Loading...
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/hugetlb.h>
39#include <linux/pagemap.h>
40#include <linux/smp.h>
41#include <linux/page-flags.h>
42#include <linux/backing-dev.h>
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/limits.h>
46#include <linux/export.h>
47#include <linux/mutex.h>
48#include <linux/rbtree.h>
49#include <linux/slab.h>
50#include <linux/swap.h>
51#include <linux/swapops.h>
52#include <linux/spinlock.h>
53#include <linux/eventfd.h>
54#include <linux/poll.h>
55#include <linux/sort.h>
56#include <linux/fs.h>
57#include <linux/seq_file.h>
58#include <linux/vmpressure.h>
59#include <linux/mm_inline.h>
60#include <linux/swap_cgroup.h>
61#include <linux/cpu.h>
62#include <linux/oom.h>
63#include <linux/lockdep.h>
64#include <linux/file.h>
65#include <linux/tracehook.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70
71#include <asm/uaccess.h>
72
73#include <trace/events/vmscan.h>
74
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
77
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80#define MEM_CGROUP_RECLAIM_RETRIES 5
81
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
88/* Whether the swap controller is active */
89#ifdef CONFIG_MEMCG_SWAP
90int do_swap_account __read_mostly;
91#else
92#define do_swap_account 0
93#endif
94
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109};
110
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
129
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
155
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
159struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199/* Stuffs for move charges at task migration. */
200/*
201 * Types of charges to be moved.
202 */
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
223
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237};
238
239/* for encoding cft->private value on file */
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
246};
247
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250#define MEMFILE_ATTR(val) ((val) & 0xffff)
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
253
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
272#ifndef CONFIG_SLOB
273/*
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
280 *
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
283 */
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
286
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324#endif /* !CONFIG_SLOB */
325
326static struct mem_cgroup_per_zone *
327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328{
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
333}
334
335/**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
345 */
346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347{
348 struct mem_cgroup *memcg;
349
350 memcg = page->mem_cgroup;
351
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
354
355 return &memcg->css;
356}
357
358/**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371ino_t page_cgroup_ino(struct page *page)
372{
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384}
385
386static struct mem_cgroup_per_zone *
387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388{
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
391
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
393}
394
395static struct mem_cgroup_tree_per_zone *
396soft_limit_tree_node_zone(int nid, int zid)
397{
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static struct mem_cgroup_tree_per_zone *
402soft_limit_tree_from_page(struct page *page)
403{
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408}
409
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440}
441
442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444{
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449}
450
451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
453{
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
459}
460
461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462{
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471}
472
473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474{
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
478
479 mctz = soft_limit_tree_from_page(page);
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
504 }
505 }
506}
507
508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509{
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
513
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
519 }
520 }
521}
522
523static struct mem_cgroup_per_zone *
524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545done:
546 return mz;
547}
548
549static struct mem_cgroup_per_zone *
550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551{
552 struct mem_cgroup_per_zone *mz;
553
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
558}
559
560/*
561 * Return page count for single (non recursive) @memcg.
562 *
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
580 */
581static unsigned long
582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583{
584 long val = 0;
585 int cpu;
586
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
596 return val;
597}
598
599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
601{
602 unsigned long val = 0;
603 int cpu;
604
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
608}
609
610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
613{
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
624
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
629 }
630
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
637 }
638
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640}
641
642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
644{
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662}
663
664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666{
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673}
674
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677{
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701}
702
703/*
704 * Check events in order.
705 *
706 */
707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708{
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724#if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727#endif
728 }
729}
730
731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732{
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742}
743EXPORT_SYMBOL(mem_cgroup_from_task);
744
745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746{
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766}
767
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788{
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886out_unlock:
887 rcu_read_unlock();
888out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893}
894
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
908
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941#define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977}
978
979/**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989{
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018}
1019
1020/**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
1031{
1032 struct mem_cgroup_per_zone *mz;
1033 unsigned long *lru_size;
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
1042}
1043
1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045{
1046 struct mem_cgroup *task_memcg;
1047 struct task_struct *p;
1048 bool ret;
1049
1050 p = find_lock_task_mm(task);
1051 if (p) {
1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
1060 rcu_read_lock();
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
1063 rcu_read_unlock();
1064 }
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
1067 return ret;
1068}
1069
1070/**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078{
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
1082
1083 count = page_counter_read(&memcg->memory);
1084 limit = READ_ONCE(memcg->memory.limit);
1085 if (count < limit)
1086 margin = limit - count;
1087
1088 if (do_memsw_account()) {
1089 count = page_counter_read(&memcg->memsw);
1090 limit = READ_ONCE(memcg->memsw.limit);
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
1096}
1097
1098/*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106{
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1119
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1125}
1126
1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
1143#define K(x) ((x) << (PAGE_SHIFT-10))
1144/**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
1154 struct mem_cgroup *iter;
1155 unsigned int i;
1156
1157 rcu_read_lock();
1158
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1165 }
1166
1167 pr_cont_cgroup_path(memcg->css.cgroup);
1168 pr_cont("\n");
1169
1170 rcu_read_unlock();
1171
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181
1182 for_each_mem_cgroup_tree(iter, memcg) {
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
1185 pr_cont(":");
1186
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189 continue;
1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 K(mem_cgroup_read_stat(iter, i)));
1192 }
1193
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198 pr_cont("\n");
1199 }
1200}
1201
1202/*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
1206static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207{
1208 int num = 0;
1209 struct mem_cgroup *iter;
1210
1211 for_each_mem_cgroup_tree(iter, memcg)
1212 num++;
1213 return num;
1214}
1215
1216/*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
1219static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220{
1221 unsigned long limit;
1222
1223 limit = memcg->memory.limit;
1224 if (mem_cgroup_swappiness(memcg)) {
1225 unsigned long memsw_limit;
1226 unsigned long swap_limit;
1227
1228 memsw_limit = memcg->memsw.limit;
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
1232 }
1233 return limit;
1234}
1235
1236static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237 int order)
1238{
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
1242 .gfp_mask = gfp_mask,
1243 .order = order,
1244 };
1245 struct mem_cgroup *iter;
1246 unsigned long chosen_points = 0;
1247 unsigned long totalpages;
1248 unsigned int points = 0;
1249 struct task_struct *chosen = NULL;
1250
1251 mutex_lock(&oom_lock);
1252
1253 /*
1254 * If current has a pending SIGKILL or is exiting, then automatically
1255 * select it. The goal is to allow it to allocate so that it may
1256 * quickly exit and free its memory.
1257 */
1258 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259 mark_oom_victim(current);
1260 goto unlock;
1261 }
1262
1263 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265 for_each_mem_cgroup_tree(iter, memcg) {
1266 struct css_task_iter it;
1267 struct task_struct *task;
1268
1269 css_task_iter_start(&iter->css, &it);
1270 while ((task = css_task_iter_next(&it))) {
1271 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272 case OOM_SCAN_SELECT:
1273 if (chosen)
1274 put_task_struct(chosen);
1275 chosen = task;
1276 chosen_points = ULONG_MAX;
1277 get_task_struct(chosen);
1278 /* fall through */
1279 case OOM_SCAN_CONTINUE:
1280 continue;
1281 case OOM_SCAN_ABORT:
1282 css_task_iter_end(&it);
1283 mem_cgroup_iter_break(memcg, iter);
1284 if (chosen)
1285 put_task_struct(chosen);
1286 goto unlock;
1287 case OOM_SCAN_OK:
1288 break;
1289 };
1290 points = oom_badness(task, memcg, NULL, totalpages);
1291 if (!points || points < chosen_points)
1292 continue;
1293 /* Prefer thread group leaders for display purposes */
1294 if (points == chosen_points &&
1295 thread_group_leader(chosen))
1296 continue;
1297
1298 if (chosen)
1299 put_task_struct(chosen);
1300 chosen = task;
1301 chosen_points = points;
1302 get_task_struct(chosen);
1303 }
1304 css_task_iter_end(&it);
1305 }
1306
1307 if (chosen) {
1308 points = chosen_points * 1000 / totalpages;
1309 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310 "Memory cgroup out of memory");
1311 }
1312unlock:
1313 mutex_unlock(&oom_lock);
1314 return chosen;
1315}
1316
1317#if MAX_NUMNODES > 1
1318
1319/**
1320 * test_mem_cgroup_node_reclaimable
1321 * @memcg: the target memcg
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1324 *
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1328 */
1329static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330 int nid, bool noswap)
1331{
1332 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333 return true;
1334 if (noswap || !total_swap_pages)
1335 return false;
1336 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337 return true;
1338 return false;
1339
1340}
1341
1342/*
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1346 *
1347 */
1348static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349{
1350 int nid;
1351 /*
1352 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353 * pagein/pageout changes since the last update.
1354 */
1355 if (!atomic_read(&memcg->numainfo_events))
1356 return;
1357 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358 return;
1359
1360 /* make a nodemask where this memcg uses memory from */
1361 memcg->scan_nodes = node_states[N_MEMORY];
1362
1363 for_each_node_mask(nid, node_states[N_MEMORY]) {
1364
1365 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366 node_clear(nid, memcg->scan_nodes);
1367 }
1368
1369 atomic_set(&memcg->numainfo_events, 0);
1370 atomic_set(&memcg->numainfo_updating, 0);
1371}
1372
1373/*
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1377 *
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1382 *
1383 * Now, we use round-robin. Better algorithm is welcomed.
1384 */
1385int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386{
1387 int node;
1388
1389 mem_cgroup_may_update_nodemask(memcg);
1390 node = memcg->last_scanned_node;
1391
1392 node = next_node(node, memcg->scan_nodes);
1393 if (node == MAX_NUMNODES)
1394 node = first_node(memcg->scan_nodes);
1395 /*
1396 * We call this when we hit limit, not when pages are added to LRU.
1397 * No LRU may hold pages because all pages are UNEVICTABLE or
1398 * memcg is too small and all pages are not on LRU. In that case,
1399 * we use curret node.
1400 */
1401 if (unlikely(node == MAX_NUMNODES))
1402 node = numa_node_id();
1403
1404 memcg->last_scanned_node = node;
1405 return node;
1406}
1407#else
1408int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409{
1410 return 0;
1411}
1412#endif
1413
1414static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1415 struct zone *zone,
1416 gfp_t gfp_mask,
1417 unsigned long *total_scanned)
1418{
1419 struct mem_cgroup *victim = NULL;
1420 int total = 0;
1421 int loop = 0;
1422 unsigned long excess;
1423 unsigned long nr_scanned;
1424 struct mem_cgroup_reclaim_cookie reclaim = {
1425 .zone = zone,
1426 .priority = 0,
1427 };
1428
1429 excess = soft_limit_excess(root_memcg);
1430
1431 while (1) {
1432 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1433 if (!victim) {
1434 loop++;
1435 if (loop >= 2) {
1436 /*
1437 * If we have not been able to reclaim
1438 * anything, it might because there are
1439 * no reclaimable pages under this hierarchy
1440 */
1441 if (!total)
1442 break;
1443 /*
1444 * We want to do more targeted reclaim.
1445 * excess >> 2 is not to excessive so as to
1446 * reclaim too much, nor too less that we keep
1447 * coming back to reclaim from this cgroup
1448 */
1449 if (total >= (excess >> 2) ||
1450 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1451 break;
1452 }
1453 continue;
1454 }
1455 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1456 zone, &nr_scanned);
1457 *total_scanned += nr_scanned;
1458 if (!soft_limit_excess(root_memcg))
1459 break;
1460 }
1461 mem_cgroup_iter_break(root_memcg, victim);
1462 return total;
1463}
1464
1465#ifdef CONFIG_LOCKDEP
1466static struct lockdep_map memcg_oom_lock_dep_map = {
1467 .name = "memcg_oom_lock",
1468};
1469#endif
1470
1471static DEFINE_SPINLOCK(memcg_oom_lock);
1472
1473/*
1474 * Check OOM-Killer is already running under our hierarchy.
1475 * If someone is running, return false.
1476 */
1477static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1478{
1479 struct mem_cgroup *iter, *failed = NULL;
1480
1481 spin_lock(&memcg_oom_lock);
1482
1483 for_each_mem_cgroup_tree(iter, memcg) {
1484 if (iter->oom_lock) {
1485 /*
1486 * this subtree of our hierarchy is already locked
1487 * so we cannot give a lock.
1488 */
1489 failed = iter;
1490 mem_cgroup_iter_break(memcg, iter);
1491 break;
1492 } else
1493 iter->oom_lock = true;
1494 }
1495
1496 if (failed) {
1497 /*
1498 * OK, we failed to lock the whole subtree so we have
1499 * to clean up what we set up to the failing subtree
1500 */
1501 for_each_mem_cgroup_tree(iter, memcg) {
1502 if (iter == failed) {
1503 mem_cgroup_iter_break(memcg, iter);
1504 break;
1505 }
1506 iter->oom_lock = false;
1507 }
1508 } else
1509 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1510
1511 spin_unlock(&memcg_oom_lock);
1512
1513 return !failed;
1514}
1515
1516static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1517{
1518 struct mem_cgroup *iter;
1519
1520 spin_lock(&memcg_oom_lock);
1521 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1522 for_each_mem_cgroup_tree(iter, memcg)
1523 iter->oom_lock = false;
1524 spin_unlock(&memcg_oom_lock);
1525}
1526
1527static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1528{
1529 struct mem_cgroup *iter;
1530
1531 spin_lock(&memcg_oom_lock);
1532 for_each_mem_cgroup_tree(iter, memcg)
1533 iter->under_oom++;
1534 spin_unlock(&memcg_oom_lock);
1535}
1536
1537static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1538{
1539 struct mem_cgroup *iter;
1540
1541 /*
1542 * When a new child is created while the hierarchy is under oom,
1543 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1544 */
1545 spin_lock(&memcg_oom_lock);
1546 for_each_mem_cgroup_tree(iter, memcg)
1547 if (iter->under_oom > 0)
1548 iter->under_oom--;
1549 spin_unlock(&memcg_oom_lock);
1550}
1551
1552static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1553
1554struct oom_wait_info {
1555 struct mem_cgroup *memcg;
1556 wait_queue_t wait;
1557};
1558
1559static int memcg_oom_wake_function(wait_queue_t *wait,
1560 unsigned mode, int sync, void *arg)
1561{
1562 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1563 struct mem_cgroup *oom_wait_memcg;
1564 struct oom_wait_info *oom_wait_info;
1565
1566 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1567 oom_wait_memcg = oom_wait_info->memcg;
1568
1569 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1570 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1571 return 0;
1572 return autoremove_wake_function(wait, mode, sync, arg);
1573}
1574
1575static void memcg_oom_recover(struct mem_cgroup *memcg)
1576{
1577 /*
1578 * For the following lockless ->under_oom test, the only required
1579 * guarantee is that it must see the state asserted by an OOM when
1580 * this function is called as a result of userland actions
1581 * triggered by the notification of the OOM. This is trivially
1582 * achieved by invoking mem_cgroup_mark_under_oom() before
1583 * triggering notification.
1584 */
1585 if (memcg && memcg->under_oom)
1586 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1587}
1588
1589static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1590{
1591 if (!current->memcg_may_oom)
1592 return;
1593 /*
1594 * We are in the middle of the charge context here, so we
1595 * don't want to block when potentially sitting on a callstack
1596 * that holds all kinds of filesystem and mm locks.
1597 *
1598 * Also, the caller may handle a failed allocation gracefully
1599 * (like optional page cache readahead) and so an OOM killer
1600 * invocation might not even be necessary.
1601 *
1602 * That's why we don't do anything here except remember the
1603 * OOM context and then deal with it at the end of the page
1604 * fault when the stack is unwound, the locks are released,
1605 * and when we know whether the fault was overall successful.
1606 */
1607 css_get(&memcg->css);
1608 current->memcg_in_oom = memcg;
1609 current->memcg_oom_gfp_mask = mask;
1610 current->memcg_oom_order = order;
1611}
1612
1613/**
1614 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615 * @handle: actually kill/wait or just clean up the OOM state
1616 *
1617 * This has to be called at the end of a page fault if the memcg OOM
1618 * handler was enabled.
1619 *
1620 * Memcg supports userspace OOM handling where failed allocations must
1621 * sleep on a waitqueue until the userspace task resolves the
1622 * situation. Sleeping directly in the charge context with all kinds
1623 * of locks held is not a good idea, instead we remember an OOM state
1624 * in the task and mem_cgroup_oom_synchronize() has to be called at
1625 * the end of the page fault to complete the OOM handling.
1626 *
1627 * Returns %true if an ongoing memcg OOM situation was detected and
1628 * completed, %false otherwise.
1629 */
1630bool mem_cgroup_oom_synchronize(bool handle)
1631{
1632 struct mem_cgroup *memcg = current->memcg_in_oom;
1633 struct oom_wait_info owait;
1634 bool locked;
1635
1636 /* OOM is global, do not handle */
1637 if (!memcg)
1638 return false;
1639
1640 if (!handle || oom_killer_disabled)
1641 goto cleanup;
1642
1643 owait.memcg = memcg;
1644 owait.wait.flags = 0;
1645 owait.wait.func = memcg_oom_wake_function;
1646 owait.wait.private = current;
1647 INIT_LIST_HEAD(&owait.wait.task_list);
1648
1649 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1650 mem_cgroup_mark_under_oom(memcg);
1651
1652 locked = mem_cgroup_oom_trylock(memcg);
1653
1654 if (locked)
1655 mem_cgroup_oom_notify(memcg);
1656
1657 if (locked && !memcg->oom_kill_disable) {
1658 mem_cgroup_unmark_under_oom(memcg);
1659 finish_wait(&memcg_oom_waitq, &owait.wait);
1660 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1661 current->memcg_oom_order);
1662 } else {
1663 schedule();
1664 mem_cgroup_unmark_under_oom(memcg);
1665 finish_wait(&memcg_oom_waitq, &owait.wait);
1666 }
1667
1668 if (locked) {
1669 mem_cgroup_oom_unlock(memcg);
1670 /*
1671 * There is no guarantee that an OOM-lock contender
1672 * sees the wakeups triggered by the OOM kill
1673 * uncharges. Wake any sleepers explicitely.
1674 */
1675 memcg_oom_recover(memcg);
1676 }
1677cleanup:
1678 current->memcg_in_oom = NULL;
1679 css_put(&memcg->css);
1680 return true;
1681}
1682
1683/**
1684 * lock_page_memcg - lock a page->mem_cgroup binding
1685 * @page: the page
1686 *
1687 * This function protects unlocked LRU pages from being moved to
1688 * another cgroup and stabilizes their page->mem_cgroup binding.
1689 */
1690void lock_page_memcg(struct page *page)
1691{
1692 struct mem_cgroup *memcg;
1693 unsigned long flags;
1694
1695 /*
1696 * The RCU lock is held throughout the transaction. The fast
1697 * path can get away without acquiring the memcg->move_lock
1698 * because page moving starts with an RCU grace period.
1699 */
1700 rcu_read_lock();
1701
1702 if (mem_cgroup_disabled())
1703 return;
1704again:
1705 memcg = page->mem_cgroup;
1706 if (unlikely(!memcg))
1707 return;
1708
1709 if (atomic_read(&memcg->moving_account) <= 0)
1710 return;
1711
1712 spin_lock_irqsave(&memcg->move_lock, flags);
1713 if (memcg != page->mem_cgroup) {
1714 spin_unlock_irqrestore(&memcg->move_lock, flags);
1715 goto again;
1716 }
1717
1718 /*
1719 * When charge migration first begins, we can have locked and
1720 * unlocked page stat updates happening concurrently. Track
1721 * the task who has the lock for unlock_page_memcg().
1722 */
1723 memcg->move_lock_task = current;
1724 memcg->move_lock_flags = flags;
1725
1726 return;
1727}
1728EXPORT_SYMBOL(lock_page_memcg);
1729
1730/**
1731 * unlock_page_memcg - unlock a page->mem_cgroup binding
1732 * @page: the page
1733 */
1734void unlock_page_memcg(struct page *page)
1735{
1736 struct mem_cgroup *memcg = page->mem_cgroup;
1737
1738 if (memcg && memcg->move_lock_task == current) {
1739 unsigned long flags = memcg->move_lock_flags;
1740
1741 memcg->move_lock_task = NULL;
1742 memcg->move_lock_flags = 0;
1743
1744 spin_unlock_irqrestore(&memcg->move_lock, flags);
1745 }
1746
1747 rcu_read_unlock();
1748}
1749EXPORT_SYMBOL(unlock_page_memcg);
1750
1751/*
1752 * size of first charge trial. "32" comes from vmscan.c's magic value.
1753 * TODO: maybe necessary to use big numbers in big irons.
1754 */
1755#define CHARGE_BATCH 32U
1756struct memcg_stock_pcp {
1757 struct mem_cgroup *cached; /* this never be root cgroup */
1758 unsigned int nr_pages;
1759 struct work_struct work;
1760 unsigned long flags;
1761#define FLUSHING_CACHED_CHARGE 0
1762};
1763static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1764static DEFINE_MUTEX(percpu_charge_mutex);
1765
1766/**
1767 * consume_stock: Try to consume stocked charge on this cpu.
1768 * @memcg: memcg to consume from.
1769 * @nr_pages: how many pages to charge.
1770 *
1771 * The charges will only happen if @memcg matches the current cpu's memcg
1772 * stock, and at least @nr_pages are available in that stock. Failure to
1773 * service an allocation will refill the stock.
1774 *
1775 * returns true if successful, false otherwise.
1776 */
1777static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1778{
1779 struct memcg_stock_pcp *stock;
1780 bool ret = false;
1781
1782 if (nr_pages > CHARGE_BATCH)
1783 return ret;
1784
1785 stock = &get_cpu_var(memcg_stock);
1786 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1787 stock->nr_pages -= nr_pages;
1788 ret = true;
1789 }
1790 put_cpu_var(memcg_stock);
1791 return ret;
1792}
1793
1794/*
1795 * Returns stocks cached in percpu and reset cached information.
1796 */
1797static void drain_stock(struct memcg_stock_pcp *stock)
1798{
1799 struct mem_cgroup *old = stock->cached;
1800
1801 if (stock->nr_pages) {
1802 page_counter_uncharge(&old->memory, stock->nr_pages);
1803 if (do_memsw_account())
1804 page_counter_uncharge(&old->memsw, stock->nr_pages);
1805 css_put_many(&old->css, stock->nr_pages);
1806 stock->nr_pages = 0;
1807 }
1808 stock->cached = NULL;
1809}
1810
1811/*
1812 * This must be called under preempt disabled or must be called by
1813 * a thread which is pinned to local cpu.
1814 */
1815static void drain_local_stock(struct work_struct *dummy)
1816{
1817 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1818 drain_stock(stock);
1819 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1820}
1821
1822/*
1823 * Cache charges(val) to local per_cpu area.
1824 * This will be consumed by consume_stock() function, later.
1825 */
1826static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1827{
1828 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1829
1830 if (stock->cached != memcg) { /* reset if necessary */
1831 drain_stock(stock);
1832 stock->cached = memcg;
1833 }
1834 stock->nr_pages += nr_pages;
1835 put_cpu_var(memcg_stock);
1836}
1837
1838/*
1839 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840 * of the hierarchy under it.
1841 */
1842static void drain_all_stock(struct mem_cgroup *root_memcg)
1843{
1844 int cpu, curcpu;
1845
1846 /* If someone's already draining, avoid adding running more workers. */
1847 if (!mutex_trylock(&percpu_charge_mutex))
1848 return;
1849 /* Notify other cpus that system-wide "drain" is running */
1850 get_online_cpus();
1851 curcpu = get_cpu();
1852 for_each_online_cpu(cpu) {
1853 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1854 struct mem_cgroup *memcg;
1855
1856 memcg = stock->cached;
1857 if (!memcg || !stock->nr_pages)
1858 continue;
1859 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1860 continue;
1861 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1862 if (cpu == curcpu)
1863 drain_local_stock(&stock->work);
1864 else
1865 schedule_work_on(cpu, &stock->work);
1866 }
1867 }
1868 put_cpu();
1869 put_online_cpus();
1870 mutex_unlock(&percpu_charge_mutex);
1871}
1872
1873static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1874 unsigned long action,
1875 void *hcpu)
1876{
1877 int cpu = (unsigned long)hcpu;
1878 struct memcg_stock_pcp *stock;
1879
1880 if (action == CPU_ONLINE)
1881 return NOTIFY_OK;
1882
1883 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1884 return NOTIFY_OK;
1885
1886 stock = &per_cpu(memcg_stock, cpu);
1887 drain_stock(stock);
1888 return NOTIFY_OK;
1889}
1890
1891static void reclaim_high(struct mem_cgroup *memcg,
1892 unsigned int nr_pages,
1893 gfp_t gfp_mask)
1894{
1895 do {
1896 if (page_counter_read(&memcg->memory) <= memcg->high)
1897 continue;
1898 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1899 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1900 } while ((memcg = parent_mem_cgroup(memcg)));
1901}
1902
1903static void high_work_func(struct work_struct *work)
1904{
1905 struct mem_cgroup *memcg;
1906
1907 memcg = container_of(work, struct mem_cgroup, high_work);
1908 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1909}
1910
1911/*
1912 * Scheduled by try_charge() to be executed from the userland return path
1913 * and reclaims memory over the high limit.
1914 */
1915void mem_cgroup_handle_over_high(void)
1916{
1917 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1918 struct mem_cgroup *memcg;
1919
1920 if (likely(!nr_pages))
1921 return;
1922
1923 memcg = get_mem_cgroup_from_mm(current->mm);
1924 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1925 css_put(&memcg->css);
1926 current->memcg_nr_pages_over_high = 0;
1927}
1928
1929static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1930 unsigned int nr_pages)
1931{
1932 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1933 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1934 struct mem_cgroup *mem_over_limit;
1935 struct page_counter *counter;
1936 unsigned long nr_reclaimed;
1937 bool may_swap = true;
1938 bool drained = false;
1939
1940 if (mem_cgroup_is_root(memcg))
1941 return 0;
1942retry:
1943 if (consume_stock(memcg, nr_pages))
1944 return 0;
1945
1946 if (!do_memsw_account() ||
1947 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1948 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1949 goto done_restock;
1950 if (do_memsw_account())
1951 page_counter_uncharge(&memcg->memsw, batch);
1952 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1953 } else {
1954 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1955 may_swap = false;
1956 }
1957
1958 if (batch > nr_pages) {
1959 batch = nr_pages;
1960 goto retry;
1961 }
1962
1963 /*
1964 * Unlike in global OOM situations, memcg is not in a physical
1965 * memory shortage. Allow dying and OOM-killed tasks to
1966 * bypass the last charges so that they can exit quickly and
1967 * free their memory.
1968 */
1969 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1970 fatal_signal_pending(current) ||
1971 current->flags & PF_EXITING))
1972 goto force;
1973
1974 if (unlikely(task_in_memcg_oom(current)))
1975 goto nomem;
1976
1977 if (!gfpflags_allow_blocking(gfp_mask))
1978 goto nomem;
1979
1980 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1981
1982 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1983 gfp_mask, may_swap);
1984
1985 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1986 goto retry;
1987
1988 if (!drained) {
1989 drain_all_stock(mem_over_limit);
1990 drained = true;
1991 goto retry;
1992 }
1993
1994 if (gfp_mask & __GFP_NORETRY)
1995 goto nomem;
1996 /*
1997 * Even though the limit is exceeded at this point, reclaim
1998 * may have been able to free some pages. Retry the charge
1999 * before killing the task.
2000 *
2001 * Only for regular pages, though: huge pages are rather
2002 * unlikely to succeed so close to the limit, and we fall back
2003 * to regular pages anyway in case of failure.
2004 */
2005 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2006 goto retry;
2007 /*
2008 * At task move, charge accounts can be doubly counted. So, it's
2009 * better to wait until the end of task_move if something is going on.
2010 */
2011 if (mem_cgroup_wait_acct_move(mem_over_limit))
2012 goto retry;
2013
2014 if (nr_retries--)
2015 goto retry;
2016
2017 if (gfp_mask & __GFP_NOFAIL)
2018 goto force;
2019
2020 if (fatal_signal_pending(current))
2021 goto force;
2022
2023 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2024
2025 mem_cgroup_oom(mem_over_limit, gfp_mask,
2026 get_order(nr_pages * PAGE_SIZE));
2027nomem:
2028 if (!(gfp_mask & __GFP_NOFAIL))
2029 return -ENOMEM;
2030force:
2031 /*
2032 * The allocation either can't fail or will lead to more memory
2033 * being freed very soon. Allow memory usage go over the limit
2034 * temporarily by force charging it.
2035 */
2036 page_counter_charge(&memcg->memory, nr_pages);
2037 if (do_memsw_account())
2038 page_counter_charge(&memcg->memsw, nr_pages);
2039 css_get_many(&memcg->css, nr_pages);
2040
2041 return 0;
2042
2043done_restock:
2044 css_get_many(&memcg->css, batch);
2045 if (batch > nr_pages)
2046 refill_stock(memcg, batch - nr_pages);
2047
2048 /*
2049 * If the hierarchy is above the normal consumption range, schedule
2050 * reclaim on returning to userland. We can perform reclaim here
2051 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2053 * not recorded as it most likely matches current's and won't
2054 * change in the meantime. As high limit is checked again before
2055 * reclaim, the cost of mismatch is negligible.
2056 */
2057 do {
2058 if (page_counter_read(&memcg->memory) > memcg->high) {
2059 /* Don't bother a random interrupted task */
2060 if (in_interrupt()) {
2061 schedule_work(&memcg->high_work);
2062 break;
2063 }
2064 current->memcg_nr_pages_over_high += batch;
2065 set_notify_resume(current);
2066 break;
2067 }
2068 } while ((memcg = parent_mem_cgroup(memcg)));
2069
2070 return 0;
2071}
2072
2073static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2074{
2075 if (mem_cgroup_is_root(memcg))
2076 return;
2077
2078 page_counter_uncharge(&memcg->memory, nr_pages);
2079 if (do_memsw_account())
2080 page_counter_uncharge(&memcg->memsw, nr_pages);
2081
2082 css_put_many(&memcg->css, nr_pages);
2083}
2084
2085static void lock_page_lru(struct page *page, int *isolated)
2086{
2087 struct zone *zone = page_zone(page);
2088
2089 spin_lock_irq(&zone->lru_lock);
2090 if (PageLRU(page)) {
2091 struct lruvec *lruvec;
2092
2093 lruvec = mem_cgroup_page_lruvec(page, zone);
2094 ClearPageLRU(page);
2095 del_page_from_lru_list(page, lruvec, page_lru(page));
2096 *isolated = 1;
2097 } else
2098 *isolated = 0;
2099}
2100
2101static void unlock_page_lru(struct page *page, int isolated)
2102{
2103 struct zone *zone = page_zone(page);
2104
2105 if (isolated) {
2106 struct lruvec *lruvec;
2107
2108 lruvec = mem_cgroup_page_lruvec(page, zone);
2109 VM_BUG_ON_PAGE(PageLRU(page), page);
2110 SetPageLRU(page);
2111 add_page_to_lru_list(page, lruvec, page_lru(page));
2112 }
2113 spin_unlock_irq(&zone->lru_lock);
2114}
2115
2116static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2117 bool lrucare)
2118{
2119 int isolated;
2120
2121 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2122
2123 /*
2124 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2125 * may already be on some other mem_cgroup's LRU. Take care of it.
2126 */
2127 if (lrucare)
2128 lock_page_lru(page, &isolated);
2129
2130 /*
2131 * Nobody should be changing or seriously looking at
2132 * page->mem_cgroup at this point:
2133 *
2134 * - the page is uncharged
2135 *
2136 * - the page is off-LRU
2137 *
2138 * - an anonymous fault has exclusive page access, except for
2139 * a locked page table
2140 *
2141 * - a page cache insertion, a swapin fault, or a migration
2142 * have the page locked
2143 */
2144 page->mem_cgroup = memcg;
2145
2146 if (lrucare)
2147 unlock_page_lru(page, isolated);
2148}
2149
2150#ifndef CONFIG_SLOB
2151static int memcg_alloc_cache_id(void)
2152{
2153 int id, size;
2154 int err;
2155
2156 id = ida_simple_get(&memcg_cache_ida,
2157 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2158 if (id < 0)
2159 return id;
2160
2161 if (id < memcg_nr_cache_ids)
2162 return id;
2163
2164 /*
2165 * There's no space for the new id in memcg_caches arrays,
2166 * so we have to grow them.
2167 */
2168 down_write(&memcg_cache_ids_sem);
2169
2170 size = 2 * (id + 1);
2171 if (size < MEMCG_CACHES_MIN_SIZE)
2172 size = MEMCG_CACHES_MIN_SIZE;
2173 else if (size > MEMCG_CACHES_MAX_SIZE)
2174 size = MEMCG_CACHES_MAX_SIZE;
2175
2176 err = memcg_update_all_caches(size);
2177 if (!err)
2178 err = memcg_update_all_list_lrus(size);
2179 if (!err)
2180 memcg_nr_cache_ids = size;
2181
2182 up_write(&memcg_cache_ids_sem);
2183
2184 if (err) {
2185 ida_simple_remove(&memcg_cache_ida, id);
2186 return err;
2187 }
2188 return id;
2189}
2190
2191static void memcg_free_cache_id(int id)
2192{
2193 ida_simple_remove(&memcg_cache_ida, id);
2194}
2195
2196struct memcg_kmem_cache_create_work {
2197 struct mem_cgroup *memcg;
2198 struct kmem_cache *cachep;
2199 struct work_struct work;
2200};
2201
2202static void memcg_kmem_cache_create_func(struct work_struct *w)
2203{
2204 struct memcg_kmem_cache_create_work *cw =
2205 container_of(w, struct memcg_kmem_cache_create_work, work);
2206 struct mem_cgroup *memcg = cw->memcg;
2207 struct kmem_cache *cachep = cw->cachep;
2208
2209 memcg_create_kmem_cache(memcg, cachep);
2210
2211 css_put(&memcg->css);
2212 kfree(cw);
2213}
2214
2215/*
2216 * Enqueue the creation of a per-memcg kmem_cache.
2217 */
2218static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2219 struct kmem_cache *cachep)
2220{
2221 struct memcg_kmem_cache_create_work *cw;
2222
2223 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2224 if (!cw)
2225 return;
2226
2227 css_get(&memcg->css);
2228
2229 cw->memcg = memcg;
2230 cw->cachep = cachep;
2231 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2232
2233 schedule_work(&cw->work);
2234}
2235
2236static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237 struct kmem_cache *cachep)
2238{
2239 /*
2240 * We need to stop accounting when we kmalloc, because if the
2241 * corresponding kmalloc cache is not yet created, the first allocation
2242 * in __memcg_schedule_kmem_cache_create will recurse.
2243 *
2244 * However, it is better to enclose the whole function. Depending on
2245 * the debugging options enabled, INIT_WORK(), for instance, can
2246 * trigger an allocation. This too, will make us recurse. Because at
2247 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2248 * the safest choice is to do it like this, wrapping the whole function.
2249 */
2250 current->memcg_kmem_skip_account = 1;
2251 __memcg_schedule_kmem_cache_create(memcg, cachep);
2252 current->memcg_kmem_skip_account = 0;
2253}
2254
2255/*
2256 * Return the kmem_cache we're supposed to use for a slab allocation.
2257 * We try to use the current memcg's version of the cache.
2258 *
2259 * If the cache does not exist yet, if we are the first user of it,
2260 * we either create it immediately, if possible, or create it asynchronously
2261 * in a workqueue.
2262 * In the latter case, we will let the current allocation go through with
2263 * the original cache.
2264 *
2265 * Can't be called in interrupt context or from kernel threads.
2266 * This function needs to be called with rcu_read_lock() held.
2267 */
2268struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2269{
2270 struct mem_cgroup *memcg;
2271 struct kmem_cache *memcg_cachep;
2272 int kmemcg_id;
2273
2274 VM_BUG_ON(!is_root_cache(cachep));
2275
2276 if (cachep->flags & SLAB_ACCOUNT)
2277 gfp |= __GFP_ACCOUNT;
2278
2279 if (!(gfp & __GFP_ACCOUNT))
2280 return cachep;
2281
2282 if (current->memcg_kmem_skip_account)
2283 return cachep;
2284
2285 memcg = get_mem_cgroup_from_mm(current->mm);
2286 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2287 if (kmemcg_id < 0)
2288 goto out;
2289
2290 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2291 if (likely(memcg_cachep))
2292 return memcg_cachep;
2293
2294 /*
2295 * If we are in a safe context (can wait, and not in interrupt
2296 * context), we could be be predictable and return right away.
2297 * This would guarantee that the allocation being performed
2298 * already belongs in the new cache.
2299 *
2300 * However, there are some clashes that can arrive from locking.
2301 * For instance, because we acquire the slab_mutex while doing
2302 * memcg_create_kmem_cache, this means no further allocation
2303 * could happen with the slab_mutex held. So it's better to
2304 * defer everything.
2305 */
2306 memcg_schedule_kmem_cache_create(memcg, cachep);
2307out:
2308 css_put(&memcg->css);
2309 return cachep;
2310}
2311
2312void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2313{
2314 if (!is_root_cache(cachep))
2315 css_put(&cachep->memcg_params.memcg->css);
2316}
2317
2318int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319 struct mem_cgroup *memcg)
2320{
2321 unsigned int nr_pages = 1 << order;
2322 struct page_counter *counter;
2323 int ret;
2324
2325 ret = try_charge(memcg, gfp, nr_pages);
2326 if (ret)
2327 return ret;
2328
2329 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331 cancel_charge(memcg, nr_pages);
2332 return -ENOMEM;
2333 }
2334
2335 page->mem_cgroup = memcg;
2336
2337 return 0;
2338}
2339
2340int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342 struct mem_cgroup *memcg;
2343 int ret = 0;
2344
2345 memcg = get_mem_cgroup_from_mm(current->mm);
2346 if (!mem_cgroup_is_root(memcg))
2347 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2348 css_put(&memcg->css);
2349 return ret;
2350}
2351
2352void __memcg_kmem_uncharge(struct page *page, int order)
2353{
2354 struct mem_cgroup *memcg = page->mem_cgroup;
2355 unsigned int nr_pages = 1 << order;
2356
2357 if (!memcg)
2358 return;
2359
2360 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2361
2362 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2363 page_counter_uncharge(&memcg->kmem, nr_pages);
2364
2365 page_counter_uncharge(&memcg->memory, nr_pages);
2366 if (do_memsw_account())
2367 page_counter_uncharge(&memcg->memsw, nr_pages);
2368
2369 page->mem_cgroup = NULL;
2370 css_put_many(&memcg->css, nr_pages);
2371}
2372#endif /* !CONFIG_SLOB */
2373
2374#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2375
2376/*
2377 * Because tail pages are not marked as "used", set it. We're under
2378 * zone->lru_lock and migration entries setup in all page mappings.
2379 */
2380void mem_cgroup_split_huge_fixup(struct page *head)
2381{
2382 int i;
2383
2384 if (mem_cgroup_disabled())
2385 return;
2386
2387 for (i = 1; i < HPAGE_PMD_NR; i++)
2388 head[i].mem_cgroup = head->mem_cgroup;
2389
2390 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2391 HPAGE_PMD_NR);
2392}
2393#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2394
2395#ifdef CONFIG_MEMCG_SWAP
2396static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2397 bool charge)
2398{
2399 int val = (charge) ? 1 : -1;
2400 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2401}
2402
2403/**
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from: mem_cgroup which the entry is moved from
2407 * @to: mem_cgroup which the entry is moved to
2408 *
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2411 *
2412 * Returns 0 on success, -EINVAL on failure.
2413 *
2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 * both res and memsw, and called css_get().
2416 */
2417static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418 struct mem_cgroup *from, struct mem_cgroup *to)
2419{
2420 unsigned short old_id, new_id;
2421
2422 old_id = mem_cgroup_id(from);
2423 new_id = mem_cgroup_id(to);
2424
2425 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426 mem_cgroup_swap_statistics(from, false);
2427 mem_cgroup_swap_statistics(to, true);
2428 return 0;
2429 }
2430 return -EINVAL;
2431}
2432#else
2433static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434 struct mem_cgroup *from, struct mem_cgroup *to)
2435{
2436 return -EINVAL;
2437}
2438#endif
2439
2440static DEFINE_MUTEX(memcg_limit_mutex);
2441
2442static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443 unsigned long limit)
2444{
2445 unsigned long curusage;
2446 unsigned long oldusage;
2447 bool enlarge = false;
2448 int retry_count;
2449 int ret;
2450
2451 /*
2452 * For keeping hierarchical_reclaim simple, how long we should retry
2453 * is depends on callers. We set our retry-count to be function
2454 * of # of children which we should visit in this loop.
2455 */
2456 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457 mem_cgroup_count_children(memcg);
2458
2459 oldusage = page_counter_read(&memcg->memory);
2460
2461 do {
2462 if (signal_pending(current)) {
2463 ret = -EINTR;
2464 break;
2465 }
2466
2467 mutex_lock(&memcg_limit_mutex);
2468 if (limit > memcg->memsw.limit) {
2469 mutex_unlock(&memcg_limit_mutex);
2470 ret = -EINVAL;
2471 break;
2472 }
2473 if (limit > memcg->memory.limit)
2474 enlarge = true;
2475 ret = page_counter_limit(&memcg->memory, limit);
2476 mutex_unlock(&memcg_limit_mutex);
2477
2478 if (!ret)
2479 break;
2480
2481 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482
2483 curusage = page_counter_read(&memcg->memory);
2484 /* Usage is reduced ? */
2485 if (curusage >= oldusage)
2486 retry_count--;
2487 else
2488 oldusage = curusage;
2489 } while (retry_count);
2490
2491 if (!ret && enlarge)
2492 memcg_oom_recover(memcg);
2493
2494 return ret;
2495}
2496
2497static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498 unsigned long limit)
2499{
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
2503 int retry_count;
2504 int ret;
2505
2506 /* see mem_cgroup_resize_res_limit */
2507 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508 mem_cgroup_count_children(memcg);
2509
2510 oldusage = page_counter_read(&memcg->memsw);
2511
2512 do {
2513 if (signal_pending(current)) {
2514 ret = -EINTR;
2515 break;
2516 }
2517
2518 mutex_lock(&memcg_limit_mutex);
2519 if (limit < memcg->memory.limit) {
2520 mutex_unlock(&memcg_limit_mutex);
2521 ret = -EINVAL;
2522 break;
2523 }
2524 if (limit > memcg->memsw.limit)
2525 enlarge = true;
2526 ret = page_counter_limit(&memcg->memsw, limit);
2527 mutex_unlock(&memcg_limit_mutex);
2528
2529 if (!ret)
2530 break;
2531
2532 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533
2534 curusage = page_counter_read(&memcg->memsw);
2535 /* Usage is reduced ? */
2536 if (curusage >= oldusage)
2537 retry_count--;
2538 else
2539 oldusage = curusage;
2540 } while (retry_count);
2541
2542 if (!ret && enlarge)
2543 memcg_oom_recover(memcg);
2544
2545 return ret;
2546}
2547
2548unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2549 gfp_t gfp_mask,
2550 unsigned long *total_scanned)
2551{
2552 unsigned long nr_reclaimed = 0;
2553 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2554 unsigned long reclaimed;
2555 int loop = 0;
2556 struct mem_cgroup_tree_per_zone *mctz;
2557 unsigned long excess;
2558 unsigned long nr_scanned;
2559
2560 if (order > 0)
2561 return 0;
2562
2563 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2564 /*
2565 * This loop can run a while, specially if mem_cgroup's continuously
2566 * keep exceeding their soft limit and putting the system under
2567 * pressure
2568 */
2569 do {
2570 if (next_mz)
2571 mz = next_mz;
2572 else
2573 mz = mem_cgroup_largest_soft_limit_node(mctz);
2574 if (!mz)
2575 break;
2576
2577 nr_scanned = 0;
2578 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2579 gfp_mask, &nr_scanned);
2580 nr_reclaimed += reclaimed;
2581 *total_scanned += nr_scanned;
2582 spin_lock_irq(&mctz->lock);
2583 __mem_cgroup_remove_exceeded(mz, mctz);
2584
2585 /*
2586 * If we failed to reclaim anything from this memory cgroup
2587 * it is time to move on to the next cgroup
2588 */
2589 next_mz = NULL;
2590 if (!reclaimed)
2591 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592
2593 excess = soft_limit_excess(mz->memcg);
2594 /*
2595 * One school of thought says that we should not add
2596 * back the node to the tree if reclaim returns 0.
2597 * But our reclaim could return 0, simply because due
2598 * to priority we are exposing a smaller subset of
2599 * memory to reclaim from. Consider this as a longer
2600 * term TODO.
