Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
  79}
  80
  81/* internal prototypes */
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 241
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 252	kobject_put(&policy->kobj);
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 266
 267	up_write(&policy->rwsem);
 268
 269	cpufreq_cpu_put(policy);
 270}
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 299}
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 336#endif
 337}
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 354
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 365	switch (state) {
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 397	}
 398}
 399
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency) {
 579		/*
 580		 * For platforms that can change the frequency very fast (< 10
 581		 * us), the above formula gives a decent transition delay. But
 582		 * for platforms where transition_latency is in milliseconds, it
 583		 * ends up giving unrealistic values.
 584		 *
 585		 * Cap the default transition delay to 10 ms, which seems to be
 586		 * a reasonable amount of time after which we should reevaluate
 587		 * the frequency.
 588		 */
 589		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 590	}
 591
 592	return LATENCY_MULTIPLIER;
 593}
 594EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 595
 596/*********************************************************************
 597 *                          SYSFS INTERFACE                          *
 598 *********************************************************************/
 599static ssize_t show_boost(struct kobject *kobj,
 600			  struct kobj_attribute *attr, char *buf)
 601{
 602	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 603}
 604
 605static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 606			   const char *buf, size_t count)
 607{
 608	int ret, enable;
 609
 610	ret = sscanf(buf, "%d", &enable);
 611	if (ret != 1 || enable < 0 || enable > 1)
 612		return -EINVAL;
 613
 614	if (cpufreq_boost_trigger_state(enable)) {
 615		pr_err("%s: Cannot %s BOOST!\n",
 616		       __func__, enable ? "enable" : "disable");
 617		return -EINVAL;
 618	}
 619
 620	pr_debug("%s: cpufreq BOOST %s\n",
 621		 __func__, enable ? "enabled" : "disabled");
 622
 623	return count;
 624}
 625define_one_global_rw(boost);
 626
 627static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 628{
 629	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 630}
 631
 632static ssize_t store_local_boost(struct cpufreq_policy *policy,
 633				 const char *buf, size_t count)
 634{
 635	int ret, enable;
 636
 637	ret = kstrtoint(buf, 10, &enable);
 638	if (ret || enable < 0 || enable > 1)
 639		return -EINVAL;
 640
 641	if (!cpufreq_driver->boost_enabled)
 642		return -EINVAL;
 643
 644	if (policy->boost_enabled == enable)
 645		return count;
 646
 647	cpus_read_lock();
 648	ret = cpufreq_driver->set_boost(policy, enable);
 649	cpus_read_unlock();
 650
 651	if (ret)
 652		return ret;
 653
 654	policy->boost_enabled = enable;
 655
 656	return count;
 657}
 658
 659static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 660
 661static struct cpufreq_governor *find_governor(const char *str_governor)
 662{
 663	struct cpufreq_governor *t;
 664
 665	for_each_governor(t)
 666		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 667			return t;
 668
 669	return NULL;
 670}
 671
 672static struct cpufreq_governor *get_governor(const char *str_governor)
 673{
 674	struct cpufreq_governor *t;
 675
 676	mutex_lock(&cpufreq_governor_mutex);
 677	t = find_governor(str_governor);
 678	if (!t)
 679		goto unlock;
 680
 681	if (!try_module_get(t->owner))
 682		t = NULL;
 683
 684unlock:
 685	mutex_unlock(&cpufreq_governor_mutex);
 686
 687	return t;
 688}
 689
 690static unsigned int cpufreq_parse_policy(char *str_governor)
 691{
 692	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 693		return CPUFREQ_POLICY_PERFORMANCE;
 694
 695	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 696		return CPUFREQ_POLICY_POWERSAVE;
 697
 698	return CPUFREQ_POLICY_UNKNOWN;
 699}
 700
 701/**
 702 * cpufreq_parse_governor - parse a governor string only for has_target()
 703 * @str_governor: Governor name.
 704 */
 705static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 706{
 707	struct cpufreq_governor *t;
 708
 709	t = get_governor(str_governor);
 710	if (t)
 711		return t;
 712
 713	if (request_module("cpufreq_%s", str_governor))
 714		return NULL;
 715
 716	return get_governor(str_governor);
 717}
 718
 719/*
 720 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 721 * print out cpufreq information
 722 *
 723 * Write out information from cpufreq_driver->policy[cpu]; object must be
 724 * "unsigned int".
 725 */
 726
 727#define show_one(file_name, object)			\
 728static ssize_t show_##file_name				\
 729(struct cpufreq_policy *policy, char *buf)		\
 730{							\
 731	return sprintf(buf, "%u\n", policy->object);	\
 732}
 733
 734show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 735show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 736show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 737show_one(scaling_min_freq, min);
 738show_one(scaling_max_freq, max);
 739
 740__weak unsigned int arch_freq_get_on_cpu(int cpu)
 741{
 742	return 0;
 743}
 744
 745static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 746{
 747	ssize_t ret;
 748	unsigned int freq;
 749
 750	freq = arch_freq_get_on_cpu(policy->cpu);
 751	if (freq)
 752		ret = sprintf(buf, "%u\n", freq);
 753	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 754		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 755	else
 756		ret = sprintf(buf, "%u\n", policy->cur);
 757	return ret;
 758}
 759
 760/*
 761 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 762 */
 763#define store_one(file_name, object)			\
 764static ssize_t store_##file_name					\
 765(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 766{									\
 767	unsigned long val;						\
 768	int ret;							\
 769									\
 770	ret = kstrtoul(buf, 0, &val);					\
 771	if (ret)							\
 772		return ret;						\
 773									\
 774	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 775	return ret >= 0 ? count : ret;					\
 776}
 777
 778store_one(scaling_min_freq, min);
 779store_one(scaling_max_freq, max);
 780
 781/*
 782 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 783 */
 784static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 785					char *buf)
 786{
 787	unsigned int cur_freq = __cpufreq_get(policy);
 788
 789	if (cur_freq)
 790		return sprintf(buf, "%u\n", cur_freq);
 791
 792	return sprintf(buf, "<unknown>\n");
 793}
 794
 795/*
 796 * show_scaling_governor - show the current policy for the specified CPU
 797 */
 798static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 799{
 800	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 801		return sprintf(buf, "powersave\n");
 802	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 803		return sprintf(buf, "performance\n");
 804	else if (policy->governor)
 805		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 806				policy->governor->name);
 807	return -EINVAL;
 808}
 809
 810/*
 811 * store_scaling_governor - store policy for the specified CPU
 812 */
 813static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 814					const char *buf, size_t count)
 815{
 816	char str_governor[16];
 817	int ret;
 818
 819	ret = sscanf(buf, "%15s", str_governor);
 820	if (ret != 1)
 821		return -EINVAL;
 822
 823	if (cpufreq_driver->setpolicy) {
 824		unsigned int new_pol;
 825
 826		new_pol = cpufreq_parse_policy(str_governor);
 827		if (!new_pol)
 828			return -EINVAL;
 829
 830		ret = cpufreq_set_policy(policy, NULL, new_pol);
 831	} else {
 832		struct cpufreq_governor *new_gov;
 833
 834		new_gov = cpufreq_parse_governor(str_governor);
 835		if (!new_gov)
 836			return -EINVAL;
 837
 838		ret = cpufreq_set_policy(policy, new_gov,
 839					 CPUFREQ_POLICY_UNKNOWN);
 840
 841		module_put(new_gov->owner);
 842	}
 843
 844	return ret ? ret : count;
 845}
 846
 847/*
 848 * show_scaling_driver - show the cpufreq driver currently loaded
 849 */
 850static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 851{
 852	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 853}
 854
 855/*
 856 * show_scaling_available_governors - show the available CPUfreq governors
 857 */
 858static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 859						char *buf)
 860{
 861	ssize_t i = 0;
 862	struct cpufreq_governor *t;
 863
 864	if (!has_target()) {
 865		i += sprintf(buf, "performance powersave");
 866		goto out;
 867	}
 868
 869	mutex_lock(&cpufreq_governor_mutex);
 870	for_each_governor(t) {
 871		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 872		    - (CPUFREQ_NAME_LEN + 2)))
 873			break;
 874		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 875	}
 876	mutex_unlock(&cpufreq_governor_mutex);
 877out:
 878	i += sprintf(&buf[i], "\n");
 879	return i;
 880}
 881
 882ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 883{
 884	ssize_t i = 0;
 885	unsigned int cpu;
 886
 887	for_each_cpu(cpu, mask) {
 888		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
 
 
 889		if (i >= (PAGE_SIZE - 5))
 890			break;
 891	}
 892
 893	/* Remove the extra space at the end */
 894	i--;
 895
 896	i += sprintf(&buf[i], "\n");
 897	return i;
 898}
 899EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 900
 901/*
 902 * show_related_cpus - show the CPUs affected by each transition even if
 903 * hw coordination is in use
 904 */
 905static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 906{
 907	return cpufreq_show_cpus(policy->related_cpus, buf);
 908}
 909
 910/*
 911 * show_affected_cpus - show the CPUs affected by each transition
 912 */
 913static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 914{
 915	return cpufreq_show_cpus(policy->cpus, buf);
 916}
 917
 918static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 919					const char *buf, size_t count)
 920{
 921	unsigned int freq = 0;
 922	unsigned int ret;
 923
 924	if (!policy->governor || !policy->governor->store_setspeed)
 925		return -EINVAL;
 926
 927	ret = sscanf(buf, "%u", &freq);
 928	if (ret != 1)
 929		return -EINVAL;
 930
 931	policy->governor->store_setspeed(policy, freq);
 932
 933	return count;
 934}
 935
 936static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 937{
 938	if (!policy->governor || !policy->governor->show_setspeed)
 939		return sprintf(buf, "<unsupported>\n");
 940
 941	return policy->governor->show_setspeed(policy, buf);
 942}
 943
 944/*
 945 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 946 */
 947static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 948{
 949	unsigned int limit;
 950	int ret;
 951	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 952	if (!ret)
 953		return sprintf(buf, "%u\n", limit);
 954	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 955}
 956
 957cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 958cpufreq_freq_attr_ro(cpuinfo_min_freq);
 959cpufreq_freq_attr_ro(cpuinfo_max_freq);
 960cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 961cpufreq_freq_attr_ro(scaling_available_governors);
 962cpufreq_freq_attr_ro(scaling_driver);
 963cpufreq_freq_attr_ro(scaling_cur_freq);
 964cpufreq_freq_attr_ro(bios_limit);
 965cpufreq_freq_attr_ro(related_cpus);
 966cpufreq_freq_attr_ro(affected_cpus);
 967cpufreq_freq_attr_rw(scaling_min_freq);
 968cpufreq_freq_attr_rw(scaling_max_freq);
 969cpufreq_freq_attr_rw(scaling_governor);
 970cpufreq_freq_attr_rw(scaling_setspeed);
 971
 972static struct attribute *cpufreq_attrs[] = {
 973	&cpuinfo_min_freq.attr,
 974	&cpuinfo_max_freq.attr,
 975	&cpuinfo_transition_latency.attr,
 976	&scaling_min_freq.attr,
 977	&scaling_max_freq.attr,
 978	&affected_cpus.attr,
 979	&related_cpus.attr,
 980	&scaling_governor.attr,
 981	&scaling_driver.attr,
 982	&scaling_available_governors.attr,
 983	&scaling_setspeed.attr,
 984	NULL
 985};
 986ATTRIBUTE_GROUPS(cpufreq);
 987
 988#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 989#define to_attr(a) container_of(a, struct freq_attr, attr)
 990
 991static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 992{
 993	struct cpufreq_policy *policy = to_policy(kobj);
 994	struct freq_attr *fattr = to_attr(attr);
 995	ssize_t ret = -EBUSY;
 996
 997	if (!fattr->show)
 998		return -EIO;
 999
1000	down_read(&policy->rwsem);
1001	if (likely(!policy_is_inactive(policy)))
1002		ret = fattr->show(policy, buf);
1003	up_read(&policy->rwsem);
1004
1005	return ret;
1006}
1007
1008static ssize_t store(struct kobject *kobj, struct attribute *attr,
1009		     const char *buf, size_t count)
1010{
1011	struct cpufreq_policy *policy = to_policy(kobj);
1012	struct freq_attr *fattr = to_attr(attr);
1013	ssize_t ret = -EBUSY;
1014
1015	if (!fattr->store)
1016		return -EIO;
1017
1018	down_write(&policy->rwsem);
1019	if (likely(!policy_is_inactive(policy)))
 
 
 
 
 
 
 
1020		ret = fattr->store(policy, buf, count);
1021	up_write(&policy->rwsem);
 
 
 
1022
1023	return ret;
1024}
1025
1026static void cpufreq_sysfs_release(struct kobject *kobj)
1027{
1028	struct cpufreq_policy *policy = to_policy(kobj);
1029	pr_debug("last reference is dropped\n");
1030	complete(&policy->kobj_unregister);
1031}
1032
1033static const struct sysfs_ops sysfs_ops = {
1034	.show	= show,
1035	.store	= store,
1036};
1037
1038static const struct kobj_type ktype_cpufreq = {
1039	.sysfs_ops	= &sysfs_ops,
1040	.default_groups	= cpufreq_groups,
1041	.release	= cpufreq_sysfs_release,
1042};
1043
1044static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1045				struct device *dev)
1046{
 
 
1047	if (unlikely(!dev))
1048		return;
1049
1050	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1051		return;
1052
1053	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1054	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1055		dev_err(dev, "cpufreq symlink creation failed\n");
1056}
1057
1058static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1059				   struct device *dev)
1060{
1061	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1062	sysfs_remove_link(&dev->kobj, "cpufreq");
1063	cpumask_clear_cpu(cpu, policy->real_cpus);
1064}
1065
1066static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1067{
1068	struct freq_attr **drv_attr;
1069	int ret = 0;
1070
1071	/* set up files for this cpu device */
1072	drv_attr = cpufreq_driver->attr;
1073	while (drv_attr && *drv_attr) {
1074		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1075		if (ret)
1076			return ret;
1077		drv_attr++;
1078	}
1079	if (cpufreq_driver->get) {
1080		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1081		if (ret)
1082			return ret;
1083	}
1084
1085	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1086	if (ret)
1087		return ret;
1088
1089	if (cpufreq_driver->bios_limit) {
1090		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1091		if (ret)
1092			return ret;
1093	}
1094
1095	if (cpufreq_boost_supported()) {
1096		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1097		if (ret)
1098			return ret;
1099	}
1100
1101	return 0;
1102}
1103
1104static int cpufreq_init_policy(struct cpufreq_policy *policy)
1105{
1106	struct cpufreq_governor *gov = NULL;
1107	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1108	int ret;
1109
1110	if (has_target()) {
1111		/* Update policy governor to the one used before hotplug. */
1112		gov = get_governor(policy->last_governor);
1113		if (gov) {
1114			pr_debug("Restoring governor %s for cpu %d\n",
1115				 gov->name, policy->cpu);
1116		} else {
1117			gov = get_governor(default_governor);
1118		}
1119
1120		if (!gov) {
1121			gov = cpufreq_default_governor();
1122			__module_get(gov->owner);
1123		}
1124
1125	} else {
1126
1127		/* Use the default policy if there is no last_policy. */
1128		if (policy->last_policy) {
1129			pol = policy->last_policy;
1130		} else {
1131			pol = cpufreq_parse_policy(default_governor);
1132			/*
1133			 * In case the default governor is neither "performance"
1134			 * nor "powersave", fall back to the initial policy
1135			 * value set by the driver.
1136			 */
1137			if (pol == CPUFREQ_POLICY_UNKNOWN)
1138				pol = policy->policy;
1139		}
1140		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1141		    pol != CPUFREQ_POLICY_POWERSAVE)
1142			return -ENODATA;
1143	}
1144
1145	ret = cpufreq_set_policy(policy, gov, pol);
1146	if (gov)
1147		module_put(gov->owner);
1148
1149	return ret;
1150}
1151
1152static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1153{
1154	int ret = 0;
1155
1156	/* Has this CPU been taken care of already? */
1157	if (cpumask_test_cpu(cpu, policy->cpus))
1158		return 0;
1159
1160	down_write(&policy->rwsem);
1161	if (has_target())
1162		cpufreq_stop_governor(policy);
1163
1164	cpumask_set_cpu(cpu, policy->cpus);
1165
1166	if (has_target()) {
1167		ret = cpufreq_start_governor(policy);
1168		if (ret)
1169			pr_err("%s: Failed to start governor\n", __func__);
1170	}
1171	up_write(&policy->rwsem);
1172	return ret;
1173}
1174
1175void refresh_frequency_limits(struct cpufreq_policy *policy)
1176{
1177	if (!policy_is_inactive(policy)) {
1178		pr_debug("updating policy for CPU %u\n", policy->cpu);
1179
1180		cpufreq_set_policy(policy, policy->governor, policy->policy);
1181	}
1182}
1183EXPORT_SYMBOL(refresh_frequency_limits);
1184
1185static void handle_update(struct work_struct *work)
1186{
1187	struct cpufreq_policy *policy =
1188		container_of(work, struct cpufreq_policy, update);
1189
1190	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1191	down_write(&policy->rwsem);
1192	refresh_frequency_limits(policy);
1193	up_write(&policy->rwsem);
1194}
1195
1196static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1197				void *data)
1198{
1199	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1200
1201	schedule_work(&policy->update);
1202	return 0;
1203}
1204
1205static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1206				void *data)
1207{
1208	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1209
1210	schedule_work(&policy->update);
1211	return 0;
1212}
1213
1214static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1215{
1216	struct kobject *kobj;
1217	struct completion *cmp;
1218
1219	down_write(&policy->rwsem);
1220	cpufreq_stats_free_table(policy);
1221	kobj = &policy->kobj;
1222	cmp = &policy->kobj_unregister;
1223	up_write(&policy->rwsem);
1224	kobject_put(kobj);
1225
1226	/*
1227	 * We need to make sure that the underlying kobj is
1228	 * actually not referenced anymore by anybody before we
1229	 * proceed with unloading.
1230	 */
1231	pr_debug("waiting for dropping of refcount\n");
1232	wait_for_completion(cmp);
1233	pr_debug("wait complete\n");
1234}
1235
1236static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1237{
1238	struct cpufreq_policy *policy;
1239	struct device *dev = get_cpu_device(cpu);
1240	int ret;
1241
1242	if (!dev)
1243		return NULL;
1244
1245	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1246	if (!policy)
1247		return NULL;
1248
1249	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1250		goto err_free_policy;
1251
1252	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1253		goto err_free_cpumask;
1254
1255	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1256		goto err_free_rcpumask;
1257
1258	init_completion(&policy->kobj_unregister);
1259	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1260				   cpufreq_global_kobject, "policy%u", cpu);
1261	if (ret) {
1262		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1263		/*
1264		 * The entire policy object will be freed below, but the extra
1265		 * memory allocated for the kobject name needs to be freed by
1266		 * releasing the kobject.
1267		 */
1268		kobject_put(&policy->kobj);
1269		goto err_free_real_cpus;
1270	}
1271
1272	freq_constraints_init(&policy->constraints);
1273
1274	policy->nb_min.notifier_call = cpufreq_notifier_min;
1275	policy->nb_max.notifier_call = cpufreq_notifier_max;
1276
1277	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1278				    &policy->nb_min);
1279	if (ret) {
1280		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1281			ret, cpu);
1282		goto err_kobj_remove;
1283	}
1284
1285	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1286				    &policy->nb_max);
1287	if (ret) {
1288		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1289			ret, cpu);
1290		goto err_min_qos_notifier;
1291	}
1292
1293	INIT_LIST_HEAD(&policy->policy_list);
1294	init_rwsem(&policy->rwsem);
1295	spin_lock_init(&policy->transition_lock);
1296	init_waitqueue_head(&policy->transition_wait);
 
