Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/cpufreq/cpufreq.c
   4 *
   5 *  Copyright (C) 2001 Russell King
   6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   8 *
   9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
  10 *	Added handling for CPU hotplug
  11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  12 *	Fix handling for CPU hotplug -- affected CPUs
 
 
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/cpu.h>
  18#include <linux/cpufreq.h>
  19#include <linux/cpu_cooling.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/kernel_stat.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_qos.h>
  27#include <linux/slab.h>
  28#include <linux/suspend.h>
  29#include <linux/syscore_ops.h>
  30#include <linux/tick.h>
  31#include <linux/units.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36/* Macros to iterate over CPU policies */
  37#define for_each_suitable_policy(__policy, __active)			 \
  38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  39		if ((__active) == !policy_is_inactive(__policy))
  40
  41#define for_each_active_policy(__policy)		\
  42	for_each_suitable_policy(__policy, true)
  43#define for_each_inactive_policy(__policy)		\
  44	for_each_suitable_policy(__policy, false)
  45
  46/* Iterate over governors */
  47static LIST_HEAD(cpufreq_governor_list);
  48#define for_each_governor(__governor)				\
  49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  50
  51static char default_governor[CPUFREQ_NAME_LEN];
  52
  53/*
  54 * The "cpufreq driver" - the arch- or hardware-dependent low
  55 * level driver of CPUFreq support, and its spinlock. This lock
  56 * also protects the cpufreq_cpu_data array.
  57 */
  58static struct cpufreq_driver *cpufreq_driver;
  59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
 
  60static DEFINE_RWLOCK(cpufreq_driver_lock);
 
 
  61
  62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
  63bool cpufreq_supports_freq_invariance(void)
  64{
  65	return static_branch_likely(&cpufreq_freq_invariance);
  66}
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73	return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
  76bool has_target_index(void)
  77{
  78	return !!cpufreq_driver->target_index;
  79}
 
  80
  81/* internal prototypes */
  82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  83static int cpufreq_init_governor(struct cpufreq_policy *policy);
  84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  86static int cpufreq_set_policy(struct cpufreq_policy *policy,
  87			      struct cpufreq_governor *new_gov,
  88			      unsigned int new_pol);
  89static bool cpufreq_boost_supported(void);
  90
  91/*
  92 * Two notifier lists: the "policy" list is involved in the
  93 * validation process for a new CPU frequency policy; the
  94 * "transition" list for kernel code that needs to handle
  95 * changes to devices when the CPU clock speed changes.
  96 * The mutex locks both lists.
  97 */
  98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
 
 
 
 
 
 
 
 
 
 100
 101static int off __read_mostly;
 102static int cpufreq_disabled(void)
 103{
 104	return off;
 105}
 106void disable_cpufreq(void)
 107{
 108	off = 1;
 109}
 
 110static DEFINE_MUTEX(cpufreq_governor_mutex);
 111
 112bool have_governor_per_policy(void)
 113{
 114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 115}
 116EXPORT_SYMBOL_GPL(have_governor_per_policy);
 117
 118static struct kobject *cpufreq_global_kobject;
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122	if (have_governor_per_policy())
 123		return &policy->kobj;
 124	else
 125		return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131	struct kernel_cpustat kcpustat;
 132	u64 cur_wall_time;
 133	u64 idle_time;
 
 134	u64 busy_time;
 135
 136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 137
 138	kcpustat_cpu_fetch(&kcpustat, cpu);
 139
 140	busy_time = kcpustat.cpustat[CPUTIME_USER];
 141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
 142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
 143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
 144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
 145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
 146
 147	idle_time = cur_wall_time - busy_time;
 148	if (wall)
 149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 150
 151	return div_u64(idle_time, NSEC_PER_USEC);
 152}
 153
 154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 155{
 156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 157
 158	if (idle_time == -1ULL)
 159		return get_cpu_idle_time_jiffy(cpu, wall);
 160	else if (!io_busy)
 161		idle_time += get_cpu_iowait_time_us(cpu, wall);
 162
 163	return idle_time;
 164}
 165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 166
 167/*
 168 * This is a generic cpufreq init() routine which can be used by cpufreq
 169 * drivers of SMP systems. It will do following:
 170 * - validate & show freq table passed
 171 * - set policies transition latency
 172 * - policy->cpus with all possible CPUs
 173 */
 174void cpufreq_generic_init(struct cpufreq_policy *policy,
 175		struct cpufreq_frequency_table *table,
 176		unsigned int transition_latency)
 177{
 178	policy->freq_table = table;
 
 
 
 
 
 
 
 179	policy->cpuinfo.transition_latency = transition_latency;
 180
 181	/*
 182	 * The driver only supports the SMP configuration where all processors
 183	 * share the clock and voltage and clock.
 184	 */
 185	cpumask_setall(policy->cpus);
 186}
 187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 188
 189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 190{
 191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 192
 193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 194}
 195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 196
 197unsigned int cpufreq_generic_get(unsigned int cpu)
 198{
 199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 200
 201	if (!policy || IS_ERR(policy->clk)) {
 202		pr_err("%s: No %s associated to cpu: %d\n",
 203		       __func__, policy ? "clk" : "policy", cpu);
 204		return 0;
 205	}
 206
 207	return clk_get_rate(policy->clk) / 1000;
 208}
 209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 210
 211/**
 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
 213 * @cpu: CPU to find the policy for.
 214 *
 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
 216 * the kobject reference counter of that policy.  Return a valid policy on
 217 * success or NULL on failure.
 218 *
 219 * The policy returned by this function has to be released with the help of
 220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
 221 */
 222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 223{
 224	struct cpufreq_policy *policy = NULL;
 225	unsigned long flags;
 226
 227	if (WARN_ON(cpu >= nr_cpu_ids))
 
 
 
 228		return NULL;
 229
 230	/* get the cpufreq driver */
 231	read_lock_irqsave(&cpufreq_driver_lock, flags);
 232
 233	if (cpufreq_driver) {
 234		/* get the CPU */
 235		policy = cpufreq_cpu_get_raw(cpu);
 236		if (policy)
 237			kobject_get(&policy->kobj);
 238	}
 239
 240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 241
 
 
 
 242	return policy;
 243}
 244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 245
 246/**
 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
 248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
 249 */
 250void cpufreq_cpu_put(struct cpufreq_policy *policy)
 251{
 252	kobject_put(&policy->kobj);
 253}
 254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 255
 256/**
 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
 259 */
 260void cpufreq_cpu_release(struct cpufreq_policy *policy)
 261{
 262	if (WARN_ON(!policy))
 263		return;
 264
 265	lockdep_assert_held(&policy->rwsem);
 266
 267	up_write(&policy->rwsem);
 268
 269	cpufreq_cpu_put(policy);
 270}
 271
 272/**
 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
 274 * @cpu: CPU to find the policy for.
 275 *
 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
 277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
 278 * Return the policy if it is active or release it and return NULL otherwise.
 279 *
 280 * The policy returned by this function has to be released with the help of
 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
 282 * counter properly.
 283 */
 284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
 285{
 286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
 287
 288	if (!policy)
 289		return NULL;
 290
 291	down_write(&policy->rwsem);
 292
 293	if (policy_is_inactive(policy)) {
 294		cpufreq_cpu_release(policy);
 295		return NULL;
 296	}
 297
 298	return policy;
 299}
 
 300
 301/*********************************************************************
 302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 303 *********************************************************************/
 304
 305/**
 306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 308 * @ci: Frequency change information.
 309 *
 310 * This function alters the system "loops_per_jiffy" for the clock
 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 312 * systems as each CPU might be scaled differently. So, use the arch
 313 * per-CPU loops_per_jiffy value wherever possible.
 314 */
 315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 316{
 317#ifndef CONFIG_SMP
 318	static unsigned long l_p_j_ref;
 319	static unsigned int l_p_j_ref_freq;
 320
 
 
 321	if (ci->flags & CPUFREQ_CONST_LOOPS)
 322		return;
 323
 324	if (!l_p_j_ref_freq) {
 325		l_p_j_ref = loops_per_jiffy;
 326		l_p_j_ref_freq = ci->old;
 327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 328			 l_p_j_ref, l_p_j_ref_freq);
 329	}
 330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 332								ci->new);
 333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 334			 loops_per_jiffy, ci->new);
 335	}
 336#endif
 337}
 338
 339/**
 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
 341 * @policy: cpufreq policy to enable fast frequency switching for.
 342 * @freqs: contain details of the frequency update.
 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
 344 *
 345 * This function calls the transition notifiers and adjust_jiffies().
 346 *
 347 * It is called twice on all CPU frequency changes that have external effects.
 348 */
 349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 350				      struct cpufreq_freqs *freqs,
 351				      unsigned int state)
 352{
 353	int cpu;
 
 
 354
 
 
 
 355	BUG_ON(irqs_disabled());
 356
 357	if (cpufreq_disabled())
 358		return;
 359
 360	freqs->policy = policy;
 361	freqs->flags = cpufreq_driver->flags;
 362	pr_debug("notification %u of frequency transition to %u kHz\n",
 363		 state, freqs->new);
 364
 365	switch (state) {
 
 366	case CPUFREQ_PRECHANGE:
 367		/*
 368		 * Detect if the driver reported a value as "old frequency"
 369		 * which is not equal to what the cpufreq core thinks is
 370		 * "old frequency".
 371		 */
 372		if (policy->cur && policy->cur != freqs->old) {
 373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 374				 freqs->old, policy->cur);
 375			freqs->old = policy->cur;
 
 
 
 376		}
 377
 378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 379					 CPUFREQ_PRECHANGE, freqs);
 380
 381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 382		break;
 383
 384	case CPUFREQ_POSTCHANGE:
 385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
 387			 cpumask_pr_args(policy->cpus));
 388
 389		for_each_cpu(cpu, policy->cpus)
 390			trace_cpu_frequency(freqs->new, cpu);
 391
 392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 393					 CPUFREQ_POSTCHANGE, freqs);
 394
 395		cpufreq_stats_record_transition(policy, freqs->new);
 396		policy->cur = freqs->new;
 397	}
 398}
 399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400/* Do post notifications when there are chances that transition has failed */
 401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 402		struct cpufreq_freqs *freqs, int transition_failed)
 403{
 404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 405	if (!transition_failed)
 406		return;
 407
 408	swap(freqs->old, freqs->new);
 409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 411}
 412
 413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 414		struct cpufreq_freqs *freqs)
 415{
 416
 417	/*
 418	 * Catch double invocations of _begin() which lead to self-deadlock.
 419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 420	 * doesn't invoke _begin() on their behalf, and hence the chances of
 421	 * double invocations are very low. Moreover, there are scenarios
 422	 * where these checks can emit false-positive warnings in these
 423	 * drivers; so we avoid that by skipping them altogether.
 424	 */
 425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 426				&& current == policy->transition_task);
 427
 428wait:
 429	wait_event(policy->transition_wait, !policy->transition_ongoing);
 430
 431	spin_lock(&policy->transition_lock);
 432
 433	if (unlikely(policy->transition_ongoing)) {
 434		spin_unlock(&policy->transition_lock);
 435		goto wait;
 436	}
 437
 438	policy->transition_ongoing = true;
 439	policy->transition_task = current;
 440
 441	spin_unlock(&policy->transition_lock);
 442
 443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 444}
 445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 446
 447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 448		struct cpufreq_freqs *freqs, int transition_failed)
 449{
 450	if (WARN_ON(!policy->transition_ongoing))
 451		return;
 452
 453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 454
 455	arch_set_freq_scale(policy->related_cpus,
 456			    policy->cur,
 457			    arch_scale_freq_ref(policy->cpu));
 458
 459	spin_lock(&policy->transition_lock);
 460	policy->transition_ongoing = false;
 461	policy->transition_task = NULL;
 462	spin_unlock(&policy->transition_lock);
 463
 464	wake_up(&policy->transition_wait);
 465}
 466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 467
 468/*
 469 * Fast frequency switching status count.  Positive means "enabled", negative
 470 * means "disabled" and 0 means "not decided yet".
 471 */
 472static int cpufreq_fast_switch_count;
 473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 474
 475static void cpufreq_list_transition_notifiers(void)
 476{
 477	struct notifier_block *nb;
 478
 479	pr_info("Registered transition notifiers:\n");
 480
 481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
 482
 483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 484		pr_info("%pS\n", nb->notifier_call);
 485
 486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 487}
 488
 489/**
 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 491 * @policy: cpufreq policy to enable fast frequency switching for.
 492 *
 493 * Try to enable fast frequency switching for @policy.
 494 *
 495 * The attempt will fail if there is at least one transition notifier registered
 496 * at this point, as fast frequency switching is quite fundamentally at odds
 497 * with transition notifiers.  Thus if successful, it will make registration of
 498 * transition notifiers fail going forward.
 499 */
 500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 501{
 502	lockdep_assert_held(&policy->rwsem);
 503
 504	if (!policy->fast_switch_possible)
 505		return;
 506
 507	mutex_lock(&cpufreq_fast_switch_lock);
 508	if (cpufreq_fast_switch_count >= 0) {
 509		cpufreq_fast_switch_count++;
 510		policy->fast_switch_enabled = true;
 511	} else {
 512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
 513			policy->cpu);
 514		cpufreq_list_transition_notifiers();
 515	}
 516	mutex_unlock(&cpufreq_fast_switch_lock);
 517}
 518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 519
 520/**
 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 522 * @policy: cpufreq policy to disable fast frequency switching for.
 523 */
 524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 525{
 526	mutex_lock(&cpufreq_fast_switch_lock);
 527	if (policy->fast_switch_enabled) {
 528		policy->fast_switch_enabled = false;
 529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 530			cpufreq_fast_switch_count--;
 531	}
 532	mutex_unlock(&cpufreq_fast_switch_lock);
 533}
 534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 535
 536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
 537		unsigned int target_freq, unsigned int relation)
 538{
 539	unsigned int idx;
 540
 541	target_freq = clamp_val(target_freq, policy->min, policy->max);
 542
 543	if (!policy->freq_table)
 544		return target_freq;
 545
 546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
 547	policy->cached_resolved_idx = idx;
 548	policy->cached_target_freq = target_freq;
 549	return policy->freq_table[idx].frequency;
 550}
 551
 552/**
 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 554 * one.
 555 * @policy: associated policy to interrogate
 556 * @target_freq: target frequency to resolve.
 557 *
 558 * The target to driver frequency mapping is cached in the policy.
 559 *
 560 * Return: Lowest driver-supported frequency greater than or equal to the
 561 * given target_freq, subject to policy (min/max) and driver limitations.
 562 */
 563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 564					 unsigned int target_freq)
 565{
 566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
 567}
 568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 569
 570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 571{
 572	unsigned int latency;
 573
 574	if (policy->transition_delay_us)
 575		return policy->transition_delay_us;
 576
 577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 578	if (latency) {
 579		/*
 580		 * For platforms that can change the frequency very fast (< 10
 581		 * us), the above formula gives a decent transition delay. But
 582		 * for platforms where transition_latency is in milliseconds, it
 583		 * ends up giving unrealistic values.
 584		 *
 585		 * Cap the default transition delay to 10 ms, which seems to be
 586		 * a reasonable amount of time after which we should reevaluate
 587		 * the frequency.
 588		 */
 589		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 590	}
 591
 592	return LATENCY_MULTIPLIER;
 593}
 594EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 595
 596/*********************************************************************
 597 *                          SYSFS INTERFACE                          *
 598 *********************************************************************/
 599static ssize_t show_boost(struct kobject *kobj,
 600			  struct kobj_attribute *attr, char *buf)
 601{
 602	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 603}
 604
 605static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
 606			   const char *buf, size_t count)
 607{
 608	int ret, enable;
 609
 610	ret = sscanf(buf, "%d", &enable);
 611	if (ret != 1 || enable < 0 || enable > 1)
 612		return -EINVAL;
 613
 614	if (cpufreq_boost_trigger_state(enable)) {
 615		pr_err("%s: Cannot %s BOOST!\n",
 616		       __func__, enable ? "enable" : "disable");
 617		return -EINVAL;
 618	}
 619
 620	pr_debug("%s: cpufreq BOOST %s\n",
 621		 __func__, enable ? "enabled" : "disabled");
 622
 623	return count;
 624}
 625define_one_global_rw(boost);
 626
 627static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
 628{
 629	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
 630}
 631
 632static ssize_t store_local_boost(struct cpufreq_policy *policy,
 633				 const char *buf, size_t count)
 634{
 635	int ret, enable;
 636
 637	ret = kstrtoint(buf, 10, &enable);
 638	if (ret || enable < 0 || enable > 1)
 639		return -EINVAL;
 640
 641	if (!cpufreq_driver->boost_enabled)
 642		return -EINVAL;
 643
 644	if (policy->boost_enabled == enable)
 645		return count;
 646
 647	cpus_read_lock();
 648	ret = cpufreq_driver->set_boost(policy, enable);
 649	cpus_read_unlock();
 650
 651	if (ret)
 652		return ret;
 653
 654	policy->boost_enabled = enable;
 655
 656	return count;
 657}
 658
 659static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
 660
 661static struct cpufreq_governor *find_governor(const char *str_governor)
 662{
 663	struct cpufreq_governor *t;
 664
 665	for_each_governor(t)
 666		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 667			return t;
 668
 669	return NULL;
 670}
 671
 672static struct cpufreq_governor *get_governor(const char *str_governor)
 
 
 
 
 673{
 674	struct cpufreq_governor *t;
 675
 676	mutex_lock(&cpufreq_governor_mutex);
 677	t = find_governor(str_governor);
 678	if (!t)
 679		goto unlock;
 680
 681	if (!try_module_get(t->owner))
 682		t = NULL;
 683
 684unlock:
 685	mutex_unlock(&cpufreq_governor_mutex);
 686
 687	return t;
 688}
 
 
 
 
 
 
 
 
 
 689
 690static unsigned int cpufreq_parse_policy(char *str_governor)
 691{
 692	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
 693		return CPUFREQ_POLICY_PERFORMANCE;
 694
 695	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
 696		return CPUFREQ_POLICY_POWERSAVE;
 697
 698	return CPUFREQ_POLICY_UNKNOWN;
 699}
 700
 701/**
 702 * cpufreq_parse_governor - parse a governor string only for has_target()
 703 * @str_governor: Governor name.
 704 */
 705static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
 706{
 707	struct cpufreq_governor *t;
 708
 709	t = get_governor(str_governor);
 710	if (t)
 711		return t;
 712
 713	if (request_module("cpufreq_%s", str_governor))
 714		return NULL;
 
 
 715
 716	return get_governor(str_governor);
 
 
 
 717}
 718
 719/*
 720 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 721 * print out cpufreq information
 722 *
 723 * Write out information from cpufreq_driver->policy[cpu]; object must be
 724 * "unsigned int".
 725 */
 726
 727#define show_one(file_name, object)			\
 728static ssize_t show_##file_name				\
 729(struct cpufreq_policy *policy, char *buf)		\
 730{							\
 731	return sprintf(buf, "%u\n", policy->object);	\
 732}
 733
 734show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 735show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 736show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 737show_one(scaling_min_freq, min);
 738show_one(scaling_max_freq, max);
 
 739
 740__weak unsigned int arch_freq_get_on_cpu(int cpu)
 741{
 742	return 0;
 743}
 744
 745static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 746{
 747	ssize_t ret;
 748	unsigned int freq;
 749
 750	freq = arch_freq_get_on_cpu(policy->cpu);
 751	if (freq)
 752		ret = sprintf(buf, "%u\n", freq);
 753	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
 754		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 755	else
 756		ret = sprintf(buf, "%u\n", policy->cur);
 757	return ret;
 758}
 759
 760/*
 761 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 762 */
 763#define store_one(file_name, object)			\
 764static ssize_t store_##file_name					\
 765(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 766{									\
 767	unsigned long val;						\
 768	int ret;							\
 
