Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
 
 
 
 
 
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
 
 
 
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
  79}
  80
  81/* internal prototypes */
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
 
 
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 
 
 
 
 
 
 
 
 
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 
 
 
 
 
 
 
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 
 
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 
 
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 241
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 
 
 
 
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 252	kobject_put(&policy->kobj);
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 266
 267	up_write(&policy->rwsem);
 268
 269	cpufreq_cpu_put(policy);
 270}
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 299}
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 336#endif
 337}
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 354
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 365	switch (state) {
 
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 
 
 
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 
 
 
 
 397	}
 398}
 399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency) {
 579		/*
 580		 * For platforms that can change the frequency very fast (< 10
 581		 * us), the above formula gives a decent transition delay. But
 582		 * for platforms where transition_latency is in milliseconds, it
 583		 * ends up giving unrealistic values.
 584		 *
 585		 * Cap the default transition delay to 10 ms, which seems to be
 586		 * a reasonable amount of time after which we should reevaluate
 587		 * the frequency.
 588		 */
 589		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 590	}
 591
 592	return LATENCY_MULTIPLIER;
 
 
 
 593}
 594EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 595
 596/*********************************************************************
 597 *                          SYSFS INTERFACE                          *
 598 *********************************************************************/
 599static ssize_t show_boost(struct kobject *kobj,
 600			  struct kobj_attribute *attr, char *buf)
 601{
 602	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 603}
 604
 605static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 606			   const char *buf, size_t count)
 607{
 608	int ret, enable;
 609
 610	ret = sscanf(buf, "%d", &enable);
 611	if (ret != 1 || enable < 0 || enable > 1)
 612		return -EINVAL;
 613
 614	if (cpufreq_boost_trigger_state(enable)) {
 615		pr_err("%s: Cannot %s BOOST!\n",
 616		       __func__, enable ? "enable" : "disable");
 617		return -EINVAL;
 618	}
 619
 620	pr_debug("%s: cpufreq BOOST %s\n",
 621		 __func__, enable ? "enabled" : "disabled");
 622
 623	return count;
 624}
 625define_one_global_rw(boost);
 626
 627static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 628{
 629	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 630}
 631
 632static ssize_t store_local_boost(struct cpufreq_policy *policy,
 633				 const char *buf, size_t count)
 634{
 635	int ret, enable;
 636
 637	ret = kstrtoint(buf, 10, &enable);
 638	if (ret || enable < 0 || enable > 1)
 639		return -EINVAL;
 640
 641	if (!cpufreq_driver->boost_enabled)
 642		return -EINVAL;
 643
 644	if (policy->boost_enabled == enable)
 645		return count;
 646
 647	cpus_read_lock();
 648	ret = cpufreq_driver->set_boost(policy, enable);
 649	cpus_read_unlock();
 650
 651	if (ret)
 652		return ret;
 653
 654	policy->boost_enabled = enable;
 655
 656	return count;
 657}
 658
 659static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 660
 661static struct cpufreq_governor *find_governor(const char *str_governor)
 662{
 663	struct cpufreq_governor *t;
 664
 665	for_each_governor(t)
 666		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 667			return t;
 668
 669	return NULL;
 670}
 671
 672static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 673{
 674	struct cpufreq_governor *t;
 675
 676	mutex_lock(&cpufreq_governor_mutex);
 677	t = find_governor(str_governor);
 678	if (!t)
 679		goto unlock;
 680
 681	if (!try_module_get(t->owner))
 682		t = NULL;
 683
 684unlock:
 685	mutex_unlock(&cpufreq_governor_mutex);
 686
 687	return t;
 688}
 
 
 
 
 
 
 
 
 
 689
 690static unsigned int cpufreq_parse_policy(char *str_governor)
 691{
 692	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 693		return CPUFREQ_POLICY_PERFORMANCE;
 694
 695	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 696		return CPUFREQ_POLICY_POWERSAVE;
 697
 698	return CPUFREQ_POLICY_UNKNOWN;
 699}
 700
 701/**
 702 * cpufreq_parse_governor - parse a governor string only for has_target()
 703 * @str_governor: Governor name.
 704 */
 705static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 706{
 707	struct cpufreq_governor *t;
 708
 709	t = get_governor(str_governor);
 710	if (t)
 711		return t;
 712
 713	if (request_module("cpufreq_%s", str_governor))
 714		return NULL;
 
 
 715
 716	return get_governor(str_governor);
 
 
 717}
 718
 719/*
 720 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 721 * print out cpufreq information
 722 *
 723 * Write out information from cpufreq_driver->policy[cpu]; object must be
 724 * "unsigned int".
 725 */
 726
 727#define show_one(file_name, object)			\
 728static ssize_t show_##file_name				\
 729(struct cpufreq_policy *policy, char *buf)		\
 730{							\
 731	return sprintf(buf, "%u\n", policy->object);	\
 732}
 733
 734show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 735show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 736show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 737show_one(scaling_min_freq, min);
 738show_one(scaling_max_freq, max);
 739
 740__weak unsigned int arch_freq_get_on_cpu(int cpu)
 741{
 742	return 0;
 743}
 744
 745static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 746{
 747	ssize_t ret;
 748	unsigned int freq;
 749
 750	freq = arch_freq_get_on_cpu(policy->cpu);
 751	if (freq)
 752		ret = sprintf(buf, "%u\n", freq);
 753	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 754		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 755	else
 756		ret = sprintf(buf, "%u\n", policy->cur);
 757	return ret;
 758}
 759
 760/*
 
 
 
 761 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 762 */
 763#define store_one(file_name, object)			\
 764static ssize_t store_##file_name					\
 765(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 766{									\
 767	unsigned long val;						\
 768	int ret;							\
 769									\
 770	ret = kstrtoul(buf, 0, &val);					\
 771	if (ret)							\
 772		return ret;						\
 773									\
 774	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 775	return ret >= 0 ? count : ret;					\
 
 
 
 
 
 
 
 
 776}
 777
 778store_one(scaling_min_freq, min);
 779store_one(scaling_max_freq, max);
 780
 781/*
 782 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 783 */
 784static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 785					char *buf)
 786{
 787	unsigned int cur_freq = __cpufreq_get(policy);
 788
 789	if (cur_freq)
 790		return sprintf(buf, "%u\n", cur_freq);
 791
 792	return sprintf(buf, "<unknown>\n");
 793}
 794
 795/*
 796 * show_scaling_governor - show the current policy for the specified CPU
 797 */
 798static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 799{
 800	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 801		return sprintf(buf, "powersave\n");
 802	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 803		return sprintf(buf, "performance\n");
 804	else if (policy->governor)
 805		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 806				policy->governor->name);
 807	return -EINVAL;
 808}
 809
 810/*
 811 * store_scaling_governor - store policy for the specified CPU
 812 */
 813static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 814					const char *buf, size_t count)
 815{
 816	char str_governor[16];
 817	int ret;
 
 
 
 
 818
 819	ret = sscanf(buf, "%15s", str_governor);
 820	if (ret != 1)
 821		return -EINVAL;
 822
 823	if (cpufreq_driver->setpolicy) {
 824		unsigned int new_pol;
 825
 826		new_pol = cpufreq_parse_policy(str_governor);
 827		if (!new_pol)
 828			return -EINVAL;
 829
 830		ret = cpufreq_set_policy(policy, NULL, new_pol);
 831	} else {
 832		struct cpufreq_governor *new_gov;
 833
 834		new_gov = cpufreq_parse_governor(str_governor);
 835		if (!new_gov)
 836			return -EINVAL;
 837
 838		ret = cpufreq_set_policy(policy, new_gov,
 839					 CPUFREQ_POLICY_UNKNOWN);
 840
 841		module_put(new_gov->owner);
 842	}
 843
 
 844	return ret ? ret : count;
 845}
 846
 847/*
 848 * show_scaling_driver - show the cpufreq driver currently loaded
 849 */
 850static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 851{
 852	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 853}
 854
 855/*
 856 * show_scaling_available_governors - show the available CPUfreq governors
 857 */
 858static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 859						char *buf)
 860{
 861	ssize_t i = 0;
 862	struct cpufreq_governor *t;
 863
 864	if (!has_target()) {
 865		i += sprintf(buf, "performance powersave");
 866		goto out;
 867	}
 868
 869	mutex_lock(&cpufreq_governor_mutex);
 870	for_each_governor(t) {
 871		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 872		    - (CPUFREQ_NAME_LEN + 2)))
 873			break;
 874		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 875	}
 876	mutex_unlock(&cpufreq_governor_mutex);
 877out:
 878	i += sprintf(&buf[i], "\n");
 879	return i;
 880}
 881
 882ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 883{
 884	ssize_t i = 0;
 885	unsigned int cpu;
 886
 887	for_each_cpu(cpu, mask) {
 888		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
 
 
 889		if (i >= (PAGE_SIZE - 5))
 890			break;
 891	}
 892
 893	/* Remove the extra space at the end */
 894	i--;
 895
 896	i += sprintf(&buf[i], "\n");
 897	return i;
 898}
 899EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 900
 901/*
 902 * show_related_cpus - show the CPUs affected by each transition even if
 903 * hw coordination is in use
 904 */
 905static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 906{
 907	return cpufreq_show_cpus(policy->related_cpus, buf);
 908}
 909
 910/*
 911 * show_affected_cpus - show the CPUs affected by each transition
 912 */
 913static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 914{
 915	return cpufreq_show_cpus(policy->cpus, buf);
 916}
 917
 918static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 919					const char *buf, size_t count)
 920{
 921	unsigned int freq = 0;
 922	unsigned int ret;
 923
 924	if (!policy->governor || !policy->governor->store_setspeed)
 925		return -EINVAL;
 926
 927	ret = sscanf(buf, "%u", &freq);
 928	if (ret != 1)
 929		return -EINVAL;
 930
 931	policy->governor->store_setspeed(policy, freq);
 932
 933	return count;
 934}
 935
 936static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 937{
 938	if (!policy->governor || !policy->governor->show_setspeed)
 939		return sprintf(buf, "<unsupported>\n");
 940
 941	return policy->governor->show_setspeed(policy, buf);
 942}
 943
 944/*
 945 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 946 */
 947static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 948{
 949	unsigned int limit;
 950	int ret;
 951	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 952	if (!ret)
 953		return sprintf(buf, "%u\n", limit);
 
 
 954	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 955}
 956
 957cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 958cpufreq_freq_attr_ro(cpuinfo_min_freq);
 959cpufreq_freq_attr_ro(cpuinfo_max_freq);
 960cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 961cpufreq_freq_attr_ro(scaling_available_governors);
 962cpufreq_freq_attr_ro(scaling_driver);
 963cpufreq_freq_attr_ro(scaling_cur_freq);
 964cpufreq_freq_attr_ro(bios_limit);
 965cpufreq_freq_attr_ro(related_cpus);
 966cpufreq_freq_attr_ro(affected_cpus);
 967cpufreq_freq_attr_rw(scaling_min_freq);
 968cpufreq_freq_attr_rw(scaling_max_freq);
 969cpufreq_freq_attr_rw(scaling_governor);
 970cpufreq_freq_attr_rw(scaling_setspeed);
 971
 972static struct attribute *cpufreq_attrs[] = {
 973	&cpuinfo_min_freq.attr,
 974	&cpuinfo_max_freq.attr,
 975	&cpuinfo_transition_latency.attr,
 976	&scaling_min_freq.attr,
 977	&scaling_max_freq.attr,
 978	&affected_cpus.attr,
 979	&related_cpus.attr,
 980	&scaling_governor.attr,
 981	&scaling_driver.attr,
 982	&scaling_available_governors.attr,
 983	&scaling_setspeed.attr,
 984	NULL
 985};
 986ATTRIBUTE_GROUPS(cpufreq);
 987
 988#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 989#define to_attr(a) container_of(a, struct freq_attr, attr)
 990
 991static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 992{
 993	struct cpufreq_policy *policy = to_policy(kobj);
 994	struct freq_attr *fattr = to_attr(attr);
 995	ssize_t ret = -EBUSY;
 996
 997	if (!fattr->show)
 998		return -EIO;
 999
1000	down_read(&policy->rwsem);
1001	if (likely(!policy_is_inactive(policy)))
1002		ret = fattr->show(policy, buf);
1003	up_read(&policy->rwsem);
1004
1005	return ret;
1006}
1007
1008static ssize_t store(struct kobject *kobj, struct attribute *attr,
1009		     const char *buf, size_t count)
1010{
1011	struct cpufreq_policy *policy = to_policy(kobj);
1012	struct freq_attr *fattr = to_attr(attr);
1013	ssize_t ret = -EBUSY;
1014
1015	if (!fattr->store)
1016		return -EIO;
1017
1018	down_write(&policy->rwsem);
1019	if (likely(!policy_is_inactive(policy)))
1020		ret = fattr->store(policy, buf, count);
1021	up_write(&policy->rwsem);
 
 
 
1022
1023	return ret;
1024}
1025
1026static void cpufreq_sysfs_release(struct kobject *kobj)
1027{
1028	struct cpufreq_policy *policy = to_policy(kobj);
1029	pr_debug("last reference is dropped\n");
1030	complete(&policy->kobj_unregister);
1031}
1032
1033static const struct sysfs_ops sysfs_ops = {
1034	.show	= show,
1035	.store	= store,
1036};
1037
1038static const struct kobj_type ktype_cpufreq = {
1039	.sysfs_ops	= &sysfs_ops,
1040	.default_groups	= cpufreq_groups,
1041	.release	= cpufreq_sysfs_release,
1042};
1043
1044static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1045				struct device *dev)
1046{
1047	if (unlikely(!dev))
1048		return;
1049
1050	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1051		return;
1052
1053	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1054	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1055		dev_err(dev, "cpufreq symlink creation failed\n");
1056}
1057
1058static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1059				   struct device *dev)
1060{
1061	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1062	sysfs_remove_link(&dev->kobj, "cpufreq");
1063	cpumask_clear_cpu(cpu, policy->real_cpus);
1064}
1065
1066static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1067{
1068	struct freq_attr **drv_attr;
1069	int ret = 0;
1070
1071	/* set up files for this cpu device */
1072	drv_attr = cpufreq_driver->attr;
1073	while (drv_attr && *drv_attr) {
1074		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1075		if (ret)
1076			return ret;
1077		drv_attr++;
1078	}
1079	if (cpufreq_driver->get) {
1080		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1081		if (ret)
1082			return ret;
1083	}
1084
1085	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1086	if (ret)
1087		return ret;
1088
1089	if (cpufreq_driver->bios_limit) {
1090		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1091		if (ret)
1092			return ret;
1093	}
1094
1095	if (cpufreq_boost_supported()) {
1096		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1097		if (ret)
1098			return ret;
1099	}
1100
1101	return 0;
1102}
1103
 
 
 
 
 
1104static int cpufreq_init_policy(struct cpufreq_policy *policy)
1105{
1106	struct cpufreq_governor *gov = NULL;
1107	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1108	int ret;
1109
1110	if (has_target()) {
1111		/* Update policy governor to the one used before hotplug. */
1112		gov = get_governor(policy->last_governor);
1113		if (gov) {
1114			pr_debug("Restoring governor %s for cpu %d\n",
1115				 gov->name, policy->cpu);
1116		} else {
1117			gov = get_governor(default_governor);
1118		}
1119
1120		if (!gov) {
1121			gov = cpufreq_default_governor();
1122			__module_get(gov->owner);
1123		}
1124
 
 
 
 
 
1125	} else {
1126
1127		/* Use the default policy if there is no last_policy. */
1128		if (policy->last_policy) {
1129			pol = policy->last_policy;
1130		} else {
1131			pol = cpufreq_parse_policy(default_governor);
1132			/*
1133			 * In case the default governor is neither "performance"
1134			 * nor "powersave", fall back to the initial policy
1135			 * value set by the driver.
1136			 */
1137			if (pol == CPUFREQ_POLICY_UNKNOWN)
1138				pol = policy->policy;
1139		}
1140		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1141		    pol != CPUFREQ_POLICY_POWERSAVE)
1142			return -ENODATA;
1143	}
1144
1145	ret = cpufreq_set_policy(policy, gov, pol);
1146	if (gov)
1147		module_put(gov->owner);
1148
1149	return ret;
 
 
 
 
 
 
 
 
 