1297	INIT_WORK(&policy->update, handle_update);
1298
1299	policy->cpu = cpu;
1300	return policy;
1301
1302err_min_qos_notifier:
1303	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1304				 &policy->nb_min);
1305err_kobj_remove:
1306	cpufreq_policy_put_kobj(policy);
1307err_free_real_cpus:
1308	free_cpumask_var(policy->real_cpus);
1309err_free_rcpumask:
1310	free_cpumask_var(policy->related_cpus);
1311err_free_cpumask:
1312	free_cpumask_var(policy->cpus);
1313err_free_policy:
1314	kfree(policy);
1315
1316	return NULL;
1317}
1318
1319static void cpufreq_policy_free(struct cpufreq_policy *policy)
1320{
1321	unsigned long flags;
1322	int cpu;
1323
1324	/*
1325	 * The callers must ensure the policy is inactive by now, to avoid any
1326	 * races with show()/store() callbacks.
1327	 */
1328	if (unlikely(!policy_is_inactive(policy)))
1329		pr_warn("%s: Freeing active policy\n", __func__);
1330
1331	/* Remove policy from list */
1332	write_lock_irqsave(&cpufreq_driver_lock, flags);
1333	list_del(&policy->policy_list);
1334
1335	for_each_cpu(cpu, policy->related_cpus)
1336		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1337	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1338
1339	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1340				 &policy->nb_max);
1341	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1342				 &policy->nb_min);
1343
1344	/* Cancel any pending policy->update work before freeing the policy. */
1345	cancel_work_sync(&policy->update);
1346
1347	if (policy->max_freq_req) {
1348		/*
1349		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1350		 * notification, since CPUFREQ_CREATE_POLICY notification was
1351		 * sent after adding max_freq_req earlier.
1352		 */
1353		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1354					     CPUFREQ_REMOVE_POLICY, policy);
1355		freq_qos_remove_request(policy->max_freq_req);
1356	}
1357
1358	freq_qos_remove_request(policy->min_freq_req);
1359	kfree(policy->min_freq_req);
1360
1361	cpufreq_policy_put_kobj(policy);
1362	free_cpumask_var(policy->real_cpus);
1363	free_cpumask_var(policy->related_cpus);
1364	free_cpumask_var(policy->cpus);
1365	kfree(policy);
1366}
1367
1368static int cpufreq_online(unsigned int cpu)
1369{
1370	struct cpufreq_policy *policy;
1371	bool new_policy;
1372	unsigned long flags;
1373	unsigned int j;
1374	int ret;
1375
1376	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1377
1378	/* Check if this CPU already has a policy to manage it */
1379	policy = per_cpu(cpufreq_cpu_data, cpu);
1380	if (policy) {
1381		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1382		if (!policy_is_inactive(policy))
1383			return cpufreq_add_policy_cpu(policy, cpu);
1384
1385		/* This is the only online CPU for the policy.  Start over. */
1386		new_policy = false;
1387		down_write(&policy->rwsem);
1388		policy->cpu = cpu;
1389		policy->governor = NULL;
 
1390	} else {
1391		new_policy = true;
1392		policy = cpufreq_policy_alloc(cpu);
1393		if (!policy)
1394			return -ENOMEM;
1395		down_write(&policy->rwsem);
1396	}
1397
1398	if (!new_policy && cpufreq_driver->online) {
1399		/* Recover policy->cpus using related_cpus */
1400		cpumask_copy(policy->cpus, policy->related_cpus);
1401
1402		ret = cpufreq_driver->online(policy);
1403		if (ret) {
1404			pr_debug("%s: %d: initialization failed\n", __func__,
1405				 __LINE__);
1406			goto out_exit_policy;
1407		}
 
 
 
1408	} else {
1409		cpumask_copy(policy->cpus, cpumask_of(cpu));
1410
1411		/*
1412		 * Call driver. From then on the cpufreq must be able
1413		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1414		 */
1415		ret = cpufreq_driver->init(policy);
1416		if (ret) {
1417			pr_debug("%s: %d: initialization failed\n", __func__,
1418				 __LINE__);
1419			goto out_free_policy;
1420		}
1421
1422		/*
1423		 * The initialization has succeeded and the policy is online.
1424		 * If there is a problem with its frequency table, take it
1425		 * offline and drop it.
1426		 */
1427		ret = cpufreq_table_validate_and_sort(policy);
1428		if (ret)
1429			goto out_offline_policy;
1430
1431		/* related_cpus should at least include policy->cpus. */
1432		cpumask_copy(policy->related_cpus, policy->cpus);
1433	}
1434
 
1435	/*
1436	 * affected cpus must always be the one, which are online. We aren't
1437	 * managing offline cpus here.
1438	 */
1439	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1440
1441	if (new_policy) {
1442		for_each_cpu(j, policy->related_cpus) {
1443			per_cpu(cpufreq_cpu_data, j) = policy;
1444			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1445		}
1446
1447		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1448					       GFP_KERNEL);
1449		if (!policy->min_freq_req) {
1450			ret = -ENOMEM;
1451			goto out_destroy_policy;
1452		}
1453
1454		ret = freq_qos_add_request(&policy->constraints,
1455					   policy->min_freq_req, FREQ_QOS_MIN,
1456					   FREQ_QOS_MIN_DEFAULT_VALUE);
1457		if (ret < 0) {
1458			/*
1459			 * So we don't call freq_qos_remove_request() for an
1460			 * uninitialized request.
1461			 */
1462			kfree(policy->min_freq_req);
1463			policy->min_freq_req = NULL;
1464			goto out_destroy_policy;
1465		}
1466
1467		/*
1468		 * This must be initialized right here to avoid calling
1469		 * freq_qos_remove_request() on uninitialized request in case
1470		 * of errors.
1471		 */
1472		policy->max_freq_req = policy->min_freq_req + 1;
1473
1474		ret = freq_qos_add_request(&policy->constraints,
1475					   policy->max_freq_req, FREQ_QOS_MAX,
1476					   FREQ_QOS_MAX_DEFAULT_VALUE);
1477		if (ret < 0) {
1478			policy->max_freq_req = NULL;
1479			goto out_destroy_policy;
1480		}
1481
1482		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1483				CPUFREQ_CREATE_POLICY, policy);
1484	}
1485
1486	if (cpufreq_driver->get && has_target()) {
1487		policy->cur = cpufreq_driver->get(policy->cpu);
1488		if (!policy->cur) {
1489			ret = -EIO;
1490			pr_err("%s: ->get() failed\n", __func__);
1491			goto out_destroy_policy;
1492		}
1493	}
1494
1495	/*
1496	 * Sometimes boot loaders set CPU frequency to a value outside of
1497	 * frequency table present with cpufreq core. In such cases CPU might be
1498	 * unstable if it has to run on that frequency for long duration of time
1499	 * and so its better to set it to a frequency which is specified in
1500	 * freq-table. This also makes cpufreq stats inconsistent as
1501	 * cpufreq-stats would fail to register because current frequency of CPU
1502	 * isn't found in freq-table.
1503	 *
1504	 * Because we don't want this change to effect boot process badly, we go
1505	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1506	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1507	 * is initialized to zero).
1508	 *
1509	 * We are passing target-freq as "policy->cur - 1" otherwise
1510	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1511	 * equal to target-freq.
1512	 */
1513	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1514	    && has_target()) {
1515		unsigned int old_freq = policy->cur;
1516
1517		/* Are we running at unknown frequency ? */
1518		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1519		if (ret == -EINVAL) {
1520			ret = __cpufreq_driver_target(policy, old_freq - 1,
1521						      CPUFREQ_RELATION_L);
1522
1523			/*
1524			 * Reaching here after boot in a few seconds may not
1525			 * mean that system will remain stable at "unknown"
1526			 * frequency for longer duration. Hence, a BUG_ON().
1527			 */
1528			BUG_ON(ret);
1529			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1530				__func__, policy->cpu, old_freq, policy->cur);
1531		}
1532	}
1533
1534	if (new_policy) {
1535		ret = cpufreq_add_dev_interface(policy);
1536		if (ret)
1537			goto out_destroy_policy;
1538
1539		cpufreq_stats_create_table(policy);
1540
1541		write_lock_irqsave(&cpufreq_driver_lock, flags);
1542		list_add(&policy->policy_list, &cpufreq_policy_list);
1543		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544
1545		/*
1546		 * Register with the energy model before
1547		 * sugov_eas_rebuild_sd() is called, which will result
1548		 * in rebuilding of the sched domains, which should only be done
1549		 * once the energy model is properly initialized for the policy
1550		 * first.
1551		 *
1552		 * Also, this should be called before the policy is registered
1553		 * with cooling framework.
1554		 */
1555		if (cpufreq_driver->register_em)
1556			cpufreq_driver->register_em(policy);
1557	}
1558
1559	ret = cpufreq_init_policy(policy);
1560	if (ret) {
1561		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1562		       __func__, cpu, ret);
1563		goto out_destroy_policy;
1564	}
1565
1566	up_write(&policy->rwsem);
1567
1568	kobject_uevent(&policy->kobj, KOBJ_ADD);
1569
1570	/* Callback for handling stuff after policy is ready */
1571	if (cpufreq_driver->ready)
1572		cpufreq_driver->ready(policy);
1573
1574	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1575		policy->cdev = of_cpufreq_cooling_register(policy);
1576
1577	pr_debug("initialization complete\n");
1578
1579	return 0;
1580
1581out_destroy_policy:
1582	for_each_cpu(j, policy->real_cpus)
1583		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
 
 
1584
1585out_offline_policy:
1586	if (cpufreq_driver->offline)
1587		cpufreq_driver->offline(policy);
1588
1589out_exit_policy:
1590	if (cpufreq_driver->exit)
1591		cpufreq_driver->exit(policy);
1592
1593out_free_policy:
1594	cpumask_clear(policy->cpus);
1595	up_write(&policy->rwsem);
1596
1597	cpufreq_policy_free(policy);
1598	return ret;
1599}
1600
1601/**
1602 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1603 * @dev: CPU device.
1604 * @sif: Subsystem interface structure pointer (not used)
1605 */
1606static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1607{
1608	struct cpufreq_policy *policy;
1609	unsigned cpu = dev->id;
1610	int ret;
1611
1612	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1613
1614	if (cpu_online(cpu)) {
1615		ret = cpufreq_online(cpu);
1616		if (ret)
1617			return ret;
1618	}
1619
1620	/* Create sysfs link on CPU registration */
1621	policy = per_cpu(cpufreq_cpu_data, cpu);
1622	if (policy)
1623		add_cpu_dev_symlink(policy, cpu, dev);
1624
1625	return 0;
1626}
1627
1628static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1629{
 
1630	int ret;
1631
 
 
 
 
 
 
 
 
 
1632	if (has_target())
1633		cpufreq_stop_governor(policy);
1634
1635	cpumask_clear_cpu(cpu, policy->cpus);
1636
1637	if (!policy_is_inactive(policy)) {
1638		/* Nominate a new CPU if necessary. */
1639		if (cpu == policy->cpu)
1640			policy->cpu = cpumask_any(policy->cpus);
 
 
 
 
 
 
1641
1642		/* Start the governor again for the active policy. */
 
1643		if (has_target()) {
1644			ret = cpufreq_start_governor(policy);
1645			if (ret)
1646				pr_err("%s: Failed to start governor\n", __func__);
1647		}
1648
1649		return;
1650	}
1651
1652	if (has_target())
1653		strscpy(policy->last_governor, policy->governor->name,
1654			CPUFREQ_NAME_LEN);
1655	else
1656		policy->last_policy = policy->policy;
1657
1658	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1659		cpufreq_cooling_unregister(policy->cdev);
1660		policy->cdev = NULL;
1661	}
1662
1663	if (has_target())
1664		cpufreq_exit_governor(policy);
1665
1666	/*
1667	 * Perform the ->offline() during light-weight tear-down, as
1668	 * that allows fast recovery when the CPU comes back.
1669	 */
1670	if (cpufreq_driver->offline) {
1671		cpufreq_driver->offline(policy);
1672	} else if (cpufreq_driver->exit) {
1673		cpufreq_driver->exit(policy);
1674		policy->freq_table = NULL;
1675	}
1676}
1677
1678static int cpufreq_offline(unsigned int cpu)
1679{
1680	struct cpufreq_policy *policy;
1681
1682	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1683
1684	policy = cpufreq_cpu_get_raw(cpu);
1685	if (!policy) {
1686		pr_debug("%s: No cpu_data found\n", __func__);
1687		return 0;
1688	}
1689
1690	down_write(&policy->rwsem);
1691
1692	__cpufreq_offline(cpu, policy);
1693
 
1694	up_write(&policy->rwsem);
1695	return 0;
1696}
1697
1698/*
1699 * cpufreq_remove_dev - remove a CPU device
1700 *
1701 * Removes the cpufreq interface for a CPU device.
1702 */
1703static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1704{
1705	unsigned int cpu = dev->id;
1706	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1707
1708	if (!policy)
1709		return;
1710
1711	down_write(&policy->rwsem);
1712
1713	if (cpu_online(cpu))
1714		__cpufreq_offline(cpu, policy);
1715
1716	remove_cpu_dev_symlink(policy, cpu, dev);
1717
1718	if (!cpumask_empty(policy->real_cpus)) {
1719		up_write(&policy->rwsem);
1720		return;
1721	}
1722
1723	/* We did light-weight exit earlier, do full tear down now */
1724	if (cpufreq_driver->offline)
1725		cpufreq_driver->exit(policy);
1726
1727	up_write(&policy->rwsem);
 
 
 
1728
1729	cpufreq_policy_free(policy);
 