2601 */
2602 /* If excess == 0, no tree ops */
2603 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2604 spin_unlock_irq(&mctz->lock);
2605 css_put(&mz->memcg->css);
2606 loop++;
2607 /*
2608 * Could not reclaim anything and there are no more
2609 * mem cgroups to try or we seem to be looping without
2610 * reclaiming anything.
2611 */
2612 if (!nr_reclaimed &&
2613 (next_mz == NULL ||
2614 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615 break;
2616 } while (!nr_reclaimed);
2617 if (next_mz)
2618 css_put(&next_mz->memcg->css);
2619 return nr_reclaimed;
2620}
2621
2622/*
2623 * Test whether @memcg has children, dead or alive. Note that this
2624 * function doesn't care whether @memcg has use_hierarchy enabled and
2625 * returns %true if there are child csses according to the cgroup
2626 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2627 */
2628static inline bool memcg_has_children(struct mem_cgroup *memcg)
2629{
2630 bool ret;
2631
2632 rcu_read_lock();
2633 ret = css_next_child(NULL, &memcg->css);
2634 rcu_read_unlock();
2635 return ret;
2636}
2637
2638/*
2639 * Reclaims as many pages from the given memcg as possible and moves
2640 * the rest to the parent.
2641 *
2642 * Caller is responsible for holding css reference for memcg.
2643 */
2644static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645{
2646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2647
2648 /* we call try-to-free pages for make this cgroup empty */
2649 lru_add_drain_all();
2650 /* try to free all pages in this cgroup */
2651 while (nr_retries && page_counter_read(&memcg->memory)) {
2652 int progress;
2653
2654 if (signal_pending(current))
2655 return -EINTR;
2656
2657 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658 GFP_KERNEL, true);
2659 if (!progress) {
2660 nr_retries--;
2661 /* maybe some writeback is necessary */
2662 congestion_wait(BLK_RW_ASYNC, HZ/10);
2663 }
2664
2665 }
2666
2667 return 0;
2668}
2669
2670static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671 char *buf, size_t nbytes,
2672 loff_t off)
2673{
2674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675
2676 if (mem_cgroup_is_root(memcg))
2677 return -EINVAL;
2678 return mem_cgroup_force_empty(memcg) ?: nbytes;
2679}
2680
2681static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 struct cftype *cft)
2683{
2684 return mem_cgroup_from_css(css)->use_hierarchy;
2685}
2686
2687static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688 struct cftype *cft, u64 val)
2689{
2690 int retval = 0;
2691 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693
2694 if (memcg->use_hierarchy == val)
2695 return 0;
2696
2697 /*
2698 * If parent's use_hierarchy is set, we can't make any modifications
2699 * in the child subtrees. If it is unset, then the change can
2700 * occur, provided the current cgroup has no children.
2701 *
2702 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 * set if there are no children.
2704 */
2705 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706 (val == 1 || val == 0)) {
2707 if (!memcg_has_children(memcg))
2708 memcg->use_hierarchy = val;
2709 else
2710 retval = -EBUSY;
2711 } else
2712 retval = -EINVAL;
2713
2714 return retval;
2715}
2716
2717static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718{
2719 struct mem_cgroup *iter;
2720 int i;
2721
2722 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723
2724 for_each_mem_cgroup_tree(iter, memcg) {
2725 for (i = 0; i < MEMCG_NR_STAT; i++)
2726 stat[i] += mem_cgroup_read_stat(iter, i);
2727 }
2728}
2729
2730static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731{
2732 struct mem_cgroup *iter;
2733 int i;
2734
2735 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739 events[i] += mem_cgroup_read_events(iter, i);
2740 }
2741}
2742
2743static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744{
2745 unsigned long val = 0;
2746
2747 if (mem_cgroup_is_root(memcg)) {
2748 struct mem_cgroup *iter;
2749
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_CACHE);
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_RSS);
2755 if (swap)
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_SWAP);
2758 }
2759 } else {
2760 if (!swap)
2761 val = page_counter_read(&memcg->memory);
2762 else
2763 val = page_counter_read(&memcg->memsw);
2764 }
2765 return val;
2766}
2767
2768enum {
2769 RES_USAGE,
2770 RES_LIMIT,
2771 RES_MAX_USAGE,
2772 RES_FAILCNT,
2773 RES_SOFT_LIMIT,
2774};
2775
2776static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777 struct cftype *cft)
2778{
2779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780 struct page_counter *counter;
2781
2782 switch (MEMFILE_TYPE(cft->private)) {
2783 case _MEM:
2784 counter = &memcg->memory;
2785 break;
2786 case _MEMSWAP:
2787 counter = &memcg->memsw;
2788 break;
2789 case _KMEM:
2790 counter = &memcg->kmem;
2791 break;
2792 case _TCP:
2793 counter = &memcg->tcpmem;
2794 break;
2795 default:
2796 BUG();
2797 }
2798
2799 switch (MEMFILE_ATTR(cft->private)) {
2800 case RES_USAGE:
2801 if (counter == &memcg->memory)
2802 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803 if (counter == &memcg->memsw)
2804 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805 return (u64)page_counter_read(counter) * PAGE_SIZE;
2806 case RES_LIMIT:
2807 return (u64)counter->limit * PAGE_SIZE;
2808 case RES_MAX_USAGE:
2809 return (u64)counter->watermark * PAGE_SIZE;
2810 case RES_FAILCNT:
2811 return counter->failcnt;
2812 case RES_SOFT_LIMIT:
2813 return (u64)memcg->soft_limit * PAGE_SIZE;
2814 default:
2815 BUG();
2816 }
2817}
2818
2819#ifndef CONFIG_SLOB
2820static int memcg_online_kmem(struct mem_cgroup *memcg)
2821{
2822 int memcg_id;
2823
2824 if (cgroup_memory_nokmem)
2825 return 0;
2826
2827 BUG_ON(memcg->kmemcg_id >= 0);
2828 BUG_ON(memcg->kmem_state);
2829
2830 memcg_id = memcg_alloc_cache_id();
2831 if (memcg_id < 0)
2832 return memcg_id;
2833
2834 static_branch_inc(&memcg_kmem_enabled_key);
2835 /*
2836 * A memory cgroup is considered kmem-online as soon as it gets
2837 * kmemcg_id. Setting the id after enabling static branching will
2838 * guarantee no one starts accounting before all call sites are
2839 * patched.
2840 */
2841 memcg->kmemcg_id = memcg_id;
2842 memcg->kmem_state = KMEM_ONLINE;
2843
2844 return 0;
2845}
2846
2847static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848{
2849 struct cgroup_subsys_state *css;
2850 struct mem_cgroup *parent, *child;
2851 int kmemcg_id;
2852
2853 if (memcg->kmem_state != KMEM_ONLINE)
2854 return;
2855 /*
2856 * Clear the online state before clearing memcg_caches array
2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 * guarantees that no cache will be created for this cgroup
2859 * after we are done (see memcg_create_kmem_cache()).
2860 */
2861 memcg->kmem_state = KMEM_ALLOCATED;
2862
2863 memcg_deactivate_kmem_caches(memcg);
2864
2865 kmemcg_id = memcg->kmemcg_id;
2866 BUG_ON(kmemcg_id < 0);
2867
2868 parent = parent_mem_cgroup(memcg);
2869 if (!parent)
2870 parent = root_mem_cgroup;
2871
2872 /*
2873 * Change kmemcg_id of this cgroup and all its descendants to the
2874 * parent's id, and then move all entries from this cgroup's list_lrus
2875 * to ones of the parent. After we have finished, all list_lrus
2876 * corresponding to this cgroup are guaranteed to remain empty. The
2877 * ordering is imposed by list_lru_node->lock taken by
2878 * memcg_drain_all_list_lrus().
2879 */
2880 css_for_each_descendant_pre(css, &memcg->css) {
2881 child = mem_cgroup_from_css(css);
2882 BUG_ON(child->kmemcg_id != kmemcg_id);
2883 child->kmemcg_id = parent->kmemcg_id;
2884 if (!memcg->use_hierarchy)
2885 break;
2886 }
2887 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889 memcg_free_cache_id(kmemcg_id);
2890}
2891
2892static void memcg_free_kmem(struct mem_cgroup *memcg)
2893{
2894 /* css_alloc() failed, offlining didn't happen */
2895 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896 memcg_offline_kmem(memcg);
2897
2898 if (memcg->kmem_state == KMEM_ALLOCATED) {
2899 memcg_destroy_kmem_caches(memcg);
2900 static_branch_dec(&memcg_kmem_enabled_key);
2901 WARN_ON(page_counter_read(&memcg->kmem));
2902 }
2903}
2904#else
2905static int memcg_online_kmem(struct mem_cgroup *memcg)
2906{
2907 return 0;
2908}
2909static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910{
2911}
2912static void memcg_free_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915#endif /* !CONFIG_SLOB */
2916
2917static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918 unsigned long limit)
2919{
2920 int ret;
2921
2922 mutex_lock(&memcg_limit_mutex);
2923 ret = page_counter_limit(&memcg->kmem, limit);
2924 mutex_unlock(&memcg_limit_mutex);
2925 return ret;
2926}
2927
2928static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929{
2930 int ret;
2931
2932 mutex_lock(&memcg_limit_mutex);
2933
2934 ret = page_counter_limit(&memcg->tcpmem, limit);
2935 if (ret)
2936 goto out;
2937
2938 if (!memcg->tcpmem_active) {
2939 /*
2940 * The active flag needs to be written after the static_key
2941 * update. This is what guarantees that the socket activation
2942 * function is the last one to run. See sock_update_memcg() for
2943 * details, and note that we don't mark any socket as belonging
2944 * to this memcg until that flag is up.
2945 *
2946 * We need to do this, because static_keys will span multiple
2947 * sites, but we can't control their order. If we mark a socket
2948 * as accounted, but the accounting functions are not patched in
2949 * yet, we'll lose accounting.
2950 *
2951 * We never race with the readers in sock_update_memcg(),
2952 * because when this value change, the code to process it is not
2953 * patched in yet.
2954 */
2955 static_branch_inc(&memcg_sockets_enabled_key);
2956 memcg->tcpmem_active = true;
2957 }
2958out:
2959 mutex_unlock(&memcg_limit_mutex);
2960 return ret;
2961}
2962
2963/*
2964 * The user of this function is...
2965 * RES_LIMIT.
2966 */
2967static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968 char *buf, size_t nbytes, loff_t off)
2969{
2970 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971 unsigned long nr_pages;
2972 int ret;
2973
2974 buf = strstrip(buf);
2975 ret = page_counter_memparse(buf, "-1", &nr_pages);
2976 if (ret)
2977 return ret;
2978
2979 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980 case RES_LIMIT:
2981 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982 ret = -EINVAL;
2983 break;
2984 }
2985 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986 case _MEM:
2987 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988 break;
2989 case _MEMSWAP:
2990 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991 break;
2992 case _KMEM:
2993 ret = memcg_update_kmem_limit(memcg, nr_pages);
2994 break;
2995 case _TCP:
2996 ret = memcg_update_tcp_limit(memcg, nr_pages);
2997 break;
2998 }
2999 break;
3000 case RES_SOFT_LIMIT:
3001 memcg->soft_limit = nr_pages;
3002 ret = 0;
3003 break;
3004 }
3005 return ret ?: nbytes;
3006}
3007
3008static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 size_t nbytes, loff_t off)
3010{
3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012 struct page_counter *counter;
3013
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 counter = &memcg->memory;
3017 break;
3018 case _MEMSWAP:
3019 counter = &memcg->memsw;
3020 break;
3021 case _KMEM:
3022 counter = &memcg->kmem;
3023 break;
3024 case _TCP:
3025 counter = &memcg->tcpmem;
3026 break;
3027 default:
3028 BUG();
3029 }
3030
3031 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032 case RES_MAX_USAGE:
3033 page_counter_reset_watermark(counter);
3034 break;
3035 case RES_FAILCNT:
3036 counter->failcnt = 0;
3037 break;
3038 default:
3039 BUG();
3040 }
3041
3042 return nbytes;
3043}
3044
3045static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046 struct cftype *cft)
3047{
3048 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049}
3050
3051#ifdef CONFIG_MMU
3052static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053 struct cftype *cft, u64 val)
3054{
3055 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057 if (val & ~MOVE_MASK)
3058 return -EINVAL;
3059
3060 /*
3061 * No kind of locking is needed in here, because ->can_attach() will
3062 * check this value once in the beginning of the process, and then carry
3063 * on with stale data. This means that changes to this value will only
3064 * affect task migrations starting after the change.
3065 */
3066 memcg->move_charge_at_immigrate = val;
3067 return 0;
3068}
3069#else
3070static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071 struct cftype *cft, u64 val)
3072{
3073 return -ENOSYS;
3074}
3075#endif
3076
3077#ifdef CONFIG_NUMA
3078static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079{
3080 struct numa_stat {
3081 const char *name;
3082 unsigned int lru_mask;
3083 };
3084
3085 static const struct numa_stat stats[] = {
3086 { "total", LRU_ALL },
3087 { "file", LRU_ALL_FILE },
3088 { "anon", LRU_ALL_ANON },
3089 { "unevictable", BIT(LRU_UNEVICTABLE) },
3090 };
3091 const struct numa_stat *stat;
3092 int nid;
3093 unsigned long nr;
3094 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098 seq_printf(m, "%s=%lu", stat->name, nr);
3099 for_each_node_state(nid, N_MEMORY) {
3100 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101 stat->lru_mask);
3102 seq_printf(m, " N%d=%lu", nid, nr);
3103 }
3104 seq_putc(m, '\n');
3105 }
3106
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 struct mem_cgroup *iter;
3109
3110 nr = 0;
3111 for_each_mem_cgroup_tree(iter, memcg)
3112 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114 for_each_node_state(nid, N_MEMORY) {
3115 nr = 0;
3116 for_each_mem_cgroup_tree(iter, memcg)
3117 nr += mem_cgroup_node_nr_lru_pages(
3118 iter, nid, stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
3122 }
3123
3124 return 0;
3125}
3126#endif /* CONFIG_NUMA */
3127
3128static int memcg_stat_show(struct seq_file *m, void *v)
3129{
3130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131 unsigned long memory, memsw;
3132 struct mem_cgroup *mi;
3133 unsigned int i;
3134
3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136 MEM_CGROUP_STAT_NSTATS);
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138 MEM_CGROUP_EVENTS_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143 continue;
3144 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146 }
3147
3148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150 mem_cgroup_read_events(memcg, i));
3151
3152 for (i = 0; i < NR_LRU_LISTS; i++)
3153 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156 /* Hierarchical information */
3157 memory = memsw = PAGE_COUNTER_MAX;
3158 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159 memory = min(memory, mi->memory.limit);
3160 memsw = min(memsw, mi->memsw.limit);
3161 }
3162 seq_printf(m, "hierarchical_memory_limit %llu\n",
3163 (u64)memory * PAGE_SIZE);
3164 if (do_memsw_account())
3165 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166 (u64)memsw * PAGE_SIZE);
3167
3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169 unsigned long long val = 0;
3170
3171 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172 continue;
3173 for_each_mem_cgroup_tree(mi, memcg)
3174 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176 }
3177
3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179 unsigned long long val = 0;
3180
3181 for_each_mem_cgroup_tree(mi, memcg)
3182 val += mem_cgroup_read_events(mi, i);
3183 seq_printf(m, "total_%s %llu\n",
3184 mem_cgroup_events_names[i], val);
3185 }
3186
3187 for (i = 0; i < NR_LRU_LISTS; i++) {
3188 unsigned long long val = 0;
3189
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193 }
3194
3195#ifdef CONFIG_DEBUG_VM
3196 {
3197 int nid, zid;
3198 struct mem_cgroup_per_zone *mz;
3199 struct zone_reclaim_stat *rstat;
3200 unsigned long recent_rotated[2] = {0, 0};
3201 unsigned long recent_scanned[2] = {0, 0};
3202
3203 for_each_online_node(nid)
3204 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3205 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3206 rstat = &mz->lruvec.reclaim_stat;
3207
3208 recent_rotated[0] += rstat->recent_rotated[0];
3209 recent_rotated[1] += rstat->recent_rotated[1];
3210 recent_scanned[0] += rstat->recent_scanned[0];
3211 recent_scanned[1] += rstat->recent_scanned[1];
3212 }
3213 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3214 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3215 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3216 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3217 }
3218#endif
3219
3220 return 0;
3221}
3222
3223static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3224 struct cftype *cft)
3225{
3226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3227
3228 return mem_cgroup_swappiness(memcg);
3229}
3230
3231static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3232 struct cftype *cft, u64 val)
3233{
3234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3235
3236 if (val > 100)
3237 return -EINVAL;
3238
3239 if (css->parent)
3240 memcg->swappiness = val;
3241 else
3242 vm_swappiness = val;
3243
3244 return 0;
3245}
3246
3247static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3248{
3249 struct mem_cgroup_threshold_ary *t;
3250 unsigned long usage;
3251 int i;
3252
3253 rcu_read_lock();
3254 if (!swap)
3255 t = rcu_dereference(memcg->thresholds.primary);
3256 else
3257 t = rcu_dereference(memcg->memsw_thresholds.primary);
3258
3259 if (!t)
3260 goto unlock;
3261
3262 usage = mem_cgroup_usage(memcg, swap);
3263
3264 /*
3265 * current_threshold points to threshold just below or equal to usage.
3266 * If it's not true, a threshold was crossed after last
3267 * call of __mem_cgroup_threshold().
3268 */
3269 i = t->current_threshold;
3270
3271 /*
3272 * Iterate backward over array of thresholds starting from
3273 * current_threshold and check if a threshold is crossed.
3274 * If none of thresholds below usage is crossed, we read
3275 * only one element of the array here.
3276 */
3277 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3278 eventfd_signal(t->entries[i].eventfd, 1);
3279
3280 /* i = current_threshold + 1 */
3281 i++;
3282
3283 /*
3284 * Iterate forward over array of thresholds starting from
3285 * current_threshold+1 and check if a threshold is crossed.
3286 * If none of thresholds above usage is crossed, we read
3287 * only one element of the array here.
3288 */
3289 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3290 eventfd_signal(t->entries[i].eventfd, 1);
3291
3292 /* Update current_threshold */
3293 t->current_threshold = i - 1;
3294unlock:
3295 rcu_read_unlock();
3296}
3297
3298static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3299{
3300 while (memcg) {
3301 __mem_cgroup_threshold(memcg, false);
3302 if (do_memsw_account())
3303 __mem_cgroup_threshold(memcg, true);
3304
3305 memcg = parent_mem_cgroup(memcg);
3306 }
3307}
3308
3309static int compare_thresholds(const void *a, const void *b)
3310{
3311 const struct mem_cgroup_threshold *_a = a;
3312 const struct mem_cgroup_threshold *_b = b;
3313
3314 if (_a->threshold > _b->threshold)
3315 return 1;
3316
3317 if (_a->threshold < _b->threshold)
3318 return -1;
3319
3320 return 0;
3321}
3322
3323static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3324{
3325 struct mem_cgroup_eventfd_list *ev;
3326
3327 spin_lock(&memcg_oom_lock);
3328
3329 list_for_each_entry(ev, &memcg->oom_notify, list)
3330 eventfd_signal(ev->eventfd, 1);
3331
3332 spin_unlock(&memcg_oom_lock);
3333 return 0;
3334}
3335
3336static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3337{
3338 struct mem_cgroup *iter;
3339
3340 for_each_mem_cgroup_tree(iter, memcg)
3341 mem_cgroup_oom_notify_cb(iter);
3342}
3343
3344static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3345 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3346{
3347 struct mem_cgroup_thresholds *thresholds;
3348 struct mem_cgroup_threshold_ary *new;
3349 unsigned long threshold;
3350 unsigned long usage;
3351 int i, size, ret;
3352
3353 ret = page_counter_memparse(args, "-1", &threshold);
3354 if (ret)
3355 return ret;
3356
3357 mutex_lock(&memcg->thresholds_lock);
3358
3359 if (type == _MEM) {
3360 thresholds = &memcg->thresholds;
3361 usage = mem_cgroup_usage(memcg, false);
3362 } else if (type == _MEMSWAP) {
3363 thresholds = &memcg->memsw_thresholds;
3364 usage = mem_cgroup_usage(memcg, true);
3365 } else
3366 BUG();
3367
3368 /* Check if a threshold crossed before adding a new one */
3369 if (thresholds->primary)
3370 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3371
3372 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3373
3374 /* Allocate memory for new array of thresholds */
3375 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376 GFP_KERNEL);
3377 if (!new) {
3378 ret = -ENOMEM;
3379 goto unlock;
3380 }
3381 new->size = size;
3382
3383 /* Copy thresholds (if any) to new array */
3384 if (thresholds->primary) {
3385 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386 sizeof(struct mem_cgroup_threshold));
3387 }
3388
3389 /* Add new threshold */
3390 new->entries[size - 1].eventfd = eventfd;
3391 new->entries[size - 1].threshold = threshold;
3392
3393 /* Sort thresholds. Registering of new threshold isn't time-critical */
3394 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395 compare_thresholds, NULL);
3396
3397 /* Find current threshold */
3398 new->current_threshold = -1;
3399 for (i = 0; i < size; i++) {
3400 if (new->entries[i].threshold <= usage) {
3401 /*
3402 * new->current_threshold will not be used until
3403 * rcu_assign_pointer(), so it's safe to increment
3404 * it here.
3405 */
3406 ++new->current_threshold;
3407 } else
3408 break;
3409 }
3410
3411 /* Free old spare buffer and save old primary buffer as spare */
3412 kfree(thresholds->spare);
3413 thresholds->spare = thresholds->primary;
3414
3415 rcu_assign_pointer(thresholds->primary, new);
3416
3417 /* To be sure that nobody uses thresholds */
3418 synchronize_rcu();
3419
3420unlock:
3421 mutex_unlock(&memcg->thresholds_lock);
3422
3423 return ret;
3424}
3425
3426static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3427 struct eventfd_ctx *eventfd, const char *args)
3428{
3429 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3430}
3431
3432static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3433 struct eventfd_ctx *eventfd, const char *args)
3434{
3435 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3436}
3437
3438static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3439 struct eventfd_ctx *eventfd, enum res_type type)
3440{
3441 struct mem_cgroup_thresholds *thresholds;
3442 struct mem_cgroup_threshold_ary *new;
3443 unsigned long usage;
3444 int i, j, size;
3445
3446 mutex_lock(&memcg->thresholds_lock);
3447
3448 if (type == _MEM) {
3449 thresholds = &memcg->thresholds;
3450 usage = mem_cgroup_usage(memcg, false);
3451 } else if (type == _MEMSWAP) {
3452 thresholds = &memcg->memsw_thresholds;
3453 usage = mem_cgroup_usage(memcg, true);
3454 } else
3455 BUG();
3456
3457 if (!thresholds->primary)
3458 goto unlock;
3459
3460 /* Check if a threshold crossed before removing */
3461 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3462
3463 /* Calculate new number of threshold */
3464 size = 0;
3465 for (i = 0; i < thresholds->primary->size; i++) {
3466 if (thresholds->primary->entries[i].eventfd != eventfd)
3467 size++;
3468 }
3469
3470 new = thresholds->spare;
3471
3472 /* Set thresholds array to NULL if we don't have thresholds */
3473 if (!size) {
3474 kfree(new);
3475 new = NULL;
3476 goto swap_buffers;
3477 }
3478
3479 new->size = size;
3480
3481 /* Copy thresholds and find current threshold */
3482 new->current_threshold = -1;
3483 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3484 if (thresholds->primary->entries[i].eventfd == eventfd)
3485 continue;
3486
3487 new->entries[j] = thresholds->primary->entries[i];
3488 if (new->entries[j].threshold <= usage) {
3489 /*
3490 * new->current_threshold will not be used
3491 * until rcu_assign_pointer(), so it's safe to increment
3492 * it here.
3493 */
3494 ++new->current_threshold;
3495 }
3496 j++;
3497 }
3498
3499swap_buffers:
3500 /* Swap primary and spare array */
3501 thresholds->spare = thresholds->primary;
3502
3503 rcu_assign_pointer(thresholds->primary, new);
3504
3505 /* To be sure that nobody uses thresholds */
3506 synchronize_rcu();
3507
3508 /* If all events are unregistered, free the spare array */
3509 if (!new) {
3510 kfree(thresholds->spare);
3511 thresholds->spare = NULL;
3512 }
3513unlock:
3514 mutex_unlock(&memcg->thresholds_lock);
3515}
3516
3517static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518 struct eventfd_ctx *eventfd)
3519{
3520 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3521}
3522
3523static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3524 struct eventfd_ctx *eventfd)
3525{
3526 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3527}
3528
3529static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3530 struct eventfd_ctx *eventfd, const char *args)
3531{
3532 struct mem_cgroup_eventfd_list *event;
3533
3534 event = kmalloc(sizeof(*event), GFP_KERNEL);
3535 if (!event)
3536 return -ENOMEM;
3537
3538 spin_lock(&memcg_oom_lock);
3539
3540 event->eventfd = eventfd;
3541 list_add(&event->list, &memcg->oom_notify);
3542
3543 /* already in OOM ? */
3544 if (memcg->under_oom)
3545 eventfd_signal(eventfd, 1);
3546 spin_unlock(&memcg_oom_lock);
3547
3548 return 0;
3549}
3550
3551static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3552 struct eventfd_ctx *eventfd)
3553{
3554 struct mem_cgroup_eventfd_list *ev, *tmp;
3555
3556 spin_lock(&memcg_oom_lock);
3557
3558 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3559 if (ev->eventfd == eventfd) {
3560 list_del(&ev->list);
3561 kfree(ev);
3562 }
3563 }
3564
3565 spin_unlock(&memcg_oom_lock);
3566}
3567
3568static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3569{
3570 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3571
3572 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3574 return 0;
3575}
3576
3577static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578 struct cftype *cft, u64 val)
3579{
3580 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3581
3582 /* cannot set to root cgroup and only 0 and 1 are allowed */
3583 if (!css->parent || !((val == 0) || (val == 1)))
3584 return -EINVAL;
3585
3586 memcg->oom_kill_disable = val;
3587 if (!val)
3588 memcg_oom_recover(memcg);
3589
3590 return 0;
3591}
3592
3593#ifdef CONFIG_CGROUP_WRITEBACK
3594
3595struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3596{
3597 return &memcg->cgwb_list;
3598}
3599
3600static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3601{
3602 return wb_domain_init(&memcg->cgwb_domain, gfp);
3603}
3604
3605static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3606{
3607 wb_domain_exit(&memcg->cgwb_domain);
3608}
3609
3610static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3611{
3612 wb_domain_size_changed(&memcg->cgwb_domain);
3613}
3614
3615struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3616{
3617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618
3619 if (!memcg->css.parent)
3620 return NULL;
3621
3622 return &memcg->cgwb_domain;
3623}
3624
3625/**
3626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627 * @wb: bdi_writeback in question
3628 * @pfilepages: out parameter for number of file pages
3629 * @pheadroom: out parameter for number of allocatable pages according to memcg
3630 * @pdirty: out parameter for number of dirty pages
3631 * @pwriteback: out parameter for number of pages under writeback
3632 *
3633 * Determine the numbers of file, headroom, dirty, and writeback pages in
3634 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3635 * is a bit more involved.
3636 *
3637 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3638 * headroom is calculated as the lowest headroom of itself and the
3639 * ancestors. Note that this doesn't consider the actual amount of
3640 * available memory in the system. The caller should further cap
3641 * *@pheadroom accordingly.
3642 */
3643void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3644 unsigned long *pheadroom, unsigned long *pdirty,
3645 unsigned long *pwriteback)
3646{
3647 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648 struct mem_cgroup *parent;
3649
3650 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3651
3652 /* this should eventually include NR_UNSTABLE_NFS */
3653 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3655 (1 << LRU_ACTIVE_FILE));
3656 *pheadroom = PAGE_COUNTER_MAX;
3657
3658 while ((parent = parent_mem_cgroup(memcg))) {
3659 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3660 unsigned long used = page_counter_read(&memcg->memory);
3661
3662 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663 memcg = parent;
3664 }
3665}
3666
3667#else /* CONFIG_CGROUP_WRITEBACK */
3668
3669static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3670{
3671 return 0;
3672}
3673
3674static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3675{
3676}
3677
3678static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3679{
3680}
3681
3682#endif /* CONFIG_CGROUP_WRITEBACK */
3683
3684/*
3685 * DO NOT USE IN NEW FILES.
3686 *
3687 * "cgroup.event_control" implementation.
3688 *
3689 * This is way over-engineered. It tries to support fully configurable
3690 * events for each user. Such level of flexibility is completely
3691 * unnecessary especially in the light of the planned unified hierarchy.
3692 *
3693 * Please deprecate this and replace with something simpler if at all
3694 * possible.
3695 */
3696
3697/*
3698 * Unregister event and free resources.
3699 *
3700 * Gets called from workqueue.
3701 */
3702static void memcg_event_remove(struct work_struct *work)
3703{
3704 struct mem_cgroup_event *event =
3705 container_of(work, struct mem_cgroup_event, remove);
3706 struct mem_cgroup *memcg = event->memcg;
3707
3708 remove_wait_queue(event->wqh, &event->wait);
3709
3710 event->unregister_event(memcg, event->eventfd);
3711
3712 /* Notify userspace the event is going away. */
3713 eventfd_signal(event->eventfd, 1);
3714
3715 eventfd_ctx_put(event->eventfd);
3716 kfree(event);
3717 css_put(&memcg->css);
3718}
3719
3720/*
3721 * Gets called on POLLHUP on eventfd when user closes it.
3722 *
3723 * Called with wqh->lock held and interrupts disabled.
3724 */
3725static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3726 int sync, void *key)
3727{
3728 struct mem_cgroup_event *event =
3729 container_of(wait, struct mem_cgroup_event, wait);
3730 struct mem_cgroup *memcg = event->memcg;
3731 unsigned long flags = (unsigned long)key;
3732
3733 if (flags & POLLHUP) {
3734 /*
3735 * If the event has been detached at cgroup removal, we
3736 * can simply return knowing the other side will cleanup
3737 * for us.
3738 *
3739 * We can't race against event freeing since the other
3740 * side will require wqh->lock via remove_wait_queue(),
3741 * which we hold.
3742 */
3743 spin_lock(&memcg->event_list_lock);
3744 if (!list_empty(&event->list)) {
3745 list_del_init(&event->list);
3746 /*
3747 * We are in atomic context, but cgroup_event_remove()
3748 * may sleep, so we have to call it in workqueue.
3749 */
3750 schedule_work(&event->remove);
3751 }
3752 spin_unlock(&memcg->event_list_lock);
3753 }
3754
3755 return 0;
3756}
3757
3758static void memcg_event_ptable_queue_proc(struct file *file,
3759 wait_queue_head_t *wqh, poll_table *pt)
3760{
3761 struct mem_cgroup_event *event =
3762 container_of(pt, struct mem_cgroup_event, pt);
3763
3764 event->wqh = wqh;
3765 add_wait_queue(wqh, &event->wait);
3766}
3767
3768/*
3769 * DO NOT USE IN NEW FILES.
3770 *
3771 * Parse input and register new cgroup event handler.
3772 *
3773 * Input must be in format '<event_fd> <control_fd> <args>'.
3774 * Interpretation of args is defined by control file implementation.
3775 */
3776static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3777 char *buf, size_t nbytes, loff_t off)
3778{
3779 struct cgroup_subsys_state *css = of_css(of);
3780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781 struct mem_cgroup_event *event;
3782 struct cgroup_subsys_state *cfile_css;
3783 unsigned int efd, cfd;
3784 struct fd efile;
3785 struct fd cfile;
3786 const char *name;
3787 char *endp;
3788 int ret;
3789
3790 buf = strstrip(buf);
3791
3792 efd = simple_strtoul(buf, &endp, 10);
3793 if (*endp != ' ')
3794 return -EINVAL;
3795 buf = endp + 1;
3796
3797 cfd = simple_strtoul(buf, &endp, 10);
3798 if ((*endp != ' ') && (*endp != '\0'))
3799 return -EINVAL;
3800 buf = endp + 1;
3801
3802 event = kzalloc(sizeof(*event), GFP_KERNEL);
3803 if (!event)
3804 return -ENOMEM;
3805
3806 event->memcg = memcg;
3807 INIT_LIST_HEAD(&event->list);
3808 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3809 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3810 INIT_WORK(&event->remove, memcg_event_remove);
3811
3812 efile = fdget(efd);
3813 if (!efile.file) {
3814 ret = -EBADF;
3815 goto out_kfree;
3816 }
3817
3818 event->eventfd = eventfd_ctx_fileget(efile.file);
3819 if (IS_ERR(event->eventfd)) {
3820 ret = PTR_ERR(event->eventfd);
3821 goto out_put_efile;
3822 }
3823
3824 cfile = fdget(cfd);
3825 if (!cfile.file) {
3826 ret = -EBADF;
3827 goto out_put_eventfd;
3828 }
3829
3830 /* the process need read permission on control file */
3831 /* AV: shouldn't we check that it's been opened for read instead? */
3832 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3833 if (ret < 0)
3834 goto out_put_cfile;
3835
3836 /*
3837 * Determine the event callbacks and set them in @event. This used
3838 * to be done via struct cftype but cgroup core no longer knows
3839 * about these events. The following is crude but the whole thing
3840 * is for compatibility anyway.
3841 *
3842 * DO NOT ADD NEW FILES.
3843 */
3844 name = cfile.file->f_path.dentry->d_name.name;
3845
3846 if (!strcmp(name, "memory.usage_in_bytes")) {
3847 event->register_event = mem_cgroup_usage_register_event;
3848 event->unregister_event = mem_cgroup_usage_unregister_event;
3849 } else if (!strcmp(name, "memory.oom_control")) {
3850 event->register_event = mem_cgroup_oom_register_event;
3851 event->unregister_event = mem_cgroup_oom_unregister_event;
3852 } else if (!strcmp(name, "memory.pressure_level")) {
3853 event->register_event = vmpressure_register_event;
3854 event->unregister_event = vmpressure_unregister_event;
3855 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3856 event->register_event = memsw_cgroup_usage_register_event;
3857 event->unregister_event = memsw_cgroup_usage_unregister_event;
3858 } else {
3859 ret = -EINVAL;
3860 goto out_put_cfile;
3861 }
3862
3863 /*
3864 * Verify @cfile should belong to @css. Also, remaining events are
3865 * automatically removed on cgroup destruction but the removal is
3866 * asynchronous, so take an extra ref on @css.
3867 */
3868 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869 &memory_cgrp_subsys);
3870 ret = -EINVAL;
3871 if (IS_ERR(cfile_css))
3872 goto out_put_cfile;
3873 if (cfile_css != css) {
3874 css_put(cfile_css);
3875 goto out_put_cfile;
3876 }
3877
3878 ret = event->register_event(memcg, event->eventfd, buf);
3879 if (ret)
3880 goto out_put_css;
3881
3882 efile.file->f_op->poll(efile.file, &event->pt);
3883
3884 spin_lock(&memcg->event_list_lock);
3885 list_add(&event->list, &memcg->event_list);
3886 spin_unlock(&memcg->event_list_lock);
3887
3888 fdput(cfile);
3889 fdput(efile);
3890
3891 return nbytes;
3892
3893out_put_css:
3894 css_put(css);
3895out_put_cfile:
3896 fdput(cfile);
3897out_put_eventfd:
3898 eventfd_ctx_put(event->eventfd);
3899out_put_efile:
3900 fdput(efile);
3901out_kfree:
3902 kfree(event);
3903
3904 return ret;
3905}
3906
3907static struct cftype mem_cgroup_legacy_files[] = {
3908 {
3909 .name = "usage_in_bytes",
3910 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911 .read_u64 = mem_cgroup_read_u64,
3912 },
3913 {
3914 .name = "max_usage_in_bytes",
3915 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916 .write = mem_cgroup_reset,
3917 .read_u64 = mem_cgroup_read_u64,
3918 },
3919 {
3920 .name = "limit_in_bytes",
3921 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922 .write = mem_cgroup_write,
3923 .read_u64 = mem_cgroup_read_u64,
3924 },
3925 {
3926 .name = "soft_limit_in_bytes",
3927 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928 .write = mem_cgroup_write,
3929 .read_u64 = mem_cgroup_read_u64,
3930 },
3931 {
3932 .name = "failcnt",
3933 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934 .write = mem_cgroup_reset,
3935 .read_u64 = mem_cgroup_read_u64,
3936 },
3937 {
3938 .name = "stat",
3939 .seq_show = memcg_stat_show,
3940 },
3941 {
3942 .name = "force_empty",
3943 .write = mem_cgroup_force_empty_write,
3944 },
3945 {
3946 .name = "use_hierarchy",
3947 .write_u64 = mem_cgroup_hierarchy_write,
3948 .read_u64 = mem_cgroup_hierarchy_read,
3949 },
3950 {
3951 .name = "cgroup.event_control", /* XXX: for compat */
3952 .write = memcg_write_event_control,
3953 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3954 },
3955 {
3956 .name = "swappiness",
3957 .read_u64 = mem_cgroup_swappiness_read,
3958 .write_u64 = mem_cgroup_swappiness_write,
3959 },
3960 {
3961 .name = "move_charge_at_immigrate",
3962 .read_u64 = mem_cgroup_move_charge_read,
3963 .write_u64 = mem_cgroup_move_charge_write,
3964 },
3965 {
3966 .name = "oom_control",
3967 .seq_show = mem_cgroup_oom_control_read,
3968 .write_u64 = mem_cgroup_oom_control_write,
3969 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3970 },
3971 {
3972 .name = "pressure_level",
3973 },
3974#ifdef CONFIG_NUMA
3975 {
3976 .name = "numa_stat",
3977 .seq_show = memcg_numa_stat_show,
3978 },
3979#endif
3980 {
3981 .name = "kmem.limit_in_bytes",
3982 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983 .write = mem_cgroup_write,
3984 .read_u64 = mem_cgroup_read_u64,
3985 },
3986 {
3987 .name = "kmem.usage_in_bytes",
3988 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989 .read_u64 = mem_cgroup_read_u64,
3990 },
3991 {
3992 .name = "kmem.failcnt",
3993 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994 .write = mem_cgroup_reset,
3995 .read_u64 = mem_cgroup_read_u64,
3996 },
3997 {
3998 .name = "kmem.max_usage_in_bytes",
3999 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000 .write = mem_cgroup_reset,
4001 .read_u64 = mem_cgroup_read_u64,
4002 },
4003#ifdef CONFIG_SLABINFO
4004 {
4005 .name = "kmem.slabinfo",
4006 .seq_start = slab_start,
4007 .seq_next = slab_next,
4008 .seq_stop = slab_stop,
4009 .seq_show = memcg_slab_show,
4010 },
4011#endif
4012 {
4013 .name = "kmem.tcp.limit_in_bytes",
4014 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4015 .write = mem_cgroup_write,
4016 .read_u64 = mem_cgroup_read_u64,
4017 },
4018 {
4019 .name = "kmem.tcp.usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4021 .read_u64 = mem_cgroup_read_u64,
4022 },
4023 {
4024 .name = "kmem.tcp.failcnt",
4025 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4026 .write = mem_cgroup_reset,
4027 .read_u64 = mem_cgroup_read_u64,
4028 },
4029 {
4030 .name = "kmem.tcp.max_usage_in_bytes",
4031 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4032 .write = mem_cgroup_reset,
4033 .read_u64 = mem_cgroup_read_u64,
4034 },
4035 { }, /* terminate */
4036};
4037
4038static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4039{
4040 struct mem_cgroup_per_node *pn;
4041 struct mem_cgroup_per_zone *mz;
4042 int zone, tmp = node;
4043 /*
4044 * This routine is called against possible nodes.
4045 * But it's BUG to call kmalloc() against offline node.
4046 *
4047 * TODO: this routine can waste much memory for nodes which will
4048 * never be onlined. It's better to use memory hotplug callback
4049 * function.
4050 */
4051 if (!node_state(node, N_NORMAL_MEMORY))
4052 tmp = -1;
4053 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4054 if (!pn)
4055 return 1;
4056
4057 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4058 mz = &pn->zoneinfo[zone];
4059 lruvec_init(&mz->lruvec);
4060 mz->usage_in_excess = 0;
4061 mz->on_tree = false;
4062 mz->memcg = memcg;
4063 }
4064 memcg->nodeinfo[node] = pn;
4065 return 0;
4066}
4067
4068static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4069{
4070 kfree(memcg->nodeinfo[node]);
4071}
4072
4073static void mem_cgroup_free(struct mem_cgroup *memcg)
4074{
4075 int node;
4076
4077 memcg_wb_domain_exit(memcg);
4078 for_each_node(node)
4079 free_mem_cgroup_per_zone_info(memcg, node);
4080 free_percpu(memcg->stat);
4081 kfree(memcg);
4082}
4083
4084static struct mem_cgroup *mem_cgroup_alloc(void)
4085{
4086 struct mem_cgroup *memcg;
4087 size_t size;
4088 int node;
4089
4090 size = sizeof(struct mem_cgroup);
4091 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4092
4093 memcg = kzalloc(size, GFP_KERNEL);
4094 if (!memcg)
4095 return NULL;
4096
4097 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4098 if (!memcg->stat)
4099 goto fail;
4100
4101 for_each_node(node)
4102 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4103 goto fail;
4104
4105 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4106 goto fail;
4107
4108 INIT_WORK(&memcg->high_work, high_work_func);
4109 memcg->last_scanned_node = MAX_NUMNODES;
4110 INIT_LIST_HEAD(&memcg->oom_notify);
4111 mutex_init(&memcg->thresholds_lock);
4112 spin_lock_init(&memcg->move_lock);
4113 vmpressure_init(&memcg->vmpressure);
4114 INIT_LIST_HEAD(&memcg->event_list);
4115 spin_lock_init(&memcg->event_list_lock);
4116 memcg->socket_pressure = jiffies;
4117#ifndef CONFIG_SLOB
4118 memcg->kmemcg_id = -1;
4119#endif
4120#ifdef CONFIG_CGROUP_WRITEBACK
4121 INIT_LIST_HEAD(&memcg->cgwb_list);
4122#endif
4123 return memcg;
4124fail:
4125 mem_cgroup_free(memcg);
4126 return NULL;
4127}
4128
4129static struct cgroup_subsys_state * __ref
4130mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4131{
4132 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4133 struct mem_cgroup *memcg;
4134 long error = -ENOMEM;
4135
4136 memcg = mem_cgroup_alloc();
4137 if (!memcg)
4138 return ERR_PTR(error);
4139
4140 memcg->high = PAGE_COUNTER_MAX;
4141 memcg->soft_limit = PAGE_COUNTER_MAX;
4142 if (parent) {
4143 memcg->swappiness = mem_cgroup_swappiness(parent);
4144 memcg->oom_kill_disable = parent->oom_kill_disable;
4145 }
4146 if (parent && parent->use_hierarchy) {
4147 memcg->use_hierarchy = true;
4148 page_counter_init(&memcg->memory, &parent->memory);
4149 page_counter_init(&memcg->swap, &parent->swap);
4150 page_counter_init(&memcg->memsw, &parent->memsw);
4151 page_counter_init(&memcg->kmem, &parent->kmem);
4152 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4153 } else {
4154 page_counter_init(&memcg->memory, NULL);
4155 page_counter_init(&memcg->swap, NULL);
4156 page_counter_init(&memcg->memsw, NULL);
4157 page_counter_init(&memcg->kmem, NULL);
4158 page_counter_init(&memcg->tcpmem, NULL);
4159 /*
4160 * Deeper hierachy with use_hierarchy == false doesn't make
4161 * much sense so let cgroup subsystem know about this
4162 * unfortunate state in our controller.
4163 */
4164 if (parent != root_mem_cgroup)
4165 memory_cgrp_subsys.broken_hierarchy = true;
4166 }
4167
4168 /* The following stuff does not apply to the root */
4169 if (!parent) {
4170 root_mem_cgroup = memcg;
4171 return &memcg->css;
4172 }
4173
4174 error = memcg_online_kmem(memcg);
4175 if (error)
4176 goto fail;
4177
4178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4179 static_branch_inc(&memcg_sockets_enabled_key);
4180
4181 return &memcg->css;
4182fail:
4183 mem_cgroup_free(memcg);
4184 return NULL;
4185}
4186
4187static int
4188mem_cgroup_css_online(struct cgroup_subsys_state *css)
4189{
4190 if (css->id > MEM_CGROUP_ID_MAX)
4191 return -ENOSPC;
4192
4193 return 0;
4194}
4195
4196static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4197{
4198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199 struct mem_cgroup_event *event, *tmp;
4200
4201 /*
4202 * Unregister events and notify userspace.
4203 * Notify userspace about cgroup removing only after rmdir of cgroup
4204 * directory to avoid race between userspace and kernelspace.
