Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v4.6
 
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * Native page reclaim
  18 * Charge lifetime sanitation
  19 * Lockless page tracking & accounting
  20 * Unified hierarchy configuration model
  21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22 *
  23 * This program is free software; you can redistribute it and/or modify
  24 * it under the terms of the GNU General Public License as published by
  25 * the Free Software Foundation; either version 2 of the License, or
  26 * (at your option) any later version.
  27 *
  28 * This program is distributed in the hope that it will be useful,
  29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  31 * GNU General Public License for more details.
  32 */
  33
 
  34#include <linux/page_counter.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cgroup.h>
  37#include <linux/mm.h>
 
  38#include <linux/hugetlb.h>
  39#include <linux/pagemap.h>
 
 
  40#include <linux/smp.h>
  41#include <linux/page-flags.h>
  42#include <linux/backing-dev.h>
  43#include <linux/bit_spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/limits.h>
  46#include <linux/export.h>
 
  47#include <linux/mutex.h>
  48#include <linux/rbtree.h>
  49#include <linux/slab.h>
  50#include <linux/swap.h>
  51#include <linux/swapops.h>
  52#include <linux/spinlock.h>
  53#include <linux/eventfd.h>
  54#include <linux/poll.h>
  55#include <linux/sort.h>
  56#include <linux/fs.h>
  57#include <linux/seq_file.h>
 
  58#include <linux/vmpressure.h>
 
  59#include <linux/mm_inline.h>
  60#include <linux/swap_cgroup.h>
  61#include <linux/cpu.h>
  62#include <linux/oom.h>
  63#include <linux/lockdep.h>
  64#include <linux/file.h>
  65#include <linux/tracehook.h>
 
 
 
  66#include "internal.h"
  67#include <net/sock.h>
  68#include <net/ip.h>
  69#include "slab.h"
 
  70
  71#include <asm/uaccess.h>
 
 
 
 
  72
  73#include <trace/events/vmscan.h>
  74
  75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  76EXPORT_SYMBOL(memory_cgrp_subsys);
  77
  78struct mem_cgroup *root_mem_cgroup __read_mostly;
  79
  80#define MEM_CGROUP_RECLAIM_RETRIES	5
 
 
  81
  82/* Socket memory accounting disabled? */
  83static bool cgroup_memory_nosocket;
  84
  85/* Kernel memory accounting disabled? */
  86static bool cgroup_memory_nokmem;
  87
  88/* Whether the swap controller is active */
  89#ifdef CONFIG_MEMCG_SWAP
  90int do_swap_account __read_mostly;
  91#else
  92#define do_swap_account		0
  93#endif
  94
  95/* Whether legacy memory+swap accounting is active */
  96static bool do_memsw_account(void)
  97{
  98	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
 
  99}
 100
 101static const char * const mem_cgroup_stat_names[] = {
 102	"cache",
 103	"rss",
 104	"rss_huge",
 105	"mapped_file",
 106	"dirty",
 107	"writeback",
 108	"swap",
 109};
 110
 111static const char * const mem_cgroup_events_names[] = {
 112	"pgpgin",
 113	"pgpgout",
 114	"pgfault",
 115	"pgmajfault",
 116};
 117
 118static const char * const mem_cgroup_lru_names[] = {
 119	"inactive_anon",
 120	"active_anon",
 121	"inactive_file",
 122	"active_file",
 123	"unevictable",
 124};
 125
 126#define THRESHOLDS_EVENTS_TARGET 128
 127#define SOFTLIMIT_EVENTS_TARGET 1024
 128#define NUMAINFO_EVENTS_TARGET	1024
 129
 130/*
 131 * Cgroups above their limits are maintained in a RB-Tree, independent of
 132 * their hierarchy representation
 133 */
 134
 135struct mem_cgroup_tree_per_zone {
 136	struct rb_root rb_root;
 137	spinlock_t lock;
 138};
 139
 140struct mem_cgroup_tree_per_node {
 141	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 142};
 143
 144struct mem_cgroup_tree {
 145	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 146};
 
 147
 148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 
 149
 150/* for OOM */
 151struct mem_cgroup_eventfd_list {
 152	struct list_head list;
 153	struct eventfd_ctx *eventfd;
 154};
 
 155
 156/*
 157 * cgroup_event represents events which userspace want to receive.
 158 */
 159struct mem_cgroup_event {
 160	/*
 161	 * memcg which the event belongs to.
 162	 */
 163	struct mem_cgroup *memcg;
 164	/*
 165	 * eventfd to signal userspace about the event.
 166	 */
 167	struct eventfd_ctx *eventfd;
 168	/*
 169	 * Each of these stored in a list by the cgroup.
 170	 */
 171	struct list_head list;
 172	/*
 173	 * register_event() callback will be used to add new userspace
 174	 * waiter for changes related to this event.  Use eventfd_signal()
 175	 * on eventfd to send notification to userspace.
 176	 */
 177	int (*register_event)(struct mem_cgroup *memcg,
 178			      struct eventfd_ctx *eventfd, const char *args);
 179	/*
 180	 * unregister_event() callback will be called when userspace closes
 181	 * the eventfd or on cgroup removing.  This callback must be set,
 182	 * if you want provide notification functionality.
 183	 */
 184	void (*unregister_event)(struct mem_cgroup *memcg,
 185				 struct eventfd_ctx *eventfd);
 186	/*
 187	 * All fields below needed to unregister event when
 188	 * userspace closes eventfd.
 189	 */
 190	poll_table pt;
 191	wait_queue_head_t *wqh;
 192	wait_queue_t wait;
 193	struct work_struct remove;
 194};
 195
 196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 198
 199/* Stuffs for move charges at task migration. */
 200/*
 201 * Types of charges to be moved.
 202 */
 203#define MOVE_ANON	0x1U
 204#define MOVE_FILE	0x2U
 205#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 206
 207/* "mc" and its members are protected by cgroup_mutex */
 208static struct move_charge_struct {
 209	spinlock_t	  lock; /* for from, to */
 210	struct mm_struct  *mm;
 211	struct mem_cgroup *from;
 212	struct mem_cgroup *to;
 213	unsigned long flags;
 214	unsigned long precharge;
 215	unsigned long moved_charge;
 216	unsigned long moved_swap;
 217	struct task_struct *moving_task;	/* a task moving charges */
 218	wait_queue_head_t waitq;		/* a waitq for other context */
 219} mc = {
 220	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 221	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 222};
 223
 224/*
 225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 226 * limit reclaim to prevent infinite loops, if they ever occur.
 227 */
 228#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 229#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 230
 231enum charge_type {
 232	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 233	MEM_CGROUP_CHARGE_TYPE_ANON,
 234	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 235	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 236	NR_CHARGE_TYPE,
 237};
 238
 239/* for encoding cft->private value on file */
 240enum res_type {
 241	_MEM,
 242	_MEMSWAP,
 243	_OOM_TYPE,
 244	_KMEM,
 245	_TCP,
 246};
 247
 248#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 249#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 250#define MEMFILE_ATTR(val)	((val) & 0xffff)
 251/* Used for OOM nofiier */
 252#define OOM_CONTROL		(0)
 253
 254/* Some nice accessors for the vmpressure. */
 255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 256{
 257	if (!memcg)
 258		memcg = root_mem_cgroup;
 259	return &memcg->vmpressure;
 
 
 260}
 261
 262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 
 263{
 264	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 265}
 266
 267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 268{
 269	return (memcg == root_mem_cgroup);
 270}
 271
 272#ifndef CONFIG_SLOB
 273/*
 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 275 * The main reason for not using cgroup id for this:
 276 *  this works better in sparse environments, where we have a lot of memcgs,
 277 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 278 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 279 *  200 entry array for that.
 280 *
 281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 282 * will double each time we have to increase it.
 283 */
 284static DEFINE_IDA(memcg_cache_ida);
 285int memcg_nr_cache_ids;
 286
 287/* Protects memcg_nr_cache_ids */
 288static DECLARE_RWSEM(memcg_cache_ids_sem);
 
 
 
 
 
 289
 290void memcg_get_cache_ids(void)
 291{
 292	down_read(&memcg_cache_ids_sem);
 293}
 294
 295void memcg_put_cache_ids(void)
 296{
 297	up_read(&memcg_cache_ids_sem);
 298}
 299
 300/*
 301 * MIN_SIZE is different than 1, because we would like to avoid going through
 302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 303 * cgroups is a reasonable guess. In the future, it could be a parameter or
 304 * tunable, but that is strictly not necessary.
 305 *
 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 307 * this constant directly from cgroup, but it is understandable that this is
 308 * better kept as an internal representation in cgroup.c. In any case, the
 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 310 * increase ours as well if it increases.
 311 */
 312#define MEMCG_CACHES_MIN_SIZE 4
 313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 314
 315/*
 316 * A lot of the calls to the cache allocation functions are expected to be
 317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 318 * conditional to this static branch, we'll have to allow modules that does
 319 * kmem_cache_alloc and the such to see this symbol as well
 320 */
 321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 322EXPORT_SYMBOL(memcg_kmem_enabled_key);
 323
 324#endif /* !CONFIG_SLOB */
 325
 326static struct mem_cgroup_per_zone *
 327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
 328{
 329	int nid = zone_to_nid(zone);
 330	int zid = zone_idx(zone);
 331
 332	return &memcg->nodeinfo[nid]->zoneinfo[zid];
 333}
 334
 335/**
 336 * mem_cgroup_css_from_page - css of the memcg associated with a page
 337 * @page: page of interest
 338 *
 339 * If memcg is bound to the default hierarchy, css of the memcg associated
 340 * with @page is returned.  The returned css remains associated with @page
 341 * until it is released.
 342 *
 343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 344 * is returned.
 345 */
 346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 347{
 348	struct mem_cgroup *memcg;
 349
 350	memcg = page->mem_cgroup;
 351
 352	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 353		memcg = root_mem_cgroup;
 354
 355	return &memcg->css;
 356}
 357
 358/**
 359 * page_cgroup_ino - return inode number of the memcg a page is charged to
 360 * @page: the page
 361 *
 362 * Look up the closest online ancestor of the memory cgroup @page is charged to
 363 * and return its inode number or 0 if @page is not charged to any cgroup. It
 364 * is safe to call this function without holding a reference to @page.
 365 *
 366 * Note, this function is inherently racy, because there is nothing to prevent
 367 * the cgroup inode from getting torn down and potentially reallocated a moment
 368 * after page_cgroup_ino() returns, so it only should be used by callers that
 369 * do not care (such as procfs interfaces).
 370 */
 371ino_t page_cgroup_ino(struct page *page)
 372{
 373	struct mem_cgroup *memcg;
 374	unsigned long ino = 0;
 375
 376	rcu_read_lock();
 377	memcg = READ_ONCE(page->mem_cgroup);
 
 
 378	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 379		memcg = parent_mem_cgroup(memcg);
 380	if (memcg)
 381		ino = cgroup_ino(memcg->css.cgroup);
 382	rcu_read_unlock();
 383	return ino;
 384}
 385
 386static struct mem_cgroup_per_zone *
 387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388{
 389	int nid = page_to_nid(page);
 390	int zid = page_zonenum(page);
 
 
 
 391
 392	return &memcg->nodeinfo[nid]->zoneinfo[zid];
 
 
 
 
 393}
 394
 395static struct mem_cgroup_tree_per_zone *
 396soft_limit_tree_node_zone(int nid, int zid)
 397{
 398	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 399}
 400
 401static struct mem_cgroup_tree_per_zone *
 402soft_limit_tree_from_page(struct page *page)
 403{
 404	int nid = page_to_nid(page);
 405	int zid = page_zonenum(page);
 406
 407	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 408}
 
 
 
 
 
 
 
 
 
 
 
 
 409
 410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
 411					 struct mem_cgroup_tree_per_zone *mctz,
 412					 unsigned long new_usage_in_excess)
 413{
 414	struct rb_node **p = &mctz->rb_root.rb_node;
 415	struct rb_node *parent = NULL;
 416	struct mem_cgroup_per_zone *mz_node;
 417
 418	if (mz->on_tree)
 419		return;
 420
 421	mz->usage_in_excess = new_usage_in_excess;
 422	if (!mz->usage_in_excess)
 423		return;
 424	while (*p) {
 425		parent = *p;
 426		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 427					tree_node);
 428		if (mz->usage_in_excess < mz_node->usage_in_excess)
 429			p = &(*p)->rb_left;
 430		/*
 431		 * We can't avoid mem cgroups that are over their soft
 432		 * limit by the same amount
 433		 */
 434		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 435			p = &(*p)->rb_right;
 436	}
 437	rb_link_node(&mz->tree_node, parent, p);
 438	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 439	mz->on_tree = true;
 440}
 441
 442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
 443					 struct mem_cgroup_tree_per_zone *mctz)
 444{
 445	if (!mz->on_tree)
 446		return;
 447	rb_erase(&mz->tree_node, &mctz->rb_root);
 448	mz->on_tree = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449}
 450
 451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
 452				       struct mem_cgroup_tree_per_zone *mctz)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453{
 454	unsigned long flags;
 
 
 455
 456	spin_lock_irqsave(&mctz->lock, flags);
 457	__mem_cgroup_remove_exceeded(mz, mctz);
 458	spin_unlock_irqrestore(&mctz->lock, flags);
 
 
 459}
 460
 461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 462{
 463	unsigned long nr_pages = page_counter_read(&memcg->memory);
 464	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 465	unsigned long excess = 0;
 466
 467	if (nr_pages > soft_limit)
 468		excess = nr_pages - soft_limit;
 
 469
 470	return excess;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471}
 472
 473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 474{
 475	unsigned long excess;
 476	struct mem_cgroup_per_zone *mz;
 477	struct mem_cgroup_tree_per_zone *mctz;
 478
 479	mctz = soft_limit_tree_from_page(page);
 480	/*
 481	 * Necessary to update all ancestors when hierarchy is used.
 482	 * because their event counter is not touched.
 483	 */
 484	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 485		mz = mem_cgroup_page_zoneinfo(memcg, page);
 486		excess = soft_limit_excess(memcg);
 487		/*
 488		 * We have to update the tree if mz is on RB-tree or
 489		 * mem is over its softlimit.
 490		 */
 491		if (excess || mz->on_tree) {
 492			unsigned long flags;
 493
 494			spin_lock_irqsave(&mctz->lock, flags);
 495			/* if on-tree, remove it */
 496			if (mz->on_tree)
 497				__mem_cgroup_remove_exceeded(mz, mctz);
 498			/*
 499			 * Insert again. mz->usage_in_excess will be updated.
 500			 * If excess is 0, no tree ops.
 501			 */
 502			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 503			spin_unlock_irqrestore(&mctz->lock, flags);
 504		}
 505	}
 506}
 507
 508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 509{
 510	struct mem_cgroup_tree_per_zone *mctz;
 511	struct mem_cgroup_per_zone *mz;
 512	int nid, zid;
 513
 514	for_each_node(nid) {
 515		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 516			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 517			mctz = soft_limit_tree_node_zone(nid, zid);
 518			mem_cgroup_remove_exceeded(mz, mctz);
 519		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 520	}
 521}
 522
 523static struct mem_cgroup_per_zone *
 524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 525{
 526	struct rb_node *rightmost = NULL;
 527	struct mem_cgroup_per_zone *mz;
 528
 529retry:
 530	mz = NULL;
 531	rightmost = rb_last(&mctz->rb_root);
 532	if (!rightmost)
 533		goto done;		/* Nothing to reclaim from */
 534
 535	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 536	/*
 537	 * Remove the node now but someone else can add it back,
 538	 * we will to add it back at the end of reclaim to its correct
 539	 * position in the tree.
 540	 */
 541	__mem_cgroup_remove_exceeded(mz, mctz);
 542	if (!soft_limit_excess(mz->memcg) ||
 543	    !css_tryget_online(&mz->memcg->css))
 544		goto retry;
 545done:
 546	return mz;
 547}
 548
 549static struct mem_cgroup_per_zone *
 550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 551{
 552	struct mem_cgroup_per_zone *mz;
 
 553
 554	spin_lock_irq(&mctz->lock);
 555	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 556	spin_unlock_irq(&mctz->lock);
 557	return mz;
 558}
 559
 560/*
 561 * Return page count for single (non recursive) @memcg.
 
 562 *
 563 * Implementation Note: reading percpu statistics for memcg.
 564 *
 565 * Both of vmstat[] and percpu_counter has threshold and do periodic
 566 * synchronization to implement "quick" read. There are trade-off between
 567 * reading cost and precision of value. Then, we may have a chance to implement
 568 * a periodic synchronization of counter in memcg's counter.
 569 *
 570 * But this _read() function is used for user interface now. The user accounts
 571 * memory usage by memory cgroup and he _always_ requires exact value because
 572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 573 * have to visit all online cpus and make sum. So, for now, unnecessary
 574 * synchronization is not implemented. (just implemented for cpu hotplug)
 575 *
 576 * If there are kernel internal actions which can make use of some not-exact
 577 * value, and reading all cpu value can be performance bottleneck in some
 578 * common workload, threshold and synchronization as vmstat[] should be
 579 * implemented.
 580 */
 581static unsigned long
 582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
 583{
 584	long val = 0;
 585	int cpu;
 586
 587	/* Per-cpu values can be negative, use a signed accumulator */
 588	for_each_possible_cpu(cpu)
 589		val += per_cpu(memcg->stat->count[idx], cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 590	/*
 591	 * Summing races with updates, so val may be negative.  Avoid exposing
 592	 * transient negative values.
 593	 */
 594	if (val < 0)
 595		val = 0;
 596	return val;
 597}
 598
 599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
 600					    enum mem_cgroup_events_index idx)
 601{
 602	unsigned long val = 0;
 603	int cpu;
 604
 605	for_each_possible_cpu(cpu)
 606		val += per_cpu(memcg->stat->events[idx], cpu);
 607	return val;
 
 
 
 
 
 
 608}
 609
 610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 611					 struct page *page,
 612					 bool compound, int nr_pages)
 
 
 
 
 613{
 614	/*
 615	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 616	 * counted as CACHE even if it's on ANON LRU.
 617	 */
 618	if (PageAnon(page))
 619		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
 620				nr_pages);
 621	else
 622		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
 623				nr_pages);
 624
 625	if (compound) {
 626		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 627		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
 628				nr_pages);
 629	}
 
 
 
 
 
 630
 631	/* pagein of a big page is an event. So, ignore page size */
 632	if (nr_pages > 0)
 633		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 634	else {
 635		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 636		nr_pages = -nr_pages; /* for event */
 637	}
 638
 639	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
 
 
 
 640}
 641
 642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 643					   int nid, unsigned int lru_mask)
 644{
 645	unsigned long nr = 0;
 646	int zid;
 647
 648	VM_BUG_ON((unsigned)nid >= nr_node_ids);
 649
 650	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 651		struct mem_cgroup_per_zone *mz;
 652		enum lru_list lru;
 653
 654		for_each_lru(lru) {
 655			if (!(BIT(lru) & lru_mask))
 656				continue;
 657			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 658			nr += mz->lru_size[lru];
 659		}
 660	}
 661	return nr;
 662}
 663
 664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 665			unsigned int lru_mask)
 
 666{
 667	unsigned long nr = 0;
 668	int nid;
 
 669
 670	for_each_node_state(nid, N_MEMORY)
 671		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 672	return nr;
 673}
 674
 675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 676				       enum mem_cgroup_events_target target)
 677{
 678	unsigned long val, next;
 679
 680	val = __this_cpu_read(memcg->stat->nr_page_events);
 681	next = __this_cpu_read(memcg->stat->targets[target]);
 682	/* from time_after() in jiffies.h */
 683	if ((long)next - (long)val < 0) {
 684		switch (target) {
 685		case MEM_CGROUP_TARGET_THRESH:
 686			next = val + THRESHOLDS_EVENTS_TARGET;
 687			break;
 688		case MEM_CGROUP_TARGET_SOFTLIMIT:
 689			next = val + SOFTLIMIT_EVENTS_TARGET;
 690			break;
 691		case MEM_CGROUP_TARGET_NUMAINFO:
 692			next = val + NUMAINFO_EVENTS_TARGET;
 693			break;
 694		default:
 695			break;
 696		}
 697		__this_cpu_write(memcg->stat->targets[target], next);
 698		return true;
 699	}
 700	return false;
 
 
 
 
 
 
 
 
 
 
 701}
 702
 703/*
 704 * Check events in order.
 
 
 
 705 *
 
 
 
 706 */
 707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 
 708{
 709	/* threshold event is triggered in finer grain than soft limit */
 710	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 711						MEM_CGROUP_TARGET_THRESH))) {
 712		bool do_softlimit;
 713		bool do_numainfo __maybe_unused;
 714
 715		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 716						MEM_CGROUP_TARGET_SOFTLIMIT);
 717#if MAX_NUMNODES > 1
 718		do_numainfo = mem_cgroup_event_ratelimit(memcg,
 719						MEM_CGROUP_TARGET_NUMAINFO);
 720#endif
 721		mem_cgroup_threshold(memcg);
 722		if (unlikely(do_softlimit))
 723			mem_cgroup_update_tree(memcg, page);
 724#if MAX_NUMNODES > 1
 725		if (unlikely(do_numainfo))
 726			atomic_inc(&memcg->numainfo_events);
 727#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729}
 730
 731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 732{
 733	/*
 734	 * mm_update_next_owner() may clear mm->owner to NULL
 735	 * if it races with swapoff, page migration, etc.
 736	 * So this can be called with p == NULL.
 737	 */
 738	if (unlikely(!p))
 739		return NULL;
 740
 741	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 742}
 743EXPORT_SYMBOL(mem_cgroup_from_task);
 744
 745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 746{
 747	struct mem_cgroup *memcg = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748
 749	rcu_read_lock();
 750	do {
 751		/*
 752		 * Page cache insertions can happen withou an
 753		 * actual mm context, e.g. during disk probing
 754		 * on boot, loopback IO, acct() writes etc.
 755		 */
 756		if (unlikely(!mm))
 757			memcg = root_mem_cgroup;
 758		else {
 759			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 760			if (unlikely(!memcg))
 761				memcg = root_mem_cgroup;
 762		}
 763	} while (!css_tryget_online(&memcg->css));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764	rcu_read_unlock();
 765	return memcg;
 766}
 767
 768/**
 769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 770 * @root: hierarchy root
 771 * @prev: previously returned memcg, NULL on first invocation
 772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 773 *
 774 * Returns references to children of the hierarchy below @root, or
 775 * @root itself, or %NULL after a full round-trip.
 776 *
 777 * Caller must pass the return value in @prev on subsequent
 778 * invocations for reference counting, or use mem_cgroup_iter_break()
 779 * to cancel a hierarchy walk before the round-trip is complete.
 780 *
 781 * Reclaimers can specify a zone and a priority level in @reclaim to
 782 * divide up the memcgs in the hierarchy among all concurrent
 783 * reclaimers operating on the same zone and priority.
 784 */
 785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 786				   struct mem_cgroup *prev,
 787				   struct mem_cgroup_reclaim_cookie *reclaim)
 788{
 789	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 790	struct cgroup_subsys_state *css = NULL;
 791	struct mem_cgroup *memcg = NULL;
 792	struct mem_cgroup *pos = NULL;
 793
 794	if (mem_cgroup_disabled())
 795		return NULL;
 796
 797	if (!root)
 798		root = root_mem_cgroup;
 799
 800	if (prev && !reclaim)
 801		pos = prev;
 802
 803	if (!root->use_hierarchy && root != root_mem_cgroup) {
 804		if (prev)
 805			goto out;
 806		return root;
 807	}
 808
 809	rcu_read_lock();
 
 
 810
 811	if (reclaim) {
 812		struct mem_cgroup_per_zone *mz;
 
 813
 814		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
 815		iter = &mz->iter[reclaim->priority];
 816
 817		if (prev && reclaim->generation != iter->generation)
 
 
 
 
 
 
 818			goto out_unlock;
 819
 820		while (1) {
 821			pos = READ_ONCE(iter->position);
 822			if (!pos || css_tryget(&pos->css))
 823				break;
 824			/*
 825			 * css reference reached zero, so iter->position will
 826			 * be cleared by ->css_released. However, we should not
 827			 * rely on this happening soon, because ->css_released
 828			 * is called from a work queue, and by busy-waiting we
 829			 * might block it. So we clear iter->position right
 830			 * away.
 831			 */
 832			(void)cmpxchg(&iter->position, pos, NULL);
 833		}
 834	}
 835
 836	if (pos)
 837		css = &pos->css;
 838
 839	for (;;) {
 840		css = css_next_descendant_pre(css, &root->css);
 841		if (!css) {
 842			/*
 843			 * Reclaimers share the hierarchy walk, and a
 844			 * new one might jump in right at the end of
 845			 * the hierarchy - make sure they see at least
 846			 * one group and restart from the beginning.
 847			 */
 848			if (!prev)
 849				continue;
 850			break;
 851		}
 852
 
 853		/*
 854		 * Verify the css and acquire a reference.  The root
 855		 * is provided by the caller, so we know it's alive
 856		 * and kicking, and don't take an extra reference.
 857		 */
 858		memcg = mem_cgroup_from_css(css);
 859
 860		if (css == &root->css)
 861			break;
 862
 863		if (css_tryget(css))
 864			break;
 865
 866		memcg = NULL;
 867	}
 868
 
 
 869	if (reclaim) {
 870		/*
 871		 * The position could have already been updated by a competing
 872		 * thread, so check that the value hasn't changed since we read
 873		 * it to avoid reclaiming from the same cgroup twice.
 874		 */
 875		(void)cmpxchg(&iter->position, pos, memcg);
 
 
 
 
 876
 877		if (pos)
 878			css_put(&pos->css);
 879
 880		if (!memcg)
 881			iter->generation++;
 882		else if (!prev)
 883			reclaim->generation = iter->generation;
 
 
 
 
 
 884	}
 885
 886out_unlock:
 887	rcu_read_unlock();
 888out:
 889	if (prev && prev != root)
 890		css_put(&prev->css);
 891
 892	return memcg;
 893}
 894
 895/**
 896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 897 * @root: hierarchy root
 898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 899 */
 900void mem_cgroup_iter_break(struct mem_cgroup *root,
 901			   struct mem_cgroup *prev)
 902{
 903	if (!root)
 904		root = root_mem_cgroup;
 905	if (prev && prev != root)
 906		css_put(&prev->css);
 907}
 908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
 910{
 911	struct mem_cgroup *memcg = dead_memcg;
 912	struct mem_cgroup_reclaim_iter *iter;
 913	struct mem_cgroup_per_zone *mz;
 914	int nid, zid;
 915	int i;
 916
 917	while ((memcg = parent_mem_cgroup(memcg))) {
 918		for_each_node(nid) {
 919			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 920				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 921				for (i = 0; i <= DEF_PRIORITY; i++) {
 922					iter = &mz->iter[i];
 923					cmpxchg(&iter->position,
 924						dead_memcg, NULL);
 925				}
 926			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927		}
 928	}
 929}
 930
 931/*
 932 * Iteration constructs for visiting all cgroups (under a tree).  If
 933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 934 * be used for reference counting.
 935 */
 936#define for_each_mem_cgroup_tree(iter, root)		\
 937	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 938	     iter != NULL;				\
 939	     iter = mem_cgroup_iter(root, iter, NULL))
 940
 941#define for_each_mem_cgroup(iter)			\
 942	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 943	     iter != NULL;				\
 944	     iter = mem_cgroup_iter(NULL, iter, NULL))
 
 
 945
 946/**
 947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 948 * @zone: zone of the wanted lruvec
 949 * @memcg: memcg of the wanted lruvec
 950 *
 951 * Returns the lru list vector holding pages for the given @zone and
 952 * @mem.  This can be the global zone lruvec, if the memory controller
 953 * is disabled.
 
 
 954 */
 955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
 956				      struct mem_cgroup *memcg)
 957{
 958	struct mem_cgroup_per_zone *mz;
 959	struct lruvec *lruvec;
 960
 961	if (mem_cgroup_disabled()) {
 962		lruvec = &zone->lruvec;
 963		goto out;
 964	}
 965
 966	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
 967	lruvec = &mz->lruvec;
 968out:
 969	/*
 970	 * Since a node can be onlined after the mem_cgroup was created,
 971	 * we have to be prepared to initialize lruvec->zone here;
 972	 * and if offlined then reonlined, we need to reinitialize it.
 973	 */
 974	if (unlikely(lruvec->zone != zone))
 975		lruvec->zone = zone;
 976	return lruvec;
 977}
 978
 979/**
 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 981 * @page: the page
 982 * @zone: zone of the page
 983 *
 984 * This function is only safe when following the LRU page isolation
 985 * and putback protocol: the LRU lock must be held, and the page must
 986 * either be PageLRU() or the caller must have isolated/allocated it.
 
 
 
 
 987 */
 988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
 989{
 990	struct mem_cgroup_per_zone *mz;
 991	struct mem_cgroup *memcg;
 992	struct lruvec *lruvec;
 993
 994	if (mem_cgroup_disabled()) {
 995		lruvec = &zone->lruvec;
 996		goto out;
 997	}
 998
 999	memcg = page->mem_cgroup;
1000	/*
1001	 * Swapcache readahead pages are added to the LRU - and
1002	 * possibly migrated - before they are charged.
1003	 */
1004	if (!memcg)
1005		memcg = root_mem_cgroup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006
1007	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008	lruvec = &mz->lruvec;
1009out:
1010	/*
1011	 * Since a node can be onlined after the mem_cgroup was created,
1012	 * we have to be prepared to initialize lruvec->zone here;
1013	 * and if offlined then reonlined, we need to reinitialize it.
1014	 */
1015	if (unlikely(lruvec->zone != zone))
1016		lruvec->zone = zone;
1017	return lruvec;
1018}
1019
1020/**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
 
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030				int nr_pages)
1031{
1032	struct mem_cgroup_per_zone *mz;
1033	unsigned long *lru_size;
 
1034
1035	if (mem_cgroup_disabled())
1036		return;
1037
1038	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039	lru_size = mz->lru_size + lru;
1040	*lru_size += nr_pages;
1041	VM_BUG_ON((long)(*lru_size) < 0);
1042}
1043
1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045{
1046	struct mem_cgroup *task_memcg;
1047	struct task_struct *p;
1048	bool ret;
1049
1050	p = find_lock_task_mm(task);
1051	if (p) {
1052		task_memcg = get_mem_cgroup_from_mm(p->mm);
1053		task_unlock(p);
1054	} else {
1055		/*
1056		 * All threads may have already detached their mm's, but the oom
1057		 * killer still needs to detect if they have already been oom
1058		 * killed to prevent needlessly killing additional tasks.
1059		 */
1060		rcu_read_lock();
1061		task_memcg = mem_cgroup_from_task(task);
1062		css_get(&task_memcg->css);
1063		rcu_read_unlock();
1064	}
1065	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066	css_put(&task_memcg->css);
1067	return ret;
1068}
1069
1070/**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078{
1079	unsigned long margin = 0;
1080	unsigned long count;
1081	unsigned long limit;
1082
1083	count = page_counter_read(&memcg->memory);
1084	limit = READ_ONCE(memcg->memory.limit);
1085	if (count < limit)
1086		margin = limit - count;
1087
1088	if (do_memsw_account()) {
1089		count = page_counter_read(&memcg->memsw);
1090		limit = READ_ONCE(memcg->memsw.limit);
1091		if (count <= limit)
1092			margin = min(margin, limit - count);
 
 
1093	}
1094
1095	return margin;
1096}
1097
1098/*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106{
1107	struct mem_cgroup *from;
1108	struct mem_cgroup *to;
1109	bool ret = false;
1110	/*
1111	 * Unlike task_move routines, we access mc.to, mc.from not under
1112	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113	 */
1114	spin_lock(&mc.lock);
1115	from = mc.from;
1116	to = mc.to;
1117	if (!from)
1118		goto unlock;
1119
1120	ret = mem_cgroup_is_descendant(from, memcg) ||
1121		mem_cgroup_is_descendant(to, memcg);
1122unlock:
1123	spin_unlock(&mc.lock);
1124	return ret;
1125}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126
1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128{
1129	if (mc.moving_task && current != mc.moving_task) {
1130		if (mem_cgroup_under_move(memcg)) {
1131			DEFINE_WAIT(wait);
1132			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133			/* moving charge context might have finished. */
1134			if (mc.moving_task)
1135				schedule();
1136			finish_wait(&mc.waitq, &wait);
1137			return true;
1138		}
1139	}
1140	return false;
1141}
1142
1143#define K(x) ((x) << (PAGE_SHIFT-10))
1144/**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
1154	struct mem_cgroup *iter;
1155	unsigned int i;
1156
1157	rcu_read_lock();
1158
1159	if (p) {
1160		pr_info("Task in ");
1161		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162		pr_cont(" killed as a result of limit of ");
1163	} else {
1164		pr_info("Memory limit reached of cgroup ");
1165	}
1166
1167	pr_cont_cgroup_path(memcg->css.cgroup);
1168	pr_cont("\n");
1169
1170	rcu_read_unlock();
1171
1172	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173		K((u64)page_counter_read(&memcg->memory)),
1174		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176		K((u64)page_counter_read(&memcg->memsw)),
1177		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179		K((u64)page_counter_read(&memcg->kmem)),
1180		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181
1182	for_each_mem_cgroup_tree(iter, memcg) {
1183		pr_info("Memory cgroup stats for ");
1184		pr_cont_cgroup_path(iter->css.cgroup);
1185		pr_cont(":");
1186
1187		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189				continue;
1190			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191				K(mem_cgroup_read_stat(iter, i)));
1192		}
1193
1194		for (i = 0; i < NR_LRU_LISTS; i++)
1195			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198		pr_cont("\n");
1199	}
1200}
1201
1202/*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
1206static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207{
1208	int num = 0;
1209	struct mem_cgroup *iter;
1210
1211	for_each_mem_cgroup_tree(iter, memcg)
1212		num++;
1213	return num;
1214}
1215
1216/*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
1219static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220{
1221	unsigned long limit;
1222
1223	limit = memcg->memory.limit;
1224	if (mem_cgroup_swappiness(memcg)) {
1225		unsigned long memsw_limit;
1226		unsigned long swap_limit;
1227
1228		memsw_limit = memcg->memsw.limit;
1229		swap_limit = memcg->swap.limit;
1230		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231		limit = min(limit + swap_limit, memsw_limit);
1232	}
1233	return limit;
1234}
1235
1236static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237				     int order)
1238{
1239	struct oom_control oc = {
1240		.zonelist = NULL,
1241		.nodemask = NULL,
1242		.gfp_mask = gfp_mask,
1243		.order = order,
1244	};
1245	struct mem_cgroup *iter;
1246	unsigned long chosen_points = 0;
1247	unsigned long totalpages;
1248	unsigned int points = 0;
1249	struct task_struct *chosen = NULL;
1250
1251	mutex_lock(&oom_lock);
1252
1253	/*
1254	 * If current has a pending SIGKILL or is exiting, then automatically
1255	 * select it.  The goal is to allow it to allocate so that it may
1256	 * quickly exit and free its memory.
 
 
 
 
 
1257	 */
1258	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259		mark_oom_victim(current);
1260		goto unlock;
1261	}
1262
1263	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265	for_each_mem_cgroup_tree(iter, memcg) {
1266		struct css_task_iter it;
1267		struct task_struct *task;
1268
1269		css_task_iter_start(&iter->css, &it);
1270		while ((task = css_task_iter_next(&it))) {
1271			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272			case OOM_SCAN_SELECT:
1273				if (chosen)
1274					put_task_struct(chosen);
1275				chosen = task;
1276				chosen_points = ULONG_MAX;
1277				get_task_struct(chosen);
1278				/* fall through */
1279			case OOM_SCAN_CONTINUE:
1280				continue;
1281			case OOM_SCAN_ABORT:
1282				css_task_iter_end(&it);
1283				mem_cgroup_iter_break(memcg, iter);
1284				if (chosen)
1285					put_task_struct(chosen);
1286				goto unlock;
1287			case OOM_SCAN_OK:
1288				break;
1289			};
1290			points = oom_badness(task, memcg, NULL, totalpages);
1291			if (!points || points < chosen_points)
1292				continue;
1293			/* Prefer thread group leaders for display purposes */
1294			if (points == chosen_points &&
1295			    thread_group_leader(chosen))
1296				continue;
1297
1298			if (chosen)
1299				put_task_struct(chosen);
1300			chosen = task;
1301			chosen_points = points;
1302			get_task_struct(chosen);
1303		}
1304		css_task_iter_end(&it);
1305	}
1306
1307	if (chosen) {
1308		points = chosen_points * 1000 / totalpages;
1309		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310				 "Memory cgroup out of memory");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311	}
1312unlock:
1313	mutex_unlock(&oom_lock);
1314	return chosen;
1315}
1316
1317#if MAX_NUMNODES > 1
1318
1319/**
1320 * test_mem_cgroup_node_reclaimable
1321 * @memcg: the target memcg
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1324 *
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1328 */
1329static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330		int nid, bool noswap)
1331{
1332	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333		return true;
1334	if (noswap || !total_swap_pages)
1335		return false;
1336	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337		return true;
1338	return false;
1339
1340}
1341
1342/*
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 
1346 *
 
 
1347 */
1348static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349{
1350	int nid;
1351	/*
1352	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353	 * pagein/pageout changes since the last update.
1354	 */
1355	if (!atomic_read(&memcg->numainfo_events))
1356		return;
1357	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358		return;
1359
1360	/* make a nodemask where this memcg uses memory from */
1361	memcg->scan_nodes = node_states[N_MEMORY];
1362
1363	for_each_node_mask(nid, node_states[N_MEMORY]) {
1364
1365		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366			node_clear(nid, memcg->scan_nodes);
 
 
 
 
 
 
1367	}
1368
1369	atomic_set(&memcg->numainfo_events, 0);
1370	atomic_set(&memcg->numainfo_updating, 0);
1371}
1372
1373/*
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1377 *
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1382 *
1383 * Now, we use round-robin. Better algorithm is welcomed.
1384 */
1385int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386{
1387	int node;
 
 
1388
1389	mem_cgroup_may_update_nodemask(memcg);
1390	node = memcg->last_scanned_node;
1391
1392	node = next_node(node, memcg->scan_nodes);
1393	if (node == MAX_NUMNODES)
1394		node = first_node(memcg->scan_nodes);
1395	/*
1396	 * We call this when we hit limit, not when pages are added to LRU.
1397	 * No LRU may hold pages because all pages are UNEVICTABLE or
1398	 * memcg is too small and all pages are not on LRU. In that case,
1399	 * we use curret node.
1400	 */
1401	if (unlikely(node == MAX_NUMNODES))
1402		node = numa_node_id();
1403
1404	memcg->last_scanned_node = node;
1405	return node;
1406}
1407#else
1408int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409{
1410	return 0;
1411}
1412#endif
1413
1414static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1415				   struct zone *zone,
1416				   gfp_t gfp_mask,
1417				   unsigned long *total_scanned)
1418{
1419	struct mem_cgroup *victim = NULL;
1420	int total = 0;
1421	int loop = 0;
1422	unsigned long excess;
1423	unsigned long nr_scanned;
1424	struct mem_cgroup_reclaim_cookie reclaim = {
1425		.zone = zone,
1426		.priority = 0,
1427	};
1428
1429	excess = soft_limit_excess(root_memcg);
1430
1431	while (1) {
1432		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1433		if (!victim) {
1434			loop++;
1435			if (loop >= 2) {
1436				/*
1437				 * If we have not been able to reclaim
1438				 * anything, it might because there are
1439				 * no reclaimable pages under this hierarchy
1440				 */
1441				if (!total)
1442					break;
1443				/*
1444				 * We want to do more targeted reclaim.
1445				 * excess >> 2 is not to excessive so as to
1446				 * reclaim too much, nor too less that we keep
1447				 * coming back to reclaim from this cgroup
1448				 */
1449				if (total >= (excess >> 2) ||
1450					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1451					break;
1452			}
1453			continue;
1454		}
1455		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1456						     zone, &nr_scanned);
1457		*total_scanned += nr_scanned;
1458		if (!soft_limit_excess(root_memcg))
1459			break;
1460	}
1461	mem_cgroup_iter_break(root_memcg, victim);
1462	return total;
1463}
1464
1465#ifdef CONFIG_LOCKDEP
1466static struct lockdep_map memcg_oom_lock_dep_map = {
1467	.name = "memcg_oom_lock",
1468};
1469#endif
1470
1471static DEFINE_SPINLOCK(memcg_oom_lock);
 
 
 
 
 
 
1472
1473/*
1474 * Check OOM-Killer is already running under our hierarchy.
1475 * If someone is running, return false.
1476 */
1477static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1478{
1479	struct mem_cgroup *iter, *failed = NULL;
1480
1481	spin_lock(&memcg_oom_lock);
1482
1483	for_each_mem_cgroup_tree(iter, memcg) {
1484		if (iter->oom_lock) {
1485			/*
1486			 * this subtree of our hierarchy is already locked
1487			 * so we cannot give a lock.
1488			 */
1489			failed = iter;
1490			mem_cgroup_iter_break(memcg, iter);
1491			break;
1492		} else
1493			iter->oom_lock = true;
1494	}
1495
1496	if (failed) {
1497		/*
1498		 * OK, we failed to lock the whole subtree so we have
1499		 * to clean up what we set up to the failing subtree
1500		 */
1501		for_each_mem_cgroup_tree(iter, memcg) {
1502			if (iter == failed) {
1503				mem_cgroup_iter_break(memcg, iter);
1504				break;
1505			}
1506			iter->oom_lock = false;
1507		}
1508	} else
1509		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1510
1511	spin_unlock(&memcg_oom_lock);
1512
1513	return !failed;
1514}
1515
1516static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1517{
1518	struct mem_cgroup *iter;
1519
1520	spin_lock(&memcg_oom_lock);
1521	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1522	for_each_mem_cgroup_tree(iter, memcg)
1523		iter->oom_lock = false;
1524	spin_unlock(&memcg_oom_lock);
1525}
1526
1527static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
 
1528{
1529	struct mem_cgroup *iter;
 
 
 
 
 
 
 