1730}
1731
1732/**
1733 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1734 * @policy: Policy managing CPUs.
1735 * @new_freq: New CPU frequency.
1736 *
1737 * Adjust to the current frequency first and clean up later by either calling
1738 * cpufreq_update_policy(), or scheduling handle_update().
1739 */
1740static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1741				unsigned int new_freq)
1742{
1743	struct cpufreq_freqs freqs;
1744
1745	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1746		 policy->cur, new_freq);
1747
1748	freqs.old = policy->cur;
1749	freqs.new = new_freq;
1750
1751	cpufreq_freq_transition_begin(policy, &freqs);
1752	cpufreq_freq_transition_end(policy, &freqs, 0);
1753}
1754
1755static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1756{
1757	unsigned int new_freq;
1758
1759	new_freq = cpufreq_driver->get(policy->cpu);
1760	if (!new_freq)
1761		return 0;
1762
1763	/*
1764	 * If fast frequency switching is used with the given policy, the check
1765	 * against policy->cur is pointless, so skip it in that case.
1766	 */
1767	if (policy->fast_switch_enabled || !has_target())
1768		return new_freq;
1769
1770	if (policy->cur != new_freq) {
1771		/*
1772		 * For some platforms, the frequency returned by hardware may be
1773		 * slightly different from what is provided in the frequency
1774		 * table, for example hardware may return 499 MHz instead of 500
1775		 * MHz. In such cases it is better to avoid getting into
1776		 * unnecessary frequency updates.
1777		 */
1778		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1779			return policy->cur;
1780
1781		cpufreq_out_of_sync(policy, new_freq);
1782		if (update)
1783			schedule_work(&policy->update);
1784	}
1785
1786	return new_freq;
1787}
1788
1789/**
1790 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1791 * @cpu: CPU number
1792 *
1793 * This is the last known freq, without actually getting it from the driver.
1794 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1795 */
1796unsigned int cpufreq_quick_get(unsigned int cpu)
1797{
1798	struct cpufreq_policy *policy;
1799	unsigned int ret_freq = 0;
1800	unsigned long flags;
1801
1802	read_lock_irqsave(&cpufreq_driver_lock, flags);
1803
1804	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1805		ret_freq = cpufreq_driver->get(cpu);
1806		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1807		return ret_freq;
1808	}
1809
1810	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1811
1812	policy = cpufreq_cpu_get(cpu);
1813	if (policy) {
1814		ret_freq = policy->cur;
1815		cpufreq_cpu_put(policy);
1816	}
1817
1818	return ret_freq;
1819}
1820EXPORT_SYMBOL(cpufreq_quick_get);
1821
1822/**
1823 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1824 * @cpu: CPU number
1825 *
1826 * Just return the max possible frequency for a given CPU.
1827 */
1828unsigned int cpufreq_quick_get_max(unsigned int cpu)
1829{
1830	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831	unsigned int ret_freq = 0;
1832
1833	if (policy) {
1834		ret_freq = policy->max;
1835		cpufreq_cpu_put(policy);
1836	}
1837
1838	return ret_freq;
1839}
1840EXPORT_SYMBOL(cpufreq_quick_get_max);
1841
1842/**
1843 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1844 * @cpu: CPU number
1845 *
1846 * The default return value is the max_freq field of cpuinfo.
1847 */
1848__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1849{
1850	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1851	unsigned int ret_freq = 0;
1852
1853	if (policy) {
1854		ret_freq = policy->cpuinfo.max_freq;
1855		cpufreq_cpu_put(policy);
1856	}
1857
1858	return ret_freq;
1859}
1860EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1861
1862static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1863{
1864	if (unlikely(policy_is_inactive(policy)))
1865		return 0;
1866
1867	return cpufreq_verify_current_freq(policy, true);
1868}
1869
1870/**
1871 * cpufreq_get - get the current CPU frequency (in kHz)
1872 * @cpu: CPU number
1873 *
1874 * Get the CPU current (static) CPU frequency
1875 */
1876unsigned int cpufreq_get(unsigned int cpu)
1877{
1878	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1879	unsigned int ret_freq = 0;
1880
1881	if (policy) {
1882		down_read(&policy->rwsem);
1883		if (cpufreq_driver->get)
1884			ret_freq = __cpufreq_get(policy);
1885		up_read(&policy->rwsem);
1886
1887		cpufreq_cpu_put(policy);
1888	}
1889
1890	return ret_freq;
1891}
1892EXPORT_SYMBOL(cpufreq_get);
1893
1894static struct subsys_interface cpufreq_interface = {
1895	.name		= "cpufreq",
1896	.subsys		= &cpu_subsys,
1897	.add_dev	= cpufreq_add_dev,
1898	.remove_dev	= cpufreq_remove_dev,
1899};
1900
1901/*
1902 * In case platform wants some specific frequency to be configured
1903 * during suspend..
1904 */
1905int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1906{
1907	int ret;
1908
1909	if (!policy->suspend_freq) {
1910		pr_debug("%s: suspend_freq not defined\n", __func__);
1911		return 0;
1912	}
1913
1914	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1915			policy->suspend_freq);
1916
1917	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1918			CPUFREQ_RELATION_H);
1919	if (ret)
1920		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1921				__func__, policy->suspend_freq, ret);
1922
1923	return ret;
1924}
1925EXPORT_SYMBOL(cpufreq_generic_suspend);
1926
1927/**
1928 * cpufreq_suspend() - Suspend CPUFreq governors.
1929 *
1930 * Called during system wide Suspend/Hibernate cycles for suspending governors
1931 * as some platforms can't change frequency after this point in suspend cycle.
1932 * Because some of the devices (like: i2c, regulators, etc) they use for
1933 * changing frequency are suspended quickly after this point.
1934 */
1935void cpufreq_suspend(void)
1936{
1937	struct cpufreq_policy *policy;
1938
1939	if (!cpufreq_driver)
1940		return;
1941
1942	if (!has_target() && !cpufreq_driver->suspend)
1943		goto suspend;
1944
1945	pr_debug("%s: Suspending Governors\n", __func__);
1946
1947	for_each_active_policy(policy) {
1948		if (has_target()) {
1949			down_write(&policy->rwsem);
1950			cpufreq_stop_governor(policy);
1951			up_write(&policy->rwsem);
1952		}
1953
1954		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1955			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1956				cpufreq_driver->name);
1957	}
1958
1959suspend:
1960	cpufreq_suspended = true;
1961}
1962
1963/**
1964 * cpufreq_resume() - Resume CPUFreq governors.
1965 *
1966 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1967 * are suspended with cpufreq_suspend().
1968 */
1969void cpufreq_resume(void)
1970{
1971	struct cpufreq_policy *policy;
1972	int ret;
1973
1974	if (!cpufreq_driver)
1975		return;
1976
1977	if (unlikely(!cpufreq_suspended))
1978		return;
1979
1980	cpufreq_suspended = false;
1981
1982	if (!has_target() && !cpufreq_driver->resume)
1983		return;
1984
1985	pr_debug("%s: Resuming Governors\n", __func__);
1986
1987	for_each_active_policy(policy) {
1988		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1989			pr_err("%s: Failed to resume driver: %s\n", __func__,
1990				cpufreq_driver->name);
1991		} else if (has_target()) {
1992			down_write(&policy->rwsem);
1993			ret = cpufreq_start_governor(policy);
1994			up_write(&policy->rwsem);
1995
1996			if (ret)
1997				pr_err("%s: Failed to start governor for CPU%u's policy\n",
1998				       __func__, policy->cpu);
1999		}
2000	}
2001}
2002
2003/**
2004 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2005 * @flags: Flags to test against the current cpufreq driver's flags.
2006 *
2007 * Assumes that the driver is there, so callers must ensure that this is the
2008 * case.
2009 */
2010bool cpufreq_driver_test_flags(u16 flags)
2011{
2012	return !!(cpufreq_driver->flags & flags);
2013}
2014
2015/**
2016 * cpufreq_get_current_driver - Return the current driver's name.
2017 *
2018 * Return the name string of the currently registered cpufreq driver or NULL if
2019 * none.
2020 */
2021const char *cpufreq_get_current_driver(void)
2022{
2023	if (cpufreq_driver)
2024		return cpufreq_driver->name;
2025
2026	return NULL;
2027}
2028EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2029
2030/**
2031 * cpufreq_get_driver_data - Return current driver data.
2032 *
2033 * Return the private data of the currently registered cpufreq driver, or NULL
2034 * if no cpufreq driver has been registered.
2035 */
2036void *cpufreq_get_driver_data(void)
2037{
2038	if (cpufreq_driver)
2039		return cpufreq_driver->driver_data;
2040
2041	return NULL;
2042}
2043EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2044
2045/*********************************************************************
2046 *                     NOTIFIER LISTS INTERFACE                      *
2047 *********************************************************************/
2048
2049/**
2050 * cpufreq_register_notifier - Register a notifier with cpufreq.
2051 * @nb: notifier function to register.
2052 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2053 *
2054 * Add a notifier to one of two lists: either a list of notifiers that run on
2055 * clock rate changes (once before and once after every transition), or a list
2056 * of notifiers that ron on cpufreq policy changes.
2057 *
2058 * This function may sleep and it has the same return values as
2059 * blocking_notifier_chain_register().
2060 */
2061int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2062{
2063	int ret;
2064
2065	if (cpufreq_disabled())
2066		return -EINVAL;
2067
2068	switch (list) {
2069	case CPUFREQ_TRANSITION_NOTIFIER:
2070		mutex_lock(&cpufreq_fast_switch_lock);
2071
2072		if (cpufreq_fast_switch_count > 0) {
2073			mutex_unlock(&cpufreq_fast_switch_lock);
2074			return -EBUSY;
2075		}
2076		ret = srcu_notifier_chain_register(
2077				&cpufreq_transition_notifier_list, nb);
2078		if (!ret)
2079			cpufreq_fast_switch_count--;
2080
2081		mutex_unlock(&cpufreq_fast_switch_lock);
2082		break;
2083	case CPUFREQ_POLICY_NOTIFIER:
2084		ret = blocking_notifier_chain_register(
2085				&cpufreq_policy_notifier_list, nb);
2086		break;
2087	default:
2088		ret = -EINVAL;
2089	}
2090
2091	return ret;
2092}
2093EXPORT_SYMBOL(cpufreq_register_notifier);
2094
2095/**
2096 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2097 * @nb: notifier block to be unregistered.
2098 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2099 *
2100 * Remove a notifier from one of the cpufreq notifier lists.
2101 *
2102 * This function may sleep and it has the same return values as
2103 * blocking_notifier_chain_unregister().
2104 */
2105int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2106{
2107	int ret;
2108
2109	if (cpufreq_disabled())
2110		return -EINVAL;
2111
2112	switch (list) {
2113	case CPUFREQ_TRANSITION_NOTIFIER:
2114		mutex_lock(&cpufreq_fast_switch_lock);
2115
2116		ret = srcu_notifier_chain_unregister(
2117				&cpufreq_transition_notifier_list, nb);
2118		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2119			cpufreq_fast_switch_count++;
2120
2121		mutex_unlock(&cpufreq_fast_switch_lock);
2122		break;
2123	case CPUFREQ_POLICY_NOTIFIER:
2124		ret = blocking_notifier_chain_unregister(
2125				&cpufreq_policy_notifier_list, nb);
2126		break;
2127	default:
2128		ret = -EINVAL;
2129	}
2130
2131	return ret;
2132}
2133EXPORT_SYMBOL(cpufreq_unregister_notifier);
2134
2135
2136/*********************************************************************
2137 *                              GOVERNORS                            *
2138 *********************************************************************/
2139
2140/**
2141 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2142 * @policy: cpufreq policy to switch the frequency for.
2143 * @target_freq: New frequency to set (may be approximate).
2144 *
2145 * Carry out a fast frequency switch without sleeping.
2146 *
2147 * The driver's ->fast_switch() callback invoked by this function must be
2148 * suitable for being called from within RCU-sched read-side critical sections
2149 * and it is expected to select the minimum available frequency greater than or
2150 * equal to @target_freq (CPUFREQ_RELATION_L).
2151 *
2152 * This function must not be called if policy->fast_switch_enabled is unset.
2153 *
2154 * Governors calling this function must guarantee that it will never be invoked
2155 * twice in parallel for the same policy and that it will never be called in
2156 * parallel with either ->target() or ->target_index() for the same policy.
2157 *
2158 * Returns the actual frequency set for the CPU.
2159 *
2160 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2161 * error condition, the hardware configuration must be preserved.
2162 */
2163unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2164					unsigned int target_freq)
2165{
2166	unsigned int freq;
2167	int cpu;
2168
2169	target_freq = clamp_val(target_freq, policy->min, policy->max);
2170	freq = cpufreq_driver->fast_switch(policy, target_freq);
2171
2172	if (!freq)
2173		return 0;
2174
2175	policy->cur = freq;
2176	arch_set_freq_scale(policy->related_cpus, freq,
2177			    arch_scale_freq_ref(policy->cpu));
2178	cpufreq_stats_record_transition(policy, freq);
2179
2180	if (trace_cpu_frequency_enabled()) {
2181		for_each_cpu(cpu, policy->cpus)
2182			trace_cpu_frequency(freq, cpu);
2183	}
2184
2185	return freq;
2186}
2187EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2188
2189/**
2190 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2191 * @cpu: Target CPU.
2192 * @min_perf: Minimum (required) performance level (units of @capacity).
2193 * @target_perf: Target (desired) performance level (units of @capacity).
2194 * @capacity: Capacity of the target CPU.
2195 *
2196 * Carry out a fast performance level switch of @cpu without sleeping.
2197 *
2198 * The driver's ->adjust_perf() callback invoked by this function must be
2199 * suitable for being called from within RCU-sched read-side critical sections
2200 * and it is expected to select a suitable performance level equal to or above
2201 * @min_perf and preferably equal to or below @target_perf.
2202 *
2203 * This function must not be called if policy->fast_switch_enabled is unset.
2204 *
2205 * Governors calling this function must guarantee that it will never be invoked
2206 * twice in parallel for the same CPU and that it will never be called in
2207 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2208 * the same CPU.
2209 */
2210void cpufreq_driver_adjust_perf(unsigned int cpu,
2211				 unsigned long min_perf,
2212				 unsigned long target_perf,
2213				 unsigned long capacity)
2214{
2215	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2216}
2217
2218/**
2219 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2220 *
2221 * Return 'true' if the ->adjust_perf callback is present for the
2222 * current driver or 'false' otherwise.
2223 */
2224bool cpufreq_driver_has_adjust_perf(void)
2225{
2226	return !!cpufreq_driver->adjust_perf;
2227}
2228
2229/* Must set freqs->new to intermediate frequency */
2230static int __target_intermediate(struct cpufreq_policy *policy,
2231				 struct cpufreq_freqs *freqs, int index)
2232{
2233	int ret;
2234
2235	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2236
2237	/* We don't need to switch to intermediate freq */
2238	if (!freqs->new)
2239		return 0;
2240
2241	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2242		 __func__, policy->cpu, freqs->old, freqs->new);
2243
2244	cpufreq_freq_transition_begin(policy, freqs);
2245	ret = cpufreq_driver->target_intermediate(policy, index);
2246	cpufreq_freq_transition_end(policy, freqs, ret);
2247
2248	if (ret)
2249		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2250		       __func__, ret);
2251
2252	return ret;
2253}
2254
2255static int __target_index(struct cpufreq_policy *policy, int index)
2256{
2257	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2258	unsigned int restore_freq, intermediate_freq = 0;
2259	unsigned int newfreq = policy->freq_table[index].frequency;
2260	int retval = -EINVAL;
2261	bool notify;
2262
2263	if (newfreq == policy->cur)
2264		return 0;
2265
2266	/* Save last value to restore later on errors */
2267	restore_freq = policy->cur;
2268
2269	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2270	if (notify) {
2271		/* Handle switching to intermediate frequency */
2272		if (cpufreq_driver->get_intermediate) {
2273			retval = __target_intermediate(policy, &freqs, index);
2274			if (retval)
2275				return retval;
2276
2277			intermediate_freq = freqs.new;
2278			/* Set old freq to intermediate */
2279			if (intermediate_freq)
2280				freqs.old = freqs.new;
2281		}
2282
2283		freqs.new = newfreq;
2284		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2285			 __func__, policy->cpu, freqs.old, freqs.new);
2286
2287		cpufreq_freq_transition_begin(policy, &freqs);
2288	}
2289
2290	retval = cpufreq_driver->target_index(policy, index);
2291	if (retval)
2292		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2293		       retval);
2294
2295	if (notify) {
2296		cpufreq_freq_transition_end(policy, &freqs, retval);
2297
2298		/*
2299		 * Failed after setting to intermediate freq? Driver should have
2300		 * reverted back to initial frequency and so should we. Check
2301		 * here for intermediate_freq instead of get_intermediate, in
2302		 * case we haven't switched to intermediate freq at all.
2303		 */
2304		if (unlikely(retval && intermediate_freq)) {
2305			freqs.old = intermediate_freq;
2306			freqs.new = restore_freq;
2307			cpufreq_freq_transition_begin(policy, &freqs);
2308			cpufreq_freq_transition_end(policy, &freqs, 0);
2309		}
2310	}
2311
2312	return retval;
2313}
2314
2315int __cpufreq_driver_target(struct cpufreq_policy *policy,
2316			    unsigned int target_freq,
2317			    unsigned int relation)
2318{
2319	unsigned int old_target_freq = target_freq;
2320
2321	if (cpufreq_disabled())
2322		return -ENODEV;
2323
2324	target_freq = __resolve_freq(policy, target_freq, relation);
2325
2326	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2327		 policy->cpu, target_freq, relation, old_target_freq);
2328
2329	/*
2330	 * This might look like a redundant call as we are checking it again
2331	 * after finding index. But it is left intentionally for cases where
2332	 * exactly same freq is called again and so we can save on few function
2333	 * calls.
2334	 */
2335	if (target_freq == policy->cur &&
2336	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2337		return 0;
2338
2339	if (cpufreq_driver->target) {
2340		/*
2341		 * If the driver hasn't setup a single inefficient frequency,
2342		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2343		 */
2344		if (!policy->efficiencies_available)
2345			relation &= ~CPUFREQ_RELATION_E;
2346
2347		return cpufreq_driver->target(policy, target_freq, relation);
2348	}
2349
2350	if (!cpufreq_driver->target_index)
2351		return -EINVAL;
2352
2353	return __target_index(policy, policy->cached_resolved_idx);
2354}
2355EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2356
2357int cpufreq_driver_target(struct cpufreq_policy *policy,
2358			  unsigned int target_freq,
2359			  unsigned int relation)
2360{
2361	int ret;
2362
2363	down_write(&policy->rwsem);
2364
2365	ret = __cpufreq_driver_target(policy, target_freq, relation);
2366
2367	up_write(&policy->rwsem);
2368
2369	return ret;
2370}
2371EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2372
2373__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2374{
2375	return NULL;
2376}
2377
2378static int cpufreq_init_governor(struct cpufreq_policy *policy)
2379{
2380	int ret;
2381
2382	/* Don't start any governor operations if we are entering suspend */
2383	if (cpufreq_suspended)
2384		return 0;
2385	/*
2386	 * Governor might not be initiated here if ACPI _PPC changed
2387	 * notification happened, so check it.
2388	 */
2389	if (!policy->governor)
2390		return -EINVAL;
2391
2392	/* Platform doesn't want dynamic frequency switching ? */
2393	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2394	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2395		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2396
2397		if (gov) {
2398			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2399				policy->governor->name, gov->name);
2400			policy->governor = gov;
2401		} else {
2402			return -EINVAL;
2403		}
2404	}
2405
2406	if (!try_module_get(policy->governor->owner))
2407		return -EINVAL;
2408
2409	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2410
2411	if (policy->governor->init) {
2412		ret = policy->governor->init(policy);
2413		if (ret) {
2414			module_put(policy->governor->owner);
2415			return ret;
2416		}
2417	}
2418
2419	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2420
2421	return 0;
2422}
2423
2424static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2425{
2426	if (cpufreq_suspended || !policy->governor)
2427		return;
2428
2429	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2430
2431	if (policy->governor->exit)
2432		policy->governor->exit(policy);
2433
2434	module_put(policy->governor->owner);
2435}
2436
2437int cpufreq_start_governor(struct cpufreq_policy *policy)
2438{
2439	int ret;
2440
2441	if (cpufreq_suspended)
2442		return 0;
2443
2444	if (!policy->governor)
2445		return -EINVAL;
2446
2447	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2448
2449	if (cpufreq_driver->get)
2450		cpufreq_verify_current_freq(policy, false);
2451
2452	if (policy->governor->start) {
2453		ret = policy->governor->start(policy);
2454		if (ret)
2455			return ret;
2456	}
2457
2458	if (policy->governor->limits)
2459		policy->governor->limits(policy);
2460
2461	return 0;
2462}
2463
2464void cpufreq_stop_governor(struct cpufreq_policy *policy)
2465{
2466	if (cpufreq_suspended || !policy->governor)
2467		return;
2468
2469	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2470
2471	if (policy->governor->stop)
2472		policy->governor->stop(policy);
2473}
2474
2475static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2476{
2477	if (cpufreq_suspended || !policy->governor)
2478		return;
2479
2480	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2481
2482	if (policy->governor->limits)
2483		policy->governor->limits(policy);
2484}
2485
2486int cpufreq_register_governor(struct cpufreq_governor *governor)
2487{
2488	int err;
2489
2490	if (!governor)
2491		return -EINVAL;
2492
2493	if (cpufreq_disabled())
2494		return -ENODEV;
2495
2496	mutex_lock(&cpufreq_governor_mutex);
2497
2498	err = -EBUSY;
2499	if (!find_governor(governor->name)) {
2500		err = 0;
2501		list_add(&governor->governor_list, &cpufreq_governor_list);
2502	}
2503
2504	mutex_unlock(&cpufreq_governor_mutex);
2505	return err;
2506}
2507EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2508
2509void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2510{
2511	struct cpufreq_policy *policy;
2512	unsigned long flags;
2513
2514	if (!governor)
2515		return;
2516
2517	if (cpufreq_disabled())
2518		return;
2519
2520	/* clear last_governor for all inactive policies */
2521	read_lock_irqsave(&cpufreq_driver_lock, flags);
2522	for_each_inactive_policy(policy) {
2523		if (!strcmp(policy->last_governor, governor->name)) {
2524			policy->governor = NULL;
2525			strcpy(policy->last_governor, "\0");
2526		}
2527	}
2528	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2529
2530	mutex_lock(&cpufreq_governor_mutex);
2531	list_del(&governor->governor_list);
2532	mutex_unlock(&cpufreq_governor_mutex);
2533}
2534EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2535
2536
2537/*********************************************************************
2538 *                          POLICY INTERFACE                         *
2539 *********************************************************************/
2540
2541/**
2542 * cpufreq_get_policy - get the current cpufreq_policy
2543 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2544 *	is written
2545 * @cpu: CPU to find the policy for
2546 *
2547 * Reads the current cpufreq policy.
2548 */
2549int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2550{
2551	struct cpufreq_policy *cpu_policy;
2552	if (!policy)
2553		return -EINVAL;
2554
2555	cpu_policy = cpufreq_cpu_get(cpu);
2556	if (!cpu_policy)
2557		return -EINVAL;
2558
2559	memcpy(policy, cpu_policy, sizeof(*policy));
2560
2561	cpufreq_cpu_put(cpu_policy);
2562	return 0;
2563}
2564EXPORT_SYMBOL(cpufreq_get_policy);
2565
2566/**
2567 * cpufreq_set_policy - Modify cpufreq policy parameters.
2568 * @policy: Policy object to modify.
2569 * @new_gov: Policy governor pointer.
2570 * @new_pol: Policy value (for drivers with built-in governors).
2571 *
2572 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2573 * limits to be set for the policy, update @policy with the verified limits
2574 * values and either invoke the driver's ->setpolicy() callback (if present) or
2575 * carry out a governor update for @policy.  That is, run the current governor's
2576 * ->limits() callback (if @new_gov points to the same object as the one in
2577 * @policy) or replace the governor for @policy with @new_gov.
2578 *
2579 * The cpuinfo part of @policy is not updated by this function.
2580 */
2581static int cpufreq_set_policy(struct cpufreq_policy *policy,
2582			      struct cpufreq_governor *new_gov,
2583			      unsigned int new_pol)
2584{
2585	struct cpufreq_policy_data new_data;
2586	struct cpufreq_governor *old_gov;
2587	int ret;
2588
2589	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2590	new_data.freq_table = policy->freq_table;
2591	new_data.cpu = policy->cpu;
2592	/*
2593	 * PM QoS framework collects all the requests from users and provide us
2594	 * the final aggregated value here.
2595	 */
2596	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2597	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2598
2599	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2600		 new_data.cpu, new_data.min, new_data.max);
2601
2602	/*
2603	 * Verify that the CPU speed can be set within these limits and make sure
2604	 * that min <= max.
2605	 */
2606	ret = cpufreq_driver->verify(&new_data);
2607	if (ret)
2608		return ret;
2609
2610	/*
2611	 * Resolve policy min/max to available frequencies. It ensures
2612	 * no frequency resolution will neither overshoot the requested maximum
2613	 * nor undershoot the requested minimum.
2614	 */
2615	policy->min = new_data.min;
2616	policy->max = new_data.max;
2617	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2618	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2619	trace_cpu_frequency_limits(policy);
2620
2621	policy->cached_target_freq = UINT_MAX;
2622
2623	pr_debug("new min and max freqs are %u - %u kHz\n",
2624		 policy->min, policy->max);
2625
2626	if (cpufreq_driver->setpolicy) {
2627		policy->policy = new_pol;
2628		pr_debug("setting range\n");
2629		return cpufreq_driver->setpolicy(policy);
2630	}
2631
2632	if (new_gov == policy->governor) {
2633		pr_debug("governor limits update\n");
2634		cpufreq_governor_limits(policy);
2635		return 0;
2636	}
2637
2638	pr_debug("governor switch\n");
2639
2640	/* save old, working values */
2641	old_gov = policy->governor;
2642	/* end old governor */
2643	if (old_gov) {
2644		cpufreq_stop_governor(policy);
2645		cpufreq_exit_governor(policy);
2646	}
2647
2648	/* start new governor */
2649	policy->governor = new_gov;
2650	ret = cpufreq_init_governor(policy);
2651	if (!ret) {
2652		ret = cpufreq_start_governor(policy);
2653		if (!ret) {
2654			pr_debug("governor change\n");
 
