->bios_limit) {
 903		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 904		if (ret)
 905			return ret;
 906	}
 907
 908	return cpufreq_add_dev_symlink(policy);
 909}
 
 
 
 910
 911__weak struct cpufreq_governor *cpufreq_default_governor(void)
 912{
 913	return NULL;
 914}
 915
 916static int cpufreq_init_policy(struct cpufreq_policy *policy)
 917{
 918	struct cpufreq_governor *gov = NULL;
 919	struct cpufreq_policy new_policy;
 
 
 
 
 
 
 
 
 
 
 
 920
 921	memcpy(&new_policy, policy, sizeof(*policy));
 
 
 
 922
 923	/* Update governor of new_policy to the governor used before hotplug */
 924	gov = find_governor(policy->last_governor);
 925	if (gov) {
 926		pr_debug("Restoring governor %s for cpu %d\n",
 927				policy->governor->name, policy->cpu);
 928	} else {
 929		gov = cpufreq_default_governor();
 930		if (!gov)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931			return -ENODATA;
 932	}
 933
 934	new_policy.governor = gov;
 
 
 935
 936	/* Use the default policy if there is no last_policy. */
 937	if (cpufreq_driver->setpolicy) {
 938		if (policy->last_policy)
 939			new_policy.policy = policy->last_policy;
 940		else
 941			cpufreq_parse_governor(gov->name, &new_policy.policy,
 942					       NULL);
 943	}
 944	/* set default policy */
 945	return cpufreq_set_policy(policy, &new_policy);
 946}
 947
 948static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 949{
 950	int ret = 0;
 951
 952	/* Has this CPU been taken care of already? */
 953	if (cpumask_test_cpu(cpu, policy->cpus))
 954		return 0;
 955
 956	down_write(&policy->rwsem);
 957	if (has_target()) {
 958		ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
 959		if (ret) {
 960			pr_err("%s: Failed to stop governor\n", __func__);
 961			goto unlock;
 962		}
 963	}
 964
 965	cpumask_set_cpu(cpu, policy->cpus);
 966
 967	if (has_target()) {
 968		ret = cpufreq_start_governor(policy);
 969		if (ret)
 970			pr_err("%s: Failed to start governor\n", __func__);
 971	}
 972
 973unlock:
 974	up_write(&policy->rwsem);
 975	return ret;
 976}
 977
 
 
 
 
 
 
 
 
 
 
 978static void handle_update(struct work_struct *work)
 979{
 980	struct cpufreq_policy *policy =
 981		container_of(work, struct cpufreq_policy, update);
 982	unsigned int cpu = policy->cpu;
 983	pr_debug("handle_update for cpu %u called\n", cpu);
 984	cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985}
 986
 987static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
 988{
 
 989	struct device *dev = get_cpu_device(cpu);
 990	struct cpufreq_policy *policy;
 991	int ret;
 992
 993	if (WARN_ON(!dev))
 994		return NULL;
 995
 996	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
 997	if (!policy)
 998		return NULL;
 999
1000	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1001		goto err_free_policy;
1002
1003	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1004		goto err_free_cpumask;
1005
1006	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1007		goto err_free_rcpumask;
1008
 
1009	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1010				   cpufreq_global_kobject, "policy%u", cpu);
1011	if (ret) {
1012		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
 
 
 
 
 
 
1013		goto err_free_real_cpus;
1014	}
1015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016	INIT_LIST_HEAD(&policy->policy_list);
1017	init_rwsem(&policy->rwsem);
1018	spin_lock_init(&policy->transition_lock);
1019	init_waitqueue_head(&policy->transition_wait);
1020	init_completion(&policy->kobj_unregister);
1021	INIT_WORK(&policy->update, handle_update);
1022
1023	policy->cpu = cpu;
1024	return policy;
1025
 
 
 
 
 
1026err_free_real_cpus:
1027	free_cpumask_var(policy->real_cpus);
1028err_free_rcpumask:
1029	free_cpumask_var(policy->related_cpus);
1030err_free_cpumask:
1031	free_cpumask_var(policy->cpus);
1032err_free_policy:
1033	kfree(policy);
1034
1035	return NULL;
1036}
1037
1038static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1039{
1040	struct kobject *kobj;
1041	struct completion *cmp;
1042
1043	if (notify)
1044		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1045					     CPUFREQ_REMOVE_POLICY, policy);
1046
1047	down_write(&policy->rwsem);
1048	cpufreq_remove_dev_symlink(policy);
1049	kobj = &policy->kobj;
1050	cmp = &policy->kobj_unregister;
1051	up_write(&policy->rwsem);
1052	kobject_put(kobj);
1053
1054	/*
1055	 * We need to make sure that the underlying kobj is
1056	 * actually not referenced anymore by anybody before we
1057	 * proceed with unloading.
1058	 */
1059	pr_debug("waiting for dropping of refcount\n");
1060	wait_for_completion(cmp);
1061	pr_debug("wait complete\n");
1062}
1063
1064static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1065{
1066	unsigned long flags;
1067	int cpu;
1068
1069	/* Remove policy from list */
1070	write_lock_irqsave(&cpufreq_driver_lock, flags);
1071	list_del(&policy->policy_list);
1072
1073	for_each_cpu(cpu, policy->related_cpus)
1074		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1075	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1076
1077	cpufreq_policy_put_kobj(policy, notify);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078	free_cpumask_var(policy->real_cpus);
1079	free_cpumask_var(policy->related_cpus);
1080	free_cpumask_var(policy->cpus);
1081	kfree(policy);
1082}
1083
1084static int cpufreq_online(unsigned int cpu)
1085{
1086	struct cpufreq_policy *policy;
1087	bool new_policy;
1088	unsigned long flags;
1089	unsigned int j;
1090	int ret;
1091
1092	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1093
1094	/* Check if this CPU already has a policy to manage it */
1095	policy = per_cpu(cpufreq_cpu_data, cpu);
1096	if (policy) {
1097		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1098		if (!policy_is_inactive(policy))
1099			return cpufreq_add_policy_cpu(policy, cpu);
1100
1101		/* This is the only online CPU for the policy.  Start over. */
1102		new_policy = false;
1103		down_write(&policy->rwsem);
1104		policy->cpu = cpu;
1105		policy->governor = NULL;
1106		up_write(&policy->rwsem);
1107	} else {
1108		new_policy = true;
1109		policy = cpufreq_policy_alloc(cpu);
1110		if (!policy)
1111			return -ENOMEM;
 