 769									\
 770	ret = kstrtoul(buf, 0, &val);					\
 771	if (ret)							\
 772		return ret;						\
 773									\
 774	ret = freq_qos_update_request(policy->object##_freq_req, val);\
 775	return ret >= 0 ? count : ret;					\
 
 
 
 
 
 
 776}
 777
 778store_one(scaling_min_freq, min);
 779store_one(scaling_max_freq, max);
 780
 781/*
 782 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 783 */
 784static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 785					char *buf)
 786{
 787	unsigned int cur_freq = __cpufreq_get(policy);
 788
 789	if (cur_freq)
 790		return sprintf(buf, "%u\n", cur_freq);
 791
 792	return sprintf(buf, "<unknown>\n");
 793}
 794
 795/*
 796 * show_scaling_governor - show the current policy for the specified CPU
 797 */
 798static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 799{
 800	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 801		return sprintf(buf, "powersave\n");
 802	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 803		return sprintf(buf, "performance\n");
 804	else if (policy->governor)
 805		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 806				policy->governor->name);
 807	return -EINVAL;
 808}
 809
 810/*
 811 * store_scaling_governor - store policy for the specified CPU
 812 */
 813static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 814					const char *buf, size_t count)
 815{
 816	char str_governor[16];
 817	int ret;
 
 
 
 
 
 
 818
 819	ret = sscanf(buf, "%15s", str_governor);
 820	if (ret != 1)
 821		return -EINVAL;
 822
 823	if (cpufreq_driver->setpolicy) {
 824		unsigned int new_pol;
 825
 826		new_pol = cpufreq_parse_policy(str_governor);
 827		if (!new_pol)
 828			return -EINVAL;
 829
 830		ret = cpufreq_set_policy(policy, NULL, new_pol);
 831	} else {
 832		struct cpufreq_governor *new_gov;
 833
 834		new_gov = cpufreq_parse_governor(str_governor);
 835		if (!new_gov)
 836			return -EINVAL;
 837
 838		ret = cpufreq_set_policy(policy, new_gov,
 839					 CPUFREQ_POLICY_UNKNOWN);
 840
 841		module_put(new_gov->owner);
 842	}
 843
 844	return ret ? ret : count;
 
 
 
 845}
 846
 847/*
 848 * show_scaling_driver - show the cpufreq driver currently loaded
 849 */
 850static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 851{
 852	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 853}
 854
 855/*
 856 * show_scaling_available_governors - show the available CPUfreq governors
 857 */
 858static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 859						char *buf)
 860{
 861	ssize_t i = 0;
 862	struct cpufreq_governor *t;
 863
 864	if (!has_target()) {
 865		i += sprintf(buf, "performance powersave");
 866		goto out;
 867	}
 868
 869	mutex_lock(&cpufreq_governor_mutex);
 870	for_each_governor(t) {
 871		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 872		    - (CPUFREQ_NAME_LEN + 2)))
 873			break;
 874		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 875	}
 876	mutex_unlock(&cpufreq_governor_mutex);
 877out:
 878	i += sprintf(&buf[i], "\n");
 879	return i;
 880}
 881
 882ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 883{
 884	ssize_t i = 0;
 885	unsigned int cpu;
 886
 887	for_each_cpu(cpu, mask) {
 888		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
 
 
 889		if (i >= (PAGE_SIZE - 5))
 890			break;
 891	}
 892
 893	/* Remove the extra space at the end */
 894	i--;
 895
 896	i += sprintf(&buf[i], "\n");
 897	return i;
 898}
 899EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 900
 901/*
 902 * show_related_cpus - show the CPUs affected by each transition even if
 903 * hw coordination is in use
 904 */
 905static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 906{
 907	return cpufreq_show_cpus(policy->related_cpus, buf);
 908}
 909
 910/*
 911 * show_affected_cpus - show the CPUs affected by each transition
 912 */
 913static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 914{
 915	return cpufreq_show_cpus(policy->cpus, buf);
 916}
 917
 918static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 919					const char *buf, size_t count)
 920{
 921	unsigned int freq = 0;
 922	unsigned int ret;
 923
 924	if (!policy->governor || !policy->governor->store_setspeed)
 925		return -EINVAL;
 926
 927	ret = sscanf(buf, "%u", &freq);
 928	if (ret != 1)
 929		return -EINVAL;
 930
 931	policy->governor->store_setspeed(policy, freq);
 932
 933	return count;
 934}
 935
 936static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 937{
 938	if (!policy->governor || !policy->governor->show_setspeed)
 939		return sprintf(buf, "<unsupported>\n");
 940
 941	return policy->governor->show_setspeed(policy, buf);
 942}
 943
 944/*
 945 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 946 */
 947static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 948{
 949	unsigned int limit;
 950	int ret;
 951	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 952	if (!ret)
 953		return sprintf(buf, "%u\n", limit);
 
 
 954	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 955}
 956
 957cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 958cpufreq_freq_attr_ro(cpuinfo_min_freq);
 959cpufreq_freq_attr_ro(cpuinfo_max_freq);
 960cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 961cpufreq_freq_attr_ro(scaling_available_governors);
 962cpufreq_freq_attr_ro(scaling_driver);
 963cpufreq_freq_attr_ro(scaling_cur_freq);
 964cpufreq_freq_attr_ro(bios_limit);
 965cpufreq_freq_attr_ro(related_cpus);
 966cpufreq_freq_attr_ro(affected_cpus);
 967cpufreq_freq_attr_rw(scaling_min_freq);
 968cpufreq_freq_attr_rw(scaling_max_freq);
 969cpufreq_freq_attr_rw(scaling_governor);
 970cpufreq_freq_attr_rw(scaling_setspeed);
 971
 972static struct attribute *cpufreq_attrs[] = {
 973	&cpuinfo_min_freq.attr,
 974	&cpuinfo_max_freq.attr,
 975	&cpuinfo_transition_latency.attr,
 976	&scaling_min_freq.attr,
 977	&scaling_max_freq.attr,
 978	&affected_cpus.attr,
 979	&related_cpus.attr,
 980	&scaling_governor.attr,
 981	&scaling_driver.attr,
 982	&scaling_available_governors.attr,
 983	&scaling_setspeed.attr,
 984	NULL
 985};
 986ATTRIBUTE_GROUPS(cpufreq);
 987
 988#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 989#define to_attr(a) container_of(a, struct freq_attr, attr)
 990
 991static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 992{
 993	struct cpufreq_policy *policy = to_policy(kobj);
 994	struct freq_attr *fattr = to_attr(attr);
 995	ssize_t ret = -EBUSY;
 996
 997	if (!fattr->show)
 998		return -EIO;
 999
1000	down_read(&policy->rwsem);
1001	if (likely(!policy_is_inactive(policy)))
 
1002		ret = fattr->show(policy, buf);
 
 
 
1003	up_read(&policy->rwsem);
 
1004
1005	return ret;
1006}
1007
1008static ssize_t store(struct kobject *kobj, struct attribute *attr,
1009		     const char *buf, size_t count)
1010{
1011	struct cpufreq_policy *policy = to_policy(kobj);
1012	struct freq_attr *fattr = to_attr(attr);
1013	ssize_t ret = -EBUSY;
1014
1015	if (!fattr->store)
1016		return -EIO;
 
 
 
 
 
1017
1018	down_write(&policy->rwsem);
1019	if (likely(!policy_is_inactive(policy)))
 
1020		ret = fattr->store(policy, buf, count);
 
 
 
1021	up_write(&policy->rwsem);
1022
 
 
 
 
1023	return ret;
1024}
1025
1026static void cpufreq_sysfs_release(struct kobject *kobj)
1027{
1028	struct cpufreq_policy *policy = to_policy(kobj);
1029	pr_debug("last reference is dropped\n");
1030	complete(&policy->kobj_unregister);
1031}
1032
1033static const struct sysfs_ops sysfs_ops = {
1034	.show	= show,
1035	.store	= store,
1036};
1037
1038static const struct kobj_type ktype_cpufreq = {
1039	.sysfs_ops	= &sysfs_ops,
1040	.default_groups	= cpufreq_groups,
1041	.release	= cpufreq_sysfs_release,
1042};
1043
1044static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1045				struct device *dev)
 
 
 
 
1046{
1047	if (unlikely(!dev))
1048		return;
 
1049
1050	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1051		return;
 
1052
1053	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1054	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1055		dev_err(dev, "cpufreq symlink creation failed\n");
 
1056}
 
1057
1058static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1059				   struct device *dev)
1060{
1061	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1062	sysfs_remove_link(&dev->kobj, "cpufreq");
1063	cpumask_clear_cpu(cpu, policy->real_cpus);
 
 
 
 
 
 
1064}
 
1065
1066static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067{
1068	struct freq_attr **drv_attr;
1069	int ret = 0;
1070
 
 
 
 
 
 
1071	/* set up files for this cpu device */
1072	drv_attr = cpufreq_driver->attr;
1073	while (drv_attr && *drv_attr) {
1074		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1075		if (ret)
1076			return ret;
1077		drv_attr++;
1078	}
1079	if (cpufreq_driver->get) {
1080		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1081		if (ret)
1082			return ret;
 
 
 
 
 
1083	}
1084
1085	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1086	if (ret)
1087		return ret;
1088
1089	if (cpufreq_driver->bios_limit) {
1090		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1091		if (ret)
1092			return ret;
1093	}
1094
1095	if (cpufreq_boost_supported()) {
1096		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1097		if (ret)
1098			return ret;
1099	}
1100
1101	return 0;
 
 
 
 
 
1102}
1103
1104static int cpufreq_init_policy(struct cpufreq_policy *policy)
1105{
1106	struct cpufreq_governor *gov = NULL;
1107	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1108	int ret;
1109
1110	if (has_target()) {
1111		/* Update policy governor to the one used before hotplug. */
1112		gov = get_governor(policy->last_governor);
1113		if (gov) {
1114			pr_debug("Restoring governor %s for cpu %d\n",
1115				 gov->name, policy->cpu);
1116		} else {
1117			gov = get_governor(default_governor);
1118		}
1119
1120		if (!gov) {
1121			gov = cpufreq_default_governor();
1122			__module_get(gov->owner);
1123		}
1124
1125	} else {
 
 
 
 
 
 
1126
1127		/* Use the default policy if there is no last_policy. */
1128		if (policy->last_policy) {
1129			pol = policy->last_policy;
1130		} else {
1131			pol = cpufreq_parse_policy(default_governor);
1132			/*
1133			 * In case the default governor is neither "performance"
1134			 * nor "powersave", fall back to the initial policy
1135			 * value set by the driver.
1136			 */
1137			if (pol == CPUFREQ_POLICY_UNKNOWN)
1138				pol = policy->policy;
1139		}
1140		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1141		    pol != CPUFREQ_POLICY_POWERSAVE)
1142			return -ENODATA;
1143	}
1144
1145	ret = cpufreq_set_policy(policy, gov, pol);
1146	if (gov)
1147		module_put(gov->owner);
1148
1149	return ret;
 
 
 
 
 
 
1150}
1151
1152static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
 
 
1153{
1154	int ret = 0;
 
1155
1156	/* Has this CPU been taken care of already? */
1157	if (cpumask_test_cpu(cpu, policy->cpus))
1158		return 0;
 
 
 
 
1159
1160	down_write(&policy->rwsem);
1161	if (has_target())
1162		cpufreq_stop_governor(policy);
1163
1164	cpumask_set_cpu(cpu, policy->cpus);
 
 
1165
1166	if (has_target()) {
1167		ret = cpufreq_start_governor(policy);
1168		if (ret)
1169			pr_err("%s: Failed to start governor\n", __func__);
1170	}
1171	up_write(&policy->rwsem);
1172	return ret;
1173}
1174
1175void refresh_frequency_limits(struct cpufreq_policy *policy)
1176{
1177	if (!policy_is_inactive(policy)) {
1178		pr_debug("updating policy for CPU %u\n", policy->cpu);
1179
1180		cpufreq_set_policy(policy, policy->governor, policy->policy);
 
 
 
1181	}
1182}
1183EXPORT_SYMBOL(refresh_frequency_limits);
1184
1185static void handle_update(struct work_struct *work)
1186{
1187	struct cpufreq_policy *policy =
1188		container_of(work, struct cpufreq_policy, update);
1189
1190	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1191	down_write(&policy->rwsem);
1192	refresh_frequency_limits(policy);
1193	up_write(&policy->rwsem);
1194}
 
1195
1196static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1197				void *data)
1198{
1199	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1200
1201	schedule_work(&policy->update);
1202	return 0;
1203}
1204
1205static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1206				void *data)
1207{
1208	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1209
1210	schedule_work(&policy->update);
1211	return 0;
1212}
1213
1214static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1215{
1216	struct kobject *kobj;
1217	struct completion *cmp;
1218
1219	down_write(&policy->rwsem);
1220	cpufreq_stats_free_table(policy);
1221	kobj = &policy->kobj;
1222	cmp = &policy->kobj_unregister;
1223	up_write(&policy->rwsem);
1224	kobject_put(kobj);
1225
1226	/*
1227	 * We need to make sure that the underlying kobj is
1228	 * actually not referenced anymore by anybody before we
1229	 * proceed with unloading.
1230	 */
1231	pr_debug("waiting for dropping of refcount\n");
1232	wait_for_completion(cmp);
1233	pr_debug("wait complete\n");
1234}
1235
1236static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1237{
1238	struct cpufreq_policy *policy;
1239	struct device *dev = get_cpu_device(cpu);
1240	int ret;
1241
1242	if (!dev)
1243		return NULL;
1244
1245	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1246	if (!policy)
1247		return NULL;
1248
1249	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1250		goto err_free_policy;
1251
1252	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1253		goto err_free_cpumask;
1254
1255	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1256		goto err_free_rcpumask;
1257
1258	init_completion(&policy->kobj_unregister);
1259	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1260				   cpufreq_global_kobject, "policy%u", cpu);
1261	if (ret) {
1262		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1263		/*
1264		 * The entire policy object will be freed below, but the extra
1265		 * memory allocated for the kobject name needs to be freed by
1266		 * releasing the kobject.
1267		 */
1268		kobject_put(&policy->kobj);
1269		goto err_free_real_cpus;
1270	}
1271
1272	freq_constraints_init(&policy->constraints);
1273
1274	policy->nb_min.notifier_call = cpufreq_notifier_min;
1275	policy->nb_max.notifier_call = cpufreq_notifier_max;
1276
1277	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1278				    &policy->nb_min);
1279	if (ret) {
1280		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1281			ret, cpu);
1282		goto err_kobj_remove;
1283	}
1284
1285	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1286				    &policy->nb_max);
1287	if (ret) {
1288		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1289			ret, cpu);
1290		goto err_min_qos_notifier;
1291	}
1292
1293	INIT_LIST_HEAD(&policy->policy_list);
1294	init_rwsem(&policy->rwsem);
1295	spin_lock_init(&policy->transition_lock);
1296	init_waitqueue_head(&policy->transition_wait);
1297	INIT_WORK(&policy->update, handle_update);
1298
1299	policy->cpu = cpu;
1300	return policy;
1301
1302err_min_qos_notifier:
1303	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1304				 &policy->nb_min);
1305err_kobj_remove:
1306	cpufreq_policy_put_kobj(policy);
1307err_free_real_cpus:
1308	free_cpumask_var(policy->real_cpus);
1309err_free_rcpumask:
1310	free_cpumask_var(policy->related_cpus);
1311err_free_cpumask:
1312	free_cpumask_var(policy->cpus);
1313err_free_policy:
1314	kfree(policy);
1315
1316	return NULL;
1317}
1318
1319static void cpufreq_policy_free(struct cpufreq_policy *policy)
1320{
1321	unsigned long flags;
1322	int cpu;
 
 
 
 
 
 
 
 
 
1323
1324	/*
1325	 * The callers must ensure the policy is inactive by now, to avoid any
1326	 * races with show()/store() callbacks.
 
1327	 */
1328	if (unlikely(!policy_is_inactive(policy)))
1329		pr_warn("%s: Freeing active policy\n", __func__);
1330
1331	/* Remove policy from list */
1332	write_lock_irqsave(&cpufreq_driver_lock, flags);
1333	list_del(&policy->policy_list);
1334
1335	for_each_cpu(cpu, policy->related_cpus)
1336		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1337	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
1338
1339	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1340				 &policy->nb_max);
1341	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1342				 &policy->nb_min);
1343
1344	/* Cancel any pending policy->update work before freeing the policy. */
1345	cancel_work_sync(&policy->update);
1346
1347	if (policy->max_freq_req) {
1348		/*
1349		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1350		 * notification, since CPUFREQ_CREATE_POLICY notification was
1351		 * sent after adding max_freq_req earlier.
1352		 */
1353		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1354					     CPUFREQ_REMOVE_POLICY, policy);
1355		freq_qos_remove_request(policy->max_freq_req);
1356	}
1357
1358	freq_qos_remove_request(policy->min_freq_req);
1359	kfree(policy->min_freq_req);
1360
1361	cpufreq_policy_put_kobj(policy);
1362	free_cpumask_var(policy->real_cpus);
1363	free_cpumask_var(policy->related_cpus);
1364	free_cpumask_var(policy->cpus);
1365	kfree(policy);
1366}
1367
1368static int cpufreq_online(unsigned int cpu)
1369{
 
 
1370	struct cpufreq_policy *policy;
1371	bool new_policy;
1372	unsigned long flags;
1373	unsigned int j;
1374	int ret;
 
 
1375
1376	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
 
1377
1378	/* Check if this CPU already has a policy to manage it */
1379	policy = per_cpu(cpufreq_cpu_data, cpu);
1380	if (policy) {
1381		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1382		if (!policy_is_inactive(policy))
1383			return cpufreq_add_policy_cpu(policy, cpu);
1384
1385		/* This is the only online CPU for the policy.  Start over. */
1386		new_policy = false;
1387		down_write(&policy->rwsem);
1388		policy->cpu = cpu;
1389		policy->governor = NULL;
1390	} else {
1391		new_policy = true;
1392		policy = cpufreq_policy_alloc(cpu);
1393		if (!policy)
1394			return -ENOMEM;
1395		down_write(&policy->rwsem);
1396	}
 
1397
1398	if (!new_policy && cpufreq_driver->online) {
1399		/* Recover policy->cpus using related_cpus */
1400		cpumask_copy(policy->cpus, policy->related_cpus);
1401
1402		ret = cpufreq_driver->online(policy);
1403		if (ret) {
1404			pr_debug("%s: %d: initialization failed\n", __func__,
1405				 __LINE__);
1406			goto out_exit_policy;
 
 
 
 
1407		}
1408	} else {
1409		cpumask_copy(policy->cpus, cpumask_of(cpu));
 
1410
1411		/*
1412		 * Call driver. From then on the cpufreq must be able
1413		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1414		 */
1415		ret = cpufreq_driver->init(policy);
1416		if (ret) {
1417			pr_debug("%s: %d: initialization failed\n", __func__,
1418				 __LINE__);
1419			goto out_free_policy;
1420		}
 
1421
1422		/*
1423		 * The initialization has succeeded and the policy is online.
1424		 * If there is a problem with its frequency table, take it
1425		 * offline and drop it.
1426		 */
1427		ret = cpufreq_table_validate_and_sort(policy);
1428		if (ret)
1429			goto out_offline_policy;
 
 
 
 
1430
1431		/* related_cpus should at least include policy->cpus. */
1432		cpumask_copy(policy->related_cpus, policy->cpus);
 