2655			return 0;
2656		}
2657		cpufreq_exit_governor(policy);
2658	}
2659
2660	/* new governor failed, so re-start old one */
2661	pr_debug("starting governor %s failed\n", policy->governor->name);
2662	if (old_gov) {
2663		policy->governor = old_gov;
2664		if (cpufreq_init_governor(policy))
2665			policy->governor = NULL;
2666		else
2667			cpufreq_start_governor(policy);
2668	}
2669
2670	return ret;
2671}
2672
2673/**
2674 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2675 * @cpu: CPU to re-evaluate the policy for.
2676 *
2677 * Update the current frequency for the cpufreq policy of @cpu and use
2678 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2679 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2680 * for the policy in question, among other things.
2681 */
2682void cpufreq_update_policy(unsigned int cpu)
2683{
2684	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2685
2686	if (!policy)
2687		return;
2688
2689	/*
2690	 * BIOS might change freq behind our back
2691	 * -> ask driver for current freq and notify governors about a change
2692	 */
2693	if (cpufreq_driver->get && has_target() &&
2694	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2695		goto unlock;
2696
2697	refresh_frequency_limits(policy);
2698
2699unlock:
2700	cpufreq_cpu_release(policy);
2701}
2702EXPORT_SYMBOL(cpufreq_update_policy);
2703
2704/**
2705 * cpufreq_update_limits - Update policy limits for a given CPU.
2706 * @cpu: CPU to update the policy limits for.
2707 *
2708 * Invoke the driver's ->update_limits callback if present or call
2709 * cpufreq_update_policy() for @cpu.
2710 */
2711void cpufreq_update_limits(unsigned int cpu)
2712{
2713	if (cpufreq_driver->update_limits)
2714		cpufreq_driver->update_limits(cpu);
2715	else
2716		cpufreq_update_policy(cpu);
2717}
2718EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2719
2720/*********************************************************************
2721 *               BOOST						     *
2722 *********************************************************************/
2723static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2724{
2725	int ret;
2726
2727	if (!policy->freq_table)
2728		return -ENXIO;
2729
2730	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2731	if (ret) {
2732		pr_err("%s: Policy frequency update failed\n", __func__);
2733		return ret;
2734	}
2735
2736	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2737	if (ret < 0)
2738		return ret;
2739
2740	return 0;
2741}
2742
2743int cpufreq_boost_trigger_state(int state)
2744{
2745	struct cpufreq_policy *policy;
2746	unsigned long flags;
2747	int ret = 0;
2748
2749	if (cpufreq_driver->boost_enabled == state)
2750		return 0;
2751
2752	write_lock_irqsave(&cpufreq_driver_lock, flags);
2753	cpufreq_driver->boost_enabled = state;
2754	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755
2756	cpus_read_lock();
2757	for_each_active_policy(policy) {
2758		ret = cpufreq_driver->set_boost(policy, state);
2759		if (ret)
2760			goto err_reset_state;
2761
2762		policy->boost_enabled = state;
2763	}
2764	cpus_read_unlock();
2765
2766	return 0;
2767
2768err_reset_state:
2769	cpus_read_unlock();
2770
2771	write_lock_irqsave(&cpufreq_driver_lock, flags);
2772	cpufreq_driver->boost_enabled = !state;
2773	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2774
2775	pr_err("%s: Cannot %s BOOST\n",
2776	       __func__, state ? "enable" : "disable");
2777
2778	return ret;
2779}
2780
2781static bool cpufreq_boost_supported(void)
2782{
2783	return cpufreq_driver->set_boost;
2784}
2785
2786static int create_boost_sysfs_file(void)
2787{
2788	int ret;
2789
2790	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2791	if (ret)
2792		pr_err("%s: cannot register global BOOST sysfs file\n",
2793		       __func__);
2794
2795	return ret;
2796}
2797
2798static void remove_boost_sysfs_file(void)
2799{
2800	if (cpufreq_boost_supported())
2801		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2802}
2803
2804int cpufreq_enable_boost_support(void)
2805{
2806	if (!cpufreq_driver)
2807		return -EINVAL;
2808
2809	if (cpufreq_boost_supported())
2810		return 0;
2811
2812	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2813
2814	/* This will get removed on driver unregister */
2815	return create_boost_sysfs_file();
2816}
2817EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2818
2819int cpufreq_boost_enabled(void)
2820{
2821	return cpufreq_driver->boost_enabled;
2822}
2823EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2824
2825/*********************************************************************
2826 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2827 *********************************************************************/
2828static enum cpuhp_state hp_online;
2829
2830static int cpuhp_cpufreq_online(unsigned int cpu)
2831{
2832	cpufreq_online(cpu);
2833
2834	return 0;
2835}
2836
2837static int cpuhp_cpufreq_offline(unsigned int cpu)
2838{
2839	cpufreq_offline(cpu);
2840
2841	return 0;
2842}
2843
2844/**
2845 * cpufreq_register_driver - register a CPU Frequency driver
2846 * @driver_data: A struct cpufreq_driver containing the values#
2847 * submitted by the CPU Frequency driver.
2848 *
2849 * Registers a CPU Frequency driver to this core code. This code
2850 * returns zero on success, -EEXIST when another driver got here first
2851 * (and isn't unregistered in the meantime).
2852 *
2853 */
2854int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2855{
2856	unsigned long flags;
2857	int ret;
2858
2859	if (cpufreq_disabled())
2860		return -ENODEV;
2861
2862	/*
2863	 * The cpufreq core depends heavily on the availability of device
2864	 * structure, make sure they are available before proceeding further.
2865	 */
2866	if (!get_cpu_device(0))
2867		return -EPROBE_DEFER;
2868
2869	if (!driver_data || !driver_data->verify || !driver_data->init ||
2870	    !(driver_data->setpolicy || driver_data->target_index ||
2871		    driver_data->target) ||
2872	     (driver_data->setpolicy && (driver_data->target_index ||
2873		    driver_data->target)) ||
2874	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2875	     (!driver_data->online != !driver_data->offline) ||
2876		 (driver_data->adjust_perf && !driver_data->fast_switch))
2877		return -EINVAL;
2878
2879	pr_debug("trying to register driver %s\n", driver_data->name);
2880
2881	/* Protect against concurrent CPU online/offline. */
2882	cpus_read_lock();
2883
2884	write_lock_irqsave(&cpufreq_driver_lock, flags);
2885	if (cpufreq_driver) {
2886		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2887		ret = -EEXIST;
2888		goto out;
2889	}
2890	cpufreq_driver = driver_data;
2891	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2892
2893	/*
2894	 * Mark support for the scheduler's frequency invariance engine for
2895	 * drivers that implement target(), target_index() or fast_switch().
2896	 */
2897	if (!cpufreq_driver->setpolicy) {
2898		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2899		pr_debug("supports frequency invariance");
2900	}
2901
2902	if (driver_data->setpolicy)
2903		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2904
2905	if (cpufreq_boost_supported()) {
2906		ret = create_boost_sysfs_file();
2907		if (ret)
2908			goto err_null_driver;
2909	}
2910
2911	ret = subsys_interface_register(&cpufreq_interface);
2912	if (ret)
2913		goto err_boost_unreg;
2914
2915	if (unlikely(list_empty(&cpufreq_policy_list))) {
2916		/* if all ->init() calls failed, unregister */
2917		ret = -ENODEV;
2918		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2919			 driver_data->name);
2920		goto err_if_unreg;
2921	}
2922
2923	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2924						   "cpufreq:online",
2925						   cpuhp_cpufreq_online,
2926						   cpuhp_cpufreq_offline);
2927	if (ret < 0)
2928		goto err_if_unreg;
2929	hp_online = ret;
2930	ret = 0;
2931
2932	pr_debug("driver %s up and running\n", driver_data->name);
2933	goto out;
2934
2935err_if_unreg:
2936	subsys_interface_unregister(&cpufreq_interface);
2937err_boost_unreg:
2938	remove_boost_sysfs_file();
2939err_null_driver:
2940	write_lock_irqsave(&cpufreq_driver_lock, flags);
2941	cpufreq_driver = NULL;
2942	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2943out:
2944	cpus_read_unlock();
2945	return ret;
2946}
2947EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2948
2949/*
2950 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2951 *
2952 * Unregister the current CPUFreq driver. Only call this if you have
2953 * the right to do so, i.e. if you have succeeded in initialising before!
2954 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2955 * currently not initialised.
2956 */
2957void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2958{
2959	unsigned long flags;
2960
2961	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2962		return;
2963
2964	pr_debug("unregistering driver %s\n", driver->name);
2965
2966	/* Protect against concurrent cpu hotplug */
2967	cpus_read_lock();
2968	subsys_interface_unregister(&cpufreq_interface);
2969	remove_boost_sysfs_file();
2970	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2971	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2972
2973	write_lock_irqsave(&cpufreq_driver_lock, flags);
2974
2975	cpufreq_driver = NULL;
2976
2977	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2978	cpus_read_unlock();
 
 
2979}
2980EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2981
2982static int __init cpufreq_core_init(void)
2983{
2984	struct cpufreq_governor *gov = cpufreq_default_governor();
2985	struct device *dev_root;
2986
2987	if (cpufreq_disabled())
2988		return -ENODEV;
2989
2990	dev_root = bus_get_dev_root(&cpu_subsys);
2991	if (dev_root) {
2992		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
2993		put_device(dev_root);
2994	}
2995	BUG_ON(!cpufreq_global_kobject);
2996
2997	if (!strlen(default_governor))
2998		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2999
3000	return 0;
3001}
3002module_param(off, int, 0444);
3003module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3004core_initcall(cpufreq_core_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
 
  31#include <trace/events/power.h>
  32
  33static LIST_HEAD(cpufreq_policy_list);
  34
  35/* Macros to iterate over CPU policies */
  36#define for_each_suitable_policy(__policy, __active)			 \
  37	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  38		if ((__active) == !policy_is_inactive(__policy))
  39
  40#define for_each_active_policy(__policy)		\
  41	for_each_suitable_policy(__policy, true)
  42#define for_each_inactive_policy(__policy)		\
  43	for_each_suitable_policy(__policy, false)
  44
  45/* Iterate over governors */
  46static LIST_HEAD(cpufreq_governor_list);
  47#define for_each_governor(__governor)				\
  48	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  49
  50static char default_governor[CPUFREQ_NAME_LEN];
  51
  52/*
  53 * The "cpufreq driver" - the arch- or hardware-dependent low
  54 * level driver of CPUFreq support, and its spinlock. This lock
  55 * also protects the cpufreq_cpu_data array.
  56 */
  57static struct cpufreq_driver *cpufreq_driver;
  58static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  59static DEFINE_RWLOCK(cpufreq_driver_lock);
  60
  61static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  62bool cpufreq_supports_freq_invariance(void)
  63{
  64	return static_branch_likely(&cpufreq_freq_invariance);
  65}
  66
  67/* Flag to suspend/resume CPUFreq governors */
  68static bool cpufreq_suspended;
  69
  70static inline bool has_target(void)
  71{
  72	return cpufreq_driver->target_index || cpufreq_driver->target;
  73}
  74
 
 
 
 
 
  75/* internal prototypes */
  76static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  77static int cpufreq_init_governor(struct cpufreq_policy *policy);
  78static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  79static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  80static int cpufreq_set_policy(struct cpufreq_policy *policy,
  81			      struct cpufreq_governor *new_gov,
  82			      unsigned int new_pol);
 