1112	}
1113
1114	cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
 
 
 
 
 
 
 
 
 
1115
1116	/* call driver. From then on the cpufreq must be able
1117	 * to accept all calls to ->verify and ->setpolicy for this CPU
1118	 */
1119	ret = cpufreq_driver->init(policy);
1120	if (ret) {
1121		pr_debug("initialization failed\n");
1122		goto out_free_policy;
1123	}
 
 
1124
1125	down_write(&policy->rwsem);
 
 
 
 
 
 
 
1126
1127	if (new_policy) {
1128		/* related_cpus should at least include policy->cpus. */
1129		cpumask_copy(policy->related_cpus, policy->cpus);
1130		/* Remember CPUs present at the policy creation time. */
1131		cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1132	}
1133
1134	/*
1135	 * affected cpus must always be the one, which are online. We aren't
1136	 * managing offline cpus here.
1137	 */
1138	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1139
1140	if (new_policy) {
1141		policy->user_policy.min = policy->min;
1142		policy->user_policy.max = policy->max;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143
1144		write_lock_irqsave(&cpufreq_driver_lock, flags);
1145		for_each_cpu(j, policy->related_cpus)
1146			per_cpu(cpufreq_cpu_data, j) = policy;
1147		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1148	}
1149
1150	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1151		policy->cur = cpufreq_driver->get(policy->cpu);
1152		if (!policy->cur) {
 
1153			pr_err("%s: ->get() failed\n", __func__);
1154			goto out_exit_policy;
1155		}
1156	}
1157
1158	/*
1159	 * Sometimes boot loaders set CPU frequency to a value outside of
1160	 * frequency table present with cpufreq core. In such cases CPU might be
1161	 * unstable if it has to run on that frequency for long duration of time
1162	 * and so its better to set it to a frequency which is specified in
1163	 * freq-table. This also makes cpufreq stats inconsistent as
1164	 * cpufreq-stats would fail to register because current frequency of CPU
1165	 * isn't found in freq-table.
1166	 *
1167	 * Because we don't want this change to effect boot process badly, we go
1168	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1169	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1170	 * is initialized to zero).
1171	 *
1172	 * We are passing target-freq as "policy->cur - 1" otherwise
1173	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1174	 * equal to target-freq.
1175	 */
1176	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1177	    && has_target()) {
 
 
1178		/* Are we running at unknown frequency ? */
1179		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1180		if (ret == -EINVAL) {
1181			/* Warn user and fix it */
1182			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1183				__func__, policy->cpu, policy->cur);
1184			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1185				CPUFREQ_RELATION_L);
1186
1187			/*
1188			 * Reaching here after boot in a few seconds may not
1189			 * mean that system will remain stable at "unknown"
1190			 * frequency for longer duration. Hence, a BUG_ON().
1191			 */
1192			BUG_ON(ret);
1193			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1194				__func__, policy->cpu, policy->cur);
1195		}
1196	}
1197
1198	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1199				     CPUFREQ_START, policy);
1200
1201	if (new_policy) {
1202		ret = cpufreq_add_dev_interface(policy);
1203		if (ret)
1204			goto out_exit_policy;
1205		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1206				CPUFREQ_CREATE_POLICY, policy);
1207
1208		write_lock_irqsave(&cpufreq_driver_lock, flags);
1209		list_add(&policy->policy_list, &cpufreq_policy_list);
1210		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1211	}
1212
1213	ret = cpufreq_init_policy(policy);
1214	if (ret) {
1215		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1216		       __func__, cpu, ret);
1217		/* cpufreq_policy_free() will notify based on this */
1218		new_policy = false;
1219		goto out_exit_policy;
1220	}
1221
1222	up_write(&policy->rwsem);
1223
1224	kobject_uevent(&policy->kobj, KOBJ_ADD);
1225
1226	/* Callback for handling stuff after policy is ready */
1227	if (cpufreq_driver->ready)
1228		cpufreq_driver->ready(policy);
1229
 
 
 
1230	pr_debug("initialization complete\n");
1231
1232	return 0;
1233
 
 
 
 
 
 
 
 
1234out_exit_policy:
1235	up_write(&policy->rwsem);
1236
1237	if (cpufreq_driver->exit)
1238		cpufreq_driver->exit(policy);
 
1239out_free_policy:
1240	cpufreq_policy_free(policy, !new_policy);
 
 
 
1241	return ret;
1242}
1243
1244/**
1245 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1246 * @dev: CPU device.
1247 * @sif: Subsystem interface structure pointer (not used)
1248 */
1249static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1250{
 
1251	unsigned cpu = dev->id;
1252	int ret;
1253
1254	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1255
1256	if (cpu_online(cpu)) {
1257		ret = cpufreq_online(cpu);
1258	} else {
1259		/*
1260		 * A hotplug notifier will follow and we will handle it as CPU
1261		 * online then.  For now, just create the sysfs link, unless
1262		 * there is no policy or the link is already present.
1263		 */
1264		struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1265
1266		ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus)
1267			? add_cpu_dev_symlink(policy, cpu) : 0;
1268	}
 