4205 */
4206 spin_lock(&memcg->event_list_lock);
4207 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4208 list_del_init(&event->list);
4209 schedule_work(&event->remove);
4210 }
4211 spin_unlock(&memcg->event_list_lock);
4212
4213 memcg_offline_kmem(memcg);
4214 wb_memcg_offline(memcg);
4215}
4216
4217static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4218{
4219 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4220
4221 invalidate_reclaim_iterators(memcg);
4222}
4223
4224static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4225{
4226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4227
4228 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4229 static_branch_dec(&memcg_sockets_enabled_key);
4230
4231 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4232 static_branch_dec(&memcg_sockets_enabled_key);
4233
4234 vmpressure_cleanup(&memcg->vmpressure);
4235 cancel_work_sync(&memcg->high_work);
4236 mem_cgroup_remove_from_trees(memcg);
4237 memcg_free_kmem(memcg);
4238 mem_cgroup_free(memcg);
4239}
4240
4241/**
4242 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4243 * @css: the target css
4244 *
4245 * Reset the states of the mem_cgroup associated with @css. This is
4246 * invoked when the userland requests disabling on the default hierarchy
4247 * but the memcg is pinned through dependency. The memcg should stop
4248 * applying policies and should revert to the vanilla state as it may be
4249 * made visible again.
4250 *
4251 * The current implementation only resets the essential configurations.
4252 * This needs to be expanded to cover all the visible parts.
4253 */
4254static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4255{
4256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4257
4258 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4259 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4260 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4261 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4262 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4263 memcg->low = 0;
4264 memcg->high = PAGE_COUNTER_MAX;
4265 memcg->soft_limit = PAGE_COUNTER_MAX;
4266 memcg_wb_domain_size_changed(memcg);
4267}
4268
4269#ifdef CONFIG_MMU
4270/* Handlers for move charge at task migration. */
4271static int mem_cgroup_do_precharge(unsigned long count)
4272{
4273 int ret;
4274
4275 /* Try a single bulk charge without reclaim first, kswapd may wake */
4276 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277 if (!ret) {
4278 mc.precharge += count;
4279 return ret;
4280 }
4281
4282 /* Try charges one by one with reclaim */
4283 while (count--) {
4284 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285 if (ret)
4286 return ret;
4287 mc.precharge++;
4288 cond_resched();
4289 }
4290 return 0;
4291}
4292
4293/**
4294 * get_mctgt_type - get target type of moving charge
4295 * @vma: the vma the pte to be checked belongs
4296 * @addr: the address corresponding to the pte to be checked
4297 * @ptent: the pte to be checked
4298 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4299 *
4300 * Returns
4301 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303 * move charge. if @target is not NULL, the page is stored in target->page
4304 * with extra refcnt got(Callers should handle it).
4305 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306 * target for charge migration. if @target is not NULL, the entry is stored
4307 * in target->ent.
4308 *
4309 * Called with pte lock held.
4310 */
4311union mc_target {
4312 struct page *page;
4313 swp_entry_t ent;
4314};
4315
4316enum mc_target_type {
4317 MC_TARGET_NONE = 0,
4318 MC_TARGET_PAGE,
4319 MC_TARGET_SWAP,
4320};
4321
4322static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4323 unsigned long addr, pte_t ptent)
4324{
4325 struct page *page = vm_normal_page(vma, addr, ptent);
4326
4327 if (!page || !page_mapped(page))
4328 return NULL;
4329 if (PageAnon(page)) {
4330 if (!(mc.flags & MOVE_ANON))
4331 return NULL;
4332 } else {
4333 if (!(mc.flags & MOVE_FILE))
4334 return NULL;
4335 }
4336 if (!get_page_unless_zero(page))
4337 return NULL;
4338
4339 return page;
4340}
4341
4342#ifdef CONFIG_SWAP
4343static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4344 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4345{
4346 struct page *page = NULL;
4347 swp_entry_t ent = pte_to_swp_entry(ptent);
4348
4349 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4350 return NULL;
4351 /*
4352 * Because lookup_swap_cache() updates some statistics counter,
4353 * we call find_get_page() with swapper_space directly.
4354 */
4355 page = find_get_page(swap_address_space(ent), ent.val);
4356 if (do_memsw_account())
4357 entry->val = ent.val;
4358
4359 return page;
4360}
4361#else
4362static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4363 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4364{
4365 return NULL;
4366}
4367#endif
4368
4369static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4370 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4371{
4372 struct page *page = NULL;
4373 struct address_space *mapping;
4374 pgoff_t pgoff;
4375
4376 if (!vma->vm_file) /* anonymous vma */
4377 return NULL;
4378 if (!(mc.flags & MOVE_FILE))
4379 return NULL;
4380
4381 mapping = vma->vm_file->f_mapping;
4382 pgoff = linear_page_index(vma, addr);
4383
4384 /* page is moved even if it's not RSS of this task(page-faulted). */
4385#ifdef CONFIG_SWAP
4386 /* shmem/tmpfs may report page out on swap: account for that too. */
4387 if (shmem_mapping(mapping)) {
4388 page = find_get_entry(mapping, pgoff);
4389 if (radix_tree_exceptional_entry(page)) {
4390 swp_entry_t swp = radix_to_swp_entry(page);
4391 if (do_memsw_account())
4392 *entry = swp;
4393 page = find_get_page(swap_address_space(swp), swp.val);
4394 }
4395 } else
4396 page = find_get_page(mapping, pgoff);
4397#else
4398 page = find_get_page(mapping, pgoff);
4399#endif
4400 return page;
4401}
4402
4403/**
4404 * mem_cgroup_move_account - move account of the page
4405 * @page: the page
4406 * @nr_pages: number of regular pages (>1 for huge pages)
4407 * @from: mem_cgroup which the page is moved from.
4408 * @to: mem_cgroup which the page is moved to. @from != @to.
4409 *
4410 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411 *
4412 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4413 * from old cgroup.
4414 */
4415static int mem_cgroup_move_account(struct page *page,
4416 bool compound,
4417 struct mem_cgroup *from,
4418 struct mem_cgroup *to)
4419{
4420 unsigned long flags;
4421 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422 int ret;
4423 bool anon;
4424
4425 VM_BUG_ON(from == to);
4426 VM_BUG_ON_PAGE(PageLRU(page), page);
4427 VM_BUG_ON(compound && !PageTransHuge(page));
4428
4429 /*
4430 * Prevent mem_cgroup_migrate() from looking at
4431 * page->mem_cgroup of its source page while we change it.
4432 */
4433 ret = -EBUSY;
4434 if (!trylock_page(page))
4435 goto out;
4436
4437 ret = -EINVAL;
4438 if (page->mem_cgroup != from)
4439 goto out_unlock;
4440
4441 anon = PageAnon(page);
4442
4443 spin_lock_irqsave(&from->move_lock, flags);
4444
4445 if (!anon && page_mapped(page)) {
4446 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447 nr_pages);
4448 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449 nr_pages);
4450 }
4451
4452 /*
4453 * move_lock grabbed above and caller set from->moving_account, so
4454 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455 * So mapping should be stable for dirty pages.
4456 */
4457 if (!anon && PageDirty(page)) {
4458 struct address_space *mapping = page_mapping(page);
4459
4460 if (mapping_cap_account_dirty(mapping)) {
4461 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4462 nr_pages);
4463 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4464 nr_pages);
4465 }
4466 }
4467
4468 if (PageWriteback(page)) {
4469 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470 nr_pages);
4471 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472 nr_pages);
4473 }
4474
4475 /*
4476 * It is safe to change page->mem_cgroup here because the page
4477 * is referenced, charged, and isolated - we can't race with
4478 * uncharging, charging, migration, or LRU putback.
4479 */
4480
4481 /* caller should have done css_get */
4482 page->mem_cgroup = to;
4483 spin_unlock_irqrestore(&from->move_lock, flags);
4484
4485 ret = 0;
4486
4487 local_irq_disable();
4488 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489 memcg_check_events(to, page);
4490 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491 memcg_check_events(from, page);
4492 local_irq_enable();
4493out_unlock:
4494 unlock_page(page);
4495out:
4496 return ret;
4497}
4498
4499static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4500 unsigned long addr, pte_t ptent, union mc_target *target)
4501{
4502 struct page *page = NULL;
4503 enum mc_target_type ret = MC_TARGET_NONE;
4504 swp_entry_t ent = { .val = 0 };
4505
4506 if (pte_present(ptent))
4507 page = mc_handle_present_pte(vma, addr, ptent);
4508 else if (is_swap_pte(ptent))
4509 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510 else if (pte_none(ptent))
4511 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4512
4513 if (!page && !ent.val)
4514 return ret;
4515 if (page) {
4516 /*
4517 * Do only loose check w/o serialization.
4518 * mem_cgroup_move_account() checks the page is valid or
4519 * not under LRU exclusion.
4520 */
4521 if (page->mem_cgroup == mc.from) {
4522 ret = MC_TARGET_PAGE;
4523 if (target)
4524 target->page = page;
4525 }
4526 if (!ret || !target)
4527 put_page(page);
4528 }
4529 /* There is a swap entry and a page doesn't exist or isn't charged */
4530 if (ent.val && !ret &&
4531 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532 ret = MC_TARGET_SWAP;
4533 if (target)
4534 target->ent = ent;
4535 }
4536 return ret;
4537}
4538
4539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540/*
4541 * We don't consider swapping or file mapped pages because THP does not
4542 * support them for now.
4543 * Caller should make sure that pmd_trans_huge(pmd) is true.
4544 */
4545static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4546 unsigned long addr, pmd_t pmd, union mc_target *target)
4547{
4548 struct page *page = NULL;
4549 enum mc_target_type ret = MC_TARGET_NONE;
4550
4551 page = pmd_page(pmd);
4552 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553 if (!(mc.flags & MOVE_ANON))
4554 return ret;
4555 if (page->mem_cgroup == mc.from) {
4556 ret = MC_TARGET_PAGE;
4557 if (target) {
4558 get_page(page);
4559 target->page = page;
4560 }
4561 }
4562 return ret;
4563}
4564#else
4565static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566 unsigned long addr, pmd_t pmd, union mc_target *target)
4567{
4568 return MC_TARGET_NONE;
4569}
4570#endif
4571
4572static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4573 unsigned long addr, unsigned long end,
4574 struct mm_walk *walk)
4575{
4576 struct vm_area_struct *vma = walk->vma;
4577 pte_t *pte;
4578 spinlock_t *ptl;
4579
4580 ptl = pmd_trans_huge_lock(pmd, vma);
4581 if (ptl) {
4582 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4583 mc.precharge += HPAGE_PMD_NR;
4584 spin_unlock(ptl);
4585 return 0;
4586 }
4587
4588 if (pmd_trans_unstable(pmd))
4589 return 0;
4590 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4591 for (; addr != end; pte++, addr += PAGE_SIZE)
4592 if (get_mctgt_type(vma, addr, *pte, NULL))
4593 mc.precharge++; /* increment precharge temporarily */
4594 pte_unmap_unlock(pte - 1, ptl);
4595 cond_resched();
4596
4597 return 0;
4598}
4599
4600static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4601{
4602 unsigned long precharge;
4603
4604 struct mm_walk mem_cgroup_count_precharge_walk = {
4605 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4606 .mm = mm,
4607 };
4608 down_read(&mm->mmap_sem);
4609 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4610 up_read(&mm->mmap_sem);
4611
4612 precharge = mc.precharge;
4613 mc.precharge = 0;
4614
4615 return precharge;
4616}
4617
4618static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4619{
4620 unsigned long precharge = mem_cgroup_count_precharge(mm);
4621
4622 VM_BUG_ON(mc.moving_task);
4623 mc.moving_task = current;
4624 return mem_cgroup_do_precharge(precharge);
4625}
4626
4627/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628static void __mem_cgroup_clear_mc(void)
4629{
4630 struct mem_cgroup *from = mc.from;
4631 struct mem_cgroup *to = mc.to;
4632
4633 /* we must uncharge all the leftover precharges from mc.to */
4634 if (mc.precharge) {
4635 cancel_charge(mc.to, mc.precharge);
4636 mc.precharge = 0;
4637 }
4638 /*
4639 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640 * we must uncharge here.
4641 */
4642 if (mc.moved_charge) {
4643 cancel_charge(mc.from, mc.moved_charge);
4644 mc.moved_charge = 0;
4645 }
4646 /* we must fixup refcnts and charges */
4647 if (mc.moved_swap) {
4648 /* uncharge swap account from the old cgroup */
4649 if (!mem_cgroup_is_root(mc.from))
4650 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4651
4652 /*
4653 * we charged both to->memory and to->memsw, so we
4654 * should uncharge to->memory.
4655 */
4656 if (!mem_cgroup_is_root(mc.to))
4657 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4658
4659 css_put_many(&mc.from->css, mc.moved_swap);
4660
4661 /* we've already done css_get(mc.to) */
4662 mc.moved_swap = 0;
4663 }
4664 memcg_oom_recover(from);
4665 memcg_oom_recover(to);
4666 wake_up_all(&mc.waitq);
4667}
4668
4669static void mem_cgroup_clear_mc(void)
4670{
4671 struct mm_struct *mm = mc.mm;
4672
4673 /*
4674 * we must clear moving_task before waking up waiters at the end of
4675 * task migration.
4676 */
4677 mc.moving_task = NULL;
4678 __mem_cgroup_clear_mc();
4679 spin_lock(&mc.lock);
4680 mc.from = NULL;
4681 mc.to = NULL;
4682 mc.mm = NULL;
4683 spin_unlock(&mc.lock);
4684
4685 mmput(mm);
4686}
4687
4688static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4689{
4690 struct cgroup_subsys_state *css;
4691 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4692 struct mem_cgroup *from;
4693 struct task_struct *leader, *p;
4694 struct mm_struct *mm;
4695 unsigned long move_flags;
4696 int ret = 0;
4697
4698 /* charge immigration isn't supported on the default hierarchy */
4699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4700 return 0;
4701
4702 /*
4703 * Multi-process migrations only happen on the default hierarchy
4704 * where charge immigration is not used. Perform charge
4705 * immigration if @tset contains a leader and whine if there are
4706 * multiple.
4707 */
4708 p = NULL;
4709 cgroup_taskset_for_each_leader(leader, css, tset) {
4710 WARN_ON_ONCE(p);
4711 p = leader;
4712 memcg = mem_cgroup_from_css(css);
4713 }
4714 if (!p)
4715 return 0;
4716
4717 /*
4718 * We are now commited to this value whatever it is. Changes in this
4719 * tunable will only affect upcoming migrations, not the current one.
4720 * So we need to save it, and keep it going.
4721 */
4722 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4723 if (!move_flags)
4724 return 0;
4725
4726 from = mem_cgroup_from_task(p);
4727
4728 VM_BUG_ON(from == memcg);
4729
4730 mm = get_task_mm(p);
4731 if (!mm)
4732 return 0;
4733 /* We move charges only when we move a owner of the mm */
4734 if (mm->owner == p) {
4735 VM_BUG_ON(mc.from);
4736 VM_BUG_ON(mc.to);
4737 VM_BUG_ON(mc.precharge);
4738 VM_BUG_ON(mc.moved_charge);
4739 VM_BUG_ON(mc.moved_swap);
4740
4741 spin_lock(&mc.lock);
4742 mc.mm = mm;
4743 mc.from = from;
4744 mc.to = memcg;
4745 mc.flags = move_flags;
4746 spin_unlock(&mc.lock);
4747 /* We set mc.moving_task later */
4748
4749 ret = mem_cgroup_precharge_mc(mm);
4750 if (ret)
4751 mem_cgroup_clear_mc();
4752 } else {
4753 mmput(mm);
4754 }
4755 return ret;
4756}
4757
4758static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4759{
4760 if (mc.to)
4761 mem_cgroup_clear_mc();
4762}
4763
4764static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4765 unsigned long addr, unsigned long end,
4766 struct mm_walk *walk)
4767{
4768 int ret = 0;
4769 struct vm_area_struct *vma = walk->vma;
4770 pte_t *pte;
4771 spinlock_t *ptl;
4772 enum mc_target_type target_type;
4773 union mc_target target;
4774 struct page *page;
4775
4776 ptl = pmd_trans_huge_lock(pmd, vma);
4777 if (ptl) {
4778 if (mc.precharge < HPAGE_PMD_NR) {
4779 spin_unlock(ptl);
4780 return 0;
4781 }
4782 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4783 if (target_type == MC_TARGET_PAGE) {
4784 page = target.page;
4785 if (!isolate_lru_page(page)) {
4786 if (!mem_cgroup_move_account(page, true,
4787 mc.from, mc.to)) {
4788 mc.precharge -= HPAGE_PMD_NR;
4789 mc.moved_charge += HPAGE_PMD_NR;
4790 }
4791 putback_lru_page(page);
4792 }
4793 put_page(page);
4794 }
4795 spin_unlock(ptl);
4796 return 0;
4797 }
4798
4799 if (pmd_trans_unstable(pmd))
4800 return 0;
4801retry:
4802 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4803 for (; addr != end; addr += PAGE_SIZE) {
4804 pte_t ptent = *(pte++);
4805 swp_entry_t ent;
4806
4807 if (!mc.precharge)
4808 break;
4809
4810 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4811 case MC_TARGET_PAGE:
4812 page = target.page;
4813 /*
4814 * We can have a part of the split pmd here. Moving it
4815 * can be done but it would be too convoluted so simply
4816 * ignore such a partial THP and keep it in original
4817 * memcg. There should be somebody mapping the head.
4818 */
4819 if (PageTransCompound(page))
4820 goto put;
4821 if (isolate_lru_page(page))
4822 goto put;
4823 if (!mem_cgroup_move_account(page, false,
4824 mc.from, mc.to)) {
4825 mc.precharge--;
4826 /* we uncharge from mc.from later. */
4827 mc.moved_charge++;
4828 }
4829 putback_lru_page(page);
4830put: /* get_mctgt_type() gets the page */
4831 put_page(page);
4832 break;
4833 case MC_TARGET_SWAP:
4834 ent = target.ent;
4835 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4836 mc.precharge--;
4837 /* we fixup refcnts and charges later. */
4838 mc.moved_swap++;
4839 }
4840 break;
4841 default:
4842 break;
4843 }
4844 }
4845 pte_unmap_unlock(pte - 1, ptl);
4846 cond_resched();
4847
4848 if (addr != end) {
4849 /*
4850 * We have consumed all precharges we got in can_attach().
4851 * We try charge one by one, but don't do any additional
4852 * charges to mc.to if we have failed in charge once in attach()
4853 * phase.
4854 */
4855 ret = mem_cgroup_do_precharge(1);
4856 if (!ret)
4857 goto retry;
4858 }
4859
4860 return ret;
4861}
4862
4863static void mem_cgroup_move_charge(void)
4864{
4865 struct mm_walk mem_cgroup_move_charge_walk = {
4866 .pmd_entry = mem_cgroup_move_charge_pte_range,
4867 .mm = mc.mm,
4868 };
4869
4870 lru_add_drain_all();
4871 /*
4872 * Signal lock_page_memcg() to take the memcg's move_lock
4873 * while we're moving its pages to another memcg. Then wait
4874 * for already started RCU-only updates to finish.
4875 */
4876 atomic_inc(&mc.from->moving_account);
4877 synchronize_rcu();
4878retry:
4879 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4880 /*
4881 * Someone who are holding the mmap_sem might be waiting in
4882 * waitq. So we cancel all extra charges, wake up all waiters,
4883 * and retry. Because we cancel precharges, we might not be able
4884 * to move enough charges, but moving charge is a best-effort
4885 * feature anyway, so it wouldn't be a big problem.
4886 */
4887 __mem_cgroup_clear_mc();
4888 cond_resched();
4889 goto retry;
4890 }
4891 /*
4892 * When we have consumed all precharges and failed in doing
4893 * additional charge, the page walk just aborts.
4894 */
4895 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4896 up_read(&mc.mm->mmap_sem);
4897 atomic_dec(&mc.from->moving_account);
4898}
4899
4900static void mem_cgroup_move_task(void)
4901{
4902 if (mc.to) {
4903 mem_cgroup_move_charge();
4904 mem_cgroup_clear_mc();
4905 }
4906}
4907#else /* !CONFIG_MMU */
4908static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4909{
4910 return 0;
4911}
4912static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4913{
4914}
4915static void mem_cgroup_move_task(void)
4916{
4917}
4918#endif
4919
4920/*
4921 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922 * to verify whether we're attached to the default hierarchy on each mount
4923 * attempt.
4924 */
4925static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4926{
4927 /*
4928 * use_hierarchy is forced on the default hierarchy. cgroup core
4929 * guarantees that @root doesn't have any children, so turning it
4930 * on for the root memcg is enough.
4931 */
4932 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933 root_mem_cgroup->use_hierarchy = true;
4934 else
4935 root_mem_cgroup->use_hierarchy = false;
4936}
4937
4938static u64 memory_current_read(struct cgroup_subsys_state *css,
4939 struct cftype *cft)
4940{
4941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4942
4943 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4944}
4945
4946static int memory_low_show(struct seq_file *m, void *v)
4947{
4948 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949 unsigned long low = READ_ONCE(memcg->low);
4950
4951 if (low == PAGE_COUNTER_MAX)
4952 seq_puts(m, "max\n");
4953 else
4954 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4955
4956 return 0;
4957}
4958
4959static ssize_t memory_low_write(struct kernfs_open_file *of,
4960 char *buf, size_t nbytes, loff_t off)
4961{
4962 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4963 unsigned long low;
4964 int err;
4965
4966 buf = strstrip(buf);
4967 err = page_counter_memparse(buf, "max", &low);
4968 if (err)
4969 return err;
4970
4971 memcg->low = low;
4972
4973 return nbytes;
4974}
4975
4976static int memory_high_show(struct seq_file *m, void *v)
4977{
4978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979 unsigned long high = READ_ONCE(memcg->high);
4980
4981 if (high == PAGE_COUNTER_MAX)
4982 seq_puts(m, "max\n");
4983 else
4984 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4985
4986 return 0;
4987}
4988
4989static ssize_t memory_high_write(struct kernfs_open_file *of,
4990 char *buf, size_t nbytes, loff_t off)
4991{
4992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993 unsigned long nr_pages;
4994 unsigned long high;
4995 int err;
4996
4997 buf = strstrip(buf);
4998 err = page_counter_memparse(buf, "max", &high);
4999 if (err)
5000 return err;
5001
5002 memcg->high = high;
5003
5004 nr_pages = page_counter_read(&memcg->memory);
5005 if (nr_pages > high)
5006 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5007 GFP_KERNEL, true);
5008
5009 memcg_wb_domain_size_changed(memcg);
5010 return nbytes;
5011}
5012
5013static int memory_max_show(struct seq_file *m, void *v)
5014{
5015 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016 unsigned long max = READ_ONCE(memcg->memory.limit);
5017
5018 if (max == PAGE_COUNTER_MAX)
5019 seq_puts(m, "max\n");
5020 else
5021 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5022
5023 return 0;
5024}
5025
5026static ssize_t memory_max_write(struct kernfs_open_file *of,
5027 char *buf, size_t nbytes, loff_t off)
5028{
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5031 bool drained = false;
5032 unsigned long max;
5033 int err;
5034
5035 buf = strstrip(buf);
5036 err = page_counter_memparse(buf, "max", &max);
5037 if (err)
5038 return err;
5039
5040 xchg(&memcg->memory.limit, max);
5041
5042 for (;;) {
5043 unsigned long nr_pages = page_counter_read(&memcg->memory);
5044
5045 if (nr_pages <= max)
5046 break;
5047
5048 if (signal_pending(current)) {
5049 err = -EINTR;
5050 break;
5051 }
5052
5053 if (!drained) {
5054 drain_all_stock(memcg);
5055 drained = true;
5056 continue;
5057 }
5058
5059 if (nr_reclaims) {
5060 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5061 GFP_KERNEL, true))
5062 nr_reclaims--;
5063 continue;
5064 }
5065
5066 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5067 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5068 break;
5069 }
5070
5071 memcg_wb_domain_size_changed(memcg);
5072 return nbytes;
5073}
5074
5075static int memory_events_show(struct seq_file *m, void *v)
5076{
5077 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5078
5079 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5080 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5081 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5082 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5083
5084 return 0;
5085}
5086
5087static int memory_stat_show(struct seq_file *m, void *v)
5088{
5089 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090 unsigned long stat[MEMCG_NR_STAT];
5091 unsigned long events[MEMCG_NR_EVENTS];
5092 int i;
5093
5094 /*
5095 * Provide statistics on the state of the memory subsystem as
5096 * well as cumulative event counters that show past behavior.
5097 *
5098 * This list is ordered following a combination of these gradients:
5099 * 1) generic big picture -> specifics and details
5100 * 2) reflecting userspace activity -> reflecting kernel heuristics
5101 *
5102 * Current memory state:
5103 */
5104
5105 tree_stat(memcg, stat);
5106 tree_events(memcg, events);
5107
5108 seq_printf(m, "anon %llu\n",
5109 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5110 seq_printf(m, "file %llu\n",
5111 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5112 seq_printf(m, "kernel_stack %llu\n",
5113 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5114 seq_printf(m, "slab %llu\n",
5115 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5116 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5117 seq_printf(m, "sock %llu\n",
5118 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5119
5120 seq_printf(m, "file_mapped %llu\n",
5121 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5122 seq_printf(m, "file_dirty %llu\n",
5123 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5124 seq_printf(m, "file_writeback %llu\n",
5125 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5126
5127 for (i = 0; i < NR_LRU_LISTS; i++) {
5128 struct mem_cgroup *mi;
5129 unsigned long val = 0;
5130
5131 for_each_mem_cgroup_tree(mi, memcg)
5132 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5133 seq_printf(m, "%s %llu\n",
5134 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5135 }
5136
5137 seq_printf(m, "slab_reclaimable %llu\n",
5138 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5139 seq_printf(m, "slab_unreclaimable %llu\n",
5140 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5141
5142 /* Accumulated memory events */
5143
5144 seq_printf(m, "pgfault %lu\n",
5145 events[MEM_CGROUP_EVENTS_PGFAULT]);
5146 seq_printf(m, "pgmajfault %lu\n",
5147 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5148
5149 return 0;
5150}
5151
5152static struct cftype memory_files[] = {
5153 {
5154 .name = "current",
5155 .flags = CFTYPE_NOT_ON_ROOT,
5156 .read_u64 = memory_current_read,
5157 },
5158 {
5159 .name = "low",
5160 .flags = CFTYPE_NOT_ON_ROOT,
5161 .seq_show = memory_low_show,
5162 .write = memory_low_write,
5163 },
5164 {
5165 .name = "high",
5166 .flags = CFTYPE_NOT_ON_ROOT,
5167 .seq_show = memory_high_show,
5168 .write = memory_high_write,
5169 },
5170 {
5171 .name = "max",
5172 .flags = CFTYPE_NOT_ON_ROOT,
5173 .seq_show = memory_max_show,
5174 .write = memory_max_write,
5175 },
5176 {
5177 .name = "events",
5178 .flags = CFTYPE_NOT_ON_ROOT,
5179 .file_offset = offsetof(struct mem_cgroup, events_file),
5180 .seq_show = memory_events_show,
5181 },
5182 {
5183 .name = "stat",
5184 .flags = CFTYPE_NOT_ON_ROOT,
5185 .seq_show = memory_stat_show,
5186 },
5187 { } /* terminate */
5188};
5189
5190struct cgroup_subsys memory_cgrp_subsys = {
5191 .css_alloc = mem_cgroup_css_alloc,
5192 .css_online = mem_cgroup_css_online,
5193 .css_offline = mem_cgroup_css_offline,
5194 .css_released = mem_cgroup_css_released,
5195 .css_free = mem_cgroup_css_free,
5196 .css_reset = mem_cgroup_css_reset,
5197 .can_attach = mem_cgroup_can_attach,
5198 .cancel_attach = mem_cgroup_cancel_attach,
5199 .post_attach = mem_cgroup_move_task,
5200 .bind = mem_cgroup_bind,
5201 .dfl_cftypes = memory_files,
5202 .legacy_cftypes = mem_cgroup_legacy_files,
5203 .early_init = 0,
5204};
5205
5206/**
5207 * mem_cgroup_low - check if memory consumption is below the normal range
5208 * @root: the highest ancestor to consider
5209 * @memcg: the memory cgroup to check
5210 *
5211 * Returns %true if memory consumption of @memcg, and that of all
5212 * configurable ancestors up to @root, is below the normal range.
5213 */
5214bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5215{
5216 if (mem_cgroup_disabled())
5217 return false;
5218
5219 /*
5220 * The toplevel group doesn't have a configurable range, so
5221 * it's never low when looked at directly, and it is not
5222 * considered an ancestor when assessing the hierarchy.
5223 */
5224
5225 if (memcg == root_mem_cgroup)
5226 return false;
5227
5228 if (page_counter_read(&memcg->memory) >= memcg->low)
5229 return false;
5230
5231 while (memcg != root) {
5232 memcg = parent_mem_cgroup(memcg);
5233
5234 if (memcg == root_mem_cgroup)
5235 break;
5236
5237 if (page_counter_read(&memcg->memory) >= memcg->low)
5238 return false;
5239 }
5240 return true;
5241}
5242
5243/**
5244 * mem_cgroup_try_charge - try charging a page
5245 * @page: page to charge
5246 * @mm: mm context of the victim
5247 * @gfp_mask: reclaim mode
5248 * @memcgp: charged memcg return
5249 *
5250 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251 * pages according to @gfp_mask if necessary.
5252 *
5253 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254 * Otherwise, an error code is returned.
5255 *
5256 * After page->mapping has been set up, the caller must finalize the
5257 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5258 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5259 */
5260int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5262 bool compound)
5263{
5264 struct mem_cgroup *memcg = NULL;
5265 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5266 int ret = 0;
5267
5268 if (mem_cgroup_disabled())
5269 goto out;
5270
5271 if (PageSwapCache(page)) {
5272 /*
5273 * Every swap fault against a single page tries to charge the
5274 * page, bail as early as possible. shmem_unuse() encounters
5275 * already charged pages, too. The USED bit is protected by
5276 * the page lock, which serializes swap cache removal, which
5277 * in turn serializes uncharging.
5278 */
5279 VM_BUG_ON_PAGE(!PageLocked(page), page);
5280 if (page->mem_cgroup)
5281 goto out;
5282
5283 if (do_swap_account) {
5284 swp_entry_t ent = { .val = page_private(page), };
5285 unsigned short id = lookup_swap_cgroup_id(ent);
5286
5287 rcu_read_lock();
5288 memcg = mem_cgroup_from_id(id);
5289 if (memcg && !css_tryget_online(&memcg->css))
5290 memcg = NULL;
5291 rcu_read_unlock();
5292 }
5293 }
5294
5295 if (!memcg)
5296 memcg = get_mem_cgroup_from_mm(mm);
5297
5298 ret = try_charge(memcg, gfp_mask, nr_pages);
5299
5300 css_put(&memcg->css);
5301out:
5302 *memcgp = memcg;
5303 return ret;
5304}
5305
5306/**
5307 * mem_cgroup_commit_charge - commit a page charge
5308 * @page: page to charge
5309 * @memcg: memcg to charge the page to
5310 * @lrucare: page might be on LRU already
5311 *
5312 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5313 * after page->mapping has been set up. This must happen atomically
5314 * as part of the page instantiation, i.e. under the page table lock
5315 * for anonymous pages, under the page lock for page and swap cache.
5316 *
5317 * In addition, the page must not be on the LRU during the commit, to
5318 * prevent racing with task migration. If it might be, use @lrucare.
5319 *
5320 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5321 */
5322void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5323 bool lrucare, bool compound)
5324{
5325 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5326
5327 VM_BUG_ON_PAGE(!page->mapping, page);
5328 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5329
5330 if (mem_cgroup_disabled())
5331 return;
5332 /*
5333 * Swap faults will attempt to charge the same page multiple
5334 * times. But reuse_swap_page() might have removed the page
5335 * from swapcache already, so we can't check PageSwapCache().
5336 */
5337 if (!memcg)
5338 return;
5339
5340 commit_charge(page, memcg, lrucare);
5341
5342 local_irq_disable();
5343 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5344 memcg_check_events(memcg, page);
5345 local_irq_enable();
5346
5347 if (do_memsw_account() && PageSwapCache(page)) {
5348 swp_entry_t entry = { .val = page_private(page) };
5349 /*
5350 * The swap entry might not get freed for a long time,
5351 * let's not wait for it. The page already received a
5352 * memory+swap charge, drop the swap entry duplicate.
5353 */
5354 mem_cgroup_uncharge_swap(entry);
5355 }
5356}
5357
5358/**
5359 * mem_cgroup_cancel_charge - cancel a page charge
5360 * @page: page to charge
5361 * @memcg: memcg to charge the page to
5362 *
5363 * Cancel a charge transaction started by mem_cgroup_try_charge().
5364 */
5365void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5366 bool compound)
5367{
5368 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369
5370 if (mem_cgroup_disabled())
5371 return;
5372 /*
5373 * Swap faults will attempt to charge the same page multiple
5374 * times. But reuse_swap_page() might have removed the page
5375 * from swapcache already, so we can't check PageSwapCache().
5376 */
5377 if (!memcg)
5378 return;
5379
5380 cancel_charge(memcg, nr_pages);
5381}
5382
5383static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5384 unsigned long nr_anon, unsigned long nr_file,
5385 unsigned long nr_huge, struct page *dummy_page)
5386{
5387 unsigned long nr_pages = nr_anon + nr_file;
5388 unsigned long flags;
5389
5390 if (!mem_cgroup_is_root(memcg)) {
5391 page_counter_uncharge(&memcg->memory, nr_pages);
5392 if (do_memsw_account())
5393 page_counter_uncharge(&memcg->memsw, nr_pages);
5394 memcg_oom_recover(memcg);
5395 }
5396
5397 local_irq_save(flags);
5398 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5399 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5400 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5401 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5402 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5403 memcg_check_events(memcg, dummy_page);
5404 local_irq_restore(flags);
5405
5406 if (!mem_cgroup_is_root(memcg))
5407 css_put_many(&memcg->css, nr_pages);
5408}
5409
5410static void uncharge_list(struct list_head *page_list)
5411{
5412 struct mem_cgroup *memcg = NULL;
5413 unsigned long nr_anon = 0;
5414 unsigned long nr_file = 0;
5415 unsigned long nr_huge = 0;
5416 unsigned long pgpgout = 0;
5417 struct list_head *next;
5418 struct page *page;
5419
5420 /*
5421 * Note that the list can be a single page->lru; hence the
5422 * do-while loop instead of a simple list_for_each_entry().
5423 */
5424 next = page_list->next;
5425 do {
5426 unsigned int nr_pages = 1;
5427
5428 page = list_entry(next, struct page, lru);
5429 next = page->lru.next;
5430
5431 VM_BUG_ON_PAGE(PageLRU(page), page);
5432 VM_BUG_ON_PAGE(page_count(page), page);
5433
5434 if (!page->mem_cgroup)
5435 continue;
5436
5437 /*
5438 * Nobody should be changing or seriously looking at
5439 * page->mem_cgroup at this point, we have fully
5440 * exclusive access to the page.
5441 */
5442
5443 if (memcg != page->mem_cgroup) {
5444 if (memcg) {
5445 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5446 nr_huge, page);
5447 pgpgout = nr_anon = nr_file = nr_huge = 0;
5448 }
5449 memcg = page->mem_cgroup;
5450 }
5451
5452 if (PageTransHuge(page)) {
5453 nr_pages <<= compound_order(page);
5454 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5455 nr_huge += nr_pages;
5456 }
5457
5458 if (PageAnon(page))
5459 nr_anon += nr_pages;
5460 else
5461 nr_file += nr_pages;
5462
5463 page->mem_cgroup = NULL;
5464
5465 pgpgout++;
5466 } while (next != page_list);
5467
5468 if (memcg)
5469 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5470 nr_huge, page);
5471}
5472
5473/**
5474 * mem_cgroup_uncharge - uncharge a page
5475 * @page: page to uncharge
5476 *
5477 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5478 * mem_cgroup_commit_charge().
5479 */
5480void mem_cgroup_uncharge(struct page *page)
5481{
5482 if (mem_cgroup_disabled())
5483 return;
5484
5485 /* Don't touch page->lru of any random page, pre-check: */
5486 if (!page->mem_cgroup)
5487 return;
5488
5489 INIT_LIST_HEAD(&page->lru);
5490 uncharge_list(&page->lru);
5491}
5492
5493/**
5494 * mem_cgroup_uncharge_list - uncharge a list of page
5495 * @page_list: list of pages to uncharge
5496 *
5497 * Uncharge a list of pages previously charged with
5498 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5499 */
5500void mem_cgroup_uncharge_list(struct list_head *page_list)
5501{
5502 if (mem_cgroup_disabled())
5503 return;
5504
5505 if (!list_empty(page_list))
5506 uncharge_list(page_list);
5507}
5508
5509/**
5510 * mem_cgroup_migrate - charge a page's replacement
5511 * @oldpage: currently circulating page
5512 * @newpage: replacement page
5513 *
5514 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5515 * be uncharged upon free.
5516 *
5517 * Both pages must be locked, @newpage->mapping must be set up.
5518 */
5519void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5520{
5521 struct mem_cgroup *memcg;
5522 unsigned int nr_pages;
5523 bool compound;
5524
5525 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5526 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5527 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5529 newpage);
5530
5531 if (mem_cgroup_disabled())
5532 return;
5533
5534 /* Page cache replacement: new page already charged? */
5535 if (newpage->mem_cgroup)
5536 return;
5537
5538 /* Swapcache readahead pages can get replaced before being charged */
5539 memcg = oldpage->mem_cgroup;
5540 if (!memcg)
5541 return;
5542
5543 /* Force-charge the new page. The old one will be freed soon */
5544 compound = PageTransHuge(newpage);
5545 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5546
5547 page_counter_charge(&memcg->memory, nr_pages);
5548 if (do_memsw_account())
5549 page_counter_charge(&memcg->memsw, nr_pages);
5550 css_get_many(&memcg->css, nr_pages);
5551
5552 commit_charge(newpage, memcg, false);
5553
5554 local_irq_disable();
5555 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5556 memcg_check_events(memcg, newpage);
5557 local_irq_enable();
5558}
5559
5560DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561EXPORT_SYMBOL(memcg_sockets_enabled_key);
5562
5563void sock_update_memcg(struct sock *sk)
5564{
5565 struct mem_cgroup *memcg;
5566
5567 /* Socket cloning can throw us here with sk_cgrp already
5568 * filled. It won't however, necessarily happen from
5569 * process context. So the test for root memcg given
5570 * the current task's memcg won't help us in this case.
5571 *
5572 * Respecting the original socket's memcg is a better
5573 * decision in this case.
5574 */
5575 if (sk->sk_memcg) {
5576 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5577 css_get(&sk->sk_memcg->css);
5578 return;
5579 }
5580
5581 rcu_read_lock();
5582 memcg = mem_cgroup_from_task(current);
5583 if (memcg == root_mem_cgroup)
5584 goto out;
5585 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5586 goto out;
5587 if (css_tryget_online(&memcg->css))
5588 sk->sk_memcg = memcg;
5589out:
5590 rcu_read_unlock();
5591}
5592EXPORT_SYMBOL(sock_update_memcg);
5593
5594void sock_release_memcg(struct sock *sk)
5595{
5596 WARN_ON(!sk->sk_memcg);
5597 css_put(&sk->sk_memcg->css);
5598}
5599
5600/**
5601 * mem_cgroup_charge_skmem - charge socket memory
5602 * @memcg: memcg to charge
5603 * @nr_pages: number of pages to charge
5604 *
5605 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5606 * @memcg's configured limit, %false if the charge had to be forced.
5607 */
5608bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5609{
5610 gfp_t gfp_mask = GFP_KERNEL;
5611
5612 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5613 struct page_counter *fail;
5614
5615 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5616 memcg->tcpmem_pressure = 0;
5617 return true;
5618 }
5619 page_counter_charge(&memcg->tcpmem, nr_pages);
5620 memcg->tcpmem_pressure = 1;
5621 return false;
5622 }
5623
5624 /* Don't block in the packet receive path */
5625 if (in_softirq())
5626 gfp_mask = GFP_NOWAIT;
5627
5628 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5629
5630 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5631 return true;
5632
5633 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5634 return false;
5635}
5636
5637/**
5638 * mem_cgroup_uncharge_skmem - uncharge socket memory
5639 * @memcg - memcg to uncharge
5640 * @nr_pages - number of pages to uncharge
5641 */
5642void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5643{
5644 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5645 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5646 return;
5647 }
5648
5649 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5650
5651 page_counter_uncharge(&memcg->memory, nr_pages);
5652 css_put_many(&memcg->css, nr_pages);
5653}
5654
5655static int __init cgroup_memory(char *s)
5656{
5657 char *token;
5658
5659 while ((token = strsep(&s, ",")) != NULL) {
5660 if (!*token)
5661 continue;
5662 if (!strcmp(token, "nosocket"))
5663 cgroup_memory_nosocket = true;
5664 if (!strcmp(token, "nokmem"))
5665 cgroup_memory_nokmem = true;
5666 }
5667 return 0;
5668}
5669__setup("cgroup.memory=", cgroup_memory);
5670
5671/*
5672 * subsys_initcall() for memory controller.
5673 *
5674 * Some parts like hotcpu_notifier() have to be initialized from this context
5675 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5676 * everything that doesn't depend on a specific mem_cgroup structure should
5677 * be initialized from here.
5678 */
5679static int __init mem_cgroup_init(void)
5680{
5681 int cpu, node;
5682
5683 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5684
5685 for_each_possible_cpu(cpu)
5686 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5687 drain_local_stock);
5688
5689 for_each_node(node) {
5690 struct mem_cgroup_tree_per_node *rtpn;
5691 int zone;
5692
5693 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5694 node_online(node) ? node : NUMA_NO_NODE);
5695
5696 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5697 struct mem_cgroup_tree_per_zone *rtpz;
5698
5699 rtpz = &rtpn->rb_tree_per_zone[zone];
5700 rtpz->rb_root = RB_ROOT;
5701 spin_lock_init(&rtpz->lock);
5702 }
5703 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5704 }
5705
5706 return 0;
5707}
5708subsys_initcall(mem_cgroup_init);
5709
5710#ifdef CONFIG_MEMCG_SWAP
5711/**
5712 * mem_cgroup_swapout - transfer a memsw charge to swap
5713 * @page: page whose memsw charge to transfer
5714 * @entry: swap entry to move the charge to
5715 *
5716 * Transfer the memsw charge of @page to @entry.
5717 */
5718void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5719{
5720 struct mem_cgroup *memcg;
5721 unsigned short oldid;
5722
5723 VM_BUG_ON_PAGE(PageLRU(page), page);
5724 VM_BUG_ON_PAGE(page_count(page), page);
5725
5726 if (!do_memsw_account())
5727 return;
5728
5729 memcg = page->mem_cgroup;
5730
5731 /* Readahead page, never charged */
5732 if (!memcg)
5733 return;
5734
5735 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5736 VM_BUG_ON_PAGE(oldid, page);
5737 mem_cgroup_swap_statistics(memcg, true);
5738
5739 page->mem_cgroup = NULL;
5740
5741 if (!mem_cgroup_is_root(memcg))
5742 page_counter_uncharge(&memcg->memory, 1);
5743
5744 /*
5745 * Interrupts should be disabled here because the caller holds the
5746 * mapping->tree_lock lock which is taken with interrupts-off. It is
5747 * important here to have the interrupts disabled because it is the
5748 * only synchronisation we have for udpating the per-CPU variables.
5749 */
5750 VM_BUG_ON(!irqs_disabled());
5751 mem_cgroup_charge_statistics(memcg, page, false, -1);
5752 memcg_check_events(memcg, page);
5753}
5754
5755/*
5756 * mem_cgroup_try_charge_swap - try charging a swap entry
5757 * @page: page being added to swap
5758 * @entry: swap entry to charge
5759 *
5760 * Try to charge @entry to the memcg that @page belongs to.
5761 *
5762 * Returns 0 on success, -ENOMEM on failure.
5763 */
5764int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5765{
5766 struct mem_cgroup *memcg;
5767 struct page_counter *counter;
5768 unsigned short oldid;
5769
5770 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5771 return 0;
5772
5773 memcg = page->mem_cgroup;
5774
5775 /* Readahead page, never charged */
5776 if (!memcg)
5777 return 0;
5778
5779 if (!mem_cgroup_is_root(memcg) &&
5780 !page_counter_try_charge(&memcg->swap, 1, &counter))
5781 return -ENOMEM;
5782
5783 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5784 VM_BUG_ON_PAGE(oldid, page);
5785 mem_cgroup_swap_statistics(memcg, true);
5786
5787 css_get(&memcg->css);
5788 return 0;
5789}
5790
5791/**
5792 * mem_cgroup_uncharge_swap - uncharge a swap entry
5793 * @entry: swap entry to uncharge
5794 *
5795 * Drop the swap charge associated with @entry.