 
 
 
 
 
 
 
1433	}
1434
 
 
 
1435	/*
1436	 * affected cpus must always be the one, which are online. We aren't
1437	 * managing offline cpus here.
1438	 */
1439	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1440
1441	if (new_policy) {
1442		for_each_cpu(j, policy->related_cpus) {
1443			per_cpu(cpufreq_cpu_data, j) = policy;
1444			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1445		}
1446
1447		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1448					       GFP_KERNEL);
1449		if (!policy->min_freq_req) {
1450			ret = -ENOMEM;
1451			goto out_destroy_policy;
1452		}
1453
1454		ret = freq_qos_add_request(&policy->constraints,
1455					   policy->min_freq_req, FREQ_QOS_MIN,
1456					   FREQ_QOS_MIN_DEFAULT_VALUE);
1457		if (ret < 0) {
1458			/*
1459			 * So we don't call freq_qos_remove_request() for an
1460			 * uninitialized request.
1461			 */
1462			kfree(policy->min_freq_req);
1463			policy->min_freq_req = NULL;
1464			goto out_destroy_policy;
1465		}
1466
1467		/*
1468		 * This must be initialized right here to avoid calling
1469		 * freq_qos_remove_request() on uninitialized request in case
1470		 * of errors.
1471		 */
1472		policy->max_freq_req = policy->min_freq_req + 1;
1473
1474		ret = freq_qos_add_request(&policy->constraints,
1475					   policy->max_freq_req, FREQ_QOS_MAX,
1476					   FREQ_QOS_MAX_DEFAULT_VALUE);
1477		if (ret < 0) {
1478			policy->max_freq_req = NULL;
1479			goto out_destroy_policy;
1480		}
1481
1482		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1483				CPUFREQ_CREATE_POLICY, policy);
1484	}
1485
1486	if (cpufreq_driver->get && has_target()) {
 
 
 
 
 
 
1487		policy->cur = cpufreq_driver->get(policy->cpu);
1488		if (!policy->cur) {
1489			ret = -EIO;
1490			pr_err("%s: ->get() failed\n", __func__);
1491			goto out_destroy_policy;
1492		}
1493	}
1494
1495	/*
1496	 * Sometimes boot loaders set CPU frequency to a value outside of
1497	 * frequency table present with cpufreq core. In such cases CPU might be
1498	 * unstable if it has to run on that frequency for long duration of time
1499	 * and so its better to set it to a frequency which is specified in
1500	 * freq-table. This also makes cpufreq stats inconsistent as
1501	 * cpufreq-stats would fail to register because current frequency of CPU
1502	 * isn't found in freq-table.
1503	 *
1504	 * Because we don't want this change to effect boot process badly, we go
1505	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1506	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1507	 * is initialized to zero).
1508	 *
1509	 * We are passing target-freq as "policy->cur - 1" otherwise
1510	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1511	 * equal to target-freq.
1512	 */
1513	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1514	    && has_target()) {
1515		unsigned int old_freq = policy->cur;
1516
1517		/* Are we running at unknown frequency ? */
1518		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1519		if (ret == -EINVAL) {
1520			ret = __cpufreq_driver_target(policy, old_freq - 1,
1521						      CPUFREQ_RELATION_L);
 
 
 
1522
1523			/*
1524			 * Reaching here after boot in a few seconds may not
1525			 * mean that system will remain stable at "unknown"
1526			 * frequency for longer duration. Hence, a BUG_ON().
1527			 */
1528			BUG_ON(ret);
1529			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1530				__func__, policy->cpu, old_freq, policy->cur);
1531		}
1532	}
1533
1534	if (new_policy) {
1535		ret = cpufreq_add_dev_interface(policy);
1536		if (ret)
1537			goto out_destroy_policy;
1538
1539		cpufreq_stats_create_table(policy);
 
 
 
 
 
 
1540
1541		write_lock_irqsave(&cpufreq_driver_lock, flags);
1542		list_add(&policy->policy_list, &cpufreq_policy_list);
1543		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1544
1545		/*
1546		 * Register with the energy model before
1547		 * sugov_eas_rebuild_sd() is called, which will result
1548		 * in rebuilding of the sched domains, which should only be done
1549		 * once the energy model is properly initialized for the policy
1550		 * first.
1551		 *
1552		 * Also, this should be called before the policy is registered
1553		 * with cooling framework.
1554		 */
1555		if (cpufreq_driver->register_em)
1556			cpufreq_driver->register_em(policy);
1557	}
1558
1559	ret = cpufreq_init_policy(policy);
1560	if (ret) {
1561		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1562		       __func__, cpu, ret);
1563		goto out_destroy_policy;
1564	}
1565
1566	up_write(&policy->rwsem);
1567
1568	kobject_uevent(&policy->kobj, KOBJ_ADD);
1569
1570	/* Callback for handling stuff after policy is ready */
1571	if (cpufreq_driver->ready)
1572		cpufreq_driver->ready(policy);
1573
1574	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1575		policy->cdev = of_cpufreq_cooling_register(policy);
1576
1577	pr_debug("initialization complete\n");
1578
1579	return 0;
1580
1581out_destroy_policy:
1582	for_each_cpu(j, policy->real_cpus)
1583		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1584
1585out_offline_policy:
1586	if (cpufreq_driver->offline)
1587		cpufreq_driver->offline(policy);
1588
1589out_exit_policy:
1590	if (cpufreq_driver->exit)
1591		cpufreq_driver->exit(policy);
 
 
 
 
 
 
 
1592
1593out_free_policy:
1594	cpumask_clear(policy->cpus);
1595	up_write(&policy->rwsem);
1596
1597	cpufreq_policy_free(policy);
1598	return ret;
1599}
1600
1601/**
1602 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1603 * @dev: CPU device.
1604 * @sif: Subsystem interface structure pointer (not used)
 
 
 
 
1605 */
1606static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1607{
1608	struct cpufreq_policy *policy;
1609	unsigned cpu = dev->id;
 
 
 
 
 
1610	int ret;
1611
1612	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
 
1613
1614	if (cpu_online(cpu)) {
1615		ret = cpufreq_online(cpu);
1616		if (ret)
1617			return ret;
1618	}
1619
1620	/* Create sysfs link on CPU registration */
1621	policy = per_cpu(cpufreq_cpu_data, cpu);
1622	if (policy)
1623		add_cpu_dev_symlink(policy, cpu, dev);
1624
1625	return 0;
 
 
 
 
 
 
1626}
1627
1628static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
 
1629{
1630	int ret;
 
 
 
1631
1632	if (has_target())
1633		cpufreq_stop_governor(policy);
1634
1635	cpumask_clear_cpu(cpu, policy->cpus);
1636
1637	if (!policy_is_inactive(policy)) {
1638		/* Nominate a new CPU if necessary. */
1639		if (cpu == policy->cpu)
1640			policy->cpu = cpumask_any(policy->cpus);
1641
1642		/* Start the governor again for the active policy. */
1643		if (has_target()) {
1644			ret = cpufreq_start_governor(policy);
1645			if (ret)
1646				pr_err("%s: Failed to start governor\n", __func__);
1647		}
1648
1649		return;
1650	}
1651
1652	if (has_target())
1653		strscpy(policy->last_governor, policy->governor->name,
1654			CPUFREQ_NAME_LEN);
1655	else
1656		policy->last_policy = policy->policy;
1657
1658	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1659		cpufreq_cooling_unregister(policy->cdev);
1660		policy->cdev = NULL;
 
 
 
1661	}
1662
1663	if (has_target())
1664		cpufreq_exit_governor(policy);
 
1665
1666	/*
1667	 * Perform the ->offline() during light-weight tear-down, as
1668	 * that allows fast recovery when the CPU comes back.
1669	 */
1670	if (cpufreq_driver->offline) {
1671		cpufreq_driver->offline(policy);
1672	} else if (cpufreq_driver->exit) {
1673		cpufreq_driver->exit(policy);
1674		policy->freq_table = NULL;
 
 
 
 
 
 
 
 
1675	}
 
 
1676}
1677
1678static int cpufreq_offline(unsigned int cpu)
 
1679{
 
 
 
1680	struct cpufreq_policy *policy;
1681
1682	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
 
 
1683
1684	policy = cpufreq_cpu_get_raw(cpu);
1685	if (!policy) {
1686		pr_debug("%s: No cpu_data found\n", __func__);
1687		return 0;
1688	}
1689
1690	down_write(&policy->rwsem);
 
1691
1692	__cpufreq_offline(cpu, policy);
1693
1694	up_write(&policy->rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1695	return 0;
1696}
1697
1698/*
1699 * cpufreq_remove_dev - remove a CPU device
1700 *
1701 * Removes the cpufreq interface for a CPU device.
1702 */
1703static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1704{
1705	unsigned int cpu = dev->id;
1706	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1707
1708	if (!policy)
1709		return;
1710
1711	down_write(&policy->rwsem);
1712
1713	if (cpu_online(cpu))
1714		__cpufreq_offline(cpu, policy);
1715
1716	remove_cpu_dev_symlink(policy, cpu, dev);
 
1717
1718	if (!cpumask_empty(policy->real_cpus)) {
1719		up_write(&policy->rwsem);
1720		return;
1721	}
1722
1723	/* We did light-weight exit earlier, do full tear down now */
1724	if (cpufreq_driver->offline)
1725		cpufreq_driver->exit(policy);
1726
1727	up_write(&policy->rwsem);
 
1728
1729	cpufreq_policy_free(policy);
 
 
 
 
 
 
1730}
1731
1732/**
1733 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1734 * @policy: Policy managing CPUs.
1735 * @new_freq: New CPU frequency.
 
 
1736 *
1737 * Adjust to the current frequency first and clean up later by either calling
1738 * cpufreq_update_policy(), or scheduling handle_update().
1739 */
1740static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1741				unsigned int new_freq)
1742{
 
1743	struct cpufreq_freqs freqs;
 
1744
1745	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1746		 policy->cur, new_freq);
1747
1748	freqs.old = policy->cur;
1749	freqs.new = new_freq;
1750
 
 
 
 
1751	cpufreq_freq_transition_begin(policy, &freqs);
1752	cpufreq_freq_transition_end(policy, &freqs, 0);
1753}
1754
1755static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1756{
1757	unsigned int new_freq;
1758
1759	new_freq = cpufreq_driver->get(policy->cpu);
1760	if (!new_freq)
1761		return 0;
1762
1763	/*
1764	 * If fast frequency switching is used with the given policy, the check
1765	 * against policy->cur is pointless, so skip it in that case.
1766	 */
1767	if (policy->fast_switch_enabled || !has_target())
1768		return new_freq;
1769
1770	if (policy->cur != new_freq) {
1771		/*
1772		 * For some platforms, the frequency returned by hardware may be
1773		 * slightly different from what is provided in the frequency
1774		 * table, for example hardware may return 499 MHz instead of 500
1775		 * MHz. In such cases it is better to avoid getting into
1776		 * unnecessary frequency updates.
1777		 */
1778		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1779			return policy->cur;
1780
1781		cpufreq_out_of_sync(policy, new_freq);
1782		if (update)
1783			schedule_work(&policy->update);
1784	}
1785
1786	return new_freq;
1787}
1788
1789/**
1790 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1791 * @cpu: CPU number
1792 *
1793 * This is the last known freq, without actually getting it from the driver.
1794 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1795 */
1796unsigned int cpufreq_quick_get(unsigned int cpu)
1797{
1798	struct cpufreq_policy *policy;
1799	unsigned int ret_freq = 0;
1800	unsigned long flags;
1801
1802	read_lock_irqsave(&cpufreq_driver_lock, flags);
1803
1804	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1805		ret_freq = cpufreq_driver->get(cpu);
1806		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1807		return ret_freq;
1808	}
1809
1810	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1811
1812	policy = cpufreq_cpu_get(cpu);
1813	if (policy) {
1814		ret_freq = policy->cur;
1815		cpufreq_cpu_put(policy);
1816	}
1817
1818	return ret_freq;
1819}
1820EXPORT_SYMBOL(cpufreq_quick_get);
1821
1822/**
1823 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1824 * @cpu: CPU number
1825 *
1826 * Just return the max possible frequency for a given CPU.
1827 */
1828unsigned int cpufreq_quick_get_max(unsigned int cpu)
1829{
1830	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1831	unsigned int ret_freq = 0;
1832
1833	if (policy) {
1834		ret_freq = policy->max;
1835		cpufreq_cpu_put(policy);
1836	}
1837
1838	return ret_freq;
1839}
1840EXPORT_SYMBOL(cpufreq_quick_get_max);
1841
1842/**
1843 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1844 * @cpu: CPU number
1845 *
1846 * The default return value is the max_freq field of cpuinfo.
1847 */
1848__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1849{
1850	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1851	unsigned int ret_freq = 0;
1852
1853	if (policy) {
1854		ret_freq = policy->cpuinfo.max_freq;
1855		cpufreq_cpu_put(policy);
1856	}
1857
1858	return ret_freq;
1859}
1860EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1861
1862static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1863{
1864	if (unlikely(policy_is_inactive(policy)))
1865		return 0;
 
 
 
 
 
1866
1867	return cpufreq_verify_current_freq(policy, true);
1868}
1869
1870/**
1871 * cpufreq_get - get the current CPU frequency (in kHz)
1872 * @cpu: CPU number
1873 *
1874 * Get the CPU current (static) CPU frequency
1875 */
1876unsigned int cpufreq_get(unsigned int cpu)
1877{
1878	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1879	unsigned int ret_freq = 0;
1880
1881	if (policy) {
1882		down_read(&policy->rwsem);
1883		if (cpufreq_driver->get)
1884			ret_freq = __cpufreq_get(policy);
1885		up_read(&policy->rwsem);
1886
1887		cpufreq_cpu_put(policy);
1888	}
1889
1890	return ret_freq;
1891}
1892EXPORT_SYMBOL(cpufreq_get);
1893
1894static struct subsys_interface cpufreq_interface = {
1895	.name		= "cpufreq",
1896	.subsys		= &cpu_subsys,
1897	.add_dev	= cpufreq_add_dev,
1898	.remove_dev	= cpufreq_remove_dev,
1899};
1900
1901/*
1902 * In case platform wants some specific frequency to be configured
1903 * during suspend..
1904 */
1905int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1906{
1907	int ret;
1908
1909	if (!policy->suspend_freq) {
1910		pr_debug("%s: suspend_freq not defined\n", __func__);
1911		return 0;
1912	}
1913
1914	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1915			policy->suspend_freq);
1916
1917	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1918			CPUFREQ_RELATION_H);
1919	if (ret)
1920		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1921				__func__, policy->suspend_freq, ret);
1922
1923	return ret;
1924}
1925EXPORT_SYMBOL(cpufreq_generic_suspend);
1926
1927/**
1928 * cpufreq_suspend() - Suspend CPUFreq governors.
1929 *
1930 * Called during system wide Suspend/Hibernate cycles for suspending governors
1931 * as some platforms can't change frequency after this point in suspend cycle.
1932 * Because some of the devices (like: i2c, regulators, etc) they use for
1933 * changing frequency are suspended quickly after this point.
1934 */
1935void cpufreq_suspend(void)
1936{
1937	struct cpufreq_policy *policy;
1938
1939	if (!cpufreq_driver)
1940		return;
1941
1942	if (!has_target() && !cpufreq_driver->suspend)
1943		goto suspend;
1944
1945	pr_debug("%s: Suspending Governors\n", __func__);
1946
1947	for_each_active_policy(policy) {
1948		if (has_target()) {
1949			down_write(&policy->rwsem);
1950			cpufreq_stop_governor(policy);
1951			up_write(&policy->rwsem);
1952		}
1953
1954		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1955			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1956				cpufreq_driver->name);
1957	}
1958
1959suspend:
1960	cpufreq_suspended = true;
1961}
1962
1963/**
1964 * cpufreq_resume() - Resume CPUFreq governors.
1965 *
1966 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1967 * are suspended with cpufreq_suspend().
1968 */
1969void cpufreq_resume(void)
1970{
1971	struct cpufreq_policy *policy;
1972	int ret;
1973
1974	if (!cpufreq_driver)
1975		return;
1976
1977	if (unlikely(!cpufreq_suspended))
1978		return;
1979
1980	cpufreq_suspended = false;
1981
1982	if (!has_target() && !cpufreq_driver->resume)
1983		return;
1984
1985	pr_debug("%s: Resuming Governors\n", __func__);
1986
1987	for_each_active_policy(policy) {
1988		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1989			pr_err("%s: Failed to resume driver: %s\n", __func__,
1990				cpufreq_driver->name);
1991		} else if (has_target()) {
1992			down_write(&policy->rwsem);
1993			ret = cpufreq_start_governor(policy);
1994			up_write(&policy->rwsem);
1995
1996			if (ret)
1997				pr_err("%s: Failed to start governor for CPU%u's policy\n",
1998				       __func__, policy->cpu);
1999		}
2000	}
2001}
 
 
2002
2003/**
2004 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2005 * @flags: Flags to test against the current cpufreq driver's flags.
2006 *
2007 * Assumes that the driver is there, so callers must ensure that this is the
2008 * case.
2009 */
2010bool cpufreq_driver_test_flags(u16 flags)
2011{
2012	return !!(cpufreq_driver->flags & flags);
2013}
2014
2015/**
2016 * cpufreq_get_current_driver - Return the current driver's name.
2017 *
2018 * Return the name string of the currently registered cpufreq driver or NULL if
2019 * none.
2020 */
2021const char *cpufreq_get_current_driver(void)
2022{
2023	if (cpufreq_driver)
2024		return cpufreq_driver->name;
2025
2026	return NULL;
2027}
2028EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2029
2030/**
2031 * cpufreq_get_driver_data - Return current driver data.
2032 *
2033 * Return the private data of the currently registered cpufreq driver, or NULL
2034 * if no cpufreq driver has been registered.
2035 */
2036void *cpufreq_get_driver_data(void)
2037{
2038	if (cpufreq_driver)
2039		return cpufreq_driver->driver_data;
2040
2041	return NULL;
2042}
2043EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2044
2045/*********************************************************************
2046 *                     NOTIFIER LISTS INTERFACE                      *
2047 *********************************************************************/
2048
2049/**
2050 * cpufreq_register_notifier - Register a notifier with cpufreq.
2051 * @nb: notifier function to register.
2052 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2053 *
2054 * Add a notifier to one of two lists: either a list of notifiers that run on
2055 * clock rate changes (once before and once after every transition), or a list
2056 * of notifiers that ron on cpufreq policy changes.
 