1530
1531	spin_lock(&memcg_oom_lock);
1532	for_each_mem_cgroup_tree(iter, memcg)
1533		iter->under_oom++;
1534	spin_unlock(&memcg_oom_lock);
1535}
1536
1537static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1538{
1539	struct mem_cgroup *iter;
1540
1541	/*
1542	 * When a new child is created while the hierarchy is under oom,
1543	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1544	 */
1545	spin_lock(&memcg_oom_lock);
1546	for_each_mem_cgroup_tree(iter, memcg)
1547		if (iter->under_oom > 0)
1548			iter->under_oom--;
1549	spin_unlock(&memcg_oom_lock);
1550}
1551
1552static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1553
1554struct oom_wait_info {
1555	struct mem_cgroup *memcg;
1556	wait_queue_t	wait;
1557};
1558
1559static int memcg_oom_wake_function(wait_queue_t *wait,
1560	unsigned mode, int sync, void *arg)
1561{
1562	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1563	struct mem_cgroup *oom_wait_memcg;
1564	struct oom_wait_info *oom_wait_info;
1565
1566	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1567	oom_wait_memcg = oom_wait_info->memcg;
1568
1569	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1570	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1571		return 0;
1572	return autoremove_wake_function(wait, mode, sync, arg);
1573}
1574
1575static void memcg_oom_recover(struct mem_cgroup *memcg)
 
 
 
 
1576{
1577	/*
1578	 * For the following lockless ->under_oom test, the only required
1579	 * guarantee is that it must see the state asserted by an OOM when
1580	 * this function is called as a result of userland actions
1581	 * triggered by the notification of the OOM.  This is trivially
1582	 * achieved by invoking mem_cgroup_mark_under_oom() before
1583	 * triggering notification.
1584	 */
1585	if (memcg && memcg->under_oom)
1586		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1587}
1588
1589static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1590{
1591	if (!current->memcg_may_oom)
1592		return;
1593	/*
1594	 * We are in the middle of the charge context here, so we
1595	 * don't want to block when potentially sitting on a callstack
1596	 * that holds all kinds of filesystem and mm locks.
1597	 *
1598	 * Also, the caller may handle a failed allocation gracefully
1599	 * (like optional page cache readahead) and so an OOM killer
1600	 * invocation might not even be necessary.
1601	 *
1602	 * That's why we don't do anything here except remember the
1603	 * OOM context and then deal with it at the end of the page
1604	 * fault when the stack is unwound, the locks are released,
1605	 * and when we know whether the fault was overall successful.
1606	 */
1607	css_get(&memcg->css);
1608	current->memcg_in_oom = memcg;
1609	current->memcg_oom_gfp_mask = mask;
1610	current->memcg_oom_order = order;
1611}
1612
1613/**
1614 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615 * @handle: actually kill/wait or just clean up the OOM state
1616 *
1617 * This has to be called at the end of a page fault if the memcg OOM
1618 * handler was enabled.
1619 *
1620 * Memcg supports userspace OOM handling where failed allocations must
1621 * sleep on a waitqueue until the userspace task resolves the
1622 * situation.  Sleeping directly in the charge context with all kinds
1623 * of locks held is not a good idea, instead we remember an OOM state
1624 * in the task and mem_cgroup_oom_synchronize() has to be called at
1625 * the end of the page fault to complete the OOM handling.
1626 *
1627 * Returns %true if an ongoing memcg OOM situation was detected and
1628 * completed, %false otherwise.
1629 */
1630bool mem_cgroup_oom_synchronize(bool handle)
1631{
1632	struct mem_cgroup *memcg = current->memcg_in_oom;
1633	struct oom_wait_info owait;
1634	bool locked;
1635
1636	/* OOM is global, do not handle */
1637	if (!memcg)
1638		return false;
1639
1640	if (!handle || oom_killer_disabled)
1641		goto cleanup;
1642
1643	owait.memcg = memcg;
1644	owait.wait.flags = 0;
1645	owait.wait.func = memcg_oom_wake_function;
1646	owait.wait.private = current;
1647	INIT_LIST_HEAD(&owait.wait.task_list);
1648
1649	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1650	mem_cgroup_mark_under_oom(memcg);
1651
1652	locked = mem_cgroup_oom_trylock(memcg);
1653
1654	if (locked)
1655		mem_cgroup_oom_notify(memcg);
1656
1657	if (locked && !memcg->oom_kill_disable) {
1658		mem_cgroup_unmark_under_oom(memcg);
1659		finish_wait(&memcg_oom_waitq, &owait.wait);
1660		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1661					 current->memcg_oom_order);
1662	} else {
1663		schedule();
1664		mem_cgroup_unmark_under_oom(memcg);
1665		finish_wait(&memcg_oom_waitq, &owait.wait);
1666	}
1667
1668	if (locked) {
1669		mem_cgroup_oom_unlock(memcg);
1670		/*
1671		 * There is no guarantee that an OOM-lock contender
1672		 * sees the wakeups triggered by the OOM kill
1673		 * uncharges.  Wake any sleepers explicitely.
1674		 */
1675		memcg_oom_recover(memcg);
1676	}
1677cleanup:
1678	current->memcg_in_oom = NULL;
1679	css_put(&memcg->css);
1680	return true;
1681}
1682
1683/**
1684 * lock_page_memcg - lock a page->mem_cgroup binding
1685 * @page: the page
 
 
 
 
1686 *
1687 * This function protects unlocked LRU pages from being moved to
1688 * another cgroup and stabilizes their page->mem_cgroup binding.
1689 */
1690void lock_page_memcg(struct page *page)
 
1691{
 
1692	struct mem_cgroup *memcg;
1693	unsigned long flags;
1694
1695	/*
1696	 * The RCU lock is held throughout the transaction.  The fast
1697	 * path can get away without acquiring the memcg->move_lock
1698	 * because page moving starts with an RCU grace period.
1699	 */
1700	rcu_read_lock();
1701
1702	if (mem_cgroup_disabled())
1703		return;
1704again:
1705	memcg = page->mem_cgroup;
1706	if (unlikely(!memcg))
1707		return;
1708
1709	if (atomic_read(&memcg->moving_account) <= 0)
1710		return;
1711
1712	spin_lock_irqsave(&memcg->move_lock, flags);
1713	if (memcg != page->mem_cgroup) {
1714		spin_unlock_irqrestore(&memcg->move_lock, flags);
1715		goto again;
1716	}
1717
1718	/*
1719	 * When charge migration first begins, we can have locked and
1720	 * unlocked page stat updates happening concurrently.  Track
1721	 * the task who has the lock for unlock_page_memcg().
1722	 */
1723	memcg->move_lock_task = current;
1724	memcg->move_lock_flags = flags;
1725
1726	return;
1727}
1728EXPORT_SYMBOL(lock_page_memcg);
1729
1730/**
1731 * unlock_page_memcg - unlock a page->mem_cgroup binding
1732 * @page: the page
1733 */
1734void unlock_page_memcg(struct page *page)
1735{
1736	struct mem_cgroup *memcg = page->mem_cgroup;
1737
1738	if (memcg && memcg->move_lock_task == current) {
1739		unsigned long flags = memcg->move_lock_flags;
1740
1741		memcg->move_lock_task = NULL;
1742		memcg->move_lock_flags = 0;
 
 
 
 
 
 
1743
1744		spin_unlock_irqrestore(&memcg->move_lock, flags);
 
1745	}
1746
 
 
 
1747	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
1748}
1749EXPORT_SYMBOL(unlock_page_memcg);
1750
1751/*
1752 * size of first charge trial. "32" comes from vmscan.c's magic value.
1753 * TODO: maybe necessary to use big numbers in big irons.
1754 */
1755#define CHARGE_BATCH	32U
1756struct memcg_stock_pcp {
 
1757	struct mem_cgroup *cached; /* this never be root cgroup */
1758	unsigned int nr_pages;
 
 
 
 
 
 
 
1759	struct work_struct work;
1760	unsigned long flags;
1761#define FLUSHING_CACHED_CHARGE	0
1762};
1763static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
 
 
1764static DEFINE_MUTEX(percpu_charge_mutex);
1765
 
 
 
 
1766/**
1767 * consume_stock: Try to consume stocked charge on this cpu.
1768 * @memcg: memcg to consume from.
1769 * @nr_pages: how many pages to charge.
1770 *
1771 * The charges will only happen if @memcg matches the current cpu's memcg
1772 * stock, and at least @nr_pages are available in that stock.  Failure to
1773 * service an allocation will refill the stock.
1774 *
1775 * returns true if successful, false otherwise.
1776 */
1777static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1778{
1779	struct memcg_stock_pcp *stock;
 
 
1780	bool ret = false;
1781
1782	if (nr_pages > CHARGE_BATCH)
1783		return ret;
1784
1785	stock = &get_cpu_var(memcg_stock);
1786	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1787		stock->nr_pages -= nr_pages;
 
 
 
1788		ret = true;
1789	}
1790	put_cpu_var(memcg_stock);
 
 
1791	return ret;
1792}
1793
1794/*
1795 * Returns stocks cached in percpu and reset cached information.
1796 */
1797static void drain_stock(struct memcg_stock_pcp *stock)
1798{
1799	struct mem_cgroup *old = stock->cached;
 
 
 
 
1800
1801	if (stock->nr_pages) {
1802		page_counter_uncharge(&old->memory, stock->nr_pages);
1803		if (do_memsw_account())
1804			page_counter_uncharge(&old->memsw, stock->nr_pages);
1805		css_put_many(&old->css, stock->nr_pages);
1806		stock->nr_pages = 0;
1807	}
1808	stock->cached = NULL;
 
 
1809}
1810
1811/*
1812 * This must be called under preempt disabled or must be called by
1813 * a thread which is pinned to local cpu.
1814 */
1815static void drain_local_stock(struct work_struct *dummy)
1816{
1817	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
 
 
 
 
 
 
 
 
 
 
 
 
1818	drain_stock(stock);
1819	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
 
 
 
1820}
1821
1822/*
1823 * Cache charges(val) to local per_cpu area.
1824 * This will be consumed by consume_stock() function, later.
1825 */
1826static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1827{
1828	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
 
1829
1830	if (stock->cached != memcg) { /* reset if necessary */
 
1831		drain_stock(stock);
1832		stock->cached = memcg;
 
1833	}
1834	stock->nr_pages += nr_pages;
1835	put_cpu_var(memcg_stock);
 
 
 
 
 
 
 
 
 
 
 
 
1836}
1837
1838/*
1839 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840 * of the hierarchy under it.
1841 */
1842static void drain_all_stock(struct mem_cgroup *root_memcg)
1843{
1844	int cpu, curcpu;
1845
1846	/* If someone's already draining, avoid adding running more workers. */
1847	if (!mutex_trylock(&percpu_charge_mutex))
1848		return;
1849	/* Notify other cpus that system-wide "drain" is running */
1850	get_online_cpus();
1851	curcpu = get_cpu();
 
 
 
 
 
1852	for_each_online_cpu(cpu) {
1853		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1854		struct mem_cgroup *memcg;
 
1855
1856		memcg = stock->cached;
1857		if (!memcg || !stock->nr_pages)
1858			continue;
1859		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1860			continue;
1861		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
 
 
 
 
 
1862			if (cpu == curcpu)
1863				drain_local_stock(&stock->work);
1864			else
1865				schedule_work_on(cpu, &stock->work);
1866		}
1867	}
1868	put_cpu();
1869	put_online_cpus();
1870	mutex_unlock(&percpu_charge_mutex);
1871}
1872
1873static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1874					unsigned long action,
1875					void *hcpu)
1876{
1877	int cpu = (unsigned long)hcpu;
1878	struct memcg_stock_pcp *stock;
1879
1880	if (action == CPU_ONLINE)
1881		return NOTIFY_OK;
1882
1883	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1884		return NOTIFY_OK;
1885
1886	stock = &per_cpu(memcg_stock, cpu);
1887	drain_stock(stock);
1888	return NOTIFY_OK;
 
1889}
1890
1891static void reclaim_high(struct mem_cgroup *memcg,
1892			 unsigned int nr_pages,
1893			 gfp_t gfp_mask)
1894{
 
 
1895	do {
1896		if (page_counter_read(&memcg->memory) <= memcg->high)
 
 
 
1897			continue;
1898		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1899		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1900	} while ((memcg = parent_mem_cgroup(memcg)));
 
 
 
 
 
 
 
 
 
 
1901}
1902
1903static void high_work_func(struct work_struct *work)
1904{
1905	struct mem_cgroup *memcg;
1906
1907	memcg = container_of(work, struct mem_cgroup, high_work);
1908	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1909}
1910
1911/*
1912 * Scheduled by try_charge() to be executed from the userland return path
1913 * and reclaims memory over the high limit.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1914 */
1915void mem_cgroup_handle_over_high(void)
 
 
 
1916{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1917	unsigned int nr_pages = current->memcg_nr_pages_over_high;
 
1918	struct mem_cgroup *memcg;
 
1919
1920	if (likely(!nr_pages))
1921		return;
1922
1923	memcg = get_mem_cgroup_from_mm(current->mm);
1924	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1925	css_put(&memcg->css);
1926	current->memcg_nr_pages_over_high = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1927}
1928
1929static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1930		      unsigned int nr_pages)
1931{
1932	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1933	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1934	struct mem_cgroup *mem_over_limit;
1935	struct page_counter *counter;
1936	unsigned long nr_reclaimed;
1937	bool may_swap = true;
 
1938	bool drained = false;
 
 
1939
1940	if (mem_cgroup_is_root(memcg))
1941		return 0;
1942retry:
1943	if (consume_stock(memcg, nr_pages))
1944		return 0;
1945
1946	if (!do_memsw_account() ||
1947	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1948		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1949			goto done_restock;
1950		if (do_memsw_account())
1951			page_counter_uncharge(&memcg->memsw, batch);
1952		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1953	} else {
1954		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1955		may_swap = false;
1956	}
1957
1958	if (batch > nr_pages) {
1959		batch = nr_pages;
1960		goto retry;
1961	}
1962
1963	/*
1964	 * Unlike in global OOM situations, memcg is not in a physical
1965	 * memory shortage.  Allow dying and OOM-killed tasks to
1966	 * bypass the last charges so that they can exit quickly and
1967	 * free their memory.
1968	 */
1969	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1970		     fatal_signal_pending(current) ||
1971		     current->flags & PF_EXITING))
1972		goto force;
1973
1974	if (unlikely(task_in_memcg_oom(current)))
1975		goto nomem;
1976
1977	if (!gfpflags_allow_blocking(gfp_mask))
1978		goto nomem;
1979
1980	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
 
1981
 
1982	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1983						    gfp_mask, may_swap);
 
1984
1985	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1986		goto retry;
1987
1988	if (!drained) {
1989		drain_all_stock(mem_over_limit);
1990		drained = true;
1991		goto retry;
1992	}
1993
1994	if (gfp_mask & __GFP_NORETRY)
1995		goto nomem;
1996	/*
1997	 * Even though the limit is exceeded at this point, reclaim
1998	 * may have been able to free some pages.  Retry the charge
1999	 * before killing the task.
2000	 *
2001	 * Only for regular pages, though: huge pages are rather
2002	 * unlikely to succeed so close to the limit, and we fall back
2003	 * to regular pages anyway in case of failure.
2004	 */
2005	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2006		goto retry;
2007	/*
2008	 * At task move, charge accounts can be doubly counted. So, it's
2009	 * better to wait until the end of task_move if something is going on.
2010	 */
2011	if (mem_cgroup_wait_acct_move(mem_over_limit))
2012		goto retry;
2013
2014	if (nr_retries--)
2015		goto retry;
2016
2017	if (gfp_mask & __GFP_NOFAIL)
2018		goto force;
2019
2020	if (fatal_signal_pending(current))
2021		goto force;
2022
2023	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
 
 
2024
2025	mem_cgroup_oom(mem_over_limit, gfp_mask,
2026		       get_order(nr_pages * PAGE_SIZE));
 
 
 
 
 
 
 
 
 
2027nomem:
2028	if (!(gfp_mask & __GFP_NOFAIL))
 
 
 
 
 
 
2029		return -ENOMEM;
2030force:
2031	/*
 
 
 
 
 
 
 
2032	 * The allocation either can't fail or will lead to more memory
2033	 * being freed very soon.  Allow memory usage go over the limit
2034	 * temporarily by force charging it.
2035	 */
2036	page_counter_charge(&memcg->memory, nr_pages);
2037	if (do_memsw_account())
2038		page_counter_charge(&memcg->memsw, nr_pages);
2039	css_get_many(&memcg->css, nr_pages);
2040
2041	return 0;
2042
2043done_restock:
2044	css_get_many(&memcg->css, batch);
2045	if (batch > nr_pages)
2046		refill_stock(memcg, batch - nr_pages);
2047
2048	/*
2049	 * If the hierarchy is above the normal consumption range, schedule
2050	 * reclaim on returning to userland.  We can perform reclaim here
2051	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2053	 * not recorded as it most likely matches current's and won't
2054	 * change in the meantime.  As high limit is checked again before
2055	 * reclaim, the cost of mismatch is negligible.
2056	 */
2057	do {
2058		if (page_counter_read(&memcg->memory) > memcg->high) {
2059			/* Don't bother a random interrupted task */
2060			if (in_interrupt()) {
 
 
 
 
 
 
 
2061				schedule_work(&memcg->high_work);
2062				break;
2063			}
 
 
 
 
 
 
 
 
 
 
 
 
 
2064			current->memcg_nr_pages_over_high += batch;
2065			set_notify_resume(current);
2066			break;
2067		}
2068	} while ((memcg = parent_mem_cgroup(memcg)));
2069
 
 
 
 
 
 
 
 
 
 
 
2070	return 0;
2071}
2072
2073static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
 
 
 
 
 
2074{
2075	if (mem_cgroup_is_root(memcg))
2076		return;
2077
2078	page_counter_uncharge(&memcg->memory, nr_pages);
2079	if (do_memsw_account())
2080		page_counter_uncharge(&memcg->memsw, nr_pages);
2081
2082	css_put_many(&memcg->css, nr_pages);
2083}
2084
2085static void lock_page_lru(struct page *page, int *isolated)
2086{
2087	struct zone *zone = page_zone(page);
2088
2089	spin_lock_irq(&zone->lru_lock);
2090	if (PageLRU(page)) {
2091		struct lruvec *lruvec;
2092
2093		lruvec = mem_cgroup_page_lruvec(page, zone);
2094		ClearPageLRU(page);
2095		del_page_from_lru_list(page, lruvec, page_lru(page));
2096		*isolated = 1;
2097	} else
2098		*isolated = 0;
2099}
2100
2101static void unlock_page_lru(struct page *page, int isolated)
2102{
2103	struct zone *zone = page_zone(page);
2104
2105	if (isolated) {
2106		struct lruvec *lruvec;
2107
2108		lruvec = mem_cgroup_page_lruvec(page, zone);
2109		VM_BUG_ON_PAGE(PageLRU(page), page);
2110		SetPageLRU(page);
2111		add_page_to_lru_list(page, lruvec, page_lru(page));
2112	}
2113	spin_unlock_irq(&zone->lru_lock);
2114}
2115
2116static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2117			  bool lrucare)
2118{
2119	int isolated;
2120
2121	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2122
2123	/*
2124	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2125	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2126	 */
2127	if (lrucare)
2128		lock_page_lru(page, &isolated);
2129
2130	/*
2131	 * Nobody should be changing or seriously looking at
2132	 * page->mem_cgroup at this point:
2133	 *
2134	 * - the page is uncharged
2135	 *
2136	 * - the page is off-LRU
2137	 *
2138	 * - an anonymous fault has exclusive page access, except for
2139	 *   a locked page table
2140	 *
2141	 * - a page cache insertion, a swapin fault, or a migration
2142	 *   have the page locked
2143	 */
2144	page->mem_cgroup = memcg;
2145
2146	if (lrucare)
2147		unlock_page_lru(page, isolated);
2148}
2149
2150#ifndef CONFIG_SLOB
2151static int memcg_alloc_cache_id(void)
2152{
2153	int id, size;
2154	int err;
2155
2156	id = ida_simple_get(&memcg_cache_ida,
2157			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2158	if (id < 0)
2159		return id;
2160
2161	if (id < memcg_nr_cache_ids)
2162		return id;
2163
2164	/*
2165	 * There's no space for the new id in memcg_caches arrays,
2166	 * so we have to grow them.
2167	 */
2168	down_write(&memcg_cache_ids_sem);
2169
2170	size = 2 * (id + 1);
2171	if (size < MEMCG_CACHES_MIN_SIZE)
2172		size = MEMCG_CACHES_MIN_SIZE;
2173	else if (size > MEMCG_CACHES_MAX_SIZE)
2174		size = MEMCG_CACHES_MAX_SIZE;
2175
2176	err = memcg_update_all_caches(size);
2177	if (!err)
2178		err = memcg_update_all_list_lrus(size);
2179	if (!err)
2180		memcg_nr_cache_ids = size;
2181
2182	up_write(&memcg_cache_ids_sem);
2183
2184	if (err) {
2185		ida_simple_remove(&memcg_cache_ida, id);
2186		return err;
2187	}
2188	return id;
2189}
2190
2191static void memcg_free_cache_id(int id)
2192{
2193	ida_simple_remove(&memcg_cache_ida, id);
2194}
2195
2196struct memcg_kmem_cache_create_work {
2197	struct mem_cgroup *memcg;
2198	struct kmem_cache *cachep;
2199	struct work_struct work;
2200};
2201
2202static void memcg_kmem_cache_create_func(struct work_struct *w)
2203{
2204	struct memcg_kmem_cache_create_work *cw =
2205		container_of(w, struct memcg_kmem_cache_create_work, work);
2206	struct mem_cgroup *memcg = cw->memcg;
2207	struct kmem_cache *cachep = cw->cachep;
2208
2209	memcg_create_kmem_cache(memcg, cachep);
2210
2211	css_put(&memcg->css);
2212	kfree(cw);
2213}
2214
2215/*
2216 * Enqueue the creation of a per-memcg kmem_cache.
 
 
2217 */
2218static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2219					       struct kmem_cache *cachep)
2220{
2221	struct memcg_kmem_cache_create_work *cw;
2222
2223	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2224	if (!cw)
2225		return;
2226
2227	css_get(&memcg->css);
2228
2229	cw->memcg = memcg;
2230	cw->cachep = cachep;
2231	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2232
2233	schedule_work(&cw->work);
2234}
2235
2236static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237					     struct kmem_cache *cachep)
2238{
2239	/*
2240	 * We need to stop accounting when we kmalloc, because if the
2241	 * corresponding kmalloc cache is not yet created, the first allocation
2242	 * in __memcg_schedule_kmem_cache_create will recurse.
2243	 *
2244	 * However, it is better to enclose the whole function. Depending on
2245	 * the debugging options enabled, INIT_WORK(), for instance, can
2246	 * trigger an allocation. This too, will make us recurse. Because at
2247	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2248	 * the safest choice is to do it like this, wrapping the whole function.
2249	 */
2250	current->memcg_kmem_skip_account = 1;
2251	__memcg_schedule_kmem_cache_create(memcg, cachep);
2252	current->memcg_kmem_skip_account = 0;
2253}
2254
2255/*
2256 * Return the kmem_cache we're supposed to use for a slab allocation.
2257 * We try to use the current memcg's version of the cache.
2258 *
2259 * If the cache does not exist yet, if we are the first user of it,
2260 * we either create it immediately, if possible, or create it asynchronously
2261 * in a workqueue.
2262 * In the latter case, we will let the current allocation go through with
2263 * the original cache.
2264 *
2265 * Can't be called in interrupt context or from kernel threads.
2266 * This function needs to be called with rcu_read_lock() held.
2267 */
2268struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2269{
2270	struct mem_cgroup *memcg;
2271	struct kmem_cache *memcg_cachep;
2272	int kmemcg_id;
2273
2274	VM_BUG_ON(!is_root_cache(cachep));
2275
2276	if (cachep->flags & SLAB_ACCOUNT)
2277		gfp |= __GFP_ACCOUNT;
2278
2279	if (!(gfp & __GFP_ACCOUNT))
2280		return cachep;
2281
2282	if (current->memcg_kmem_skip_account)
2283		return cachep;
2284
2285	memcg = get_mem_cgroup_from_mm(current->mm);
2286	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2287	if (kmemcg_id < 0)
2288		goto out;
2289
2290	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2291	if (likely(memcg_cachep))
2292		return memcg_cachep;
2293
2294	/*
2295	 * If we are in a safe context (can wait, and not in interrupt
2296	 * context), we could be be predictable and return right away.
2297	 * This would guarantee that the allocation being performed
2298	 * already belongs in the new cache.
2299	 *
2300	 * However, there are some clashes that can arrive from locking.
2301	 * For instance, because we acquire the slab_mutex while doing
2302	 * memcg_create_kmem_cache, this means no further allocation
2303	 * could happen with the slab_mutex held. So it's better to
2304	 * defer everything.
2305	 */
2306	memcg_schedule_kmem_cache_create(memcg, cachep);
2307out:
2308	css_put(&memcg->css);
2309	return cachep;
2310}
2311
2312void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2313{
2314	if (!is_root_cache(cachep))
2315		css_put(&cachep->memcg_params.memcg->css);
 
2316}
2317
2318int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319			      struct mem_cgroup *memcg)
2320{
2321	unsigned int nr_pages = 1 << order;
2322	struct page_counter *counter;
2323	int ret;
 
 
 
 
 
 
 
 
 
 
 
2324
2325	ret = try_charge(memcg, gfp, nr_pages);
2326	if (ret)
2327		return ret;
2328
2329	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331		cancel_charge(memcg, nr_pages);
2332		return -ENOMEM;
2333	}
2334
2335	page->mem_cgroup = memcg;
2336
2337	return 0;
2338}
2339
2340int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342	struct mem_cgroup *memcg;
2343	int ret = 0;
2344
2345	memcg = get_mem_cgroup_from_mm(current->mm);
2346	if (!mem_cgroup_is_root(memcg))
2347		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2348	css_put(&memcg->css);
2349	return ret;
2350}
2351
2352void __memcg_kmem_uncharge(struct page *page, int order)
2353{
2354	struct mem_cgroup *memcg = page->mem_cgroup;
2355	unsigned int nr_pages = 1 << order;
2356
2357	if (!memcg)
2358		return;
2359
2360	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2361
2362	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2363		page_counter_uncharge(&memcg->kmem, nr_pages);
2364
2365	page_counter_uncharge(&memcg->memory, nr_pages);
2366	if (do_memsw_account())
2367		page_counter_uncharge(&memcg->memsw, nr_pages);
2368
2369	page->mem_cgroup = NULL;
2370	css_put_many(&memcg->css, nr_pages);
2371}
2372#endif /* !CONFIG_SLOB */
2373
2374#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2375
2376/*
2377 * Because tail pages are not marked as "used", set it. We're under
2378 * zone->lru_lock and migration entries setup in all page mappings.
2379 */
2380void mem_cgroup_split_huge_fixup(struct page *head)
2381{
2382	int i;
2383
2384	if (mem_cgroup_disabled())
2385		return;
2386
2387	for (i = 1; i < HPAGE_PMD_NR; i++)
2388		head[i].mem_cgroup = head->mem_cgroup;
2389
2390	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2391		       HPAGE_PMD_NR);
2392}
2393#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2394
2395#ifdef CONFIG_MEMCG_SWAP
2396static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2397					 bool charge)
2398{
2399	int val = (charge) ? 1 : -1;
2400	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2401}
2402
2403/**
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from:  mem_cgroup which the entry is moved from
2407 * @to:  mem_cgroup which the entry is moved to
2408 *
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2411 *
2412 * Returns 0 on success, -EINVAL on failure.
2413 *
2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 * both res and memsw, and called css_get().
2416 */
2417static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418				struct mem_cgroup *from, struct mem_cgroup *to)
2419{
2420	unsigned short old_id, new_id;
2421
2422	old_id = mem_cgroup_id(from);
2423	new_id = mem_cgroup_id(to);
2424
2425	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426		mem_cgroup_swap_statistics(from, false);
2427		mem_cgroup_swap_statistics(to, true);
2428		return 0;
2429	}
2430	return -EINVAL;
2431}
2432#else
2433static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434				struct mem_cgroup *from, struct mem_cgroup *to)
2435{
2436	return -EINVAL;
2437}
2438#endif
2439
2440static DEFINE_MUTEX(memcg_limit_mutex);
2441
2442static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443				   unsigned long limit)
2444{
2445	unsigned long curusage;
2446	unsigned long oldusage;
2447	bool enlarge = false;
2448	int retry_count;
2449	int ret;
2450
2451	/*
2452	 * For keeping hierarchical_reclaim simple, how long we should retry
2453	 * is depends on callers. We set our retry-count to be function
2454	 * of # of children which we should visit in this loop.
2455	 */
2456	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457		      mem_cgroup_count_children(memcg);
2458
2459	oldusage = page_counter_read(&memcg->memory);
2460
2461	do {
2462		if (signal_pending(current)) {
2463			ret = -EINTR;
2464			break;
2465		}
2466
2467		mutex_lock(&memcg_limit_mutex);
2468		if (limit > memcg->memsw.limit) {
2469			mutex_unlock(&memcg_limit_mutex);
2470			ret = -EINVAL;
2471			break;
2472		}
2473		if (limit > memcg->memory.limit)
2474			enlarge = true;
2475		ret = page_counter_limit(&memcg->memory, limit);
2476		mutex_unlock(&memcg_limit_mutex);
2477
2478		if (!ret)
 
 
2479			break;
2480
2481		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482
2483		curusage = page_counter_read(&memcg->memory);
2484		/* Usage is reduced ? */
2485		if (curusage >= oldusage)
2486			retry_count--;
2487		else
2488			oldusage = curusage;
2489	} while (retry_count);
2490
2491	if (!ret && enlarge)
2492		memcg_oom_recover(memcg);
2493
2494	return ret;
2495}
2496
2497static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498					 unsigned long limit)
2499{
2500	unsigned long curusage;
2501	unsigned long oldusage;
2502	bool enlarge = false;
2503	int retry_count;
2504	int ret;
2505
2506	/* see mem_cgroup_resize_res_limit */
2507	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508		      mem_cgroup_count_children(memcg);
2509
2510	oldusage = page_counter_read(&memcg->memsw);
2511
2512	do {
2513		if (signal_pending(current)) {
2514			ret = -EINTR;
2515			break;
2516		}
 
 
2517
2518		mutex_lock(&memcg_limit_mutex);
2519		if (limit < memcg->memory.limit) {
2520			mutex_unlock(&memcg_limit_mutex);
2521			ret = -EINVAL;
2522			break;
2523		}
2524		if (limit > memcg->memsw.limit)
2525			enlarge = true;
2526		ret = page_counter_limit(&memcg->memsw, limit);
2527		mutex_unlock(&memcg_limit_mutex);
2528
2529		if (!ret)
2530			break;
2531
2532		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533
2534		curusage = page_counter_read(&memcg->memsw);
2535		/* Usage is reduced ? */
2536		if (curusage >= oldusage)
2537			retry_count--;
2538		else
2539			oldusage = curusage;
2540	} while (retry_count);
2541
2542	if (!ret && enlarge)
2543		memcg_oom_recover(memcg);
2544
2545	return ret;
2546}
2547
2548unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2549					    gfp_t gfp_mask,
2550					    unsigned long *total_scanned)
2551{
2552	unsigned long nr_reclaimed = 0;
2553	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2554	unsigned long reclaimed;
2555	int loop = 0;
2556	struct mem_cgroup_tree_per_zone *mctz;
2557	unsigned long excess;
2558	unsigned long nr_scanned;
2559
2560	if (order > 0)
2561		return 0;
2562
2563	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2564	/*
2565	 * This loop can run a while, specially if mem_cgroup's continuously
2566	 * keep exceeding their soft limit and putting the system under
2567	 * pressure
2568	 */
2569	do {
2570		if (next_mz)
2571			mz = next_mz;
2572		else
2573			mz = mem_cgroup_largest_soft_limit_node(mctz);
2574		if (!mz)
2575			break;
2576
2577		nr_scanned = 0;
2578		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2579						    gfp_mask, &nr_scanned);
2580		nr_reclaimed += reclaimed;
2581		*total_scanned += nr_scanned;
2582		spin_lock_irq(&mctz->lock);
2583		__mem_cgroup_remove_exceeded(mz, mctz);
2584
2585		/*
2586		 * If we failed to reclaim anything from this memory cgroup
2587		 * it is time to move on to the next cgroup
2588		 */
2589		next_mz = NULL;
2590		if (!reclaimed)
2591			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
 
2592
2593		excess = soft_limit_excess(mz->memcg);
2594		/*
2595		 * One school of thought says that we should not add
2596		 * back the node to the tree if reclaim returns 0.
2597		 * But our reclaim could return 0, simply because due
2598		 * to priority we are exposing a smaller subset of
2599		 * memory to reclaim from. Consider this as a longer
2600		 * term TODO.
2601		 */
2602		/* If excess == 0, no tree ops */
2603		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2604		spin_unlock_irq(&mctz->lock);
2605		css_put(&mz->memcg->css);
2606		loop++;
 
2607		/*
2608		 * Could not reclaim anything and there are no more
2609		 * mem cgroups to try or we seem to be looping without
2610		 * reclaiming anything.
2611		 */
2612		if (!nr_reclaimed &&
2613			(next_mz == NULL ||
2614			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615			break;
2616	} while (!nr_reclaimed);
2617	if (next_mz)
2618		css_put(&next_mz->memcg->css);
2619	return nr_reclaimed;
2620}
2621
2622/*
2623 * Test whether @memcg has children, dead or alive.  Note that this
2624 * function doesn't care whether @memcg has use_hierarchy enabled and
2625 * returns %true if there are child csses according to the cgroup
2626 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2627 */
2628static inline bool memcg_has_children(struct mem_cgroup *memcg)
2629{
2630	bool ret;
2631
2632	rcu_read_lock();
2633	ret = css_next_child(NULL, &memcg->css);
2634	rcu_read_unlock();
2635	return ret;
2636}
2637
2638/*
2639 * Reclaims as many pages from the given memcg as possible and moves
2640 * the rest to the parent.
2641 *
2642 * Caller is responsible for holding css reference for memcg.
2643 */
2644static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645{
2646	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2647
2648	/* we call try-to-free pages for make this cgroup empty */
2649	lru_add_drain_all();
2650	/* try to free all pages in this cgroup */
2651	while (nr_retries && page_counter_read(&memcg->memory)) {
2652		int progress;
2653
2654		if (signal_pending(current))
2655			return -EINTR;
2656
2657		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658							GFP_KERNEL, true);
2659		if (!progress) {
2660			nr_retries--;
2661			/* maybe some writeback is necessary */
2662			congestion_wait(BLK_RW_ASYNC, HZ/10);
2663		}
2664
 
 
 
 
 
 
 
 
 
 
 
 
 
2665	}
2666
2667	return 0;
2668}
2669
2670static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671					    char *buf, size_t nbytes,
2672					    loff_t off)
2673{
2674	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675
2676	if (mem_cgroup_is_root(memcg))
2677		return -EINVAL;
2678	return mem_cgroup_force_empty(memcg) ?: nbytes;
2679}
2680
2681static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682				     struct cftype *cft)
2683{
2684	return mem_cgroup_from_css(css)->use_hierarchy;
2685}
2686
2687static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688				      struct cftype *cft, u64 val)
2689{
2690	int retval = 0;
2691	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693
2694	if (memcg->use_hierarchy == val)
2695		return 0;
2696
2697	/*
2698	 * If parent's use_hierarchy is set, we can't make any modifications
2699	 * in the child subtrees. If it is unset, then the change can
2700	 * occur, provided the current cgroup has no children.
2701	 *
2702	 * For the root cgroup, parent_mem is NULL, we allow value to be
2703	 * set if there are no children.
2704	 */
2705	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706				(val == 1 || val == 0)) {
2707		if (!memcg_has_children(memcg))
2708			memcg->use_hierarchy = val;
2709		else
2710			retval = -EBUSY;
2711	} else
2712		retval = -EINVAL;
2713
2714	return retval;
2715}
2716
2717static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718{
2719	struct mem_cgroup *iter;
2720	int i;
2721
2722	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723
2724	for_each_mem_cgroup_tree(iter, memcg) {
2725		for (i = 0; i < MEMCG_NR_STAT; i++)
2726			stat[i] += mem_cgroup_read_stat(iter, i);
 
 
 
 
 
 
 
 
 
2727	}
2728}
2729
2730static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731{
2732	struct mem_cgroup *iter;
2733	int i;
2734
2735	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736
2737	for_each_mem_cgroup_tree(iter, memcg) {
2738		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739			events[i] += mem_cgroup_read_events(iter, i);
2740	}
2741}
2742
2743static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744{
2745	unsigned long val = 0;
2746
2747	if (mem_cgroup_is_root(memcg)) {
2748		struct mem_cgroup *iter;
2749
2750		for_each_mem_cgroup_tree(iter, memcg) {
2751			val += mem_cgroup_read_stat(iter,
2752					MEM_CGROUP_STAT_CACHE);
2753			val += mem_cgroup_read_stat(iter,
2754					MEM_CGROUP_STAT_RSS);
2755			if (swap)
2756				val += mem_cgroup_read_stat(iter,
2757						MEM_CGROUP_STAT_SWAP);
2758		}
2759	} else {
2760		if (!swap)
2761			val = page_counter_read(&memcg->memory);
2762		else
2763			val = page_counter_read(&memcg->memsw);
2764	}
2765	return val;
2766}
2767
2768enum {
2769	RES_USAGE,
2770	RES_LIMIT,
2771	RES_MAX_USAGE,
2772	RES_FAILCNT,
2773	RES_SOFT_LIMIT,
2774};
2775
2776static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777			       struct cftype *cft)
2778{
2779	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780	struct page_counter *counter;
2781
2782	switch (MEMFILE_TYPE(cft->private)) {
2783	case _MEM:
2784		counter = &memcg->memory;
2785		break;
2786	case _MEMSWAP:
2787		counter = &memcg->memsw;
2788		break;
2789	case _KMEM:
2790		counter = &memcg->kmem;
2791		break;
2792	case _TCP:
2793		counter = &memcg->tcpmem;
2794		break;
2795	default:
2796		BUG();
2797	}
2798
2799	switch (MEMFILE_ATTR(cft->private)) {
2800	case RES_USAGE:
2801		if (counter == &memcg->memory)
2802			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803		if (counter == &memcg->memsw)
2804			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805		return (u64)page_counter_read(counter) * PAGE_SIZE;
2806	case RES_LIMIT:
2807		return (u64)counter->limit * PAGE_SIZE;
2808	case RES_MAX_USAGE:
2809		return (u64)counter->watermark * PAGE_SIZE;
2810	case RES_FAILCNT:
2811		return counter->failcnt;
2812	case RES_SOFT_LIMIT:
2813		return (u64)memcg->soft_limit * PAGE_SIZE;
2814	default:
2815		BUG();
2816	}
2817}
2818
2819#ifndef CONFIG_SLOB
2820static int memcg_online_kmem(struct mem_cgroup *memcg)
2821{
2822	int memcg_id;
2823
2824	if (cgroup_memory_nokmem)
2825		return 0;
2826
2827	BUG_ON(memcg->kmemcg_id >= 0);
2828	BUG_ON(memcg->kmem_state);
2829
2830	memcg_id = memcg_alloc_cache_id();
2831	if (memcg_id < 0)
2832		return memcg_id;
2833
2834	static_branch_inc(&memcg_kmem_enabled_key);
2835	/*
2836	 * A memory cgroup is considered kmem-online as soon as it gets
2837	 * kmemcg_id. Setting the id after enabling static branching will
2838	 * guarantee no one starts accounting before all call sites are
2839	 * patched.
2840	 */
2841	memcg->kmemcg_id = memcg_id;
2842	memcg->kmem_state = KMEM_ONLINE;
2843
2844	return 0;
2845}
2846
2847static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848{
2849	struct cgroup_subsys_state *css;
2850	struct mem_cgroup *parent, *child;
2851	int kmemcg_id;
2852
2853	if (memcg->kmem_state != KMEM_ONLINE)
2854		return;
2855	/*
2856	 * Clear the online state before clearing memcg_caches array
2857	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858	 * guarantees that no cache will be created for this cgroup
2859	 * after we are done (see memcg_create_kmem_cache()).
2860	 */
2861	memcg->kmem_state = KMEM_ALLOCATED;
2862
2863	memcg_deactivate_kmem_caches(memcg);
2864
2865	kmemcg_id = memcg->kmemcg_id;
2866	BUG_ON(kmemcg_id < 0);
2867
2868	parent = parent_mem_cgroup(memcg);
2869	if (!parent)
2870		parent = root_mem_cgroup;
2871
2872	/*
2873	 * Change kmemcg_id of this cgroup and all its descendants to the
2874	 * parent's id, and then move all entries from this cgroup's list_lrus
2875	 * to ones of the parent. After we have finished, all list_lrus
2876	 * corresponding to this cgroup are guaranteed to remain empty. The
2877	 * ordering is imposed by list_lru_node->lock taken by
2878	 * memcg_drain_all_list_lrus().
2879	 */
2880	css_for_each_descendant_pre(css, &memcg->css) {
2881		child = mem_cgroup_from_css(css);
2882		BUG_ON(child->kmemcg_id != kmemcg_id);
2883		child->kmemcg_id = parent->kmemcg_id;
2884		if (!memcg->use_hierarchy)
2885			break;
2886	}
2887	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889	memcg_free_cache_id(kmemcg_id);
2890}
2891
2892static void memcg_free_kmem(struct mem_cgroup *memcg)
 
 
 
 
 
 
2893{
2894	/* css_alloc() failed, offlining didn't happen */
2895	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896		memcg_offline_kmem(memcg);
2897
2898	if (memcg->kmem_state == KMEM_ALLOCATED) {
2899		memcg_destroy_kmem_caches(memcg);
2900		static_branch_dec(&memcg_kmem_enabled_key);
2901		WARN_ON(page_counter_read(&memcg->kmem));
2902	}
2903}
2904#else
2905static int memcg_online_kmem(struct mem_cgroup *memcg)
2906{
2907	return 0;
2908}
2909static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910{
2911}
2912static void memcg_free_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915#endif /* !CONFIG_SLOB */
2916
2917static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918				   unsigned long limit)
2919{
2920	int ret;
2921
2922	mutex_lock(&memcg_limit_mutex);
2923	ret = page_counter_limit(&memcg->kmem, limit);
2924	mutex_unlock(&memcg_limit_mutex);
2925	return ret;
2926}
2927
2928static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
 
 
 
 
 
 
 
 
 
2929{
 
2930	int ret;
2931
2932	mutex_lock(&memcg_limit_mutex);
2933
2934	ret = page_counter_limit(&memcg->tcpmem, limit);
2935	if (ret)
2936		goto out;
2937
2938	if (!memcg->tcpmem_active) {
2939		/*
2940		 * The active flag needs to be written after the static_key
2941		 * update. This is what guarantees that the socket activation
2942		 * function is the last one to run. See sock_update_memcg() for
2943		 * details, and note that we don't mark any socket as belonging
2944		 * to this memcg until that flag is up.
2945		 *
2946		 * We need to do this, because static_keys will span multiple
2947		 * sites, but we can't control their order. If we mark a socket
2948		 * as accounted, but the accounting functions are not patched in
2949		 * yet, we'll lose accounting.
2950		 *
2951		 * We never race with the readers in sock_update_memcg(),
2952		 * because when this value change, the code to process it is not
2953		 * patched in yet.
2954		 */
2955		static_branch_inc(&memcg_sockets_enabled_key);
2956		memcg->tcpmem_active = true;
2957	}
2958out:
2959	mutex_unlock(&memcg_limit_mutex);
 
2960	return ret;
2961}
2962
2963/*
2964 * The user of this function is...
2965 * RES_LIMIT.
 