5796 */
5797void mem_cgroup_uncharge_swap(swp_entry_t entry)
5798{
5799 struct mem_cgroup *memcg;
5800 unsigned short id;
5801
5802 if (!do_swap_account)
5803 return;
5804
5805 id = swap_cgroup_record(entry, 0);
5806 rcu_read_lock();
5807 memcg = mem_cgroup_from_id(id);
5808 if (memcg) {
5809 if (!mem_cgroup_is_root(memcg)) {
5810 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5811 page_counter_uncharge(&memcg->swap, 1);
5812 else
5813 page_counter_uncharge(&memcg->memsw, 1);
5814 }
5815 mem_cgroup_swap_statistics(memcg, false);
5816 css_put(&memcg->css);
5817 }
5818 rcu_read_unlock();
5819}
5820
5821long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5822{
5823 long nr_swap_pages = get_nr_swap_pages();
5824
5825 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826 return nr_swap_pages;
5827 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5828 nr_swap_pages = min_t(long, nr_swap_pages,
5829 READ_ONCE(memcg->swap.limit) -
5830 page_counter_read(&memcg->swap));
5831 return nr_swap_pages;
5832}
5833
5834bool mem_cgroup_swap_full(struct page *page)
5835{
5836 struct mem_cgroup *memcg;
5837
5838 VM_BUG_ON_PAGE(!PageLocked(page), page);
5839
5840 if (vm_swap_full())
5841 return true;
5842 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843 return false;
5844
5845 memcg = page->mem_cgroup;
5846 if (!memcg)
5847 return false;
5848
5849 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5850 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5851 return true;
5852
5853 return false;
5854}
5855
5856/* for remember boot option*/
5857#ifdef CONFIG_MEMCG_SWAP_ENABLED
5858static int really_do_swap_account __initdata = 1;
5859#else
5860static int really_do_swap_account __initdata;
5861#endif
5862
5863static int __init enable_swap_account(char *s)
5864{
5865 if (!strcmp(s, "1"))
5866 really_do_swap_account = 1;
5867 else if (!strcmp(s, "0"))
5868 really_do_swap_account = 0;
5869 return 1;
5870}
5871__setup("swapaccount=", enable_swap_account);
5872
5873static u64 swap_current_read(struct cgroup_subsys_state *css,
5874 struct cftype *cft)
5875{
5876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5877
5878 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5879}
5880
5881static int swap_max_show(struct seq_file *m, void *v)
5882{
5883 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5884 unsigned long max = READ_ONCE(memcg->swap.limit);
5885
5886 if (max == PAGE_COUNTER_MAX)
5887 seq_puts(m, "max\n");
5888 else
5889 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5890
5891 return 0;
5892}
5893
5894static ssize_t swap_max_write(struct kernfs_open_file *of,
5895 char *buf, size_t nbytes, loff_t off)
5896{
5897 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5898 unsigned long max;
5899 int err;
5900
5901 buf = strstrip(buf);
5902 err = page_counter_memparse(buf, "max", &max);
5903 if (err)
5904 return err;
5905
5906 mutex_lock(&memcg_limit_mutex);
5907 err = page_counter_limit(&memcg->swap, max);
5908 mutex_unlock(&memcg_limit_mutex);
5909 if (err)
5910 return err;
5911
5912 return nbytes;
5913}
5914
5915static struct cftype swap_files[] = {
5916 {
5917 .name = "swap.current",
5918 .flags = CFTYPE_NOT_ON_ROOT,
5919 .read_u64 = swap_current_read,
5920 },
5921 {
5922 .name = "swap.max",
5923 .flags = CFTYPE_NOT_ON_ROOT,
5924 .seq_show = swap_max_show,
5925 .write = swap_max_write,
5926 },
5927 { } /* terminate */
5928};
5929
5930static struct cftype memsw_cgroup_files[] = {
5931 {
5932 .name = "memsw.usage_in_bytes",
5933 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5934 .read_u64 = mem_cgroup_read_u64,
5935 },
5936 {
5937 .name = "memsw.max_usage_in_bytes",
5938 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5939 .write = mem_cgroup_reset,
5940 .read_u64 = mem_cgroup_read_u64,
5941 },
5942 {
5943 .name = "memsw.limit_in_bytes",
5944 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5945 .write = mem_cgroup_write,
5946 .read_u64 = mem_cgroup_read_u64,
5947 },
5948 {
5949 .name = "memsw.failcnt",
5950 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5951 .write = mem_cgroup_reset,
5952 .read_u64 = mem_cgroup_read_u64,
5953 },
5954 { }, /* terminate */
5955};
5956
5957static int __init mem_cgroup_swap_init(void)
5958{
5959 if (!mem_cgroup_disabled() && really_do_swap_account) {
5960 do_swap_account = 1;
5961 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5962 swap_files));
5963 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5964 memsw_cgroup_files));
5965 }
5966 return 0;
5967}
5968subsys_initcall(mem_cgroup_swap_init);
5969
5970#endif /* CONFIG_MEMCG_SWAP */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/memremap.h>
57#include <linux/mm_inline.h>
58#include <linux/swap_cgroup.h>
59#include <linux/cpu.h>
60#include <linux/oom.h>
61#include <linux/lockdep.h>
62#include <linux/file.h>
63#include <linux/resume_user_mode.h>
64#include <linux/psi.h>
65#include <linux/seq_buf.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70#include "swap.h"
71
72#include <linux/uaccess.h>
73
74#include <trace/events/vmscan.h>
75
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
78
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81/* Active memory cgroup to use from an interrupt context */
82DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84
85/* Socket memory accounting disabled? */
86static bool cgroup_memory_nosocket __ro_after_init;
87
88/* Kernel memory accounting disabled? */
89static bool cgroup_memory_nokmem __ro_after_init;
90
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
99}
100
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
103
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
109struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
113};
114
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
126
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
130struct mem_cgroup_event {
131 /*
132 * memcg which the event belongs to.
133 */
134 struct mem_cgroup *memcg;
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
165};
166
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170/* Stuffs for move charges at task migration. */
171/*
172 * Types of charges to be moved.
173 */
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
177
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
194
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202/* for encoding cft->private value on file */
203enum res_type {
204 _MEM,
205 _MEMSWAP,
206 _KMEM,
207 _TCP,
208};
209
210#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
211#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
212#define MEMFILE_ATTR(val) ((val) & 0xffff)
213
214/*
215 * Iteration constructs for visiting all cgroups (under a tree). If
216 * loops are exited prematurely (break), mem_cgroup_iter_break() must
217 * be used for reference counting.
218 */
219#define for_each_mem_cgroup_tree(iter, root) \
220 for (iter = mem_cgroup_iter(root, NULL, NULL); \
221 iter != NULL; \
222 iter = mem_cgroup_iter(root, iter, NULL))
223
224#define for_each_mem_cgroup(iter) \
225 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(NULL, iter, NULL))
228
229static inline bool task_is_dying(void)
230{
231 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
232 (current->flags & PF_EXITING);
233}
234
235/* Some nice accessors for the vmpressure. */
236struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237{
238 if (!memcg)
239 memcg = root_mem_cgroup;
240 return &memcg->vmpressure;
241}
242
243struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
244{
245 return container_of(vmpr, struct mem_cgroup, vmpressure);
246}
247
248#ifdef CONFIG_MEMCG_KMEM
249static DEFINE_SPINLOCK(objcg_lock);
250
251bool mem_cgroup_kmem_disabled(void)
252{
253 return cgroup_memory_nokmem;
254}
255
256static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
257 unsigned int nr_pages);
258
259static void obj_cgroup_release(struct percpu_ref *ref)
260{
261 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
262 unsigned int nr_bytes;
263 unsigned int nr_pages;
264 unsigned long flags;
265
266 /*
267 * At this point all allocated objects are freed, and
268 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 *
271 * The following sequence can lead to it:
272 * 1) CPU0: objcg == stock->cached_objcg
273 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 * PAGE_SIZE bytes are charged
275 * 3) CPU1: a process from another memcg is allocating something,
276 * the stock if flushed,
277 * objcg->nr_charged_bytes = PAGE_SIZE - 92
278 * 5) CPU0: we do release this object,
279 * 92 bytes are added to stock->nr_bytes
280 * 6) CPU0: stock is flushed,
281 * 92 bytes are added to objcg->nr_charged_bytes
282 *
283 * In the result, nr_charged_bytes == PAGE_SIZE.
284 * This page will be uncharged in obj_cgroup_release().
285 */
286 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 nr_pages = nr_bytes >> PAGE_SHIFT;
289
290 if (nr_pages)
291 obj_cgroup_uncharge_pages(objcg, nr_pages);
292
293 spin_lock_irqsave(&objcg_lock, flags);
294 list_del(&objcg->list);
295 spin_unlock_irqrestore(&objcg_lock, flags);
296
297 percpu_ref_exit(ref);
298 kfree_rcu(objcg, rcu);
299}
300
301static struct obj_cgroup *obj_cgroup_alloc(void)
302{
303 struct obj_cgroup *objcg;
304 int ret;
305
306 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
307 if (!objcg)
308 return NULL;
309
310 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
311 GFP_KERNEL);
312 if (ret) {
313 kfree(objcg);
314 return NULL;
315 }
316 INIT_LIST_HEAD(&objcg->list);
317 return objcg;
318}
319
320static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
321 struct mem_cgroup *parent)
322{
323 struct obj_cgroup *objcg, *iter;
324
325 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
326
327 spin_lock_irq(&objcg_lock);
328
329 /* 1) Ready to reparent active objcg. */
330 list_add(&objcg->list, &memcg->objcg_list);
331 /* 2) Reparent active objcg and already reparented objcgs to parent. */
332 list_for_each_entry(iter, &memcg->objcg_list, list)
333 WRITE_ONCE(iter->memcg, parent);
334 /* 3) Move already reparented objcgs to the parent's list */
335 list_splice(&memcg->objcg_list, &parent->objcg_list);
336
337 spin_unlock_irq(&objcg_lock);
338
339 percpu_ref_kill(&objcg->refcnt);
340}
341
342/*
343 * A lot of the calls to the cache allocation functions are expected to be
344 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
345 * conditional to this static branch, we'll have to allow modules that does
346 * kmem_cache_alloc and the such to see this symbol as well
347 */
348DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
349EXPORT_SYMBOL(memcg_kmem_enabled_key);
350#endif
351
352/**
353 * mem_cgroup_css_from_page - css of the memcg associated with a page
354 * @page: page of interest
355 *
356 * If memcg is bound to the default hierarchy, css of the memcg associated
357 * with @page is returned. The returned css remains associated with @page
358 * until it is released.
359 *
360 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
361 * is returned.
362 */
363struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
364{
365 struct mem_cgroup *memcg;
366
367 memcg = page_memcg(page);
368
369 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
370 memcg = root_mem_cgroup;
371
372 return &memcg->css;
373}
374
375/**
376 * page_cgroup_ino - return inode number of the memcg a page is charged to
377 * @page: the page
378 *
379 * Look up the closest online ancestor of the memory cgroup @page is charged to
380 * and return its inode number or 0 if @page is not charged to any cgroup. It
381 * is safe to call this function without holding a reference to @page.
382 *
383 * Note, this function is inherently racy, because there is nothing to prevent
384 * the cgroup inode from getting torn down and potentially reallocated a moment
385 * after page_cgroup_ino() returns, so it only should be used by callers that
386 * do not care (such as procfs interfaces).
387 */
388ino_t page_cgroup_ino(struct page *page)
389{
390 struct mem_cgroup *memcg;
391 unsigned long ino = 0;
392
393 rcu_read_lock();
394 memcg = page_memcg_check(page);
395
396 while (memcg && !(memcg->css.flags & CSS_ONLINE))
397 memcg = parent_mem_cgroup(memcg);
398 if (memcg)
399 ino = cgroup_ino(memcg->css.cgroup);
400 rcu_read_unlock();
401 return ino;
402}
403
404static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
405 struct mem_cgroup_tree_per_node *mctz,
406 unsigned long new_usage_in_excess)
407{
408 struct rb_node **p = &mctz->rb_root.rb_node;
409 struct rb_node *parent = NULL;
410 struct mem_cgroup_per_node *mz_node;
411 bool rightmost = true;
412
413 if (mz->on_tree)
414 return;
415
416 mz->usage_in_excess = new_usage_in_excess;
417 if (!mz->usage_in_excess)
418 return;
419 while (*p) {
420 parent = *p;
421 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
422 tree_node);
423 if (mz->usage_in_excess < mz_node->usage_in_excess) {
424 p = &(*p)->rb_left;
425 rightmost = false;
426 } else {
427 p = &(*p)->rb_right;
428 }
429 }
430
431 if (rightmost)
432 mctz->rb_rightmost = &mz->tree_node;
433
434 rb_link_node(&mz->tree_node, parent, p);
435 rb_insert_color(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = true;
437}
438
439static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
440 struct mem_cgroup_tree_per_node *mctz)
441{
442 if (!mz->on_tree)
443 return;
444
445 if (&mz->tree_node == mctz->rb_rightmost)
446 mctz->rb_rightmost = rb_prev(&mz->tree_node);
447
448 rb_erase(&mz->tree_node, &mctz->rb_root);
449 mz->on_tree = false;
450}
451
452static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
453 struct mem_cgroup_tree_per_node *mctz)
454{
455 unsigned long flags;
456
457 spin_lock_irqsave(&mctz->lock, flags);
458 __mem_cgroup_remove_exceeded(mz, mctz);
459 spin_unlock_irqrestore(&mctz->lock, flags);
460}
461
462static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
463{
464 unsigned long nr_pages = page_counter_read(&memcg->memory);
465 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
466 unsigned long excess = 0;
467
468 if (nr_pages > soft_limit)
469 excess = nr_pages - soft_limit;
470
471 return excess;
472}
473
474static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
475{
476 unsigned long excess;
477 struct mem_cgroup_per_node *mz;
478 struct mem_cgroup_tree_per_node *mctz;
479
480 mctz = soft_limit_tree.rb_tree_per_node[nid];
481 if (!mctz)
482 return;
483 /*
484 * Necessary to update all ancestors when hierarchy is used.
485 * because their event counter is not touched.
486 */
487 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
488 mz = memcg->nodeinfo[nid];
489 excess = soft_limit_excess(memcg);
490 /*
491 * We have to update the tree if mz is on RB-tree or
492 * mem is over its softlimit.
493 */
494 if (excess || mz->on_tree) {
495 unsigned long flags;
496
497 spin_lock_irqsave(&mctz->lock, flags);
498 /* if on-tree, remove it */
499 if (mz->on_tree)
500 __mem_cgroup_remove_exceeded(mz, mctz);
501 /*
502 * Insert again. mz->usage_in_excess will be updated.
503 * If excess is 0, no tree ops.
504 */
505 __mem_cgroup_insert_exceeded(mz, mctz, excess);
506 spin_unlock_irqrestore(&mctz->lock, flags);
507 }
508 }
509}
510
511static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
512{
513 struct mem_cgroup_tree_per_node *mctz;
514 struct mem_cgroup_per_node *mz;
515 int nid;
516
517 for_each_node(nid) {
518 mz = memcg->nodeinfo[nid];
519 mctz = soft_limit_tree.rb_tree_per_node[nid];
520 if (mctz)
521 mem_cgroup_remove_exceeded(mz, mctz);
522 }
523}
524
525static struct mem_cgroup_per_node *
526__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
527{
528 struct mem_cgroup_per_node *mz;
529
530retry:
531 mz = NULL;
532 if (!mctz->rb_rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(mctz->rb_rightmost,
536 struct mem_cgroup_per_node, tree_node);
537 /*
538 * Remove the node now but someone else can add it back,
539 * we will to add it back at the end of reclaim to its correct
540 * position in the tree.
541 */
542 __mem_cgroup_remove_exceeded(mz, mctz);
543 if (!soft_limit_excess(mz->memcg) ||
544 !css_tryget(&mz->memcg->css))
545 goto retry;
546done:
547 return mz;
548}
549
550static struct mem_cgroup_per_node *
551mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
552{
553 struct mem_cgroup_per_node *mz;
554
555 spin_lock_irq(&mctz->lock);
556 mz = __mem_cgroup_largest_soft_limit_node(mctz);
557 spin_unlock_irq(&mctz->lock);
558 return mz;
559}
560
561/*
562 * memcg and lruvec stats flushing
563 *
564 * Many codepaths leading to stats update or read are performance sensitive and
565 * adding stats flushing in such codepaths is not desirable. So, to optimize the
566 * flushing the kernel does:
567 *
568 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
569 * rstat update tree grow unbounded.
570 *
571 * 2) Flush the stats synchronously on reader side only when there are more than
572 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
573 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
574 * only for 2 seconds due to (1).
575 */
576static void flush_memcg_stats_dwork(struct work_struct *w);
577static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
578static DEFINE_SPINLOCK(stats_flush_lock);
579static DEFINE_PER_CPU(unsigned int, stats_updates);
580static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
581static u64 flush_next_time;
582
583#define FLUSH_TIME (2UL*HZ)
584
585/*
586 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
587 * not rely on this as part of an acquired spinlock_t lock. These functions are
588 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
589 * is sufficient.
590 */
591static void memcg_stats_lock(void)
592{
593 preempt_disable_nested();
594 VM_WARN_ON_IRQS_ENABLED();
595}
596
597static void __memcg_stats_lock(void)
598{
599 preempt_disable_nested();
600}
601
602static void memcg_stats_unlock(void)
603{
604 preempt_enable_nested();
605}
606
607static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
608{
609 unsigned int x;
610
611 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
612
613 x = __this_cpu_add_return(stats_updates, abs(val));
614 if (x > MEMCG_CHARGE_BATCH) {
615 /*
616 * If stats_flush_threshold exceeds the threshold
617 * (>num_online_cpus()), cgroup stats update will be triggered
618 * in __mem_cgroup_flush_stats(). Increasing this var further
619 * is redundant and simply adds overhead in atomic update.
620 */
621 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
622 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
623 __this_cpu_write(stats_updates, 0);
624 }
625}
626
627static void __mem_cgroup_flush_stats(void)
628{
629 unsigned long flag;
630
631 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
632 return;
633
634 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
635 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
636 atomic_set(&stats_flush_threshold, 0);
637 spin_unlock_irqrestore(&stats_flush_lock, flag);
638}
639
640void mem_cgroup_flush_stats(void)
641{
642 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
643 __mem_cgroup_flush_stats();
644}
645
646void mem_cgroup_flush_stats_delayed(void)
647{
648 if (time_after64(jiffies_64, flush_next_time))
649 mem_cgroup_flush_stats();
650}
651
652static void flush_memcg_stats_dwork(struct work_struct *w)
653{
654 __mem_cgroup_flush_stats();
655 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
656}
657
658/* Subset of vm_event_item to report for memcg event stats */
659static const unsigned int memcg_vm_event_stat[] = {
660 PGPGIN,
661 PGPGOUT,
662 PGSCAN_KSWAPD,
663 PGSCAN_DIRECT,
664 PGSCAN_KHUGEPAGED,
665 PGSTEAL_KSWAPD,
666 PGSTEAL_DIRECT,
667 PGSTEAL_KHUGEPAGED,
668 PGFAULT,
669 PGMAJFAULT,
670 PGREFILL,
671 PGACTIVATE,
672 PGDEACTIVATE,
673 PGLAZYFREE,
674 PGLAZYFREED,
675#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
676 ZSWPIN,
677 ZSWPOUT,
678#endif
679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 THP_FAULT_ALLOC,
681 THP_COLLAPSE_ALLOC,
682#endif
683};
684
685#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
686static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
687
688static void init_memcg_events(void)
689{
690 int i;
691
692 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
693 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
694}
695
696static inline int memcg_events_index(enum vm_event_item idx)
697{
698 return mem_cgroup_events_index[idx] - 1;
699}
700
701struct memcg_vmstats_percpu {
702 /* Local (CPU and cgroup) page state & events */
703 long state[MEMCG_NR_STAT];
704 unsigned long events[NR_MEMCG_EVENTS];
705
706 /* Delta calculation for lockless upward propagation */
707 long state_prev[MEMCG_NR_STAT];
708 unsigned long events_prev[NR_MEMCG_EVENTS];
709
710 /* Cgroup1: threshold notifications & softlimit tree updates */
711 unsigned long nr_page_events;
712 unsigned long targets[MEM_CGROUP_NTARGETS];
713};
714
715struct memcg_vmstats {
716 /* Aggregated (CPU and subtree) page state & events */
717 long state[MEMCG_NR_STAT];
718 unsigned long events[NR_MEMCG_EVENTS];
719
720 /* Pending child counts during tree propagation */
721 long state_pending[MEMCG_NR_STAT];
722 unsigned long events_pending[NR_MEMCG_EVENTS];
723};
724
725unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
726{
727 long x = READ_ONCE(memcg->vmstats->state[idx]);
728#ifdef CONFIG_SMP
729 if (x < 0)
730 x = 0;
731#endif
732 return x;
733}
734
735/**
736 * __mod_memcg_state - update cgroup memory statistics
737 * @memcg: the memory cgroup
738 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
739 * @val: delta to add to the counter, can be negative
740 */
741void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
742{
743 if (mem_cgroup_disabled())
744 return;
745
746 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
747 memcg_rstat_updated(memcg, val);
748}
749
750/* idx can be of type enum memcg_stat_item or node_stat_item. */
751static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
752{
753 long x = 0;
754 int cpu;
755
756 for_each_possible_cpu(cpu)
757 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
758#ifdef CONFIG_SMP
759 if (x < 0)
760 x = 0;
761#endif
762 return x;
763}
764
765void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
766 int val)
767{
768 struct mem_cgroup_per_node *pn;
769 struct mem_cgroup *memcg;
770
771 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
772 memcg = pn->memcg;
773
774 /*
775 * The caller from rmap relay on disabled preemption becase they never
776 * update their counter from in-interrupt context. For these two
777 * counters we check that the update is never performed from an
778 * interrupt context while other caller need to have disabled interrupt.
779 */
780 __memcg_stats_lock();
781 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
782 switch (idx) {
783 case NR_ANON_MAPPED:
784 case NR_FILE_MAPPED:
785 case NR_ANON_THPS:
786 case NR_SHMEM_PMDMAPPED:
787 case NR_FILE_PMDMAPPED:
788 WARN_ON_ONCE(!in_task());
789 break;
790 default:
791 VM_WARN_ON_IRQS_ENABLED();
792 }
793 }
794
795 /* Update memcg */
796 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
797
798 /* Update lruvec */
799 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
800
801 memcg_rstat_updated(memcg, val);
802 memcg_stats_unlock();
803}
804
805/**
806 * __mod_lruvec_state - update lruvec memory statistics
807 * @lruvec: the lruvec
808 * @idx: the stat item
809 * @val: delta to add to the counter, can be negative
810 *
811 * The lruvec is the intersection of the NUMA node and a cgroup. This
812 * function updates the all three counters that are affected by a
813 * change of state at this level: per-node, per-cgroup, per-lruvec.
814 */
815void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
816 int val)
817{
818 /* Update node */
819 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
820
821 /* Update memcg and lruvec */
822 if (!mem_cgroup_disabled())
823 __mod_memcg_lruvec_state(lruvec, idx, val);
824}
825
826void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
827 int val)
828{
829 struct page *head = compound_head(page); /* rmap on tail pages */
830 struct mem_cgroup *memcg;
831 pg_data_t *pgdat = page_pgdat(page);
832 struct lruvec *lruvec;
833
834 rcu_read_lock();
835 memcg = page_memcg(head);
836 /* Untracked pages have no memcg, no lruvec. Update only the node */
837 if (!memcg) {
838 rcu_read_unlock();
839 __mod_node_page_state(pgdat, idx, val);
840 return;
841 }
842
843 lruvec = mem_cgroup_lruvec(memcg, pgdat);
844 __mod_lruvec_state(lruvec, idx, val);
845 rcu_read_unlock();
846}
847EXPORT_SYMBOL(__mod_lruvec_page_state);
848
849void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
850{
851 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
852 struct mem_cgroup *memcg;
853 struct lruvec *lruvec;
854
855 rcu_read_lock();
856 memcg = mem_cgroup_from_slab_obj(p);
857
858 /*
859 * Untracked pages have no memcg, no lruvec. Update only the
860 * node. If we reparent the slab objects to the root memcg,
861 * when we free the slab object, we need to update the per-memcg
862 * vmstats to keep it correct for the root memcg.
863 */
864 if (!memcg) {
865 __mod_node_page_state(pgdat, idx, val);
866 } else {
867 lruvec = mem_cgroup_lruvec(memcg, pgdat);
868 __mod_lruvec_state(lruvec, idx, val);
869 }
870 rcu_read_unlock();
871}
872
873/**
874 * __count_memcg_events - account VM events in a cgroup
875 * @memcg: the memory cgroup
876 * @idx: the event item
877 * @count: the number of events that occurred
878 */
879void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
880 unsigned long count)
881{
882 int index = memcg_events_index(idx);
883
884 if (mem_cgroup_disabled() || index < 0)
885 return;
886
887 memcg_stats_lock();
888 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
889 memcg_rstat_updated(memcg, count);
890 memcg_stats_unlock();
891}
892
893static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
894{
895 int index = memcg_events_index(event);
896
897 if (index < 0)
898 return 0;
899 return READ_ONCE(memcg->vmstats->events[index]);
900}
901
902static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
903{
904 long x = 0;
905 int cpu;
906 int index = memcg_events_index(event);
907
908 if (index < 0)
909 return 0;
910
911 for_each_possible_cpu(cpu)
912 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
913 return x;
914}
915
916static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
917 int nr_pages)
918{
919 /* pagein of a big page is an event. So, ignore page size */
920 if (nr_pages > 0)
921 __count_memcg_events(memcg, PGPGIN, 1);
922 else {
923 __count_memcg_events(memcg, PGPGOUT, 1);
924 nr_pages = -nr_pages; /* for event */
925 }
926
927 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
928}
929
930static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
931 enum mem_cgroup_events_target target)
932{
933 unsigned long val, next;
934
935 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
936 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
937 /* from time_after() in jiffies.h */
938 if ((long)(next - val) < 0) {
939 switch (target) {
940 case MEM_CGROUP_TARGET_THRESH:
941 next = val + THRESHOLDS_EVENTS_TARGET;
942 break;
943 case MEM_CGROUP_TARGET_SOFTLIMIT:
944 next = val + SOFTLIMIT_EVENTS_TARGET;
945 break;
946 default:
947 break;
948 }
949 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
950 return true;
951 }
952 return false;
953}
954
955/*
956 * Check events in order.
957 *
958 */
959static void memcg_check_events(struct mem_cgroup *memcg, int nid)
960{
961 if (IS_ENABLED(CONFIG_PREEMPT_RT))
962 return;
963
964 /* threshold event is triggered in finer grain than soft limit */
965 if (unlikely(mem_cgroup_event_ratelimit(memcg,
966 MEM_CGROUP_TARGET_THRESH))) {
967 bool do_softlimit;
968
969 do_softlimit = mem_cgroup_event_ratelimit(memcg,
970 MEM_CGROUP_TARGET_SOFTLIMIT);
971 mem_cgroup_threshold(memcg);
972 if (unlikely(do_softlimit))
973 mem_cgroup_update_tree(memcg, nid);
974 }
975}
976
977struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
978{
979 /*
980 * mm_update_next_owner() may clear mm->owner to NULL
981 * if it races with swapoff, page migration, etc.
982 * So this can be called with p == NULL.
983 */
984 if (unlikely(!p))
985 return NULL;
986
987 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
988}
989EXPORT_SYMBOL(mem_cgroup_from_task);
990
991static __always_inline struct mem_cgroup *active_memcg(void)
992{
993 if (!in_task())
994 return this_cpu_read(int_active_memcg);
995 else
996 return current->active_memcg;
997}
998
999/**
1000 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1001 * @mm: mm from which memcg should be extracted. It can be NULL.
1002 *
1003 * Obtain a reference on mm->memcg and returns it if successful. If mm
1004 * is NULL, then the memcg is chosen as follows:
1005 * 1) The active memcg, if set.
1006 * 2) current->mm->memcg, if available
1007 * 3) root memcg
1008 * If mem_cgroup is disabled, NULL is returned.
1009 */
1010struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1011{
1012 struct mem_cgroup *memcg;
1013
1014 if (mem_cgroup_disabled())
1015 return NULL;
1016
1017 /*
1018 * Page cache insertions can happen without an
1019 * actual mm context, e.g. during disk probing
1020 * on boot, loopback IO, acct() writes etc.
1021 *
1022 * No need to css_get on root memcg as the reference
1023 * counting is disabled on the root level in the
1024 * cgroup core. See CSS_NO_REF.
1025 */
1026 if (unlikely(!mm)) {
1027 memcg = active_memcg();
1028 if (unlikely(memcg)) {
1029 /* remote memcg must hold a ref */
1030 css_get(&memcg->css);
1031 return memcg;
1032 }
1033 mm = current->mm;
1034 if (unlikely(!mm))
1035 return root_mem_cgroup;
1036 }
1037
1038 rcu_read_lock();
1039 do {
1040 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 if (unlikely(!memcg))
1042 memcg = root_mem_cgroup;
1043 } while (!css_tryget(&memcg->css));
1044 rcu_read_unlock();
1045 return memcg;
1046}
1047EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049static __always_inline bool memcg_kmem_bypass(void)
1050{
1051 /* Allow remote memcg charging from any context. */
1052 if (unlikely(active_memcg()))
1053 return false;
1054
1055 /* Memcg to charge can't be determined. */
1056 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1057 return true;
1058
1059 return false;
1060}
1061
1062/**
1063 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1064 * @root: hierarchy root
1065 * @prev: previously returned memcg, NULL on first invocation
1066 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1067 *
1068 * Returns references to children of the hierarchy below @root, or
1069 * @root itself, or %NULL after a full round-trip.
1070 *
1071 * Caller must pass the return value in @prev on subsequent
1072 * invocations for reference counting, or use mem_cgroup_iter_break()
1073 * to cancel a hierarchy walk before the round-trip is complete.
1074 *
1075 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1076 * in the hierarchy among all concurrent reclaimers operating on the
1077 * same node.
1078 */
1079struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1080 struct mem_cgroup *prev,
1081 struct mem_cgroup_reclaim_cookie *reclaim)
1082{
1083 struct mem_cgroup_reclaim_iter *iter;
1084 struct cgroup_subsys_state *css = NULL;
1085 struct mem_cgroup *memcg = NULL;
1086 struct mem_cgroup *pos = NULL;
1087
1088 if (mem_cgroup_disabled())
1089 return NULL;
1090
1091 if (!root)
1092 root = root_mem_cgroup;
1093
1094 rcu_read_lock();
1095
1096 if (reclaim) {
1097 struct mem_cgroup_per_node *mz;
1098
1099 mz = root->nodeinfo[reclaim->pgdat->node_id];
1100 iter = &mz->iter;
1101
1102 /*
1103 * On start, join the current reclaim iteration cycle.
1104 * Exit when a concurrent walker completes it.
1105 */
1106 if (!prev)
1107 reclaim->generation = iter->generation;
1108 else if (reclaim->generation != iter->generation)
1109 goto out_unlock;
1110
1111 while (1) {
1112 pos = READ_ONCE(iter->position);
1113 if (!pos || css_tryget(&pos->css))
1114 break;
1115 /*
1116 * css reference reached zero, so iter->position will
1117 * be cleared by ->css_released. However, we should not
1118 * rely on this happening soon, because ->css_released
1119 * is called from a work queue, and by busy-waiting we
1120 * might block it. So we clear iter->position right
1121 * away.
1122 */
1123 (void)cmpxchg(&iter->position, pos, NULL);
1124 }
1125 } else if (prev) {
1126 pos = prev;
1127 }
1128
1129 if (pos)
1130 css = &pos->css;
1131
1132 for (;;) {
1133 css = css_next_descendant_pre(css, &root->css);
1134 if (!css) {
1135 /*
1136 * Reclaimers share the hierarchy walk, and a
1137 * new one might jump in right at the end of
1138 * the hierarchy - make sure they see at least
1139 * one group and restart from the beginning.
1140 */
1141 if (!prev)
1142 continue;
1143 break;
1144 }
1145
1146 /*
1147 * Verify the css and acquire a reference. The root
1148 * is provided by the caller, so we know it's alive
1149 * and kicking, and don't take an extra reference.
1150 */
1151 if (css == &root->css || css_tryget(css)) {
1152 memcg = mem_cgroup_from_css(css);
1153 break;
1154 }
1155 }
1156
1157 if (reclaim) {
1158 /*
1159 * The position could have already been updated by a competing
1160 * thread, so check that the value hasn't changed since we read
1161 * it to avoid reclaiming from the same cgroup twice.
1162 */
1163 (void)cmpxchg(&iter->position, pos, memcg);
1164
1165 if (pos)
1166 css_put(&pos->css);
1167
1168 if (!memcg)
1169 iter->generation++;
1170 }
1171
1172out_unlock:
1173 rcu_read_unlock();
1174 if (prev && prev != root)
1175 css_put(&prev->css);
1176
1177 return memcg;
1178}
1179
1180/**
1181 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1182 * @root: hierarchy root
1183 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1184 */
1185void mem_cgroup_iter_break(struct mem_cgroup *root,
1186 struct mem_cgroup *prev)
1187{
1188 if (!root)
1189 root = root_mem_cgroup;
1190 if (prev && prev != root)
1191 css_put(&prev->css);
1192}
1193
1194static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1195 struct mem_cgroup *dead_memcg)
1196{
1197 struct mem_cgroup_reclaim_iter *iter;
1198 struct mem_cgroup_per_node *mz;
1199 int nid;
1200
1201 for_each_node(nid) {
1202 mz = from->nodeinfo[nid];
1203 iter = &mz->iter;
1204 cmpxchg(&iter->position, dead_memcg, NULL);
1205 }
1206}
1207
1208static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1209{
1210 struct mem_cgroup *memcg = dead_memcg;
1211 struct mem_cgroup *last;
1212
1213 do {
1214 __invalidate_reclaim_iterators(memcg, dead_memcg);
1215 last = memcg;
1216 } while ((memcg = parent_mem_cgroup(memcg)));
1217
1218 /*
1219 * When cgroup1 non-hierarchy mode is used,
1220 * parent_mem_cgroup() does not walk all the way up to the
1221 * cgroup root (root_mem_cgroup). So we have to handle
1222 * dead_memcg from cgroup root separately.
1223 */
1224 if (!mem_cgroup_is_root(last))
1225 __invalidate_reclaim_iterators(root_mem_cgroup,
1226 dead_memcg);
1227}
1228
1229/**
1230 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1231 * @memcg: hierarchy root
1232 * @fn: function to call for each task
1233 * @arg: argument passed to @fn
1234 *
1235 * This function iterates over tasks attached to @memcg or to any of its
1236 * descendants and calls @fn for each task. If @fn returns a non-zero
1237 * value, the function breaks the iteration loop and returns the value.
1238 * Otherwise, it will iterate over all tasks and return 0.
1239 *
1240 * This function must not be called for the root memory cgroup.
1241 */
1242int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1243 int (*fn)(struct task_struct *, void *), void *arg)
1244{
1245 struct mem_cgroup *iter;
1246 int ret = 0;
1247
1248 BUG_ON(mem_cgroup_is_root(memcg));
1249
1250 for_each_mem_cgroup_tree(iter, memcg) {
1251 struct css_task_iter it;
1252 struct task_struct *task;
1253
1254 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1255 while (!ret && (task = css_task_iter_next(&it)))
1256 ret = fn(task, arg);
1257 css_task_iter_end(&it);
1258 if (ret) {
1259 mem_cgroup_iter_break(memcg, iter);
1260 break;
1261 }
1262 }
1263 return ret;
1264}
1265
1266#ifdef CONFIG_DEBUG_VM
1267void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1268{
1269 struct mem_cgroup *memcg;
1270
1271 if (mem_cgroup_disabled())
1272 return;
1273
1274 memcg = folio_memcg(folio);
1275
1276 if (!memcg)
1277 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1278 else
1279 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1280}
1281#endif
1282
1283/**
1284 * folio_lruvec_lock - Lock the lruvec for a folio.
1285 * @folio: Pointer to the folio.
1286 *
1287 * These functions are safe to use under any of the following conditions:
1288 * - folio locked
1289 * - folio_test_lru false
1290 * - folio_memcg_lock()
1291 * - folio frozen (refcount of 0)
1292 *
1293 * Return: The lruvec this folio is on with its lock held.
1294 */
1295struct lruvec *folio_lruvec_lock(struct folio *folio)
1296{
1297 struct lruvec *lruvec = folio_lruvec(folio);
1298
1299 spin_lock(&lruvec->lru_lock);
1300 lruvec_memcg_debug(lruvec, folio);
1301
1302 return lruvec;
1303}
1304
1305/**
1306 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1307 * @folio: Pointer to the folio.
1308 *
1309 * These functions are safe to use under any of the following conditions:
1310 * - folio locked
1311 * - folio_test_lru false
1312 * - folio_memcg_lock()
1313 * - folio frozen (refcount of 0)
1314 *
1315 * Return: The lruvec this folio is on with its lock held and interrupts
1316 * disabled.
1317 */
1318struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1319{
1320 struct lruvec *lruvec = folio_lruvec(folio);
1321
1322 spin_lock_irq(&lruvec->lru_lock);
1323 lruvec_memcg_debug(lruvec, folio);
1324
1325 return lruvec;
1326}
1327
1328/**
1329 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1330 * @folio: Pointer to the folio.
1331 * @flags: Pointer to irqsave flags.
1332 *
1333 * These functions are safe to use under any of the following conditions:
1334 * - folio locked
1335 * - folio_test_lru false
1336 * - folio_memcg_lock()
1337 * - folio frozen (refcount of 0)
1338 *
1339 * Return: The lruvec this folio is on with its lock held and interrupts
1340 * disabled.
1341 */
1342struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1343 unsigned long *flags)
1344{
1345 struct lruvec *lruvec = folio_lruvec(folio);
1346
1347 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1348 lruvec_memcg_debug(lruvec, folio);
1349
1350 return lruvec;
1351}
1352
1353/**
1354 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1355 * @lruvec: mem_cgroup per zone lru vector
1356 * @lru: index of lru list the page is sitting on
1357 * @zid: zone id of the accounted pages
1358 * @nr_pages: positive when adding or negative when removing
1359 *
1360 * This function must be called under lru_lock, just before a page is added
1361 * to or just after a page is removed from an lru list.
1362 */
1363void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1364 int zid, int nr_pages)
1365{
1366 struct mem_cgroup_per_node *mz;
1367 unsigned long *lru_size;
1368 long size;
1369
1370 if (mem_cgroup_disabled())
1371 return;
1372
1373 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1374 lru_size = &mz->lru_zone_size[zid][lru];
1375
1376 if (nr_pages < 0)
1377 *lru_size += nr_pages;
1378
1379 size = *lru_size;
1380 if (WARN_ONCE(size < 0,
1381 "%s(%p, %d, %d): lru_size %ld\n",
1382 __func__, lruvec, lru, nr_pages, size)) {
1383 VM_BUG_ON(1);
1384 *lru_size = 0;
1385 }
1386
1387 if (nr_pages > 0)
1388 *lru_size += nr_pages;
1389}
1390
1391/**
1392 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1393 * @memcg: the memory cgroup
1394 *
1395 * Returns the maximum amount of memory @mem can be charged with, in
1396 * pages.
1397 */
1398static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1399{
1400 unsigned long margin = 0;
1401 unsigned long count;
1402 unsigned long limit;
1403
1404 count = page_counter_read(&memcg->memory);
1405 limit = READ_ONCE(memcg->memory.max);
1406 if (count < limit)
1407 margin = limit - count;
1408
1409 if (do_memsw_account()) {
1410 count = page_counter_read(&memcg->memsw);
1411 limit = READ_ONCE(memcg->memsw.max);
1412 if (count < limit)
1413 margin = min(margin, limit - count);
1414 else
1415 margin = 0;
1416 }
1417
1418 return margin;
1419}
1420
1421/*
1422 * A routine for checking "mem" is under move_account() or not.
1423 *
1424 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1425 * moving cgroups. This is for waiting at high-memory pressure
1426 * caused by "move".
1427 */
1428static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1429{
1430 struct mem_cgroup *from;
1431 struct mem_cgroup *to;
1432 bool ret = false;
1433 /*
1434 * Unlike task_move routines, we access mc.to, mc.from not under
1435 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1436 */
1437 spin_lock(&mc.lock);
1438 from = mc.from;
1439 to = mc.to;
1440 if (!from)
1441 goto unlock;
1442
1443 ret = mem_cgroup_is_descendant(from, memcg) ||
1444 mem_cgroup_is_descendant(to, memcg);
1445unlock:
1446 spin_unlock(&mc.lock);
1447 return ret;
1448}
1449
1450static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1451{
1452 if (mc.moving_task && current != mc.moving_task) {
1453 if (mem_cgroup_under_move(memcg)) {
1454 DEFINE_WAIT(wait);
1455 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1456 /* moving charge context might have finished. */
1457 if (mc.moving_task)
1458 schedule();
1459 finish_wait(&mc.waitq, &wait);
1460 return true;
1461 }
1462 }
1463 return false;
1464}
1465
1466struct memory_stat {
1467 const char *name;
1468 unsigned int idx;
1469};
1470
1471static const struct memory_stat memory_stats[] = {
1472 { "anon", NR_ANON_MAPPED },
1473 { "file", NR_FILE_PAGES },
1474 { "kernel", MEMCG_KMEM },
1475 { "kernel_stack", NR_KERNEL_STACK_KB },
1476 { "pagetables", NR_PAGETABLE },
1477 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1478 { "percpu", MEMCG_PERCPU_B },
1479 { "sock", MEMCG_SOCK },
1480 { "vmalloc", MEMCG_VMALLOC },
1481 { "shmem", NR_SHMEM },
1482#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1483 { "zswap", MEMCG_ZSWAP_B },
1484 { "zswapped", MEMCG_ZSWAPPED },
1485#endif
1486 { "file_mapped", NR_FILE_MAPPED },
1487 { "file_dirty", NR_FILE_DIRTY },
1488 { "file_writeback", NR_WRITEBACK },
1489#ifdef CONFIG_SWAP
1490 { "swapcached", NR_SWAPCACHE },
1491#endif
1492#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1493 { "anon_thp", NR_ANON_THPS },
1494 { "file_thp", NR_FILE_THPS },
1495 { "shmem_thp", NR_SHMEM_THPS },
1496#endif
1497 { "inactive_anon", NR_INACTIVE_ANON },
1498 { "active_anon", NR_ACTIVE_ANON },
1499 { "inactive_file", NR_INACTIVE_FILE },
1500 { "active_file", NR_ACTIVE_FILE },
1501 { "unevictable", NR_UNEVICTABLE },
1502 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1503 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1504
1505 /* The memory events */
1506 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1507 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1508 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1509 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1510 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1511 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1512 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1513};
1514
1515/* Translate stat items to the correct unit for memory.stat output */
1516static int memcg_page_state_unit(int item)
1517{
1518 switch (item) {
1519 case MEMCG_PERCPU_B:
1520 case MEMCG_ZSWAP_B:
1521 case NR_SLAB_RECLAIMABLE_B:
1522 case NR_SLAB_UNRECLAIMABLE_B:
1523 case WORKINGSET_REFAULT_ANON:
1524 case WORKINGSET_REFAULT_FILE:
1525 case WORKINGSET_ACTIVATE_ANON:
1526 case WORKINGSET_ACTIVATE_FILE:
1527 case WORKINGSET_RESTORE_ANON:
1528 case WORKINGSET_RESTORE_FILE:
1529 case WORKINGSET_NODERECLAIM:
1530 return 1;
1531 case NR_KERNEL_STACK_KB:
1532 return SZ_1K;
1533 default:
1534 return PAGE_SIZE;
1535 }
1536}
1537
1538static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1539 int item)
1540{
1541 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1542}
1543
1544static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1545{
1546 struct seq_buf s;
1547 int i;
1548
1549 seq_buf_init(&s, buf, bufsize);
1550
1551 /*
1552 * Provide statistics on the state of the memory subsystem as
1553 * well as cumulative event counters that show past behavior.