  83
  84/*
  85 * Two notifier lists: the "policy" list is involved in the
  86 * validation process for a new CPU frequency policy; the
  87 * "transition" list for kernel code that needs to handle
  88 * changes to devices when the CPU clock speed changes.
  89 * The mutex locks both lists.
  90 */
  91static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  92SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
  93
  94static int off __read_mostly;
  95static int cpufreq_disabled(void)
  96{
  97	return off;
  98}
  99void disable_cpufreq(void)
 100{
 101	off = 1;
 102}
 103static DEFINE_MUTEX(cpufreq_governor_mutex);
 104
 105bool have_governor_per_policy(void)
 106{
 107	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 108}
 109EXPORT_SYMBOL_GPL(have_governor_per_policy);
 110
 111static struct kobject *cpufreq_global_kobject;
 112
 113struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 114{
 115	if (have_governor_per_policy())
 116		return &policy->kobj;
 117	else
 118		return cpufreq_global_kobject;
 119}
 120EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 121
 122static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 123{
 124	struct kernel_cpustat kcpustat;
 125	u64 cur_wall_time;
 126	u64 idle_time;
 127	u64 busy_time;
 128
 129	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 130
 131	kcpustat_cpu_fetch(&kcpustat, cpu);
 132
 133	busy_time = kcpustat.cpustat[CPUTIME_USER];
 134	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 135	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 136	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 137	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 138	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 139
 140	idle_time = cur_wall_time - busy_time;
 141	if (wall)
 142		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 143
 144	return div_u64(idle_time, NSEC_PER_USEC);
 145}
 146
 147u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 148{
 149	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 150
 151	if (idle_time == -1ULL)
 152		return get_cpu_idle_time_jiffy(cpu, wall);
 153	else if (!io_busy)
 154		idle_time += get_cpu_iowait_time_us(cpu, wall);
 155
 156	return idle_time;
 157}
 158EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 159
 160/*
 161 * This is a generic cpufreq init() routine which can be used by cpufreq
 162 * drivers of SMP systems. It will do following:
 163 * - validate & show freq table passed
 164 * - set policies transition latency
 165 * - policy->cpus with all possible CPUs
 166 */
 167void cpufreq_generic_init(struct cpufreq_policy *policy,
 168		struct cpufreq_frequency_table *table,
 169		unsigned int transition_latency)
 170{
 171	policy->freq_table = table;
 172	policy->cpuinfo.transition_latency = transition_latency;
 173
 174	/*
 175	 * The driver only supports the SMP configuration where all processors
 176	 * share the clock and voltage and clock.
 177	 */
 178	cpumask_setall(policy->cpus);
 179}
 180EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 181
 182struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 183{
 184	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 185
 186	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 187}
 188EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 189
 190unsigned int cpufreq_generic_get(unsigned int cpu)
 191{
 192	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 193
 194	if (!policy || IS_ERR(policy->clk)) {
 195		pr_err("%s: No %s associated to cpu: %d\n",
 196		       __func__, policy ? "clk" : "policy", cpu);
 197		return 0;
 198	}
 199
 200	return clk_get_rate(policy->clk) / 1000;
 201}
 202EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 203
 204/**
 205 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 206 * @cpu: CPU to find the policy for.
 207 *
 208 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 209 * the kobject reference counter of that policy.  Return a valid policy on
 210 * success or NULL on failure.
 211 *
 212 * The policy returned by this function has to be released with the help of
 213 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 214 */
 215struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 216{
 217	struct cpufreq_policy *policy = NULL;
 218	unsigned long flags;
 219
 220	if (WARN_ON(cpu >= nr_cpu_ids))
 221		return NULL;
 222
 223	/* get the cpufreq driver */
 224	read_lock_irqsave(&cpufreq_driver_lock, flags);
 225
 226	if (cpufreq_driver) {
 227		/* get the CPU */
 228		policy = cpufreq_cpu_get_raw(cpu);
 229		if (policy)
 230			kobject_get(&policy->kobj);
 231	}
 232
 233	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 234
 235	return policy;
 236}
 237EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 238
 239/**
 240 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 241 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 242 */
 243void cpufreq_cpu_put(struct cpufreq_policy *policy)
 244{
 245	kobject_put(&policy->kobj);
 246}
 247EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 248
 249/**
 250 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 251 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 252 */
 253void cpufreq_cpu_release(struct cpufreq_policy *policy)
 254{
 255	if (WARN_ON(!policy))
 256		return;
 257
 258	lockdep_assert_held(&policy->rwsem);
 259
 260	up_write(&policy->rwsem);
 261
 262	cpufreq_cpu_put(policy);
 263}
 264
 265/**
 266 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 267 * @cpu: CPU to find the policy for.
 268 *
 269 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 270 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 271 * Return the policy if it is active or release it and return NULL otherwise.
 272 *
 273 * The policy returned by this function has to be released with the help of
 274 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 275 * counter properly.
 276 */
 277struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 278{
 279	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 280
 281	if (!policy)
 282		return NULL;
 283
 284	down_write(&policy->rwsem);
 285
 286	if (policy_is_inactive(policy)) {
 287		cpufreq_cpu_release(policy);
 288		return NULL;
 289	}
 290
 291	return policy;
 292}
 293
 294/*********************************************************************
 295 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 296 *********************************************************************/
 297
 298/**
 299 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 300 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 301 * @ci: Frequency change information.
 302 *
 303 * This function alters the system "loops_per_jiffy" for the clock
 304 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 305 * systems as each CPU might be scaled differently. So, use the arch
 306 * per-CPU loops_per_jiffy value wherever possible.
 307 */
 308static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 309{
 310#ifndef CONFIG_SMP
 311	static unsigned long l_p_j_ref;
 312	static unsigned int l_p_j_ref_freq;
 313
 314	if (ci->flags & CPUFREQ_CONST_LOOPS)
 315		return;
 316
 317	if (!l_p_j_ref_freq) {
 318		l_p_j_ref = loops_per_jiffy;
 319		l_p_j_ref_freq = ci->old;
 320		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 321			 l_p_j_ref, l_p_j_ref_freq);
 322	}
 323	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 324		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 325								ci->new);
 326		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 327			 loops_per_jiffy, ci->new);
 328	}
 329#endif
 330}
 331
 332/**
 333 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 334 * @policy: cpufreq policy to enable fast frequency switching for.
 335 * @freqs: contain details of the frequency update.
 336 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 337 *
 338 * This function calls the transition notifiers and adjust_jiffies().
 339 *
 340 * It is called twice on all CPU frequency changes that have external effects.
 341 */
 342static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 343				      struct cpufreq_freqs *freqs,
 344				      unsigned int state)
 345{
 346	int cpu;
 347
 348	BUG_ON(irqs_disabled());
 349
 350	if (cpufreq_disabled())
 351		return;
 352
 353	freqs->policy = policy;
 354	freqs->flags = cpufreq_driver->flags;
 355	pr_debug("notification %u of frequency transition to %u kHz\n",
 356		 state, freqs->new);
 357
 358	switch (state) {
 359	case CPUFREQ_PRECHANGE:
 360		/*
 361		 * Detect if the driver reported a value as "old frequency"
 362		 * which is not equal to what the cpufreq core thinks is
 363		 * "old frequency".
 364		 */
 365		if (policy->cur && policy->cur != freqs->old) {
 366			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 367				 freqs->old, policy->cur);
 368			freqs->old = policy->cur;
 369		}
 370
 371		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 372					 CPUFREQ_PRECHANGE, freqs);
 373
 374		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 375		break;
 376
 377	case CPUFREQ_POSTCHANGE:
 378		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 379		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 380			 cpumask_pr_args(policy->cpus));
 381
 382		for_each_cpu(cpu, policy->cpus)
 383			trace_cpu_frequency(freqs->new, cpu);
 384
 385		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 386					 CPUFREQ_POSTCHANGE, freqs);
 387
 388		cpufreq_stats_record_transition(policy, freqs->new);
 389		policy->cur = freqs->new;
 390	}
 391}
 392
 393/* Do post notifications when there are chances that transition has failed */
 394static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 395		struct cpufreq_freqs *freqs, int transition_failed)
 396{
 397	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 398	if (!transition_failed)
 399		return;
 400
 401	swap(freqs->old, freqs->new);
 402	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 403	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 404}
 405
 406void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 407		struct cpufreq_freqs *freqs)
 408{
 409
 410	/*
 411	 * Catch double invocations of _begin() which lead to self-deadlock.
 412	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 413	 * doesn't invoke _begin() on their behalf, and hence the chances of
 414	 * double invocations are very low. Moreover, there are scenarios
 415	 * where these checks can emit false-positive warnings in these
 416	 * drivers; so we avoid that by skipping them altogether.
 417	 */
 418	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 419				&& current == policy->transition_task);
 420
 421wait:
 422	wait_event(policy->transition_wait, !policy->transition_ongoing);
 423
 424	spin_lock(&policy->transition_lock);
 425
 426	if (unlikely(policy->transition_ongoing)) {
 427		spin_unlock(&policy->transition_lock);
 428		goto wait;
 429	}
 430
 431	policy->transition_ongoing = true;
 432	policy->transition_task = current;
 433
 434	spin_unlock(&policy->transition_lock);
 435
 436	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 437}
 438EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 439
 440void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 441		struct cpufreq_freqs *freqs, int transition_failed)
 442{
 443	if (WARN_ON(!policy->transition_ongoing))
 444		return;
 445
 446	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 447
 448	arch_set_freq_scale(policy->related_cpus,
 449			    policy->cur,
 450			    policy->cpuinfo.max_freq);
 451
 
 452	policy->transition_ongoing = false;
 453	policy->transition_task = NULL;
 
 454
 455	wake_up(&policy->transition_wait);
 456}
 457EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 458
 459/*
 460 * Fast frequency switching status count.  Positive means "enabled", negative
 461 * means "disabled" and 0 means "not decided yet".
 462 */
 463static int cpufreq_fast_switch_count;
 464static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 465
 466static void cpufreq_list_transition_notifiers(void)
 467{
 468	struct notifier_block *nb;
 469
 470	pr_info("Registered transition notifiers:\n");
 471
 472	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 473
 474	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 475		pr_info("%pS\n", nb->notifier_call);
 476
 477	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 478}
 479
 480/**
 481 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 482 * @policy: cpufreq policy to enable fast frequency switching for.
 483 *
 484 * Try to enable fast frequency switching for @policy.
 485 *
 486 * The attempt will fail if there is at least one transition notifier registered
 487 * at this point, as fast frequency switching is quite fundamentally at odds
 488 * with transition notifiers.  Thus if successful, it will make registration of
 489 * transition notifiers fail going forward.
 490 */
 491void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 492{
 493	lockdep_assert_held(&policy->rwsem);
 494
 495	if (!policy->fast_switch_possible)
 496		return;
 497
 498	mutex_lock(&cpufreq_fast_switch_lock);
 499	if (cpufreq_fast_switch_count >= 0) {
 500		cpufreq_fast_switch_count++;
 501		policy->fast_switch_enabled = true;
 502	} else {
 503		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 504			policy->cpu);
 505		cpufreq_list_transition_notifiers();
 506	}
 507	mutex_unlock(&cpufreq_fast_switch_lock);
 508}
 509EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 510
 511/**
 512 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 513 * @policy: cpufreq policy to disable fast frequency switching for.
 514 */
 515void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 516{
 517	mutex_lock(&cpufreq_fast_switch_lock);
 518	if (policy->fast_switch_enabled) {
 519		policy->fast_switch_enabled = false;
 520		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 521			cpufreq_fast_switch_count--;
 522	}
 523	mutex_unlock(&cpufreq_fast_switch_lock);
 524}
 525EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 526
 527static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 528		unsigned int target_freq, unsigned int relation)
 529{
 530	unsigned int idx;
 531
 532	target_freq = clamp_val(target_freq, policy->min, policy->max);
 533
 534	if (!cpufreq_driver->target_index)
 535		return target_freq;
 536
 537	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 538	policy->cached_resolved_idx = idx;
 539	policy->cached_target_freq = target_freq;
 540	return policy->freq_table[idx].frequency;
 541}
 542
 543/**
 544 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 545 * one.
 546 * @policy: associated policy to interrogate
 547 * @target_freq: target frequency to resolve.
 548 *
 549 * The target to driver frequency mapping is cached in the policy.
 550 *
 551 * Return: Lowest driver-supported frequency greater than or equal to the
 552 * given target_freq, subject to policy (min/max) and driver limitations.
 553 */
 554unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 555					 unsigned int target_freq)
 556{
 557	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_L);
 558}
 559EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 560
 561unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 562{
 563	unsigned int latency;
 564
 565	if (policy->transition_delay_us)
 566		return policy->transition_delay_us;
 567
 568	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 569	if (latency) {
 570		/*
 571		 * For platforms that can change the frequency very fast (< 10
 572		 * us), the above formula gives a decent transition delay. But
 573		 * for platforms where transition_latency is in milliseconds, it
 574		 * ends up giving unrealistic values.
 575		 *
 576		 * Cap the default transition delay to 10 ms, which seems to be
 577		 * a reasonable amount of time after which we should reevaluate
 578		 * the frequency.
 579		 */
 580		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 581	}
 582
 583	return LATENCY_MULTIPLIER;
 584}
 585EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 586
 587/*********************************************************************
 588 *                          SYSFS INTERFACE                          *
 589 *********************************************************************/
 590static ssize_t show_boost(struct kobject *kobj,
 591			  struct kobj_attribute *attr, char *buf)
 592{
 593	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 594}
 595
 596static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 597			   const char *buf, size_t count)
 598{
 599	int ret, enable;
 600
 601	ret = sscanf(buf, "%d", &enable);
 602	if (ret != 1 || enable < 0 || enable > 1)
 603		return -EINVAL;
 604
 605	if (cpufreq_boost_trigger_state(enable)) {
 606		pr_err("%s: Cannot %s BOOST!\n",
 607		       __func__, enable ? "enable" : "disable");
 608		return -EINVAL;
 609	}
 610
 611	pr_debug("%s: cpufreq BOOST %s\n",
 612		 __func__, enable ? "enabled" : "disabled");
 613
 614	return count;
 615}
 616define_one_global_rw(boost);
 617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618static struct cpufreq_governor *find_governor(const char *str_governor)
 619{
 620	struct cpufreq_governor *t;
 621
 622	for_each_governor(t)
 623		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 624			return t;
 625
 626	return NULL;
 627}
 628
 629static struct cpufreq_governor *get_governor(const char *str_governor)
 630{
 631	struct cpufreq_governor *t;
 632
 633	mutex_lock(&cpufreq_governor_mutex);
 634	t = find_governor(str_governor);
 635	if (!t)
 636		goto unlock;
 637
 638	if (!try_module_get(t->owner))
 639		t = NULL;
 640
 641unlock:
 642	mutex_unlock(&cpufreq_governor_mutex);
 643
 644	return t;
 645}
 646
 647static unsigned int cpufreq_parse_policy(char *str_governor)
 648{
 649	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 650		return CPUFREQ_POLICY_PERFORMANCE;
 651
 652	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 653		return CPUFREQ_POLICY_POWERSAVE;
 654
 655	return CPUFREQ_POLICY_UNKNOWN;
 656}
 657
 658/**
 659 * cpufreq_parse_governor - parse a governor string only for has_target()
 660 * @str_governor: Governor name.
 661 */
 662static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 663{
 664	struct cpufreq_governor *t;
 665
 666	t = get_governor(str_governor);
 667	if (t)
 668		return t;
 669
 670	if (request_module("cpufreq_%s", str_governor))
 671		return NULL;
 672
 673	return get_governor(str_governor);
 674}
 675
 676/*
 677 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 678 * print out cpufreq information
 679 *
 680 * Write out information from cpufreq_driver->policy[cpu]; object must be
 681 * "unsigned int".
 682 */
 683
 684#define show_one(file_name, object)			\
 685static ssize_t show_##file_name				\
 686(struct cpufreq_policy *policy, char *buf)		\
 687{							\
 688	return sprintf(buf, "%u\n", policy->object);	\
 689}
 690
 691show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 692show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 693show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 694show_one(scaling_min_freq, min);
 695show_one(scaling_max_freq, max);
 696
 697__weak unsigned int arch_freq_get_on_cpu(int cpu)
 698{
 699	return 0;
 700}
 701
 702static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 703{
 704	ssize_t ret;
 705	unsigned int freq;
 706
 707	freq = arch_freq_get_on_cpu(policy->cpu);
 708	if (freq)
 709		ret = sprintf(buf, "%u\n", freq);
 710	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 711		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 712	else
 713		ret = sprintf(buf, "%u\n", policy->cur);
 714	return ret;
 715}
 716
 717/*
 718 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 719 */
 720#define store_one(file_name, object)			\
 721static ssize_t store_##file_name					\
 722(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 723{									\
 724	unsigned long val;						\
 725	int ret;							\
 726									\
 727	ret = sscanf(buf, "%lu", &val);					\
 728	if (ret != 1)							\
 729		return -EINVAL;						\
 730									\
 731	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 732	return ret >= 0 ? count : ret;					\
 733}
 734
 735store_one(scaling_min_freq, min);
 736store_one(scaling_max_freq, max);
 737
 738/*
 739 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 740 */
 741static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 742					char *buf)
 743{
 744	unsigned int cur_freq = __cpufreq_get(policy);
 745
 746	if (cur_freq)
 747		return sprintf(buf, "%u\n", cur_freq);
 748
 749	return sprintf(buf, "<unknown>\n");
 750}
 751
 752/*
 753 * show_scaling_governor - show the current policy for the specified CPU
 754 */
 755static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 756{
 757	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 758		return sprintf(buf, "powersave\n");
 759	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 760		return sprintf(buf, "performance\n");
 761	else if (policy->governor)
 762		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 763				policy->governor->name);
 764	return -EINVAL;
 765}
 766
 767/*
 768 * store_scaling_governor - store policy for the specified CPU
 769 */
 770static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 771					const char *buf, size_t count)
 772{
 773	char str_governor[16];
 774	int ret;
 775
 776	ret = sscanf(buf, "%15s", str_governor);
 777	if (ret != 1)
 778		return -EINVAL;
 779
 780	if (cpufreq_driver->setpolicy) {
 781		unsigned int new_pol;
 782
 783		new_pol = cpufreq_parse_policy(str_governor);
 784		if (!new_pol)
 785			return -EINVAL;
 786
 787		ret = cpufreq_set_policy(policy, NULL, new_pol);
 788	} else {
 789		struct cpufreq_governor *new_gov;
 790
 791		new_gov = cpufreq_parse_governor(str_governor);
 792		if (!new_gov)
 793			return -EINVAL;
 794
 795		ret = cpufreq_set_policy(policy, new_gov,
 796					 CPUFREQ_POLICY_UNKNOWN);
 797
 798		module_put(new_gov->owner);
 799	}
 800
 801	return ret ? ret : count;
 802}
 803
 804/*
 805 * show_scaling_driver - show the cpufreq driver currently loaded
 806 */
 807static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 808{
 809	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 810}
 811
 812/*
 813 * show_scaling_available_governors - show the available CPUfreq governors
 814 */
 815static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 816						char *buf)
 817{
 818	ssize_t i = 0;
 819	struct cpufreq_governor *t;
 820
 821	if (!has_target()) {
 822		i += sprintf(buf, "performance powersave");
 823		goto out;
 824	}
 825
 826	mutex_lock(&cpufreq_governor_mutex);
 827	for_each_governor(t) {
 828		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 829		    - (CPUFREQ_NAME_LEN + 2)))
 830			break;
 831		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 832	}
 833	mutex_unlock(&cpufreq_governor_mutex);
 834out:
 835	i += sprintf(&buf[i], "\n");
 836	return i;
 837}
 838
 839ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 840{
 841	ssize_t i = 0;
 842	unsigned int cpu;
 843
 844	for_each_cpu(cpu, mask) {
 845		if (i)
 846			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 847		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 848		if (i >= (PAGE_SIZE - 5))
 849			break;
 850	}
 
 
 
 
 851	i += sprintf(&buf[i], "\n");
 852	return i;
 853}
 854EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 855
 856/*
 857 * show_related_cpus - show the CPUs affected by each transition even if
 858 * hw coordination is in use
 859 */
 860static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 861{
 862	return cpufreq_show_cpus(policy->related_cpus, buf);
 863}
 864
 865/*
 866 * show_affected_cpus - show the CPUs affected by each transition
 867 */
 868static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 869{
 870	return cpufreq_show_cpus(policy->cpus, buf);
 871}
 872
 873static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 874					const char *buf, size_t count)
 875{
 876	unsigned int freq = 0;
 877	unsigned int ret;
 878
 879	if (!policy->governor || !policy->governor->store_setspeed)
 880		return -EINVAL;
 881
 882	ret = sscanf(buf, "%u", &freq);
 883	if (ret != 1)
 884		return -EINVAL;
 885
 886	policy->governor->store_setspeed(policy, freq);
 887
 888	return count;
 889}
 890
 891static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 892{
 893	if (!policy->governor || !policy->governor->show_setspeed)
 894		return sprintf(buf, "<unsupported>\n");
 895
 896	return policy->governor->show_setspeed(policy, buf);
 897}
 898
 899/*
 900 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 901 */
 902static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 903{
 904	unsigned int limit;
 905	int ret;
 906	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 907	if (!ret)
 908		return sprintf(buf, "%u\n", limit);
 909	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 910}
 911
 912cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 913cpufreq_freq_attr_ro(cpuinfo_min_freq);
 914cpufreq_freq_attr_ro(cpuinfo_max_freq);
 915cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 916cpufreq_freq_attr_ro(scaling_available_governors);
 917cpufreq_freq_attr_ro(scaling_driver);
 918cpufreq_freq_attr_ro(scaling_cur_freq);
 919cpufreq_freq_attr_ro(bios_limit);
 920cpufreq_freq_attr_ro(related_cpus);
 921cpufreq_freq_attr_ro(affected_cpus);
 922cpufreq_freq_attr_rw(scaling_min_freq);
 923cpufreq_freq_attr_rw(scaling_max_freq);
 924cpufreq_freq_attr_rw(scaling_governor);
 925cpufreq_freq_attr_rw(scaling_setspeed);
 926
 927static struct attribute *default_attrs[] = {
 928	&cpuinfo_min_freq.attr,
 929	&cpuinfo_max_freq.attr,
 930	&cpuinfo_transition_latency.attr,
 931	&scaling_min_freq.attr,
 932	&scaling_max_freq.attr,
 933	&affected_cpus.attr,
 934	&related_cpus.attr,
 935	&scaling_governor.attr,
 936	&scaling_driver.attr,
 937	&scaling_available_governors.attr,
 938	&scaling_setspeed.attr,
 939	NULL
 940};
 