2057 *
2058 * This function may sleep and it has the same return values as
2059 * blocking_notifier_chain_register().
2060 */
2061int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2062{
2063	int ret;
2064
2065	if (cpufreq_disabled())
2066		return -EINVAL;
2067
 
 
2068	switch (list) {
2069	case CPUFREQ_TRANSITION_NOTIFIER:
2070		mutex_lock(&cpufreq_fast_switch_lock);
2071
2072		if (cpufreq_fast_switch_count > 0) {
2073			mutex_unlock(&cpufreq_fast_switch_lock);
2074			return -EBUSY;
2075		}
2076		ret = srcu_notifier_chain_register(
2077				&cpufreq_transition_notifier_list, nb);
2078		if (!ret)
2079			cpufreq_fast_switch_count--;
2080
2081		mutex_unlock(&cpufreq_fast_switch_lock);
2082		break;
2083	case CPUFREQ_POLICY_NOTIFIER:
2084		ret = blocking_notifier_chain_register(
2085				&cpufreq_policy_notifier_list, nb);
2086		break;
2087	default:
2088		ret = -EINVAL;
2089	}
2090
2091	return ret;
2092}
2093EXPORT_SYMBOL(cpufreq_register_notifier);
2094
2095/**
2096 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2097 * @nb: notifier block to be unregistered.
2098 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2099 *
2100 * Remove a notifier from one of the cpufreq notifier lists.
2101 *
2102 * This function may sleep and it has the same return values as
2103 * blocking_notifier_chain_unregister().
2104 */
2105int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2106{
2107	int ret;
2108
2109	if (cpufreq_disabled())
2110		return -EINVAL;
2111
2112	switch (list) {
2113	case CPUFREQ_TRANSITION_NOTIFIER:
2114		mutex_lock(&cpufreq_fast_switch_lock);
2115
2116		ret = srcu_notifier_chain_unregister(
2117				&cpufreq_transition_notifier_list, nb);
2118		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2119			cpufreq_fast_switch_count++;
2120
2121		mutex_unlock(&cpufreq_fast_switch_lock);
2122		break;
2123	case CPUFREQ_POLICY_NOTIFIER:
2124		ret = blocking_notifier_chain_unregister(
2125				&cpufreq_policy_notifier_list, nb);
2126		break;
2127	default:
2128		ret = -EINVAL;
2129	}
2130
2131	return ret;
2132}
2133EXPORT_SYMBOL(cpufreq_unregister_notifier);
2134
2135
2136/*********************************************************************
2137 *                              GOVERNORS                            *
2138 *********************************************************************/
2139
2140/**
2141 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2142 * @policy: cpufreq policy to switch the frequency for.
2143 * @target_freq: New frequency to set (may be approximate).
2144 *
2145 * Carry out a fast frequency switch without sleeping.
2146 *
2147 * The driver's ->fast_switch() callback invoked by this function must be
2148 * suitable for being called from within RCU-sched read-side critical sections
2149 * and it is expected to select the minimum available frequency greater than or
2150 * equal to @target_freq (CPUFREQ_RELATION_L).
2151 *
2152 * This function must not be called if policy->fast_switch_enabled is unset.
2153 *
2154 * Governors calling this function must guarantee that it will never be invoked
2155 * twice in parallel for the same policy and that it will never be called in
2156 * parallel with either ->target() or ->target_index() for the same policy.
2157 *
2158 * Returns the actual frequency set for the CPU.
2159 *
2160 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2161 * error condition, the hardware configuration must be preserved.
2162 */
2163unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2164					unsigned int target_freq)
2165{
2166	unsigned int freq;
2167	int cpu;
2168
2169	target_freq = clamp_val(target_freq, policy->min, policy->max);
2170	freq = cpufreq_driver->fast_switch(policy, target_freq);
2171
2172	if (!freq)
2173		return 0;
2174
2175	policy->cur = freq;
2176	arch_set_freq_scale(policy->related_cpus, freq,
2177			    arch_scale_freq_ref(policy->cpu));
2178	cpufreq_stats_record_transition(policy, freq);
2179
2180	if (trace_cpu_frequency_enabled()) {
2181		for_each_cpu(cpu, policy->cpus)
2182			trace_cpu_frequency(freq, cpu);
2183	}
2184
2185	return freq;
2186}
2187EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2188
2189/**
2190 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2191 * @cpu: Target CPU.
2192 * @min_perf: Minimum (required) performance level (units of @capacity).
2193 * @target_perf: Target (desired) performance level (units of @capacity).
2194 * @capacity: Capacity of the target CPU.
2195 *
2196 * Carry out a fast performance level switch of @cpu without sleeping.
2197 *
2198 * The driver's ->adjust_perf() callback invoked by this function must be
2199 * suitable for being called from within RCU-sched read-side critical sections
2200 * and it is expected to select a suitable performance level equal to or above
2201 * @min_perf and preferably equal to or below @target_perf.
2202 *
2203 * This function must not be called if policy->fast_switch_enabled is unset.
2204 *
2205 * Governors calling this function must guarantee that it will never be invoked
2206 * twice in parallel for the same CPU and that it will never be called in
2207 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2208 * the same CPU.
2209 */
2210void cpufreq_driver_adjust_perf(unsigned int cpu,
2211				 unsigned long min_perf,
2212				 unsigned long target_perf,
2213				 unsigned long capacity)
2214{
2215	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2216}
2217
2218/**
2219 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2220 *
2221 * Return 'true' if the ->adjust_perf callback is present for the
2222 * current driver or 'false' otherwise.
2223 */
2224bool cpufreq_driver_has_adjust_perf(void)
2225{
2226	return !!cpufreq_driver->adjust_perf;
2227}
2228
2229/* Must set freqs->new to intermediate frequency */
2230static int __target_intermediate(struct cpufreq_policy *policy,
2231				 struct cpufreq_freqs *freqs, int index)
2232{
2233	int ret;
2234
2235	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2236
2237	/* We don't need to switch to intermediate freq */
2238	if (!freqs->new)
2239		return 0;
2240
2241	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2242		 __func__, policy->cpu, freqs->old, freqs->new);
2243
2244	cpufreq_freq_transition_begin(policy, freqs);
2245	ret = cpufreq_driver->target_intermediate(policy, index);
2246	cpufreq_freq_transition_end(policy, freqs, ret);
2247
2248	if (ret)
2249		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2250		       __func__, ret);
2251
2252	return ret;
2253}
2254
2255static int __target_index(struct cpufreq_policy *policy, int index)
2256{
2257	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2258	unsigned int restore_freq, intermediate_freq = 0;
2259	unsigned int newfreq = policy->freq_table[index].frequency;
2260	int retval = -EINVAL;
2261	bool notify;
2262
2263	if (newfreq == policy->cur)
2264		return 0;
2265
2266	/* Save last value to restore later on errors */
2267	restore_freq = policy->cur;
2268
2269	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2270	if (notify) {
2271		/* Handle switching to intermediate frequency */
2272		if (cpufreq_driver->get_intermediate) {
2273			retval = __target_intermediate(policy, &freqs, index);
2274			if (retval)
2275				return retval;
2276
2277			intermediate_freq = freqs.new;
2278			/* Set old freq to intermediate */
2279			if (intermediate_freq)
2280				freqs.old = freqs.new;
2281		}
2282
2283		freqs.new = newfreq;
2284		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2285			 __func__, policy->cpu, freqs.old, freqs.new);
2286
2287		cpufreq_freq_transition_begin(policy, &freqs);
2288	}
2289
2290	retval = cpufreq_driver->target_index(policy, index);
2291	if (retval)
2292		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2293		       retval);
2294
2295	if (notify) {
2296		cpufreq_freq_transition_end(policy, &freqs, retval);
2297
2298		/*
2299		 * Failed after setting to intermediate freq? Driver should have
2300		 * reverted back to initial frequency and so should we. Check
2301		 * here for intermediate_freq instead of get_intermediate, in
2302		 * case we haven't switched to intermediate freq at all.
2303		 */
2304		if (unlikely(retval && intermediate_freq)) {
2305			freqs.old = intermediate_freq;
2306			freqs.new = restore_freq;
2307			cpufreq_freq_transition_begin(policy, &freqs);
2308			cpufreq_freq_transition_end(policy, &freqs, 0);
2309		}
2310	}
2311
2312	return retval;
2313}
2314
2315int __cpufreq_driver_target(struct cpufreq_policy *policy,
2316			    unsigned int target_freq,
2317			    unsigned int relation)
2318{
 
2319	unsigned int old_target_freq = target_freq;
2320
2321	if (cpufreq_disabled())
2322		return -ENODEV;
2323
2324	target_freq = __resolve_freq(policy, target_freq, relation);
 
 
 
 
2325
2326	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2327		 policy->cpu, target_freq, relation, old_target_freq);
2328
2329	/*
2330	 * This might look like a redundant call as we are checking it again
2331	 * after finding index. But it is left intentionally for cases where
2332	 * exactly same freq is called again and so we can save on few function
2333	 * calls.
2334	 */
2335	if (target_freq == policy->cur &&
2336	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2337		return 0;
2338
2339	if (cpufreq_driver->target) {
2340		/*
2341		 * If the driver hasn't setup a single inefficient frequency,
2342		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2343		 */
2344		if (!policy->efficiencies_available)
2345			relation &= ~CPUFREQ_RELATION_E;
2346
2347		return cpufreq_driver->target(policy, target_freq, relation);
2348	}
 
 
 
2349
2350	if (!cpufreq_driver->target_index)
2351		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
2352
2353	return __target_index(policy, policy->cached_resolved_idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2354}
2355EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2356
2357int cpufreq_driver_target(struct cpufreq_policy *policy,
2358			  unsigned int target_freq,
2359			  unsigned int relation)
2360{
2361	int ret;
2362
2363	down_write(&policy->rwsem);
2364
2365	ret = __cpufreq_driver_target(policy, target_freq, relation);
2366
2367	up_write(&policy->rwsem);
2368
2369	return ret;
2370}
2371EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2372
2373__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2374{
2375	return NULL;
2376}
2377
2378static int cpufreq_init_governor(struct cpufreq_policy *policy)
 
2379{
2380	int ret;
2381
 
 
 
 
 
 
 
 
 
 
2382	/* Don't start any governor operations if we are entering suspend */
2383	if (cpufreq_suspended)
2384		return 0;
2385	/*
2386	 * Governor might not be initiated here if ACPI _PPC changed
2387	 * notification happened, so check it.
2388	 */
2389	if (!policy->governor)
2390		return -EINVAL;
2391
2392	/* Platform doesn't want dynamic frequency switching ? */
2393	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2394	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2395		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2396
2397		if (gov) {
2398			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
 
 
 
 
 
2399				policy->governor->name, gov->name);
2400			policy->governor = gov;
2401		} else {
2402			return -EINVAL;
2403		}
2404	}
2405
2406	if (!try_module_get(policy->governor->owner))
2407		return -EINVAL;
 
2408
2409	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
 
2410
2411	if (policy->governor->init) {
2412		ret = policy->governor->init(policy);
2413		if (ret) {
2414			module_put(policy->governor->owner);
2415			return ret;
2416		}
2417	}
2418
2419	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2420
2421	return 0;
2422}
2423
2424static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2425{
2426	if (cpufreq_suspended || !policy->governor)
2427		return;
2428
2429	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2430
2431	if (policy->governor->exit)
2432		policy->governor->exit(policy);
2433
2434	module_put(policy->governor->owner);
2435}
2436
2437int cpufreq_start_governor(struct cpufreq_policy *policy)
2438{
2439	int ret;
2440
2441	if (cpufreq_suspended)
2442		return 0;
2443
2444	if (!policy->governor)
2445		return -EINVAL;
2446
2447	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2448
2449	if (cpufreq_driver->get)
2450		cpufreq_verify_current_freq(policy, false);
2451
2452	if (policy->governor->start) {
2453		ret = policy->governor->start(policy);
2454		if (ret)
2455			return ret;
2456	}
2457
2458	if (policy->governor->limits)
2459		policy->governor->limits(policy);
2460
2461	return 0;
2462}
2463
2464void cpufreq_stop_governor(struct cpufreq_policy *policy)
2465{
2466	if (cpufreq_suspended || !policy->governor)
2467		return;
2468
2469	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2470
2471	if (policy->governor->stop)
2472		policy->governor->stop(policy);
2473}
2474
2475static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2476{
2477	if (cpufreq_suspended || !policy->governor)
2478		return;
2479
2480	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2481
2482	if (policy->governor->limits)
2483		policy->governor->limits(policy);
2484}
2485
2486int cpufreq_register_governor(struct cpufreq_governor *governor)
2487{
2488	int err;
2489
2490	if (!governor)
2491		return -EINVAL;
2492
2493	if (cpufreq_disabled())
2494		return -ENODEV;
2495
2496	mutex_lock(&cpufreq_governor_mutex);
2497
 
2498	err = -EBUSY;
2499	if (!find_governor(governor->name)) {
2500		err = 0;
2501		list_add(&governor->governor_list, &cpufreq_governor_list);
2502	}
2503
2504	mutex_unlock(&cpufreq_governor_mutex);
2505	return err;
2506}
2507EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2508
2509void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2510{
2511	struct cpufreq_policy *policy;
2512	unsigned long flags;
2513
2514	if (!governor)
2515		return;
2516
2517	if (cpufreq_disabled())
2518		return;
2519
2520	/* clear last_governor for all inactive policies */
2521	read_lock_irqsave(&cpufreq_driver_lock, flags);
2522	for_each_inactive_policy(policy) {
2523		if (!strcmp(policy->last_governor, governor->name)) {
2524			policy->governor = NULL;
2525			strcpy(policy->last_governor, "\0");
2526		}
2527	}
2528	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2529
2530	mutex_lock(&cpufreq_governor_mutex);
2531	list_del(&governor->governor_list);
2532	mutex_unlock(&cpufreq_governor_mutex);
 
2533}
2534EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2535
2536
2537/*********************************************************************
2538 *                          POLICY INTERFACE                         *
2539 *********************************************************************/
2540
2541/**
2542 * cpufreq_get_policy - get the current cpufreq_policy
2543 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2544 *	is written
2545 * @cpu: CPU to find the policy for
2546 *
2547 * Reads the current cpufreq policy.
2548 */
2549int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2550{
2551	struct cpufreq_policy *cpu_policy;
2552	if (!policy)
2553		return -EINVAL;
2554
2555	cpu_policy = cpufreq_cpu_get(cpu);
2556	if (!cpu_policy)
2557		return -EINVAL;
2558
2559	memcpy(policy, cpu_policy, sizeof(*policy));
2560
2561	cpufreq_cpu_put(cpu_policy);
2562	return 0;
2563}
2564EXPORT_SYMBOL(cpufreq_get_policy);
2565
2566/**
2567 * cpufreq_set_policy - Modify cpufreq policy parameters.
2568 * @policy: Policy object to modify.
2569 * @new_gov: Policy governor pointer.
2570 * @new_pol: Policy value (for drivers with built-in governors).
2571 *
2572 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2573 * limits to be set for the policy, update @policy with the verified limits
2574 * values and either invoke the driver's ->setpolicy() callback (if present) or
2575 * carry out a governor update for @policy.  That is, run the current governor's
2576 * ->limits() callback (if @new_gov points to the same object as the one in
2577 * @policy) or replace the governor for @policy with @new_gov.
2578 *
2579 * The cpuinfo part of @policy is not updated by this function.
2580 */
2581static int cpufreq_set_policy(struct cpufreq_policy *policy,
2582			      struct cpufreq_governor *new_gov,
2583			      unsigned int new_pol)
2584{
2585	struct cpufreq_policy_data new_data;
2586	struct cpufreq_governor *old_gov;
2587	int ret;
2588
2589	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2590	new_data.freq_table = policy->freq_table;
2591	new_data.cpu = policy->cpu;
2592	/*
2593	 * PM QoS framework collects all the requests from users and provide us
2594	 * the final aggregated value here.
2595	 */
2596	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2597	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2598
2599	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2600		 new_data.cpu, new_data.min, new_data.max);
2601
2602	/*
2603	 * Verify that the CPU speed can be set within these limits and make sure
2604	 * that min <= max.
2605	 */
2606	ret = cpufreq_driver->verify(&new_data);
 
 
2607	if (ret)
2608		return ret;
2609
 
 
 
 
 
 
 
 
2610	/*
2611	 * Resolve policy min/max to available frequencies. It ensures
2612	 * no frequency resolution will neither overshoot the requested maximum
2613	 * nor undershoot the requested minimum.
2614	 */
2615	policy->min = new_data.min;
2616	policy->max = new_data.max;
2617	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2618	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2619	trace_cpu_frequency_limits(policy);
 
 
2620
2621	policy->cached_target_freq = UINT_MAX;
 
2622
2623	pr_debug("new min and max freqs are %u - %u kHz\n",
2624		 policy->min, policy->max);
2625
2626	if (cpufreq_driver->setpolicy) {
2627		policy->policy = new_pol;
2628		pr_debug("setting range\n");
2629		return cpufreq_driver->setpolicy(policy);
2630	}
2631
2632	if (new_gov == policy->governor) {
2633		pr_debug("governor limits update\n");
2634		cpufreq_governor_limits(policy);
2635		return 0;
2636	}
2637
2638	pr_debug("governor switch\n");
2639
2640	/* save old, working values */
2641	old_gov = policy->governor;
2642	/* end old governor */
2643	if (old_gov) {
2644		cpufreq_stop_governor(policy);
2645		cpufreq_exit_governor(policy);
 
 
2646	}
2647
2648	/* start new governor */
2649	policy->governor = new_gov;
2650	ret = cpufreq_init_governor(policy);
2651	if (!ret) {
2652		ret = cpufreq_start_governor(policy);
2653		if (!ret) {
2654			pr_debug("governor change\n");
2655			return 0;
2656		}
2657		cpufreq_exit_governor(policy);
2658	}
2659
2660	/* new governor failed, so re-start old one */
2661	pr_debug("starting governor %s failed\n", policy->governor->name);
2662	if (old_gov) {
2663		policy->governor = old_gov;
2664		if (cpufreq_init_governor(policy))
2665			policy->governor = NULL;
2666		else
2667			cpufreq_start_governor(policy);
2668	}
2669
2670	return ret;
 
 
 
 
2671}
2672
2673/**
2674 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2675 * @cpu: CPU to re-evaluate the policy for.
2676 *
2677 * Update the current frequency for the cpufreq policy of @cpu and use
2678 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2679 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2680 * for the policy in question, among other things.
2681 */
2682void cpufreq_update_policy(unsigned int cpu)
2683{
2684	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
 
 
2685
2686	if (!policy)
2687		return;
 
 
 
 
 
 
 
 
 
 
 
2688
2689	/*
2690	 * BIOS might change freq behind our back
2691	 * -> ask driver for current freq and notify governors about a change
2692	 */
2693	if (cpufreq_driver->get && has_target() &&
2694	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2695		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
2696
2697	refresh_frequency_limits(policy);
2698
2699unlock:
2700	cpufreq_cpu_release(policy);
 
 
 
2701}
2702EXPORT_SYMBOL(cpufreq_update_policy);
2703
2704/**
2705 * cpufreq_update_limits - Update policy limits for a given CPU.
2706 * @cpu: CPU to update the policy limits for.
2707 *
2708 * Invoke the driver's ->update_limits callback if present or call
2709 * cpufreq_update_policy() for @cpu.
2710 */
2711void cpufreq_update_limits(unsigned int cpu)
2712{
2713	if (cpufreq_driver->update_limits)
2714		cpufreq_driver->update_limits(cpu);
2715	else
2716		cpufreq_update_policy(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2717}
2718EXPORT_SYMBOL_GPL(cpufreq_update_limits);
 
 
 
2719
2720/*********************************************************************
2721 *               BOOST						     *
2722 *********************************************************************/
2723static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2724{
2725	int ret;
2726
2727	if (!policy->freq_table)
2728		return -ENXIO;
2729
2730	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2731	if (ret) {
2732		pr_err("%s: Policy frequency update failed\n", __func__);
2733		return ret;
 
 
 
 
 
 
 
 
 
2734	}
2735
2736	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2737	if (ret < 0)
2738		return ret;
2739
2740	return 0;
2741}
2742
2743int cpufreq_boost_trigger_state(int state)
2744{
2745	struct cpufreq_policy *policy;
2746	unsigned long flags;
2747	int ret = 0;
2748
2749	if (cpufreq_driver->boost_enabled == state)
2750		return 0;
2751
2752	write_lock_irqsave(&cpufreq_driver_lock, flags);
2753	cpufreq_driver->boost_enabled = state;
2754	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755
2756	cpus_read_lock();
2757	for_each_active_policy(policy) {
2758		ret = cpufreq_driver->set_boost(policy, state);
2759		if (ret)
2760			goto err_reset_state;
2761
2762		policy->boost_enabled = state;
 
