Loading...
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/hugetlb.h>
39#include <linux/pagemap.h>
40#include <linux/smp.h>
41#include <linux/page-flags.h>
42#include <linux/backing-dev.h>
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/limits.h>
46#include <linux/export.h>
47#include <linux/mutex.h>
48#include <linux/rbtree.h>
49#include <linux/slab.h>
50#include <linux/swap.h>
51#include <linux/swapops.h>
52#include <linux/spinlock.h>
53#include <linux/eventfd.h>
54#include <linux/poll.h>
55#include <linux/sort.h>
56#include <linux/fs.h>
57#include <linux/seq_file.h>
58#include <linux/vmpressure.h>
59#include <linux/mm_inline.h>
60#include <linux/swap_cgroup.h>
61#include <linux/cpu.h>
62#include <linux/oom.h>
63#include <linux/lockdep.h>
64#include <linux/file.h>
65#include <linux/tracehook.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70
71#include <asm/uaccess.h>
72
73#include <trace/events/vmscan.h>
74
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
77
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80#define MEM_CGROUP_RECLAIM_RETRIES 5
81
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
88/* Whether the swap controller is active */
89#ifdef CONFIG_MEMCG_SWAP
90int do_swap_account __read_mostly;
91#else
92#define do_swap_account 0
93#endif
94
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109};
110
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
129
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
155
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
159struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199/* Stuffs for move charges at task migration. */
200/*
201 * Types of charges to be moved.
202 */
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
223
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237};
238
239/* for encoding cft->private value on file */
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
246};
247
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250#define MEMFILE_ATTR(val) ((val) & 0xffff)
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
253
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
272#ifndef CONFIG_SLOB
273/*
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
280 *
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
283 */
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
286
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324#endif /* !CONFIG_SLOB */
325
326static struct mem_cgroup_per_zone *
327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328{
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
333}
334
335/**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
345 */
346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347{
348 struct mem_cgroup *memcg;
349
350 memcg = page->mem_cgroup;
351
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
354
355 return &memcg->css;
356}
357
358/**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371ino_t page_cgroup_ino(struct page *page)
372{
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384}
385
386static struct mem_cgroup_per_zone *
387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388{
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
391
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
393}
394
395static struct mem_cgroup_tree_per_zone *
396soft_limit_tree_node_zone(int nid, int zid)
397{
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static struct mem_cgroup_tree_per_zone *
402soft_limit_tree_from_page(struct page *page)
403{
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408}
409
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440}
441
442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444{
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449}
450
451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
453{
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
459}
460
461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462{
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471}
472
473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474{
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
478
479 mctz = soft_limit_tree_from_page(page);
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
504 }
505 }
506}
507
508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509{
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
513
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
519 }
520 }
521}
522
523static struct mem_cgroup_per_zone *
524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545done:
546 return mz;
547}
548
549static struct mem_cgroup_per_zone *
550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551{
552 struct mem_cgroup_per_zone *mz;
553
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
558}
559
560/*
561 * Return page count for single (non recursive) @memcg.
562 *
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
580 */
581static unsigned long
582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583{
584 long val = 0;
585 int cpu;
586
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
596 return val;
597}
598
599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
601{
602 unsigned long val = 0;
603 int cpu;
604
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
608}
609
610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
613{
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
624
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
629 }
630
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
637 }
638
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640}
641
642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
644{
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662}
663
664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666{
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673}
674
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677{
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701}
702
703/*
704 * Check events in order.
705 *
706 */
707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708{
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724#if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727#endif
728 }
729}
730
731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732{
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742}
743EXPORT_SYMBOL(mem_cgroup_from_task);
744
745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746{
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766}
767
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788{
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886out_unlock:
887 rcu_read_unlock();
888out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893}
894
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
908
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941#define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977}
978
979/**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989{
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018}
1019
1020/**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
1031{
1032 struct mem_cgroup_per_zone *mz;
1033 unsigned long *lru_size;
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
1042}
1043
1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045{
1046 struct mem_cgroup *task_memcg;
1047 struct task_struct *p;
1048 bool ret;
1049
1050 p = find_lock_task_mm(task);
1051 if (p) {
1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
1060 rcu_read_lock();
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
1063 rcu_read_unlock();
1064 }
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
1067 return ret;
1068}
1069
1070/**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078{
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
1082
1083 count = page_counter_read(&memcg->memory);
1084 limit = READ_ONCE(memcg->memory.limit);
1085 if (count < limit)
1086 margin = limit - count;
1087
1088 if (do_memsw_account()) {
1089 count = page_counter_read(&memcg->memsw);
1090 limit = READ_ONCE(memcg->memsw.limit);
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
1096}
1097
1098/*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106{
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1119
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1125}
1126
1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
1143#define K(x) ((x) << (PAGE_SHIFT-10))
1144/**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
1154 struct mem_cgroup *iter;
1155 unsigned int i;
1156
1157 rcu_read_lock();
1158
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1165 }
1166
1167 pr_cont_cgroup_path(memcg->css.cgroup);
1168 pr_cont("\n");
1169
1170 rcu_read_unlock();
1171
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181
1182 for_each_mem_cgroup_tree(iter, memcg) {
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
1185 pr_cont(":");
1186
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189 continue;
1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 K(mem_cgroup_read_stat(iter, i)));
1192 }
1193
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198 pr_cont("\n");
1199 }
1200}
1201
1202/*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
1206static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207{
1208 int num = 0;
1209 struct mem_cgroup *iter;
1210
1211 for_each_mem_cgroup_tree(iter, memcg)
1212 num++;
1213 return num;
1214}
1215
1216/*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
1219static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220{
1221 unsigned long limit;
1222
1223 limit = memcg->memory.limit;
1224 if (mem_cgroup_swappiness(memcg)) {
1225 unsigned long memsw_limit;
1226 unsigned long swap_limit;
1227
1228 memsw_limit = memcg->memsw.limit;
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
1232 }
1233 return limit;
1234}
1235
1236static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237 int order)
1238{
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
1242 .gfp_mask = gfp_mask,
1243 .order = order,
1244 };
1245 struct mem_cgroup *iter;
1246 unsigned long chosen_points = 0;
1247 unsigned long totalpages;
1248 unsigned int points = 0;
1249 struct task_struct *chosen = NULL;
1250
1251 mutex_lock(&oom_lock);
1252
1253 /*
1254 * If current has a pending SIGKILL or is exiting, then automatically
1255 * select it. The goal is to allow it to allocate so that it may
1256 * quickly exit and free its memory.
1257 */
1258 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259 mark_oom_victim(current);
1260 goto unlock;
1261 }
1262
1263 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265 for_each_mem_cgroup_tree(iter, memcg) {
1266 struct css_task_iter it;
1267 struct task_struct *task;
1268
1269 css_task_iter_start(&iter->css, &it);
1270 while ((task = css_task_iter_next(&it))) {
1271 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272 case OOM_SCAN_SELECT:
1273 if (chosen)
1274 put_task_struct(chosen);
1275 chosen = task;
1276 chosen_points = ULONG_MAX;
1277 get_task_struct(chosen);
1278 /* fall through */
1279 case OOM_SCAN_CONTINUE:
1280 continue;
1281 case OOM_SCAN_ABORT:
1282 css_task_iter_end(&it);
1283 mem_cgroup_iter_break(memcg, iter);
1284 if (chosen)
1285 put_task_struct(chosen);
1286 goto unlock;
1287 case OOM_SCAN_OK:
1288 break;
1289 };
1290 points = oom_badness(task, memcg, NULL, totalpages);
1291 if (!points || points < chosen_points)
1292 continue;
1293 /* Prefer thread group leaders for display purposes */
1294 if (points == chosen_points &&
1295 thread_group_leader(chosen))
1296 continue;
1297
1298 if (chosen)
1299 put_task_struct(chosen);
1300 chosen = task;
1301 chosen_points = points;
1302 get_task_struct(chosen);
1303 }
1304 css_task_iter_end(&it);
1305 }
1306
1307 if (chosen) {
1308 points = chosen_points * 1000 / totalpages;
1309 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310 "Memory cgroup out of memory");
1311 }
1312unlock:
1313 mutex_unlock(&oom_lock);
1314 return chosen;
1315}
1316
1317#if MAX_NUMNODES > 1
1318
1319/**
1320 * test_mem_cgroup_node_reclaimable
1321 * @memcg: the target memcg
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1324 *
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1328 */
1329static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330 int nid, bool noswap)
1331{
1332 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333 return true;
1334 if (noswap || !total_swap_pages)
1335 return false;
1336 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337 return true;
1338 return false;
1339
1340}
1341
1342/*
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1346 *
1347 */
1348static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349{
1350 int nid;
1351 /*
1352 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353 * pagein/pageout changes since the last update.
1354 */
1355 if (!atomic_read(&memcg->numainfo_events))
1356 return;
1357 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358 return;
1359
1360 /* make a nodemask where this memcg uses memory from */
1361 memcg->scan_nodes = node_states[N_MEMORY];
1362
1363 for_each_node_mask(nid, node_states[N_MEMORY]) {
1364
1365 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366 node_clear(nid, memcg->scan_nodes);
1367 }
1368
1369 atomic_set(&memcg->numainfo_events, 0);
1370 atomic_set(&memcg->numainfo_updating, 0);
1371}
1372
1373/*
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1377 *
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1382 *
1383 * Now, we use round-robin. Better algorithm is welcomed.
1384 */
1385int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386{
1387 int node;
1388
1389 mem_cgroup_may_update_nodemask(memcg);
1390 node = memcg->last_scanned_node;
1391
1392 node = next_node(node, memcg->scan_nodes);
1393 if (node == MAX_NUMNODES)
1394 node = first_node(memcg->scan_nodes);
1395 /*
1396 * We call this when we hit limit, not when pages are added to LRU.
1397 * No LRU may hold pages because all pages are UNEVICTABLE or
1398 * memcg is too small and all pages are not on LRU. In that case,
1399 * we use curret node.
1400 */
1401 if (unlikely(node == MAX_NUMNODES))
1402 node = numa_node_id();
1403
1404 memcg->last_scanned_node = node;
1405 return node;
1406}
1407#else
1408int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409{
1410 return 0;
1411}
1412#endif
1413
1414static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1415 struct zone *zone,
1416 gfp_t gfp_mask,
1417 unsigned long *total_scanned)
1418{
1419 struct mem_cgroup *victim = NULL;
1420 int total = 0;
1421 int loop = 0;
1422 unsigned long excess;
1423 unsigned long nr_scanned;
1424 struct mem_cgroup_reclaim_cookie reclaim = {
1425 .zone = zone,
1426 .priority = 0,
1427 };
1428
1429 excess = soft_limit_excess(root_memcg);
1430
1431 while (1) {
1432 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1433 if (!victim) {
1434 loop++;
1435 if (loop >= 2) {
1436 /*
1437 * If we have not been able to reclaim
1438 * anything, it might because there are
1439 * no reclaimable pages under this hierarchy
1440 */
1441 if (!total)
1442 break;
1443 /*
1444 * We want to do more targeted reclaim.
1445 * excess >> 2 is not to excessive so as to
1446 * reclaim too much, nor too less that we keep
1447 * coming back to reclaim from this cgroup
1448 */
1449 if (total >= (excess >> 2) ||
1450 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1451 break;
1452 }
1453 continue;
1454 }
1455 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1456 zone, &nr_scanned);
1457 *total_scanned += nr_scanned;
1458 if (!soft_limit_excess(root_memcg))
1459 break;
1460 }
1461 mem_cgroup_iter_break(root_memcg, victim);
1462 return total;
1463}
1464
1465#ifdef CONFIG_LOCKDEP
1466static struct lockdep_map memcg_oom_lock_dep_map = {
1467 .name = "memcg_oom_lock",
1468};
1469#endif
1470
1471static DEFINE_SPINLOCK(memcg_oom_lock);
1472
1473/*
1474 * Check OOM-Killer is already running under our hierarchy.
1475 * If someone is running, return false.
1476 */
1477static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1478{
1479 struct mem_cgroup *iter, *failed = NULL;
1480
1481 spin_lock(&memcg_oom_lock);
1482
1483 for_each_mem_cgroup_tree(iter, memcg) {
1484 if (iter->oom_lock) {
1485 /*
1486 * this subtree of our hierarchy is already locked
1487 * so we cannot give a lock.
1488 */
1489 failed = iter;
1490 mem_cgroup_iter_break(memcg, iter);
1491 break;
1492 } else
1493 iter->oom_lock = true;
1494 }
1495
1496 if (failed) {
1497 /*
1498 * OK, we failed to lock the whole subtree so we have
1499 * to clean up what we set up to the failing subtree
1500 */
1501 for_each_mem_cgroup_tree(iter, memcg) {
1502 if (iter == failed) {
1503 mem_cgroup_iter_break(memcg, iter);
1504 break;
1505 }
1506 iter->oom_lock = false;
1507 }
1508 } else
1509 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1510
1511 spin_unlock(&memcg_oom_lock);
1512
1513 return !failed;
1514}
1515
1516static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1517{
1518 struct mem_cgroup *iter;
1519
1520 spin_lock(&memcg_oom_lock);
1521 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1522 for_each_mem_cgroup_tree(iter, memcg)
1523 iter->oom_lock = false;
1524 spin_unlock(&memcg_oom_lock);
1525}
1526
1527static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1528{
1529 struct mem_cgroup *iter;
1530
1531 spin_lock(&memcg_oom_lock);
1532 for_each_mem_cgroup_tree(iter, memcg)
1533 iter->under_oom++;
1534 spin_unlock(&memcg_oom_lock);
1535}
1536
1537static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1538{
1539 struct mem_cgroup *iter;
1540
1541 /*
1542 * When a new child is created while the hierarchy is under oom,
1543 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1544 */
1545 spin_lock(&memcg_oom_lock);
1546 for_each_mem_cgroup_tree(iter, memcg)
1547 if (iter->under_oom > 0)
1548 iter->under_oom--;
1549 spin_unlock(&memcg_oom_lock);
1550}
1551
1552static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1553
1554struct oom_wait_info {
1555 struct mem_cgroup *memcg;
1556 wait_queue_t wait;
1557};
1558
1559static int memcg_oom_wake_function(wait_queue_t *wait,
1560 unsigned mode, int sync, void *arg)
1561{
1562 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1563 struct mem_cgroup *oom_wait_memcg;
1564 struct oom_wait_info *oom_wait_info;
1565
1566 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1567 oom_wait_memcg = oom_wait_info->memcg;
1568
1569 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1570 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1571 return 0;
1572 return autoremove_wake_function(wait, mode, sync, arg);
1573}
1574
1575static void memcg_oom_recover(struct mem_cgroup *memcg)
1576{
1577 /*
1578 * For the following lockless ->under_oom test, the only required
1579 * guarantee is that it must see the state asserted by an OOM when
1580 * this function is called as a result of userland actions
1581 * triggered by the notification of the OOM. This is trivially
1582 * achieved by invoking mem_cgroup_mark_under_oom() before
1583 * triggering notification.
1584 */
1585 if (memcg && memcg->under_oom)
1586 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1587}
1588
1589static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1590{
1591 if (!current->memcg_may_oom)
1592 return;
1593 /*
1594 * We are in the middle of the charge context here, so we
1595 * don't want to block when potentially sitting on a callstack
1596 * that holds all kinds of filesystem and mm locks.
1597 *
1598 * Also, the caller may handle a failed allocation gracefully
1599 * (like optional page cache readahead) and so an OOM killer
1600 * invocation might not even be necessary.
1601 *
1602 * That's why we don't do anything here except remember the
1603 * OOM context and then deal with it at the end of the page
1604 * fault when the stack is unwound, the locks are released,
1605 * and when we know whether the fault was overall successful.
1606 */
1607 css_get(&memcg->css);
1608 current->memcg_in_oom = memcg;
1609 current->memcg_oom_gfp_mask = mask;
1610 current->memcg_oom_order = order;
1611}
1612
1613/**
1614 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615 * @handle: actually kill/wait or just clean up the OOM state
1616 *
1617 * This has to be called at the end of a page fault if the memcg OOM
1618 * handler was enabled.
1619 *
1620 * Memcg supports userspace OOM handling where failed allocations must
1621 * sleep on a waitqueue until the userspace task resolves the
1622 * situation. Sleeping directly in the charge context with all kinds
1623 * of locks held is not a good idea, instead we remember an OOM state
1624 * in the task and mem_cgroup_oom_synchronize() has to be called at
1625 * the end of the page fault to complete the OOM handling.
1626 *
1627 * Returns %true if an ongoing memcg OOM situation was detected and
1628 * completed, %false otherwise.
1629 */
1630bool mem_cgroup_oom_synchronize(bool handle)
1631{
1632 struct mem_cgroup *memcg = current->memcg_in_oom;
1633 struct oom_wait_info owait;
1634 bool locked;
1635
1636 /* OOM is global, do not handle */
1637 if (!memcg)
1638 return false;
1639
1640 if (!handle || oom_killer_disabled)
1641 goto cleanup;
1642
1643 owait.memcg = memcg;
1644 owait.wait.flags = 0;
1645 owait.wait.func = memcg_oom_wake_function;
1646 owait.wait.private = current;
1647 INIT_LIST_HEAD(&owait.wait.task_list);
1648
1649 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1650 mem_cgroup_mark_under_oom(memcg);
1651
1652 locked = mem_cgroup_oom_trylock(memcg);
1653
1654 if (locked)
1655 mem_cgroup_oom_notify(memcg);
1656
1657 if (locked && !memcg->oom_kill_disable) {
1658 mem_cgroup_unmark_under_oom(memcg);
1659 finish_wait(&memcg_oom_waitq, &owait.wait);
1660 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1661 current->memcg_oom_order);
1662 } else {
1663 schedule();
1664 mem_cgroup_unmark_under_oom(memcg);
1665 finish_wait(&memcg_oom_waitq, &owait.wait);
1666 }
1667
1668 if (locked) {
1669 mem_cgroup_oom_unlock(memcg);
1670 /*
1671 * There is no guarantee that an OOM-lock contender
1672 * sees the wakeups triggered by the OOM kill
1673 * uncharges. Wake any sleepers explicitely.
1674 */
1675 memcg_oom_recover(memcg);
1676 }
1677cleanup:
1678 current->memcg_in_oom = NULL;
1679 css_put(&memcg->css);
1680 return true;
1681}
1682
1683/**
1684 * lock_page_memcg - lock a page->mem_cgroup binding
1685 * @page: the page
1686 *
1687 * This function protects unlocked LRU pages from being moved to
1688 * another cgroup and stabilizes their page->mem_cgroup binding.
1689 */
1690void lock_page_memcg(struct page *page)
1691{
1692 struct mem_cgroup *memcg;
1693 unsigned long flags;
1694
1695 /*
1696 * The RCU lock is held throughout the transaction. The fast
1697 * path can get away without acquiring the memcg->move_lock
1698 * because page moving starts with an RCU grace period.
1699 */
1700 rcu_read_lock();
1701
1702 if (mem_cgroup_disabled())
1703 return;
1704again:
1705 memcg = page->mem_cgroup;
1706 if (unlikely(!memcg))
1707 return;
1708
1709 if (atomic_read(&memcg->moving_account) <= 0)
1710 return;
1711
1712 spin_lock_irqsave(&memcg->move_lock, flags);
1713 if (memcg != page->mem_cgroup) {
1714 spin_unlock_irqrestore(&memcg->move_lock, flags);
1715 goto again;
1716 }
1717
1718 /*
1719 * When charge migration first begins, we can have locked and
1720 * unlocked page stat updates happening concurrently. Track
1721 * the task who has the lock for unlock_page_memcg().
1722 */
1723 memcg->move_lock_task = current;
1724 memcg->move_lock_flags = flags;
1725
1726 return;
1727}
1728EXPORT_SYMBOL(lock_page_memcg);
1729
1730/**
1731 * unlock_page_memcg - unlock a page->mem_cgroup binding
1732 * @page: the page
1733 */
1734void unlock_page_memcg(struct page *page)
1735{
1736 struct mem_cgroup *memcg = page->mem_cgroup;
1737
1738 if (memcg && memcg->move_lock_task == current) {
1739 unsigned long flags = memcg->move_lock_flags;
1740
1741 memcg->move_lock_task = NULL;
1742 memcg->move_lock_flags = 0;
1743
1744 spin_unlock_irqrestore(&memcg->move_lock, flags);
1745 }
1746
1747 rcu_read_unlock();
1748}
1749EXPORT_SYMBOL(unlock_page_memcg);
1750
1751/*
1752 * size of first charge trial. "32" comes from vmscan.c's magic value.
1753 * TODO: maybe necessary to use big numbers in big irons.
1754 */
1755#define CHARGE_BATCH 32U
1756struct memcg_stock_pcp {
1757 struct mem_cgroup *cached; /* this never be root cgroup */
1758 unsigned int nr_pages;
1759 struct work_struct work;
1760 unsigned long flags;
1761#define FLUSHING_CACHED_CHARGE 0
1762};
1763static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1764static DEFINE_MUTEX(percpu_charge_mutex);
1765
1766/**
1767 * consume_stock: Try to consume stocked charge on this cpu.
1768 * @memcg: memcg to consume from.
1769 * @nr_pages: how many pages to charge.
1770 *
1771 * The charges will only happen if @memcg matches the current cpu's memcg
1772 * stock, and at least @nr_pages are available in that stock. Failure to
1773 * service an allocation will refill the stock.
1774 *
1775 * returns true if successful, false otherwise.
1776 */
1777static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1778{
1779 struct memcg_stock_pcp *stock;
1780 bool ret = false;
1781
1782 if (nr_pages > CHARGE_BATCH)
1783 return ret;
1784
1785 stock = &get_cpu_var(memcg_stock);
1786 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1787 stock->nr_pages -= nr_pages;
1788 ret = true;
1789 }
1790 put_cpu_var(memcg_stock);
1791 return ret;
1792}
1793
1794/*
1795 * Returns stocks cached in percpu and reset cached information.
1796 */
1797static void drain_stock(struct memcg_stock_pcp *stock)
1798{
1799 struct mem_cgroup *old = stock->cached;
1800
1801 if (stock->nr_pages) {
1802 page_counter_uncharge(&old->memory, stock->nr_pages);
1803 if (do_memsw_account())
1804 page_counter_uncharge(&old->memsw, stock->nr_pages);
1805 css_put_many(&old->css, stock->nr_pages);
1806 stock->nr_pages = 0;
1807 }
1808 stock->cached = NULL;
1809}
1810
1811/*
1812 * This must be called under preempt disabled or must be called by
1813 * a thread which is pinned to local cpu.
1814 */
1815static void drain_local_stock(struct work_struct *dummy)
1816{
1817 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1818 drain_stock(stock);
1819 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1820}
1821
1822/*
1823 * Cache charges(val) to local per_cpu area.
1824 * This will be consumed by consume_stock() function, later.
1825 */
1826static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1827{
1828 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1829
1830 if (stock->cached != memcg) { /* reset if necessary */
1831 drain_stock(stock);
1832 stock->cached = memcg;
1833 }
1834 stock->nr_pages += nr_pages;
1835 put_cpu_var(memcg_stock);
1836}
1837
1838/*
1839 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840 * of the hierarchy under it.
1841 */
1842static void drain_all_stock(struct mem_cgroup *root_memcg)
1843{
1844 int cpu, curcpu;
1845
1846 /* If someone's already draining, avoid adding running more workers. */
1847 if (!mutex_trylock(&percpu_charge_mutex))
1848 return;
1849 /* Notify other cpus that system-wide "drain" is running */
1850 get_online_cpus();
1851 curcpu = get_cpu();
1852 for_each_online_cpu(cpu) {
1853 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1854 struct mem_cgroup *memcg;
1855
1856 memcg = stock->cached;
1857 if (!memcg || !stock->nr_pages)
1858 continue;
1859 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1860 continue;
1861 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1862 if (cpu == curcpu)
1863 drain_local_stock(&stock->work);
1864 else
1865 schedule_work_on(cpu, &stock->work);
1866 }
1867 }
1868 put_cpu();
1869 put_online_cpus();
1870 mutex_unlock(&percpu_charge_mutex);
1871}
1872
1873static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1874 unsigned long action,
1875 void *hcpu)
1876{
1877 int cpu = (unsigned long)hcpu;
1878 struct memcg_stock_pcp *stock;
1879
1880 if (action == CPU_ONLINE)
1881 return NOTIFY_OK;
1882
1883 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1884 return NOTIFY_OK;
1885
1886 stock = &per_cpu(memcg_stock, cpu);
1887 drain_stock(stock);
1888 return NOTIFY_OK;
1889}
1890
1891static void reclaim_high(struct mem_cgroup *memcg,
1892 unsigned int nr_pages,
1893 gfp_t gfp_mask)
1894{
1895 do {
1896 if (page_counter_read(&memcg->memory) <= memcg->high)
1897 continue;
1898 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1899 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1900 } while ((memcg = parent_mem_cgroup(memcg)));
1901}
1902
1903static void high_work_func(struct work_struct *work)
1904{
1905 struct mem_cgroup *memcg;
1906
1907 memcg = container_of(work, struct mem_cgroup, high_work);
1908 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1909}
1910
1911/*
1912 * Scheduled by try_charge() to be executed from the userland return path
1913 * and reclaims memory over the high limit.
1914 */
1915void mem_cgroup_handle_over_high(void)
1916{
1917 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1918 struct mem_cgroup *memcg;
1919
1920 if (likely(!nr_pages))
1921 return;
1922
1923 memcg = get_mem_cgroup_from_mm(current->mm);
1924 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1925 css_put(&memcg->css);
1926 current->memcg_nr_pages_over_high = 0;
1927}
1928
1929static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1930 unsigned int nr_pages)
1931{
1932 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1933 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1934 struct mem_cgroup *mem_over_limit;
1935 struct page_counter *counter;
1936 unsigned long nr_reclaimed;
1937 bool may_swap = true;
1938 bool drained = false;
1939
1940 if (mem_cgroup_is_root(memcg))
1941 return 0;
1942retry:
1943 if (consume_stock(memcg, nr_pages))
1944 return 0;
1945
1946 if (!do_memsw_account() ||
1947 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1948 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1949 goto done_restock;
1950 if (do_memsw_account())
1951 page_counter_uncharge(&memcg->memsw, batch);
1952 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1953 } else {
1954 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1955 may_swap = false;
1956 }
1957
1958 if (batch > nr_pages) {
1959 batch = nr_pages;
1960 goto retry;
1961 }
1962
1963 /*
1964 * Unlike in global OOM situations, memcg is not in a physical
1965 * memory shortage. Allow dying and OOM-killed tasks to
1966 * bypass the last charges so that they can exit quickly and
1967 * free their memory.
1968 */
1969 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1970 fatal_signal_pending(current) ||
1971 current->flags & PF_EXITING))
1972 goto force;
1973
1974 if (unlikely(task_in_memcg_oom(current)))
1975 goto nomem;
1976
1977 if (!gfpflags_allow_blocking(gfp_mask))
1978 goto nomem;
1979
1980 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1981
1982 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1983 gfp_mask, may_swap);
1984
1985 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1986 goto retry;
1987
1988 if (!drained) {
1989 drain_all_stock(mem_over_limit);
1990 drained = true;
1991 goto retry;
1992 }
1993
1994 if (gfp_mask & __GFP_NORETRY)
1995 goto nomem;
1996 /*
1997 * Even though the limit is exceeded at this point, reclaim
1998 * may have been able to free some pages. Retry the charge
1999 * before killing the task.
2000 *
2001 * Only for regular pages, though: huge pages are rather
2002 * unlikely to succeed so close to the limit, and we fall back
2003 * to regular pages anyway in case of failure.
2004 */
2005 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2006 goto retry;
2007 /*
2008 * At task move, charge accounts can be doubly counted. So, it's
2009 * better to wait until the end of task_move if something is going on.
2010 */
2011 if (mem_cgroup_wait_acct_move(mem_over_limit))
2012 goto retry;
2013
2014 if (nr_retries--)
2015 goto retry;
2016
2017 if (gfp_mask & __GFP_NOFAIL)
2018 goto force;
2019
2020 if (fatal_signal_pending(current))
2021 goto force;
2022
2023 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2024
2025 mem_cgroup_oom(mem_over_limit, gfp_mask,
2026 get_order(nr_pages * PAGE_SIZE));
2027nomem:
2028 if (!(gfp_mask & __GFP_NOFAIL))
2029 return -ENOMEM;
2030force:
2031 /*
2032 * The allocation either can't fail or will lead to more memory
2033 * being freed very soon. Allow memory usage go over the limit
2034 * temporarily by force charging it.
2035 */
2036 page_counter_charge(&memcg->memory, nr_pages);
2037 if (do_memsw_account())
2038 page_counter_charge(&memcg->memsw, nr_pages);
2039 css_get_many(&memcg->css, nr_pages);
2040
2041 return 0;
2042
2043done_restock:
2044 css_get_many(&memcg->css, batch);
2045 if (batch > nr_pages)
2046 refill_stock(memcg, batch - nr_pages);
2047
2048 /*
2049 * If the hierarchy is above the normal consumption range, schedule
2050 * reclaim on returning to userland. We can perform reclaim here
2051 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2053 * not recorded as it most likely matches current's and won't
2054 * change in the meantime. As high limit is checked again before
2055 * reclaim, the cost of mismatch is negligible.
2056 */
2057 do {
2058 if (page_counter_read(&memcg->memory) > memcg->high) {
2059 /* Don't bother a random interrupted task */
2060 if (in_interrupt()) {
2061 schedule_work(&memcg->high_work);
2062 break;
2063 }
2064 current->memcg_nr_pages_over_high += batch;
2065 set_notify_resume(current);
2066 break;
2067 }
2068 } while ((memcg = parent_mem_cgroup(memcg)));
2069
2070 return 0;
2071}
2072
2073static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2074{
2075 if (mem_cgroup_is_root(memcg))
2076 return;
2077
2078 page_counter_uncharge(&memcg->memory, nr_pages);
2079 if (do_memsw_account())
2080 page_counter_uncharge(&memcg->memsw, nr_pages);
2081
2082 css_put_many(&memcg->css, nr_pages);
2083}
2084
2085static void lock_page_lru(struct page *page, int *isolated)
2086{
2087 struct zone *zone = page_zone(page);
2088
2089 spin_lock_irq(&zone->lru_lock);
2090 if (PageLRU(page)) {
2091 struct lruvec *lruvec;
2092
2093 lruvec = mem_cgroup_page_lruvec(page, zone);
2094 ClearPageLRU(page);
2095 del_page_from_lru_list(page, lruvec, page_lru(page));
2096 *isolated = 1;
2097 } else
2098 *isolated = 0;
2099}
2100
2101static void unlock_page_lru(struct page *page, int isolated)
2102{
2103 struct zone *zone = page_zone(page);
2104
2105 if (isolated) {
2106 struct lruvec *lruvec;
2107
2108 lruvec = mem_cgroup_page_lruvec(page, zone);
2109 VM_BUG_ON_PAGE(PageLRU(page), page);
2110 SetPageLRU(page);
2111 add_page_to_lru_list(page, lruvec, page_lru(page));
2112 }
2113 spin_unlock_irq(&zone->lru_lock);
2114}
2115
2116static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2117 bool lrucare)
2118{
2119 int isolated;
2120
2121 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2122
2123 /*
2124 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2125 * may already be on some other mem_cgroup's LRU. Take care of it.
2126 */
2127 if (lrucare)
2128 lock_page_lru(page, &isolated);
2129
2130 /*
2131 * Nobody should be changing or seriously looking at
2132 * page->mem_cgroup at this point:
2133 *
2134 * - the page is uncharged
2135 *
2136 * - the page is off-LRU
2137 *
2138 * - an anonymous fault has exclusive page access, except for
2139 * a locked page table
2140 *
2141 * - a page cache insertion, a swapin fault, or a migration
2142 * have the page locked
2143 */
2144 page->mem_cgroup = memcg;
2145
2146 if (lrucare)
2147 unlock_page_lru(page, isolated);
2148}
2149
2150#ifndef CONFIG_SLOB
2151static int memcg_alloc_cache_id(void)
2152{
2153 int id, size;
2154 int err;
2155
2156 id = ida_simple_get(&memcg_cache_ida,
2157 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2158 if (id < 0)
2159 return id;
2160
2161 if (id < memcg_nr_cache_ids)
2162 return id;
2163
2164 /*
2165 * There's no space for the new id in memcg_caches arrays,
2166 * so we have to grow them.
2167 */
2168 down_write(&memcg_cache_ids_sem);
2169
2170 size = 2 * (id + 1);
2171 if (size < MEMCG_CACHES_MIN_SIZE)
2172 size = MEMCG_CACHES_MIN_SIZE;
2173 else if (size > MEMCG_CACHES_MAX_SIZE)
2174 size = MEMCG_CACHES_MAX_SIZE;
2175
2176 err = memcg_update_all_caches(size);
2177 if (!err)
2178 err = memcg_update_all_list_lrus(size);
2179 if (!err)
2180 memcg_nr_cache_ids = size;
2181
2182 up_write(&memcg_cache_ids_sem);
2183
2184 if (err) {
2185 ida_simple_remove(&memcg_cache_ida, id);
2186 return err;
2187 }
2188 return id;
2189}
2190
2191static void memcg_free_cache_id(int id)
2192{
2193 ida_simple_remove(&memcg_cache_ida, id);
2194}
2195
2196struct memcg_kmem_cache_create_work {
2197 struct mem_cgroup *memcg;
2198 struct kmem_cache *cachep;
2199 struct work_struct work;
2200};
2201
2202static void memcg_kmem_cache_create_func(struct work_struct *w)
2203{
2204 struct memcg_kmem_cache_create_work *cw =
2205 container_of(w, struct memcg_kmem_cache_create_work, work);
2206 struct mem_cgroup *memcg = cw->memcg;
2207 struct kmem_cache *cachep = cw->cachep;
2208
2209 memcg_create_kmem_cache(memcg, cachep);
2210
2211 css_put(&memcg->css);
2212 kfree(cw);
2213}
2214
2215/*
2216 * Enqueue the creation of a per-memcg kmem_cache.
2217 */
2218static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2219 struct kmem_cache *cachep)
2220{
2221 struct memcg_kmem_cache_create_work *cw;
2222
2223 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2224 if (!cw)
2225 return;
2226
2227 css_get(&memcg->css);
2228
2229 cw->memcg = memcg;
2230 cw->cachep = cachep;
2231 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2232
2233 schedule_work(&cw->work);
2234}
2235
2236static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237 struct kmem_cache *cachep)
2238{
2239 /*
2240 * We need to stop accounting when we kmalloc, because if the
2241 * corresponding kmalloc cache is not yet created, the first allocation
2242 * in __memcg_schedule_kmem_cache_create will recurse.
2243 *
2244 * However, it is better to enclose the whole function. Depending on
2245 * the debugging options enabled, INIT_WORK(), for instance, can
2246 * trigger an allocation. This too, will make us recurse. Because at
2247 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2248 * the safest choice is to do it like this, wrapping the whole function.
2249 */
2250 current->memcg_kmem_skip_account = 1;
2251 __memcg_schedule_kmem_cache_create(memcg, cachep);
2252 current->memcg_kmem_skip_account = 0;
2253}
2254
2255/*
2256 * Return the kmem_cache we're supposed to use for a slab allocation.
2257 * We try to use the current memcg's version of the cache.
2258 *
2259 * If the cache does not exist yet, if we are the first user of it,
2260 * we either create it immediately, if possible, or create it asynchronously
2261 * in a workqueue.
2262 * In the latter case, we will let the current allocation go through with
2263 * the original cache.
2264 *
2265 * Can't be called in interrupt context or from kernel threads.
2266 * This function needs to be called with rcu_read_lock() held.
2267 */
2268struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2269{
2270 struct mem_cgroup *memcg;
2271 struct kmem_cache *memcg_cachep;
2272 int kmemcg_id;
2273
2274 VM_BUG_ON(!is_root_cache(cachep));
2275
2276 if (cachep->flags & SLAB_ACCOUNT)
2277 gfp |= __GFP_ACCOUNT;
2278
2279 if (!(gfp & __GFP_ACCOUNT))
2280 return cachep;
2281
2282 if (current->memcg_kmem_skip_account)
2283 return cachep;
2284
2285 memcg = get_mem_cgroup_from_mm(current->mm);
2286 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2287 if (kmemcg_id < 0)
2288 goto out;
2289
2290 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2291 if (likely(memcg_cachep))
2292 return memcg_cachep;
2293
2294 /*
2295 * If we are in a safe context (can wait, and not in interrupt
2296 * context), we could be be predictable and return right away.
2297 * This would guarantee that the allocation being performed
2298 * already belongs in the new cache.
2299 *
2300 * However, there are some clashes that can arrive from locking.
2301 * For instance, because we acquire the slab_mutex while doing
2302 * memcg_create_kmem_cache, this means no further allocation
2303 * could happen with the slab_mutex held. So it's better to
2304 * defer everything.
2305 */
2306 memcg_schedule_kmem_cache_create(memcg, cachep);
2307out:
2308 css_put(&memcg->css);
2309 return cachep;
2310}
2311
2312void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2313{
2314 if (!is_root_cache(cachep))
2315 css_put(&cachep->memcg_params.memcg->css);
2316}
2317
2318int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319 struct mem_cgroup *memcg)
2320{
2321 unsigned int nr_pages = 1 << order;
2322 struct page_counter *counter;
2323 int ret;
2324
2325 ret = try_charge(memcg, gfp, nr_pages);
2326 if (ret)
2327 return ret;
2328
2329 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331 cancel_charge(memcg, nr_pages);
2332 return -ENOMEM;
2333 }
2334
2335 page->mem_cgroup = memcg;
2336
2337 return 0;
2338}
2339
2340int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342 struct mem_cgroup *memcg;
2343 int ret = 0;
2344
2345 memcg = get_mem_cgroup_from_mm(current->mm);
2346 if (!mem_cgroup_is_root(memcg))
2347 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2348 css_put(&memcg->css);
2349 return ret;
2350}
2351
2352void __memcg_kmem_uncharge(struct page *page, int order)
2353{
2354 struct mem_cgroup *memcg = page->mem_cgroup;
2355 unsigned int nr_pages = 1 << order;
2356
2357 if (!memcg)
2358 return;
2359
2360 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2361
2362 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2363 page_counter_uncharge(&memcg->kmem, nr_pages);
2364
2365 page_counter_uncharge(&memcg->memory, nr_pages);
2366 if (do_memsw_account())
2367 page_counter_uncharge(&memcg->memsw, nr_pages);
2368
2369 page->mem_cgroup = NULL;
2370 css_put_many(&memcg->css, nr_pages);
2371}
2372#endif /* !CONFIG_SLOB */
2373
2374#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2375
2376/*
2377 * Because tail pages are not marked as "used", set it. We're under
2378 * zone->lru_lock and migration entries setup in all page mappings.