 941
 942#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 943#define to_attr(a) container_of(a, struct freq_attr, attr)
 944
 945static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 946{
 947	struct cpufreq_policy *policy = to_policy(kobj);
 948	struct freq_attr *fattr = to_attr(attr);
 949	ssize_t ret;
 950
 951	if (!fattr->show)
 952		return -EIO;
 953
 954	down_read(&policy->rwsem);
 955	ret = fattr->show(policy, buf);
 
 956	up_read(&policy->rwsem);
 957
 958	return ret;
 959}
 960
 961static ssize_t store(struct kobject *kobj, struct attribute *attr,
 962		     const char *buf, size_t count)
 963{
 964	struct cpufreq_policy *policy = to_policy(kobj);
 965	struct freq_attr *fattr = to_attr(attr);
 966	ssize_t ret = -EINVAL;
 967
 968	if (!fattr->store)
 969		return -EIO;
 970
 971	/*
 972	 * cpus_read_trylock() is used here to work around a circular lock
 973	 * dependency problem with respect to the cpufreq_register_driver().
 974	 */
 975	if (!cpus_read_trylock())
 976		return -EBUSY;
 977
 978	if (cpu_online(policy->cpu)) {
 979		down_write(&policy->rwsem);
 980		ret = fattr->store(policy, buf, count);
 981		up_write(&policy->rwsem);
 982	}
 983
 984	cpus_read_unlock();
 985
 986	return ret;
 987}
 988
 989static void cpufreq_sysfs_release(struct kobject *kobj)
 990{
 991	struct cpufreq_policy *policy = to_policy(kobj);
 992	pr_debug("last reference is dropped\n");
 993	complete(&policy->kobj_unregister);
 994}
 995
 996static const struct sysfs_ops sysfs_ops = {
 997	.show	= show,
 998	.store	= store,
 999};
1000
1001static struct kobj_type ktype_cpufreq = {
1002	.sysfs_ops	= &sysfs_ops,
1003	.default_attrs	= default_attrs,
1004	.release	= cpufreq_sysfs_release,
1005};
1006
1007static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
 
1008{
1009	struct device *dev = get_cpu_device(cpu);
1010
1011	if (unlikely(!dev))
1012		return;
1013
1014	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1015		return;
1016
1017	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1018	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1019		dev_err(dev, "cpufreq symlink creation failed\n");
1020}
1021
1022static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1023				   struct device *dev)
1024{
1025	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1026	sysfs_remove_link(&dev->kobj, "cpufreq");
 
1027}
1028
1029static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1030{
1031	struct freq_attr **drv_attr;
1032	int ret = 0;
1033
1034	/* set up files for this cpu device */
1035	drv_attr = cpufreq_driver->attr;
1036	while (drv_attr && *drv_attr) {
1037		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1038		if (ret)
1039			return ret;
1040		drv_attr++;
1041	}
1042	if (cpufreq_driver->get) {
1043		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1044		if (ret)
1045			return ret;
1046	}
1047
1048	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1049	if (ret)
1050		return ret;
1051
1052	if (cpufreq_driver->bios_limit) {
1053		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1054		if (ret)
1055			return ret;
1056	}
1057
 
 
 
 
 
 
1058	return 0;
1059}
1060
1061static int cpufreq_init_policy(struct cpufreq_policy *policy)
1062{
1063	struct cpufreq_governor *gov = NULL;
1064	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1065	int ret;
1066
1067	if (has_target()) {
1068		/* Update policy governor to the one used before hotplug. */
1069		gov = get_governor(policy->last_governor);
1070		if (gov) {
1071			pr_debug("Restoring governor %s for cpu %d\n",
1072				 gov->name, policy->cpu);
1073		} else {
1074			gov = get_governor(default_governor);
1075		}
1076
1077		if (!gov) {
1078			gov = cpufreq_default_governor();
1079			__module_get(gov->owner);
1080		}
1081
1082	} else {
1083
1084		/* Use the default policy if there is no last_policy. */
1085		if (policy->last_policy) {
1086			pol = policy->last_policy;
1087		} else {
1088			pol = cpufreq_parse_policy(default_governor);
1089			/*
1090			 * In case the default governor is neither "performance"
1091			 * nor "powersave", fall back to the initial policy
1092			 * value set by the driver.
1093			 */
1094			if (pol == CPUFREQ_POLICY_UNKNOWN)
1095				pol = policy->policy;
1096		}
1097		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1098		    pol != CPUFREQ_POLICY_POWERSAVE)
1099			return -ENODATA;
1100	}
1101
1102	ret = cpufreq_set_policy(policy, gov, pol);
1103	if (gov)
1104		module_put(gov->owner);
1105
1106	return ret;
1107}
1108
1109static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1110{
1111	int ret = 0;
1112
1113	/* Has this CPU been taken care of already? */
1114	if (cpumask_test_cpu(cpu, policy->cpus))
1115		return 0;
1116
1117	down_write(&policy->rwsem);
1118	if (has_target())
1119		cpufreq_stop_governor(policy);
1120
1121	cpumask_set_cpu(cpu, policy->cpus);
1122
1123	if (has_target()) {
1124		ret = cpufreq_start_governor(policy);
1125		if (ret)
1126			pr_err("%s: Failed to start governor\n", __func__);
1127	}
1128	up_write(&policy->rwsem);
1129	return ret;
1130}
1131
1132void refresh_frequency_limits(struct cpufreq_policy *policy)
1133{
1134	if (!policy_is_inactive(policy)) {
1135		pr_debug("updating policy for CPU %u\n", policy->cpu);
1136
1137		cpufreq_set_policy(policy, policy->governor, policy->policy);
1138	}
1139}
1140EXPORT_SYMBOL(refresh_frequency_limits);
1141
1142static void handle_update(struct work_struct *work)
1143{
1144	struct cpufreq_policy *policy =
1145		container_of(work, struct cpufreq_policy, update);
1146
1147	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1148	down_write(&policy->rwsem);
1149	refresh_frequency_limits(policy);
1150	up_write(&policy->rwsem);
1151}
1152
1153static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1154				void *data)
1155{
1156	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1157
1158	schedule_work(&policy->update);
1159	return 0;
1160}
1161
1162static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1163				void *data)
1164{
1165	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1166
1167	schedule_work(&policy->update);
1168	return 0;
1169}
1170
1171static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1172{
1173	struct kobject *kobj;
1174	struct completion *cmp;
1175
1176	down_write(&policy->rwsem);
1177	cpufreq_stats_free_table(policy);
1178	kobj = &policy->kobj;
1179	cmp = &policy->kobj_unregister;
1180	up_write(&policy->rwsem);
1181	kobject_put(kobj);
1182
1183	/*
1184	 * We need to make sure that the underlying kobj is
1185	 * actually not referenced anymore by anybody before we
1186	 * proceed with unloading.
1187	 */
1188	pr_debug("waiting for dropping of refcount\n");
1189	wait_for_completion(cmp);
1190	pr_debug("wait complete\n");
1191}
1192
1193static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1194{
1195	struct cpufreq_policy *policy;
1196	struct device *dev = get_cpu_device(cpu);
1197	int ret;
1198
1199	if (!dev)
1200		return NULL;
1201
1202	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1203	if (!policy)
1204		return NULL;
1205
1206	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1207		goto err_free_policy;
1208
1209	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1210		goto err_free_cpumask;
1211
1212	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1213		goto err_free_rcpumask;
1214
 
1215	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1216				   cpufreq_global_kobject, "policy%u", cpu);
1217	if (ret) {
1218		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1219		/*
1220		 * The entire policy object will be freed below, but the extra
1221		 * memory allocated for the kobject name needs to be freed by
1222		 * releasing the kobject.
1223		 */
1224		kobject_put(&policy->kobj);
1225		goto err_free_real_cpus;
1226	}
1227
1228	freq_constraints_init(&policy->constraints);
1229
1230	policy->nb_min.notifier_call = cpufreq_notifier_min;
1231	policy->nb_max.notifier_call = cpufreq_notifier_max;
1232
1233	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1234				    &policy->nb_min);
1235	if (ret) {
1236		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1237			ret, cpumask_pr_args(policy->cpus));
1238		goto err_kobj_remove;
1239	}
1240
1241	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1242				    &policy->nb_max);
1243	if (ret) {
1244		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1245			ret, cpumask_pr_args(policy->cpus));
1246		goto err_min_qos_notifier;
1247	}
1248
1249	INIT_LIST_HEAD(&policy->policy_list);
1250	init_rwsem(&policy->rwsem);
1251	spin_lock_init(&policy->transition_lock);
1252	init_waitqueue_head(&policy->transition_wait);
1253	init_completion(&policy->kobj_unregister);
1254	INIT_WORK(&policy->update, handle_update);
1255
1256	policy->cpu = cpu;
1257	return policy;
1258
1259err_min_qos_notifier:
1260	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1261				 &policy->nb_min);
1262err_kobj_remove:
1263	cpufreq_policy_put_kobj(policy);
1264err_free_real_cpus:
1265	free_cpumask_var(policy->real_cpus);
1266err_free_rcpumask:
1267	free_cpumask_var(policy->related_cpus);
1268err_free_cpumask:
1269	free_cpumask_var(policy->cpus);
1270err_free_policy:
1271	kfree(policy);
1272
1273	return NULL;
1274}
1275
1276static void cpufreq_policy_free(struct cpufreq_policy *policy)
1277{
1278	unsigned long flags;
1279	int cpu;
1280
 
 
 
 
 
 
 
1281	/* Remove policy from list */
1282	write_lock_irqsave(&cpufreq_driver_lock, flags);
1283	list_del(&policy->policy_list);
1284
1285	for_each_cpu(cpu, policy->related_cpus)
1286		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1287	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1288
1289	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1290				 &policy->nb_max);
1291	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1292				 &policy->nb_min);
1293
1294	/* Cancel any pending policy->update work before freeing the policy. */
1295	cancel_work_sync(&policy->update);
1296
1297	if (policy->max_freq_req) {
1298		/*
1299		 * CPUFREQ_CREATE_POLICY notification is sent only after
1300		 * successfully adding max_freq_req request.
 
1301		 */
1302		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1303					     CPUFREQ_REMOVE_POLICY, policy);
1304		freq_qos_remove_request(policy->max_freq_req);
1305	}
1306
1307	freq_qos_remove_request(policy->min_freq_req);
1308	kfree(policy->min_freq_req);
1309
1310	cpufreq_policy_put_kobj(policy);
1311	free_cpumask_var(policy->real_cpus);
1312	free_cpumask_var(policy->related_cpus);
1313	free_cpumask_var(policy->cpus);
1314	kfree(policy);
1315}
1316
1317static int cpufreq_online(unsigned int cpu)
1318{
1319	struct cpufreq_policy *policy;
1320	bool new_policy;
1321	unsigned long flags;
1322	unsigned int j;
1323	int ret;
1324
1325	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1326
1327	/* Check if this CPU already has a policy to manage it */
1328	policy = per_cpu(cpufreq_cpu_data, cpu);
1329	if (policy) {
1330		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1331		if (!policy_is_inactive(policy))
1332			return cpufreq_add_policy_cpu(policy, cpu);
1333
1334		/* This is the only online CPU for the policy.  Start over. */
1335		new_policy = false;
1336		down_write(&policy->rwsem);
1337		policy->cpu = cpu;
1338		policy->governor = NULL;
1339		up_write(&policy->rwsem);
1340	} else {
1341		new_policy = true;
1342		policy = cpufreq_policy_alloc(cpu);
1343		if (!policy)
1344			return -ENOMEM;
 
1345	}
1346
1347	if (!new_policy && cpufreq_driver->online) {
 
 
 
1348		ret = cpufreq_driver->online(policy);
1349		if (ret) {
1350			pr_debug("%s: %d: initialization failed\n", __func__,
1351				 __LINE__);
1352			goto out_exit_policy;
1353		}
1354
1355		/* Recover policy->cpus using related_cpus */
1356		cpumask_copy(policy->cpus, policy->related_cpus);
1357	} else {
1358		cpumask_copy(policy->cpus, cpumask_of(cpu));
1359
1360		/*
1361		 * Call driver. From then on the cpufreq must be able
1362		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1363		 */
1364		ret = cpufreq_driver->init(policy);
1365		if (ret) {
1366			pr_debug("%s: %d: initialization failed\n", __func__,
1367				 __LINE__);
1368			goto out_free_policy;
1369		}
1370
1371		/*
1372		 * The initialization has succeeded and the policy is online.
1373		 * If there is a problem with its frequency table, take it
1374		 * offline and drop it.
1375		 */
1376		ret = cpufreq_table_validate_and_sort(policy);
1377		if (ret)
1378			goto out_offline_policy;
1379
1380		/* related_cpus should at least include policy->cpus. */
1381		cpumask_copy(policy->related_cpus, policy->cpus);
1382	}
1383
1384	down_write(&policy->rwsem);
1385	/*
1386	 * affected cpus must always be the one, which are online. We aren't
1387	 * managing offline cpus here.
1388	 */
1389	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1390
1391	if (new_policy) {
1392		for_each_cpu(j, policy->related_cpus) {
1393			per_cpu(cpufreq_cpu_data, j) = policy;
1394			add_cpu_dev_symlink(policy, j);
1395		}
1396
1397		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1398					       GFP_KERNEL);
1399		if (!policy->min_freq_req) {
1400			ret = -ENOMEM;
1401			goto out_destroy_policy;
1402		}
1403
1404		ret = freq_qos_add_request(&policy->constraints,
1405					   policy->min_freq_req, FREQ_QOS_MIN,
1406					   policy->min);
1407		if (ret < 0) {
1408			/*
1409			 * So we don't call freq_qos_remove_request() for an
1410			 * uninitialized request.
1411			 */
1412			kfree(policy->min_freq_req);
1413			policy->min_freq_req = NULL;
1414			goto out_destroy_policy;
1415		}
1416
1417		/*
1418		 * This must be initialized right here to avoid calling
1419		 * freq_qos_remove_request() on uninitialized request in case
1420		 * of errors.
1421		 */
1422		policy->max_freq_req = policy->min_freq_req + 1;
1423
1424		ret = freq_qos_add_request(&policy->constraints,
1425					   policy->max_freq_req, FREQ_QOS_MAX,
1426					   policy->max);
1427		if (ret < 0) {
1428			policy->max_freq_req = NULL;
1429			goto out_destroy_policy;
1430		}
1431
1432		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1433				CPUFREQ_CREATE_POLICY, policy);
1434	}
1435
1436	if (cpufreq_driver->get && has_target()) {
1437		policy->cur = cpufreq_driver->get(policy->cpu);
1438		if (!policy->cur) {
1439			ret = -EIO;
1440			pr_err("%s: ->get() failed\n", __func__);
1441			goto out_destroy_policy;
1442		}
1443	}
1444
1445	/*
1446	 * Sometimes boot loaders set CPU frequency to a value outside of
1447	 * frequency table present with cpufreq core. In such cases CPU might be
1448	 * unstable if it has to run on that frequency for long duration of time
1449	 * and so its better to set it to a frequency which is specified in
1450	 * freq-table. This also makes cpufreq stats inconsistent as
1451	 * cpufreq-stats would fail to register because current frequency of CPU
1452	 * isn't found in freq-table.
1453	 *
1454	 * Because we don't want this change to effect boot process badly, we go
1455	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1456	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1457	 * is initialized to zero).
1458	 *
1459	 * We are passing target-freq as "policy->cur - 1" otherwise
1460	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1461	 * equal to target-freq.
1462	 */
1463	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1464	    && has_target()) {
1465		unsigned int old_freq = policy->cur;
1466
1467		/* Are we running at unknown frequency ? */
1468		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1469		if (ret == -EINVAL) {
1470			ret = __cpufreq_driver_target(policy, old_freq - 1,
1471						      CPUFREQ_RELATION_L);
1472
1473			/*
1474			 * Reaching here after boot in a few seconds may not
1475			 * mean that system will remain stable at "unknown"
1476			 * frequency for longer duration. Hence, a BUG_ON().
1477			 */
1478			BUG_ON(ret);
1479			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1480				__func__, policy->cpu, old_freq, policy->cur);
1481		}
1482	}
1483
1484	if (new_policy) {
1485		ret = cpufreq_add_dev_interface(policy);
1486		if (ret)
1487			goto out_destroy_policy;
1488
1489		cpufreq_stats_create_table(policy);
1490
1491		write_lock_irqsave(&cpufreq_driver_lock, flags);
1492		list_add(&policy->policy_list, &cpufreq_policy_list);
1493		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1494	}
1495
1496	ret = cpufreq_init_policy(policy);
1497	if (ret) {
1498		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1499		       __func__, cpu, ret);
1500		goto out_destroy_policy;
1501	}
1502
1503	up_write(&policy->rwsem);
1504
1505	kobject_uevent(&policy->kobj, KOBJ_ADD);
1506
1507	/* Callback for handling stuff after policy is ready */
1508	if (cpufreq_driver->ready)
1509		cpufreq_driver->ready(policy);
1510
1511	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1512		policy->cdev = of_cpufreq_cooling_register(policy);
1513
1514	pr_debug("initialization complete\n");
1515
1516	return 0;
1517
1518out_destroy_policy:
1519	for_each_cpu(j, policy->real_cpus)
1520		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1521
1522	up_write(&policy->rwsem);
1523
1524out_offline_policy:
1525	if (cpufreq_driver->offline)
1526		cpufreq_driver->offline(policy);
1527
1528out_exit_policy:
1529	if (cpufreq_driver->exit)
1530		cpufreq_driver->exit(policy);
1531
1532out_free_policy:
 
 
 
1533	cpufreq_policy_free(policy);
1534	return ret;
1535}
1536
1537/**
1538 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1539 * @dev: CPU device.
1540 * @sif: Subsystem interface structure pointer (not used)
1541 */
1542static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1543{
1544	struct cpufreq_policy *policy;
1545	unsigned cpu = dev->id;
1546	int ret;
1547
1548	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1549
1550	if (cpu_online(cpu)) {
1551		ret = cpufreq_online(cpu);
1552		if (ret)
1553			return ret;
1554	}
1555
1556	/* Create sysfs link on CPU registration */
1557	policy = per_cpu(cpufreq_cpu_data, cpu);
1558	if (policy)
1559		add_cpu_dev_symlink(policy, cpu);
1560
1561	return 0;
1562}
1563
1564static int cpufreq_offline(unsigned int cpu)
1565{
1566	struct cpufreq_policy *policy;
1567	int ret;
1568
1569	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1570
1571	policy = cpufreq_cpu_get_raw(cpu);
1572	if (!policy) {
1573		pr_debug("%s: No cpu_data found\n", __func__);
1574		return 0;
1575	}
1576
1577	down_write(&policy->rwsem);
1578	if (has_target())
1579		cpufreq_stop_governor(policy);
1580
1581	cpumask_clear_cpu(cpu, policy->cpus);
1582
1583	if (policy_is_inactive(policy)) {
1584		if (has_target())
1585			strncpy(policy->last_governor, policy->governor->name,
1586				CPUFREQ_NAME_LEN);
1587		else
1588			policy->last_policy = policy->policy;
1589	} else if (cpu == policy->cpu) {
1590		/* Nominate new CPU */
1591		policy->cpu = cpumask_any(policy->cpus);
1592	}
1593
1594	/* Start governor again for active policy */
1595	if (!policy_is_inactive(policy)) {
1596		if (has_target()) {
1597			ret = cpufreq_start_governor(policy);
1598			if (ret)
1599				pr_err("%s: Failed to start governor\n", __func__);
1600		}
1601
1602		goto unlock;
1603	}
1604
 