2763	}
2764	cpus_read_unlock();
2765
2766	return 0;
2767
2768err_reset_state:
2769	cpus_read_unlock();
2770
2771	write_lock_irqsave(&cpufreq_driver_lock, flags);
2772	cpufreq_driver->boost_enabled = !state;
2773	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2774
2775	pr_err("%s: Cannot %s BOOST\n",
2776	       __func__, state ? "enable" : "disable");
2777
2778	return ret;
2779}
2780
2781static bool cpufreq_boost_supported(void)
2782{
2783	return cpufreq_driver->set_boost;
2784}
2785
2786static int create_boost_sysfs_file(void)
2787{
2788	int ret;
2789
2790	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2791	if (ret)
2792		pr_err("%s: cannot register global BOOST sysfs file\n",
2793		       __func__);
2794
2795	return ret;
2796}
2797
2798static void remove_boost_sysfs_file(void)
2799{
2800	if (cpufreq_boost_supported())
2801		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2802}
2803
2804int cpufreq_enable_boost_support(void)
2805{
2806	if (!cpufreq_driver)
2807		return -EINVAL;
2808
2809	if (cpufreq_boost_supported())
2810		return 0;
2811
2812	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2813
2814	/* This will get removed on driver unregister */
2815	return create_boost_sysfs_file();
2816}
2817EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2818
2819int cpufreq_boost_enabled(void)
2820{
2821	return cpufreq_driver->boost_enabled;
2822}
2823EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2824
2825/*********************************************************************
2826 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2827 *********************************************************************/
2828static enum cpuhp_state hp_online;
2829
2830static int cpuhp_cpufreq_online(unsigned int cpu)
2831{
2832	cpufreq_online(cpu);
2833
2834	return 0;
2835}
2836
2837static int cpuhp_cpufreq_offline(unsigned int cpu)
2838{
2839	cpufreq_offline(cpu);
2840
2841	return 0;
2842}
2843
2844/**
2845 * cpufreq_register_driver - register a CPU Frequency driver
2846 * @driver_data: A struct cpufreq_driver containing the values#
2847 * submitted by the CPU Frequency driver.
2848 *
2849 * Registers a CPU Frequency driver to this core code. This code
2850 * returns zero on success, -EEXIST when another driver got here first
2851 * (and isn't unregistered in the meantime).
2852 *
2853 */
2854int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2855{
2856	unsigned long flags;
2857	int ret;
2858
2859	if (cpufreq_disabled())
2860		return -ENODEV;
2861
2862	/*
2863	 * The cpufreq core depends heavily on the availability of device
2864	 * structure, make sure they are available before proceeding further.
2865	 */
2866	if (!get_cpu_device(0))
2867		return -EPROBE_DEFER;
2868
2869	if (!driver_data || !driver_data->verify || !driver_data->init ||
2870	    !(driver_data->setpolicy || driver_data->target_index ||
2871		    driver_data->target) ||
2872	     (driver_data->setpolicy && (driver_data->target_index ||
2873		    driver_data->target)) ||
2874	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2875	     (!driver_data->online != !driver_data->offline) ||
2876		 (driver_data->adjust_perf && !driver_data->fast_switch))
2877		return -EINVAL;
2878
2879	pr_debug("trying to register driver %s\n", driver_data->name);
2880
2881	/* Protect against concurrent CPU online/offline. */
2882	cpus_read_lock();
2883
2884	write_lock_irqsave(&cpufreq_driver_lock, flags);
2885	if (cpufreq_driver) {
2886		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2887		ret = -EEXIST;
2888		goto out;
2889	}
2890	cpufreq_driver = driver_data;
2891	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2892
2893	/*
2894	 * Mark support for the scheduler's frequency invariance engine for
2895	 * drivers that implement target(), target_index() or fast_switch().
2896	 */
2897	if (!cpufreq_driver->setpolicy) {
2898		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2899		pr_debug("supports frequency invariance");
2900	}
2901
2902	if (driver_data->setpolicy)
2903		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2904
2905	if (cpufreq_boost_supported()) {
2906		ret = create_boost_sysfs_file();
2907		if (ret)
 
 
 
 
 
 
 
 
 
2908			goto err_null_driver;
 
2909	}
2910
2911	ret = subsys_interface_register(&cpufreq_interface);
2912	if (ret)
2913		goto err_boost_unreg;
2914
2915	if (unlikely(list_empty(&cpufreq_policy_list))) {
2916		/* if all ->init() calls failed, unregister */
2917		ret = -ENODEV;
2918		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2919			 driver_data->name);
2920		goto err_if_unreg;
2921	}
2922
2923	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2924						   "cpufreq:online",
2925						   cpuhp_cpufreq_online,
2926						   cpuhp_cpufreq_offline);
2927	if (ret < 0)
2928		goto err_if_unreg;
2929	hp_online = ret;
2930	ret = 0;
2931
 
 
 
 
 
 
 
 
 
2932	pr_debug("driver %s up and running\n", driver_data->name);
2933	goto out;
2934
 
2935err_if_unreg:
2936	subsys_interface_unregister(&cpufreq_interface);
2937err_boost_unreg:
2938	remove_boost_sysfs_file();
 
2939err_null_driver:
2940	write_lock_irqsave(&cpufreq_driver_lock, flags);
2941	cpufreq_driver = NULL;
2942	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2943out:
2944	cpus_read_unlock();
2945	return ret;
2946}
2947EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2948
2949/*
2950 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2951 *
2952 * Unregister the current CPUFreq driver. Only call this if you have
2953 * the right to do so, i.e. if you have succeeded in initialising before!
2954 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2955 * currently not initialised.
2956 */
2957void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2958{
2959	unsigned long flags;
2960
2961	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2962		return;
2963
2964	pr_debug("unregistering driver %s\n", driver->name);
2965
2966	/* Protect against concurrent cpu hotplug */
2967	cpus_read_lock();
2968	subsys_interface_unregister(&cpufreq_interface);
2969	remove_boost_sysfs_file();
2970	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2971	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2972
 
 
 
2973	write_lock_irqsave(&cpufreq_driver_lock, flags);
2974
2975	cpufreq_driver = NULL;
2976
2977	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2978	cpus_read_unlock();
 
 
2979}
2980EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2981
2982static int __init cpufreq_core_init(void)
2983{
2984	struct cpufreq_governor *gov = cpufreq_default_governor();
2985	struct device *dev_root;
2986
2987	if (cpufreq_disabled())
2988		return -ENODEV;
2989
2990	dev_root = bus_get_dev_root(&cpu_subsys);
2991	if (dev_root) {
2992		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
2993		put_device(dev_root);
2994	}
2995	BUG_ON(!cpufreq_global_kobject);
2996
2997	if (!strlen(default_governor))
2998		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2999
3000	return 0;
3001}
3002module_param(off, int, 0444);
3003module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3004core_initcall(cpufreq_core_init);
v3.15
 
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   6 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   7 *
   8 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   9 *	Added handling for CPU hotplug
  10 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  11 *	Fix handling for CPU hotplug -- affected CPUs
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
 
  22#include <linux/delay.h>
  23#include <linux/device.h>
  24#include <linux/init.h>
  25#include <linux/kernel_stat.h>
  26#include <linux/module.h>
  27#include <linux/mutex.h>
 
  28#include <linux/slab.h>
  29#include <linux/suspend.h>
 
  30#include <linux/tick.h>
 
  31#include <trace/events/power.h>
  32
  33/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34 * The "cpufreq driver" - the arch- or hardware-dependent low
  35 * level driver of CPUFreq support, and its spinlock. This lock
  36 * also protects the cpufreq_cpu_data array.
  37 */
  38static struct cpufreq_driver *cpufreq_driver;
  39static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  40static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
  41static DEFINE_RWLOCK(cpufreq_driver_lock);
  42DEFINE_MUTEX(cpufreq_governor_lock);
  43static LIST_HEAD(cpufreq_policy_list);
  44
  45/* This one keeps track of the previously set governor of a removed CPU */
  46static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
 
 
 
  47
  48/* Flag to suspend/resume CPUFreq governors */
  49static bool cpufreq_suspended;
  50
  51static inline bool has_target(void)
  52{
  53	return cpufreq_driver->target_index || cpufreq_driver->target;
  54}
  55
  56/*
  57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
  58 * sections
  59 */
  60static DECLARE_RWSEM(cpufreq_rwsem);
  61
  62/* internal prototypes */
  63static int __cpufreq_governor(struct cpufreq_policy *policy,
  64		unsigned int event);
  65static unsigned int __cpufreq_get(unsigned int cpu);
  66static void handle_update(struct work_struct *work);
 
 
 
 
  67
  68/**
  69 * Two notifier lists: the "policy" list is involved in the
  70 * validation process for a new CPU frequency policy; the
  71 * "transition" list for kernel code that needs to handle
  72 * changes to devices when the CPU clock speed changes.
  73 * The mutex locks both lists.
  74 */
  75static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  76static struct srcu_notifier_head cpufreq_transition_notifier_list;
  77
  78static bool init_cpufreq_transition_notifier_list_called;
  79static int __init init_cpufreq_transition_notifier_list(void)
  80{
  81	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
  82	init_cpufreq_transition_notifier_list_called = true;
  83	return 0;
  84}
  85pure_initcall(init_cpufreq_transition_notifier_list);
  86
  87static int off __read_mostly;
  88static int cpufreq_disabled(void)
  89{
  90	return off;
  91}
  92void disable_cpufreq(void)
  93{
  94	off = 1;
  95}
  96static LIST_HEAD(cpufreq_governor_list);
  97static DEFINE_MUTEX(cpufreq_governor_mutex);
  98
  99bool have_governor_per_policy(void)
 100{
 101	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 102}
 103EXPORT_SYMBOL_GPL(have_governor_per_policy);
 104
 
 
 105struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 106{
 107	if (have_governor_per_policy())
 108		return &policy->kobj;
 109	else
 110		return cpufreq_global_kobject;
 111}
 112EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 113
 114static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 115{
 
 
 116	u64 idle_time;
 117	u64 cur_wall_time;
 118	u64 busy_time;
 119
 120	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
 
 
 121
 122	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 123	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 124	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 125	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 126	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 127	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 128
 129	idle_time = cur_wall_time - busy_time;
 130	if (wall)
 131		*wall = cputime_to_usecs(cur_wall_time);
 132
 133	return cputime_to_usecs(idle_time);
 134}
 135
 136u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 137{
 138	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 139
 140	if (idle_time == -1ULL)
 141		return get_cpu_idle_time_jiffy(cpu, wall);
 142	else if (!io_busy)
 143		idle_time += get_cpu_iowait_time_us(cpu, wall);
 144
 145	return idle_time;
 146}
 147EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 148
 149/*
 150 * This is a generic cpufreq init() routine which can be used by cpufreq
 151 * drivers of SMP systems. It will do following:
 152 * - validate & show freq table passed
 153 * - set policies transition latency
 154 * - policy->cpus with all possible CPUs
 155 */
 156int cpufreq_generic_init(struct cpufreq_policy *policy,
 157		struct cpufreq_frequency_table *table,
 158		unsigned int transition_latency)
 159{
 160	int ret;
 161
 162	ret = cpufreq_table_validate_and_show(policy, table);
 163	if (ret) {
 164		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
 165		return ret;
 166	}
 167
 168	policy->cpuinfo.transition_latency = transition_latency;
 169
 170	/*
 171	 * The driver only supports the SMP configuartion where all processors
 172	 * share the clock and voltage and clock.
 173	 */
 174	cpumask_setall(policy->cpus);
 
 
 175
 176	return 0;
 
 
 
 
 177}
 178EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 179
 180unsigned int cpufreq_generic_get(unsigned int cpu)
 181{
 182	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 183
 184	if (!policy || IS_ERR(policy->clk)) {
 185		pr_err("%s: No %s associated to cpu: %d\n",
 186		       __func__, policy ? "clk" : "policy", cpu);
 187		return 0;
 188	}
 189
 190	return clk_get_rate(policy->clk) / 1000;
 191}
 192EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 193
 194/* Only for cpufreq core internal use */
 195struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 196{
 197	return per_cpu(cpufreq_cpu_data, cpu);
 198}
 199
 
 
 
 
 
 200struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 201{
 202	struct cpufreq_policy *policy = NULL;
 203	unsigned long flags;
 204
 205	if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
 206		return NULL;
 207
 208	if (!down_read_trylock(&cpufreq_rwsem))
 209		return NULL;
 210
 211	/* get the cpufreq driver */
 212	read_lock_irqsave(&cpufreq_driver_lock, flags);
 213
 214	if (cpufreq_driver) {
 215		/* get the CPU */
 216		policy = per_cpu(cpufreq_cpu_data, cpu);
 217		if (policy)
 218			kobject_get(&policy->kobj);
 219	}
 220
 221	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 222
 223	if (!policy)
 224		up_read(&cpufreq_rwsem);
 225
 226	return policy;
 227}
 228EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 229
 
 
 
 
 230void cpufreq_cpu_put(struct cpufreq_policy *policy)
 231{
 232	if (cpufreq_disabled())
 
 
 
 
 
 
 
 
 
 
 233		return;
 234
 235	kobject_put(&policy->kobj);
 236	up_read(&cpufreq_rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237}
 238EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 239
 240/*********************************************************************
 241 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 242 *********************************************************************/
 243
 244/**
 245 * adjust_jiffies - adjust the system "loops_per_jiffy"
 
 
 246 *
 247 * This function alters the system "loops_per_jiffy" for the clock
 248 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 249 * systems as each CPU might be scaled differently. So, use the arch
 250 * per-CPU loops_per_jiffy value wherever possible.
 251 */
 
 
 252#ifndef CONFIG_SMP
 253static unsigned long l_p_j_ref;
 254static unsigned int l_p_j_ref_freq;
 255
 256static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 257{
 258	if (ci->flags & CPUFREQ_CONST_LOOPS)
 259		return;
 260
 261	if (!l_p_j_ref_freq) {
 262		l_p_j_ref = loops_per_jiffy;
 263		l_p_j_ref_freq = ci->old;
 264		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 265			 l_p_j_ref, l_p_j_ref_freq);
 266	}
 267	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 268		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 269								ci->new);
 270		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 271			 loops_per_jiffy, ci->new);
 272	}
 
 273}
 274#else
 275static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 
 
 
 
 
 
 
 
 
 
 
 
 276{
 277	return;
 278}
 279#endif
 280
 281static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
 282		struct cpufreq_freqs *freqs, unsigned int state)
 283{
 284	BUG_ON(irqs_disabled());
 285
 286	if (cpufreq_disabled())
 287		return;
 288
 
 289	freqs->flags = cpufreq_driver->flags;
 290	pr_debug("notification %u of frequency transition to %u kHz\n",
 291		 state, freqs->new);
 292
 293	switch (state) {
 294
 295	case CPUFREQ_PRECHANGE:
 296		/* detect if the driver reported a value as "old frequency"
 
 297		 * which is not equal to what the cpufreq core thinks is
 298		 * "old frequency".
 299		 */
 300		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 301			if ((policy) && (policy->cpu == freqs->cpu) &&
 302			    (policy->cur) && (policy->cur != freqs->old)) {
 303				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 304					 freqs->old, policy->cur);
 305				freqs->old = policy->cur;
 306			}
 307		}
 
 308		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 309				CPUFREQ_PRECHANGE, freqs);
 
 310		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 311		break;
 312
 313	case CPUFREQ_POSTCHANGE:
 314		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 315		pr_debug("FREQ: %lu - CPU: %lu\n",
 316			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
 317		trace_cpu_frequency(freqs->new, freqs->cpu);
 
 
 
 318		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 319				CPUFREQ_POSTCHANGE, freqs);
 320		if (likely(policy) && likely(policy->cpu == freqs->cpu))
 321			policy->cur = freqs->new;
 322		break;
 323	}
 324}
 325
 326/**
 327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 328 * on frequency transition.
 329 *
 330 * This function calls the transition notifiers and the "adjust_jiffies"
 331 * function. It is called twice on all CPU frequency changes that have
 332 * external effects.
 333 */
 334static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 335		struct cpufreq_freqs *freqs, unsigned int state)
 336{
 337	for_each_cpu(freqs->cpu, policy->cpus)
 338		__cpufreq_notify_transition(policy, freqs, state);
 339}
 340
 341/* Do post notifications when there are chances that transition has failed */
 342static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 343		struct cpufreq_freqs *freqs, int transition_failed)
 344{
 345	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 346	if (!transition_failed)
 347		return;
 348
 349	swap(freqs->old, freqs->new);
 350	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 351	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 352}
 353
 354void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 355		struct cpufreq_freqs *freqs)
 356{
 
 
 
 
 
 
 
 
 
 
 
 
 357wait:
 358	wait_event(policy->transition_wait, !policy->transition_ongoing);
 359
 360	spin_lock(&policy->transition_lock);
 361
 362	if (unlikely(policy->transition_ongoing)) {
 363		spin_unlock(&policy->transition_lock);
 364		goto wait;
 365	}
 366
 367	policy->transition_ongoing = true;
 
 368
 369	spin_unlock(&policy->transition_lock);
 370
 371	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 372}
 373EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 374
 375void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 376		struct cpufreq_freqs *freqs, int transition_failed)
 377{
 378	if (unlikely(WARN_ON(!policy->transition_ongoing)))
 379		return;
 380
 381	cpufreq_notify_post_transition(policy, freqs, transition_failed);
 382
 
 
 
 
 
 383	policy->transition_ongoing = false;
 
 
 384
 385	wake_up(&policy->transition_wait);
 386}
 387EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389
 390/*********************************************************************
 391 *                          SYSFS INTERFACE                          *
 392 *********************************************************************/
 393static ssize_t show_boost(struct kobject *kobj,
 394				 struct attribute *attr, char *buf)
 395{
 396	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 397}
 398
 399static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
 400				  const char *buf, size_t count)
 401{
 402	int ret, enable;
 403
 404	ret = sscanf(buf, "%d", &enable);
 405	if (ret != 1 || enable < 0 || enable > 1)
 406		return -EINVAL;
 407
 408	if (cpufreq_boost_trigger_state(enable)) {
 409		pr_err("%s: Cannot %s BOOST!\n",
 410		       __func__, enable ? "enable" : "disable");
 411		return -EINVAL;
 412	}
 413
 414	pr_debug("%s: cpufreq BOOST %s\n",
 415		 __func__, enable ? "enabled" : "disabled");
 416
 417	return count;
 418}
 419define_one_global_rw(boost);
 420
 421static struct cpufreq_governor *__find_governor(const char *str_governor)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422{
 423	struct cpufreq_governor *t;
 424
 425	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
 426		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 427			return t;
 428
 429	return NULL;
 430}
 431
 432/**
 433 * cpufreq_parse_governor - parse a governor string
 434 */
 435static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 436				struct cpufreq_governor **governor)
 437{
 438	int err = -EINVAL;
 
 
 
 
 
 
 
 
 439
 440	if (!cpufreq_driver)
 441		goto out;
 442
 443	if (cpufreq_driver->setpolicy) {
 444		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 445			*policy = CPUFREQ_POLICY_PERFORMANCE;
 446			err = 0;
 447		} else if (!strnicmp(str_governor, "powersave",
 448						CPUFREQ_NAME_LEN)) {
 449			*policy = CPUFREQ_POLICY_POWERSAVE;
 450			err = 0;
 451		}
 452	} else if (has_target()) {
 453		struct cpufreq_governor *t;
 454
 455		mutex_lock(&cpufreq_governor_mutex);
 
 
 
 456
 457		t = __find_governor(str_governor);
 