2379 */
2380void mem_cgroup_split_huge_fixup(struct page *head)
2381{
2382 int i;
2383
2384 if (mem_cgroup_disabled())
2385 return;
2386
2387 for (i = 1; i < HPAGE_PMD_NR; i++)
2388 head[i].mem_cgroup = head->mem_cgroup;
2389
2390 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2391 HPAGE_PMD_NR);
2392}
2393#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2394
2395#ifdef CONFIG_MEMCG_SWAP
2396static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2397 bool charge)
2398{
2399 int val = (charge) ? 1 : -1;
2400 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2401}
2402
2403/**
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from: mem_cgroup which the entry is moved from
2407 * @to: mem_cgroup which the entry is moved to
2408 *
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2411 *
2412 * Returns 0 on success, -EINVAL on failure.
2413 *
2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 * both res and memsw, and called css_get().
2416 */
2417static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418 struct mem_cgroup *from, struct mem_cgroup *to)
2419{
2420 unsigned short old_id, new_id;
2421
2422 old_id = mem_cgroup_id(from);
2423 new_id = mem_cgroup_id(to);
2424
2425 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426 mem_cgroup_swap_statistics(from, false);
2427 mem_cgroup_swap_statistics(to, true);
2428 return 0;
2429 }
2430 return -EINVAL;
2431}
2432#else
2433static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434 struct mem_cgroup *from, struct mem_cgroup *to)
2435{
2436 return -EINVAL;
2437}
2438#endif
2439
2440static DEFINE_MUTEX(memcg_limit_mutex);
2441
2442static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443 unsigned long limit)
2444{
2445 unsigned long curusage;
2446 unsigned long oldusage;
2447 bool enlarge = false;
2448 int retry_count;
2449 int ret;
2450
2451 /*
2452 * For keeping hierarchical_reclaim simple, how long we should retry
2453 * is depends on callers. We set our retry-count to be function
2454 * of # of children which we should visit in this loop.
2455 */
2456 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457 mem_cgroup_count_children(memcg);
2458
2459 oldusage = page_counter_read(&memcg->memory);
2460
2461 do {
2462 if (signal_pending(current)) {
2463 ret = -EINTR;
2464 break;
2465 }
2466
2467 mutex_lock(&memcg_limit_mutex);
2468 if (limit > memcg->memsw.limit) {
2469 mutex_unlock(&memcg_limit_mutex);
2470 ret = -EINVAL;
2471 break;
2472 }
2473 if (limit > memcg->memory.limit)
2474 enlarge = true;
2475 ret = page_counter_limit(&memcg->memory, limit);
2476 mutex_unlock(&memcg_limit_mutex);
2477
2478 if (!ret)
2479 break;
2480
2481 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482
2483 curusage = page_counter_read(&memcg->memory);
2484 /* Usage is reduced ? */
2485 if (curusage >= oldusage)
2486 retry_count--;
2487 else
2488 oldusage = curusage;
2489 } while (retry_count);
2490
2491 if (!ret && enlarge)
2492 memcg_oom_recover(memcg);
2493
2494 return ret;
2495}
2496
2497static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498 unsigned long limit)
2499{
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
2503 int retry_count;
2504 int ret;
2505
2506 /* see mem_cgroup_resize_res_limit */
2507 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508 mem_cgroup_count_children(memcg);
2509
2510 oldusage = page_counter_read(&memcg->memsw);
2511
2512 do {
2513 if (signal_pending(current)) {
2514 ret = -EINTR;
2515 break;
2516 }
2517
2518 mutex_lock(&memcg_limit_mutex);
2519 if (limit < memcg->memory.limit) {
2520 mutex_unlock(&memcg_limit_mutex);
2521 ret = -EINVAL;
2522 break;
2523 }
2524 if (limit > memcg->memsw.limit)
2525 enlarge = true;
2526 ret = page_counter_limit(&memcg->memsw, limit);
2527 mutex_unlock(&memcg_limit_mutex);
2528
2529 if (!ret)
2530 break;
2531
2532 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533
2534 curusage = page_counter_read(&memcg->memsw);
2535 /* Usage is reduced ? */
2536 if (curusage >= oldusage)
2537 retry_count--;
2538 else
2539 oldusage = curusage;
2540 } while (retry_count);
2541
2542 if (!ret && enlarge)
2543 memcg_oom_recover(memcg);
2544
2545 return ret;
2546}
2547
2548unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2549 gfp_t gfp_mask,
2550 unsigned long *total_scanned)
2551{
2552 unsigned long nr_reclaimed = 0;
2553 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2554 unsigned long reclaimed;
2555 int loop = 0;
2556 struct mem_cgroup_tree_per_zone *mctz;
2557 unsigned long excess;
2558 unsigned long nr_scanned;
2559
2560 if (order > 0)
2561 return 0;
2562
2563 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2564 /*
2565 * This loop can run a while, specially if mem_cgroup's continuously
2566 * keep exceeding their soft limit and putting the system under
2567 * pressure
2568 */
2569 do {
2570 if (next_mz)
2571 mz = next_mz;
2572 else
2573 mz = mem_cgroup_largest_soft_limit_node(mctz);
2574 if (!mz)
2575 break;
2576
2577 nr_scanned = 0;
2578 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2579 gfp_mask, &nr_scanned);
2580 nr_reclaimed += reclaimed;
2581 *total_scanned += nr_scanned;
2582 spin_lock_irq(&mctz->lock);
2583 __mem_cgroup_remove_exceeded(mz, mctz);
2584
2585 /*
2586 * If we failed to reclaim anything from this memory cgroup
2587 * it is time to move on to the next cgroup
2588 */
2589 next_mz = NULL;
2590 if (!reclaimed)
2591 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592
2593 excess = soft_limit_excess(mz->memcg);
2594 /*
2595 * One school of thought says that we should not add
2596 * back the node to the tree if reclaim returns 0.
2597 * But our reclaim could return 0, simply because due
2598 * to priority we are exposing a smaller subset of
2599 * memory to reclaim from. Consider this as a longer
2600 * term TODO.
2601 */
2602 /* If excess == 0, no tree ops */
2603 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2604 spin_unlock_irq(&mctz->lock);
2605 css_put(&mz->memcg->css);
2606 loop++;
2607 /*
2608 * Could not reclaim anything and there are no more
2609 * mem cgroups to try or we seem to be looping without
2610 * reclaiming anything.
2611 */
2612 if (!nr_reclaimed &&
2613 (next_mz == NULL ||
2614 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615 break;
2616 } while (!nr_reclaimed);
2617 if (next_mz)
2618 css_put(&next_mz->memcg->css);
2619 return nr_reclaimed;
2620}
2621
2622/*
2623 * Test whether @memcg has children, dead or alive. Note that this
2624 * function doesn't care whether @memcg has use_hierarchy enabled and
2625 * returns %true if there are child csses according to the cgroup
2626 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2627 */
2628static inline bool memcg_has_children(struct mem_cgroup *memcg)
2629{
2630 bool ret;
2631
2632 rcu_read_lock();
2633 ret = css_next_child(NULL, &memcg->css);
2634 rcu_read_unlock();
2635 return ret;
2636}
2637
2638/*
2639 * Reclaims as many pages from the given memcg as possible and moves
2640 * the rest to the parent.
2641 *
2642 * Caller is responsible for holding css reference for memcg.
2643 */
2644static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645{
2646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2647
2648 /* we call try-to-free pages for make this cgroup empty */
2649 lru_add_drain_all();
2650 /* try to free all pages in this cgroup */
2651 while (nr_retries && page_counter_read(&memcg->memory)) {
2652 int progress;
2653
2654 if (signal_pending(current))
2655 return -EINTR;
2656
2657 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658 GFP_KERNEL, true);
2659 if (!progress) {
2660 nr_retries--;
2661 /* maybe some writeback is necessary */
2662 congestion_wait(BLK_RW_ASYNC, HZ/10);
2663 }
2664
2665 }
2666
2667 return 0;
2668}
2669
2670static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671 char *buf, size_t nbytes,
2672 loff_t off)
2673{
2674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675
2676 if (mem_cgroup_is_root(memcg))
2677 return -EINVAL;
2678 return mem_cgroup_force_empty(memcg) ?: nbytes;
2679}
2680
2681static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 struct cftype *cft)
2683{
2684 return mem_cgroup_from_css(css)->use_hierarchy;
2685}
2686
2687static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688 struct cftype *cft, u64 val)
2689{
2690 int retval = 0;
2691 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693
2694 if (memcg->use_hierarchy == val)
2695 return 0;
2696
2697 /*
2698 * If parent's use_hierarchy is set, we can't make any modifications
2699 * in the child subtrees. If it is unset, then the change can
2700 * occur, provided the current cgroup has no children.
2701 *
2702 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 * set if there are no children.
2704 */
2705 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706 (val == 1 || val == 0)) {
2707 if (!memcg_has_children(memcg))
2708 memcg->use_hierarchy = val;
2709 else
2710 retval = -EBUSY;
2711 } else
2712 retval = -EINVAL;
2713
2714 return retval;
2715}
2716
2717static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718{
2719 struct mem_cgroup *iter;
2720 int i;
2721
2722 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723
2724 for_each_mem_cgroup_tree(iter, memcg) {
2725 for (i = 0; i < MEMCG_NR_STAT; i++)
2726 stat[i] += mem_cgroup_read_stat(iter, i);
2727 }
2728}
2729
2730static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731{
2732 struct mem_cgroup *iter;
2733 int i;
2734
2735 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739 events[i] += mem_cgroup_read_events(iter, i);
2740 }
2741}
2742
2743static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744{
2745 unsigned long val = 0;
2746
2747 if (mem_cgroup_is_root(memcg)) {
2748 struct mem_cgroup *iter;
2749
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_CACHE);
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_RSS);
2755 if (swap)
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_SWAP);
2758 }
2759 } else {
2760 if (!swap)
2761 val = page_counter_read(&memcg->memory);
2762 else
2763 val = page_counter_read(&memcg->memsw);
2764 }
2765 return val;
2766}
2767
2768enum {
2769 RES_USAGE,
2770 RES_LIMIT,
2771 RES_MAX_USAGE,
2772 RES_FAILCNT,
2773 RES_SOFT_LIMIT,
2774};
2775
2776static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777 struct cftype *cft)
2778{
2779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780 struct page_counter *counter;
2781
2782 switch (MEMFILE_TYPE(cft->private)) {
2783 case _MEM:
2784 counter = &memcg->memory;
2785 break;
2786 case _MEMSWAP:
2787 counter = &memcg->memsw;
2788 break;
2789 case _KMEM:
2790 counter = &memcg->kmem;
2791 break;
2792 case _TCP:
2793 counter = &memcg->tcpmem;
2794 break;
2795 default:
2796 BUG();
2797 }
2798
2799 switch (MEMFILE_ATTR(cft->private)) {
2800 case RES_USAGE:
2801 if (counter == &memcg->memory)
2802 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803 if (counter == &memcg->memsw)
2804 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805 return (u64)page_counter_read(counter) * PAGE_SIZE;
2806 case RES_LIMIT:
2807 return (u64)counter->limit * PAGE_SIZE;
2808 case RES_MAX_USAGE:
2809 return (u64)counter->watermark * PAGE_SIZE;
2810 case RES_FAILCNT:
2811 return counter->failcnt;
2812 case RES_SOFT_LIMIT:
2813 return (u64)memcg->soft_limit * PAGE_SIZE;
2814 default:
2815 BUG();
2816 }
2817}
2818
2819#ifndef CONFIG_SLOB
2820static int memcg_online_kmem(struct mem_cgroup *memcg)
2821{
2822 int memcg_id;
2823
2824 if (cgroup_memory_nokmem)
2825 return 0;
2826
2827 BUG_ON(memcg->kmemcg_id >= 0);
2828 BUG_ON(memcg->kmem_state);
2829
2830 memcg_id = memcg_alloc_cache_id();
2831 if (memcg_id < 0)
2832 return memcg_id;
2833
2834 static_branch_inc(&memcg_kmem_enabled_key);
2835 /*
2836 * A memory cgroup is considered kmem-online as soon as it gets
2837 * kmemcg_id. Setting the id after enabling static branching will
2838 * guarantee no one starts accounting before all call sites are
2839 * patched.
2840 */
2841 memcg->kmemcg_id = memcg_id;
2842 memcg->kmem_state = KMEM_ONLINE;
2843
2844 return 0;
2845}
2846
2847static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848{
2849 struct cgroup_subsys_state *css;
2850 struct mem_cgroup *parent, *child;
2851 int kmemcg_id;
2852
2853 if (memcg->kmem_state != KMEM_ONLINE)
2854 return;
2855 /*
2856 * Clear the online state before clearing memcg_caches array
2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 * guarantees that no cache will be created for this cgroup
2859 * after we are done (see memcg_create_kmem_cache()).
2860 */
2861 memcg->kmem_state = KMEM_ALLOCATED;
2862
2863 memcg_deactivate_kmem_caches(memcg);
2864
2865 kmemcg_id = memcg->kmemcg_id;
2866 BUG_ON(kmemcg_id < 0);
2867
2868 parent = parent_mem_cgroup(memcg);
2869 if (!parent)
2870 parent = root_mem_cgroup;
2871
2872 /*
2873 * Change kmemcg_id of this cgroup and all its descendants to the
2874 * parent's id, and then move all entries from this cgroup's list_lrus
2875 * to ones of the parent. After we have finished, all list_lrus
2876 * corresponding to this cgroup are guaranteed to remain empty. The
2877 * ordering is imposed by list_lru_node->lock taken by
2878 * memcg_drain_all_list_lrus().
2879 */
2880 css_for_each_descendant_pre(css, &memcg->css) {
2881 child = mem_cgroup_from_css(css);
2882 BUG_ON(child->kmemcg_id != kmemcg_id);
2883 child->kmemcg_id = parent->kmemcg_id;
2884 if (!memcg->use_hierarchy)
2885 break;
2886 }
2887 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889 memcg_free_cache_id(kmemcg_id);
2890}
2891
2892static void memcg_free_kmem(struct mem_cgroup *memcg)
2893{
2894 /* css_alloc() failed, offlining didn't happen */
2895 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896 memcg_offline_kmem(memcg);
2897
2898 if (memcg->kmem_state == KMEM_ALLOCATED) {
2899 memcg_destroy_kmem_caches(memcg);
2900 static_branch_dec(&memcg_kmem_enabled_key);
2901 WARN_ON(page_counter_read(&memcg->kmem));
2902 }
2903}
2904#else
2905static int memcg_online_kmem(struct mem_cgroup *memcg)
2906{
2907 return 0;
2908}
2909static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910{
2911}
2912static void memcg_free_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915#endif /* !CONFIG_SLOB */
2916
2917static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918 unsigned long limit)
2919{
2920 int ret;
2921
2922 mutex_lock(&memcg_limit_mutex);
2923 ret = page_counter_limit(&memcg->kmem, limit);
2924 mutex_unlock(&memcg_limit_mutex);
2925 return ret;
2926}
2927
2928static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929{
2930 int ret;
2931
2932 mutex_lock(&memcg_limit_mutex);
2933
2934 ret = page_counter_limit(&memcg->tcpmem, limit);
2935 if (ret)
2936 goto out;
2937
2938 if (!memcg->tcpmem_active) {
2939 /*
2940 * The active flag needs to be written after the static_key
2941 * update. This is what guarantees that the socket activation
2942 * function is the last one to run. See sock_update_memcg() for
2943 * details, and note that we don't mark any socket as belonging
2944 * to this memcg until that flag is up.
2945 *
2946 * We need to do this, because static_keys will span multiple
2947 * sites, but we can't control their order. If we mark a socket
2948 * as accounted, but the accounting functions are not patched in
2949 * yet, we'll lose accounting.
2950 *
2951 * We never race with the readers in sock_update_memcg(),
2952 * because when this value change, the code to process it is not
2953 * patched in yet.
2954 */
2955 static_branch_inc(&memcg_sockets_enabled_key);
2956 memcg->tcpmem_active = true;
2957 }
2958out:
2959 mutex_unlock(&memcg_limit_mutex);
2960 return ret;
2961}
2962
2963/*
2964 * The user of this function is...
2965 * RES_LIMIT.
2966 */
2967static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968 char *buf, size_t nbytes, loff_t off)
2969{
2970 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971 unsigned long nr_pages;
2972 int ret;
2973
2974 buf = strstrip(buf);
2975 ret = page_counter_memparse(buf, "-1", &nr_pages);
2976 if (ret)
2977 return ret;
2978
2979 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980 case RES_LIMIT:
2981 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982 ret = -EINVAL;
2983 break;
2984 }
2985 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986 case _MEM:
2987 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988 break;
2989 case _MEMSWAP:
2990 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991 break;
2992 case _KMEM:
2993 ret = memcg_update_kmem_limit(memcg, nr_pages);
2994 break;
2995 case _TCP:
2996 ret = memcg_update_tcp_limit(memcg, nr_pages);
2997 break;
2998 }
2999 break;
3000 case RES_SOFT_LIMIT:
3001 memcg->soft_limit = nr_pages;
3002 ret = 0;
3003 break;
3004 }
3005 return ret ?: nbytes;
3006}
3007
3008static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 size_t nbytes, loff_t off)
3010{
3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012 struct page_counter *counter;
3013
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 counter = &memcg->memory;
3017 break;
3018 case _MEMSWAP:
3019 counter = &memcg->memsw;
3020 break;
3021 case _KMEM:
3022 counter = &memcg->kmem;
3023 break;
3024 case _TCP:
3025 counter = &memcg->tcpmem;
3026 break;
3027 default:
3028 BUG();
3029 }
3030
3031 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032 case RES_MAX_USAGE:
3033 page_counter_reset_watermark(counter);
3034 break;
3035 case RES_FAILCNT:
3036 counter->failcnt = 0;
3037 break;
3038 default:
3039 BUG();
3040 }
3041
3042 return nbytes;
3043}
3044
3045static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046 struct cftype *cft)
3047{
3048 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049}
3050
3051#ifdef CONFIG_MMU
3052static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053 struct cftype *cft, u64 val)
3054{
3055 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057 if (val & ~MOVE_MASK)
3058 return -EINVAL;
3059
3060 /*
3061 * No kind of locking is needed in here, because ->can_attach() will
3062 * check this value once in the beginning of the process, and then carry
3063 * on with stale data. This means that changes to this value will only
3064 * affect task migrations starting after the change.
3065 */
3066 memcg->move_charge_at_immigrate = val;
3067 return 0;
3068}
3069#else
3070static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071 struct cftype *cft, u64 val)
3072{
3073 return -ENOSYS;
3074}
3075#endif
3076
3077#ifdef CONFIG_NUMA
3078static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079{
3080 struct numa_stat {
3081 const char *name;
3082 unsigned int lru_mask;
3083 };
3084
3085 static const struct numa_stat stats[] = {
3086 { "total", LRU_ALL },
3087 { "file", LRU_ALL_FILE },
3088 { "anon", LRU_ALL_ANON },
3089 { "unevictable", BIT(LRU_UNEVICTABLE) },
3090 };
3091 const struct numa_stat *stat;
3092 int nid;
3093 unsigned long nr;
3094 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098 seq_printf(m, "%s=%lu", stat->name, nr);
3099 for_each_node_state(nid, N_MEMORY) {
3100 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101 stat->lru_mask);
3102 seq_printf(m, " N%d=%lu", nid, nr);
3103 }
3104 seq_putc(m, '\n');
3105 }
3106
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 struct mem_cgroup *iter;
3109
3110 nr = 0;
3111 for_each_mem_cgroup_tree(iter, memcg)
3112 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114 for_each_node_state(nid, N_MEMORY) {
3115 nr = 0;
3116 for_each_mem_cgroup_tree(iter, memcg)
3117 nr += mem_cgroup_node_nr_lru_pages(
3118 iter, nid, stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
3122 }
3123
3124 return 0;
3125}
3126#endif /* CONFIG_NUMA */
3127
3128static int memcg_stat_show(struct seq_file *m, void *v)
3129{
3130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131 unsigned long memory, memsw;
3132 struct mem_cgroup *mi;
3133 unsigned int i;
3134
3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136 MEM_CGROUP_STAT_NSTATS);
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138 MEM_CGROUP_EVENTS_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143 continue;
3144 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146 }
3147
3148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150 mem_cgroup_read_events(memcg, i));
3151
3152 for (i = 0; i < NR_LRU_LISTS; i++)
3153 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156 /* Hierarchical information */
3157 memory = memsw = PAGE_COUNTER_MAX;
3158 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159 memory = min(memory, mi->memory.limit);
3160 memsw = min(memsw, mi->memsw.limit);
3161 }
3162 seq_printf(m, "hierarchical_memory_limit %llu\n",
3163 (u64)memory * PAGE_SIZE);
3164 if (do_memsw_account())
3165 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166 (u64)memsw * PAGE_SIZE);
3167
3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169 unsigned long long val = 0;
3170
3171 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172 continue;
3173 for_each_mem_cgroup_tree(mi, memcg)
3174 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176 }
3177
3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179 unsigned long long val = 0;
3180
3181 for_each_mem_cgroup_tree(mi, memcg)
3182 val += mem_cgroup_read_events(mi, i);
3183 seq_printf(m, "total_%s %llu\n",
3184 mem_cgroup_events_names[i], val);
3185 }
3186
3187 for (i = 0; i < NR_LRU_LISTS; i++) {
3188 unsigned long long val = 0;
3189
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193 }
3194
3195#ifdef CONFIG_DEBUG_VM
3196 {
3197 int nid, zid;
3198 struct mem_cgroup_per_zone *mz;
3199 struct zone_reclaim_stat *rstat;
3200 unsigned long recent_rotated[2] = {0, 0};
3201 unsigned long recent_scanned[2] = {0, 0};
3202
3203 for_each_online_node(nid)
3204 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3205 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3206 rstat = &mz->lruvec.reclaim_stat;
3207
3208 recent_rotated[0] += rstat->recent_rotated[0];
3209 recent_rotated[1] += rstat->recent_rotated[1];
3210 recent_scanned[0] += rstat->recent_scanned[0];
3211 recent_scanned[1] += rstat->recent_scanned[1];
3212 }
3213 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3214 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3215 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3216 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3217 }
3218#endif
3219
3220 return 0;
3221}
3222
3223static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3224 struct cftype *cft)
3225{
3226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3227
3228 return mem_cgroup_swappiness(memcg);
3229}
3230
3231static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3232 struct cftype *cft, u64 val)
3233{
3234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3235
3236 if (val > 100)
3237 return -EINVAL;
3238
3239 if (css->parent)
3240 memcg->swappiness = val;
3241 else
3242 vm_swappiness = val;
3243
3244 return 0;
3245}
3246
3247static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3248{
3249 struct mem_cgroup_threshold_ary *t;
3250 unsigned long usage;
3251 int i;
3252
3253 rcu_read_lock();
3254 if (!swap)
3255 t = rcu_dereference(memcg->thresholds.primary);
3256 else
3257 t = rcu_dereference(memcg->memsw_thresholds.primary);
3258
3259 if (!t)
3260 goto unlock;
3261
3262 usage = mem_cgroup_usage(memcg, swap);
3263
3264 /*
3265 * current_threshold points to threshold just below or equal to usage.
3266 * If it's not true, a threshold was crossed after last
3267 * call of __mem_cgroup_threshold().
3268 */
3269 i = t->current_threshold;
3270
3271 /*
3272 * Iterate backward over array of thresholds starting from
3273 * current_threshold and check if a threshold is crossed.
3274 * If none of thresholds below usage is crossed, we read
3275 * only one element of the array here.
3276 */
3277 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3278 eventfd_signal(t->entries[i].eventfd, 1);
3279
3280 /* i = current_threshold + 1 */
3281 i++;
3282
3283 /*
3284 * Iterate forward over array of thresholds starting from
3285 * current_threshold+1 and check if a threshold is crossed.
3286 * If none of thresholds above usage is crossed, we read
3287 * only one element of the array here.
3288 */
3289 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3290 eventfd_signal(t->entries[i].eventfd, 1);
3291
3292 /* Update current_threshold */
3293 t->current_threshold = i - 1;
3294unlock:
3295 rcu_read_unlock();
3296}
3297
3298static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3299{
3300 while (memcg) {
3301 __mem_cgroup_threshold(memcg, false);
3302 if (do_memsw_account())
3303 __mem_cgroup_threshold(memcg, true);
3304
3305 memcg = parent_mem_cgroup(memcg);
3306 }
3307}
3308
3309static int compare_thresholds(const void *a, const void *b)
3310{
3311 const struct mem_cgroup_threshold *_a = a;
3312 const struct mem_cgroup_threshold *_b = b;
3313
3314 if (_a->threshold > _b->threshold)
3315 return 1;
3316
3317 if (_a->threshold < _b->threshold)
3318 return -1;
3319
3320 return 0;
3321}
3322
3323static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3324{
3325 struct mem_cgroup_eventfd_list *ev;
3326
3327 spin_lock(&memcg_oom_lock);
3328
3329 list_for_each_entry(ev, &memcg->oom_notify, list)
3330 eventfd_signal(ev->eventfd, 1);
3331
3332 spin_unlock(&memcg_oom_lock);
3333 return 0;
3334}
3335
3336static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3337{
3338 struct mem_cgroup *iter;
3339
3340 for_each_mem_cgroup_tree(iter, memcg)
3341 mem_cgroup_oom_notify_cb(iter);
3342}
3343
3344static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3345 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3346{
3347 struct mem_cgroup_thresholds *thresholds;
3348 struct mem_cgroup_threshold_ary *new;
3349 unsigned long threshold;
3350 unsigned long usage;
3351 int i, size, ret;
3352
3353 ret = page_counter_memparse(args, "-1", &threshold);
3354 if (ret)
3355 return ret;
3356
3357 mutex_lock(&memcg->thresholds_lock);
3358
3359 if (type == _MEM) {
3360 thresholds = &memcg->thresholds;
3361 usage = mem_cgroup_usage(memcg, false);
3362 } else if (type == _MEMSWAP) {
3363 thresholds = &memcg->memsw_thresholds;
3364 usage = mem_cgroup_usage(memcg, true);
3365 } else
3366 BUG();
3367
3368 /* Check if a threshold crossed before adding a new one */
3369 if (thresholds->primary)
3370 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3371
3372 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3373
3374 /* Allocate memory for new array of thresholds */
3375 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376 GFP_KERNEL);
3377 if (!new) {
3378 ret = -ENOMEM;
3379 goto unlock;
3380 }
3381 new->size = size;
3382
3383 /* Copy thresholds (if any) to new array */
3384 if (thresholds->primary) {
3385 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386 sizeof(struct mem_cgroup_threshold));
3387 }
3388
3389 /* Add new threshold */
3390 new->entries[size - 1].eventfd = eventfd;
3391 new->entries[size - 1].threshold = threshold;
3392
3393 /* Sort thresholds. Registering of new threshold isn't time-critical */
3394 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395 compare_thresholds, NULL);
3396
3397 /* Find current threshold */
3398 new->current_threshold = -1;
3399 for (i = 0; i < size; i++) {
3400 if (new->entries[i].threshold <= usage) {
3401 /*
3402 * new->current_threshold will not be used until
3403 * rcu_assign_pointer(), so it's safe to increment
3404 * it here.
3405 */
3406 ++new->current_threshold;
3407 } else
3408 break;
3409 }
3410
3411 /* Free old spare buffer and save old primary buffer as spare */
3412 kfree(thresholds->spare);
3413 thresholds->spare = thresholds->primary;
3414
3415 rcu_assign_pointer(thresholds->primary, new);
3416
3417 /* To be sure that nobody uses thresholds */
3418 synchronize_rcu();
3419
3420unlock:
3421 mutex_unlock(&memcg->thresholds_lock);
3422
3423 return ret;
3424}
3425
3426static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3427 struct eventfd_ctx *eventfd, const char *args)
3428{
3429 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3430}
3431
3432static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3433 struct eventfd_ctx *eventfd, const char *args)
3434{
3435 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3436}
3437
3438static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3439 struct eventfd_ctx *eventfd, enum res_type type)
3440{
3441 struct mem_cgroup_thresholds *thresholds;
3442 struct mem_cgroup_threshold_ary *new;
3443 unsigned long usage;
3444 int i, j, size;
3445
3446 mutex_lock(&memcg->thresholds_lock);
3447
3448 if (type == _MEM) {
3449 thresholds = &memcg->thresholds;
3450 usage = mem_cgroup_usage(memcg, false);
3451 } else if (type == _MEMSWAP) {
3452 thresholds = &memcg->memsw_thresholds;
3453 usage = mem_cgroup_usage(memcg, true);
3454 } else
3455 BUG();
3456
3457 if (!thresholds->primary)
3458 goto unlock;
3459
3460 /* Check if a threshold crossed before removing */
3461 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3462
3463 /* Calculate new number of threshold */
3464 size = 0;
3465 for (i = 0; i < thresholds->primary->size; i++) {
3466 if (thresholds->primary->entries[i].eventfd != eventfd)
3467 size++;
3468 }
3469
3470 new = thresholds->spare;
3471
3472 /* Set thresholds array to NULL if we don't have thresholds */
3473 if (!size) {
3474 kfree(new);
3475 new = NULL;
3476 goto swap_buffers;
3477 }
3478
3479 new->size = size;
3480
3481 /* Copy thresholds and find current threshold */
3482 new->current_threshold = -1;
3483 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3484 if (thresholds->primary->entries[i].eventfd == eventfd)
3485 continue;
3486
3487 new->entries[j] = thresholds->primary->entries[i];
3488 if (new->entries[j].threshold <= usage) {
3489 /*
3490 * new->current_threshold will not be used
3491 * until rcu_assign_pointer(), so it's safe to increment
3492 * it here.
3493 */
3494 ++new->current_threshold;
3495 }
3496 j++;
3497 }
3498
3499swap_buffers:
3500 /* Swap primary and spare array */
3501 thresholds->spare = thresholds->primary;
3502
3503 rcu_assign_pointer(thresholds->primary, new);
3504
3505 /* To be sure that nobody uses thresholds */
3506 synchronize_rcu();
3507
3508 /* If all events are unregistered, free the spare array */
3509 if (!new) {
3510 kfree(thresholds->spare);
3511 thresholds->spare = NULL;
3512 }
3513unlock:
3514 mutex_unlock(&memcg->thresholds_lock);
3515}
3516
3517static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518 struct eventfd_ctx *eventfd)
3519{
3520 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3521}
3522
3523static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3524 struct eventfd_ctx *eventfd)
3525{
3526 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3527}
3528
3529static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3530 struct eventfd_ctx *eventfd, const char *args)
3531{
3532 struct mem_cgroup_eventfd_list *event;
3533
3534 event = kmalloc(sizeof(*event), GFP_KERNEL);
3535 if (!event)
3536 return -ENOMEM;
3537
3538 spin_lock(&memcg_oom_lock);
3539
3540 event->eventfd = eventfd;
3541 list_add(&event->list, &memcg->oom_notify);
3542
3543 /* already in OOM ? */
3544 if (memcg->under_oom)
3545 eventfd_signal(eventfd, 1);
3546 spin_unlock(&memcg_oom_lock);
3547
3548 return 0;
3549}
3550
3551static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3552 struct eventfd_ctx *eventfd)
3553{
3554 struct mem_cgroup_eventfd_list *ev, *tmp;
3555
3556 spin_lock(&memcg_oom_lock);
3557
3558 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3559 if (ev->eventfd == eventfd) {
3560 list_del(&ev->list);
3561 kfree(ev);
3562 }
3563 }
3564
3565 spin_unlock(&memcg_oom_lock);
3566}
3567
3568static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3569{
3570 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3571
3572 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3574 return 0;
3575}
3576
3577static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578 struct cftype *cft, u64 val)
3579{
3580 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3581
3582 /* cannot set to root cgroup and only 0 and 1 are allowed */
3583 if (!css->parent || !((val == 0) || (val == 1)))
3584 return -EINVAL;
3585
3586 memcg->oom_kill_disable = val;
3587 if (!val)
3588 memcg_oom_recover(memcg);
3589
3590 return 0;
3591}
3592
3593#ifdef CONFIG_CGROUP_WRITEBACK
3594
3595struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3596{
3597 return &memcg->cgwb_list;
3598}
3599
3600static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3601{
3602 return wb_domain_init(&memcg->cgwb_domain, gfp);
3603}
3604
3605static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3606{
3607 wb_domain_exit(&memcg->cgwb_domain);
3608}
3609
3610static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3611{
3612 wb_domain_size_changed(&memcg->cgwb_domain);
3613}
3614
3615struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3616{
3617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618
3619 if (!memcg->css.parent)
3620 return NULL;
3621
3622 return &memcg->cgwb_domain;
3623}
3624
3625/**
3626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627 * @wb: bdi_writeback in question
3628 * @pfilepages: out parameter for number of file pages
3629 * @pheadroom: out parameter for number of allocatable pages according to memcg
3630 * @pdirty: out parameter for number of dirty pages
3631 * @pwriteback: out parameter for number of pages under writeback
3632 *
3633 * Determine the numbers of file, headroom, dirty, and writeback pages in
3634 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3635 * is a bit more involved.
3636 *
3637 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3638 * headroom is calculated as the lowest headroom of itself and the
3639 * ancestors. Note that this doesn't consider the actual amount of
3640 * available memory in the system. The caller should further cap
3641 * *@pheadroom accordingly.
3642 */
3643void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3644 unsigned long *pheadroom, unsigned long *pdirty,
3645 unsigned long *pwriteback)
3646{
3647 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648 struct mem_cgroup *parent;
3649
3650 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3651
3652 /* this should eventually include NR_UNSTABLE_NFS */
3653 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3655 (1 << LRU_ACTIVE_FILE));
3656 *pheadroom = PAGE_COUNTER_MAX;
3657
3658 while ((parent = parent_mem_cgroup(memcg))) {
3659 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3660 unsigned long used = page_counter_read(&memcg->memory);
3661
3662 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663 memcg = parent;
3664 }
3665}
3666
3667#else /* CONFIG_CGROUP_WRITEBACK */
3668
3669static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3670{
3671 return 0;
3672}
3673
3674static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3675{
3676}
3677
3678static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3679{
3680}
3681
3682#endif /* CONFIG_CGROUP_WRITEBACK */
3683
3684/*
3685 * DO NOT USE IN NEW FILES.
3686 *
3687 * "cgroup.event_control" implementation.
3688 *
3689 * This is way over-engineered. It tries to support fully configurable
3690 * events for each user. Such level of flexibility is completely
3691 * unnecessary especially in the light of the planned unified hierarchy.
3692 *
3693 * Please deprecate this and replace with something simpler if at all
3694 * possible.
3695 */
3696
3697/*
3698 * Unregister event and free resources.
3699 *
3700 * Gets called from workqueue.
3701 */
3702static void memcg_event_remove(struct work_struct *work)
3703{
3704 struct mem_cgroup_event *event =
3705 container_of(work, struct mem_cgroup_event, remove);
3706 struct mem_cgroup *memcg = event->memcg;
3707
3708 remove_wait_queue(event->wqh, &event->wait);
3709
3710 event->unregister_event(memcg, event->eventfd);
3711
3712 /* Notify userspace the event is going away. */
3713 eventfd_signal(event->eventfd, 1);
3714
3715 eventfd_ctx_put(event->eventfd);
3716 kfree(event);
3717 css_put(&memcg->css);
3718}
3719
3720/*
3721 * Gets called on POLLHUP on eventfd when user closes it.
3722 *
3723 * Called with wqh->lock held and interrupts disabled.
3724 */
3725static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3726 int sync, void *key)
3727{
3728 struct mem_cgroup_event *event =
3729 container_of(wait, struct mem_cgroup_event, wait);
3730 struct mem_cgroup *memcg = event->memcg;
3731 unsigned long flags = (unsigned long)key;
3732
3733 if (flags & POLLHUP) {
3734 /*
3735 * If the event has been detached at cgroup removal, we
3736 * can simply return knowing the other side will cleanup
3737 * for us.
3738 *
3739 * We can't race against event freeing since the other
3740 * side will require wqh->lock via remove_wait_queue(),
3741 * which we hold.
3742 */
3743 spin_lock(&memcg->event_list_lock);
3744 if (!list_empty(&event->list)) {
3745 list_del_init(&event->list);
3746 /*
3747 * We are in atomic context, but cgroup_event_remove()
3748 * may sleep, so we have to call it in workqueue.
3749 */
3750 schedule_work(&event->remove);
3751 }
3752 spin_unlock(&memcg->event_list_lock);
3753 }
3754
3755 return 0;
3756}
3757
3758static void memcg_event_ptable_queue_proc(struct file *file,
3759 wait_queue_head_t *wqh, poll_table *pt)
3760{
3761 struct mem_cgroup_event *event =
3762 container_of(pt, struct mem_cgroup_event, pt);
3763
3764 event->wqh = wqh;
3765 add_wait_queue(wqh, &event->wait);
3766}
3767
3768/*
3769 * DO NOT USE IN NEW FILES.
3770 *
3771 * Parse input and register new cgroup event handler.
3772 *
3773 * Input must be in format '<event_fd> <control_fd> <args>'.
3774 * Interpretation of args is defined by control file implementation.
3775 */
3776static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3777 char *buf, size_t nbytes, loff_t off)
3778{
3779 struct cgroup_subsys_state *css = of_css(of);
3780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781 struct mem_cgroup_event *event;
3782 struct cgroup_subsys_state *cfile_css;
3783 unsigned int efd, cfd;
3784 struct fd efile;
3785 struct fd cfile;
3786 const char *name;
3787 char *endp;
3788 int ret;
3789
3790 buf = strstrip(buf);
3791
3792 efd = simple_strtoul(buf, &endp, 10);
3793 if (*endp != ' ')
3794 return -EINVAL;
3795 buf = endp + 1;
3796
3797 cfd = simple_strtoul(buf, &endp, 10);
3798 if ((*endp != ' ') && (*endp != '\0'))
3799 return -EINVAL;
3800 buf = endp + 1;
3801
3802 event = kzalloc(sizeof(*event), GFP_KERNEL);
3803 if (!event)
3804 return -ENOMEM;
3805
3806 event->memcg = memcg;
3807 INIT_LIST_HEAD(&event->list);
3808 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3809 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3810 INIT_WORK(&event->remove, memcg_event_remove);
3811
3812 efile = fdget(efd);
3813 if (!efile.file) {
3814 ret = -EBADF;
3815 goto out_kfree;
3816 }
3817
3818 event->eventfd = eventfd_ctx_fileget(efile.file);
3819 if (IS_ERR(event->eventfd)) {
3820 ret = PTR_ERR(event->eventfd);
3821 goto out_put_efile;
3822 }
3823
3824 cfile = fdget(cfd);
3825 if (!cfile.file) {
3826 ret = -EBADF;
3827 goto out_put_eventfd;
3828 }
3829
3830 /* the process need read permission on control file */
3831 /* AV: shouldn't we check that it's been opened for read instead? */
3832 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3833 if (ret < 0)
3834 goto out_put_cfile;
3835
3836 /*
3837 * Determine the event callbacks and set them in @event. This used
3838 * to be done via struct cftype but cgroup core no longer knows
3839 * about these events. The following is crude but the whole thing
3840 * is for compatibility anyway.