1554 *
1555 * This list is ordered following a combination of these gradients:
1556 * 1) generic big picture -> specifics and details
1557 * 2) reflecting userspace activity -> reflecting kernel heuristics
1558 *
1559 * Current memory state:
1560 */
1561 mem_cgroup_flush_stats();
1562
1563 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1564 u64 size;
1565
1566 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1567 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1568
1569 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1570 size += memcg_page_state_output(memcg,
1571 NR_SLAB_RECLAIMABLE_B);
1572 seq_buf_printf(&s, "slab %llu\n", size);
1573 }
1574 }
1575
1576 /* Accumulated memory events */
1577 seq_buf_printf(&s, "pgscan %lu\n",
1578 memcg_events(memcg, PGSCAN_KSWAPD) +
1579 memcg_events(memcg, PGSCAN_DIRECT) +
1580 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1581 seq_buf_printf(&s, "pgsteal %lu\n",
1582 memcg_events(memcg, PGSTEAL_KSWAPD) +
1583 memcg_events(memcg, PGSTEAL_DIRECT) +
1584 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1585
1586 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1587 if (memcg_vm_event_stat[i] == PGPGIN ||
1588 memcg_vm_event_stat[i] == PGPGOUT)
1589 continue;
1590
1591 seq_buf_printf(&s, "%s %lu\n",
1592 vm_event_name(memcg_vm_event_stat[i]),
1593 memcg_events(memcg, memcg_vm_event_stat[i]));
1594 }
1595
1596 /* The above should easily fit into one page */
1597 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1598}
1599
1600#define K(x) ((x) << (PAGE_SHIFT-10))
1601/**
1602 * mem_cgroup_print_oom_context: Print OOM information relevant to
1603 * memory controller.
1604 * @memcg: The memory cgroup that went over limit
1605 * @p: Task that is going to be killed
1606 *
1607 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1608 * enabled
1609 */
1610void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1611{
1612 rcu_read_lock();
1613
1614 if (memcg) {
1615 pr_cont(",oom_memcg=");
1616 pr_cont_cgroup_path(memcg->css.cgroup);
1617 } else
1618 pr_cont(",global_oom");
1619 if (p) {
1620 pr_cont(",task_memcg=");
1621 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1622 }
1623 rcu_read_unlock();
1624}
1625
1626/**
1627 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1628 * memory controller.
1629 * @memcg: The memory cgroup that went over limit
1630 */
1631void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1632{
1633 /* Use static buffer, for the caller is holding oom_lock. */
1634 static char buf[PAGE_SIZE];
1635
1636 lockdep_assert_held(&oom_lock);
1637
1638 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1639 K((u64)page_counter_read(&memcg->memory)),
1640 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1641 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1642 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1643 K((u64)page_counter_read(&memcg->swap)),
1644 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1645 else {
1646 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1647 K((u64)page_counter_read(&memcg->memsw)),
1648 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1649 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1650 K((u64)page_counter_read(&memcg->kmem)),
1651 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1652 }
1653
1654 pr_info("Memory cgroup stats for ");
1655 pr_cont_cgroup_path(memcg->css.cgroup);
1656 pr_cont(":");
1657 memory_stat_format(memcg, buf, sizeof(buf));
1658 pr_info("%s", buf);
1659}
1660
1661/*
1662 * Return the memory (and swap, if configured) limit for a memcg.
1663 */
1664unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1665{
1666 unsigned long max = READ_ONCE(memcg->memory.max);
1667
1668 if (do_memsw_account()) {
1669 if (mem_cgroup_swappiness(memcg)) {
1670 /* Calculate swap excess capacity from memsw limit */
1671 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1672
1673 max += min(swap, (unsigned long)total_swap_pages);
1674 }
1675 } else {
1676 if (mem_cgroup_swappiness(memcg))
1677 max += min(READ_ONCE(memcg->swap.max),
1678 (unsigned long)total_swap_pages);
1679 }
1680 return max;
1681}
1682
1683unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1684{
1685 return page_counter_read(&memcg->memory);
1686}
1687
1688static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1689 int order)
1690{
1691 struct oom_control oc = {
1692 .zonelist = NULL,
1693 .nodemask = NULL,
1694 .memcg = memcg,
1695 .gfp_mask = gfp_mask,
1696 .order = order,
1697 };
1698 bool ret = true;
1699
1700 if (mutex_lock_killable(&oom_lock))
1701 return true;
1702
1703 if (mem_cgroup_margin(memcg) >= (1 << order))
1704 goto unlock;
1705
1706 /*
1707 * A few threads which were not waiting at mutex_lock_killable() can
1708 * fail to bail out. Therefore, check again after holding oom_lock.
1709 */
1710 ret = task_is_dying() || out_of_memory(&oc);
1711
1712unlock:
1713 mutex_unlock(&oom_lock);
1714 return ret;
1715}
1716
1717static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1718 pg_data_t *pgdat,
1719 gfp_t gfp_mask,
1720 unsigned long *total_scanned)
1721{
1722 struct mem_cgroup *victim = NULL;
1723 int total = 0;
1724 int loop = 0;
1725 unsigned long excess;
1726 unsigned long nr_scanned;
1727 struct mem_cgroup_reclaim_cookie reclaim = {
1728 .pgdat = pgdat,
1729 };
1730
1731 excess = soft_limit_excess(root_memcg);
1732
1733 while (1) {
1734 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1735 if (!victim) {
1736 loop++;
1737 if (loop >= 2) {
1738 /*
1739 * If we have not been able to reclaim
1740 * anything, it might because there are
1741 * no reclaimable pages under this hierarchy
1742 */
1743 if (!total)
1744 break;
1745 /*
1746 * We want to do more targeted reclaim.
1747 * excess >> 2 is not to excessive so as to
1748 * reclaim too much, nor too less that we keep
1749 * coming back to reclaim from this cgroup
1750 */
1751 if (total >= (excess >> 2) ||
1752 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1753 break;
1754 }
1755 continue;
1756 }
1757 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1758 pgdat, &nr_scanned);
1759 *total_scanned += nr_scanned;
1760 if (!soft_limit_excess(root_memcg))
1761 break;
1762 }
1763 mem_cgroup_iter_break(root_memcg, victim);
1764 return total;
1765}
1766
1767#ifdef CONFIG_LOCKDEP
1768static struct lockdep_map memcg_oom_lock_dep_map = {
1769 .name = "memcg_oom_lock",
1770};
1771#endif
1772
1773static DEFINE_SPINLOCK(memcg_oom_lock);
1774
1775/*
1776 * Check OOM-Killer is already running under our hierarchy.
1777 * If someone is running, return false.
1778 */
1779static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1780{
1781 struct mem_cgroup *iter, *failed = NULL;
1782
1783 spin_lock(&memcg_oom_lock);
1784
1785 for_each_mem_cgroup_tree(iter, memcg) {
1786 if (iter->oom_lock) {
1787 /*
1788 * this subtree of our hierarchy is already locked
1789 * so we cannot give a lock.
1790 */
1791 failed = iter;
1792 mem_cgroup_iter_break(memcg, iter);
1793 break;
1794 } else
1795 iter->oom_lock = true;
1796 }
1797
1798 if (failed) {
1799 /*
1800 * OK, we failed to lock the whole subtree so we have
1801 * to clean up what we set up to the failing subtree
1802 */
1803 for_each_mem_cgroup_tree(iter, memcg) {
1804 if (iter == failed) {
1805 mem_cgroup_iter_break(memcg, iter);
1806 break;
1807 }
1808 iter->oom_lock = false;
1809 }
1810 } else
1811 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1812
1813 spin_unlock(&memcg_oom_lock);
1814
1815 return !failed;
1816}
1817
1818static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1819{
1820 struct mem_cgroup *iter;
1821
1822 spin_lock(&memcg_oom_lock);
1823 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1824 for_each_mem_cgroup_tree(iter, memcg)
1825 iter->oom_lock = false;
1826 spin_unlock(&memcg_oom_lock);
1827}
1828
1829static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1830{
1831 struct mem_cgroup *iter;
1832
1833 spin_lock(&memcg_oom_lock);
1834 for_each_mem_cgroup_tree(iter, memcg)
1835 iter->under_oom++;
1836 spin_unlock(&memcg_oom_lock);
1837}
1838
1839static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1840{
1841 struct mem_cgroup *iter;
1842
1843 /*
1844 * Be careful about under_oom underflows because a child memcg
1845 * could have been added after mem_cgroup_mark_under_oom.
1846 */
1847 spin_lock(&memcg_oom_lock);
1848 for_each_mem_cgroup_tree(iter, memcg)
1849 if (iter->under_oom > 0)
1850 iter->under_oom--;
1851 spin_unlock(&memcg_oom_lock);
1852}
1853
1854static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1855
1856struct oom_wait_info {
1857 struct mem_cgroup *memcg;
1858 wait_queue_entry_t wait;
1859};
1860
1861static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1862 unsigned mode, int sync, void *arg)
1863{
1864 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1865 struct mem_cgroup *oom_wait_memcg;
1866 struct oom_wait_info *oom_wait_info;
1867
1868 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1869 oom_wait_memcg = oom_wait_info->memcg;
1870
1871 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1872 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1873 return 0;
1874 return autoremove_wake_function(wait, mode, sync, arg);
1875}
1876
1877static void memcg_oom_recover(struct mem_cgroup *memcg)
1878{
1879 /*
1880 * For the following lockless ->under_oom test, the only required
1881 * guarantee is that it must see the state asserted by an OOM when
1882 * this function is called as a result of userland actions
1883 * triggered by the notification of the OOM. This is trivially
1884 * achieved by invoking mem_cgroup_mark_under_oom() before
1885 * triggering notification.
1886 */
1887 if (memcg && memcg->under_oom)
1888 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1889}
1890
1891/*
1892 * Returns true if successfully killed one or more processes. Though in some
1893 * corner cases it can return true even without killing any process.
1894 */
1895static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1896{
1897 bool locked, ret;
1898
1899 if (order > PAGE_ALLOC_COSTLY_ORDER)
1900 return false;
1901
1902 memcg_memory_event(memcg, MEMCG_OOM);
1903
1904 /*
1905 * We are in the middle of the charge context here, so we
1906 * don't want to block when potentially sitting on a callstack
1907 * that holds all kinds of filesystem and mm locks.
1908 *
1909 * cgroup1 allows disabling the OOM killer and waiting for outside
1910 * handling until the charge can succeed; remember the context and put
1911 * the task to sleep at the end of the page fault when all locks are
1912 * released.
1913 *
1914 * On the other hand, in-kernel OOM killer allows for an async victim
1915 * memory reclaim (oom_reaper) and that means that we are not solely
1916 * relying on the oom victim to make a forward progress and we can
1917 * invoke the oom killer here.
1918 *
1919 * Please note that mem_cgroup_out_of_memory might fail to find a
1920 * victim and then we have to bail out from the charge path.
1921 */
1922 if (memcg->oom_kill_disable) {
1923 if (current->in_user_fault) {
1924 css_get(&memcg->css);
1925 current->memcg_in_oom = memcg;
1926 current->memcg_oom_gfp_mask = mask;
1927 current->memcg_oom_order = order;
1928 }
1929 return false;
1930 }
1931
1932 mem_cgroup_mark_under_oom(memcg);
1933
1934 locked = mem_cgroup_oom_trylock(memcg);
1935
1936 if (locked)
1937 mem_cgroup_oom_notify(memcg);
1938
1939 mem_cgroup_unmark_under_oom(memcg);
1940 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1941
1942 if (locked)
1943 mem_cgroup_oom_unlock(memcg);
1944
1945 return ret;
1946}
1947
1948/**
1949 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1950 * @handle: actually kill/wait or just clean up the OOM state
1951 *
1952 * This has to be called at the end of a page fault if the memcg OOM
1953 * handler was enabled.
1954 *
1955 * Memcg supports userspace OOM handling where failed allocations must
1956 * sleep on a waitqueue until the userspace task resolves the
1957 * situation. Sleeping directly in the charge context with all kinds
1958 * of locks held is not a good idea, instead we remember an OOM state
1959 * in the task and mem_cgroup_oom_synchronize() has to be called at
1960 * the end of the page fault to complete the OOM handling.
1961 *
1962 * Returns %true if an ongoing memcg OOM situation was detected and
1963 * completed, %false otherwise.
1964 */
1965bool mem_cgroup_oom_synchronize(bool handle)
1966{
1967 struct mem_cgroup *memcg = current->memcg_in_oom;
1968 struct oom_wait_info owait;
1969 bool locked;
1970
1971 /* OOM is global, do not handle */
1972 if (!memcg)
1973 return false;
1974
1975 if (!handle)
1976 goto cleanup;
1977
1978 owait.memcg = memcg;
1979 owait.wait.flags = 0;
1980 owait.wait.func = memcg_oom_wake_function;
1981 owait.wait.private = current;
1982 INIT_LIST_HEAD(&owait.wait.entry);
1983
1984 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1985 mem_cgroup_mark_under_oom(memcg);
1986
1987 locked = mem_cgroup_oom_trylock(memcg);
1988
1989 if (locked)
1990 mem_cgroup_oom_notify(memcg);
1991
1992 if (locked && !memcg->oom_kill_disable) {
1993 mem_cgroup_unmark_under_oom(memcg);
1994 finish_wait(&memcg_oom_waitq, &owait.wait);
1995 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1996 current->memcg_oom_order);
1997 } else {
1998 schedule();
1999 mem_cgroup_unmark_under_oom(memcg);
2000 finish_wait(&memcg_oom_waitq, &owait.wait);
2001 }
2002
2003 if (locked) {
2004 mem_cgroup_oom_unlock(memcg);
2005 /*
2006 * There is no guarantee that an OOM-lock contender
2007 * sees the wakeups triggered by the OOM kill
2008 * uncharges. Wake any sleepers explicitly.
2009 */
2010 memcg_oom_recover(memcg);
2011 }
2012cleanup:
2013 current->memcg_in_oom = NULL;
2014 css_put(&memcg->css);
2015 return true;
2016}
2017
2018/**
2019 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2020 * @victim: task to be killed by the OOM killer
2021 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2022 *
2023 * Returns a pointer to a memory cgroup, which has to be cleaned up
2024 * by killing all belonging OOM-killable tasks.
2025 *
2026 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2027 */
2028struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2029 struct mem_cgroup *oom_domain)
2030{
2031 struct mem_cgroup *oom_group = NULL;
2032 struct mem_cgroup *memcg;
2033
2034 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2035 return NULL;
2036
2037 if (!oom_domain)
2038 oom_domain = root_mem_cgroup;
2039
2040 rcu_read_lock();
2041
2042 memcg = mem_cgroup_from_task(victim);
2043 if (mem_cgroup_is_root(memcg))
2044 goto out;
2045
2046 /*
2047 * If the victim task has been asynchronously moved to a different
2048 * memory cgroup, we might end up killing tasks outside oom_domain.
2049 * In this case it's better to ignore memory.group.oom.
2050 */
2051 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2052 goto out;
2053
2054 /*
2055 * Traverse the memory cgroup hierarchy from the victim task's
2056 * cgroup up to the OOMing cgroup (or root) to find the
2057 * highest-level memory cgroup with oom.group set.
2058 */
2059 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2060 if (memcg->oom_group)
2061 oom_group = memcg;
2062
2063 if (memcg == oom_domain)
2064 break;
2065 }
2066
2067 if (oom_group)
2068 css_get(&oom_group->css);
2069out:
2070 rcu_read_unlock();
2071
2072 return oom_group;
2073}
2074
2075void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2076{
2077 pr_info("Tasks in ");
2078 pr_cont_cgroup_path(memcg->css.cgroup);
2079 pr_cont(" are going to be killed due to memory.oom.group set\n");
2080}
2081
2082/**
2083 * folio_memcg_lock - Bind a folio to its memcg.
2084 * @folio: The folio.
2085 *
2086 * This function prevents unlocked LRU folios from being moved to
2087 * another cgroup.
2088 *
2089 * It ensures lifetime of the bound memcg. The caller is responsible
2090 * for the lifetime of the folio.
2091 */
2092void folio_memcg_lock(struct folio *folio)
2093{
2094 struct mem_cgroup *memcg;
2095 unsigned long flags;
2096
2097 /*
2098 * The RCU lock is held throughout the transaction. The fast
2099 * path can get away without acquiring the memcg->move_lock
2100 * because page moving starts with an RCU grace period.
2101 */
2102 rcu_read_lock();
2103
2104 if (mem_cgroup_disabled())
2105 return;
2106again:
2107 memcg = folio_memcg(folio);
2108 if (unlikely(!memcg))
2109 return;
2110
2111#ifdef CONFIG_PROVE_LOCKING
2112 local_irq_save(flags);
2113 might_lock(&memcg->move_lock);
2114 local_irq_restore(flags);
2115#endif
2116
2117 if (atomic_read(&memcg->moving_account) <= 0)
2118 return;
2119
2120 spin_lock_irqsave(&memcg->move_lock, flags);
2121 if (memcg != folio_memcg(folio)) {
2122 spin_unlock_irqrestore(&memcg->move_lock, flags);
2123 goto again;
2124 }
2125
2126 /*
2127 * When charge migration first begins, we can have multiple
2128 * critical sections holding the fast-path RCU lock and one
2129 * holding the slowpath move_lock. Track the task who has the
2130 * move_lock for unlock_page_memcg().
2131 */
2132 memcg->move_lock_task = current;
2133 memcg->move_lock_flags = flags;
2134}
2135
2136void lock_page_memcg(struct page *page)
2137{
2138 folio_memcg_lock(page_folio(page));
2139}
2140
2141static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2142{
2143 if (memcg && memcg->move_lock_task == current) {
2144 unsigned long flags = memcg->move_lock_flags;
2145
2146 memcg->move_lock_task = NULL;
2147 memcg->move_lock_flags = 0;
2148
2149 spin_unlock_irqrestore(&memcg->move_lock, flags);
2150 }
2151
2152 rcu_read_unlock();
2153}
2154
2155/**
2156 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2157 * @folio: The folio.
2158 *
2159 * This releases the binding created by folio_memcg_lock(). This does
2160 * not change the accounting of this folio to its memcg, but it does
2161 * permit others to change it.
2162 */
2163void folio_memcg_unlock(struct folio *folio)
2164{
2165 __folio_memcg_unlock(folio_memcg(folio));
2166}
2167
2168void unlock_page_memcg(struct page *page)
2169{
2170 folio_memcg_unlock(page_folio(page));
2171}
2172
2173struct memcg_stock_pcp {
2174 local_lock_t stock_lock;
2175 struct mem_cgroup *cached; /* this never be root cgroup */
2176 unsigned int nr_pages;
2177
2178#ifdef CONFIG_MEMCG_KMEM
2179 struct obj_cgroup *cached_objcg;
2180 struct pglist_data *cached_pgdat;
2181 unsigned int nr_bytes;
2182 int nr_slab_reclaimable_b;
2183 int nr_slab_unreclaimable_b;
2184#endif
2185
2186 struct work_struct work;
2187 unsigned long flags;
2188#define FLUSHING_CACHED_CHARGE 0
2189};
2190static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2191 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2192};
2193static DEFINE_MUTEX(percpu_charge_mutex);
2194
2195#ifdef CONFIG_MEMCG_KMEM
2196static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2197static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2198 struct mem_cgroup *root_memcg);
2199static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2200
2201#else
2202static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2203{
2204 return NULL;
2205}
2206static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2207 struct mem_cgroup *root_memcg)
2208{
2209 return false;
2210}
2211static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2212{
2213}
2214#endif
2215
2216/**
2217 * consume_stock: Try to consume stocked charge on this cpu.
2218 * @memcg: memcg to consume from.
2219 * @nr_pages: how many pages to charge.
2220 *
2221 * The charges will only happen if @memcg matches the current cpu's memcg
2222 * stock, and at least @nr_pages are available in that stock. Failure to
2223 * service an allocation will refill the stock.
2224 *
2225 * returns true if successful, false otherwise.
2226 */
2227static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228{
2229 struct memcg_stock_pcp *stock;
2230 unsigned long flags;
2231 bool ret = false;
2232
2233 if (nr_pages > MEMCG_CHARGE_BATCH)
2234 return ret;
2235
2236 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2237
2238 stock = this_cpu_ptr(&memcg_stock);
2239 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2240 stock->nr_pages -= nr_pages;
2241 ret = true;
2242 }
2243
2244 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2245
2246 return ret;
2247}
2248
2249/*
2250 * Returns stocks cached in percpu and reset cached information.
2251 */
2252static void drain_stock(struct memcg_stock_pcp *stock)
2253{
2254 struct mem_cgroup *old = stock->cached;
2255
2256 if (!old)
2257 return;
2258
2259 if (stock->nr_pages) {
2260 page_counter_uncharge(&old->memory, stock->nr_pages);
2261 if (do_memsw_account())
2262 page_counter_uncharge(&old->memsw, stock->nr_pages);
2263 stock->nr_pages = 0;
2264 }
2265
2266 css_put(&old->css);
2267 stock->cached = NULL;
2268}
2269
2270static void drain_local_stock(struct work_struct *dummy)
2271{
2272 struct memcg_stock_pcp *stock;
2273 struct obj_cgroup *old = NULL;
2274 unsigned long flags;
2275
2276 /*
2277 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2278 * drain_stock races is that we always operate on local CPU stock
2279 * here with IRQ disabled
2280 */
2281 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2282
2283 stock = this_cpu_ptr(&memcg_stock);
2284 old = drain_obj_stock(stock);
2285 drain_stock(stock);
2286 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2287
2288 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2289 if (old)
2290 obj_cgroup_put(old);
2291}
2292
2293/*
2294 * Cache charges(val) to local per_cpu area.
2295 * This will be consumed by consume_stock() function, later.
2296 */
2297static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2298{
2299 struct memcg_stock_pcp *stock;
2300
2301 stock = this_cpu_ptr(&memcg_stock);
2302 if (stock->cached != memcg) { /* reset if necessary */
2303 drain_stock(stock);
2304 css_get(&memcg->css);
2305 stock->cached = memcg;
2306 }
2307 stock->nr_pages += nr_pages;
2308
2309 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2310 drain_stock(stock);
2311}
2312
2313static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2314{
2315 unsigned long flags;
2316
2317 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2318 __refill_stock(memcg, nr_pages);
2319 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2320}
2321
2322/*
2323 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2324 * of the hierarchy under it.
2325 */
2326static void drain_all_stock(struct mem_cgroup *root_memcg)
2327{
2328 int cpu, curcpu;
2329
2330 /* If someone's already draining, avoid adding running more workers. */
2331 if (!mutex_trylock(&percpu_charge_mutex))
2332 return;
2333 /*
2334 * Notify other cpus that system-wide "drain" is running
2335 * We do not care about races with the cpu hotplug because cpu down
2336 * as well as workers from this path always operate on the local
2337 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2338 */
2339 migrate_disable();
2340 curcpu = smp_processor_id();
2341 for_each_online_cpu(cpu) {
2342 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2343 struct mem_cgroup *memcg;
2344 bool flush = false;
2345
2346 rcu_read_lock();
2347 memcg = stock->cached;
2348 if (memcg && stock->nr_pages &&
2349 mem_cgroup_is_descendant(memcg, root_memcg))
2350 flush = true;
2351 else if (obj_stock_flush_required(stock, root_memcg))
2352 flush = true;
2353 rcu_read_unlock();
2354
2355 if (flush &&
2356 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2357 if (cpu == curcpu)
2358 drain_local_stock(&stock->work);
2359 else
2360 schedule_work_on(cpu, &stock->work);
2361 }
2362 }
2363 migrate_enable();
2364 mutex_unlock(&percpu_charge_mutex);
2365}
2366
2367static int memcg_hotplug_cpu_dead(unsigned int cpu)
2368{
2369 struct memcg_stock_pcp *stock;
2370
2371 stock = &per_cpu(memcg_stock, cpu);
2372 drain_stock(stock);
2373
2374 return 0;
2375}
2376
2377static unsigned long reclaim_high(struct mem_cgroup *memcg,
2378 unsigned int nr_pages,
2379 gfp_t gfp_mask)
2380{
2381 unsigned long nr_reclaimed = 0;
2382
2383 do {
2384 unsigned long pflags;
2385
2386 if (page_counter_read(&memcg->memory) <=
2387 READ_ONCE(memcg->memory.high))
2388 continue;
2389
2390 memcg_memory_event(memcg, MEMCG_HIGH);
2391
2392 psi_memstall_enter(&pflags);
2393 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2394 gfp_mask,
2395 MEMCG_RECLAIM_MAY_SWAP);
2396 psi_memstall_leave(&pflags);
2397 } while ((memcg = parent_mem_cgroup(memcg)) &&
2398 !mem_cgroup_is_root(memcg));
2399
2400 return nr_reclaimed;
2401}
2402
2403static void high_work_func(struct work_struct *work)
2404{
2405 struct mem_cgroup *memcg;
2406
2407 memcg = container_of(work, struct mem_cgroup, high_work);
2408 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2409}
2410
2411/*
2412 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2413 * enough to still cause a significant slowdown in most cases, while still
2414 * allowing diagnostics and tracing to proceed without becoming stuck.
2415 */
2416#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2417
2418/*
2419 * When calculating the delay, we use these either side of the exponentiation to
2420 * maintain precision and scale to a reasonable number of jiffies (see the table
2421 * below.
2422 *
2423 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2424 * overage ratio to a delay.
2425 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2426 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2427 * to produce a reasonable delay curve.
2428 *
2429 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2430 * reasonable delay curve compared to precision-adjusted overage, not
2431 * penalising heavily at first, but still making sure that growth beyond the
2432 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2433 * example, with a high of 100 megabytes:
2434 *
2435 * +-------+------------------------+
2436 * | usage | time to allocate in ms |
2437 * +-------+------------------------+
2438 * | 100M | 0 |
2439 * | 101M | 6 |
2440 * | 102M | 25 |
2441 * | 103M | 57 |
2442 * | 104M | 102 |
2443 * | 105M | 159 |
2444 * | 106M | 230 |
2445 * | 107M | 313 |
2446 * | 108M | 409 |
2447 * | 109M | 518 |
2448 * | 110M | 639 |
2449 * | 111M | 774 |
2450 * | 112M | 921 |
2451 * | 113M | 1081 |
2452 * | 114M | 1254 |
2453 * | 115M | 1439 |
2454 * | 116M | 1638 |
2455 * | 117M | 1849 |
2456 * | 118M | 2000 |
2457 * | 119M | 2000 |
2458 * | 120M | 2000 |
2459 * +-------+------------------------+
2460 */
2461 #define MEMCG_DELAY_PRECISION_SHIFT 20
2462 #define MEMCG_DELAY_SCALING_SHIFT 14
2463
2464static u64 calculate_overage(unsigned long usage, unsigned long high)
2465{
2466 u64 overage;
2467
2468 if (usage <= high)
2469 return 0;
2470
2471 /*
2472 * Prevent division by 0 in overage calculation by acting as if
2473 * it was a threshold of 1 page
2474 */
2475 high = max(high, 1UL);
2476
2477 overage = usage - high;
2478 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2479 return div64_u64(overage, high);
2480}
2481
2482static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2483{
2484 u64 overage, max_overage = 0;
2485
2486 do {
2487 overage = calculate_overage(page_counter_read(&memcg->memory),
2488 READ_ONCE(memcg->memory.high));
2489 max_overage = max(overage, max_overage);
2490 } while ((memcg = parent_mem_cgroup(memcg)) &&
2491 !mem_cgroup_is_root(memcg));
2492
2493 return max_overage;
2494}
2495
2496static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2497{
2498 u64 overage, max_overage = 0;
2499
2500 do {
2501 overage = calculate_overage(page_counter_read(&memcg->swap),
2502 READ_ONCE(memcg->swap.high));
2503 if (overage)
2504 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2505 max_overage = max(overage, max_overage);
2506 } while ((memcg = parent_mem_cgroup(memcg)) &&
2507 !mem_cgroup_is_root(memcg));
2508
2509 return max_overage;
2510}
2511
2512/*
2513 * Get the number of jiffies that we should penalise a mischievous cgroup which
2514 * is exceeding its memory.high by checking both it and its ancestors.
2515 */
2516static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2517 unsigned int nr_pages,
2518 u64 max_overage)
2519{
2520 unsigned long penalty_jiffies;
2521
2522 if (!max_overage)
2523 return 0;
2524
2525 /*
2526 * We use overage compared to memory.high to calculate the number of
2527 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2528 * fairly lenient on small overages, and increasingly harsh when the
2529 * memcg in question makes it clear that it has no intention of stopping
2530 * its crazy behaviour, so we exponentially increase the delay based on
2531 * overage amount.
2532 */
2533 penalty_jiffies = max_overage * max_overage * HZ;
2534 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2535 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2536
2537 /*
2538 * Factor in the task's own contribution to the overage, such that four
2539 * N-sized allocations are throttled approximately the same as one
2540 * 4N-sized allocation.
2541 *
2542 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2543 * larger the current charge patch is than that.
2544 */
2545 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2546}
2547
2548/*
2549 * Scheduled by try_charge() to be executed from the userland return path
2550 * and reclaims memory over the high limit.
2551 */
2552void mem_cgroup_handle_over_high(void)
2553{
2554 unsigned long penalty_jiffies;
2555 unsigned long pflags;
2556 unsigned long nr_reclaimed;
2557 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2558 int nr_retries = MAX_RECLAIM_RETRIES;
2559 struct mem_cgroup *memcg;
2560 bool in_retry = false;
2561
2562 if (likely(!nr_pages))
2563 return;
2564
2565 memcg = get_mem_cgroup_from_mm(current->mm);
2566 current->memcg_nr_pages_over_high = 0;
2567
2568retry_reclaim:
2569 /*
2570 * The allocating task should reclaim at least the batch size, but for
2571 * subsequent retries we only want to do what's necessary to prevent oom
2572 * or breaching resource isolation.
2573 *
2574 * This is distinct from memory.max or page allocator behaviour because
2575 * memory.high is currently batched, whereas memory.max and the page
2576 * allocator run every time an allocation is made.
2577 */
2578 nr_reclaimed = reclaim_high(memcg,
2579 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2580 GFP_KERNEL);
2581
2582 /*
2583 * memory.high is breached and reclaim is unable to keep up. Throttle
2584 * allocators proactively to slow down excessive growth.
2585 */
2586 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2587 mem_find_max_overage(memcg));
2588
2589 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2590 swap_find_max_overage(memcg));
2591
2592 /*
2593 * Clamp the max delay per usermode return so as to still keep the
2594 * application moving forwards and also permit diagnostics, albeit
2595 * extremely slowly.
2596 */
2597 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2598
2599 /*
2600 * Don't sleep if the amount of jiffies this memcg owes us is so low
2601 * that it's not even worth doing, in an attempt to be nice to those who
2602 * go only a small amount over their memory.high value and maybe haven't
2603 * been aggressively reclaimed enough yet.
2604 */
2605 if (penalty_jiffies <= HZ / 100)
2606 goto out;
2607
2608 /*
2609 * If reclaim is making forward progress but we're still over
2610 * memory.high, we want to encourage that rather than doing allocator
2611 * throttling.
2612 */
2613 if (nr_reclaimed || nr_retries--) {
2614 in_retry = true;
2615 goto retry_reclaim;
2616 }
2617
2618 /*
2619 * If we exit early, we're guaranteed to die (since
2620 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2621 * need to account for any ill-begotten jiffies to pay them off later.
2622 */
2623 psi_memstall_enter(&pflags);
2624 schedule_timeout_killable(penalty_jiffies);
2625 psi_memstall_leave(&pflags);
2626
2627out:
2628 css_put(&memcg->css);
2629}
2630
2631static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632 unsigned int nr_pages)
2633{
2634 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2635 int nr_retries = MAX_RECLAIM_RETRIES;
2636 struct mem_cgroup *mem_over_limit;
2637 struct page_counter *counter;
2638 unsigned long nr_reclaimed;
2639 bool passed_oom = false;
2640 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2641 bool drained = false;
2642 bool raised_max_event = false;
2643 unsigned long pflags;
2644
2645retry:
2646 if (consume_stock(memcg, nr_pages))
2647 return 0;
2648
2649 if (!do_memsw_account() ||
2650 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2651 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2652 goto done_restock;
2653 if (do_memsw_account())
2654 page_counter_uncharge(&memcg->memsw, batch);
2655 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2656 } else {
2657 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2658 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2659 }
2660
2661 if (batch > nr_pages) {
2662 batch = nr_pages;
2663 goto retry;
2664 }
2665
2666 /*
2667 * Prevent unbounded recursion when reclaim operations need to
2668 * allocate memory. This might exceed the limits temporarily,
2669 * but we prefer facilitating memory reclaim and getting back
2670 * under the limit over triggering OOM kills in these cases.
2671 */
2672 if (unlikely(current->flags & PF_MEMALLOC))
2673 goto force;
2674
2675 if (unlikely(task_in_memcg_oom(current)))
2676 goto nomem;
2677
2678 if (!gfpflags_allow_blocking(gfp_mask))
2679 goto nomem;
2680
2681 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2682 raised_max_event = true;
2683
2684 psi_memstall_enter(&pflags);
2685 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2686 gfp_mask, reclaim_options);
2687 psi_memstall_leave(&pflags);
2688
2689 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2690 goto retry;
2691
2692 if (!drained) {
2693 drain_all_stock(mem_over_limit);
2694 drained = true;
2695 goto retry;
2696 }
2697
2698 if (gfp_mask & __GFP_NORETRY)
2699 goto nomem;
2700 /*
2701 * Even though the limit is exceeded at this point, reclaim
2702 * may have been able to free some pages. Retry the charge
2703 * before killing the task.
2704 *
2705 * Only for regular pages, though: huge pages are rather
2706 * unlikely to succeed so close to the limit, and we fall back
2707 * to regular pages anyway in case of failure.
2708 */
2709 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2710 goto retry;
2711 /*
2712 * At task move, charge accounts can be doubly counted. So, it's
2713 * better to wait until the end of task_move if something is going on.
2714 */
2715 if (mem_cgroup_wait_acct_move(mem_over_limit))
2716 goto retry;
2717
2718 if (nr_retries--)
2719 goto retry;
2720
2721 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2722 goto nomem;
2723
2724 /* Avoid endless loop for tasks bypassed by the oom killer */
2725 if (passed_oom && task_is_dying())
2726 goto nomem;
2727
2728 /*
2729 * keep retrying as long as the memcg oom killer is able to make
2730 * a forward progress or bypass the charge if the oom killer
2731 * couldn't make any progress.
2732 */
2733 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2734 get_order(nr_pages * PAGE_SIZE))) {
2735 passed_oom = true;
2736 nr_retries = MAX_RECLAIM_RETRIES;
2737 goto retry;
2738 }
2739nomem:
2740 /*
2741 * Memcg doesn't have a dedicated reserve for atomic
2742 * allocations. But like the global atomic pool, we need to
2743 * put the burden of reclaim on regular allocation requests
2744 * and let these go through as privileged allocations.
2745 */
2746 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2747 return -ENOMEM;
2748force:
2749 /*
2750 * If the allocation has to be enforced, don't forget to raise
2751 * a MEMCG_MAX event.
2752 */
2753 if (!raised_max_event)
2754 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2755
2756 /*
2757 * The allocation either can't fail or will lead to more memory
2758 * being freed very soon. Allow memory usage go over the limit
2759 * temporarily by force charging it.
2760 */
2761 page_counter_charge(&memcg->memory, nr_pages);
2762 if (do_memsw_account())
2763 page_counter_charge(&memcg->memsw, nr_pages);
2764
2765 return 0;
2766
2767done_restock:
2768 if (batch > nr_pages)
2769 refill_stock(memcg, batch - nr_pages);
2770
2771 /*
2772 * If the hierarchy is above the normal consumption range, schedule
2773 * reclaim on returning to userland. We can perform reclaim here
2774 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2775 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2776 * not recorded as it most likely matches current's and won't
2777 * change in the meantime. As high limit is checked again before
2778 * reclaim, the cost of mismatch is negligible.
2779 */
2780 do {
2781 bool mem_high, swap_high;
2782
2783 mem_high = page_counter_read(&memcg->memory) >
2784 READ_ONCE(memcg->memory.high);
2785 swap_high = page_counter_read(&memcg->swap) >
2786 READ_ONCE(memcg->swap.high);
2787
2788 /* Don't bother a random interrupted task */
2789 if (!in_task()) {
2790 if (mem_high) {
2791 schedule_work(&memcg->high_work);
2792 break;
2793 }
2794 continue;
2795 }
2796
2797 if (mem_high || swap_high) {
2798 /*
2799 * The allocating tasks in this cgroup will need to do
2800 * reclaim or be throttled to prevent further growth
2801 * of the memory or swap footprints.
2802 *
2803 * Target some best-effort fairness between the tasks,
2804 * and distribute reclaim work and delay penalties
2805 * based on how much each task is actually allocating.
2806 */
2807 current->memcg_nr_pages_over_high += batch;
2808 set_notify_resume(current);
2809 break;
2810 }
2811 } while ((memcg = parent_mem_cgroup(memcg)));
2812
2813 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2814 !(current->flags & PF_MEMALLOC) &&
2815 gfpflags_allow_blocking(gfp_mask)) {
2816 mem_cgroup_handle_over_high();
2817 }
2818 return 0;
2819}
2820
2821static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2822 unsigned int nr_pages)
2823{
2824 if (mem_cgroup_is_root(memcg))
2825 return 0;
2826
2827 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2828}
2829
2830static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2831{
2832 if (mem_cgroup_is_root(memcg))
2833 return;
2834
2835 page_counter_uncharge(&memcg->memory, nr_pages);
2836 if (do_memsw_account())
2837 page_counter_uncharge(&memcg->memsw, nr_pages);
2838}
2839
2840static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2841{
2842 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2843 /*
2844 * Any of the following ensures page's memcg stability:
2845 *
2846 * - the page lock
2847 * - LRU isolation
2848 * - lock_page_memcg()
2849 * - exclusive reference
2850 * - mem_cgroup_trylock_pages()
2851 */
2852 folio->memcg_data = (unsigned long)memcg;
2853}
2854
2855#ifdef CONFIG_MEMCG_KMEM
2856/*
2857 * The allocated objcg pointers array is not accounted directly.
2858 * Moreover, it should not come from DMA buffer and is not readily
2859 * reclaimable. So those GFP bits should be masked off.
2860 */
2861#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2862
2863/*
2864 * mod_objcg_mlstate() may be called with irq enabled, so
2865 * mod_memcg_lruvec_state() should be used.
2866 */
2867static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2868 struct pglist_data *pgdat,
2869 enum node_stat_item idx, int nr)
2870{
2871 struct mem_cgroup *memcg;
2872 struct lruvec *lruvec;
2873
2874 rcu_read_lock();
2875 memcg = obj_cgroup_memcg(objcg);
2876 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2877 mod_memcg_lruvec_state(lruvec, idx, nr);
2878 rcu_read_unlock();
2879}
2880
2881int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2882 gfp_t gfp, bool new_slab)
2883{
2884 unsigned int objects = objs_per_slab(s, slab);
2885 unsigned long memcg_data;
2886 void *vec;
2887
2888 gfp &= ~OBJCGS_CLEAR_MASK;
2889 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2890 slab_nid(slab));
2891 if (!vec)
2892 return -ENOMEM;
2893
2894 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2895 if (new_slab) {
2896 /*
2897 * If the slab is brand new and nobody can yet access its
2898 * memcg_data, no synchronization is required and memcg_data can
2899 * be simply assigned.
2900 */
2901 slab->memcg_data = memcg_data;
2902 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2903 /*
2904 * If the slab is already in use, somebody can allocate and
2905 * assign obj_cgroups in parallel. In this case the existing
2906 * objcg vector should be reused.
2907 */
2908 kfree(vec);
2909 return 0;
2910 }
2911
2912 kmemleak_not_leak(vec);
2913 return 0;
2914}
2915
2916static __always_inline
2917struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2918{
2919 /*
2920 * Slab objects are accounted individually, not per-page.
2921 * Memcg membership data for each individual object is saved in
2922 * slab->memcg_data.
2923 */
2924 if (folio_test_slab(folio)) {
2925 struct obj_cgroup **objcgs;
2926 struct slab *slab;
2927 unsigned int off;
2928
2929 slab = folio_slab(folio);
2930 objcgs = slab_objcgs(slab);
2931 if (!objcgs)
2932 return NULL;
2933
2934 off = obj_to_index(slab->slab_cache, slab, p);
2935 if (objcgs[off])
2936 return obj_cgroup_memcg(objcgs[off]);
2937
2938 return NULL;
2939 }
2940
2941 /*
2942 * page_memcg_check() is used here, because in theory we can encounter
2943 * a folio where the slab flag has been cleared already, but
2944 * slab->memcg_data has not been freed yet
2945 * page_memcg_check(page) will guarantee that a proper memory
2946 * cgroup pointer or NULL will be returned.
2947 */
2948 return page_memcg_check(folio_page(folio, 0));
2949}
2950
2951/*
2952 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2953 *
2954 * A passed kernel object can be a slab object, vmalloc object or a generic
2955 * kernel page, so different mechanisms for getting the memory cgroup pointer
2956 * should be used.
2957 *
2958 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2959 * can not know for sure how the kernel object is implemented.
2960 * mem_cgroup_from_obj() can be safely used in such cases.
2961 *
2962 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2963 * cgroup_mutex, etc.
2964 */
2965struct mem_cgroup *mem_cgroup_from_obj(void *p)
2966{
2967 struct folio *folio;
2968
2969 if (mem_cgroup_disabled())
2970 return NULL;
2971
2972 if (unlikely(is_vmalloc_addr(p)))
2973 folio = page_folio(vmalloc_to_page(p));
2974 else
2975 folio = virt_to_folio(p);
2976
2977 return mem_cgroup_from_obj_folio(folio, p);
2978}
2979
2980/*
2981 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2982 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2983 * allocated using vmalloc().
2984 *
2985 * A passed kernel object must be a slab object or a generic kernel page.
2986 *
2987 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2988 * cgroup_mutex, etc.
2989 */
2990struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2991{
2992 if (mem_cgroup_disabled())
2993 return NULL;
2994
2995 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2996}
2997
2998static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2999{
3000 struct obj_cgroup *objcg = NULL;
3001
3002 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3003 objcg = rcu_dereference(memcg->objcg);
3004 if (objcg && obj_cgroup_tryget(objcg))
3005 break;
3006 objcg = NULL;
3007 }
3008 return objcg;
3009}
3010
3011__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3012{
3013 struct obj_cgroup *objcg = NULL;
3014 struct mem_cgroup *memcg;
3015
3016 if (memcg_kmem_bypass())
3017 return NULL;
3018
3019 rcu_read_lock();
3020 if (unlikely(active_memcg()))
3021 memcg = active_memcg();
3022 else
3023 memcg = mem_cgroup_from_task(current);
3024 objcg = __get_obj_cgroup_from_memcg(memcg);
3025 rcu_read_unlock();
3026 return objcg;
3027}
3028
3029struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3030{
3031 struct obj_cgroup *objcg;
3032
3033 if (!memcg_kmem_enabled())
3034 return NULL;
3035
3036 if (PageMemcgKmem(page)) {
3037 objcg = __folio_objcg(page_folio(page));
3038 obj_cgroup_get(objcg);
3039 } else {
3040 struct mem_cgroup *memcg;
3041
3042 rcu_read_lock();
3043 memcg = __folio_memcg(page_folio(page));
3044 if (memcg)
3045 objcg = __get_obj_cgroup_from_memcg(memcg);
3046 else
3047 objcg = NULL;
3048 rcu_read_unlock();
3049 }
3050 return objcg;
3051}
3052
3053static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3054{
3055 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3056 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3057 if (nr_pages > 0)
3058 page_counter_charge(&memcg->kmem, nr_pages);
3059 else
3060 page_counter_uncharge(&memcg->kmem, -nr_pages);
3061 }
3062}
3063
3064
3065/*
3066 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3067 * @objcg: object cgroup to uncharge
3068 * @nr_pages: number of pages to uncharge
3069 */
3070static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3071 unsigned int nr_pages)
3072{
3073 struct mem_cgroup *memcg;
3074
3075 memcg = get_mem_cgroup_from_objcg(objcg);
3076
3077 memcg_account_kmem(memcg, -nr_pages);
3078 refill_stock(memcg, nr_pages);
3079
3080 css_put(&memcg->css);
3081}
3082
3083/*
3084 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3085 * @objcg: object cgroup to charge
3086 * @gfp: reclaim mode
3087 * @nr_pages: number of pages to charge
3088 *
3089 * Returns 0 on success, an error code on failure.
3090 */
3091static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3092 unsigned int nr_pages)
3093{
3094 struct mem_cgroup *memcg;
3095 int ret;
3096
3097 memcg = get_mem_cgroup_from_objcg(objcg);
3098
3099 ret = try_charge_memcg(memcg, gfp, nr_pages);
3100 if (ret)
3101 goto out;
3102
3103 memcg_account_kmem(memcg, nr_pages);
3104out:
3105 css_put(&memcg->css);
3106
3107 return ret;
3108}
3109
3110/**
3111 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3112 * @page: page to charge
3113 * @gfp: reclaim mode
3114 * @order: allocation order
3115 *
3116 * Returns 0 on success, an error code on failure.