 458
 459		if (t == NULL) {
 460			int ret;
 461
 462			mutex_unlock(&cpufreq_governor_mutex);
 463			ret = request_module("cpufreq_%s", str_governor);
 464			mutex_lock(&cpufreq_governor_mutex);
 
 
 
 
 465
 466			if (ret == 0)
 467				t = __find_governor(str_governor);
 468		}
 469
 470		if (t != NULL) {
 471			*governor = t;
 472			err = 0;
 473		}
 474
 475		mutex_unlock(&cpufreq_governor_mutex);
 476	}
 477out:
 478	return err;
 479}
 480
 481/**
 482 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 483 * print out cpufreq information
 484 *
 485 * Write out information from cpufreq_driver->policy[cpu]; object must be
 486 * "unsigned int".
 487 */
 488
 489#define show_one(file_name, object)			\
 490static ssize_t show_##file_name				\
 491(struct cpufreq_policy *policy, char *buf)		\
 492{							\
 493	return sprintf(buf, "%u\n", policy->object);	\
 494}
 495
 496show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 497show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 498show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 499show_one(scaling_min_freq, min);
 500show_one(scaling_max_freq, max);
 501show_one(scaling_cur_freq, cur);
 502
 503static int cpufreq_set_policy(struct cpufreq_policy *policy,
 504				struct cpufreq_policy *new_policy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505
 506/**
 507 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 508 */
 509#define store_one(file_name, object)			\
 510static ssize_t store_##file_name					\
 511(struct cpufreq_policy *policy, const char *buf, size_t count)		\
 512{									\
 
 513	int ret;							\
 514	struct cpufreq_policy new_policy;				\
 515									\
 516	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
 517	if (ret)							\
 518		return -EINVAL;						\
 519									\
 520	ret = sscanf(buf, "%u", &new_policy.object);			\
 521	if (ret != 1)							\
 522		return -EINVAL;						\
 523									\
 524	ret = cpufreq_set_policy(policy, &new_policy);		\
 525	policy->user_policy.object = policy->object;			\
 526									\
 527	return ret ? ret : count;					\
 528}
 529
 530store_one(scaling_min_freq, min);
 531store_one(scaling_max_freq, max);
 532
 533/**
 534 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 535 */
 536static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 537					char *buf)
 538{
 539	unsigned int cur_freq = __cpufreq_get(policy->cpu);
 540	if (!cur_freq)
 541		return sprintf(buf, "<unknown>");
 542	return sprintf(buf, "%u\n", cur_freq);
 
 
 543}
 544
 545/**
 546 * show_scaling_governor - show the current policy for the specified CPU
 547 */
 548static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 549{
 550	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 551		return sprintf(buf, "powersave\n");
 552	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 553		return sprintf(buf, "performance\n");
 554	else if (policy->governor)
 555		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 556				policy->governor->name);
 557	return -EINVAL;
 558}
 559
 560/**
 561 * store_scaling_governor - store policy for the specified CPU
 562 */
 563static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 564					const char *buf, size_t count)
 565{
 
 566	int ret;
 567	char	str_governor[16];
 568	struct cpufreq_policy new_policy;
 569
 570	ret = cpufreq_get_policy(&new_policy, policy->cpu);
 571	if (ret)
 572		return ret;
 573
 574	ret = sscanf(buf, "%15s", str_governor);
 575	if (ret != 1)
 576		return -EINVAL;
 577
 578	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 579						&new_policy.governor))
 580		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 581
 582	ret = cpufreq_set_policy(policy, &new_policy);
 
 583
 584	policy->user_policy.policy = policy->policy;
 585	policy->user_policy.governor = policy->governor;
 586
 587	if (ret)
 588		return ret;
 589	else
 590		return count;
 591}
 592
 593/**
 594 * show_scaling_driver - show the cpufreq driver currently loaded
 595 */
 596static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 597{
 598	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 599}
 600
 601/**
 602 * show_scaling_available_governors - show the available CPUfreq governors
 603 */
 604static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 605						char *buf)
 606{
 607	ssize_t i = 0;
 608	struct cpufreq_governor *t;
 609
 610	if (!has_target()) {
 611		i += sprintf(buf, "performance powersave");
 612		goto out;
 613	}
 614
 615	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
 
 616		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 617		    - (CPUFREQ_NAME_LEN + 2)))
 618			goto out;
 619		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 620	}
 
 621out:
 622	i += sprintf(&buf[i], "\n");
 623	return i;
 624}
 625
 626ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 627{
 628	ssize_t i = 0;
 629	unsigned int cpu;
 630
 631	for_each_cpu(cpu, mask) {
 632		if (i)
 633			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 634		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 635		if (i >= (PAGE_SIZE - 5))
 636			break;
 637	}
 
 
 
 
 638	i += sprintf(&buf[i], "\n");
 639	return i;
 640}
 641EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 642
 643/**
 644 * show_related_cpus - show the CPUs affected by each transition even if
 645 * hw coordination is in use
 646 */
 647static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 648{
 649	return cpufreq_show_cpus(policy->related_cpus, buf);
 650}
 651
 652/**
 653 * show_affected_cpus - show the CPUs affected by each transition
 654 */
 655static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 656{
 657	return cpufreq_show_cpus(policy->cpus, buf);
 658}
 659
 660static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 661					const char *buf, size_t count)
 662{
 663	unsigned int freq = 0;
 664	unsigned int ret;
 665
 666	if (!policy->governor || !policy->governor->store_setspeed)
 667		return -EINVAL;
 668
 669	ret = sscanf(buf, "%u", &freq);
 670	if (ret != 1)
 671		return -EINVAL;
 672
 673	policy->governor->store_setspeed(policy, freq);
 674
 675	return count;
 676}
 677
 678static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 679{
 680	if (!policy->governor || !policy->governor->show_setspeed)
 681		return sprintf(buf, "<unsupported>\n");
 682
 683	return policy->governor->show_setspeed(policy, buf);
 684}
 685
 686/**
 687 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 688 */
 689static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 690{
 691	unsigned int limit;
 692	int ret;
 693	if (cpufreq_driver->bios_limit) {
 694		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 695		if (!ret)
 696			return sprintf(buf, "%u\n", limit);
 697	}
 698	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 699}
 700
 701cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 702cpufreq_freq_attr_ro(cpuinfo_min_freq);
 703cpufreq_freq_attr_ro(cpuinfo_max_freq);
 704cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 705cpufreq_freq_attr_ro(scaling_available_governors);
 706cpufreq_freq_attr_ro(scaling_driver);
 707cpufreq_freq_attr_ro(scaling_cur_freq);
 708cpufreq_freq_attr_ro(bios_limit);
 709cpufreq_freq_attr_ro(related_cpus);
 710cpufreq_freq_attr_ro(affected_cpus);
 711cpufreq_freq_attr_rw(scaling_min_freq);
 712cpufreq_freq_attr_rw(scaling_max_freq);
 713cpufreq_freq_attr_rw(scaling_governor);
 714cpufreq_freq_attr_rw(scaling_setspeed);
 715
 716static struct attribute *default_attrs[] = {
 717	&cpuinfo_min_freq.attr,
 718	&cpuinfo_max_freq.attr,
 719	&cpuinfo_transition_latency.attr,
 720	&scaling_min_freq.attr,
 721	&scaling_max_freq.attr,
 722	&affected_cpus.attr,
 723	&related_cpus.attr,
 724	&scaling_governor.attr,
 725	&scaling_driver.attr,
 726	&scaling_available_governors.attr,
 727	&scaling_setspeed.attr,
 728	NULL
 729};
 
 730
 731#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 732#define to_attr(a) container_of(a, struct freq_attr, attr)
 733
 734static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 735{
 736	struct cpufreq_policy *policy = to_policy(kobj);
 737	struct freq_attr *fattr = to_attr(attr);
 738	ssize_t ret;
 739
 740	if (!down_read_trylock(&cpufreq_rwsem))
 741		return -EINVAL;
 742
 743	down_read(&policy->rwsem);
 744
 745	if (fattr->show)
 746		ret = fattr->show(policy, buf);
 747	else
 748		ret = -EIO;
 749
 750	up_read(&policy->rwsem);
 751	up_read(&cpufreq_rwsem);
 752
 753	return ret;
 754}
 755
 756static ssize_t store(struct kobject *kobj, struct attribute *attr,
 757		     const char *buf, size_t count)
 758{
 759	struct cpufreq_policy *policy = to_policy(kobj);
 760	struct freq_attr *fattr = to_attr(attr);
 761	ssize_t ret = -EINVAL;
 762
 763	get_online_cpus();
 764
 765	if (!cpu_online(policy->cpu))
 766		goto unlock;
 767
 768	if (!down_read_trylock(&cpufreq_rwsem))
 769		goto unlock;
 770
 771	down_write(&policy->rwsem);
 772
 773	if (fattr->store)
 774		ret = fattr->store(policy, buf, count);
 775	else
 776		ret = -EIO;
 777
 778	up_write(&policy->rwsem);
 779
 780	up_read(&cpufreq_rwsem);
 781unlock:
 782	put_online_cpus();
 783
 784	return ret;
 785}
 786
 787static void cpufreq_sysfs_release(struct kobject *kobj)
 788{
 789	struct cpufreq_policy *policy = to_policy(kobj);
 790	pr_debug("last reference is dropped\n");
 791	complete(&policy->kobj_unregister);
 792}
 793
 794static const struct sysfs_ops sysfs_ops = {
 795	.show	= show,
 796	.store	= store,
 797};
 798
 799static struct kobj_type ktype_cpufreq = {
 800	.sysfs_ops	= &sysfs_ops,
 801	.default_attrs	= default_attrs,
 802	.release	= cpufreq_sysfs_release,
 803};
 804
 805struct kobject *cpufreq_global_kobject;
 806EXPORT_SYMBOL(cpufreq_global_kobject);
 807
 808static int cpufreq_global_kobject_usage;
 809
 810int cpufreq_get_global_kobject(void)
 811{
 812	if (!cpufreq_global_kobject_usage++)
 813		return kobject_add(cpufreq_global_kobject,
 814				&cpu_subsys.dev_root->kobj, "%s", "cpufreq");
 815
 816	return 0;
 817}
 818EXPORT_SYMBOL(cpufreq_get_global_kobject);
 819
 820void cpufreq_put_global_kobject(void)
 821{
 822	if (!--cpufreq_global_kobject_usage)
 823		kobject_del(cpufreq_global_kobject);
 824}
 825EXPORT_SYMBOL(cpufreq_put_global_kobject);
 826
 827int cpufreq_sysfs_create_file(const struct attribute *attr)
 
 828{
 829	int ret = cpufreq_get_global_kobject();
 830
 831	if (!ret) {
 832		ret = sysfs_create_file(cpufreq_global_kobject, attr);
 833		if (ret)
 834			cpufreq_put_global_kobject();
 835	}
 836
 837	return ret;
 838}
 839EXPORT_SYMBOL(cpufreq_sysfs_create_file);
 840
 841void cpufreq_sysfs_remove_file(const struct attribute *attr)
 842{
 843	sysfs_remove_file(cpufreq_global_kobject, attr);
 844	cpufreq_put_global_kobject();
 845}
 846EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
 847
 848/* symlink affected CPUs */
 849static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
 850{
 851	unsigned int j;
 852	int ret = 0;
 853
 854	for_each_cpu(j, policy->cpus) {
 855		struct device *cpu_dev;
 856
 857		if (j == policy->cpu)
 858			continue;
 859
 860		pr_debug("Adding link for CPU: %u\n", j);
 861		cpu_dev = get_cpu_device(j);
 862		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
 863					"cpufreq");
 864		if (ret)
 865			break;
 866	}
 867	return ret;
 868}
 869
 870static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
 871				     struct device *dev)
 872{
 873	struct freq_attr **drv_attr;
 874	int ret = 0;
 875
 876	/* prepare interface data */
 877	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
 878				   &dev->kobj, "cpufreq");
 879	if (ret)
 880		return ret;
 881
 882	/* set up files for this cpu device */
 883	drv_attr = cpufreq_driver->attr;
 884	while ((drv_attr) && (*drv_attr)) {
 885		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 886		if (ret)
 887			goto err_out_kobj_put;
 888		drv_attr++;
 889	}
 890	if (cpufreq_driver->get) {
 891		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 892		if (ret)
 893			goto err_out_kobj_put;
 894	}
 895	if (has_target()) {
 896		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 897		if (ret)
 898			goto err_out_kobj_put;
 899	}
 
 
 
 
 
 900	if (cpufreq_driver->bios_limit) {
 901		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
 902		if (ret)
 903			goto err_out_kobj_put;
 904	}
 905
 906	ret = cpufreq_add_dev_symlink(policy);
 907	if (ret)
 908		goto err_out_kobj_put;
 
 
 909
 910	return ret;
 911
 912err_out_kobj_put:
 913	kobject_put(&policy->kobj);
 914	wait_for_completion(&policy->kobj_unregister);
 915	return ret;
 916}
 917
 918static void cpufreq_init_policy(struct cpufreq_policy *policy)
 919{
 920	struct cpufreq_governor *gov = NULL;
 921	struct cpufreq_policy new_policy;
 922	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 923
 924	memcpy(&new_policy, policy, sizeof(*policy));
 
 
 
 925
 926	/* Update governor of new_policy to the governor used before hotplug */
 927	gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
 928	if (gov)
 929		pr_debug("Restoring governor %s for cpu %d\n",
 930				policy->governor->name, policy->cpu);
 931	else
 932		gov = CPUFREQ_DEFAULT_GOVERNOR;
 933
 934	new_policy.governor = gov;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935
 936	/* Use the default policy if its valid. */
 937	if (cpufreq_driver->setpolicy)
 938		cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
 939
 940	/* set default policy */
 941	ret = cpufreq_set_policy(policy, &new_policy);
 942	if (ret) {
 943		pr_debug("setting policy failed\n");
 944		if (cpufreq_driver->exit)
 945			cpufreq_driver->exit(policy);
 946	}
 947}
 948
 949#ifdef CONFIG_HOTPLUG_CPU
 950static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
 951				  unsigned int cpu, struct device *dev)
 952{
 953	int ret = 0;
 954	unsigned long flags;
 955
 956	if (has_target()) {
 957		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
 958		if (ret) {
 959			pr_err("%s: Failed to stop governor\n", __func__);
 960			return ret;
 961		}
 962	}
 963
 964	down_write(&policy->rwsem);
 965
 966	write_lock_irqsave(&cpufreq_driver_lock, flags);
 967
 968	cpumask_set_cpu(cpu, policy->cpus);
 969	per_cpu(cpufreq_cpu_data, cpu) = policy;
 970	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 971
 
 
 
 
 
 972	up_write(&policy->rwsem);
 
 
 973
 974	if (has_target()) {
 975		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
 976		if (!ret)
 977			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
 978
 979		if (ret) {
 980			pr_err("%s: Failed to start governor\n", __func__);
 981			return ret;
 982		}
 983	}
 
 
 
 
 
 
 
 984
 985	return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
 
 
 
 986}
 987#endif
 988
 989static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
 
 990{
 991	struct cpufreq_policy *policy;
 992	unsigned long flags;
 
 
 
 993
 994	read_lock_irqsave(&cpufreq_driver_lock, flags);
 
 
 
 995
 996	policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
 
 
 997
 998	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
 
 999
1000	policy->governor = NULL;
 
 
 
 
 
1001
1002	return policy;
 
 
 
 
 
 
 
1003}
1004
1005static struct cpufreq_policy *cpufreq_policy_alloc(void)
1006{
1007	struct cpufreq_policy *policy;
 
 
 
 
 
1008
1009	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1010	if (!policy)
1011		return NULL;
1012
1013	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1014		goto err_free_policy;
1015
1016	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1017		goto err_free_cpumask;
1018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019	INIT_LIST_HEAD(&policy->policy_list);
1020	init_rwsem(&policy->rwsem);
1021	spin_lock_init(&policy->transition_lock);
1022	init_waitqueue_head(&policy->transition_wait);
 
1023
 
1024	return policy;
1025
 
 
 
 
 
 
 
 
 
1026err_free_cpumask:
1027	free_cpumask_var(policy->cpus);
1028err_free_policy:
1029	kfree(policy);
1030
1031	return NULL;
1032}
1033
1034static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1035{
1036	struct kobject *kobj;
1037	struct completion *cmp;
1038
1039	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1040			CPUFREQ_REMOVE_POLICY, policy);
1041
1042	down_read(&policy->rwsem);
1043	kobj = &policy->kobj;
1044	cmp = &policy->kobj_unregister;
1045	up_read(&policy->rwsem);
1046	kobject_put(kobj);
1047
1048	/*
1049	 * We need to make sure that the underlying kobj is
1050	 * actually not referenced anymore by anybody before we
1051	 * proceed with unloading.
1052	 */
1053	pr_debug("waiting for dropping of refcount\n");
1054	wait_for_completion(cmp);
1055	pr_debug("wait complete\n");
1056}
 
 
1057
1058static void cpufreq_policy_free(struct cpufreq_policy *policy)
1059{
1060	free_cpumask_var(policy->related_cpus);
1061	free_cpumask_var(policy->cpus);
1062	kfree(policy);
1063}
1064
1065static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1066{
1067	if (WARN_ON(cpu == policy->cpu))
1068		return;
1069
1070	down_write(&policy->rwsem);
 
1071
1072	policy->last_cpu = policy->cpu;
1073	policy->cpu = cpu;
 
 
 
 
 
 
 
 
1074
1075	up_write(&policy->rwsem);
 
1076
1077	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1078			CPUFREQ_UPDATE_POLICY_CPU, policy);
 
 
 
1079}
1080
1081static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1082{
1083	unsigned int j, cpu = dev->id;
1084	int ret = -ENOMEM;
1085	struct cpufreq_policy *policy;
 
1086	unsigned long flags;
1087	bool recover_policy = cpufreq_suspended;
1088#ifdef CONFIG_HOTPLUG_CPU
1089	struct cpufreq_policy *tpolicy;
1090#endif
1091
1092	if (cpu_is_offline(cpu))
1093		return 0;
1094
1095	pr_debug("adding CPU %u\n", cpu);
 
 
 
 
 
1096
1097#ifdef CONFIG_SMP
1098	/* check whether a different CPU already registered this
1099	 * CPU because it is in the same boat. */
1100	policy = cpufreq_cpu_get(cpu);
1101	if (unlikely(policy)) {
1102		cpufreq_cpu_put(policy);
1103		return 0;
 
 
 
 
1104	}
1105#endif
1106
1107	if (!down_read_trylock(&cpufreq_rwsem))
1108		return 0;
 