 
 
 
2966 */
2967static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968				char *buf, size_t nbytes, loff_t off)
2969{
2970	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971	unsigned long nr_pages;
2972	int ret;
2973
2974	buf = strstrip(buf);
2975	ret = page_counter_memparse(buf, "-1", &nr_pages);
2976	if (ret)
2977		return ret;
2978
2979	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980	case RES_LIMIT:
2981		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982			ret = -EINVAL;
2983			break;
2984		}
2985		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986		case _MEM:
2987			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988			break;
2989		case _MEMSWAP:
2990			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991			break;
2992		case _KMEM:
2993			ret = memcg_update_kmem_limit(memcg, nr_pages);
2994			break;
2995		case _TCP:
2996			ret = memcg_update_tcp_limit(memcg, nr_pages);
2997			break;
2998		}
2999		break;
3000	case RES_SOFT_LIMIT:
3001		memcg->soft_limit = nr_pages;
3002		ret = 0;
3003		break;
3004	}
3005	return ret ?: nbytes;
3006}
3007
3008static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009				size_t nbytes, loff_t off)
 
 
 
 
3010{
3011	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012	struct page_counter *counter;
3013
3014	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015	case _MEM:
3016		counter = &memcg->memory;
3017		break;
3018	case _MEMSWAP:
3019		counter = &memcg->memsw;
3020		break;
3021	case _KMEM:
3022		counter = &memcg->kmem;
3023		break;
3024	case _TCP:
3025		counter = &memcg->tcpmem;
3026		break;
3027	default:
3028		BUG();
3029	}
3030
3031	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032	case RES_MAX_USAGE:
3033		page_counter_reset_watermark(counter);
3034		break;
3035	case RES_FAILCNT:
3036		counter->failcnt = 0;
3037		break;
3038	default:
3039		BUG();
3040	}
3041
3042	return nbytes;
 
 
 
3043}
3044
3045static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046					struct cftype *cft)
3047{
3048	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049}
3050
3051#ifdef CONFIG_MMU
3052static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053					struct cftype *cft, u64 val)
3054{
3055	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057	if (val & ~MOVE_MASK)
3058		return -EINVAL;
3059
3060	/*
3061	 * No kind of locking is needed in here, because ->can_attach() will
3062	 * check this value once in the beginning of the process, and then carry
3063	 * on with stale data. This means that changes to this value will only
3064	 * affect task migrations starting after the change.
3065	 */
3066	memcg->move_charge_at_immigrate = val;
3067	return 0;
3068}
3069#else
3070static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071					struct cftype *cft, u64 val)
3072{
3073	return -ENOSYS;
3074}
3075#endif
3076
3077#ifdef CONFIG_NUMA
3078static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079{
3080	struct numa_stat {
3081		const char *name;
3082		unsigned int lru_mask;
3083	};
3084
3085	static const struct numa_stat stats[] = {
3086		{ "total", LRU_ALL },
3087		{ "file", LRU_ALL_FILE },
3088		{ "anon", LRU_ALL_ANON },
3089		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3090	};
3091	const struct numa_stat *stat;
3092	int nid;
3093	unsigned long nr;
3094	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098		seq_printf(m, "%s=%lu", stat->name, nr);
3099		for_each_node_state(nid, N_MEMORY) {
3100			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101							  stat->lru_mask);
3102			seq_printf(m, " N%d=%lu", nid, nr);
3103		}
3104		seq_putc(m, '\n');
 
 
 
 
 
3105	}
3106
3107	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108		struct mem_cgroup *iter;
3109
 
 
 
 
 
3110		nr = 0;
3111		for_each_mem_cgroup_tree(iter, memcg)
3112			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114		for_each_node_state(nid, N_MEMORY) {
 
 
3115			nr = 0;
3116			for_each_mem_cgroup_tree(iter, memcg)
3117				nr += mem_cgroup_node_nr_lru_pages(
3118					iter, nid, stat->lru_mask);
3119			seq_printf(m, " N%d=%lu", nid, nr);
3120		}
3121		seq_putc(m, '\n');
3122	}
 
 
3123
3124	return 0;
 
3125}
3126#endif /* CONFIG_NUMA */
3127
3128static int memcg_stat_show(struct seq_file *m, void *v)
3129{
3130	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131	unsigned long memory, memsw;
3132	struct mem_cgroup *mi;
3133	unsigned int i;
3134
3135	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136		     MEM_CGROUP_STAT_NSTATS);
3137	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138		     MEM_CGROUP_EVENTS_NSTATS);
3139	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143			continue;
3144		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146	}
3147
3148	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150			   mem_cgroup_read_events(memcg, i));
3151
3152	for (i = 0; i < NR_LRU_LISTS; i++)
3153		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156	/* Hierarchical information */
3157	memory = memsw = PAGE_COUNTER_MAX;
3158	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159		memory = min(memory, mi->memory.limit);
3160		memsw = min(memsw, mi->memsw.limit);
3161	}
3162	seq_printf(m, "hierarchical_memory_limit %llu\n",
3163		   (u64)memory * PAGE_SIZE);
3164	if (do_memsw_account())
3165		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166			   (u64)memsw * PAGE_SIZE);
3167
3168	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169		unsigned long long val = 0;
3170
3171		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172			continue;
3173		for_each_mem_cgroup_tree(mi, memcg)
3174			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176	}
3177
3178	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179		unsigned long long val = 0;
3180
3181		for_each_mem_cgroup_tree(mi, memcg)
3182			val += mem_cgroup_read_events(mi, i);
3183		seq_printf(m, "total_%s %llu\n",
3184			   mem_cgroup_events_names[i], val);
3185	}
3186
3187	for (i = 0; i < NR_LRU_LISTS; i++) {
3188		unsigned long long val = 0;
3189
3190		for_each_mem_cgroup_tree(mi, memcg)
3191			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
 
3193	}
3194
3195#ifdef CONFIG_DEBUG_VM
3196	{
3197		int nid, zid;
3198		struct mem_cgroup_per_zone *mz;
3199		struct zone_reclaim_stat *rstat;
3200		unsigned long recent_rotated[2] = {0, 0};
3201		unsigned long recent_scanned[2] = {0, 0};
3202
3203		for_each_online_node(nid)
3204			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3205				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3206				rstat = &mz->lruvec.reclaim_stat;
3207
3208				recent_rotated[0] += rstat->recent_rotated[0];
3209				recent_rotated[1] += rstat->recent_rotated[1];
3210				recent_scanned[0] += rstat->recent_scanned[0];
3211				recent_scanned[1] += rstat->recent_scanned[1];
3212			}
3213		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3214		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3215		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3216		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3217	}
3218#endif
3219
3220	return 0;
3221}
3222
3223static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3224				      struct cftype *cft)
3225{
3226	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3227
3228	return mem_cgroup_swappiness(memcg);
3229}
3230
3231static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3232				       struct cftype *cft, u64 val)
3233{
3234	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3235
3236	if (val > 100)
3237		return -EINVAL;
3238
3239	if (css->parent)
3240		memcg->swappiness = val;
3241	else
3242		vm_swappiness = val;
3243
3244	return 0;
3245}
 
3246
3247static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3248{
3249	struct mem_cgroup_threshold_ary *t;
3250	unsigned long usage;
3251	int i;
3252
3253	rcu_read_lock();
3254	if (!swap)
3255		t = rcu_dereference(memcg->thresholds.primary);
3256	else
3257		t = rcu_dereference(memcg->memsw_thresholds.primary);
3258
3259	if (!t)
3260		goto unlock;
 
3261
3262	usage = mem_cgroup_usage(memcg, swap);
 
3263
3264	/*
3265	 * current_threshold points to threshold just below or equal to usage.
3266	 * If it's not true, a threshold was crossed after last
3267	 * call of __mem_cgroup_threshold().
3268	 */
3269	i = t->current_threshold;
 
 
 
 
 
 
 
3270
3271	/*
3272	 * Iterate backward over array of thresholds starting from
3273	 * current_threshold and check if a threshold is crossed.
3274	 * If none of thresholds below usage is crossed, we read
3275	 * only one element of the array here.
3276	 */
3277	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3278		eventfd_signal(t->entries[i].eventfd, 1);
3279
3280	/* i = current_threshold + 1 */
3281	i++;
 
 
 
 
 
 
 
 
 
 
3282
 
3283	/*
3284	 * Iterate forward over array of thresholds starting from
3285	 * current_threshold+1 and check if a threshold is crossed.
3286	 * If none of thresholds above usage is crossed, we read
3287	 * only one element of the array here.
3288	 */
3289	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3290		eventfd_signal(t->entries[i].eventfd, 1);
3291
3292	/* Update current_threshold */
3293	t->current_threshold = i - 1;
3294unlock:
3295	rcu_read_unlock();
3296}
3297
3298static void mem_cgroup_threshold(struct mem_cgroup *memcg)
 
3299{
3300	while (memcg) {
3301		__mem_cgroup_threshold(memcg, false);
3302		if (do_memsw_account())
3303			__mem_cgroup_threshold(memcg, true);
3304
3305		memcg = parent_mem_cgroup(memcg);
 
 
 
3306	}
3307}
3308
3309static int compare_thresholds(const void *a, const void *b)
3310{
3311	const struct mem_cgroup_threshold *_a = a;
3312	const struct mem_cgroup_threshold *_b = b;
3313
3314	if (_a->threshold > _b->threshold)
3315		return 1;
3316
3317	if (_a->threshold < _b->threshold)
3318		return -1;
3319
3320	return 0;
3321}
3322
3323static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3324{
3325	struct mem_cgroup_eventfd_list *ev;
3326
3327	spin_lock(&memcg_oom_lock);
3328
3329	list_for_each_entry(ev, &memcg->oom_notify, list)
3330		eventfd_signal(ev->eventfd, 1);
3331
3332	spin_unlock(&memcg_oom_lock);
3333	return 0;
3334}
3335
3336static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3337{
3338	struct mem_cgroup *iter;
3339
3340	for_each_mem_cgroup_tree(iter, memcg)
3341		mem_cgroup_oom_notify_cb(iter);
3342}
3343
3344static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3345	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3346{
3347	struct mem_cgroup_thresholds *thresholds;
3348	struct mem_cgroup_threshold_ary *new;
3349	unsigned long threshold;
3350	unsigned long usage;
3351	int i, size, ret;
3352
3353	ret = page_counter_memparse(args, "-1", &threshold);
3354	if (ret)
3355		return ret;
3356
3357	mutex_lock(&memcg->thresholds_lock);
3358
3359	if (type == _MEM) {
3360		thresholds = &memcg->thresholds;
3361		usage = mem_cgroup_usage(memcg, false);
3362	} else if (type == _MEMSWAP) {
3363		thresholds = &memcg->memsw_thresholds;
3364		usage = mem_cgroup_usage(memcg, true);
3365	} else
3366		BUG();
3367
3368	/* Check if a threshold crossed before adding a new one */
3369	if (thresholds->primary)
3370		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3371
3372	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3373
3374	/* Allocate memory for new array of thresholds */
3375	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376			GFP_KERNEL);
3377	if (!new) {
3378		ret = -ENOMEM;
3379		goto unlock;
3380	}
3381	new->size = size;
3382
3383	/* Copy thresholds (if any) to new array */
3384	if (thresholds->primary) {
3385		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386				sizeof(struct mem_cgroup_threshold));
3387	}
3388
3389	/* Add new threshold */
3390	new->entries[size - 1].eventfd = eventfd;
3391	new->entries[size - 1].threshold = threshold;
3392
3393	/* Sort thresholds. Registering of new threshold isn't time-critical */
3394	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395			compare_thresholds, NULL);
3396
3397	/* Find current threshold */
3398	new->current_threshold = -1;
3399	for (i = 0; i < size; i++) {
3400		if (new->entries[i].threshold <= usage) {
3401			/*
3402			 * new->current_threshold will not be used until
3403			 * rcu_assign_pointer(), so it's safe to increment
3404			 * it here.
3405			 */
3406			++new->current_threshold;
3407		} else
3408			break;
3409	}
3410
3411	/* Free old spare buffer and save old primary buffer as spare */
3412	kfree(thresholds->spare);
3413	thresholds->spare = thresholds->primary;
3414
3415	rcu_assign_pointer(thresholds->primary, new);
 
 
 
3416
3417	/* To be sure that nobody uses thresholds */
3418	synchronize_rcu();
3419
3420unlock:
3421	mutex_unlock(&memcg->thresholds_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3422
3423	return ret;
3424}
3425
3426static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3427	struct eventfd_ctx *eventfd, const char *args)
3428{
3429	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3430}
3431
3432static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3433	struct eventfd_ctx *eventfd, const char *args)
3434{
3435	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
 
 
 
 
3436}
3437
3438static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3439	struct eventfd_ctx *eventfd, enum res_type type)
3440{
3441	struct mem_cgroup_thresholds *thresholds;
3442	struct mem_cgroup_threshold_ary *new;
3443	unsigned long usage;
3444	int i, j, size;
3445
3446	mutex_lock(&memcg->thresholds_lock);
3447
3448	if (type == _MEM) {
3449		thresholds = &memcg->thresholds;
3450		usage = mem_cgroup_usage(memcg, false);
3451	} else if (type == _MEMSWAP) {
3452		thresholds = &memcg->memsw_thresholds;
3453		usage = mem_cgroup_usage(memcg, true);
3454	} else
3455		BUG();
3456
3457	if (!thresholds->primary)
3458		goto unlock;
 
 
 
 
 
 
3459
3460	/* Check if a threshold crossed before removing */
3461	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3462
3463	/* Calculate new number of threshold */
3464	size = 0;
3465	for (i = 0; i < thresholds->primary->size; i++) {
3466		if (thresholds->primary->entries[i].eventfd != eventfd)
3467			size++;
3468	}
3469
3470	new = thresholds->spare;
 
 
3471
3472	/* Set thresholds array to NULL if we don't have thresholds */
3473	if (!size) {
3474		kfree(new);
3475		new = NULL;
3476		goto swap_buffers;
3477	}
3478
3479	new->size = size;
 
3480
3481	/* Copy thresholds and find current threshold */
3482	new->current_threshold = -1;
3483	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3484		if (thresholds->primary->entries[i].eventfd == eventfd)
3485			continue;
3486
3487		new->entries[j] = thresholds->primary->entries[i];
3488		if (new->entries[j].threshold <= usage) {
3489			/*
3490			 * new->current_threshold will not be used
3491			 * until rcu_assign_pointer(), so it's safe to increment
3492			 * it here.
3493			 */
3494			++new->current_threshold;
3495		}
3496		j++;
3497	}
3498
3499swap_buffers:
3500	/* Swap primary and spare array */
3501	thresholds->spare = thresholds->primary;
3502
3503	rcu_assign_pointer(thresholds->primary, new);
3504
3505	/* To be sure that nobody uses thresholds */
3506	synchronize_rcu();
3507
3508	/* If all events are unregistered, free the spare array */
3509	if (!new) {
3510		kfree(thresholds->spare);
3511		thresholds->spare = NULL;
3512	}
3513unlock:
3514	mutex_unlock(&memcg->thresholds_lock);
3515}
3516
3517static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518	struct eventfd_ctx *eventfd)
3519{
3520	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3521}
3522
3523static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3524	struct eventfd_ctx *eventfd)
3525{
3526	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527}
3528
3529static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3530	struct eventfd_ctx *eventfd, const char *args)
 
 
3531{
3532	struct mem_cgroup_eventfd_list *event;
 
 
 
3533
3534	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3535	if (!event)
3536		return -ENOMEM;
3537
3538	spin_lock(&memcg_oom_lock);
 
3539
3540	event->eventfd = eventfd;
3541	list_add(&event->list, &memcg->oom_notify);
 
 
 
3542
3543	/* already in OOM ? */
3544	if (memcg->under_oom)
3545		eventfd_signal(eventfd, 1);
3546	spin_unlock(&memcg_oom_lock);
3547
3548	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3549}
3550
3551static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3552	struct eventfd_ctx *eventfd)
3553{
3554	struct mem_cgroup_eventfd_list *ev, *tmp;
3555
3556	spin_lock(&memcg_oom_lock);
 
3557
3558	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3559		if (ev->eventfd == eventfd) {
3560			list_del(&ev->list);
3561			kfree(ev);
3562		}
3563	}
3564
3565	spin_unlock(&memcg_oom_lock);
3566}
 
3567
3568static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3569{
3570	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
 
 
 
 
 
3571
3572	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3574	return 0;
3575}
3576
3577static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578	struct cftype *cft, u64 val)
3579{
3580	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3581
3582	/* cannot set to root cgroup and only 0 and 1 are allowed */
3583	if (!css->parent || !((val == 0) || (val == 1)))
3584		return -EINVAL;
3585
3586	memcg->oom_kill_disable = val;
3587	if (!val)
3588		memcg_oom_recover(memcg);
3589
3590	return 0;
 
 
 
 
 
 
 
 
 
 
3591}
3592
3593#ifdef CONFIG_CGROUP_WRITEBACK
3594
3595struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3596{
3597	return &memcg->cgwb_list;
3598}
3599
3600static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3601{
3602	return wb_domain_init(&memcg->cgwb_domain, gfp);
3603}
3604
3605static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3606{
3607	wb_domain_exit(&memcg->cgwb_domain);
3608}
3609
3610static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3611{
3612	wb_domain_size_changed(&memcg->cgwb_domain);
3613}
3614
3615struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3616{
3617	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618
3619	if (!memcg->css.parent)
3620		return NULL;
3621
3622	return &memcg->cgwb_domain;
3623}
3624
3625/**
3626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627 * @wb: bdi_writeback in question
3628 * @pfilepages: out parameter for number of file pages
3629 * @pheadroom: out parameter for number of allocatable pages according to memcg
3630 * @pdirty: out parameter for number of dirty pages
3631 * @pwriteback: out parameter for number of pages under writeback
3632 *
3633 * Determine the numbers of file, headroom, dirty, and writeback pages in
3634 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3635 * is a bit more involved.
3636 *
3637 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3638 * headroom is calculated as the lowest headroom of itself and the
3639 * ancestors.  Note that this doesn't consider the actual amount of
3640 * available memory in the system.  The caller should further cap
3641 * *@pheadroom accordingly.
3642 */
3643void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3644			 unsigned long *pheadroom, unsigned long *pdirty,
3645			 unsigned long *pwriteback)
3646{
3647	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648	struct mem_cgroup *parent;
3649
3650	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3651
3652	/* this should eventually include NR_UNSTABLE_NFS */
3653	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3655						     (1 << LRU_ACTIVE_FILE));
3656	*pheadroom = PAGE_COUNTER_MAX;
3657
 
3658	while ((parent = parent_mem_cgroup(memcg))) {
3659		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
 
3660		unsigned long used = page_counter_read(&memcg->memory);
3661
3662		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663		memcg = parent;
3664	}
3665}
3666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3667#else	/* CONFIG_CGROUP_WRITEBACK */
3668
3669static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3670{
3671	return 0;
3672}
3673
3674static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3675{
3676}
3677
3678static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3679{
3680}
3681
3682#endif	/* CONFIG_CGROUP_WRITEBACK */
3683
3684/*
3685 * DO NOT USE IN NEW FILES.
3686 *
3687 * "cgroup.event_control" implementation.
 
 
 
3688 *
3689 * This is way over-engineered.  It tries to support fully configurable
3690 * events for each user.  Such level of flexibility is completely
3691 * unnecessary especially in the light of the planned unified hierarchy.
 
 
 
3692 *
3693 * Please deprecate this and replace with something simpler if at all
3694 * possible.
3695 */
3696
3697/*
3698 * Unregister event and free resources.
3699 *
3700 * Gets called from workqueue.
 
 
3701 */
3702static void memcg_event_remove(struct work_struct *work)
3703{
3704	struct mem_cgroup_event *event =
3705		container_of(work, struct mem_cgroup_event, remove);
3706	struct mem_cgroup *memcg = event->memcg;
3707
3708	remove_wait_queue(event->wqh, &event->wait);
3709
3710	event->unregister_event(memcg, event->eventfd);
 
3711
3712	/* Notify userspace the event is going away. */
3713	eventfd_signal(event->eventfd, 1);
 
 
 
 
 
3714
3715	eventfd_ctx_put(event->eventfd);
3716	kfree(event);
3717	css_put(&memcg->css);
 
3718}
3719
3720/*
3721 * Gets called on POLLHUP on eventfd when user closes it.
3722 *
3723 * Called with wqh->lock held and interrupts disabled.
3724 */
3725static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3726			    int sync, void *key)
3727{
3728	struct mem_cgroup_event *event =
3729		container_of(wait, struct mem_cgroup_event, wait);
3730	struct mem_cgroup *memcg = event->memcg;
3731	unsigned long flags = (unsigned long)key;
3732
3733	if (flags & POLLHUP) {
3734		/*
3735		 * If the event has been detached at cgroup removal, we
3736		 * can simply return knowing the other side will cleanup
3737		 * for us.
3738		 *
3739		 * We can't race against event freeing since the other
3740		 * side will require wqh->lock via remove_wait_queue(),
3741		 * which we hold.
3742		 */
3743		spin_lock(&memcg->event_list_lock);
3744		if (!list_empty(&event->list)) {
3745			list_del_init(&event->list);
3746			/*
3747			 * We are in atomic context, but cgroup_event_remove()
3748			 * may sleep, so we have to call it in workqueue.
3749			 */
3750			schedule_work(&event->remove);
3751		}
3752		spin_unlock(&memcg->event_list_lock);
3753	}
3754
3755	return 0;
3756}
3757
3758static void memcg_event_ptable_queue_proc(struct file *file,
3759		wait_queue_head_t *wqh, poll_table *pt)
3760{
3761	struct mem_cgroup_event *event =
3762		container_of(pt, struct mem_cgroup_event, pt);
3763
3764	event->wqh = wqh;
3765	add_wait_queue(wqh, &event->wait);
3766}
3767
3768/*
3769 * DO NOT USE IN NEW FILES.
3770 *
3771 * Parse input and register new cgroup event handler.
3772 *
3773 * Input must be in format '<event_fd> <control_fd> <args>'.
3774 * Interpretation of args is defined by control file implementation.
3775 */
3776static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3777					 char *buf, size_t nbytes, loff_t off)
3778{
3779	struct cgroup_subsys_state *css = of_css(of);
3780	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781	struct mem_cgroup_event *event;
3782	struct cgroup_subsys_state *cfile_css;
3783	unsigned int efd, cfd;
3784	struct fd efile;
3785	struct fd cfile;
3786	const char *name;
3787	char *endp;
3788	int ret;
3789
3790	buf = strstrip(buf);
3791
3792	efd = simple_strtoul(buf, &endp, 10);
3793	if (*endp != ' ')
3794		return -EINVAL;
3795	buf = endp + 1;
3796
3797	cfd = simple_strtoul(buf, &endp, 10);
3798	if ((*endp != ' ') && (*endp != '\0'))
3799		return -EINVAL;
3800	buf = endp + 1;
3801
3802	event = kzalloc(sizeof(*event), GFP_KERNEL);
3803	if (!event)
3804		return -ENOMEM;
3805
3806	event->memcg = memcg;
3807	INIT_LIST_HEAD(&event->list);
3808	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3809	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3810	INIT_WORK(&event->remove, memcg_event_remove);
3811
3812	efile = fdget(efd);
3813	if (!efile.file) {
3814		ret = -EBADF;
3815		goto out_kfree;
3816	}
3817
3818	event->eventfd = eventfd_ctx_fileget(efile.file);
3819	if (IS_ERR(event->eventfd)) {
3820		ret = PTR_ERR(event->eventfd);
3821		goto out_put_efile;
3822	}
3823
3824	cfile = fdget(cfd);
3825	if (!cfile.file) {
3826		ret = -EBADF;
3827		goto out_put_eventfd;
3828	}
3829
3830	/* the process need read permission on control file */
3831	/* AV: shouldn't we check that it's been opened for read instead? */
3832	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3833	if (ret < 0)
3834		goto out_put_cfile;
3835
3836	/*
3837	 * Determine the event callbacks and set them in @event.  This used
3838	 * to be done via struct cftype but cgroup core no longer knows
3839	 * about these events.  The following is crude but the whole thing
3840	 * is for compatibility anyway.
3841	 *
3842	 * DO NOT ADD NEW FILES.
3843	 */
3844	name = cfile.file->f_path.dentry->d_name.name;
3845
3846	if (!strcmp(name, "memory.usage_in_bytes")) {
3847		event->register_event = mem_cgroup_usage_register_event;
3848		event->unregister_event = mem_cgroup_usage_unregister_event;
3849	} else if (!strcmp(name, "memory.oom_control")) {
3850		event->register_event = mem_cgroup_oom_register_event;
3851		event->unregister_event = mem_cgroup_oom_unregister_event;
3852	} else if (!strcmp(name, "memory.pressure_level")) {
3853		event->register_event = vmpressure_register_event;
3854		event->unregister_event = vmpressure_unregister_event;
3855	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3856		event->register_event = memsw_cgroup_usage_register_event;
3857		event->unregister_event = memsw_cgroup_usage_unregister_event;
3858	} else {
3859		ret = -EINVAL;
3860		goto out_put_cfile;
3861	}
3862
3863	/*
3864	 * Verify @cfile should belong to @css.  Also, remaining events are
3865	 * automatically removed on cgroup destruction but the removal is
3866	 * asynchronous, so take an extra ref on @css.
3867	 */
3868	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869					       &memory_cgrp_subsys);
3870	ret = -EINVAL;
3871	if (IS_ERR(cfile_css))
3872		goto out_put_cfile;
3873	if (cfile_css != css) {
3874		css_put(cfile_css);
3875		goto out_put_cfile;
3876	}
3877
3878	ret = event->register_event(memcg, event->eventfd, buf);
3879	if (ret)
3880		goto out_put_css;
3881
3882	efile.file->f_op->poll(efile.file, &event->pt);
 
 
3883
3884	spin_lock(&memcg->event_list_lock);
3885	list_add(&event->list, &memcg->event_list);
3886	spin_unlock(&memcg->event_list_lock);
3887
3888	fdput(cfile);
3889	fdput(efile);
 
 
3890
3891	return nbytes;
 
 
 
3892
3893out_put_css:
3894	css_put(css);
3895out_put_cfile:
3896	fdput(cfile);
3897out_put_eventfd:
3898	eventfd_ctx_put(event->eventfd);
3899out_put_efile:
3900	fdput(efile);
3901out_kfree:
3902	kfree(event);
3903
3904	return ret;
 
 
 
 
 
3905}
3906
3907static struct cftype mem_cgroup_legacy_files[] = {
3908	{
3909		.name = "usage_in_bytes",
3910		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911		.read_u64 = mem_cgroup_read_u64,
3912	},
3913	{
3914		.name = "max_usage_in_bytes",
3915		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916		.write = mem_cgroup_reset,
3917		.read_u64 = mem_cgroup_read_u64,
3918	},
3919	{
3920		.name = "limit_in_bytes",
3921		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922		.write = mem_cgroup_write,
3923		.read_u64 = mem_cgroup_read_u64,
3924	},
3925	{
3926		.name = "soft_limit_in_bytes",
3927		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928		.write = mem_cgroup_write,
3929		.read_u64 = mem_cgroup_read_u64,
3930	},
3931	{
3932		.name = "failcnt",
3933		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934		.write = mem_cgroup_reset,
3935		.read_u64 = mem_cgroup_read_u64,
3936	},
3937	{
3938		.name = "stat",
3939		.seq_show = memcg_stat_show,
3940	},
3941	{
3942		.name = "force_empty",
3943		.write = mem_cgroup_force_empty_write,
3944	},
3945	{
3946		.name = "use_hierarchy",
3947		.write_u64 = mem_cgroup_hierarchy_write,
3948		.read_u64 = mem_cgroup_hierarchy_read,
3949	},
3950	{
3951		.name = "cgroup.event_control",		/* XXX: for compat */
3952		.write = memcg_write_event_control,
3953		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3954	},
3955	{
3956		.name = "swappiness",
3957		.read_u64 = mem_cgroup_swappiness_read,
3958		.write_u64 = mem_cgroup_swappiness_write,
3959	},
3960	{
3961		.name = "move_charge_at_immigrate",
3962		.read_u64 = mem_cgroup_move_charge_read,
3963		.write_u64 = mem_cgroup_move_charge_write,
3964	},
3965	{
3966		.name = "oom_control",
3967		.seq_show = mem_cgroup_oom_control_read,
3968		.write_u64 = mem_cgroup_oom_control_write,
3969		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3970	},
3971	{
3972		.name = "pressure_level",
3973	},
3974#ifdef CONFIG_NUMA
3975	{
3976		.name = "numa_stat",
3977		.seq_show = memcg_numa_stat_show,
3978	},
3979#endif
3980	{
3981		.name = "kmem.limit_in_bytes",
3982		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983		.write = mem_cgroup_write,
3984		.read_u64 = mem_cgroup_read_u64,
3985	},
3986	{
3987		.name = "kmem.usage_in_bytes",
3988		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989		.read_u64 = mem_cgroup_read_u64,
3990	},
3991	{
3992		.name = "kmem.failcnt",
3993		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994		.write = mem_cgroup_reset,
3995		.read_u64 = mem_cgroup_read_u64,
3996	},
3997	{
3998		.name = "kmem.max_usage_in_bytes",
3999		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000		.write = mem_cgroup_reset,
4001		.read_u64 = mem_cgroup_read_u64,
4002	},
4003#ifdef CONFIG_SLABINFO
4004	{
4005		.name = "kmem.slabinfo",
4006		.seq_start = slab_start,
4007		.seq_next = slab_next,
4008		.seq_stop = slab_stop,
4009		.seq_show = memcg_slab_show,
4010	},
4011#endif
4012	{
4013		.name = "kmem.tcp.limit_in_bytes",
4014		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4015		.write = mem_cgroup_write,
4016		.read_u64 = mem_cgroup_read_u64,
4017	},
4018	{
4019		.name = "kmem.tcp.usage_in_bytes",
4020		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4021		.read_u64 = mem_cgroup_read_u64,
4022	},
4023	{
4024		.name = "kmem.tcp.failcnt",
4025		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4026		.write = mem_cgroup_reset,
4027		.read_u64 = mem_cgroup_read_u64,
4028	},
4029	{
4030		.name = "kmem.tcp.max_usage_in_bytes",
4031		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4032		.write = mem_cgroup_reset,
4033		.read_u64 = mem_cgroup_read_u64,
4034	},
4035	{ },	/* terminate */
4036};
4037
4038static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4039{
4040	struct mem_cgroup_per_node *pn;
4041	struct mem_cgroup_per_zone *mz;
4042	int zone, tmp = node;
4043	/*
4044	 * This routine is called against possible nodes.
4045	 * But it's BUG to call kmalloc() against offline node.
4046	 *
4047	 * TODO: this routine can waste much memory for nodes which will
4048	 *       never be onlined. It's better to use memory hotplug callback
4049	 *       function.
4050	 */
4051	if (!node_state(node, N_NORMAL_MEMORY))
4052		tmp = -1;
4053	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4054	if (!pn)
4055		return 1;
4056
4057	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4058		mz = &pn->zoneinfo[zone];
4059		lruvec_init(&mz->lruvec);
4060		mz->usage_in_excess = 0;
4061		mz->on_tree = false;
4062		mz->memcg = memcg;
4063	}
4064	memcg->nodeinfo[node] = pn;
4065	return 0;
4066}
4067
4068static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4069{
4070	kfree(memcg->nodeinfo[node]);
 
 
 
 
 
 
 
 
 
4071}
4072
4073static void mem_cgroup_free(struct mem_cgroup *memcg)
4074{
4075	int node;
4076
4077	memcg_wb_domain_exit(memcg);
4078	for_each_node(node)
4079		free_mem_cgroup_per_zone_info(memcg, node);
4080	free_percpu(memcg->stat);
4081	kfree(memcg);
4082}
4083
4084static struct mem_cgroup *mem_cgroup_alloc(void)
4085{
 
4086	struct mem_cgroup *memcg;
4087	size_t size;
4088	int node;
4089
4090	size = sizeof(struct mem_cgroup);
4091	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4092
4093	memcg = kzalloc(size, GFP_KERNEL);
4094	if (!memcg)
4095		return NULL;
4096
4097	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4098	if (!memcg->stat)
 
4099		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4100
4101	for_each_node(node)
4102		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4103			goto fail;
4104
4105	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4106		goto fail;
4107
4108	INIT_WORK(&memcg->high_work, high_work_func);
4109	memcg->last_scanned_node = MAX_NUMNODES;
4110	INIT_LIST_HEAD(&memcg->oom_notify);
4111	mutex_init(&memcg->thresholds_lock);
4112	spin_lock_init(&memcg->move_lock);
4113	vmpressure_init(&memcg->vmpressure);
4114	INIT_LIST_HEAD(&memcg->event_list);
4115	spin_lock_init(&memcg->event_list_lock);
 
4116	memcg->socket_pressure = jiffies;
4117#ifndef CONFIG_SLOB
4118	memcg->kmemcg_id = -1;
4119#endif
4120#ifdef CONFIG_CGROUP_WRITEBACK
4121	INIT_LIST_HEAD(&memcg->cgwb_list);
 
 
 
 
 
 
 
 
4122#endif
 
4123	return memcg;
4124fail:
4125	mem_cgroup_free(memcg);
4126	return NULL;
 
4127}
4128
4129static struct cgroup_subsys_state * __ref
4130mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4131{
4132	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4133	struct mem_cgroup *memcg;
4134	long error = -ENOMEM;
4135
4136	memcg = mem_cgroup_alloc();
4137	if (!memcg)
4138		return ERR_PTR(error);
4139
4140	memcg->high = PAGE_COUNTER_MAX;
4141	memcg->soft_limit = PAGE_COUNTER_MAX;
 
 
 
 
 
 
 
 
 
 
 
4142	if (parent) {
4143		memcg->swappiness = mem_cgroup_swappiness(parent);
4144		memcg->oom_kill_disable = parent->oom_kill_disable;
4145	}
4146	if (parent && parent->use_hierarchy) {
4147		memcg->use_hierarchy = true;
4148		page_counter_init(&memcg->memory, &parent->memory);
4149		page_counter_init(&memcg->swap, &parent->swap);
4150		page_counter_init(&memcg->memsw, &parent->memsw);
4151		page_counter_init(&memcg->kmem, &parent->kmem);
4152		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4153	} else {
4154		page_counter_init(&memcg->memory, NULL);
4155		page_counter_init(&memcg->swap, NULL);
4156		page_counter_init(&memcg->memsw, NULL);
4157		page_counter_init(&memcg->kmem, NULL);
4158		page_counter_init(&memcg->tcpmem, NULL);
4159		/*
4160		 * Deeper hierachy with use_hierarchy == false doesn't make
4161		 * much sense so let cgroup subsystem know about this
4162		 * unfortunate state in our controller.
4163		 */
4164		if (parent != root_mem_cgroup)
4165			memory_cgrp_subsys.broken_hierarchy = true;
4166	}
4167
4168	/* The following stuff does not apply to the root */
4169	if (!parent) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4170		root_mem_cgroup = memcg;
4171		return &memcg->css;
4172	}
4173
4174	error = memcg_online_kmem(memcg);
4175	if (error)
4176		goto fail;
4177
4178	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4179		static_branch_inc(&memcg_sockets_enabled_key);
4180
 
 
 
4181	return &memcg->css;
4182fail:
4183	mem_cgroup_free(memcg);
4184	return NULL;
4185}
4186
4187static int
4188mem_cgroup_css_online(struct cgroup_subsys_state *css)
4189{
4190	if (css->id > MEM_CGROUP_ID_MAX)
4191		return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4192
4193	return 0;
 
 
 
 
 
4194}
4195
4196static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4197{
4198	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199	struct mem_cgroup_event *event, *tmp;
4200
4201	/*
4202	 * Unregister events and notify userspace.
4203	 * Notify userspace about cgroup removing only after rmdir of cgroup
4204	 * directory to avoid race between userspace and kernelspace.
4205	 */
4206	spin_lock(&memcg->event_list_lock);
4207	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4208		list_del_init(&event->list);
4209		schedule_work(&event->remove);
4210	}
4211	spin_unlock(&memcg->event_list_lock);
4212
4213	memcg_offline_kmem(memcg);
 
4214	wb_memcg_offline(memcg);
 
 
 
 
 
4215}
4216
4217static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4218{
4219	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4220
4221	invalidate_reclaim_iterators(memcg);
 
4222}
4223
4224static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4225{
4226	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
4227
 
 
 
 
4228	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4229		static_branch_dec(&memcg_sockets_enabled_key);
4230
4231	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4232		static_branch_dec(&memcg_sockets_enabled_key);
4233
 
 
 
4234	vmpressure_cleanup(&memcg->vmpressure);
4235	cancel_work_sync(&memcg->high_work);
4236	mem_cgroup_remove_from_trees(memcg);
4237	memcg_free_kmem(memcg);
4238	mem_cgroup_free(memcg);
4239}
4240
4241/**
4242 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4243 * @css: the target css
4244 *
4245 * Reset the states of the mem_cgroup associated with @css.  This is
4246 * invoked when the userland requests disabling on the default hierarchy
4247 * but the memcg is pinned through dependency.  The memcg should stop
4248 * applying policies and should revert to the vanilla state as it may be
4249 * made visible again.
4250 *
4251 * The current implementation only resets the essential configurations.
4252 * This needs to be expanded to cover all the visible parts.
4253 */
4254static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4255{
4256	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4257
4258	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4259	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4260	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4261	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4262	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4263	memcg->low = 0;
4264	memcg->high = PAGE_COUNTER_MAX;
4265	memcg->soft_limit = PAGE_COUNTER_MAX;
 
 
 
4266	memcg_wb_domain_size_changed(memcg);
4267}
4268
4269#ifdef CONFIG_MMU
4270/* Handlers for move charge at task migration. */
4271static int mem_cgroup_do_precharge(unsigned long count)
4272{
4273	int ret;
4274
4275	/* Try a single bulk charge without reclaim first, kswapd may wake */
4276	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277	if (!ret) {
4278		mc.precharge += count;
4279		return ret;
4280	}
4281
4282	/* Try charges one by one with reclaim */
4283	while (count--) {
4284		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285		if (ret)
4286			return ret;
4287		mc.precharge++;
4288		cond_resched();
4289	}
4290	return 0;
4291}
4292
4293/**
4294 * get_mctgt_type - get target type of moving charge
4295 * @vma: the vma the pte to be checked belongs
4296 * @addr: the address corresponding to the pte to be checked
4297 * @ptent: the pte to be checked
4298 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4299 *
4300 * Returns
4301 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303 *     move charge. if @target is not NULL, the page is stored in target->page
4304 *     with extra refcnt got(Callers should handle it).
4305 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306 *     target for charge migration. if @target is not NULL, the entry is stored
4307 *     in target->ent.
4308 *
4309 * Called with pte lock held.
4310 */
4311union mc_target {
4312	struct page	*page;
4313	swp_entry_t	ent;
4314};
4315
4316enum mc_target_type {
4317	MC_TARGET_NONE = 0,
4318	MC_TARGET_PAGE,
4319	MC_TARGET_SWAP,
4320};
4321
4322static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4323						unsigned long addr, pte_t ptent)
4324{
4325	struct page *page = vm_normal_page(vma, addr, ptent);
4326
4327	if (!page || !page_mapped(page))
4328		return NULL;
4329	if (PageAnon(page)) {
4330		if (!(mc.flags & MOVE_ANON))
4331			return NULL;
4332	} else {
4333		if (!(mc.flags & MOVE_FILE))
4334			return NULL;
4335	}
4336	if (!get_page_unless_zero(page))
4337		return NULL;
4338
4339	return page;
4340}
 
 
 
 
 
 
 
4341
4342#ifdef CONFIG_SWAP
4343static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4344			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4345{
4346	struct page *page = NULL;
4347	swp_entry_t ent = pte_to_swp_entry(ptent);
 
 
4348
4349	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4350		return NULL;
4351	/*
4352	 * Because lookup_swap_cache() updates some statistics counter,
4353	 * we call find_get_page() with swapper_space directly.
4354	 */
4355	page = find_get_page(swap_address_space(ent), ent.val);
4356	if (do_memsw_account())
4357		entry->val = ent.val;
4358
4359	return page;
4360}
4361#else
4362static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4363			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4364{
4365	return NULL;
4366}
4367#endif
4368
4369static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4370			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4371{
4372	struct page *page = NULL;
4373	struct address_space *mapping;
4374	pgoff_t pgoff;
4375
4376	if (!vma->vm_file) /* anonymous vma */
4377		return NULL;
4378	if (!(mc.flags & MOVE_FILE))
4379		return NULL;
4380
4381	mapping = vma->vm_file->f_mapping;
4382	pgoff = linear_page_index(vma, addr);
4383
4384	/* page is moved even if it's not RSS of this task(page-faulted). */
4385#ifdef CONFIG_SWAP
4386	/* shmem/tmpfs may report page out on swap: account for that too. */
4387	if (shmem_mapping(mapping)) {
4388		page = find_get_entry(mapping, pgoff);
4389		if (radix_tree_exceptional_entry(page)) {
4390			swp_entry_t swp = radix_to_swp_entry(page);
4391			if (do_memsw_account())
4392				*entry = swp;
4393			page = find_get_page(swap_address_space(swp), swp.val);
4394		}
4395	} else
4396		page = find_get_page(mapping, pgoff);
4397#else
4398	page = find_get_page(mapping, pgoff);
4399#endif
4400	return page;
4401}
4402
4403/**
4404 * mem_cgroup_move_account - move account of the page
4405 * @page: the page
4406 * @nr_pages: number of regular pages (>1 for huge pages)
4407 * @from: mem_cgroup which the page is moved from.
4408 * @to:	mem_cgroup which the page is moved to. @from != @to.
4409 *
4410 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411 *
4412 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4413 * from old cgroup.
4414 */
4415static int mem_cgroup_move_account(struct page *page,
4416				   bool compound,
4417				   struct mem_cgroup *from,
4418				   struct mem_cgroup *to)
4419{
4420	unsigned long flags;
4421	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422	int ret;
4423	bool anon;
4424
4425	VM_BUG_ON(from == to);
4426	VM_BUG_ON_PAGE(PageLRU(page), page);
4427	VM_BUG_ON(compound && !PageTransHuge(page));
 
 
 
 
 
 
 
4428
4429	/*
4430	 * Prevent mem_cgroup_migrate() from looking at
4431	 * page->mem_cgroup of its source page while we change it.
4432	 */
4433	ret = -EBUSY;
4434	if (!trylock_page(page))
4435		goto out;
4436
4437	ret = -EINVAL;
4438	if (page->mem_cgroup != from)
4439		goto out_unlock;
4440
4441	anon = PageAnon(page);
4442
4443	spin_lock_irqsave(&from->move_lock, flags);
 
 
 
 
 
 
 
 
 
4444
4445	if (!anon && page_mapped(page)) {
4446		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447			       nr_pages);
4448		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449			       nr_pages);
4450	}
 
 
 
 
 
4451
 
 
4452	/*
4453	 * move_lock grabbed above and caller set from->moving_account, so
4454	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455	 * So mapping should be stable for dirty pages.
 