3117 */
3118int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3119{
3120 struct obj_cgroup *objcg;
3121 int ret = 0;
3122
3123 objcg = get_obj_cgroup_from_current();
3124 if (objcg) {
3125 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3126 if (!ret) {
3127 page->memcg_data = (unsigned long)objcg |
3128 MEMCG_DATA_KMEM;
3129 return 0;
3130 }
3131 obj_cgroup_put(objcg);
3132 }
3133 return ret;
3134}
3135
3136/**
3137 * __memcg_kmem_uncharge_page: uncharge a kmem page
3138 * @page: page to uncharge
3139 * @order: allocation order
3140 */
3141void __memcg_kmem_uncharge_page(struct page *page, int order)
3142{
3143 struct folio *folio = page_folio(page);
3144 struct obj_cgroup *objcg;
3145 unsigned int nr_pages = 1 << order;
3146
3147 if (!folio_memcg_kmem(folio))
3148 return;
3149
3150 objcg = __folio_objcg(folio);
3151 obj_cgroup_uncharge_pages(objcg, nr_pages);
3152 folio->memcg_data = 0;
3153 obj_cgroup_put(objcg);
3154}
3155
3156void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3157 enum node_stat_item idx, int nr)
3158{
3159 struct memcg_stock_pcp *stock;
3160 struct obj_cgroup *old = NULL;
3161 unsigned long flags;
3162 int *bytes;
3163
3164 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3165 stock = this_cpu_ptr(&memcg_stock);
3166
3167 /*
3168 * Save vmstat data in stock and skip vmstat array update unless
3169 * accumulating over a page of vmstat data or when pgdat or idx
3170 * changes.
3171 */
3172 if (stock->cached_objcg != objcg) {
3173 old = drain_obj_stock(stock);
3174 obj_cgroup_get(objcg);
3175 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3176 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3177 stock->cached_objcg = objcg;
3178 stock->cached_pgdat = pgdat;
3179 } else if (stock->cached_pgdat != pgdat) {
3180 /* Flush the existing cached vmstat data */
3181 struct pglist_data *oldpg = stock->cached_pgdat;
3182
3183 if (stock->nr_slab_reclaimable_b) {
3184 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3185 stock->nr_slab_reclaimable_b);
3186 stock->nr_slab_reclaimable_b = 0;
3187 }
3188 if (stock->nr_slab_unreclaimable_b) {
3189 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3190 stock->nr_slab_unreclaimable_b);
3191 stock->nr_slab_unreclaimable_b = 0;
3192 }
3193 stock->cached_pgdat = pgdat;
3194 }
3195
3196 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3197 : &stock->nr_slab_unreclaimable_b;
3198 /*
3199 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3200 * cached locally at least once before pushing it out.
3201 */
3202 if (!*bytes) {
3203 *bytes = nr;
3204 nr = 0;
3205 } else {
3206 *bytes += nr;
3207 if (abs(*bytes) > PAGE_SIZE) {
3208 nr = *bytes;
3209 *bytes = 0;
3210 } else {
3211 nr = 0;
3212 }
3213 }
3214 if (nr)
3215 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3216
3217 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3218 if (old)
3219 obj_cgroup_put(old);
3220}
3221
3222static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3223{
3224 struct memcg_stock_pcp *stock;
3225 unsigned long flags;
3226 bool ret = false;
3227
3228 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3229
3230 stock = this_cpu_ptr(&memcg_stock);
3231 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3232 stock->nr_bytes -= nr_bytes;
3233 ret = true;
3234 }
3235
3236 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3237
3238 return ret;
3239}
3240
3241static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3242{
3243 struct obj_cgroup *old = stock->cached_objcg;
3244
3245 if (!old)
3246 return NULL;
3247
3248 if (stock->nr_bytes) {
3249 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3250 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3251
3252 if (nr_pages) {
3253 struct mem_cgroup *memcg;
3254
3255 memcg = get_mem_cgroup_from_objcg(old);
3256
3257 memcg_account_kmem(memcg, -nr_pages);
3258 __refill_stock(memcg, nr_pages);
3259
3260 css_put(&memcg->css);
3261 }
3262
3263 /*
3264 * The leftover is flushed to the centralized per-memcg value.
3265 * On the next attempt to refill obj stock it will be moved
3266 * to a per-cpu stock (probably, on an other CPU), see
3267 * refill_obj_stock().
3268 *
3269 * How often it's flushed is a trade-off between the memory
3270 * limit enforcement accuracy and potential CPU contention,
3271 * so it might be changed in the future.
3272 */
3273 atomic_add(nr_bytes, &old->nr_charged_bytes);
3274 stock->nr_bytes = 0;
3275 }
3276
3277 /*
3278 * Flush the vmstat data in current stock
3279 */
3280 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3281 if (stock->nr_slab_reclaimable_b) {
3282 mod_objcg_mlstate(old, stock->cached_pgdat,
3283 NR_SLAB_RECLAIMABLE_B,
3284 stock->nr_slab_reclaimable_b);
3285 stock->nr_slab_reclaimable_b = 0;
3286 }
3287 if (stock->nr_slab_unreclaimable_b) {
3288 mod_objcg_mlstate(old, stock->cached_pgdat,
3289 NR_SLAB_UNRECLAIMABLE_B,
3290 stock->nr_slab_unreclaimable_b);
3291 stock->nr_slab_unreclaimable_b = 0;
3292 }
3293 stock->cached_pgdat = NULL;
3294 }
3295
3296 stock->cached_objcg = NULL;
3297 /*
3298 * The `old' objects needs to be released by the caller via
3299 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3300 */
3301 return old;
3302}
3303
3304static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3305 struct mem_cgroup *root_memcg)
3306{
3307 struct mem_cgroup *memcg;
3308
3309 if (stock->cached_objcg) {
3310 memcg = obj_cgroup_memcg(stock->cached_objcg);
3311 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3312 return true;
3313 }
3314
3315 return false;
3316}
3317
3318static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3319 bool allow_uncharge)
3320{
3321 struct memcg_stock_pcp *stock;
3322 struct obj_cgroup *old = NULL;
3323 unsigned long flags;
3324 unsigned int nr_pages = 0;
3325
3326 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3327
3328 stock = this_cpu_ptr(&memcg_stock);
3329 if (stock->cached_objcg != objcg) { /* reset if necessary */
3330 old = drain_obj_stock(stock);
3331 obj_cgroup_get(objcg);
3332 stock->cached_objcg = objcg;
3333 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3334 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3335 allow_uncharge = true; /* Allow uncharge when objcg changes */
3336 }
3337 stock->nr_bytes += nr_bytes;
3338
3339 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3340 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3341 stock->nr_bytes &= (PAGE_SIZE - 1);
3342 }
3343
3344 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3345 if (old)
3346 obj_cgroup_put(old);
3347
3348 if (nr_pages)
3349 obj_cgroup_uncharge_pages(objcg, nr_pages);
3350}
3351
3352int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3353{
3354 unsigned int nr_pages, nr_bytes;
3355 int ret;
3356
3357 if (consume_obj_stock(objcg, size))
3358 return 0;
3359
3360 /*
3361 * In theory, objcg->nr_charged_bytes can have enough
3362 * pre-charged bytes to satisfy the allocation. However,
3363 * flushing objcg->nr_charged_bytes requires two atomic
3364 * operations, and objcg->nr_charged_bytes can't be big.
3365 * The shared objcg->nr_charged_bytes can also become a
3366 * performance bottleneck if all tasks of the same memcg are
3367 * trying to update it. So it's better to ignore it and try
3368 * grab some new pages. The stock's nr_bytes will be flushed to
3369 * objcg->nr_charged_bytes later on when objcg changes.
3370 *
3371 * The stock's nr_bytes may contain enough pre-charged bytes
3372 * to allow one less page from being charged, but we can't rely
3373 * on the pre-charged bytes not being changed outside of
3374 * consume_obj_stock() or refill_obj_stock(). So ignore those
3375 * pre-charged bytes as well when charging pages. To avoid a
3376 * page uncharge right after a page charge, we set the
3377 * allow_uncharge flag to false when calling refill_obj_stock()
3378 * to temporarily allow the pre-charged bytes to exceed the page
3379 * size limit. The maximum reachable value of the pre-charged
3380 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3381 * race.
3382 */
3383 nr_pages = size >> PAGE_SHIFT;
3384 nr_bytes = size & (PAGE_SIZE - 1);
3385
3386 if (nr_bytes)
3387 nr_pages += 1;
3388
3389 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3390 if (!ret && nr_bytes)
3391 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3392
3393 return ret;
3394}
3395
3396void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3397{
3398 refill_obj_stock(objcg, size, true);
3399}
3400
3401#endif /* CONFIG_MEMCG_KMEM */
3402
3403/*
3404 * Because page_memcg(head) is not set on tails, set it now.
3405 */
3406void split_page_memcg(struct page *head, unsigned int nr)
3407{
3408 struct folio *folio = page_folio(head);
3409 struct mem_cgroup *memcg = folio_memcg(folio);
3410 int i;
3411
3412 if (mem_cgroup_disabled() || !memcg)
3413 return;
3414
3415 for (i = 1; i < nr; i++)
3416 folio_page(folio, i)->memcg_data = folio->memcg_data;
3417
3418 if (folio_memcg_kmem(folio))
3419 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3420 else
3421 css_get_many(&memcg->css, nr - 1);
3422}
3423
3424#ifdef CONFIG_SWAP
3425/**
3426 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3427 * @entry: swap entry to be moved
3428 * @from: mem_cgroup which the entry is moved from
3429 * @to: mem_cgroup which the entry is moved to
3430 *
3431 * It succeeds only when the swap_cgroup's record for this entry is the same
3432 * as the mem_cgroup's id of @from.
3433 *
3434 * Returns 0 on success, -EINVAL on failure.
3435 *
3436 * The caller must have charged to @to, IOW, called page_counter_charge() about
3437 * both res and memsw, and called css_get().
3438 */
3439static int mem_cgroup_move_swap_account(swp_entry_t entry,
3440 struct mem_cgroup *from, struct mem_cgroup *to)
3441{
3442 unsigned short old_id, new_id;
3443
3444 old_id = mem_cgroup_id(from);
3445 new_id = mem_cgroup_id(to);
3446
3447 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3448 mod_memcg_state(from, MEMCG_SWAP, -1);
3449 mod_memcg_state(to, MEMCG_SWAP, 1);
3450 return 0;
3451 }
3452 return -EINVAL;
3453}
3454#else
3455static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3456 struct mem_cgroup *from, struct mem_cgroup *to)
3457{
3458 return -EINVAL;
3459}
3460#endif
3461
3462static DEFINE_MUTEX(memcg_max_mutex);
3463
3464static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3465 unsigned long max, bool memsw)
3466{
3467 bool enlarge = false;
3468 bool drained = false;
3469 int ret;
3470 bool limits_invariant;
3471 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3472
3473 do {
3474 if (signal_pending(current)) {
3475 ret = -EINTR;
3476 break;
3477 }
3478
3479 mutex_lock(&memcg_max_mutex);
3480 /*
3481 * Make sure that the new limit (memsw or memory limit) doesn't
3482 * break our basic invariant rule memory.max <= memsw.max.
3483 */
3484 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3485 max <= memcg->memsw.max;
3486 if (!limits_invariant) {
3487 mutex_unlock(&memcg_max_mutex);
3488 ret = -EINVAL;
3489 break;
3490 }
3491 if (max > counter->max)
3492 enlarge = true;
3493 ret = page_counter_set_max(counter, max);
3494 mutex_unlock(&memcg_max_mutex);
3495
3496 if (!ret)
3497 break;
3498
3499 if (!drained) {
3500 drain_all_stock(memcg);
3501 drained = true;
3502 continue;
3503 }
3504
3505 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3506 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3507 ret = -EBUSY;
3508 break;
3509 }
3510 } while (true);
3511
3512 if (!ret && enlarge)
3513 memcg_oom_recover(memcg);
3514
3515 return ret;
3516}
3517
3518unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3519 gfp_t gfp_mask,
3520 unsigned long *total_scanned)
3521{
3522 unsigned long nr_reclaimed = 0;
3523 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3524 unsigned long reclaimed;
3525 int loop = 0;
3526 struct mem_cgroup_tree_per_node *mctz;
3527 unsigned long excess;
3528
3529 if (order > 0)
3530 return 0;
3531
3532 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3533
3534 /*
3535 * Do not even bother to check the largest node if the root
3536 * is empty. Do it lockless to prevent lock bouncing. Races
3537 * are acceptable as soft limit is best effort anyway.
3538 */
3539 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3540 return 0;
3541
3542 /*
3543 * This loop can run a while, specially if mem_cgroup's continuously
3544 * keep exceeding their soft limit and putting the system under
3545 * pressure
3546 */
3547 do {
3548 if (next_mz)
3549 mz = next_mz;
3550 else
3551 mz = mem_cgroup_largest_soft_limit_node(mctz);
3552 if (!mz)
3553 break;
3554
3555 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3556 gfp_mask, total_scanned);
3557 nr_reclaimed += reclaimed;
3558 spin_lock_irq(&mctz->lock);
3559
3560 /*
3561 * If we failed to reclaim anything from this memory cgroup
3562 * it is time to move on to the next cgroup
3563 */
3564 next_mz = NULL;
3565 if (!reclaimed)
3566 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3567
3568 excess = soft_limit_excess(mz->memcg);
3569 /*
3570 * One school of thought says that we should not add
3571 * back the node to the tree if reclaim returns 0.
3572 * But our reclaim could return 0, simply because due
3573 * to priority we are exposing a smaller subset of
3574 * memory to reclaim from. Consider this as a longer
3575 * term TODO.
3576 */
3577 /* If excess == 0, no tree ops */
3578 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3579 spin_unlock_irq(&mctz->lock);
3580 css_put(&mz->memcg->css);
3581 loop++;
3582 /*
3583 * Could not reclaim anything and there are no more
3584 * mem cgroups to try or we seem to be looping without
3585 * reclaiming anything.
3586 */
3587 if (!nr_reclaimed &&
3588 (next_mz == NULL ||
3589 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3590 break;
3591 } while (!nr_reclaimed);
3592 if (next_mz)
3593 css_put(&next_mz->memcg->css);
3594 return nr_reclaimed;
3595}
3596
3597/*
3598 * Reclaims as many pages from the given memcg as possible.
3599 *
3600 * Caller is responsible for holding css reference for memcg.
3601 */
3602static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3603{
3604 int nr_retries = MAX_RECLAIM_RETRIES;
3605
3606 /* we call try-to-free pages for make this cgroup empty */
3607 lru_add_drain_all();
3608
3609 drain_all_stock(memcg);
3610
3611 /* try to free all pages in this cgroup */
3612 while (nr_retries && page_counter_read(&memcg->memory)) {
3613 if (signal_pending(current))
3614 return -EINTR;
3615
3616 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3617 MEMCG_RECLAIM_MAY_SWAP))
3618 nr_retries--;
3619 }
3620
3621 return 0;
3622}
3623
3624static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3625 char *buf, size_t nbytes,
3626 loff_t off)
3627{
3628 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3629
3630 if (mem_cgroup_is_root(memcg))
3631 return -EINVAL;
3632 return mem_cgroup_force_empty(memcg) ?: nbytes;
3633}
3634
3635static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3636 struct cftype *cft)
3637{
3638 return 1;
3639}
3640
3641static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3642 struct cftype *cft, u64 val)
3643{
3644 if (val == 1)
3645 return 0;
3646
3647 pr_warn_once("Non-hierarchical mode is deprecated. "
3648 "Please report your usecase to linux-mm@kvack.org if you "
3649 "depend on this functionality.\n");
3650
3651 return -EINVAL;
3652}
3653
3654static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3655{
3656 unsigned long val;
3657
3658 if (mem_cgroup_is_root(memcg)) {
3659 mem_cgroup_flush_stats();
3660 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3661 memcg_page_state(memcg, NR_ANON_MAPPED);
3662 if (swap)
3663 val += memcg_page_state(memcg, MEMCG_SWAP);
3664 } else {
3665 if (!swap)
3666 val = page_counter_read(&memcg->memory);
3667 else
3668 val = page_counter_read(&memcg->memsw);
3669 }
3670 return val;
3671}
3672
3673enum {
3674 RES_USAGE,
3675 RES_LIMIT,
3676 RES_MAX_USAGE,
3677 RES_FAILCNT,
3678 RES_SOFT_LIMIT,
3679};
3680
3681static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3682 struct cftype *cft)
3683{
3684 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3685 struct page_counter *counter;
3686
3687 switch (MEMFILE_TYPE(cft->private)) {
3688 case _MEM:
3689 counter = &memcg->memory;
3690 break;
3691 case _MEMSWAP:
3692 counter = &memcg->memsw;
3693 break;
3694 case _KMEM:
3695 counter = &memcg->kmem;
3696 break;
3697 case _TCP:
3698 counter = &memcg->tcpmem;
3699 break;
3700 default:
3701 BUG();
3702 }
3703
3704 switch (MEMFILE_ATTR(cft->private)) {
3705 case RES_USAGE:
3706 if (counter == &memcg->memory)
3707 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3708 if (counter == &memcg->memsw)
3709 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3710 return (u64)page_counter_read(counter) * PAGE_SIZE;
3711 case RES_LIMIT:
3712 return (u64)counter->max * PAGE_SIZE;
3713 case RES_MAX_USAGE:
3714 return (u64)counter->watermark * PAGE_SIZE;
3715 case RES_FAILCNT:
3716 return counter->failcnt;
3717 case RES_SOFT_LIMIT:
3718 return (u64)memcg->soft_limit * PAGE_SIZE;
3719 default:
3720 BUG();
3721 }
3722}
3723
3724#ifdef CONFIG_MEMCG_KMEM
3725static int memcg_online_kmem(struct mem_cgroup *memcg)
3726{
3727 struct obj_cgroup *objcg;
3728
3729 if (mem_cgroup_kmem_disabled())
3730 return 0;
3731
3732 if (unlikely(mem_cgroup_is_root(memcg)))
3733 return 0;
3734
3735 objcg = obj_cgroup_alloc();
3736 if (!objcg)
3737 return -ENOMEM;
3738
3739 objcg->memcg = memcg;
3740 rcu_assign_pointer(memcg->objcg, objcg);
3741
3742 static_branch_enable(&memcg_kmem_enabled_key);
3743
3744 memcg->kmemcg_id = memcg->id.id;
3745
3746 return 0;
3747}
3748
3749static void memcg_offline_kmem(struct mem_cgroup *memcg)
3750{
3751 struct mem_cgroup *parent;
3752
3753 if (mem_cgroup_kmem_disabled())
3754 return;
3755
3756 if (unlikely(mem_cgroup_is_root(memcg)))
3757 return;
3758
3759 parent = parent_mem_cgroup(memcg);
3760 if (!parent)
3761 parent = root_mem_cgroup;
3762
3763 memcg_reparent_objcgs(memcg, parent);
3764
3765 /*
3766 * After we have finished memcg_reparent_objcgs(), all list_lrus
3767 * corresponding to this cgroup are guaranteed to remain empty.
3768 * The ordering is imposed by list_lru_node->lock taken by
3769 * memcg_reparent_list_lrus().
3770 */
3771 memcg_reparent_list_lrus(memcg, parent);
3772}
3773#else
3774static int memcg_online_kmem(struct mem_cgroup *memcg)
3775{
3776 return 0;
3777}
3778static void memcg_offline_kmem(struct mem_cgroup *memcg)
3779{
3780}
3781#endif /* CONFIG_MEMCG_KMEM */
3782
3783static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3784{
3785 int ret;
3786
3787 mutex_lock(&memcg_max_mutex);
3788
3789 ret = page_counter_set_max(&memcg->tcpmem, max);
3790 if (ret)
3791 goto out;
3792
3793 if (!memcg->tcpmem_active) {
3794 /*
3795 * The active flag needs to be written after the static_key
3796 * update. This is what guarantees that the socket activation
3797 * function is the last one to run. See mem_cgroup_sk_alloc()
3798 * for details, and note that we don't mark any socket as
3799 * belonging to this memcg until that flag is up.
3800 *
3801 * We need to do this, because static_keys will span multiple
3802 * sites, but we can't control their order. If we mark a socket
3803 * as accounted, but the accounting functions are not patched in
3804 * yet, we'll lose accounting.
3805 *
3806 * We never race with the readers in mem_cgroup_sk_alloc(),
3807 * because when this value change, the code to process it is not
3808 * patched in yet.
3809 */
3810 static_branch_inc(&memcg_sockets_enabled_key);
3811 memcg->tcpmem_active = true;
3812 }
3813out:
3814 mutex_unlock(&memcg_max_mutex);
3815 return ret;
3816}
3817
3818/*
3819 * The user of this function is...
3820 * RES_LIMIT.
3821 */
3822static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3823 char *buf, size_t nbytes, loff_t off)
3824{
3825 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3826 unsigned long nr_pages;
3827 int ret;
3828
3829 buf = strstrip(buf);
3830 ret = page_counter_memparse(buf, "-1", &nr_pages);
3831 if (ret)
3832 return ret;
3833
3834 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3835 case RES_LIMIT:
3836 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3837 ret = -EINVAL;
3838 break;
3839 }
3840 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3841 case _MEM:
3842 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3843 break;
3844 case _MEMSWAP:
3845 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3846 break;
3847 case _KMEM:
3848 /* kmem.limit_in_bytes is deprecated. */
3849 ret = -EOPNOTSUPP;
3850 break;
3851 case _TCP:
3852 ret = memcg_update_tcp_max(memcg, nr_pages);
3853 break;
3854 }
3855 break;
3856 case RES_SOFT_LIMIT:
3857 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3858 ret = -EOPNOTSUPP;
3859 } else {
3860 memcg->soft_limit = nr_pages;
3861 ret = 0;
3862 }
3863 break;
3864 }
3865 return ret ?: nbytes;
3866}
3867
3868static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3869 size_t nbytes, loff_t off)
3870{
3871 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3872 struct page_counter *counter;
3873
3874 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3875 case _MEM:
3876 counter = &memcg->memory;
3877 break;
3878 case _MEMSWAP:
3879 counter = &memcg->memsw;
3880 break;
3881 case _KMEM:
3882 counter = &memcg->kmem;
3883 break;
3884 case _TCP:
3885 counter = &memcg->tcpmem;
3886 break;
3887 default:
3888 BUG();
3889 }
3890
3891 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3892 case RES_MAX_USAGE:
3893 page_counter_reset_watermark(counter);
3894 break;
3895 case RES_FAILCNT:
3896 counter->failcnt = 0;
3897 break;
3898 default:
3899 BUG();
3900 }
3901
3902 return nbytes;
3903}
3904
3905static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3906 struct cftype *cft)
3907{
3908 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3909}
3910
3911#ifdef CONFIG_MMU
3912static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3913 struct cftype *cft, u64 val)
3914{
3915 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3916
3917 if (val & ~MOVE_MASK)
3918 return -EINVAL;
3919
3920 /*
3921 * No kind of locking is needed in here, because ->can_attach() will
3922 * check this value once in the beginning of the process, and then carry
3923 * on with stale data. This means that changes to this value will only
3924 * affect task migrations starting after the change.
3925 */
3926 memcg->move_charge_at_immigrate = val;
3927 return 0;
3928}
3929#else
3930static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3931 struct cftype *cft, u64 val)
3932{
3933 return -ENOSYS;
3934}
3935#endif
3936
3937#ifdef CONFIG_NUMA
3938
3939#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3940#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3941#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3942
3943static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3944 int nid, unsigned int lru_mask, bool tree)
3945{
3946 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3947 unsigned long nr = 0;
3948 enum lru_list lru;
3949
3950 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3951
3952 for_each_lru(lru) {
3953 if (!(BIT(lru) & lru_mask))
3954 continue;
3955 if (tree)
3956 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3957 else
3958 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3959 }
3960 return nr;
3961}
3962
3963static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3964 unsigned int lru_mask,
3965 bool tree)
3966{
3967 unsigned long nr = 0;
3968 enum lru_list lru;
3969
3970 for_each_lru(lru) {
3971 if (!(BIT(lru) & lru_mask))
3972 continue;
3973 if (tree)
3974 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3975 else
3976 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3977 }
3978 return nr;
3979}
3980
3981static int memcg_numa_stat_show(struct seq_file *m, void *v)
3982{
3983 struct numa_stat {
3984 const char *name;
3985 unsigned int lru_mask;
3986 };
3987
3988 static const struct numa_stat stats[] = {
3989 { "total", LRU_ALL },
3990 { "file", LRU_ALL_FILE },
3991 { "anon", LRU_ALL_ANON },
3992 { "unevictable", BIT(LRU_UNEVICTABLE) },
3993 };
3994 const struct numa_stat *stat;
3995 int nid;
3996 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3997
3998 mem_cgroup_flush_stats();
3999
4000 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4001 seq_printf(m, "%s=%lu", stat->name,
4002 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4003 false));
4004 for_each_node_state(nid, N_MEMORY)
4005 seq_printf(m, " N%d=%lu", nid,
4006 mem_cgroup_node_nr_lru_pages(memcg, nid,
4007 stat->lru_mask, false));
4008 seq_putc(m, '\n');
4009 }
4010
4011 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4012
4013 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4014 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4015 true));
4016 for_each_node_state(nid, N_MEMORY)
4017 seq_printf(m, " N%d=%lu", nid,
4018 mem_cgroup_node_nr_lru_pages(memcg, nid,
4019 stat->lru_mask, true));
4020 seq_putc(m, '\n');
4021 }
4022
4023 return 0;
4024}
4025#endif /* CONFIG_NUMA */
4026
4027static const unsigned int memcg1_stats[] = {
4028 NR_FILE_PAGES,
4029 NR_ANON_MAPPED,
4030#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4031 NR_ANON_THPS,
4032#endif
4033 NR_SHMEM,
4034 NR_FILE_MAPPED,
4035 NR_FILE_DIRTY,
4036 NR_WRITEBACK,
4037 WORKINGSET_REFAULT_ANON,
4038 WORKINGSET_REFAULT_FILE,
4039 MEMCG_SWAP,
4040};
4041
4042static const char *const memcg1_stat_names[] = {
4043 "cache",
4044 "rss",
4045#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4046 "rss_huge",
4047#endif
4048 "shmem",
4049 "mapped_file",
4050 "dirty",
4051 "writeback",
4052 "workingset_refault_anon",
4053 "workingset_refault_file",
4054 "swap",
4055};
4056
4057/* Universal VM events cgroup1 shows, original sort order */
4058static const unsigned int memcg1_events[] = {
4059 PGPGIN,
4060 PGPGOUT,
4061 PGFAULT,
4062 PGMAJFAULT,
4063};
4064
4065static int memcg_stat_show(struct seq_file *m, void *v)
4066{
4067 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4068 unsigned long memory, memsw;
4069 struct mem_cgroup *mi;
4070 unsigned int i;
4071
4072 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4073
4074 mem_cgroup_flush_stats();
4075
4076 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4077 unsigned long nr;
4078
4079 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4080 continue;
4081 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4082 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4083 nr * memcg_page_state_unit(memcg1_stats[i]));
4084 }
4085
4086 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4087 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4088 memcg_events_local(memcg, memcg1_events[i]));
4089
4090 for (i = 0; i < NR_LRU_LISTS; i++)
4091 seq_printf(m, "%s %lu\n", lru_list_name(i),
4092 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4093 PAGE_SIZE);
4094
4095 /* Hierarchical information */
4096 memory = memsw = PAGE_COUNTER_MAX;
4097 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4098 memory = min(memory, READ_ONCE(mi->memory.max));
4099 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4100 }
4101 seq_printf(m, "hierarchical_memory_limit %llu\n",
4102 (u64)memory * PAGE_SIZE);
4103 if (do_memsw_account())
4104 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4105 (u64)memsw * PAGE_SIZE);
4106
4107 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4108 unsigned long nr;
4109
4110 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4111 continue;
4112 nr = memcg_page_state(memcg, memcg1_stats[i]);
4113 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4114 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4115 }
4116
4117 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4118 seq_printf(m, "total_%s %llu\n",
4119 vm_event_name(memcg1_events[i]),
4120 (u64)memcg_events(memcg, memcg1_events[i]));
4121
4122 for (i = 0; i < NR_LRU_LISTS; i++)
4123 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4124 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4125 PAGE_SIZE);
4126
4127#ifdef CONFIG_DEBUG_VM
4128 {
4129 pg_data_t *pgdat;
4130 struct mem_cgroup_per_node *mz;
4131 unsigned long anon_cost = 0;
4132 unsigned long file_cost = 0;
4133
4134 for_each_online_pgdat(pgdat) {
4135 mz = memcg->nodeinfo[pgdat->node_id];
4136
4137 anon_cost += mz->lruvec.anon_cost;
4138 file_cost += mz->lruvec.file_cost;
4139 }
4140 seq_printf(m, "anon_cost %lu\n", anon_cost);
4141 seq_printf(m, "file_cost %lu\n", file_cost);
4142 }
4143#endif
4144
4145 return 0;
4146}
4147
4148static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4149 struct cftype *cft)
4150{
4151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4152
4153 return mem_cgroup_swappiness(memcg);
4154}
4155
4156static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4157 struct cftype *cft, u64 val)
4158{
4159 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4160
4161 if (val > 200)
4162 return -EINVAL;
4163
4164 if (!mem_cgroup_is_root(memcg))
4165 memcg->swappiness = val;
4166 else
4167 vm_swappiness = val;
4168
4169 return 0;
4170}
4171
4172static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4173{
4174 struct mem_cgroup_threshold_ary *t;
4175 unsigned long usage;
4176 int i;
4177
4178 rcu_read_lock();
4179 if (!swap)
4180 t = rcu_dereference(memcg->thresholds.primary);
4181 else
4182 t = rcu_dereference(memcg->memsw_thresholds.primary);
4183
4184 if (!t)
4185 goto unlock;
4186
4187 usage = mem_cgroup_usage(memcg, swap);
4188
4189 /*
4190 * current_threshold points to threshold just below or equal to usage.
4191 * If it's not true, a threshold was crossed after last
4192 * call of __mem_cgroup_threshold().
4193 */
4194 i = t->current_threshold;
4195
4196 /*
4197 * Iterate backward over array of thresholds starting from
4198 * current_threshold and check if a threshold is crossed.
4199 * If none of thresholds below usage is crossed, we read
4200 * only one element of the array here.
4201 */
4202 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4203 eventfd_signal(t->entries[i].eventfd, 1);
4204
4205 /* i = current_threshold + 1 */
4206 i++;
4207
4208 /*
4209 * Iterate forward over array of thresholds starting from
4210 * current_threshold+1 and check if a threshold is crossed.
4211 * If none of thresholds above usage is crossed, we read
4212 * only one element of the array here.
4213 */
4214 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4215 eventfd_signal(t->entries[i].eventfd, 1);
4216
4217 /* Update current_threshold */
4218 t->current_threshold = i - 1;
4219unlock:
4220 rcu_read_unlock();
4221}
4222
4223static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4224{
4225 while (memcg) {
4226 __mem_cgroup_threshold(memcg, false);
4227 if (do_memsw_account())
4228 __mem_cgroup_threshold(memcg, true);
4229
4230 memcg = parent_mem_cgroup(memcg);
4231 }
4232}
4233
4234static int compare_thresholds(const void *a, const void *b)
4235{
4236 const struct mem_cgroup_threshold *_a = a;
4237 const struct mem_cgroup_threshold *_b = b;
4238
4239 if (_a->threshold > _b->threshold)
4240 return 1;
4241
4242 if (_a->threshold < _b->threshold)
4243 return -1;
4244
4245 return 0;
4246}
4247
4248static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4249{
4250 struct mem_cgroup_eventfd_list *ev;
4251
4252 spin_lock(&memcg_oom_lock);
4253
4254 list_for_each_entry(ev, &memcg->oom_notify, list)
4255 eventfd_signal(ev->eventfd, 1);
4256
4257 spin_unlock(&memcg_oom_lock);
4258 return 0;
4259}
4260
4261static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4262{
4263 struct mem_cgroup *iter;
4264
4265 for_each_mem_cgroup_tree(iter, memcg)
4266 mem_cgroup_oom_notify_cb(iter);
4267}
4268
4269static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4270 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4271{
4272 struct mem_cgroup_thresholds *thresholds;
4273 struct mem_cgroup_threshold_ary *new;
4274 unsigned long threshold;
4275 unsigned long usage;
4276 int i, size, ret;
4277
4278 ret = page_counter_memparse(args, "-1", &threshold);
4279 if (ret)
4280 return ret;
4281
4282 mutex_lock(&memcg->thresholds_lock);
4283
4284 if (type == _MEM) {
4285 thresholds = &memcg->thresholds;
4286 usage = mem_cgroup_usage(memcg, false);
4287 } else if (type == _MEMSWAP) {
4288 thresholds = &memcg->memsw_thresholds;
4289 usage = mem_cgroup_usage(memcg, true);
4290 } else
4291 BUG();
4292
4293 /* Check if a threshold crossed before adding a new one */
4294 if (thresholds->primary)
4295 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4296
4297 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4298
4299 /* Allocate memory for new array of thresholds */
4300 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4301 if (!new) {
4302 ret = -ENOMEM;
4303 goto unlock;
4304 }
4305 new->size = size;
4306
4307 /* Copy thresholds (if any) to new array */
4308 if (thresholds->primary)
4309 memcpy(new->entries, thresholds->primary->entries,
4310 flex_array_size(new, entries, size - 1));
4311
4312 /* Add new threshold */
4313 new->entries[size - 1].eventfd = eventfd;
4314 new->entries[size - 1].threshold = threshold;
4315
4316 /* Sort thresholds. Registering of new threshold isn't time-critical */
4317 sort(new->entries, size, sizeof(*new->entries),
4318 compare_thresholds, NULL);
4319
4320 /* Find current threshold */
4321 new->current_threshold = -1;
4322 for (i = 0; i < size; i++) {
4323 if (new->entries[i].threshold <= usage) {
4324 /*
4325 * new->current_threshold will not be used until
4326 * rcu_assign_pointer(), so it's safe to increment
4327 * it here.
4328 */
4329 ++new->current_threshold;
4330 } else
4331 break;
4332 }
4333
4334 /* Free old spare buffer and save old primary buffer as spare */
4335 kfree(thresholds->spare);
4336 thresholds->spare = thresholds->primary;
4337
4338 rcu_assign_pointer(thresholds->primary, new);
4339
4340 /* To be sure that nobody uses thresholds */
4341 synchronize_rcu();
4342
4343unlock:
4344 mutex_unlock(&memcg->thresholds_lock);
4345
4346 return ret;
4347}
4348
4349static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4350 struct eventfd_ctx *eventfd, const char *args)
4351{
4352 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4353}
4354
4355static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4356 struct eventfd_ctx *eventfd, const char *args)
4357{
4358 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4359}
4360
4361static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4362 struct eventfd_ctx *eventfd, enum res_type type)
4363{
4364 struct mem_cgroup_thresholds *thresholds;
4365 struct mem_cgroup_threshold_ary *new;
4366 unsigned long usage;
4367 int i, j, size, entries;
4368
4369 mutex_lock(&memcg->thresholds_lock);
4370
4371 if (type == _MEM) {
4372 thresholds = &memcg->thresholds;
4373 usage = mem_cgroup_usage(memcg, false);
4374 } else if (type == _MEMSWAP) {
4375 thresholds = &memcg->memsw_thresholds;
4376 usage = mem_cgroup_usage(memcg, true);
4377 } else
4378 BUG();
4379
4380 if (!thresholds->primary)
4381 goto unlock;
4382
4383 /* Check if a threshold crossed before removing */
4384 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4385
4386 /* Calculate new number of threshold */
4387 size = entries = 0;
4388 for (i = 0; i < thresholds->primary->size; i++) {
4389 if (thresholds->primary->entries[i].eventfd != eventfd)
4390 size++;
4391 else
4392 entries++;
4393 }
4394
4395 new = thresholds->spare;
4396
4397 /* If no items related to eventfd have been cleared, nothing to do */
4398 if (!entries)
4399 goto unlock;
4400
4401 /* Set thresholds array to NULL if we don't have thresholds */
4402 if (!size) {
4403 kfree(new);
4404 new = NULL;
4405 goto swap_buffers;
4406 }
4407
4408 new->size = size;
4409
4410 /* Copy thresholds and find current threshold */
4411 new->current_threshold = -1;
4412 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4413 if (thresholds->primary->entries[i].eventfd == eventfd)
4414 continue;
4415
4416 new->entries[j] = thresholds->primary->entries[i];
4417 if (new->entries[j].threshold <= usage) {
4418 /*
4419 * new->current_threshold will not be used
4420 * until rcu_assign_pointer(), so it's safe to increment
4421 * it here.
4422 */
4423 ++new->current_threshold;
4424 }
4425 j++;
4426 }
4427
4428swap_buffers:
4429 /* Swap primary and spare array */
4430 thresholds->spare = thresholds->primary;
4431
4432 rcu_assign_pointer(thresholds->primary, new);
4433
4434 /* To be sure that nobody uses thresholds */
4435 synchronize_rcu();
4436
4437 /* If all events are unregistered, free the spare array */
4438 if (!new) {
4439 kfree(thresholds->spare);
4440 thresholds->spare = NULL;
4441 }
4442unlock:
4443 mutex_unlock(&memcg->thresholds_lock);
4444}
4445
4446static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4447 struct eventfd_ctx *eventfd)
4448{
4449 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4450}
4451
4452static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4453 struct eventfd_ctx *eventfd)
4454{
4455 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4456}
4457
4458static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4459 struct eventfd_ctx *eventfd, const char *args)
4460{
4461 struct mem_cgroup_eventfd_list *event;
4462
4463 event = kmalloc(sizeof(*event), GFP_KERNEL);
4464 if (!event)
4465 return -ENOMEM;
4466
4467 spin_lock(&memcg_oom_lock);
4468
4469 event->eventfd = eventfd;
4470 list_add(&event->list, &memcg->oom_notify);
4471
4472 /* already in OOM ? */
4473 if (memcg->under_oom)
4474 eventfd_signal(eventfd, 1);
4475 spin_unlock(&memcg_oom_lock);
4476
4477 return 0;
4478}
4479
4480static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4481 struct eventfd_ctx *eventfd)
4482{
4483 struct mem_cgroup_eventfd_list *ev, *tmp;
4484
4485 spin_lock(&memcg_oom_lock);
4486
4487 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4488 if (ev->eventfd == eventfd) {
4489 list_del(&ev->list);
4490 kfree(ev);
4491 }
4492 }
4493
4494 spin_unlock(&memcg_oom_lock);
4495}
4496
4497static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4498{
4499 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4500
4501 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4502 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4503 seq_printf(sf, "oom_kill %lu\n",
4504 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4505 return 0;
4506}
4507
4508static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4509 struct cftype *cft, u64 val)
4510{
4511 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4512
4513 /* cannot set to root cgroup and only 0 and 1 are allowed */
4514 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4515 return -EINVAL;
4516
4517 memcg->oom_kill_disable = val;
4518 if (!val)
4519 memcg_oom_recover(memcg);
4520
4521 return 0;
4522}
4523
4524#ifdef CONFIG_CGROUP_WRITEBACK
4525
4526#include <trace/events/writeback.h>
4527
4528static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4529{
4530 return wb_domain_init(&memcg->cgwb_domain, gfp);
4531}
4532
4533static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4534{
4535 wb_domain_exit(&memcg->cgwb_domain);
4536}
4537
4538static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4539{
4540 wb_domain_size_changed(&memcg->cgwb_domain);
4541}
4542
4543struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4544{
4545 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4546
4547 if (!memcg->css.parent)
4548 return NULL;
4549
4550 return &memcg->cgwb_domain;
4551}
4552
4553/**
4554 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4555 * @wb: bdi_writeback in question
4556 * @pfilepages: out parameter for number of file pages
4557 * @pheadroom: out parameter for number of allocatable pages according to memcg
4558 * @pdirty: out parameter for number of dirty pages
4559 * @pwriteback: out parameter for number of pages under writeback
4560 *
4561 * Determine the numbers of file, headroom, dirty, and writeback pages in
4562 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4563 * is a bit more involved.
4564 *
4565 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4566 * headroom is calculated as the lowest headroom of itself and the
4567 * ancestors. Note that this doesn't consider the actual amount of
4568 * available memory in the system. The caller should further cap
4569 * *@pheadroom accordingly.
4570 */
4571void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4572 unsigned long *pheadroom, unsigned long *pdirty,
4573 unsigned long *pwriteback)
4574{
4575 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4576 struct mem_cgroup *parent;
4577
4578 mem_cgroup_flush_stats();
4579
4580 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4581 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4582 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4583 memcg_page_state(memcg, NR_ACTIVE_FILE);
4584
4585 *pheadroom = PAGE_COUNTER_MAX;
4586 while ((parent = parent_mem_cgroup(memcg))) {
4587 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4588 READ_ONCE(memcg->memory.high));
4589 unsigned long used = page_counter_read(&memcg->memory);
4590
4591 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4592 memcg = parent;
4593 }
4594}
4595
4596/*
4597 * Foreign dirty flushing
4598 *
4599 * There's an inherent mismatch between memcg and writeback. The former
4600 * tracks ownership per-page while the latter per-inode. This was a
4601 * deliberate design decision because honoring per-page ownership in the
4602 * writeback path is complicated, may lead to higher CPU and IO overheads
4603 * and deemed unnecessary given that write-sharing an inode across
4604 * different cgroups isn't a common use-case.
4605 *
4606 * Combined with inode majority-writer ownership switching, this works well
4607 * enough in most cases but there are some pathological cases. For
4608 * example, let's say there are two cgroups A and B which keep writing to
4609 * different but confined parts of the same inode. B owns the inode and
4610 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4611 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4612 * triggering background writeback. A will be slowed down without a way to
4613 * make writeback of the dirty pages happen.
4614 *
4615 * Conditions like the above can lead to a cgroup getting repeatedly and
4616 * severely throttled after making some progress after each
4617 * dirty_expire_interval while the underlying IO device is almost
4618 * completely idle.
4619 *
4620 * Solving this problem completely requires matching the ownership tracking
4621 * granularities between memcg and writeback in either direction. However,
4622 * the more egregious behaviors can be avoided by simply remembering the
4623 * most recent foreign dirtying events and initiating remote flushes on
4624 * them when local writeback isn't enough to keep the memory clean enough.
4625 *
4626 * The following two functions implement such mechanism. When a foreign
4627 * page - a page whose memcg and writeback ownerships don't match - is
4628 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4629 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4630 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4631 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4632 * foreign bdi_writebacks which haven't expired. Both the numbers of
4633 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4634 * limited to MEMCG_CGWB_FRN_CNT.
4635 *
4636 * The mechanism only remembers IDs and doesn't hold any object references.
4637 * As being wrong occasionally doesn't matter, updates and accesses to the
4638 * records are lockless and racy.
4639 */
4640void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4641 struct bdi_writeback *wb)
4642{
4643 struct mem_cgroup *memcg = folio_memcg(folio);
4644 struct memcg_cgwb_frn *frn;
4645 u64 now = get_jiffies_64();
4646 u64 oldest_at = now;
4647 int oldest = -1;
4648 int i;
4649
4650 trace_track_foreign_dirty(folio, wb);
4651
4652 /*
4653 * Pick the slot to use. If there is already a slot for @wb, keep
4654 * using it. If not replace the oldest one which isn't being
4655 * written out.
4656 */
4657 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4658 frn = &memcg->cgwb_frn[i];
4659 if (frn->bdi_id == wb->bdi->id &&
4660 frn->memcg_id == wb->memcg_css->id)
4661 break;
4662 if (time_before64(frn->at, oldest_at) &&
4663 atomic_read(&frn->done.cnt) == 1) {
4664 oldest = i;
4665 oldest_at = frn->at;
4666 }
4667 }
4668
4669 if (i < MEMCG_CGWB_FRN_CNT) {
4670 /*
4671 * Re-using an existing one. Update timestamp lazily to
4672 * avoid making the cacheline hot. We want them to be
4673 * reasonably up-to-date and significantly shorter than
4674 * dirty_expire_interval as that's what expires the record.
4675 * Use the shorter of 1s and dirty_expire_interval / 8.
4676 */
4677 unsigned long update_intv =
4678 min_t(unsigned long, HZ,
4679 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4680
4681 if (time_before64(frn->at, now - update_intv))
4682 frn->at = now;
4683 } else if (oldest >= 0) {
4684 /* replace the oldest free one */
4685 frn = &memcg->cgwb_frn[oldest];
4686 frn->bdi_id = wb->bdi->id;
4687 frn->memcg_id = wb->memcg_css->id;
4688 frn->at = now;
4689 }
4690}
4691
4692/* issue foreign writeback flushes for recorded foreign dirtying events */
4693void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4694{
4695 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4696 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4697 u64 now = jiffies_64;
4698 int i;
4699
4700 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4701 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4702
4703 /*
4704 * If the record is older than dirty_expire_interval,
4705 * writeback on it has already started. No need to kick it
4706 * off again. Also, don't start a new one if there's
4707 * already one in flight.