1109
1110#ifdef CONFIG_HOTPLUG_CPU
1111	/* Check if this cpu was hot-unplugged earlier and has siblings */
1112	read_lock_irqsave(&cpufreq_driver_lock, flags);
1113	list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1114		if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1115			read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1116			ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1117			up_read(&cpufreq_rwsem);
1118			return ret;
1119		}
1120	}
1121	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1122#endif
1123
1124	/*
1125	 * Restore the saved policy when doing light-weight init and fall back
1126	 * to the full init if that fails.
1127	 */
1128	policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1129	if (!policy) {
1130		recover_policy = false;
1131		policy = cpufreq_policy_alloc();
1132		if (!policy)
1133			goto nomem_out;
1134	}
1135
1136	/*
1137	 * In the resume path, since we restore a saved policy, the assignment
1138	 * to policy->cpu is like an update of the existing policy, rather than
1139	 * the creation of a brand new one. So we need to perform this update
1140	 * by invoking update_policy_cpu().
1141	 */
1142	if (recover_policy && cpu != policy->cpu)
1143		update_policy_cpu(policy, cpu);
1144	else
1145		policy->cpu = cpu;
1146
1147	cpumask_copy(policy->cpus, cpumask_of(cpu));
1148
1149	init_completion(&policy->kobj_unregister);
1150	INIT_WORK(&policy->update, handle_update);
1151
1152	/* call driver. From then on the cpufreq must be able
1153	 * to accept all calls to ->verify and ->setpolicy for this CPU
1154	 */
1155	ret = cpufreq_driver->init(policy);
1156	if (ret) {
1157		pr_debug("initialization failed\n");
1158		goto err_set_policy_cpu;
1159	}
1160
1161	/* related cpus should atleast have policy->cpus */
1162	cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1163
1164	/*
1165	 * affected cpus must always be the one, which are online. We aren't
1166	 * managing offline cpus here.
1167	 */
1168	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1169
1170	if (!recover_policy) {
1171		policy->user_policy.min = policy->min;
1172		policy->user_policy.max = policy->max;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173	}
1174
1175	down_write(&policy->rwsem);
1176	write_lock_irqsave(&cpufreq_driver_lock, flags);
1177	for_each_cpu(j, policy->cpus)
1178		per_cpu(cpufreq_cpu_data, j) = policy;
1179	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1180
1181	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1182		policy->cur = cpufreq_driver->get(policy->cpu);
1183		if (!policy->cur) {
 
1184			pr_err("%s: ->get() failed\n", __func__);
1185			goto err_get_freq;
1186		}
1187	}
1188
1189	/*
1190	 * Sometimes boot loaders set CPU frequency to a value outside of
1191	 * frequency table present with cpufreq core. In such cases CPU might be
1192	 * unstable if it has to run on that frequency for long duration of time
1193	 * and so its better to set it to a frequency which is specified in
1194	 * freq-table. This also makes cpufreq stats inconsistent as
1195	 * cpufreq-stats would fail to register because current frequency of CPU
1196	 * isn't found in freq-table.
1197	 *
1198	 * Because we don't want this change to effect boot process badly, we go
1199	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1200	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1201	 * is initialized to zero).
1202	 *
1203	 * We are passing target-freq as "policy->cur - 1" otherwise
1204	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1205	 * equal to target-freq.
1206	 */
1207	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1208	    && has_target()) {
 
 
1209		/* Are we running at unknown frequency ? */
1210		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1211		if (ret == -EINVAL) {
1212			/* Warn user and fix it */
1213			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1214				__func__, policy->cpu, policy->cur);
1215			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1216				CPUFREQ_RELATION_L);
1217
1218			/*
1219			 * Reaching here after boot in a few seconds may not
1220			 * mean that system will remain stable at "unknown"
1221			 * frequency for longer duration. Hence, a BUG_ON().
1222			 */
1223			BUG_ON(ret);
1224			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1225				__func__, policy->cpu, policy->cur);
1226		}
1227	}
1228
1229	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1230				     CPUFREQ_START, policy);
 
 
1231
1232	if (!recover_policy) {
1233		ret = cpufreq_add_dev_interface(policy, dev);
1234		if (ret)
1235			goto err_out_unregister;
1236		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1237				CPUFREQ_CREATE_POLICY, policy);
1238	}
1239
1240	write_lock_irqsave(&cpufreq_driver_lock, flags);
1241	list_add(&policy->policy_list, &cpufreq_policy_list);
1242	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1243
1244	cpufreq_init_policy(policy);
 
 
 
 
 
 
 
 
 
 
 
 
1245
1246	if (!recover_policy) {
1247		policy->user_policy.policy = policy->policy;
1248		policy->user_policy.governor = policy->governor;
 
 
1249	}
 
1250	up_write(&policy->rwsem);
1251
1252	kobject_uevent(&policy->kobj, KOBJ_ADD);
1253	up_read(&cpufreq_rwsem);
 
 
 
 
 
 
1254
1255	pr_debug("initialization complete\n");
1256
1257	return 0;
1258
1259err_out_unregister:
1260err_get_freq:
1261	write_lock_irqsave(&cpufreq_driver_lock, flags);
1262	for_each_cpu(j, policy->cpus)
1263		per_cpu(cpufreq_cpu_data, j) = NULL;
1264	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
1265
 
1266	if (cpufreq_driver->exit)
1267		cpufreq_driver->exit(policy);
1268err_set_policy_cpu:
1269	if (recover_policy) {
1270		/* Do not leave stale fallback data behind. */
1271		per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1272		cpufreq_policy_put_kobj(policy);
1273	}
1274	cpufreq_policy_free(policy);
1275
1276nomem_out:
1277	up_read(&cpufreq_rwsem);
 
1278
 
1279	return ret;
1280}
1281
1282/**
1283 * cpufreq_add_dev - add a CPU device
1284 *
1285 * Adds the cpufreq interface for a CPU device.
1286 *
1287 * The Oracle says: try running cpufreq registration/unregistration concurrently
1288 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1289 * mess up, but more thorough testing is needed. - Mathieu
1290 */
1291static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1292{
1293	return __cpufreq_add_dev(dev, sif);
1294}
1295
1296static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1297					   unsigned int old_cpu)
1298{
1299	struct device *cpu_dev;
1300	int ret;
1301
1302	/* first sibling now owns the new sysfs dir */
1303	cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1304
1305	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1306	ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1307	if (ret) {
1308		pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
 
1309
1310		down_write(&policy->rwsem);
1311		cpumask_set_cpu(old_cpu, policy->cpus);
1312		up_write(&policy->rwsem);
 
1313
1314		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1315					"cpufreq");
1316
1317		return -EINVAL;
1318	}
1319
1320	return cpu_dev->id;
1321}
1322
1323static int __cpufreq_remove_dev_prepare(struct device *dev,
1324					struct subsys_interface *sif)
1325{
1326	unsigned int cpu = dev->id, cpus;
1327	int new_cpu, ret;
1328	unsigned long flags;
1329	struct cpufreq_policy *policy;
1330
1331	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
 
1332
1333	write_lock_irqsave(&cpufreq_driver_lock, flags);
1334
1335	policy = per_cpu(cpufreq_cpu_data, cpu);
 
 
 
1336
1337	/* Save the policy somewhere when doing a light-weight tear-down */
1338	if (cpufreq_suspended)
1339		per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
 
 
 
1340
1341	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
1342
1343	if (!policy) {
1344		pr_debug("%s: No cpu_data found\n", __func__);
1345		return -EINVAL;
1346	}
 
1347
1348	if (has_target()) {
1349		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1350		if (ret) {
1351			pr_err("%s: Failed to stop governor\n", __func__);
1352			return ret;
1353		}
1354	}
1355
1356	if (!cpufreq_driver->setpolicy)
1357		strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1358			policy->governor->name, CPUFREQ_NAME_LEN);
1359
1360	down_read(&policy->rwsem);
1361	cpus = cpumask_weight(policy->cpus);
1362	up_read(&policy->rwsem);
1363
1364	if (cpu != policy->cpu) {
1365		sysfs_remove_link(&dev->kobj, "cpufreq");
1366	} else if (cpus > 1) {
1367		new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu);
1368		if (new_cpu >= 0) {
1369			update_policy_cpu(policy, new_cpu);
1370
1371			if (!cpufreq_suspended)
1372				pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1373					 __func__, new_cpu, cpu);
1374		}
1375	} else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1376		cpufreq_driver->stop_cpu(policy);
1377	}
1378
1379	return 0;
1380}
1381
1382static int __cpufreq_remove_dev_finish(struct device *dev,
1383				       struct subsys_interface *sif)
1384{
1385	unsigned int cpu = dev->id, cpus;
1386	int ret;
1387	unsigned long flags;
1388	struct cpufreq_policy *policy;
1389
1390	read_lock_irqsave(&cpufreq_driver_lock, flags);
1391	policy = per_cpu(cpufreq_cpu_data, cpu);
1392	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1393
 
1394	if (!policy) {
1395		pr_debug("%s: No cpu_data found\n", __func__);
1396		return -EINVAL;
1397	}
1398
1399	down_write(&policy->rwsem);
1400	cpus = cpumask_weight(policy->cpus);
1401
1402	if (cpus > 1)
1403		cpumask_clear_cpu(cpu, policy->cpus);
1404	up_write(&policy->rwsem);
1405
1406	/* If cpu is last user of policy, free policy */
1407	if (cpus == 1) {
1408		if (has_target()) {
1409			ret = __cpufreq_governor(policy,
1410					CPUFREQ_GOV_POLICY_EXIT);
1411			if (ret) {
1412				pr_err("%s: Failed to exit governor\n",
1413				       __func__);
1414				return ret;
1415			}
1416		}
1417
1418		if (!cpufreq_suspended)
1419			cpufreq_policy_put_kobj(policy);
1420
1421		/*
1422		 * Perform the ->exit() even during light-weight tear-down,
1423		 * since this is a core component, and is essential for the
1424		 * subsequent light-weight ->init() to succeed.
1425		 */
1426		if (cpufreq_driver->exit)
1427			cpufreq_driver->exit(policy);
1428
1429		/* Remove policy from list of active policies */
1430		write_lock_irqsave(&cpufreq_driver_lock, flags);
1431		list_del(&policy->policy_list);
1432		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1433
1434		if (!cpufreq_suspended)
1435			cpufreq_policy_free(policy);
1436	} else if (has_target()) {
1437		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1438		if (!ret)
1439			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1440
1441		if (ret) {
1442			pr_err("%s: Failed to start governor\n", __func__);
1443			return ret;
1444		}
1445	}
1446
1447	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1448	return 0;
1449}
1450
1451/**
1452 * cpufreq_remove_dev - remove a CPU device
1453 *
1454 * Removes the cpufreq interface for a CPU device.
1455 */
1456static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1457{
1458	unsigned int cpu = dev->id;
1459	int ret;
 
 
 
 
 
 
 
 
1460
1461	if (cpu_is_offline(cpu))
1462		return 0;
1463
1464	ret = __cpufreq_remove_dev_prepare(dev, sif);
 
 
 
1465
1466	if (!ret)
1467		ret = __cpufreq_remove_dev_finish(dev, sif);
 
1468
1469	return ret;
1470}
1471
1472static void handle_update(struct work_struct *work)
1473{
1474	struct cpufreq_policy *policy =
1475		container_of(work, struct cpufreq_policy, update);
1476	unsigned int cpu = policy->cpu;
1477	pr_debug("handle_update for cpu %u called\n", cpu);
1478	cpufreq_update_policy(cpu);
1479}
1480
1481/**
1482 *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1483 *	in deep trouble.
1484 *	@cpu: cpu number
1485 *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1486 *	@new_freq: CPU frequency the CPU actually runs at
1487 *
1488 *	We adjust to current frequency first, and need to clean up later.
1489 *	So either call to cpufreq_update_policy() or schedule handle_update()).
1490 */
1491static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1492				unsigned int new_freq)
1493{
1494	struct cpufreq_policy *policy;
1495	struct cpufreq_freqs freqs;
1496	unsigned long flags;
1497
1498	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1499		 old_freq, new_freq);
1500
1501	freqs.old = old_freq;
1502	freqs.new = new_freq;
1503
1504	read_lock_irqsave(&cpufreq_driver_lock, flags);
1505	policy = per_cpu(cpufreq_cpu_data, cpu);
1506	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1507
1508	cpufreq_freq_transition_begin(policy, &freqs);
1509	cpufreq_freq_transition_end(policy, &freqs, 0);
1510}
1511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512/**
1513 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1514 * @cpu: CPU number
1515 *
1516 * This is the last known freq, without actually getting it from the driver.
1517 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1518 */
1519unsigned int cpufreq_quick_get(unsigned int cpu)
1520{
1521	struct cpufreq_policy *policy;
1522	unsigned int ret_freq = 0;
 
1523
1524	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1525		return cpufreq_driver->get(cpu);
 
 
 
 
 
 
 
1526
1527	policy = cpufreq_cpu_get(cpu);
1528	if (policy) {
1529		ret_freq = policy->cur;
1530		cpufreq_cpu_put(policy);
1531	}
1532
1533	return ret_freq;
1534}
1535EXPORT_SYMBOL(cpufreq_quick_get);
1536
1537/**
1538 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1539 * @cpu: CPU number
1540 *
1541 * Just return the max possible frequency for a given CPU.
1542 */
1543unsigned int cpufreq_quick_get_max(unsigned int cpu)
1544{
1545	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1546	unsigned int ret_freq = 0;
1547
1548	if (policy) {
1549		ret_freq = policy->max;
1550		cpufreq_cpu_put(policy);
1551	}
1552
1553	return ret_freq;
1554}
1555EXPORT_SYMBOL(cpufreq_quick_get_max);
1556
1557static unsigned int __cpufreq_get(unsigned int cpu)
 
 
 
 
 
 
1558{
1559	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1560	unsigned int ret_freq = 0;
1561
1562	if (!cpufreq_driver->get)
1563		return ret_freq;
 
 
1564
1565	ret_freq = cpufreq_driver->get(cpu);
 
 
1566
1567	if (ret_freq && policy->cur &&
1568		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1569		/* verify no discrepancy between actual and
1570					saved value exists */
1571		if (unlikely(ret_freq != policy->cur)) {
1572			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1573			schedule_work(&policy->update);
1574		}
1575	}
1576
1577	return ret_freq;
1578}
1579
1580/**
1581 * cpufreq_get - get the current CPU frequency (in kHz)
1582 * @cpu: CPU number
1583 *
1584 * Get the CPU current (static) CPU frequency
1585 */
1586unsigned int cpufreq_get(unsigned int cpu)
1587{
1588	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1589	unsigned int ret_freq = 0;
1590
1591	if (policy) {
1592		down_read(&policy->rwsem);
1593		ret_freq = __cpufreq_get(cpu);
 
1594		up_read(&policy->rwsem);
1595
1596		cpufreq_cpu_put(policy);
1597	}
1598
1599	return ret_freq;
1600}
1601EXPORT_SYMBOL(cpufreq_get);
1602
1603static struct subsys_interface cpufreq_interface = {
1604	.name		= "cpufreq",
1605	.subsys		= &cpu_subsys,
1606	.add_dev	= cpufreq_add_dev,
1607	.remove_dev	= cpufreq_remove_dev,
1608};
1609
1610/*
1611 * In case platform wants some specific frequency to be configured
1612 * during suspend..
1613 */
1614int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1615{
1616	int ret;
1617
1618	if (!policy->suspend_freq) {
1619		pr_err("%s: suspend_freq can't be zero\n", __func__);
1620		return -EINVAL;
1621	}
1622
1623	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1624			policy->suspend_freq);
1625
1626	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1627			CPUFREQ_RELATION_H);
1628	if (ret)
1629		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1630				__func__, policy->suspend_freq, ret);
1631
1632	return ret;
1633}
1634EXPORT_SYMBOL(cpufreq_generic_suspend);
1635
1636/**
1637 * cpufreq_suspend() - Suspend CPUFreq governors
1638 *
1639 * Called during system wide Suspend/Hibernate cycles for suspending governors
1640 * as some platforms can't change frequency after this point in suspend cycle.
1641 * Because some of the devices (like: i2c, regulators, etc) they use for
1642 * changing frequency are suspended quickly after this point.
1643 */
1644void cpufreq_suspend(void)
1645{
1646	struct cpufreq_policy *policy;
1647
1648	if (!cpufreq_driver)
1649		return;
1650
1651	if (!has_target())
1652		return;
1653
1654	pr_debug("%s: Suspending Governors\n", __func__);
1655
1656	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1657		if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1658			pr_err("%s: Failed to stop governor for policy: %p\n",
1659				__func__, policy);
1660		else if (cpufreq_driver->suspend
1661		    && cpufreq_driver->suspend(policy))
1662			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1663				policy);
 
 
1664	}
1665
 
1666	cpufreq_suspended = true;
1667}
1668
1669/**
1670 * cpufreq_resume() - Resume CPUFreq governors
1671 *
1672 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1673 * are suspended with cpufreq_suspend().
1674 */
1675void cpufreq_resume(void)
1676{
1677	struct cpufreq_policy *policy;
 
1678
1679	if (!cpufreq_driver)
1680		return;
1681
1682	if (!has_target())
 
 
 
 
 
1683		return;
1684
1685	pr_debug("%s: Resuming Governors\n", __func__);
1686
1687	cpufreq_suspended = false;
 
 
 
 
 
 
 
1688
1689	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1690		if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1691			pr_err("%s: Failed to resume driver: %p\n", __func__,
1692				policy);
1693		else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1694		    || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1695			pr_err("%s: Failed to start governor for policy: %p\n",
1696				__func__, policy);
1697
1698		/*
1699		 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1700		 * policy in list. It will verify that the current freq is in
1701		 * sync with what we believe it to be.
1702		 */
1703		if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1704			schedule_work(&policy->update);
1705	}
 
 
1706}
1707
1708/**
1709 *	cpufreq_get_current_driver - return current driver's name
1710 *
1711 *	Return the name string of the currently loaded cpufreq driver
1712 *	or NULL, if none.
1713 */
1714const char *cpufreq_get_current_driver(void)
1715{
1716	if (cpufreq_driver)
1717		return cpufreq_driver->name;
1718
1719	return NULL;
1720}
1721EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723/*********************************************************************
1724 *                     NOTIFIER LISTS INTERFACE                      *
1725 *********************************************************************/
1726
1727/**
1728 *	cpufreq_register_notifier - register a driver with cpufreq
1729 *	@nb: notifier function to register
1730 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1731 *
1732 *	Add a driver to one of two lists: either a list of drivers that
1733 *      are notified about clock rate changes (once before and once after
1734 *      the transition), or a list of drivers that are notified about
1735 *      changes in cpufreq policy.
1736 *
1737 *	This function may sleep, and has the same return conditions as
1738 *	blocking_notifier_chain_register.
1739 */
1740int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1741{
1742	int ret;
1743
1744	if (cpufreq_disabled())
1745		return -EINVAL;
1746
1747	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1748
1749	switch (list) {
1750	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
 
 
 
 
1751		ret = srcu_notifier_chain_register(
1752				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1753		break;
1754	case CPUFREQ_POLICY_NOTIFIER:
1755		ret = blocking_notifier_chain_register(
1756				&cpufreq_policy_notifier_list, nb);
1757		break;
1758	default:
1759		ret = -EINVAL;
1760	}
1761
1762	return ret;
1763}
1764EXPORT_SYMBOL(cpufreq_register_notifier);
1765
1766/**
1767 *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1768 *	@nb: notifier block to be unregistered
1769 *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1770 *
1771 *	Remove a driver from the CPU frequency notifier list.
1772 *
1773 *	This function may sleep, and has the same return conditions as
1774 *	blocking_notifier_chain_unregister.
1775 */
1776int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1777{
1778	int ret;
1779
1780	if (cpufreq_disabled())
1781		return -EINVAL;
1782
1783	switch (list) {
1784	case CPUFREQ_TRANSITION_NOTIFIER:
 
 
1785		ret = srcu_notifier_chain_unregister(
1786				&cpufreq_transition_notifier_list, nb);
 
 
 