4456	 */
4457	if (!anon && PageDirty(page)) {
4458		struct address_space *mapping = page_mapping(page);
4459
4460		if (mapping_cap_account_dirty(mapping)) {
4461			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4462				       nr_pages);
4463			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4464				       nr_pages);
4465		}
4466	}
4467
4468	if (PageWriteback(page)) {
4469		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470			       nr_pages);
4471		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472			       nr_pages);
4473	}
4474
4475	/*
4476	 * It is safe to change page->mem_cgroup here because the page
4477	 * is referenced, charged, and isolated - we can't race with
4478	 * uncharging, charging, migration, or LRU putback.
 
4479	 */
 
 
4480
4481	/* caller should have done css_get */
4482	page->mem_cgroup = to;
4483	spin_unlock_irqrestore(&from->move_lock, flags);
 
 
4484
4485	ret = 0;
 
 
4486
4487	local_irq_disable();
4488	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489	memcg_check_events(to, page);
4490	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491	memcg_check_events(from, page);
4492	local_irq_enable();
4493out_unlock:
4494	unlock_page(page);
4495out:
4496	return ret;
4497}
 
 
 
4498
4499static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4500		unsigned long addr, pte_t ptent, union mc_target *target)
4501{
4502	struct page *page = NULL;
4503	enum mc_target_type ret = MC_TARGET_NONE;
4504	swp_entry_t ent = { .val = 0 };
4505
4506	if (pte_present(ptent))
4507		page = mc_handle_present_pte(vma, addr, ptent);
4508	else if (is_swap_pte(ptent))
4509		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510	else if (pte_none(ptent))
4511		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4512
4513	if (!page && !ent.val)
4514		return ret;
4515	if (page) {
4516		/*
4517		 * Do only loose check w/o serialization.
4518		 * mem_cgroup_move_account() checks the page is valid or
4519		 * not under LRU exclusion.
4520		 */
4521		if (page->mem_cgroup == mc.from) {
4522			ret = MC_TARGET_PAGE;
4523			if (target)
4524				target->page = page;
4525		}
4526		if (!ret || !target)
4527			put_page(page);
4528	}
4529	/* There is a swap entry and a page doesn't exist or isn't charged */
4530	if (ent.val && !ret &&
4531	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532		ret = MC_TARGET_SWAP;
4533		if (target)
4534			target->ent = ent;
4535	}
4536	return ret;
4537}
4538
4539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540/*
4541 * We don't consider swapping or file mapped pages because THP does not
4542 * support them for now.
4543 * Caller should make sure that pmd_trans_huge(pmd) is true.
4544 */
4545static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4546		unsigned long addr, pmd_t pmd, union mc_target *target)
4547{
4548	struct page *page = NULL;
4549	enum mc_target_type ret = MC_TARGET_NONE;
4550
4551	page = pmd_page(pmd);
4552	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553	if (!(mc.flags & MOVE_ANON))
4554		return ret;
4555	if (page->mem_cgroup == mc.from) {
4556		ret = MC_TARGET_PAGE;
4557		if (target) {
4558			get_page(page);
4559			target->page = page;
4560		}
4561	}
4562	return ret;
4563}
4564#else
4565static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566		unsigned long addr, pmd_t pmd, union mc_target *target)
4567{
4568	return MC_TARGET_NONE;
 
4569}
4570#endif
4571
4572static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4573					unsigned long addr, unsigned long end,
4574					struct mm_walk *walk)
4575{
4576	struct vm_area_struct *vma = walk->vma;
4577	pte_t *pte;
4578	spinlock_t *ptl;
4579
4580	ptl = pmd_trans_huge_lock(pmd, vma);
4581	if (ptl) {
4582		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4583			mc.precharge += HPAGE_PMD_NR;
4584		spin_unlock(ptl);
4585		return 0;
4586	}
4587
4588	if (pmd_trans_unstable(pmd))
4589		return 0;
4590	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4591	for (; addr != end; pte++, addr += PAGE_SIZE)
4592		if (get_mctgt_type(vma, addr, *pte, NULL))
4593			mc.precharge++;	/* increment precharge temporarily */
4594	pte_unmap_unlock(pte - 1, ptl);
4595	cond_resched();
4596
4597	return 0;
4598}
4599
4600static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
 
4601{
4602	unsigned long precharge;
4603
4604	struct mm_walk mem_cgroup_count_precharge_walk = {
4605		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4606		.mm = mm,
4607	};
4608	down_read(&mm->mmap_sem);
4609	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4610	up_read(&mm->mmap_sem);
4611
4612	precharge = mc.precharge;
4613	mc.precharge = 0;
4614
4615	return precharge;
4616}
4617
4618static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4619{
4620	unsigned long precharge = mem_cgroup_count_precharge(mm);
4621
4622	VM_BUG_ON(mc.moving_task);
4623	mc.moving_task = current;
4624	return mem_cgroup_do_precharge(precharge);
4625}
4626
4627/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628static void __mem_cgroup_clear_mc(void)
4629{
4630	struct mem_cgroup *from = mc.from;
4631	struct mem_cgroup *to = mc.to;
4632
4633	/* we must uncharge all the leftover precharges from mc.to */
4634	if (mc.precharge) {
4635		cancel_charge(mc.to, mc.precharge);
4636		mc.precharge = 0;
4637	}
4638	/*
4639	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640	 * we must uncharge here.
4641	 */
4642	if (mc.moved_charge) {
4643		cancel_charge(mc.from, mc.moved_charge);
4644		mc.moved_charge = 0;
4645	}
4646	/* we must fixup refcnts and charges */
4647	if (mc.moved_swap) {
4648		/* uncharge swap account from the old cgroup */
4649		if (!mem_cgroup_is_root(mc.from))
4650			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4651
4652		/*
4653		 * we charged both to->memory and to->memsw, so we
4654		 * should uncharge to->memory.
4655		 */
4656		if (!mem_cgroup_is_root(mc.to))
4657			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4658
4659		css_put_many(&mc.from->css, mc.moved_swap);
4660
4661		/* we've already done css_get(mc.to) */
4662		mc.moved_swap = 0;
4663	}
4664	memcg_oom_recover(from);
4665	memcg_oom_recover(to);
4666	wake_up_all(&mc.waitq);
4667}
4668
4669static void mem_cgroup_clear_mc(void)
4670{
4671	struct mm_struct *mm = mc.mm;
4672
4673	/*
4674	 * we must clear moving_task before waking up waiters at the end of
4675	 * task migration.
4676	 */
4677	mc.moving_task = NULL;
4678	__mem_cgroup_clear_mc();
4679	spin_lock(&mc.lock);
4680	mc.from = NULL;
4681	mc.to = NULL;
4682	mc.mm = NULL;
4683	spin_unlock(&mc.lock);
4684
4685	mmput(mm);
4686}
4687
4688static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4689{
4690	struct cgroup_subsys_state *css;
4691	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4692	struct mem_cgroup *from;
4693	struct task_struct *leader, *p;
4694	struct mm_struct *mm;
4695	unsigned long move_flags;
4696	int ret = 0;
4697
4698	/* charge immigration isn't supported on the default hierarchy */
4699	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4700		return 0;
4701
4702	/*
4703	 * Multi-process migrations only happen on the default hierarchy
4704	 * where charge immigration is not used.  Perform charge
4705	 * immigration if @tset contains a leader and whine if there are
4706	 * multiple.
4707	 */
4708	p = NULL;
4709	cgroup_taskset_for_each_leader(leader, css, tset) {
4710		WARN_ON_ONCE(p);
4711		p = leader;
4712		memcg = mem_cgroup_from_css(css);
4713	}
4714	if (!p)
4715		return 0;
4716
4717	/*
4718	 * We are now commited to this value whatever it is. Changes in this
4719	 * tunable will only affect upcoming migrations, not the current one.
4720	 * So we need to save it, and keep it going.
4721	 */
4722	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4723	if (!move_flags)
4724		return 0;
4725
4726	from = mem_cgroup_from_task(p);
4727
4728	VM_BUG_ON(from == memcg);
4729
4730	mm = get_task_mm(p);
4731	if (!mm)
4732		return 0;
4733	/* We move charges only when we move a owner of the mm */
4734	if (mm->owner == p) {
4735		VM_BUG_ON(mc.from);
4736		VM_BUG_ON(mc.to);
4737		VM_BUG_ON(mc.precharge);
4738		VM_BUG_ON(mc.moved_charge);
4739		VM_BUG_ON(mc.moved_swap);
4740
4741		spin_lock(&mc.lock);
4742		mc.mm = mm;
4743		mc.from = from;
4744		mc.to = memcg;
4745		mc.flags = move_flags;
4746		spin_unlock(&mc.lock);
4747		/* We set mc.moving_task later */
4748
4749		ret = mem_cgroup_precharge_mc(mm);
4750		if (ret)
4751			mem_cgroup_clear_mc();
4752	} else {
4753		mmput(mm);
4754	}
4755	return ret;
 
 
4756}
4757
4758static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
 
 
4759{
4760	if (mc.to)
4761		mem_cgroup_clear_mc();
4762}
 
4763
4764static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4765				unsigned long addr, unsigned long end,
4766				struct mm_walk *walk)
4767{
4768	int ret = 0;
4769	struct vm_area_struct *vma = walk->vma;
4770	pte_t *pte;
4771	spinlock_t *ptl;
4772	enum mc_target_type target_type;
4773	union mc_target target;
4774	struct page *page;
4775
4776	ptl = pmd_trans_huge_lock(pmd, vma);
4777	if (ptl) {
4778		if (mc.precharge < HPAGE_PMD_NR) {
4779			spin_unlock(ptl);
4780			return 0;
4781		}
4782		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4783		if (target_type == MC_TARGET_PAGE) {
4784			page = target.page;
4785			if (!isolate_lru_page(page)) {
4786				if (!mem_cgroup_move_account(page, true,
4787							     mc.from, mc.to)) {
4788					mc.precharge -= HPAGE_PMD_NR;
4789					mc.moved_charge += HPAGE_PMD_NR;
4790				}
4791				putback_lru_page(page);
4792			}
4793			put_page(page);
4794		}
4795		spin_unlock(ptl);
4796		return 0;
4797	}
4798
4799	if (pmd_trans_unstable(pmd))
4800		return 0;
4801retry:
4802	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4803	for (; addr != end; addr += PAGE_SIZE) {
4804		pte_t ptent = *(pte++);
4805		swp_entry_t ent;
4806
4807		if (!mc.precharge)
4808			break;
 
4809
4810		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4811		case MC_TARGET_PAGE:
4812			page = target.page;
4813			/*
4814			 * We can have a part of the split pmd here. Moving it
4815			 * can be done but it would be too convoluted so simply
4816			 * ignore such a partial THP and keep it in original
4817			 * memcg. There should be somebody mapping the head.
4818			 */
4819			if (PageTransCompound(page))
4820				goto put;
4821			if (isolate_lru_page(page))
4822				goto put;
4823			if (!mem_cgroup_move_account(page, false,
4824						mc.from, mc.to)) {
4825				mc.precharge--;
4826				/* we uncharge from mc.from later. */
4827				mc.moved_charge++;
4828			}
4829			putback_lru_page(page);
4830put:			/* get_mctgt_type() gets the page */
4831			put_page(page);
4832			break;
4833		case MC_TARGET_SWAP:
4834			ent = target.ent;
4835			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4836				mc.precharge--;
4837				/* we fixup refcnts and charges later. */
4838				mc.moved_swap++;
4839			}
4840			break;
4841		default:
4842			break;
4843		}
4844	}
4845	pte_unmap_unlock(pte - 1, ptl);
4846	cond_resched();
4847
4848	if (addr != end) {
4849		/*
4850		 * We have consumed all precharges we got in can_attach().
4851		 * We try charge one by one, but don't do any additional
4852		 * charges to mc.to if we have failed in charge once in attach()
4853		 * phase.
4854		 */
4855		ret = mem_cgroup_do_precharge(1);
4856		if (!ret)
4857			goto retry;
4858	}
4859
4860	return ret;
4861}
4862
4863static void mem_cgroup_move_charge(void)
 
4864{
4865	struct mm_walk mem_cgroup_move_charge_walk = {
4866		.pmd_entry = mem_cgroup_move_charge_pte_range,
4867		.mm = mc.mm,
4868	};
4869
4870	lru_add_drain_all();
4871	/*
4872	 * Signal lock_page_memcg() to take the memcg's move_lock
4873	 * while we're moving its pages to another memcg. Then wait
4874	 * for already started RCU-only updates to finish.
4875	 */
4876	atomic_inc(&mc.from->moving_account);
4877	synchronize_rcu();
4878retry:
4879	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4880		/*
4881		 * Someone who are holding the mmap_sem might be waiting in
4882		 * waitq. So we cancel all extra charges, wake up all waiters,
4883		 * and retry. Because we cancel precharges, we might not be able
4884		 * to move enough charges, but moving charge is a best-effort
4885		 * feature anyway, so it wouldn't be a big problem.
4886		 */
4887		__mem_cgroup_clear_mc();
4888		cond_resched();
4889		goto retry;
4890	}
4891	/*
4892	 * When we have consumed all precharges and failed in doing
4893	 * additional charge, the page walk just aborts.
4894	 */
4895	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4896	up_read(&mc.mm->mmap_sem);
4897	atomic_dec(&mc.from->moving_account);
4898}
4899
4900static void mem_cgroup_move_task(void)
4901{
4902	if (mc.to) {
4903		mem_cgroup_move_charge();
4904		mem_cgroup_clear_mc();
4905	}
4906}
4907#else	/* !CONFIG_MMU */
4908static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4909{
4910	return 0;
4911}
4912static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4913{
4914}
4915static void mem_cgroup_move_task(void)
4916{
4917}
4918#endif
4919
4920/*
4921 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922 * to verify whether we're attached to the default hierarchy on each mount
4923 * attempt.
4924 */
4925static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4926{
4927	/*
4928	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4929	 * guarantees that @root doesn't have any children, so turning it
4930	 * on for the root memcg is enough.
4931	 */
4932	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933		root_mem_cgroup->use_hierarchy = true;
4934	else
4935		root_mem_cgroup->use_hierarchy = false;
4936}
4937
4938static u64 memory_current_read(struct cgroup_subsys_state *css,
4939			       struct cftype *cft)
4940{
4941	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
 
4942
4943	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
 
 
 
 
 
 
 
4944}
4945
4946static int memory_low_show(struct seq_file *m, void *v)
4947{
4948	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949	unsigned long low = READ_ONCE(memcg->low);
4950
4951	if (low == PAGE_COUNTER_MAX)
4952		seq_puts(m, "max\n");
4953	else
4954		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4955
4956	return 0;
4957}
4958
4959static ssize_t memory_low_write(struct kernfs_open_file *of,
4960				char *buf, size_t nbytes, loff_t off)
4961{
4962	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4963	unsigned long low;
4964	int err;
4965
4966	buf = strstrip(buf);
4967	err = page_counter_memparse(buf, "max", &low);
4968	if (err)
4969		return err;
4970
4971	memcg->low = low;
4972
4973	return nbytes;
4974}
4975
4976static int memory_high_show(struct seq_file *m, void *v)
4977{
4978	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979	unsigned long high = READ_ONCE(memcg->high);
4980
4981	if (high == PAGE_COUNTER_MAX)
4982		seq_puts(m, "max\n");
4983	else
4984		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4985
4986	return 0;
4987}
4988
4989static ssize_t memory_high_write(struct kernfs_open_file *of,
4990				 char *buf, size_t nbytes, loff_t off)
4991{
4992	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993	unsigned long nr_pages;
 
4994	unsigned long high;
4995	int err;
4996
4997	buf = strstrip(buf);
4998	err = page_counter_memparse(buf, "max", &high);
4999	if (err)
5000		return err;
5001
5002	memcg->high = high;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5003
5004	nr_pages = page_counter_read(&memcg->memory);
5005	if (nr_pages > high)
5006		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5007					     GFP_KERNEL, true);
 
 
5008
5009	memcg_wb_domain_size_changed(memcg);
5010	return nbytes;
5011}
5012
5013static int memory_max_show(struct seq_file *m, void *v)
5014{
5015	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016	unsigned long max = READ_ONCE(memcg->memory.limit);
5017
5018	if (max == PAGE_COUNTER_MAX)
5019		seq_puts(m, "max\n");
5020	else
5021		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5022
5023	return 0;
5024}
5025
5026static ssize_t memory_max_write(struct kernfs_open_file *of,
5027				char *buf, size_t nbytes, loff_t off)
5028{
5029	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5031	bool drained = false;
5032	unsigned long max;
5033	int err;
5034
5035	buf = strstrip(buf);
5036	err = page_counter_memparse(buf, "max", &max);
5037	if (err)
5038		return err;
5039
5040	xchg(&memcg->memory.limit, max);
5041
5042	for (;;) {
5043		unsigned long nr_pages = page_counter_read(&memcg->memory);
5044
5045		if (nr_pages <= max)
5046			break;
5047
5048		if (signal_pending(current)) {
5049			err = -EINTR;
5050			break;
5051		}
5052
5053		if (!drained) {
5054			drain_all_stock(memcg);
5055			drained = true;
5056			continue;
5057		}
5058
5059		if (nr_reclaims) {
5060			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5061							  GFP_KERNEL, true))
5062				nr_reclaims--;
5063			continue;
5064		}
5065
5066		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5067		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5068			break;
5069	}
5070
5071	memcg_wb_domain_size_changed(memcg);
5072	return nbytes;
5073}
5074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5075static int memory_events_show(struct seq_file *m, void *v)
5076{
5077	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5078
5079	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5080	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5081	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5082	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5083
 
 
 
 
 
5084	return 0;
5085}
5086
5087static int memory_stat_show(struct seq_file *m, void *v)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5088{
5089	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090	unsigned long stat[MEMCG_NR_STAT];
5091	unsigned long events[MEMCG_NR_EVENTS];
5092	int i;
 
5093
5094	/*
5095	 * Provide statistics on the state of the memory subsystem as
5096	 * well as cumulative event counters that show past behavior.
5097	 *
5098	 * This list is ordered following a combination of these gradients:
5099	 * 1) generic big picture -> specifics and details
5100	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5101	 *
5102	 * Current memory state:
5103	 */
5104
5105	tree_stat(memcg, stat);
5106	tree_events(memcg, events);
5107
5108	seq_printf(m, "anon %llu\n",
5109		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5110	seq_printf(m, "file %llu\n",
5111		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5112	seq_printf(m, "kernel_stack %llu\n",
5113		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5114	seq_printf(m, "slab %llu\n",
5115		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5116			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5117	seq_printf(m, "sock %llu\n",
5118		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5119
5120	seq_printf(m, "file_mapped %llu\n",
5121		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5122	seq_printf(m, "file_dirty %llu\n",
5123		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5124	seq_printf(m, "file_writeback %llu\n",
5125		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5126
5127	for (i = 0; i < NR_LRU_LISTS; i++) {
5128		struct mem_cgroup *mi;
5129		unsigned long val = 0;
5130
5131		for_each_mem_cgroup_tree(mi, memcg)
5132			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5133		seq_printf(m, "%s %llu\n",
5134			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5135	}
5136
5137	seq_printf(m, "slab_reclaimable %llu\n",
5138		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5139	seq_printf(m, "slab_unreclaimable %llu\n",
5140		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5141
5142	/* Accumulated memory events */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5143
5144	seq_printf(m, "pgfault %lu\n",
5145		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5146	seq_printf(m, "pgmajfault %lu\n",
5147		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5148
5149	return 0;
5150}
5151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5152static struct cftype memory_files[] = {
5153	{
5154		.name = "current",
5155		.flags = CFTYPE_NOT_ON_ROOT,
5156		.read_u64 = memory_current_read,
5157	},
5158	{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5159		.name = "low",
5160		.flags = CFTYPE_NOT_ON_ROOT,
5161		.seq_show = memory_low_show,
5162		.write = memory_low_write,
5163	},
5164	{
5165		.name = "high",
5166		.flags = CFTYPE_NOT_ON_ROOT,
5167		.seq_show = memory_high_show,
5168		.write = memory_high_write,
5169	},
5170	{
5171		.name = "max",
5172		.flags = CFTYPE_NOT_ON_ROOT,
5173		.seq_show = memory_max_show,
5174		.write = memory_max_write,
5175	},
5176	{
5177		.name = "events",
5178		.flags = CFTYPE_NOT_ON_ROOT,
5179		.file_offset = offsetof(struct mem_cgroup, events_file),
5180		.seq_show = memory_events_show,
5181	},
5182	{
5183		.name = "stat",
5184		.flags = CFTYPE_NOT_ON_ROOT,
 
 
 
 
 
5185		.seq_show = memory_stat_show,
5186	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5187	{ }	/* terminate */
5188};
5189
5190struct cgroup_subsys memory_cgrp_subsys = {
5191	.css_alloc = mem_cgroup_css_alloc,
5192	.css_online = mem_cgroup_css_online,
5193	.css_offline = mem_cgroup_css_offline,
5194	.css_released = mem_cgroup_css_released,
5195	.css_free = mem_cgroup_css_free,
5196	.css_reset = mem_cgroup_css_reset,
5197	.can_attach = mem_cgroup_can_attach,
5198	.cancel_attach = mem_cgroup_cancel_attach,
5199	.post_attach = mem_cgroup_move_task,
5200	.bind = mem_cgroup_bind,
5201	.dfl_cftypes = memory_files,
 
5202	.legacy_cftypes = mem_cgroup_legacy_files,
 
5203	.early_init = 0,
5204};
5205
5206/**
5207 * mem_cgroup_low - check if memory consumption is below the normal range
5208 * @root: the highest ancestor to consider
5209 * @memcg: the memory cgroup to check
5210 *
5211 * Returns %true if memory consumption of @memcg, and that of all
5212 * configurable ancestors up to @root, is below the normal range.
5213 */
5214bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
 
5215{
 
 
 
5216	if (mem_cgroup_disabled())
5217		return false;
5218
5219	/*
5220	 * The toplevel group doesn't have a configurable range, so
5221	 * it's never low when looked at directly, and it is not
5222	 * considered an ancestor when assessing the hierarchy.
5223	 */
5224
5225	if (memcg == root_mem_cgroup)
5226		return false;
5227
5228	if (page_counter_read(&memcg->memory) >= memcg->low)
5229		return false;
 
 
5230
5231	while (memcg != root) {
5232		memcg = parent_mem_cgroup(memcg);
 
5233
5234		if (memcg == root_mem_cgroup)
5235			break;
 
 
5236
5237		if (page_counter_read(&memcg->memory) >= memcg->low)
5238			return false;
5239	}
5240	return true;
 
 
 
 
 
 
5241}
5242
5243/**
5244 * mem_cgroup_try_charge - try charging a page
5245 * @page: page to charge
5246 * @mm: mm context of the victim
5247 * @gfp_mask: reclaim mode
5248 * @memcgp: charged memcg return
5249 *
5250 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251 * pages according to @gfp_mask if necessary.
 
5252 *
5253 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254 * Otherwise, an error code is returned.
 
 
5255 *
5256 * After page->mapping has been set up, the caller must finalize the
5257 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5258 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5259 */
5260int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5262			  bool compound)
5263{
5264	struct mem_cgroup *memcg = NULL;
5265	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5266	int ret = 0;
 
 
 
 
 
5267
5268	if (mem_cgroup_disabled())
5269		goto out;
5270
5271	if (PageSwapCache(page)) {
5272		/*
5273		 * Every swap fault against a single page tries to charge the
5274		 * page, bail as early as possible.  shmem_unuse() encounters
5275		 * already charged pages, too.  The USED bit is protected by
5276		 * the page lock, which serializes swap cache removal, which
5277		 * in turn serializes uncharging.
5278		 */
5279		VM_BUG_ON_PAGE(!PageLocked(page), page);
5280		if (page->mem_cgroup)
5281			goto out;
5282
5283		if (do_swap_account) {
5284			swp_entry_t ent = { .val = page_private(page), };
5285			unsigned short id = lookup_swap_cgroup_id(ent);
5286
5287			rcu_read_lock();
5288			memcg = mem_cgroup_from_id(id);
5289			if (memcg && !css_tryget_online(&memcg->css))
5290				memcg = NULL;
5291			rcu_read_unlock();
5292		}
5293	}
5294
5295	if (!memcg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5296		memcg = get_mem_cgroup_from_mm(mm);
 
5297
5298	ret = try_charge(memcg, gfp_mask, nr_pages);
5299
5300	css_put(&memcg->css);
5301out:
5302	*memcgp = memcg;
5303	return ret;
5304}
5305
5306/**
5307 * mem_cgroup_commit_charge - commit a page charge
5308 * @page: page to charge
5309 * @memcg: memcg to charge the page to
5310 * @lrucare: page might be on LRU already
5311 *
5312 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5313 * after page->mapping has been set up.  This must happen atomically
5314 * as part of the page instantiation, i.e. under the page table lock
5315 * for anonymous pages, under the page lock for page and swap cache.
5316 *
5317 * In addition, the page must not be on the LRU during the commit, to
5318 * prevent racing with task migration.  If it might be, use @lrucare.
5319 *
5320 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 
5321 */
5322void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5323			      bool lrucare, bool compound)
5324{
5325	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5326
5327	VM_BUG_ON_PAGE(!page->mapping, page);
5328	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5329
5330	if (mem_cgroup_disabled())
5331		return;
5332	/*
5333	 * Swap faults will attempt to charge the same page multiple
5334	 * times.  But reuse_swap_page() might have removed the page
5335	 * from swapcache already, so we can't check PageSwapCache().
 
 
 
 
 
 
 
5336	 */
5337	if (!memcg)
5338		return;
5339
5340	commit_charge(page, memcg, lrucare);
5341
5342	local_irq_disable();
5343	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5344	memcg_check_events(memcg, page);
5345	local_irq_enable();
5346
5347	if (do_memsw_account() && PageSwapCache(page)) {
5348		swp_entry_t entry = { .val = page_private(page) };
5349		/*
5350		 * The swap entry might not get freed for a long time,
5351		 * let's not wait for it.  The page already received a
5352		 * memory+swap charge, drop the swap entry duplicate.
5353		 */
5354		mem_cgroup_uncharge_swap(entry);
5355	}
5356}
5357
5358/**
5359 * mem_cgroup_cancel_charge - cancel a page charge
5360 * @page: page to charge
5361 * @memcg: memcg to charge the page to
5362 *
5363 * Cancel a charge transaction started by mem_cgroup_try_charge().
5364 */
5365void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5366		bool compound)
5367{
5368	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369
5370	if (mem_cgroup_disabled())
5371		return;
5372	/*
5373	 * Swap faults will attempt to charge the same page multiple
5374	 * times.  But reuse_swap_page() might have removed the page
5375	 * from swapcache already, so we can't check PageSwapCache().
5376	 */
5377	if (!memcg)
5378		return;
5379
5380	cancel_charge(memcg, nr_pages);
 
 
5381}
5382
5383static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5384			   unsigned long nr_anon, unsigned long nr_file,
5385			   unsigned long nr_huge, struct page *dummy_page)
5386{
5387	unsigned long nr_pages = nr_anon + nr_file;
5388	unsigned long flags;
5389
5390	if (!mem_cgroup_is_root(memcg)) {
5391		page_counter_uncharge(&memcg->memory, nr_pages);
5392		if (do_memsw_account())
5393			page_counter_uncharge(&memcg->memsw, nr_pages);
5394		memcg_oom_recover(memcg);
 
 
 
 
5395	}
5396
5397	local_irq_save(flags);
5398	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5399	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5400	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5401	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5402	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5403	memcg_check_events(memcg, dummy_page);
5404	local_irq_restore(flags);
5405
5406	if (!mem_cgroup_is_root(memcg))
5407		css_put_many(&memcg->css, nr_pages);
5408}
5409
5410static void uncharge_list(struct list_head *page_list)
5411{
5412	struct mem_cgroup *memcg = NULL;
5413	unsigned long nr_anon = 0;
5414	unsigned long nr_file = 0;
5415	unsigned long nr_huge = 0;
5416	unsigned long pgpgout = 0;
5417	struct list_head *next;
5418	struct page *page;
5419
5420	/*
5421	 * Note that the list can be a single page->lru; hence the
5422	 * do-while loop instead of a simple list_for_each_entry().
 
5423	 */
5424	next = page_list->next;
5425	do {
5426		unsigned int nr_pages = 1;
5427
5428		page = list_entry(next, struct page, lru);
5429		next = page->lru.next;
5430
5431		VM_BUG_ON_PAGE(PageLRU(page), page);
5432		VM_BUG_ON_PAGE(page_count(page), page);
5433
5434		if (!page->mem_cgroup)
5435			continue;
5436
5437		/*
5438		 * Nobody should be changing or seriously looking at
5439		 * page->mem_cgroup at this point, we have fully
5440		 * exclusive access to the page.
5441		 */
 
 
 
 
5442
5443		if (memcg != page->mem_cgroup) {
5444			if (memcg) {
5445				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5446					       nr_huge, page);
5447				pgpgout = nr_anon = nr_file = nr_huge = 0;
5448			}
5449			memcg = page->mem_cgroup;
5450		}
5451
5452		if (PageTransHuge(page)) {
5453			nr_pages <<= compound_order(page);
5454			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5455			nr_huge += nr_pages;
5456		}
 
 
5457
5458		if (PageAnon(page))
5459			nr_anon += nr_pages;
5460		else
5461			nr_file += nr_pages;
5462
5463		page->mem_cgroup = NULL;
5464
5465		pgpgout++;
5466	} while (next != page_list);
 
5467
5468	if (memcg)
5469		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5470			       nr_huge, page);
 
 
 
 
 
 
 
 
 
 
5471}
5472
5473/**
5474 * mem_cgroup_uncharge - uncharge a page
5475 * @page: page to uncharge
5476 *
5477 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5478 * mem_cgroup_commit_charge().
5479 */
5480void mem_cgroup_uncharge(struct page *page)
5481{
5482	if (mem_cgroup_disabled())
5483		return;
5484
5485	/* Don't touch page->lru of any random page, pre-check: */
5486	if (!page->mem_cgroup)
5487		return;
5488
5489	INIT_LIST_HEAD(&page->lru);
5490	uncharge_list(&page->lru);
 
5491}
5492
5493/**
5494 * mem_cgroup_uncharge_list - uncharge a list of page
5495 * @page_list: list of pages to uncharge
5496 *
5497 * Uncharge a list of pages previously charged with
5498 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5499 */
5500void mem_cgroup_uncharge_list(struct list_head *page_list)
5501{
5502	if (mem_cgroup_disabled())
5503		return;
5504
5505	if (!list_empty(page_list))
5506		uncharge_list(page_list);
 
 
 
5507}
5508
5509/**
5510 * mem_cgroup_migrate - charge a page's replacement
5511 * @oldpage: currently circulating page
5512 * @newpage: replacement page
5513 *
5514 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5515 * be uncharged upon free.
5516 *
5517 * Both pages must be locked, @newpage->mapping must be set up.
5518 */
5519void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5520{
5521	struct mem_cgroup *memcg;
5522	unsigned int nr_pages;
5523	bool compound;
5524
5525	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5526	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5527	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5529		       newpage);
5530
5531	if (mem_cgroup_disabled())
5532		return;
5533
5534	/* Page cache replacement: new page already charged? */
5535	if (newpage->mem_cgroup)
5536		return;
5537
5538	/* Swapcache readahead pages can get replaced before being charged */
5539	memcg = oldpage->mem_cgroup;
5540	if (!memcg)
5541		return;
5542
5543	/* Force-charge the new page. The old one will be freed soon */
5544	compound = PageTransHuge(newpage);
5545	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
 
 
 
5546
5547	page_counter_charge(&memcg->memory, nr_pages);
5548	if (do_memsw_account())
5549		page_counter_charge(&memcg->memsw, nr_pages);
5550	css_get_many(&memcg->css, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5551
5552	commit_charge(newpage, memcg, false);
 
 
 
 
5553
5554	local_irq_disable();
5555	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5556	memcg_check_events(memcg, newpage);
5557	local_irq_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5558}
5559
5560DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561EXPORT_SYMBOL(memcg_sockets_enabled_key);
5562
5563void sock_update_memcg(struct sock *sk)
5564{
5565	struct mem_cgroup *memcg;
5566
5567	/* Socket cloning can throw us here with sk_cgrp already
5568	 * filled. It won't however, necessarily happen from
5569	 * process context. So the test for root memcg given
5570	 * the current task's memcg won't help us in this case.
5571	 *
5572	 * Respecting the original socket's memcg is a better
5573	 * decision in this case.
5574	 */
5575	if (sk->sk_memcg) {
5576		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5577		css_get(&sk->sk_memcg->css);
5578		return;
5579	}
5580
5581	rcu_read_lock();
5582	memcg = mem_cgroup_from_task(current);
5583	if (memcg == root_mem_cgroup)
5584		goto out;
5585	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5586		goto out;
5587	if (css_tryget_online(&memcg->css))
5588		sk->sk_memcg = memcg;
5589out:
5590	rcu_read_unlock();
5591}
5592EXPORT_SYMBOL(sock_update_memcg);
5593
5594void sock_release_memcg(struct sock *sk)
5595{
5596	WARN_ON(!sk->sk_memcg);
5597	css_put(&sk->sk_memcg->css);
5598}
5599
5600/**
5601 * mem_cgroup_charge_skmem - charge socket memory
5602 * @memcg: memcg to charge
5603 * @nr_pages: number of pages to charge
 
5604 *
5605 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5606 * @memcg's configured limit, %false if the charge had to be forced.
5607 */
5608bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
 
5609{
5610	gfp_t gfp_mask = GFP_KERNEL;
5611
5612	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5613		struct page_counter *fail;
5614
5615		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5616			memcg->tcpmem_pressure = 0;
5617			return true;
5618		}
5619		page_counter_charge(&memcg->tcpmem, nr_pages);
5620		memcg->tcpmem_pressure = 1;
5621		return false;
5622	}
5623
5624	/* Don't block in the packet receive path */
5625	if (in_softirq())
5626		gfp_mask = GFP_NOWAIT;
5627
5628	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5629
5630	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
 
5631		return true;
 
5632
5633	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5634	return false;
5635}
5636
5637/**
5638 * mem_cgroup_uncharge_skmem - uncharge socket memory
5639 * @memcg - memcg to uncharge
5640 * @nr_pages - number of pages to uncharge
5641 */
5642void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5643{
5644	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5645		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5646		return;
5647	}
5648
5649	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5650
5651	page_counter_uncharge(&memcg->memory, nr_pages);
5652	css_put_many(&memcg->css, nr_pages);
5653}
5654
5655static int __init cgroup_memory(char *s)
5656{
5657	char *token;
5658
5659	while ((token = strsep(&s, ",")) != NULL) {
5660		if (!*token)
5661			continue;
5662		if (!strcmp(token, "nosocket"))
5663			cgroup_memory_nosocket = true;
5664		if (!strcmp(token, "nokmem"))
5665			cgroup_memory_nokmem = true;
 
 
5666	}
5667	return 0;
5668}
5669__setup("cgroup.memory=", cgroup_memory);
5670
5671/*
5672 * subsys_initcall() for memory controller.
5673 *
5674 * Some parts like hotcpu_notifier() have to be initialized from this context
5675 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5676 * everything that doesn't depend on a specific mem_cgroup structure should
5677 * be initialized from here.
5678 */
5679static int __init mem_cgroup_init(void)
5680{
5681	int cpu, node;
5682
5683	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
 
 
 
 
 
 
 
 
 
5684
5685	for_each_possible_cpu(cpu)
5686		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5687			  drain_local_stock);
5688
5689	for_each_node(node) {
5690		struct mem_cgroup_tree_per_node *rtpn;
5691		int zone;
5692
5693		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5694				    node_online(node) ? node : NUMA_NO_NODE);
5695
5696		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5697			struct mem_cgroup_tree_per_zone *rtpz;
5698
5699			rtpz = &rtpn->rb_tree_per_zone[zone];
5700			rtpz->rb_root = RB_ROOT;
5701			spin_lock_init(&rtpz->lock);
5702		}
5703		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5704	}
5705
5706	return 0;
5707}
5708subsys_initcall(mem_cgroup_init);
5709
5710#ifdef CONFIG_MEMCG_SWAP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5711/**
5712 * mem_cgroup_swapout - transfer a memsw charge to swap
5713 * @page: page whose memsw charge to transfer
5714 * @entry: swap entry to move the charge to
5715 *
5716 * Transfer the memsw charge of @page to @entry.
5717 */
5718void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5719{
5720	struct mem_cgroup *memcg;
 
5721	unsigned short oldid;
5722
5723	VM_BUG_ON_PAGE(PageLRU(page), page);
5724	VM_BUG_ON_PAGE(page_count(page), page);
 
 
 
5725
5726	if (!do_memsw_account())
5727		return;
5728
5729	memcg = page->mem_cgroup;
5730
5731	/* Readahead page, never charged */
5732	if (!memcg)
5733		return;
5734
5735	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5736	VM_BUG_ON_PAGE(oldid, page);
5737	mem_cgroup_swap_statistics(memcg, true);
 
 
 
 
 
 
 
 
 
 
 
5738
5739	page->mem_cgroup = NULL;
 
5740
5741	if (!mem_cgroup_is_root(memcg))
5742		page_counter_uncharge(&memcg->memory, 1);
5743
5744	/*
5745	 * Interrupts should be disabled here because the caller holds the
5746	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5747	 * important here to have the interrupts disabled because it is the
5748	 * only synchronisation we have for udpating the per-CPU variables.
5749	 */
5750	VM_BUG_ON(!irqs_disabled());
5751	mem_cgroup_charge_statistics(memcg, page, false, -1);
5752	memcg_check_events(memcg, page);
5753}
5754
5755/*
5756 * mem_cgroup_try_charge_swap - try charging a swap entry
5757 * @page: page being added to swap
5758 * @entry: swap entry to charge
5759 *
5760 * Try to charge @entry to the memcg that @page belongs to.
5761 *
5762 * Returns 0 on success, -ENOMEM on failure.
5763 */
5764int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5765{
5766	struct mem_cgroup *memcg;
5767	struct page_counter *counter;
 
5768	unsigned short oldid;
5769
5770	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5771		return 0;
5772
5773	memcg = page->mem_cgroup;
5774
5775	/* Readahead page, never charged */
5776	if (!memcg)
5777		return 0;
5778
 
 
 
 
 
 
 
5779	if (!mem_cgroup_is_root(memcg) &&
5780	    !page_counter_try_charge(&memcg->swap, 1, &counter))
 
 
 
5781		return -ENOMEM;
 
5782
5783	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5784	VM_BUG_ON_PAGE(oldid, page);
5785	mem_cgroup_swap_statistics(memcg, true);
 
 
 
5786
5787	css_get(&memcg->css);
5788	return 0;
5789}
5790
5791/**
5792 * mem_cgroup_uncharge_swap - uncharge a swap entry
5793 * @entry: swap entry to uncharge
5794 *
5795 * Drop the swap charge associated with @entry.
5796 */
5797void mem_cgroup_uncharge_swap(swp_entry_t entry)
5798{
5799	struct mem_cgroup *memcg;
5800	unsigned short id;
5801
5802	if (!do_swap_account)
5803		return;
5804
5805	id = swap_cgroup_record(entry, 0);
5806	rcu_read_lock();
5807	memcg = mem_cgroup_from_id(id);
5808	if (memcg) {
5809		if (!mem_cgroup_is_root(memcg)) {
5810			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5811				page_counter_uncharge(&memcg->swap, 1);
5812			else
5813				page_counter_uncharge(&memcg->memsw, 1);
5814		}
5815		mem_cgroup_swap_statistics(memcg, false);
5816		css_put(&memcg->css);
5817	}
5818	rcu_read_unlock();
5819}
5820
5821long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5822{
5823	long nr_swap_pages = get_nr_swap_pages();
5824
5825	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826		return nr_swap_pages;
5827	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5828		nr_swap_pages = min_t(long, nr_swap_pages,
5829				      READ_ONCE(memcg->swap.limit) -
5830				      page_counter_read(&memcg->swap));
5831	return nr_swap_pages;
5832}
5833
5834bool mem_cgroup_swap_full(struct page *page)
5835{
5836	struct mem_cgroup *memcg;
5837
5838	VM_BUG_ON_PAGE(!PageLocked(page), page);
5839
5840	if (vm_swap_full())
5841		return true;
5842	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843		return false;
5844
5845	memcg = page->mem_cgroup;
5846	if (!memcg)
5847		return false;
5848
5849	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5850		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
 