1269
1270	return ret;
1271}
1272
1273static void cpufreq_offline(unsigned int cpu)
1274{
1275	struct cpufreq_policy *policy;
1276	int ret;
1277
1278	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1279
1280	policy = cpufreq_cpu_get_raw(cpu);
1281	if (!policy) {
1282		pr_debug("%s: No cpu_data found\n", __func__);
1283		return;
1284	}
1285
1286	down_write(&policy->rwsem);
1287	if (has_target()) {
1288		ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1289		if (ret)
1290			pr_err("%s: Failed to stop governor\n", __func__);
1291	}
1292
1293	cpumask_clear_cpu(cpu, policy->cpus);
1294
1295	if (policy_is_inactive(policy)) {
1296		if (has_target())
1297			strncpy(policy->last_governor, policy->governor->name,
1298				CPUFREQ_NAME_LEN);
1299		else
1300			policy->last_policy = policy->policy;
1301	} else if (cpu == policy->cpu) {
1302		/* Nominate new CPU */
1303		policy->cpu = cpumask_any(policy->cpus);
1304	}
1305
1306	/* Start governor again for active policy */
1307	if (!policy_is_inactive(policy)) {
1308		if (has_target()) {
1309			ret = cpufreq_start_governor(policy);
1310			if (ret)
1311				pr_err("%s: Failed to start governor\n", __func__);
1312		}
1313
1314		goto unlock;
1315	}
1316
1317	if (cpufreq_driver->stop_cpu)
1318		cpufreq_driver->stop_cpu(policy);
 
 
 
1319
1320	/* If cpu is last user of policy, free policy */
1321	if (has_target()) {
1322		ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
1323		if (ret)
1324			pr_err("%s: Failed to exit governor\n", __func__);
1325	}
1326
 
 
 
1327	/*
1328	 * Perform the ->exit() even during light-weight tear-down,
1329	 * since this is a core component, and is essential for the
1330	 * subsequent light-weight ->init() to succeed.
1331	 */
1332	if (cpufreq_driver->exit) {
 
 
1333		cpufreq_driver->exit(policy);
1334		policy->freq_table = NULL;
1335	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336
1337unlock:
1338	up_write(&policy->rwsem);
 
1339}
1340
1341/**
1342 * cpufreq_remove_dev - remove a CPU device
1343 *
1344 * Removes the cpufreq interface for a CPU device.
1345 */
1346static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1347{
1348	unsigned int cpu = dev->id;
1349	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1350
1351	if (!policy)
1352		return;
1353
 
 
1354	if (cpu_online(cpu))
1355		cpufreq_offline(cpu);
 
 
1356
1357	cpumask_clear_cpu(cpu, policy->real_cpus);
1358	remove_cpu_dev_symlink(policy, cpu);
 
 
 
 
 
 
 
 
1359
1360	if (cpumask_empty(policy->real_cpus))
1361		cpufreq_policy_free(policy, true);
1362}
1363
1364/**
1365 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1366 *	in deep trouble.
1367 *	@policy: policy managing CPUs
1368 *	@new_freq: CPU frequency the CPU actually runs at
1369 *
1370 *	We adjust to current frequency first, and need to clean up later.
1371 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1372 */
1373static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1374				unsigned int new_freq)
1375{
1376	struct cpufreq_freqs freqs;
1377
1378	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1379		 policy->cur, new_freq);
1380
1381	freqs.old = policy->cur;
1382	freqs.new = new_freq;
1383
1384	cpufreq_freq_transition_begin(policy, &freqs);
1385	cpufreq_freq_transition_end(policy, &freqs, 0);
1386}
1387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388/**
1389 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1390 * @cpu: CPU number
1391 *
1392 * This is the last known freq, without actually getting it from the driver.
1393 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1394 */
1395unsigned int cpufreq_quick_get(unsigned int cpu)
1396{
1397	struct cpufreq_policy *policy;
1398	unsigned int ret_freq = 0;
1399	unsigned long flags;
1400
1401	read_lock_irqsave(&cpufreq_driver_lock, flags);
1402
1403	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1404		ret_freq = cpufreq_driver->get(cpu);
1405		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1406		return ret_freq;
1407	}
1408
1409	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1410
1411	policy = cpufreq_cpu_get(cpu);
1412	if (policy) {
1413		ret_freq = policy->cur;
1414		cpufreq_cpu_put(policy);
1415	}
1416
1417	return ret_freq;
1418}
1419EXPORT_SYMBOL(cpufreq_quick_get);
1420
1421/**
1422 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1423 * @cpu: CPU number
1424 *
1425 * Just return the max possible frequency for a given CPU.
1426 */
1427unsigned int cpufreq_quick_get_max(unsigned int cpu)
1428{
1429	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1430	unsigned int ret_freq = 0;
1431
1432	if (policy) {
1433		ret_freq = policy->max;
1434		cpufreq_cpu_put(policy);
1435	}
1436
1437	return ret_freq;
1438}
1439EXPORT_SYMBOL(cpufreq_quick_get_max);
1440
1441static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
 
 
 
 
 
 
1442{
 
1443	unsigned int ret_freq = 0;
1444
1445	if (!cpufreq_driver->get)
1446		return ret_freq;
 
 
1447
1448	ret_freq = cpufreq_driver->get(policy->cpu);
 
 
1449
1450	/* Updating inactive policies is invalid, so avoid doing that. */
 
1451	if (unlikely(policy_is_inactive(policy)))
1452		return ret_freq;
1453
1454	if (ret_freq && policy->cur &&
1455		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1456		/* verify no discrepancy between actual and
1457					saved value exists */
1458		if (unlikely(ret_freq != policy->cur)) {
1459			cpufreq_out_of_sync(policy, ret_freq);
1460			schedule_work(&policy->update);
1461		}
1462	}
1463
1464	return ret_freq;
1465}
1466
1467/**
1468 * cpufreq_get - get the current CPU frequency (in kHz)
1469 * @cpu: CPU number
1470 *
1471 * Get the CPU current (static) CPU frequency
1472 */
1473unsigned int cpufreq_get(unsigned int cpu)
1474{
1475	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1476	unsigned int ret_freq = 0;
1477
1478	if (policy) {
1479		down_read(&policy->rwsem);
1480		ret_freq = __cpufreq_get(policy);
 