3841 *
3842 * DO NOT ADD NEW FILES.
3843 */
3844 name = cfile.file->f_path.dentry->d_name.name;
3845
3846 if (!strcmp(name, "memory.usage_in_bytes")) {
3847 event->register_event = mem_cgroup_usage_register_event;
3848 event->unregister_event = mem_cgroup_usage_unregister_event;
3849 } else if (!strcmp(name, "memory.oom_control")) {
3850 event->register_event = mem_cgroup_oom_register_event;
3851 event->unregister_event = mem_cgroup_oom_unregister_event;
3852 } else if (!strcmp(name, "memory.pressure_level")) {
3853 event->register_event = vmpressure_register_event;
3854 event->unregister_event = vmpressure_unregister_event;
3855 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3856 event->register_event = memsw_cgroup_usage_register_event;
3857 event->unregister_event = memsw_cgroup_usage_unregister_event;
3858 } else {
3859 ret = -EINVAL;
3860 goto out_put_cfile;
3861 }
3862
3863 /*
3864 * Verify @cfile should belong to @css. Also, remaining events are
3865 * automatically removed on cgroup destruction but the removal is
3866 * asynchronous, so take an extra ref on @css.
3867 */
3868 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869 &memory_cgrp_subsys);
3870 ret = -EINVAL;
3871 if (IS_ERR(cfile_css))
3872 goto out_put_cfile;
3873 if (cfile_css != css) {
3874 css_put(cfile_css);
3875 goto out_put_cfile;
3876 }
3877
3878 ret = event->register_event(memcg, event->eventfd, buf);
3879 if (ret)
3880 goto out_put_css;
3881
3882 efile.file->f_op->poll(efile.file, &event->pt);
3883
3884 spin_lock(&memcg->event_list_lock);
3885 list_add(&event->list, &memcg->event_list);
3886 spin_unlock(&memcg->event_list_lock);
3887
3888 fdput(cfile);
3889 fdput(efile);
3890
3891 return nbytes;
3892
3893out_put_css:
3894 css_put(css);
3895out_put_cfile:
3896 fdput(cfile);
3897out_put_eventfd:
3898 eventfd_ctx_put(event->eventfd);
3899out_put_efile:
3900 fdput(efile);
3901out_kfree:
3902 kfree(event);
3903
3904 return ret;
3905}
3906
3907static struct cftype mem_cgroup_legacy_files[] = {
3908 {
3909 .name = "usage_in_bytes",
3910 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911 .read_u64 = mem_cgroup_read_u64,
3912 },
3913 {
3914 .name = "max_usage_in_bytes",
3915 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916 .write = mem_cgroup_reset,
3917 .read_u64 = mem_cgroup_read_u64,
3918 },
3919 {
3920 .name = "limit_in_bytes",
3921 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922 .write = mem_cgroup_write,
3923 .read_u64 = mem_cgroup_read_u64,
3924 },
3925 {
3926 .name = "soft_limit_in_bytes",
3927 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928 .write = mem_cgroup_write,
3929 .read_u64 = mem_cgroup_read_u64,
3930 },
3931 {
3932 .name = "failcnt",
3933 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934 .write = mem_cgroup_reset,
3935 .read_u64 = mem_cgroup_read_u64,
3936 },
3937 {
3938 .name = "stat",
3939 .seq_show = memcg_stat_show,
3940 },
3941 {
3942 .name = "force_empty",
3943 .write = mem_cgroup_force_empty_write,
3944 },
3945 {
3946 .name = "use_hierarchy",
3947 .write_u64 = mem_cgroup_hierarchy_write,
3948 .read_u64 = mem_cgroup_hierarchy_read,
3949 },
3950 {
3951 .name = "cgroup.event_control", /* XXX: for compat */
3952 .write = memcg_write_event_control,
3953 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3954 },
3955 {
3956 .name = "swappiness",
3957 .read_u64 = mem_cgroup_swappiness_read,
3958 .write_u64 = mem_cgroup_swappiness_write,
3959 },
3960 {
3961 .name = "move_charge_at_immigrate",
3962 .read_u64 = mem_cgroup_move_charge_read,
3963 .write_u64 = mem_cgroup_move_charge_write,
3964 },
3965 {
3966 .name = "oom_control",
3967 .seq_show = mem_cgroup_oom_control_read,
3968 .write_u64 = mem_cgroup_oom_control_write,
3969 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3970 },
3971 {
3972 .name = "pressure_level",
3973 },
3974#ifdef CONFIG_NUMA
3975 {
3976 .name = "numa_stat",
3977 .seq_show = memcg_numa_stat_show,
3978 },
3979#endif
3980 {
3981 .name = "kmem.limit_in_bytes",
3982 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983 .write = mem_cgroup_write,
3984 .read_u64 = mem_cgroup_read_u64,
3985 },
3986 {
3987 .name = "kmem.usage_in_bytes",
3988 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989 .read_u64 = mem_cgroup_read_u64,
3990 },
3991 {
3992 .name = "kmem.failcnt",
3993 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994 .write = mem_cgroup_reset,
3995 .read_u64 = mem_cgroup_read_u64,
3996 },
3997 {
3998 .name = "kmem.max_usage_in_bytes",
3999 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000 .write = mem_cgroup_reset,
4001 .read_u64 = mem_cgroup_read_u64,
4002 },
4003#ifdef CONFIG_SLABINFO
4004 {
4005 .name = "kmem.slabinfo",
4006 .seq_start = slab_start,
4007 .seq_next = slab_next,
4008 .seq_stop = slab_stop,
4009 .seq_show = memcg_slab_show,
4010 },
4011#endif
4012 {
4013 .name = "kmem.tcp.limit_in_bytes",
4014 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4015 .write = mem_cgroup_write,
4016 .read_u64 = mem_cgroup_read_u64,
4017 },
4018 {
4019 .name = "kmem.tcp.usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4021 .read_u64 = mem_cgroup_read_u64,
4022 },
4023 {
4024 .name = "kmem.tcp.failcnt",
4025 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4026 .write = mem_cgroup_reset,
4027 .read_u64 = mem_cgroup_read_u64,
4028 },
4029 {
4030 .name = "kmem.tcp.max_usage_in_bytes",
4031 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4032 .write = mem_cgroup_reset,
4033 .read_u64 = mem_cgroup_read_u64,
4034 },
4035 { }, /* terminate */
4036};
4037
4038static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4039{
4040 struct mem_cgroup_per_node *pn;
4041 struct mem_cgroup_per_zone *mz;
4042 int zone, tmp = node;
4043 /*
4044 * This routine is called against possible nodes.
4045 * But it's BUG to call kmalloc() against offline node.
4046 *
4047 * TODO: this routine can waste much memory for nodes which will
4048 * never be onlined. It's better to use memory hotplug callback
4049 * function.
4050 */
4051 if (!node_state(node, N_NORMAL_MEMORY))
4052 tmp = -1;
4053 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4054 if (!pn)
4055 return 1;
4056
4057 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4058 mz = &pn->zoneinfo[zone];
4059 lruvec_init(&mz->lruvec);
4060 mz->usage_in_excess = 0;
4061 mz->on_tree = false;
4062 mz->memcg = memcg;
4063 }
4064 memcg->nodeinfo[node] = pn;
4065 return 0;
4066}
4067
4068static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4069{
4070 kfree(memcg->nodeinfo[node]);
4071}
4072
4073static void mem_cgroup_free(struct mem_cgroup *memcg)
4074{
4075 int node;
4076
4077 memcg_wb_domain_exit(memcg);
4078 for_each_node(node)
4079 free_mem_cgroup_per_zone_info(memcg, node);
4080 free_percpu(memcg->stat);
4081 kfree(memcg);
4082}
4083
4084static struct mem_cgroup *mem_cgroup_alloc(void)
4085{
4086 struct mem_cgroup *memcg;
4087 size_t size;
4088 int node;
4089
4090 size = sizeof(struct mem_cgroup);
4091 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4092
4093 memcg = kzalloc(size, GFP_KERNEL);
4094 if (!memcg)
4095 return NULL;
4096
4097 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4098 if (!memcg->stat)
4099 goto fail;
4100
4101 for_each_node(node)
4102 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4103 goto fail;
4104
4105 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4106 goto fail;
4107
4108 INIT_WORK(&memcg->high_work, high_work_func);
4109 memcg->last_scanned_node = MAX_NUMNODES;
4110 INIT_LIST_HEAD(&memcg->oom_notify);
4111 mutex_init(&memcg->thresholds_lock);
4112 spin_lock_init(&memcg->move_lock);
4113 vmpressure_init(&memcg->vmpressure);
4114 INIT_LIST_HEAD(&memcg->event_list);
4115 spin_lock_init(&memcg->event_list_lock);
4116 memcg->socket_pressure = jiffies;
4117#ifndef CONFIG_SLOB
4118 memcg->kmemcg_id = -1;
4119#endif
4120#ifdef CONFIG_CGROUP_WRITEBACK
4121 INIT_LIST_HEAD(&memcg->cgwb_list);
4122#endif
4123 return memcg;
4124fail:
4125 mem_cgroup_free(memcg);
4126 return NULL;
4127}
4128
4129static struct cgroup_subsys_state * __ref
4130mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4131{
4132 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4133 struct mem_cgroup *memcg;
4134 long error = -ENOMEM;
4135
4136 memcg = mem_cgroup_alloc();
4137 if (!memcg)
4138 return ERR_PTR(error);
4139
4140 memcg->high = PAGE_COUNTER_MAX;
4141 memcg->soft_limit = PAGE_COUNTER_MAX;
4142 if (parent) {
4143 memcg->swappiness = mem_cgroup_swappiness(parent);
4144 memcg->oom_kill_disable = parent->oom_kill_disable;
4145 }
4146 if (parent && parent->use_hierarchy) {
4147 memcg->use_hierarchy = true;
4148 page_counter_init(&memcg->memory, &parent->memory);
4149 page_counter_init(&memcg->swap, &parent->swap);
4150 page_counter_init(&memcg->memsw, &parent->memsw);
4151 page_counter_init(&memcg->kmem, &parent->kmem);
4152 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4153 } else {
4154 page_counter_init(&memcg->memory, NULL);
4155 page_counter_init(&memcg->swap, NULL);
4156 page_counter_init(&memcg->memsw, NULL);
4157 page_counter_init(&memcg->kmem, NULL);
4158 page_counter_init(&memcg->tcpmem, NULL);
4159 /*
4160 * Deeper hierachy with use_hierarchy == false doesn't make
4161 * much sense so let cgroup subsystem know about this
4162 * unfortunate state in our controller.
4163 */
4164 if (parent != root_mem_cgroup)
4165 memory_cgrp_subsys.broken_hierarchy = true;
4166 }
4167
4168 /* The following stuff does not apply to the root */
4169 if (!parent) {
4170 root_mem_cgroup = memcg;
4171 return &memcg->css;
4172 }
4173
4174 error = memcg_online_kmem(memcg);
4175 if (error)
4176 goto fail;
4177
4178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4179 static_branch_inc(&memcg_sockets_enabled_key);
4180
4181 return &memcg->css;
4182fail:
4183 mem_cgroup_free(memcg);
4184 return NULL;
4185}
4186
4187static int
4188mem_cgroup_css_online(struct cgroup_subsys_state *css)
4189{
4190 if (css->id > MEM_CGROUP_ID_MAX)
4191 return -ENOSPC;
4192
4193 return 0;
4194}
4195
4196static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4197{
4198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199 struct mem_cgroup_event *event, *tmp;
4200
4201 /*
4202 * Unregister events and notify userspace.
4203 * Notify userspace about cgroup removing only after rmdir of cgroup
4204 * directory to avoid race between userspace and kernelspace.
4205 */
4206 spin_lock(&memcg->event_list_lock);
4207 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4208 list_del_init(&event->list);
4209 schedule_work(&event->remove);
4210 }
4211 spin_unlock(&memcg->event_list_lock);
4212
4213 memcg_offline_kmem(memcg);
4214 wb_memcg_offline(memcg);
4215}
4216
4217static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4218{
4219 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4220
4221 invalidate_reclaim_iterators(memcg);
4222}
4223
4224static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4225{
4226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4227
4228 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4229 static_branch_dec(&memcg_sockets_enabled_key);
4230
4231 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4232 static_branch_dec(&memcg_sockets_enabled_key);
4233
4234 vmpressure_cleanup(&memcg->vmpressure);
4235 cancel_work_sync(&memcg->high_work);
4236 mem_cgroup_remove_from_trees(memcg);
4237 memcg_free_kmem(memcg);
4238 mem_cgroup_free(memcg);
4239}
4240
4241/**
4242 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4243 * @css: the target css
4244 *
4245 * Reset the states of the mem_cgroup associated with @css. This is
4246 * invoked when the userland requests disabling on the default hierarchy
4247 * but the memcg is pinned through dependency. The memcg should stop
4248 * applying policies and should revert to the vanilla state as it may be
4249 * made visible again.
4250 *
4251 * The current implementation only resets the essential configurations.
4252 * This needs to be expanded to cover all the visible parts.
4253 */
4254static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4255{
4256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4257
4258 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4259 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4260 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4261 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4262 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4263 memcg->low = 0;
4264 memcg->high = PAGE_COUNTER_MAX;
4265 memcg->soft_limit = PAGE_COUNTER_MAX;
4266 memcg_wb_domain_size_changed(memcg);
4267}
4268
4269#ifdef CONFIG_MMU
4270/* Handlers for move charge at task migration. */
4271static int mem_cgroup_do_precharge(unsigned long count)
4272{
4273 int ret;
4274
4275 /* Try a single bulk charge without reclaim first, kswapd may wake */
4276 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277 if (!ret) {
4278 mc.precharge += count;
4279 return ret;
4280 }
4281
4282 /* Try charges one by one with reclaim */
4283 while (count--) {
4284 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285 if (ret)
4286 return ret;
4287 mc.precharge++;
4288 cond_resched();
4289 }
4290 return 0;
4291}
4292
4293/**
4294 * get_mctgt_type - get target type of moving charge
4295 * @vma: the vma the pte to be checked belongs
4296 * @addr: the address corresponding to the pte to be checked
4297 * @ptent: the pte to be checked
4298 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4299 *
4300 * Returns
4301 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303 * move charge. if @target is not NULL, the page is stored in target->page
4304 * with extra refcnt got(Callers should handle it).
4305 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306 * target for charge migration. if @target is not NULL, the entry is stored
4307 * in target->ent.
4308 *
4309 * Called with pte lock held.
4310 */
4311union mc_target {
4312 struct page *page;
4313 swp_entry_t ent;
4314};
4315
4316enum mc_target_type {
4317 MC_TARGET_NONE = 0,
4318 MC_TARGET_PAGE,
4319 MC_TARGET_SWAP,
4320};
4321
4322static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4323 unsigned long addr, pte_t ptent)
4324{
4325 struct page *page = vm_normal_page(vma, addr, ptent);
4326
4327 if (!page || !page_mapped(page))
4328 return NULL;
4329 if (PageAnon(page)) {
4330 if (!(mc.flags & MOVE_ANON))
4331 return NULL;
4332 } else {
4333 if (!(mc.flags & MOVE_FILE))
4334 return NULL;
4335 }
4336 if (!get_page_unless_zero(page))
4337 return NULL;
4338
4339 return page;
4340}
4341
4342#ifdef CONFIG_SWAP
4343static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4344 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4345{
4346 struct page *page = NULL;
4347 swp_entry_t ent = pte_to_swp_entry(ptent);
4348
4349 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4350 return NULL;
4351 /*
4352 * Because lookup_swap_cache() updates some statistics counter,
4353 * we call find_get_page() with swapper_space directly.
4354 */
4355 page = find_get_page(swap_address_space(ent), ent.val);
4356 if (do_memsw_account())
4357 entry->val = ent.val;
4358
4359 return page;
4360}
4361#else
4362static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4363 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4364{
4365 return NULL;
4366}
4367#endif
4368
4369static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4370 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4371{
4372 struct page *page = NULL;
4373 struct address_space *mapping;
4374 pgoff_t pgoff;
4375
4376 if (!vma->vm_file) /* anonymous vma */
4377 return NULL;
4378 if (!(mc.flags & MOVE_FILE))
4379 return NULL;
4380
4381 mapping = vma->vm_file->f_mapping;
4382 pgoff = linear_page_index(vma, addr);
4383
4384 /* page is moved even if it's not RSS of this task(page-faulted). */
4385#ifdef CONFIG_SWAP
4386 /* shmem/tmpfs may report page out on swap: account for that too. */
4387 if (shmem_mapping(mapping)) {
4388 page = find_get_entry(mapping, pgoff);
4389 if (radix_tree_exceptional_entry(page)) {
4390 swp_entry_t swp = radix_to_swp_entry(page);
4391 if (do_memsw_account())
4392 *entry = swp;
4393 page = find_get_page(swap_address_space(swp), swp.val);
4394 }
4395 } else
4396 page = find_get_page(mapping, pgoff);
4397#else
4398 page = find_get_page(mapping, pgoff);
4399#endif
4400 return page;
4401}
4402
4403/**
4404 * mem_cgroup_move_account - move account of the page
4405 * @page: the page
4406 * @nr_pages: number of regular pages (>1 for huge pages)
4407 * @from: mem_cgroup which the page is moved from.
4408 * @to: mem_cgroup which the page is moved to. @from != @to.
4409 *
4410 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411 *
4412 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4413 * from old cgroup.
4414 */
4415static int mem_cgroup_move_account(struct page *page,
4416 bool compound,
4417 struct mem_cgroup *from,
4418 struct mem_cgroup *to)
4419{
4420 unsigned long flags;
4421 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422 int ret;
4423 bool anon;
4424
4425 VM_BUG_ON(from == to);
4426 VM_BUG_ON_PAGE(PageLRU(page), page);
4427 VM_BUG_ON(compound && !PageTransHuge(page));
4428
4429 /*
4430 * Prevent mem_cgroup_migrate() from looking at
4431 * page->mem_cgroup of its source page while we change it.
4432 */
4433 ret = -EBUSY;
4434 if (!trylock_page(page))
4435 goto out;
4436
4437 ret = -EINVAL;
4438 if (page->mem_cgroup != from)
4439 goto out_unlock;
4440
4441 anon = PageAnon(page);
4442
4443 spin_lock_irqsave(&from->move_lock, flags);
4444
4445 if (!anon && page_mapped(page)) {
4446 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447 nr_pages);
4448 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449 nr_pages);
4450 }
4451
4452 /*
4453 * move_lock grabbed above and caller set from->moving_account, so
4454 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455 * So mapping should be stable for dirty pages.
4456 */
4457 if (!anon && PageDirty(page)) {
4458 struct address_space *mapping = page_mapping(page);
4459
4460 if (mapping_cap_account_dirty(mapping)) {
4461 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4462 nr_pages);
4463 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4464 nr_pages);
4465 }
4466 }
4467
4468 if (PageWriteback(page)) {
4469 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470 nr_pages);
4471 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472 nr_pages);
4473 }
4474
4475 /*
4476 * It is safe to change page->mem_cgroup here because the page
4477 * is referenced, charged, and isolated - we can't race with
4478 * uncharging, charging, migration, or LRU putback.
4479 */
4480
4481 /* caller should have done css_get */
4482 page->mem_cgroup = to;
4483 spin_unlock_irqrestore(&from->move_lock, flags);
4484
4485 ret = 0;
4486
4487 local_irq_disable();
4488 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489 memcg_check_events(to, page);
4490 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491 memcg_check_events(from, page);
4492 local_irq_enable();
4493out_unlock:
4494 unlock_page(page);
4495out:
4496 return ret;
4497}
4498
4499static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4500 unsigned long addr, pte_t ptent, union mc_target *target)
4501{
4502 struct page *page = NULL;
4503 enum mc_target_type ret = MC_TARGET_NONE;
4504 swp_entry_t ent = { .val = 0 };
4505
4506 if (pte_present(ptent))
4507 page = mc_handle_present_pte(vma, addr, ptent);
4508 else if (is_swap_pte(ptent))
4509 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510 else if (pte_none(ptent))
4511 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4512
4513 if (!page && !ent.val)
4514 return ret;
4515 if (page) {
4516 /*
4517 * Do only loose check w/o serialization.
4518 * mem_cgroup_move_account() checks the page is valid or
4519 * not under LRU exclusion.
4520 */
4521 if (page->mem_cgroup == mc.from) {
4522 ret = MC_TARGET_PAGE;
4523 if (target)
4524 target->page = page;
4525 }
4526 if (!ret || !target)
4527 put_page(page);
4528 }
4529 /* There is a swap entry and a page doesn't exist or isn't charged */
4530 if (ent.val && !ret &&
4531 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532 ret = MC_TARGET_SWAP;
4533 if (target)
4534 target->ent = ent;
4535 }
4536 return ret;
4537}
4538
4539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540/*
4541 * We don't consider swapping or file mapped pages because THP does not
4542 * support them for now.
4543 * Caller should make sure that pmd_trans_huge(pmd) is true.
4544 */
4545static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4546 unsigned long addr, pmd_t pmd, union mc_target *target)
4547{
4548 struct page *page = NULL;
4549 enum mc_target_type ret = MC_TARGET_NONE;
4550
4551 page = pmd_page(pmd);
4552 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553 if (!(mc.flags & MOVE_ANON))
4554 return ret;
4555 if (page->mem_cgroup == mc.from) {
4556 ret = MC_TARGET_PAGE;
4557 if (target) {
4558 get_page(page);
4559 target->page = page;
4560 }
4561 }
4562 return ret;
4563}
4564#else
4565static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566 unsigned long addr, pmd_t pmd, union mc_target *target)
4567{
4568 return MC_TARGET_NONE;
4569}
4570#endif
4571
4572static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4573 unsigned long addr, unsigned long end,
4574 struct mm_walk *walk)
4575{
4576 struct vm_area_struct *vma = walk->vma;
4577 pte_t *pte;
4578 spinlock_t *ptl;
4579
4580 ptl = pmd_trans_huge_lock(pmd, vma);
4581 if (ptl) {
4582 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4583 mc.precharge += HPAGE_PMD_NR;
4584 spin_unlock(ptl);
4585 return 0;
4586 }
4587
4588 if (pmd_trans_unstable(pmd))
4589 return 0;
4590 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4591 for (; addr != end; pte++, addr += PAGE_SIZE)
4592 if (get_mctgt_type(vma, addr, *pte, NULL))
4593 mc.precharge++; /* increment precharge temporarily */
4594 pte_unmap_unlock(pte - 1, ptl);
4595 cond_resched();
4596
4597 return 0;
4598}
4599
4600static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4601{
4602 unsigned long precharge;
4603
4604 struct mm_walk mem_cgroup_count_precharge_walk = {
4605 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4606 .mm = mm,
4607 };
4608 down_read(&mm->mmap_sem);
4609 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4610 up_read(&mm->mmap_sem);
4611
4612 precharge = mc.precharge;
4613 mc.precharge = 0;
4614
4615 return precharge;
4616}
4617
4618static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4619{
4620 unsigned long precharge = mem_cgroup_count_precharge(mm);
4621
4622 VM_BUG_ON(mc.moving_task);
4623 mc.moving_task = current;
4624 return mem_cgroup_do_precharge(precharge);
4625}
4626
4627/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628static void __mem_cgroup_clear_mc(void)
4629{
4630 struct mem_cgroup *from = mc.from;
4631 struct mem_cgroup *to = mc.to;
4632
4633 /* we must uncharge all the leftover precharges from mc.to */
4634 if (mc.precharge) {
4635 cancel_charge(mc.to, mc.precharge);
4636 mc.precharge = 0;
4637 }
4638 /*
4639 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640 * we must uncharge here.
4641 */
4642 if (mc.moved_charge) {
4643 cancel_charge(mc.from, mc.moved_charge);
4644 mc.moved_charge = 0;
4645 }
4646 /* we must fixup refcnts and charges */
4647 if (mc.moved_swap) {
4648 /* uncharge swap account from the old cgroup */
4649 if (!mem_cgroup_is_root(mc.from))
4650 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4651
4652 /*
4653 * we charged both to->memory and to->memsw, so we
4654 * should uncharge to->memory.
4655 */
4656 if (!mem_cgroup_is_root(mc.to))
4657 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4658
4659 css_put_many(&mc.from->css, mc.moved_swap);
4660
4661 /* we've already done css_get(mc.to) */
4662 mc.moved_swap = 0;
4663 }
4664 memcg_oom_recover(from);
4665 memcg_oom_recover(to);
4666 wake_up_all(&mc.waitq);
4667}
4668
4669static void mem_cgroup_clear_mc(void)
4670{
4671 struct mm_struct *mm = mc.mm;
4672
4673 /*
4674 * we must clear moving_task before waking up waiters at the end of
4675 * task migration.
4676 */
4677 mc.moving_task = NULL;
4678 __mem_cgroup_clear_mc();
4679 spin_lock(&mc.lock);
4680 mc.from = NULL;
4681 mc.to = NULL;
4682 mc.mm = NULL;
4683 spin_unlock(&mc.lock);
4684
4685 mmput(mm);
4686}
4687
4688static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4689{
4690 struct cgroup_subsys_state *css;
4691 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4692 struct mem_cgroup *from;
4693 struct task_struct *leader, *p;
4694 struct mm_struct *mm;
4695 unsigned long move_flags;
4696 int ret = 0;
4697
4698 /* charge immigration isn't supported on the default hierarchy */
4699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4700 return 0;
4701
4702 /*
4703 * Multi-process migrations only happen on the default hierarchy
4704 * where charge immigration is not used. Perform charge
4705 * immigration if @tset contains a leader and whine if there are
4706 * multiple.
4707 */
4708 p = NULL;
4709 cgroup_taskset_for_each_leader(leader, css, tset) {
4710 WARN_ON_ONCE(p);
4711 p = leader;
4712 memcg = mem_cgroup_from_css(css);
4713 }
4714 if (!p)
4715 return 0;
4716
4717 /*
4718 * We are now commited to this value whatever it is. Changes in this
4719 * tunable will only affect upcoming migrations, not the current one.
4720 * So we need to save it, and keep it going.
4721 */
4722 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4723 if (!move_flags)
4724 return 0;
4725
4726 from = mem_cgroup_from_task(p);
4727
4728 VM_BUG_ON(from == memcg);
4729
4730 mm = get_task_mm(p);
4731 if (!mm)
4732 return 0;
4733 /* We move charges only when we move a owner of the mm */
4734 if (mm->owner == p) {
4735 VM_BUG_ON(mc.from);
4736 VM_BUG_ON(mc.to);
4737 VM_BUG_ON(mc.precharge);
4738 VM_BUG_ON(mc.moved_charge);
4739 VM_BUG_ON(mc.moved_swap);
4740
4741 spin_lock(&mc.lock);
4742 mc.mm = mm;
4743 mc.from = from;
4744 mc.to = memcg;
4745 mc.flags = move_flags;
4746 spin_unlock(&mc.lock);
4747 /* We set mc.moving_task later */
4748
4749 ret = mem_cgroup_precharge_mc(mm);
4750 if (ret)
4751 mem_cgroup_clear_mc();
4752 } else {
4753 mmput(mm);
4754 }
4755 return ret;
4756}
4757
4758static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4759{
4760 if (mc.to)
4761 mem_cgroup_clear_mc();
4762}
4763
4764static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4765 unsigned long addr, unsigned long end,
4766 struct mm_walk *walk)
4767{
4768 int ret = 0;
4769 struct vm_area_struct *vma = walk->vma;
4770 pte_t *pte;
4771 spinlock_t *ptl;
4772 enum mc_target_type target_type;
4773 union mc_target target;
4774 struct page *page;
4775
4776 ptl = pmd_trans_huge_lock(pmd, vma);
4777 if (ptl) {
4778 if (mc.precharge < HPAGE_PMD_NR) {
4779 spin_unlock(ptl);
4780 return 0;
4781 }
4782 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4783 if (target_type == MC_TARGET_PAGE) {
4784 page = target.page;
4785 if (!isolate_lru_page(page)) {
4786 if (!mem_cgroup_move_account(page, true,
4787 mc.from, mc.to)) {
4788 mc.precharge -= HPAGE_PMD_NR;
4789 mc.moved_charge += HPAGE_PMD_NR;
4790 }
4791 putback_lru_page(page);
4792 }
4793 put_page(page);
4794 }
4795 spin_unlock(ptl);
4796 return 0;
4797 }
4798
4799 if (pmd_trans_unstable(pmd))
4800 return 0;
4801retry:
4802 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4803 for (; addr != end; addr += PAGE_SIZE) {
4804 pte_t ptent = *(pte++);
4805 swp_entry_t ent;
4806
4807 if (!mc.precharge)
4808 break;
4809
4810 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4811 case MC_TARGET_PAGE:
4812 page = target.page;
4813 /*
4814 * We can have a part of the split pmd here. Moving it
4815 * can be done but it would be too convoluted so simply
4816 * ignore such a partial THP and keep it in original
4817 * memcg. There should be somebody mapping the head.
4818 */
4819 if (PageTransCompound(page))
4820 goto put;
4821 if (isolate_lru_page(page))
4822 goto put;
4823 if (!mem_cgroup_move_account(page, false,
4824 mc.from, mc.to)) {
4825 mc.precharge--;
4826 /* we uncharge from mc.from later. */
4827 mc.moved_charge++;
4828 }
4829 putback_lru_page(page);
4830put: /* get_mctgt_type() gets the page */
4831 put_page(page);
4832 break;
4833 case MC_TARGET_SWAP:
4834 ent = target.ent;
4835 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4836 mc.precharge--;
4837 /* we fixup refcnts and charges later. */
4838 mc.moved_swap++;
4839 }
4840 break;
4841 default:
4842 break;
4843 }
4844 }
4845 pte_unmap_unlock(pte - 1, ptl);
4846 cond_resched();
4847
4848 if (addr != end) {
4849 /*
4850 * We have consumed all precharges we got in can_attach().
4851 * We try charge one by one, but don't do any additional
4852 * charges to mc.to if we have failed in charge once in attach()
4853 * phase.
4854 */
4855 ret = mem_cgroup_do_precharge(1);
4856 if (!ret)
4857 goto retry;
4858 }
4859
4860 return ret;
4861}
4862
4863static void mem_cgroup_move_charge(void)
4864{
4865 struct mm_walk mem_cgroup_move_charge_walk = {
4866 .pmd_entry = mem_cgroup_move_charge_pte_range,
4867 .mm = mc.mm,
4868 };
4869
4870 lru_add_drain_all();
4871 /*
4872 * Signal lock_page_memcg() to take the memcg's move_lock
4873 * while we're moving its pages to another memcg. Then wait
4874 * for already started RCU-only updates to finish.
4875 */
4876 atomic_inc(&mc.from->moving_account);
4877 synchronize_rcu();
4878retry:
4879 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4880 /*
4881 * Someone who are holding the mmap_sem might be waiting in
4882 * waitq. So we cancel all extra charges, wake up all waiters,
4883 * and retry. Because we cancel precharges, we might not be able
4884 * to move enough charges, but moving charge is a best-effort
4885 * feature anyway, so it wouldn't be a big problem.
4886 */
4887 __mem_cgroup_clear_mc();
4888 cond_resched();
4889 goto retry;
4890 }
4891 /*
4892 * When we have consumed all precharges and failed in doing
4893 * additional charge, the page walk just aborts.
4894 */
4895 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4896 up_read(&mc.mm->mmap_sem);
4897 atomic_dec(&mc.from->moving_account);
4898}
4899
4900static void mem_cgroup_move_task(void)
4901{
4902 if (mc.to) {
4903 mem_cgroup_move_charge();
4904 mem_cgroup_clear_mc();
4905 }
4906}
4907#else /* !CONFIG_MMU */
4908static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4909{
4910 return 0;
4911}
4912static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4913{
4914}
4915static void mem_cgroup_move_task(void)
4916{
4917}
4918#endif
4919
4920/*
4921 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922 * to verify whether we're attached to the default hierarchy on each mount
4923 * attempt.
4924 */
4925static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4926{
4927 /*
4928 * use_hierarchy is forced on the default hierarchy. cgroup core
4929 * guarantees that @root doesn't have any children, so turning it
4930 * on for the root memcg is enough.
4931 */
4932 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933 root_mem_cgroup->use_hierarchy = true;
4934 else
4935 root_mem_cgroup->use_hierarchy = false;
4936}
4937
4938static u64 memory_current_read(struct cgroup_subsys_state *css,
4939 struct cftype *cft)
4940{
4941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4942
4943 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4944}
4945
4946static int memory_low_show(struct seq_file *m, void *v)
4947{
4948 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949 unsigned long low = READ_ONCE(memcg->low);
4950
4951 if (low == PAGE_COUNTER_MAX)
4952 seq_puts(m, "max\n");
4953 else
4954 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4955
4956 return 0;
4957}
4958
4959static ssize_t memory_low_write(struct kernfs_open_file *of,
4960 char *buf, size_t nbytes, loff_t off)
4961{
4962 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4963 unsigned long low;
4964 int err;
4965
4966 buf = strstrip(buf);
4967 err = page_counter_memparse(buf, "max", &low);
4968 if (err)
4969 return err;
4970
4971 memcg->low = low;
4972
4973 return nbytes;
4974}
4975
4976static int memory_high_show(struct seq_file *m, void *v)
4977{
4978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979 unsigned long high = READ_ONCE(memcg->high);
4980
4981 if (high == PAGE_COUNTER_MAX)
4982 seq_puts(m, "max\n");
4983 else
4984 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4985
4986 return 0;
4987}
4988
4989static ssize_t memory_high_write(struct kernfs_open_file *of,
4990 char *buf, size_t nbytes, loff_t off)
4991{
4992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993 unsigned long nr_pages;
4994 unsigned long high;
4995 int err;
4996
4997 buf = strstrip(buf);
4998 err = page_counter_memparse(buf, "max", &high);
4999 if (err)
5000 return err;
5001
5002 memcg->high = high;
5003
5004 nr_pages = page_counter_read(&memcg->memory);
5005 if (nr_pages > high)
5006 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5007 GFP_KERNEL, true);
5008
5009 memcg_wb_domain_size_changed(memcg);
5010 return nbytes;
5011}
5012
5013static int memory_max_show(struct seq_file *m, void *v)
5014{
5015 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016 unsigned long max = READ_ONCE(memcg->memory.limit);
5017
5018 if (max == PAGE_COUNTER_MAX)
5019 seq_puts(m, "max\n");
5020 else
5021 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5022
5023 return 0;
5024}
5025
5026static ssize_t memory_max_write(struct kernfs_open_file *of,
5027 char *buf, size_t nbytes, loff_t off)
5028{
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5031 bool drained = false;
5032 unsigned long max;
5033 int err;
5034
5035 buf = strstrip(buf);
5036 err = page_counter_memparse(buf, "max", &max);
5037 if (err)
5038 return err;
5039
5040 xchg(&memcg->memory.limit, max);
5041
5042 for (;;) {
5043 unsigned long nr_pages = page_counter_read(&memcg->memory);
5044
5045 if (nr_pages <= max)
5046 break;
5047
5048 if (signal_pending(current)) {
5049 err = -EINTR;
5050 break;
5051 }
5052
5053 if (!drained) {
5054 drain_all_stock(memcg);
5055 drained = true;
5056 continue;
5057 }
5058
5059 if (nr_reclaims) {
5060 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5061 GFP_KERNEL, true))
5062 nr_reclaims--;
5063 continue;
5064 }
5065
5066 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5067 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5068 break;
5069 }
5070
5071 memcg_wb_domain_size_changed(memcg);
5072 return nbytes;
5073}
5074
5075static int memory_events_show(struct seq_file *m, void *v)
5076{
5077 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5078
5079 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5080 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5081 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5082 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5083
5084 return 0;
5085}
5086
5087static int memory_stat_show(struct seq_file *m, void *v)
5088{
5089 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090 unsigned long stat[MEMCG_NR_STAT];
5091 unsigned long events[MEMCG_NR_EVENTS];
5092 int i;
5093
5094 /*
5095 * Provide statistics on the state of the memory subsystem as
5096 * well as cumulative event counters that show past behavior.