 
 
5851			return true;
 
5852
5853	return false;
5854}
5855
5856/* for remember boot option*/
5857#ifdef CONFIG_MEMCG_SWAP_ENABLED
5858static int really_do_swap_account __initdata = 1;
5859#else
5860static int really_do_swap_account __initdata;
5861#endif
5862
5863static int __init enable_swap_account(char *s)
5864{
5865	if (!strcmp(s, "1"))
5866		really_do_swap_account = 1;
5867	else if (!strcmp(s, "0"))
5868		really_do_swap_account = 0;
 
 
 
5869	return 1;
5870}
5871__setup("swapaccount=", enable_swap_account);
5872
5873static u64 swap_current_read(struct cgroup_subsys_state *css,
5874			     struct cftype *cft)
5875{
5876	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5877
5878	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5879}
5880
5881static int swap_max_show(struct seq_file *m, void *v)
5882{
5883	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5884	unsigned long max = READ_ONCE(memcg->swap.limit);
5885
5886	if (max == PAGE_COUNTER_MAX)
5887		seq_puts(m, "max\n");
5888	else
5889		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5890
5891	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5892}
5893
5894static ssize_t swap_max_write(struct kernfs_open_file *of,
5895			      char *buf, size_t nbytes, loff_t off)
5896{
5897	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5898	unsigned long max;
5899	int err;
5900
5901	buf = strstrip(buf);
5902	err = page_counter_memparse(buf, "max", &max);
5903	if (err)
5904		return err;
5905
5906	mutex_lock(&memcg_limit_mutex);
5907	err = page_counter_limit(&memcg->swap, max);
5908	mutex_unlock(&memcg_limit_mutex);
5909	if (err)
5910		return err;
5911
5912	return nbytes;
5913}
5914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5915static struct cftype swap_files[] = {
5916	{
5917		.name = "swap.current",
5918		.flags = CFTYPE_NOT_ON_ROOT,
5919		.read_u64 = swap_current_read,
5920	},
5921	{
 
 
 
 
 
 
5922		.name = "swap.max",
5923		.flags = CFTYPE_NOT_ON_ROOT,
5924		.seq_show = swap_max_show,
5925		.write = swap_max_write,
5926	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5927	{ }	/* terminate */
5928};
5929
5930static struct cftype memsw_cgroup_files[] = {
5931	{
5932		.name = "memsw.usage_in_bytes",
5933		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5934		.read_u64 = mem_cgroup_read_u64,
5935	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5936	{
5937		.name = "memsw.max_usage_in_bytes",
5938		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5939		.write = mem_cgroup_reset,
5940		.read_u64 = mem_cgroup_read_u64,
5941	},
5942	{
5943		.name = "memsw.limit_in_bytes",
5944		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5945		.write = mem_cgroup_write,
5946		.read_u64 = mem_cgroup_read_u64,
5947	},
5948	{
5949		.name = "memsw.failcnt",
5950		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5951		.write = mem_cgroup_reset,
5952		.read_u64 = mem_cgroup_read_u64,
5953	},
5954	{ },	/* terminate */
5955};
 
5956
5957static int __init mem_cgroup_swap_init(void)
5958{
5959	if (!mem_cgroup_disabled() && really_do_swap_account) {
5960		do_swap_account = 1;
5961		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5962					       swap_files));
5963		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5964						  memsw_cgroup_files));
5965	}
 
 
 
5966	return 0;
5967}
5968subsys_initcall(mem_cgroup_swap_init);
5969
5970#endif /* CONFIG_MEMCG_SWAP */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  23 *
  24 * Per memcg lru locking
  25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
 
 
 
 
 
 
 
  26 */
  27
  28#include <linux/cgroup-defs.h>
  29#include <linux/page_counter.h>
  30#include <linux/memcontrol.h>
  31#include <linux/cgroup.h>
  32#include <linux/sched/mm.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/hugetlb.h>
  35#include <linux/pagemap.h>
  36#include <linux/pagevec.h>
  37#include <linux/vm_event_item.h>
  38#include <linux/smp.h>
  39#include <linux/page-flags.h>
  40#include <linux/backing-dev.h>
  41#include <linux/bit_spinlock.h>
  42#include <linux/rcupdate.h>
  43#include <linux/limits.h>
  44#include <linux/export.h>
  45#include <linux/list.h>
  46#include <linux/mutex.h>
  47#include <linux/rbtree.h>
  48#include <linux/slab.h>
 
  49#include <linux/swapops.h>
  50#include <linux/spinlock.h>
 
 
 
  51#include <linux/fs.h>
  52#include <linux/seq_file.h>
  53#include <linux/parser.h>
  54#include <linux/vmpressure.h>
  55#include <linux/memremap.h>
  56#include <linux/mm_inline.h>
  57#include <linux/swap_cgroup.h>
  58#include <linux/cpu.h>
  59#include <linux/oom.h>
  60#include <linux/lockdep.h>
  61#include <linux/resume_user_mode.h>
  62#include <linux/psi.h>
  63#include <linux/seq_buf.h>
  64#include <linux/sched/isolation.h>
  65#include <linux/kmemleak.h>
  66#include "internal.h"
  67#include <net/sock.h>
  68#include <net/ip.h>
  69#include "slab.h"
  70#include "memcontrol-v1.h"
  71
  72#include <linux/uaccess.h>
  73
  74#define CREATE_TRACE_POINTS
  75#include <trace/events/memcg.h>
  76#undef CREATE_TRACE_POINTS
  77
  78#include <trace/events/vmscan.h>
  79
  80struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  81EXPORT_SYMBOL(memory_cgrp_subsys);
  82
  83struct mem_cgroup *root_mem_cgroup __read_mostly;
  84
  85/* Active memory cgroup to use from an interrupt context */
  86DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
  87EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
  88
  89/* Socket memory accounting disabled? */
  90static bool cgroup_memory_nosocket __ro_after_init;
  91
  92/* Kernel memory accounting disabled? */
  93static bool cgroup_memory_nokmem __ro_after_init;
  94
  95/* BPF memory accounting disabled? */
  96static bool cgroup_memory_nobpf __ro_after_init;
  97
  98#ifdef CONFIG_CGROUP_WRITEBACK
  99static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
 100#endif
 101
 102static inline bool task_is_dying(void)
 
 103{
 104	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 105		(current->flags & PF_EXITING);
 106}
 107
 108/* Some nice accessors for the vmpressure. */
 109struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 110{
 111	if (!memcg)
 112		memcg = root_mem_cgroup;
 113	return &memcg->vmpressure;
 114}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115
 116struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
 117{
 118	return container_of(vmpr, struct mem_cgroup, vmpressure);
 119}
 120
 121#define SEQ_BUF_SIZE SZ_4K
 122#define CURRENT_OBJCG_UPDATE_BIT 0
 123#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
 
 124
 125static DEFINE_SPINLOCK(objcg_lock);
 
 
 126
 127bool mem_cgroup_kmem_disabled(void)
 128{
 129	return cgroup_memory_nokmem;
 130}
 131
 132static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
 133				      unsigned int nr_pages);
 134
 135static void obj_cgroup_release(struct percpu_ref *ref)
 136{
 137	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
 138	unsigned int nr_bytes;
 139	unsigned int nr_pages;
 140	unsigned long flags;
 141
 
 
 
 
 
 
 
 
 142	/*
 143	 * At this point all allocated objects are freed, and
 144	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
 145	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
 146	 *
 147	 * The following sequence can lead to it:
 148	 * 1) CPU0: objcg == stock->cached_objcg
 149	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
 150	 *          PAGE_SIZE bytes are charged
 151	 * 3) CPU1: a process from another memcg is allocating something,
 152	 *          the stock if flushed,
 153	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
 154	 * 5) CPU0: we do release this object,
 155	 *          92 bytes are added to stock->nr_bytes
 156	 * 6) CPU0: stock is flushed,
 157	 *          92 bytes are added to objcg->nr_charged_bytes
 158	 *
 159	 * In the result, nr_charged_bytes == PAGE_SIZE.
 160	 * This page will be uncharged in obj_cgroup_release().
 
 
 
 
 
 
 161	 */
 162	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
 163	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
 164	nr_pages = nr_bytes >> PAGE_SHIFT;
 
 
 
 
 
 165
 166	if (nr_pages)
 167		obj_cgroup_uncharge_pages(objcg, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168
 169	spin_lock_irqsave(&objcg_lock, flags);
 170	list_del(&objcg->list);
 171	spin_unlock_irqrestore(&objcg_lock, flags);
 
 
 
 172
 173	percpu_ref_exit(ref);
 174	kfree_rcu(objcg, rcu);
 175}
 
 
 
 
 176
 177static struct obj_cgroup *obj_cgroup_alloc(void)
 178{
 179	struct obj_cgroup *objcg;
 180	int ret;
 
 
 
 
 181
 182	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
 183	if (!objcg)
 184		return NULL;
 
 
 185
 186	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
 187			      GFP_KERNEL);
 188	if (ret) {
 189		kfree(objcg);
 190		return NULL;
 191	}
 192	INIT_LIST_HEAD(&objcg->list);
 193	return objcg;
 194}
 195
 196static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
 197				  struct mem_cgroup *parent)
 198{
 199	struct obj_cgroup *objcg, *iter;
 
 200
 201	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
 
 
 
 202
 203	spin_lock_irq(&objcg_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 204
 205	/* 1) Ready to reparent active objcg. */
 206	list_add(&objcg->list, &memcg->objcg_list);
 207	/* 2) Reparent active objcg and already reparented objcgs to parent. */
 208	list_for_each_entry(iter, &memcg->objcg_list, list)
 209		WRITE_ONCE(iter->memcg, parent);
 210	/* 3) Move already reparented objcgs to the parent's list */
 211	list_splice(&memcg->objcg_list, &parent->objcg_list);
 212
 213	spin_unlock_irq(&objcg_lock);
 
 
 
 214
 215	percpu_ref_kill(&objcg->refcnt);
 
 
 216}
 217
 218/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219 * A lot of the calls to the cache allocation functions are expected to be
 220 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
 221 * conditional to this static branch, we'll have to allow modules that does
 222 * kmem_cache_alloc and the such to see this symbol as well
 223 */
 224DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
 225EXPORT_SYMBOL(memcg_kmem_online_key);
 226
 227DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
 228EXPORT_SYMBOL(memcg_bpf_enabled_key);
 
 
 
 
 
 
 
 
 229
 230/**
 231 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
 232 * @folio: folio of interest
 233 *
 234 * If memcg is bound to the default hierarchy, css of the memcg associated
 235 * with @folio is returned.  The returned css remains associated with @folio
 236 * until it is released.
 237 *
 238 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 239 * is returned.
 240 */
 241struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
 242{
 243	struct mem_cgroup *memcg = folio_memcg(folio);
 
 
 244
 245	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 246		memcg = root_mem_cgroup;
 247
 248	return &memcg->css;
 249}
 250
 251/**
 252 * page_cgroup_ino - return inode number of the memcg a page is charged to
 253 * @page: the page
 254 *
 255 * Look up the closest online ancestor of the memory cgroup @page is charged to
 256 * and return its inode number or 0 if @page is not charged to any cgroup. It
 257 * is safe to call this function without holding a reference to @page.
 258 *
 259 * Note, this function is inherently racy, because there is nothing to prevent
 260 * the cgroup inode from getting torn down and potentially reallocated a moment
 261 * after page_cgroup_ino() returns, so it only should be used by callers that
 262 * do not care (such as procfs interfaces).
 263 */
 264ino_t page_cgroup_ino(struct page *page)
 265{
 266	struct mem_cgroup *memcg;
 267	unsigned long ino = 0;
 268
 269	rcu_read_lock();
 270	/* page_folio() is racy here, but the entire function is racy anyway */
 271	memcg = folio_memcg_check(page_folio(page));
 272
 273	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 274		memcg = parent_mem_cgroup(memcg);
 275	if (memcg)
 276		ino = cgroup_ino(memcg->css.cgroup);
 277	rcu_read_unlock();
 278	return ino;
 279}
 280
 281/* Subset of node_stat_item for memcg stats */
 282static const unsigned int memcg_node_stat_items[] = {
 283	NR_INACTIVE_ANON,
 284	NR_ACTIVE_ANON,
 285	NR_INACTIVE_FILE,
 286	NR_ACTIVE_FILE,
 287	NR_UNEVICTABLE,
 288	NR_SLAB_RECLAIMABLE_B,
 289	NR_SLAB_UNRECLAIMABLE_B,
 290	WORKINGSET_REFAULT_ANON,
 291	WORKINGSET_REFAULT_FILE,
 292	WORKINGSET_ACTIVATE_ANON,
 293	WORKINGSET_ACTIVATE_FILE,
 294	WORKINGSET_RESTORE_ANON,
 295	WORKINGSET_RESTORE_FILE,
 296	WORKINGSET_NODERECLAIM,
 297	NR_ANON_MAPPED,
 298	NR_FILE_MAPPED,
 299	NR_FILE_PAGES,
 300	NR_FILE_DIRTY,
 301	NR_WRITEBACK,
 302	NR_SHMEM,
 303	NR_SHMEM_THPS,
 304	NR_FILE_THPS,
 305	NR_ANON_THPS,
 306	NR_KERNEL_STACK_KB,
 307	NR_PAGETABLE,
 308	NR_SECONDARY_PAGETABLE,
 309#ifdef CONFIG_SWAP
 310	NR_SWAPCACHE,
 311#endif
 312#ifdef CONFIG_NUMA_BALANCING
 313	PGPROMOTE_SUCCESS,
 314#endif
 315	PGDEMOTE_KSWAPD,
 316	PGDEMOTE_DIRECT,
 317	PGDEMOTE_KHUGEPAGED,
 318#ifdef CONFIG_HUGETLB_PAGE
 319	NR_HUGETLB,
 320#endif
 321};
 322
 323static const unsigned int memcg_stat_items[] = {
 324	MEMCG_SWAP,
 325	MEMCG_SOCK,
 326	MEMCG_PERCPU_B,
 327	MEMCG_VMALLOC,
 328	MEMCG_KMEM,
 329	MEMCG_ZSWAP_B,
 330	MEMCG_ZSWAPPED,
 331};
 332
 333#define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
 334#define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
 335			   ARRAY_SIZE(memcg_stat_items))
 336#define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
 337static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
 338
 339static void init_memcg_stats(void)
 340{
 341	u8 i, j = 0;
 342
 343	BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
 344
 345	memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
 346
 347	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
 348		mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
 349
 350	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
 351		mem_cgroup_stats_index[memcg_stat_items[i]] = j;
 352}
 353
 354static inline int memcg_stats_index(int idx)
 
 355{
 356	return mem_cgroup_stats_index[idx];
 357}
 358
 359struct lruvec_stats_percpu {
 360	/* Local (CPU and cgroup) state */
 361	long state[NR_MEMCG_NODE_STAT_ITEMS];
 
 
 362
 363	/* Delta calculation for lockless upward propagation */
 364	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
 365};
 366
 367struct lruvec_stats {
 368	/* Aggregated (CPU and subtree) state */
 369	long state[NR_MEMCG_NODE_STAT_ITEMS];
 370
 371	/* Non-hierarchical (CPU aggregated) state */
 372	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
 373
 374	/* Pending child counts during tree propagation */
 375	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
 376};
 377
 378unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
 
 
 379{
 380	struct mem_cgroup_per_node *pn;
 381	long x;
 382	int i;
 383
 384	if (mem_cgroup_disabled())
 385		return node_page_state(lruvec_pgdat(lruvec), idx);
 386
 387	i = memcg_stats_index(idx);
 388	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 389		return 0;
 390
 391	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 392	x = READ_ONCE(pn->lruvec_stats->state[i]);
 393#ifdef CONFIG_SMP
 394	if (x < 0)
 395		x = 0;
 396#endif
 397	return x;
 
 
 
 
 
 
 
 
 398}
 399
 400unsigned long lruvec_page_state_local(struct lruvec *lruvec,
 401				      enum node_stat_item idx)
 402{
 403	struct mem_cgroup_per_node *pn;
 404	long x;
 405	int i;
 406
 407	if (mem_cgroup_disabled())
 408		return node_page_state(lruvec_pgdat(lruvec), idx);
 409
 410	i = memcg_stats_index(idx);
 411	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 412		return 0;
 413
 414	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 415	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
 416#ifdef CONFIG_SMP
 417	if (x < 0)
 418		x = 0;
 419#endif
 420	return x;
 421}
 422
 423/* Subset of vm_event_item to report for memcg event stats */
 424static const unsigned int memcg_vm_event_stat[] = {
 425#ifdef CONFIG_MEMCG_V1
 426	PGPGIN,
 427	PGPGOUT,
 428#endif
 429	PSWPIN,
 430	PSWPOUT,
 431	PGSCAN_KSWAPD,
 432	PGSCAN_DIRECT,
 433	PGSCAN_KHUGEPAGED,
 434	PGSTEAL_KSWAPD,
 435	PGSTEAL_DIRECT,
 436	PGSTEAL_KHUGEPAGED,
 437	PGFAULT,
 438	PGMAJFAULT,
 439	PGREFILL,
 440	PGACTIVATE,
 441	PGDEACTIVATE,
 442	PGLAZYFREE,
 443	PGLAZYFREED,
 444#ifdef CONFIG_SWAP
 445	SWPIN_ZERO,
 446	SWPOUT_ZERO,
 447#endif
 448#ifdef CONFIG_ZSWAP
 449	ZSWPIN,
 450	ZSWPOUT,
 451	ZSWPWB,
 452#endif
 453#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 454	THP_FAULT_ALLOC,
 455	THP_COLLAPSE_ALLOC,
 456	THP_SWPOUT,
 457	THP_SWPOUT_FALLBACK,
 458#endif
 459#ifdef CONFIG_NUMA_BALANCING
 460	NUMA_PAGE_MIGRATE,
 461	NUMA_PTE_UPDATES,
 462	NUMA_HINT_FAULTS,
 463#endif
 464};
 465
 466#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
 467static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
 468
 469static void init_memcg_events(void)
 470{
 471	u8 i;
 472
 473	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
 474
 475	memset(mem_cgroup_events_index, U8_MAX,
 476	       sizeof(mem_cgroup_events_index));
 477
 478	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
 479		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
 480}
 481
 482static inline int memcg_events_index(enum vm_event_item idx)
 483{
 484	return mem_cgroup_events_index[idx];
 485}
 
 486
 487struct memcg_vmstats_percpu {
 488	/* Stats updates since the last flush */
 489	unsigned int			stats_updates;
 490
 491	/* Cached pointers for fast iteration in memcg_rstat_updated() */
 492	struct memcg_vmstats_percpu	*parent;
 493	struct memcg_vmstats		*vmstats;
 494
 495	/* The above should fit a single cacheline for memcg_rstat_updated() */
 496
 497	/* Local (CPU and cgroup) page state & events */
 498	long			state[MEMCG_VMSTAT_SIZE];
 499	unsigned long		events[NR_MEMCG_EVENTS];
 500
 501	/* Delta calculation for lockless upward propagation */
 502	long			state_prev[MEMCG_VMSTAT_SIZE];
 503	unsigned long		events_prev[NR_MEMCG_EVENTS];
 504} ____cacheline_aligned;
 505
 506struct memcg_vmstats {
 507	/* Aggregated (CPU and subtree) page state & events */
 508	long			state[MEMCG_VMSTAT_SIZE];
 509	unsigned long		events[NR_MEMCG_EVENTS];
 510
 511	/* Non-hierarchical (CPU aggregated) page state & events */
 512	long			state_local[MEMCG_VMSTAT_SIZE];
 513	unsigned long		events_local[NR_MEMCG_EVENTS];
 514
 515	/* Pending child counts during tree propagation */
 516	long			state_pending[MEMCG_VMSTAT_SIZE];
 517	unsigned long		events_pending[NR_MEMCG_EVENTS];
 518
 519	/* Stats updates since the last flush */
 520	atomic64_t		stats_updates;
 521};
 522
 523/*
 524 * memcg and lruvec stats flushing
 525 *
 526 * Many codepaths leading to stats update or read are performance sensitive and
 527 * adding stats flushing in such codepaths is not desirable. So, to optimize the
 528 * flushing the kernel does:
 529 *
 530 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
 531 *    rstat update tree grow unbounded.
 532 *
 533 * 2) Flush the stats synchronously on reader side only when there are more than
 534 *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
 535 *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
 536 *    only for 2 seconds due to (1).
 537 */
 538static void flush_memcg_stats_dwork(struct work_struct *w);
 539static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
 540static u64 flush_last_time;
 541
 542#define FLUSH_TIME (2UL*HZ)
 543
 544/*
 545 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
 546 * not rely on this as part of an acquired spinlock_t lock. These functions are
 547 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
 548 * is sufficient.
 549 */
 550static void memcg_stats_lock(void)
 551{
 552	preempt_disable_nested();
 553	VM_WARN_ON_IRQS_ENABLED();
 554}
 555
 556static void __memcg_stats_lock(void)
 557{
 558	preempt_disable_nested();
 559}
 
 560
 561static void memcg_stats_unlock(void)
 562{
 563	preempt_enable_nested();
 564}
 
 
 
 
 
 
 
 
 
 
 565
 566
 567static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
 568{
 569	return atomic64_read(&vmstats->stats_updates) >
 570		MEMCG_CHARGE_BATCH * num_online_cpus();
 
 
 
 
 
 
 
 571}
 572
 573static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
 574{
 575	struct memcg_vmstats_percpu *statc;
 576	int cpu = smp_processor_id();
 577	unsigned int stats_updates;
 578
 579	if (!val)
 580		return;
 581
 582	cgroup_rstat_updated(memcg->css.cgroup, cpu);
 583	statc = this_cpu_ptr(memcg->vmstats_percpu);
 584	for (; statc; statc = statc->parent) {
 585		stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
 586		WRITE_ONCE(statc->stats_updates, stats_updates);
 587		if (stats_updates < MEMCG_CHARGE_BATCH)
 588			continue;
 589
 590		/*
 591		 * If @memcg is already flush-able, increasing stats_updates is
 592		 * redundant. Avoid the overhead of the atomic update.
 593		 */
 594		if (!memcg_vmstats_needs_flush(statc->vmstats))
 595			atomic64_add(stats_updates,
 596				     &statc->vmstats->stats_updates);
 597		WRITE_ONCE(statc->stats_updates, 0);
 598	}
 599}
 600
 601static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
 
 602{
 603	bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
 
 604
 605	trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates),
 606		force, needs_flush);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607
 608	if (!force && !needs_flush)
 609		return;
 610
 611	if (mem_cgroup_is_root(memcg))
 612		WRITE_ONCE(flush_last_time, jiffies_64);
 613
 614	cgroup_rstat_flush(memcg->css.cgroup);
 
 
 
 615}
 616
 617/*
 618 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
 619 * @memcg: root of the subtree to flush
 620 *
 621 * Flushing is serialized by the underlying global rstat lock. There is also a
 622 * minimum amount of work to be done even if there are no stat updates to flush.
 623 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
 624 * avoids unnecessary work and contention on the underlying lock.
 
 
 
 
 
 
 
 
 
 
 
 
 
 625 */
 626void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
 
 627{
 628	if (mem_cgroup_disabled())
 629		return;
 630
 631	if (!memcg)
 632		memcg = root_mem_cgroup;
 633
 634	__mem_cgroup_flush_stats(memcg, false);
 635}
 636
 637void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
 638{
 639	/* Only flush if the periodic flusher is one full cycle late */
 640	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
 641		mem_cgroup_flush_stats(memcg);
 642}
 643
 644static void flush_memcg_stats_dwork(struct work_struct *w)
 645{
 646	/*
 647	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
 648	 * in latency-sensitive paths is as cheap as possible.
 649	 */
 650	__mem_cgroup_flush_stats(root_mem_cgroup, true);
 651	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
 
 652}
 653
 654unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 
 655{
 656	long x;
 657	int i = memcg_stats_index(idx);
 658
 659	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 660		return 0;
 661
 662	x = READ_ONCE(memcg->vmstats->state[i]);
 663#ifdef CONFIG_SMP
 664	if (x < 0)
 665		x = 0;
 666#endif
 667	return x;
 668}
 669
 670static int memcg_page_state_unit(int item);
 671
 672/*
 673 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
 674 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
 675 */
 676static int memcg_state_val_in_pages(int idx, int val)
 677{
 678	int unit = memcg_page_state_unit(idx);
 679
 680	if (!val || unit == PAGE_SIZE)
 681		return val;
 
 
 
 682	else
 683		return max(val * unit / PAGE_SIZE, 1UL);
 684}
 685
 686/**
 687 * __mod_memcg_state - update cgroup memory statistics
 688 * @memcg: the memory cgroup
 689 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 690 * @val: delta to add to the counter, can be negative
 691 */
 692void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
 693		       int val)
 694{
 695	int i = memcg_stats_index(idx);
 696
 697	if (mem_cgroup_disabled())
 698		return;
 699
 700	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 701		return;
 
 
 702
 703	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
 704	val = memcg_state_val_in_pages(idx, val);
 705	memcg_rstat_updated(memcg, val);
 706	trace_mod_memcg_state(memcg, idx, val);
 707}
 708
 709/* idx can be of type enum memcg_stat_item or node_stat_item. */
 710unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
 711{
 712	long x;
 713	int i = memcg_stats_index(idx);
 714
 715	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 716		return 0;
 
 
 
 717
 718	x = READ_ONCE(memcg->vmstats->state_local[i]);
 719#ifdef CONFIG_SMP
 720	if (x < 0)
 721		x = 0;
 722#endif
 723	return x;
 
 
 724}
 725
 726static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
 727				     enum node_stat_item idx,
 728				     int val)
 729{
 730	struct mem_cgroup_per_node *pn;
 731	struct mem_cgroup *memcg;
 732	int i = memcg_stats_index(idx);
 733
 734	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 735		return;
 736
 737	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 738	memcg = pn->memcg;
 739
 740	/*
 741	 * The caller from rmap relies on disabled preemption because they never
 742	 * update their counter from in-interrupt context. For these two
 743	 * counters we check that the update is never performed from an
 744	 * interrupt context while other caller need to have disabled interrupt.
 745	 */
 746	__memcg_stats_lock();
 747	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
 748		switch (idx) {
 749		case NR_ANON_MAPPED:
 750		case NR_FILE_MAPPED:
 751		case NR_ANON_THPS:
 752			WARN_ON_ONCE(!in_task());
 
 
 
 
 753			break;
 754		default:
 755			VM_WARN_ON_IRQS_ENABLED();
 756		}
 
 
 757	}
 758
 759	/* Update memcg */
 760	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
 761
 762	/* Update lruvec */
 763	__this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
 764
 765	val = memcg_state_val_in_pages(idx, val);
 766	memcg_rstat_updated(memcg, val);
 767	trace_mod_memcg_lruvec_state(memcg, idx, val);
 768	memcg_stats_unlock();
 769}
 770
 771/**
 772 * __mod_lruvec_state - update lruvec memory statistics
 773 * @lruvec: the lruvec
 774 * @idx: the stat item
 775 * @val: delta to add to the counter, can be negative
 776 *
 777 * The lruvec is the intersection of the NUMA node and a cgroup. This
 778 * function updates the all three counters that are affected by a
 779 * change of state at this level: per-node, per-cgroup, per-lruvec.
 780 */
 781void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 782			int val)
 783{
 784	/* Update node */
 785	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 786
 787	/* Update memcg and lruvec */
 788	if (!mem_cgroup_disabled())
 789		__mod_memcg_lruvec_state(lruvec, idx, val);
 790}
 791
 792void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
 793			     int val)
 794{
 795	struct mem_cgroup *memcg;
 796	pg_data_t *pgdat = folio_pgdat(folio);
 797	struct lruvec *lruvec;
 798
 799	rcu_read_lock();
 800	memcg = folio_memcg(folio);
 801	/* Untracked pages have no memcg, no lruvec. Update only the node */
 802	if (!memcg) {
 803		rcu_read_unlock();
 804		__mod_node_page_state(pgdat, idx, val);
 805		return;
 806	}
 807
 808	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 809	__mod_lruvec_state(lruvec, idx, val);
 810	rcu_read_unlock();
 811}
 812EXPORT_SYMBOL(__lruvec_stat_mod_folio);
 813
 814void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
 815{
 816	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
 817	struct mem_cgroup *memcg;
 818	struct lruvec *lruvec;
 819
 820	rcu_read_lock();
 821	memcg = mem_cgroup_from_slab_obj(p);
 822
 823	/*
 824	 * Untracked pages have no memcg, no lruvec. Update only the
 825	 * node. If we reparent the slab objects to the root memcg,
 826	 * when we free the slab object, we need to update the per-memcg
 827	 * vmstats to keep it correct for the root memcg.
 828	 */
 829	if (!memcg) {
 830		__mod_node_page_state(pgdat, idx, val);
 831	} else {
 832		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 833		__mod_lruvec_state(lruvec, idx, val);
 834	}
 835	rcu_read_unlock();
 836}
 837
 838/**
 839 * __count_memcg_events - account VM events in a cgroup
 840 * @memcg: the memory cgroup
 841 * @idx: the event item
 842 * @count: the number of events that occurred
 843 */
 844void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 845			  unsigned long count)
 846{
 847	int i = memcg_events_index(idx);
 848
 849	if (mem_cgroup_disabled())
 850		return;
 851
 852	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 853		return;
 854
 855	memcg_stats_lock();
 856	__this_cpu_add(memcg->vmstats_percpu->events[i], count);
 857	memcg_rstat_updated(memcg, count);
 858	trace_count_memcg_events(memcg, idx, count);
 859	memcg_stats_unlock();
 860}
 861
 862unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 863{
 864	int i = memcg_events_index(event);
 865
 866	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
 867		return 0;
 868
 869	return READ_ONCE(memcg->vmstats->events[i]);
 870}
 871
 872unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 873{
 874	int i = memcg_events_index(event);
 875
 876	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
 877		return 0;
 878
 879	return READ_ONCE(memcg->vmstats->events_local[i]);
 880}
 881
 882struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 883{
 884	/*
 885	 * mm_update_next_owner() may clear mm->owner to NULL
 886	 * if it races with swapoff, page migration, etc.
 887	 * So this can be called with p == NULL.
 888	 */
 889	if (unlikely(!p))
 890		return NULL;
 891
 892	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 893}
 894EXPORT_SYMBOL(mem_cgroup_from_task);
 895
 896static __always_inline struct mem_cgroup *active_memcg(void)
 897{
 898	if (!in_task())
 899		return this_cpu_read(int_active_memcg);
 900	else
 901		return current->active_memcg;
 902}
 903
 904/**
 905 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 906 * @mm: mm from which memcg should be extracted. It can be NULL.
 907 *
 908 * Obtain a reference on mm->memcg and returns it if successful. If mm
 909 * is NULL, then the memcg is chosen as follows:
 910 * 1) The active memcg, if set.
 911 * 2) current->mm->memcg, if available
 912 * 3) root memcg
 913 * If mem_cgroup is disabled, NULL is returned.
 914 */
 915struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 916{
 917	struct mem_cgroup *memcg;
 918
 919	if (mem_cgroup_disabled())
 920		return NULL;
 921
 922	/*
 923	 * Page cache insertions can happen without an
 924	 * actual mm context, e.g. during disk probing
 925	 * on boot, loopback IO, acct() writes etc.
 926	 *
 927	 * No need to css_get on root memcg as the reference
 928	 * counting is disabled on the root level in the
 929	 * cgroup core. See CSS_NO_REF.
 930	 */
 931	if (unlikely(!mm)) {
 932		memcg = active_memcg();
 933		if (unlikely(memcg)) {
 934			/* remote memcg must hold a ref */
 935			css_get(&memcg->css);
 936			return memcg;
 937		}
 938		mm = current->mm;
 939		if (unlikely(!mm))
 940			return root_mem_cgroup;
 941	}
 942
 943	rcu_read_lock();
 944	do {
 945		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 946		if (unlikely(!memcg))
 
 
 
 
 947			memcg = root_mem_cgroup;
 948	} while (!css_tryget(&memcg->css));
 949	rcu_read_unlock();
 950	return memcg;
 951}
 952EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 953
 954/**
 955 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
 956 */
 957struct mem_cgroup *get_mem_cgroup_from_current(void)
 958{
 959	struct mem_cgroup *memcg;
 960
 961	if (mem_cgroup_disabled())
 962		return NULL;
 963
 964again:
 965	rcu_read_lock();
 966	memcg = mem_cgroup_from_task(current);
 967	if (!css_tryget(&memcg->css)) {
 968		rcu_read_unlock();
 969		goto again;
 970	}
 971	rcu_read_unlock();
 972	return memcg;
 973}
 974
 975/**
 976 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
 977 * @folio: folio from which memcg should be extracted.
 978 */
 979struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
 980{
 981	struct mem_cgroup *memcg = folio_memcg(folio);
 982
 983	if (mem_cgroup_disabled())
 984		return NULL;
 985
 986	rcu_read_lock();
 987	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
 988		memcg = root_mem_cgroup;
 989	rcu_read_unlock();
 990	return memcg;
 991}
 992
 993/**
 994 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 995 * @root: hierarchy root
 996 * @prev: previously returned memcg, NULL on first invocation
 997 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 998 *
 999 * Returns references to children of the hierarchy below @root, or
1000 * @root itself, or %NULL after a full round-trip.
1001 *
1002 * Caller must pass the return value in @prev on subsequent
1003 * invocations for reference counting, or use mem_cgroup_iter_break()
1004 * to cancel a hierarchy walk before the round-trip is complete.
1005 *
1006 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1007 * in the hierarchy among all concurrent reclaimers operating on the
1008 * same node.
1009 */
1010struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1011				   struct mem_cgroup *prev,
1012				   struct mem_cgroup_reclaim_cookie *reclaim)
1013{
1014	struct mem_cgroup_reclaim_iter *iter;
1015	struct cgroup_subsys_state *css;
1016	struct mem_cgroup *pos;
1017	struct mem_cgroup *next;
1018
1019	if (mem_cgroup_disabled())
1020		return NULL;
1021
1022	if (!root)
1023		root = root_mem_cgroup;
1024
 
 
 
 
 
 
 
 
 
1025	rcu_read_lock();
1026restart:
1027	next = NULL;
1028
1029	if (reclaim) {
1030		int gen;
1031		int nid = reclaim->pgdat->node_id;
1032
1033		iter = &root->nodeinfo[nid]->iter;
1034		gen = atomic_read(&iter->generation);
1035
1036		/*
1037		 * On start, join the current reclaim iteration cycle.
1038		 * Exit when a concurrent walker completes it.
1039		 */
1040		if (!prev)
1041			reclaim->generation = gen;
1042		else if (reclaim->generation != gen)
1043			goto out_unlock;
1044
1045		pos = READ_ONCE(iter->position);
1046	} else
1047		pos = prev;
 
 
 
 
 
 
 
 
 
 
 
 
1048
1049	css = pos ? &pos->css : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050
1051	while ((css = css_next_descendant_pre(css, &root->css))) {
1052		/*
1053		 * Verify the css and acquire a reference.  The root
1054		 * is provided by the caller, so we know it's alive
1055		 * and kicking, and don't take an extra reference.
1056		 */
1057		if (css == &root->css || css_tryget(css))
 
 
1058			break;
 
 
 
 
 
1059	}
1060
1061	next = mem_cgroup_from_css(css);
1062
1063	if (reclaim) {
1064		/*
1065		 * The position could have already been updated by a competing
1066		 * thread, so check that the value hasn't changed since we read
1067		 * it to avoid reclaiming from the same cgroup twice.
1068		 */
1069		if (cmpxchg(&iter->position, pos, next) != pos) {
1070			if (css && css != &root->css)
1071				css_put(css);
1072			goto restart;
1073		}
1074
1075		if (!next) {
1076			atomic_inc(&iter->generation);
1077
1078			/*
1079			 * Reclaimers share the hierarchy walk, and a
1080			 * new one might jump in right at the end of
1081			 * the hierarchy - make sure they see at least
1082			 * one group and restart from the beginning.
1083			 */
1084			if (!prev)
1085				goto restart;
1086		}
1087	}
1088
1089out_unlock:
1090	rcu_read_unlock();
 
1091	if (prev && prev != root)
1092		css_put(&prev->css);
1093
1094	return next;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103			   struct mem_cgroup *prev)
1104{
1105	if (!root)
1106		root = root_mem_cgroup;
1107	if (prev && prev != root)
1108		css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112					struct mem_cgroup *dead_memcg)
1113{
1114	struct mem_cgroup_reclaim_iter *iter;
1115	struct mem_cgroup_per_node *mz;
1116	int nid;
1117
1118	for_each_node(nid) {
1119		mz = from->nodeinfo[nid];
1120		iter = &mz->iter;
1121		cmpxchg(&iter->position, dead_memcg, NULL);
1122	}
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127	struct mem_cgroup *memcg = dead_memcg;
1128	struct mem_cgroup *last;
 
 
 
1129
1130	do {
1131		__invalidate_reclaim_iterators(memcg, dead_memcg);
1132		last = memcg;
1133	} while ((memcg = parent_mem_cgroup(memcg)));
1134
1135	/*
1136	 * When cgroup1 non-hierarchy mode is used,
1137	 * parent_mem_cgroup() does not walk all the way up to the
1138	 * cgroup root (root_mem_cgroup). So we have to handle
1139	 * dead_memcg from cgroup root separately.
1140	 */
1141	if (!mem_cgroup_is_root(last))
1142		__invalidate_reclaim_iterators(root_mem_cgroup,
1143						dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop. Otherwise, it will iterate
1155 * over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160			   int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162	struct mem_cgroup *iter;
1163	int ret = 0;
1164	int i = 0;
1165
1166	BUG_ON(mem_cgroup_is_root(memcg));
1167
1168	for_each_mem_cgroup_tree(iter, memcg) {
1169		struct css_task_iter it;
1170		struct task_struct *task;
1171
1172		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1173		while (!ret && (task = css_task_iter_next(&it))) {
1174			/* Avoid potential softlockup warning */
1175			if ((++i & 1023) == 0)
1176				cond_resched();
1177			ret = fn(task, arg);
1178		}
1179		css_task_iter_end(&it);
1180		if (ret) {
1181			mem_cgroup_iter_break(memcg, iter);
1182			break;
1183		}
1184	}
1185}
1186
1187#ifdef CONFIG_DEBUG_VM
1188void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1189{
1190	struct mem_cgroup *memcg;
1191
1192	if (mem_cgroup_disabled())
1193		return;
1194
1195	memcg = folio_memcg(folio);
1196
1197	if (!memcg)
1198		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1199	else
1200		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1201}
1202#endif
1203
1204/**
1205 * folio_lruvec_lock - Lock the lruvec for a folio.
1206 * @folio: Pointer to the folio.
1207 *
1208 * These functions are safe to use under any of the following conditions:
1209 * - folio locked
1210 * - folio_test_lru false
1211 * - folio frozen (refcount of 0)
1212 *
1213 * Return: The lruvec this folio is on with its lock held.
1214 */
1215struct lruvec *folio_lruvec_lock(struct folio *folio)
 
1216{
1217	struct lruvec *lruvec = folio_lruvec(folio);
 
1218
1219	spin_lock(&lruvec->lru_lock);
1220	lruvec_memcg_debug(lruvec, folio);
 
 
1221
 
 
 
 
 
 
 
 
 
 
1222	return lruvec;
1223}
1224
1225/**
1226 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1227 * @folio: Pointer to the folio.
 