1481		up_read(&policy->rwsem);
1482
1483		cpufreq_cpu_put(policy);
1484	}
1485
1486	return ret_freq;
1487}
1488EXPORT_SYMBOL(cpufreq_get);
1489
1490static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1491{
1492	unsigned int new_freq;
1493
1494	if (cpufreq_suspended)
1495		return 0;
1496
1497	new_freq = cpufreq_driver->get(policy->cpu);
1498	if (!new_freq)
1499		return 0;
1500
1501	if (!policy->cur) {
1502		pr_debug("cpufreq: Driver did not initialize current freq\n");
1503		policy->cur = new_freq;
1504	} else if (policy->cur != new_freq && has_target()) {
1505		cpufreq_out_of_sync(policy, new_freq);
1506	}
1507
1508	return new_freq;
1509}
1510
1511static struct subsys_interface cpufreq_interface = {
1512	.name		= "cpufreq",
1513	.subsys		= &cpu_subsys,
1514	.add_dev	= cpufreq_add_dev,
1515	.remove_dev	= cpufreq_remove_dev,
1516};
1517
1518/*
1519 * In case platform wants some specific frequency to be configured
1520 * during suspend..
1521 */
1522int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1523{
1524	int ret;
1525
1526	if (!policy->suspend_freq) {
1527		pr_debug("%s: suspend_freq not defined\n", __func__);
1528		return 0;
1529	}
1530
1531	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1532			policy->suspend_freq);
1533
1534	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1535			CPUFREQ_RELATION_H);
1536	if (ret)
1537		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1538				__func__, policy->suspend_freq, ret);
1539
1540	return ret;
1541}
1542EXPORT_SYMBOL(cpufreq_generic_suspend);
1543
1544/**
1545 * cpufreq_suspend() - Suspend CPUFreq governors
1546 *
1547 * Called during system wide Suspend/Hibernate cycles for suspending governors
1548 * as some platforms can't change frequency after this point in suspend cycle.
1549 * Because some of the devices (like: i2c, regulators, etc) they use for
1550 * changing frequency are suspended quickly after this point.
1551 */
1552void cpufreq_suspend(void)
1553{
1554	struct cpufreq_policy *policy;
1555	int ret;
1556
1557	if (!cpufreq_driver)
1558		return;
1559
1560	if (!has_target() && !cpufreq_driver->suspend)
1561		goto suspend;
1562
1563	pr_debug("%s: Suspending Governors\n", __func__);
1564
1565	for_each_active_policy(policy) {
1566		if (has_target()) {
1567			down_write(&policy->rwsem);
1568			ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1569			up_write(&policy->rwsem);
1570
1571			if (ret) {
1572				pr_err("%s: Failed to stop governor for policy: %p\n",
1573					__func__, policy);
1574				continue;
1575			}
1576		}
1577
1578		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1579			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1580				policy);
1581	}
1582
1583suspend:
1584	cpufreq_suspended = true;
1585}
1586
1587/**
1588 * cpufreq_resume() - Resume CPUFreq governors
1589 *
1590 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1591 * are suspended with cpufreq_suspend().
1592 */
1593void cpufreq_resume(void)
1594{
1595	struct cpufreq_policy *policy;
1596	int ret;
1597
1598	if (!cpufreq_driver)
1599		return;
1600
 
 
 
1601	cpufreq_suspended = false;
1602
1603	if (!has_target() && !cpufreq_driver->resume)
1604		return;
1605
1606	pr_debug("%s: Resuming Governors\n", __func__);
1607
1608	for_each_active_policy(policy) {
1609		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1610			pr_err("%s: Failed to resume driver: %p\n", __func__,
1611				policy);
1612		} else if (has_target()) {
1613			down_write(&policy->rwsem);
1614			ret = cpufreq_start_governor(policy);
1615			up_write(&policy->rwsem);
1616
1617			if (ret)
1618				pr_err("%s: Failed to start governor for policy: %p\n",
1619				       __func__, policy);
1620		}
1621	}
1622}
1623
1624/**
1625 *	cpufreq_get_current_driver - return current driver's name
 
 
 
 
 
 
 
 
 
 
 