 
 
 
 
 
1605	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1606		cpufreq_cooling_unregister(policy->cdev);
1607		policy->cdev = NULL;
1608	}
1609
1610	if (has_target())
1611		cpufreq_exit_governor(policy);
1612
1613	/*
1614	 * Perform the ->offline() during light-weight tear-down, as
1615	 * that allows fast recovery when the CPU comes back.
1616	 */
1617	if (cpufreq_driver->offline) {
1618		cpufreq_driver->offline(policy);
1619	} else if (cpufreq_driver->exit) {
1620		cpufreq_driver->exit(policy);
1621		policy->freq_table = NULL;
1622	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623
1624unlock:
1625	up_write(&policy->rwsem);
1626	return 0;
1627}
1628
1629/*
1630 * cpufreq_remove_dev - remove a CPU device
1631 *
1632 * Removes the cpufreq interface for a CPU device.
1633 */
1634static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1635{
1636	unsigned int cpu = dev->id;
1637	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1638
1639	if (!policy)
1640		return;
1641
 
 
1642	if (cpu_online(cpu))
1643		cpufreq_offline(cpu);
 
 
 
 
 
 
 
1644
1645	cpumask_clear_cpu(cpu, policy->real_cpus);
1646	remove_cpu_dev_symlink(policy, dev);
 
1647
1648	if (cpumask_empty(policy->real_cpus)) {
1649		/* We did light-weight exit earlier, do full tear down now */
1650		if (cpufreq_driver->offline)
1651			cpufreq_driver->exit(policy);
1652
1653		cpufreq_policy_free(policy);
1654	}
1655}
1656
1657/**
1658 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1659 * @policy: Policy managing CPUs.
1660 * @new_freq: New CPU frequency.
1661 *
1662 * Adjust to the current frequency first and clean up later by either calling
1663 * cpufreq_update_policy(), or scheduling handle_update().
1664 */
1665static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1666				unsigned int new_freq)
1667{
1668	struct cpufreq_freqs freqs;
1669
1670	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1671		 policy->cur, new_freq);
1672
1673	freqs.old = policy->cur;
1674	freqs.new = new_freq;
1675
1676	cpufreq_freq_transition_begin(policy, &freqs);
1677	cpufreq_freq_transition_end(policy, &freqs, 0);
1678}
1679
1680static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1681{
1682	unsigned int new_freq;
1683
1684	new_freq = cpufreq_driver->get(policy->cpu);
1685	if (!new_freq)
1686		return 0;
1687
1688	/*
1689	 * If fast frequency switching is used with the given policy, the check
1690	 * against policy->cur is pointless, so skip it in that case.
1691	 */
1692	if (policy->fast_switch_enabled || !has_target())
1693		return new_freq;
1694
1695	if (policy->cur != new_freq) {
 
 
 
 
 
 
 
 
 
 
1696		cpufreq_out_of_sync(policy, new_freq);
1697		if (update)
1698			schedule_work(&policy->update);
1699	}
1700
1701	return new_freq;
1702}
1703
1704/**
1705 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1706 * @cpu: CPU number
1707 *
1708 * This is the last known freq, without actually getting it from the driver.
1709 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1710 */
1711unsigned int cpufreq_quick_get(unsigned int cpu)
1712{
1713	struct cpufreq_policy *policy;
1714	unsigned int ret_freq = 0;
1715	unsigned long flags;
1716
1717	read_lock_irqsave(&cpufreq_driver_lock, flags);
1718
1719	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1720		ret_freq = cpufreq_driver->get(cpu);
1721		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1722		return ret_freq;
1723	}
1724
1725	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1726
1727	policy = cpufreq_cpu_get(cpu);
1728	if (policy) {
1729		ret_freq = policy->cur;
1730		cpufreq_cpu_put(policy);
1731	}
1732
1733	return ret_freq;
1734}
1735EXPORT_SYMBOL(cpufreq_quick_get);
1736
1737/**
1738 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1739 * @cpu: CPU number
1740 *
1741 * Just return the max possible frequency for a given CPU.
1742 */
1743unsigned int cpufreq_quick_get_max(unsigned int cpu)
1744{
1745	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1746	unsigned int ret_freq = 0;
1747
1748	if (policy) {
1749		ret_freq = policy->max;
1750		cpufreq_cpu_put(policy);
1751	}
1752
1753	return ret_freq;
1754}
1755EXPORT_SYMBOL(cpufreq_quick_get_max);
1756
1757/**
1758 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1759 * @cpu: CPU number
1760 *
1761 * The default return value is the max_freq field of cpuinfo.
1762 */
1763__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1764{
1765	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1766	unsigned int ret_freq = 0;
1767
1768	if (policy) {
1769		ret_freq = policy->cpuinfo.max_freq;
1770		cpufreq_cpu_put(policy);
1771	}
1772
1773	return ret_freq;
1774}
1775EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1776
1777static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1778{
1779	if (unlikely(policy_is_inactive(policy)))
1780		return 0;
1781
1782	return cpufreq_verify_current_freq(policy, true);
1783}
1784
1785/**
1786 * cpufreq_get - get the current CPU frequency (in kHz)
1787 * @cpu: CPU number
1788 *
1789 * Get the CPU current (static) CPU frequency
1790 */
1791unsigned int cpufreq_get(unsigned int cpu)
1792{
1793	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1794	unsigned int ret_freq = 0;
1795
1796	if (policy) {
1797		down_read(&policy->rwsem);
1798		if (cpufreq_driver->get)
1799			ret_freq = __cpufreq_get(policy);
1800		up_read(&policy->rwsem);
1801
1802		cpufreq_cpu_put(policy);
1803	}
1804
1805	return ret_freq;
1806}
1807EXPORT_SYMBOL(cpufreq_get);
1808
1809static struct subsys_interface cpufreq_interface = {
1810	.name		= "cpufreq",
1811	.subsys		= &cpu_subsys,
1812	.add_dev	= cpufreq_add_dev,
1813	.remove_dev	= cpufreq_remove_dev,
1814};
1815
1816/*
1817 * In case platform wants some specific frequency to be configured
1818 * during suspend..
1819 */
1820int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1821{
1822	int ret;
1823
1824	if (!policy->suspend_freq) {
1825		pr_debug("%s: suspend_freq not defined\n", __func__);
1826		return 0;
1827	}
1828
1829	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1830			policy->suspend_freq);
1831
1832	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1833			CPUFREQ_RELATION_H);
1834	if (ret)
1835		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1836				__func__, policy->suspend_freq, ret);
1837
1838	return ret;
1839}
1840EXPORT_SYMBOL(cpufreq_generic_suspend);
1841
1842/**
1843 * cpufreq_suspend() - Suspend CPUFreq governors.
1844 *
1845 * Called during system wide Suspend/Hibernate cycles for suspending governors
1846 * as some platforms can't change frequency after this point in suspend cycle.
1847 * Because some of the devices (like: i2c, regulators, etc) they use for
1848 * changing frequency are suspended quickly after this point.
1849 */
1850void cpufreq_suspend(void)
1851{
1852	struct cpufreq_policy *policy;
1853
1854	if (!cpufreq_driver)
1855		return;
1856
1857	if (!has_target() && !cpufreq_driver->suspend)
1858		goto suspend;
1859
1860	pr_debug("%s: Suspending Governors\n", __func__);
1861
1862	for_each_active_policy(policy) {
1863		if (has_target()) {
1864			down_write(&policy->rwsem);
1865			cpufreq_stop_governor(policy);
1866			up_write(&policy->rwsem);
1867		}
1868
1869		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1870			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1871				cpufreq_driver->name);
1872	}
1873
1874suspend:
1875	cpufreq_suspended = true;
1876}
1877
1878/**
1879 * cpufreq_resume() - Resume CPUFreq governors.
1880 *
1881 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1882 * are suspended with cpufreq_suspend().
1883 */
1884void cpufreq_resume(void)
1885{
1886	struct cpufreq_policy *policy;
1887	int ret;
1888
1889	if (!cpufreq_driver)
1890		return;
1891
1892	if (unlikely(!cpufreq_suspended))
1893		return;
1894
1895	cpufreq_suspended = false;
1896
1897	if (!has_target() && !cpufreq_driver->resume)
1898		return;
1899
1900	pr_debug("%s: Resuming Governors\n", __func__);
1901
1902	for_each_active_policy(policy) {
1903		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1904			pr_err("%s: Failed to resume driver: %p\n", __func__,
1905				policy);
1906		} else if (has_target()) {
1907			down_write(&policy->rwsem);
1908			ret = cpufreq_start_governor(policy);
1909			up_write(&policy->rwsem);
1910
1911			if (ret)
1912				pr_err("%s: Failed to start governor for policy: %p\n",
1913				       __func__, policy);
1914		}
1915	}
1916}
1917
1918/**
1919 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1920 * @flags: Flags to test against the current cpufreq driver's flags.
1921 *
1922 * Assumes that the driver is there, so callers must ensure that this is the
1923 * case.
1924 */
1925bool cpufreq_driver_test_flags(u16 flags)
1926{
1927	return !!(cpufreq_driver->flags & flags);
1928}
1929
1930/**
1931 * cpufreq_get_current_driver - Return the current driver's name.
1932 *
1933 * Return the name string of the currently registered cpufreq driver or NULL if
1934 * none.
1935 */
1936const char *cpufreq_get_current_driver(void)
1937{
1938	if (cpufreq_driver)
1939		return cpufreq_driver->name;
1940
1941	return NULL;
1942}
1943EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1944
1945/**
1946 * cpufreq_get_driver_data - Return current driver data.
1947 *
1948 * Return the private data of the currently registered cpufreq driver, or NULL
1949 * if no cpufreq driver has been registered.
1950 */
1951void *cpufreq_get_driver_data(void)
1952{
1953	if (cpufreq_driver)
1954		return cpufreq_driver->driver_data;
1955
1956	return NULL;
1957}
1958EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1959
1960/*********************************************************************
1961 *                     NOTIFIER LISTS INTERFACE                      *
1962 *********************************************************************/
1963
1964/**
1965 * cpufreq_register_notifier - Register a notifier with cpufreq.
1966 * @nb: notifier function to register.
1967 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
1968 *
1969 * Add a notifier to one of two lists: either a list of notifiers that run on
1970 * clock rate changes (once before and once after every transition), or a list
1971 * of notifiers that ron on cpufreq policy changes.
1972 *
1973 * This function may sleep and it has the same return values as
1974 * blocking_notifier_chain_register().
1975 */
1976int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1977{
1978	int ret;
1979
1980	if (cpufreq_disabled())
1981		return -EINVAL;
1982
1983	switch (list) {
1984	case CPUFREQ_TRANSITION_NOTIFIER:
1985		mutex_lock(&cpufreq_fast_switch_lock);
1986
1987		if (cpufreq_fast_switch_count > 0) {
1988			mutex_unlock(&cpufreq_fast_switch_lock);
1989			return -EBUSY;
1990		}
1991		ret = srcu_notifier_chain_register(
1992				&cpufreq_transition_notifier_list, nb);
1993		if (!ret)
1994			cpufreq_fast_switch_count--;
1995
1996		mutex_unlock(&cpufreq_fast_switch_lock);
1997		break;
1998	case CPUFREQ_POLICY_NOTIFIER:
1999		ret = blocking_notifier_chain_register(
2000				&cpufreq_policy_notifier_list, nb);
2001		break;
2002	default:
2003		ret = -EINVAL;
2004	}
2005
2006	return ret;
2007}
2008EXPORT_SYMBOL(cpufreq_register_notifier);
2009
2010/**
2011 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2012 * @nb: notifier block to be unregistered.
2013 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2014 *
2015 * Remove a notifier from one of the cpufreq notifier lists.
2016 *
2017 * This function may sleep and it has the same return values as
2018 * blocking_notifier_chain_unregister().
2019 */
2020int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2021{
2022	int ret;
2023
2024	if (cpufreq_disabled())
2025		return -EINVAL;
2026
2027	switch (list) {
2028	case CPUFREQ_TRANSITION_NOTIFIER:
2029		mutex_lock(&cpufreq_fast_switch_lock);
2030
2031		ret = srcu_notifier_chain_unregister(
2032				&cpufreq_transition_notifier_list, nb);
2033		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2034			cpufreq_fast_switch_count++;
2035
2036		mutex_unlock(&cpufreq_fast_switch_lock);
2037		break;
2038	case CPUFREQ_POLICY_NOTIFIER:
2039		ret = blocking_notifier_chain_unregister(
2040				&cpufreq_policy_notifier_list, nb);
2041		break;
2042	default:
2043		ret = -EINVAL;
2044	}
2045
2046	return ret;
2047}
2048EXPORT_SYMBOL(cpufreq_unregister_notifier);
2049
2050
2051/*********************************************************************
2052 *                              GOVERNORS                            *
2053 *********************************************************************/
2054
2055/**
2056 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2057 * @policy: cpufreq policy to switch the frequency for.
2058 * @target_freq: New frequency to set (may be approximate).
2059 *
2060 * Carry out a fast frequency switch without sleeping.
2061 *
2062 * The driver's ->fast_switch() callback invoked by this function must be
2063 * suitable for being called from within RCU-sched read-side critical sections
2064 * and it is expected to select the minimum available frequency greater than or
2065 * equal to @target_freq (CPUFREQ_RELATION_L).
2066 *
2067 * This function must not be called if policy->fast_switch_enabled is unset.
2068 *
2069 * Governors calling this function must guarantee that it will never be invoked
2070 * twice in parallel for the same policy and that it will never be called in
2071 * parallel with either ->target() or ->target_index() for the same policy.
2072 *
2073 * Returns the actual frequency set for the CPU.
2074 *
2075 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2076 * error condition, the hardware configuration must be preserved.
2077 */
2078unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2079					unsigned int target_freq)
2080{
2081	unsigned int freq;
2082	int cpu;
2083
2084	target_freq = clamp_val(target_freq, policy->min, policy->max);
2085	freq = cpufreq_driver->fast_switch(policy, target_freq);
2086
2087	if (!freq)
2088		return 0;
2089
2090	policy->cur = freq;
2091	arch_set_freq_scale(policy->related_cpus, freq,
2092			    policy->cpuinfo.max_freq);
2093	cpufreq_stats_record_transition(policy, freq);
2094
2095	if (trace_cpu_frequency_enabled()) {
2096		for_each_cpu(cpu, policy->cpus)
2097			trace_cpu_frequency(freq, cpu);
2098	}
2099
2100	return freq;
2101}
2102EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2103
2104/**
2105 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2106 * @cpu: Target CPU.
2107 * @min_perf: Minimum (required) performance level (units of @capacity).
2108 * @target_perf: Target (desired) performance level (units of @capacity).
2109 * @capacity: Capacity of the target CPU.
2110 *
2111 * Carry out a fast performance level switch of @cpu without sleeping.
2112 *
2113 * The driver's ->adjust_perf() callback invoked by this function must be
2114 * suitable for being called from within RCU-sched read-side critical sections
2115 * and it is expected to select a suitable performance level equal to or above
2116 * @min_perf and preferably equal to or below @target_perf.
2117 *
2118 * This function must not be called if policy->fast_switch_enabled is unset.
2119 *
2120 * Governors calling this function must guarantee that it will never be invoked
2121 * twice in parallel for the same CPU and that it will never be called in
2122 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2123 * the same CPU.
2124 */
2125void cpufreq_driver_adjust_perf(unsigned int cpu,
2126				 unsigned long min_perf,
2127				 unsigned long target_perf,
2128				 unsigned long capacity)
2129{
2130	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2131}
2132
2133/**
2134 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2135 *
2136 * Return 'true' if the ->adjust_perf callback is present for the
2137 * current driver or 'false' otherwise.
2138 */
2139bool cpufreq_driver_has_adjust_perf(void)
2140{
2141	return !!cpufreq_driver->adjust_perf;
2142}
2143
2144/* Must set freqs->new to intermediate frequency */
2145static int __target_intermediate(struct cpufreq_policy *policy,
2146				 struct cpufreq_freqs *freqs, int index)
2147{
2148	int ret;
2149
2150	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2151
2152	/* We don't need to switch to intermediate freq */
2153	if (!freqs->new)
2154		return 0;
2155
2156	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2157		 __func__, policy->cpu, freqs->old, freqs->new);
2158
2159	cpufreq_freq_transition_begin(policy, freqs);
2160	ret = cpufreq_driver->target_intermediate(policy, index);
2161	cpufreq_freq_transition_end(policy, freqs, ret);
2162
2163	if (ret)
2164		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2165		       __func__, ret);
2166
2167	return ret;
2168}
2169
2170static int __target_index(struct cpufreq_policy *policy, int index)
2171{
2172	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2173	unsigned int restore_freq, intermediate_freq = 0;
2174	unsigned int newfreq = policy->freq_table[index].frequency;
2175	int retval = -EINVAL;
2176	bool notify;
2177
2178	if (newfreq == policy->cur)
2179		return 0;
2180
2181	/* Save last value to restore later on errors */
2182	restore_freq = policy->cur;
2183
2184	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2185	if (notify) {
2186		/* Handle switching to intermediate frequency */
2187		if (cpufreq_driver->get_intermediate) {
2188			retval = __target_intermediate(policy, &freqs, index);
2189			if (retval)
2190				return retval;
2191
2192			intermediate_freq = freqs.new;
2193			/* Set old freq to intermediate */
2194			if (intermediate_freq)
2195				freqs.old = freqs.new;
2196		}
2197
2198		freqs.new = newfreq;
2199		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2200			 __func__, policy->cpu, freqs.old, freqs.new);
2201
2202		cpufreq_freq_transition_begin(policy, &freqs);
2203	}
2204
2205	retval = cpufreq_driver->target_index(policy, index);
2206	if (retval)
2207		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2208		       retval);
2209
2210	if (notify) {
2211		cpufreq_freq_transition_end(policy, &freqs, retval);
2212
2213		/*
2214		 * Failed after setting to intermediate freq? Driver should have
2215		 * reverted back to initial frequency and so should we. Check
2216		 * here for intermediate_freq instead of get_intermediate, in
2217		 * case we haven't switched to intermediate freq at all.
2218		 */
2219		if (unlikely(retval && intermediate_freq)) {
2220			freqs.old = intermediate_freq;
2221			freqs.new = restore_freq;
2222			cpufreq_freq_transition_begin(policy, &freqs);
2223			cpufreq_freq_transition_end(policy, &freqs, 0);
2224		}
2225	}
2226
2227	return retval;
2228}
2229
2230int __cpufreq_driver_target(struct cpufreq_policy *policy,
2231			    unsigned int target_freq,
2232			    unsigned int relation)
2233{
2234	unsigned int old_target_freq = target_freq;
2235
2236	if (cpufreq_disabled())
2237		return -ENODEV;
2238
2239	target_freq = __resolve_freq(policy, target_freq, relation);
2240
2241	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2242		 policy->cpu, target_freq, relation, old_target_freq);
2243
2244	/*
2245	 * This might look like a redundant call as we are checking it again
2246	 * after finding index. But it is left intentionally for cases where
2247	 * exactly same freq is called again and so we can save on few function
2248	 * calls.
2249	 */
2250	if (target_freq == policy->cur &&
2251	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2252		return 0;
2253
2254	if (cpufreq_driver->target)
 