1228 *
1229 * These functions are safe to use under any of the following conditions:
1230 * - folio locked
1231 * - folio_test_lru false
1232 * - folio frozen (refcount of 0)
1233 *
1234 * Return: The lruvec this folio is on with its lock held and interrupts
1235 * disabled.
1236 */
1237struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1238{
1239	struct lruvec *lruvec = folio_lruvec(folio);
 
 
1240
1241	spin_lock_irq(&lruvec->lru_lock);
1242	lruvec_memcg_debug(lruvec, folio);
 
 
1243
1244	return lruvec;
1245}
1246
1247/**
1248 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1249 * @folio: Pointer to the folio.
1250 * @flags: Pointer to irqsave flags.
1251 *
1252 * These functions are safe to use under any of the following conditions:
1253 * - folio locked
1254 * - folio_test_lru false
1255 * - folio frozen (refcount of 0)
1256 *
1257 * Return: The lruvec this folio is on with its lock held and interrupts
1258 * disabled.
1259 */
1260struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1261		unsigned long *flags)
1262{
1263	struct lruvec *lruvec = folio_lruvec(folio);
1264
1265	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1266	lruvec_memcg_debug(lruvec, folio);
1267
 
 
 
 
 
 
 
 
 
 
1268	return lruvec;
1269}
1270
1271/**
1272 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1273 * @lruvec: mem_cgroup per zone lru vector
1274 * @lru: index of lru list the page is sitting on
1275 * @zid: zone id of the accounted pages
1276 * @nr_pages: positive when adding or negative when removing
1277 *
1278 * This function must be called under lru_lock, just before a page is added
1279 * to or just after a page is removed from an lru list.
1280 */
1281void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1282				int zid, int nr_pages)
1283{
1284	struct mem_cgroup_per_node *mz;
1285	unsigned long *lru_size;
1286	long size;
1287
1288	if (mem_cgroup_disabled())
1289		return;
1290
1291	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1292	lru_size = &mz->lru_zone_size[zid][lru];
 
 
 
1293
1294	if (nr_pages < 0)
1295		*lru_size += nr_pages;
 
 
 
1296
1297	size = *lru_size;
1298	if (WARN_ONCE(size < 0,
1299		"%s(%p, %d, %d): lru_size %ld\n",
1300		__func__, lruvec, lru, nr_pages, size)) {
1301		VM_BUG_ON(1);
1302		*lru_size = 0;
 
 
 
 
 
 
 
 
1303	}
1304
1305	if (nr_pages > 0)
1306		*lru_size += nr_pages;
1307}
1308
1309/**
1310 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1311 * @memcg: the memory cgroup
1312 *
1313 * Returns the maximum amount of memory @mem can be charged with, in
1314 * pages.
1315 */
1316static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1317{
1318	unsigned long margin = 0;
1319	unsigned long count;
1320	unsigned long limit;
1321
1322	count = page_counter_read(&memcg->memory);
1323	limit = READ_ONCE(memcg->memory.max);
1324	if (count < limit)
1325		margin = limit - count;
1326
1327	if (do_memsw_account()) {
1328		count = page_counter_read(&memcg->memsw);
1329		limit = READ_ONCE(memcg->memsw.max);
1330		if (count < limit)
1331			margin = min(margin, limit - count);
1332		else
1333			margin = 0;
1334	}
1335
1336	return margin;
1337}
1338
1339struct memory_stat {
1340	const char *name;
1341	unsigned int idx;
1342};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1343
1344static const struct memory_stat memory_stats[] = {
1345	{ "anon",			NR_ANON_MAPPED			},
1346	{ "file",			NR_FILE_PAGES			},
1347	{ "kernel",			MEMCG_KMEM			},
1348	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1349	{ "pagetables",			NR_PAGETABLE			},
1350	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1351	{ "percpu",			MEMCG_PERCPU_B			},
1352	{ "sock",			MEMCG_SOCK			},
1353	{ "vmalloc",			MEMCG_VMALLOC			},
1354	{ "shmem",			NR_SHMEM			},
1355#ifdef CONFIG_ZSWAP
1356	{ "zswap",			MEMCG_ZSWAP_B			},
1357	{ "zswapped",			MEMCG_ZSWAPPED			},
1358#endif
1359	{ "file_mapped",		NR_FILE_MAPPED			},
1360	{ "file_dirty",			NR_FILE_DIRTY			},
1361	{ "file_writeback",		NR_WRITEBACK			},
1362#ifdef CONFIG_SWAP
1363	{ "swapcached",			NR_SWAPCACHE			},
1364#endif
1365#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1366	{ "anon_thp",			NR_ANON_THPS			},
1367	{ "file_thp",			NR_FILE_THPS			},
1368	{ "shmem_thp",			NR_SHMEM_THPS			},
1369#endif
1370	{ "inactive_anon",		NR_INACTIVE_ANON		},
1371	{ "active_anon",		NR_ACTIVE_ANON			},
1372	{ "inactive_file",		NR_INACTIVE_FILE		},
1373	{ "active_file",		NR_ACTIVE_FILE			},
1374	{ "unevictable",		NR_UNEVICTABLE			},
1375	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1376	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1377#ifdef CONFIG_HUGETLB_PAGE
1378	{ "hugetlb",			NR_HUGETLB			},
1379#endif
1380
1381	/* The memory events */
1382	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1383	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1384	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1385	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1386	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1387	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1388	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1389
1390	{ "pgdemote_kswapd",		PGDEMOTE_KSWAPD		},
1391	{ "pgdemote_direct",		PGDEMOTE_DIRECT		},
1392	{ "pgdemote_khugepaged",	PGDEMOTE_KHUGEPAGED	},
1393#ifdef CONFIG_NUMA_BALANCING
1394	{ "pgpromote_success",		PGPROMOTE_SUCCESS	},
1395#endif
1396};
1397
1398/* The actual unit of the state item, not the same as the output unit */
1399static int memcg_page_state_unit(int item)
1400{
1401	switch (item) {
1402	case MEMCG_PERCPU_B:
1403	case MEMCG_ZSWAP_B:
1404	case NR_SLAB_RECLAIMABLE_B:
1405	case NR_SLAB_UNRECLAIMABLE_B:
1406		return 1;
1407	case NR_KERNEL_STACK_KB:
1408		return SZ_1K;
1409	default:
1410		return PAGE_SIZE;
1411	}
 
1412}
1413
1414/* Translate stat items to the correct unit for memory.stat output */
1415static int memcg_page_state_output_unit(int item)
 
 
 
 
 
 
 
 
1416{
1417	/*
1418	 * Workingset state is actually in pages, but we export it to userspace
1419	 * as a scalar count of events, so special case it here.
1420	 *
1421	 * Demotion and promotion activities are exported in pages, consistent
1422	 * with their global counterparts.
1423	 */
1424	switch (item) {
1425	case WORKINGSET_REFAULT_ANON:
1426	case WORKINGSET_REFAULT_FILE:
1427	case WORKINGSET_ACTIVATE_ANON:
1428	case WORKINGSET_ACTIVATE_FILE:
1429	case WORKINGSET_RESTORE_ANON:
1430	case WORKINGSET_RESTORE_FILE:
1431	case WORKINGSET_NODERECLAIM:
1432	case PGDEMOTE_KSWAPD:
1433	case PGDEMOTE_DIRECT:
1434	case PGDEMOTE_KHUGEPAGED:
1435#ifdef CONFIG_NUMA_BALANCING
1436	case PGPROMOTE_SUCCESS:
1437#endif
1438		return 1;
1439	default:
1440		return memcg_page_state_unit(item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441	}
1442}
1443
1444unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
 
 
 
 
1445{
1446	return memcg_page_state(memcg, item) *
1447		memcg_page_state_output_unit(item);
 
 
 
 
1448}
1449
1450unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
 
 
 
1451{
1452	return memcg_page_state_local(memcg, item) *
1453		memcg_page_state_output_unit(item);
 
 
 
 
 
 
 
 
 
 
 
1454}
1455
1456static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
 
1457{
1458	int i;
 
 
 
 
 
 
 
 
 
 
 
 
1459
1460	/*
1461	 * Provide statistics on the state of the memory subsystem as
1462	 * well as cumulative event counters that show past behavior.
1463	 *
1464	 * This list is ordered following a combination of these gradients:
1465	 * 1) generic big picture -> specifics and details
1466	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1467	 *
1468	 * Current memory state:
1469	 */
1470	mem_cgroup_flush_stats(memcg);
 
 
 
1471
1472	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1473		u64 size;
 
 
 
1474
1475#ifdef CONFIG_HUGETLB_PAGE
1476		if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1477		    !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
1478			continue;
1479#endif
1480		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1481		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1482
1483		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1484			size += memcg_page_state_output(memcg,
1485							NR_SLAB_RECLAIMABLE_B);
1486			seq_buf_printf(s, "slab %llu\n", size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1487		}
 
1488	}
1489
1490	/* Accumulated memory events */
1491	seq_buf_printf(s, "pgscan %lu\n",
1492		       memcg_events(memcg, PGSCAN_KSWAPD) +
1493		       memcg_events(memcg, PGSCAN_DIRECT) +
1494		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1495	seq_buf_printf(s, "pgsteal %lu\n",
1496		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1497		       memcg_events(memcg, PGSTEAL_DIRECT) +
1498		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1499
1500	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1501#ifdef CONFIG_MEMCG_V1
1502		if (memcg_vm_event_stat[i] == PGPGIN ||
1503		    memcg_vm_event_stat[i] == PGPGOUT)
1504			continue;
1505#endif
1506		seq_buf_printf(s, "%s %lu\n",
1507			       vm_event_name(memcg_vm_event_stat[i]),
1508			       memcg_events(memcg, memcg_vm_event_stat[i]));
1509	}
 
 
 
1510}
1511
1512static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
 
 
 
 
 
 
 
 
 
 
 
 
 
1513{
1514	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1515		memcg_stat_format(memcg, s);
1516	else
1517		memcg1_stat_format(memcg, s);
1518	if (seq_buf_has_overflowed(s))
1519		pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
 
 
1520}
1521
1522/**
1523 * mem_cgroup_print_oom_context: Print OOM information relevant to
1524 * memory controller.
1525 * @memcg: The memory cgroup that went over limit
1526 * @p: Task that is going to be killed
1527 *
1528 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1529 * enabled
1530 */
1531void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1532{
1533	rcu_read_lock();
 
 
 
 
 
 
 
 
 
 
 
 
 
1534
1535	if (memcg) {
1536		pr_cont(",oom_memcg=");
1537		pr_cont_cgroup_path(memcg->css.cgroup);
1538	} else
1539		pr_cont(",global_oom");
1540	if (p) {
1541		pr_cont(",task_memcg=");
1542		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1543	}
1544	rcu_read_unlock();
 
 
1545}
1546
1547/**
1548 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1549 * memory controller.
1550 * @memcg: The memory cgroup that went over limit
 
 
 
 
 
 
 
1551 */
1552void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1553{
1554	/* Use static buffer, for the caller is holding oom_lock. */
1555	static char buf[SEQ_BUF_SIZE];
1556	struct seq_buf s;
1557
1558	lockdep_assert_held(&oom_lock);
 
1559
1560	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1561		K((u64)page_counter_read(&memcg->memory)),
1562		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1563	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1564		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1565			K((u64)page_counter_read(&memcg->swap)),
1566			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1567#ifdef CONFIG_MEMCG_V1
1568	else {
1569		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1570			K((u64)page_counter_read(&memcg->memsw)),
1571			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1572		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1573			K((u64)page_counter_read(&memcg->kmem)),
1574			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1575	}
 
 
 
 
 
 
 
 
1576#endif
1577
1578	pr_info("Memory cgroup stats for ");
1579	pr_cont_cgroup_path(memcg->css.cgroup);
1580	pr_cont(":");
1581	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1582	memory_stat_format(memcg, &s);
1583	seq_buf_do_printk(&s, KERN_INFO);
1584}
1585
1586/*
1587 * Return the memory (and swap, if configured) limit for a memcg.
 
1588 */
1589unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1590{
1591	unsigned long max = READ_ONCE(memcg->memory.max);
 
 
1592
1593	if (do_memsw_account()) {
1594		if (mem_cgroup_swappiness(memcg)) {
1595			/* Calculate swap excess capacity from memsw limit */
1596			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
 
 
 
 
 
 
 
 
1597
1598			max += min(swap, (unsigned long)total_swap_pages);
 
 
 
 
 
 
 
 
 
 
1599		}
1600	} else {
1601		if (mem_cgroup_swappiness(memcg))
1602			max += min(READ_ONCE(memcg->swap.max),
1603				   (unsigned long)total_swap_pages);
1604	}
1605	return max;
1606}
1607
1608unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1609{
1610	return page_counter_read(&memcg->memory);
 
 
 
 
 
 
1611}
1612
1613static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1614				     int order)
1615{
1616	struct oom_control oc = {
1617		.zonelist = NULL,
1618		.nodemask = NULL,
1619		.memcg = memcg,
1620		.gfp_mask = gfp_mask,
1621		.order = order,
1622	};
1623	bool ret = true;
1624
1625	if (mutex_lock_killable(&oom_lock))
1626		return true;
 
 
 
1627
1628	if (mem_cgroup_margin(memcg) >= (1 << order))
1629		goto unlock;
 
1630
1631	/*
1632	 * A few threads which were not waiting at mutex_lock_killable() can
1633	 * fail to bail out. Therefore, check again after holding oom_lock.
1634	 */
1635	ret = task_is_dying() || out_of_memory(&oc);
 
 
 
 
 
1636
1637unlock:
1638	mutex_unlock(&oom_lock);
1639	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640}
1641
1642/*
1643 * Returns true if successfully killed one or more processes. Though in some
1644 * corner cases it can return true even without killing any process.
1645 */
1646static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1647{
1648	bool locked, ret;
 
 
 
 
 
 
 
 
 
 
1649
1650	if (order > PAGE_ALLOC_COSTLY_ORDER)
1651		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652
1653	memcg_memory_event(memcg, MEMCG_OOM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654
1655	if (!memcg1_oom_prepare(memcg, &locked))
 
1656		return false;
1657
1658	ret = mem_cgroup_out_of_memory(memcg, mask, order);
 
1659
1660	memcg1_oom_finish(memcg, locked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1661
1662	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1663}
1664
1665/**
1666 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1667 * @victim: task to be killed by the OOM killer
1668 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1669 *
1670 * Returns a pointer to a memory cgroup, which has to be cleaned up
1671 * by killing all belonging OOM-killable tasks.
1672 *
1673 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 
1674 */
1675struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1676					    struct mem_cgroup *oom_domain)
1677{
1678	struct mem_cgroup *oom_group = NULL;
1679	struct mem_cgroup *memcg;
 
1680
1681	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1682		return NULL;
 
 
 
 
1683
1684	if (!oom_domain)
1685		oom_domain = root_mem_cgroup;
 
 
 
 
1686
1687	rcu_read_lock();
 
1688
1689	memcg = mem_cgroup_from_task(victim);
1690	if (mem_cgroup_is_root(memcg))
1691		goto out;
 
 
1692
1693	/*
1694	 * If the victim task has been asynchronously moved to a different
1695	 * memory cgroup, we might end up killing tasks outside oom_domain.
1696	 * In this case it's better to ignore memory.group.oom.
1697	 */
1698	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1699		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700
1701	/*
1702	 * Traverse the memory cgroup hierarchy from the victim task's
1703	 * cgroup up to the OOMing cgroup (or root) to find the
1704	 * highest-level memory cgroup with oom.group set.
1705	 */
1706	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1707		if (READ_ONCE(memcg->oom_group))
1708			oom_group = memcg;
1709
1710		if (memcg == oom_domain)
1711			break;
1712	}
1713
1714	if (oom_group)
1715		css_get(&oom_group->css);
1716out:
1717	rcu_read_unlock();
1718
1719	return oom_group;
1720}
1721
1722void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1723{
1724	pr_info("Tasks in ");
1725	pr_cont_cgroup_path(memcg->css.cgroup);
1726	pr_cont(" are going to be killed due to memory.oom.group set\n");
1727}
 
1728
 
 
 
 
 
1729struct memcg_stock_pcp {
1730	local_lock_t stock_lock;
1731	struct mem_cgroup *cached; /* this never be root cgroup */
1732	unsigned int nr_pages;
1733
1734	struct obj_cgroup *cached_objcg;
1735	struct pglist_data *cached_pgdat;
1736	unsigned int nr_bytes;
1737	int nr_slab_reclaimable_b;
1738	int nr_slab_unreclaimable_b;
1739
1740	struct work_struct work;
1741	unsigned long flags;
1742#define FLUSHING_CACHED_CHARGE	0
1743};
1744static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
1745	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
1746};
1747static DEFINE_MUTEX(percpu_charge_mutex);
1748
1749static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
1750static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
1751				     struct mem_cgroup *root_memcg);
1752
1753/**
1754 * consume_stock: Try to consume stocked charge on this cpu.
1755 * @memcg: memcg to consume from.
1756 * @nr_pages: how many pages to charge.
1757 *
1758 * The charges will only happen if @memcg matches the current cpu's memcg
1759 * stock, and at least @nr_pages are available in that stock.  Failure to
1760 * service an allocation will refill the stock.
1761 *
1762 * returns true if successful, false otherwise.
1763 */
1764static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1765{
1766	struct memcg_stock_pcp *stock;
1767	unsigned int stock_pages;
1768	unsigned long flags;
1769	bool ret = false;
1770
1771	if (nr_pages > MEMCG_CHARGE_BATCH)
1772		return ret;
1773
1774	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1775
1776	stock = this_cpu_ptr(&memcg_stock);
1777	stock_pages = READ_ONCE(stock->nr_pages);
1778	if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
1779		WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
1780		ret = true;
1781	}
1782
1783	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1784
1785	return ret;
1786}
1787
1788/*
1789 * Returns stocks cached in percpu and reset cached information.
1790 */
1791static void drain_stock(struct memcg_stock_pcp *stock)
1792{
1793	unsigned int stock_pages = READ_ONCE(stock->nr_pages);
1794	struct mem_cgroup *old = READ_ONCE(stock->cached);
1795
1796	if (!old)
1797		return;
1798
1799	if (stock_pages) {
1800		page_counter_uncharge(&old->memory, stock_pages);
1801		if (do_memsw_account())
1802			page_counter_uncharge(&old->memsw, stock_pages);
1803
1804		WRITE_ONCE(stock->nr_pages, 0);
1805	}
1806
1807	css_put(&old->css);
1808	WRITE_ONCE(stock->cached, NULL);
1809}
1810
 
 
 
 
1811static void drain_local_stock(struct work_struct *dummy)
1812{
1813	struct memcg_stock_pcp *stock;
1814	struct obj_cgroup *old = NULL;
1815	unsigned long flags;
1816
1817	/*
1818	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
1819	 * drain_stock races is that we always operate on local CPU stock
1820	 * here with IRQ disabled
1821	 */
1822	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1823
1824	stock = this_cpu_ptr(&memcg_stock);
1825	old = drain_obj_stock(stock);
1826	drain_stock(stock);
1827	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1828
1829	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1830	obj_cgroup_put(old);
1831}
1832
1833/*
1834 * Cache charges(val) to local per_cpu area.
1835 * This will be consumed by consume_stock() function, later.
1836 */
1837static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1838{
1839	struct memcg_stock_pcp *stock;
1840	unsigned int stock_pages;
1841
1842	stock = this_cpu_ptr(&memcg_stock);
1843	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
1844		drain_stock(stock);
1845		css_get(&memcg->css);
1846		WRITE_ONCE(stock->cached, memcg);
1847	}
1848	stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
1849	WRITE_ONCE(stock->nr_pages, stock_pages);
1850
1851	if (stock_pages > MEMCG_CHARGE_BATCH)
1852		drain_stock(stock);
1853}
1854
1855static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1856{
1857	unsigned long flags;
1858
1859	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1860	__refill_stock(memcg, nr_pages);
1861	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1862}
1863
1864/*
1865 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1866 * of the hierarchy under it.
1867 */
1868void drain_all_stock(struct mem_cgroup *root_memcg)
1869{
1870	int cpu, curcpu;
1871
1872	/* If someone's already draining, avoid adding running more workers. */
1873	if (!mutex_trylock(&percpu_charge_mutex))
1874		return;
1875	/*
1876	 * Notify other cpus that system-wide "drain" is running
1877	 * We do not care about races with the cpu hotplug because cpu down
1878	 * as well as workers from this path always operate on the local
1879	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1880	 */
1881	migrate_disable();
1882	curcpu = smp_processor_id();
1883	for_each_online_cpu(cpu) {
1884		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1885		struct mem_cgroup *memcg;
1886		bool flush = false;
1887
1888		rcu_read_lock();
1889		memcg = READ_ONCE(stock->cached);
1890		if (memcg && READ_ONCE(stock->nr_pages) &&
1891		    mem_cgroup_is_descendant(memcg, root_memcg))
1892			flush = true;
1893		else if (obj_stock_flush_required(stock, root_memcg))
1894			flush = true;
1895		rcu_read_unlock();
1896
1897		if (flush &&
1898		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1899			if (cpu == curcpu)
1900				drain_local_stock(&stock->work);
1901			else if (!cpu_is_isolated(cpu))
1902				schedule_work_on(cpu, &stock->work);
1903		}
1904	}
1905	migrate_enable();
 
1906	mutex_unlock(&percpu_charge_mutex);
1907}
1908
1909static int memcg_hotplug_cpu_dead(unsigned int cpu)
 
 
1910{
 
1911	struct memcg_stock_pcp *stock;
1912
 
 
 
 
 
 
1913	stock = &per_cpu(memcg_stock, cpu);
1914	drain_stock(stock);
1915
1916	return 0;
1917}
1918
1919static unsigned long reclaim_high(struct mem_cgroup *memcg,
1920				  unsigned int nr_pages,
1921				  gfp_t gfp_mask)
1922{
1923	unsigned long nr_reclaimed = 0;
1924
1925	do {
1926		unsigned long pflags;
1927
1928		if (page_counter_read(&memcg->memory) <=
1929		    READ_ONCE(memcg->memory.high))
1930			continue;
1931
1932		memcg_memory_event(memcg, MEMCG_HIGH);
1933
1934		psi_memstall_enter(&pflags);
1935		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
1936							gfp_mask,
1937							MEMCG_RECLAIM_MAY_SWAP,
1938							NULL);
1939		psi_memstall_leave(&pflags);
1940	} while ((memcg = parent_mem_cgroup(memcg)) &&
1941		 !mem_cgroup_is_root(memcg));
1942
1943	return nr_reclaimed;
1944}
1945
1946static void high_work_func(struct work_struct *work)
1947{
1948	struct mem_cgroup *memcg;
1949
1950	memcg = container_of(work, struct mem_cgroup, high_work);
1951	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1952}
1953
1954/*
1955 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
1956 * enough to still cause a significant slowdown in most cases, while still
1957 * allowing diagnostics and tracing to proceed without becoming stuck.
1958 */
1959#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
1960
1961/*
1962 * When calculating the delay, we use these either side of the exponentiation to
1963 * maintain precision and scale to a reasonable number of jiffies (see the table
1964 * below.
1965 *
1966 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
1967 *   overage ratio to a delay.
1968 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
1969 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
1970 *   to produce a reasonable delay curve.
1971 *
1972 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
1973 * reasonable delay curve compared to precision-adjusted overage, not
1974 * penalising heavily at first, but still making sure that growth beyond the
1975 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
1976 * example, with a high of 100 megabytes:
1977 *
1978 *  +-------+------------------------+
1979 *  | usage | time to allocate in ms |
1980 *  +-------+------------------------+
1981 *  | 100M  |                      0 |
1982 *  | 101M  |                      6 |
1983 *  | 102M  |                     25 |
1984 *  | 103M  |                     57 |
1985 *  | 104M  |                    102 |
1986 *  | 105M  |                    159 |
1987 *  | 106M  |                    230 |
1988 *  | 107M  |                    313 |
1989 *  | 108M  |                    409 |
1990 *  | 109M  |                    518 |
1991 *  | 110M  |                    639 |
1992 *  | 111M  |                    774 |
1993 *  | 112M  |                    921 |
1994 *  | 113M  |                   1081 |
1995 *  | 114M  |                   1254 |
1996 *  | 115M  |                   1439 |
1997 *  | 116M  |                   1638 |
1998 *  | 117M  |                   1849 |
1999 *  | 118M  |                   2000 |
2000 *  | 119M  |                   2000 |
2001 *  | 120M  |                   2000 |
2002 *  +-------+------------------------+
2003 */
2004 #define MEMCG_DELAY_PRECISION_SHIFT 20
2005 #define MEMCG_DELAY_SCALING_SHIFT 14
2006
2007static u64 calculate_overage(unsigned long usage, unsigned long high)
2008{
2009	u64 overage;
2010
2011	if (usage <= high)
2012		return 0;
2013
2014	/*
2015	 * Prevent division by 0 in overage calculation by acting as if
2016	 * it was a threshold of 1 page
2017	 */
2018	high = max(high, 1UL);
2019
2020	overage = usage - high;
2021	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2022	return div64_u64(overage, high);
2023}
2024
2025static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2026{
2027	u64 overage, max_overage = 0;
2028
2029	do {
2030		overage = calculate_overage(page_counter_read(&memcg->memory),
2031					    READ_ONCE(memcg->memory.high));
2032		max_overage = max(overage, max_overage);
2033	} while ((memcg = parent_mem_cgroup(memcg)) &&
2034		 !mem_cgroup_is_root(memcg));
2035
2036	return max_overage;
2037}
2038
2039static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2040{
2041	u64 overage, max_overage = 0;
2042
2043	do {
2044		overage = calculate_overage(page_counter_read(&memcg->swap),
2045					    READ_ONCE(memcg->swap.high));
2046		if (overage)
2047			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2048		max_overage = max(overage, max_overage);
2049	} while ((memcg = parent_mem_cgroup(memcg)) &&
2050		 !mem_cgroup_is_root(memcg));
2051
2052	return max_overage;
2053}
2054
2055/*
2056 * Get the number of jiffies that we should penalise a mischievous cgroup which
2057 * is exceeding its memory.high by checking both it and its ancestors.
2058 */
2059static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2060					  unsigned int nr_pages,
2061					  u64 max_overage)
2062{
2063	unsigned long penalty_jiffies;
2064
2065	if (!max_overage)
2066		return 0;
2067
2068	/*
2069	 * We use overage compared to memory.high to calculate the number of
2070	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2071	 * fairly lenient on small overages, and increasingly harsh when the
2072	 * memcg in question makes it clear that it has no intention of stopping
2073	 * its crazy behaviour, so we exponentially increase the delay based on
2074	 * overage amount.
2075	 */
2076	penalty_jiffies = max_overage * max_overage * HZ;
2077	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2078	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2079
2080	/*
2081	 * Factor in the task's own contribution to the overage, such that four
2082	 * N-sized allocations are throttled approximately the same as one
2083	 * 4N-sized allocation.
2084	 *
2085	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2086	 * larger the current charge patch is than that.
2087	 */
2088	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2089}
2090
2091/*
2092 * Reclaims memory over the high limit. Called directly from
2093 * try_charge() (context permitting), as well as from the userland
2094 * return path where reclaim is always able to block.
2095 */
2096void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2097{
2098	unsigned long penalty_jiffies;
2099	unsigned long pflags;
2100	unsigned long nr_reclaimed;
2101	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2102	int nr_retries = MAX_RECLAIM_RETRIES;
2103	struct mem_cgroup *memcg;
2104	bool in_retry = false;
2105
2106	if (likely(!nr_pages))
2107		return;
2108
2109	memcg = get_mem_cgroup_from_mm(current->mm);
 
 
2110	current->memcg_nr_pages_over_high = 0;
2111
2112retry_reclaim:
2113	/*
2114	 * Bail if the task is already exiting. Unlike memory.max,
2115	 * memory.high enforcement isn't as strict, and there is no
2116	 * OOM killer involved, which means the excess could already
2117	 * be much bigger (and still growing) than it could for
2118	 * memory.max; the dying task could get stuck in fruitless
2119	 * reclaim for a long time, which isn't desirable.
2120	 */
2121	if (task_is_dying())
2122		goto out;
2123
2124	/*
2125	 * The allocating task should reclaim at least the batch size, but for
2126	 * subsequent retries we only want to do what's necessary to prevent oom
2127	 * or breaching resource isolation.
2128	 *
2129	 * This is distinct from memory.max or page allocator behaviour because
2130	 * memory.high is currently batched, whereas memory.max and the page
2131	 * allocator run every time an allocation is made.
2132	 */
2133	nr_reclaimed = reclaim_high(memcg,
2134				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2135				    gfp_mask);
2136
2137	/*
2138	 * memory.high is breached and reclaim is unable to keep up. Throttle
2139	 * allocators proactively to slow down excessive growth.
2140	 */
2141	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2142					       mem_find_max_overage(memcg));
2143
2144	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2145						swap_find_max_overage(memcg));
2146
2147	/*
2148	 * Clamp the max delay per usermode return so as to still keep the
2149	 * application moving forwards and also permit diagnostics, albeit
2150	 * extremely slowly.
2151	 */
2152	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2153
2154	/*
2155	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2156	 * that it's not even worth doing, in an attempt to be nice to those who
2157	 * go only a small amount over their memory.high value and maybe haven't
2158	 * been aggressively reclaimed enough yet.
2159	 */
2160	if (penalty_jiffies <= HZ / 100)
2161		goto out;
2162
2163	/*
2164	 * If reclaim is making forward progress but we're still over
2165	 * memory.high, we want to encourage that rather than doing allocator
2166	 * throttling.
2167	 */
2168	if (nr_reclaimed || nr_retries--) {
2169		in_retry = true;
2170		goto retry_reclaim;
2171	}
2172
2173	/*
2174	 * Reclaim didn't manage to push usage below the limit, slow
2175	 * this allocating task down.
2176	 *
2177	 * If we exit early, we're guaranteed to die (since
2178	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2179	 * need to account for any ill-begotten jiffies to pay them off later.
2180	 */
2181	psi_memstall_enter(&pflags);
2182	schedule_timeout_killable(penalty_jiffies);
2183	psi_memstall_leave(&pflags);
2184
2185out:
2186	css_put(&memcg->css);
2187}
2188
2189int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2190		     unsigned int nr_pages)
2191{
2192	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2193	int nr_retries = MAX_RECLAIM_RETRIES;
2194	struct mem_cgroup *mem_over_limit;
2195	struct page_counter *counter;
2196	unsigned long nr_reclaimed;
2197	bool passed_oom = false;
2198	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2199	bool drained = false;
2200	bool raised_max_event = false;
2201	unsigned long pflags;
2202
 
 
2203retry:
2204	if (consume_stock(memcg, nr_pages))
2205		return 0;
2206
2207	if (!do_memsw_account() ||
2208	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2209		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2210			goto done_restock;
2211		if (do_memsw_account())
2212			page_counter_uncharge(&memcg->memsw, batch);
2213		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2214	} else {
2215		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2216		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2217	}
2218
2219	if (batch > nr_pages) {
2220		batch = nr_pages;
2221		goto retry;
2222	}
2223
2224	/*
2225	 * Prevent unbounded recursion when reclaim operations need to
2226	 * allocate memory. This might exceed the limits temporarily,
2227	 * but we prefer facilitating memory reclaim and getting back
2228	 * under the limit over triggering OOM kills in these cases.
2229	 */
2230	if (unlikely(current->flags & PF_MEMALLOC))
 
 
2231		goto force;
2232
2233	if (unlikely(task_in_memcg_oom(current)))
2234		goto nomem;
2235
2236	if (!gfpflags_allow_blocking(gfp_mask))
2237		goto nomem;
2238
2239	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2240	raised_max_event = true;
2241
2242	psi_memstall_enter(&pflags);
2243	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2244						    gfp_mask, reclaim_options, NULL);
2245	psi_memstall_leave(&pflags);
2246
2247	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2248		goto retry;
2249
2250	if (!drained) {
2251		drain_all_stock(mem_over_limit);
2252		drained = true;
2253		goto retry;
2254	}
2255
2256	if (gfp_mask & __GFP_NORETRY)
2257		goto nomem;
2258	/*
2259	 * Even though the limit is exceeded at this point, reclaim
2260	 * may have been able to free some pages.  Retry the charge
2261	 * before killing the task.
2262	 *
2263	 * Only for regular pages, though: huge pages are rather
2264	 * unlikely to succeed so close to the limit, and we fall back
2265	 * to regular pages anyway in case of failure.
2266	 */
2267	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2268		goto retry;
 
 
 
 
 
 
2269
2270	if (nr_retries--)
2271		goto retry;
2272
2273	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2274		goto nomem;
 
 
 
2275
2276	/* Avoid endless loop for tasks bypassed by the oom killer */
2277	if (passed_oom && task_is_dying())
2278		goto nomem;
2279
2280	/*
2281	 * keep retrying as long as the memcg oom killer is able to make
2282	 * a forward progress or bypass the charge if the oom killer
2283	 * couldn't make any progress.
2284	 */
2285	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2286			   get_order(nr_pages * PAGE_SIZE))) {
2287		passed_oom = true;
2288		nr_retries = MAX_RECLAIM_RETRIES;
2289		goto retry;
2290	}
2291nomem:
2292	/*
2293	 * Memcg doesn't have a dedicated reserve for atomic
2294	 * allocations. But like the global atomic pool, we need to
2295	 * put the burden of reclaim on regular allocation requests
2296	 * and let these go through as privileged allocations.
2297	 */
2298	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2299		return -ENOMEM;
2300force:
2301	/*
2302	 * If the allocation has to be enforced, don't forget to raise
2303	 * a MEMCG_MAX event.
2304	 */
2305	if (!raised_max_event)
2306		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2307
2308	/*
2309	 * The allocation either can't fail or will lead to more memory
2310	 * being freed very soon.  Allow memory usage go over the limit
2311	 * temporarily by force charging it.
2312	 */
2313	page_counter_charge(&memcg->memory, nr_pages);
2314	if (do_memsw_account())
2315		page_counter_charge(&memcg->memsw, nr_pages);
 
2316
2317	return 0;
2318
2319done_restock:
 
2320	if (batch > nr_pages)
2321		refill_stock(memcg, batch - nr_pages);
2322
2323	/*
2324	 * If the hierarchy is above the normal consumption range, schedule
2325	 * reclaim on returning to userland.  We can perform reclaim here
2326	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2327	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2328	 * not recorded as it most likely matches current's and won't
2329	 * change in the meantime.  As high limit is checked again before
2330	 * reclaim, the cost of mismatch is negligible.
2331	 */
2332	do {
2333		bool mem_high, swap_high;
2334
2335		mem_high = page_counter_read(&memcg->memory) >
2336			READ_ONCE(memcg->memory.high);
2337		swap_high = page_counter_read(&memcg->swap) >
2338			READ_ONCE(memcg->swap.high);
2339
2340		/* Don't bother a random interrupted task */
2341		if (!in_task()) {
2342			if (mem_high) {
2343				schedule_work(&memcg->high_work);
2344				break;
2345			}
2346			continue;
2347		}
2348
2349		if (mem_high || swap_high) {
2350			/*
2351			 * The allocating tasks in this cgroup will need to do
2352			 * reclaim or be throttled to prevent further growth
2353			 * of the memory or swap footprints.
2354			 *
2355			 * Target some best-effort fairness between the tasks,
2356			 * and distribute reclaim work and delay penalties
2357			 * based on how much each task is actually allocating.
2358			 */
2359			current->memcg_nr_pages_over_high += batch;
2360			set_notify_resume(current);
2361			break;
2362		}
2363	} while ((memcg = parent_mem_cgroup(memcg)));
2364
2365	/*
2366	 * Reclaim is set up above to be called from the userland
2367	 * return path. But also attempt synchronous reclaim to avoid
2368	 * excessive overrun while the task is still inside the
2369	 * kernel. If this is successful, the return path will see it
2370	 * when it rechecks the overage and simply bail out.
2371	 */
2372	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2373	    !(current->flags & PF_MEMALLOC) &&
2374	    gfpflags_allow_blocking(gfp_mask))
2375		mem_cgroup_handle_over_high(gfp_mask);
2376	return 0;
2377}
2378
2379/**
2380 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2381 * @memcg: memcg previously charged.
2382 * @nr_pages: number of pages previously charged.
2383 */
2384void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2385{
2386	if (mem_cgroup_is_root(memcg))
2387		return;
2388
2389	page_counter_uncharge(&memcg->memory, nr_pages);
2390	if (do_memsw_account())
2391		page_counter_uncharge(&memcg->memsw, nr_pages);
 
 
2392}
2393
2394static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2395{
2396	VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397	/*
2398	 * Any of the following ensures page's memcg stability:
 
 
 
 
 
2399	 *
2400	 * - the page lock
2401	 * - LRU isolation
2402	 * - exclusive reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2403	 */
2404	folio->memcg_data = (unsigned long)memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2405}
2406
2407/**
2408 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2409 * @folio: folio to commit the charge to.
2410 * @memcg: memcg previously charged.
2411 */
2412void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
 
2413{
 
 
 
 
 
 
2414	css_get(&memcg->css);
2415	commit_charge(folio, memcg);
2416	memcg1_commit_charge(folio, memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2417}
2418
2419static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
2420				       struct pglist_data *pgdat,
2421				       enum node_stat_item idx, int nr)
 
 
 
 
 
 
 
 
 
 
 
2422{
2423	struct mem_cgroup *memcg;
2424	struct lruvec *lruvec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2425
2426	rcu_read_lock();
2427	memcg = obj_cgroup_memcg(objcg);
2428	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2429	__mod_memcg_lruvec_state(lruvec, idx, nr);
2430	rcu_read_unlock();
2431}
2432
2433static __always_inline
2434struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2435{
2436	/*
2437	 * Slab objects are accounted individually, not per-page.
2438	 * Memcg membership data for each individual object is saved in
2439	 * slab->obj_exts.
2440	 */
2441	if (folio_test_slab(folio)) {
2442		struct slabobj_ext *obj_exts;
2443		struct slab *slab;
2444		unsigned int off;
2445
2446		slab = folio_slab(folio);
2447		obj_exts = slab_obj_exts(slab);
2448		if (!obj_exts)
2449			return NULL;
2450
2451		off = obj_to_index(slab->slab_cache, slab, p);
2452		if (obj_exts[off].objcg)
2453			return obj_cgroup_memcg(obj_exts[off].objcg);
2454
2455		return NULL;
 
 
 
2456	}
2457
2458	/*
2459	 * folio_memcg_check() is used here, because in theory we can encounter
2460	 * a folio where the slab flag has been cleared already, but
2461	 * slab->obj_exts has not been freed yet
2462	 * folio_memcg_check() will guarantee that a proper memory
2463	 * cgroup pointer or NULL will be returned.
2464	 */
2465	return folio_memcg_check(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466}
 
 
 
2467
2468/*
2469 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2470 * It is not suitable for objects allocated using vmalloc().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2471 *
2472 * A passed kernel object must be a slab object or a generic kernel page.
2473 *
2474 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2475 * cgroup_mutex, etc.
2476 */
2477struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
 
2478{
2479	if (mem_cgroup_disabled())
2480		return NULL;
 
 
2481
2482	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
 
 
 
 
 
 
 
 
 
 
 
2483}
 
 
 
2484
2485static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
 
2486{
2487	struct obj_cgroup *objcg = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2488
2489	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2490		objcg = rcu_dereference(memcg->objcg);
2491		if (likely(objcg && obj_cgroup_tryget(objcg)))
2492			break;
2493		objcg = NULL;
2494	}
2495	return objcg;
 
 
 
 
 
 
 
 
 
 
 
 
2496}
2497
2498static struct obj_cgroup *current_objcg_update(void)
 
2499{
2500	struct mem_cgroup *memcg;
2501	struct obj_cgroup *old, *objcg = NULL;
 
 
 
 
 
 
 
 
 
2502
2503	do {
2504		/* Atomically drop the update bit. */
2505		old = xchg(&current->objcg, NULL);
2506		if (old) {
2507			old = (struct obj_cgroup *)
2508				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2509			obj_cgroup_put(old);
2510
2511			old = NULL;
 
 
 
 
2512		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2513
2514		/* If new objcg is NULL, no reason for the second atomic update. */
2515		if (!current->mm || (current->flags & PF_KTHREAD))
2516			return NULL;
 
 
 
 
2517
2518		/*
2519		 * Release the objcg pointer from the previous iteration,
2520		 * if try_cmpxcg() below fails.
2521		 */
2522		if (unlikely(objcg)) {
2523			obj_cgroup_put(objcg);
2524			objcg = NULL;
2525		}
2526
 
2527		/*
2528		 * Obtain the new objcg pointer. The current task can be
2529		 * asynchronously moved to another memcg and the previous
2530		 * memcg can be offlined. So let's get the memcg pointer
2531		 * and try get a reference to objcg under a rcu read lock.
 
 
2532		 */
2533
2534		rcu_read_lock();
2535		memcg = mem_cgroup_from_task(current);
2536		objcg = __get_obj_cgroup_from_memcg(memcg);
2537		rcu_read_unlock();
2538
2539		/*
2540		 * Try set up a new objcg pointer atomically. If it
2541		 * fails, it means the update flag was set concurrently, so
2542		 * the whole procedure should be repeated.
2543		 */
2544	} while (!try_cmpxchg(&current->objcg, &old, objcg));
 
 
 
 
 
 
 
 
2545
2546	return objcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
2547}
2548
2549__always_inline struct obj_cgroup *current_obj_cgroup(void)
 
 
 
 
 
 
2550{
2551	struct mem_cgroup *memcg;
2552	struct obj_cgroup *objcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2553
2554	if (in_task()) {
2555		memcg = current->active_memcg;
2556		if (unlikely(memcg))
2557			goto from_memcg;
2558
2559		objcg = READ_ONCE(current->objcg);
2560		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2561			objcg = current_objcg_update();
2562		/*
2563		 * Objcg reference is kept by the task, so it's safe
2564		 * to use the objcg by the current task.
2565		 */
2566		return objcg;
2567	}
2568
2569	memcg = this_cpu_read(int_active_memcg);
2570	if (unlikely(memcg))
2571		goto from_memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2572
2573	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2574
2575from_memcg:
2576	objcg = NULL;
2577	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2578		/*
2579		 * Memcg pointer is protected by scope (see set_active_memcg())
2580		 * and is pinning the corresponding objcg, so objcg can't go
2581		 * away and can be used within the scope without any additional
2582		 * protection.
2583		 */
2584		objcg = rcu_dereference_check(memcg->objcg, 1);
2585		if (likely(objcg))
2586			break;
2587	}
 
 
 
 
 
 
 
 
2588
2589	return objcg;
 
 
 
2590}
2591
2592struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2593{
2594	struct obj_cgroup *objcg;
2595
2596	if (!memcg_kmem_online())
2597		return NULL;
2598
2599	if (folio_memcg_kmem(folio)) {
2600		objcg = __folio_objcg(folio);
2601		obj_cgroup_get(objcg);
 
 
 
 
 
 
2602	} else {
2603		struct mem_cgroup *memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2604
2605		rcu_read_lock();
2606		memcg = __folio_memcg(folio);
2607		if (memcg)
2608			objcg = __get_obj_cgroup_from_memcg(memcg);
2609		else
2610			objcg = NULL;
2611		rcu_read_unlock();
 
 
 
 
 
 
 
2612	}
2613	return objcg;
 
 
2614}
2615
2616/*
2617 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2618 * @objcg: object cgroup to uncharge
2619 * @nr_pages: number of pages to uncharge
2620 */
2621static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2622				      unsigned int nr_pages)
2623{
2624	struct mem_cgroup *memcg;
 
 
2625
2626	memcg = get_mem_cgroup_from_objcg(objcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2627
2628	mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2629	memcg1_account_kmem(memcg, -nr_pages);
2630	refill_stock(memcg, nr_pages);
 
2631
2632	css_put(&memcg->css);
 
 
 
2633}
2634
2635/*
2636 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2637 * @objcg: object cgroup to charge
2638 * @gfp: reclaim mode
2639 * @nr_pages: number of pages to charge
2640 *
2641 * Returns 0 on success, an error code on failure.
2642 */
2643static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2644				   unsigned int nr_pages)
2645{
2646	struct mem_cgroup *memcg;
2647	int ret;
2648
2649	memcg = get_mem_cgroup_from_objcg(objcg);
2650
2651	ret = try_charge_memcg(memcg, gfp, nr_pages);
2652	if (ret)
2653		goto out;
2654
2655	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2656	memcg1_account_kmem(memcg, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2657out:
2658	css_put(&memcg->css);
2659
2660	return ret;
2661}
2662
2663/**
2664 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2665 * @page: page to charge
2666 * @gfp: reclaim mode
2667 * @order: allocation order
2668 *
2669 * Returns 0 on success, an error code on failure.
2670 */
2671int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
 
2672{
2673	struct obj_cgroup *objcg;
2674	int ret = 0;
 
 
 
 
 
 
2675
2676	objcg = current_obj_cgroup();
2677	if (objcg) {
2678		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2679		if (!ret) {
2680			obj_cgroup_get(objcg);
2681			page->memcg_data = (unsigned long)objcg |
2682				MEMCG_DATA_KMEM;
2683			return 0;
 
 
 
 
 
 
 
 
 
 
 
2684		}
 
 
 
 
 
2685	}
2686	return ret;
2687}
2688
2689/**
2690 * __memcg_kmem_uncharge_page: uncharge a kmem page
2691 * @page: page to uncharge
2692 * @order: allocation order
2693 */
2694void __memcg_kmem_uncharge_page(struct page *page, int order)
2695{
2696	struct folio *folio = page_folio(page);
2697	struct obj_cgroup *objcg;
2698	unsigned int nr_pages = 1 << order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699
2700	if (!folio_memcg_kmem(folio))
2701		return;
 
 
 
 
 
 
 
 
2702
2703	objcg = __folio_objcg(folio);
2704	obj_cgroup_uncharge_pages(objcg, nr_pages);
2705	folio->memcg_data = 0;
2706	obj_cgroup_put(objcg);
2707}
2708
2709static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
2710		     enum node_stat_item idx, int nr)
2711{
2712	struct memcg_stock_pcp *stock;
2713	struct obj_cgroup *old = NULL;
2714	unsigned long flags;
2715	int *bytes;
 
 
 
 
2716
2717	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2718	stock = this_cpu_ptr(&memcg_stock);
2719
2720	/*
2721	 * Save vmstat data in stock and skip vmstat array update unless
2722	 * accumulating over a page of vmstat data or when pgdat or idx
2723	 * changes.
 