 
1626 *
1627 *	Return the name string of the currently loaded cpufreq driver
1628 *	or NULL, if none.
1629 */
1630const char *cpufreq_get_current_driver(void)
1631{
1632	if (cpufreq_driver)
1633		return cpufreq_driver->name;
1634
1635	return NULL;
1636}
1637EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1638
1639/**
1640 *	cpufreq_get_driver_data - return current driver data
1641 *
1642 *	Return the private data of the currently loaded cpufreq
1643 *	driver, or NULL if no cpufreq driver is loaded.
1644 */
1645void *cpufreq_get_driver_data(void)
1646{
1647	if (cpufreq_driver)
1648		return cpufreq_driver->driver_data;
1649
1650	return NULL;
1651}
1652EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1653
1654/*********************************************************************
1655 *                     NOTIFIER LISTS INTERFACE                      *
1656 *********************************************************************/
1657
1658/**
1659 *	cpufreq_register_notifier - register a driver with cpufreq
1660 *	@nb: notifier function to register
1661 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1662 *
1663 *	Add a driver to one of two lists: either a list of drivers that
1664 *      are notified about clock rate changes (once before and once after
1665 *      the transition), or a list of drivers that are notified about
1666 *      changes in cpufreq policy.
1667 *
1668 *	This function may sleep, and has the same return conditions as
1669 *	blocking_notifier_chain_register.
1670 */
1671int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1672{
1673	int ret;
1674
1675	if (cpufreq_disabled())
1676		return -EINVAL;
1677
1678	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1679
1680	switch (list) {
1681	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1682		ret = srcu_notifier_chain_register(
1683				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1684		break;
1685	case CPUFREQ_POLICY_NOTIFIER:
1686		ret = blocking_notifier_chain_register(
1687				&cpufreq_policy_notifier_list, nb);
1688		break;
1689	default:
1690		ret = -EINVAL;
1691	}
1692
1693	return ret;
1694}
1695EXPORT_SYMBOL(cpufreq_register_notifier);
1696
1697/**
1698 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1699 *	@nb: notifier block to be unregistered
1700 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1701 *
1702 *	Remove a driver from the CPU frequency notifier list.
1703 *
1704 *	This function may sleep, and has the same return conditions as
1705 *	blocking_notifier_chain_unregister.
1706 */
1707int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1708{
1709	int ret;
1710
1711	if (cpufreq_disabled())
1712		return -EINVAL;
1713
1714	switch (list) {
1715	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1716		ret = srcu_notifier_chain_unregister(
1717				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1718		break;
1719	case CPUFREQ_POLICY_NOTIFIER:
1720		ret = blocking_notifier_chain_unregister(
1721				&cpufreq_policy_notifier_list, nb);
1722		break;
1723	default:
1724		ret = -EINVAL;
1725	}
1726
1727	return ret;
1728}
1729EXPORT_SYMBOL(cpufreq_unregister_notifier);
1730
1731
1732/*********************************************************************
1733 *                              GOVERNORS                            *
1734 *********************************************************************/
1735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1736/* Must set freqs->new to intermediate frequency */
1737static int __target_intermediate(struct cpufreq_policy *policy,
1738				 struct cpufreq_freqs *freqs, int index)
1739{
1740	int ret;
1741
1742	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1743
1744	/* We don't need to switch to intermediate freq */
1745	if (!freqs->new)
1746		return 0;
1747
1748	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1749		 __func__, policy->cpu, freqs->old, freqs->new);
1750
1751	cpufreq_freq_transition_begin(policy, freqs);
1752	ret = cpufreq_driver->target_intermediate(policy, index);
1753	cpufreq_freq_transition_end(policy, freqs, ret);
1754
1755	if (ret)
1756		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1757		       __func__, ret);
1758
1759	return ret;
1760}
1761
1762static int __target_index(struct cpufreq_policy *policy,
1763			  struct cpufreq_frequency_table *freq_table, int index)
1764{
1765	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1766	unsigned int intermediate_freq = 0;
 
1767	int retval = -EINVAL;
1768	bool notify;
1769
 
 
 
 
 
 
1770	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1771	if (notify) {
1772		/* Handle switching to intermediate frequency */
1773		if (cpufreq_driver->get_intermediate) {
1774			retval = __target_intermediate(policy, &freqs, index);
1775			if (retval)
1776				return retval;
1777
1778			intermediate_freq = freqs.new;
1779			/* Set old freq to intermediate */
1780			if (intermediate_freq)
1781				freqs.old = freqs.new;
1782		}
1783
1784		freqs.new = freq_table[index].frequency;
1785		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1786			 __func__, policy->cpu, freqs.old, freqs.new);
1787
1788		cpufreq_freq_transition_begin(policy, &freqs);
1789	}
1790
1791	retval = cpufreq_driver->target_index(policy, index);
1792	if (retval)
1793		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1794		       retval);
1795
1796	if (notify) {
1797		cpufreq_freq_transition_end(policy, &freqs, retval);
1798
1799		/*
1800		 * Failed after setting to intermediate freq? Driver should have
1801		 * reverted back to initial frequency and so should we. Check
1802		 * here for intermediate_freq instead of get_intermediate, in
1803		 * case we haven't switched to intermediate freq at all.
1804		 */
1805		if (unlikely(retval && intermediate_freq)) {
1806			freqs.old = intermediate_freq;
1807			freqs.new = policy->restore_freq;
1808			cpufreq_freq_transition_begin(policy, &freqs);
1809			cpufreq_freq_transition_end(policy, &freqs, 0);
1810		}
1811	}
1812
1813	return retval;
1814}
1815
1816int __cpufreq_driver_target(struct cpufreq_policy *policy,
1817			    unsigned int target_freq,
1818			    unsigned int relation)
1819{
1820	unsigned int old_target_freq = target_freq;
1821	struct cpufreq_frequency_table *freq_table;
1822	int index, retval;
1823
1824	if (cpufreq_disabled())
1825		return -ENODEV;
1826
1827	/* Make sure that target_freq is within supported range */
1828	if (target_freq > policy->max)
1829		target_freq = policy->max;
1830	if (target_freq < policy->min)
1831		target_freq = policy->min;
1832
1833	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1834		 policy->cpu, target_freq, relation, old_target_freq);
1835
1836	/*
1837	 * This might look like a redundant call as we are checking it again
1838	 * after finding index. But it is left intentionally for cases where
1839	 * exactly same freq is called again and so we can save on few function
1840	 * calls.
1841	 */
1842	if (target_freq == policy->cur)
 
1843		return 0;
1844
1845	/* Save last value to restore later on errors */
1846	policy->restore_freq = policy->cur;
 
 
 
 
 
1847
1848	if (cpufreq_driver->target)
1849		return cpufreq_driver->target(policy, target_freq, relation);
 