1150}
1151
1152static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1153{
1154	int ret = 0;
1155
1156	/* Has this CPU been taken care of already? */
1157	if (cpumask_test_cpu(cpu, policy->cpus))
1158		return 0;
1159
1160	down_write(&policy->rwsem);
1161	if (has_target())
1162		cpufreq_stop_governor(policy);
1163
1164	cpumask_set_cpu(cpu, policy->cpus);
1165
1166	if (has_target()) {
1167		ret = cpufreq_start_governor(policy);
1168		if (ret)
1169			pr_err("%s: Failed to start governor\n", __func__);
1170	}
1171	up_write(&policy->rwsem);
1172	return ret;
1173}
1174
1175void refresh_frequency_limits(struct cpufreq_policy *policy)
1176{
1177	if (!policy_is_inactive(policy)) {
1178		pr_debug("updating policy for CPU %u\n", policy->cpu);
1179
1180		cpufreq_set_policy(policy, policy->governor, policy->policy);
1181	}
1182}
1183EXPORT_SYMBOL(refresh_frequency_limits);
1184
1185static void handle_update(struct work_struct *work)
1186{
1187	struct cpufreq_policy *policy =
1188		container_of(work, struct cpufreq_policy, update);
1189
1190	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1191	down_write(&policy->rwsem);
1192	refresh_frequency_limits(policy);
1193	up_write(&policy->rwsem);
1194}
1195
1196static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1197				void *data)
1198{
1199	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1200
1201	schedule_work(&policy->update);
1202	return 0;
1203}
1204
1205static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1206				void *data)
1207{
1208	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1209
1210	schedule_work(&policy->update);
1211	return 0;
1212}
1213
1214static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1215{
1216	struct kobject *kobj;
1217	struct completion *cmp;
1218
1219	down_write(&policy->rwsem);
1220	cpufreq_stats_free_table(policy);
1221	kobj = &policy->kobj;
1222	cmp = &policy->kobj_unregister;
1223	up_write(&policy->rwsem);
1224	kobject_put(kobj);
1225
1226	/*
1227	 * We need to make sure that the underlying kobj is
1228	 * actually not referenced anymore by anybody before we
1229	 * proceed with unloading.
1230	 */
1231	pr_debug("waiting for dropping of refcount\n");
1232	wait_for_completion(cmp);
1233	pr_debug("wait complete\n");
1234}
1235
1236static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1237{
1238	struct cpufreq_policy *policy;
1239	struct device *dev = get_cpu_device(cpu);
1240	int ret;
1241
1242	if (!dev)
1243		return NULL;
1244
1245	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1246	if (!policy)
1247		return NULL;
1248
1249	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1250		goto err_free_policy;
1251
1252	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1253		goto err_free_cpumask;
1254
1255	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1256		goto err_free_rcpumask;
1257
1258	init_completion(&policy->kobj_unregister);
1259	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1260				   cpufreq_global_kobject, "policy%u", cpu);
1261	if (ret) {
1262		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1263		/*
1264		 * The entire policy object will be freed below, but the extra
1265		 * memory allocated for the kobject name needs to be freed by
1266		 * releasing the kobject.
1267		 */
1268		kobject_put(&policy->kobj);
1269		goto err_free_real_cpus;
1270	}
1271
1272	freq_constraints_init(&policy->constraints);
1273
1274	policy->nb_min.notifier_call = cpufreq_notifier_min;
1275	policy->nb_max.notifier_call = cpufreq_notifier_max;
1276
1277	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1278				    &policy->nb_min);
1279	if (ret) {
1280		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1281			ret, cpu);
1282		goto err_kobj_remove;
1283	}
1284
1285	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1286				    &policy->nb_max);
1287	if (ret) {
1288		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1289			ret, cpu);
1290		goto err_min_qos_notifier;
1291	}
1292
1293	INIT_LIST_HEAD(&policy->policy_list);
1294	init_rwsem(&policy->rwsem);
1295	spin_lock_init(&policy->transition_lock);
1296	init_waitqueue_head(&policy->transition_wait);
 
1297	INIT_WORK(&policy->update, handle_update);
1298
1299	policy->cpu = cpu;
1300	return policy;
1301
1302err_min_qos_notifier:
1303	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1304				 &policy->nb_min);
1305err_kobj_remove:
1306	cpufreq_policy_put_kobj(policy);
1307err_free_real_cpus:
1308	free_cpumask_var(policy->real_cpus);
1309err_free_rcpumask:
1310	free_cpumask_var(policy->related_cpus);
1311err_free_cpumask:
1312	free_cpumask_var(policy->cpus);
1313err_free_policy:
1314	kfree(policy);
1315
1316	return NULL;
1317}
1318
1319static void cpufreq_policy_free(struct cpufreq_policy *policy)
1320{
1321	unsigned long flags;
1322	int cpu;
 
 
 
 
 
 
 
 
 
 
 
1323
1324	/*
1325	 * The callers must ensure the policy is inactive by now, to avoid any
1326	 * races with show()/store() callbacks.
 
1327	 */
1328	if (unlikely(!policy_is_inactive(policy)))
1329		pr_warn("%s: Freeing active policy\n", __func__);
 
 
 
 
 
 
 
1330
1331	/* Remove policy from list */
1332	write_lock_irqsave(&cpufreq_driver_lock, flags);
1333	list_del(&policy->policy_list);
1334
1335	for_each_cpu(cpu, policy->related_cpus)
1336		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1337	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1338
1339	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1340				 &policy->nb_max);
1341	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1342				 &policy->nb_min);
1343
1344	/* Cancel any pending policy->update work before freeing the policy. */
1345	cancel_work_sync(&policy->update);
1346
1347	if (policy->max_freq_req) {
1348		/*
1349		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1350		 * notification, since CPUFREQ_CREATE_POLICY notification was
1351		 * sent after adding max_freq_req earlier.
1352		 */
1353		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1354					     CPUFREQ_REMOVE_POLICY, policy);
1355		freq_qos_remove_request(policy->max_freq_req);
1356	}
1357
1358	freq_qos_remove_request(policy->min_freq_req);
1359	kfree(policy->min_freq_req);
1360
1361	cpufreq_policy_put_kobj(policy);
1362	free_cpumask_var(policy->real_cpus);
1363	free_cpumask_var(policy->related_cpus);
1364	free_cpumask_var(policy->cpus);
1365	kfree(policy);
1366}
1367
1368static int cpufreq_online(unsigned int cpu)
1369{
1370	struct cpufreq_policy *policy;
1371	bool new_policy;
1372	unsigned long flags;
1373	unsigned int j;
1374	int ret;
1375
1376	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1377
1378	/* Check if this CPU already has a policy to manage it */
1379	policy = per_cpu(cpufreq_cpu_data, cpu);
1380	if (policy) {
1381		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1382		if (!policy_is_inactive(policy))
1383			return cpufreq_add_policy_cpu(policy, cpu);
1384
1385		/* This is the only online CPU for the policy.  Start over. */
1386		new_policy = false;
1387		down_write(&policy->rwsem);
1388		policy->cpu = cpu;
1389		policy->governor = NULL;
 
1390	} else {
1391		new_policy = true;
1392		policy = cpufreq_policy_alloc(cpu);
1393		if (!policy)
1394			return -ENOMEM;
1395		down_write(&policy->rwsem);
1396	}
1397
1398	if (!new_policy && cpufreq_driver->online) {
1399		/* Recover policy->cpus using related_cpus */
1400		cpumask_copy(policy->cpus, policy->related_cpus);
1401
1402		ret = cpufreq_driver->online(policy);
1403		if (ret) {
1404			pr_debug("%s: %d: initialization failed\n", __func__,
1405				 __LINE__);
1406			goto out_exit_policy;
1407		}
1408	} else {
1409		cpumask_copy(policy->cpus, cpumask_of(cpu));
1410
1411		/*
1412		 * Call driver. From then on the cpufreq must be able
1413		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1414		 */
1415		ret = cpufreq_driver->init(policy);
1416		if (ret) {
1417			pr_debug("%s: %d: initialization failed\n", __func__,
1418				 __LINE__);
1419			goto out_free_policy;
1420		}
1421
1422		/*
1423		 * The initialization has succeeded and the policy is online.
1424		 * If there is a problem with its frequency table, take it
1425		 * offline and drop it.
1426		 */
1427		ret = cpufreq_table_validate_and_sort(policy);
1428		if (ret)
1429			goto out_offline_policy;
1430
 
1431		/* related_cpus should at least include policy->cpus. */
1432		cpumask_copy(policy->related_cpus, policy->cpus);
 
 
1433	}
1434
1435	/*
1436	 * affected cpus must always be the one, which are online. We aren't
1437	 * managing offline cpus here.
1438	 */
1439	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1440
1441	if (new_policy) {
1442		for_each_cpu(j, policy->related_cpus) {
1443			per_cpu(cpufreq_cpu_data, j) = policy;
1444			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1445		}
1446
1447		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1448					       GFP_KERNEL);
1449		if (!policy->min_freq_req) {
1450			ret = -ENOMEM;
1451			goto out_destroy_policy;
1452		}
1453
1454		ret = freq_qos_add_request(&policy->constraints,
1455					   policy->min_freq_req, FREQ_QOS_MIN,
1456					   FREQ_QOS_MIN_DEFAULT_VALUE);
1457		if (ret < 0) {
1458			/*
1459			 * So we don't call freq_qos_remove_request() for an
1460			 * uninitialized request.
1461			 */
1462			kfree(policy->min_freq_req);
1463			policy->min_freq_req = NULL;
1464			goto out_destroy_policy;
1465		}
1466
1467		/*
1468		 * This must be initialized right here to avoid calling
1469		 * freq_qos_remove_request() on uninitialized request in case
1470		 * of errors.
1471		 */
1472		policy->max_freq_req = policy->min_freq_req + 1;
1473
1474		ret = freq_qos_add_request(&policy->constraints,
1475					   policy->max_freq_req, FREQ_QOS_MAX,
1476					   FREQ_QOS_MAX_DEFAULT_VALUE);
1477		if (ret < 0) {
1478			policy->max_freq_req = NULL;
1479			goto out_destroy_policy;
1480		}
1481
1482		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1483				CPUFREQ_CREATE_POLICY, policy);
 
 
 
 
 
1484	}
1485
1486	if (cpufreq_driver->get && has_target()) {
1487		policy->cur = cpufreq_driver->get(policy->cpu);
1488		if (!policy->cur) {
1489			ret = -EIO;
1490			pr_err("%s: ->get() failed\n", __func__);
1491			goto out_destroy_policy;
1492		}
1493	}
1494
1495	/*
1496	 * Sometimes boot loaders set CPU frequency to a value outside of
1497	 * frequency table present with cpufreq core. In such cases CPU might be
1498	 * unstable if it has to run on that frequency for long duration of time
1499	 * and so its better to set it to a frequency which is specified in
1500	 * freq-table. This also makes cpufreq stats inconsistent as
1501	 * cpufreq-stats would fail to register because current frequency of CPU
1502	 * isn't found in freq-table.
1503	 *
1504	 * Because we don't want this change to effect boot process badly, we go
1505	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1506	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1507	 * is initialized to zero).
1508	 *
1509	 * We are passing target-freq as "policy->cur - 1" otherwise
1510	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1511	 * equal to target-freq.
1512	 */
1513	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1514	    && has_target()) {
1515		unsigned int old_freq = policy->cur;
1516
1517		/* Are we running at unknown frequency ? */
1518		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1519		if (ret == -EINVAL) {
1520			ret = __cpufreq_driver_target(policy, old_freq - 1,
1521						      CPUFREQ_RELATION_L);
 
 
 
1522
1523			/*
1524			 * Reaching here after boot in a few seconds may not
1525			 * mean that system will remain stable at "unknown"
1526			 * frequency for longer duration. Hence, a BUG_ON().
1527			 */
1528			BUG_ON(ret);
1529			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1530				__func__, policy->cpu, old_freq, policy->cur);
1531		}
1532	}
1533
1534	if (new_policy) {
1535		ret = cpufreq_add_dev_interface(policy);
1536		if (ret)
1537			goto out_destroy_policy;
1538
1539		cpufreq_stats_create_table(policy);
 
 
1540
1541		write_lock_irqsave(&cpufreq_driver_lock, flags);
1542		list_add(&policy->policy_list, &cpufreq_policy_list);
1543		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544
1545		/*
1546		 * Register with the energy model before
1547		 * sugov_eas_rebuild_sd() is called, which will result
1548		 * in rebuilding of the sched domains, which should only be done
1549		 * once the energy model is properly initialized for the policy
1550		 * first.
1551		 *
1552		 * Also, this should be called before the policy is registered
1553		 * with cooling framework.
1554		 */
1555		if (cpufreq_driver->register_em)
1556			cpufreq_driver->register_em(policy);
1557	}
1558
 
 
 
1559	ret = cpufreq_init_policy(policy);
1560	if (ret) {
1561		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1562		       __func__, cpu, ret);
1563		goto out_destroy_policy;
 
 
1564	}
1565
1566	up_write(&policy->rwsem);
1567
1568	kobject_uevent(&policy->kobj, KOBJ_ADD);
1569
1570	/* Callback for handling stuff after policy is ready */
1571	if (cpufreq_driver->ready)
1572		cpufreq_driver->ready(policy);
1573
1574	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1575		policy->cdev = of_cpufreq_cooling_register(policy);
1576
1577	pr_debug("initialization complete\n");
1578
1579	return 0;
1580
1581out_destroy_policy:
1582	for_each_cpu(j, policy->real_cpus)
1583		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1584
1585out_offline_policy:
1586	if (cpufreq_driver->offline)
1587		cpufreq_driver->offline(policy);
1588
1589out_exit_policy:
 
 
1590	if (cpufreq_driver->exit)
1591		cpufreq_driver->exit(policy);
1592
1593out_free_policy:
1594	cpumask_clear(policy->cpus);
1595	up_write(&policy->rwsem);
1596
1597	cpufreq_policy_free(policy);
1598	return ret;
1599}
1600
 
 
1601/**
1602 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1603 * @dev: CPU device.
1604 * @sif: Subsystem interface structure pointer (not used)
1605 */
1606static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1607{
1608	struct cpufreq_policy *policy;
1609	unsigned cpu = dev->id;
1610	int ret;
1611
1612	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1613
1614	if (cpu_online(cpu)) {
1615		ret = cpufreq_online(cpu);
1616		if (ret)
1617			return ret;
1618	}
1619
1620	/* Create sysfs link on CPU registration */
1621	policy = per_cpu(cpufreq_cpu_data, cpu);
1622	if (policy)
1623		add_cpu_dev_symlink(policy, cpu, dev);
1624
1625	return 0;
 
 
 
 
 
 
1626}
1627
1628static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1629{
 
1630	int ret;
1631
 
 
 
 
 
 
 
 
 
1632	if (has_target())
1633		cpufreq_stop_governor(policy);
1634
1635	cpumask_clear_cpu(cpu, policy->cpus);
1636
1637	if (!policy_is_inactive(policy)) {
1638		/* Nominate a new CPU if necessary. */
1639		if (cpu == policy->cpu)
1640			policy->cpu = cpumask_any(policy->cpus);
 
 
 
 
 
 
1641
1642		/* Start the governor again for the active policy. */
 
1643		if (has_target()) {
1644			ret = cpufreq_start_governor(policy);
1645			if (ret)
1646				pr_err("%s: Failed to start governor\n", __func__);
1647		}
1648
1649		return;
1650	}
1651
1652	if (has_target())
1653		strscpy(policy->last_governor, policy->governor->name,
1654			CPUFREQ_NAME_LEN);
1655	else
1656		policy->last_policy = policy->policy;
1657
1658	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1659		cpufreq_cooling_unregister(policy->cdev);
1660		policy->cdev = NULL;
1661	}
1662
1663	if (has_target())
1664		cpufreq_exit_governor(policy);
1665
1666	/*
1667	 * Perform the ->offline() during light-weight tear-down, as
1668	 * that allows fast recovery when the CPU comes back.
 
1669	 */
1670	if (cpufreq_driver->offline) {
1671		cpufreq_driver->offline(policy);
1672	} else if (cpufreq_driver->exit) {
1673		cpufreq_driver->exit(policy);
1674		policy->freq_table = NULL;
1675	}
1676}
1677
1678static int cpufreq_offline(unsigned int cpu)
1679{
1680	struct cpufreq_policy *policy;
1681
1682	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1683
1684	policy = cpufreq_cpu_get_raw(cpu);
1685	if (!policy) {
1686		pr_debug("%s: No cpu_data found\n", __func__);
1687		return 0;
1688	}
1689
1690	down_write(&policy->rwsem);
1691
1692	__cpufreq_offline(cpu, policy);
1693
 
1694	up_write(&policy->rwsem);
1695	return 0;
1696}
1697
1698/*
1699 * cpufreq_remove_dev - remove a CPU device
1700 *
1701 * Removes the cpufreq interface for a CPU device.
1702 */
1703static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1704{
1705	unsigned int cpu = dev->id;
1706	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1707
1708	if (!policy)
1709		return;
1710
1711	down_write(&policy->rwsem);
1712
1713	if (cpu_online(cpu))
1714		__cpufreq_offline(cpu, policy);
1715
1716	remove_cpu_dev_symlink(policy, cpu, dev);
1717
1718	if (!cpumask_empty(policy->real_cpus)) {
1719		up_write(&policy->rwsem);
1720		return;
1721	}
1722
1723	/* We did light-weight exit earlier, do full tear down now */
1724	if (cpufreq_driver->offline)
1725		cpufreq_driver->exit(policy);
1726
1727	up_write(&policy->rwsem);
 
1728
1729	cpufreq_policy_free(policy);
 
1730}
1731
1732/**
1733 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1734 * @policy: Policy managing CPUs.
1735 * @new_freq: New CPU frequency.
 