4708 */
4709 if (time_after64(frn->at, now - intv) &&
4710 atomic_read(&frn->done.cnt) == 1) {
4711 frn->at = 0;
4712 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4713 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4714 WB_REASON_FOREIGN_FLUSH,
4715 &frn->done);
4716 }
4717 }
4718}
4719
4720#else /* CONFIG_CGROUP_WRITEBACK */
4721
4722static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4723{
4724 return 0;
4725}
4726
4727static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4728{
4729}
4730
4731static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4732{
4733}
4734
4735#endif /* CONFIG_CGROUP_WRITEBACK */
4736
4737/*
4738 * DO NOT USE IN NEW FILES.
4739 *
4740 * "cgroup.event_control" implementation.
4741 *
4742 * This is way over-engineered. It tries to support fully configurable
4743 * events for each user. Such level of flexibility is completely
4744 * unnecessary especially in the light of the planned unified hierarchy.
4745 *
4746 * Please deprecate this and replace with something simpler if at all
4747 * possible.
4748 */
4749
4750/*
4751 * Unregister event and free resources.
4752 *
4753 * Gets called from workqueue.
4754 */
4755static void memcg_event_remove(struct work_struct *work)
4756{
4757 struct mem_cgroup_event *event =
4758 container_of(work, struct mem_cgroup_event, remove);
4759 struct mem_cgroup *memcg = event->memcg;
4760
4761 remove_wait_queue(event->wqh, &event->wait);
4762
4763 event->unregister_event(memcg, event->eventfd);
4764
4765 /* Notify userspace the event is going away. */
4766 eventfd_signal(event->eventfd, 1);
4767
4768 eventfd_ctx_put(event->eventfd);
4769 kfree(event);
4770 css_put(&memcg->css);
4771}
4772
4773/*
4774 * Gets called on EPOLLHUP on eventfd when user closes it.
4775 *
4776 * Called with wqh->lock held and interrupts disabled.
4777 */
4778static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4779 int sync, void *key)
4780{
4781 struct mem_cgroup_event *event =
4782 container_of(wait, struct mem_cgroup_event, wait);
4783 struct mem_cgroup *memcg = event->memcg;
4784 __poll_t flags = key_to_poll(key);
4785
4786 if (flags & EPOLLHUP) {
4787 /*
4788 * If the event has been detached at cgroup removal, we
4789 * can simply return knowing the other side will cleanup
4790 * for us.
4791 *
4792 * We can't race against event freeing since the other
4793 * side will require wqh->lock via remove_wait_queue(),
4794 * which we hold.
4795 */
4796 spin_lock(&memcg->event_list_lock);
4797 if (!list_empty(&event->list)) {
4798 list_del_init(&event->list);
4799 /*
4800 * We are in atomic context, but cgroup_event_remove()
4801 * may sleep, so we have to call it in workqueue.
4802 */
4803 schedule_work(&event->remove);
4804 }
4805 spin_unlock(&memcg->event_list_lock);
4806 }
4807
4808 return 0;
4809}
4810
4811static void memcg_event_ptable_queue_proc(struct file *file,
4812 wait_queue_head_t *wqh, poll_table *pt)
4813{
4814 struct mem_cgroup_event *event =
4815 container_of(pt, struct mem_cgroup_event, pt);
4816
4817 event->wqh = wqh;
4818 add_wait_queue(wqh, &event->wait);
4819}
4820
4821/*
4822 * DO NOT USE IN NEW FILES.
4823 *
4824 * Parse input and register new cgroup event handler.
4825 *
4826 * Input must be in format '<event_fd> <control_fd> <args>'.
4827 * Interpretation of args is defined by control file implementation.
4828 */
4829static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4830 char *buf, size_t nbytes, loff_t off)
4831{
4832 struct cgroup_subsys_state *css = of_css(of);
4833 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4834 struct mem_cgroup_event *event;
4835 struct cgroup_subsys_state *cfile_css;
4836 unsigned int efd, cfd;
4837 struct fd efile;
4838 struct fd cfile;
4839 struct dentry *cdentry;
4840 const char *name;
4841 char *endp;
4842 int ret;
4843
4844 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4845 return -EOPNOTSUPP;
4846
4847 buf = strstrip(buf);
4848
4849 efd = simple_strtoul(buf, &endp, 10);
4850 if (*endp != ' ')
4851 return -EINVAL;
4852 buf = endp + 1;
4853
4854 cfd = simple_strtoul(buf, &endp, 10);
4855 if ((*endp != ' ') && (*endp != '\0'))
4856 return -EINVAL;
4857 buf = endp + 1;
4858
4859 event = kzalloc(sizeof(*event), GFP_KERNEL);
4860 if (!event)
4861 return -ENOMEM;
4862
4863 event->memcg = memcg;
4864 INIT_LIST_HEAD(&event->list);
4865 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4866 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4867 INIT_WORK(&event->remove, memcg_event_remove);
4868
4869 efile = fdget(efd);
4870 if (!efile.file) {
4871 ret = -EBADF;
4872 goto out_kfree;
4873 }
4874
4875 event->eventfd = eventfd_ctx_fileget(efile.file);
4876 if (IS_ERR(event->eventfd)) {
4877 ret = PTR_ERR(event->eventfd);
4878 goto out_put_efile;
4879 }
4880
4881 cfile = fdget(cfd);
4882 if (!cfile.file) {
4883 ret = -EBADF;
4884 goto out_put_eventfd;
4885 }
4886
4887 /* the process need read permission on control file */
4888 /* AV: shouldn't we check that it's been opened for read instead? */
4889 ret = file_permission(cfile.file, MAY_READ);
4890 if (ret < 0)
4891 goto out_put_cfile;
4892
4893 /*
4894 * The control file must be a regular cgroup1 file. As a regular cgroup
4895 * file can't be renamed, it's safe to access its name afterwards.
4896 */
4897 cdentry = cfile.file->f_path.dentry;
4898 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4899 ret = -EINVAL;
4900 goto out_put_cfile;
4901 }
4902
4903 /*
4904 * Determine the event callbacks and set them in @event. This used
4905 * to be done via struct cftype but cgroup core no longer knows
4906 * about these events. The following is crude but the whole thing
4907 * is for compatibility anyway.
4908 *
4909 * DO NOT ADD NEW FILES.
4910 */
4911 name = cdentry->d_name.name;
4912
4913 if (!strcmp(name, "memory.usage_in_bytes")) {
4914 event->register_event = mem_cgroup_usage_register_event;
4915 event->unregister_event = mem_cgroup_usage_unregister_event;
4916 } else if (!strcmp(name, "memory.oom_control")) {
4917 event->register_event = mem_cgroup_oom_register_event;
4918 event->unregister_event = mem_cgroup_oom_unregister_event;
4919 } else if (!strcmp(name, "memory.pressure_level")) {
4920 event->register_event = vmpressure_register_event;
4921 event->unregister_event = vmpressure_unregister_event;
4922 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4923 event->register_event = memsw_cgroup_usage_register_event;
4924 event->unregister_event = memsw_cgroup_usage_unregister_event;
4925 } else {
4926 ret = -EINVAL;
4927 goto out_put_cfile;
4928 }
4929
4930 /*
4931 * Verify @cfile should belong to @css. Also, remaining events are
4932 * automatically removed on cgroup destruction but the removal is
4933 * asynchronous, so take an extra ref on @css.
4934 */
4935 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4936 &memory_cgrp_subsys);
4937 ret = -EINVAL;
4938 if (IS_ERR(cfile_css))
4939 goto out_put_cfile;
4940 if (cfile_css != css) {
4941 css_put(cfile_css);
4942 goto out_put_cfile;
4943 }
4944
4945 ret = event->register_event(memcg, event->eventfd, buf);
4946 if (ret)
4947 goto out_put_css;
4948
4949 vfs_poll(efile.file, &event->pt);
4950
4951 spin_lock_irq(&memcg->event_list_lock);
4952 list_add(&event->list, &memcg->event_list);
4953 spin_unlock_irq(&memcg->event_list_lock);
4954
4955 fdput(cfile);
4956 fdput(efile);
4957
4958 return nbytes;
4959
4960out_put_css:
4961 css_put(css);
4962out_put_cfile:
4963 fdput(cfile);
4964out_put_eventfd:
4965 eventfd_ctx_put(event->eventfd);
4966out_put_efile:
4967 fdput(efile);
4968out_kfree:
4969 kfree(event);
4970
4971 return ret;
4972}
4973
4974#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4975static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4976{
4977 /*
4978 * Deprecated.
4979 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4980 */
4981 return 0;
4982}
4983#endif
4984
4985static struct cftype mem_cgroup_legacy_files[] = {
4986 {
4987 .name = "usage_in_bytes",
4988 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4989 .read_u64 = mem_cgroup_read_u64,
4990 },
4991 {
4992 .name = "max_usage_in_bytes",
4993 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4994 .write = mem_cgroup_reset,
4995 .read_u64 = mem_cgroup_read_u64,
4996 },
4997 {
4998 .name = "limit_in_bytes",
4999 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5000 .write = mem_cgroup_write,
5001 .read_u64 = mem_cgroup_read_u64,
5002 },
5003 {
5004 .name = "soft_limit_in_bytes",
5005 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5006 .write = mem_cgroup_write,
5007 .read_u64 = mem_cgroup_read_u64,
5008 },
5009 {
5010 .name = "failcnt",
5011 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5012 .write = mem_cgroup_reset,
5013 .read_u64 = mem_cgroup_read_u64,
5014 },
5015 {
5016 .name = "stat",
5017 .seq_show = memcg_stat_show,
5018 },
5019 {
5020 .name = "force_empty",
5021 .write = mem_cgroup_force_empty_write,
5022 },
5023 {
5024 .name = "use_hierarchy",
5025 .write_u64 = mem_cgroup_hierarchy_write,
5026 .read_u64 = mem_cgroup_hierarchy_read,
5027 },
5028 {
5029 .name = "cgroup.event_control", /* XXX: for compat */
5030 .write = memcg_write_event_control,
5031 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5032 },
5033 {
5034 .name = "swappiness",
5035 .read_u64 = mem_cgroup_swappiness_read,
5036 .write_u64 = mem_cgroup_swappiness_write,
5037 },
5038 {
5039 .name = "move_charge_at_immigrate",
5040 .read_u64 = mem_cgroup_move_charge_read,
5041 .write_u64 = mem_cgroup_move_charge_write,
5042 },
5043 {
5044 .name = "oom_control",
5045 .seq_show = mem_cgroup_oom_control_read,
5046 .write_u64 = mem_cgroup_oom_control_write,
5047 },
5048 {
5049 .name = "pressure_level",
5050 },
5051#ifdef CONFIG_NUMA
5052 {
5053 .name = "numa_stat",
5054 .seq_show = memcg_numa_stat_show,
5055 },
5056#endif
5057 {
5058 .name = "kmem.limit_in_bytes",
5059 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5060 .write = mem_cgroup_write,
5061 .read_u64 = mem_cgroup_read_u64,
5062 },
5063 {
5064 .name = "kmem.usage_in_bytes",
5065 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5066 .read_u64 = mem_cgroup_read_u64,
5067 },
5068 {
5069 .name = "kmem.failcnt",
5070 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5071 .write = mem_cgroup_reset,
5072 .read_u64 = mem_cgroup_read_u64,
5073 },
5074 {
5075 .name = "kmem.max_usage_in_bytes",
5076 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5077 .write = mem_cgroup_reset,
5078 .read_u64 = mem_cgroup_read_u64,
5079 },
5080#if defined(CONFIG_MEMCG_KMEM) && \
5081 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5082 {
5083 .name = "kmem.slabinfo",
5084 .seq_show = mem_cgroup_slab_show,
5085 },
5086#endif
5087 {
5088 .name = "kmem.tcp.limit_in_bytes",
5089 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5090 .write = mem_cgroup_write,
5091 .read_u64 = mem_cgroup_read_u64,
5092 },
5093 {
5094 .name = "kmem.tcp.usage_in_bytes",
5095 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5096 .read_u64 = mem_cgroup_read_u64,
5097 },
5098 {
5099 .name = "kmem.tcp.failcnt",
5100 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5101 .write = mem_cgroup_reset,
5102 .read_u64 = mem_cgroup_read_u64,
5103 },
5104 {
5105 .name = "kmem.tcp.max_usage_in_bytes",
5106 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5107 .write = mem_cgroup_reset,
5108 .read_u64 = mem_cgroup_read_u64,
5109 },
5110 { }, /* terminate */
5111};
5112
5113/*
5114 * Private memory cgroup IDR
5115 *
5116 * Swap-out records and page cache shadow entries need to store memcg
5117 * references in constrained space, so we maintain an ID space that is
5118 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5119 * memory-controlled cgroups to 64k.
5120 *
5121 * However, there usually are many references to the offline CSS after
5122 * the cgroup has been destroyed, such as page cache or reclaimable
5123 * slab objects, that don't need to hang on to the ID. We want to keep
5124 * those dead CSS from occupying IDs, or we might quickly exhaust the
5125 * relatively small ID space and prevent the creation of new cgroups
5126 * even when there are much fewer than 64k cgroups - possibly none.
5127 *
5128 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5129 * be freed and recycled when it's no longer needed, which is usually
5130 * when the CSS is offlined.
5131 *
5132 * The only exception to that are records of swapped out tmpfs/shmem
5133 * pages that need to be attributed to live ancestors on swapin. But
5134 * those references are manageable from userspace.
5135 */
5136
5137static DEFINE_IDR(mem_cgroup_idr);
5138
5139static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5140{
5141 if (memcg->id.id > 0) {
5142 idr_remove(&mem_cgroup_idr, memcg->id.id);
5143 memcg->id.id = 0;
5144 }
5145}
5146
5147static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5148 unsigned int n)
5149{
5150 refcount_add(n, &memcg->id.ref);
5151}
5152
5153static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5154{
5155 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5156 mem_cgroup_id_remove(memcg);
5157
5158 /* Memcg ID pins CSS */
5159 css_put(&memcg->css);
5160 }
5161}
5162
5163static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5164{
5165 mem_cgroup_id_put_many(memcg, 1);
5166}
5167
5168/**
5169 * mem_cgroup_from_id - look up a memcg from a memcg id
5170 * @id: the memcg id to look up
5171 *
5172 * Caller must hold rcu_read_lock().
5173 */
5174struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5175{
5176 WARN_ON_ONCE(!rcu_read_lock_held());
5177 return idr_find(&mem_cgroup_idr, id);
5178}
5179
5180#ifdef CONFIG_SHRINKER_DEBUG
5181struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5182{
5183 struct cgroup *cgrp;
5184 struct cgroup_subsys_state *css;
5185 struct mem_cgroup *memcg;
5186
5187 cgrp = cgroup_get_from_id(ino);
5188 if (IS_ERR(cgrp))
5189 return ERR_CAST(cgrp);
5190
5191 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5192 if (css)
5193 memcg = container_of(css, struct mem_cgroup, css);
5194 else
5195 memcg = ERR_PTR(-ENOENT);
5196
5197 cgroup_put(cgrp);
5198
5199 return memcg;
5200}
5201#endif
5202
5203static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5204{
5205 struct mem_cgroup_per_node *pn;
5206
5207 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5208 if (!pn)
5209 return 1;
5210
5211 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5212 GFP_KERNEL_ACCOUNT);
5213 if (!pn->lruvec_stats_percpu) {
5214 kfree(pn);
5215 return 1;
5216 }
5217
5218 lruvec_init(&pn->lruvec);
5219 pn->memcg = memcg;
5220
5221 memcg->nodeinfo[node] = pn;
5222 return 0;
5223}
5224
5225static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5226{
5227 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5228
5229 if (!pn)
5230 return;
5231
5232 free_percpu(pn->lruvec_stats_percpu);
5233 kfree(pn);
5234}
5235
5236static void __mem_cgroup_free(struct mem_cgroup *memcg)
5237{
5238 int node;
5239
5240 for_each_node(node)
5241 free_mem_cgroup_per_node_info(memcg, node);
5242 kfree(memcg->vmstats);
5243 free_percpu(memcg->vmstats_percpu);
5244 kfree(memcg);
5245}
5246
5247static void mem_cgroup_free(struct mem_cgroup *memcg)
5248{
5249 lru_gen_exit_memcg(memcg);
5250 memcg_wb_domain_exit(memcg);
5251 __mem_cgroup_free(memcg);
5252}
5253
5254static struct mem_cgroup *mem_cgroup_alloc(void)
5255{
5256 struct mem_cgroup *memcg;
5257 int node;
5258 int __maybe_unused i;
5259 long error = -ENOMEM;
5260
5261 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5262 if (!memcg)
5263 return ERR_PTR(error);
5264
5265 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5266 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5267 if (memcg->id.id < 0) {
5268 error = memcg->id.id;
5269 goto fail;
5270 }
5271
5272 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5273 if (!memcg->vmstats)
5274 goto fail;
5275
5276 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5277 GFP_KERNEL_ACCOUNT);
5278 if (!memcg->vmstats_percpu)
5279 goto fail;
5280
5281 for_each_node(node)
5282 if (alloc_mem_cgroup_per_node_info(memcg, node))
5283 goto fail;
5284
5285 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5286 goto fail;
5287
5288 INIT_WORK(&memcg->high_work, high_work_func);
5289 INIT_LIST_HEAD(&memcg->oom_notify);
5290 mutex_init(&memcg->thresholds_lock);
5291 spin_lock_init(&memcg->move_lock);
5292 vmpressure_init(&memcg->vmpressure);
5293 INIT_LIST_HEAD(&memcg->event_list);
5294 spin_lock_init(&memcg->event_list_lock);
5295 memcg->socket_pressure = jiffies;
5296#ifdef CONFIG_MEMCG_KMEM
5297 memcg->kmemcg_id = -1;
5298 INIT_LIST_HEAD(&memcg->objcg_list);
5299#endif
5300#ifdef CONFIG_CGROUP_WRITEBACK
5301 INIT_LIST_HEAD(&memcg->cgwb_list);
5302 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5303 memcg->cgwb_frn[i].done =
5304 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5305#endif
5306#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5307 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5308 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5309 memcg->deferred_split_queue.split_queue_len = 0;
5310#endif
5311 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5312 lru_gen_init_memcg(memcg);
5313 return memcg;
5314fail:
5315 mem_cgroup_id_remove(memcg);
5316 __mem_cgroup_free(memcg);
5317 return ERR_PTR(error);
5318}
5319
5320static struct cgroup_subsys_state * __ref
5321mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5322{
5323 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5324 struct mem_cgroup *memcg, *old_memcg;
5325
5326 old_memcg = set_active_memcg(parent);
5327 memcg = mem_cgroup_alloc();
5328 set_active_memcg(old_memcg);
5329 if (IS_ERR(memcg))
5330 return ERR_CAST(memcg);
5331
5332 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5333 memcg->soft_limit = PAGE_COUNTER_MAX;
5334#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5335 memcg->zswap_max = PAGE_COUNTER_MAX;
5336#endif
5337 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5338 if (parent) {
5339 memcg->swappiness = mem_cgroup_swappiness(parent);
5340 memcg->oom_kill_disable = parent->oom_kill_disable;
5341
5342 page_counter_init(&memcg->memory, &parent->memory);
5343 page_counter_init(&memcg->swap, &parent->swap);
5344 page_counter_init(&memcg->kmem, &parent->kmem);
5345 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5346 } else {
5347 init_memcg_events();
5348 page_counter_init(&memcg->memory, NULL);
5349 page_counter_init(&memcg->swap, NULL);
5350 page_counter_init(&memcg->kmem, NULL);
5351 page_counter_init(&memcg->tcpmem, NULL);
5352
5353 root_mem_cgroup = memcg;
5354 return &memcg->css;
5355 }
5356
5357 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5358 static_branch_inc(&memcg_sockets_enabled_key);
5359
5360 return &memcg->css;
5361}
5362
5363static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5364{
5365 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366
5367 if (memcg_online_kmem(memcg))
5368 goto remove_id;
5369
5370 /*
5371 * A memcg must be visible for expand_shrinker_info()
5372 * by the time the maps are allocated. So, we allocate maps
5373 * here, when for_each_mem_cgroup() can't skip it.
5374 */
5375 if (alloc_shrinker_info(memcg))
5376 goto offline_kmem;
5377
5378 /* Online state pins memcg ID, memcg ID pins CSS */
5379 refcount_set(&memcg->id.ref, 1);
5380 css_get(css);
5381
5382 if (unlikely(mem_cgroup_is_root(memcg)))
5383 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5384 2UL*HZ);
5385 return 0;
5386offline_kmem:
5387 memcg_offline_kmem(memcg);
5388remove_id:
5389 mem_cgroup_id_remove(memcg);
5390 return -ENOMEM;
5391}
5392
5393static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5394{
5395 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5396 struct mem_cgroup_event *event, *tmp;
5397
5398 /*
5399 * Unregister events and notify userspace.
5400 * Notify userspace about cgroup removing only after rmdir of cgroup
5401 * directory to avoid race between userspace and kernelspace.
5402 */
5403 spin_lock_irq(&memcg->event_list_lock);
5404 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5405 list_del_init(&event->list);
5406 schedule_work(&event->remove);
5407 }
5408 spin_unlock_irq(&memcg->event_list_lock);
5409
5410 page_counter_set_min(&memcg->memory, 0);
5411 page_counter_set_low(&memcg->memory, 0);
5412
5413 memcg_offline_kmem(memcg);
5414 reparent_shrinker_deferred(memcg);
5415 wb_memcg_offline(memcg);
5416
5417 drain_all_stock(memcg);
5418
5419 mem_cgroup_id_put(memcg);
5420}
5421
5422static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5423{
5424 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5425
5426 invalidate_reclaim_iterators(memcg);
5427}
5428
5429static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5430{
5431 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5432 int __maybe_unused i;
5433
5434#ifdef CONFIG_CGROUP_WRITEBACK
5435 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5436 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5437#endif
5438 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5439 static_branch_dec(&memcg_sockets_enabled_key);
5440
5441 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5442 static_branch_dec(&memcg_sockets_enabled_key);
5443
5444 vmpressure_cleanup(&memcg->vmpressure);
5445 cancel_work_sync(&memcg->high_work);
5446 mem_cgroup_remove_from_trees(memcg);
5447 free_shrinker_info(memcg);
5448 mem_cgroup_free(memcg);
5449}
5450
5451/**
5452 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5453 * @css: the target css
5454 *
5455 * Reset the states of the mem_cgroup associated with @css. This is
5456 * invoked when the userland requests disabling on the default hierarchy
5457 * but the memcg is pinned through dependency. The memcg should stop
5458 * applying policies and should revert to the vanilla state as it may be
5459 * made visible again.
5460 *
5461 * The current implementation only resets the essential configurations.
5462 * This needs to be expanded to cover all the visible parts.
5463 */
5464static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5465{
5466 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5467
5468 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5469 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5470 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5471 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5472 page_counter_set_min(&memcg->memory, 0);
5473 page_counter_set_low(&memcg->memory, 0);
5474 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5475 memcg->soft_limit = PAGE_COUNTER_MAX;
5476 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5477 memcg_wb_domain_size_changed(memcg);
5478}
5479
5480static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5481{
5482 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5484 struct memcg_vmstats_percpu *statc;
5485 long delta, v;
5486 int i, nid;
5487
5488 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5489
5490 for (i = 0; i < MEMCG_NR_STAT; i++) {
5491 /*
5492 * Collect the aggregated propagation counts of groups
5493 * below us. We're in a per-cpu loop here and this is
5494 * a global counter, so the first cycle will get them.
5495 */
5496 delta = memcg->vmstats->state_pending[i];
5497 if (delta)
5498 memcg->vmstats->state_pending[i] = 0;
5499
5500 /* Add CPU changes on this level since the last flush */
5501 v = READ_ONCE(statc->state[i]);
5502 if (v != statc->state_prev[i]) {
5503 delta += v - statc->state_prev[i];
5504 statc->state_prev[i] = v;
5505 }
5506
5507 if (!delta)
5508 continue;
5509
5510 /* Aggregate counts on this level and propagate upwards */
5511 memcg->vmstats->state[i] += delta;
5512 if (parent)
5513 parent->vmstats->state_pending[i] += delta;
5514 }
5515
5516 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5517 delta = memcg->vmstats->events_pending[i];
5518 if (delta)
5519 memcg->vmstats->events_pending[i] = 0;
5520
5521 v = READ_ONCE(statc->events[i]);
5522 if (v != statc->events_prev[i]) {
5523 delta += v - statc->events_prev[i];
5524 statc->events_prev[i] = v;
5525 }
5526
5527 if (!delta)
5528 continue;
5529
5530 memcg->vmstats->events[i] += delta;
5531 if (parent)
5532 parent->vmstats->events_pending[i] += delta;
5533 }
5534
5535 for_each_node_state(nid, N_MEMORY) {
5536 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5537 struct mem_cgroup_per_node *ppn = NULL;
5538 struct lruvec_stats_percpu *lstatc;
5539
5540 if (parent)
5541 ppn = parent->nodeinfo[nid];
5542
5543 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5544
5545 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5546 delta = pn->lruvec_stats.state_pending[i];
5547 if (delta)
5548 pn->lruvec_stats.state_pending[i] = 0;
5549
5550 v = READ_ONCE(lstatc->state[i]);
5551 if (v != lstatc->state_prev[i]) {
5552 delta += v - lstatc->state_prev[i];
5553 lstatc->state_prev[i] = v;
5554 }
5555
5556 if (!delta)
5557 continue;
5558
5559 pn->lruvec_stats.state[i] += delta;
5560 if (ppn)
5561 ppn->lruvec_stats.state_pending[i] += delta;
5562 }
5563 }
5564}
5565
5566#ifdef CONFIG_MMU
5567/* Handlers for move charge at task migration. */
5568static int mem_cgroup_do_precharge(unsigned long count)
5569{
5570 int ret;
5571
5572 /* Try a single bulk charge without reclaim first, kswapd may wake */
5573 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5574 if (!ret) {
5575 mc.precharge += count;
5576 return ret;
5577 }
5578
5579 /* Try charges one by one with reclaim, but do not retry */
5580 while (count--) {
5581 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5582 if (ret)
5583 return ret;
5584 mc.precharge++;
5585 cond_resched();
5586 }
5587 return 0;
5588}
5589
5590union mc_target {
5591 struct page *page;
5592 swp_entry_t ent;
5593};
5594
5595enum mc_target_type {
5596 MC_TARGET_NONE = 0,
5597 MC_TARGET_PAGE,
5598 MC_TARGET_SWAP,
5599 MC_TARGET_DEVICE,
5600};
5601
5602static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5603 unsigned long addr, pte_t ptent)
5604{
5605 struct page *page = vm_normal_page(vma, addr, ptent);
5606
5607 if (!page || !page_mapped(page))
5608 return NULL;
5609 if (PageAnon(page)) {
5610 if (!(mc.flags & MOVE_ANON))
5611 return NULL;
5612 } else {
5613 if (!(mc.flags & MOVE_FILE))
5614 return NULL;
5615 }
5616 if (!get_page_unless_zero(page))
5617 return NULL;
5618
5619 return page;
5620}
5621
5622#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5623static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5624 pte_t ptent, swp_entry_t *entry)
5625{
5626 struct page *page = NULL;
5627 swp_entry_t ent = pte_to_swp_entry(ptent);
5628
5629 if (!(mc.flags & MOVE_ANON))
5630 return NULL;
5631
5632 /*
5633 * Handle device private pages that are not accessible by the CPU, but
5634 * stored as special swap entries in the page table.
5635 */
5636 if (is_device_private_entry(ent)) {
5637 page = pfn_swap_entry_to_page(ent);
5638 if (!get_page_unless_zero(page))
5639 return NULL;
5640 return page;
5641 }
5642
5643 if (non_swap_entry(ent))
5644 return NULL;
5645
5646 /*
5647 * Because swap_cache_get_folio() updates some statistics counter,
5648 * we call find_get_page() with swapper_space directly.
5649 */
5650 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5651 entry->val = ent.val;
5652
5653 return page;
5654}
5655#else
5656static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5657 pte_t ptent, swp_entry_t *entry)
5658{
5659 return NULL;
5660}
5661#endif
5662
5663static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5664 unsigned long addr, pte_t ptent)
5665{
5666 unsigned long index;
5667 struct folio *folio;
5668
5669 if (!vma->vm_file) /* anonymous vma */
5670 return NULL;
5671 if (!(mc.flags & MOVE_FILE))
5672 return NULL;
5673
5674 /* folio is moved even if it's not RSS of this task(page-faulted). */
5675 /* shmem/tmpfs may report page out on swap: account for that too. */
5676 index = linear_page_index(vma, addr);
5677 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5678 if (!folio)
5679 return NULL;
5680 return folio_file_page(folio, index);
5681}
5682
5683/**
5684 * mem_cgroup_move_account - move account of the page
5685 * @page: the page
5686 * @compound: charge the page as compound or small page
5687 * @from: mem_cgroup which the page is moved from.
5688 * @to: mem_cgroup which the page is moved to. @from != @to.
5689 *
5690 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5691 *
5692 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5693 * from old cgroup.
5694 */
5695static int mem_cgroup_move_account(struct page *page,
5696 bool compound,
5697 struct mem_cgroup *from,
5698 struct mem_cgroup *to)
5699{
5700 struct folio *folio = page_folio(page);
5701 struct lruvec *from_vec, *to_vec;
5702 struct pglist_data *pgdat;
5703 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5704 int nid, ret;
5705
5706 VM_BUG_ON(from == to);
5707 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5708 VM_BUG_ON(compound && !folio_test_large(folio));
5709
5710 /*
5711 * Prevent mem_cgroup_migrate() from looking at
5712 * page's memory cgroup of its source page while we change it.
5713 */
5714 ret = -EBUSY;
5715 if (!folio_trylock(folio))
5716 goto out;
5717
5718 ret = -EINVAL;
5719 if (folio_memcg(folio) != from)
5720 goto out_unlock;
5721
5722 pgdat = folio_pgdat(folio);
5723 from_vec = mem_cgroup_lruvec(from, pgdat);
5724 to_vec = mem_cgroup_lruvec(to, pgdat);
5725
5726 folio_memcg_lock(folio);
5727
5728 if (folio_test_anon(folio)) {
5729 if (folio_mapped(folio)) {
5730 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5731 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5732 if (folio_test_transhuge(folio)) {
5733 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5734 -nr_pages);
5735 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5736 nr_pages);
5737 }
5738 }
5739 } else {
5740 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5741 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5742
5743 if (folio_test_swapbacked(folio)) {
5744 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5745 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5746 }
5747
5748 if (folio_mapped(folio)) {
5749 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5750 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5751 }
5752
5753 if (folio_test_dirty(folio)) {
5754 struct address_space *mapping = folio_mapping(folio);
5755
5756 if (mapping_can_writeback(mapping)) {
5757 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5758 -nr_pages);
5759 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5760 nr_pages);
5761 }
5762 }
5763 }
5764
5765#ifdef CONFIG_SWAP
5766 if (folio_test_swapcache(folio)) {
5767 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5768 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5769 }
5770#endif
5771 if (folio_test_writeback(folio)) {
5772 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5773 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5774 }
5775
5776 /*
5777 * All state has been migrated, let's switch to the new memcg.
5778 *
5779 * It is safe to change page's memcg here because the page
5780 * is referenced, charged, isolated, and locked: we can't race
5781 * with (un)charging, migration, LRU putback, or anything else
5782 * that would rely on a stable page's memory cgroup.
5783 *
5784 * Note that lock_page_memcg is a memcg lock, not a page lock,
5785 * to save space. As soon as we switch page's memory cgroup to a
5786 * new memcg that isn't locked, the above state can change
5787 * concurrently again. Make sure we're truly done with it.
5788 */
5789 smp_mb();
5790
5791 css_get(&to->css);
5792 css_put(&from->css);
5793
5794 folio->memcg_data = (unsigned long)to;
5795
5796 __folio_memcg_unlock(from);
5797
5798 ret = 0;
5799 nid = folio_nid(folio);
5800
5801 local_irq_disable();
5802 mem_cgroup_charge_statistics(to, nr_pages);
5803 memcg_check_events(to, nid);
5804 mem_cgroup_charge_statistics(from, -nr_pages);
5805 memcg_check_events(from, nid);
5806 local_irq_enable();
5807out_unlock:
5808 folio_unlock(folio);
5809out:
5810 return ret;
5811}
5812
5813/**
5814 * get_mctgt_type - get target type of moving charge
5815 * @vma: the vma the pte to be checked belongs
5816 * @addr: the address corresponding to the pte to be checked
5817 * @ptent: the pte to be checked
5818 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5819 *
5820 * Returns
5821 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5822 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5823 * move charge. if @target is not NULL, the page is stored in target->page
5824 * with extra refcnt got(Callers should handle it).
5825 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5826 * target for charge migration. if @target is not NULL, the entry is stored
5827 * in target->ent.
5828 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5829 * thus not on the lru.
5830 * For now we such page is charge like a regular page would be as for all
5831 * intent and purposes it is just special memory taking the place of a
5832 * regular page.
5833 *
5834 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5835 *
5836 * Called with pte lock held.
5837 */
5838
5839static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5840 unsigned long addr, pte_t ptent, union mc_target *target)
5841{
5842 struct page *page = NULL;
5843 enum mc_target_type ret = MC_TARGET_NONE;
5844 swp_entry_t ent = { .val = 0 };
5845
5846 if (pte_present(ptent))
5847 page = mc_handle_present_pte(vma, addr, ptent);
5848 else if (pte_none_mostly(ptent))
5849 /*
5850 * PTE markers should be treated as a none pte here, separated
5851 * from other swap handling below.
5852 */
5853 page = mc_handle_file_pte(vma, addr, ptent);
5854 else if (is_swap_pte(ptent))
5855 page = mc_handle_swap_pte(vma, ptent, &ent);
5856
5857 if (!page && !ent.val)
5858 return ret;
5859 if (page) {
5860 /*
5861 * Do only loose check w/o serialization.
5862 * mem_cgroup_move_account() checks the page is valid or
5863 * not under LRU exclusion.
5864 */
5865 if (page_memcg(page) == mc.from) {
5866 ret = MC_TARGET_PAGE;
5867 if (is_device_private_page(page) ||
5868 is_device_coherent_page(page))
5869 ret = MC_TARGET_DEVICE;
5870 if (target)
5871 target->page = page;
5872 }
5873 if (!ret || !target)
5874 put_page(page);
5875 }
5876 /*
5877 * There is a swap entry and a page doesn't exist or isn't charged.
5878 * But we cannot move a tail-page in a THP.
5879 */
5880 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5881 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5882 ret = MC_TARGET_SWAP;
5883 if (target)
5884 target->ent = ent;
5885 }
5886 return ret;
5887}
5888
5889#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5890/*
5891 * We don't consider PMD mapped swapping or file mapped pages because THP does
5892 * not support them for now.
5893 * Caller should make sure that pmd_trans_huge(pmd) is true.
5894 */
5895static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5896 unsigned long addr, pmd_t pmd, union mc_target *target)
5897{
5898 struct page *page = NULL;
5899 enum mc_target_type ret = MC_TARGET_NONE;
5900
5901 if (unlikely(is_swap_pmd(pmd))) {
5902 VM_BUG_ON(thp_migration_supported() &&
5903 !is_pmd_migration_entry(pmd));
5904 return ret;
5905 }
5906 page = pmd_page(pmd);
5907 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5908 if (!(mc.flags & MOVE_ANON))
5909 return ret;
5910 if (page_memcg(page) == mc.from) {
5911 ret = MC_TARGET_PAGE;
5912 if (target) {
5913 get_page(page);
5914 target->page = page;
5915 }
5916 }
5917 return ret;
5918}
5919#else
5920static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5921 unsigned long addr, pmd_t pmd, union mc_target *target)
5922{
5923 return MC_TARGET_NONE;
5924}
5925#endif
5926
5927static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5928 unsigned long addr, unsigned long end,
5929 struct mm_walk *walk)
5930{
5931 struct vm_area_struct *vma = walk->vma;
5932 pte_t *pte;
5933 spinlock_t *ptl;
5934
5935 ptl = pmd_trans_huge_lock(pmd, vma);
5936 if (ptl) {
5937 /*
5938 * Note their can not be MC_TARGET_DEVICE for now as we do not
5939 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5940 * this might change.
5941 */
5942 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5943 mc.precharge += HPAGE_PMD_NR;
5944 spin_unlock(ptl);
5945 return 0;
5946 }
5947
5948 if (pmd_trans_unstable(pmd))
5949 return 0;
5950 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5951 for (; addr != end; pte++, addr += PAGE_SIZE)
5952 if (get_mctgt_type(vma, addr, *pte, NULL))
5953 mc.precharge++; /* increment precharge temporarily */
5954 pte_unmap_unlock(pte - 1, ptl);
5955 cond_resched();
5956
5957 return 0;
5958}
5959
5960static const struct mm_walk_ops precharge_walk_ops = {
5961 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5962};
5963
5964static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5965{
5966 unsigned long precharge;
5967
5968 mmap_read_lock(mm);
5969 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
5970 mmap_read_unlock(mm);
5971
5972 precharge = mc.precharge;
5973 mc.precharge = 0;
5974
5975 return precharge;
5976}
5977
5978static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5979{
5980 unsigned long precharge = mem_cgroup_count_precharge(mm);
5981
5982 VM_BUG_ON(mc.moving_task);
5983 mc.moving_task = current;
5984 return mem_cgroup_do_precharge(precharge);
5985}
5986
5987/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5988static void __mem_cgroup_clear_mc(void)
5989{
5990 struct mem_cgroup *from = mc.from;
5991 struct mem_cgroup *to = mc.to;
5992
5993 /* we must uncharge all the leftover precharges from mc.to */
5994 if (mc.precharge) {
5995 cancel_charge(mc.to, mc.precharge);
5996 mc.precharge = 0;
5997 }
5998 /*
5999 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6000 * we must uncharge here.
6001 */
6002 if (mc.moved_charge) {
6003 cancel_charge(mc.from, mc.moved_charge);
6004 mc.moved_charge = 0;
6005 }
6006 /* we must fixup refcnts and charges */
6007 if (mc.moved_swap) {
6008 /* uncharge swap account from the old cgroup */
6009 if (!mem_cgroup_is_root(mc.from))
6010 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6011
6012 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6013
6014 /*
6015 * we charged both to->memory and to->memsw, so we
6016 * should uncharge to->memory.
6017 */
6018 if (!mem_cgroup_is_root(mc.to))
6019 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6020
6021 mc.moved_swap = 0;
6022 }
6023 memcg_oom_recover(from);
6024 memcg_oom_recover(to);
6025 wake_up_all(&mc.waitq);
6026}
6027
6028static void mem_cgroup_clear_mc(void)
6029{
6030 struct mm_struct *mm = mc.mm;
6031
6032 /*
6033 * we must clear moving_task before waking up waiters at the end of
6034 * task migration.
6035 */
6036 mc.moving_task = NULL;
6037 __mem_cgroup_clear_mc();
6038 spin_lock(&mc.lock);
6039 mc.from = NULL;
6040 mc.to = NULL;
6041 mc.mm = NULL;
6042 spin_unlock(&mc.lock);
6043
6044 mmput(mm);
6045}
6046
6047static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6048{
6049 struct cgroup_subsys_state *css;
6050 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6051 struct mem_cgroup *from;
6052 struct task_struct *leader, *p;
6053 struct mm_struct *mm;
6054 unsigned long move_flags;
6055 int ret = 0;
6056
6057 /* charge immigration isn't supported on the default hierarchy */
6058 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6059 return 0;
6060
6061 /*
6062 * Multi-process migrations only happen on the default hierarchy
6063 * where charge immigration is not used. Perform charge
6064 * immigration if @tset contains a leader and whine if there are
6065 * multiple.
6066 */
6067 p = NULL;
6068 cgroup_taskset_for_each_leader(leader, css, tset) {
6069 WARN_ON_ONCE(p);
6070 p = leader;
6071 memcg = mem_cgroup_from_css(css);
6072 }
6073 if (!p)
6074 return 0;
6075
6076 /*
6077 * We are now committed to this value whatever it is. Changes in this
6078 * tunable will only affect upcoming migrations, not the current one.
6079 * So we need to save it, and keep it going.
6080 */
6081 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6082 if (!move_flags)
6083 return 0;
6084
6085 from = mem_cgroup_from_task(p);
6086
6087 VM_BUG_ON(from == memcg);
6088
6089 mm = get_task_mm(p);
6090 if (!mm)
6091 return 0;
6092 /* We move charges only when we move a owner of the mm */
6093 if (mm->owner == p) {
6094 VM_BUG_ON(mc.from);
6095 VM_BUG_ON(mc.to);
6096 VM_BUG_ON(mc.precharge);
6097 VM_BUG_ON(mc.moved_charge);
6098 VM_BUG_ON(mc.moved_swap);
6099
6100 spin_lock(&mc.lock);
6101 mc.mm = mm;
6102 mc.from = from;
6103 mc.to = memcg;
6104 mc.flags = move_flags;
6105 spin_unlock(&mc.lock);
6106 /* We set mc.moving_task later */
6107
6108 ret = mem_cgroup_precharge_mc(mm);
6109 if (ret)
6110 mem_cgroup_clear_mc();
6111 } else {
6112 mmput(mm);
6113 }
6114 return ret;
6115}
6116
6117static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6118{
6119 if (mc.to)
6120 mem_cgroup_clear_mc();
6121}
6122
6123static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6124 unsigned long addr, unsigned long end,
6125 struct mm_walk *walk)
6126{
6127 int ret = 0;
6128 struct vm_area_struct *vma = walk->vma;
6129 pte_t *pte;
6130 spinlock_t *ptl;
6131 enum mc_target_type target_type;
6132 union mc_target target;
6133 struct page *page;
6134
6135 ptl = pmd_trans_huge_lock(pmd, vma);
6136 if (ptl) {
6137 if (mc.precharge < HPAGE_PMD_NR) {
6138 spin_unlock(ptl);
6139 return 0;
6140 }
6141 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6142 if (target_type == MC_TARGET_PAGE) {
6143 page = target.page;
6144 if (!isolate_lru_page(page)) {
6145 if (!mem_cgroup_move_account(page, true,
6146 mc.from, mc.to)) {
6147 mc.precharge -= HPAGE_PMD_NR;
6148 mc.moved_charge += HPAGE_PMD_NR;
6149 }
6150 putback_lru_page(page);
6151 }
6152 put_page(page);
6153 } else if (target_type == MC_TARGET_DEVICE) {
6154 page = target.page;
6155 if (!mem_cgroup_move_account(page, true,
6156 mc.from, mc.to)) {
6157 mc.precharge -= HPAGE_PMD_NR;
6158 mc.moved_charge += HPAGE_PMD_NR;
6159 }
6160 put_page(page);
6161 }
6162 spin_unlock(ptl);
6163 return 0;
6164 }
6165
6166 if (pmd_trans_unstable(pmd))
6167 return 0;
6168retry:
6169 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6170 for (; addr != end; addr += PAGE_SIZE) {
6171 pte_t ptent = *(pte++);
6172 bool device = false;
6173 swp_entry_t ent;
6174
6175 if (!mc.precharge)
6176 break;
6177
6178 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6179 case MC_TARGET_DEVICE:
6180 device = true;
6181 fallthrough;
6182 case MC_TARGET_PAGE:
6183 page = target.page;
6184 /*
6185 * We can have a part of the split pmd here. Moving it
6186 * can be done but it would be too convoluted so simply
6187 * ignore such a partial THP and keep it in original
6188 * memcg. There should be somebody mapping the head.
6189 */
6190 if (PageTransCompound(page))
6191 goto put;
6192 if (!device && isolate_lru_page(page))
6193 goto put;
6194 if (!mem_cgroup_move_account(page, false,
6195 mc.from, mc.to)) {
6196 mc.precharge--;
6197 /* we uncharge from mc.from later. */
6198 mc.moved_charge++;
6199 }
6200 if (!device)
6201 putback_lru_page(page);
6202put: /* get_mctgt_type() gets the page */
6203 put_page(page);
6204 break;
6205 case MC_TARGET_SWAP:
6206 ent = target.ent;
6207 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6208 mc.precharge--;
6209 mem_cgroup_id_get_many(mc.to, 1);
6210 /* we fixup other refcnts and charges later. */
6211 mc.moved_swap++;
6212 }
6213 break;
6214 default:
6215 break;
6216 }
6217 }
6218 pte_unmap_unlock(pte - 1, ptl);
6219 cond_resched();
6220
6221 if (addr != end) {
6222 /*
6223 * We have consumed all precharges we got in can_attach().