5097 *
5098 * This list is ordered following a combination of these gradients:
5099 * 1) generic big picture -> specifics and details
5100 * 2) reflecting userspace activity -> reflecting kernel heuristics
5101 *
5102 * Current memory state:
5103 */
5104
5105 tree_stat(memcg, stat);
5106 tree_events(memcg, events);
5107
5108 seq_printf(m, "anon %llu\n",
5109 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5110 seq_printf(m, "file %llu\n",
5111 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5112 seq_printf(m, "kernel_stack %llu\n",
5113 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5114 seq_printf(m, "slab %llu\n",
5115 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5116 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5117 seq_printf(m, "sock %llu\n",
5118 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5119
5120 seq_printf(m, "file_mapped %llu\n",
5121 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5122 seq_printf(m, "file_dirty %llu\n",
5123 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5124 seq_printf(m, "file_writeback %llu\n",
5125 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5126
5127 for (i = 0; i < NR_LRU_LISTS; i++) {
5128 struct mem_cgroup *mi;
5129 unsigned long val = 0;
5130
5131 for_each_mem_cgroup_tree(mi, memcg)
5132 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5133 seq_printf(m, "%s %llu\n",
5134 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5135 }
5136
5137 seq_printf(m, "slab_reclaimable %llu\n",
5138 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5139 seq_printf(m, "slab_unreclaimable %llu\n",
5140 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5141
5142 /* Accumulated memory events */
5143
5144 seq_printf(m, "pgfault %lu\n",
5145 events[MEM_CGROUP_EVENTS_PGFAULT]);
5146 seq_printf(m, "pgmajfault %lu\n",
5147 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5148
5149 return 0;
5150}
5151
5152static struct cftype memory_files[] = {
5153 {
5154 .name = "current",
5155 .flags = CFTYPE_NOT_ON_ROOT,
5156 .read_u64 = memory_current_read,
5157 },
5158 {
5159 .name = "low",
5160 .flags = CFTYPE_NOT_ON_ROOT,
5161 .seq_show = memory_low_show,
5162 .write = memory_low_write,
5163 },
5164 {
5165 .name = "high",
5166 .flags = CFTYPE_NOT_ON_ROOT,
5167 .seq_show = memory_high_show,
5168 .write = memory_high_write,
5169 },
5170 {
5171 .name = "max",
5172 .flags = CFTYPE_NOT_ON_ROOT,
5173 .seq_show = memory_max_show,
5174 .write = memory_max_write,
5175 },
5176 {
5177 .name = "events",
5178 .flags = CFTYPE_NOT_ON_ROOT,
5179 .file_offset = offsetof(struct mem_cgroup, events_file),
5180 .seq_show = memory_events_show,
5181 },
5182 {
5183 .name = "stat",
5184 .flags = CFTYPE_NOT_ON_ROOT,
5185 .seq_show = memory_stat_show,
5186 },
5187 { } /* terminate */
5188};
5189
5190struct cgroup_subsys memory_cgrp_subsys = {
5191 .css_alloc = mem_cgroup_css_alloc,
5192 .css_online = mem_cgroup_css_online,
5193 .css_offline = mem_cgroup_css_offline,
5194 .css_released = mem_cgroup_css_released,
5195 .css_free = mem_cgroup_css_free,
5196 .css_reset = mem_cgroup_css_reset,
5197 .can_attach = mem_cgroup_can_attach,
5198 .cancel_attach = mem_cgroup_cancel_attach,
5199 .post_attach = mem_cgroup_move_task,
5200 .bind = mem_cgroup_bind,
5201 .dfl_cftypes = memory_files,
5202 .legacy_cftypes = mem_cgroup_legacy_files,
5203 .early_init = 0,
5204};
5205
5206/**
5207 * mem_cgroup_low - check if memory consumption is below the normal range
5208 * @root: the highest ancestor to consider
5209 * @memcg: the memory cgroup to check
5210 *
5211 * Returns %true if memory consumption of @memcg, and that of all
5212 * configurable ancestors up to @root, is below the normal range.
5213 */
5214bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5215{
5216 if (mem_cgroup_disabled())
5217 return false;
5218
5219 /*
5220 * The toplevel group doesn't have a configurable range, so
5221 * it's never low when looked at directly, and it is not
5222 * considered an ancestor when assessing the hierarchy.
5223 */
5224
5225 if (memcg == root_mem_cgroup)
5226 return false;
5227
5228 if (page_counter_read(&memcg->memory) >= memcg->low)
5229 return false;
5230
5231 while (memcg != root) {
5232 memcg = parent_mem_cgroup(memcg);
5233
5234 if (memcg == root_mem_cgroup)
5235 break;
5236
5237 if (page_counter_read(&memcg->memory) >= memcg->low)
5238 return false;
5239 }
5240 return true;
5241}
5242
5243/**
5244 * mem_cgroup_try_charge - try charging a page
5245 * @page: page to charge
5246 * @mm: mm context of the victim
5247 * @gfp_mask: reclaim mode
5248 * @memcgp: charged memcg return
5249 *
5250 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251 * pages according to @gfp_mask if necessary.
5252 *
5253 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254 * Otherwise, an error code is returned.
5255 *
5256 * After page->mapping has been set up, the caller must finalize the
5257 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5258 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5259 */
5260int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5262 bool compound)
5263{
5264 struct mem_cgroup *memcg = NULL;
5265 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5266 int ret = 0;
5267
5268 if (mem_cgroup_disabled())
5269 goto out;
5270
5271 if (PageSwapCache(page)) {
5272 /*
5273 * Every swap fault against a single page tries to charge the
5274 * page, bail as early as possible. shmem_unuse() encounters
5275 * already charged pages, too. The USED bit is protected by
5276 * the page lock, which serializes swap cache removal, which
5277 * in turn serializes uncharging.
5278 */
5279 VM_BUG_ON_PAGE(!PageLocked(page), page);
5280 if (page->mem_cgroup)
5281 goto out;
5282
5283 if (do_swap_account) {
5284 swp_entry_t ent = { .val = page_private(page), };
5285 unsigned short id = lookup_swap_cgroup_id(ent);
5286
5287 rcu_read_lock();
5288 memcg = mem_cgroup_from_id(id);
5289 if (memcg && !css_tryget_online(&memcg->css))
5290 memcg = NULL;
5291 rcu_read_unlock();
5292 }
5293 }
5294
5295 if (!memcg)
5296 memcg = get_mem_cgroup_from_mm(mm);
5297
5298 ret = try_charge(memcg, gfp_mask, nr_pages);
5299
5300 css_put(&memcg->css);
5301out:
5302 *memcgp = memcg;
5303 return ret;
5304}
5305
5306/**
5307 * mem_cgroup_commit_charge - commit a page charge
5308 * @page: page to charge
5309 * @memcg: memcg to charge the page to
5310 * @lrucare: page might be on LRU already
5311 *
5312 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5313 * after page->mapping has been set up. This must happen atomically
5314 * as part of the page instantiation, i.e. under the page table lock
5315 * for anonymous pages, under the page lock for page and swap cache.
5316 *
5317 * In addition, the page must not be on the LRU during the commit, to
5318 * prevent racing with task migration. If it might be, use @lrucare.
5319 *
5320 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5321 */
5322void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5323 bool lrucare, bool compound)
5324{
5325 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5326
5327 VM_BUG_ON_PAGE(!page->mapping, page);
5328 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5329
5330 if (mem_cgroup_disabled())
5331 return;
5332 /*
5333 * Swap faults will attempt to charge the same page multiple
5334 * times. But reuse_swap_page() might have removed the page
5335 * from swapcache already, so we can't check PageSwapCache().
5336 */
5337 if (!memcg)
5338 return;
5339
5340 commit_charge(page, memcg, lrucare);
5341
5342 local_irq_disable();
5343 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5344 memcg_check_events(memcg, page);
5345 local_irq_enable();
5346
5347 if (do_memsw_account() && PageSwapCache(page)) {
5348 swp_entry_t entry = { .val = page_private(page) };
5349 /*
5350 * The swap entry might not get freed for a long time,
5351 * let's not wait for it. The page already received a
5352 * memory+swap charge, drop the swap entry duplicate.
5353 */
5354 mem_cgroup_uncharge_swap(entry);
5355 }
5356}
5357
5358/**
5359 * mem_cgroup_cancel_charge - cancel a page charge
5360 * @page: page to charge
5361 * @memcg: memcg to charge the page to
5362 *
5363 * Cancel a charge transaction started by mem_cgroup_try_charge().
5364 */
5365void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5366 bool compound)
5367{
5368 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369
5370 if (mem_cgroup_disabled())
5371 return;
5372 /*
5373 * Swap faults will attempt to charge the same page multiple
5374 * times. But reuse_swap_page() might have removed the page
5375 * from swapcache already, so we can't check PageSwapCache().
5376 */
5377 if (!memcg)
5378 return;
5379
5380 cancel_charge(memcg, nr_pages);
5381}
5382
5383static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5384 unsigned long nr_anon, unsigned long nr_file,
5385 unsigned long nr_huge, struct page *dummy_page)
5386{
5387 unsigned long nr_pages = nr_anon + nr_file;
5388 unsigned long flags;
5389
5390 if (!mem_cgroup_is_root(memcg)) {
5391 page_counter_uncharge(&memcg->memory, nr_pages);
5392 if (do_memsw_account())
5393 page_counter_uncharge(&memcg->memsw, nr_pages);
5394 memcg_oom_recover(memcg);
5395 }
5396
5397 local_irq_save(flags);
5398 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5399 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5400 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5401 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5402 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5403 memcg_check_events(memcg, dummy_page);
5404 local_irq_restore(flags);
5405
5406 if (!mem_cgroup_is_root(memcg))
5407 css_put_many(&memcg->css, nr_pages);
5408}
5409
5410static void uncharge_list(struct list_head *page_list)
5411{
5412 struct mem_cgroup *memcg = NULL;
5413 unsigned long nr_anon = 0;
5414 unsigned long nr_file = 0;
5415 unsigned long nr_huge = 0;
5416 unsigned long pgpgout = 0;
5417 struct list_head *next;
5418 struct page *page;
5419
5420 /*
5421 * Note that the list can be a single page->lru; hence the
5422 * do-while loop instead of a simple list_for_each_entry().
5423 */
5424 next = page_list->next;
5425 do {
5426 unsigned int nr_pages = 1;
5427
5428 page = list_entry(next, struct page, lru);
5429 next = page->lru.next;
5430
5431 VM_BUG_ON_PAGE(PageLRU(page), page);
5432 VM_BUG_ON_PAGE(page_count(page), page);
5433
5434 if (!page->mem_cgroup)
5435 continue;
5436
5437 /*
5438 * Nobody should be changing or seriously looking at
5439 * page->mem_cgroup at this point, we have fully
5440 * exclusive access to the page.
5441 */
5442
5443 if (memcg != page->mem_cgroup) {
5444 if (memcg) {
5445 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5446 nr_huge, page);
5447 pgpgout = nr_anon = nr_file = nr_huge = 0;
5448 }
5449 memcg = page->mem_cgroup;
5450 }
5451
5452 if (PageTransHuge(page)) {
5453 nr_pages <<= compound_order(page);
5454 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5455 nr_huge += nr_pages;
5456 }
5457
5458 if (PageAnon(page))
5459 nr_anon += nr_pages;
5460 else
5461 nr_file += nr_pages;
5462
5463 page->mem_cgroup = NULL;
5464
5465 pgpgout++;
5466 } while (next != page_list);
5467
5468 if (memcg)
5469 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5470 nr_huge, page);
5471}
5472
5473/**
5474 * mem_cgroup_uncharge - uncharge a page
5475 * @page: page to uncharge
5476 *
5477 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5478 * mem_cgroup_commit_charge().
5479 */
5480void mem_cgroup_uncharge(struct page *page)
5481{
5482 if (mem_cgroup_disabled())
5483 return;
5484
5485 /* Don't touch page->lru of any random page, pre-check: */
5486 if (!page->mem_cgroup)
5487 return;
5488
5489 INIT_LIST_HEAD(&page->lru);
5490 uncharge_list(&page->lru);
5491}
5492
5493/**
5494 * mem_cgroup_uncharge_list - uncharge a list of page
5495 * @page_list: list of pages to uncharge
5496 *
5497 * Uncharge a list of pages previously charged with
5498 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5499 */
5500void mem_cgroup_uncharge_list(struct list_head *page_list)
5501{
5502 if (mem_cgroup_disabled())
5503 return;
5504
5505 if (!list_empty(page_list))
5506 uncharge_list(page_list);
5507}
5508
5509/**
5510 * mem_cgroup_migrate - charge a page's replacement
5511 * @oldpage: currently circulating page
5512 * @newpage: replacement page
5513 *
5514 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5515 * be uncharged upon free.
5516 *
5517 * Both pages must be locked, @newpage->mapping must be set up.
5518 */
5519void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5520{
5521 struct mem_cgroup *memcg;
5522 unsigned int nr_pages;
5523 bool compound;
5524
5525 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5526 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5527 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5529 newpage);
5530
5531 if (mem_cgroup_disabled())
5532 return;
5533
5534 /* Page cache replacement: new page already charged? */
5535 if (newpage->mem_cgroup)
5536 return;
5537
5538 /* Swapcache readahead pages can get replaced before being charged */
5539 memcg = oldpage->mem_cgroup;
5540 if (!memcg)
5541 return;
5542
5543 /* Force-charge the new page. The old one will be freed soon */
5544 compound = PageTransHuge(newpage);
5545 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5546
5547 page_counter_charge(&memcg->memory, nr_pages);
5548 if (do_memsw_account())
5549 page_counter_charge(&memcg->memsw, nr_pages);
5550 css_get_many(&memcg->css, nr_pages);
5551
5552 commit_charge(newpage, memcg, false);
5553
5554 local_irq_disable();
5555 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5556 memcg_check_events(memcg, newpage);
5557 local_irq_enable();
5558}
5559
5560DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561EXPORT_SYMBOL(memcg_sockets_enabled_key);
5562
5563void sock_update_memcg(struct sock *sk)
5564{
5565 struct mem_cgroup *memcg;
5566
5567 /* Socket cloning can throw us here with sk_cgrp already
5568 * filled. It won't however, necessarily happen from
5569 * process context. So the test for root memcg given
5570 * the current task's memcg won't help us in this case.
5571 *
5572 * Respecting the original socket's memcg is a better
5573 * decision in this case.
5574 */
5575 if (sk->sk_memcg) {
5576 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5577 css_get(&sk->sk_memcg->css);
5578 return;
5579 }
5580
5581 rcu_read_lock();
5582 memcg = mem_cgroup_from_task(current);
5583 if (memcg == root_mem_cgroup)
5584 goto out;
5585 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5586 goto out;
5587 if (css_tryget_online(&memcg->css))
5588 sk->sk_memcg = memcg;
5589out:
5590 rcu_read_unlock();
5591}
5592EXPORT_SYMBOL(sock_update_memcg);
5593
5594void sock_release_memcg(struct sock *sk)
5595{
5596 WARN_ON(!sk->sk_memcg);
5597 css_put(&sk->sk_memcg->css);
5598}
5599
5600/**
5601 * mem_cgroup_charge_skmem - charge socket memory
5602 * @memcg: memcg to charge
5603 * @nr_pages: number of pages to charge
5604 *
5605 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5606 * @memcg's configured limit, %false if the charge had to be forced.
5607 */
5608bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5609{
5610 gfp_t gfp_mask = GFP_KERNEL;
5611
5612 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5613 struct page_counter *fail;
5614
5615 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5616 memcg->tcpmem_pressure = 0;
5617 return true;
5618 }
5619 page_counter_charge(&memcg->tcpmem, nr_pages);
5620 memcg->tcpmem_pressure = 1;
5621 return false;
5622 }
5623
5624 /* Don't block in the packet receive path */
5625 if (in_softirq())
5626 gfp_mask = GFP_NOWAIT;
5627
5628 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5629
5630 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5631 return true;
5632
5633 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5634 return false;
5635}
5636
5637/**
5638 * mem_cgroup_uncharge_skmem - uncharge socket memory
5639 * @memcg - memcg to uncharge
5640 * @nr_pages - number of pages to uncharge
5641 */
5642void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5643{
5644 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5645 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5646 return;
5647 }
5648
5649 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5650
5651 page_counter_uncharge(&memcg->memory, nr_pages);
5652 css_put_many(&memcg->css, nr_pages);
5653}
5654
5655static int __init cgroup_memory(char *s)
5656{
5657 char *token;
5658
5659 while ((token = strsep(&s, ",")) != NULL) {
5660 if (!*token)
5661 continue;
5662 if (!strcmp(token, "nosocket"))
5663 cgroup_memory_nosocket = true;
5664 if (!strcmp(token, "nokmem"))
5665 cgroup_memory_nokmem = true;
5666 }
5667 return 0;
5668}
5669__setup("cgroup.memory=", cgroup_memory);
5670
5671/*
5672 * subsys_initcall() for memory controller.
5673 *
5674 * Some parts like hotcpu_notifier() have to be initialized from this context
5675 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5676 * everything that doesn't depend on a specific mem_cgroup structure should
5677 * be initialized from here.
5678 */
5679static int __init mem_cgroup_init(void)
5680{
5681 int cpu, node;
5682
5683 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5684
5685 for_each_possible_cpu(cpu)
5686 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5687 drain_local_stock);
5688
5689 for_each_node(node) {
5690 struct mem_cgroup_tree_per_node *rtpn;
5691 int zone;
5692
5693 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5694 node_online(node) ? node : NUMA_NO_NODE);
5695
5696 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5697 struct mem_cgroup_tree_per_zone *rtpz;
5698
5699 rtpz = &rtpn->rb_tree_per_zone[zone];
5700 rtpz->rb_root = RB_ROOT;
5701 spin_lock_init(&rtpz->lock);
5702 }
5703 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5704 }
5705
5706 return 0;
5707}
5708subsys_initcall(mem_cgroup_init);
5709
5710#ifdef CONFIG_MEMCG_SWAP
5711/**
5712 * mem_cgroup_swapout - transfer a memsw charge to swap
5713 * @page: page whose memsw charge to transfer
5714 * @entry: swap entry to move the charge to
5715 *
5716 * Transfer the memsw charge of @page to @entry.
5717 */
5718void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5719{
5720 struct mem_cgroup *memcg;
5721 unsigned short oldid;
5722
5723 VM_BUG_ON_PAGE(PageLRU(page), page);
5724 VM_BUG_ON_PAGE(page_count(page), page);
5725
5726 if (!do_memsw_account())
5727 return;
5728
5729 memcg = page->mem_cgroup;
5730
5731 /* Readahead page, never charged */
5732 if (!memcg)
5733 return;
5734
5735 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5736 VM_BUG_ON_PAGE(oldid, page);
5737 mem_cgroup_swap_statistics(memcg, true);
5738
5739 page->mem_cgroup = NULL;
5740
5741 if (!mem_cgroup_is_root(memcg))
5742 page_counter_uncharge(&memcg->memory, 1);
5743
5744 /*
5745 * Interrupts should be disabled here because the caller holds the
5746 * mapping->tree_lock lock which is taken with interrupts-off. It is
5747 * important here to have the interrupts disabled because it is the
5748 * only synchronisation we have for udpating the per-CPU variables.
5749 */
5750 VM_BUG_ON(!irqs_disabled());
5751 mem_cgroup_charge_statistics(memcg, page, false, -1);
5752 memcg_check_events(memcg, page);
5753}
5754
5755/*
5756 * mem_cgroup_try_charge_swap - try charging a swap entry
5757 * @page: page being added to swap
5758 * @entry: swap entry to charge
5759 *
5760 * Try to charge @entry to the memcg that @page belongs to.
5761 *
5762 * Returns 0 on success, -ENOMEM on failure.
5763 */
5764int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5765{
5766 struct mem_cgroup *memcg;
5767 struct page_counter *counter;
5768 unsigned short oldid;
5769
5770 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5771 return 0;
5772
5773 memcg = page->mem_cgroup;
5774
5775 /* Readahead page, never charged */
5776 if (!memcg)
5777 return 0;
5778
5779 if (!mem_cgroup_is_root(memcg) &&
5780 !page_counter_try_charge(&memcg->swap, 1, &counter))
5781 return -ENOMEM;
5782
5783 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5784 VM_BUG_ON_PAGE(oldid, page);
5785 mem_cgroup_swap_statistics(memcg, true);
5786
5787 css_get(&memcg->css);
5788 return 0;
5789}
5790
5791/**
5792 * mem_cgroup_uncharge_swap - uncharge a swap entry
5793 * @entry: swap entry to uncharge
5794 *
5795 * Drop the swap charge associated with @entry.
5796 */
5797void mem_cgroup_uncharge_swap(swp_entry_t entry)
5798{
5799 struct mem_cgroup *memcg;
5800 unsigned short id;
5801
5802 if (!do_swap_account)
5803 return;
5804
5805 id = swap_cgroup_record(entry, 0);
5806 rcu_read_lock();
5807 memcg = mem_cgroup_from_id(id);
5808 if (memcg) {
5809 if (!mem_cgroup_is_root(memcg)) {
5810 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5811 page_counter_uncharge(&memcg->swap, 1);
5812 else
5813 page_counter_uncharge(&memcg->memsw, 1);
5814 }
5815 mem_cgroup_swap_statistics(memcg, false);
5816 css_put(&memcg->css);
5817 }
5818 rcu_read_unlock();
5819}
5820
5821long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5822{
5823 long nr_swap_pages = get_nr_swap_pages();
5824
5825 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826 return nr_swap_pages;
5827 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5828 nr_swap_pages = min_t(long, nr_swap_pages,
5829 READ_ONCE(memcg->swap.limit) -
5830 page_counter_read(&memcg->swap));
5831 return nr_swap_pages;
5832}
5833
5834bool mem_cgroup_swap_full(struct page *page)
5835{
5836 struct mem_cgroup *memcg;
5837
5838 VM_BUG_ON_PAGE(!PageLocked(page), page);
5839
5840 if (vm_swap_full())
5841 return true;
5842 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843 return false;
5844
5845 memcg = page->mem_cgroup;
5846 if (!memcg)
5847 return false;
5848
5849 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5850 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5851 return true;
5852
5853 return false;
5854}
5855
5856/* for remember boot option*/
5857#ifdef CONFIG_MEMCG_SWAP_ENABLED
5858static int really_do_swap_account __initdata = 1;
5859#else
5860static int really_do_swap_account __initdata;
5861#endif
5862
5863static int __init enable_swap_account(char *s)
5864{
5865 if (!strcmp(s, "1"))
5866 really_do_swap_account = 1;
5867 else if (!strcmp(s, "0"))
5868 really_do_swap_account = 0;
5869 return 1;
5870}
5871__setup("swapaccount=", enable_swap_account);
5872
5873static u64 swap_current_read(struct cgroup_subsys_state *css,
5874 struct cftype *cft)
5875{
5876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5877
5878 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5879}
5880
5881static int swap_max_show(struct seq_file *m, void *v)
5882{
5883 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5884 unsigned long max = READ_ONCE(memcg->swap.limit);
5885
5886 if (max == PAGE_COUNTER_MAX)
5887 seq_puts(m, "max\n");
5888 else
5889 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5890
5891 return 0;
5892}
5893
5894static ssize_t swap_max_write(struct kernfs_open_file *of,
5895 char *buf, size_t nbytes, loff_t off)
5896{
5897 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5898 unsigned long max;
5899 int err;
5900
5901 buf = strstrip(buf);
5902 err = page_counter_memparse(buf, "max", &max);
5903 if (err)
5904 return err;
5905
5906 mutex_lock(&memcg_limit_mutex);
5907 err = page_counter_limit(&memcg->swap, max);
5908 mutex_unlock(&memcg_limit_mutex);
5909 if (err)
5910 return err;
5911
5912 return nbytes;
5913}
5914
5915static struct cftype swap_files[] = {
5916 {
5917 .name = "swap.current",
5918 .flags = CFTYPE_NOT_ON_ROOT,
5919 .read_u64 = swap_current_read,
5920 },
5921 {
5922 .name = "swap.max",
5923 .flags = CFTYPE_NOT_ON_ROOT,
5924 .seq_show = swap_max_show,
5925 .write = swap_max_write,
5926 },
5927 { } /* terminate */
5928};
5929
5930static struct cftype memsw_cgroup_files[] = {
5931 {
5932 .name = "memsw.usage_in_bytes",
5933 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5934 .read_u64 = mem_cgroup_read_u64,
5935 },
5936 {
5937 .name = "memsw.max_usage_in_bytes",
5938 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5939 .write = mem_cgroup_reset,
5940 .read_u64 = mem_cgroup_read_u64,
5941 },
5942 {
5943 .name = "memsw.limit_in_bytes",
5944 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5945 .write = mem_cgroup_write,
5946 .read_u64 = mem_cgroup_read_u64,
5947 },
5948 {
5949 .name = "memsw.failcnt",
5950 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5951 .write = mem_cgroup_reset,
5952 .read_u64 = mem_cgroup_read_u64,
5953 },
5954 { }, /* terminate */
5955};
5956
5957static int __init mem_cgroup_swap_init(void)
5958{
5959 if (!mem_cgroup_disabled() && really_do_swap_account) {
5960 do_swap_account = 1;
5961 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5962 swap_files));
5963 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5964 memsw_cgroup_files));
5965 }
5966 return 0;
5967}
5968subsys_initcall(mem_cgroup_swap_init);
5969
5970#endif /* CONFIG_MEMCG_SWAP */
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/sched/mm.h>
39#include <linux/shmem_fs.h>
40#include <linux/hugetlb.h>
41#include <linux/pagemap.h>
42#include <linux/smp.h>
43#include <linux/page-flags.h>
44#include <linux/backing-dev.h>
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
47#include <linux/limits.h>
48#include <linux/export.h>
49#include <linux/mutex.h>
50#include <linux/rbtree.h>
51#include <linux/slab.h>
52#include <linux/swap.h>
53#include <linux/swapops.h>
54#include <linux/spinlock.h>
55#include <linux/eventfd.h>
56#include <linux/poll.h>
57#include <linux/sort.h>
58#include <linux/fs.h>
59#include <linux/seq_file.h>
60#include <linux/vmpressure.h>
61#include <linux/mm_inline.h>
62#include <linux/swap_cgroup.h>
63#include <linux/cpu.h>
64#include <linux/oom.h>
65#include <linux/lockdep.h>
66#include <linux/file.h>
67#include <linux/tracehook.h>
68#include "internal.h"
69#include <net/sock.h>
70#include <net/ip.h>
71#include "slab.h"
72
73#include <linux/uaccess.h>
74
75#include <trace/events/vmscan.h>
76
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
79
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82#define MEM_CGROUP_RECLAIM_RETRIES 5
83
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
90/* Whether the swap controller is active */
91#ifdef CONFIG_MEMCG_SWAP
92int do_swap_account __read_mostly;
93#else
94#define do_swap_account 0
95#endif
96
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
103static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
114
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
124};
125
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
137
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
141struct mem_cgroup_event {
142 /*
143 * memcg which the event belongs to.
144 */
145 struct mem_cgroup *memcg;
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
176};
177
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180
181/* Stuffs for move charges at task migration. */
182/*
183 * Types of charges to be moved.
184 */
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
188
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
205
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
212
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
219};
220
221/* for encoding cft->private value on file */
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
228};
229
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232#define MEMFILE_ATTR(val) ((val) & 0xffff)
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
235
236/* Some nice accessors for the vmpressure. */
237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238{
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
242}
243
244struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245{
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
247}
248
249static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
250{
251 return (memcg == root_mem_cgroup);
252}
253
254#ifndef CONFIG_SLOB
255/*
256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
262 *
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
265 */
266static DEFINE_IDA(memcg_cache_ida);
267int memcg_nr_cache_ids;
268
269/* Protects memcg_nr_cache_ids */
270static DECLARE_RWSEM(memcg_cache_ids_sem);
271
272void memcg_get_cache_ids(void)
273{
274 down_read(&memcg_cache_ids_sem);
275}
276
277void memcg_put_cache_ids(void)
278{
279 up_read(&memcg_cache_ids_sem);
280}
281
282/*
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
287 *
288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 * increase ours as well if it increases.
293 */
294#define MEMCG_CACHES_MIN_SIZE 4
295#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
296
297/*
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
302 */
303DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304EXPORT_SYMBOL(memcg_kmem_enabled_key);
305
306struct workqueue_struct *memcg_kmem_cache_wq;
307
308#endif /* !CONFIG_SLOB */
309
310/**
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
313 *
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
317 *
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319 * is returned.
320 */
321struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
322{
323 struct mem_cgroup *memcg;
324
325 memcg = page->mem_cgroup;
326
327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 memcg = root_mem_cgroup;
329
330 return &memcg->css;
331}
332
333/**
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
335 * @page: the page
336 *
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
340 *
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
345 */
346ino_t page_cgroup_ino(struct page *page)
347{
348 struct mem_cgroup *memcg;
349 unsigned long ino = 0;
350
351 rcu_read_lock();
352 memcg = READ_ONCE(page->mem_cgroup);
353 while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 memcg = parent_mem_cgroup(memcg);
355 if (memcg)
356 ino = cgroup_ino(memcg->css.cgroup);
357 rcu_read_unlock();
358 return ino;
359}
360
361static struct mem_cgroup_per_node *
362mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363{
364 int nid = page_to_nid(page);
365
366 return memcg->nodeinfo[nid];
367}
368
369static struct mem_cgroup_tree_per_node *
370soft_limit_tree_node(int nid)
371{
372 return soft_limit_tree.rb_tree_per_node[nid];
373}
374
375static struct mem_cgroup_tree_per_node *
376soft_limit_tree_from_page(struct page *page)
377{
378 int nid = page_to_nid(page);
379
380 return soft_limit_tree.rb_tree_per_node[nid];
381}
382
383static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 struct mem_cgroup_tree_per_node *mctz,
385 unsigned long new_usage_in_excess)
386{
387 struct rb_node **p = &mctz->rb_root.rb_node;
388 struct rb_node *parent = NULL;
389 struct mem_cgroup_per_node *mz_node;
390 bool rightmost = true;
391
392 if (mz->on_tree)
393 return;
394
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
397 return;
398 while (*p) {
399 parent = *p;
400 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401 tree_node);
402 if (mz->usage_in_excess < mz_node->usage_in_excess) {
403 p = &(*p)->rb_left;
404 rightmost = false;
405 }
406
407 /*
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
410 */
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 p = &(*p)->rb_right;
413 }
414
415 if (rightmost)
416 mctz->rb_rightmost = &mz->tree_node;
417
418 rb_link_node(&mz->tree_node, parent, p);
419 rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = true;
421}
422
423static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
425{
426 if (!mz->on_tree)
427 return;
428
429 if (&mz->tree_node == mctz->rb_rightmost)
430 mctz->rb_rightmost = rb_prev(&mz->tree_node);
431
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438{
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444}
445
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 if (!mctz)
466 return;
467 /*
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
470 */
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 mz = mem_cgroup_page_nodeinfo(memcg, page);
473 excess = soft_limit_excess(memcg);
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
478 if (excess || mz->on_tree) {
479 unsigned long flags;
480
481 spin_lock_irqsave(&mctz->lock, flags);
482 /* if on-tree, remove it */
483 if (mz->on_tree)
484 __mem_cgroup_remove_exceeded(mz, mctz);
485 /*
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
488 */
489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
490 spin_unlock_irqrestore(&mctz->lock, flags);
491 }
492 }
493}
494
495static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496{
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
500
501 for_each_node(nid) {
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
506 }
507}
508
509static struct mem_cgroup_per_node *
510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511{
512 struct mem_cgroup_per_node *mz;
513
514retry:
515 mz = NULL;
516 if (!mctz->rb_rightmost)
517 goto done; /* Nothing to reclaim from */
518
519 mz = rb_entry(mctz->rb_rightmost,
520 struct mem_cgroup_per_node, tree_node);
521 /*
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
525 */
526 __mem_cgroup_remove_exceeded(mz, mctz);
527 if (!soft_limit_excess(mz->memcg) ||
528 !css_tryget_online(&mz->memcg->css))
529 goto retry;
530done:
531 return mz;
532}
533
534static struct mem_cgroup_per_node *
535mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536{
537 struct mem_cgroup_per_node *mz;
538
539 spin_lock_irq(&mctz->lock);
540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
541 spin_unlock_irq(&mctz->lock);
542 return mz;
543}
544
545static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
546 int event)
547{
548 return atomic_long_read(&memcg->events[event]);
549}
550
551static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
552 struct page *page,
553 bool compound, int nr_pages)
554{
555 /*
556 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
557 * counted as CACHE even if it's on ANON LRU.
558 */
559 if (PageAnon(page))
560 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
561 else {
562 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
563 if (PageSwapBacked(page))
564 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
565 }
566
567 if (compound) {
568 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
569 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
570 }
571
572 /* pagein of a big page is an event. So, ignore page size */
573 if (nr_pages > 0)
574 __count_memcg_events(memcg, PGPGIN, 1);
575 else {
576 __count_memcg_events(memcg, PGPGOUT, 1);
577 nr_pages = -nr_pages; /* for event */
578 }
579
580 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
581}
582
583unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
584 int nid, unsigned int lru_mask)
585{
586 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
587 unsigned long nr = 0;
588 enum lru_list lru;
589
590 VM_BUG_ON((unsigned)nid >= nr_node_ids);
591
592 for_each_lru(lru) {
593 if (!(BIT(lru) & lru_mask))
594 continue;
595 nr += mem_cgroup_get_lru_size(lruvec, lru);
596 }
597 return nr;
598}
599
600static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
601 unsigned int lru_mask)
602{
603 unsigned long nr = 0;
604 int nid;
605
606 for_each_node_state(nid, N_MEMORY)
607 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
608 return nr;
609}
610
611static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
612 enum mem_cgroup_events_target target)
613{
614 unsigned long val, next;
615
616 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
617 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
618 /* from time_after() in jiffies.h */
619 if ((long)(next - val) < 0) {
620 switch (target) {
621 case MEM_CGROUP_TARGET_THRESH:
622 next = val + THRESHOLDS_EVENTS_TARGET;
623 break;
624 case MEM_CGROUP_TARGET_SOFTLIMIT:
625 next = val + SOFTLIMIT_EVENTS_TARGET;
626 break;
627 case MEM_CGROUP_TARGET_NUMAINFO:
628 next = val + NUMAINFO_EVENTS_TARGET;
629 break;
630 default:
631 break;
632 }
633 __this_cpu_write(memcg->stat_cpu->targets[target], next);
634 return true;
635 }
636 return false;
637}
638
639/*
640 * Check events in order.
641 *
642 */
643static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
644{
645 /* threshold event is triggered in finer grain than soft limit */
646 if (unlikely(mem_cgroup_event_ratelimit(memcg,
647 MEM_CGROUP_TARGET_THRESH))) {
648 bool do_softlimit;
649 bool do_numainfo __maybe_unused;
650
651 do_softlimit = mem_cgroup_event_ratelimit(memcg,
652 MEM_CGROUP_TARGET_SOFTLIMIT);
653#if MAX_NUMNODES > 1
654 do_numainfo = mem_cgroup_event_ratelimit(memcg,
655 MEM_CGROUP_TARGET_NUMAINFO);
656#endif
657 mem_cgroup_threshold(memcg);
658 if (unlikely(do_softlimit))
659 mem_cgroup_update_tree(memcg, page);
660#if MAX_NUMNODES > 1
661 if (unlikely(do_numainfo))
662 atomic_inc(&memcg->numainfo_events);
663#endif
664 }
665}
666
667struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
668{
669 /*
670 * mm_update_next_owner() may clear mm->owner to NULL
671 * if it races with swapoff, page migration, etc.
672 * So this can be called with p == NULL.
673 */
674 if (unlikely(!p))
675 return NULL;
676
677 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
678}
679EXPORT_SYMBOL(mem_cgroup_from_task);
680
681static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
682{
683 struct mem_cgroup *memcg = NULL;
684
685 rcu_read_lock();
686 do {
687 /*
688 * Page cache insertions can happen withou an
689 * actual mm context, e.g. during disk probing
690 * on boot, loopback IO, acct() writes etc.
691 */
692 if (unlikely(!mm))
693 memcg = root_mem_cgroup;
694 else {
695 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 if (unlikely(!memcg))
697 memcg = root_mem_cgroup;
698 }
699 } while (!css_tryget_online(&memcg->css));
700 rcu_read_unlock();
701 return memcg;
702}
703
704/**
705 * mem_cgroup_iter - iterate over memory cgroup hierarchy
706 * @root: hierarchy root
707 * @prev: previously returned memcg, NULL on first invocation
708 * @reclaim: cookie for shared reclaim walks, NULL for full walks
709 *
710 * Returns references to children of the hierarchy below @root, or
711 * @root itself, or %NULL after a full round-trip.
712 *
713 * Caller must pass the return value in @prev on subsequent
714 * invocations for reference counting, or use mem_cgroup_iter_break()
715 * to cancel a hierarchy walk before the round-trip is complete.
716 *
717 * Reclaimers can specify a node and a priority level in @reclaim to
718 * divide up the memcgs in the hierarchy among all concurrent
719 * reclaimers operating on the same node and priority.
720 */
721struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
722 struct mem_cgroup *prev,
723 struct mem_cgroup_reclaim_cookie *reclaim)
724{
725 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
726 struct cgroup_subsys_state *css = NULL;
727 struct mem_cgroup *memcg = NULL;
728 struct mem_cgroup *pos = NULL;
729
730 if (mem_cgroup_disabled())
731 return NULL;
732
733 if (!root)
734 root = root_mem_cgroup;
735
736 if (prev && !reclaim)
737 pos = prev;
738
739 if (!root->use_hierarchy && root != root_mem_cgroup) {
740 if (prev)
741 goto out;
742 return root;
743 }
744
745 rcu_read_lock();
746
747 if (reclaim) {
748 struct mem_cgroup_per_node *mz;
749
750 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
751 iter = &mz->iter[reclaim->priority];
752
753 if (prev && reclaim->generation != iter->generation)
754 goto out_unlock;
755
756 while (1) {
757 pos = READ_ONCE(iter->position);
758 if (!pos || css_tryget(&pos->css))
759 break;
760 /*
761 * css reference reached zero, so iter->position will
762 * be cleared by ->css_released. However, we should not
763 * rely on this happening soon, because ->css_released
764 * is called from a work queue, and by busy-waiting we
765 * might block it. So we clear iter->position right
766 * away.
767 */
768 (void)cmpxchg(&iter->position, pos, NULL);
769 }
770 }
771
772 if (pos)
773 css = &pos->css;
774
775 for (;;) {
776 css = css_next_descendant_pre(css, &root->css);
777 if (!css) {
778 /*
779 * Reclaimers share the hierarchy walk, and a
780 * new one might jump in right at the end of
781 * the hierarchy - make sure they see at least
782 * one group and restart from the beginning.
783 */
784 if (!prev)
785 continue;
786 break;
787 }
788
789 /*
790 * Verify the css and acquire a reference. The root
791 * is provided by the caller, so we know it's alive
792 * and kicking, and don't take an extra reference.
793 */
794 memcg = mem_cgroup_from_css(css);
795
796 if (css == &root->css)
797 break;
798
799 if (css_tryget(css))
800 break;
801
802 memcg = NULL;
803 }
804
805 if (reclaim) {
806 /*
807 * The position could have already been updated by a competing
808 * thread, so check that the value hasn't changed since we read
809 * it to avoid reclaiming from the same cgroup twice.
810 */
811 (void)cmpxchg(&iter->position, pos, memcg);
812
813 if (pos)
814 css_put(&pos->css);
815
816 if (!memcg)
817 iter->generation++;
818 else if (!prev)
819 reclaim->generation = iter->generation;
820 }
821
822out_unlock:
823 rcu_read_unlock();
824out:
825 if (prev && prev != root)
826 css_put(&prev->css);
827
828 return memcg;
829}
830
831/**
832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
833 * @root: hierarchy root
834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
835 */
836void mem_cgroup_iter_break(struct mem_cgroup *root,
837 struct mem_cgroup *prev)
838{
839 if (!root)
840 root = root_mem_cgroup;
841 if (prev && prev != root)
842 css_put(&prev->css);
843}
844
845static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
846{
847 struct mem_cgroup *memcg = dead_memcg;
848 struct mem_cgroup_reclaim_iter *iter;
849 struct mem_cgroup_per_node *mz;
850 int nid;
851 int i;
852
853 while ((memcg = parent_mem_cgroup(memcg))) {
854 for_each_node(nid) {
855 mz = mem_cgroup_nodeinfo(memcg, nid);
856 for (i = 0; i <= DEF_PRIORITY; i++) {
857 iter = &mz->iter[i];
858 cmpxchg(&iter->position,
859 dead_memcg, NULL);
860 }
861 }
862 }
863}
864
865/*
866 * Iteration constructs for visiting all cgroups (under a tree). If
867 * loops are exited prematurely (break), mem_cgroup_iter_break() must
868 * be used for reference counting.