2724	 */
2725	if (READ_ONCE(stock->cached_objcg) != objcg) {
2726		old = drain_obj_stock(stock);
2727		obj_cgroup_get(objcg);
2728		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2729				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2730		WRITE_ONCE(stock->cached_objcg, objcg);
2731		stock->cached_pgdat = pgdat;
2732	} else if (stock->cached_pgdat != pgdat) {
2733		/* Flush the existing cached vmstat data */
2734		struct pglist_data *oldpg = stock->cached_pgdat;
 
 
 
 
 
 
 
 
2735
2736		if (stock->nr_slab_reclaimable_b) {
2737			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2738					  stock->nr_slab_reclaimable_b);
2739			stock->nr_slab_reclaimable_b = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2740		}
2741		if (stock->nr_slab_unreclaimable_b) {
2742			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2743					  stock->nr_slab_unreclaimable_b);
2744			stock->nr_slab_unreclaimable_b = 0;
2745		}
2746		stock->cached_pgdat = pgdat;
2747	}
2748
2749	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2750					       : &stock->nr_slab_unreclaimable_b;
2751	/*
2752	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2753	 * cached locally at least once before pushing it out.
2754	 */
2755	if (!*bytes) {
2756		*bytes = nr;
2757		nr = 0;
2758	} else {
2759		*bytes += nr;
2760		if (abs(*bytes) > PAGE_SIZE) {
2761			nr = *bytes;
2762			*bytes = 0;
2763		} else {
2764			nr = 0;
 
 
 
 
2765		}
 
2766	}
2767	if (nr)
2768		__mod_objcg_mlstate(objcg, pgdat, idx, nr);
2769
2770	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2771	obj_cgroup_put(old);
2772}
 
2773
2774static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2775{
2776	struct memcg_stock_pcp *stock;
2777	unsigned long flags;
2778	bool ret = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779
2780	local_lock_irqsave(&memcg_stock.stock_lock, flags);
 
2781
2782	stock = this_cpu_ptr(&memcg_stock);
2783	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2784		stock->nr_bytes -= nr_bytes;
2785		ret = true;
2786	}
2787
2788	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2789
2790	return ret;
2791}
2792
2793static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
 
2794{
2795	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
 
 
 
2796
2797	if (!old)
2798		return NULL;
 
 
 
 
 
 
 
 
 
 
2799
2800	if (stock->nr_bytes) {
2801		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2802		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2803
2804		if (nr_pages) {
2805			struct mem_cgroup *memcg;
 
 
 
2806
2807			memcg = get_mem_cgroup_from_objcg(old);
 
 
 
 
2808
2809			mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2810			memcg1_account_kmem(memcg, -nr_pages);
2811			__refill_stock(memcg, nr_pages);
2812
2813			css_put(&memcg->css);
2814		}
2815
2816		/*
2817		 * The leftover is flushed to the centralized per-memcg value.
2818		 * On the next attempt to refill obj stock it will be moved
2819		 * to a per-cpu stock (probably, on an other CPU), see
2820		 * refill_obj_stock().
2821		 *
2822		 * How often it's flushed is a trade-off between the memory
2823		 * limit enforcement accuracy and potential CPU contention,
2824		 * so it might be changed in the future.
2825		 */
2826		atomic_add(nr_bytes, &old->nr_charged_bytes);
2827		stock->nr_bytes = 0;
2828	}
2829
2830	/*
2831	 * Flush the vmstat data in current stock
 
 
 
2832	 */
2833	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2834		if (stock->nr_slab_reclaimable_b) {
2835			__mod_objcg_mlstate(old, stock->cached_pgdat,
2836					  NR_SLAB_RECLAIMABLE_B,
2837					  stock->nr_slab_reclaimable_b);
2838			stock->nr_slab_reclaimable_b = 0;
2839		}
2840		if (stock->nr_slab_unreclaimable_b) {
2841			__mod_objcg_mlstate(old, stock->cached_pgdat,
2842					  NR_SLAB_UNRECLAIMABLE_B,
2843					  stock->nr_slab_unreclaimable_b);
2844			stock->nr_slab_unreclaimable_b = 0;
2845		}
2846		stock->cached_pgdat = NULL;
2847	}
2848
2849	WRITE_ONCE(stock->cached_objcg, NULL);
2850	/*
2851	 * The `old' objects needs to be released by the caller via
2852	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
 
 
2853	 */
2854	return old;
 
 
 
 
 
 
2855}
2856
2857static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2858				     struct mem_cgroup *root_memcg)
2859{
2860	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
2861	struct mem_cgroup *memcg;
 
 
2862
2863	if (objcg) {
2864		memcg = obj_cgroup_memcg(objcg);
2865		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
2866			return true;
2867	}
 
2868
2869	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2870}
2871
2872static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2873			     bool allow_uncharge)
2874{
2875	struct memcg_stock_pcp *stock;
2876	struct obj_cgroup *old = NULL;
2877	unsigned long flags;
2878	unsigned int nr_pages = 0;
 
 
 
 
 
 
 
2879
2880	local_lock_irqsave(&memcg_stock.stock_lock, flags);
 
 
 
 
 
 
 
2881
2882	stock = this_cpu_ptr(&memcg_stock);
2883	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
2884		old = drain_obj_stock(stock);
2885		obj_cgroup_get(objcg);
2886		WRITE_ONCE(stock->cached_objcg, objcg);
2887		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2888				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2889		allow_uncharge = true;	/* Allow uncharge when objcg changes */
 
 
 
 
2890	}
2891	stock->nr_bytes += nr_bytes;
2892
2893	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
2894		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2895		stock->nr_bytes &= (PAGE_SIZE - 1);
 
2896	}
2897
2898	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2899	obj_cgroup_put(old);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2900
2901	if (nr_pages)
2902		obj_cgroup_uncharge_pages(objcg, nr_pages);
2903}
2904
2905int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
2906{
2907	unsigned int nr_pages, nr_bytes;
2908	int ret;
2909
2910	if (consume_obj_stock(objcg, size))
2911		return 0;
2912
2913	/*
2914	 * In theory, objcg->nr_charged_bytes can have enough
2915	 * pre-charged bytes to satisfy the allocation. However,
2916	 * flushing objcg->nr_charged_bytes requires two atomic
2917	 * operations, and objcg->nr_charged_bytes can't be big.
2918	 * The shared objcg->nr_charged_bytes can also become a
2919	 * performance bottleneck if all tasks of the same memcg are
2920	 * trying to update it. So it's better to ignore it and try
2921	 * grab some new pages. The stock's nr_bytes will be flushed to
2922	 * objcg->nr_charged_bytes later on when objcg changes.
2923	 *
2924	 * The stock's nr_bytes may contain enough pre-charged bytes
2925	 * to allow one less page from being charged, but we can't rely
2926	 * on the pre-charged bytes not being changed outside of
2927	 * consume_obj_stock() or refill_obj_stock(). So ignore those
2928	 * pre-charged bytes as well when charging pages. To avoid a
2929	 * page uncharge right after a page charge, we set the
2930	 * allow_uncharge flag to false when calling refill_obj_stock()
2931	 * to temporarily allow the pre-charged bytes to exceed the page
2932	 * size limit. The maximum reachable value of the pre-charged
2933	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
2934	 * race.
2935	 */
2936	nr_pages = size >> PAGE_SHIFT;
2937	nr_bytes = size & (PAGE_SIZE - 1);
2938
2939	if (nr_bytes)
2940		nr_pages += 1;
2941
2942	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
2943	if (!ret && nr_bytes)
2944		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
2945
2946	return ret;
2947}
2948
2949void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
 
2950{
2951	refill_obj_stock(objcg, size, true);
2952}
2953
2954static inline size_t obj_full_size(struct kmem_cache *s)
 
2955{
2956	/*
2957	 * For each accounted object there is an extra space which is used
2958	 * to store obj_cgroup membership. Charge it too.
2959	 */
2960	return s->size + sizeof(struct obj_cgroup *);
2961}
2962
2963bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2964				  gfp_t flags, size_t size, void **p)
2965{
2966	struct obj_cgroup *objcg;
2967	struct slab *slab;
2968	unsigned long off;
2969	size_t i;
2970
2971	/*
2972	 * The obtained objcg pointer is safe to use within the current scope,
2973	 * defined by current task or set_active_memcg() pair.
2974	 * obj_cgroup_get() is used to get a permanent reference.
2975	 */
2976	objcg = current_obj_cgroup();
2977	if (!objcg)
2978		return true;
 
 
2979
2980	/*
2981	 * slab_alloc_node() avoids the NULL check, so we might be called with a
2982	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
2983	 * the whole requested size.
2984	 * return success as there's nothing to free back
2985	 */
2986	if (unlikely(*p == NULL))
2987		return true;
2988
2989	flags &= gfp_allowed_mask;
 
2990
2991	if (lru) {
2992		int ret;
2993		struct mem_cgroup *memcg;
 
 
 
2994
2995		memcg = get_mem_cgroup_from_objcg(objcg);
2996		ret = memcg_list_lru_alloc(memcg, lru, flags);
2997		css_put(&memcg->css);
2998
2999		if (ret)
3000			return false;
 
 
 
3001	}
3002
3003	if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
3004		return false;
3005
3006	for (i = 0; i < size; i++) {
3007		slab = virt_to_slab(p[i]);
 
 
 
3008
3009		if (!slab_obj_exts(slab) &&
3010		    alloc_slab_obj_exts(slab, s, flags, false)) {
3011			obj_cgroup_uncharge(objcg, obj_full_size(s));
3012			continue;
 
 
 
 
3013		}
 
 
 
 
 
 
3014
3015		off = obj_to_index(s, slab, p[i]);
3016		obj_cgroup_get(objcg);
3017		slab_obj_exts(slab)[off].objcg = objcg;
3018		mod_objcg_state(objcg, slab_pgdat(slab),
3019				cache_vmstat_idx(s), obj_full_size(s));
 
 
 
 
3020	}
 
 
 
3021
3022	return true;
 
 
 
3023}
3024
3025void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3026			    void **p, int objects, struct slabobj_ext *obj_exts)
3027{
3028	for (int i = 0; i < objects; i++) {
3029		struct obj_cgroup *objcg;
3030		unsigned int off;
3031
3032		off = obj_to_index(s, slab, p[i]);
3033		objcg = obj_exts[off].objcg;
3034		if (!objcg)
3035			continue;
3036
3037		obj_exts[off].objcg = NULL;
3038		obj_cgroup_uncharge(objcg, obj_full_size(s));
3039		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3040				-obj_full_size(s));
3041		obj_cgroup_put(objcg);
3042	}
3043}
3044
3045/*
3046 * Because folio_memcg(head) is not set on tails, set it now.
3047 */
3048void split_page_memcg(struct page *head, int old_order, int new_order)
3049{
3050	struct folio *folio = page_folio(head);
3051	int i;
3052	unsigned int old_nr = 1 << old_order;
3053	unsigned int new_nr = 1 << new_order;
3054
3055	if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3056		return;
 
3057
3058	for (i = new_nr; i < old_nr; i += new_nr)
3059		folio_page(folio, i)->memcg_data = folio->memcg_data;
3060
3061	if (folio_memcg_kmem(folio))
3062		obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3063	else
3064		css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1);
3065}
3066
3067unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3068{
3069	unsigned long val;
 
3070
3071	if (mem_cgroup_is_root(memcg)) {
3072		/*
3073		 * Approximate root's usage from global state. This isn't
3074		 * perfect, but the root usage was always an approximation.
3075		 */
3076		val = global_node_page_state(NR_FILE_PAGES) +
3077			global_node_page_state(NR_ANON_MAPPED);
3078		if (swap)
3079			val += total_swap_pages - get_nr_swap_pages();
3080	} else {
3081		if (!swap)
3082			val = page_counter_read(&memcg->memory);
3083		else
3084			val = page_counter_read(&memcg->memsw);
3085	}
3086	return val;
3087}
3088
3089static int memcg_online_kmem(struct mem_cgroup *memcg)
 
3090{
3091	struct obj_cgroup *objcg;
3092
3093	if (mem_cgroup_kmem_disabled())
3094		return 0;
3095
3096	if (unlikely(mem_cgroup_is_root(memcg)))
3097		return 0;
 
 
 
 
3098
3099	objcg = obj_cgroup_alloc();
3100	if (!objcg)
3101		return -ENOMEM;
3102
3103	objcg->memcg = memcg;
3104	rcu_assign_pointer(memcg->objcg, objcg);
3105	obj_cgroup_get(objcg);
3106	memcg->orig_objcg = objcg;
3107
3108	static_branch_enable(&memcg_kmem_online_key);
3109
3110	memcg->kmemcg_id = memcg->id.id;
3111
 
 
3112	return 0;
3113}
3114
3115static void memcg_offline_kmem(struct mem_cgroup *memcg)
 
3116{
3117	struct mem_cgroup *parent;
3118
3119	if (mem_cgroup_kmem_disabled())
3120		return;
 
3121
3122	if (unlikely(mem_cgroup_is_root(memcg)))
3123		return;
 
3124
3125	parent = parent_mem_cgroup(memcg);
3126	if (!parent)
3127		parent = root_mem_cgroup;
3128
3129	memcg_reparent_list_lrus(memcg, parent);
3130
3131	/*
3132	 * Objcg's reparenting must be after list_lru's, make sure list_lru
3133	 * helpers won't use parent's list_lru until child is drained.
3134	 */
3135	memcg_reparent_objcgs(memcg, parent);
3136}
3137
3138#ifdef CONFIG_CGROUP_WRITEBACK
3139
3140#include <trace/events/writeback.h>
 
 
 
3141
3142static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3143{
3144	return wb_domain_init(&memcg->cgwb_domain, gfp);
3145}
3146
3147static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3148{
3149	wb_domain_exit(&memcg->cgwb_domain);
3150}
3151
3152static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3153{
3154	wb_domain_size_changed(&memcg->cgwb_domain);
3155}
3156
3157struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3158{
3159	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3160
3161	if (!memcg->css.parent)
3162		return NULL;
3163
3164	return &memcg->cgwb_domain;
3165}
3166
3167/**
3168 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3169 * @wb: bdi_writeback in question
3170 * @pfilepages: out parameter for number of file pages
3171 * @pheadroom: out parameter for number of allocatable pages according to memcg
3172 * @pdirty: out parameter for number of dirty pages
3173 * @pwriteback: out parameter for number of pages under writeback
3174 *
3175 * Determine the numbers of file, headroom, dirty, and writeback pages in
3176 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3177 * is a bit more involved.
3178 *
3179 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3180 * headroom is calculated as the lowest headroom of itself and the
3181 * ancestors.  Note that this doesn't consider the actual amount of
3182 * available memory in the system.  The caller should further cap
3183 * *@pheadroom accordingly.
3184 */
3185void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3186			 unsigned long *pheadroom, unsigned long *pdirty,
3187			 unsigned long *pwriteback)
3188{
3189	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3190	struct mem_cgroup *parent;
3191
3192	mem_cgroup_flush_stats_ratelimited(memcg);
3193
3194	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3195	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3196	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3197			memcg_page_state(memcg, NR_ACTIVE_FILE);
 
3198
3199	*pheadroom = PAGE_COUNTER_MAX;
3200	while ((parent = parent_mem_cgroup(memcg))) {
3201		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3202					    READ_ONCE(memcg->memory.high));
3203		unsigned long used = page_counter_read(&memcg->memory);
3204
3205		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3206		memcg = parent;
3207	}
3208}
3209
3210/*
3211 * Foreign dirty flushing
3212 *
3213 * There's an inherent mismatch between memcg and writeback.  The former
3214 * tracks ownership per-page while the latter per-inode.  This was a
3215 * deliberate design decision because honoring per-page ownership in the
3216 * writeback path is complicated, may lead to higher CPU and IO overheads
3217 * and deemed unnecessary given that write-sharing an inode across
3218 * different cgroups isn't a common use-case.
3219 *
3220 * Combined with inode majority-writer ownership switching, this works well
3221 * enough in most cases but there are some pathological cases.  For
3222 * example, let's say there are two cgroups A and B which keep writing to
3223 * different but confined parts of the same inode.  B owns the inode and
3224 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
3225 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3226 * triggering background writeback.  A will be slowed down without a way to
3227 * make writeback of the dirty pages happen.
3228 *
3229 * Conditions like the above can lead to a cgroup getting repeatedly and
3230 * severely throttled after making some progress after each
3231 * dirty_expire_interval while the underlying IO device is almost
3232 * completely idle.
3233 *
3234 * Solving this problem completely requires matching the ownership tracking
3235 * granularities between memcg and writeback in either direction.  However,
3236 * the more egregious behaviors can be avoided by simply remembering the
3237 * most recent foreign dirtying events and initiating remote flushes on
3238 * them when local writeback isn't enough to keep the memory clean enough.
3239 *
3240 * The following two functions implement such mechanism.  When a foreign
3241 * page - a page whose memcg and writeback ownerships don't match - is
3242 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3243 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
3244 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3245 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3246 * foreign bdi_writebacks which haven't expired.  Both the numbers of
3247 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3248 * limited to MEMCG_CGWB_FRN_CNT.
3249 *
3250 * The mechanism only remembers IDs and doesn't hold any object references.
3251 * As being wrong occasionally doesn't matter, updates and accesses to the
3252 * records are lockless and racy.
3253 */
3254void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3255					     struct bdi_writeback *wb)
3256{
3257	struct mem_cgroup *memcg = folio_memcg(folio);
3258	struct memcg_cgwb_frn *frn;
3259	u64 now = get_jiffies_64();
3260	u64 oldest_at = now;
3261	int oldest = -1;
3262	int i;
3263
3264	trace_track_foreign_dirty(folio, wb);
3265
3266	/*
3267	 * Pick the slot to use.  If there is already a slot for @wb, keep
3268	 * using it.  If not replace the oldest one which isn't being
3269	 * written out.
3270	 */
3271	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3272		frn = &memcg->cgwb_frn[i];
3273		if (frn->bdi_id == wb->bdi->id &&
3274		    frn->memcg_id == wb->memcg_css->id)
3275			break;
3276		if (time_before64(frn->at, oldest_at) &&
3277		    atomic_read(&frn->done.cnt) == 1) {
3278			oldest = i;
3279			oldest_at = frn->at;
3280		}
3281	}
3282
3283	if (i < MEMCG_CGWB_FRN_CNT) {
3284		/*
3285		 * Re-using an existing one.  Update timestamp lazily to
3286		 * avoid making the cacheline hot.  We want them to be
3287		 * reasonably up-to-date and significantly shorter than
3288		 * dirty_expire_interval as that's what expires the record.
3289		 * Use the shorter of 1s and dirty_expire_interval / 8.
3290		 */
3291		unsigned long update_intv =
3292			min_t(unsigned long, HZ,
3293			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3294
3295		if (time_before64(frn->at, now - update_intv))
3296			frn->at = now;
3297	} else if (oldest >= 0) {
3298		/* replace the oldest free one */
3299		frn = &memcg->cgwb_frn[oldest];
3300		frn->bdi_id = wb->bdi->id;
3301		frn->memcg_id = wb->memcg_css->id;
3302		frn->at = now;
3303	}
3304}
3305
3306/* issue foreign writeback flushes for recorded foreign dirtying events */
3307void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3308{
3309	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3310	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3311	u64 now = jiffies_64;
3312	int i;
3313
3314	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3315		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3316
3317		/*
3318		 * If the record is older than dirty_expire_interval,
3319		 * writeback on it has already started.  No need to kick it
3320		 * off again.  Also, don't start a new one if there's
3321		 * already one in flight.
3322		 */
3323		if (time_after64(frn->at, now - intv) &&
3324		    atomic_read(&frn->done.cnt) == 1) {
3325			frn->at = 0;
3326			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3327			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3328					       WB_REASON_FOREIGN_FLUSH,
3329					       &frn->done);
3330		}
3331	}
3332}
3333
3334#else	/* CONFIG_CGROUP_WRITEBACK */
3335
3336static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3337{
3338	return 0;
3339}
3340
3341static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3342{
3343}
3344
3345static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3346{
3347}
3348
3349#endif	/* CONFIG_CGROUP_WRITEBACK */
3350
3351/*
3352 * Private memory cgroup IDR
3353 *
3354 * Swap-out records and page cache shadow entries need to store memcg
3355 * references in constrained space, so we maintain an ID space that is
3356 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3357 * memory-controlled cgroups to 64k.
3358 *
3359 * However, there usually are many references to the offline CSS after
3360 * the cgroup has been destroyed, such as page cache or reclaimable
3361 * slab objects, that don't need to hang on to the ID. We want to keep
3362 * those dead CSS from occupying IDs, or we might quickly exhaust the
3363 * relatively small ID space and prevent the creation of new cgroups
3364 * even when there are much fewer than 64k cgroups - possibly none.
3365 *
3366 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3367 * be freed and recycled when it's no longer needed, which is usually
3368 * when the CSS is offlined.
 
 
 
3369 *
3370 * The only exception to that are records of swapped out tmpfs/shmem
3371 * pages that need to be attributed to live ancestors on swapin. But
3372 * those references are manageable from userspace.
3373 */
 
 
 
 
 
 
 
3374
3375#define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3376static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3377
3378static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3379{
3380	if (memcg->id.id > 0) {
3381		xa_erase(&mem_cgroup_ids, memcg->id.id);
3382		memcg->id.id = 0;
3383	}
3384}
3385
3386void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3387					   unsigned int n)
3388{
3389	refcount_add(n, &memcg->id.ref);
3390}
3391
3392void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
 
 
 
 
 
 
3393{
3394	if (refcount_sub_and_test(n, &memcg->id.ref)) {
3395		mem_cgroup_id_remove(memcg);
 
 
3396
3397		/* Memcg ID pins CSS */
3398		css_put(&memcg->css);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3399	}
 
 
3400}
3401
3402static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
 
3403{
3404	mem_cgroup_id_put_many(memcg, 1);
 
 
 
 
3405}
3406
3407/**
3408 * mem_cgroup_from_id - look up a memcg from a memcg id
3409 * @id: the memcg id to look up
 
3410 *
3411 * Caller must hold rcu_read_lock().
 
3412 */
3413struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
 
3414{
3415	WARN_ON_ONCE(!rcu_read_lock_held());
3416	return xa_load(&mem_cgroup_ids, id);
3417}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3418
3419#ifdef CONFIG_SHRINKER_DEBUG
3420struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3421{
3422	struct cgroup *cgrp;
3423	struct cgroup_subsys_state *css;
3424	struct mem_cgroup *memcg;
 
 
 
3425
3426	cgrp = cgroup_get_from_id(ino);
3427	if (IS_ERR(cgrp))
3428		return ERR_CAST(cgrp);
3429
3430	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3431	if (css)
3432		memcg = container_of(css, struct mem_cgroup, css);
3433	else
3434		memcg = ERR_PTR(-ENOENT);
 
 
 
 
 
 
 
3435
3436	cgroup_put(cgrp);
 
 
 
 
 
 
 
 
 
 
 
 
 
3437
3438	return memcg;
3439}
3440#endif
3441
3442static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3443{
3444	struct mem_cgroup_per_node *pn;
3445
3446	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
3447	if (!pn)
3448		return false;
3449
3450	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3451					GFP_KERNEL_ACCOUNT, node);
3452	if (!pn->lruvec_stats)
3453		goto fail;
3454
3455	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3456						   GFP_KERNEL_ACCOUNT);
3457	if (!pn->lruvec_stats_percpu)
3458		goto fail;
3459
3460	lruvec_init(&pn->lruvec);
3461	pn->memcg = memcg;
 
 
 
 
 
 
 
 
3462
3463	memcg->nodeinfo[node] = pn;
3464	return true;
3465fail:
3466	kfree(pn->lruvec_stats);
3467	kfree(pn);
3468	return false;
3469}
3470
3471static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3472{
3473	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3474
 
 
 
 
 
 
 
 
 
 
 
 
3475	if (!pn)
3476		return;
3477
3478	free_percpu(pn->lruvec_stats_percpu);
3479	kfree(pn->lruvec_stats);
3480	kfree(pn);
 
 
 
 
 
 
3481}
3482
3483static void __mem_cgroup_free(struct mem_cgroup *memcg)
3484{
3485	int node;
3486
3487	obj_cgroup_put(memcg->orig_objcg);
3488
3489	for_each_node(node)
3490		free_mem_cgroup_per_node_info(memcg, node);
3491	memcg1_free_events(memcg);
3492	kfree(memcg->vmstats);
3493	free_percpu(memcg->vmstats_percpu);
3494	kfree(memcg);
3495}
3496
3497static void mem_cgroup_free(struct mem_cgroup *memcg)
3498{
3499	lru_gen_exit_memcg(memcg);
 
3500	memcg_wb_domain_exit(memcg);
3501	__mem_cgroup_free(memcg);
 
 
 
3502}
3503
3504static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3505{
3506	struct memcg_vmstats_percpu *statc, *pstatc;
3507	struct mem_cgroup *memcg;
3508	int node, cpu;
3509	int __maybe_unused i;
3510	long error;
 
 
3511
3512	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
3513	if (!memcg)
3514		return ERR_PTR(-ENOMEM);
3515
3516	error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3517			 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3518	if (error)
3519		goto fail;
3520	error = -ENOMEM;
3521
3522	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3523				 GFP_KERNEL_ACCOUNT);
3524	if (!memcg->vmstats)
3525		goto fail;
3526
3527	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3528						 GFP_KERNEL_ACCOUNT);
3529	if (!memcg->vmstats_percpu)
3530		goto fail;
3531
3532	if (!memcg1_alloc_events(memcg))
3533		goto fail;
3534
3535	for_each_possible_cpu(cpu) {
3536		if (parent)
3537			pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
3538		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3539		statc->parent = parent ? pstatc : NULL;
3540		statc->vmstats = memcg->vmstats;
3541	}
3542
3543	for_each_node(node)
3544		if (!alloc_mem_cgroup_per_node_info(memcg, node))
3545			goto fail;
3546
3547	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3548		goto fail;
3549
3550	INIT_WORK(&memcg->high_work, high_work_func);
 
 
 
 
3551	vmpressure_init(&memcg->vmpressure);
3552	INIT_LIST_HEAD(&memcg->memory_peaks);
3553	INIT_LIST_HEAD(&memcg->swap_peaks);
3554	spin_lock_init(&memcg->peaks_lock);
3555	memcg->socket_pressure = jiffies;
3556	memcg1_memcg_init(memcg);
3557	memcg->kmemcg_id = -1;
3558	INIT_LIST_HEAD(&memcg->objcg_list);
3559#ifdef CONFIG_CGROUP_WRITEBACK
3560	INIT_LIST_HEAD(&memcg->cgwb_list);
3561	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3562		memcg->cgwb_frn[i].done =
3563			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3564#endif
3565#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3566	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3567	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3568	memcg->deferred_split_queue.split_queue_len = 0;
3569#endif
3570	lru_gen_init_memcg(memcg);
3571	return memcg;
3572fail:
3573	mem_cgroup_id_remove(memcg);
3574	__mem_cgroup_free(memcg);
3575	return ERR_PTR(error);
3576}
3577
3578static struct cgroup_subsys_state * __ref
3579mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3580{
3581	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3582	struct mem_cgroup *memcg, *old_memcg;
 
 
 
 
 
3583
3584	old_memcg = set_active_memcg(parent);
3585	memcg = mem_cgroup_alloc(parent);
3586	set_active_memcg(old_memcg);
3587	if (IS_ERR(memcg))
3588		return ERR_CAST(memcg);
3589
3590	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3591	memcg1_soft_limit_reset(memcg);
3592#ifdef CONFIG_ZSWAP
3593	memcg->zswap_max = PAGE_COUNTER_MAX;
3594	WRITE_ONCE(memcg->zswap_writeback, true);
3595#endif
3596	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3597	if (parent) {
3598		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3599
3600		page_counter_init(&memcg->memory, &parent->memory, true);
3601		page_counter_init(&memcg->swap, &parent->swap, false);
3602#ifdef CONFIG_MEMCG_V1
3603		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3604		page_counter_init(&memcg->kmem, &parent->kmem, false);
3605		page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3606#endif
3607	} else {
3608		init_memcg_stats();
3609		init_memcg_events();
3610		page_counter_init(&memcg->memory, NULL, true);
3611		page_counter_init(&memcg->swap, NULL, false);
3612#ifdef CONFIG_MEMCG_V1
3613		page_counter_init(&memcg->kmem, NULL, false);
3614		page_counter_init(&memcg->tcpmem, NULL, false);
3615#endif
3616		root_mem_cgroup = memcg;
3617		return &memcg->css;
3618	}
3619
 
 
 
 
3620	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3621		static_branch_inc(&memcg_sockets_enabled_key);
3622
3623	if (!cgroup_memory_nobpf)
3624		static_branch_inc(&memcg_bpf_enabled_key);
3625
3626	return &memcg->css;
 
 
 
3627}
3628
3629static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
 
3630{
3631	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3632
3633	if (memcg_online_kmem(memcg))
3634		goto remove_id;
3635
3636	/*
3637	 * A memcg must be visible for expand_shrinker_info()
3638	 * by the time the maps are allocated. So, we allocate maps
3639	 * here, when for_each_mem_cgroup() can't skip it.
3640	 */
3641	if (alloc_shrinker_info(memcg))
3642		goto offline_kmem;
3643
3644	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3645		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3646				   FLUSH_TIME);
3647	lru_gen_online_memcg(memcg);
3648
3649	/* Online state pins memcg ID, memcg ID pins CSS */
3650	refcount_set(&memcg->id.ref, 1);
3651	css_get(css);
3652
3653	/*
3654	 * Ensure mem_cgroup_from_id() works once we're fully online.
3655	 *
3656	 * We could do this earlier and require callers to filter with
3657	 * css_tryget_online(). But right now there are no users that
3658	 * need earlier access, and the workingset code relies on the
3659	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3660	 * publish it here at the end of onlining. This matches the
3661	 * regular ID destruction during offlining.
3662	 */
3663	xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3664
3665	return 0;
3666offline_kmem:
3667	memcg_offline_kmem(memcg);
3668remove_id:
3669	mem_cgroup_id_remove(memcg);
3670	return -ENOMEM;
3671}
3672
3673static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3674{
3675	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
3676
3677	memcg1_css_offline(memcg);
3678
3679	page_counter_set_min(&memcg->memory, 0);
3680	page_counter_set_low(&memcg->memory, 0);
3681
3682	zswap_memcg_offline_cleanup(memcg);
 
 
 
 
 
3683
3684	memcg_offline_kmem(memcg);
3685	reparent_shrinker_deferred(memcg);
3686	wb_memcg_offline(memcg);
3687	lru_gen_offline_memcg(memcg);
3688
3689	drain_all_stock(memcg);
3690
3691	mem_cgroup_id_put(memcg);
3692}
3693
3694static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3695{
3696	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3697
3698	invalidate_reclaim_iterators(memcg);
3699	lru_gen_release_memcg(memcg);
3700}
3701
3702static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3703{
3704	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3705	int __maybe_unused i;
3706
3707#ifdef CONFIG_CGROUP_WRITEBACK
3708	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3709		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3710#endif
3711	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3712		static_branch_dec(&memcg_sockets_enabled_key);
3713
3714	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3715		static_branch_dec(&memcg_sockets_enabled_key);
3716
3717	if (!cgroup_memory_nobpf)
3718		static_branch_dec(&memcg_bpf_enabled_key);
3719
3720	vmpressure_cleanup(&memcg->vmpressure);
3721	cancel_work_sync(&memcg->high_work);
3722	memcg1_remove_from_trees(memcg);
3723	free_shrinker_info(memcg);
3724	mem_cgroup_free(memcg);
3725}
3726
3727/**
3728 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3729 * @css: the target css
3730 *
3731 * Reset the states of the mem_cgroup associated with @css.  This is
3732 * invoked when the userland requests disabling on the default hierarchy
3733 * but the memcg is pinned through dependency.  The memcg should stop
3734 * applying policies and should revert to the vanilla state as it may be
3735 * made visible again.
3736 *
3737 * The current implementation only resets the essential configurations.
3738 * This needs to be expanded to cover all the visible parts.
3739 */
3740static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3741{
3742	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3743
3744	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3745	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3746#ifdef CONFIG_MEMCG_V1
3747	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3748	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3749#endif
3750	page_counter_set_min(&memcg->memory, 0);
3751	page_counter_set_low(&memcg->memory, 0);
3752	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3753	memcg1_soft_limit_reset(memcg);
3754	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3755	memcg_wb_domain_size_changed(memcg);
3756}
3757
3758struct aggregate_control {
3759	/* pointer to the aggregated (CPU and subtree aggregated) counters */
3760	long *aggregate;
3761	/* pointer to the non-hierarchichal (CPU aggregated) counters */
3762	long *local;
3763	/* pointer to the pending child counters during tree propagation */
3764	long *pending;
3765	/* pointer to the parent's pending counters, could be NULL */
3766	long *ppending;
3767	/* pointer to the percpu counters to be aggregated */
3768	long *cstat;
3769	/* pointer to the percpu counters of the last aggregation*/
3770	long *cstat_prev;
3771	/* size of the above counters */
3772	int size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3773};
3774
3775static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
 
 
 
 
 
 
 
3776{
3777	int i;
3778	long delta, delta_cpu, v;
 
 
 
 
 
 
 
 
 
 
 
3779
3780	for (i = 0; i < ac->size; i++) {
3781		/*
3782		 * Collect the aggregated propagation counts of groups
3783		 * below us. We're in a per-cpu loop here and this is
3784		 * a global counter, so the first cycle will get them.
3785		 */
3786		delta = ac->pending[i];
3787		if (delta)
3788			ac->pending[i] = 0;
3789
3790		/* Add CPU changes on this level since the last flush */
3791		delta_cpu = 0;
3792		v = READ_ONCE(ac->cstat[i]);
3793		if (v != ac->cstat_prev[i]) {
3794			delta_cpu = v - ac->cstat_prev[i];
3795			delta += delta_cpu;
3796			ac->cstat_prev[i] = v;
3797		}
3798
3799		/* Aggregate counts on this level and propagate upwards */
3800		if (delta_cpu)
3801			ac->local[i] += delta_cpu;
 
 
 
 
 
 
3802
3803		if (delta) {
3804			ac->aggregate[i] += delta;
3805			if (ac->ppending)
3806				ac->ppending[i] += delta;
3807		}
3808	}
 
3809}
 
3810
3811static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
 
3812{
3813	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3814	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3815	struct memcg_vmstats_percpu *statc;
3816	struct aggregate_control ac;
3817	int nid;
 
 
 
 
 
 
3818
3819	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3820
3821	ac = (struct aggregate_control) {
3822		.aggregate = memcg->vmstats->state,
3823		.local = memcg->vmstats->state_local,
3824		.pending = memcg->vmstats->state_pending,
3825		.ppending = parent ? parent->vmstats->state_pending : NULL,
3826		.cstat = statc->state,
3827		.cstat_prev = statc->state_prev,
3828		.size = MEMCG_VMSTAT_SIZE,
3829	};
3830	mem_cgroup_stat_aggregate(&ac);
 
 
 
 
 
 
 
 
 
 
 
3831
3832	ac = (struct aggregate_control) {
3833		.aggregate = memcg->vmstats->events,
3834		.local = memcg->vmstats->events_local,
3835		.pending = memcg->vmstats->events_pending,
3836		.ppending = parent ? parent->vmstats->events_pending : NULL,
3837		.cstat = statc->events,
3838		.cstat_prev = statc->events_prev,
3839		.size = NR_MEMCG_EVENTS,
3840	};
3841	mem_cgroup_stat_aggregate(&ac);
3842
3843	for_each_node_state(nid, N_MEMORY) {
3844		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
3845		struct lruvec_stats *lstats = pn->lruvec_stats;
3846		struct lruvec_stats *plstats = NULL;
3847		struct lruvec_stats_percpu *lstatc;
 
 
3848
3849		if (parent)
3850			plstats = parent->nodeinfo[nid]->lruvec_stats;
 
3851
3852		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
3853
3854		ac = (struct aggregate_control) {
3855			.aggregate = lstats->state,
3856			.local = lstats->state_local,
3857			.pending = lstats->state_pending,
3858			.ppending = plstats ? plstats->state_pending : NULL,
3859			.cstat = lstatc->state,
3860			.cstat_prev = lstatc->state_prev,
3861			.size = NR_MEMCG_NODE_STAT_ITEMS,
3862		};
3863		mem_cgroup_stat_aggregate(&ac);
3864
 
 
 
 
 
3865	}
3866	WRITE_ONCE(statc->stats_updates, 0);
3867	/* We are in a per-cpu loop here, only do the atomic write once */
3868	if (atomic64_read(&memcg->vmstats->stats_updates))
3869		atomic64_set(&memcg->vmstats->stats_updates, 0);
3870}
3871
3872static void mem_cgroup_fork(struct task_struct *task)
3873{
3874	/*
3875	 * Set the update flag to cause task->objcg to be initialized lazily
3876	 * on the first allocation. It can be done without any synchronization
3877	 * because it's always performed on the current task, so does
3878	 * current_objcg_update().
3879	 */
3880	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
3881}
3882
3883static void mem_cgroup_exit(struct task_struct *task)
3884{
3885	struct obj_cgroup *objcg = task->objcg;
 
 
 
 
3886
3887	objcg = (struct obj_cgroup *)
3888		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
3889	obj_cgroup_put(objcg);
 
 
 
3890
3891	/*
3892	 * Some kernel allocations can happen after this point,
3893	 * but let's ignore them. It can be done without any synchronization
3894	 * because it's always performed on the current task, so does
3895	 * current_objcg_update().
3896	 */
3897	task->objcg = NULL;
3898}
3899
3900#ifdef CONFIG_LRU_GEN
3901static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
3902{
3903	struct task_struct *task;
3904	struct cgroup_subsys_state *css;
3905
3906	/* find the first leader if there is any */
3907	cgroup_taskset_for_each_leader(task, css, tset)
3908		break;
3909
3910	if (!task)
3911		return;
3912
3913	task_lock(task);
3914	if (task->mm && READ_ONCE(task->mm->owner) == task)
3915		lru_gen_migrate_mm(task->mm);
3916	task_unlock(task);
 
 
 
3917}
3918#else
3919static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
3920#endif /* CONFIG_LRU_GEN */
3921
3922static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
 
3923{
3924	struct task_struct *task;
3925	struct cgroup_subsys_state *css;
 
 
 
 
 
 
 
 
3926
3927	cgroup_taskset_for_each(task, css, tset) {
3928		/* atomically set the update bit */
3929		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3930	}
 
3931}
3932
3933static void mem_cgroup_attach(struct cgroup_taskset *tset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3934{
3935	mem_cgroup_lru_gen_attach(tset);
3936	mem_cgroup_kmem_attach(tset);
3937}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3938
3939static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
3940{
3941	if (value == PAGE_COUNTER_MAX)
3942		seq_puts(m, "max\n");
3943	else
3944		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
 
 
3945
3946	return 0;
3947}
3948
3949static u64 memory_current_read(struct cgroup_subsys_state *css,
3950			       struct cftype *cft)
3951{
3952	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
 
 
 
 
 
 
 
 
 
 
3953
3954	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
3955}
3956
3957#define OFP_PEAK_UNSET (((-1UL)))
 
 
3958
3959static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
 
 
 
 
 
 
3960{
3961	struct cgroup_of_peak *ofp = of_peak(sf->private);
3962	u64 fd_peak = READ_ONCE(ofp->value), peak;
3963
3964	/* User wants global or local peak? */
3965	if (fd_peak == OFP_PEAK_UNSET)
3966		peak = pc->watermark;
3967	else
3968		peak = max(fd_peak, READ_ONCE(pc->local_watermark));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3969
3970	seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
3971	return 0;
 
 
 
 
3972}
3973
3974static int memory_peak_show(struct seq_file *sf, void *v)
3975{
3976	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
 