 
 
 
 
 
 
2255		return cpufreq_driver->target(policy, target_freq, relation);
 
2256
2257	if (!cpufreq_driver->target_index)
2258		return -EINVAL;
2259
2260	return __target_index(policy, policy->cached_resolved_idx);
2261}
2262EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2263
2264int cpufreq_driver_target(struct cpufreq_policy *policy,
2265			  unsigned int target_freq,
2266			  unsigned int relation)
2267{
2268	int ret;
2269
2270	down_write(&policy->rwsem);
2271
2272	ret = __cpufreq_driver_target(policy, target_freq, relation);
2273
2274	up_write(&policy->rwsem);
2275
2276	return ret;
2277}
2278EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2279
2280__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2281{
2282	return NULL;
2283}
2284
2285static int cpufreq_init_governor(struct cpufreq_policy *policy)
2286{
2287	int ret;
2288
2289	/* Don't start any governor operations if we are entering suspend */
2290	if (cpufreq_suspended)
2291		return 0;
2292	/*
2293	 * Governor might not be initiated here if ACPI _PPC changed
2294	 * notification happened, so check it.
2295	 */
2296	if (!policy->governor)
2297		return -EINVAL;
2298
2299	/* Platform doesn't want dynamic frequency switching ? */
2300	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2301	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2302		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2303
2304		if (gov) {
2305			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2306				policy->governor->name, gov->name);
2307			policy->governor = gov;
2308		} else {
2309			return -EINVAL;
2310		}
2311	}
2312
2313	if (!try_module_get(policy->governor->owner))
2314		return -EINVAL;
2315
2316	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2317
2318	if (policy->governor->init) {
2319		ret = policy->governor->init(policy);
2320		if (ret) {
2321			module_put(policy->governor->owner);
2322			return ret;
2323		}
2324	}
2325
2326	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2327
2328	return 0;
2329}
2330
2331static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2332{
2333	if (cpufreq_suspended || !policy->governor)
2334		return;
2335
2336	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2337
2338	if (policy->governor->exit)
2339		policy->governor->exit(policy);
2340
2341	module_put(policy->governor->owner);
2342}
2343
2344int cpufreq_start_governor(struct cpufreq_policy *policy)
2345{
2346	int ret;
2347
2348	if (cpufreq_suspended)
2349		return 0;
2350
2351	if (!policy->governor)
2352		return -EINVAL;
2353
2354	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2355
2356	if (cpufreq_driver->get)
2357		cpufreq_verify_current_freq(policy, false);
2358
2359	if (policy->governor->start) {
2360		ret = policy->governor->start(policy);
2361		if (ret)
2362			return ret;
2363	}
2364
2365	if (policy->governor->limits)
2366		policy->governor->limits(policy);
2367
2368	return 0;
2369}
2370
2371void cpufreq_stop_governor(struct cpufreq_policy *policy)
2372{
2373	if (cpufreq_suspended || !policy->governor)
2374		return;
2375
2376	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2377
2378	if (policy->governor->stop)
2379		policy->governor->stop(policy);
2380}
2381
2382static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2383{
2384	if (cpufreq_suspended || !policy->governor)
2385		return;
2386
2387	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2388
2389	if (policy->governor->limits)
2390		policy->governor->limits(policy);
2391}
2392
2393int cpufreq_register_governor(struct cpufreq_governor *governor)
2394{
2395	int err;
2396
2397	if (!governor)
2398		return -EINVAL;
2399
2400	if (cpufreq_disabled())
2401		return -ENODEV;
2402
2403	mutex_lock(&cpufreq_governor_mutex);
2404
2405	err = -EBUSY;
2406	if (!find_governor(governor->name)) {
2407		err = 0;
2408		list_add(&governor->governor_list, &cpufreq_governor_list);
2409	}
2410
2411	mutex_unlock(&cpufreq_governor_mutex);
2412	return err;
2413}
2414EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2415
2416void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2417{
2418	struct cpufreq_policy *policy;
2419	unsigned long flags;
2420
2421	if (!governor)
2422		return;
2423
2424	if (cpufreq_disabled())
2425		return;
2426
2427	/* clear last_governor for all inactive policies */
2428	read_lock_irqsave(&cpufreq_driver_lock, flags);
2429	for_each_inactive_policy(policy) {
2430		if (!strcmp(policy->last_governor, governor->name)) {
2431			policy->governor = NULL;
2432			strcpy(policy->last_governor, "\0");
2433		}
2434	}
2435	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2436
2437	mutex_lock(&cpufreq_governor_mutex);
2438	list_del(&governor->governor_list);
2439	mutex_unlock(&cpufreq_governor_mutex);
2440}
2441EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2442
2443
2444/*********************************************************************
2445 *                          POLICY INTERFACE                         *
2446 *********************************************************************/
2447
2448/**
2449 * cpufreq_get_policy - get the current cpufreq_policy
2450 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2451 *	is written
2452 * @cpu: CPU to find the policy for
2453 *
2454 * Reads the current cpufreq policy.
2455 */
2456int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2457{
2458	struct cpufreq_policy *cpu_policy;
2459	if (!policy)
2460		return -EINVAL;
2461
2462	cpu_policy = cpufreq_cpu_get(cpu);
2463	if (!cpu_policy)
2464		return -EINVAL;
2465
2466	memcpy(policy, cpu_policy, sizeof(*policy));
2467
2468	cpufreq_cpu_put(cpu_policy);
2469	return 0;
2470}
2471EXPORT_SYMBOL(cpufreq_get_policy);
2472
2473/**
2474 * cpufreq_set_policy - Modify cpufreq policy parameters.
2475 * @policy: Policy object to modify.
2476 * @new_gov: Policy governor pointer.
2477 * @new_pol: Policy value (for drivers with built-in governors).
2478 *
2479 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2480 * limits to be set for the policy, update @policy with the verified limits
2481 * values and either invoke the driver's ->setpolicy() callback (if present) or
2482 * carry out a governor update for @policy.  That is, run the current governor's
2483 * ->limits() callback (if @new_gov points to the same object as the one in
2484 * @policy) or replace the governor for @policy with @new_gov.
2485 *
2486 * The cpuinfo part of @policy is not updated by this function.
2487 */
2488static int cpufreq_set_policy(struct cpufreq_policy *policy,
2489			      struct cpufreq_governor *new_gov,
2490			      unsigned int new_pol)
2491{
2492	struct cpufreq_policy_data new_data;
2493	struct cpufreq_governor *old_gov;
2494	int ret;
2495
2496	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2497	new_data.freq_table = policy->freq_table;
2498	new_data.cpu = policy->cpu;
2499	/*
2500	 * PM QoS framework collects all the requests from users and provide us
2501	 * the final aggregated value here.
2502	 */
2503	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2504	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2505
2506	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2507		 new_data.cpu, new_data.min, new_data.max);
2508
2509	/*
2510	 * Verify that the CPU speed can be set within these limits and make sure
2511	 * that min <= max.
2512	 */
2513	ret = cpufreq_driver->verify(&new_data);
2514	if (ret)
2515		return ret;
2516
 
 
 
 
 
2517	policy->min = new_data.min;
2518	policy->max = new_data.max;
 
 
2519	trace_cpu_frequency_limits(policy);
2520
2521	policy->cached_target_freq = UINT_MAX;
2522
2523	pr_debug("new min and max freqs are %u - %u kHz\n",
2524		 policy->min, policy->max);
2525
2526	if (cpufreq_driver->setpolicy) {
2527		policy->policy = new_pol;
2528		pr_debug("setting range\n");
2529		return cpufreq_driver->setpolicy(policy);
2530	}
2531
2532	if (new_gov == policy->governor) {
2533		pr_debug("governor limits update\n");
2534		cpufreq_governor_limits(policy);
2535		return 0;
2536	}
2537
2538	pr_debug("governor switch\n");
2539
2540	/* save old, working values */
2541	old_gov = policy->governor;
2542	/* end old governor */
2543	if (old_gov) {
2544		cpufreq_stop_governor(policy);
2545		cpufreq_exit_governor(policy);
2546	}
2547
2548	/* start new governor */
2549	policy->governor = new_gov;
2550	ret = cpufreq_init_governor(policy);
2551	if (!ret) {
2552		ret = cpufreq_start_governor(policy);
2553		if (!ret) {
2554			pr_debug("governor change\n");
2555			sched_cpufreq_governor_change(policy, old_gov);
2556			return 0;
2557		}
2558		cpufreq_exit_governor(policy);
2559	}
2560
2561	/* new governor failed, so re-start old one */
2562	pr_debug("starting governor %s failed\n", policy->governor->name);
2563	if (old_gov) {
2564		policy->governor = old_gov;
2565		if (cpufreq_init_governor(policy))
2566			policy->governor = NULL;
2567		else
2568			cpufreq_start_governor(policy);
2569	}
2570
2571	return ret;
2572}
2573
2574/**
2575 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2576 * @cpu: CPU to re-evaluate the policy for.
2577 *
2578 * Update the current frequency for the cpufreq policy of @cpu and use
2579 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2580 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2581 * for the policy in question, among other things.
2582 */
2583void cpufreq_update_policy(unsigned int cpu)
2584{
2585	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2586
2587	if (!policy)
2588		return;
2589
2590	/*
2591	 * BIOS might change freq behind our back
2592	 * -> ask driver for current freq and notify governors about a change
2593	 */
2594	if (cpufreq_driver->get && has_target() &&
2595	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2596		goto unlock;
2597
2598	refresh_frequency_limits(policy);
2599
2600unlock:
2601	cpufreq_cpu_release(policy);
2602}
2603EXPORT_SYMBOL(cpufreq_update_policy);
2604
2605/**
2606 * cpufreq_update_limits - Update policy limits for a given CPU.
2607 * @cpu: CPU to update the policy limits for.
2608 *
2609 * Invoke the driver's ->update_limits callback if present or call
2610 * cpufreq_update_policy() for @cpu.
2611 */
2612void cpufreq_update_limits(unsigned int cpu)
2613{
2614	if (cpufreq_driver->update_limits)
2615		cpufreq_driver->update_limits(cpu);
2616	else
2617		cpufreq_update_policy(cpu);
2618}
2619EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2620
2621/*********************************************************************
2622 *               BOOST						     *
2623 *********************************************************************/
2624static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2625{
2626	int ret;
2627
2628	if (!policy->freq_table)
2629		return -ENXIO;
2630
2631	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2632	if (ret) {
2633		pr_err("%s: Policy frequency update failed\n", __func__);
2634		return ret;
2635	}
2636
2637	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2638	if (ret < 0)
2639		return ret;
2640
2641	return 0;
2642}
2643
2644int cpufreq_boost_trigger_state(int state)
2645{
2646	struct cpufreq_policy *policy;
2647	unsigned long flags;
2648	int ret = 0;
2649
2650	if (cpufreq_driver->boost_enabled == state)
2651		return 0;
2652
2653	write_lock_irqsave(&cpufreq_driver_lock, flags);
2654	cpufreq_driver->boost_enabled = state;
2655	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2656
2657	get_online_cpus();
2658	for_each_active_policy(policy) {
2659		ret = cpufreq_driver->set_boost(policy, state);
2660		if (ret)
2661			goto err_reset_state;
 
 
2662	}
2663	put_online_cpus();
2664
2665	return 0;
2666
2667err_reset_state:
2668	put_online_cpus();
2669
2670	write_lock_irqsave(&cpufreq_driver_lock, flags);
2671	cpufreq_driver->boost_enabled = !state;
2672	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2673
2674	pr_err("%s: Cannot %s BOOST\n",
2675	       __func__, state ? "enable" : "disable");
2676
2677	return ret;
2678}
2679
2680static bool cpufreq_boost_supported(void)
2681{
2682	return cpufreq_driver->set_boost;
2683}
2684
2685static int create_boost_sysfs_file(void)
2686{
2687	int ret;
2688
2689	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2690	if (ret)
2691		pr_err("%s: cannot register global BOOST sysfs file\n",
2692		       __func__);
2693
2694	return ret;
2695}
2696
2697static void remove_boost_sysfs_file(void)
2698{
2699	if (cpufreq_boost_supported())
2700		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2701}
2702
2703int cpufreq_enable_boost_support(void)
2704{
2705	if (!cpufreq_driver)
2706		return -EINVAL;
2707
2708	if (cpufreq_boost_supported())
2709		return 0;
2710
2711	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2712
2713	/* This will get removed on driver unregister */
2714	return create_boost_sysfs_file();
2715}
2716EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2717
2718int cpufreq_boost_enabled(void)
2719{
2720	return cpufreq_driver->boost_enabled;
2721}
2722EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2723
2724/*********************************************************************
2725 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2726 *********************************************************************/
2727static enum cpuhp_state hp_online;
2728
2729static int cpuhp_cpufreq_online(unsigned int cpu)
2730{
2731	cpufreq_online(cpu);
2732
2733	return 0;
2734}
2735
2736static int cpuhp_cpufreq_offline(unsigned int cpu)
2737{
2738	cpufreq_offline(cpu);
2739
2740	return 0;
2741}
2742
2743/**
2744 * cpufreq_register_driver - register a CPU Frequency driver
2745 * @driver_data: A struct cpufreq_driver containing the values#
2746 * submitted by the CPU Frequency driver.
2747 *
2748 * Registers a CPU Frequency driver to this core code. This code
2749 * returns zero on success, -EEXIST when another driver got here first
2750 * (and isn't unregistered in the meantime).
2751 *
2752 */
2753int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2754{
2755	unsigned long flags;
2756	int ret;
2757
2758	if (cpufreq_disabled())
2759		return -ENODEV;
2760
2761	/*
2762	 * The cpufreq core depends heavily on the availability of device
2763	 * structure, make sure they are available before proceeding further.
2764	 */
2765	if (!get_cpu_device(0))
2766		return -EPROBE_DEFER;
2767
2768	if (!driver_data || !driver_data->verify || !driver_data->init ||
2769	    !(driver_data->setpolicy || driver_data->target_index ||
2770		    driver_data->target) ||
2771	     (driver_data->setpolicy && (driver_data->target_index ||
2772		    driver_data->target)) ||
2773	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2774	     (!driver_data->online != !driver_data->offline))
 
2775		return -EINVAL;
2776
2777	pr_debug("trying to register driver %s\n", driver_data->name);
2778
2779	/* Protect against concurrent CPU online/offline. */
2780	cpus_read_lock();
2781
2782	write_lock_irqsave(&cpufreq_driver_lock, flags);
2783	if (cpufreq_driver) {
2784		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2785		ret = -EEXIST;
2786		goto out;
2787	}
2788	cpufreq_driver = driver_data;
2789	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2790
2791	/*
2792	 * Mark support for the scheduler's frequency invariance engine for
2793	 * drivers that implement target(), target_index() or fast_switch().
2794	 */
2795	if (!cpufreq_driver->setpolicy) {
2796		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2797		pr_debug("supports frequency invariance");
2798	}
2799
2800	if (driver_data->setpolicy)
2801		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2802
2803	if (cpufreq_boost_supported()) {
2804		ret = create_boost_sysfs_file();
2805		if (ret)
2806			goto err_null_driver;
2807	}
2808
2809	ret = subsys_interface_register(&cpufreq_interface);
2810	if (ret)
2811		goto err_boost_unreg;
2812
2813	if (unlikely(list_empty(&cpufreq_policy_list))) {
2814		/* if all ->init() calls failed, unregister */
2815		ret = -ENODEV;
2816		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2817			 driver_data->name);
2818		goto err_if_unreg;
2819	}
2820
2821	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2822						   "cpufreq:online",
2823						   cpuhp_cpufreq_online,
2824						   cpuhp_cpufreq_offline);
2825	if (ret < 0)
2826		goto err_if_unreg;
2827	hp_online = ret;
2828	ret = 0;
2829
2830	pr_debug("driver %s up and running\n", driver_data->name);
2831	goto out;
2832
2833err_if_unreg:
2834	subsys_interface_unregister(&cpufreq_interface);
2835err_boost_unreg:
2836	remove_boost_sysfs_file();
2837err_null_driver:
2838	write_lock_irqsave(&cpufreq_driver_lock, flags);
2839	cpufreq_driver = NULL;
2840	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2841out:
2842	cpus_read_unlock();
2843	return ret;
2844}
2845EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2846
2847/*
2848 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2849 *
2850 * Unregister the current CPUFreq driver. Only call this if you have
2851 * the right to do so, i.e. if you have succeeded in initialising before!
2852 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2853 * currently not initialised.
2854 */
2855int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2856{
2857	unsigned long flags;
2858
2859	if (!cpufreq_driver || (driver != cpufreq_driver))
2860		return -EINVAL;
2861
2862	pr_debug("unregistering driver %s\n", driver->name);
2863
2864	/* Protect against concurrent cpu hotplug */
2865	cpus_read_lock();
2866	subsys_interface_unregister(&cpufreq_interface);
2867	remove_boost_sysfs_file();
2868	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2869	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2870
2871	write_lock_irqsave(&cpufreq_driver_lock, flags);
2872
2873	cpufreq_driver = NULL;
2874
2875	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2876	cpus_read_unlock();
2877
2878	return 0;
2879}
2880EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2881
2882static int __init cpufreq_core_init(void)
2883{
2884	struct cpufreq_governor *gov = cpufreq_default_governor();
 
2885
2886	if (cpufreq_disabled())
2887		return -ENODEV;
2888
2889	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
 
 
 
 
2890	BUG_ON(!cpufreq_global_kobject);
2891
2892	if (!strlen(default_governor))
2893		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2894
2895	return 0;
2896}
2897module_param(off, int, 0444);
2898module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2899core_initcall(cpufreq_core_init);