869 */
870#define for_each_mem_cgroup_tree(iter, root) \
871 for (iter = mem_cgroup_iter(root, NULL, NULL); \
872 iter != NULL; \
873 iter = mem_cgroup_iter(root, iter, NULL))
874
875#define for_each_mem_cgroup(iter) \
876 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
877 iter != NULL; \
878 iter = mem_cgroup_iter(NULL, iter, NULL))
879
880/**
881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
882 * @memcg: hierarchy root
883 * @fn: function to call for each task
884 * @arg: argument passed to @fn
885 *
886 * This function iterates over tasks attached to @memcg or to any of its
887 * descendants and calls @fn for each task. If @fn returns a non-zero
888 * value, the function breaks the iteration loop and returns the value.
889 * Otherwise, it will iterate over all tasks and return 0.
890 *
891 * This function must not be called for the root memory cgroup.
892 */
893int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
894 int (*fn)(struct task_struct *, void *), void *arg)
895{
896 struct mem_cgroup *iter;
897 int ret = 0;
898
899 BUG_ON(memcg == root_mem_cgroup);
900
901 for_each_mem_cgroup_tree(iter, memcg) {
902 struct css_task_iter it;
903 struct task_struct *task;
904
905 css_task_iter_start(&iter->css, 0, &it);
906 while (!ret && (task = css_task_iter_next(&it)))
907 ret = fn(task, arg);
908 css_task_iter_end(&it);
909 if (ret) {
910 mem_cgroup_iter_break(memcg, iter);
911 break;
912 }
913 }
914 return ret;
915}
916
917/**
918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
919 * @page: the page
920 * @pgdat: pgdat of the page
921 *
922 * This function is only safe when following the LRU page isolation
923 * and putback protocol: the LRU lock must be held, and the page must
924 * either be PageLRU() or the caller must have isolated/allocated it.
925 */
926struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
927{
928 struct mem_cgroup_per_node *mz;
929 struct mem_cgroup *memcg;
930 struct lruvec *lruvec;
931
932 if (mem_cgroup_disabled()) {
933 lruvec = &pgdat->lruvec;
934 goto out;
935 }
936
937 memcg = page->mem_cgroup;
938 /*
939 * Swapcache readahead pages are added to the LRU - and
940 * possibly migrated - before they are charged.
941 */
942 if (!memcg)
943 memcg = root_mem_cgroup;
944
945 mz = mem_cgroup_page_nodeinfo(memcg, page);
946 lruvec = &mz->lruvec;
947out:
948 /*
949 * Since a node can be onlined after the mem_cgroup was created,
950 * we have to be prepared to initialize lruvec->zone here;
951 * and if offlined then reonlined, we need to reinitialize it.
952 */
953 if (unlikely(lruvec->pgdat != pgdat))
954 lruvec->pgdat = pgdat;
955 return lruvec;
956}
957
958/**
959 * mem_cgroup_update_lru_size - account for adding or removing an lru page
960 * @lruvec: mem_cgroup per zone lru vector
961 * @lru: index of lru list the page is sitting on
962 * @zid: zone id of the accounted pages
963 * @nr_pages: positive when adding or negative when removing
964 *
965 * This function must be called under lru_lock, just before a page is added
966 * to or just after a page is removed from an lru list (that ordering being
967 * so as to allow it to check that lru_size 0 is consistent with list_empty).
968 */
969void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
970 int zid, int nr_pages)
971{
972 struct mem_cgroup_per_node *mz;
973 unsigned long *lru_size;
974 long size;
975
976 if (mem_cgroup_disabled())
977 return;
978
979 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
980 lru_size = &mz->lru_zone_size[zid][lru];
981
982 if (nr_pages < 0)
983 *lru_size += nr_pages;
984
985 size = *lru_size;
986 if (WARN_ONCE(size < 0,
987 "%s(%p, %d, %d): lru_size %ld\n",
988 __func__, lruvec, lru, nr_pages, size)) {
989 VM_BUG_ON(1);
990 *lru_size = 0;
991 }
992
993 if (nr_pages > 0)
994 *lru_size += nr_pages;
995}
996
997bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
998{
999 struct mem_cgroup *task_memcg;
1000 struct task_struct *p;
1001 bool ret;
1002
1003 p = find_lock_task_mm(task);
1004 if (p) {
1005 task_memcg = get_mem_cgroup_from_mm(p->mm);
1006 task_unlock(p);
1007 } else {
1008 /*
1009 * All threads may have already detached their mm's, but the oom
1010 * killer still needs to detect if they have already been oom
1011 * killed to prevent needlessly killing additional tasks.
1012 */
1013 rcu_read_lock();
1014 task_memcg = mem_cgroup_from_task(task);
1015 css_get(&task_memcg->css);
1016 rcu_read_unlock();
1017 }
1018 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1019 css_put(&task_memcg->css);
1020 return ret;
1021}
1022
1023/**
1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1025 * @memcg: the memory cgroup
1026 *
1027 * Returns the maximum amount of memory @mem can be charged with, in
1028 * pages.
1029 */
1030static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1031{
1032 unsigned long margin = 0;
1033 unsigned long count;
1034 unsigned long limit;
1035
1036 count = page_counter_read(&memcg->memory);
1037 limit = READ_ONCE(memcg->memory.limit);
1038 if (count < limit)
1039 margin = limit - count;
1040
1041 if (do_memsw_account()) {
1042 count = page_counter_read(&memcg->memsw);
1043 limit = READ_ONCE(memcg->memsw.limit);
1044 if (count <= limit)
1045 margin = min(margin, limit - count);
1046 else
1047 margin = 0;
1048 }
1049
1050 return margin;
1051}
1052
1053/*
1054 * A routine for checking "mem" is under move_account() or not.
1055 *
1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1057 * moving cgroups. This is for waiting at high-memory pressure
1058 * caused by "move".
1059 */
1060static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1061{
1062 struct mem_cgroup *from;
1063 struct mem_cgroup *to;
1064 bool ret = false;
1065 /*
1066 * Unlike task_move routines, we access mc.to, mc.from not under
1067 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1068 */
1069 spin_lock(&mc.lock);
1070 from = mc.from;
1071 to = mc.to;
1072 if (!from)
1073 goto unlock;
1074
1075 ret = mem_cgroup_is_descendant(from, memcg) ||
1076 mem_cgroup_is_descendant(to, memcg);
1077unlock:
1078 spin_unlock(&mc.lock);
1079 return ret;
1080}
1081
1082static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1083{
1084 if (mc.moving_task && current != mc.moving_task) {
1085 if (mem_cgroup_under_move(memcg)) {
1086 DEFINE_WAIT(wait);
1087 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1088 /* moving charge context might have finished. */
1089 if (mc.moving_task)
1090 schedule();
1091 finish_wait(&mc.waitq, &wait);
1092 return true;
1093 }
1094 }
1095 return false;
1096}
1097
1098static const unsigned int memcg1_stats[] = {
1099 MEMCG_CACHE,
1100 MEMCG_RSS,
1101 MEMCG_RSS_HUGE,
1102 NR_SHMEM,
1103 NR_FILE_MAPPED,
1104 NR_FILE_DIRTY,
1105 NR_WRITEBACK,
1106 MEMCG_SWAP,
1107};
1108
1109static const char *const memcg1_stat_names[] = {
1110 "cache",
1111 "rss",
1112 "rss_huge",
1113 "shmem",
1114 "mapped_file",
1115 "dirty",
1116 "writeback",
1117 "swap",
1118};
1119
1120#define K(x) ((x) << (PAGE_SHIFT-10))
1121/**
1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1123 * @memcg: The memory cgroup that went over limit
1124 * @p: Task that is going to be killed
1125 *
1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1127 * enabled
1128 */
1129void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1130{
1131 struct mem_cgroup *iter;
1132 unsigned int i;
1133
1134 rcu_read_lock();
1135
1136 if (p) {
1137 pr_info("Task in ");
1138 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1139 pr_cont(" killed as a result of limit of ");
1140 } else {
1141 pr_info("Memory limit reached of cgroup ");
1142 }
1143
1144 pr_cont_cgroup_path(memcg->css.cgroup);
1145 pr_cont("\n");
1146
1147 rcu_read_unlock();
1148
1149 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1150 K((u64)page_counter_read(&memcg->memory)),
1151 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1152 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1153 K((u64)page_counter_read(&memcg->memsw)),
1154 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1155 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1156 K((u64)page_counter_read(&memcg->kmem)),
1157 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1158
1159 for_each_mem_cgroup_tree(iter, memcg) {
1160 pr_info("Memory cgroup stats for ");
1161 pr_cont_cgroup_path(iter->css.cgroup);
1162 pr_cont(":");
1163
1164 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1165 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1166 continue;
1167 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1168 K(memcg_page_state(iter, memcg1_stats[i])));
1169 }
1170
1171 for (i = 0; i < NR_LRU_LISTS; i++)
1172 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1173 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1174
1175 pr_cont("\n");
1176 }
1177}
1178
1179/*
1180 * Return the memory (and swap, if configured) limit for a memcg.
1181 */
1182unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1183{
1184 unsigned long limit;
1185
1186 limit = memcg->memory.limit;
1187 if (mem_cgroup_swappiness(memcg)) {
1188 unsigned long memsw_limit;
1189 unsigned long swap_limit;
1190
1191 memsw_limit = memcg->memsw.limit;
1192 swap_limit = memcg->swap.limit;
1193 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1194 limit = min(limit + swap_limit, memsw_limit);
1195 }
1196 return limit;
1197}
1198
1199static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1200 int order)
1201{
1202 struct oom_control oc = {
1203 .zonelist = NULL,
1204 .nodemask = NULL,
1205 .memcg = memcg,
1206 .gfp_mask = gfp_mask,
1207 .order = order,
1208 };
1209 bool ret;
1210
1211 mutex_lock(&oom_lock);
1212 ret = out_of_memory(&oc);
1213 mutex_unlock(&oom_lock);
1214 return ret;
1215}
1216
1217#if MAX_NUMNODES > 1
1218
1219/**
1220 * test_mem_cgroup_node_reclaimable
1221 * @memcg: the target memcg
1222 * @nid: the node ID to be checked.
1223 * @noswap : specify true here if the user wants flle only information.
1224 *
1225 * This function returns whether the specified memcg contains any
1226 * reclaimable pages on a node. Returns true if there are any reclaimable
1227 * pages in the node.
1228 */
1229static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1230 int nid, bool noswap)
1231{
1232 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1233 return true;
1234 if (noswap || !total_swap_pages)
1235 return false;
1236 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1237 return true;
1238 return false;
1239
1240}
1241
1242/*
1243 * Always updating the nodemask is not very good - even if we have an empty
1244 * list or the wrong list here, we can start from some node and traverse all
1245 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1246 *
1247 */
1248static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1249{
1250 int nid;
1251 /*
1252 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1253 * pagein/pageout changes since the last update.
1254 */
1255 if (!atomic_read(&memcg->numainfo_events))
1256 return;
1257 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1258 return;
1259
1260 /* make a nodemask where this memcg uses memory from */
1261 memcg->scan_nodes = node_states[N_MEMORY];
1262
1263 for_each_node_mask(nid, node_states[N_MEMORY]) {
1264
1265 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1266 node_clear(nid, memcg->scan_nodes);
1267 }
1268
1269 atomic_set(&memcg->numainfo_events, 0);
1270 atomic_set(&memcg->numainfo_updating, 0);
1271}
1272
1273/*
1274 * Selecting a node where we start reclaim from. Because what we need is just
1275 * reducing usage counter, start from anywhere is O,K. Considering
1276 * memory reclaim from current node, there are pros. and cons.
1277 *
1278 * Freeing memory from current node means freeing memory from a node which
1279 * we'll use or we've used. So, it may make LRU bad. And if several threads
1280 * hit limits, it will see a contention on a node. But freeing from remote
1281 * node means more costs for memory reclaim because of memory latency.
1282 *
1283 * Now, we use round-robin. Better algorithm is welcomed.
1284 */
1285int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1286{
1287 int node;
1288
1289 mem_cgroup_may_update_nodemask(memcg);
1290 node = memcg->last_scanned_node;
1291
1292 node = next_node_in(node, memcg->scan_nodes);
1293 /*
1294 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1295 * last time it really checked all the LRUs due to rate limiting.
1296 * Fallback to the current node in that case for simplicity.
1297 */
1298 if (unlikely(node == MAX_NUMNODES))
1299 node = numa_node_id();
1300
1301 memcg->last_scanned_node = node;
1302 return node;
1303}
1304#else
1305int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1306{
1307 return 0;
1308}
1309#endif
1310
1311static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1312 pg_data_t *pgdat,
1313 gfp_t gfp_mask,
1314 unsigned long *total_scanned)
1315{
1316 struct mem_cgroup *victim = NULL;
1317 int total = 0;
1318 int loop = 0;
1319 unsigned long excess;
1320 unsigned long nr_scanned;
1321 struct mem_cgroup_reclaim_cookie reclaim = {
1322 .pgdat = pgdat,
1323 .priority = 0,
1324 };
1325
1326 excess = soft_limit_excess(root_memcg);
1327
1328 while (1) {
1329 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1330 if (!victim) {
1331 loop++;
1332 if (loop >= 2) {
1333 /*
1334 * If we have not been able to reclaim
1335 * anything, it might because there are
1336 * no reclaimable pages under this hierarchy
1337 */
1338 if (!total)
1339 break;
1340 /*
1341 * We want to do more targeted reclaim.
1342 * excess >> 2 is not to excessive so as to
1343 * reclaim too much, nor too less that we keep
1344 * coming back to reclaim from this cgroup
1345 */
1346 if (total >= (excess >> 2) ||
1347 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1348 break;
1349 }
1350 continue;
1351 }
1352 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1353 pgdat, &nr_scanned);
1354 *total_scanned += nr_scanned;
1355 if (!soft_limit_excess(root_memcg))
1356 break;
1357 }
1358 mem_cgroup_iter_break(root_memcg, victim);
1359 return total;
1360}
1361
1362#ifdef CONFIG_LOCKDEP
1363static struct lockdep_map memcg_oom_lock_dep_map = {
1364 .name = "memcg_oom_lock",
1365};
1366#endif
1367
1368static DEFINE_SPINLOCK(memcg_oom_lock);
1369
1370/*
1371 * Check OOM-Killer is already running under our hierarchy.
1372 * If someone is running, return false.
1373 */
1374static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1375{
1376 struct mem_cgroup *iter, *failed = NULL;
1377
1378 spin_lock(&memcg_oom_lock);
1379
1380 for_each_mem_cgroup_tree(iter, memcg) {
1381 if (iter->oom_lock) {
1382 /*
1383 * this subtree of our hierarchy is already locked
1384 * so we cannot give a lock.
1385 */
1386 failed = iter;
1387 mem_cgroup_iter_break(memcg, iter);
1388 break;
1389 } else
1390 iter->oom_lock = true;
1391 }
1392
1393 if (failed) {
1394 /*
1395 * OK, we failed to lock the whole subtree so we have
1396 * to clean up what we set up to the failing subtree
1397 */
1398 for_each_mem_cgroup_tree(iter, memcg) {
1399 if (iter == failed) {
1400 mem_cgroup_iter_break(memcg, iter);
1401 break;
1402 }
1403 iter->oom_lock = false;
1404 }
1405 } else
1406 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1407
1408 spin_unlock(&memcg_oom_lock);
1409
1410 return !failed;
1411}
1412
1413static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1414{
1415 struct mem_cgroup *iter;
1416
1417 spin_lock(&memcg_oom_lock);
1418 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1419 for_each_mem_cgroup_tree(iter, memcg)
1420 iter->oom_lock = false;
1421 spin_unlock(&memcg_oom_lock);
1422}
1423
1424static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1425{
1426 struct mem_cgroup *iter;
1427
1428 spin_lock(&memcg_oom_lock);
1429 for_each_mem_cgroup_tree(iter, memcg)
1430 iter->under_oom++;
1431 spin_unlock(&memcg_oom_lock);
1432}
1433
1434static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1435{
1436 struct mem_cgroup *iter;
1437
1438 /*
1439 * When a new child is created while the hierarchy is under oom,
1440 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1441 */
1442 spin_lock(&memcg_oom_lock);
1443 for_each_mem_cgroup_tree(iter, memcg)
1444 if (iter->under_oom > 0)
1445 iter->under_oom--;
1446 spin_unlock(&memcg_oom_lock);
1447}
1448
1449static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1450
1451struct oom_wait_info {
1452 struct mem_cgroup *memcg;
1453 wait_queue_entry_t wait;
1454};
1455
1456static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1457 unsigned mode, int sync, void *arg)
1458{
1459 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1460 struct mem_cgroup *oom_wait_memcg;
1461 struct oom_wait_info *oom_wait_info;
1462
1463 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1464 oom_wait_memcg = oom_wait_info->memcg;
1465
1466 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1467 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1468 return 0;
1469 return autoremove_wake_function(wait, mode, sync, arg);
1470}
1471
1472static void memcg_oom_recover(struct mem_cgroup *memcg)
1473{
1474 /*
1475 * For the following lockless ->under_oom test, the only required
1476 * guarantee is that it must see the state asserted by an OOM when
1477 * this function is called as a result of userland actions
1478 * triggered by the notification of the OOM. This is trivially
1479 * achieved by invoking mem_cgroup_mark_under_oom() before
1480 * triggering notification.
1481 */
1482 if (memcg && memcg->under_oom)
1483 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1484}
1485
1486static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1487{
1488 if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
1489 return;
1490 /*
1491 * We are in the middle of the charge context here, so we
1492 * don't want to block when potentially sitting on a callstack
1493 * that holds all kinds of filesystem and mm locks.
1494 *
1495 * Also, the caller may handle a failed allocation gracefully
1496 * (like optional page cache readahead) and so an OOM killer
1497 * invocation might not even be necessary.
1498 *
1499 * That's why we don't do anything here except remember the
1500 * OOM context and then deal with it at the end of the page
1501 * fault when the stack is unwound, the locks are released,
1502 * and when we know whether the fault was overall successful.
1503 */
1504 css_get(&memcg->css);
1505 current->memcg_in_oom = memcg;
1506 current->memcg_oom_gfp_mask = mask;
1507 current->memcg_oom_order = order;
1508}
1509
1510/**
1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512 * @handle: actually kill/wait or just clean up the OOM state
1513 *
1514 * This has to be called at the end of a page fault if the memcg OOM
1515 * handler was enabled.
1516 *
1517 * Memcg supports userspace OOM handling where failed allocations must
1518 * sleep on a waitqueue until the userspace task resolves the
1519 * situation. Sleeping directly in the charge context with all kinds
1520 * of locks held is not a good idea, instead we remember an OOM state
1521 * in the task and mem_cgroup_oom_synchronize() has to be called at
1522 * the end of the page fault to complete the OOM handling.
1523 *
1524 * Returns %true if an ongoing memcg OOM situation was detected and
1525 * completed, %false otherwise.
1526 */
1527bool mem_cgroup_oom_synchronize(bool handle)
1528{
1529 struct mem_cgroup *memcg = current->memcg_in_oom;
1530 struct oom_wait_info owait;
1531 bool locked;
1532
1533 /* OOM is global, do not handle */
1534 if (!memcg)
1535 return false;
1536
1537 if (!handle)
1538 goto cleanup;
1539
1540 owait.memcg = memcg;
1541 owait.wait.flags = 0;
1542 owait.wait.func = memcg_oom_wake_function;
1543 owait.wait.private = current;
1544 INIT_LIST_HEAD(&owait.wait.entry);
1545
1546 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1547 mem_cgroup_mark_under_oom(memcg);
1548
1549 locked = mem_cgroup_oom_trylock(memcg);
1550
1551 if (locked)
1552 mem_cgroup_oom_notify(memcg);
1553
1554 if (locked && !memcg->oom_kill_disable) {
1555 mem_cgroup_unmark_under_oom(memcg);
1556 finish_wait(&memcg_oom_waitq, &owait.wait);
1557 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1558 current->memcg_oom_order);
1559 } else {
1560 schedule();
1561 mem_cgroup_unmark_under_oom(memcg);
1562 finish_wait(&memcg_oom_waitq, &owait.wait);
1563 }
1564
1565 if (locked) {
1566 mem_cgroup_oom_unlock(memcg);
1567 /*
1568 * There is no guarantee that an OOM-lock contender
1569 * sees the wakeups triggered by the OOM kill
1570 * uncharges. Wake any sleepers explicitely.
1571 */
1572 memcg_oom_recover(memcg);
1573 }
1574cleanup:
1575 current->memcg_in_oom = NULL;
1576 css_put(&memcg->css);
1577 return true;
1578}
1579
1580/**
1581 * lock_page_memcg - lock a page->mem_cgroup binding
1582 * @page: the page
1583 *
1584 * This function protects unlocked LRU pages from being moved to
1585 * another cgroup.
1586 *
1587 * It ensures lifetime of the returned memcg. Caller is responsible
1588 * for the lifetime of the page; __unlock_page_memcg() is available
1589 * when @page might get freed inside the locked section.
1590 */
1591struct mem_cgroup *lock_page_memcg(struct page *page)
1592{
1593 struct mem_cgroup *memcg;
1594 unsigned long flags;
1595
1596 /*
1597 * The RCU lock is held throughout the transaction. The fast
1598 * path can get away without acquiring the memcg->move_lock
1599 * because page moving starts with an RCU grace period.
1600 *
1601 * The RCU lock also protects the memcg from being freed when
1602 * the page state that is going to change is the only thing
1603 * preventing the page itself from being freed. E.g. writeback
1604 * doesn't hold a page reference and relies on PG_writeback to
1605 * keep off truncation, migration and so forth.
1606 */
1607 rcu_read_lock();
1608
1609 if (mem_cgroup_disabled())
1610 return NULL;
1611again:
1612 memcg = page->mem_cgroup;
1613 if (unlikely(!memcg))
1614 return NULL;
1615
1616 if (atomic_read(&memcg->moving_account) <= 0)
1617 return memcg;
1618
1619 spin_lock_irqsave(&memcg->move_lock, flags);
1620 if (memcg != page->mem_cgroup) {
1621 spin_unlock_irqrestore(&memcg->move_lock, flags);
1622 goto again;
1623 }
1624
1625 /*
1626 * When charge migration first begins, we can have locked and
1627 * unlocked page stat updates happening concurrently. Track
1628 * the task who has the lock for unlock_page_memcg().
1629 */
1630 memcg->move_lock_task = current;
1631 memcg->move_lock_flags = flags;
1632
1633 return memcg;
1634}
1635EXPORT_SYMBOL(lock_page_memcg);
1636
1637/**
1638 * __unlock_page_memcg - unlock and unpin a memcg
1639 * @memcg: the memcg
1640 *
1641 * Unlock and unpin a memcg returned by lock_page_memcg().
1642 */
1643void __unlock_page_memcg(struct mem_cgroup *memcg)
1644{
1645 if (memcg && memcg->move_lock_task == current) {
1646 unsigned long flags = memcg->move_lock_flags;
1647
1648 memcg->move_lock_task = NULL;
1649 memcg->move_lock_flags = 0;
1650
1651 spin_unlock_irqrestore(&memcg->move_lock, flags);
1652 }
1653
1654 rcu_read_unlock();
1655}
1656
1657/**
1658 * unlock_page_memcg - unlock a page->mem_cgroup binding
1659 * @page: the page
1660 */
1661void unlock_page_memcg(struct page *page)
1662{
1663 __unlock_page_memcg(page->mem_cgroup);
1664}
1665EXPORT_SYMBOL(unlock_page_memcg);
1666
1667struct memcg_stock_pcp {
1668 struct mem_cgroup *cached; /* this never be root cgroup */
1669 unsigned int nr_pages;
1670 struct work_struct work;
1671 unsigned long flags;
1672#define FLUSHING_CACHED_CHARGE 0
1673};
1674static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675static DEFINE_MUTEX(percpu_charge_mutex);
1676
1677/**
1678 * consume_stock: Try to consume stocked charge on this cpu.
1679 * @memcg: memcg to consume from.
1680 * @nr_pages: how many pages to charge.
1681 *
1682 * The charges will only happen if @memcg matches the current cpu's memcg
1683 * stock, and at least @nr_pages are available in that stock. Failure to
1684 * service an allocation will refill the stock.
1685 *
1686 * returns true if successful, false otherwise.
1687 */
1688static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1689{
1690 struct memcg_stock_pcp *stock;
1691 unsigned long flags;
1692 bool ret = false;
1693
1694 if (nr_pages > MEMCG_CHARGE_BATCH)
1695 return ret;
1696
1697 local_irq_save(flags);
1698
1699 stock = this_cpu_ptr(&memcg_stock);
1700 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1701 stock->nr_pages -= nr_pages;
1702 ret = true;
1703 }
1704
1705 local_irq_restore(flags);
1706
1707 return ret;
1708}
1709
1710/*
1711 * Returns stocks cached in percpu and reset cached information.
1712 */
1713static void drain_stock(struct memcg_stock_pcp *stock)
1714{
1715 struct mem_cgroup *old = stock->cached;
1716
1717 if (stock->nr_pages) {
1718 page_counter_uncharge(&old->memory, stock->nr_pages);
1719 if (do_memsw_account())
1720 page_counter_uncharge(&old->memsw, stock->nr_pages);
1721 css_put_many(&old->css, stock->nr_pages);
1722 stock->nr_pages = 0;
1723 }
1724 stock->cached = NULL;
1725}
1726
1727static void drain_local_stock(struct work_struct *dummy)
1728{
1729 struct memcg_stock_pcp *stock;
1730 unsigned long flags;
1731
1732 /*
1733 * The only protection from memory hotplug vs. drain_stock races is
1734 * that we always operate on local CPU stock here with IRQ disabled
1735 */
1736 local_irq_save(flags);
1737
1738 stock = this_cpu_ptr(&memcg_stock);
1739 drain_stock(stock);
1740 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1741
1742 local_irq_restore(flags);
1743}
1744
1745/*
1746 * Cache charges(val) to local per_cpu area.
1747 * This will be consumed by consume_stock() function, later.
1748 */
1749static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1750{
1751 struct memcg_stock_pcp *stock;
1752 unsigned long flags;
1753
1754 local_irq_save(flags);
1755
1756 stock = this_cpu_ptr(&memcg_stock);
1757 if (stock->cached != memcg) { /* reset if necessary */
1758 drain_stock(stock);
1759 stock->cached = memcg;
1760 }
1761 stock->nr_pages += nr_pages;
1762
1763 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1764 drain_stock(stock);
1765
1766 local_irq_restore(flags);
1767}
1768
1769/*
1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771 * of the hierarchy under it.
1772 */
1773static void drain_all_stock(struct mem_cgroup *root_memcg)
1774{
1775 int cpu, curcpu;
1776
1777 /* If someone's already draining, avoid adding running more workers. */
1778 if (!mutex_trylock(&percpu_charge_mutex))
1779 return;
1780 /*
1781 * Notify other cpus that system-wide "drain" is running
1782 * We do not care about races with the cpu hotplug because cpu down
1783 * as well as workers from this path always operate on the local
1784 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1785 */
1786 curcpu = get_cpu();
1787 for_each_online_cpu(cpu) {
1788 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1789 struct mem_cgroup *memcg;
1790
1791 memcg = stock->cached;
1792 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1793 continue;
1794 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1795 css_put(&memcg->css);
1796 continue;
1797 }
1798 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1799 if (cpu == curcpu)
1800 drain_local_stock(&stock->work);
1801 else
1802 schedule_work_on(cpu, &stock->work);
1803 }
1804 css_put(&memcg->css);
1805 }
1806 put_cpu();
1807 mutex_unlock(&percpu_charge_mutex);
1808}
1809
1810static int memcg_hotplug_cpu_dead(unsigned int cpu)
1811{
1812 struct memcg_stock_pcp *stock;
1813 struct mem_cgroup *memcg;
1814
1815 stock = &per_cpu(memcg_stock, cpu);
1816 drain_stock(stock);
1817
1818 for_each_mem_cgroup(memcg) {
1819 int i;
1820
1821 for (i = 0; i < MEMCG_NR_STAT; i++) {
1822 int nid;
1823 long x;
1824
1825 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1826 if (x)
1827 atomic_long_add(x, &memcg->stat[i]);
1828
1829 if (i >= NR_VM_NODE_STAT_ITEMS)
1830 continue;
1831
1832 for_each_node(nid) {
1833 struct mem_cgroup_per_node *pn;
1834
1835 pn = mem_cgroup_nodeinfo(memcg, nid);
1836 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1837 if (x)
1838 atomic_long_add(x, &pn->lruvec_stat[i]);
1839 }
1840 }
1841
1842 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1843 long x;
1844
1845 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1846 if (x)
1847 atomic_long_add(x, &memcg->events[i]);
1848 }
1849 }
1850
1851 return 0;
1852}
1853
1854static void reclaim_high(struct mem_cgroup *memcg,
1855 unsigned int nr_pages,
1856 gfp_t gfp_mask)
1857{
1858 do {
1859 if (page_counter_read(&memcg->memory) <= memcg->high)
1860 continue;
1861 memcg_memory_event(memcg, MEMCG_HIGH);
1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 } while ((memcg = parent_mem_cgroup(memcg)));
1864}
1865
1866static void high_work_func(struct work_struct *work)
1867{
1868 struct mem_cgroup *memcg;
1869
1870 memcg = container_of(work, struct mem_cgroup, high_work);
1871 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1872}
1873
1874/*
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1877 */
1878void mem_cgroup_handle_over_high(void)
1879{
1880 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881 struct mem_cgroup *memcg;
1882
1883 if (likely(!nr_pages))
1884 return;
1885
1886 memcg = get_mem_cgroup_from_mm(current->mm);
1887 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 css_put(&memcg->css);
1889 current->memcg_nr_pages_over_high = 0;
1890}
1891
1892static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 unsigned int nr_pages)
1894{
1895 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897 struct mem_cgroup *mem_over_limit;
1898 struct page_counter *counter;
1899 unsigned long nr_reclaimed;
1900 bool may_swap = true;
1901 bool drained = false;
1902
1903 if (mem_cgroup_is_root(memcg))
1904 return 0;
1905retry:
1906 if (consume_stock(memcg, nr_pages))
1907 return 0;
1908
1909 if (!do_memsw_account() ||
1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912 goto done_restock;
1913 if (do_memsw_account())
1914 page_counter_uncharge(&memcg->memsw, batch);
1915 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916 } else {
1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918 may_swap = false;
1919 }
1920
1921 if (batch > nr_pages) {
1922 batch = nr_pages;
1923 goto retry;
1924 }
1925
1926 /*
1927 * Unlike in global OOM situations, memcg is not in a physical
1928 * memory shortage. Allow dying and OOM-killed tasks to
1929 * bypass the last charges so that they can exit quickly and
1930 * free their memory.
1931 */
1932 if (unlikely(tsk_is_oom_victim(current) ||
1933 fatal_signal_pending(current) ||
1934 current->flags & PF_EXITING))
1935 goto force;
1936
1937 /*
1938 * Prevent unbounded recursion when reclaim operations need to
1939 * allocate memory. This might exceed the limits temporarily,
1940 * but we prefer facilitating memory reclaim and getting back
1941 * under the limit over triggering OOM kills in these cases.
1942 */
1943 if (unlikely(current->flags & PF_MEMALLOC))
1944 goto force;
1945
1946 if (unlikely(task_in_memcg_oom(current)))
1947 goto nomem;
1948
1949 if (!gfpflags_allow_blocking(gfp_mask))
1950 goto nomem;
1951
1952 memcg_memory_event(mem_over_limit, MEMCG_MAX);
1953
1954 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1955 gfp_mask, may_swap);
1956
1957 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1958 goto retry;
1959
1960 if (!drained) {
1961 drain_all_stock(mem_over_limit);
1962 drained = true;
1963 goto retry;
1964 }
1965
1966 if (gfp_mask & __GFP_NORETRY)
1967 goto nomem;
1968 /*
1969 * Even though the limit is exceeded at this point, reclaim
1970 * may have been able to free some pages. Retry the charge
1971 * before killing the task.
1972 *
1973 * Only for regular pages, though: huge pages are rather
1974 * unlikely to succeed so close to the limit, and we fall back
1975 * to regular pages anyway in case of failure.
1976 */
1977 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1978 goto retry;
1979 /*
1980 * At task move, charge accounts can be doubly counted. So, it's
1981 * better to wait until the end of task_move if something is going on.
1982 */
1983 if (mem_cgroup_wait_acct_move(mem_over_limit))
1984 goto retry;
1985
1986 if (nr_retries--)
1987 goto retry;
1988
1989 if (gfp_mask & __GFP_NOFAIL)
1990 goto force;
1991
1992 if (fatal_signal_pending(current))
1993 goto force;
1994
1995 memcg_memory_event(mem_over_limit, MEMCG_OOM);
1996
1997 mem_cgroup_oom(mem_over_limit, gfp_mask,
1998 get_order(nr_pages * PAGE_SIZE));
1999nomem:
2000 if (!(gfp_mask & __GFP_NOFAIL))
2001 return -ENOMEM;
2002force:
2003 /*
2004 * The allocation either can't fail or will lead to more memory
2005 * being freed very soon. Allow memory usage go over the limit
2006 * temporarily by force charging it.
2007 */
2008 page_counter_charge(&memcg->memory, nr_pages);
2009 if (do_memsw_account())
2010 page_counter_charge(&memcg->memsw, nr_pages);
2011 css_get_many(&memcg->css, nr_pages);
2012
2013 return 0;
2014
2015done_restock:
2016 css_get_many(&memcg->css, batch);
2017 if (batch > nr_pages)
2018 refill_stock(memcg, batch - nr_pages);
2019
2020 /*
2021 * If the hierarchy is above the normal consumption range, schedule
2022 * reclaim on returning to userland. We can perform reclaim here
2023 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2025 * not recorded as it most likely matches current's and won't
2026 * change in the meantime. As high limit is checked again before
2027 * reclaim, the cost of mismatch is negligible.
2028 */
2029 do {
2030 if (page_counter_read(&memcg->memory) > memcg->high) {
2031 /* Don't bother a random interrupted task */
2032 if (in_interrupt()) {
2033 schedule_work(&memcg->high_work);
2034 break;
2035 }
2036 current->memcg_nr_pages_over_high += batch;
2037 set_notify_resume(current);
2038 break;
2039 }
2040 } while ((memcg = parent_mem_cgroup(memcg)));
2041
2042 return 0;
2043}
2044
2045static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2046{
2047 if (mem_cgroup_is_root(memcg))
2048 return;
2049
2050 page_counter_uncharge(&memcg->memory, nr_pages);
2051 if (do_memsw_account())
2052 page_counter_uncharge(&memcg->memsw, nr_pages);
2053
2054 css_put_many(&memcg->css, nr_pages);
2055}
2056
2057static void lock_page_lru(struct page *page, int *isolated)
2058{
2059 struct zone *zone = page_zone(page);
2060
2061 spin_lock_irq(zone_lru_lock(zone));
2062 if (PageLRU(page)) {
2063 struct lruvec *lruvec;
2064
2065 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2066 ClearPageLRU(page);
2067 del_page_from_lru_list(page, lruvec, page_lru(page));
2068 *isolated = 1;
2069 } else
2070 *isolated = 0;
2071}
2072
2073static void unlock_page_lru(struct page *page, int isolated)
2074{
2075 struct zone *zone = page_zone(page);
2076
2077 if (isolated) {
2078 struct lruvec *lruvec;
2079
2080 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2081 VM_BUG_ON_PAGE(PageLRU(page), page);
2082 SetPageLRU(page);
2083 add_page_to_lru_list(page, lruvec, page_lru(page));
2084 }
2085 spin_unlock_irq(zone_lru_lock(zone));
2086}
2087
2088static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2089 bool lrucare)
2090{
2091 int isolated;
2092
2093 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2094
2095 /*
2096 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2097 * may already be on some other mem_cgroup's LRU. Take care of it.
2098 */
2099 if (lrucare)
2100 lock_page_lru(page, &isolated);
2101
2102 /*
2103 * Nobody should be changing or seriously looking at
2104 * page->mem_cgroup at this point:
2105 *
2106 * - the page is uncharged
2107 *
2108 * - the page is off-LRU
2109 *
2110 * - an anonymous fault has exclusive page access, except for
2111 * a locked page table
2112 *
2113 * - a page cache insertion, a swapin fault, or a migration
2114 * have the page locked
2115 */
2116 page->mem_cgroup = memcg;
2117
2118 if (lrucare)
2119 unlock_page_lru(page, isolated);
2120}
2121
2122#ifndef CONFIG_SLOB
2123static int memcg_alloc_cache_id(void)
2124{
2125 int id, size;
2126 int err;
2127
2128 id = ida_simple_get(&memcg_cache_ida,
2129 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2130 if (id < 0)
2131 return id;
2132
2133 if (id < memcg_nr_cache_ids)
2134 return id;
2135
2136 /*
2137 * There's no space for the new id in memcg_caches arrays,
2138 * so we have to grow them.
2139 */
2140 down_write(&memcg_cache_ids_sem);
2141
2142 size = 2 * (id + 1);
2143 if (size < MEMCG_CACHES_MIN_SIZE)
2144 size = MEMCG_CACHES_MIN_SIZE;
2145 else if (size > MEMCG_CACHES_MAX_SIZE)
2146 size = MEMCG_CACHES_MAX_SIZE;
2147
2148 err = memcg_update_all_caches(size);
2149 if (!err)
2150 err = memcg_update_all_list_lrus(size);
2151 if (!err)
2152 memcg_nr_cache_ids = size;
2153
2154 up_write(&memcg_cache_ids_sem);
2155
2156 if (err) {
2157 ida_simple_remove(&memcg_cache_ida, id);
2158 return err;
2159 }
2160 return id;
2161}
2162
2163static void memcg_free_cache_id(int id)
2164{
2165 ida_simple_remove(&memcg_cache_ida, id);
2166}
2167
2168struct memcg_kmem_cache_create_work {
2169 struct mem_cgroup *memcg;
2170 struct kmem_cache *cachep;
2171 struct work_struct work;
2172};
2173
2174static void memcg_kmem_cache_create_func(struct work_struct *w)
2175{
2176 struct memcg_kmem_cache_create_work *cw =
2177 container_of(w, struct memcg_kmem_cache_create_work, work);
2178 struct mem_cgroup *memcg = cw->memcg;
2179 struct kmem_cache *cachep = cw->cachep;
2180
2181 memcg_create_kmem_cache(memcg, cachep);
2182
2183 css_put(&memcg->css);
2184 kfree(cw);
2185}
2186
2187/*
2188 * Enqueue the creation of a per-memcg kmem_cache.