1850
1851	if (!cpufreq_driver->target_index)
1852		return -EINVAL;
1853
1854	freq_table = cpufreq_frequency_get_table(policy->cpu);
1855	if (unlikely(!freq_table)) {
1856		pr_err("%s: Unable to find freq_table\n", __func__);
1857		return -EINVAL;
1858	}
1859
1860	retval = cpufreq_frequency_table_target(policy, freq_table, target_freq,
1861						relation, &index);
1862	if (unlikely(retval)) {
1863		pr_err("%s: Unable to find matching freq\n", __func__);
1864		return retval;
1865	}
1866
1867	if (freq_table[index].frequency == policy->cur)
1868		return 0;
1869
1870	return __target_index(policy, freq_table, index);
1871}
1872EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1873
1874int cpufreq_driver_target(struct cpufreq_policy *policy,
1875			  unsigned int target_freq,
1876			  unsigned int relation)
1877{
1878	int ret = -EINVAL;
1879
1880	down_write(&policy->rwsem);
1881
1882	ret = __cpufreq_driver_target(policy, target_freq, relation);
1883
1884	up_write(&policy->rwsem);
1885
1886	return ret;
1887}
1888EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1889
1890__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1891{
1892	return NULL;
1893}
1894
1895static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event)
1896{
1897	int ret;
1898
1899	/* Don't start any governor operations if we are entering suspend */
1900	if (cpufreq_suspended)
1901		return 0;
1902	/*
1903	 * Governor might not be initiated here if ACPI _PPC changed
1904	 * notification happened, so check it.
1905	 */
1906	if (!policy->governor)
1907		return -EINVAL;
1908
1909	if (policy->governor->max_transition_latency &&
1910	    policy->cpuinfo.transition_latency >
1911	    policy->governor->max_transition_latency) {
1912		struct cpufreq_governor *gov = cpufreq_fallback_governor();
1913
1914		if (gov) {
1915			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1916				policy->governor->name, gov->name);
1917			policy->governor = gov;
1918		} else {
1919			return -EINVAL;
1920		}
1921	}
1922
1923	if (event == CPUFREQ_GOV_POLICY_INIT)
1924		if (!try_module_get(policy->governor->owner))
1925			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926
1927	pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event);
1928
1929	ret = policy->governor->governor(policy, event);
 
1930
1931	if (!ret) {
1932		if (event == CPUFREQ_GOV_POLICY_INIT)
1933			policy->governor->initialized++;
1934		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1935			policy->governor->initialized--;
1936	}
1937
1938	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1939			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1940		module_put(policy->governor->owner);
1941
1942	return ret;
 
 
 
 
 
 
 
 
 
 
 
1943}
1944
1945static int cpufreq_start_governor(struct cpufreq_policy *policy)
1946{
1947	int ret;
 
1948
1949	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
1950		cpufreq_update_current_freq(policy);
1951
1952	ret = cpufreq_governor(policy, CPUFREQ_GOV_START);
1953	return ret ? ret : cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1954}
1955
1956int cpufreq_register_governor(struct cpufreq_governor *governor)
1957{
1958	int err;
1959
1960	if (!governor)
1961		return -EINVAL;
1962
1963	if (cpufreq_disabled())
1964		return -ENODEV;
1965
1966	mutex_lock(&cpufreq_governor_mutex);
1967
1968	governor->initialized = 0;
1969	err = -EBUSY;
1970	if (!find_governor(governor->name)) {
1971		err = 0;
1972		list_add(&governor->governor_list, &cpufreq_governor_list);
1973	}
1974
1975	mutex_unlock(&cpufreq_governor_mutex);
1976	return err;
1977}
1978EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1979
1980void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1981{
1982	struct cpufreq_policy *policy;
1983	unsigned long flags;
1984
1985	if (!governor)
1986		return;
1987
1988	if (cpufreq_disabled())
1989		return;
1990
1991	/* clear last_governor for all inactive policies */
1992	read_lock_irqsave(&cpufreq_driver_lock, flags);
1993	for_each_inactive_policy(policy) {
1994		if (!strcmp(policy->last_governor, governor->name)) {
1995			policy->governor = NULL;
1996			strcpy(policy->last_governor, "\0");
1997		}
1998	}
1999	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2000
2001	mutex_lock(&cpufreq_governor_mutex);
2002	list_del(&governor->governor_list);
2003	mutex_unlock(&cpufreq_governor_mutex);
2004	return;
2005}
2006EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2007
2008
2009/*********************************************************************
2010 *                          POLICY INTERFACE                         *
2011 *********************************************************************/
2012
2013/**
2014 * cpufreq_get_policy - get the current cpufreq_policy
2015 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2016 *	is written
 
2017 *
2018 * Reads the current cpufreq policy.
2019 */
2020int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2021{
2022	struct cpufreq_policy *cpu_policy;
2023	if (!policy)
2024		return -EINVAL;
2025
2026	cpu_policy = cpufreq_cpu_get(cpu);
2027	if (!cpu_policy)
2028		return -EINVAL;
2029
2030	memcpy(policy, cpu_policy, sizeof(*policy));
2031
2032	cpufreq_cpu_put(cpu_policy);
2033	return 0;
2034}
2035EXPORT_SYMBOL(cpufreq_get_policy);
2036
2037/*
2038 * policy : current policy.
2039 * new_policy: policy to be set.
 