1736 *
1737 * Adjust to the current frequency first and clean up later by either calling
1738 * cpufreq_update_policy(), or scheduling handle_update().
1739 */
1740static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1741				unsigned int new_freq)
1742{
1743	struct cpufreq_freqs freqs;
1744
1745	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1746		 policy->cur, new_freq);
1747
1748	freqs.old = policy->cur;
1749	freqs.new = new_freq;
1750
1751	cpufreq_freq_transition_begin(policy, &freqs);
1752	cpufreq_freq_transition_end(policy, &freqs, 0);
1753}
1754
1755static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1756{
1757	unsigned int new_freq;
1758
1759	new_freq = cpufreq_driver->get(policy->cpu);
1760	if (!new_freq)
1761		return 0;
1762
1763	/*
1764	 * If fast frequency switching is used with the given policy, the check
1765	 * against policy->cur is pointless, so skip it in that case.
1766	 */
1767	if (policy->fast_switch_enabled || !has_target())
1768		return new_freq;
1769
1770	if (policy->cur != new_freq) {
1771		/*
1772		 * For some platforms, the frequency returned by hardware may be
1773		 * slightly different from what is provided in the frequency
1774		 * table, for example hardware may return 499 MHz instead of 500
1775		 * MHz. In such cases it is better to avoid getting into
1776		 * unnecessary frequency updates.
1777		 */
1778		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1779			return policy->cur;
1780
1781		cpufreq_out_of_sync(policy, new_freq);
1782		if (update)
1783			schedule_work(&policy->update);
1784	}
1785
1786	return new_freq;
1787}
1788
1789/**
1790 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1791 * @cpu: CPU number
1792 *
1793 * This is the last known freq, without actually getting it from the driver.
1794 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1795 */
1796unsigned int cpufreq_quick_get(unsigned int cpu)
1797{
1798	struct cpufreq_policy *policy;
1799	unsigned int ret_freq = 0;
1800	unsigned long flags;
1801
1802	read_lock_irqsave(&cpufreq_driver_lock, flags);
1803
1804	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1805		ret_freq = cpufreq_driver->get(cpu);
1806		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1807		return ret_freq;
1808	}
1809
1810	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1811
1812	policy = cpufreq_cpu_get(cpu);
1813	if (policy) {
1814		ret_freq = policy->cur;
1815		cpufreq_cpu_put(policy);
1816	}
1817
1818	return ret_freq;
1819}
1820EXPORT_SYMBOL(cpufreq_quick_get);
1821
1822/**
1823 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1824 * @cpu: CPU number
1825 *
1826 * Just return the max possible frequency for a given CPU.
1827 */
1828unsigned int cpufreq_quick_get_max(unsigned int cpu)
1829{
1830	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831	unsigned int ret_freq = 0;
1832
1833	if (policy) {
1834		ret_freq = policy->max;
1835		cpufreq_cpu_put(policy);
1836	}
1837
1838	return ret_freq;
1839}
1840EXPORT_SYMBOL(cpufreq_quick_get_max);
1841
1842/**
1843 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1844 * @cpu: CPU number
1845 *
1846 * The default return value is the max_freq field of cpuinfo.
1847 */
1848__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1849{
1850	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1851	unsigned int ret_freq = 0;
1852
1853	if (policy) {
1854		ret_freq = policy->cpuinfo.max_freq;
1855		cpufreq_cpu_put(policy);
1856	}
1857
1858	return ret_freq;
1859}
1860EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1861
1862static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1863{
1864	if (unlikely(policy_is_inactive(policy)))
1865		return 0;
 
 
 
1866
1867	return cpufreq_verify_current_freq(policy, true);
 
 
 
 
 
 
 
 
 
 
1868}
1869
1870/**
1871 * cpufreq_get - get the current CPU frequency (in kHz)
1872 * @cpu: CPU number
1873 *
1874 * Get the CPU current (static) CPU frequency
1875 */
1876unsigned int cpufreq_get(unsigned int cpu)
1877{
1878	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1879	unsigned int ret_freq = 0;
1880
1881	if (policy) {
1882		down_read(&policy->rwsem);
1883		if (cpufreq_driver->get)
 
1884			ret_freq = __cpufreq_get(policy);
 
1885		up_read(&policy->rwsem);
1886
1887		cpufreq_cpu_put(policy);
1888	}
1889
1890	return ret_freq;
1891}
1892EXPORT_SYMBOL(cpufreq_get);
1893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894static struct subsys_interface cpufreq_interface = {
1895	.name		= "cpufreq",
1896	.subsys		= &cpu_subsys,
1897	.add_dev	= cpufreq_add_dev,
1898	.remove_dev	= cpufreq_remove_dev,
1899};
1900
1901/*
1902 * In case platform wants some specific frequency to be configured
1903 * during suspend..
1904 */
1905int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1906{
1907	int ret;
1908
1909	if (!policy->suspend_freq) {
1910		pr_debug("%s: suspend_freq not defined\n", __func__);
1911		return 0;
1912	}
1913
1914	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1915			policy->suspend_freq);
1916
1917	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1918			CPUFREQ_RELATION_H);
1919	if (ret)
1920		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1921				__func__, policy->suspend_freq, ret);
1922
1923	return ret;
1924}
1925EXPORT_SYMBOL(cpufreq_generic_suspend);
1926
1927/**
1928 * cpufreq_suspend() - Suspend CPUFreq governors.
1929 *
1930 * Called during system wide Suspend/Hibernate cycles for suspending governors
1931 * as some platforms can't change frequency after this point in suspend cycle.
1932 * Because some of the devices (like: i2c, regulators, etc) they use for
1933 * changing frequency are suspended quickly after this point.
1934 */
1935void cpufreq_suspend(void)
1936{
1937	struct cpufreq_policy *policy;
1938
1939	if (!cpufreq_driver)
1940		return;
1941
1942	if (!has_target() && !cpufreq_driver->suspend)
1943		goto suspend;
1944
1945	pr_debug("%s: Suspending Governors\n", __func__);
1946
1947	for_each_active_policy(policy) {
1948		if (has_target()) {
1949			down_write(&policy->rwsem);
1950			cpufreq_stop_governor(policy);
1951			up_write(&policy->rwsem);
1952		}
1953
1954		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1955			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1956				cpufreq_driver->name);
1957	}
1958
1959suspend:
1960	cpufreq_suspended = true;
1961}
1962
1963/**
1964 * cpufreq_resume() - Resume CPUFreq governors.
1965 *
1966 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1967 * are suspended with cpufreq_suspend().
1968 */
1969void cpufreq_resume(void)
1970{
1971	struct cpufreq_policy *policy;
1972	int ret;
1973
1974	if (!cpufreq_driver)
1975		return;
1976
1977	if (unlikely(!cpufreq_suspended))
1978		return;
1979
1980	cpufreq_suspended = false;
1981
1982	if (!has_target() && !cpufreq_driver->resume)
1983		return;
1984
1985	pr_debug("%s: Resuming Governors\n", __func__);
1986
1987	for_each_active_policy(policy) {
1988		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1989			pr_err("%s: Failed to resume driver: %s\n", __func__,
1990				cpufreq_driver->name);
1991		} else if (has_target()) {
1992			down_write(&policy->rwsem);
1993			ret = cpufreq_start_governor(policy);
1994			up_write(&policy->rwsem);
1995
1996			if (ret)
1997				pr_err("%s: Failed to start governor for CPU%u's policy\n",
1998				       __func__, policy->cpu);
1999		}
2000	}
2001}
2002
2003/**
2004 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2005 * @flags: Flags to test against the current cpufreq driver's flags.
2006 *
2007 * Assumes that the driver is there, so callers must ensure that this is the
2008 * case.
2009 */
2010bool cpufreq_driver_test_flags(u16 flags)
2011{
2012	return !!(cpufreq_driver->flags & flags);
2013}
2014
2015/**
2016 * cpufreq_get_current_driver - Return the current driver's name.
2017 *
2018 * Return the name string of the currently registered cpufreq driver or NULL if
2019 * none.
2020 */
2021const char *cpufreq_get_current_driver(void)
2022{
2023	if (cpufreq_driver)
2024		return cpufreq_driver->name;
2025
2026	return NULL;
2027}
2028EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2029
2030/**
2031 * cpufreq_get_driver_data - Return current driver data.
2032 *
2033 * Return the private data of the currently registered cpufreq driver, or NULL
2034 * if no cpufreq driver has been registered.
2035 */
2036void *cpufreq_get_driver_data(void)
2037{
2038	if (cpufreq_driver)
2039		return cpufreq_driver->driver_data;
2040
2041	return NULL;
2042}
2043EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2044
2045/*********************************************************************
2046 *                     NOTIFIER LISTS INTERFACE                      *
2047 *********************************************************************/
2048
2049/**
2050 * cpufreq_register_notifier - Register a notifier with cpufreq.
2051 * @nb: notifier function to register.
2052 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2053 *
2054 * Add a notifier to one of two lists: either a list of notifiers that run on
2055 * clock rate changes (once before and once after every transition), or a list
2056 * of notifiers that ron on cpufreq policy changes.
 
2057 *
2058 * This function may sleep and it has the same return values as
2059 * blocking_notifier_chain_register().
2060 */
2061int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2062{
2063	int ret;
2064
2065	if (cpufreq_disabled())
2066		return -EINVAL;
2067
 
 
2068	switch (list) {
2069	case CPUFREQ_TRANSITION_NOTIFIER:
2070		mutex_lock(&cpufreq_fast_switch_lock);
2071
2072		if (cpufreq_fast_switch_count > 0) {
2073			mutex_unlock(&cpufreq_fast_switch_lock);
2074			return -EBUSY;
2075		}
2076		ret = srcu_notifier_chain_register(
2077				&cpufreq_transition_notifier_list, nb);
2078		if (!ret)
2079			cpufreq_fast_switch_count--;
2080
2081		mutex_unlock(&cpufreq_fast_switch_lock);
2082		break;
2083	case CPUFREQ_POLICY_NOTIFIER:
2084		ret = blocking_notifier_chain_register(
2085				&cpufreq_policy_notifier_list, nb);
2086		break;
2087	default:
2088		ret = -EINVAL;
2089	}
2090
2091	return ret;
2092}
2093EXPORT_SYMBOL(cpufreq_register_notifier);
2094
2095/**
2096 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2097 * @nb: notifier block to be unregistered.
2098 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2099 *
2100 * Remove a notifier from one of the cpufreq notifier lists.
2101 *
2102 * This function may sleep and it has the same return values as
2103 * blocking_notifier_chain_unregister().
2104 */
2105int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2106{
2107	int ret;
2108
2109	if (cpufreq_disabled())
2110		return -EINVAL;
2111
2112	switch (list) {
2113	case CPUFREQ_TRANSITION_NOTIFIER:
2114		mutex_lock(&cpufreq_fast_switch_lock);
2115
2116		ret = srcu_notifier_chain_unregister(
2117				&cpufreq_transition_notifier_list, nb);
2118		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2119			cpufreq_fast_switch_count++;
2120
2121		mutex_unlock(&cpufreq_fast_switch_lock);
2122		break;
2123	case CPUFREQ_POLICY_NOTIFIER:
2124		ret = blocking_notifier_chain_unregister(
2125				&cpufreq_policy_notifier_list, nb);
2126		break;
2127	default:
2128		ret = -EINVAL;
2129	}
2130
2131	return ret;
2132}
2133EXPORT_SYMBOL(cpufreq_unregister_notifier);
2134
2135
2136/*********************************************************************
2137 *                              GOVERNORS                            *
2138 *********************************************************************/
2139
2140/**
2141 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2142 * @policy: cpufreq policy to switch the frequency for.
2143 * @target_freq: New frequency to set (may be approximate).
2144 *
2145 * Carry out a fast frequency switch without sleeping.
2146 *
2147 * The driver's ->fast_switch() callback invoked by this function must be
2148 * suitable for being called from within RCU-sched read-side critical sections
2149 * and it is expected to select the minimum available frequency greater than or
2150 * equal to @target_freq (CPUFREQ_RELATION_L).
2151 *
2152 * This function must not be called if policy->fast_switch_enabled is unset.
2153 *
2154 * Governors calling this function must guarantee that it will never be invoked
2155 * twice in parallel for the same policy and that it will never be called in
2156 * parallel with either ->target() or ->target_index() for the same policy.
2157 *
2158 * Returns the actual frequency set for the CPU.
2159 *
2160 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2161 * error condition, the hardware configuration must be preserved.
2162 */
2163unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2164					unsigned int target_freq)
2165{
2166	unsigned int freq;
2167	int cpu;
2168
2169	target_freq = clamp_val(target_freq, policy->min, policy->max);
2170	freq = cpufreq_driver->fast_switch(policy, target_freq);
2171
2172	if (!freq)
2173		return 0;
2174
2175	policy->cur = freq;
2176	arch_set_freq_scale(policy->related_cpus, freq,
2177			    arch_scale_freq_ref(policy->cpu));
2178	cpufreq_stats_record_transition(policy, freq);
2179
2180	if (trace_cpu_frequency_enabled()) {
2181		for_each_cpu(cpu, policy->cpus)
2182			trace_cpu_frequency(freq, cpu);
2183	}
2184
2185	return freq;
2186}
2187EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2188
2189/**
2190 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2191 * @cpu: Target CPU.
2192 * @min_perf: Minimum (required) performance level (units of @capacity).
2193 * @target_perf: Target (desired) performance level (units of @capacity).
2194 * @capacity: Capacity of the target CPU.
2195 *
2196 * Carry out a fast performance level switch of @cpu without sleeping.
2197 *
2198 * The driver's ->adjust_perf() callback invoked by this function must be
2199 * suitable for being called from within RCU-sched read-side critical sections
2200 * and it is expected to select a suitable performance level equal to or above
2201 * @min_perf and preferably equal to or below @target_perf.
2202 *
2203 * This function must not be called if policy->fast_switch_enabled is unset.
2204 *
2205 * Governors calling this function must guarantee that it will never be invoked
2206 * twice in parallel for the same CPU and that it will never be called in
2207 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2208 * the same CPU.
2209 */
2210void cpufreq_driver_adjust_perf(unsigned int cpu,
2211				 unsigned long min_perf,
2212				 unsigned long target_perf,
2213				 unsigned long capacity)
2214{
2215	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2216}
2217
2218/**
2219 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2220 *
2221 * Return 'true' if the ->adjust_perf callback is present for the
2222 * current driver or 'false' otherwise.
2223 */
2224bool cpufreq_driver_has_adjust_perf(void)
2225{
2226	return !!cpufreq_driver->adjust_perf;
2227}
2228
2229/* Must set freqs->new to intermediate frequency */
2230static int __target_intermediate(struct cpufreq_policy *policy,
2231				 struct cpufreq_freqs *freqs, int index)
2232{
2233	int ret;
2234
2235	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2236
2237	/* We don't need to switch to intermediate freq */
2238	if (!freqs->new)
2239		return 0;
2240
2241	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2242		 __func__, policy->cpu, freqs->old, freqs->new);
2243
2244	cpufreq_freq_transition_begin(policy, freqs);
2245	ret = cpufreq_driver->target_intermediate(policy, index);
2246	cpufreq_freq_transition_end(policy, freqs, ret);
2247
2248	if (ret)
2249		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2250		       __func__, ret);
2251
2252	return ret;
2253}
2254
2255static int __target_index(struct cpufreq_policy *policy, int index)
2256{
2257	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2258	unsigned int restore_freq, intermediate_freq = 0;
2259	unsigned int newfreq = policy->freq_table[index].frequency;
2260	int retval = -EINVAL;
2261	bool notify;
2262
2263	if (newfreq == policy->cur)
2264		return 0;
2265
2266	/* Save last value to restore later on errors */
2267	restore_freq = policy->cur;
2268
2269	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2270	if (notify) {
2271		/* Handle switching to intermediate frequency */
2272		if (cpufreq_driver->get_intermediate) {
2273			retval = __target_intermediate(policy, &freqs, index);
2274			if (retval)
2275				return retval;
2276
2277			intermediate_freq = freqs.new;
2278			/* Set old freq to intermediate */
2279			if (intermediate_freq)
2280				freqs.old = freqs.new;
2281		}
2282
2283		freqs.new = newfreq;
2284		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2285			 __func__, policy->cpu, freqs.old, freqs.new);
2286
2287		cpufreq_freq_transition_begin(policy, &freqs);
2288	}
2289
2290	retval = cpufreq_driver->target_index(policy, index);
2291	if (retval)
2292		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2293		       retval);
2294
2295	if (notify) {
2296		cpufreq_freq_transition_end(policy, &freqs, retval);
2297
2298		/*
2299		 * Failed after setting to intermediate freq? Driver should have
2300		 * reverted back to initial frequency and so should we. Check
2301		 * here for intermediate_freq instead of get_intermediate, in
2302		 * case we haven't switched to intermediate freq at all.
2303		 */
2304		if (unlikely(retval && intermediate_freq)) {
2305			freqs.old = intermediate_freq;
2306			freqs.new = restore_freq;
2307			cpufreq_freq_transition_begin(policy, &freqs);
2308			cpufreq_freq_transition_end(policy, &freqs, 0);
2309		}
2310	}
2311
2312	return retval;
2313}
2314
2315int __cpufreq_driver_target(struct cpufreq_policy *policy,
2316			    unsigned int target_freq,
2317			    unsigned int relation)
2318{
2319	unsigned int old_target_freq = target_freq;
 
2320
2321	if (cpufreq_disabled())
2322		return -ENODEV;
2323
2324	target_freq = __resolve_freq(policy, target_freq, relation);
 
2325
2326	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2327		 policy->cpu, target_freq, relation, old_target_freq);
2328
2329	/*
2330	 * This might look like a redundant call as we are checking it again
2331	 * after finding index. But it is left intentionally for cases where
2332	 * exactly same freq is called again and so we can save on few function
2333	 * calls.
2334	 */
2335	if (target_freq == policy->cur &&
2336	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2337		return 0;
2338
2339	if (cpufreq_driver->target) {
2340		/*
2341		 * If the driver hasn't setup a single inefficient frequency,
2342		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2343		 */
2344		if (!policy->efficiencies_available)
2345			relation &= ~CPUFREQ_RELATION_E;
2346
 
2347		return cpufreq_driver->target(policy, target_freq, relation);
2348	}
2349
2350	if (!cpufreq_driver->target_index)
2351		return -EINVAL;
2352
2353	return __target_index(policy, policy->cached_resolved_idx);
 