2189 */
2190static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2191 struct kmem_cache *cachep)
2192{
2193 struct memcg_kmem_cache_create_work *cw;
2194
2195 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2196 if (!cw)
2197 return;
2198
2199 css_get(&memcg->css);
2200
2201 cw->memcg = memcg;
2202 cw->cachep = cachep;
2203 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2204
2205 queue_work(memcg_kmem_cache_wq, &cw->work);
2206}
2207
2208static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2209 struct kmem_cache *cachep)
2210{
2211 /*
2212 * We need to stop accounting when we kmalloc, because if the
2213 * corresponding kmalloc cache is not yet created, the first allocation
2214 * in __memcg_schedule_kmem_cache_create will recurse.
2215 *
2216 * However, it is better to enclose the whole function. Depending on
2217 * the debugging options enabled, INIT_WORK(), for instance, can
2218 * trigger an allocation. This too, will make us recurse. Because at
2219 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2220 * the safest choice is to do it like this, wrapping the whole function.
2221 */
2222 current->memcg_kmem_skip_account = 1;
2223 __memcg_schedule_kmem_cache_create(memcg, cachep);
2224 current->memcg_kmem_skip_account = 0;
2225}
2226
2227static inline bool memcg_kmem_bypass(void)
2228{
2229 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2230 return true;
2231 return false;
2232}
2233
2234/**
2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2236 * @cachep: the original global kmem cache
2237 *
2238 * Return the kmem_cache we're supposed to use for a slab allocation.
2239 * We try to use the current memcg's version of the cache.
2240 *
2241 * If the cache does not exist yet, if we are the first user of it, we
2242 * create it asynchronously in a workqueue and let the current allocation
2243 * go through with the original cache.
2244 *
2245 * This function takes a reference to the cache it returns to assure it
2246 * won't get destroyed while we are working with it. Once the caller is
2247 * done with it, memcg_kmem_put_cache() must be called to release the
2248 * reference.
2249 */
2250struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2251{
2252 struct mem_cgroup *memcg;
2253 struct kmem_cache *memcg_cachep;
2254 int kmemcg_id;
2255
2256 VM_BUG_ON(!is_root_cache(cachep));
2257
2258 if (memcg_kmem_bypass())
2259 return cachep;
2260
2261 if (current->memcg_kmem_skip_account)
2262 return cachep;
2263
2264 memcg = get_mem_cgroup_from_mm(current->mm);
2265 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2266 if (kmemcg_id < 0)
2267 goto out;
2268
2269 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2270 if (likely(memcg_cachep))
2271 return memcg_cachep;
2272
2273 /*
2274 * If we are in a safe context (can wait, and not in interrupt
2275 * context), we could be be predictable and return right away.
2276 * This would guarantee that the allocation being performed
2277 * already belongs in the new cache.
2278 *
2279 * However, there are some clashes that can arrive from locking.
2280 * For instance, because we acquire the slab_mutex while doing
2281 * memcg_create_kmem_cache, this means no further allocation
2282 * could happen with the slab_mutex held. So it's better to
2283 * defer everything.
2284 */
2285 memcg_schedule_kmem_cache_create(memcg, cachep);
2286out:
2287 css_put(&memcg->css);
2288 return cachep;
2289}
2290
2291/**
2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2293 * @cachep: the cache returned by memcg_kmem_get_cache
2294 */
2295void memcg_kmem_put_cache(struct kmem_cache *cachep)
2296{
2297 if (!is_root_cache(cachep))
2298 css_put(&cachep->memcg_params.memcg->css);
2299}
2300
2301/**
2302 * memcg_kmem_charge_memcg: charge a kmem page
2303 * @page: page to charge
2304 * @gfp: reclaim mode
2305 * @order: allocation order
2306 * @memcg: memory cgroup to charge
2307 *
2308 * Returns 0 on success, an error code on failure.
2309 */
2310int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2311 struct mem_cgroup *memcg)
2312{
2313 unsigned int nr_pages = 1 << order;
2314 struct page_counter *counter;
2315 int ret;
2316
2317 ret = try_charge(memcg, gfp, nr_pages);
2318 if (ret)
2319 return ret;
2320
2321 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2322 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2323 cancel_charge(memcg, nr_pages);
2324 return -ENOMEM;
2325 }
2326
2327 page->mem_cgroup = memcg;
2328
2329 return 0;
2330}
2331
2332/**
2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2334 * @page: page to charge
2335 * @gfp: reclaim mode
2336 * @order: allocation order
2337 *
2338 * Returns 0 on success, an error code on failure.
2339 */
2340int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342 struct mem_cgroup *memcg;
2343 int ret = 0;
2344
2345 if (memcg_kmem_bypass())
2346 return 0;
2347
2348 memcg = get_mem_cgroup_from_mm(current->mm);
2349 if (!mem_cgroup_is_root(memcg)) {
2350 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351 if (!ret)
2352 __SetPageKmemcg(page);
2353 }
2354 css_put(&memcg->css);
2355 return ret;
2356}
2357/**
2358 * memcg_kmem_uncharge: uncharge a kmem page
2359 * @page: page to uncharge
2360 * @order: allocation order
2361 */
2362void memcg_kmem_uncharge(struct page *page, int order)
2363{
2364 struct mem_cgroup *memcg = page->mem_cgroup;
2365 unsigned int nr_pages = 1 << order;
2366
2367 if (!memcg)
2368 return;
2369
2370 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2371
2372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373 page_counter_uncharge(&memcg->kmem, nr_pages);
2374
2375 page_counter_uncharge(&memcg->memory, nr_pages);
2376 if (do_memsw_account())
2377 page_counter_uncharge(&memcg->memsw, nr_pages);
2378
2379 page->mem_cgroup = NULL;
2380
2381 /* slab pages do not have PageKmemcg flag set */
2382 if (PageKmemcg(page))
2383 __ClearPageKmemcg(page);
2384
2385 css_put_many(&memcg->css, nr_pages);
2386}
2387#endif /* !CONFIG_SLOB */
2388
2389#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2390
2391/*
2392 * Because tail pages are not marked as "used", set it. We're under
2393 * zone_lru_lock and migration entries setup in all page mappings.
2394 */
2395void mem_cgroup_split_huge_fixup(struct page *head)
2396{
2397 int i;
2398
2399 if (mem_cgroup_disabled())
2400 return;
2401
2402 for (i = 1; i < HPAGE_PMD_NR; i++)
2403 head[i].mem_cgroup = head->mem_cgroup;
2404
2405 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2406}
2407#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2408
2409#ifdef CONFIG_MEMCG_SWAP
2410/**
2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2412 * @entry: swap entry to be moved
2413 * @from: mem_cgroup which the entry is moved from
2414 * @to: mem_cgroup which the entry is moved to
2415 *
2416 * It succeeds only when the swap_cgroup's record for this entry is the same
2417 * as the mem_cgroup's id of @from.
2418 *
2419 * Returns 0 on success, -EINVAL on failure.
2420 *
2421 * The caller must have charged to @to, IOW, called page_counter_charge() about
2422 * both res and memsw, and called css_get().
2423 */
2424static int mem_cgroup_move_swap_account(swp_entry_t entry,
2425 struct mem_cgroup *from, struct mem_cgroup *to)
2426{
2427 unsigned short old_id, new_id;
2428
2429 old_id = mem_cgroup_id(from);
2430 new_id = mem_cgroup_id(to);
2431
2432 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2433 mod_memcg_state(from, MEMCG_SWAP, -1);
2434 mod_memcg_state(to, MEMCG_SWAP, 1);
2435 return 0;
2436 }
2437 return -EINVAL;
2438}
2439#else
2440static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2441 struct mem_cgroup *from, struct mem_cgroup *to)
2442{
2443 return -EINVAL;
2444}
2445#endif
2446
2447static DEFINE_MUTEX(memcg_limit_mutex);
2448
2449static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2450 unsigned long limit, bool memsw)
2451{
2452 bool enlarge = false;
2453 int ret;
2454 bool limits_invariant;
2455 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2456
2457 do {
2458 if (signal_pending(current)) {
2459 ret = -EINTR;
2460 break;
2461 }
2462
2463 mutex_lock(&memcg_limit_mutex);
2464 /*
2465 * Make sure that the new limit (memsw or memory limit) doesn't
2466 * break our basic invariant rule memory.limit <= memsw.limit.
2467 */
2468 limits_invariant = memsw ? limit >= memcg->memory.limit :
2469 limit <= memcg->memsw.limit;
2470 if (!limits_invariant) {
2471 mutex_unlock(&memcg_limit_mutex);
2472 ret = -EINVAL;
2473 break;
2474 }
2475 if (limit > counter->limit)
2476 enlarge = true;
2477 ret = page_counter_limit(counter, limit);
2478 mutex_unlock(&memcg_limit_mutex);
2479
2480 if (!ret)
2481 break;
2482
2483 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2484 GFP_KERNEL, !memsw)) {
2485 ret = -EBUSY;
2486 break;
2487 }
2488 } while (true);
2489
2490 if (!ret && enlarge)
2491 memcg_oom_recover(memcg);
2492
2493 return ret;
2494}
2495
2496unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2497 gfp_t gfp_mask,
2498 unsigned long *total_scanned)
2499{
2500 unsigned long nr_reclaimed = 0;
2501 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2502 unsigned long reclaimed;
2503 int loop = 0;
2504 struct mem_cgroup_tree_per_node *mctz;
2505 unsigned long excess;
2506 unsigned long nr_scanned;
2507
2508 if (order > 0)
2509 return 0;
2510
2511 mctz = soft_limit_tree_node(pgdat->node_id);
2512
2513 /*
2514 * Do not even bother to check the largest node if the root
2515 * is empty. Do it lockless to prevent lock bouncing. Races
2516 * are acceptable as soft limit is best effort anyway.
2517 */
2518 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2519 return 0;
2520
2521 /*
2522 * This loop can run a while, specially if mem_cgroup's continuously
2523 * keep exceeding their soft limit and putting the system under
2524 * pressure
2525 */
2526 do {
2527 if (next_mz)
2528 mz = next_mz;
2529 else
2530 mz = mem_cgroup_largest_soft_limit_node(mctz);
2531 if (!mz)
2532 break;
2533
2534 nr_scanned = 0;
2535 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2536 gfp_mask, &nr_scanned);
2537 nr_reclaimed += reclaimed;
2538 *total_scanned += nr_scanned;
2539 spin_lock_irq(&mctz->lock);
2540 __mem_cgroup_remove_exceeded(mz, mctz);
2541
2542 /*
2543 * If we failed to reclaim anything from this memory cgroup
2544 * it is time to move on to the next cgroup
2545 */
2546 next_mz = NULL;
2547 if (!reclaimed)
2548 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2549
2550 excess = soft_limit_excess(mz->memcg);
2551 /*
2552 * One school of thought says that we should not add
2553 * back the node to the tree if reclaim returns 0.
2554 * But our reclaim could return 0, simply because due
2555 * to priority we are exposing a smaller subset of
2556 * memory to reclaim from. Consider this as a longer
2557 * term TODO.
2558 */
2559 /* If excess == 0, no tree ops */
2560 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2561 spin_unlock_irq(&mctz->lock);
2562 css_put(&mz->memcg->css);
2563 loop++;
2564 /*
2565 * Could not reclaim anything and there are no more
2566 * mem cgroups to try or we seem to be looping without
2567 * reclaiming anything.
2568 */
2569 if (!nr_reclaimed &&
2570 (next_mz == NULL ||
2571 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2572 break;
2573 } while (!nr_reclaimed);
2574 if (next_mz)
2575 css_put(&next_mz->memcg->css);
2576 return nr_reclaimed;
2577}
2578
2579/*
2580 * Test whether @memcg has children, dead or alive. Note that this
2581 * function doesn't care whether @memcg has use_hierarchy enabled and
2582 * returns %true if there are child csses according to the cgroup
2583 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2584 */
2585static inline bool memcg_has_children(struct mem_cgroup *memcg)
2586{
2587 bool ret;
2588
2589 rcu_read_lock();
2590 ret = css_next_child(NULL, &memcg->css);
2591 rcu_read_unlock();
2592 return ret;
2593}
2594
2595/*
2596 * Reclaims as many pages from the given memcg as possible.
2597 *
2598 * Caller is responsible for holding css reference for memcg.
2599 */
2600static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2601{
2602 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2603
2604 /* we call try-to-free pages for make this cgroup empty */
2605 lru_add_drain_all();
2606 /* try to free all pages in this cgroup */
2607 while (nr_retries && page_counter_read(&memcg->memory)) {
2608 int progress;
2609
2610 if (signal_pending(current))
2611 return -EINTR;
2612
2613 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2614 GFP_KERNEL, true);
2615 if (!progress) {
2616 nr_retries--;
2617 /* maybe some writeback is necessary */
2618 congestion_wait(BLK_RW_ASYNC, HZ/10);
2619 }
2620
2621 }
2622
2623 return 0;
2624}
2625
2626static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2627 char *buf, size_t nbytes,
2628 loff_t off)
2629{
2630 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2631
2632 if (mem_cgroup_is_root(memcg))
2633 return -EINVAL;
2634 return mem_cgroup_force_empty(memcg) ?: nbytes;
2635}
2636
2637static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2638 struct cftype *cft)
2639{
2640 return mem_cgroup_from_css(css)->use_hierarchy;
2641}
2642
2643static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2644 struct cftype *cft, u64 val)
2645{
2646 int retval = 0;
2647 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2648 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2649
2650 if (memcg->use_hierarchy == val)
2651 return 0;
2652
2653 /*
2654 * If parent's use_hierarchy is set, we can't make any modifications
2655 * in the child subtrees. If it is unset, then the change can
2656 * occur, provided the current cgroup has no children.
2657 *
2658 * For the root cgroup, parent_mem is NULL, we allow value to be
2659 * set if there are no children.
2660 */
2661 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2662 (val == 1 || val == 0)) {
2663 if (!memcg_has_children(memcg))
2664 memcg->use_hierarchy = val;
2665 else
2666 retval = -EBUSY;
2667 } else
2668 retval = -EINVAL;
2669
2670 return retval;
2671}
2672
2673static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2674{
2675 struct mem_cgroup *iter;
2676 int i;
2677
2678 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2679
2680 for_each_mem_cgroup_tree(iter, memcg) {
2681 for (i = 0; i < MEMCG_NR_STAT; i++)
2682 stat[i] += memcg_page_state(iter, i);
2683 }
2684}
2685
2686static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2687{
2688 struct mem_cgroup *iter;
2689 int i;
2690
2691 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2692
2693 for_each_mem_cgroup_tree(iter, memcg) {
2694 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2695 events[i] += memcg_sum_events(iter, i);
2696 }
2697}
2698
2699static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2700{
2701 unsigned long val = 0;
2702
2703 if (mem_cgroup_is_root(memcg)) {
2704 struct mem_cgroup *iter;
2705
2706 for_each_mem_cgroup_tree(iter, memcg) {
2707 val += memcg_page_state(iter, MEMCG_CACHE);
2708 val += memcg_page_state(iter, MEMCG_RSS);
2709 if (swap)
2710 val += memcg_page_state(iter, MEMCG_SWAP);
2711 }
2712 } else {
2713 if (!swap)
2714 val = page_counter_read(&memcg->memory);
2715 else
2716 val = page_counter_read(&memcg->memsw);
2717 }
2718 return val;
2719}
2720
2721enum {
2722 RES_USAGE,
2723 RES_LIMIT,
2724 RES_MAX_USAGE,
2725 RES_FAILCNT,
2726 RES_SOFT_LIMIT,
2727};
2728
2729static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2730 struct cftype *cft)
2731{
2732 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2733 struct page_counter *counter;
2734
2735 switch (MEMFILE_TYPE(cft->private)) {
2736 case _MEM:
2737 counter = &memcg->memory;
2738 break;
2739 case _MEMSWAP:
2740 counter = &memcg->memsw;
2741 break;
2742 case _KMEM:
2743 counter = &memcg->kmem;
2744 break;
2745 case _TCP:
2746 counter = &memcg->tcpmem;
2747 break;
2748 default:
2749 BUG();
2750 }
2751
2752 switch (MEMFILE_ATTR(cft->private)) {
2753 case RES_USAGE:
2754 if (counter == &memcg->memory)
2755 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2756 if (counter == &memcg->memsw)
2757 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2758 return (u64)page_counter_read(counter) * PAGE_SIZE;
2759 case RES_LIMIT:
2760 return (u64)counter->limit * PAGE_SIZE;
2761 case RES_MAX_USAGE:
2762 return (u64)counter->watermark * PAGE_SIZE;
2763 case RES_FAILCNT:
2764 return counter->failcnt;
2765 case RES_SOFT_LIMIT:
2766 return (u64)memcg->soft_limit * PAGE_SIZE;
2767 default:
2768 BUG();
2769 }
2770}
2771
2772#ifndef CONFIG_SLOB
2773static int memcg_online_kmem(struct mem_cgroup *memcg)
2774{
2775 int memcg_id;
2776
2777 if (cgroup_memory_nokmem)
2778 return 0;
2779
2780 BUG_ON(memcg->kmemcg_id >= 0);
2781 BUG_ON(memcg->kmem_state);
2782
2783 memcg_id = memcg_alloc_cache_id();
2784 if (memcg_id < 0)
2785 return memcg_id;
2786
2787 static_branch_inc(&memcg_kmem_enabled_key);
2788 /*
2789 * A memory cgroup is considered kmem-online as soon as it gets
2790 * kmemcg_id. Setting the id after enabling static branching will
2791 * guarantee no one starts accounting before all call sites are
2792 * patched.
2793 */
2794 memcg->kmemcg_id = memcg_id;
2795 memcg->kmem_state = KMEM_ONLINE;
2796 INIT_LIST_HEAD(&memcg->kmem_caches);
2797
2798 return 0;
2799}
2800
2801static void memcg_offline_kmem(struct mem_cgroup *memcg)
2802{
2803 struct cgroup_subsys_state *css;
2804 struct mem_cgroup *parent, *child;
2805 int kmemcg_id;
2806
2807 if (memcg->kmem_state != KMEM_ONLINE)
2808 return;
2809 /*
2810 * Clear the online state before clearing memcg_caches array
2811 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2812 * guarantees that no cache will be created for this cgroup
2813 * after we are done (see memcg_create_kmem_cache()).
2814 */
2815 memcg->kmem_state = KMEM_ALLOCATED;
2816
2817 memcg_deactivate_kmem_caches(memcg);
2818
2819 kmemcg_id = memcg->kmemcg_id;
2820 BUG_ON(kmemcg_id < 0);
2821
2822 parent = parent_mem_cgroup(memcg);
2823 if (!parent)
2824 parent = root_mem_cgroup;
2825
2826 /*
2827 * Change kmemcg_id of this cgroup and all its descendants to the
2828 * parent's id, and then move all entries from this cgroup's list_lrus
2829 * to ones of the parent. After we have finished, all list_lrus
2830 * corresponding to this cgroup are guaranteed to remain empty. The
2831 * ordering is imposed by list_lru_node->lock taken by
2832 * memcg_drain_all_list_lrus().
2833 */
2834 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2835 css_for_each_descendant_pre(css, &memcg->css) {
2836 child = mem_cgroup_from_css(css);
2837 BUG_ON(child->kmemcg_id != kmemcg_id);
2838 child->kmemcg_id = parent->kmemcg_id;
2839 if (!memcg->use_hierarchy)
2840 break;
2841 }
2842 rcu_read_unlock();
2843
2844 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2845
2846 memcg_free_cache_id(kmemcg_id);
2847}
2848
2849static void memcg_free_kmem(struct mem_cgroup *memcg)
2850{
2851 /* css_alloc() failed, offlining didn't happen */
2852 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2853 memcg_offline_kmem(memcg);
2854
2855 if (memcg->kmem_state == KMEM_ALLOCATED) {
2856 memcg_destroy_kmem_caches(memcg);
2857 static_branch_dec(&memcg_kmem_enabled_key);
2858 WARN_ON(page_counter_read(&memcg->kmem));
2859 }
2860}
2861#else
2862static int memcg_online_kmem(struct mem_cgroup *memcg)
2863{
2864 return 0;
2865}
2866static void memcg_offline_kmem(struct mem_cgroup *memcg)
2867{
2868}
2869static void memcg_free_kmem(struct mem_cgroup *memcg)
2870{
2871}
2872#endif /* !CONFIG_SLOB */
2873
2874static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2875 unsigned long limit)
2876{
2877 int ret;
2878
2879 mutex_lock(&memcg_limit_mutex);
2880 ret = page_counter_limit(&memcg->kmem, limit);
2881 mutex_unlock(&memcg_limit_mutex);
2882 return ret;
2883}
2884
2885static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2886{
2887 int ret;
2888
2889 mutex_lock(&memcg_limit_mutex);
2890
2891 ret = page_counter_limit(&memcg->tcpmem, limit);
2892 if (ret)
2893 goto out;
2894
2895 if (!memcg->tcpmem_active) {
2896 /*
2897 * The active flag needs to be written after the static_key
2898 * update. This is what guarantees that the socket activation
2899 * function is the last one to run. See mem_cgroup_sk_alloc()
2900 * for details, and note that we don't mark any socket as
2901 * belonging to this memcg until that flag is up.
2902 *
2903 * We need to do this, because static_keys will span multiple
2904 * sites, but we can't control their order. If we mark a socket
2905 * as accounted, but the accounting functions are not patched in
2906 * yet, we'll lose accounting.
2907 *
2908 * We never race with the readers in mem_cgroup_sk_alloc(),
2909 * because when this value change, the code to process it is not
2910 * patched in yet.
2911 */
2912 static_branch_inc(&memcg_sockets_enabled_key);
2913 memcg->tcpmem_active = true;
2914 }
2915out:
2916 mutex_unlock(&memcg_limit_mutex);
2917 return ret;
2918}
2919
2920/*
2921 * The user of this function is...
2922 * RES_LIMIT.
2923 */
2924static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2925 char *buf, size_t nbytes, loff_t off)
2926{
2927 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2928 unsigned long nr_pages;
2929 int ret;
2930
2931 buf = strstrip(buf);
2932 ret = page_counter_memparse(buf, "-1", &nr_pages);
2933 if (ret)
2934 return ret;
2935
2936 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2937 case RES_LIMIT:
2938 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2939 ret = -EINVAL;
2940 break;
2941 }
2942 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2943 case _MEM:
2944 ret = mem_cgroup_resize_limit(memcg, nr_pages, false);
2945 break;
2946 case _MEMSWAP:
2947 ret = mem_cgroup_resize_limit(memcg, nr_pages, true);
2948 break;
2949 case _KMEM:
2950 ret = memcg_update_kmem_limit(memcg, nr_pages);
2951 break;
2952 case _TCP:
2953 ret = memcg_update_tcp_limit(memcg, nr_pages);
2954 break;
2955 }
2956 break;
2957 case RES_SOFT_LIMIT:
2958 memcg->soft_limit = nr_pages;
2959 ret = 0;
2960 break;
2961 }
2962 return ret ?: nbytes;
2963}
2964
2965static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2966 size_t nbytes, loff_t off)
2967{
2968 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2969 struct page_counter *counter;
2970
2971 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2972 case _MEM:
2973 counter = &memcg->memory;
2974 break;
2975 case _MEMSWAP:
2976 counter = &memcg->memsw;
2977 break;
2978 case _KMEM:
2979 counter = &memcg->kmem;
2980 break;
2981 case _TCP:
2982 counter = &memcg->tcpmem;
2983 break;
2984 default:
2985 BUG();
2986 }
2987
2988 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989 case RES_MAX_USAGE:
2990 page_counter_reset_watermark(counter);
2991 break;
2992 case RES_FAILCNT:
2993 counter->failcnt = 0;
2994 break;
2995 default:
2996 BUG();
2997 }
2998
2999 return nbytes;
3000}
3001
3002static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3003 struct cftype *cft)
3004{
3005 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3006}
3007
3008#ifdef CONFIG_MMU
3009static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3010 struct cftype *cft, u64 val)
3011{
3012 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3013
3014 if (val & ~MOVE_MASK)
3015 return -EINVAL;
3016
3017 /*
3018 * No kind of locking is needed in here, because ->can_attach() will
3019 * check this value once in the beginning of the process, and then carry
3020 * on with stale data. This means that changes to this value will only
3021 * affect task migrations starting after the change.
3022 */
3023 memcg->move_charge_at_immigrate = val;
3024 return 0;
3025}
3026#else
3027static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3028 struct cftype *cft, u64 val)
3029{
3030 return -ENOSYS;
3031}
3032#endif
3033
3034#ifdef CONFIG_NUMA
3035static int memcg_numa_stat_show(struct seq_file *m, void *v)
3036{
3037 struct numa_stat {
3038 const char *name;
3039 unsigned int lru_mask;
3040 };
3041
3042 static const struct numa_stat stats[] = {
3043 { "total", LRU_ALL },
3044 { "file", LRU_ALL_FILE },
3045 { "anon", LRU_ALL_ANON },
3046 { "unevictable", BIT(LRU_UNEVICTABLE) },
3047 };
3048 const struct numa_stat *stat;
3049 int nid;
3050 unsigned long nr;
3051 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3052
3053 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3054 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3055 seq_printf(m, "%s=%lu", stat->name, nr);
3056 for_each_node_state(nid, N_MEMORY) {
3057 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3058 stat->lru_mask);
3059 seq_printf(m, " N%d=%lu", nid, nr);
3060 }
3061 seq_putc(m, '\n');
3062 }
3063
3064 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3065 struct mem_cgroup *iter;
3066
3067 nr = 0;
3068 for_each_mem_cgroup_tree(iter, memcg)
3069 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3070 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3071 for_each_node_state(nid, N_MEMORY) {
3072 nr = 0;
3073 for_each_mem_cgroup_tree(iter, memcg)
3074 nr += mem_cgroup_node_nr_lru_pages(
3075 iter, nid, stat->lru_mask);
3076 seq_printf(m, " N%d=%lu", nid, nr);
3077 }
3078 seq_putc(m, '\n');
3079 }
3080
3081 return 0;
3082}
3083#endif /* CONFIG_NUMA */
3084
3085/* Universal VM events cgroup1 shows, original sort order */
3086unsigned int memcg1_events[] = {
3087 PGPGIN,
3088 PGPGOUT,
3089 PGFAULT,
3090 PGMAJFAULT,
3091};
3092
3093static const char *const memcg1_event_names[] = {
3094 "pgpgin",
3095 "pgpgout",
3096 "pgfault",
3097 "pgmajfault",
3098};
3099
3100static int memcg_stat_show(struct seq_file *m, void *v)
3101{
3102 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3103 unsigned long memory, memsw;
3104 struct mem_cgroup *mi;
3105 unsigned int i;
3106
3107 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3108 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3109
3110 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3111 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3112 continue;
3113 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3114 memcg_page_state(memcg, memcg1_stats[i]) *
3115 PAGE_SIZE);
3116 }
3117
3118 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3119 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3120 memcg_sum_events(memcg, memcg1_events[i]));
3121
3122 for (i = 0; i < NR_LRU_LISTS; i++)
3123 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3124 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3125
3126 /* Hierarchical information */
3127 memory = memsw = PAGE_COUNTER_MAX;
3128 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3129 memory = min(memory, mi->memory.limit);
3130 memsw = min(memsw, mi->memsw.limit);
3131 }
3132 seq_printf(m, "hierarchical_memory_limit %llu\n",
3133 (u64)memory * PAGE_SIZE);
3134 if (do_memsw_account())
3135 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3136 (u64)memsw * PAGE_SIZE);
3137
3138 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3139 unsigned long long val = 0;
3140
3141 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3142 continue;
3143 for_each_mem_cgroup_tree(mi, memcg)
3144 val += memcg_page_state(mi, memcg1_stats[i]) *
3145 PAGE_SIZE;
3146 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3147 }
3148
3149 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3150 unsigned long long val = 0;
3151
3152 for_each_mem_cgroup_tree(mi, memcg)
3153 val += memcg_sum_events(mi, memcg1_events[i]);
3154 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3155 }
3156
3157 for (i = 0; i < NR_LRU_LISTS; i++) {
3158 unsigned long long val = 0;
3159
3160 for_each_mem_cgroup_tree(mi, memcg)
3161 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3162 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3163 }
3164
3165#ifdef CONFIG_DEBUG_VM
3166 {
3167 pg_data_t *pgdat;
3168 struct mem_cgroup_per_node *mz;
3169 struct zone_reclaim_stat *rstat;
3170 unsigned long recent_rotated[2] = {0, 0};
3171 unsigned long recent_scanned[2] = {0, 0};
3172
3173 for_each_online_pgdat(pgdat) {
3174 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3175 rstat = &mz->lruvec.reclaim_stat;
3176
3177 recent_rotated[0] += rstat->recent_rotated[0];
3178 recent_rotated[1] += rstat->recent_rotated[1];
3179 recent_scanned[0] += rstat->recent_scanned[0];
3180 recent_scanned[1] += rstat->recent_scanned[1];
3181 }
3182 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3183 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3184 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3185 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3186 }
3187#endif
3188
3189 return 0;
3190}
3191
3192static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3193 struct cftype *cft)
3194{
3195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3196
3197 return mem_cgroup_swappiness(memcg);
3198}
3199
3200static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3201 struct cftype *cft, u64 val)
3202{
3203 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3204
3205 if (val > 100)
3206 return -EINVAL;
3207
3208 if (css->parent)
3209 memcg->swappiness = val;
3210 else
3211 vm_swappiness = val;
3212
3213 return 0;
3214}
3215
3216static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3217{
3218 struct mem_cgroup_threshold_ary *t;
3219 unsigned long usage;
3220 int i;
3221
3222 rcu_read_lock();
3223 if (!swap)
3224 t = rcu_dereference(memcg->thresholds.primary);
3225 else
3226 t = rcu_dereference(memcg->memsw_thresholds.primary);
3227
3228 if (!t)
3229 goto unlock;
3230
3231 usage = mem_cgroup_usage(memcg, swap);
3232
3233 /*
3234 * current_threshold points to threshold just below or equal to usage.
3235 * If it's not true, a threshold was crossed after last
3236 * call of __mem_cgroup_threshold().
3237 */
3238 i = t->current_threshold;
3239
3240 /*
3241 * Iterate backward over array of thresholds starting from
3242 * current_threshold and check if a threshold is crossed.
3243 * If none of thresholds below usage is crossed, we read
3244 * only one element of the array here.
3245 */
3246 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3247 eventfd_signal(t->entries[i].eventfd, 1);
3248
3249 /* i = current_threshold + 1 */
3250 i++;
3251
3252 /*
3253 * Iterate forward over array of thresholds starting from
3254 * current_threshold+1 and check if a threshold is crossed.
3255 * If none of thresholds above usage is crossed, we read
3256 * only one element of the array here.
3257 */
3258 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3259 eventfd_signal(t->entries[i].eventfd, 1);
3260
3261 /* Update current_threshold */
3262 t->current_threshold = i - 1;
3263unlock:
3264 rcu_read_unlock();
3265}
3266
3267static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3268{
3269 while (memcg) {
3270 __mem_cgroup_threshold(memcg, false);
3271 if (do_memsw_account())
3272 __mem_cgroup_threshold(memcg, true);
3273
3274 memcg = parent_mem_cgroup(memcg);
3275 }
3276}
3277
3278static int compare_thresholds(const void *a, const void *b)
3279{
3280 const struct mem_cgroup_threshold *_a = a;
3281 const struct mem_cgroup_threshold *_b = b;
3282
3283 if (_a->threshold > _b->threshold)
3284 return 1;
3285
3286 if (_a->threshold < _b->threshold)
3287 return -1;
3288
3289 return 0;
3290}
3291
3292static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3293{
3294 struct mem_cgroup_eventfd_list *ev;
3295
3296 spin_lock(&memcg_oom_lock);
3297
3298 list_for_each_entry(ev, &memcg->oom_notify, list)
3299 eventfd_signal(ev->eventfd, 1);
3300
3301 spin_unlock(&memcg_oom_lock);
3302 return 0;
3303}
3304
3305static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3306{
3307 struct mem_cgroup *iter;
3308
3309 for_each_mem_cgroup_tree(iter, memcg)
3310 mem_cgroup_oom_notify_cb(iter);
3311}
3312
3313static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3314 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3315{
3316 struct mem_cgroup_thresholds *thresholds;
3317 struct mem_cgroup_threshold_ary *new;
3318 unsigned long threshold;
3319 unsigned long usage;
3320 int i, size, ret;
3321
3322 ret = page_counter_memparse(args, "-1", &threshold);
3323 if (ret)
3324 return ret;
3325
3326 mutex_lock(&memcg->thresholds_lock);
3327
3328 if (type == _MEM) {
3329 thresholds = &memcg->thresholds;
3330 usage = mem_cgroup_usage(memcg, false);
3331 } else if (type == _MEMSWAP) {
3332 thresholds = &memcg->memsw_thresholds;
3333 usage = mem_cgroup_usage(memcg, true);
3334 } else
3335 BUG();
3336
3337 /* Check if a threshold crossed before adding a new one */
3338 if (thresholds->primary)
3339 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3340
3341 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3342
3343 /* Allocate memory for new array of thresholds */
3344 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3345 GFP_KERNEL);
3346 if (!new) {
3347 ret = -ENOMEM;
3348 goto unlock;
3349 }
3350 new->size = size;
3351
3352 /* Copy thresholds (if any) to new array */
3353 if (thresholds->primary) {
3354 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3355 sizeof(struct mem_cgroup_threshold));
3356 }
3357
3358 /* Add new threshold */
3359 new->entries[size - 1].eventfd = eventfd;
3360 new->entries[size - 1].threshold = threshold;
3361
3362 /* Sort thresholds. Registering of new threshold isn't time-critical */
3363 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3364 compare_thresholds, NULL);
3365
3366 /* Find current threshold */
3367 new->current_threshold = -1;
3368 for (i = 0; i < size; i++) {
3369 if (new->entries[i].threshold <= usage) {
3370 /*
3371 * new->current_threshold will not be used until
3372 * rcu_assign_pointer(), so it's safe to increment
3373 * it here.
3374 */
3375 ++new->current_threshold;
3376 } else
3377 break;
3378 }
3379
3380 /* Free old spare buffer and save old primary buffer as spare */
3381 kfree(thresholds->spare);
3382 thresholds->spare = thresholds->primary;
3383
3384 rcu_assign_pointer(thresholds->primary, new);
3385
3386 /* To be sure that nobody uses thresholds */
3387 synchronize_rcu();
3388
3389unlock:
3390 mutex_unlock(&memcg->thresholds_lock);
3391
3392 return ret;
3393}
3394
3395static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3396 struct eventfd_ctx *eventfd, const char *args)
3397{
3398 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3399}
3400
3401static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3402 struct eventfd_ctx *eventfd, const char *args)
3403{
3404 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3405}
3406
3407static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3408 struct eventfd_ctx *eventfd, enum res_type type)
3409{
3410 struct mem_cgroup_thresholds *thresholds;
3411 struct mem_cgroup_threshold_ary *new;
3412 unsigned long usage;
3413 int i, j, size;
3414
3415 mutex_lock(&memcg->thresholds_lock);
3416
3417 if (type == _MEM) {
3418 thresholds = &memcg->thresholds;
3419 usage = mem_cgroup_usage(memcg, false);
3420 } else if (type == _MEMSWAP) {
3421 thresholds = &memcg->memsw_thresholds;
3422 usage = mem_cgroup_usage(memcg, true);
3423 } else
3424 BUG();
3425
3426 if (!thresholds->primary)
3427 goto unlock;
3428
3429 /* Check if a threshold crossed before removing */
3430 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3431
3432 /* Calculate new number of threshold */
3433 size = 0;
3434 for (i = 0; i < thresholds->primary->size; i++) {
3435 if (thresholds->primary->entries[i].eventfd != eventfd)
3436 size++;
3437 }
3438
3439 new = thresholds->spare;
3440
3441 /* Set thresholds array to NULL if we don't have thresholds */
3442 if (!size) {
3443 kfree(new);
3444 new = NULL;
3445 goto swap_buffers;
3446 }
3447
3448 new->size = size;
3449
3450 /* Copy thresholds and find current threshold */
3451 new->current_threshold = -1;
3452 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3453 if (thresholds->primary->entries[i].eventfd == eventfd)
3454 continue;
3455
3456 new->entries[j] = thresholds->primary->entries[i];
3457 if (new->entries[j].threshold <= usage) {
3458 /*
3459 * new->current_threshold will not be used
3460 * until rcu_assign_pointer(), so it's safe to increment
3461 * it here.
3462 */
3463 ++new->current_threshold;
3464 }
3465 j++;
3466 }
3467
3468swap_buffers:
3469 /* Swap primary and spare array */
3470 thresholds->spare = thresholds->primary;
3471
3472 rcu_assign_pointer(thresholds->primary, new);
3473
3474 /* To be sure that nobody uses thresholds */
3475 synchronize_rcu();
3476
3477 /* If all events are unregistered, free the spare array */
3478 if (!new) {
3479 kfree(thresholds->spare);
3480 thresholds->spare = NULL;
3481 }
3482unlock:
3483 mutex_unlock(&memcg->thresholds_lock);
3484}
3485
3486static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3487 struct eventfd_ctx *eventfd)
3488{
3489 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3490}
3491
3492static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3493 struct eventfd_ctx *eventfd)
3494{
3495 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3496}
3497
3498static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3499 struct eventfd_ctx *eventfd, const char *args)
3500{
3501 struct mem_cgroup_eventfd_list *event;
3502
3503 event = kmalloc(sizeof(*event), GFP_KERNEL);
3504 if (!event)
3505 return -ENOMEM;
3506
3507 spin_lock(&memcg_oom_lock);
3508
3509 event->eventfd = eventfd;
3510 list_add(&event->list, &memcg->oom_notify);
3511
3512 /* already in OOM ? */
3513 if (memcg->under_oom)
3514 eventfd_signal(eventfd, 1);
3515 spin_unlock(&memcg_oom_lock);
3516
3517 return 0;
3518}
3519
3520static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3521 struct eventfd_ctx *eventfd)
3522{
3523 struct mem_cgroup_eventfd_list *ev, *tmp;
3524
3525 spin_lock(&memcg_oom_lock);
3526
3527 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3528 if (ev->eventfd == eventfd) {
3529 list_del(&ev->list);
3530 kfree(ev);
3531 }
3532 }
3533
3534 spin_unlock(&memcg_oom_lock);
3535}
3536
3537static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3538{
3539 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3540
3541 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3542 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3543 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3544 return 0;
3545}
3546
3547static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3548 struct cftype *cft, u64 val)
3549{
3550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3551
3552 /* cannot set to root cgroup and only 0 and 1 are allowed */
3553 if (!css->parent || !((val == 0) || (val == 1)))
3554 return -EINVAL;
3555
3556 memcg->oom_kill_disable = val;
3557 if (!val)
3558 memcg_oom_recover(memcg);
3559
3560 return 0;
3561}
3562
3563#ifdef CONFIG_CGROUP_WRITEBACK
3564
3565struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3566{
3567 return &memcg->cgwb_list;
3568}
3569
3570static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3571{
3572 return wb_domain_init(&memcg->cgwb_domain, gfp);
3573}
3574
3575static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3576{
3577 wb_domain_exit(&memcg->cgwb_domain);
3578}
3579
3580static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3581{
3582 wb_domain_size_changed(&memcg->cgwb_domain);
3583}
3584
3585struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3586{
3587 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3588
3589 if (!memcg->css.parent)
3590 return NULL;
3591
3592 return &memcg->cgwb_domain;
3593}
3594
3595/**
3596 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3597 * @wb: bdi_writeback in question
3598 * @pfilepages: out parameter for number of file pages
3599 * @pheadroom: out parameter for number of allocatable pages according to memcg
3600 * @pdirty: out parameter for number of dirty pages
3601 * @pwriteback: out parameter for number of pages under writeback
3602 *
3603 * Determine the numbers of file, headroom, dirty, and writeback pages in
3604 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3605 * is a bit more involved.