 
 
 
 
 
 
 
 
 
 
2040 */
2041static int cpufreq_set_policy(struct cpufreq_policy *policy,
2042				struct cpufreq_policy *new_policy)
 
2043{
 
2044	struct cpufreq_governor *old_gov;
2045	int ret;
2046
 
 
 
 
 
 
 
 
 
 
2047	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2048		 new_policy->cpu, new_policy->min, new_policy->max);
2049
2050	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2051
2052	/*
2053	* This check works well when we store new min/max freq attributes,
2054	* because new_policy is a copy of policy with one field updated.
2055	*/
2056	if (new_policy->min > new_policy->max)
2057		return -EINVAL;
2058
2059	/* verify the cpu speed can be set within this limit */
2060	ret = cpufreq_driver->verify(new_policy);
2061	if (ret)
2062		return ret;
2063
2064	/* adjust if necessary - all reasons */
2065	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2066			CPUFREQ_ADJUST, new_policy);
2067
2068	/*
2069	 * verify the cpu speed can be set within this limit, which might be
2070	 * different to the first one
 
2071	 */
2072	ret = cpufreq_driver->verify(new_policy);
2073	if (ret)
2074		return ret;
2075
2076	/* notification of the new policy */
2077	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2078			CPUFREQ_NOTIFY, new_policy);
2079
2080	policy->min = new_policy->min;
2081	policy->max = new_policy->max;
2082
2083	pr_debug("new min and max freqs are %u - %u kHz\n",
2084		 policy->min, policy->max);
2085
2086	if (cpufreq_driver->setpolicy) {
2087		policy->policy = new_policy->policy;
2088		pr_debug("setting range\n");
2089		return cpufreq_driver->setpolicy(new_policy);
2090	}
2091
2092	if (new_policy->governor == policy->governor) {
2093		pr_debug("cpufreq: governor limits update\n");
2094		return cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
 
2095	}
2096
2097	pr_debug("governor switch\n");
2098
2099	/* save old, working values */
2100	old_gov = policy->governor;
2101	/* end old governor */
2102	if (old_gov) {
2103		ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2104		if (ret) {
2105			/* This can happen due to race with other operations */
2106			pr_debug("%s: Failed to Stop Governor: %s (%d)\n",
2107				 __func__, old_gov->name, ret);
2108			return ret;
2109		}
2110
2111		ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2112		if (ret) {
2113			pr_err("%s: Failed to Exit Governor: %s (%d)\n",
2114			       __func__, old_gov->name, ret);
2115			return ret;
2116		}
2117	}
2118
2119	/* start new governor */
2120	policy->governor = new_policy->governor;
2121	ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2122	if (!ret) {
2123		ret = cpufreq_start_governor(policy);
2124		if (!ret) {
2125			pr_debug("cpufreq: governor change\n");
2126			return 0;
2127		}
2128		cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2129	}
2130
2131	/* new governor failed, so re-start old one */
2132	pr_debug("starting governor %s failed\n", policy->governor->name);
2133	if (old_gov) {
2134		policy->governor = old_gov;
2135		if (cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
2136			policy->governor = NULL;
2137		else
2138			cpufreq_start_governor(policy);
2139	}
2140
2141	return ret;
2142}
2143
2144/**
2145 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2146 *	@cpu: CPU which shall be re-evaluated
2147 *
2148 *	Useful for policy notifiers which have different necessities
2149 *	at different times.
 
 
2150 */
2151int cpufreq_update_policy(unsigned int cpu)
2152{
2153	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2154	struct cpufreq_policy new_policy;
2155	int ret;
2156
2157	if (!policy)
2158		return -ENODEV;
2159
2160	down_write(&policy->rwsem);
2161
2162	pr_debug("updating policy for CPU %u\n", cpu);
2163	memcpy(&new_policy, policy, sizeof(*policy));
2164	new_policy.min = policy->user_policy.min;
2165	new_policy.max = policy->user_policy.max;
2166
2167	/*
2168	 * BIOS might change freq behind our back
2169	 * -> ask driver for current freq and notify governors about a change
2170	 */
2171	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2172		new_policy.cur = cpufreq_update_current_freq(policy);
2173		if (WARN_ON(!new_policy.cur)) {
2174			ret = -EIO;
2175			goto unlock;
2176		}
2177	}
2178
2179	ret = cpufreq_set_policy(policy, &new_policy);
2180
2181unlock:
2182	up_write(&policy->rwsem);
2183
2184	cpufreq_cpu_put(policy);
2185	return ret;
2186}
2187EXPORT_SYMBOL(cpufreq_update_policy);
2188
2189static int cpufreq_cpu_callback(struct notifier_block *nfb,
2190					unsigned long action, void *hcpu)
 
 
 
 
 
 
2191{
2192	unsigned int cpu = (unsigned long)hcpu;
2193
2194	switch (action & ~CPU_TASKS_FROZEN) {
2195	case CPU_ONLINE:
2196		cpufreq_online(cpu);
2197		break;
2198
2199	case CPU_DOWN_PREPARE:
2200		cpufreq_offline(cpu);
2201		break;
2202
2203	case CPU_DOWN_FAILED:
2204		cpufreq_online(cpu);
2205		break;
2206	}
2207	return NOTIFY_OK;
2208}
2209
2210static struct notifier_block __refdata cpufreq_cpu_notifier = {
2211	.notifier_call = cpufreq_cpu_callback,
2212};
2213
2214/*********************************************************************
2215 *               BOOST						     *
2216 *********************************************************************/
2217static int cpufreq_boost_set_sw(int state)
2218{
2219	struct cpufreq_frequency_table *freq_table;
2220	struct cpufreq_policy *policy;
2221	int ret = -EINVAL;
2222
2223	for_each_active_policy(policy) {
2224		freq_table = cpufreq_frequency_get_table(policy->cpu);
2225		if (freq_table) {
2226			ret = cpufreq_frequency_table_cpuinfo(policy,
2227							freq_table);
2228			if (ret) {
2229				pr_err("%s: Policy frequency update failed\n",
2230				       __func__);
2231				break;
2232			}
2233
2234			down_write(&policy->rwsem);
2235			policy->user_policy.max = policy->max;
2236			cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2237			up_write(&policy->rwsem);
2238		}
2239	}
2240
2241	return ret;
 
 
 