 
2354}
2355EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2356
2357int cpufreq_driver_target(struct cpufreq_policy *policy,
2358			  unsigned int target_freq,
2359			  unsigned int relation)
2360{
2361	int ret;
2362
2363	down_write(&policy->rwsem);
2364
2365	ret = __cpufreq_driver_target(policy, target_freq, relation);
2366
2367	up_write(&policy->rwsem);
2368
2369	return ret;
2370}
2371EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2372
2373__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2374{
2375	return NULL;
2376}
2377
2378static int cpufreq_init_governor(struct cpufreq_policy *policy)
2379{
2380	int ret;
2381
2382	/* Don't start any governor operations if we are entering suspend */
2383	if (cpufreq_suspended)
2384		return 0;
2385	/*
2386	 * Governor might not be initiated here if ACPI _PPC changed
2387	 * notification happened, so check it.
2388	 */
2389	if (!policy->governor)
2390		return -EINVAL;
2391
2392	/* Platform doesn't want dynamic frequency switching ? */
2393	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2394	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2395		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2396
2397		if (gov) {
2398			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2399				policy->governor->name, gov->name);
2400			policy->governor = gov;
2401		} else {
2402			return -EINVAL;
2403		}
2404	}
2405
2406	if (!try_module_get(policy->governor->owner))
2407		return -EINVAL;
2408
2409	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2410
2411	if (policy->governor->init) {
2412		ret = policy->governor->init(policy);
2413		if (ret) {
2414			module_put(policy->governor->owner);
2415			return ret;
2416		}
2417	}
2418
2419	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2420
2421	return 0;
2422}
2423
2424static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2425{
2426	if (cpufreq_suspended || !policy->governor)
2427		return;
2428
2429	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2430
2431	if (policy->governor->exit)
2432		policy->governor->exit(policy);
2433
2434	module_put(policy->governor->owner);
2435}
2436
2437int cpufreq_start_governor(struct cpufreq_policy *policy)
2438{
2439	int ret;
2440
2441	if (cpufreq_suspended)
2442		return 0;
2443
2444	if (!policy->governor)
2445		return -EINVAL;
2446
2447	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2448
2449	if (cpufreq_driver->get)
2450		cpufreq_verify_current_freq(policy, false);
2451
2452	if (policy->governor->start) {
2453		ret = policy->governor->start(policy);
2454		if (ret)
2455			return ret;
2456	}
2457
2458	if (policy->governor->limits)
2459		policy->governor->limits(policy);
2460
2461	return 0;
2462}
2463
2464void cpufreq_stop_governor(struct cpufreq_policy *policy)
2465{
2466	if (cpufreq_suspended || !policy->governor)
2467		return;
2468
2469	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2470
2471	if (policy->governor->stop)
2472		policy->governor->stop(policy);
2473}
2474
2475static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2476{
2477	if (cpufreq_suspended || !policy->governor)
2478		return;
2479
2480	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2481
2482	if (policy->governor->limits)
2483		policy->governor->limits(policy);
2484}
2485
2486int cpufreq_register_governor(struct cpufreq_governor *governor)
2487{
2488	int err;
2489
2490	if (!governor)
2491		return -EINVAL;
2492
2493	if (cpufreq_disabled())
2494		return -ENODEV;
2495
2496	mutex_lock(&cpufreq_governor_mutex);
2497
2498	err = -EBUSY;
2499	if (!find_governor(governor->name)) {
2500		err = 0;
2501		list_add(&governor->governor_list, &cpufreq_governor_list);
2502	}
2503
2504	mutex_unlock(&cpufreq_governor_mutex);
2505	return err;
2506}
2507EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2508
2509void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2510{
2511	struct cpufreq_policy *policy;
2512	unsigned long flags;
2513
2514	if (!governor)
2515		return;
2516
2517	if (cpufreq_disabled())
2518		return;
2519
2520	/* clear last_governor for all inactive policies */
2521	read_lock_irqsave(&cpufreq_driver_lock, flags);
2522	for_each_inactive_policy(policy) {
2523		if (!strcmp(policy->last_governor, governor->name)) {
2524			policy->governor = NULL;
2525			strcpy(policy->last_governor, "\0");
2526		}
2527	}
2528	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2529
2530	mutex_lock(&cpufreq_governor_mutex);
2531	list_del(&governor->governor_list);
2532	mutex_unlock(&cpufreq_governor_mutex);
 
2533}
2534EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2535
2536
2537/*********************************************************************
2538 *                          POLICY INTERFACE                         *
2539 *********************************************************************/
2540
2541/**
2542 * cpufreq_get_policy - get the current cpufreq_policy
2543 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2544 *	is written
2545 * @cpu: CPU to find the policy for
2546 *
2547 * Reads the current cpufreq policy.
2548 */
2549int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2550{
2551	struct cpufreq_policy *cpu_policy;
2552	if (!policy)
2553		return -EINVAL;
2554
2555	cpu_policy = cpufreq_cpu_get(cpu);
2556	if (!cpu_policy)
2557		return -EINVAL;
2558
2559	memcpy(policy, cpu_policy, sizeof(*policy));
2560
2561	cpufreq_cpu_put(cpu_policy);
2562	return 0;
2563}
2564EXPORT_SYMBOL(cpufreq_get_policy);
2565
2566/**
2567 * cpufreq_set_policy - Modify cpufreq policy parameters.
2568 * @policy: Policy object to modify.
2569 * @new_gov: Policy governor pointer.
2570 * @new_pol: Policy value (for drivers with built-in governors).
2571 *
2572 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2573 * limits to be set for the policy, update @policy with the verified limits
2574 * values and either invoke the driver's ->setpolicy() callback (if present) or
2575 * carry out a governor update for @policy.  That is, run the current governor's
2576 * ->limits() callback (if @new_gov points to the same object as the one in
2577 * @policy) or replace the governor for @policy with @new_gov.
2578 *
2579 * The cpuinfo part of @policy is not updated by this function.
2580 */
2581static int cpufreq_set_policy(struct cpufreq_policy *policy,
2582			      struct cpufreq_governor *new_gov,
2583			      unsigned int new_pol)
2584{
2585	struct cpufreq_policy_data new_data;
2586	struct cpufreq_governor *old_gov;
2587	int ret;
2588
2589	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2590	new_data.freq_table = policy->freq_table;
2591	new_data.cpu = policy->cpu;
2592	/*
2593	 * PM QoS framework collects all the requests from users and provide us
2594	 * the final aggregated value here.
2595	 */
2596	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2597	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2598
2599	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2600		 new_data.cpu, new_data.min, new_data.max);
 
 
2601
2602	/*
2603	 * Verify that the CPU speed can be set within these limits and make sure
2604	 * that min <= max.
2605	 */
2606	ret = cpufreq_driver->verify(&new_data);
 
 
 
 
2607	if (ret)
2608		return ret;
2609
 
 
 
 
2610	/*
2611	 * Resolve policy min/max to available frequencies. It ensures
2612	 * no frequency resolution will neither overshoot the requested maximum
2613	 * nor undershoot the requested minimum.
2614	 */
2615	policy->min = new_data.min;
2616	policy->max = new_data.max;
2617	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2618	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2619	trace_cpu_frequency_limits(policy);
 
 
 
 
 
2620
2621	policy->cached_target_freq = UINT_MAX;
2622
2623	pr_debug("new min and max freqs are %u - %u kHz\n",
2624		 policy->min, policy->max);
2625
2626	if (cpufreq_driver->setpolicy) {
2627		policy->policy = new_pol;
2628		pr_debug("setting range\n");
2629		return cpufreq_driver->setpolicy(policy);
2630	}
2631
2632	if (new_gov == policy->governor) {
2633		pr_debug("governor limits update\n");
2634		cpufreq_governor_limits(policy);
2635		return 0;
2636	}
2637
2638	pr_debug("governor switch\n");
2639
2640	/* save old, working values */
2641	old_gov = policy->governor;
2642	/* end old governor */
2643	if (old_gov) {
2644		cpufreq_stop_governor(policy);
2645		cpufreq_exit_governor(policy);
2646	}
2647
2648	/* start new governor */
2649	policy->governor = new_gov;
2650	ret = cpufreq_init_governor(policy);
2651	if (!ret) {
2652		ret = cpufreq_start_governor(policy);
2653		if (!ret) {
2654			pr_debug("governor change\n");
2655			return 0;
2656		}
2657		cpufreq_exit_governor(policy);
2658	}
2659
2660	/* new governor failed, so re-start old one */
2661	pr_debug("starting governor %s failed\n", policy->governor->name);
2662	if (old_gov) {
2663		policy->governor = old_gov;
2664		if (cpufreq_init_governor(policy))
2665			policy->governor = NULL;
2666		else
2667			cpufreq_start_governor(policy);
2668	}
2669
2670	return ret;
2671}
2672
2673/**
2674 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2675 * @cpu: CPU to re-evaluate the policy for.
2676 *
2677 * Update the current frequency for the cpufreq policy of @cpu and use
2678 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2679 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2680 * for the policy in question, among other things.
2681 */
2682void cpufreq_update_policy(unsigned int cpu)
2683{
2684	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
 
2685
2686	if (!policy)
2687		return;
2688
 
 
 
 
 
 
 
 
 
 
2689	/*
2690	 * BIOS might change freq behind our back
2691	 * -> ask driver for current freq and notify governors about a change
2692	 */
2693	if (cpufreq_driver->get && has_target() &&
2694	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2695		goto unlock;
 
 
 
 
 
2696
2697	refresh_frequency_limits(policy);
2698
2699unlock:
2700	cpufreq_cpu_release(policy);
2701}
2702EXPORT_SYMBOL(cpufreq_update_policy);
2703
2704/**
2705 * cpufreq_update_limits - Update policy limits for a given CPU.
2706 * @cpu: CPU to update the policy limits for.
2707 *
2708 * Invoke the driver's ->update_limits callback if present or call
2709 * cpufreq_update_policy() for @cpu.
2710 */
2711void cpufreq_update_limits(unsigned int cpu)
2712{
2713	if (cpufreq_driver->update_limits)
2714		cpufreq_driver->update_limits(cpu);
2715	else
2716		cpufreq_update_policy(cpu);
2717}
2718EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2719
2720/*********************************************************************
2721 *               BOOST						     *
2722 *********************************************************************/
2723static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2724{
2725	int ret;
 
2726
2727	if (!policy->freq_table)
2728		return -ENXIO;
 
2729
2730	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2731	if (ret) {
2732		pr_err("%s: Policy frequency update failed\n", __func__);
2733		return ret;
2734	}
 
 
2735
2736	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2737	if (ret < 0)
2738		return ret;
 
 
2739
2740	return 0;
2741}
2742
2743int cpufreq_boost_trigger_state(int state)
2744{
2745	struct cpufreq_policy *policy;
2746	unsigned long flags;
2747	int ret = 0;
2748
2749	if (cpufreq_driver->boost_enabled == state)
2750		return 0;
2751
2752	write_lock_irqsave(&cpufreq_driver_lock, flags);
2753	cpufreq_driver->boost_enabled = state;
2754	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755
2756	cpus_read_lock();
2757	for_each_active_policy(policy) {
2758		ret = cpufreq_driver->set_boost(policy, state);
2759		if (ret)
2760			goto err_reset_state;
2761
2762		policy->boost_enabled = state;
 
2763	}
2764	cpus_read_unlock();
2765
2766	return 0;
2767
2768err_reset_state:
2769	cpus_read_unlock();
2770
2771	write_lock_irqsave(&cpufreq_driver_lock, flags);
2772	cpufreq_driver->boost_enabled = !state;
2773	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2774
2775	pr_err("%s: Cannot %s BOOST\n",
2776	       __func__, state ? "enable" : "disable");
2777
2778	return ret;
2779}
2780
2781static bool cpufreq_boost_supported(void)
2782{
2783	return cpufreq_driver->set_boost;
2784}
2785
2786static int create_boost_sysfs_file(void)
2787{
2788	int ret;
2789
2790	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2791	if (ret)
2792		pr_err("%s: cannot register global BOOST sysfs file\n",
2793		       __func__);
2794
2795	return ret;
2796}
2797
2798static void remove_boost_sysfs_file(void)
2799{
2800	if (cpufreq_boost_supported())
2801		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2802}
2803
2804int cpufreq_enable_boost_support(void)
2805{
2806	if (!cpufreq_driver)
2807		return -EINVAL;
2808
2809	if (cpufreq_boost_supported())
2810		return 0;
2811
2812	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2813
2814	/* This will get removed on driver unregister */
2815	return create_boost_sysfs_file();
2816}
2817EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2818
2819int cpufreq_boost_enabled(void)
2820{
2821	return cpufreq_driver->boost_enabled;
2822}
2823EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2824
2825/*********************************************************************
2826 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2827 *********************************************************************/
2828static enum cpuhp_state hp_online;
2829
2830static int cpuhp_cpufreq_online(unsigned int cpu)
2831{
2832	cpufreq_online(cpu);
2833
2834	return 0;
2835}
2836
2837static int cpuhp_cpufreq_offline(unsigned int cpu)
2838{
2839	cpufreq_offline(cpu);
2840
2841	return 0;
2842}
2843
2844/**
2845 * cpufreq_register_driver - register a CPU Frequency driver
2846 * @driver_data: A struct cpufreq_driver containing the values#
2847 * submitted by the CPU Frequency driver.
2848 *
2849 * Registers a CPU Frequency driver to this core code. This code
2850 * returns zero on success, -EEXIST when another driver got here first
2851 * (and isn't unregistered in the meantime).
2852 *
2853 */
2854int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2855{
2856	unsigned long flags;
2857	int ret;
2858
2859	if (cpufreq_disabled())
2860		return -ENODEV;
2861
2862	/*
2863	 * The cpufreq core depends heavily on the availability of device
2864	 * structure, make sure they are available before proceeding further.
2865	 */
2866	if (!get_cpu_device(0))
2867		return -EPROBE_DEFER;
2868
2869	if (!driver_data || !driver_data->verify || !driver_data->init ||
2870	    !(driver_data->setpolicy || driver_data->target_index ||
2871		    driver_data->target) ||
2872	     (driver_data->setpolicy && (driver_data->target_index ||
2873		    driver_data->target)) ||
2874	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2875	     (!driver_data->online != !driver_data->offline) ||
2876		 (driver_data->adjust_perf && !driver_data->fast_switch))
2877		return -EINVAL;
2878
2879	pr_debug("trying to register driver %s\n", driver_data->name);
2880
2881	/* Protect against concurrent CPU online/offline. */
2882	cpus_read_lock();
2883
2884	write_lock_irqsave(&cpufreq_driver_lock, flags);
2885	if (cpufreq_driver) {
2886		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2887		ret = -EEXIST;
2888		goto out;
2889	}
2890	cpufreq_driver = driver_data;
2891	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2892
2893	/*
2894	 * Mark support for the scheduler's frequency invariance engine for
2895	 * drivers that implement target(), target_index() or fast_switch().
2896	 */
2897	if (!cpufreq_driver->setpolicy) {
2898		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2899		pr_debug("supports frequency invariance");
2900	}
2901
2902	if (driver_data->setpolicy)
2903		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2904
2905	if (cpufreq_boost_supported()) {
2906		ret = create_boost_sysfs_file();
2907		if (ret)
2908			goto err_null_driver;
2909	}
2910
2911	ret = subsys_interface_register(&cpufreq_interface);
2912	if (ret)
2913		goto err_boost_unreg;
2914
2915	if (unlikely(list_empty(&cpufreq_policy_list))) {
 
2916		/* if all ->init() calls failed, unregister */
2917		ret = -ENODEV;
2918		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2919			 driver_data->name);
2920		goto err_if_unreg;
2921	}
2922
2923	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2924						   "cpufreq:online",
2925						   cpuhp_cpufreq_online,
2926						   cpuhp_cpufreq_offline);
2927	if (ret < 0)
2928		goto err_if_unreg;
2929	hp_online = ret;
2930	ret = 0;
2931
2932	pr_debug("driver %s up and running\n", driver_data->name);
2933	goto out;
2934
2935err_if_unreg:
2936	subsys_interface_unregister(&cpufreq_interface);
2937err_boost_unreg:
2938	remove_boost_sysfs_file();
2939err_null_driver:
2940	write_lock_irqsave(&cpufreq_driver_lock, flags);
2941	cpufreq_driver = NULL;
2942	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2943out:
2944	cpus_read_unlock();
2945	return ret;
2946}
2947EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2948
2949/*
2950 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2951 *
2952 * Unregister the current CPUFreq driver. Only call this if you have
2953 * the right to do so, i.e. if you have succeeded in initialising before!
2954 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2955 * currently not initialised.
2956 */
2957void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2958{
2959	unsigned long flags;
2960
2961	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2962		return;
2963
2964	pr_debug("unregistering driver %s\n", driver->name);
2965
2966	/* Protect against concurrent cpu hotplug */
2967	cpus_read_lock();
2968	subsys_interface_unregister(&cpufreq_interface);
2969	remove_boost_sysfs_file();
2970	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2971	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2972
2973	write_lock_irqsave(&cpufreq_driver_lock, flags);
2974
2975	cpufreq_driver = NULL;
2976
2977	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2978	cpus_read_unlock();
 
 
2979}
2980EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2981
 
 
 
 
 
 
 
 
 
 
 
2982static int __init cpufreq_core_init(void)
2983{
2984	struct cpufreq_governor *gov = cpufreq_default_governor();
2985	struct device *dev_root;
2986
2987	if (cpufreq_disabled())
2988		return -ENODEV;
2989
2990	dev_root = bus_get_dev_root(&cpu_subsys);
2991	if (dev_root) {
2992		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
2993		put_device(dev_root);
2994	}
2995	BUG_ON(!cpufreq_global_kobject);
2996
2997	if (!strlen(default_governor))
2998		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2999
3000	return 0;
3001}
3002module_param(off, int, 0444);
3003module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3004core_initcall(cpufreq_core_init);
v4.10.11
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   6 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   7 *
   8 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   9 *	Added handling for CPU hotplug
  10 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  11 *	Fix handling for CPU hotplug -- affected CPUs
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
 
  22#include <linux/delay.h>
  23#include <linux/device.h>
  24#include <linux/init.h>
  25#include <linux/kernel_stat.h>
  26#include <linux/module.h>
  27#include <linux/mutex.h>
 
  28#include <linux/slab.h>
  29#include <linux/suspend.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/tick.h>
 
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36static inline bool policy_is_inactive(struct cpufreq_policy *policy)
  37{
  38	return cpumask_empty(policy->cpus);
  39}
  40
  41/* Macros to iterate over CPU policies */
  42#define for_each_suitable_policy(__policy, __active)			 \
  43	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  44		if ((__active) == !policy_is_inactive(__policy))
  45
  46#define for_each_active_policy(__policy)		\
  47	for_each_suitable_policy(__policy, true)
  48#define for_each_inactive_policy(__policy)		\
  49	for_each_suitable_policy(__policy, false)
  50
  51#define for_each_policy(__policy)			\
  52	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
  53
  54/* Iterate over governors */
  55static LIST_HEAD(cpufreq_governor_list);
  56#define for_each_governor(__governor)				\
  57	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  58
  59/**
 