3606 *
3607 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3608 * headroom is calculated as the lowest headroom of itself and the
3609 * ancestors. Note that this doesn't consider the actual amount of
3610 * available memory in the system. The caller should further cap
3611 * *@pheadroom accordingly.
3612 */
3613void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3614 unsigned long *pheadroom, unsigned long *pdirty,
3615 unsigned long *pwriteback)
3616{
3617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618 struct mem_cgroup *parent;
3619
3620 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3621
3622 /* this should eventually include NR_UNSTABLE_NFS */
3623 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3624 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3625 (1 << LRU_ACTIVE_FILE));
3626 *pheadroom = PAGE_COUNTER_MAX;
3627
3628 while ((parent = parent_mem_cgroup(memcg))) {
3629 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3630 unsigned long used = page_counter_read(&memcg->memory);
3631
3632 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3633 memcg = parent;
3634 }
3635}
3636
3637#else /* CONFIG_CGROUP_WRITEBACK */
3638
3639static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3640{
3641 return 0;
3642}
3643
3644static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3645{
3646}
3647
3648static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3649{
3650}
3651
3652#endif /* CONFIG_CGROUP_WRITEBACK */
3653
3654/*
3655 * DO NOT USE IN NEW FILES.
3656 *
3657 * "cgroup.event_control" implementation.
3658 *
3659 * This is way over-engineered. It tries to support fully configurable
3660 * events for each user. Such level of flexibility is completely
3661 * unnecessary especially in the light of the planned unified hierarchy.
3662 *
3663 * Please deprecate this and replace with something simpler if at all
3664 * possible.
3665 */
3666
3667/*
3668 * Unregister event and free resources.
3669 *
3670 * Gets called from workqueue.
3671 */
3672static void memcg_event_remove(struct work_struct *work)
3673{
3674 struct mem_cgroup_event *event =
3675 container_of(work, struct mem_cgroup_event, remove);
3676 struct mem_cgroup *memcg = event->memcg;
3677
3678 remove_wait_queue(event->wqh, &event->wait);
3679
3680 event->unregister_event(memcg, event->eventfd);
3681
3682 /* Notify userspace the event is going away. */
3683 eventfd_signal(event->eventfd, 1);
3684
3685 eventfd_ctx_put(event->eventfd);
3686 kfree(event);
3687 css_put(&memcg->css);
3688}
3689
3690/*
3691 * Gets called on EPOLLHUP on eventfd when user closes it.
3692 *
3693 * Called with wqh->lock held and interrupts disabled.
3694 */
3695static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3696 int sync, void *key)
3697{
3698 struct mem_cgroup_event *event =
3699 container_of(wait, struct mem_cgroup_event, wait);
3700 struct mem_cgroup *memcg = event->memcg;
3701 __poll_t flags = key_to_poll(key);
3702
3703 if (flags & EPOLLHUP) {
3704 /*
3705 * If the event has been detached at cgroup removal, we
3706 * can simply return knowing the other side will cleanup
3707 * for us.
3708 *
3709 * We can't race against event freeing since the other
3710 * side will require wqh->lock via remove_wait_queue(),
3711 * which we hold.
3712 */
3713 spin_lock(&memcg->event_list_lock);
3714 if (!list_empty(&event->list)) {
3715 list_del_init(&event->list);
3716 /*
3717 * We are in atomic context, but cgroup_event_remove()
3718 * may sleep, so we have to call it in workqueue.
3719 */
3720 schedule_work(&event->remove);
3721 }
3722 spin_unlock(&memcg->event_list_lock);
3723 }
3724
3725 return 0;
3726}
3727
3728static void memcg_event_ptable_queue_proc(struct file *file,
3729 wait_queue_head_t *wqh, poll_table *pt)
3730{
3731 struct mem_cgroup_event *event =
3732 container_of(pt, struct mem_cgroup_event, pt);
3733
3734 event->wqh = wqh;
3735 add_wait_queue(wqh, &event->wait);
3736}
3737
3738/*
3739 * DO NOT USE IN NEW FILES.
3740 *
3741 * Parse input and register new cgroup event handler.
3742 *
3743 * Input must be in format '<event_fd> <control_fd> <args>'.
3744 * Interpretation of args is defined by control file implementation.
3745 */
3746static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3747 char *buf, size_t nbytes, loff_t off)
3748{
3749 struct cgroup_subsys_state *css = of_css(of);
3750 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3751 struct mem_cgroup_event *event;
3752 struct cgroup_subsys_state *cfile_css;
3753 unsigned int efd, cfd;
3754 struct fd efile;
3755 struct fd cfile;
3756 const char *name;
3757 char *endp;
3758 int ret;
3759
3760 buf = strstrip(buf);
3761
3762 efd = simple_strtoul(buf, &endp, 10);
3763 if (*endp != ' ')
3764 return -EINVAL;
3765 buf = endp + 1;
3766
3767 cfd = simple_strtoul(buf, &endp, 10);
3768 if ((*endp != ' ') && (*endp != '\0'))
3769 return -EINVAL;
3770 buf = endp + 1;
3771
3772 event = kzalloc(sizeof(*event), GFP_KERNEL);
3773 if (!event)
3774 return -ENOMEM;
3775
3776 event->memcg = memcg;
3777 INIT_LIST_HEAD(&event->list);
3778 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3779 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3780 INIT_WORK(&event->remove, memcg_event_remove);
3781
3782 efile = fdget(efd);
3783 if (!efile.file) {
3784 ret = -EBADF;
3785 goto out_kfree;
3786 }
3787
3788 event->eventfd = eventfd_ctx_fileget(efile.file);
3789 if (IS_ERR(event->eventfd)) {
3790 ret = PTR_ERR(event->eventfd);
3791 goto out_put_efile;
3792 }
3793
3794 cfile = fdget(cfd);
3795 if (!cfile.file) {
3796 ret = -EBADF;
3797 goto out_put_eventfd;
3798 }
3799
3800 /* the process need read permission on control file */
3801 /* AV: shouldn't we check that it's been opened for read instead? */
3802 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3803 if (ret < 0)
3804 goto out_put_cfile;
3805
3806 /*
3807 * Determine the event callbacks and set them in @event. This used
3808 * to be done via struct cftype but cgroup core no longer knows
3809 * about these events. The following is crude but the whole thing
3810 * is for compatibility anyway.
3811 *
3812 * DO NOT ADD NEW FILES.
3813 */
3814 name = cfile.file->f_path.dentry->d_name.name;
3815
3816 if (!strcmp(name, "memory.usage_in_bytes")) {
3817 event->register_event = mem_cgroup_usage_register_event;
3818 event->unregister_event = mem_cgroup_usage_unregister_event;
3819 } else if (!strcmp(name, "memory.oom_control")) {
3820 event->register_event = mem_cgroup_oom_register_event;
3821 event->unregister_event = mem_cgroup_oom_unregister_event;
3822 } else if (!strcmp(name, "memory.pressure_level")) {
3823 event->register_event = vmpressure_register_event;
3824 event->unregister_event = vmpressure_unregister_event;
3825 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3826 event->register_event = memsw_cgroup_usage_register_event;
3827 event->unregister_event = memsw_cgroup_usage_unregister_event;
3828 } else {
3829 ret = -EINVAL;
3830 goto out_put_cfile;
3831 }
3832
3833 /*
3834 * Verify @cfile should belong to @css. Also, remaining events are
3835 * automatically removed on cgroup destruction but the removal is
3836 * asynchronous, so take an extra ref on @css.
3837 */
3838 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3839 &memory_cgrp_subsys);
3840 ret = -EINVAL;
3841 if (IS_ERR(cfile_css))
3842 goto out_put_cfile;
3843 if (cfile_css != css) {
3844 css_put(cfile_css);
3845 goto out_put_cfile;
3846 }
3847
3848 ret = event->register_event(memcg, event->eventfd, buf);
3849 if (ret)
3850 goto out_put_css;
3851
3852 efile.file->f_op->poll(efile.file, &event->pt);
3853
3854 spin_lock(&memcg->event_list_lock);
3855 list_add(&event->list, &memcg->event_list);
3856 spin_unlock(&memcg->event_list_lock);
3857
3858 fdput(cfile);
3859 fdput(efile);
3860
3861 return nbytes;
3862
3863out_put_css:
3864 css_put(css);
3865out_put_cfile:
3866 fdput(cfile);
3867out_put_eventfd:
3868 eventfd_ctx_put(event->eventfd);
3869out_put_efile:
3870 fdput(efile);
3871out_kfree:
3872 kfree(event);
3873
3874 return ret;
3875}
3876
3877static struct cftype mem_cgroup_legacy_files[] = {
3878 {
3879 .name = "usage_in_bytes",
3880 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3881 .read_u64 = mem_cgroup_read_u64,
3882 },
3883 {
3884 .name = "max_usage_in_bytes",
3885 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3886 .write = mem_cgroup_reset,
3887 .read_u64 = mem_cgroup_read_u64,
3888 },
3889 {
3890 .name = "limit_in_bytes",
3891 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3892 .write = mem_cgroup_write,
3893 .read_u64 = mem_cgroup_read_u64,
3894 },
3895 {
3896 .name = "soft_limit_in_bytes",
3897 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3898 .write = mem_cgroup_write,
3899 .read_u64 = mem_cgroup_read_u64,
3900 },
3901 {
3902 .name = "failcnt",
3903 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3904 .write = mem_cgroup_reset,
3905 .read_u64 = mem_cgroup_read_u64,
3906 },
3907 {
3908 .name = "stat",
3909 .seq_show = memcg_stat_show,
3910 },
3911 {
3912 .name = "force_empty",
3913 .write = mem_cgroup_force_empty_write,
3914 },
3915 {
3916 .name = "use_hierarchy",
3917 .write_u64 = mem_cgroup_hierarchy_write,
3918 .read_u64 = mem_cgroup_hierarchy_read,
3919 },
3920 {
3921 .name = "cgroup.event_control", /* XXX: for compat */
3922 .write = memcg_write_event_control,
3923 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3924 },
3925 {
3926 .name = "swappiness",
3927 .read_u64 = mem_cgroup_swappiness_read,
3928 .write_u64 = mem_cgroup_swappiness_write,
3929 },
3930 {
3931 .name = "move_charge_at_immigrate",
3932 .read_u64 = mem_cgroup_move_charge_read,
3933 .write_u64 = mem_cgroup_move_charge_write,
3934 },
3935 {
3936 .name = "oom_control",
3937 .seq_show = mem_cgroup_oom_control_read,
3938 .write_u64 = mem_cgroup_oom_control_write,
3939 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3940 },
3941 {
3942 .name = "pressure_level",
3943 },
3944#ifdef CONFIG_NUMA
3945 {
3946 .name = "numa_stat",
3947 .seq_show = memcg_numa_stat_show,
3948 },
3949#endif
3950 {
3951 .name = "kmem.limit_in_bytes",
3952 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3953 .write = mem_cgroup_write,
3954 .read_u64 = mem_cgroup_read_u64,
3955 },
3956 {
3957 .name = "kmem.usage_in_bytes",
3958 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3959 .read_u64 = mem_cgroup_read_u64,
3960 },
3961 {
3962 .name = "kmem.failcnt",
3963 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3964 .write = mem_cgroup_reset,
3965 .read_u64 = mem_cgroup_read_u64,
3966 },
3967 {
3968 .name = "kmem.max_usage_in_bytes",
3969 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3970 .write = mem_cgroup_reset,
3971 .read_u64 = mem_cgroup_read_u64,
3972 },
3973#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
3974 {
3975 .name = "kmem.slabinfo",
3976 .seq_start = memcg_slab_start,
3977 .seq_next = memcg_slab_next,
3978 .seq_stop = memcg_slab_stop,
3979 .seq_show = memcg_slab_show,
3980 },
3981#endif
3982 {
3983 .name = "kmem.tcp.limit_in_bytes",
3984 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
3985 .write = mem_cgroup_write,
3986 .read_u64 = mem_cgroup_read_u64,
3987 },
3988 {
3989 .name = "kmem.tcp.usage_in_bytes",
3990 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
3991 .read_u64 = mem_cgroup_read_u64,
3992 },
3993 {
3994 .name = "kmem.tcp.failcnt",
3995 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
3996 .write = mem_cgroup_reset,
3997 .read_u64 = mem_cgroup_read_u64,
3998 },
3999 {
4000 .name = "kmem.tcp.max_usage_in_bytes",
4001 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4002 .write = mem_cgroup_reset,
4003 .read_u64 = mem_cgroup_read_u64,
4004 },
4005 { }, /* terminate */
4006};
4007
4008/*
4009 * Private memory cgroup IDR
4010 *
4011 * Swap-out records and page cache shadow entries need to store memcg
4012 * references in constrained space, so we maintain an ID space that is
4013 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4014 * memory-controlled cgroups to 64k.
4015 *
4016 * However, there usually are many references to the oflline CSS after
4017 * the cgroup has been destroyed, such as page cache or reclaimable
4018 * slab objects, that don't need to hang on to the ID. We want to keep
4019 * those dead CSS from occupying IDs, or we might quickly exhaust the
4020 * relatively small ID space and prevent the creation of new cgroups
4021 * even when there are much fewer than 64k cgroups - possibly none.
4022 *
4023 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4024 * be freed and recycled when it's no longer needed, which is usually
4025 * when the CSS is offlined.
4026 *
4027 * The only exception to that are records of swapped out tmpfs/shmem
4028 * pages that need to be attributed to live ancestors on swapin. But
4029 * those references are manageable from userspace.
4030 */
4031
4032static DEFINE_IDR(mem_cgroup_idr);
4033
4034static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4035{
4036 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4037 atomic_add(n, &memcg->id.ref);
4038}
4039
4040static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4041{
4042 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4043 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4044 idr_remove(&mem_cgroup_idr, memcg->id.id);
4045 memcg->id.id = 0;
4046
4047 /* Memcg ID pins CSS */
4048 css_put(&memcg->css);
4049 }
4050}
4051
4052static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4053{
4054 mem_cgroup_id_get_many(memcg, 1);
4055}
4056
4057static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4058{
4059 mem_cgroup_id_put_many(memcg, 1);
4060}
4061
4062/**
4063 * mem_cgroup_from_id - look up a memcg from a memcg id
4064 * @id: the memcg id to look up
4065 *
4066 * Caller must hold rcu_read_lock().
4067 */
4068struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4069{
4070 WARN_ON_ONCE(!rcu_read_lock_held());
4071 return idr_find(&mem_cgroup_idr, id);
4072}
4073
4074static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4075{
4076 struct mem_cgroup_per_node *pn;
4077 int tmp = node;
4078 /*
4079 * This routine is called against possible nodes.
4080 * But it's BUG to call kmalloc() against offline node.
4081 *
4082 * TODO: this routine can waste much memory for nodes which will
4083 * never be onlined. It's better to use memory hotplug callback
4084 * function.
4085 */
4086 if (!node_state(node, N_NORMAL_MEMORY))
4087 tmp = -1;
4088 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4089 if (!pn)
4090 return 1;
4091
4092 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4093 if (!pn->lruvec_stat_cpu) {
4094 kfree(pn);
4095 return 1;
4096 }
4097
4098 lruvec_init(&pn->lruvec);
4099 pn->usage_in_excess = 0;
4100 pn->on_tree = false;
4101 pn->memcg = memcg;
4102
4103 memcg->nodeinfo[node] = pn;
4104 return 0;
4105}
4106
4107static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4108{
4109 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4110
4111 if (!pn)
4112 return;
4113
4114 free_percpu(pn->lruvec_stat_cpu);
4115 kfree(pn);
4116}
4117
4118static void __mem_cgroup_free(struct mem_cgroup *memcg)
4119{
4120 int node;
4121
4122 for_each_node(node)
4123 free_mem_cgroup_per_node_info(memcg, node);
4124 free_percpu(memcg->stat_cpu);
4125 kfree(memcg);
4126}
4127
4128static void mem_cgroup_free(struct mem_cgroup *memcg)
4129{
4130 memcg_wb_domain_exit(memcg);
4131 __mem_cgroup_free(memcg);
4132}
4133
4134static struct mem_cgroup *mem_cgroup_alloc(void)
4135{
4136 struct mem_cgroup *memcg;
4137 size_t size;
4138 int node;
4139
4140 size = sizeof(struct mem_cgroup);
4141 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4142
4143 memcg = kzalloc(size, GFP_KERNEL);
4144 if (!memcg)
4145 return NULL;
4146
4147 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4148 1, MEM_CGROUP_ID_MAX,
4149 GFP_KERNEL);
4150 if (memcg->id.id < 0)
4151 goto fail;
4152
4153 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4154 if (!memcg->stat_cpu)
4155 goto fail;
4156
4157 for_each_node(node)
4158 if (alloc_mem_cgroup_per_node_info(memcg, node))
4159 goto fail;
4160
4161 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4162 goto fail;
4163
4164 INIT_WORK(&memcg->high_work, high_work_func);
4165 memcg->last_scanned_node = MAX_NUMNODES;
4166 INIT_LIST_HEAD(&memcg->oom_notify);
4167 mutex_init(&memcg->thresholds_lock);
4168 spin_lock_init(&memcg->move_lock);
4169 vmpressure_init(&memcg->vmpressure);
4170 INIT_LIST_HEAD(&memcg->event_list);
4171 spin_lock_init(&memcg->event_list_lock);
4172 memcg->socket_pressure = jiffies;
4173#ifndef CONFIG_SLOB
4174 memcg->kmemcg_id = -1;
4175#endif
4176#ifdef CONFIG_CGROUP_WRITEBACK
4177 INIT_LIST_HEAD(&memcg->cgwb_list);
4178#endif
4179 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4180 return memcg;
4181fail:
4182 if (memcg->id.id > 0)
4183 idr_remove(&mem_cgroup_idr, memcg->id.id);
4184 __mem_cgroup_free(memcg);
4185 return NULL;
4186}
4187
4188static struct cgroup_subsys_state * __ref
4189mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4190{
4191 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4192 struct mem_cgroup *memcg;
4193 long error = -ENOMEM;
4194
4195 memcg = mem_cgroup_alloc();
4196 if (!memcg)
4197 return ERR_PTR(error);
4198
4199 memcg->high = PAGE_COUNTER_MAX;
4200 memcg->soft_limit = PAGE_COUNTER_MAX;
4201 if (parent) {
4202 memcg->swappiness = mem_cgroup_swappiness(parent);
4203 memcg->oom_kill_disable = parent->oom_kill_disable;
4204 }
4205 if (parent && parent->use_hierarchy) {
4206 memcg->use_hierarchy = true;
4207 page_counter_init(&memcg->memory, &parent->memory);
4208 page_counter_init(&memcg->swap, &parent->swap);
4209 page_counter_init(&memcg->memsw, &parent->memsw);
4210 page_counter_init(&memcg->kmem, &parent->kmem);
4211 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4212 } else {
4213 page_counter_init(&memcg->memory, NULL);
4214 page_counter_init(&memcg->swap, NULL);
4215 page_counter_init(&memcg->memsw, NULL);
4216 page_counter_init(&memcg->kmem, NULL);
4217 page_counter_init(&memcg->tcpmem, NULL);
4218 /*
4219 * Deeper hierachy with use_hierarchy == false doesn't make
4220 * much sense so let cgroup subsystem know about this
4221 * unfortunate state in our controller.
4222 */
4223 if (parent != root_mem_cgroup)
4224 memory_cgrp_subsys.broken_hierarchy = true;
4225 }
4226
4227 /* The following stuff does not apply to the root */
4228 if (!parent) {
4229 root_mem_cgroup = memcg;
4230 return &memcg->css;
4231 }
4232
4233 error = memcg_online_kmem(memcg);
4234 if (error)
4235 goto fail;
4236
4237 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4238 static_branch_inc(&memcg_sockets_enabled_key);
4239
4240 return &memcg->css;
4241fail:
4242 mem_cgroup_free(memcg);
4243 return ERR_PTR(-ENOMEM);
4244}
4245
4246static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4247{
4248 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4249
4250 /* Online state pins memcg ID, memcg ID pins CSS */
4251 atomic_set(&memcg->id.ref, 1);
4252 css_get(css);
4253 return 0;
4254}
4255
4256static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4257{
4258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4259 struct mem_cgroup_event *event, *tmp;
4260
4261 /*
4262 * Unregister events and notify userspace.
4263 * Notify userspace about cgroup removing only after rmdir of cgroup
4264 * directory to avoid race between userspace and kernelspace.
4265 */
4266 spin_lock(&memcg->event_list_lock);
4267 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4268 list_del_init(&event->list);
4269 schedule_work(&event->remove);
4270 }
4271 spin_unlock(&memcg->event_list_lock);
4272
4273 memcg->low = 0;
4274
4275 memcg_offline_kmem(memcg);
4276 wb_memcg_offline(memcg);
4277
4278 mem_cgroup_id_put(memcg);
4279}
4280
4281static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4282{
4283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284
4285 invalidate_reclaim_iterators(memcg);
4286}
4287
4288static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4289{
4290 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4291
4292 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4293 static_branch_dec(&memcg_sockets_enabled_key);
4294
4295 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4296 static_branch_dec(&memcg_sockets_enabled_key);
4297
4298 vmpressure_cleanup(&memcg->vmpressure);
4299 cancel_work_sync(&memcg->high_work);
4300 mem_cgroup_remove_from_trees(memcg);
4301 memcg_free_kmem(memcg);
4302 mem_cgroup_free(memcg);
4303}
4304
4305/**
4306 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4307 * @css: the target css
4308 *
4309 * Reset the states of the mem_cgroup associated with @css. This is
4310 * invoked when the userland requests disabling on the default hierarchy
4311 * but the memcg is pinned through dependency. The memcg should stop
4312 * applying policies and should revert to the vanilla state as it may be
4313 * made visible again.
4314 *
4315 * The current implementation only resets the essential configurations.
4316 * This needs to be expanded to cover all the visible parts.
4317 */
4318static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4319{
4320 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4321
4322 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4323 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4324 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4325 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4326 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4327 memcg->low = 0;
4328 memcg->high = PAGE_COUNTER_MAX;
4329 memcg->soft_limit = PAGE_COUNTER_MAX;
4330 memcg_wb_domain_size_changed(memcg);
4331}
4332
4333#ifdef CONFIG_MMU
4334/* Handlers for move charge at task migration. */
4335static int mem_cgroup_do_precharge(unsigned long count)
4336{
4337 int ret;
4338
4339 /* Try a single bulk charge without reclaim first, kswapd may wake */
4340 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4341 if (!ret) {
4342 mc.precharge += count;
4343 return ret;
4344 }
4345
4346 /* Try charges one by one with reclaim, but do not retry */
4347 while (count--) {
4348 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4349 if (ret)
4350 return ret;
4351 mc.precharge++;
4352 cond_resched();
4353 }
4354 return 0;
4355}
4356
4357union mc_target {
4358 struct page *page;
4359 swp_entry_t ent;
4360};
4361
4362enum mc_target_type {
4363 MC_TARGET_NONE = 0,
4364 MC_TARGET_PAGE,
4365 MC_TARGET_SWAP,
4366 MC_TARGET_DEVICE,
4367};
4368
4369static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4370 unsigned long addr, pte_t ptent)
4371{
4372 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4373
4374 if (!page || !page_mapped(page))
4375 return NULL;
4376 if (PageAnon(page)) {
4377 if (!(mc.flags & MOVE_ANON))
4378 return NULL;
4379 } else {
4380 if (!(mc.flags & MOVE_FILE))
4381 return NULL;
4382 }
4383 if (!get_page_unless_zero(page))
4384 return NULL;
4385
4386 return page;
4387}
4388
4389#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4390static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4391 pte_t ptent, swp_entry_t *entry)
4392{
4393 struct page *page = NULL;
4394 swp_entry_t ent = pte_to_swp_entry(ptent);
4395
4396 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4397 return NULL;
4398
4399 /*
4400 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4401 * a device and because they are not accessible by CPU they are store
4402 * as special swap entry in the CPU page table.
4403 */
4404 if (is_device_private_entry(ent)) {
4405 page = device_private_entry_to_page(ent);
4406 /*
4407 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4408 * a refcount of 1 when free (unlike normal page)
4409 */
4410 if (!page_ref_add_unless(page, 1, 1))
4411 return NULL;
4412 return page;
4413 }
4414
4415 /*
4416 * Because lookup_swap_cache() updates some statistics counter,
4417 * we call find_get_page() with swapper_space directly.
4418 */
4419 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4420 if (do_memsw_account())
4421 entry->val = ent.val;
4422
4423 return page;
4424}
4425#else
4426static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4427 pte_t ptent, swp_entry_t *entry)
4428{
4429 return NULL;
4430}
4431#endif
4432
4433static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4434 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4435{
4436 struct page *page = NULL;
4437 struct address_space *mapping;
4438 pgoff_t pgoff;
4439
4440 if (!vma->vm_file) /* anonymous vma */
4441 return NULL;
4442 if (!(mc.flags & MOVE_FILE))
4443 return NULL;
4444
4445 mapping = vma->vm_file->f_mapping;
4446 pgoff = linear_page_index(vma, addr);
4447
4448 /* page is moved even if it's not RSS of this task(page-faulted). */
4449#ifdef CONFIG_SWAP
4450 /* shmem/tmpfs may report page out on swap: account for that too. */
4451 if (shmem_mapping(mapping)) {
4452 page = find_get_entry(mapping, pgoff);
4453 if (radix_tree_exceptional_entry(page)) {
4454 swp_entry_t swp = radix_to_swp_entry(page);
4455 if (do_memsw_account())
4456 *entry = swp;
4457 page = find_get_page(swap_address_space(swp),
4458 swp_offset(swp));
4459 }
4460 } else
4461 page = find_get_page(mapping, pgoff);
4462#else
4463 page = find_get_page(mapping, pgoff);
4464#endif
4465 return page;
4466}
4467
4468/**
4469 * mem_cgroup_move_account - move account of the page
4470 * @page: the page
4471 * @compound: charge the page as compound or small page
4472 * @from: mem_cgroup which the page is moved from.
4473 * @to: mem_cgroup which the page is moved to. @from != @to.
4474 *
4475 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4476 *
4477 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4478 * from old cgroup.
4479 */
4480static int mem_cgroup_move_account(struct page *page,
4481 bool compound,
4482 struct mem_cgroup *from,
4483 struct mem_cgroup *to)
4484{
4485 unsigned long flags;
4486 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4487 int ret;
4488 bool anon;
4489
4490 VM_BUG_ON(from == to);
4491 VM_BUG_ON_PAGE(PageLRU(page), page);
4492 VM_BUG_ON(compound && !PageTransHuge(page));
4493
4494 /*
4495 * Prevent mem_cgroup_migrate() from looking at
4496 * page->mem_cgroup of its source page while we change it.
4497 */
4498 ret = -EBUSY;
4499 if (!trylock_page(page))
4500 goto out;
4501
4502 ret = -EINVAL;
4503 if (page->mem_cgroup != from)
4504 goto out_unlock;
4505
4506 anon = PageAnon(page);
4507
4508 spin_lock_irqsave(&from->move_lock, flags);
4509
4510 if (!anon && page_mapped(page)) {
4511 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4512 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4513 }
4514
4515 /*
4516 * move_lock grabbed above and caller set from->moving_account, so
4517 * mod_memcg_page_state will serialize updates to PageDirty.
4518 * So mapping should be stable for dirty pages.
4519 */
4520 if (!anon && PageDirty(page)) {
4521 struct address_space *mapping = page_mapping(page);
4522
4523 if (mapping_cap_account_dirty(mapping)) {
4524 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4525 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4526 }
4527 }
4528
4529 if (PageWriteback(page)) {
4530 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4531 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4532 }
4533
4534 /*
4535 * It is safe to change page->mem_cgroup here because the page
4536 * is referenced, charged, and isolated - we can't race with
4537 * uncharging, charging, migration, or LRU putback.
4538 */
4539
4540 /* caller should have done css_get */
4541 page->mem_cgroup = to;
4542 spin_unlock_irqrestore(&from->move_lock, flags);
4543
4544 ret = 0;
4545
4546 local_irq_disable();
4547 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4548 memcg_check_events(to, page);
4549 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4550 memcg_check_events(from, page);
4551 local_irq_enable();
4552out_unlock:
4553 unlock_page(page);
4554out:
4555 return ret;
4556}
4557
4558/**
4559 * get_mctgt_type - get target type of moving charge
4560 * @vma: the vma the pte to be checked belongs
4561 * @addr: the address corresponding to the pte to be checked
4562 * @ptent: the pte to be checked
4563 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564 *
4565 * Returns
4566 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568 * move charge. if @target is not NULL, the page is stored in target->page
4569 * with extra refcnt got(Callers should handle it).
4570 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571 * target for charge migration. if @target is not NULL, the entry is stored
4572 * in target->ent.
4573 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4574 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4575 * For now we such page is charge like a regular page would be as for all
4576 * intent and purposes it is just special memory taking the place of a
4577 * regular page.
4578 *
4579 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4580 *
4581 * Called with pte lock held.
4582 */
4583
4584static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4585 unsigned long addr, pte_t ptent, union mc_target *target)
4586{
4587 struct page *page = NULL;
4588 enum mc_target_type ret = MC_TARGET_NONE;
4589 swp_entry_t ent = { .val = 0 };
4590
4591 if (pte_present(ptent))
4592 page = mc_handle_present_pte(vma, addr, ptent);
4593 else if (is_swap_pte(ptent))
4594 page = mc_handle_swap_pte(vma, ptent, &ent);
4595 else if (pte_none(ptent))
4596 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4597
4598 if (!page && !ent.val)
4599 return ret;
4600 if (page) {
4601 /*
4602 * Do only loose check w/o serialization.
4603 * mem_cgroup_move_account() checks the page is valid or
4604 * not under LRU exclusion.
4605 */
4606 if (page->mem_cgroup == mc.from) {
4607 ret = MC_TARGET_PAGE;
4608 if (is_device_private_page(page) ||
4609 is_device_public_page(page))
4610 ret = MC_TARGET_DEVICE;
4611 if (target)
4612 target->page = page;
4613 }
4614 if (!ret || !target)
4615 put_page(page);
4616 }
4617 /*
4618 * There is a swap entry and a page doesn't exist or isn't charged.
4619 * But we cannot move a tail-page in a THP.
4620 */
4621 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4622 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4623 ret = MC_TARGET_SWAP;
4624 if (target)
4625 target->ent = ent;
4626 }
4627 return ret;
4628}
4629
4630#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4631/*
4632 * We don't consider PMD mapped swapping or file mapped pages because THP does
4633 * not support them for now.
4634 * Caller should make sure that pmd_trans_huge(pmd) is true.
4635 */
4636static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4637 unsigned long addr, pmd_t pmd, union mc_target *target)
4638{
4639 struct page *page = NULL;
4640 enum mc_target_type ret = MC_TARGET_NONE;
4641
4642 if (unlikely(is_swap_pmd(pmd))) {
4643 VM_BUG_ON(thp_migration_supported() &&
4644 !is_pmd_migration_entry(pmd));
4645 return ret;
4646 }
4647 page = pmd_page(pmd);
4648 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4649 if (!(mc.flags & MOVE_ANON))
4650 return ret;
4651 if (page->mem_cgroup == mc.from) {
4652 ret = MC_TARGET_PAGE;
4653 if (target) {
4654 get_page(page);
4655 target->page = page;
4656 }
4657 }
4658 return ret;
4659}
4660#else
4661static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4662 unsigned long addr, pmd_t pmd, union mc_target *target)
4663{
4664 return MC_TARGET_NONE;
4665}
4666#endif
4667
4668static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4669 unsigned long addr, unsigned long end,
4670 struct mm_walk *walk)
4671{
4672 struct vm_area_struct *vma = walk->vma;
4673 pte_t *pte;
4674 spinlock_t *ptl;
4675
4676 ptl = pmd_trans_huge_lock(pmd, vma);
4677 if (ptl) {
4678 /*
4679 * Note their can not be MC_TARGET_DEVICE for now as we do not
4680 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4681 * MEMORY_DEVICE_PRIVATE but this might change.
4682 */
4683 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4684 mc.precharge += HPAGE_PMD_NR;
4685 spin_unlock(ptl);
4686 return 0;
4687 }
4688
4689 if (pmd_trans_unstable(pmd))
4690 return 0;
4691 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4692 for (; addr != end; pte++, addr += PAGE_SIZE)
4693 if (get_mctgt_type(vma, addr, *pte, NULL))
4694 mc.precharge++; /* increment precharge temporarily */
4695 pte_unmap_unlock(pte - 1, ptl);
4696 cond_resched();
4697
4698 return 0;
4699}
4700
4701static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4702{
4703 unsigned long precharge;
4704
4705 struct mm_walk mem_cgroup_count_precharge_walk = {
4706 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4707 .mm = mm,
4708 };
4709 down_read(&mm->mmap_sem);
4710 walk_page_range(0, mm->highest_vm_end,
4711 &mem_cgroup_count_precharge_walk);
4712 up_read(&mm->mmap_sem);
4713
4714 precharge = mc.precharge;
4715 mc.precharge = 0;
4716
4717 return precharge;
4718}
4719
4720static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4721{
4722 unsigned long precharge = mem_cgroup_count_precharge(mm);
4723
4724 VM_BUG_ON(mc.moving_task);
4725 mc.moving_task = current;
4726 return mem_cgroup_do_precharge(precharge);
4727}
4728
4729/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4730static void __mem_cgroup_clear_mc(void)
4731{
4732 struct mem_cgroup *from = mc.from;
4733 struct mem_cgroup *to = mc.to;
4734
4735 /* we must uncharge all the leftover precharges from mc.to */
4736 if (mc.precharge) {
4737 cancel_charge(mc.to, mc.precharge);
4738 mc.precharge = 0;
4739 }
4740 /*
4741 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4742 * we must uncharge here.
4743 */
4744 if (mc.moved_charge) {
4745 cancel_charge(mc.from, mc.moved_charge);
4746 mc.moved_charge = 0;
4747 }
4748 /* we must fixup refcnts and charges */
4749 if (mc.moved_swap) {
4750 /* uncharge swap account from the old cgroup */
4751 if (!mem_cgroup_is_root(mc.from))
4752 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4753
4754 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4755
4756 /*
4757 * we charged both to->memory and to->memsw, so we
4758 * should uncharge to->memory.
4759 */
4760 if (!mem_cgroup_is_root(mc.to))
4761 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4762
4763 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4764 css_put_many(&mc.to->css, mc.moved_swap);
4765
4766 mc.moved_swap = 0;
4767 }
4768 memcg_oom_recover(from);
4769 memcg_oom_recover(to);
4770 wake_up_all(&mc.waitq);
4771}
4772
4773static void mem_cgroup_clear_mc(void)
4774{
4775 struct mm_struct *mm = mc.mm;
4776
4777 /*
4778 * we must clear moving_task before waking up waiters at the end of
4779 * task migration.
4780 */
4781 mc.moving_task = NULL;
4782 __mem_cgroup_clear_mc();
4783 spin_lock(&mc.lock);
4784 mc.from = NULL;
4785 mc.to = NULL;
4786 mc.mm = NULL;
4787 spin_unlock(&mc.lock);
4788
4789 mmput(mm);
4790}
4791
4792static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4793{
4794 struct cgroup_subsys_state *css;
4795 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4796 struct mem_cgroup *from;
4797 struct task_struct *leader, *p;
4798 struct mm_struct *mm;
4799 unsigned long move_flags;
4800 int ret = 0;
4801
4802 /* charge immigration isn't supported on the default hierarchy */
4803 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4804 return 0;
4805
4806 /*
4807 * Multi-process migrations only happen on the default hierarchy
4808 * where charge immigration is not used. Perform charge
4809 * immigration if @tset contains a leader and whine if there are
4810 * multiple.
4811 */
4812 p = NULL;
4813 cgroup_taskset_for_each_leader(leader, css, tset) {
4814 WARN_ON_ONCE(p);
4815 p = leader;
4816 memcg = mem_cgroup_from_css(css);
4817 }
4818 if (!p)
4819 return 0;
4820
4821 /*
4822 * We are now commited to this value whatever it is. Changes in this
4823 * tunable will only affect upcoming migrations, not the current one.
4824 * So we need to save it, and keep it going.