 
2242}
2243
2244int cpufreq_boost_trigger_state(int state)
2245{
 
2246	unsigned long flags;
2247	int ret = 0;
2248
2249	if (cpufreq_driver->boost_enabled == state)
2250		return 0;
2251
2252	write_lock_irqsave(&cpufreq_driver_lock, flags);
2253	cpufreq_driver->boost_enabled = state;
2254	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2255
2256	ret = cpufreq_driver->set_boost(state);
2257	if (ret) {
2258		write_lock_irqsave(&cpufreq_driver_lock, flags);
2259		cpufreq_driver->boost_enabled = !state;
2260		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2261
2262		pr_err("%s: Cannot %s BOOST\n",
2263		       __func__, state ? "enable" : "disable");
2264	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2265
2266	return ret;
2267}
2268
2269static bool cpufreq_boost_supported(void)
2270{
2271	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2272}
2273
2274static int create_boost_sysfs_file(void)
2275{
2276	int ret;
2277
2278	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2279	if (ret)
2280		pr_err("%s: cannot register global BOOST sysfs file\n",
2281		       __func__);
2282
2283	return ret;
2284}
2285
2286static void remove_boost_sysfs_file(void)
2287{
2288	if (cpufreq_boost_supported())
2289		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2290}
2291
2292int cpufreq_enable_boost_support(void)
2293{
2294	if (!cpufreq_driver)
2295		return -EINVAL;
2296
2297	if (cpufreq_boost_supported())
2298		return 0;
2299
2300	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2301
2302	/* This will get removed on driver unregister */
2303	return create_boost_sysfs_file();
2304}
2305EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2306
2307int cpufreq_boost_enabled(void)
2308{
2309	return cpufreq_driver->boost_enabled;
2310}
2311EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2312
2313/*********************************************************************
2314 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2315 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2316
2317/**
2318 * cpufreq_register_driver - register a CPU Frequency driver
2319 * @driver_data: A struct cpufreq_driver containing the values#
2320 * submitted by the CPU Frequency driver.
2321 *
2322 * Registers a CPU Frequency driver to this core code. This code
2323 * returns zero on success, -EEXIST when another driver got here first
2324 * (and isn't unregistered in the meantime).
2325 *
2326 */
2327int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2328{
2329	unsigned long flags;
2330	int ret;
2331
2332	if (cpufreq_disabled())
2333		return -ENODEV;
2334
 
 
 
 
 
 
 
2335	if (!driver_data || !driver_data->verify || !driver_data->init ||
2336	    !(driver_data->setpolicy || driver_data->target_index ||
2337		    driver_data->target) ||
2338	     (driver_data->setpolicy && (driver_data->target_index ||
2339		    driver_data->target)) ||
2340	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
 
 
2341		return -EINVAL;
2342
2343	pr_debug("trying to register driver %s\n", driver_data->name);
2344
2345	/* Protect against concurrent CPU online/offline. */
2346	get_online_cpus();
2347
2348	write_lock_irqsave(&cpufreq_driver_lock, flags);
2349	if (cpufreq_driver) {
2350		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351		ret = -EEXIST;
2352		goto out;
2353	}
2354	cpufreq_driver = driver_data;
2355	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2356
 
 
 
 
 
 
 
 
 
2357	if (driver_data->setpolicy)
2358		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2359
2360	if (cpufreq_boost_supported()) {
2361		ret = create_boost_sysfs_file();
2362		if (ret)
2363			goto err_null_driver;
2364	}
2365
2366	ret = subsys_interface_register(&cpufreq_interface);
2367	if (ret)
2368		goto err_boost_unreg;
2369
2370	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2371	    list_empty(&cpufreq_policy_list)) {
2372		/* if all ->init() calls failed, unregister */
 
2373		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2374			 driver_data->name);
2375		goto err_if_unreg;
2376	}
2377
2378	register_hotcpu_notifier(&cpufreq_cpu_notifier);
 
 
 
 
 
 
 
 
2379	pr_debug("driver %s up and running\n", driver_data->name);
2380
2381out:
2382	put_online_cpus();
2383	return ret;
2384
2385err_if_unreg:
2386	subsys_interface_unregister(&cpufreq_interface);
2387err_boost_unreg:
2388	remove_boost_sysfs_file();
2389err_null_driver:
2390	write_lock_irqsave(&cpufreq_driver_lock, flags);
2391	cpufreq_driver = NULL;
2392	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2393	goto out;
 
 
2394}
2395EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2396
2397/**
2398 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2399 *
2400 * Unregister the current CPUFreq driver. Only call this if you have
2401 * the right to do so, i.e. if you have succeeded in initialising before!
2402 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2403 * currently not initialised.
2404 */
2405int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2406{
2407	unsigned long flags;
2408
2409	if (!cpufreq_driver || (driver != cpufreq_driver))
2410		return -EINVAL;
2411
2412	pr_debug("unregistering driver %s\n", driver->name);
2413
2414	/* Protect against concurrent cpu hotplug */
2415	get_online_cpus();
2416	subsys_interface_unregister(&cpufreq_interface);
2417	remove_boost_sysfs_file();
2418	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
 
2419
2420	write_lock_irqsave(&cpufreq_driver_lock, flags);
2421
2422	cpufreq_driver = NULL;
2423
2424	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2425	put_online_cpus();
2426
2427	return 0;
2428}
2429EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2430
2431/*
2432 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2433 * or mutexes when secondary CPUs are halted.
2434 */
2435static struct syscore_ops cpufreq_syscore_ops = {
2436	.shutdown = cpufreq_suspend,
2437};
2438
2439struct kobject *cpufreq_global_kobject;
2440EXPORT_SYMBOL(cpufreq_global_kobject);
2441
2442static int __init cpufreq_core_init(void)
2443{
 
 
 
2444	if (cpufreq_disabled())
2445		return -ENODEV;
2446
2447	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
 
 
 
 
2448	BUG_ON(!cpufreq_global_kobject);
2449
2450	register_syscore_ops(&cpufreq_syscore_ops);
 
2451
2452	return 0;
2453}
 
 
2454core_initcall(cpufreq_core_init);