 
  60 * The "cpufreq driver" - the arch- or hardware-dependent low
  61 * level driver of CPUFreq support, and its spinlock. This lock
  62 * also protects the cpufreq_cpu_data array.
  63 */
  64static struct cpufreq_driver *cpufreq_driver;
  65static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  66static DEFINE_RWLOCK(cpufreq_driver_lock);
  67
 
 
 
 
 
 
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
 
 
 
 
 
  76/* internal prototypes */
  77static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  78static int cpufreq_init_governor(struct cpufreq_policy *policy);
  79static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  80static int cpufreq_start_governor(struct cpufreq_policy *policy);
  81static void cpufreq_stop_governor(struct cpufreq_policy *policy);
  82static void cpufreq_governor_limits(struct cpufreq_policy *policy);
 
 
 
 
  83
  84/**
  85 * Two notifier lists: the "policy" list is involved in the
  86 * validation process for a new CPU frequency policy; the
  87 * "transition" list for kernel code that needs to handle
  88 * changes to devices when the CPU clock speed changes.
  89 * The mutex locks both lists.
  90 */
  91static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  92static struct srcu_notifier_head cpufreq_transition_notifier_list;
  93
  94static bool init_cpufreq_transition_notifier_list_called;
  95static int __init init_cpufreq_transition_notifier_list(void)
  96{
  97	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
  98	init_cpufreq_transition_notifier_list_called = true;
  99	return 0;
 100}
 101pure_initcall(init_cpufreq_transition_notifier_list);
 102
 103static int off __read_mostly;
 104static int cpufreq_disabled(void)
 105{
 106	return off;
 107}
 108void disable_cpufreq(void)
 109{
 110	off = 1;
 111}
 112static DEFINE_MUTEX(cpufreq_governor_mutex);
 113
 114bool have_governor_per_policy(void)
 115{
 116	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 117}
 118EXPORT_SYMBOL_GPL(have_governor_per_policy);
 119
 
 
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 
 
 131	u64 idle_time;
 132	u64 cur_wall_time;
 133	u64 busy_time;
 134
 135	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
 136
 137	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 138	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 139	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 140	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 141	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 142	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 
 
 143
 144	idle_time = cur_wall_time - busy_time;
 145	if (wall)
 146		*wall = cputime_to_usecs(cur_wall_time);
 147
 148	return cputime_to_usecs(idle_time);
 149}
 150
 151u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 152{
 153	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 154
 155	if (idle_time == -1ULL)
 156		return get_cpu_idle_time_jiffy(cpu, wall);
 157	else if (!io_busy)
 158		idle_time += get_cpu_iowait_time_us(cpu, wall);
 159
 160	return idle_time;
 161}
 162EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 163
 164/*
 165 * This is a generic cpufreq init() routine which can be used by cpufreq
 166 * drivers of SMP systems. It will do following:
 167 * - validate & show freq table passed
 168 * - set policies transition latency
 169 * - policy->cpus with all possible CPUs
 170 */
 171int cpufreq_generic_init(struct cpufreq_policy *policy,
 172		struct cpufreq_frequency_table *table,
 173		unsigned int transition_latency)
 174{
 175	int ret;
 176
 177	ret = cpufreq_table_validate_and_show(policy, table);
 178	if (ret) {
 179		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
 180		return ret;
 181	}
 182
 183	policy->cpuinfo.transition_latency = transition_latency;
 184
 185	/*
 186	 * The driver only supports the SMP configuration where all processors
 187	 * share the clock and voltage and clock.
 188	 */
 189	cpumask_setall(policy->cpus);
 190
 191	return 0;
 192}
 193EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 194
 195struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 196{
 197	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 198
 199	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 200}
 201EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 202
 203unsigned int cpufreq_generic_get(unsigned int cpu)
 204{
 205	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 206
 207	if (!policy || IS_ERR(policy->clk)) {
 208		pr_err("%s: No %s associated to cpu: %d\n",
 209		       __func__, policy ? "clk" : "policy", cpu);
 210		return 0;
 211	}
 212
 213	return clk_get_rate(policy->clk) / 1000;
 214}
 215EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 216
 217/**
 218 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
 219 *
 220 * @cpu: cpu to find policy for.
 221 *
 222 * This returns policy for 'cpu', returns NULL if it doesn't exist.
 223 * It also increments the kobject reference count to mark it busy and so would
 224 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
 225 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
 226 * freed as that depends on the kobj count.
 227 *
 228 * Return: A valid policy on success, otherwise NULL on failure.
 
 229 */
 230struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 231{
 232	struct cpufreq_policy *policy = NULL;
 233	unsigned long flags;
 234
 235	if (WARN_ON(cpu >= nr_cpu_ids))
 236		return NULL;
 237
 238	/* get the cpufreq driver */
 239	read_lock_irqsave(&cpufreq_driver_lock, flags);
 240
 241	if (cpufreq_driver) {
 242		/* get the CPU */
 243		policy = cpufreq_cpu_get_raw(cpu);
 244		if (policy)
 245			kobject_get(&policy->kobj);
 246	}
 247
 248	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 249
 250	return policy;
 251}
 252EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 253
 254/**
 255 * cpufreq_cpu_put: Decrements the usage count of a policy
 256 *
 257 * @policy: policy earlier returned by cpufreq_cpu_get().
 258 *
 259 * This decrements the kobject reference count incremented earlier by calling
 260 * cpufreq_cpu_get().
 261 */
 262void cpufreq_cpu_put(struct cpufreq_policy *policy)
 263{
 264	kobject_put(&policy->kobj);
 265}
 266EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 268/*********************************************************************
 269 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 270 *********************************************************************/
 271
 272/**
 273 * adjust_jiffies - adjust the system "loops_per_jiffy"
 
 
 274 *
 275 * This function alters the system "loops_per_jiffy" for the clock
 276 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 277 * systems as each CPU might be scaled differently. So, use the arch
 278 * per-CPU loops_per_jiffy value wherever possible.
 279 */
 280static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 281{
 282#ifndef CONFIG_SMP
 283	static unsigned long l_p_j_ref;
 284	static unsigned int l_p_j_ref_freq;
 285
 286	if (ci->flags & CPUFREQ_CONST_LOOPS)
 287		return;
 288
 289	if (!l_p_j_ref_freq) {
 290		l_p_j_ref = loops_per_jiffy;
 291		l_p_j_ref_freq = ci->old;
 292		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 293			 l_p_j_ref, l_p_j_ref_freq);
 294	}
 295	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 296		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 297								ci->new);
 298		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 299			 loops_per_jiffy, ci->new);
 300	}
 301#endif
 302}
 303
 304static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
 305		struct cpufreq_freqs *freqs, unsigned int state)
 
 
 
 
 
 
 
 
 
 
 
 306{
 
 
 307	BUG_ON(irqs_disabled());
 308
 309	if (cpufreq_disabled())
 310		return;
 311
 
 312	freqs->flags = cpufreq_driver->flags;
 313	pr_debug("notification %u of frequency transition to %u kHz\n",
 314		 state, freqs->new);
 315
 316	switch (state) {
 317
 318	case CPUFREQ_PRECHANGE:
 319		/* detect if the driver reported a value as "old frequency"
 
 320		 * which is not equal to what the cpufreq core thinks is
 321		 * "old frequency".
 322		 */
 323		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 324			if ((policy) && (policy->cpu == freqs->cpu) &&
 325			    (policy->cur) && (policy->cur != freqs->old)) {
 326				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 327					 freqs->old, policy->cur);
 328				freqs->old = policy->cur;
 329			}
 330		}
 
 331		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 332				CPUFREQ_PRECHANGE, freqs);
 
 333		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 334		break;
 335
 336	case CPUFREQ_POSTCHANGE:
 337		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 338		pr_debug("FREQ: %lu - CPU: %lu\n",
 339			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
 340		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 
 
 
 
 341		cpufreq_stats_record_transition(policy, freqs->new);
 342		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 343				CPUFREQ_POSTCHANGE, freqs);
 344		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 345			policy->cur = freqs->new;
 346		break;
 347	}
 348}
 349
 350/**
 351 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 352 * on frequency transition.
 353 *
 354 * This function calls the transition notifiers and the "adjust_jiffies"
 355 * function. It is called twice on all CPU frequency changes that have
 356 * external effects.
 357 */
 358static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 359		struct cpufreq_freqs *freqs, unsigned int state)
 360{
 361	for_each_cpu(freqs->cpu, policy->cpus)
 362		__cpufreq_notify_transition(policy, freqs, state);
 363}
 364
 365/* Do post notifications when there are chances that transition has failed */
 366static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 367		struct cpufreq_freqs *freqs, int transition_failed)
 368{
 369	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 370	if (!transition_failed)
 371		return;
 372
 373	swap(freqs->old, freqs->new);
 374	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 375	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 376}
 377
 378void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 379		struct cpufreq_freqs *freqs)
 380{
 381
 382	/*
 383	 * Catch double invocations of _begin() which lead to self-deadlock.
 384	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 385	 * doesn't invoke _begin() on their behalf, and hence the chances of
 386	 * double invocations are very low. Moreover, there are scenarios
 387	 * where these checks can emit false-positive warnings in these
 388	 * drivers; so we avoid that by skipping them altogether.
 389	 */
 390	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 391				&& current == policy->transition_task);
 392
 393wait:
 394	wait_event(policy->transition_wait, !policy->transition_ongoing);
 395
 396	spin_lock(&policy->transition_lock);
 397
 398	if (unlikely(policy->transition_ongoing)) {
 399		spin_unlock(&policy->transition_lock);
 400		goto wait;
 401	}
 402
 403	policy->transition_ongoing = true;
 404	policy->transition_task = current;
 405
 406	spin_unlock(&policy->transition_lock);
 407
 408	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 409}
 410EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 411
 412void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 413		struct cpufreq_freqs *freqs, int transition_failed)
 414{
 415	if (unlikely(WARN_ON(!policy->transition_ongoing)))
 416		return;
 417
 418	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 419
 
 
 
 
 
 420	policy->transition_ongoing = false;
 421	policy->transition_task = NULL;
 
 422
 423	wake_up(&policy->transition_wait);
 424}
 425EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 426
 427/*
 428 * Fast frequency switching status count.  Positive means "enabled", negative
 429 * means "disabled" and 0 means "not decided yet".
 430 */
 431static int cpufreq_fast_switch_count;
 432static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 433
 434static void cpufreq_list_transition_notifiers(void)
 435{
 436	struct notifier_block *nb;
 437
 438	pr_info("Registered transition notifiers:\n");
 439
 440	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 441
 442	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 443		pr_info("%pF\n", nb->notifier_call);
 444
 445	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 446}
 447
 448/**
 449 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 450 * @policy: cpufreq policy to enable fast frequency switching for.
 451 *
 452 * Try to enable fast frequency switching for @policy.
 453 *
 454 * The attempt will fail if there is at least one transition notifier registered
 455 * at this point, as fast frequency switching is quite fundamentally at odds
 456 * with transition notifiers.  Thus if successful, it will make registration of
 457 * transition notifiers fail going forward.
 458 */
 459void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 460{
 461	lockdep_assert_held(&policy->rwsem);
 462
 463	if (!policy->fast_switch_possible)
 464		return;
 465
 466	mutex_lock(&cpufreq_fast_switch_lock);
 467	if (cpufreq_fast_switch_count >= 0) {
 468		cpufreq_fast_switch_count++;
 469		policy->fast_switch_enabled = true;
 470	} else {
 471		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 472			policy->cpu);
 473		cpufreq_list_transition_notifiers();
 474	}
 475	mutex_unlock(&cpufreq_fast_switch_lock);
 476}
 477EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 478
 479/**
 480 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 481 * @policy: cpufreq policy to disable fast frequency switching for.
 482 */
 483void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 484{
 485	mutex_lock(&cpufreq_fast_switch_lock);
 486	if (policy->fast_switch_enabled) {
 487		policy->fast_switch_enabled = false;
 488		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 489			cpufreq_fast_switch_count--;
 490	}
 491	mutex_unlock(&cpufreq_fast_switch_lock);
 492}
 493EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 495/**
 496 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 497 * one.
 
 498 * @target_freq: target frequency to resolve.
 499 *
 500 * The target to driver frequency mapping is cached in the policy.
 501 *
 502 * Return: Lowest driver-supported frequency greater than or equal to the
 503 * given target_freq, subject to policy (min/max) and driver limitations.
 504 */
 505unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 506					 unsigned int target_freq)
 507{
 508	target_freq = clamp_val(target_freq, policy->min, policy->max);
 509	policy->cached_target_freq = target_freq;
 
 
 
 
 
 510
 511	if (cpufreq_driver->target_index) {
 512		int idx;
 513
 514		idx = cpufreq_frequency_table_target(policy, target_freq,
 515						     CPUFREQ_RELATION_L);
 516		policy->cached_resolved_idx = idx;
 517		return policy->freq_table[idx].frequency;
 
 
 
 
 
 
 
 
 
 518	}
 519
 520	if (cpufreq_driver->resolve_freq)
 521		return cpufreq_driver->resolve_freq(policy, target_freq);
 522
 523	return target_freq;
 524}
 525EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 526
 527/*********************************************************************
 528 *                          SYSFS INTERFACE                          *
 529 *********************************************************************/
 530static ssize_t show_boost(struct kobject *kobj,
 531				 struct attribute *attr, char *buf)
 532{
 533	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 534}
 535
 536static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
 537				  const char *buf, size_t count)
 538{
 539	int ret, enable;
 540
 541	ret = sscanf(buf, "%d", &enable);
 542	if (ret != 1 || enable < 0 || enable > 1)
 543		return -EINVAL;
 544
 545	if (cpufreq_boost_trigger_state(enable)) {
 546		pr_err("%s: Cannot %s BOOST!\n",
 547		       __func__, enable ? "enable" : "disable");
 548		return -EINVAL;
 549	}
 550
 551	pr_debug("%s: cpufreq BOOST %s\n",
 552		 __func__, enable ? "enabled" : "disabled");
 553
 554	return count;
 555}
 556define_one_global_rw(boost);
 557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558static struct cpufreq_governor *find_governor(const char *str_governor)
 559{
 560	struct cpufreq_governor *t;
 561
 562	for_each_governor(t)
 563		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 564			return t;
 565
 566	return NULL;
 567}
 568
 569/**
 570 * cpufreq_parse_governor - parse a governor string
 571 */
 572static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 573				struct cpufreq_governor **governor)
 574{
 575	int err = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 576
 577	if (cpufreq_driver->setpolicy) {
 578		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 579			*policy = CPUFREQ_POLICY_PERFORMANCE;
 580			err = 0;
 581		} else if (!strncasecmp(str_governor, "powersave",
 582						CPUFREQ_NAME_LEN)) {
 583			*policy = CPUFREQ_POLICY_POWERSAVE;
 584			err = 0;
 585		}
 586	} else {
 587		struct cpufreq_governor *t;
 588
 589		mutex_lock(&cpufreq_governor_mutex);
 
 
 
 590
 591		t = find_governor(str_governor);
 
 592
 593		if (t == NULL) {
 594			int ret;
 595
 596			mutex_unlock(&cpufreq_governor_mutex);
 597			ret = request_module("cpufreq_%s", str_governor);
 598			mutex_lock(&cpufreq_governor_mutex);
 
 
 
 
 599
 600			if (ret == 0)
 601				t = find_governor(str_governor);
 602		}
 603
 604		if (t != NULL) {
 605			*governor = t;
 606			err = 0;
 607		}
 608
 609		mutex_unlock(&cpufreq_governor_mutex);
 610	}
 611	return err;
 612}
 613
 614/**
 615 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 616 * print out cpufreq information
 617 *
 618 * Write out information from cpufreq_driver->policy[cpu]; object must be
 619 * "unsigned int".
 620 */
 621
 622#define show_one(file_name, object)			\
 623static ssize_t show_##file_name				\
 624(struct cpufreq_policy *policy, char *buf)		\
 625{							\
 626	return sprintf(buf, "%u\n", policy->object);	\
 627}
 628
 629show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 630show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 631show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 632show_one(scaling_min_freq, min);
 633show_one(scaling_max_freq, max);
 634
 
 
 
 
 
 635static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 636{
 637	ssize_t ret;
 
 638
 639	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
 
 
 
 640		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 641	else
 642		ret = sprintf(buf, "%u\n", policy->cur);
 643	return ret;
 644}
 645
 646static int cpufreq_set_policy(struct cpufreq_policy *policy,
 647				struct cpufreq_policy *new_policy);
 648
 649/**
 650 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 651 */
 652#define store_one(file_name, object)			\
 653static ssize_t store_##file_name					\
 654(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 655{									\
 656	int ret, temp;							\
 657	struct cpufreq_policy new_policy;				\
 658									\
 659	memcpy(&new_policy, policy, sizeof(*policy));			\
 
 
 660									\
 661	ret = sscanf(buf, "%u", &new_policy.object);			\
 662	if (ret != 1)							\
 663		return -EINVAL;						\
 664									\
 665	temp = new_policy.object;					\
 666	ret = cpufreq_set_policy(policy, &new_policy);		\
 667	if (!ret)							\
 668		policy->user_policy.object = temp;			\
 669									\
 670	return ret ? ret : count;					\
 671}
 672
 673store_one(scaling_min_freq, min);
 674store_one(scaling_max_freq, max);
 675
 676/**
 677 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 678 */
 679static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 680					char *buf)
 681{
 682	unsigned int cur_freq = __cpufreq_get(policy);
 683
 684	if (cur_freq)
 685		return sprintf(buf, "%u\n", cur_freq);
 686
 687	return sprintf(buf, "<unknown>\n");
 688}
 689
 690/**
 691 * show_scaling_governor - show the current policy for the specified CPU
 692 */
 693static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 694{
 695	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 696		return sprintf(buf, "powersave\n");
 697	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 698		return sprintf(buf, "performance\n");
 699	else if (policy->governor)
 700		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 701				policy->governor->name);
 702	return -EINVAL;
 703}
 704
 705/**
 706 * store_scaling_governor - store policy for the specified CPU
 707 */
 708static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 709					const char *buf, size_t count)
 710{
 