6224 * We try charge one by one, but don't do any additional
6225 * charges to mc.to if we have failed in charge once in attach()
6226 * phase.
6227 */
6228 ret = mem_cgroup_do_precharge(1);
6229 if (!ret)
6230 goto retry;
6231 }
6232
6233 return ret;
6234}
6235
6236static const struct mm_walk_ops charge_walk_ops = {
6237 .pmd_entry = mem_cgroup_move_charge_pte_range,
6238};
6239
6240static void mem_cgroup_move_charge(void)
6241{
6242 lru_add_drain_all();
6243 /*
6244 * Signal lock_page_memcg() to take the memcg's move_lock
6245 * while we're moving its pages to another memcg. Then wait
6246 * for already started RCU-only updates to finish.
6247 */
6248 atomic_inc(&mc.from->moving_account);
6249 synchronize_rcu();
6250retry:
6251 if (unlikely(!mmap_read_trylock(mc.mm))) {
6252 /*
6253 * Someone who are holding the mmap_lock might be waiting in
6254 * waitq. So we cancel all extra charges, wake up all waiters,
6255 * and retry. Because we cancel precharges, we might not be able
6256 * to move enough charges, but moving charge is a best-effort
6257 * feature anyway, so it wouldn't be a big problem.
6258 */
6259 __mem_cgroup_clear_mc();
6260 cond_resched();
6261 goto retry;
6262 }
6263 /*
6264 * When we have consumed all precharges and failed in doing
6265 * additional charge, the page walk just aborts.
6266 */
6267 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6268 mmap_read_unlock(mc.mm);
6269 atomic_dec(&mc.from->moving_account);
6270}
6271
6272static void mem_cgroup_move_task(void)
6273{
6274 if (mc.to) {
6275 mem_cgroup_move_charge();
6276 mem_cgroup_clear_mc();
6277 }
6278}
6279#else /* !CONFIG_MMU */
6280static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6281{
6282 return 0;
6283}
6284static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6285{
6286}
6287static void mem_cgroup_move_task(void)
6288{
6289}
6290#endif
6291
6292#ifdef CONFIG_LRU_GEN
6293static void mem_cgroup_attach(struct cgroup_taskset *tset)
6294{
6295 struct task_struct *task;
6296 struct cgroup_subsys_state *css;
6297
6298 /* find the first leader if there is any */
6299 cgroup_taskset_for_each_leader(task, css, tset)
6300 break;
6301
6302 if (!task)
6303 return;
6304
6305 task_lock(task);
6306 if (task->mm && READ_ONCE(task->mm->owner) == task)
6307 lru_gen_migrate_mm(task->mm);
6308 task_unlock(task);
6309}
6310#else
6311static void mem_cgroup_attach(struct cgroup_taskset *tset)
6312{
6313}
6314#endif /* CONFIG_LRU_GEN */
6315
6316static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6317{
6318 if (value == PAGE_COUNTER_MAX)
6319 seq_puts(m, "max\n");
6320 else
6321 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6322
6323 return 0;
6324}
6325
6326static u64 memory_current_read(struct cgroup_subsys_state *css,
6327 struct cftype *cft)
6328{
6329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6330
6331 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6332}
6333
6334static u64 memory_peak_read(struct cgroup_subsys_state *css,
6335 struct cftype *cft)
6336{
6337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6338
6339 return (u64)memcg->memory.watermark * PAGE_SIZE;
6340}
6341
6342static int memory_min_show(struct seq_file *m, void *v)
6343{
6344 return seq_puts_memcg_tunable(m,
6345 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6346}
6347
6348static ssize_t memory_min_write(struct kernfs_open_file *of,
6349 char *buf, size_t nbytes, loff_t off)
6350{
6351 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6352 unsigned long min;
6353 int err;
6354
6355 buf = strstrip(buf);
6356 err = page_counter_memparse(buf, "max", &min);
6357 if (err)
6358 return err;
6359
6360 page_counter_set_min(&memcg->memory, min);
6361
6362 return nbytes;
6363}
6364
6365static int memory_low_show(struct seq_file *m, void *v)
6366{
6367 return seq_puts_memcg_tunable(m,
6368 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6369}
6370
6371static ssize_t memory_low_write(struct kernfs_open_file *of,
6372 char *buf, size_t nbytes, loff_t off)
6373{
6374 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6375 unsigned long low;
6376 int err;
6377
6378 buf = strstrip(buf);
6379 err = page_counter_memparse(buf, "max", &low);
6380 if (err)
6381 return err;
6382
6383 page_counter_set_low(&memcg->memory, low);
6384
6385 return nbytes;
6386}
6387
6388static int memory_high_show(struct seq_file *m, void *v)
6389{
6390 return seq_puts_memcg_tunable(m,
6391 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6392}
6393
6394static ssize_t memory_high_write(struct kernfs_open_file *of,
6395 char *buf, size_t nbytes, loff_t off)
6396{
6397 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6398 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6399 bool drained = false;
6400 unsigned long high;
6401 int err;
6402
6403 buf = strstrip(buf);
6404 err = page_counter_memparse(buf, "max", &high);
6405 if (err)
6406 return err;
6407
6408 page_counter_set_high(&memcg->memory, high);
6409
6410 for (;;) {
6411 unsigned long nr_pages = page_counter_read(&memcg->memory);
6412 unsigned long reclaimed;
6413
6414 if (nr_pages <= high)
6415 break;
6416
6417 if (signal_pending(current))
6418 break;
6419
6420 if (!drained) {
6421 drain_all_stock(memcg);
6422 drained = true;
6423 continue;
6424 }
6425
6426 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6427 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6428
6429 if (!reclaimed && !nr_retries--)
6430 break;
6431 }
6432
6433 memcg_wb_domain_size_changed(memcg);
6434 return nbytes;
6435}
6436
6437static int memory_max_show(struct seq_file *m, void *v)
6438{
6439 return seq_puts_memcg_tunable(m,
6440 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6441}
6442
6443static ssize_t memory_max_write(struct kernfs_open_file *of,
6444 char *buf, size_t nbytes, loff_t off)
6445{
6446 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6447 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6448 bool drained = false;
6449 unsigned long max;
6450 int err;
6451
6452 buf = strstrip(buf);
6453 err = page_counter_memparse(buf, "max", &max);
6454 if (err)
6455 return err;
6456
6457 xchg(&memcg->memory.max, max);
6458
6459 for (;;) {
6460 unsigned long nr_pages = page_counter_read(&memcg->memory);
6461
6462 if (nr_pages <= max)
6463 break;
6464
6465 if (signal_pending(current))
6466 break;
6467
6468 if (!drained) {
6469 drain_all_stock(memcg);
6470 drained = true;
6471 continue;
6472 }
6473
6474 if (nr_reclaims) {
6475 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6476 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6477 nr_reclaims--;
6478 continue;
6479 }
6480
6481 memcg_memory_event(memcg, MEMCG_OOM);
6482 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6483 break;
6484 }
6485
6486 memcg_wb_domain_size_changed(memcg);
6487 return nbytes;
6488}
6489
6490static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6491{
6492 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6493 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6494 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6495 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6496 seq_printf(m, "oom_kill %lu\n",
6497 atomic_long_read(&events[MEMCG_OOM_KILL]));
6498 seq_printf(m, "oom_group_kill %lu\n",
6499 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6500}
6501
6502static int memory_events_show(struct seq_file *m, void *v)
6503{
6504 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6505
6506 __memory_events_show(m, memcg->memory_events);
6507 return 0;
6508}
6509
6510static int memory_events_local_show(struct seq_file *m, void *v)
6511{
6512 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6513
6514 __memory_events_show(m, memcg->memory_events_local);
6515 return 0;
6516}
6517
6518static int memory_stat_show(struct seq_file *m, void *v)
6519{
6520 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6521 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6522
6523 if (!buf)
6524 return -ENOMEM;
6525 memory_stat_format(memcg, buf, PAGE_SIZE);
6526 seq_puts(m, buf);
6527 kfree(buf);
6528 return 0;
6529}
6530
6531#ifdef CONFIG_NUMA
6532static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6533 int item)
6534{
6535 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6536}
6537
6538static int memory_numa_stat_show(struct seq_file *m, void *v)
6539{
6540 int i;
6541 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6542
6543 mem_cgroup_flush_stats();
6544
6545 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6546 int nid;
6547
6548 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6549 continue;
6550
6551 seq_printf(m, "%s", memory_stats[i].name);
6552 for_each_node_state(nid, N_MEMORY) {
6553 u64 size;
6554 struct lruvec *lruvec;
6555
6556 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6557 size = lruvec_page_state_output(lruvec,
6558 memory_stats[i].idx);
6559 seq_printf(m, " N%d=%llu", nid, size);
6560 }
6561 seq_putc(m, '\n');
6562 }
6563
6564 return 0;
6565}
6566#endif
6567
6568static int memory_oom_group_show(struct seq_file *m, void *v)
6569{
6570 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6571
6572 seq_printf(m, "%d\n", memcg->oom_group);
6573
6574 return 0;
6575}
6576
6577static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6578 char *buf, size_t nbytes, loff_t off)
6579{
6580 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6581 int ret, oom_group;
6582
6583 buf = strstrip(buf);
6584 if (!buf)
6585 return -EINVAL;
6586
6587 ret = kstrtoint(buf, 0, &oom_group);
6588 if (ret)
6589 return ret;
6590
6591 if (oom_group != 0 && oom_group != 1)
6592 return -EINVAL;
6593
6594 memcg->oom_group = oom_group;
6595
6596 return nbytes;
6597}
6598
6599static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6600 size_t nbytes, loff_t off)
6601{
6602 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6603 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6604 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6605 unsigned int reclaim_options;
6606 int err;
6607
6608 buf = strstrip(buf);
6609 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6610 if (err)
6611 return err;
6612
6613 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6614 while (nr_reclaimed < nr_to_reclaim) {
6615 unsigned long reclaimed;
6616
6617 if (signal_pending(current))
6618 return -EINTR;
6619
6620 /*
6621 * This is the final attempt, drain percpu lru caches in the
6622 * hope of introducing more evictable pages for
6623 * try_to_free_mem_cgroup_pages().
6624 */
6625 if (!nr_retries)
6626 lru_add_drain_all();
6627
6628 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6629 nr_to_reclaim - nr_reclaimed,
6630 GFP_KERNEL, reclaim_options);
6631
6632 if (!reclaimed && !nr_retries--)
6633 return -EAGAIN;
6634
6635 nr_reclaimed += reclaimed;
6636 }
6637
6638 return nbytes;
6639}
6640
6641static struct cftype memory_files[] = {
6642 {
6643 .name = "current",
6644 .flags = CFTYPE_NOT_ON_ROOT,
6645 .read_u64 = memory_current_read,
6646 },
6647 {
6648 .name = "peak",
6649 .flags = CFTYPE_NOT_ON_ROOT,
6650 .read_u64 = memory_peak_read,
6651 },
6652 {
6653 .name = "min",
6654 .flags = CFTYPE_NOT_ON_ROOT,
6655 .seq_show = memory_min_show,
6656 .write = memory_min_write,
6657 },
6658 {
6659 .name = "low",
6660 .flags = CFTYPE_NOT_ON_ROOT,
6661 .seq_show = memory_low_show,
6662 .write = memory_low_write,
6663 },
6664 {
6665 .name = "high",
6666 .flags = CFTYPE_NOT_ON_ROOT,
6667 .seq_show = memory_high_show,
6668 .write = memory_high_write,
6669 },
6670 {
6671 .name = "max",
6672 .flags = CFTYPE_NOT_ON_ROOT,
6673 .seq_show = memory_max_show,
6674 .write = memory_max_write,
6675 },
6676 {
6677 .name = "events",
6678 .flags = CFTYPE_NOT_ON_ROOT,
6679 .file_offset = offsetof(struct mem_cgroup, events_file),
6680 .seq_show = memory_events_show,
6681 },
6682 {
6683 .name = "events.local",
6684 .flags = CFTYPE_NOT_ON_ROOT,
6685 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6686 .seq_show = memory_events_local_show,
6687 },
6688 {
6689 .name = "stat",
6690 .seq_show = memory_stat_show,
6691 },
6692#ifdef CONFIG_NUMA
6693 {
6694 .name = "numa_stat",
6695 .seq_show = memory_numa_stat_show,
6696 },
6697#endif
6698 {
6699 .name = "oom.group",
6700 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6701 .seq_show = memory_oom_group_show,
6702 .write = memory_oom_group_write,
6703 },
6704 {
6705 .name = "reclaim",
6706 .flags = CFTYPE_NS_DELEGATABLE,
6707 .write = memory_reclaim,
6708 },
6709 { } /* terminate */
6710};
6711
6712struct cgroup_subsys memory_cgrp_subsys = {
6713 .css_alloc = mem_cgroup_css_alloc,
6714 .css_online = mem_cgroup_css_online,
6715 .css_offline = mem_cgroup_css_offline,
6716 .css_released = mem_cgroup_css_released,
6717 .css_free = mem_cgroup_css_free,
6718 .css_reset = mem_cgroup_css_reset,
6719 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6720 .can_attach = mem_cgroup_can_attach,
6721 .attach = mem_cgroup_attach,
6722 .cancel_attach = mem_cgroup_cancel_attach,
6723 .post_attach = mem_cgroup_move_task,
6724 .dfl_cftypes = memory_files,
6725 .legacy_cftypes = mem_cgroup_legacy_files,
6726 .early_init = 0,
6727};
6728
6729/*
6730 * This function calculates an individual cgroup's effective
6731 * protection which is derived from its own memory.min/low, its
6732 * parent's and siblings' settings, as well as the actual memory
6733 * distribution in the tree.
6734 *
6735 * The following rules apply to the effective protection values:
6736 *
6737 * 1. At the first level of reclaim, effective protection is equal to
6738 * the declared protection in memory.min and memory.low.
6739 *
6740 * 2. To enable safe delegation of the protection configuration, at
6741 * subsequent levels the effective protection is capped to the
6742 * parent's effective protection.
6743 *
6744 * 3. To make complex and dynamic subtrees easier to configure, the
6745 * user is allowed to overcommit the declared protection at a given
6746 * level. If that is the case, the parent's effective protection is
6747 * distributed to the children in proportion to how much protection
6748 * they have declared and how much of it they are utilizing.
6749 *
6750 * This makes distribution proportional, but also work-conserving:
6751 * if one cgroup claims much more protection than it uses memory,
6752 * the unused remainder is available to its siblings.
6753 *
6754 * 4. Conversely, when the declared protection is undercommitted at a
6755 * given level, the distribution of the larger parental protection
6756 * budget is NOT proportional. A cgroup's protection from a sibling
6757 * is capped to its own memory.min/low setting.
6758 *
6759 * 5. However, to allow protecting recursive subtrees from each other
6760 * without having to declare each individual cgroup's fixed share
6761 * of the ancestor's claim to protection, any unutilized -
6762 * "floating" - protection from up the tree is distributed in
6763 * proportion to each cgroup's *usage*. This makes the protection
6764 * neutral wrt sibling cgroups and lets them compete freely over
6765 * the shared parental protection budget, but it protects the
6766 * subtree as a whole from neighboring subtrees.
6767 *
6768 * Note that 4. and 5. are not in conflict: 4. is about protecting
6769 * against immediate siblings whereas 5. is about protecting against
6770 * neighboring subtrees.
6771 */
6772static unsigned long effective_protection(unsigned long usage,
6773 unsigned long parent_usage,
6774 unsigned long setting,
6775 unsigned long parent_effective,
6776 unsigned long siblings_protected)
6777{
6778 unsigned long protected;
6779 unsigned long ep;
6780
6781 protected = min(usage, setting);
6782 /*
6783 * If all cgroups at this level combined claim and use more
6784 * protection then what the parent affords them, distribute
6785 * shares in proportion to utilization.
6786 *
6787 * We are using actual utilization rather than the statically
6788 * claimed protection in order to be work-conserving: claimed
6789 * but unused protection is available to siblings that would
6790 * otherwise get a smaller chunk than what they claimed.
6791 */
6792 if (siblings_protected > parent_effective)
6793 return protected * parent_effective / siblings_protected;
6794
6795 /*
6796 * Ok, utilized protection of all children is within what the
6797 * parent affords them, so we know whatever this child claims
6798 * and utilizes is effectively protected.
6799 *
6800 * If there is unprotected usage beyond this value, reclaim
6801 * will apply pressure in proportion to that amount.
6802 *
6803 * If there is unutilized protection, the cgroup will be fully
6804 * shielded from reclaim, but we do return a smaller value for
6805 * protection than what the group could enjoy in theory. This
6806 * is okay. With the overcommit distribution above, effective
6807 * protection is always dependent on how memory is actually
6808 * consumed among the siblings anyway.
6809 */
6810 ep = protected;
6811
6812 /*
6813 * If the children aren't claiming (all of) the protection
6814 * afforded to them by the parent, distribute the remainder in
6815 * proportion to the (unprotected) memory of each cgroup. That
6816 * way, cgroups that aren't explicitly prioritized wrt each
6817 * other compete freely over the allowance, but they are
6818 * collectively protected from neighboring trees.
6819 *
6820 * We're using unprotected memory for the weight so that if
6821 * some cgroups DO claim explicit protection, we don't protect
6822 * the same bytes twice.
6823 *
6824 * Check both usage and parent_usage against the respective
6825 * protected values. One should imply the other, but they
6826 * aren't read atomically - make sure the division is sane.
6827 */
6828 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6829 return ep;
6830 if (parent_effective > siblings_protected &&
6831 parent_usage > siblings_protected &&
6832 usage > protected) {
6833 unsigned long unclaimed;
6834
6835 unclaimed = parent_effective - siblings_protected;
6836 unclaimed *= usage - protected;
6837 unclaimed /= parent_usage - siblings_protected;
6838
6839 ep += unclaimed;
6840 }
6841
6842 return ep;
6843}
6844
6845/**
6846 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6847 * @root: the top ancestor of the sub-tree being checked
6848 * @memcg: the memory cgroup to check
6849 *
6850 * WARNING: This function is not stateless! It can only be used as part
6851 * of a top-down tree iteration, not for isolated queries.
6852 */
6853void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6854 struct mem_cgroup *memcg)
6855{
6856 unsigned long usage, parent_usage;
6857 struct mem_cgroup *parent;
6858
6859 if (mem_cgroup_disabled())
6860 return;
6861
6862 if (!root)
6863 root = root_mem_cgroup;
6864
6865 /*
6866 * Effective values of the reclaim targets are ignored so they
6867 * can be stale. Have a look at mem_cgroup_protection for more
6868 * details.
6869 * TODO: calculation should be more robust so that we do not need
6870 * that special casing.
6871 */
6872 if (memcg == root)
6873 return;
6874
6875 usage = page_counter_read(&memcg->memory);
6876 if (!usage)
6877 return;
6878
6879 parent = parent_mem_cgroup(memcg);
6880
6881 if (parent == root) {
6882 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6883 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6884 return;
6885 }
6886
6887 parent_usage = page_counter_read(&parent->memory);
6888
6889 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6890 READ_ONCE(memcg->memory.min),
6891 READ_ONCE(parent->memory.emin),
6892 atomic_long_read(&parent->memory.children_min_usage)));
6893
6894 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6895 READ_ONCE(memcg->memory.low),
6896 READ_ONCE(parent->memory.elow),
6897 atomic_long_read(&parent->memory.children_low_usage)));
6898}
6899
6900static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6901 gfp_t gfp)
6902{
6903 long nr_pages = folio_nr_pages(folio);
6904 int ret;
6905
6906 ret = try_charge(memcg, gfp, nr_pages);
6907 if (ret)
6908 goto out;
6909
6910 css_get(&memcg->css);
6911 commit_charge(folio, memcg);
6912
6913 local_irq_disable();
6914 mem_cgroup_charge_statistics(memcg, nr_pages);
6915 memcg_check_events(memcg, folio_nid(folio));
6916 local_irq_enable();
6917out:
6918 return ret;
6919}
6920
6921int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6922{
6923 struct mem_cgroup *memcg;
6924 int ret;
6925
6926 memcg = get_mem_cgroup_from_mm(mm);
6927 ret = charge_memcg(folio, memcg, gfp);
6928 css_put(&memcg->css);
6929
6930 return ret;
6931}
6932
6933/**
6934 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6935 * @folio: folio to charge.
6936 * @mm: mm context of the victim
6937 * @gfp: reclaim mode
6938 * @entry: swap entry for which the folio is allocated
6939 *
6940 * This function charges a folio allocated for swapin. Please call this before
6941 * adding the folio to the swapcache.
6942 *
6943 * Returns 0 on success. Otherwise, an error code is returned.
6944 */
6945int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
6946 gfp_t gfp, swp_entry_t entry)
6947{
6948 struct mem_cgroup *memcg;
6949 unsigned short id;
6950 int ret;
6951
6952 if (mem_cgroup_disabled())
6953 return 0;
6954
6955 id = lookup_swap_cgroup_id(entry);
6956 rcu_read_lock();
6957 memcg = mem_cgroup_from_id(id);
6958 if (!memcg || !css_tryget_online(&memcg->css))
6959 memcg = get_mem_cgroup_from_mm(mm);
6960 rcu_read_unlock();
6961
6962 ret = charge_memcg(folio, memcg, gfp);
6963
6964 css_put(&memcg->css);
6965 return ret;
6966}
6967
6968/*
6969 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6970 * @entry: swap entry for which the page is charged
6971 *
6972 * Call this function after successfully adding the charged page to swapcache.
6973 *
6974 * Note: This function assumes the page for which swap slot is being uncharged
6975 * is order 0 page.
6976 */
6977void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6978{
6979 /*
6980 * Cgroup1's unified memory+swap counter has been charged with the
6981 * new swapcache page, finish the transfer by uncharging the swap
6982 * slot. The swap slot would also get uncharged when it dies, but
6983 * it can stick around indefinitely and we'd count the page twice
6984 * the entire time.
6985 *
6986 * Cgroup2 has separate resource counters for memory and swap,
6987 * so this is a non-issue here. Memory and swap charge lifetimes
6988 * correspond 1:1 to page and swap slot lifetimes: we charge the
6989 * page to memory here, and uncharge swap when the slot is freed.
6990 */
6991 if (!mem_cgroup_disabled() && do_memsw_account()) {
6992 /*
6993 * The swap entry might not get freed for a long time,
6994 * let's not wait for it. The page already received a
6995 * memory+swap charge, drop the swap entry duplicate.
6996 */
6997 mem_cgroup_uncharge_swap(entry, 1);
6998 }
6999}
7000
7001struct uncharge_gather {
7002 struct mem_cgroup *memcg;
7003 unsigned long nr_memory;
7004 unsigned long pgpgout;
7005 unsigned long nr_kmem;
7006 int nid;
7007};
7008
7009static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7010{
7011 memset(ug, 0, sizeof(*ug));
7012}
7013
7014static void uncharge_batch(const struct uncharge_gather *ug)
7015{
7016 unsigned long flags;
7017
7018 if (ug->nr_memory) {
7019 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7020 if (do_memsw_account())
7021 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7022 if (ug->nr_kmem)
7023 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7024 memcg_oom_recover(ug->memcg);
7025 }
7026
7027 local_irq_save(flags);
7028 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7029 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7030 memcg_check_events(ug->memcg, ug->nid);
7031 local_irq_restore(flags);
7032
7033 /* drop reference from uncharge_folio */
7034 css_put(&ug->memcg->css);
7035}
7036
7037static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7038{
7039 long nr_pages;
7040 struct mem_cgroup *memcg;
7041 struct obj_cgroup *objcg;
7042
7043 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7044
7045 /*
7046 * Nobody should be changing or seriously looking at
7047 * folio memcg or objcg at this point, we have fully
7048 * exclusive access to the folio.
7049 */
7050 if (folio_memcg_kmem(folio)) {
7051 objcg = __folio_objcg(folio);
7052 /*
7053 * This get matches the put at the end of the function and
7054 * kmem pages do not hold memcg references anymore.
7055 */
7056 memcg = get_mem_cgroup_from_objcg(objcg);
7057 } else {
7058 memcg = __folio_memcg(folio);
7059 }
7060
7061 if (!memcg)
7062 return;
7063
7064 if (ug->memcg != memcg) {
7065 if (ug->memcg) {
7066 uncharge_batch(ug);
7067 uncharge_gather_clear(ug);
7068 }
7069 ug->memcg = memcg;
7070 ug->nid = folio_nid(folio);
7071
7072 /* pairs with css_put in uncharge_batch */
7073 css_get(&memcg->css);
7074 }
7075
7076 nr_pages = folio_nr_pages(folio);
7077
7078 if (folio_memcg_kmem(folio)) {
7079 ug->nr_memory += nr_pages;
7080 ug->nr_kmem += nr_pages;
7081
7082 folio->memcg_data = 0;
7083 obj_cgroup_put(objcg);
7084 } else {
7085 /* LRU pages aren't accounted at the root level */
7086 if (!mem_cgroup_is_root(memcg))
7087 ug->nr_memory += nr_pages;
7088 ug->pgpgout++;
7089
7090 folio->memcg_data = 0;
7091 }
7092
7093 css_put(&memcg->css);
7094}
7095
7096void __mem_cgroup_uncharge(struct folio *folio)
7097{
7098 struct uncharge_gather ug;
7099
7100 /* Don't touch folio->lru of any random page, pre-check: */
7101 if (!folio_memcg(folio))
7102 return;
7103
7104 uncharge_gather_clear(&ug);
7105 uncharge_folio(folio, &ug);
7106 uncharge_batch(&ug);
7107}
7108
7109/**
7110 * __mem_cgroup_uncharge_list - uncharge a list of page
7111 * @page_list: list of pages to uncharge
7112 *
7113 * Uncharge a list of pages previously charged with
7114 * __mem_cgroup_charge().
7115 */
7116void __mem_cgroup_uncharge_list(struct list_head *page_list)
7117{
7118 struct uncharge_gather ug;
7119 struct folio *folio;
7120
7121 uncharge_gather_clear(&ug);
7122 list_for_each_entry(folio, page_list, lru)
7123 uncharge_folio(folio, &ug);
7124 if (ug.memcg)
7125 uncharge_batch(&ug);
7126}
7127
7128/**
7129 * mem_cgroup_migrate - Charge a folio's replacement.
7130 * @old: Currently circulating folio.
7131 * @new: Replacement folio.
7132 *
7133 * Charge @new as a replacement folio for @old. @old will
7134 * be uncharged upon free.
7135 *
7136 * Both folios must be locked, @new->mapping must be set up.
7137 */
7138void mem_cgroup_migrate(struct folio *old, struct folio *new)
7139{
7140 struct mem_cgroup *memcg;
7141 long nr_pages = folio_nr_pages(new);
7142 unsigned long flags;
7143
7144 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7145 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7146 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7147 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7148
7149 if (mem_cgroup_disabled())
7150 return;
7151
7152 /* Page cache replacement: new folio already charged? */
7153 if (folio_memcg(new))
7154 return;
7155
7156 memcg = folio_memcg(old);
7157 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7158 if (!memcg)
7159 return;
7160
7161 /* Force-charge the new page. The old one will be freed soon */
7162 if (!mem_cgroup_is_root(memcg)) {
7163 page_counter_charge(&memcg->memory, nr_pages);
7164 if (do_memsw_account())
7165 page_counter_charge(&memcg->memsw, nr_pages);
7166 }
7167
7168 css_get(&memcg->css);
7169 commit_charge(new, memcg);
7170
7171 local_irq_save(flags);
7172 mem_cgroup_charge_statistics(memcg, nr_pages);
7173 memcg_check_events(memcg, folio_nid(new));
7174 local_irq_restore(flags);
7175}
7176
7177DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7178EXPORT_SYMBOL(memcg_sockets_enabled_key);
7179
7180void mem_cgroup_sk_alloc(struct sock *sk)
7181{
7182 struct mem_cgroup *memcg;
7183
7184 if (!mem_cgroup_sockets_enabled)
7185 return;
7186
7187 /* Do not associate the sock with unrelated interrupted task's memcg. */
7188 if (!in_task())
7189 return;
7190
7191 rcu_read_lock();
7192 memcg = mem_cgroup_from_task(current);
7193 if (mem_cgroup_is_root(memcg))
7194 goto out;
7195 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7196 goto out;
7197 if (css_tryget(&memcg->css))
7198 sk->sk_memcg = memcg;
7199out:
7200 rcu_read_unlock();
7201}
7202
7203void mem_cgroup_sk_free(struct sock *sk)
7204{
7205 if (sk->sk_memcg)
7206 css_put(&sk->sk_memcg->css);
7207}
7208
7209/**
7210 * mem_cgroup_charge_skmem - charge socket memory
7211 * @memcg: memcg to charge
7212 * @nr_pages: number of pages to charge
7213 * @gfp_mask: reclaim mode
7214 *
7215 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7216 * @memcg's configured limit, %false if it doesn't.
7217 */
7218bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7219 gfp_t gfp_mask)
7220{
7221 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7222 struct page_counter *fail;
7223
7224 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7225 memcg->tcpmem_pressure = 0;
7226 return true;
7227 }
7228 memcg->tcpmem_pressure = 1;
7229 if (gfp_mask & __GFP_NOFAIL) {
7230 page_counter_charge(&memcg->tcpmem, nr_pages);
7231 return true;
7232 }
7233 return false;
7234 }
7235
7236 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7237 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7238 return true;
7239 }
7240
7241 return false;
7242}
7243
7244/**
7245 * mem_cgroup_uncharge_skmem - uncharge socket memory
7246 * @memcg: memcg to uncharge
7247 * @nr_pages: number of pages to uncharge
7248 */
7249void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7250{
7251 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7252 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7253 return;
7254 }
7255
7256 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7257
7258 refill_stock(memcg, nr_pages);
7259}
7260
7261static int __init cgroup_memory(char *s)
7262{
7263 char *token;
7264
7265 while ((token = strsep(&s, ",")) != NULL) {
7266 if (!*token)
7267 continue;
7268 if (!strcmp(token, "nosocket"))
7269 cgroup_memory_nosocket = true;
7270 if (!strcmp(token, "nokmem"))
7271 cgroup_memory_nokmem = true;
7272 }
7273 return 1;
7274}
7275__setup("cgroup.memory=", cgroup_memory);
7276
7277/*
7278 * subsys_initcall() for memory controller.
7279 *
7280 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7281 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7282 * basically everything that doesn't depend on a specific mem_cgroup structure
7283 * should be initialized from here.
7284 */
7285static int __init mem_cgroup_init(void)
7286{
7287 int cpu, node;
7288
7289 /*
7290 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7291 * used for per-memcg-per-cpu caching of per-node statistics. In order
7292 * to work fine, we should make sure that the overfill threshold can't
7293 * exceed S32_MAX / PAGE_SIZE.
7294 */
7295 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7296
7297 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7298 memcg_hotplug_cpu_dead);
7299
7300 for_each_possible_cpu(cpu)
7301 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7302 drain_local_stock);
7303
7304 for_each_node(node) {
7305 struct mem_cgroup_tree_per_node *rtpn;
7306
7307 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7308 node_online(node) ? node : NUMA_NO_NODE);
7309
7310 rtpn->rb_root = RB_ROOT;
7311 rtpn->rb_rightmost = NULL;
7312 spin_lock_init(&rtpn->lock);
7313 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7314 }
7315
7316 return 0;
7317}
7318subsys_initcall(mem_cgroup_init);
7319
7320#ifdef CONFIG_SWAP
7321static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7322{
7323 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7324 /*
7325 * The root cgroup cannot be destroyed, so it's refcount must
7326 * always be >= 1.
7327 */
7328 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7329 VM_BUG_ON(1);
7330 break;
7331 }
7332 memcg = parent_mem_cgroup(memcg);
7333 if (!memcg)
7334 memcg = root_mem_cgroup;
7335 }
7336 return memcg;
7337}
7338
7339/**
7340 * mem_cgroup_swapout - transfer a memsw charge to swap
7341 * @folio: folio whose memsw charge to transfer
7342 * @entry: swap entry to move the charge to
7343 *
7344 * Transfer the memsw charge of @folio to @entry.
7345 */
7346void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7347{
7348 struct mem_cgroup *memcg, *swap_memcg;
7349 unsigned int nr_entries;
7350 unsigned short oldid;
7351
7352 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7353 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7354
7355 if (mem_cgroup_disabled())
7356 return;
7357
7358 if (!do_memsw_account())
7359 return;
7360
7361 memcg = folio_memcg(folio);
7362
7363 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7364 if (!memcg)
7365 return;
7366
7367 /*
7368 * In case the memcg owning these pages has been offlined and doesn't
7369 * have an ID allocated to it anymore, charge the closest online
7370 * ancestor for the swap instead and transfer the memory+swap charge.
7371 */
7372 swap_memcg = mem_cgroup_id_get_online(memcg);
7373 nr_entries = folio_nr_pages(folio);
7374 /* Get references for the tail pages, too */
7375 if (nr_entries > 1)
7376 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7377 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7378 nr_entries);
7379 VM_BUG_ON_FOLIO(oldid, folio);
7380 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7381
7382 folio->memcg_data = 0;
7383
7384 if (!mem_cgroup_is_root(memcg))
7385 page_counter_uncharge(&memcg->memory, nr_entries);
7386
7387 if (memcg != swap_memcg) {
7388 if (!mem_cgroup_is_root(swap_memcg))
7389 page_counter_charge(&swap_memcg->memsw, nr_entries);
7390 page_counter_uncharge(&memcg->memsw, nr_entries);
7391 }
7392
7393 /*
7394 * Interrupts should be disabled here because the caller holds the
7395 * i_pages lock which is taken with interrupts-off. It is
7396 * important here to have the interrupts disabled because it is the
7397 * only synchronisation we have for updating the per-CPU variables.
7398 */
7399 memcg_stats_lock();
7400 mem_cgroup_charge_statistics(memcg, -nr_entries);
7401 memcg_stats_unlock();
7402 memcg_check_events(memcg, folio_nid(folio));
7403
7404 css_put(&memcg->css);
7405}
7406
7407/**
7408 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7409 * @folio: folio being added to swap
7410 * @entry: swap entry to charge
7411 *
7412 * Try to charge @folio's memcg for the swap space at @entry.
7413 *
7414 * Returns 0 on success, -ENOMEM on failure.
7415 */
7416int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7417{
7418 unsigned int nr_pages = folio_nr_pages(folio);
7419 struct page_counter *counter;
7420 struct mem_cgroup *memcg;
7421 unsigned short oldid;
7422
7423 if (do_memsw_account())
7424 return 0;
7425
7426 memcg = folio_memcg(folio);
7427
7428 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7429 if (!memcg)
7430 return 0;
7431
7432 if (!entry.val) {
7433 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7434 return 0;
7435 }
7436
7437 memcg = mem_cgroup_id_get_online(memcg);
7438
7439 if (!mem_cgroup_is_root(memcg) &&
7440 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7441 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7442 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7443 mem_cgroup_id_put(memcg);
7444 return -ENOMEM;
7445 }
7446
7447 /* Get references for the tail pages, too */
7448 if (nr_pages > 1)
7449 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7450 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7451 VM_BUG_ON_FOLIO(oldid, folio);
7452 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7453
7454 return 0;
7455}
7456
7457/**
7458 * __mem_cgroup_uncharge_swap - uncharge swap space
7459 * @entry: swap entry to uncharge
7460 * @nr_pages: the amount of swap space to uncharge
7461 */
7462void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7463{
7464 struct mem_cgroup *memcg;
7465 unsigned short id;
7466
7467 if (mem_cgroup_disabled())
7468 return;
7469
7470 id = swap_cgroup_record(entry, 0, nr_pages);
7471 rcu_read_lock();
7472 memcg = mem_cgroup_from_id(id);
7473 if (memcg) {
7474 if (!mem_cgroup_is_root(memcg)) {
7475 if (do_memsw_account())
7476 page_counter_uncharge(&memcg->memsw, nr_pages);
7477 else
7478 page_counter_uncharge(&memcg->swap, nr_pages);
7479 }
7480 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7481 mem_cgroup_id_put_many(memcg, nr_pages);
7482 }
7483 rcu_read_unlock();
7484}
7485
7486long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7487{
7488 long nr_swap_pages = get_nr_swap_pages();
7489
7490 if (mem_cgroup_disabled() || do_memsw_account())
7491 return nr_swap_pages;
7492 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7493 nr_swap_pages = min_t(long, nr_swap_pages,
7494 READ_ONCE(memcg->swap.max) -
7495 page_counter_read(&memcg->swap));
7496 return nr_swap_pages;
7497}
7498
7499bool mem_cgroup_swap_full(struct folio *folio)
7500{
7501 struct mem_cgroup *memcg;
7502
7503 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7504
7505 if (vm_swap_full())
7506 return true;
7507 if (do_memsw_account())
7508 return false;
7509
7510 memcg = folio_memcg(folio);
7511 if (!memcg)
7512 return false;
7513
7514 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7515 unsigned long usage = page_counter_read(&memcg->swap);
7516
7517 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7518 usage * 2 >= READ_ONCE(memcg->swap.max))
7519 return true;
7520 }
7521
7522 return false;
7523}
7524
7525static int __init setup_swap_account(char *s)
7526{
7527 pr_warn_once("The swapaccount= commandline option is deprecated. "
7528 "Please report your usecase to linux-mm@kvack.org if you "
7529 "depend on this functionality.\n");
7530 return 1;
7531}
7532__setup("swapaccount=", setup_swap_account);
7533
7534static u64 swap_current_read(struct cgroup_subsys_state *css,
7535 struct cftype *cft)
7536{
7537 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7538
7539 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7540}
7541
7542static int swap_high_show(struct seq_file *m, void *v)
7543{
7544 return seq_puts_memcg_tunable(m,
7545 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7546}
7547
7548static ssize_t swap_high_write(struct kernfs_open_file *of,
7549 char *buf, size_t nbytes, loff_t off)
7550{
7551 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7552 unsigned long high;
7553 int err;
7554
7555 buf = strstrip(buf);
7556 err = page_counter_memparse(buf, "max", &high);
7557 if (err)
7558 return err;
7559
7560 page_counter_set_high(&memcg->swap, high);
7561
7562 return nbytes;
7563}
7564
7565static int swap_max_show(struct seq_file *m, void *v)
7566{
7567 return seq_puts_memcg_tunable(m,
7568 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7569}
7570
7571static ssize_t swap_max_write(struct kernfs_open_file *of,
7572 char *buf, size_t nbytes, loff_t off)
7573{
7574 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7575 unsigned long max;
7576 int err;
7577
7578 buf = strstrip(buf);
7579 err = page_counter_memparse(buf, "max", &max);
7580 if (err)
7581 return err;
7582
7583 xchg(&memcg->swap.max, max);
7584
7585 return nbytes;
7586}
7587
7588static int swap_events_show(struct seq_file *m, void *v)
7589{
7590 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7591
7592 seq_printf(m, "high %lu\n",
7593 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7594 seq_printf(m, "max %lu\n",
7595 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7596 seq_printf(m, "fail %lu\n",
7597 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7598
7599 return 0;
7600}
7601
7602static struct cftype swap_files[] = {
7603 {
7604 .name = "swap.current",
7605 .flags = CFTYPE_NOT_ON_ROOT,
7606 .read_u64 = swap_current_read,
7607 },
7608 {
7609 .name = "swap.high",
7610 .flags = CFTYPE_NOT_ON_ROOT,
7611 .seq_show = swap_high_show,
7612 .write = swap_high_write,
7613 },
7614 {
7615 .name = "swap.max",
7616 .flags = CFTYPE_NOT_ON_ROOT,
7617 .seq_show = swap_max_show,
7618 .write = swap_max_write,
7619 },
7620 {
7621 .name = "swap.events",
7622 .flags = CFTYPE_NOT_ON_ROOT,
7623 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7624 .seq_show = swap_events_show,
7625 },
7626 { } /* terminate */
7627};
7628
7629static struct cftype memsw_files[] = {
7630 {
7631 .name = "memsw.usage_in_bytes",
7632 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7633 .read_u64 = mem_cgroup_read_u64,
7634 },
7635 {
7636 .name = "memsw.max_usage_in_bytes",
7637 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7638 .write = mem_cgroup_reset,
7639 .read_u64 = mem_cgroup_read_u64,
7640 },
7641 {
7642 .name = "memsw.limit_in_bytes",
7643 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7644 .write = mem_cgroup_write,
7645 .read_u64 = mem_cgroup_read_u64,
7646 },
7647 {
7648 .name = "memsw.failcnt",
7649 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7650 .write = mem_cgroup_reset,
7651 .read_u64 = mem_cgroup_read_u64,
7652 },
7653 { }, /* terminate */
7654};
7655
7656#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7657/**
7658 * obj_cgroup_may_zswap - check if this cgroup can zswap
7659 * @objcg: the object cgroup
7660 *
7661 * Check if the hierarchical zswap limit has been reached.
7662 *
7663 * This doesn't check for specific headroom, and it is not atomic
7664 * either. But with zswap, the size of the allocation is only known
7665 * once compression has occured, and this optimistic pre-check avoids
7666 * spending cycles on compression when there is already no room left
7667 * or zswap is disabled altogether somewhere in the hierarchy.
7668 */
7669bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7670{
7671 struct mem_cgroup *memcg, *original_memcg;
7672 bool ret = true;
7673
7674 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7675 return true;
7676
7677 original_memcg = get_mem_cgroup_from_objcg(objcg);
7678 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7679 memcg = parent_mem_cgroup(memcg)) {
7680 unsigned long max = READ_ONCE(memcg->zswap_max);
7681 unsigned long pages;
7682
7683 if (max == PAGE_COUNTER_MAX)
7684 continue;
7685 if (max == 0) {
7686 ret = false;
7687 break;
7688 }
7689
7690 cgroup_rstat_flush(memcg->css.cgroup);
7691 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7692 if (pages < max)
7693 continue;
7694 ret = false;
7695 break;
7696 }
7697 mem_cgroup_put(original_memcg);
7698 return ret;
7699}
7700
7701/**
7702 * obj_cgroup_charge_zswap - charge compression backend memory
7703 * @objcg: the object cgroup
7704 * @size: size of compressed object
7705 *
7706 * This forces the charge after obj_cgroup_may_swap() allowed
7707 * compression and storage in zwap for this cgroup to go ahead.
7708 */
7709void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7710{
7711 struct mem_cgroup *memcg;
7712
7713 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7714 return;
7715
7716 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7717
7718 /* PF_MEMALLOC context, charging must succeed */
7719 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7720 VM_WARN_ON_ONCE(1);
7721
7722 rcu_read_lock();
7723 memcg = obj_cgroup_memcg(objcg);
7724 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7725 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7726 rcu_read_unlock();
7727}
7728
7729/**
7730 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7731 * @objcg: the object cgroup
7732 * @size: size of compressed object
7733 *
7734 * Uncharges zswap memory on page in.
7735 */
7736void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7737{
7738 struct mem_cgroup *memcg;
7739
7740 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7741 return;
7742
7743 obj_cgroup_uncharge(objcg, size);
7744
7745 rcu_read_lock();
7746 memcg = obj_cgroup_memcg(objcg);
7747 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7748 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7749 rcu_read_unlock();
7750}
7751
7752static u64 zswap_current_read(struct cgroup_subsys_state *css,
7753 struct cftype *cft)
7754{
7755 cgroup_rstat_flush(css->cgroup);
7756 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7757}
7758
7759static int zswap_max_show(struct seq_file *m, void *v)
7760{
7761 return seq_puts_memcg_tunable(m,
7762 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7763}
7764
7765static ssize_t zswap_max_write(struct kernfs_open_file *of,
7766 char *buf, size_t nbytes, loff_t off)
7767{
7768 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7769 unsigned long max;
7770 int err;
7771
7772 buf = strstrip(buf);
7773 err = page_counter_memparse(buf, "max", &max);
7774 if (err)
7775 return err;
7776
7777 xchg(&memcg->zswap_max, max);
7778
7779 return nbytes;
7780}
7781
7782static struct cftype zswap_files[] = {
7783 {
7784 .name = "zswap.current",
7785 .flags = CFTYPE_NOT_ON_ROOT,
7786 .read_u64 = zswap_current_read,
7787 },
7788 {
7789 .name = "zswap.max",
7790 .flags = CFTYPE_NOT_ON_ROOT,
7791 .seq_show = zswap_max_show,
7792 .write = zswap_max_write,
7793 },
7794 { } /* terminate */
7795};
7796#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7797
7798static int __init mem_cgroup_swap_init(void)
7799{
7800 if (mem_cgroup_disabled())
7801 return 0;
7802
7803 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7804 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7805#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7806 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7807#endif
7808 return 0;
7809}
7810subsys_initcall(mem_cgroup_swap_init);
7811
7812#endif /* CONFIG_SWAP */