 
1787		break;
1788	case CPUFREQ_POLICY_NOTIFIER:
1789		ret = blocking_notifier_chain_unregister(
1790				&cpufreq_policy_notifier_list, nb);
1791		break;
1792	default:
1793		ret = -EINVAL;
1794	}
1795
1796	return ret;
1797}
1798EXPORT_SYMBOL(cpufreq_unregister_notifier);
1799
1800
1801/*********************************************************************
1802 *                              GOVERNORS                            *
1803 *********************************************************************/
1804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805int __cpufreq_driver_target(struct cpufreq_policy *policy,
1806			    unsigned int target_freq,
1807			    unsigned int relation)
1808{
1809	int retval = -EINVAL;
1810	unsigned int old_target_freq = target_freq;
1811
1812	if (cpufreq_disabled())
1813		return -ENODEV;
1814
1815	/* Make sure that target_freq is within supported range */
1816	if (target_freq > policy->max)
1817		target_freq = policy->max;
1818	if (target_freq < policy->min)
1819		target_freq = policy->min;
1820
1821	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1822		 policy->cpu, target_freq, relation, old_target_freq);
1823
1824	/*
1825	 * This might look like a redundant call as we are checking it again
1826	 * after finding index. But it is left intentionally for cases where
1827	 * exactly same freq is called again and so we can save on few function
1828	 * calls.
1829	 */
1830	if (target_freq == policy->cur)
 
1831		return 0;
1832
1833	if (cpufreq_driver->target)
1834		retval = cpufreq_driver->target(policy, target_freq, relation);
1835	else if (cpufreq_driver->target_index) {
1836		struct cpufreq_frequency_table *freq_table;
1837		struct cpufreq_freqs freqs;
1838		bool notify;
1839		int index;
1840
1841		freq_table = cpufreq_frequency_get_table(policy->cpu);
1842		if (unlikely(!freq_table)) {
1843			pr_err("%s: Unable to find freq_table\n", __func__);
1844			goto out;
1845		}
1846
1847		retval = cpufreq_frequency_table_target(policy, freq_table,
1848				target_freq, relation, &index);
1849		if (unlikely(retval)) {
1850			pr_err("%s: Unable to find matching freq\n", __func__);
1851			goto out;
1852		}
1853
1854		if (freq_table[index].frequency == policy->cur) {
1855			retval = 0;
1856			goto out;
1857		}
1858
1859		notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1860
1861		if (notify) {
1862			freqs.old = policy->cur;
1863			freqs.new = freq_table[index].frequency;
1864			freqs.flags = 0;
1865
1866			pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1867				 __func__, policy->cpu, freqs.old, freqs.new);
1868
1869			cpufreq_freq_transition_begin(policy, &freqs);
1870		}
1871
1872		retval = cpufreq_driver->target_index(policy, index);
1873		if (retval)
1874			pr_err("%s: Failed to change cpu frequency: %d\n",
1875			       __func__, retval);
1876
1877		if (notify)
1878			cpufreq_freq_transition_end(policy, &freqs, retval);
1879	}
1880
1881out:
1882	return retval;
1883}
1884EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1885
1886int cpufreq_driver_target(struct cpufreq_policy *policy,
1887			  unsigned int target_freq,
1888			  unsigned int relation)
1889{
1890	int ret = -EINVAL;
1891
1892	down_write(&policy->rwsem);
1893
1894	ret = __cpufreq_driver_target(policy, target_freq, relation);
1895
1896	up_write(&policy->rwsem);
1897
1898	return ret;
1899}
1900EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1901
1902/*
1903 * when "event" is CPUFREQ_GOV_LIMITS
1904 */
 
1905
1906static int __cpufreq_governor(struct cpufreq_policy *policy,
1907					unsigned int event)
1908{
1909	int ret;
1910
1911	/* Only must be defined when default governor is known to have latency
1912	   restrictions, like e.g. conservative or ondemand.
1913	   That this is the case is already ensured in Kconfig
1914	*/
1915#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1916	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1917#else
1918	struct cpufreq_governor *gov = NULL;
1919#endif
1920
1921	/* Don't start any governor operations if we are entering suspend */
1922	if (cpufreq_suspended)
1923		return 0;
 
 
 
 
 
 
 
 
 
 
 
1924
1925	if (policy->governor->max_transition_latency &&
1926	    policy->cpuinfo.transition_latency >
1927	    policy->governor->max_transition_latency) {
1928		if (!gov)
1929			return -EINVAL;
1930		else {
1931			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1932				policy->governor->name, gov->name);
1933			policy->governor = gov;
 
 
1934		}
1935	}
1936
1937	if (event == CPUFREQ_GOV_POLICY_INIT)
1938		if (!try_module_get(policy->governor->owner))
1939			return -EINVAL;
1940
1941	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1942		 policy->cpu, event);
1943
1944	mutex_lock(&cpufreq_governor_lock);
1945	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1946	    || (!policy->governor_enabled
1947	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1948		mutex_unlock(&cpufreq_governor_lock);
1949		return -EBUSY;
1950	}
1951
1952	if (event == CPUFREQ_GOV_STOP)
1953		policy->governor_enabled = false;
1954	else if (event == CPUFREQ_GOV_START)
1955		policy->governor_enabled = true;
 
 
 
 
 
 
 
1956
1957	mutex_unlock(&cpufreq_governor_lock);
 
1958
1959	ret = policy->governor->governor(policy, event);
 
 
 
 
 
1960
1961	if (!ret) {
1962		if (event == CPUFREQ_GOV_POLICY_INIT)
1963			policy->governor->initialized++;
1964		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1965			policy->governor->initialized--;
1966	} else {
1967		/* Restore original values */
1968		mutex_lock(&cpufreq_governor_lock);
1969		if (event == CPUFREQ_GOV_STOP)
1970			policy->governor_enabled = true;
1971		else if (event == CPUFREQ_GOV_START)
1972			policy->governor_enabled = false;
1973		mutex_unlock(&cpufreq_governor_lock);
 
 
1974	}
1975
1976	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1977			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1978		module_put(policy->governor->owner);
 
 
 
 
 
 
 
1979
1980	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981}
1982
1983int cpufreq_register_governor(struct cpufreq_governor *governor)
1984{
1985	int err;
1986
1987	if (!governor)
1988		return -EINVAL;
1989
1990	if (cpufreq_disabled())
1991		return -ENODEV;
1992
1993	mutex_lock(&cpufreq_governor_mutex);
1994
1995	governor->initialized = 0;
1996	err = -EBUSY;
1997	if (__find_governor(governor->name) == NULL) {
1998		err = 0;
1999		list_add(&governor->governor_list, &cpufreq_governor_list);
2000	}
2001
2002	mutex_unlock(&cpufreq_governor_mutex);
2003	return err;
2004}
2005EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2006
2007void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2008{
2009	int cpu;
 
2010
2011	if (!governor)
2012		return;
2013
2014	if (cpufreq_disabled())
2015		return;
2016
2017	for_each_present_cpu(cpu) {
2018		if (cpu_online(cpu))
2019			continue;
2020		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2021			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
 
 
2022	}
 
2023
2024	mutex_lock(&cpufreq_governor_mutex);
2025	list_del(&governor->governor_list);
2026	mutex_unlock(&cpufreq_governor_mutex);
2027	return;
2028}
2029EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2030
2031
2032/*********************************************************************
2033 *                          POLICY INTERFACE                         *
2034 *********************************************************************/
2035
2036/**
2037 * cpufreq_get_policy - get the current cpufreq_policy
2038 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2039 *	is written
 
2040 *
2041 * Reads the current cpufreq policy.
2042 */
2043int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2044{
2045	struct cpufreq_policy *cpu_policy;
2046	if (!policy)
2047		return -EINVAL;
2048
2049	cpu_policy = cpufreq_cpu_get(cpu);
2050	if (!cpu_policy)
2051		return -EINVAL;
2052
2053	memcpy(policy, cpu_policy, sizeof(*policy));
2054
2055	cpufreq_cpu_put(cpu_policy);
2056	return 0;
2057}
2058EXPORT_SYMBOL(cpufreq_get_policy);
2059
2060/*
2061 * policy : current policy.
2062 * new_policy: policy to be set.
 
 
 
 
 
 
 
 
 
 
 
2063 */
2064static int cpufreq_set_policy(struct cpufreq_policy *policy,
2065				struct cpufreq_policy *new_policy)
 
2066{
 
2067	struct cpufreq_governor *old_gov;
2068	int ret;
2069
 
 
 
 
 
 
 
 
 
 
2070	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2071		 new_policy->cpu, new_policy->min, new_policy->max);
2072
2073	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2074
2075	if (new_policy->min > policy->max || new_policy->max < policy->min)
2076		return -EINVAL;
2077
2078	/* verify the cpu speed can be set within this limit */
2079	ret = cpufreq_driver->verify(new_policy);
2080	if (ret)
2081		return ret;
2082
2083	/* adjust if necessary - all reasons */
2084	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2085			CPUFREQ_ADJUST, new_policy);
2086
2087	/* adjust if necessary - hardware incompatibility*/
2088	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2089			CPUFREQ_INCOMPATIBLE, new_policy);
2090
2091	/*
2092	 * verify the cpu speed can be set within this limit, which might be
2093	 * different to the first one
 
2094	 */
2095	ret = cpufreq_driver->verify(new_policy);
2096	if (ret)
2097		return ret;
2098
2099	/* notification of the new policy */
2100	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2101			CPUFREQ_NOTIFY, new_policy);
2102
2103	policy->min = new_policy->min;
2104	policy->max = new_policy->max;
2105
2106	pr_debug("new min and max freqs are %u - %u kHz\n",
2107		 policy->min, policy->max);
2108
2109	if (cpufreq_driver->setpolicy) {
2110		policy->policy = new_policy->policy;
2111		pr_debug("setting range\n");
2112		return cpufreq_driver->setpolicy(new_policy);
2113	}
2114
2115	if (new_policy->governor == policy->governor)
2116		goto out;
 
 
 
2117
2118	pr_debug("governor switch\n");
2119
2120	/* save old, working values */
2121	old_gov = policy->governor;
2122	/* end old governor */
2123	if (old_gov) {
2124		__cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2125		up_write(&policy->rwsem);
2126		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2127		down_write(&policy->rwsem);
2128	}
2129
2130	/* start new governor */
2131	policy->governor = new_policy->governor;
2132	if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2133		if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2134			goto out;
2135
2136		up_write(&policy->rwsem);
2137		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2138		down_write(&policy->rwsem);
 
2139	}
2140
2141	/* new governor failed, so re-start old one */
2142	pr_debug("starting governor %s failed\n", policy->governor->name);
2143	if (old_gov) {
2144		policy->governor = old_gov;
2145		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2146		__cpufreq_governor(policy, CPUFREQ_GOV_START);
 
 
2147	}
2148
2149	return -EINVAL;
2150
2151 out:
2152	pr_debug("governor: change or update limits\n");
2153	return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2154}
2155
2156/**
2157 *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2158 *	@cpu: CPU which shall be re-evaluated
2159 *
2160 *	Useful for policy notifiers which have different necessities
2161 *	at different times.
 
 
2162 */
2163int cpufreq_update_policy(unsigned int cpu)
2164{
2165	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2166	struct cpufreq_policy new_policy;
2167	int ret;
2168
2169	if (!policy) {
2170		ret = -ENODEV;
2171		goto no_policy;
2172	}
2173
2174	down_write(&policy->rwsem);
2175
2176	pr_debug("updating policy for CPU %u\n", cpu);
2177	memcpy(&new_policy, policy, sizeof(*policy));
2178	new_policy.min = policy->user_policy.min;
2179	new_policy.max = policy->user_policy.max;
2180	new_policy.policy = policy->user_policy.policy;
2181	new_policy.governor = policy->user_policy.governor;
2182
2183	/*
2184	 * BIOS might change freq behind our back
2185	 * -> ask driver for current freq and notify governors about a change
2186	 */
2187	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2188		new_policy.cur = cpufreq_driver->get(cpu);
2189		if (WARN_ON(!new_policy.cur)) {
2190			ret = -EIO;
2191			goto no_policy;
2192		}
2193
2194		if (!policy->cur) {
2195			pr_debug("Driver did not initialize current freq\n");
2196			policy->cur = new_policy.cur;
2197		} else {
2198			if (policy->cur != new_policy.cur && has_target())
2199				cpufreq_out_of_sync(cpu, policy->cur,
2200								new_policy.cur);
2201		}
2202	}
2203
2204	ret = cpufreq_set_policy(policy, &new_policy);
2205
2206	up_write(&policy->rwsem);
2207
2208	cpufreq_cpu_put(policy);
2209no_policy:
2210	return ret;
2211}
2212EXPORT_SYMBOL(cpufreq_update_policy);
2213
2214static int cpufreq_cpu_callback(struct notifier_block *nfb,
2215					unsigned long action, void *hcpu)
 
 
 
 
 
 
2216{
2217	unsigned int cpu = (unsigned long)hcpu;
2218	struct device *dev;
2219
2220	dev = get_cpu_device(cpu);
2221	if (dev) {
2222		switch (action & ~CPU_TASKS_FROZEN) {
2223		case CPU_ONLINE:
2224			__cpufreq_add_dev(dev, NULL);
2225			break;
2226
2227		case CPU_DOWN_PREPARE:
2228			__cpufreq_remove_dev_prepare(dev, NULL);
2229			break;
2230
2231		case CPU_POST_DEAD:
2232			__cpufreq_remove_dev_finish(dev, NULL);
2233			break;
2234
2235		case CPU_DOWN_FAILED:
2236			__cpufreq_add_dev(dev, NULL);
2237			break;
2238		}
2239	}
2240	return NOTIFY_OK;
2241}
2242
2243static struct notifier_block __refdata cpufreq_cpu_notifier = {
2244	.notifier_call = cpufreq_cpu_callback,
2245};
2246
2247/*********************************************************************
2248 *               BOOST						     *
2249 *********************************************************************/
2250static int cpufreq_boost_set_sw(int state)
2251{
2252	struct cpufreq_frequency_table *freq_table;
2253	struct cpufreq_policy *policy;
2254	int ret = -EINVAL;
 
2255
2256	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2257		freq_table = cpufreq_frequency_get_table(policy->cpu);
2258		if (freq_table) {
2259			ret = cpufreq_frequency_table_cpuinfo(policy,
2260							freq_table);
2261			if (ret) {
2262				pr_err("%s: Policy frequency update failed\n",
2263				       __func__);
2264				break;
2265			}
2266			policy->user_policy.max = policy->max;
2267			__cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2268		}
2269	}
2270
2271	return ret;
 
 
 
 
2272}
2273
2274int cpufreq_boost_trigger_state(int state)
2275{
 
2276	unsigned long flags;
2277	int ret = 0;
2278
2279	if (cpufreq_driver->boost_enabled == state)
2280		return 0;
2281
2282	write_lock_irqsave(&cpufreq_driver_lock, flags);
2283	cpufreq_driver->boost_enabled = state;
2284	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2285
2286	ret = cpufreq_driver->set_boost(state);
2287	if (ret) {
2288		write_lock_irqsave(&cpufreq_driver_lock, flags);
2289		cpufreq_driver->boost_enabled = !state;
2290		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2291
2292		pr_err("%s: Cannot %s BOOST\n",
2293		       __func__, state ? "enable" : "disable");
2294	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2295
2296	return ret;
2297}
2298
2299int cpufreq_boost_supported(void)
2300{
2301	if (likely(cpufreq_driver))
2302		return cpufreq_driver->boost_supported;
 
2303
2304	return 0;
 
 
 
 
 
 
 
 
 
 
 
2305}
2306EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2307
2308int cpufreq_boost_enabled(void)
2309{
2310	return cpufreq_driver->boost_enabled;
2311}
2312EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2313
2314/*********************************************************************
2315 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2316 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317
2318/**
2319 * cpufreq_register_driver - register a CPU Frequency driver
2320 * @driver_data: A struct cpufreq_driver containing the values#
2321 * submitted by the CPU Frequency driver.
2322 *
2323 * Registers a CPU Frequency driver to this core code. This code
2324 * returns zero on success, -EBUSY when another driver got here first
2325 * (and isn't unregistered in the meantime).
2326 *
2327 */
2328int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2329{
2330	unsigned long flags;
2331	int ret;
2332
2333	if (cpufreq_disabled())
2334		return -ENODEV;
2335
 
 
 
 
 
 
 
2336	if (!driver_data || !driver_data->verify || !driver_data->init ||
2337	    !(driver_data->setpolicy || driver_data->target_index ||
2338		    driver_data->target) ||
2339	     (driver_data->setpolicy && (driver_data->target_index ||
2340		    driver_data->target)))
 
 
 
2341		return -EINVAL;
2342
2343	pr_debug("trying to register driver %s\n", driver_data->name);
2344
2345	if (driver_data->setpolicy)
2346		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2347
2348	write_lock_irqsave(&cpufreq_driver_lock, flags);
2349	if (cpufreq_driver) {
2350		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351		return -EEXIST;
 
2352	}
2353	cpufreq_driver = driver_data;
2354	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2355
 
 
 
 
 
 
 
 
 
 
 
 
2356	if (cpufreq_boost_supported()) {
2357		/*
2358		 * Check if driver provides function to enable boost -
2359		 * if not, use cpufreq_boost_set_sw as default
2360		 */
2361		if (!cpufreq_driver->set_boost)
2362			cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2363
2364		ret = cpufreq_sysfs_create_file(&boost.attr);
2365		if (ret) {
2366			pr_err("%s: cannot register global BOOST sysfs file\n",
2367			       __func__);
2368			goto err_null_driver;
2369		}
2370	}
2371
2372	ret = subsys_interface_register(&cpufreq_interface);
2373	if (ret)
2374		goto err_boost_unreg;
2375
2376	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2377		int i;
2378		ret = -ENODEV;
 
 
 
 
2379
2380		/* check for at least one working CPU */
2381		for (i = 0; i < nr_cpu_ids; i++)
2382			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2383				ret = 0;
2384				break;
2385			}
 
 
2386
2387		/* if all ->init() calls failed, unregister */
2388		if (ret) {
2389			pr_debug("no CPU initialized for driver %s\n",
2390				 driver_data->name);
2391			goto err_if_unreg;
2392		}
2393	}
2394
2395	register_hotcpu_notifier(&cpufreq_cpu_notifier);
2396	pr_debug("driver %s up and running\n", driver_data->name);
 
2397
2398	return 0;
2399err_if_unreg:
2400	subsys_interface_unregister(&cpufreq_interface);
2401err_boost_unreg:
2402	if (cpufreq_boost_supported())
2403		cpufreq_sysfs_remove_file(&boost.attr);
2404err_null_driver:
2405	write_lock_irqsave(&cpufreq_driver_lock, flags);
2406	cpufreq_driver = NULL;
2407	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
 
 
2408	return ret;
2409}
2410EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2411
2412/**
2413 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2414 *
2415 * Unregister the current CPUFreq driver. Only call this if you have
2416 * the right to do so, i.e. if you have succeeded in initialising before!
2417 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2418 * currently not initialised.
2419 */
2420int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2421{
2422	unsigned long flags;
2423
2424	if (!cpufreq_driver || (driver != cpufreq_driver))
2425		return -EINVAL;
2426
2427	pr_debug("unregistering driver %s\n", driver->name);
2428
 
 
2429	subsys_interface_unregister(&cpufreq_interface);
2430	if (cpufreq_boost_supported())
2431		cpufreq_sysfs_remove_file(&boost.attr);
 
2432
2433	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2434
2435	down_write(&cpufreq_rwsem);
2436	write_lock_irqsave(&cpufreq_driver_lock, flags);
2437
2438	cpufreq_driver = NULL;
2439
2440	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2441	up_write(&cpufreq_rwsem);
2442
2443	return 0;
2444}
2445EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2446
2447static int __init cpufreq_core_init(void)
2448{
 
 
 
2449	if (cpufreq_disabled())
2450		return -ENODEV;
2451
2452	cpufreq_global_kobject = kobject_create();
 
 
 
 
2453	BUG_ON(!cpufreq_global_kobject);
2454
 
 
 
2455	return 0;
2456}
 
 
2457core_initcall(cpufreq_core_init);