 711	int ret;
 712	char	str_governor[16];
 713	struct cpufreq_policy new_policy;
 714
 715	memcpy(&new_policy, policy, sizeof(*policy));
 716
 717	ret = sscanf(buf, "%15s", str_governor);
 718	if (ret != 1)
 719		return -EINVAL;
 720
 721	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 722						&new_policy.governor))
 723		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724
 725	ret = cpufreq_set_policy(policy, &new_policy);
 726	return ret ? ret : count;
 727}
 728
 729/**
 730 * show_scaling_driver - show the cpufreq driver currently loaded
 731 */
 732static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 733{
 734	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 735}
 736
 737/**
 738 * show_scaling_available_governors - show the available CPUfreq governors
 739 */
 740static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 741						char *buf)
 742{
 743	ssize_t i = 0;
 744	struct cpufreq_governor *t;
 745
 746	if (!has_target()) {
 747		i += sprintf(buf, "performance powersave");
 748		goto out;
 749	}
 750
 
 751	for_each_governor(t) {
 752		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 753		    - (CPUFREQ_NAME_LEN + 2)))
 754			goto out;
 755		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 756	}
 
 757out:
 758	i += sprintf(&buf[i], "\n");
 759	return i;
 760}
 761
 762ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 763{
 764	ssize_t i = 0;
 765	unsigned int cpu;
 766
 767	for_each_cpu(cpu, mask) {
 768		if (i)
 769			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 770		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 771		if (i >= (PAGE_SIZE - 5))
 772			break;
 773	}
 
 
 
 
 774	i += sprintf(&buf[i], "\n");
 775	return i;
 776}
 777EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 778
 779/**
 780 * show_related_cpus - show the CPUs affected by each transition even if
 781 * hw coordination is in use
 782 */
 783static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 784{
 785	return cpufreq_show_cpus(policy->related_cpus, buf);
 786}
 787
 788/**
 789 * show_affected_cpus - show the CPUs affected by each transition
 790 */
 791static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 792{
 793	return cpufreq_show_cpus(policy->cpus, buf);
 794}
 795
 796static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 797					const char *buf, size_t count)
 798{
 799	unsigned int freq = 0;
 800	unsigned int ret;
 801
 802	if (!policy->governor || !policy->governor->store_setspeed)
 803		return -EINVAL;
 804
 805	ret = sscanf(buf, "%u", &freq);
 806	if (ret != 1)
 807		return -EINVAL;
 808
 809	policy->governor->store_setspeed(policy, freq);
 810
 811	return count;
 812}
 813
 814static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 815{
 816	if (!policy->governor || !policy->governor->show_setspeed)
 817		return sprintf(buf, "<unsupported>\n");
 818
 819	return policy->governor->show_setspeed(policy, buf);
 820}
 821
 822/**
 823 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 824 */
 825static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 826{
 827	unsigned int limit;
 828	int ret;
 829	if (cpufreq_driver->bios_limit) {
 830		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 831		if (!ret)
 832			return sprintf(buf, "%u\n", limit);
 833	}
 834	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 835}
 836
 837cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 838cpufreq_freq_attr_ro(cpuinfo_min_freq);
 839cpufreq_freq_attr_ro(cpuinfo_max_freq);
 840cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 841cpufreq_freq_attr_ro(scaling_available_governors);
 842cpufreq_freq_attr_ro(scaling_driver);
 843cpufreq_freq_attr_ro(scaling_cur_freq);
 844cpufreq_freq_attr_ro(bios_limit);
 845cpufreq_freq_attr_ro(related_cpus);
 846cpufreq_freq_attr_ro(affected_cpus);
 847cpufreq_freq_attr_rw(scaling_min_freq);
 848cpufreq_freq_attr_rw(scaling_max_freq);
 849cpufreq_freq_attr_rw(scaling_governor);
 850cpufreq_freq_attr_rw(scaling_setspeed);
 851
 852static struct attribute *default_attrs[] = {
 853	&cpuinfo_min_freq.attr,
 854	&cpuinfo_max_freq.attr,
 855	&cpuinfo_transition_latency.attr,
 856	&scaling_min_freq.attr,
 857	&scaling_max_freq.attr,
 858	&affected_cpus.attr,
 859	&related_cpus.attr,
 860	&scaling_governor.attr,
 861	&scaling_driver.attr,
 862	&scaling_available_governors.attr,
 863	&scaling_setspeed.attr,
 864	NULL
 865};
 
 866
 867#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 868#define to_attr(a) container_of(a, struct freq_attr, attr)
 869
 870static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 871{
 872	struct cpufreq_policy *policy = to_policy(kobj);
 873	struct freq_attr *fattr = to_attr(attr);
 874	ssize_t ret;
 
 
 
 875
 876	down_read(&policy->rwsem);
 877	ret = fattr->show(policy, buf);
 
 878	up_read(&policy->rwsem);
 879
 880	return ret;
 881}
 882
 883static ssize_t store(struct kobject *kobj, struct attribute *attr,
 884		     const char *buf, size_t count)
 885{
 886	struct cpufreq_policy *policy = to_policy(kobj);
 887	struct freq_attr *fattr = to_attr(attr);
 888	ssize_t ret = -EINVAL;
 889
 890	get_online_cpus();
 
 891
 892	if (cpu_online(policy->cpu)) {
 893		down_write(&policy->rwsem);
 894		ret = fattr->store(policy, buf, count);
 895		up_write(&policy->rwsem);
 896	}
 897
 898	put_online_cpus();
 899
 900	return ret;
 901}
 902
 903static void cpufreq_sysfs_release(struct kobject *kobj)
 904{
 905	struct cpufreq_policy *policy = to_policy(kobj);
 906	pr_debug("last reference is dropped\n");
 907	complete(&policy->kobj_unregister);
 908}
 909
 910static const struct sysfs_ops sysfs_ops = {
 911	.show	= show,
 912	.store	= store,
 913};
 914
 915static struct kobj_type ktype_cpufreq = {
 916	.sysfs_ops	= &sysfs_ops,
 917	.default_attrs	= default_attrs,
 918	.release	= cpufreq_sysfs_release,
 919};
 920
 921static int add_cpu_dev_symlink(struct cpufreq_policy *policy,
 922			       struct device *dev)
 923{
 
 
 
 
 
 
 924	dev_dbg(dev, "%s: Adding symlink\n", __func__);
 925	return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
 
 926}
 927
 928static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
 929				   struct device *dev)
 930{
 931	dev_dbg(dev, "%s: Removing symlink\n", __func__);
 932	sysfs_remove_link(&dev->kobj, "cpufreq");
 
 933}
 934
 935static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 936{
 937	struct freq_attr **drv_attr;
 938	int ret = 0;
 939
 940	/* set up files for this cpu device */
 941	drv_attr = cpufreq_driver->attr;
 942	while (drv_attr && *drv_attr) {
 943		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 944		if (ret)
 945			return ret;
 946		drv_attr++;
 947	}
 948	if (cpufreq_driver->get) {
 949		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 950		if (ret)
 951			return ret;
 952	}
 953
 954	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 955	if (ret)
 956		return ret;
 957
 958	if (cpufreq_driver->bios_limit) {
 959		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 960		if (ret)
 961			return ret;
 962	}
 963
 
 
 
 
 
 
 964	return 0;
 965}
 966
 967__weak struct cpufreq_governor *cpufreq_default_governor(void)
 968{
 969	return NULL;
 970}
 971
 972static int cpufreq_init_policy(struct cpufreq_policy *policy)
 973{
 974	struct cpufreq_governor *gov = NULL;
 975	struct cpufreq_policy new_policy;
 
 
 
 
 
 
 
 
 
 
 
 976
 977	memcpy(&new_policy, policy, sizeof(*policy));
 
 
 
 978
 979	/* Update governor of new_policy to the governor used before hotplug */
 980	gov = find_governor(policy->last_governor);
 981	if (gov) {
 982		pr_debug("Restoring governor %s for cpu %d\n",
 983				policy->governor->name, policy->cpu);
 984	} else {
 985		gov = cpufreq_default_governor();
 986		if (!gov)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987			return -ENODATA;
 988	}
 989
 990	new_policy.governor = gov;
 
 
 991
 992	/* Use the default policy if there is no last_policy. */
 993	if (cpufreq_driver->setpolicy) {
 994		if (policy->last_policy)
 995			new_policy.policy = policy->last_policy;
 996		else
 997			cpufreq_parse_governor(gov->name, &new_policy.policy,
 998					       NULL);
 999	}
1000	/* set default policy */
1001	return cpufreq_set_policy(policy, &new_policy);
1002}
1003
1004static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1005{
1006	int ret = 0;
1007
1008	/* Has this CPU been taken care of already? */
1009	if (cpumask_test_cpu(cpu, policy->cpus))
1010		return 0;
1011
1012	down_write(&policy->rwsem);
1013	if (has_target())
1014		cpufreq_stop_governor(policy);
1015
1016	cpumask_set_cpu(cpu, policy->cpus);
1017
1018	if (has_target()) {
1019		ret = cpufreq_start_governor(policy);
1020		if (ret)
1021			pr_err("%s: Failed to start governor\n", __func__);
1022	}
1023	up_write(&policy->rwsem);
1024	return ret;
1025}
1026
 
 
 
 
 
 
 
 
 
 
1027static void handle_update(struct work_struct *work)
1028{
1029	struct cpufreq_policy *policy =
1030		container_of(work, struct cpufreq_policy, update);
1031	unsigned int cpu = policy->cpu;
1032	pr_debug("handle_update for cpu %u called\n", cpu);
1033	cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034}
1035
1036static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1037{
1038	struct cpufreq_policy *policy;
 
1039	int ret;
1040
 
 
 
1041	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1042	if (!policy)
1043		return NULL;
1044
1045	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1046		goto err_free_policy;
1047
1048	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1049		goto err_free_cpumask;
1050
1051	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1052		goto err_free_rcpumask;
1053
 
1054	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1055				   cpufreq_global_kobject, "policy%u", cpu);
1056	if (ret) {
1057		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
 
 
 
 
 
 
1058		goto err_free_real_cpus;
1059	}
1060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061	INIT_LIST_HEAD(&policy->policy_list);
1062	init_rwsem(&policy->rwsem);
1063	spin_lock_init(&policy->transition_lock);
1064	init_waitqueue_head(&policy->transition_wait);
1065	init_completion(&policy->kobj_unregister);
1066	INIT_WORK(&policy->update, handle_update);
1067
1068	policy->cpu = cpu;
1069	return policy;
1070
 
 
 
 
 
1071err_free_real_cpus:
1072	free_cpumask_var(policy->real_cpus);
1073err_free_rcpumask:
1074	free_cpumask_var(policy->related_cpus);
1075err_free_cpumask:
1076	free_cpumask_var(policy->cpus);
1077err_free_policy:
1078	kfree(policy);
1079
1080	return NULL;
1081}
1082
1083static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1084{
1085	struct kobject *kobj;
1086	struct completion *cmp;
1087
1088	if (notify)
1089		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1090					     CPUFREQ_REMOVE_POLICY, policy);
1091
1092	down_write(&policy->rwsem);
1093	cpufreq_stats_free_table(policy);
1094	kobj = &policy->kobj;
1095	cmp = &policy->kobj_unregister;
1096	up_write(&policy->rwsem);
1097	kobject_put(kobj);
1098
1099	/*
1100	 * We need to make sure that the underlying kobj is
1101	 * actually not referenced anymore by anybody before we
1102	 * proceed with unloading.
1103	 */
1104	pr_debug("waiting for dropping of refcount\n");
1105	wait_for_completion(cmp);
1106	pr_debug("wait complete\n");
1107}
1108
1109static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1110{
1111	unsigned long flags;
1112	int cpu;
1113
1114	/* Remove policy from list */
1115	write_lock_irqsave(&cpufreq_driver_lock, flags);
1116	list_del(&policy->policy_list);
1117
1118	for_each_cpu(cpu, policy->related_cpus)
1119		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1120	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1121
1122	cpufreq_policy_put_kobj(policy, notify);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123	free_cpumask_var(policy->real_cpus);
1124	free_cpumask_var(policy->related_cpus);
1125	free_cpumask_var(policy->cpus);
1126	kfree(policy);
1127}
1128
1129static int cpufreq_online(unsigned int cpu)
1130{
1131	struct cpufreq_policy *policy;
1132	bool new_policy;
1133	unsigned long flags;
1134	unsigned int j;
1135	int ret;
1136
1137	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1138
1139	/* Check if this CPU already has a policy to manage it */
1140	policy = per_cpu(cpufreq_cpu_data, cpu);
1141	if (policy) {
1142		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1143		if (!policy_is_inactive(policy))
1144			return cpufreq_add_policy_cpu(policy, cpu);
1145
1146		/* This is the only online CPU for the policy.  Start over. */
1147		new_policy = false;
1148		down_write(&policy->rwsem);
1149		policy->cpu = cpu;
1150		policy->governor = NULL;
1151		up_write(&policy->rwsem);
1152	} else {
1153		new_policy = true;
1154		policy = cpufreq_policy_alloc(cpu);
1155		if (!policy)
1156			return -ENOMEM;
 
1157	}
1158
1159	cpumask_copy(policy->cpus, cpumask_of(cpu));
 
 
1160
1161	/* call driver. From then on the cpufreq must be able
1162	 * to accept all calls to ->verify and ->setpolicy for this CPU
1163	 */
1164	ret = cpufreq_driver->init(policy);
1165	if (ret) {
1166		pr_debug("initialization failed\n");
1167		goto out_free_policy;
1168	}
 
 
 
 
 
 
 
 
 
 
 
1169
1170	down_write(&policy->rwsem);
 
 
 
 
 
 
 
1171
1172	if (new_policy) {
1173		/* related_cpus should at least include policy->cpus. */
1174		cpumask_copy(policy->related_cpus, policy->cpus);
1175		/* Clear mask of registered CPUs */
1176		cpumask_clear(policy->real_cpus);
1177	}
1178
1179	/*
1180	 * affected cpus must always be the one, which are online. We aren't
1181	 * managing offline cpus here.
1182	 */
1183	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1184
1185	if (new_policy) {
1186		policy->user_policy.min = policy->min;
1187		policy->user_policy.max = policy->max;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188
1189		write_lock_irqsave(&cpufreq_driver_lock, flags);
1190		for_each_cpu(j, policy->related_cpus)
1191			per_cpu(cpufreq_cpu_data, j) = policy;
1192		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1193	} else {
1194		policy->min = policy->user_policy.min;
1195		policy->max = policy->user_policy.max;
1196	}
1197
1198	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1199		policy->cur = cpufreq_driver->get(policy->cpu);
1200		if (!policy->cur) {
 
1201			pr_err("%s: ->get() failed\n", __func__);
1202			goto out_exit_policy;
1203		}
1204	}
1205
1206	/*
1207	 * Sometimes boot loaders set CPU frequency to a value outside of
1208	 * frequency table present with cpufreq core. In such cases CPU might be
1209	 * unstable if it has to run on that frequency for long duration of time
1210	 * and so its better to set it to a frequency which is specified in
1211	 * freq-table. This also makes cpufreq stats inconsistent as
1212	 * cpufreq-stats would fail to register because current frequency of CPU
1213	 * isn't found in freq-table.
1214	 *
1215	 * Because we don't want this change to effect boot process badly, we go
1216	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1217	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1218	 * is initialized to zero).
1219	 *
1220	 * We are passing target-freq as "policy->cur - 1" otherwise
1221	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1222	 * equal to target-freq.
1223	 */
1224	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1225	    && has_target()) {
 
 
1226		/* Are we running at unknown frequency ? */
1227		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1228		if (ret == -EINVAL) {
1229			/* Warn user and fix it */
1230			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1231				__func__, policy->cpu, policy->cur);
1232			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1233				CPUFREQ_RELATION_L);
1234
1235			/*
1236			 * Reaching here after boot in a few seconds may not
1237			 * mean that system will remain stable at "unknown"
1238			 * frequency for longer duration. Hence, a BUG_ON().
1239			 */
1240			BUG_ON(ret);
1241			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1242				__func__, policy->cpu, policy->cur);
1243		}
1244	}
1245
1246	if (new_policy) {
1247		ret = cpufreq_add_dev_interface(policy);
1248		if (ret)
1249			goto out_exit_policy;
1250
1251		cpufreq_stats_create_table(policy);
1252		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1253				CPUFREQ_CREATE_POLICY, policy);
1254
1255		write_lock_irqsave(&cpufreq_driver_lock, flags);
1256		list_add(&policy->policy_list, &cpufreq_policy_list);
1257		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1258	}
1259
1260	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1261				     CPUFREQ_START, policy);
1262
1263	ret = cpufreq_init_policy(policy);
1264	if (ret) {
1265		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1266		       __func__, cpu, ret);
1267		/* cpufreq_policy_free() will notify based on this */
1268		new_policy = false;
1269		goto out_exit_policy;
1270	}
1271
1272	up_write(&policy->rwsem);
1273
1274	kobject_uevent(&policy->kobj, KOBJ_ADD);
1275
1276	/* Callback for handling stuff after policy is ready */
1277	if (cpufreq_driver->ready)
1278		cpufreq_driver->ready(policy);
1279
 
 
 
1280	pr_debug("initialization complete\n");
1281
1282	return 0;
1283
 
 
 
 
 
 
 
 
1284out_exit_policy:
1285	up_write(&policy->rwsem);
1286
1287	if (cpufreq_driver->exit)
1288		cpufreq_driver->exit(policy);
 
1289out_free_policy:
1290	cpufreq_policy_free(policy, !new_policy);
 
 
 