4825 */
4826 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4827 if (!move_flags)
4828 return 0;
4829
4830 from = mem_cgroup_from_task(p);
4831
4832 VM_BUG_ON(from == memcg);
4833
4834 mm = get_task_mm(p);
4835 if (!mm)
4836 return 0;
4837 /* We move charges only when we move a owner of the mm */
4838 if (mm->owner == p) {
4839 VM_BUG_ON(mc.from);
4840 VM_BUG_ON(mc.to);
4841 VM_BUG_ON(mc.precharge);
4842 VM_BUG_ON(mc.moved_charge);
4843 VM_BUG_ON(mc.moved_swap);
4844
4845 spin_lock(&mc.lock);
4846 mc.mm = mm;
4847 mc.from = from;
4848 mc.to = memcg;
4849 mc.flags = move_flags;
4850 spin_unlock(&mc.lock);
4851 /* We set mc.moving_task later */
4852
4853 ret = mem_cgroup_precharge_mc(mm);
4854 if (ret)
4855 mem_cgroup_clear_mc();
4856 } else {
4857 mmput(mm);
4858 }
4859 return ret;
4860}
4861
4862static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4863{
4864 if (mc.to)
4865 mem_cgroup_clear_mc();
4866}
4867
4868static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4869 unsigned long addr, unsigned long end,
4870 struct mm_walk *walk)
4871{
4872 int ret = 0;
4873 struct vm_area_struct *vma = walk->vma;
4874 pte_t *pte;
4875 spinlock_t *ptl;
4876 enum mc_target_type target_type;
4877 union mc_target target;
4878 struct page *page;
4879
4880 ptl = pmd_trans_huge_lock(pmd, vma);
4881 if (ptl) {
4882 if (mc.precharge < HPAGE_PMD_NR) {
4883 spin_unlock(ptl);
4884 return 0;
4885 }
4886 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4887 if (target_type == MC_TARGET_PAGE) {
4888 page = target.page;
4889 if (!isolate_lru_page(page)) {
4890 if (!mem_cgroup_move_account(page, true,
4891 mc.from, mc.to)) {
4892 mc.precharge -= HPAGE_PMD_NR;
4893 mc.moved_charge += HPAGE_PMD_NR;
4894 }
4895 putback_lru_page(page);
4896 }
4897 put_page(page);
4898 } else if (target_type == MC_TARGET_DEVICE) {
4899 page = target.page;
4900 if (!mem_cgroup_move_account(page, true,
4901 mc.from, mc.to)) {
4902 mc.precharge -= HPAGE_PMD_NR;
4903 mc.moved_charge += HPAGE_PMD_NR;
4904 }
4905 put_page(page);
4906 }
4907 spin_unlock(ptl);
4908 return 0;
4909 }
4910
4911 if (pmd_trans_unstable(pmd))
4912 return 0;
4913retry:
4914 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4915 for (; addr != end; addr += PAGE_SIZE) {
4916 pte_t ptent = *(pte++);
4917 bool device = false;
4918 swp_entry_t ent;
4919
4920 if (!mc.precharge)
4921 break;
4922
4923 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4924 case MC_TARGET_DEVICE:
4925 device = true;
4926 /* fall through */
4927 case MC_TARGET_PAGE:
4928 page = target.page;
4929 /*
4930 * We can have a part of the split pmd here. Moving it
4931 * can be done but it would be too convoluted so simply
4932 * ignore such a partial THP and keep it in original
4933 * memcg. There should be somebody mapping the head.
4934 */
4935 if (PageTransCompound(page))
4936 goto put;
4937 if (!device && isolate_lru_page(page))
4938 goto put;
4939 if (!mem_cgroup_move_account(page, false,
4940 mc.from, mc.to)) {
4941 mc.precharge--;
4942 /* we uncharge from mc.from later. */
4943 mc.moved_charge++;
4944 }
4945 if (!device)
4946 putback_lru_page(page);
4947put: /* get_mctgt_type() gets the page */
4948 put_page(page);
4949 break;
4950 case MC_TARGET_SWAP:
4951 ent = target.ent;
4952 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4953 mc.precharge--;
4954 /* we fixup refcnts and charges later. */
4955 mc.moved_swap++;
4956 }
4957 break;
4958 default:
4959 break;
4960 }
4961 }
4962 pte_unmap_unlock(pte - 1, ptl);
4963 cond_resched();
4964
4965 if (addr != end) {
4966 /*
4967 * We have consumed all precharges we got in can_attach().
4968 * We try charge one by one, but don't do any additional
4969 * charges to mc.to if we have failed in charge once in attach()
4970 * phase.
4971 */
4972 ret = mem_cgroup_do_precharge(1);
4973 if (!ret)
4974 goto retry;
4975 }
4976
4977 return ret;
4978}
4979
4980static void mem_cgroup_move_charge(void)
4981{
4982 struct mm_walk mem_cgroup_move_charge_walk = {
4983 .pmd_entry = mem_cgroup_move_charge_pte_range,
4984 .mm = mc.mm,
4985 };
4986
4987 lru_add_drain_all();
4988 /*
4989 * Signal lock_page_memcg() to take the memcg's move_lock
4990 * while we're moving its pages to another memcg. Then wait
4991 * for already started RCU-only updates to finish.
4992 */
4993 atomic_inc(&mc.from->moving_account);
4994 synchronize_rcu();
4995retry:
4996 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4997 /*
4998 * Someone who are holding the mmap_sem might be waiting in
4999 * waitq. So we cancel all extra charges, wake up all waiters,
5000 * and retry. Because we cancel precharges, we might not be able
5001 * to move enough charges, but moving charge is a best-effort
5002 * feature anyway, so it wouldn't be a big problem.
5003 */
5004 __mem_cgroup_clear_mc();
5005 cond_resched();
5006 goto retry;
5007 }
5008 /*
5009 * When we have consumed all precharges and failed in doing
5010 * additional charge, the page walk just aborts.
5011 */
5012 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5013
5014 up_read(&mc.mm->mmap_sem);
5015 atomic_dec(&mc.from->moving_account);
5016}
5017
5018static void mem_cgroup_move_task(void)
5019{
5020 if (mc.to) {
5021 mem_cgroup_move_charge();
5022 mem_cgroup_clear_mc();
5023 }
5024}
5025#else /* !CONFIG_MMU */
5026static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5027{
5028 return 0;
5029}
5030static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5031{
5032}
5033static void mem_cgroup_move_task(void)
5034{
5035}
5036#endif
5037
5038/*
5039 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5040 * to verify whether we're attached to the default hierarchy on each mount
5041 * attempt.
5042 */
5043static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5044{
5045 /*
5046 * use_hierarchy is forced on the default hierarchy. cgroup core
5047 * guarantees that @root doesn't have any children, so turning it
5048 * on for the root memcg is enough.
5049 */
5050 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5051 root_mem_cgroup->use_hierarchy = true;
5052 else
5053 root_mem_cgroup->use_hierarchy = false;
5054}
5055
5056static u64 memory_current_read(struct cgroup_subsys_state *css,
5057 struct cftype *cft)
5058{
5059 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5060
5061 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5062}
5063
5064static int memory_low_show(struct seq_file *m, void *v)
5065{
5066 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5067 unsigned long low = READ_ONCE(memcg->low);
5068
5069 if (low == PAGE_COUNTER_MAX)
5070 seq_puts(m, "max\n");
5071 else
5072 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5073
5074 return 0;
5075}
5076
5077static ssize_t memory_low_write(struct kernfs_open_file *of,
5078 char *buf, size_t nbytes, loff_t off)
5079{
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5081 unsigned long low;
5082 int err;
5083
5084 buf = strstrip(buf);
5085 err = page_counter_memparse(buf, "max", &low);
5086 if (err)
5087 return err;
5088
5089 memcg->low = low;
5090
5091 return nbytes;
5092}
5093
5094static int memory_high_show(struct seq_file *m, void *v)
5095{
5096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5097 unsigned long high = READ_ONCE(memcg->high);
5098
5099 if (high == PAGE_COUNTER_MAX)
5100 seq_puts(m, "max\n");
5101 else
5102 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5103
5104 return 0;
5105}
5106
5107static ssize_t memory_high_write(struct kernfs_open_file *of,
5108 char *buf, size_t nbytes, loff_t off)
5109{
5110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5111 unsigned long nr_pages;
5112 unsigned long high;
5113 int err;
5114
5115 buf = strstrip(buf);
5116 err = page_counter_memparse(buf, "max", &high);
5117 if (err)
5118 return err;
5119
5120 memcg->high = high;
5121
5122 nr_pages = page_counter_read(&memcg->memory);
5123 if (nr_pages > high)
5124 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5125 GFP_KERNEL, true);
5126
5127 memcg_wb_domain_size_changed(memcg);
5128 return nbytes;
5129}
5130
5131static int memory_max_show(struct seq_file *m, void *v)
5132{
5133 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5134 unsigned long max = READ_ONCE(memcg->memory.limit);
5135
5136 if (max == PAGE_COUNTER_MAX)
5137 seq_puts(m, "max\n");
5138 else
5139 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5140
5141 return 0;
5142}
5143
5144static ssize_t memory_max_write(struct kernfs_open_file *of,
5145 char *buf, size_t nbytes, loff_t off)
5146{
5147 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5148 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5149 bool drained = false;
5150 unsigned long max;
5151 int err;
5152
5153 buf = strstrip(buf);
5154 err = page_counter_memparse(buf, "max", &max);
5155 if (err)
5156 return err;
5157
5158 xchg(&memcg->memory.limit, max);
5159
5160 for (;;) {
5161 unsigned long nr_pages = page_counter_read(&memcg->memory);
5162
5163 if (nr_pages <= max)
5164 break;
5165
5166 if (signal_pending(current)) {
5167 err = -EINTR;
5168 break;
5169 }
5170
5171 if (!drained) {
5172 drain_all_stock(memcg);
5173 drained = true;
5174 continue;
5175 }
5176
5177 if (nr_reclaims) {
5178 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5179 GFP_KERNEL, true))
5180 nr_reclaims--;
5181 continue;
5182 }
5183
5184 memcg_memory_event(memcg, MEMCG_OOM);
5185 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5186 break;
5187 }
5188
5189 memcg_wb_domain_size_changed(memcg);
5190 return nbytes;
5191}
5192
5193static int memory_events_show(struct seq_file *m, void *v)
5194{
5195 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5196
5197 seq_printf(m, "low %lu\n",
5198 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5199 seq_printf(m, "high %lu\n",
5200 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5201 seq_printf(m, "max %lu\n",
5202 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5203 seq_printf(m, "oom %lu\n",
5204 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5205 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5206
5207 return 0;
5208}
5209
5210static int memory_stat_show(struct seq_file *m, void *v)
5211{
5212 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5213 unsigned long stat[MEMCG_NR_STAT];
5214 unsigned long events[NR_VM_EVENT_ITEMS];
5215 int i;
5216
5217 /*
5218 * Provide statistics on the state of the memory subsystem as
5219 * well as cumulative event counters that show past behavior.
5220 *
5221 * This list is ordered following a combination of these gradients:
5222 * 1) generic big picture -> specifics and details
5223 * 2) reflecting userspace activity -> reflecting kernel heuristics
5224 *
5225 * Current memory state:
5226 */
5227
5228 tree_stat(memcg, stat);
5229 tree_events(memcg, events);
5230
5231 seq_printf(m, "anon %llu\n",
5232 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5233 seq_printf(m, "file %llu\n",
5234 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5235 seq_printf(m, "kernel_stack %llu\n",
5236 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5237 seq_printf(m, "slab %llu\n",
5238 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5239 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5240 seq_printf(m, "sock %llu\n",
5241 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5242
5243 seq_printf(m, "shmem %llu\n",
5244 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5245 seq_printf(m, "file_mapped %llu\n",
5246 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5247 seq_printf(m, "file_dirty %llu\n",
5248 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5249 seq_printf(m, "file_writeback %llu\n",
5250 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5251
5252 for (i = 0; i < NR_LRU_LISTS; i++) {
5253 struct mem_cgroup *mi;
5254 unsigned long val = 0;
5255
5256 for_each_mem_cgroup_tree(mi, memcg)
5257 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5258 seq_printf(m, "%s %llu\n",
5259 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5260 }
5261
5262 seq_printf(m, "slab_reclaimable %llu\n",
5263 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5264 seq_printf(m, "slab_unreclaimable %llu\n",
5265 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5266
5267 /* Accumulated memory events */
5268
5269 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5270 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5271
5272 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5273 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5274 events[PGSCAN_DIRECT]);
5275 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5276 events[PGSTEAL_DIRECT]);
5277 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5278 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5279 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5280 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5281
5282 seq_printf(m, "workingset_refault %lu\n",
5283 stat[WORKINGSET_REFAULT]);
5284 seq_printf(m, "workingset_activate %lu\n",
5285 stat[WORKINGSET_ACTIVATE]);
5286 seq_printf(m, "workingset_nodereclaim %lu\n",
5287 stat[WORKINGSET_NODERECLAIM]);
5288
5289 return 0;
5290}
5291
5292static struct cftype memory_files[] = {
5293 {
5294 .name = "current",
5295 .flags = CFTYPE_NOT_ON_ROOT,
5296 .read_u64 = memory_current_read,
5297 },
5298 {
5299 .name = "low",
5300 .flags = CFTYPE_NOT_ON_ROOT,
5301 .seq_show = memory_low_show,
5302 .write = memory_low_write,
5303 },
5304 {
5305 .name = "high",
5306 .flags = CFTYPE_NOT_ON_ROOT,
5307 .seq_show = memory_high_show,
5308 .write = memory_high_write,
5309 },
5310 {
5311 .name = "max",
5312 .flags = CFTYPE_NOT_ON_ROOT,
5313 .seq_show = memory_max_show,
5314 .write = memory_max_write,
5315 },
5316 {
5317 .name = "events",
5318 .flags = CFTYPE_NOT_ON_ROOT,
5319 .file_offset = offsetof(struct mem_cgroup, events_file),
5320 .seq_show = memory_events_show,
5321 },
5322 {
5323 .name = "stat",
5324 .flags = CFTYPE_NOT_ON_ROOT,
5325 .seq_show = memory_stat_show,
5326 },
5327 { } /* terminate */
5328};
5329
5330struct cgroup_subsys memory_cgrp_subsys = {
5331 .css_alloc = mem_cgroup_css_alloc,
5332 .css_online = mem_cgroup_css_online,
5333 .css_offline = mem_cgroup_css_offline,
5334 .css_released = mem_cgroup_css_released,
5335 .css_free = mem_cgroup_css_free,
5336 .css_reset = mem_cgroup_css_reset,
5337 .can_attach = mem_cgroup_can_attach,
5338 .cancel_attach = mem_cgroup_cancel_attach,
5339 .post_attach = mem_cgroup_move_task,
5340 .bind = mem_cgroup_bind,
5341 .dfl_cftypes = memory_files,
5342 .legacy_cftypes = mem_cgroup_legacy_files,
5343 .early_init = 0,
5344};
5345
5346/**
5347 * mem_cgroup_low - check if memory consumption is below the normal range
5348 * @root: the top ancestor of the sub-tree being checked
5349 * @memcg: the memory cgroup to check
5350 *
5351 * Returns %true if memory consumption of @memcg, and that of all
5352 * ancestors up to (but not including) @root, is below the normal range.
5353 *
5354 * @root is exclusive; it is never low when looked at directly and isn't
5355 * checked when traversing the hierarchy.
5356 *
5357 * Excluding @root enables using memory.low to prioritize memory usage
5358 * between cgroups within a subtree of the hierarchy that is limited by
5359 * memory.high or memory.max.
5360 *
5361 * For example, given cgroup A with children B and C:
5362 *
5363 * A
5364 * / \
5365 * B C
5366 *
5367 * and
5368 *
5369 * 1. A/memory.current > A/memory.high
5370 * 2. A/B/memory.current < A/B/memory.low
5371 * 3. A/C/memory.current >= A/C/memory.low
5372 *
5373 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5374 * should reclaim from 'C' until 'A' is no longer high or until we can
5375 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5376 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5377 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5378 */
5379bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5380{
5381 if (mem_cgroup_disabled())
5382 return false;
5383
5384 if (!root)
5385 root = root_mem_cgroup;
5386 if (memcg == root)
5387 return false;
5388
5389 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5390 if (page_counter_read(&memcg->memory) >= memcg->low)
5391 return false;
5392 }
5393
5394 return true;
5395}
5396
5397/**
5398 * mem_cgroup_try_charge - try charging a page
5399 * @page: page to charge
5400 * @mm: mm context of the victim
5401 * @gfp_mask: reclaim mode
5402 * @memcgp: charged memcg return
5403 * @compound: charge the page as compound or small page
5404 *
5405 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5406 * pages according to @gfp_mask if necessary.
5407 *
5408 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5409 * Otherwise, an error code is returned.
5410 *
5411 * After page->mapping has been set up, the caller must finalize the
5412 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5413 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5414 */
5415int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5416 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5417 bool compound)
5418{
5419 struct mem_cgroup *memcg = NULL;
5420 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5421 int ret = 0;
5422
5423 if (mem_cgroup_disabled())
5424 goto out;
5425
5426 if (PageSwapCache(page)) {
5427 /*
5428 * Every swap fault against a single page tries to charge the
5429 * page, bail as early as possible. shmem_unuse() encounters
5430 * already charged pages, too. The USED bit is protected by
5431 * the page lock, which serializes swap cache removal, which
5432 * in turn serializes uncharging.
5433 */
5434 VM_BUG_ON_PAGE(!PageLocked(page), page);
5435 if (compound_head(page)->mem_cgroup)
5436 goto out;
5437
5438 if (do_swap_account) {
5439 swp_entry_t ent = { .val = page_private(page), };
5440 unsigned short id = lookup_swap_cgroup_id(ent);
5441
5442 rcu_read_lock();
5443 memcg = mem_cgroup_from_id(id);
5444 if (memcg && !css_tryget_online(&memcg->css))
5445 memcg = NULL;
5446 rcu_read_unlock();
5447 }
5448 }
5449
5450 if (!memcg)
5451 memcg = get_mem_cgroup_from_mm(mm);
5452
5453 ret = try_charge(memcg, gfp_mask, nr_pages);
5454
5455 css_put(&memcg->css);
5456out:
5457 *memcgp = memcg;
5458 return ret;
5459}
5460
5461/**
5462 * mem_cgroup_commit_charge - commit a page charge
5463 * @page: page to charge
5464 * @memcg: memcg to charge the page to
5465 * @lrucare: page might be on LRU already
5466 * @compound: charge the page as compound or small page
5467 *
5468 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5469 * after page->mapping has been set up. This must happen atomically
5470 * as part of the page instantiation, i.e. under the page table lock
5471 * for anonymous pages, under the page lock for page and swap cache.
5472 *
5473 * In addition, the page must not be on the LRU during the commit, to
5474 * prevent racing with task migration. If it might be, use @lrucare.
5475 *
5476 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5477 */
5478void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5479 bool lrucare, bool compound)
5480{
5481 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5482
5483 VM_BUG_ON_PAGE(!page->mapping, page);
5484 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5485
5486 if (mem_cgroup_disabled())
5487 return;
5488 /*
5489 * Swap faults will attempt to charge the same page multiple
5490 * times. But reuse_swap_page() might have removed the page
5491 * from swapcache already, so we can't check PageSwapCache().
5492 */
5493 if (!memcg)
5494 return;
5495
5496 commit_charge(page, memcg, lrucare);
5497
5498 local_irq_disable();
5499 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5500 memcg_check_events(memcg, page);
5501 local_irq_enable();
5502
5503 if (do_memsw_account() && PageSwapCache(page)) {
5504 swp_entry_t entry = { .val = page_private(page) };
5505 /*
5506 * The swap entry might not get freed for a long time,
5507 * let's not wait for it. The page already received a
5508 * memory+swap charge, drop the swap entry duplicate.
5509 */
5510 mem_cgroup_uncharge_swap(entry, nr_pages);
5511 }
5512}
5513
5514/**
5515 * mem_cgroup_cancel_charge - cancel a page charge
5516 * @page: page to charge
5517 * @memcg: memcg to charge the page to
5518 * @compound: charge the page as compound or small page
5519 *
5520 * Cancel a charge transaction started by mem_cgroup_try_charge().
5521 */
5522void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5523 bool compound)
5524{
5525 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5526
5527 if (mem_cgroup_disabled())
5528 return;
5529 /*
5530 * Swap faults will attempt to charge the same page multiple
5531 * times. But reuse_swap_page() might have removed the page
5532 * from swapcache already, so we can't check PageSwapCache().
5533 */
5534 if (!memcg)
5535 return;
5536
5537 cancel_charge(memcg, nr_pages);
5538}
5539
5540struct uncharge_gather {
5541 struct mem_cgroup *memcg;
5542 unsigned long pgpgout;
5543 unsigned long nr_anon;
5544 unsigned long nr_file;
5545 unsigned long nr_kmem;
5546 unsigned long nr_huge;
5547 unsigned long nr_shmem;
5548 struct page *dummy_page;
5549};
5550
5551static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5552{
5553 memset(ug, 0, sizeof(*ug));
5554}
5555
5556static void uncharge_batch(const struct uncharge_gather *ug)
5557{
5558 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5559 unsigned long flags;
5560
5561 if (!mem_cgroup_is_root(ug->memcg)) {
5562 page_counter_uncharge(&ug->memcg->memory, nr_pages);
5563 if (do_memsw_account())
5564 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5565 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5566 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5567 memcg_oom_recover(ug->memcg);
5568 }
5569
5570 local_irq_save(flags);
5571 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5572 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5573 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5574 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5575 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5576 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5577 memcg_check_events(ug->memcg, ug->dummy_page);
5578 local_irq_restore(flags);
5579
5580 if (!mem_cgroup_is_root(ug->memcg))
5581 css_put_many(&ug->memcg->css, nr_pages);
5582}
5583
5584static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5585{
5586 VM_BUG_ON_PAGE(PageLRU(page), page);
5587 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5588 !PageHWPoison(page) , page);
5589
5590 if (!page->mem_cgroup)
5591 return;
5592
5593 /*
5594 * Nobody should be changing or seriously looking at
5595 * page->mem_cgroup at this point, we have fully
5596 * exclusive access to the page.
5597 */
5598
5599 if (ug->memcg != page->mem_cgroup) {
5600 if (ug->memcg) {
5601 uncharge_batch(ug);
5602 uncharge_gather_clear(ug);
5603 }
5604 ug->memcg = page->mem_cgroup;
5605 }
5606
5607 if (!PageKmemcg(page)) {
5608 unsigned int nr_pages = 1;
5609
5610 if (PageTransHuge(page)) {
5611 nr_pages <<= compound_order(page);
5612 ug->nr_huge += nr_pages;
5613 }
5614 if (PageAnon(page))
5615 ug->nr_anon += nr_pages;
5616 else {
5617 ug->nr_file += nr_pages;
5618 if (PageSwapBacked(page))
5619 ug->nr_shmem += nr_pages;
5620 }
5621 ug->pgpgout++;
5622 } else {
5623 ug->nr_kmem += 1 << compound_order(page);
5624 __ClearPageKmemcg(page);
5625 }
5626
5627 ug->dummy_page = page;
5628 page->mem_cgroup = NULL;
5629}
5630
5631static void uncharge_list(struct list_head *page_list)
5632{
5633 struct uncharge_gather ug;
5634 struct list_head *next;
5635
5636 uncharge_gather_clear(&ug);
5637
5638 /*
5639 * Note that the list can be a single page->lru; hence the
5640 * do-while loop instead of a simple list_for_each_entry().
5641 */
5642 next = page_list->next;
5643 do {
5644 struct page *page;
5645
5646 page = list_entry(next, struct page, lru);
5647 next = page->lru.next;
5648
5649 uncharge_page(page, &ug);
5650 } while (next != page_list);
5651
5652 if (ug.memcg)
5653 uncharge_batch(&ug);
5654}
5655
5656/**
5657 * mem_cgroup_uncharge - uncharge a page
5658 * @page: page to uncharge
5659 *
5660 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5661 * mem_cgroup_commit_charge().
5662 */
5663void mem_cgroup_uncharge(struct page *page)
5664{
5665 struct uncharge_gather ug;
5666
5667 if (mem_cgroup_disabled())
5668 return;
5669
5670 /* Don't touch page->lru of any random page, pre-check: */
5671 if (!page->mem_cgroup)
5672 return;
5673
5674 uncharge_gather_clear(&ug);
5675 uncharge_page(page, &ug);
5676 uncharge_batch(&ug);
5677}
5678
5679/**
5680 * mem_cgroup_uncharge_list - uncharge a list of page
5681 * @page_list: list of pages to uncharge
5682 *
5683 * Uncharge a list of pages previously charged with
5684 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5685 */
5686void mem_cgroup_uncharge_list(struct list_head *page_list)
5687{
5688 if (mem_cgroup_disabled())
5689 return;
5690
5691 if (!list_empty(page_list))
5692 uncharge_list(page_list);
5693}
5694
5695/**
5696 * mem_cgroup_migrate - charge a page's replacement
5697 * @oldpage: currently circulating page
5698 * @newpage: replacement page
5699 *
5700 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5701 * be uncharged upon free.
5702 *
5703 * Both pages must be locked, @newpage->mapping must be set up.
5704 */
5705void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5706{
5707 struct mem_cgroup *memcg;
5708 unsigned int nr_pages;
5709 bool compound;
5710 unsigned long flags;
5711
5712 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5713 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5714 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5715 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5716 newpage);
5717
5718 if (mem_cgroup_disabled())
5719 return;
5720
5721 /* Page cache replacement: new page already charged? */
5722 if (newpage->mem_cgroup)
5723 return;
5724
5725 /* Swapcache readahead pages can get replaced before being charged */
5726 memcg = oldpage->mem_cgroup;
5727 if (!memcg)
5728 return;
5729
5730 /* Force-charge the new page. The old one will be freed soon */
5731 compound = PageTransHuge(newpage);
5732 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5733
5734 page_counter_charge(&memcg->memory, nr_pages);
5735 if (do_memsw_account())
5736 page_counter_charge(&memcg->memsw, nr_pages);
5737 css_get_many(&memcg->css, nr_pages);
5738
5739 commit_charge(newpage, memcg, false);
5740
5741 local_irq_save(flags);
5742 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5743 memcg_check_events(memcg, newpage);
5744 local_irq_restore(flags);
5745}
5746
5747DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5748EXPORT_SYMBOL(memcg_sockets_enabled_key);
5749
5750void mem_cgroup_sk_alloc(struct sock *sk)
5751{
5752 struct mem_cgroup *memcg;
5753
5754 if (!mem_cgroup_sockets_enabled)
5755 return;
5756
5757 /*
5758 * Socket cloning can throw us here with sk_memcg already
5759 * filled. It won't however, necessarily happen from
5760 * process context. So the test for root memcg given
5761 * the current task's memcg won't help us in this case.
5762 *
5763 * Respecting the original socket's memcg is a better
5764 * decision in this case.
5765 */
5766 if (sk->sk_memcg) {
5767 css_get(&sk->sk_memcg->css);
5768 return;
5769 }
5770
5771 rcu_read_lock();
5772 memcg = mem_cgroup_from_task(current);
5773 if (memcg == root_mem_cgroup)
5774 goto out;
5775 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5776 goto out;
5777 if (css_tryget_online(&memcg->css))
5778 sk->sk_memcg = memcg;
5779out:
5780 rcu_read_unlock();
5781}
5782
5783void mem_cgroup_sk_free(struct sock *sk)
5784{
5785 if (sk->sk_memcg)
5786 css_put(&sk->sk_memcg->css);
5787}
5788
5789/**
5790 * mem_cgroup_charge_skmem - charge socket memory
5791 * @memcg: memcg to charge
5792 * @nr_pages: number of pages to charge
5793 *
5794 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5795 * @memcg's configured limit, %false if the charge had to be forced.
5796 */
5797bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5798{
5799 gfp_t gfp_mask = GFP_KERNEL;
5800
5801 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5802 struct page_counter *fail;
5803
5804 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5805 memcg->tcpmem_pressure = 0;
5806 return true;
5807 }
5808 page_counter_charge(&memcg->tcpmem, nr_pages);
5809 memcg->tcpmem_pressure = 1;
5810 return false;
5811 }
5812
5813 /* Don't block in the packet receive path */
5814 if (in_softirq())
5815 gfp_mask = GFP_NOWAIT;
5816
5817 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5818
5819 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5820 return true;
5821
5822 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5823 return false;
5824}
5825
5826/**
5827 * mem_cgroup_uncharge_skmem - uncharge socket memory
5828 * @memcg: memcg to uncharge
5829 * @nr_pages: number of pages to uncharge
5830 */
5831void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5832{
5833 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5834 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5835 return;
5836 }
5837
5838 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5839
5840 refill_stock(memcg, nr_pages);
5841}
5842
5843static int __init cgroup_memory(char *s)
5844{
5845 char *token;
5846
5847 while ((token = strsep(&s, ",")) != NULL) {
5848 if (!*token)
5849 continue;
5850 if (!strcmp(token, "nosocket"))
5851 cgroup_memory_nosocket = true;
5852 if (!strcmp(token, "nokmem"))
5853 cgroup_memory_nokmem = true;
5854 }
5855 return 0;
5856}
5857__setup("cgroup.memory=", cgroup_memory);
5858
5859/*
5860 * subsys_initcall() for memory controller.
5861 *
5862 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5863 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5864 * basically everything that doesn't depend on a specific mem_cgroup structure
5865 * should be initialized from here.
5866 */
5867static int __init mem_cgroup_init(void)
5868{
5869 int cpu, node;
5870
5871#ifndef CONFIG_SLOB
5872 /*
5873 * Kmem cache creation is mostly done with the slab_mutex held,
5874 * so use a workqueue with limited concurrency to avoid stalling
5875 * all worker threads in case lots of cgroups are created and
5876 * destroyed simultaneously.
5877 */
5878 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5879 BUG_ON(!memcg_kmem_cache_wq);
5880#endif
5881
5882 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5883 memcg_hotplug_cpu_dead);
5884
5885 for_each_possible_cpu(cpu)
5886 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5887 drain_local_stock);
5888
5889 for_each_node(node) {
5890 struct mem_cgroup_tree_per_node *rtpn;
5891
5892 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5893 node_online(node) ? node : NUMA_NO_NODE);
5894
5895 rtpn->rb_root = RB_ROOT;
5896 rtpn->rb_rightmost = NULL;
5897 spin_lock_init(&rtpn->lock);
5898 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5899 }
5900
5901 return 0;
5902}
5903subsys_initcall(mem_cgroup_init);
5904
5905#ifdef CONFIG_MEMCG_SWAP
5906static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5907{
5908 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5909 /*
5910 * The root cgroup cannot be destroyed, so it's refcount must
5911 * always be >= 1.
5912 */
5913 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5914 VM_BUG_ON(1);
5915 break;
5916 }
5917 memcg = parent_mem_cgroup(memcg);
5918 if (!memcg)
5919 memcg = root_mem_cgroup;
5920 }
5921 return memcg;
5922}
5923
5924/**
5925 * mem_cgroup_swapout - transfer a memsw charge to swap
5926 * @page: page whose memsw charge to transfer
5927 * @entry: swap entry to move the charge to
5928 *
5929 * Transfer the memsw charge of @page to @entry.
5930 */
5931void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5932{
5933 struct mem_cgroup *memcg, *swap_memcg;
5934 unsigned int nr_entries;
5935 unsigned short oldid;
5936
5937 VM_BUG_ON_PAGE(PageLRU(page), page);
5938 VM_BUG_ON_PAGE(page_count(page), page);
5939
5940 if (!do_memsw_account())
5941 return;
5942
5943 memcg = page->mem_cgroup;
5944
5945 /* Readahead page, never charged */
5946 if (!memcg)
5947 return;
5948
5949 /*
5950 * In case the memcg owning these pages has been offlined and doesn't
5951 * have an ID allocated to it anymore, charge the closest online
5952 * ancestor for the swap instead and transfer the memory+swap charge.
5953 */
5954 swap_memcg = mem_cgroup_id_get_online(memcg);
5955 nr_entries = hpage_nr_pages(page);
5956 /* Get references for the tail pages, too */
5957 if (nr_entries > 1)
5958 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5959 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5960 nr_entries);
5961 VM_BUG_ON_PAGE(oldid, page);
5962 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5963
5964 page->mem_cgroup = NULL;
5965
5966 if (!mem_cgroup_is_root(memcg))
5967 page_counter_uncharge(&memcg->memory, nr_entries);
5968
5969 if (memcg != swap_memcg) {
5970 if (!mem_cgroup_is_root(swap_memcg))
5971 page_counter_charge(&swap_memcg->memsw, nr_entries);
5972 page_counter_uncharge(&memcg->memsw, nr_entries);
5973 }
5974
5975 /*
5976 * Interrupts should be disabled here because the caller holds the
5977 * i_pages lock which is taken with interrupts-off. It is
5978 * important here to have the interrupts disabled because it is the
5979 * only synchronisation we have for updating the per-CPU variables.
5980 */
5981 VM_BUG_ON(!irqs_disabled());
5982 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
5983 -nr_entries);
5984 memcg_check_events(memcg, page);
5985
5986 if (!mem_cgroup_is_root(memcg))
5987 css_put_many(&memcg->css, nr_entries);
5988}
5989
5990/**
5991 * mem_cgroup_try_charge_swap - try charging swap space for a page
5992 * @page: page being added to swap
5993 * @entry: swap entry to charge
5994 *
5995 * Try to charge @page's memcg for the swap space at @entry.
5996 *
5997 * Returns 0 on success, -ENOMEM on failure.
5998 */
5999int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6000{
6001 unsigned int nr_pages = hpage_nr_pages(page);
6002 struct page_counter *counter;
6003 struct mem_cgroup *memcg;
6004 unsigned short oldid;
6005
6006 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6007 return 0;
6008
6009 memcg = page->mem_cgroup;
6010
6011 /* Readahead page, never charged */
6012 if (!memcg)
6013 return 0;
6014
6015 memcg = mem_cgroup_id_get_online(memcg);
6016
6017 if (!mem_cgroup_is_root(memcg) &&
6018 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6019 mem_cgroup_id_put(memcg);
6020 return -ENOMEM;
6021 }
6022
6023 /* Get references for the tail pages, too */
6024 if (nr_pages > 1)
6025 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6026 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6027 VM_BUG_ON_PAGE(oldid, page);
6028 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6029
6030 return 0;
6031}
6032
6033/**
6034 * mem_cgroup_uncharge_swap - uncharge swap space
6035 * @entry: swap entry to uncharge
6036 * @nr_pages: the amount of swap space to uncharge
6037 */
6038void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6039{
6040 struct mem_cgroup *memcg;
6041 unsigned short id;
6042
6043 if (!do_swap_account)
6044 return;
6045
6046 id = swap_cgroup_record(entry, 0, nr_pages);
6047 rcu_read_lock();
6048 memcg = mem_cgroup_from_id(id);
6049 if (memcg) {
6050 if (!mem_cgroup_is_root(memcg)) {
6051 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6052 page_counter_uncharge(&memcg->swap, nr_pages);
6053 else
6054 page_counter_uncharge(&memcg->memsw, nr_pages);
6055 }
6056 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6057 mem_cgroup_id_put_many(memcg, nr_pages);
6058 }
6059 rcu_read_unlock();
6060}
6061
6062long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6063{
6064 long nr_swap_pages = get_nr_swap_pages();
6065
6066 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6067 return nr_swap_pages;
6068 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6069 nr_swap_pages = min_t(long, nr_swap_pages,
6070 READ_ONCE(memcg->swap.limit) -
6071 page_counter_read(&memcg->swap));
6072 return nr_swap_pages;
6073}
6074
6075bool mem_cgroup_swap_full(struct page *page)
6076{
6077 struct mem_cgroup *memcg;
6078
6079 VM_BUG_ON_PAGE(!PageLocked(page), page);
6080
6081 if (vm_swap_full())
6082 return true;
6083 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6084 return false;
6085
6086 memcg = page->mem_cgroup;
6087 if (!memcg)
6088 return false;
6089
6090 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6091 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6092 return true;
6093
6094 return false;
6095}
6096
6097/* for remember boot option*/
6098#ifdef CONFIG_MEMCG_SWAP_ENABLED
6099static int really_do_swap_account __initdata = 1;
6100#else
6101static int really_do_swap_account __initdata;
6102#endif
6103
6104static int __init enable_swap_account(char *s)
6105{
6106 if (!strcmp(s, "1"))
6107 really_do_swap_account = 1;
6108 else if (!strcmp(s, "0"))
6109 really_do_swap_account = 0;
6110 return 1;
6111}
6112__setup("swapaccount=", enable_swap_account);
6113
6114static u64 swap_current_read(struct cgroup_subsys_state *css,
6115 struct cftype *cft)
6116{
6117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6118
6119 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6120}
6121
6122static int swap_max_show(struct seq_file *m, void *v)
6123{
6124 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6125 unsigned long max = READ_ONCE(memcg->swap.limit);
6126
6127 if (max == PAGE_COUNTER_MAX)
6128 seq_puts(m, "max\n");
6129 else
6130 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6131
6132 return 0;
6133}
6134
6135static ssize_t swap_max_write(struct kernfs_open_file *of,
6136 char *buf, size_t nbytes, loff_t off)
6137{
6138 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6139 unsigned long max;
6140 int err;
6141
6142 buf = strstrip(buf);
6143 err = page_counter_memparse(buf, "max", &max);
6144 if (err)
6145 return err;
6146
6147 mutex_lock(&memcg_limit_mutex);
6148 err = page_counter_limit(&memcg->swap, max);
6149 mutex_unlock(&memcg_limit_mutex);
6150 if (err)
6151 return err;
6152
6153 return nbytes;
6154}
6155
6156static struct cftype swap_files[] = {
6157 {
6158 .name = "swap.current",
6159 .flags = CFTYPE_NOT_ON_ROOT,
6160 .read_u64 = swap_current_read,
6161 },
6162 {
6163 .name = "swap.max",
6164 .flags = CFTYPE_NOT_ON_ROOT,
6165 .seq_show = swap_max_show,
6166 .write = swap_max_write,
6167 },
6168 { } /* terminate */
6169};
6170
6171static struct cftype memsw_cgroup_files[] = {
6172 {
6173 .name = "memsw.usage_in_bytes",
6174 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6175 .read_u64 = mem_cgroup_read_u64,
6176 },
6177 {
6178 .name = "memsw.max_usage_in_bytes",
6179 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6180 .write = mem_cgroup_reset,
6181 .read_u64 = mem_cgroup_read_u64,
6182 },
6183 {
6184 .name = "memsw.limit_in_bytes",
6185 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6186 .write = mem_cgroup_write,
6187 .read_u64 = mem_cgroup_read_u64,
6188 },
6189 {
6190 .name = "memsw.failcnt",
6191 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6192 .write = mem_cgroup_reset,
6193 .read_u64 = mem_cgroup_read_u64,
6194 },
6195 { }, /* terminate */
6196};
6197
6198static int __init mem_cgroup_swap_init(void)
6199{
6200 if (!mem_cgroup_disabled() && really_do_swap_account) {
6201 do_swap_account = 1;
6202 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6203 swap_files));
6204 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6205 memsw_cgroup_files));
6206 }
6207 return 0;
6208}
6209subsys_initcall(mem_cgroup_swap_init);
6210
6211#endif /* CONFIG_MEMCG_SWAP */