 
 
 
 
 
 
 
 
 
 
 
3977
3978	return peak_show(sf, v, &memcg->memory);
3979}
3980
3981static int peak_open(struct kernfs_open_file *of)
3982{
3983	struct cgroup_of_peak *ofp = of_peak(of);
 
 
 
 
 
 
 
 
 
 
3984
3985	ofp->value = OFP_PEAK_UNSET;
3986	return 0;
3987}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3988
3989static void peak_release(struct kernfs_open_file *of)
3990{
3991	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3992	struct cgroup_of_peak *ofp = of_peak(of);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3993
3994	if (ofp->value == OFP_PEAK_UNSET) {
3995		/* fast path (no writes on this fd) */
3996		return;
 
 
3997	}
3998	spin_lock(&memcg->peaks_lock);
3999	list_del(&ofp->list);
4000	spin_unlock(&memcg->peaks_lock);
4001}
4002
4003static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4004			  loff_t off, struct page_counter *pc,
4005			  struct list_head *watchers)
4006{
4007	unsigned long usage;
4008	struct cgroup_of_peak *peer_ctx;
4009	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4010	struct cgroup_of_peak *ofp = of_peak(of);
4011
4012	spin_lock(&memcg->peaks_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4013
4014	usage = page_counter_read(pc);
4015	WRITE_ONCE(pc->local_watermark, usage);
 
 
 
 
 
4016
4017	list_for_each_entry(peer_ctx, watchers, list)
4018		if (usage > peer_ctx->value)
4019			WRITE_ONCE(peer_ctx->value, usage);
4020
4021	/* initial write, register watcher */
4022	if (ofp->value == -1)
4023		list_add(&ofp->list, watchers);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4024
4025	WRITE_ONCE(ofp->value, usage);
4026	spin_unlock(&memcg->peaks_lock);
 
 
 
 
 
 
 
 
 
4027
4028	return nbytes;
4029}
4030
4031static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4032				 size_t nbytes, loff_t off)
4033{
4034	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 
 
 
4035
4036	return peak_write(of, buf, nbytes, off, &memcg->memory,
4037			  &memcg->memory_peaks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4038}
4039
4040#undef OFP_PEAK_UNSET
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4041
4042static int memory_min_show(struct seq_file *m, void *v)
 
 
 
 
 
4043{
4044	return seq_puts_memcg_tunable(m,
4045		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
 
 
 
 
 
 
 
4046}
4047
4048static ssize_t memory_min_write(struct kernfs_open_file *of,
4049				char *buf, size_t nbytes, loff_t off)
4050{
4051	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4052	unsigned long min;
4053	int err;
4054
4055	buf = strstrip(buf);
4056	err = page_counter_memparse(buf, "max", &min);
4057	if (err)
4058		return err;
4059
4060	page_counter_set_min(&memcg->memory, min);
4061
4062	return nbytes;
4063}
4064
4065static int memory_low_show(struct seq_file *m, void *v)
4066{
4067	return seq_puts_memcg_tunable(m,
4068		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
 
 
 
 
 
 
 
4069}
4070
4071static ssize_t memory_low_write(struct kernfs_open_file *of,
4072				char *buf, size_t nbytes, loff_t off)
4073{
4074	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4075	unsigned long low;
4076	int err;
4077
4078	buf = strstrip(buf);
4079	err = page_counter_memparse(buf, "max", &low);
4080	if (err)
4081		return err;
4082
4083	page_counter_set_low(&memcg->memory, low);
4084
4085	return nbytes;
4086}
4087
4088static int memory_high_show(struct seq_file *m, void *v)
4089{
4090	return seq_puts_memcg_tunable(m,
4091		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
 
 
 
 
 
 
 
4092}
4093
4094static ssize_t memory_high_write(struct kernfs_open_file *of,
4095				 char *buf, size_t nbytes, loff_t off)
4096{
4097	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4098	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4099	bool drained = false;
4100	unsigned long high;
4101	int err;
4102
4103	buf = strstrip(buf);
4104	err = page_counter_memparse(buf, "max", &high);
4105	if (err)
4106		return err;
4107
4108	page_counter_set_high(&memcg->memory, high);
4109
4110	for (;;) {
4111		unsigned long nr_pages = page_counter_read(&memcg->memory);
4112		unsigned long reclaimed;
4113
4114		if (nr_pages <= high)
4115			break;
4116
4117		if (signal_pending(current))
4118			break;
4119
4120		if (!drained) {
4121			drain_all_stock(memcg);
4122			drained = true;
4123			continue;
4124		}
4125
4126		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4127					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4128
4129		if (!reclaimed && !nr_retries--)
4130			break;
4131	}
4132
4133	memcg_wb_domain_size_changed(memcg);
4134	return nbytes;
4135}
4136
4137static int memory_max_show(struct seq_file *m, void *v)
4138{
4139	return seq_puts_memcg_tunable(m,
4140		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
 
 
 
 
 
 
 
4141}
4142
4143static ssize_t memory_max_write(struct kernfs_open_file *of,
4144				char *buf, size_t nbytes, loff_t off)
4145{
4146	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4147	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4148	bool drained = false;
4149	unsigned long max;
4150	int err;
4151
4152	buf = strstrip(buf);
4153	err = page_counter_memparse(buf, "max", &max);
4154	if (err)
4155		return err;
4156
4157	xchg(&memcg->memory.max, max);
4158
4159	for (;;) {
4160		unsigned long nr_pages = page_counter_read(&memcg->memory);
4161
4162		if (nr_pages <= max)
4163			break;
4164
4165		if (signal_pending(current))
 
4166			break;
 
4167
4168		if (!drained) {
4169			drain_all_stock(memcg);
4170			drained = true;
4171			continue;
4172		}
4173
4174		if (nr_reclaims) {
4175			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4176					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4177				nr_reclaims--;
4178			continue;
4179		}
4180
4181		memcg_memory_event(memcg, MEMCG_OOM);
4182		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4183			break;
4184	}
4185
4186	memcg_wb_domain_size_changed(memcg);
4187	return nbytes;
4188}
4189
4190/*
4191 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4192 * if any new events become available.
4193 */
4194static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4195{
4196	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4197	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4198	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4199	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4200	seq_printf(m, "oom_kill %lu\n",
4201		   atomic_long_read(&events[MEMCG_OOM_KILL]));
4202	seq_printf(m, "oom_group_kill %lu\n",
4203		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4204}
4205
4206static int memory_events_show(struct seq_file *m, void *v)
4207{
4208	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4209
4210	__memory_events_show(m, memcg->memory_events);
4211	return 0;
4212}
 
4213
4214static int memory_events_local_show(struct seq_file *m, void *v)
4215{
4216	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4217
4218	__memory_events_show(m, memcg->memory_events_local);
4219	return 0;
4220}
4221
4222int memory_stat_show(struct seq_file *m, void *v)
4223{
4224	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4225	char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4226	struct seq_buf s;
4227
4228	if (!buf)
4229		return -ENOMEM;
4230	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4231	memory_stat_format(memcg, &s);
4232	seq_puts(m, buf);
4233	kfree(buf);
4234	return 0;
4235}
4236
4237#ifdef CONFIG_NUMA
4238static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4239						     int item)
4240{
4241	return lruvec_page_state(lruvec, item) *
4242		memcg_page_state_output_unit(item);
4243}
4244
4245static int memory_numa_stat_show(struct seq_file *m, void *v)
4246{
 
 
 
4247	int i;
4248	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4249
4250	mem_cgroup_flush_stats(memcg);
 
 
 
 
 
 
 
 
 
4251
4252	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4253		int nid;
4254
4255		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4256			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4257
4258		seq_printf(m, "%s", memory_stats[i].name);
4259		for_each_node_state(nid, N_MEMORY) {
4260			u64 size;
4261			struct lruvec *lruvec;
4262
4263			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4264			size = lruvec_page_state_output(lruvec,
4265							memory_stats[i].idx);
4266			seq_printf(m, " N%d=%llu", nid, size);
4267		}
4268		seq_putc(m, '\n');
4269	}
4270
4271	return 0;
4272}
4273#endif
4274
4275static int memory_oom_group_show(struct seq_file *m, void *v)
4276{
4277	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4278
4279	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
 
 
 
4280
4281	return 0;
4282}
4283
4284static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4285				      char *buf, size_t nbytes, loff_t off)
4286{
4287	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4288	int ret, oom_group;
4289
4290	buf = strstrip(buf);
4291	if (!buf)
4292		return -EINVAL;
4293
4294	ret = kstrtoint(buf, 0, &oom_group);
4295	if (ret)
4296		return ret;
4297
4298	if (oom_group != 0 && oom_group != 1)
4299		return -EINVAL;
4300
4301	WRITE_ONCE(memcg->oom_group, oom_group);
4302
4303	return nbytes;
4304}
4305
4306enum {
4307	MEMORY_RECLAIM_SWAPPINESS = 0,
4308	MEMORY_RECLAIM_NULL,
4309};
4310
4311static const match_table_t tokens = {
4312	{ MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4313	{ MEMORY_RECLAIM_NULL, NULL },
4314};
4315
4316static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4317			      size_t nbytes, loff_t off)
4318{
4319	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4320	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4321	unsigned long nr_to_reclaim, nr_reclaimed = 0;
4322	int swappiness = -1;
4323	unsigned int reclaim_options;
4324	char *old_buf, *start;
4325	substring_t args[MAX_OPT_ARGS];
4326
4327	buf = strstrip(buf);
4328
4329	old_buf = buf;
4330	nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4331	if (buf == old_buf)
4332		return -EINVAL;
4333
4334	buf = strstrip(buf);
4335
4336	while ((start = strsep(&buf, " ")) != NULL) {
4337		if (!strlen(start))
4338			continue;
4339		switch (match_token(start, tokens, args)) {
4340		case MEMORY_RECLAIM_SWAPPINESS:
4341			if (match_int(&args[0], &swappiness))
4342				return -EINVAL;
4343			if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4344				return -EINVAL;
4345			break;
4346		default:
4347			return -EINVAL;
4348		}
4349	}
4350
4351	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4352	while (nr_reclaimed < nr_to_reclaim) {
4353		/* Will converge on zero, but reclaim enforces a minimum */
4354		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4355		unsigned long reclaimed;
4356
4357		if (signal_pending(current))
4358			return -EINTR;
4359
4360		/*
4361		 * This is the final attempt, drain percpu lru caches in the
4362		 * hope of introducing more evictable pages for
4363		 * try_to_free_mem_cgroup_pages().
4364		 */
4365		if (!nr_retries)
4366			lru_add_drain_all();
4367
4368		reclaimed = try_to_free_mem_cgroup_pages(memcg,
4369					batch_size, GFP_KERNEL,
4370					reclaim_options,
4371					swappiness == -1 ? NULL : &swappiness);
4372
4373		if (!reclaimed && !nr_retries--)
4374			return -EAGAIN;
4375
4376		nr_reclaimed += reclaimed;
4377	}
4378
4379	return nbytes;
4380}
4381
4382static struct cftype memory_files[] = {
4383	{
4384		.name = "current",
4385		.flags = CFTYPE_NOT_ON_ROOT,
4386		.read_u64 = memory_current_read,
4387	},
4388	{
4389		.name = "peak",
4390		.flags = CFTYPE_NOT_ON_ROOT,
4391		.open = peak_open,
4392		.release = peak_release,
4393		.seq_show = memory_peak_show,
4394		.write = memory_peak_write,
4395	},
4396	{
4397		.name = "min",
4398		.flags = CFTYPE_NOT_ON_ROOT,
4399		.seq_show = memory_min_show,
4400		.write = memory_min_write,
4401	},
4402	{
4403		.name = "low",
4404		.flags = CFTYPE_NOT_ON_ROOT,
4405		.seq_show = memory_low_show,
4406		.write = memory_low_write,
4407	},
4408	{
4409		.name = "high",
4410		.flags = CFTYPE_NOT_ON_ROOT,
4411		.seq_show = memory_high_show,
4412		.write = memory_high_write,
4413	},
4414	{
4415		.name = "max",
4416		.flags = CFTYPE_NOT_ON_ROOT,
4417		.seq_show = memory_max_show,
4418		.write = memory_max_write,
4419	},
4420	{
4421		.name = "events",
4422		.flags = CFTYPE_NOT_ON_ROOT,
4423		.file_offset = offsetof(struct mem_cgroup, events_file),
4424		.seq_show = memory_events_show,
4425	},
4426	{
4427		.name = "events.local",
4428		.flags = CFTYPE_NOT_ON_ROOT,
4429		.file_offset = offsetof(struct mem_cgroup, events_local_file),
4430		.seq_show = memory_events_local_show,
4431	},
4432	{
4433		.name = "stat",
4434		.seq_show = memory_stat_show,
4435	},
4436#ifdef CONFIG_NUMA
4437	{
4438		.name = "numa_stat",
4439		.seq_show = memory_numa_stat_show,
4440	},
4441#endif
4442	{
4443		.name = "oom.group",
4444		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4445		.seq_show = memory_oom_group_show,
4446		.write = memory_oom_group_write,
4447	},
4448	{
4449		.name = "reclaim",
4450		.flags = CFTYPE_NS_DELEGATABLE,
4451		.write = memory_reclaim,
4452	},
4453	{ }	/* terminate */
4454};
4455
4456struct cgroup_subsys memory_cgrp_subsys = {
4457	.css_alloc = mem_cgroup_css_alloc,
4458	.css_online = mem_cgroup_css_online,
4459	.css_offline = mem_cgroup_css_offline,
4460	.css_released = mem_cgroup_css_released,
4461	.css_free = mem_cgroup_css_free,
4462	.css_reset = mem_cgroup_css_reset,
4463	.css_rstat_flush = mem_cgroup_css_rstat_flush,
4464	.attach = mem_cgroup_attach,
4465	.fork = mem_cgroup_fork,
4466	.exit = mem_cgroup_exit,
4467	.dfl_cftypes = memory_files,
4468#ifdef CONFIG_MEMCG_V1
4469	.legacy_cftypes = mem_cgroup_legacy_files,
4470#endif
4471	.early_init = 0,
4472};
4473
4474/**
4475 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4476 * @root: the top ancestor of the sub-tree being checked
4477 * @memcg: the memory cgroup to check
4478 *
4479 * WARNING: This function is not stateless! It can only be used as part
4480 *          of a top-down tree iteration, not for isolated queries.
4481 */
4482void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4483				     struct mem_cgroup *memcg)
4484{
4485	bool recursive_protection =
4486		cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4487
4488	if (mem_cgroup_disabled())
4489		return;
4490
4491	if (!root)
4492		root = root_mem_cgroup;
 
 
 
4493
4494	page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4495}
4496
4497static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4498			gfp_t gfp)
4499{
4500	int ret;
4501
4502	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4503	if (ret)
4504		goto out;
4505
4506	mem_cgroup_commit_charge(folio, memcg);
4507out:
4508	return ret;
4509}
4510
4511int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4512{
4513	struct mem_cgroup *memcg;
4514	int ret;
4515
4516	memcg = get_mem_cgroup_from_mm(mm);
4517	ret = charge_memcg(folio, memcg, gfp);
4518	css_put(&memcg->css);
4519
4520	return ret;
4521}
4522
4523/**
4524 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
4525 * @memcg: memcg to charge.
4526 * @gfp: reclaim mode.
4527 * @nr_pages: number of pages to charge.
 
4528 *
4529 * This function is called when allocating a huge page folio to determine if
4530 * the memcg has the capacity for it. It does not commit the charge yet,
4531 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
4532 *
4533 * Once we have obtained the hugetlb folio, we can call
4534 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
4535 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
4536 * of try_charge().
4537 *
4538 * Returns 0 on success. Otherwise, an error code is returned.
 
 
4539 */
4540int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
4541			long nr_pages)
 
4542{
4543	/*
4544	 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
4545	 * but do not attempt to commit charge later (or cancel on error) either.
4546	 */
4547	if (mem_cgroup_disabled() || !memcg ||
4548		!cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
4549		!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
4550		return -EOPNOTSUPP;
4551
4552	if (try_charge(memcg, gfp, nr_pages))
4553		return -ENOMEM;
4554
4555	return 0;
4556}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4557
4558/**
4559 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4560 * @folio: folio to charge.
4561 * @mm: mm context of the victim
4562 * @gfp: reclaim mode
4563 * @entry: swap entry for which the folio is allocated
4564 *
4565 * This function charges a folio allocated for swapin. Please call this before
4566 * adding the folio to the swapcache.
4567 *
4568 * Returns 0 on success. Otherwise, an error code is returned.
4569 */
4570int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4571				  gfp_t gfp, swp_entry_t entry)
4572{
4573	struct mem_cgroup *memcg;
4574	unsigned short id;
4575	int ret;
4576
4577	if (mem_cgroup_disabled())
4578		return 0;
4579
4580	id = lookup_swap_cgroup_id(entry);
4581	rcu_read_lock();
4582	memcg = mem_cgroup_from_id(id);
4583	if (!memcg || !css_tryget_online(&memcg->css))
4584		memcg = get_mem_cgroup_from_mm(mm);
4585	rcu_read_unlock();
4586
4587	ret = charge_memcg(folio, memcg, gfp);
4588
4589	css_put(&memcg->css);
 
 
4590	return ret;
4591}
4592
4593/*
4594 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
4595 * @entry: the first swap entry for which the pages are charged
4596 * @nr_pages: number of pages which will be uncharged
 
 
 
 
 
 
4597 *
4598 * Call this function after successfully adding the charged page to swapcache.
 
4599 *
4600 * Note: This function assumes the page for which swap slot is being uncharged
4601 * is order 0 page.
4602 */
4603void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
 
4604{
 
 
 
 
 
 
 
4605	/*
4606	 * Cgroup1's unified memory+swap counter has been charged with the
4607	 * new swapcache page, finish the transfer by uncharging the swap
4608	 * slot. The swap slot would also get uncharged when it dies, but
4609	 * it can stick around indefinitely and we'd count the page twice
4610	 * the entire time.
4611	 *
4612	 * Cgroup2 has separate resource counters for memory and swap,
4613	 * so this is a non-issue here. Memory and swap charge lifetimes
4614	 * correspond 1:1 to page and swap slot lifetimes: we charge the
4615	 * page to memory here, and uncharge swap when the slot is freed.
4616	 */
4617	if (!mem_cgroup_disabled() && do_memsw_account()) {
 
 
 
 
 
 
 
 
 
 
 
4618		/*
4619		 * The swap entry might not get freed for a long time,
4620		 * let's not wait for it.  The page already received a
4621		 * memory+swap charge, drop the swap entry duplicate.
4622		 */
4623		mem_cgroup_uncharge_swap(entry, nr_pages);
4624	}
4625}
4626
4627struct uncharge_gather {
4628	struct mem_cgroup *memcg;
4629	unsigned long nr_memory;
4630	unsigned long pgpgout;
4631	unsigned long nr_kmem;
4632	int nid;
4633};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4634
4635static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4636{
4637	memset(ug, 0, sizeof(*ug));
4638}
4639
4640static void uncharge_batch(const struct uncharge_gather *ug)
 
 
4641{
4642	if (ug->nr_memory) {
4643		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
 
 
 
4644		if (do_memsw_account())
4645			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
4646		if (ug->nr_kmem) {
4647			mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4648			memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4649		}
4650		memcg1_oom_recover(ug->memcg);
4651	}
4652
4653	memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
 
 
 
 
 
 
 
4654
4655	/* drop reference from uncharge_folio */
4656	css_put(&ug->memcg->css);
4657}
4658
4659static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4660{
4661	long nr_pages;
4662	struct mem_cgroup *memcg;
4663	struct obj_cgroup *objcg;
4664
4665	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 
 
4666
4667	/*
4668	 * Nobody should be changing or seriously looking at
4669	 * folio memcg or objcg at this point, we have fully
4670	 * exclusive access to the folio.
4671	 */
4672	if (folio_memcg_kmem(folio)) {
4673		objcg = __folio_objcg(folio);
 
 
 
 
 
 
 
 
 
 
 
4674		/*
4675		 * This get matches the put at the end of the function and
4676		 * kmem pages do not hold memcg references anymore.
 
4677		 */
4678		memcg = get_mem_cgroup_from_objcg(objcg);
4679	} else {
4680		memcg = __folio_memcg(folio);
4681	}
4682
4683	if (!memcg)
4684		return;
 
 
 
 
 
 
4685
4686	if (ug->memcg != memcg) {
4687		if (ug->memcg) {
4688			uncharge_batch(ug);
4689			uncharge_gather_clear(ug);
4690		}
4691		ug->memcg = memcg;
4692		ug->nid = folio_nid(folio);
4693
4694		/* pairs with css_put in uncharge_batch */
4695		css_get(&memcg->css);
4696	}
 
4697
4698	nr_pages = folio_nr_pages(folio);
4699
4700	if (folio_memcg_kmem(folio)) {
4701		ug->nr_memory += nr_pages;
4702		ug->nr_kmem += nr_pages;
4703
4704		folio->memcg_data = 0;
4705		obj_cgroup_put(objcg);
4706	} else {
4707		/* LRU pages aren't accounted at the root level */
4708		if (!mem_cgroup_is_root(memcg))
4709			ug->nr_memory += nr_pages;
4710		ug->pgpgout++;
4711
4712		WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4713		folio->memcg_data = 0;
4714	}
4715
4716	css_put(&memcg->css);
4717}
4718
4719void __mem_cgroup_uncharge(struct folio *folio)
 
 
 
 
 
 
 
4720{
4721	struct uncharge_gather ug;
 
4722
4723	/* Don't touch folio->lru of any random page, pre-check: */
4724	if (!folio_memcg_charged(folio))
4725		return;
4726
4727	uncharge_gather_clear(&ug);
4728	uncharge_folio(folio, &ug);
4729	uncharge_batch(&ug);
4730}
4731
4732void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
 
 
 
 
 
 
 
4733{
4734	struct uncharge_gather ug;
4735	unsigned int i;
4736
4737	uncharge_gather_clear(&ug);
4738	for (i = 0; i < folios->nr; i++)
4739		uncharge_folio(folios->folios[i], &ug);
4740	if (ug.memcg)
4741		uncharge_batch(&ug);
4742}
4743
4744/**
4745 * mem_cgroup_replace_folio - Charge a folio's replacement.
4746 * @old: Currently circulating folio.
4747 * @new: Replacement folio.
4748 *
4749 * Charge @new as a replacement folio for @old. @old will
4750 * be uncharged upon free.
4751 *
4752 * Both folios must be locked, @new->mapping must be set up.
4753 */
4754void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4755{
4756	struct mem_cgroup *memcg;
4757	long nr_pages = folio_nr_pages(new);
 
4758
4759	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4760	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4761	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4762	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
 
4763
4764	if (mem_cgroup_disabled())
4765		return;
4766
4767	/* Page cache replacement: new folio already charged? */
4768	if (folio_memcg_charged(new))
4769		return;
4770
4771	memcg = folio_memcg(old);
4772	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4773	if (!memcg)
4774		return;
4775
4776	/* Force-charge the new page. The old one will be freed soon */
4777	if (!mem_cgroup_is_root(memcg)) {
4778		page_counter_charge(&memcg->memory, nr_pages);
4779		if (do_memsw_account())
4780			page_counter_charge(&memcg->memsw, nr_pages);
4781	}
4782
4783	css_get(&memcg->css);
4784	commit_charge(new, memcg);
4785	memcg1_commit_charge(new, memcg);
4786}
4787
4788/**
4789 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4790 * @old: Currently circulating folio.
4791 * @new: Replacement folio.
4792 *
4793 * Transfer the memcg data from the old folio to the new folio for migration.
4794 * The old folio's data info will be cleared. Note that the memory counters
4795 * will remain unchanged throughout the process.
4796 *
4797 * Both folios must be locked, @new->mapping must be set up.
4798 */
4799void mem_cgroup_migrate(struct folio *old, struct folio *new)
4800{
4801	struct mem_cgroup *memcg;
4802
4803	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4804	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4805	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4806	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4807	VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4808
4809	if (mem_cgroup_disabled())
4810		return;
4811
4812	memcg = folio_memcg(old);
4813	/*
4814	 * Note that it is normal to see !memcg for a hugetlb folio.
4815	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4816	 * was not selected.
4817	 */
4818	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4819	if (!memcg)
4820		return;
4821
4822	/* Transfer the charge and the css ref */
4823	commit_charge(new, memcg);
4824
4825	/* Warning should never happen, so don't worry about refcount non-0 */
4826	WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4827	old->memcg_data = 0;
4828}
4829
4830DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4831EXPORT_SYMBOL(memcg_sockets_enabled_key);
4832
4833void mem_cgroup_sk_alloc(struct sock *sk)
4834{
4835	struct mem_cgroup *memcg;
4836
4837	if (!mem_cgroup_sockets_enabled)
4838		return;
4839
4840	/* Do not associate the sock with unrelated interrupted task's memcg. */
4841	if (!in_task())
 
 
 
 
 
 
4842		return;
 
4843
4844	rcu_read_lock();
4845	memcg = mem_cgroup_from_task(current);
4846	if (mem_cgroup_is_root(memcg))
4847		goto out;
4848	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
4849		goto out;
4850	if (css_tryget(&memcg->css))
4851		sk->sk_memcg = memcg;
4852out:
4853	rcu_read_unlock();
4854}
 
4855
4856void mem_cgroup_sk_free(struct sock *sk)
4857{
4858	if (sk->sk_memcg)
4859		css_put(&sk->sk_memcg->css);
4860}
4861
4862/**
4863 * mem_cgroup_charge_skmem - charge socket memory
4864 * @memcg: memcg to charge
4865 * @nr_pages: number of pages to charge
4866 * @gfp_mask: reclaim mode
4867 *
4868 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4869 * @memcg's configured limit, %false if it doesn't.
4870 */
4871bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
4872			     gfp_t gfp_mask)
4873{
4874	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
4875		return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4876
4877	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
4878		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
4879		return true;
4880	}
4881
 
4882	return false;
4883}
4884
4885/**
4886 * mem_cgroup_uncharge_skmem - uncharge socket memory
4887 * @memcg: memcg to uncharge
4888 * @nr_pages: number of pages to uncharge
4889 */
4890void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
4891{
4892	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
4893		memcg1_uncharge_skmem(memcg, nr_pages);
4894		return;
4895	}
4896
4897	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
4898
4899	refill_stock(memcg, nr_pages);
 
4900}
4901
4902static int __init cgroup_memory(char *s)
4903{
4904	char *token;
4905
4906	while ((token = strsep(&s, ",")) != NULL) {
4907		if (!*token)
4908			continue;
4909		if (!strcmp(token, "nosocket"))
4910			cgroup_memory_nosocket = true;
4911		if (!strcmp(token, "nokmem"))
4912			cgroup_memory_nokmem = true;
4913		if (!strcmp(token, "nobpf"))
4914			cgroup_memory_nobpf = true;
4915	}
4916	return 1;
4917}
4918__setup("cgroup.memory=", cgroup_memory);
4919
4920/*
4921 * subsys_initcall() for memory controller.
4922 *
4923 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
4924 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
4925 * basically everything that doesn't depend on a specific mem_cgroup structure
4926 * should be initialized from here.
4927 */
4928static int __init mem_cgroup_init(void)
4929{
4930	int cpu;
4931
4932	/*
4933	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
4934	 * used for per-memcg-per-cpu caching of per-node statistics. In order
4935	 * to work fine, we should make sure that the overfill threshold can't
4936	 * exceed S32_MAX / PAGE_SIZE.
4937	 */
4938	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
4939
4940	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
4941				  memcg_hotplug_cpu_dead);
4942
4943	for_each_possible_cpu(cpu)
4944		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
4945			  drain_local_stock);
4946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4947	return 0;
4948}
4949subsys_initcall(mem_cgroup_init);
4950
4951#ifdef CONFIG_SWAP
4952static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4953{
4954	while (!refcount_inc_not_zero(&memcg->id.ref)) {
4955		/*
4956		 * The root cgroup cannot be destroyed, so it's refcount must
4957		 * always be >= 1.
4958		 */
4959		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
4960			VM_BUG_ON(1);
4961			break;
4962		}
4963		memcg = parent_mem_cgroup(memcg);
4964		if (!memcg)
4965			memcg = root_mem_cgroup;
4966	}
4967	return memcg;
4968}
4969
4970/**
4971 * mem_cgroup_swapout - transfer a memsw charge to swap
4972 * @folio: folio whose memsw charge to transfer
4973 * @entry: swap entry to move the charge to
4974 *
4975 * Transfer the memsw charge of @folio to @entry.
4976 */
4977void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
4978{
4979	struct mem_cgroup *memcg, *swap_memcg;
4980	unsigned int nr_entries;
4981	unsigned short oldid;
4982
4983	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4984	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
4985
4986	if (mem_cgroup_disabled())
4987		return;
4988
4989	if (!do_memsw_account())
4990		return;
4991
4992	memcg = folio_memcg(folio);
4993
4994	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
4995	if (!memcg)
4996		return;
4997
4998	/*
4999	 * In case the memcg owning these pages has been offlined and doesn't
5000	 * have an ID allocated to it anymore, charge the closest online
5001	 * ancestor for the swap instead and transfer the memory+swap charge.
5002	 */
5003	swap_memcg = mem_cgroup_id_get_online(memcg);
5004	nr_entries = folio_nr_pages(folio);
5005	/* Get references for the tail pages, too */
5006	if (nr_entries > 1)
5007		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5008	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5009				   nr_entries);
5010	VM_BUG_ON_FOLIO(oldid, folio);
5011	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5012
5013	folio_unqueue_deferred_split(folio);
5014	folio->memcg_data = 0;
5015
5016	if (!mem_cgroup_is_root(memcg))
5017		page_counter_uncharge(&memcg->memory, nr_entries);
5018
5019	if (memcg != swap_memcg) {
5020		if (!mem_cgroup_is_root(swap_memcg))
5021			page_counter_charge(&swap_memcg->memsw, nr_entries);
5022		page_counter_uncharge(&memcg->memsw, nr_entries);
5023	}
5024
5025	memcg1_swapout(folio, memcg);
5026	css_put(&memcg->css);
 
5027}
5028
5029/**
5030 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5031 * @folio: folio being added to swap
5032 * @entry: swap entry to charge
5033 *
5034 * Try to charge @folio's memcg for the swap space at @entry.
5035 *
5036 * Returns 0 on success, -ENOMEM on failure.
5037 */
5038int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5039{
5040	unsigned int nr_pages = folio_nr_pages(folio);
5041	struct page_counter *counter;
5042	struct mem_cgroup *memcg;
5043	unsigned short oldid;
5044
5045	if (do_memsw_account())
5046		return 0;
5047
5048	memcg = folio_memcg(folio);
5049
5050	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5051	if (!memcg)
5052		return 0;
5053
5054	if (!entry.val) {
5055		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5056		return 0;
5057	}
5058
5059	memcg = mem_cgroup_id_get_online(memcg);
5060
5061	if (!mem_cgroup_is_root(memcg) &&
5062	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5063		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5064		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5065		mem_cgroup_id_put(memcg);
5066		return -ENOMEM;
5067	}
5068
5069	/* Get references for the tail pages, too */
5070	if (nr_pages > 1)
5071		mem_cgroup_id_get_many(memcg, nr_pages - 1);
5072	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5073	VM_BUG_ON_FOLIO(oldid, folio);
5074	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5075
 
5076	return 0;
5077}
5078
5079/**
5080 * __mem_cgroup_uncharge_swap - uncharge swap space
5081 * @entry: swap entry to uncharge
5082 * @nr_pages: the amount of swap space to uncharge
 
5083 */
5084void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5085{
5086	struct mem_cgroup *memcg;
5087	unsigned short id;
5088
5089	id = swap_cgroup_record(entry, 0, nr_pages);
 
 
 
5090	rcu_read_lock();
5091	memcg = mem_cgroup_from_id(id);
5092	if (memcg) {
5093		if (!mem_cgroup_is_root(memcg)) {
5094			if (do_memsw_account())
5095				page_counter_uncharge(&memcg->memsw, nr_pages);
5096			else
5097				page_counter_uncharge(&memcg->swap, nr_pages);
5098		}
5099		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5100		mem_cgroup_id_put_many(memcg, nr_pages);
5101	}
5102	rcu_read_unlock();
5103}
5104
5105long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5106{
5107	long nr_swap_pages = get_nr_swap_pages();
5108
5109	if (mem_cgroup_disabled() || do_memsw_account())
5110		return nr_swap_pages;
5111	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5112		nr_swap_pages = min_t(long, nr_swap_pages,
5113				      READ_ONCE(memcg->swap.max) -
5114				      page_counter_read(&memcg->swap));
5115	return nr_swap_pages;
5116}
5117
5118bool mem_cgroup_swap_full(struct folio *folio)
5119{
5120	struct mem_cgroup *memcg;
5121
5122	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5123
5124	if (vm_swap_full())
5125		return true;
5126	if (do_memsw_account())
5127		return false;
5128
5129	memcg = folio_memcg(folio);
5130	if (!memcg)
5131		return false;
5132
5133	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5134		unsigned long usage = page_counter_read(&memcg->swap);
5135
5136		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5137		    usage * 2 >= READ_ONCE(memcg->swap.max))
5138			return true;
5139	}
5140
5141	return false;
5142}
5143
5144static int __init setup_swap_account(char *s)
 
 
 
 
 
 
 
5145{
5146	bool res;
5147
5148	if (!kstrtobool(s, &res) && !res)
5149		pr_warn_once("The swapaccount=0 commandline option is deprecated "
5150			     "in favor of configuring swap control via cgroupfs. "
5151			     "Please report your usecase to linux-mm@kvack.org if you "
5152			     "depend on this functionality.\n");
5153	return 1;
5154}
5155__setup("swapaccount=", setup_swap_account);
5156
5157static u64 swap_current_read(struct cgroup_subsys_state *css,
5158			     struct cftype *cft)
5159{
5160	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5161
5162	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5163}
5164
5165static int swap_peak_show(struct seq_file *sf, void *v)
5166{
5167	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
 
5168
5169	return peak_show(sf, v, &memcg->swap);
5170}
 
 
5171
5172static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5173			       size_t nbytes, loff_t off)
5174{
5175	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5176
5177	return peak_write(of, buf, nbytes, off, &memcg->swap,
5178			  &memcg->swap_peaks);
5179}
5180
5181static int swap_high_show(struct seq_file *m, void *v)
5182{
5183	return seq_puts_memcg_tunable(m,
5184		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5185}
5186
5187static ssize_t swap_high_write(struct kernfs_open_file *of,
5188			       char *buf, size_t nbytes, loff_t off)
5189{
5190	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5191	unsigned long high;
5192	int err;
5193
5194	buf = strstrip(buf);
5195	err = page_counter_memparse(buf, "max", &high);
5196	if (err)
5197		return err;
5198
5199	page_counter_set_high(&memcg->swap, high);
5200
5201	return nbytes;
5202}
5203
5204static int swap_max_show(struct seq_file *m, void *v)
5205{
5206	return seq_puts_memcg_tunable(m,
5207		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5208}
5209
5210static ssize_t swap_max_write(struct kernfs_open_file *of,
5211			      char *buf, size_t nbytes, loff_t off)
5212{
5213	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5214	unsigned long max;
5215	int err;
5216
5217	buf = strstrip(buf);
5218	err = page_counter_memparse(buf, "max", &max);
5219	if (err)
5220		return err;
5221
5222	xchg(&memcg->swap.max, max);
 
 
 
 
5223
5224	return nbytes;
5225}
5226
5227static int swap_events_show(struct seq_file *m, void *v)
5228{
5229	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5230
5231	seq_printf(m, "high %lu\n",
5232		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5233	seq_printf(m, "max %lu\n",
5234		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5235	seq_printf(m, "fail %lu\n",
5236		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5237
5238	return 0;
5239}
5240
5241static struct cftype swap_files[] = {
5242	{
5243		.name = "swap.current",
5244		.flags = CFTYPE_NOT_ON_ROOT,
5245		.read_u64 = swap_current_read,
5246	},
5247	{
5248		.name = "swap.high",
5249		.flags = CFTYPE_NOT_ON_ROOT,
5250		.seq_show = swap_high_show,
5251		.write = swap_high_write,
5252	},
5253	{
5254		.name = "swap.max",
5255		.flags = CFTYPE_NOT_ON_ROOT,
5256		.seq_show = swap_max_show,
5257		.write = swap_max_write,
5258	},
5259	{
5260		.name = "swap.peak",
5261		.flags = CFTYPE_NOT_ON_ROOT,
5262		.open = peak_open,
5263		.release = peak_release,
5264		.seq_show = swap_peak_show,
5265		.write = swap_peak_write,
5266	},
5267	{
5268		.name = "swap.events",
5269		.flags = CFTYPE_NOT_ON_ROOT,
5270		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
5271		.seq_show = swap_events_show,
5272	},
5273	{ }	/* terminate */
5274};
5275
5276#ifdef CONFIG_ZSWAP
5277/**
5278 * obj_cgroup_may_zswap - check if this cgroup can zswap
5279 * @objcg: the object cgroup
5280 *
5281 * Check if the hierarchical zswap limit has been reached.
5282 *
5283 * This doesn't check for specific headroom, and it is not atomic
5284 * either. But with zswap, the size of the allocation is only known
5285 * once compression has occurred, and this optimistic pre-check avoids
5286 * spending cycles on compression when there is already no room left
5287 * or zswap is disabled altogether somewhere in the hierarchy.
5288 */
5289bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5290{
5291	struct mem_cgroup *memcg, *original_memcg;
5292	bool ret = true;
5293
5294	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5295		return true;
5296
5297	original_memcg = get_mem_cgroup_from_objcg(objcg);
5298	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5299	     memcg = parent_mem_cgroup(memcg)) {
5300		unsigned long max = READ_ONCE(memcg->zswap_max);
5301		unsigned long pages;
5302
5303		if (max == PAGE_COUNTER_MAX)
5304			continue;
5305		if (max == 0) {
5306			ret = false;
5307			break;
5308		}
5309
5310		/* Force flush to get accurate stats for charging */
5311		__mem_cgroup_flush_stats(memcg, true);
5312		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5313		if (pages < max)
5314			continue;
5315		ret = false;
5316		break;
5317	}
5318	mem_cgroup_put(original_memcg);
5319	return ret;
5320}
5321
5322/**
5323 * obj_cgroup_charge_zswap - charge compression backend memory
5324 * @objcg: the object cgroup
5325 * @size: size of compressed object
5326 *
5327 * This forces the charge after obj_cgroup_may_zswap() allowed
5328 * compression and storage in zwap for this cgroup to go ahead.
5329 */
5330void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5331{
5332	struct mem_cgroup *memcg;
5333
5334	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5335		return;
5336
5337	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5338
5339	/* PF_MEMALLOC context, charging must succeed */
5340	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5341		VM_WARN_ON_ONCE(1);
5342
5343	rcu_read_lock();
5344	memcg = obj_cgroup_memcg(objcg);
5345	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5346	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5347	rcu_read_unlock();
5348}
5349
5350/**
5351 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5352 * @objcg: the object cgroup
5353 * @size: size of compressed object
5354 *
5355 * Uncharges zswap memory on page in.
5356 */
5357void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5358{
5359	struct mem_cgroup *memcg;
5360
5361	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5362		return;
5363
5364	obj_cgroup_uncharge(objcg, size);
5365
5366	rcu_read_lock();
5367	memcg = obj_cgroup_memcg(objcg);
5368	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5369	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5370	rcu_read_unlock();
5371}
5372
5373bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5374{
5375	/* if zswap is disabled, do not block pages going to the swapping device */
5376	if (!zswap_is_enabled())
5377		return true;
5378
5379	for (; memcg; memcg = parent_mem_cgroup(memcg))
5380		if (!READ_ONCE(memcg->zswap_writeback))
5381			return false;
5382
5383	return true;
5384}
5385
5386static u64 zswap_current_read(struct cgroup_subsys_state *css,
5387			      struct cftype *cft)
5388{
5389	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5390
5391	mem_cgroup_flush_stats(memcg);
5392	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5393}
5394
5395static int zswap_max_show(struct seq_file *m, void *v)
5396{
5397	return seq_puts_memcg_tunable(m,
5398		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5399}
5400
5401static ssize_t zswap_max_write(struct kernfs_open_file *of,
5402			       char *buf, size_t nbytes, loff_t off)
5403{
5404	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5405	unsigned long max;
5406	int err;
5407
5408	buf = strstrip(buf);
5409	err = page_counter_memparse(buf, "max", &max);
5410	if (err)
5411		return err;
5412
5413	xchg(&memcg->zswap_max, max);
5414
5415	return nbytes;
5416}
5417
5418static int zswap_writeback_show(struct seq_file *m, void *v)
5419{
5420	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5421
5422	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5423	return 0;
5424}
5425
5426static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5427				char *buf, size_t nbytes, loff_t off)
5428{
5429	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5430	int zswap_writeback;
5431	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5432
5433	if (parse_ret)
5434		return parse_ret;
5435
5436	if (zswap_writeback != 0 && zswap_writeback != 1)
5437		return -EINVAL;
5438
5439	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5440	return nbytes;
5441}
5442
5443static struct cftype zswap_files[] = {
5444	{
5445		.name = "zswap.current",
5446		.flags = CFTYPE_NOT_ON_ROOT,
5447		.read_u64 = zswap_current_read,
 
5448	},
5449	{
5450		.name = "zswap.max",
5451		.flags = CFTYPE_NOT_ON_ROOT,
5452		.seq_show = zswap_max_show,
5453		.write = zswap_max_write,
5454	},
5455	{
5456		.name = "zswap.writeback",
5457		.seq_show = zswap_writeback_show,
5458		.write = zswap_writeback_write,
 
5459	},
5460	{ }	/* terminate */
5461};
5462#endif /* CONFIG_ZSWAP */
5463
5464static int __init mem_cgroup_swap_init(void)
5465{
5466	if (mem_cgroup_disabled())
5467		return 0;
5468
5469	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5470#ifdef CONFIG_MEMCG_V1
5471	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5472#endif
5473#ifdef CONFIG_ZSWAP
5474	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5475#endif
5476	return 0;
5477}
5478subsys_initcall(mem_cgroup_swap_init);
5479
5480#endif /* CONFIG_SWAP */