1291	return ret;
1292}
1293
1294static int cpufreq_offline(unsigned int cpu);
1295
1296/**
1297 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1298 * @dev: CPU device.
1299 * @sif: Subsystem interface structure pointer (not used)
1300 */
1301static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1302{
1303	struct cpufreq_policy *policy;
1304	unsigned cpu = dev->id;
1305	int ret;
1306
1307	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1308
1309	if (cpu_online(cpu)) {
1310		ret = cpufreq_online(cpu);
1311		if (ret)
1312			return ret;
1313	}
1314
1315	/* Create sysfs link on CPU registration */
1316	policy = per_cpu(cpufreq_cpu_data, cpu);
1317	if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1318		return 0;
1319
1320	ret = add_cpu_dev_symlink(policy, dev);
1321	if (ret) {
1322		cpumask_clear_cpu(cpu, policy->real_cpus);
1323		cpufreq_offline(cpu);
1324	}
1325
1326	return ret;
1327}
1328
1329static int cpufreq_offline(unsigned int cpu)
1330{
1331	struct cpufreq_policy *policy;
1332	int ret;
1333
1334	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1335
1336	policy = cpufreq_cpu_get_raw(cpu);
1337	if (!policy) {
1338		pr_debug("%s: No cpu_data found\n", __func__);
1339		return 0;
1340	}
1341
1342	down_write(&policy->rwsem);
1343	if (has_target())
1344		cpufreq_stop_governor(policy);
1345
1346	cpumask_clear_cpu(cpu, policy->cpus);
1347
1348	if (policy_is_inactive(policy)) {
1349		if (has_target())
1350			strncpy(policy->last_governor, policy->governor->name,
1351				CPUFREQ_NAME_LEN);
1352		else
1353			policy->last_policy = policy->policy;
1354	} else if (cpu == policy->cpu) {
1355		/* Nominate new CPU */
1356		policy->cpu = cpumask_any(policy->cpus);
1357	}
1358
1359	/* Start governor again for active policy */
1360	if (!policy_is_inactive(policy)) {
1361		if (has_target()) {
1362			ret = cpufreq_start_governor(policy);
1363			if (ret)
1364				pr_err("%s: Failed to start governor\n", __func__);
1365		}
1366
1367		goto unlock;
1368	}
1369
1370	if (cpufreq_driver->stop_cpu)
1371		cpufreq_driver->stop_cpu(policy);
 
 
 
 
 
 
 
 
1372
1373	if (has_target())
1374		cpufreq_exit_governor(policy);
1375
1376	/*
1377	 * Perform the ->exit() even during light-weight tear-down,
1378	 * since this is a core component, and is essential for the
1379	 * subsequent light-weight ->init() to succeed.
1380	 */
1381	if (cpufreq_driver->exit) {
 
 
1382		cpufreq_driver->exit(policy);
1383		policy->freq_table = NULL;
1384	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385
1386unlock:
1387	up_write(&policy->rwsem);
1388	return 0;
1389}
1390
1391/**
1392 * cpufreq_remove_dev - remove a CPU device
1393 *
1394 * Removes the cpufreq interface for a CPU device.
1395 */
1396static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1397{
1398	unsigned int cpu = dev->id;
1399	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1400
1401	if (!policy)
1402		return;
1403
 
 
1404	if (cpu_online(cpu))
1405		cpufreq_offline(cpu);
 
 
 
 
 
 
 
 
 
 
 
1406
1407	cpumask_clear_cpu(cpu, policy->real_cpus);
1408	remove_cpu_dev_symlink(policy, dev);
1409
1410	if (cpumask_empty(policy->real_cpus))
1411		cpufreq_policy_free(policy, true);
1412}
1413
1414/**
1415 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1416 *	in deep trouble.
1417 *	@policy: policy managing CPUs
1418 *	@new_freq: CPU frequency the CPU actually runs at
1419 *
1420 *	We adjust to current frequency first, and need to clean up later.
1421 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1422 */
1423static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1424				unsigned int new_freq)
1425{
1426	struct cpufreq_freqs freqs;
1427
1428	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1429		 policy->cur, new_freq);
1430
1431	freqs.old = policy->cur;
1432	freqs.new = new_freq;
1433
1434	cpufreq_freq_transition_begin(policy, &freqs);
1435	cpufreq_freq_transition_end(policy, &freqs, 0);
1436}
1437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438/**
1439 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1440 * @cpu: CPU number
1441 *
1442 * This is the last known freq, without actually getting it from the driver.
1443 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1444 */
1445unsigned int cpufreq_quick_get(unsigned int cpu)
1446{
1447	struct cpufreq_policy *policy;
1448	unsigned int ret_freq = 0;
1449	unsigned long flags;
1450
1451	read_lock_irqsave(&cpufreq_driver_lock, flags);
1452
1453	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1454		ret_freq = cpufreq_driver->get(cpu);
1455		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1456		return ret_freq;
1457	}
1458
1459	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1460
1461	policy = cpufreq_cpu_get(cpu);
1462	if (policy) {
1463		ret_freq = policy->cur;
1464		cpufreq_cpu_put(policy);
1465	}
1466
1467	return ret_freq;
1468}
1469EXPORT_SYMBOL(cpufreq_quick_get);
1470
1471/**
1472 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1473 * @cpu: CPU number
1474 *
1475 * Just return the max possible frequency for a given CPU.
1476 */
1477unsigned int cpufreq_quick_get_max(unsigned int cpu)
1478{
1479	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1480	unsigned int ret_freq = 0;
1481
1482	if (policy) {
1483		ret_freq = policy->max;
1484		cpufreq_cpu_put(policy);
1485	}
1486
1487	return ret_freq;
1488}
1489EXPORT_SYMBOL(cpufreq_quick_get_max);
1490
1491static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
 
 
 
 
 
 
1492{
 
1493	unsigned int ret_freq = 0;
1494
1495	if (!cpufreq_driver->get)
1496		return ret_freq;
 
 
1497
1498	ret_freq = cpufreq_driver->get(policy->cpu);
 
 
1499
1500	/*
1501	 * Updating inactive policies is invalid, so avoid doing that.  Also
1502	 * if fast frequency switching is used with the given policy, the check
1503	 * against policy->cur is pointless, so skip it in that case too.
1504	 */
1505	if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1506		return ret_freq;
1507
1508	if (ret_freq && policy->cur &&
1509		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1510		/* verify no discrepancy between actual and
1511					saved value exists */
1512		if (unlikely(ret_freq != policy->cur)) {
1513			cpufreq_out_of_sync(policy, ret_freq);
1514			schedule_work(&policy->update);
1515		}
1516	}
1517
1518	return ret_freq;
1519}
1520
1521/**
1522 * cpufreq_get - get the current CPU frequency (in kHz)
1523 * @cpu: CPU number
1524 *
1525 * Get the CPU current (static) CPU frequency
1526 */
1527unsigned int cpufreq_get(unsigned int cpu)
1528{
1529	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1530	unsigned int ret_freq = 0;
1531
1532	if (policy) {
1533		down_read(&policy->rwsem);
1534
1535		if (!policy_is_inactive(policy))
1536			ret_freq = __cpufreq_get(policy);
1537
1538		up_read(&policy->rwsem);
1539
1540		cpufreq_cpu_put(policy);
1541	}
1542
1543	return ret_freq;
1544}
1545EXPORT_SYMBOL(cpufreq_get);
1546
1547static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1548{
1549	unsigned int new_freq;
1550
1551	new_freq = cpufreq_driver->get(policy->cpu);
1552	if (!new_freq)
1553		return 0;
1554
1555	if (!policy->cur) {
1556		pr_debug("cpufreq: Driver did not initialize current freq\n");
1557		policy->cur = new_freq;
1558	} else if (policy->cur != new_freq && has_target()) {
1559		cpufreq_out_of_sync(policy, new_freq);
1560	}
1561
1562	return new_freq;
1563}
1564
1565static struct subsys_interface cpufreq_interface = {
1566	.name		= "cpufreq",
1567	.subsys		= &cpu_subsys,
1568	.add_dev	= cpufreq_add_dev,
1569	.remove_dev	= cpufreq_remove_dev,
1570};
1571
1572/*
1573 * In case platform wants some specific frequency to be configured
1574 * during suspend..
1575 */
1576int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1577{
1578	int ret;
1579
1580	if (!policy->suspend_freq) {
1581		pr_debug("%s: suspend_freq not defined\n", __func__);
1582		return 0;
1583	}
1584
1585	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1586			policy->suspend_freq);
1587
1588	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1589			CPUFREQ_RELATION_H);
1590	if (ret)
1591		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1592				__func__, policy->suspend_freq, ret);
1593
1594	return ret;
1595}
1596EXPORT_SYMBOL(cpufreq_generic_suspend);
1597
1598/**
1599 * cpufreq_suspend() - Suspend CPUFreq governors
1600 *
1601 * Called during system wide Suspend/Hibernate cycles for suspending governors
1602 * as some platforms can't change frequency after this point in suspend cycle.
1603 * Because some of the devices (like: i2c, regulators, etc) they use for
1604 * changing frequency are suspended quickly after this point.
1605 */
1606void cpufreq_suspend(void)
1607{
1608	struct cpufreq_policy *policy;
1609
1610	if (!cpufreq_driver)
1611		return;
1612
1613	if (!has_target() && !cpufreq_driver->suspend)
1614		goto suspend;
1615
1616	pr_debug("%s: Suspending Governors\n", __func__);
1617
1618	for_each_active_policy(policy) {
1619		if (has_target()) {
1620			down_write(&policy->rwsem);
1621			cpufreq_stop_governor(policy);
1622			up_write(&policy->rwsem);
1623		}
1624
1625		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1626			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1627				policy);
1628	}
1629
1630suspend:
1631	cpufreq_suspended = true;
1632}
1633
1634/**
1635 * cpufreq_resume() - Resume CPUFreq governors
1636 *
1637 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1638 * are suspended with cpufreq_suspend().
1639 */
1640void cpufreq_resume(void)
1641{
1642	struct cpufreq_policy *policy;
1643	int ret;
1644
1645	if (!cpufreq_driver)
1646		return;
1647
 
 
 
1648	cpufreq_suspended = false;
1649
1650	if (!has_target() && !cpufreq_driver->resume)
1651		return;
1652
1653	pr_debug("%s: Resuming Governors\n", __func__);
1654
1655	for_each_active_policy(policy) {
1656		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1657			pr_err("%s: Failed to resume driver: %p\n", __func__,
1658				policy);
1659		} else if (has_target()) {
1660			down_write(&policy->rwsem);
1661			ret = cpufreq_start_governor(policy);
1662			up_write(&policy->rwsem);
1663
1664			if (ret)
1665				pr_err("%s: Failed to start governor for policy: %p\n",
1666				       __func__, policy);
1667		}
1668	}
1669}
1670
1671/**
1672 *	cpufreq_get_current_driver - return current driver's name
 
 
 
 
 
 
 
 
 
 
 
 
1673 *
1674 *	Return the name string of the currently loaded cpufreq driver
1675 *	or NULL, if none.
1676 */
1677const char *cpufreq_get_current_driver(void)
1678{
1679	if (cpufreq_driver)
1680		return cpufreq_driver->name;
1681
1682	return NULL;
1683}
1684EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1685
1686/**
1687 *	cpufreq_get_driver_data - return current driver data
1688 *
1689 *	Return the private data of the currently loaded cpufreq
1690 *	driver, or NULL if no cpufreq driver is loaded.
1691 */
1692void *cpufreq_get_driver_data(void)
1693{
1694	if (cpufreq_driver)
1695		return cpufreq_driver->driver_data;
1696
1697	return NULL;
1698}
1699EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1700
1701/*********************************************************************
1702 *                     NOTIFIER LISTS INTERFACE                      *
1703 *********************************************************************/
1704
1705/**
1706 *	cpufreq_register_notifier - register a driver with cpufreq
1707 *	@nb: notifier function to register
1708 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1709 *
1710 *	Add a driver to one of two lists: either a list of drivers that
1711 *      are notified about clock rate changes (once before and once after
1712 *      the transition), or a list of drivers that are notified about
1713 *      changes in cpufreq policy.
1714 *
1715 *	This function may sleep, and has the same return conditions as
1716 *	blocking_notifier_chain_register.
1717 */
1718int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1719{
1720	int ret;
1721
1722	if (cpufreq_disabled())
1723		return -EINVAL;
1724
1725	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1726
1727	switch (list) {
1728	case CPUFREQ_TRANSITION_NOTIFIER:
1729		mutex_lock(&cpufreq_fast_switch_lock);
1730
1731		if (cpufreq_fast_switch_count > 0) {
1732			mutex_unlock(&cpufreq_fast_switch_lock);
1733			return -EBUSY;
1734		}
1735		ret = srcu_notifier_chain_register(
1736				&cpufreq_transition_notifier_list, nb);
1737		if (!ret)
1738			cpufreq_fast_switch_count--;
1739
1740		mutex_unlock(&cpufreq_fast_switch_lock);
1741		break;
1742	case CPUFREQ_POLICY_NOTIFIER:
1743		ret = blocking_notifier_chain_register(
1744				&cpufreq_policy_notifier_list, nb);
1745		break;
1746	default:
1747		ret = -EINVAL;
1748	}
1749
1750	return ret;
1751}
1752EXPORT_SYMBOL(cpufreq_register_notifier);
1753
1754/**
1755 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1756 *	@nb: notifier block to be unregistered
1757 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1758 *
1759 *	Remove a driver from the CPU frequency notifier list.
1760 *
1761 *	This function may sleep, and has the same return conditions as
1762 *	blocking_notifier_chain_unregister.
1763 */
1764int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1765{
1766	int ret;
1767
1768	if (cpufreq_disabled())
1769		return -EINVAL;
1770
1771	switch (list) {
1772	case CPUFREQ_TRANSITION_NOTIFIER:
1773		mutex_lock(&cpufreq_fast_switch_lock);
1774
1775		ret = srcu_notifier_chain_unregister(
1776				&cpufreq_transition_notifier_list, nb);
1777		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1778			cpufreq_fast_switch_count++;
1779
1780		mutex_unlock(&cpufreq_fast_switch_lock);
1781		break;
1782	case CPUFREQ_POLICY_NOTIFIER:
1783		ret = blocking_notifier_chain_unregister(
1784				&cpufreq_policy_notifier_list, nb);
1785		break;
1786	default:
1787		ret = -EINVAL;
1788	}
1789
1790	return ret;
1791}
1792EXPORT_SYMBOL(cpufreq_unregister_notifier);
1793
1794
1795/*********************************************************************
1796 *                              GOVERNORS                            *
1797 *********************************************************************/
1798
1799/**
1800 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1801 * @policy: cpufreq policy to switch the frequency for.
1802 * @target_freq: New frequency to set (may be approximate).
1803 *
1804 * Carry out a fast frequency switch without sleeping.
1805 *
1806 * The driver's ->fast_switch() callback invoked by this function must be
1807 * suitable for being called from within RCU-sched read-side critical sections
1808 * and it is expected to select the minimum available frequency greater than or
1809 * equal to @target_freq (CPUFREQ_RELATION_L).
1810 *
1811 * This function must not be called if policy->fast_switch_enabled is unset.
1812 *
1813 * Governors calling this function must guarantee that it will never be invoked
1814 * twice in parallel for the same policy and that it will never be called in
1815 * parallel with either ->target() or ->target_index() for the same policy.
1816 *
1817 * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch()
1818 * callback to indicate an error condition, the hardware configuration must be
1819 * preserved.
 
1820 */
1821unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1822					unsigned int target_freq)
1823{
 
 
 
1824	target_freq = clamp_val(target_freq, policy->min, policy->max);
 
 
 
 
1825
1826	return cpufreq_driver->fast_switch(policy, target_freq);
 
 
 
 
 
 
 
 
 
 
1827}
1828EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1830/* Must set freqs->new to intermediate frequency */
1831static int __target_intermediate(struct cpufreq_policy *policy,
1832				 struct cpufreq_freqs *freqs, int index)
1833{
1834	int ret;
1835
1836	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1837
1838	/* We don't need to switch to intermediate freq */
1839	if (!freqs->new)
1840		return 0;
1841
1842	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1843		 __func__, policy->cpu, freqs->old, freqs->new);
1844
1845	cpufreq_freq_transition_begin(policy, freqs);
1846	ret = cpufreq_driver->target_intermediate(policy, index);
1847	cpufreq_freq_transition_end(policy, freqs, ret);
1848
1849	if (ret)
1850		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1851		       __func__, ret);
1852
1853	return ret;
1854}
1855
1856static int __target_index(struct cpufreq_policy *policy, int index)
1857{
1858	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1859	unsigned int intermediate_freq = 0;
1860	unsigned int newfreq = policy->freq_table[index].frequency;
1861	int retval = -EINVAL;
1862	bool notify;
1863
1864	if (newfreq == policy->cur)
1865		return 0;
1866
 
 
 
1867	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1868	if (notify) {
1869		/* Handle switching to intermediate frequency */
1870		if (cpufreq_driver->get_intermediate) {
1871			retval = __target_intermediate(policy, &freqs, index);
1872			if (retval)
1873				return retval;
1874
1875			intermediate_freq = freqs.new;
1876			/* Set old freq to intermediate */
1877			if (intermediate_freq)
1878				freqs.old = freqs.new;
1879		}
1880
1881		freqs.new = newfreq;
1882		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1883			 __func__, policy->cpu, freqs.old, freqs.new);
1884
1885		cpufreq_freq_transition_begin(policy, &freqs);
1886	}
1887
1888	retval = cpufreq_driver->target_index(policy, index);
1889	if (retval)
1890		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1891		       retval);
1892
1893	if (notify) {
1894		cpufreq_freq_transition_end(policy, &freqs, retval);
1895
1896		/*
1897		 * Failed after setting to intermediate freq? Driver should have
1898		 * reverted back to initial frequency and so should we. Check
1899		 * here for intermediate_freq instead of get_intermediate, in
1900		 * case we haven't switched to intermediate freq at all.
1901		 */
1902		if (unlikely(retval && intermediate_freq)) {
1903			freqs.old = intermediate_freq;
1904			freqs.new = policy->restore_freq;
1905			cpufreq_freq_transition_begin(policy, &freqs);
1906			cpufreq_freq_transition_end(policy, &freqs, 0);
1907		}
1908	}
1909
1910	return retval;
1911}
1912
1913int __cpufreq_driver_target(struct cpufreq_policy *policy,
1914			    unsigned int target_freq,
1915			    unsigned int relation)
1916{
1917	unsigned int old_target_freq = target_freq;
1918	int index;
1919
1920	if (cpufreq_disabled())
1921		return -ENODEV;
1922
1923	/* Make sure that target_freq is within supported range */
1924	target_freq = clamp_val(target_freq, policy->min, policy->max);
1925
1926	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1927		 policy->cpu, target_freq, relation, old_target_freq);
1928
1929	/*
1930	 * This might look like a redundant call as we are checking it again
1931	 * after finding index. But it is left intentionally for cases where
1932	 * exactly same freq is called again and so we can save on few function
1933	 * calls.
1934	 */
1935	if (target_freq == policy->cur)
 
1936		return 0;
1937
1938	/* Save last value to restore later on errors */
1939	policy->restore_freq = policy->cur;
 
 
 
 
 
1940
1941	if (cpufreq_driver->target)
1942		return cpufreq_driver->target(policy, target_freq, relation);
 
1943
1944	if (!cpufreq_driver->target_index)
1945		return -EINVAL;
1946
1947	index = cpufreq_frequency_table_target(policy, target_freq, relation);
1948
1949	return __target_index(policy, index);
1950}
1951EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1952
1953int cpufreq_driver_target(struct cpufreq_policy *policy,
1954			  unsigned int target_freq,
1955			  unsigned int relation)
1956{
1957	int ret = -EINVAL;
1958
1959	down_write(&policy->rwsem);
1960
1961	ret = __cpufreq_driver_target(policy, target_freq, relation);
1962
1963	up_write(&policy->rwsem);
1964
1965	return ret;
1966}
1967EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1968
1969__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1970{
1971	return NULL;
1972}
1973
1974static int cpufreq_init_governor(struct cpufreq_policy *policy)
1975{
1976	int ret;
1977
1978	/* Don't start any governor operations if we are entering suspend */
1979	if (cpufreq_suspended)
1980		return 0;
1981	/*
1982	 * Governor might not be initiated here if ACPI _PPC changed
1983	 * notification happened, so check it.
1984	 */
1985	if (!policy->governor)
1986		return -EINVAL;
1987
1988	if (policy->governor->max_transition_latency &&
1989	    policy->cpuinfo.transition_latency >
1990	    policy->governor->max_transition_latency) {
1991		struct cpufreq_governor *gov = cpufreq_fallback_governor();
1992
1993		if (gov) {
1994			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1995				policy->governor->name, gov->name);
1996			policy->governor = gov;
1997		} else {
1998			return -EINVAL;
1999		}
2000	}
2001
2002	if (!try_module_get(policy->governor->owner))
2003		return -EINVAL;
2004
2005	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2006
2007	if (policy->governor->init) {
2008		ret = policy->governor->init(policy);
2009		if (ret) {
2010			module_put(policy->governor->owner);
2011			return ret;
2012		}
2013	}
2014
 
 
2015	return 0;
2016}
2017
2018static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2019{
2020	if (cpufreq_suspended || !policy->governor)
2021		return;
2022
2023	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2024
2025	if (policy->governor->exit)
2026		policy->governor->exit(policy);
2027
2028	module_put(policy->governor->owner);
2029}
2030
2031static int cpufreq_start_governor(struct cpufreq_policy *policy)
2032{
2033	int ret;
2034
2035	if (cpufreq_suspended)
2036		return 0;
2037
2038	if (!policy->governor)
2039		return -EINVAL;
2040
2041	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2042
2043	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2044		cpufreq_update_current_freq(policy);
2045
2046	if (policy->governor->start) {
2047		ret = policy->governor->start(policy);
2048		if (ret)
2049			return ret;
2050	}
2051
2052	if (policy->governor->limits)
2053		policy->governor->limits(policy);
2054
2055	return 0;
2056}
2057
2058static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2059{
2060	if (cpufreq_suspended || !policy->governor)
2061		return;
2062
2063	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2064
2065	if (policy->governor->stop)
2066		policy->governor->stop(policy);
2067}
2068
2069static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2070{
2071	if (cpufreq_suspended || !policy->governor)
2072		return;
2073
2074	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2075
2076	if (policy->governor->limits)
2077		policy->governor->limits(policy);
2078}
2079
2080int cpufreq_register_governor(struct cpufreq_governor *governor)
2081{
2082	int err;
2083
2084	if (!governor)
2085		return -EINVAL;
2086
2087	if (cpufreq_disabled())
2088		return -ENODEV;
2089
2090	mutex_lock(&cpufreq_governor_mutex);
2091
2092	err = -EBUSY;
2093	if (!find_governor(governor->name)) {
2094		err = 0;
2095		list_add(&governor->governor_list, &cpufreq_governor_list);
2096	}
2097
2098	mutex_unlock(&cpufreq_governor_mutex);
2099	return err;
2100}
2101EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2102
2103void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2104{
2105	struct cpufreq_policy *policy;
2106	unsigned long flags;
2107
2108	if (!governor)
2109		return;
2110
2111	if (cpufreq_disabled())
2112		return;
2113
2114	/* clear last_governor for all inactive policies */
2115	read_lock_irqsave(&cpufreq_driver_lock, flags);
2116	for_each_inactive_policy(policy) {
2117		if (!strcmp(policy->last_governor, governor->name)) {
2118			policy->governor = NULL;
2119			strcpy(policy->last_governor, "\0");
2120		}
2121	}
2122	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2123
2124	mutex_lock(&cpufreq_governor_mutex);
2125	list_del(&governor->governor_list);
2126	mutex_unlock(&cpufreq_governor_mutex);
2127	return;
2128}
2129EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2130
2131
2132/*********************************************************************
2133 *                          POLICY INTERFACE                         *
2134 *********************************************************************/
2135
2136/**
2137 * cpufreq_get_policy - get the current cpufreq_policy
2138 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2139 *	is written
 
2140 *
2141 * Reads the current cpufreq policy.
2142 */
2143int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2144{
2145	struct cpufreq_policy *cpu_policy;
2146	if (!policy)
2147		return -EINVAL;
2148
2149	cpu_policy = cpufreq_cpu_get(cpu);
2150	if (!cpu_policy)
2151		return -EINVAL;
2152
2153	memcpy(policy, cpu_policy, sizeof(*policy));
2154
2155	cpufreq_cpu_put(cpu_policy);
2156	return 0;
2157}
2158EXPORT_SYMBOL(cpufreq_get_policy);
2159
2160/*
2161 * policy : current policy.
2162 * new_policy: policy to be set.
 
 
 
 
 
 
 
 
 
 
 
2163 */
2164static int cpufreq_set_policy(struct cpufreq_policy *policy,
2165				struct cpufreq_policy *new_policy)
 
2166{
 
2167	struct cpufreq_governor *old_gov;
2168	int ret;
2169
 
 
 
 
 
 
 
 
 
 
2170	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2171		 new_policy->cpu, new_policy->min, new_policy->max);
2172
2173	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2174
2175	/*
2176	* This check works well when we store new min/max freq attributes,
2177	* because new_policy is a copy of policy with one field updated.
2178	*/
2179	if (new_policy->min > new_policy->max)
2180		return -EINVAL;
2181
2182	/* verify the cpu speed can be set within this limit */
2183	ret = cpufreq_driver->verify(new_policy);
2184	if (ret)
2185		return ret;
2186
2187	/* adjust if necessary - all reasons */
2188	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2189			CPUFREQ_ADJUST, new_policy);
2190
2191	/*
2192	 * verify the cpu speed can be set within this limit, which might be
2193	 * different to the first one
 
2194	 */
2195	ret = cpufreq_driver->verify(new_policy);
2196	if (ret)
2197		return ret;
2198
2199	/* notification of the new policy */
2200	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2201			CPUFREQ_NOTIFY, new_policy);
2202
2203	policy->min = new_policy->min;
2204	policy->max = new_policy->max;
2205
2206	policy->cached_target_freq = UINT_MAX;
2207
2208	pr_debug("new min and max freqs are %u - %u kHz\n",
2209		 policy->min, policy->max);
2210
2211	if (cpufreq_driver->setpolicy) {
2212		policy->policy = new_policy->policy;
2213		pr_debug("setting range\n");
2214		return cpufreq_driver->setpolicy(new_policy);
2215	}
2216
2217	if (new_policy->governor == policy->governor) {
2218		pr_debug("cpufreq: governor limits update\n");
2219		cpufreq_governor_limits(policy);
2220		return 0;
2221	}
2222
2223	pr_debug("governor switch\n");
2224
2225	/* save old, working values */
2226	old_gov = policy->governor;
2227	/* end old governor */
2228	if (old_gov) {
2229		cpufreq_stop_governor(policy);
2230		cpufreq_exit_governor(policy);
2231	}
2232
2233	/* start new governor */
2234	policy->governor = new_policy->governor;
2235	ret = cpufreq_init_governor(policy);
2236	if (!ret) {
2237		ret = cpufreq_start_governor(policy);
2238		if (!ret) {
2239			pr_debug("cpufreq: governor change\n");
2240			return 0;
2241		}
2242		cpufreq_exit_governor(policy);
2243	}
2244
2245	/* new governor failed, so re-start old one */
2246	pr_debug("starting governor %s failed\n", policy->governor->name);
2247	if (old_gov) {
2248		policy->governor = old_gov;
2249		if (cpufreq_init_governor(policy))
2250			policy->governor = NULL;
2251		else
2252			cpufreq_start_governor(policy);
2253	}
2254
2255	return ret;
2256}
2257
2258/**
2259 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2260 *	@cpu: CPU which shall be re-evaluated
2261 *
2262 *	Useful for policy notifiers which have different necessities
2263 *	at different times.
 
 
2264 */
2265void cpufreq_update_policy(unsigned int cpu)
2266{
2267	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2268	struct cpufreq_policy new_policy;
2269
2270	if (!policy)
2271		return;
2272
2273	down_write(&policy->rwsem);
2274
2275	if (policy_is_inactive(policy))
2276		goto unlock;
2277
2278	pr_debug("updating policy for CPU %u\n", cpu);
2279	memcpy(&new_policy, policy, sizeof(*policy));
2280	new_policy.min = policy->user_policy.min;
2281	new_policy.max = policy->user_policy.max;
2282
2283	/*
2284	 * BIOS might change freq behind our back
2285	 * -> ask driver for current freq and notify governors about a change
2286	 */
2287	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2288		if (cpufreq_suspended)
2289			goto unlock;
2290
2291		new_policy.cur = cpufreq_update_current_freq(policy);
2292		if (WARN_ON(!new_policy.cur))
2293			goto unlock;
2294	}
2295
2296	cpufreq_set_policy(policy, &new_policy);
2297
2298unlock:
2299	up_write(&policy->rwsem);
 
 
2300
2301	cpufreq_cpu_put(policy);
 
 
 
 
 
 
 
 
 
 
 
 
2302}
2303EXPORT_SYMBOL(cpufreq_update_policy);
2304
2305/*********************************************************************
2306 *               BOOST						     *
2307 *********************************************************************/
2308static int cpufreq_boost_set_sw(int state)
2309{
2310	struct cpufreq_policy *policy;
2311	int ret = -EINVAL;
2312
2313	for_each_active_policy(policy) {
2314		if (!policy->freq_table)
2315			continue;
2316
2317		ret = cpufreq_frequency_table_cpuinfo(policy,
2318						      policy->freq_table);
2319		if (ret) {
2320			pr_err("%s: Policy frequency update failed\n",
2321			       __func__);
2322			break;
2323		}
2324
2325		down_write(&policy->rwsem);
2326		policy->user_policy.max = policy->max;
2327		cpufreq_governor_limits(policy);
2328		up_write(&policy->rwsem);
2329	}
2330
2331	return ret;
2332}
2333
2334int cpufreq_boost_trigger_state(int state)
2335{
 
2336	unsigned long flags;
2337	int ret = 0;
2338
2339	if (cpufreq_driver->boost_enabled == state)
2340		return 0;
2341
2342	write_lock_irqsave(&cpufreq_driver_lock, flags);
2343	cpufreq_driver->boost_enabled = state;
2344	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2345
2346	ret = cpufreq_driver->set_boost(state);
2347	if (ret) {
2348		write_lock_irqsave(&cpufreq_driver_lock, flags);
2349		cpufreq_driver->boost_enabled = !state;
2350		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351
2352		pr_err("%s: Cannot %s BOOST\n",
2353		       __func__, state ? "enable" : "disable");
2354	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2355
2356	return ret;
2357}
2358
2359static bool cpufreq_boost_supported(void)
2360{
2361	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2362}
2363
2364static int create_boost_sysfs_file(void)
2365{
2366	int ret;
2367
2368	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2369	if (ret)
2370		pr_err("%s: cannot register global BOOST sysfs file\n",
2371		       __func__);
2372
2373	return ret;
2374}
2375
2376static void remove_boost_sysfs_file(void)
2377{
2378	if (cpufreq_boost_supported())
2379		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2380}
2381
2382int cpufreq_enable_boost_support(void)
2383{
2384	if (!cpufreq_driver)
2385		return -EINVAL;
2386
2387	if (cpufreq_boost_supported())
2388		return 0;
2389
2390	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2391
2392	/* This will get removed on driver unregister */
2393	return create_boost_sysfs_file();
2394}
2395EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2396
2397int cpufreq_boost_enabled(void)
2398{
2399	return cpufreq_driver->boost_enabled;
2400}
2401EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2402
2403/*********************************************************************
2404 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2405 *********************************************************************/
2406static enum cpuhp_state hp_online;
2407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2408/**
2409 * cpufreq_register_driver - register a CPU Frequency driver
2410 * @driver_data: A struct cpufreq_driver containing the values#
2411 * submitted by the CPU Frequency driver.
2412 *
2413 * Registers a CPU Frequency driver to this core code. This code
2414 * returns zero on success, -EEXIST when another driver got here first
2415 * (and isn't unregistered in the meantime).
2416 *
2417 */
2418int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2419{
2420	unsigned long flags;
2421	int ret;
2422
2423	if (cpufreq_disabled())
2424		return -ENODEV;
2425
 
 
 
 
 
 
 
2426	if (!driver_data || !driver_data->verify || !driver_data->init ||
2427	    !(driver_data->setpolicy || driver_data->target_index ||
2428		    driver_data->target) ||
2429	     (driver_data->setpolicy && (driver_data->target_index ||
2430		    driver_data->target)) ||
2431	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
 
 
2432		return -EINVAL;
2433
2434	pr_debug("trying to register driver %s\n", driver_data->name);
2435
2436	/* Protect against concurrent CPU online/offline. */
2437	get_online_cpus();
2438
2439	write_lock_irqsave(&cpufreq_driver_lock, flags);
2440	if (cpufreq_driver) {
2441		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2442		ret = -EEXIST;
2443		goto out;
2444	}
2445	cpufreq_driver = driver_data;
2446	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2447
 
 
 
 
 
 
 
 
 
2448	if (driver_data->setpolicy)
2449		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2450
2451	if (cpufreq_boost_supported()) {
2452		ret = create_boost_sysfs_file();
2453		if (ret)
2454			goto err_null_driver;
2455	}
2456
2457	ret = subsys_interface_register(&cpufreq_interface);
2458	if (ret)
2459		goto err_boost_unreg;
2460
2461	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2462	    list_empty(&cpufreq_policy_list)) {
2463		/* if all ->init() calls failed, unregister */
 
2464		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2465			 driver_data->name);
2466		goto err_if_unreg;
2467	}
2468
2469	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "cpufreq:online",
2470					cpufreq_online,
2471					cpufreq_offline);
 
2472	if (ret < 0)
2473		goto err_if_unreg;
2474	hp_online = ret;
2475	ret = 0;
2476
2477	pr_debug("driver %s up and running\n", driver_data->name);
2478	goto out;
2479
2480err_if_unreg:
2481	subsys_interface_unregister(&cpufreq_interface);
2482err_boost_unreg:
2483	remove_boost_sysfs_file();
2484err_null_driver:
2485	write_lock_irqsave(&cpufreq_driver_lock, flags);
2486	cpufreq_driver = NULL;
2487	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2488out:
2489	put_online_cpus();
2490	return ret;
2491}
2492EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2493
2494/**
2495 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2496 *
2497 * Unregister the current CPUFreq driver. Only call this if you have
2498 * the right to do so, i.e. if you have succeeded in initialising before!
2499 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2500 * currently not initialised.
2501 */
2502int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2503{
2504	unsigned long flags;
2505
2506	if (!cpufreq_driver || (driver != cpufreq_driver))
2507		return -EINVAL;
2508
2509	pr_debug("unregistering driver %s\n", driver->name);
2510
2511	/* Protect against concurrent cpu hotplug */
2512	get_online_cpus();
2513	subsys_interface_unregister(&cpufreq_interface);
2514	remove_boost_sysfs_file();
2515	cpuhp_remove_state_nocalls(hp_online);
 
2516
2517	write_lock_irqsave(&cpufreq_driver_lock, flags);
2518
2519	cpufreq_driver = NULL;
2520
2521	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2522	put_online_cpus();
2523
2524	return 0;
2525}
2526EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2527
2528/*
2529 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2530 * or mutexes when secondary CPUs are halted.
2531 */
2532static struct syscore_ops cpufreq_syscore_ops = {
2533	.shutdown = cpufreq_suspend,
2534};
2535
2536struct kobject *cpufreq_global_kobject;
2537EXPORT_SYMBOL(cpufreq_global_kobject);
2538
2539static int __init cpufreq_core_init(void)
2540{
 
 
 
2541	if (cpufreq_disabled())
2542		return -ENODEV;
2543
2544	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
 
 
 
 
2545	BUG_ON(!cpufreq_global_kobject);
2546
2547	register_syscore_ops(&cpufreq_syscore_ops);
 
2548
2549	return 0;
2550}
 
 
2551core_initcall(cpufreq_core_init);